xref: /linux/arch/x86/lib/insn-eval.c (revision 6331b8765cd0634a4e4cdcc1a6f1a74196616b94)
1 /*
2  * Utility functions for x86 operand and address decoding
3  *
4  * Copyright (C) Intel Corporation 2017
5  */
6 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/ratelimit.h>
9 #include <linux/mmu_context.h>
10 #include <asm/desc_defs.h>
11 #include <asm/desc.h>
12 #include <asm/inat.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/ldt.h>
16 #include <asm/vm86.h>
17 
18 #undef pr_fmt
19 #define pr_fmt(fmt) "insn: " fmt
20 
21 enum reg_type {
22 	REG_TYPE_RM = 0,
23 	REG_TYPE_REG,
24 	REG_TYPE_INDEX,
25 	REG_TYPE_BASE,
26 };
27 
28 /**
29  * is_string_insn() - Determine if instruction is a string instruction
30  * @insn:	Instruction containing the opcode to inspect
31  *
32  * Returns:
33  *
34  * true if the instruction, determined by the opcode, is any of the
35  * string instructions as defined in the Intel Software Development manual.
36  * False otherwise.
37  */
38 static bool is_string_insn(struct insn *insn)
39 {
40 	insn_get_opcode(insn);
41 
42 	/* All string instructions have a 1-byte opcode. */
43 	if (insn->opcode.nbytes != 1)
44 		return false;
45 
46 	switch (insn->opcode.bytes[0]) {
47 	case 0x6c ... 0x6f:	/* INS, OUTS */
48 	case 0xa4 ... 0xa7:	/* MOVS, CMPS */
49 	case 0xaa ... 0xaf:	/* STOS, LODS, SCAS */
50 		return true;
51 	default:
52 		return false;
53 	}
54 }
55 
56 /**
57  * insn_has_rep_prefix() - Determine if instruction has a REP prefix
58  * @insn:	Instruction containing the prefix to inspect
59  *
60  * Returns:
61  *
62  * true if the instruction has a REP prefix, false if not.
63  */
64 bool insn_has_rep_prefix(struct insn *insn)
65 {
66 	insn_byte_t p;
67 	int i;
68 
69 	insn_get_prefixes(insn);
70 
71 	for_each_insn_prefix(insn, i, p) {
72 		if (p == 0xf2 || p == 0xf3)
73 			return true;
74 	}
75 
76 	return false;
77 }
78 
79 /**
80  * get_seg_reg_override_idx() - obtain segment register override index
81  * @insn:	Valid instruction with segment override prefixes
82  *
83  * Inspect the instruction prefixes in @insn and find segment overrides, if any.
84  *
85  * Returns:
86  *
87  * A constant identifying the segment register to use, among CS, SS, DS,
88  * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
89  * prefixes were found.
90  *
91  * -EINVAL in case of error.
92  */
93 static int get_seg_reg_override_idx(struct insn *insn)
94 {
95 	int idx = INAT_SEG_REG_DEFAULT;
96 	int num_overrides = 0, i;
97 	insn_byte_t p;
98 
99 	insn_get_prefixes(insn);
100 
101 	/* Look for any segment override prefixes. */
102 	for_each_insn_prefix(insn, i, p) {
103 		insn_attr_t attr;
104 
105 		attr = inat_get_opcode_attribute(p);
106 		switch (attr) {
107 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
108 			idx = INAT_SEG_REG_CS;
109 			num_overrides++;
110 			break;
111 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
112 			idx = INAT_SEG_REG_SS;
113 			num_overrides++;
114 			break;
115 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
116 			idx = INAT_SEG_REG_DS;
117 			num_overrides++;
118 			break;
119 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
120 			idx = INAT_SEG_REG_ES;
121 			num_overrides++;
122 			break;
123 		case INAT_MAKE_PREFIX(INAT_PFX_FS):
124 			idx = INAT_SEG_REG_FS;
125 			num_overrides++;
126 			break;
127 		case INAT_MAKE_PREFIX(INAT_PFX_GS):
128 			idx = INAT_SEG_REG_GS;
129 			num_overrides++;
130 			break;
131 		/* No default action needed. */
132 		}
133 	}
134 
135 	/* More than one segment override prefix leads to undefined behavior. */
136 	if (num_overrides > 1)
137 		return -EINVAL;
138 
139 	return idx;
140 }
141 
142 /**
143  * check_seg_overrides() - check if segment override prefixes are allowed
144  * @insn:	Valid instruction with segment override prefixes
145  * @regoff:	Operand offset, in pt_regs, for which the check is performed
146  *
147  * For a particular register used in register-indirect addressing, determine if
148  * segment override prefixes can be used. Specifically, no overrides are allowed
149  * for rDI if used with a string instruction.
150  *
151  * Returns:
152  *
153  * True if segment override prefixes can be used with the register indicated
154  * in @regoff. False if otherwise.
155  */
156 static bool check_seg_overrides(struct insn *insn, int regoff)
157 {
158 	if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
159 		return false;
160 
161 	return true;
162 }
163 
164 /**
165  * resolve_default_seg() - resolve default segment register index for an operand
166  * @insn:	Instruction with opcode and address size. Must be valid.
167  * @regs:	Register values as seen when entering kernel mode
168  * @off:	Operand offset, in pt_regs, for which resolution is needed
169  *
170  * Resolve the default segment register index associated with the instruction
171  * operand register indicated by @off. Such index is resolved based on defaults
172  * described in the Intel Software Development Manual.
173  *
174  * Returns:
175  *
176  * If in protected mode, a constant identifying the segment register to use,
177  * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
178  *
179  * -EINVAL in case of error.
180  */
181 static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
182 {
183 	if (any_64bit_mode(regs))
184 		return INAT_SEG_REG_IGNORE;
185 	/*
186 	 * Resolve the default segment register as described in Section 3.7.4
187 	 * of the Intel Software Development Manual Vol. 1:
188 	 *
189 	 *  + DS for all references involving r[ABCD]X, and rSI.
190 	 *  + If used in a string instruction, ES for rDI. Otherwise, DS.
191 	 *  + AX, CX and DX are not valid register operands in 16-bit address
192 	 *    encodings but are valid for 32-bit and 64-bit encodings.
193 	 *  + -EDOM is reserved to identify for cases in which no register
194 	 *    is used (i.e., displacement-only addressing). Use DS.
195 	 *  + SS for rSP or rBP.
196 	 *  + CS for rIP.
197 	 */
198 
199 	switch (off) {
200 	case offsetof(struct pt_regs, ax):
201 	case offsetof(struct pt_regs, cx):
202 	case offsetof(struct pt_regs, dx):
203 		/* Need insn to verify address size. */
204 		if (insn->addr_bytes == 2)
205 			return -EINVAL;
206 
207 		fallthrough;
208 
209 	case -EDOM:
210 	case offsetof(struct pt_regs, bx):
211 	case offsetof(struct pt_regs, si):
212 		return INAT_SEG_REG_DS;
213 
214 	case offsetof(struct pt_regs, di):
215 		if (is_string_insn(insn))
216 			return INAT_SEG_REG_ES;
217 		return INAT_SEG_REG_DS;
218 
219 	case offsetof(struct pt_regs, bp):
220 	case offsetof(struct pt_regs, sp):
221 		return INAT_SEG_REG_SS;
222 
223 	case offsetof(struct pt_regs, ip):
224 		return INAT_SEG_REG_CS;
225 
226 	default:
227 		return -EINVAL;
228 	}
229 }
230 
231 /**
232  * resolve_seg_reg() - obtain segment register index
233  * @insn:	Instruction with operands
234  * @regs:	Register values as seen when entering kernel mode
235  * @regoff:	Operand offset, in pt_regs, used to determine segment register
236  *
237  * Determine the segment register associated with the operands and, if
238  * applicable, prefixes and the instruction pointed by @insn.
239  *
240  * The segment register associated to an operand used in register-indirect
241  * addressing depends on:
242  *
243  * a) Whether running in long mode (in such a case segments are ignored, except
244  * if FS or GS are used).
245  *
246  * b) Whether segment override prefixes can be used. Certain instructions and
247  *    registers do not allow override prefixes.
248  *
249  * c) Whether segment overrides prefixes are found in the instruction prefixes.
250  *
251  * d) If there are not segment override prefixes or they cannot be used, the
252  *    default segment register associated with the operand register is used.
253  *
254  * The function checks first if segment override prefixes can be used with the
255  * operand indicated by @regoff. If allowed, obtain such overridden segment
256  * register index. Lastly, if not prefixes were found or cannot be used, resolve
257  * the segment register index to use based on the defaults described in the
258  * Intel documentation. In long mode, all segment register indexes will be
259  * ignored, except if overrides were found for FS or GS. All these operations
260  * are done using helper functions.
261  *
262  * The operand register, @regoff, is represented as the offset from the base of
263  * pt_regs.
264  *
265  * As stated, the main use of this function is to determine the segment register
266  * index based on the instruction, its operands and prefixes. Hence, @insn
267  * must be valid. However, if @regoff indicates rIP, we don't need to inspect
268  * @insn at all as in this case CS is used in all cases. This case is checked
269  * before proceeding further.
270  *
271  * Please note that this function does not return the value in the segment
272  * register (i.e., the segment selector) but our defined index. The segment
273  * selector needs to be obtained using get_segment_selector() and passing the
274  * segment register index resolved by this function.
275  *
276  * Returns:
277  *
278  * An index identifying the segment register to use, among CS, SS, DS,
279  * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
280  *
281  * -EINVAL in case of error.
282  */
283 static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
284 {
285 	int idx;
286 
287 	/*
288 	 * In the unlikely event of having to resolve the segment register
289 	 * index for rIP, do it first. Segment override prefixes should not
290 	 * be used. Hence, it is not necessary to inspect the instruction,
291 	 * which may be invalid at this point.
292 	 */
293 	if (regoff == offsetof(struct pt_regs, ip)) {
294 		if (any_64bit_mode(regs))
295 			return INAT_SEG_REG_IGNORE;
296 		else
297 			return INAT_SEG_REG_CS;
298 	}
299 
300 	if (!insn)
301 		return -EINVAL;
302 
303 	if (!check_seg_overrides(insn, regoff))
304 		return resolve_default_seg(insn, regs, regoff);
305 
306 	idx = get_seg_reg_override_idx(insn);
307 	if (idx < 0)
308 		return idx;
309 
310 	if (idx == INAT_SEG_REG_DEFAULT)
311 		return resolve_default_seg(insn, regs, regoff);
312 
313 	/*
314 	 * In long mode, segment override prefixes are ignored, except for
315 	 * overrides for FS and GS.
316 	 */
317 	if (any_64bit_mode(regs)) {
318 		if (idx != INAT_SEG_REG_FS &&
319 		    idx != INAT_SEG_REG_GS)
320 			idx = INAT_SEG_REG_IGNORE;
321 	}
322 
323 	return idx;
324 }
325 
326 /**
327  * get_segment_selector() - obtain segment selector
328  * @regs:		Register values as seen when entering kernel mode
329  * @seg_reg_idx:	Segment register index to use
330  *
331  * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
332  * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
333  * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
334  * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
335  * registers. This done for only for completeness as in CONFIG_X86_64 segment
336  * registers are ignored.
337  *
338  * Returns:
339  *
340  * Value of the segment selector, including null when running in
341  * long mode.
342  *
343  * -EINVAL on error.
344  */
345 static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
346 {
347 #ifdef CONFIG_X86_64
348 	unsigned short sel;
349 
350 	switch (seg_reg_idx) {
351 	case INAT_SEG_REG_IGNORE:
352 		return 0;
353 	case INAT_SEG_REG_CS:
354 		return (unsigned short)(regs->cs & 0xffff);
355 	case INAT_SEG_REG_SS:
356 		return (unsigned short)(regs->ss & 0xffff);
357 	case INAT_SEG_REG_DS:
358 		savesegment(ds, sel);
359 		return sel;
360 	case INAT_SEG_REG_ES:
361 		savesegment(es, sel);
362 		return sel;
363 	case INAT_SEG_REG_FS:
364 		savesegment(fs, sel);
365 		return sel;
366 	case INAT_SEG_REG_GS:
367 		savesegment(gs, sel);
368 		return sel;
369 	default:
370 		return -EINVAL;
371 	}
372 #else /* CONFIG_X86_32 */
373 	struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
374 
375 	if (v8086_mode(regs)) {
376 		switch (seg_reg_idx) {
377 		case INAT_SEG_REG_CS:
378 			return (unsigned short)(regs->cs & 0xffff);
379 		case INAT_SEG_REG_SS:
380 			return (unsigned short)(regs->ss & 0xffff);
381 		case INAT_SEG_REG_DS:
382 			return vm86regs->ds;
383 		case INAT_SEG_REG_ES:
384 			return vm86regs->es;
385 		case INAT_SEG_REG_FS:
386 			return vm86regs->fs;
387 		case INAT_SEG_REG_GS:
388 			return vm86regs->gs;
389 		case INAT_SEG_REG_IGNORE:
390 		default:
391 			return -EINVAL;
392 		}
393 	}
394 
395 	switch (seg_reg_idx) {
396 	case INAT_SEG_REG_CS:
397 		return (unsigned short)(regs->cs & 0xffff);
398 	case INAT_SEG_REG_SS:
399 		return (unsigned short)(regs->ss & 0xffff);
400 	case INAT_SEG_REG_DS:
401 		return (unsigned short)(regs->ds & 0xffff);
402 	case INAT_SEG_REG_ES:
403 		return (unsigned short)(regs->es & 0xffff);
404 	case INAT_SEG_REG_FS:
405 		return (unsigned short)(regs->fs & 0xffff);
406 	case INAT_SEG_REG_GS:
407 		return get_user_gs(regs);
408 	case INAT_SEG_REG_IGNORE:
409 	default:
410 		return -EINVAL;
411 	}
412 #endif /* CONFIG_X86_64 */
413 }
414 
415 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
416 			  enum reg_type type)
417 {
418 	int regno = 0;
419 
420 	static const int regoff[] = {
421 		offsetof(struct pt_regs, ax),
422 		offsetof(struct pt_regs, cx),
423 		offsetof(struct pt_regs, dx),
424 		offsetof(struct pt_regs, bx),
425 		offsetof(struct pt_regs, sp),
426 		offsetof(struct pt_regs, bp),
427 		offsetof(struct pt_regs, si),
428 		offsetof(struct pt_regs, di),
429 #ifdef CONFIG_X86_64
430 		offsetof(struct pt_regs, r8),
431 		offsetof(struct pt_regs, r9),
432 		offsetof(struct pt_regs, r10),
433 		offsetof(struct pt_regs, r11),
434 		offsetof(struct pt_regs, r12),
435 		offsetof(struct pt_regs, r13),
436 		offsetof(struct pt_regs, r14),
437 		offsetof(struct pt_regs, r15),
438 #endif
439 	};
440 	int nr_registers = ARRAY_SIZE(regoff);
441 	/*
442 	 * Don't possibly decode a 32-bit instructions as
443 	 * reading a 64-bit-only register.
444 	 */
445 	if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
446 		nr_registers -= 8;
447 
448 	switch (type) {
449 	case REG_TYPE_RM:
450 		regno = X86_MODRM_RM(insn->modrm.value);
451 
452 		/*
453 		 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
454 		 * follows the ModRM byte.
455 		 */
456 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
457 			return -EDOM;
458 
459 		if (X86_REX_B(insn->rex_prefix.value))
460 			regno += 8;
461 		break;
462 
463 	case REG_TYPE_REG:
464 		regno = X86_MODRM_REG(insn->modrm.value);
465 
466 		if (X86_REX_R(insn->rex_prefix.value))
467 			regno += 8;
468 		break;
469 
470 	case REG_TYPE_INDEX:
471 		regno = X86_SIB_INDEX(insn->sib.value);
472 		if (X86_REX_X(insn->rex_prefix.value))
473 			regno += 8;
474 
475 		/*
476 		 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
477 		 * portion of the address computation is null. This is
478 		 * true only if REX.X is 0. In such a case, the SIB index
479 		 * is used in the address computation.
480 		 */
481 		if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
482 			return -EDOM;
483 		break;
484 
485 	case REG_TYPE_BASE:
486 		regno = X86_SIB_BASE(insn->sib.value);
487 		/*
488 		 * If ModRM.mod is 0 and SIB.base == 5, the base of the
489 		 * register-indirect addressing is 0. In this case, a
490 		 * 32-bit displacement follows the SIB byte.
491 		 */
492 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
493 			return -EDOM;
494 
495 		if (X86_REX_B(insn->rex_prefix.value))
496 			regno += 8;
497 		break;
498 
499 	default:
500 		pr_err_ratelimited("invalid register type: %d\n", type);
501 		return -EINVAL;
502 	}
503 
504 	if (regno >= nr_registers) {
505 		WARN_ONCE(1, "decoded an instruction with an invalid register");
506 		return -EINVAL;
507 	}
508 	return regoff[regno];
509 }
510 
511 /**
512  * get_reg_offset_16() - Obtain offset of register indicated by instruction
513  * @insn:	Instruction containing ModRM byte
514  * @regs:	Register values as seen when entering kernel mode
515  * @offs1:	Offset of the first operand register
516  * @offs2:	Offset of the second operand register, if applicable
517  *
518  * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
519  * in @insn. This function is to be used with 16-bit address encodings. The
520  * @offs1 and @offs2 will be written with the offset of the two registers
521  * indicated by the instruction. In cases where any of the registers is not
522  * referenced by the instruction, the value will be set to -EDOM.
523  *
524  * Returns:
525  *
526  * 0 on success, -EINVAL on error.
527  */
528 static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
529 			     int *offs1, int *offs2)
530 {
531 	/*
532 	 * 16-bit addressing can use one or two registers. Specifics of
533 	 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
534 	 * ModR/M Byte" of the Intel Software Development Manual.
535 	 */
536 	static const int regoff1[] = {
537 		offsetof(struct pt_regs, bx),
538 		offsetof(struct pt_regs, bx),
539 		offsetof(struct pt_regs, bp),
540 		offsetof(struct pt_regs, bp),
541 		offsetof(struct pt_regs, si),
542 		offsetof(struct pt_regs, di),
543 		offsetof(struct pt_regs, bp),
544 		offsetof(struct pt_regs, bx),
545 	};
546 
547 	static const int regoff2[] = {
548 		offsetof(struct pt_regs, si),
549 		offsetof(struct pt_regs, di),
550 		offsetof(struct pt_regs, si),
551 		offsetof(struct pt_regs, di),
552 		-EDOM,
553 		-EDOM,
554 		-EDOM,
555 		-EDOM,
556 	};
557 
558 	if (!offs1 || !offs2)
559 		return -EINVAL;
560 
561 	/* Operand is a register, use the generic function. */
562 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
563 		*offs1 = insn_get_modrm_rm_off(insn, regs);
564 		*offs2 = -EDOM;
565 		return 0;
566 	}
567 
568 	*offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
569 	*offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
570 
571 	/*
572 	 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
573 	 * only addressing. This means that no registers are involved in
574 	 * computing the effective address. Thus, ensure that the first
575 	 * register offset is invalid. The second register offset is already
576 	 * invalid under the aforementioned conditions.
577 	 */
578 	if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
579 	    (X86_MODRM_RM(insn->modrm.value) == 6))
580 		*offs1 = -EDOM;
581 
582 	return 0;
583 }
584 
585 /**
586  * get_desc() - Obtain contents of a segment descriptor
587  * @out:	Segment descriptor contents on success
588  * @sel:	Segment selector
589  *
590  * Given a segment selector, obtain a pointer to the segment descriptor.
591  * Both global and local descriptor tables are supported.
592  *
593  * Returns:
594  *
595  * True on success, false on failure.
596  *
597  * NULL on error.
598  */
599 static bool get_desc(struct desc_struct *out, unsigned short sel)
600 {
601 	struct desc_ptr gdt_desc = {0, 0};
602 	unsigned long desc_base;
603 
604 #ifdef CONFIG_MODIFY_LDT_SYSCALL
605 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
606 		bool success = false;
607 		struct ldt_struct *ldt;
608 
609 		/* Bits [15:3] contain the index of the desired entry. */
610 		sel >>= 3;
611 
612 		mutex_lock(&current->active_mm->context.lock);
613 		ldt = current->active_mm->context.ldt;
614 		if (ldt && sel < ldt->nr_entries) {
615 			*out = ldt->entries[sel];
616 			success = true;
617 		}
618 
619 		mutex_unlock(&current->active_mm->context.lock);
620 
621 		return success;
622 	}
623 #endif
624 	native_store_gdt(&gdt_desc);
625 
626 	/*
627 	 * Segment descriptors have a size of 8 bytes. Thus, the index is
628 	 * multiplied by 8 to obtain the memory offset of the desired descriptor
629 	 * from the base of the GDT. As bits [15:3] of the segment selector
630 	 * contain the index, it can be regarded as multiplied by 8 already.
631 	 * All that remains is to clear bits [2:0].
632 	 */
633 	desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
634 
635 	if (desc_base > gdt_desc.size)
636 		return false;
637 
638 	*out = *(struct desc_struct *)(gdt_desc.address + desc_base);
639 	return true;
640 }
641 
642 /**
643  * insn_get_seg_base() - Obtain base address of segment descriptor.
644  * @regs:		Register values as seen when entering kernel mode
645  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
646  *
647  * Obtain the base address of the segment as indicated by the segment descriptor
648  * pointed by the segment selector. The segment selector is obtained from the
649  * input segment register index @seg_reg_idx.
650  *
651  * Returns:
652  *
653  * In protected mode, base address of the segment. Zero in long mode,
654  * except when FS or GS are used. In virtual-8086 mode, the segment
655  * selector shifted 4 bits to the right.
656  *
657  * -1L in case of error.
658  */
659 unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
660 {
661 	struct desc_struct desc;
662 	short sel;
663 
664 	sel = get_segment_selector(regs, seg_reg_idx);
665 	if (sel < 0)
666 		return -1L;
667 
668 	if (v8086_mode(regs))
669 		/*
670 		 * Base is simply the segment selector shifted 4
671 		 * bits to the right.
672 		 */
673 		return (unsigned long)(sel << 4);
674 
675 	if (any_64bit_mode(regs)) {
676 		/*
677 		 * Only FS or GS will have a base address, the rest of
678 		 * the segments' bases are forced to 0.
679 		 */
680 		unsigned long base;
681 
682 		if (seg_reg_idx == INAT_SEG_REG_FS) {
683 			rdmsrl(MSR_FS_BASE, base);
684 		} else if (seg_reg_idx == INAT_SEG_REG_GS) {
685 			/*
686 			 * swapgs was called at the kernel entry point. Thus,
687 			 * MSR_KERNEL_GS_BASE will have the user-space GS base.
688 			 */
689 			if (user_mode(regs))
690 				rdmsrl(MSR_KERNEL_GS_BASE, base);
691 			else
692 				rdmsrl(MSR_GS_BASE, base);
693 		} else {
694 			base = 0;
695 		}
696 		return base;
697 	}
698 
699 	/* In protected mode the segment selector cannot be null. */
700 	if (!sel)
701 		return -1L;
702 
703 	if (!get_desc(&desc, sel))
704 		return -1L;
705 
706 	return get_desc_base(&desc);
707 }
708 
709 /**
710  * get_seg_limit() - Obtain the limit of a segment descriptor
711  * @regs:		Register values as seen when entering kernel mode
712  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
713  *
714  * Obtain the limit of the segment as indicated by the segment descriptor
715  * pointed by the segment selector. The segment selector is obtained from the
716  * input segment register index @seg_reg_idx.
717  *
718  * Returns:
719  *
720  * In protected mode, the limit of the segment descriptor in bytes.
721  * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
722  * limit is returned as -1L to imply a limit-less segment.
723  *
724  * Zero is returned on error.
725  */
726 static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
727 {
728 	struct desc_struct desc;
729 	unsigned long limit;
730 	short sel;
731 
732 	sel = get_segment_selector(regs, seg_reg_idx);
733 	if (sel < 0)
734 		return 0;
735 
736 	if (any_64bit_mode(regs) || v8086_mode(regs))
737 		return -1L;
738 
739 	if (!sel)
740 		return 0;
741 
742 	if (!get_desc(&desc, sel))
743 		return 0;
744 
745 	/*
746 	 * If the granularity bit is set, the limit is given in multiples
747 	 * of 4096. This also means that the 12 least significant bits are
748 	 * not tested when checking the segment limits. In practice,
749 	 * this means that the segment ends in (limit << 12) + 0xfff.
750 	 */
751 	limit = get_desc_limit(&desc);
752 	if (desc.g)
753 		limit = (limit << 12) + 0xfff;
754 
755 	return limit;
756 }
757 
758 /**
759  * insn_get_code_seg_params() - Obtain code segment parameters
760  * @regs:	Structure with register values as seen when entering kernel mode
761  *
762  * Obtain address and operand sizes of the code segment. It is obtained from the
763  * selector contained in the CS register in regs. In protected mode, the default
764  * address is determined by inspecting the L and D bits of the segment
765  * descriptor. In virtual-8086 mode, the default is always two bytes for both
766  * address and operand sizes.
767  *
768  * Returns:
769  *
770  * An int containing ORed-in default parameters on success.
771  *
772  * -EINVAL on error.
773  */
774 int insn_get_code_seg_params(struct pt_regs *regs)
775 {
776 	struct desc_struct desc;
777 	short sel;
778 
779 	if (v8086_mode(regs))
780 		/* Address and operand size are both 16-bit. */
781 		return INSN_CODE_SEG_PARAMS(2, 2);
782 
783 	sel = get_segment_selector(regs, INAT_SEG_REG_CS);
784 	if (sel < 0)
785 		return sel;
786 
787 	if (!get_desc(&desc, sel))
788 		return -EINVAL;
789 
790 	/*
791 	 * The most significant byte of the Type field of the segment descriptor
792 	 * determines whether a segment contains data or code. If this is a data
793 	 * segment, return error.
794 	 */
795 	if (!(desc.type & BIT(3)))
796 		return -EINVAL;
797 
798 	switch ((desc.l << 1) | desc.d) {
799 	case 0: /*
800 		 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
801 		 * both 16-bit.
802 		 */
803 		return INSN_CODE_SEG_PARAMS(2, 2);
804 	case 1: /*
805 		 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
806 		 * both 32-bit.
807 		 */
808 		return INSN_CODE_SEG_PARAMS(4, 4);
809 	case 2: /*
810 		 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
811 		 * operand size is 32-bit.
812 		 */
813 		return INSN_CODE_SEG_PARAMS(4, 8);
814 	case 3: /* Invalid setting. CS.L=1, CS.D=1 */
815 		fallthrough;
816 	default:
817 		return -EINVAL;
818 	}
819 }
820 
821 /**
822  * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
823  * @insn:	Instruction containing the ModRM byte
824  * @regs:	Register values as seen when entering kernel mode
825  *
826  * Returns:
827  *
828  * The register indicated by the r/m part of the ModRM byte. The
829  * register is obtained as an offset from the base of pt_regs. In specific
830  * cases, the returned value can be -EDOM to indicate that the particular value
831  * of ModRM does not refer to a register and shall be ignored.
832  */
833 int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
834 {
835 	return get_reg_offset(insn, regs, REG_TYPE_RM);
836 }
837 
838 /**
839  * insn_get_modrm_reg_off() - Obtain register in reg part of the ModRM byte
840  * @insn:	Instruction containing the ModRM byte
841  * @regs:	Register values as seen when entering kernel mode
842  *
843  * Returns:
844  *
845  * The register indicated by the reg part of the ModRM byte. The
846  * register is obtained as an offset from the base of pt_regs.
847  */
848 int insn_get_modrm_reg_off(struct insn *insn, struct pt_regs *regs)
849 {
850 	return get_reg_offset(insn, regs, REG_TYPE_REG);
851 }
852 
853 /**
854  * get_seg_base_limit() - obtain base address and limit of a segment
855  * @insn:	Instruction. Must be valid.
856  * @regs:	Register values as seen when entering kernel mode
857  * @regoff:	Operand offset, in pt_regs, used to resolve segment descriptor
858  * @base:	Obtained segment base
859  * @limit:	Obtained segment limit
860  *
861  * Obtain the base address and limit of the segment associated with the operand
862  * @regoff and, if any or allowed, override prefixes in @insn. This function is
863  * different from insn_get_seg_base() as the latter does not resolve the segment
864  * associated with the instruction operand. If a limit is not needed (e.g.,
865  * when running in long mode), @limit can be NULL.
866  *
867  * Returns:
868  *
869  * 0 on success. @base and @limit will contain the base address and of the
870  * resolved segment, respectively.
871  *
872  * -EINVAL on error.
873  */
874 static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
875 			      int regoff, unsigned long *base,
876 			      unsigned long *limit)
877 {
878 	int seg_reg_idx;
879 
880 	if (!base)
881 		return -EINVAL;
882 
883 	seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
884 	if (seg_reg_idx < 0)
885 		return seg_reg_idx;
886 
887 	*base = insn_get_seg_base(regs, seg_reg_idx);
888 	if (*base == -1L)
889 		return -EINVAL;
890 
891 	if (!limit)
892 		return 0;
893 
894 	*limit = get_seg_limit(regs, seg_reg_idx);
895 	if (!(*limit))
896 		return -EINVAL;
897 
898 	return 0;
899 }
900 
901 /**
902  * get_eff_addr_reg() - Obtain effective address from register operand
903  * @insn:	Instruction. Must be valid.
904  * @regs:	Register values as seen when entering kernel mode
905  * @regoff:	Obtained operand offset, in pt_regs, with the effective address
906  * @eff_addr:	Obtained effective address
907  *
908  * Obtain the effective address stored in the register operand as indicated by
909  * the ModRM byte. This function is to be used only with register addressing
910  * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
911  * register operand, as an offset from the base of pt_regs, is saved in @regoff;
912  * such offset can then be used to resolve the segment associated with the
913  * operand. This function can be used with any of the supported address sizes
914  * in x86.
915  *
916  * Returns:
917  *
918  * 0 on success. @eff_addr will have the effective address stored in the
919  * operand indicated by ModRM. @regoff will have such operand as an offset from
920  * the base of pt_regs.
921  *
922  * -EINVAL on error.
923  */
924 static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
925 			    int *regoff, long *eff_addr)
926 {
927 	int ret;
928 
929 	ret = insn_get_modrm(insn);
930 	if (ret)
931 		return ret;
932 
933 	if (X86_MODRM_MOD(insn->modrm.value) != 3)
934 		return -EINVAL;
935 
936 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
937 	if (*regoff < 0)
938 		return -EINVAL;
939 
940 	/* Ignore bytes that are outside the address size. */
941 	if (insn->addr_bytes == 2)
942 		*eff_addr = regs_get_register(regs, *regoff) & 0xffff;
943 	else if (insn->addr_bytes == 4)
944 		*eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
945 	else /* 64-bit address */
946 		*eff_addr = regs_get_register(regs, *regoff);
947 
948 	return 0;
949 }
950 
951 /**
952  * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
953  * @insn:	Instruction. Must be valid.
954  * @regs:	Register values as seen when entering kernel mode
955  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
956  * @eff_addr:	Obtained effective address
957  *
958  * Obtain the effective address referenced by the ModRM byte of @insn. After
959  * identifying the registers involved in the register-indirect memory reference,
960  * its value is obtained from the operands in @regs. The computed address is
961  * stored @eff_addr. Also, the register operand that indicates the associated
962  * segment is stored in @regoff, this parameter can later be used to determine
963  * such segment.
964  *
965  * Returns:
966  *
967  * 0 on success. @eff_addr will have the referenced effective address. @regoff
968  * will have a register, as an offset from the base of pt_regs, that can be used
969  * to resolve the associated segment.
970  *
971  * -EINVAL on error.
972  */
973 static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
974 			      int *regoff, long *eff_addr)
975 {
976 	long tmp;
977 	int ret;
978 
979 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
980 		return -EINVAL;
981 
982 	ret = insn_get_modrm(insn);
983 	if (ret)
984 		return ret;
985 
986 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
987 		return -EINVAL;
988 
989 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
990 
991 	/*
992 	 * -EDOM means that we must ignore the address_offset. In such a case,
993 	 * in 64-bit mode the effective address relative to the rIP of the
994 	 * following instruction.
995 	 */
996 	if (*regoff == -EDOM) {
997 		if (any_64bit_mode(regs))
998 			tmp = regs->ip + insn->length;
999 		else
1000 			tmp = 0;
1001 	} else if (*regoff < 0) {
1002 		return -EINVAL;
1003 	} else {
1004 		tmp = regs_get_register(regs, *regoff);
1005 	}
1006 
1007 	if (insn->addr_bytes == 4) {
1008 		int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
1009 
1010 		*eff_addr = addr32 & 0xffffffff;
1011 	} else {
1012 		*eff_addr = tmp + insn->displacement.value;
1013 	}
1014 
1015 	return 0;
1016 }
1017 
1018 /**
1019  * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
1020  * @insn:	Instruction. Must be valid.
1021  * @regs:	Register values as seen when entering kernel mode
1022  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1023  * @eff_addr:	Obtained effective address
1024  *
1025  * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
1026  * After identifying the registers involved in the register-indirect memory
1027  * reference, its value is obtained from the operands in @regs. The computed
1028  * address is stored @eff_addr. Also, the register operand that indicates
1029  * the associated segment is stored in @regoff, this parameter can later be used
1030  * to determine such segment.
1031  *
1032  * Returns:
1033  *
1034  * 0 on success. @eff_addr will have the referenced effective address. @regoff
1035  * will have a register, as an offset from the base of pt_regs, that can be used
1036  * to resolve the associated segment.
1037  *
1038  * -EINVAL on error.
1039  */
1040 static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
1041 				 int *regoff, short *eff_addr)
1042 {
1043 	int addr_offset1, addr_offset2, ret;
1044 	short addr1 = 0, addr2 = 0, displacement;
1045 
1046 	if (insn->addr_bytes != 2)
1047 		return -EINVAL;
1048 
1049 	insn_get_modrm(insn);
1050 
1051 	if (!insn->modrm.nbytes)
1052 		return -EINVAL;
1053 
1054 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1055 		return -EINVAL;
1056 
1057 	ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1058 	if (ret < 0)
1059 		return -EINVAL;
1060 
1061 	/*
1062 	 * Don't fail on invalid offset values. They might be invalid because
1063 	 * they cannot be used for this particular value of ModRM. Instead, use
1064 	 * them in the computation only if they contain a valid value.
1065 	 */
1066 	if (addr_offset1 != -EDOM)
1067 		addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1068 
1069 	if (addr_offset2 != -EDOM)
1070 		addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1071 
1072 	displacement = insn->displacement.value & 0xffff;
1073 	*eff_addr = addr1 + addr2 + displacement;
1074 
1075 	/*
1076 	 * The first operand register could indicate to use of either SS or DS
1077 	 * registers to obtain the segment selector.  The second operand
1078 	 * register can only indicate the use of DS. Thus, the first operand
1079 	 * will be used to obtain the segment selector.
1080 	 */
1081 	*regoff = addr_offset1;
1082 
1083 	return 0;
1084 }
1085 
1086 /**
1087  * get_eff_addr_sib() - Obtain referenced effective address via SIB
1088  * @insn:	Instruction. Must be valid.
1089  * @regs:	Register values as seen when entering kernel mode
1090  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1091  * @eff_addr:	Obtained effective address
1092  *
1093  * Obtain the effective address referenced by the SIB byte of @insn. After
1094  * identifying the registers involved in the indexed, register-indirect memory
1095  * reference, its value is obtained from the operands in @regs. The computed
1096  * address is stored @eff_addr. Also, the register operand that indicates the
1097  * associated segment is stored in @regoff, this parameter can later be used to
1098  * determine such segment.
1099  *
1100  * Returns:
1101  *
1102  * 0 on success. @eff_addr will have the referenced effective address.
1103  * @base_offset will have a register, as an offset from the base of pt_regs,
1104  * that can be used to resolve the associated segment.
1105  *
1106  * Negative value on error.
1107  */
1108 static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1109 			    int *base_offset, long *eff_addr)
1110 {
1111 	long base, indx;
1112 	int indx_offset;
1113 	int ret;
1114 
1115 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1116 		return -EINVAL;
1117 
1118 	ret = insn_get_modrm(insn);
1119 	if (ret)
1120 		return ret;
1121 
1122 	if (!insn->modrm.nbytes)
1123 		return -EINVAL;
1124 
1125 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1126 		return -EINVAL;
1127 
1128 	ret = insn_get_sib(insn);
1129 	if (ret)
1130 		return ret;
1131 
1132 	if (!insn->sib.nbytes)
1133 		return -EINVAL;
1134 
1135 	*base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1136 	indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1137 
1138 	/*
1139 	 * Negative values in the base and index offset means an error when
1140 	 * decoding the SIB byte. Except -EDOM, which means that the registers
1141 	 * should not be used in the address computation.
1142 	 */
1143 	if (*base_offset == -EDOM)
1144 		base = 0;
1145 	else if (*base_offset < 0)
1146 		return -EINVAL;
1147 	else
1148 		base = regs_get_register(regs, *base_offset);
1149 
1150 	if (indx_offset == -EDOM)
1151 		indx = 0;
1152 	else if (indx_offset < 0)
1153 		return -EINVAL;
1154 	else
1155 		indx = regs_get_register(regs, indx_offset);
1156 
1157 	if (insn->addr_bytes == 4) {
1158 		int addr32, base32, idx32;
1159 
1160 		base32 = base & 0xffffffff;
1161 		idx32 = indx & 0xffffffff;
1162 
1163 		addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1164 		addr32 += insn->displacement.value;
1165 
1166 		*eff_addr = addr32 & 0xffffffff;
1167 	} else {
1168 		*eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1169 		*eff_addr += insn->displacement.value;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 /**
1176  * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1177  * @insn:	Instruction containing ModRM byte and displacement
1178  * @regs:	Register values as seen when entering kernel mode
1179  *
1180  * This function is to be used with 16-bit address encodings. Obtain the memory
1181  * address referred by the instruction's ModRM and displacement bytes. Also, the
1182  * segment used as base is determined by either any segment override prefixes in
1183  * @insn or the default segment of the registers involved in the address
1184  * computation. In protected mode, segment limits are enforced.
1185  *
1186  * Returns:
1187  *
1188  * Linear address referenced by the instruction operands on success.
1189  *
1190  * -1L on error.
1191  */
1192 static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1193 {
1194 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1195 	int ret, regoff;
1196 	short eff_addr;
1197 	long tmp;
1198 
1199 	if (insn_get_displacement(insn))
1200 		goto out;
1201 
1202 	if (insn->addr_bytes != 2)
1203 		goto out;
1204 
1205 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1206 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1207 		if (ret)
1208 			goto out;
1209 
1210 		eff_addr = tmp;
1211 	} else {
1212 		ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1213 		if (ret)
1214 			goto out;
1215 	}
1216 
1217 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1218 	if (ret)
1219 		goto out;
1220 
1221 	/*
1222 	 * Before computing the linear address, make sure the effective address
1223 	 * is within the limits of the segment. In virtual-8086 mode, segment
1224 	 * limits are not enforced. In such a case, the segment limit is -1L to
1225 	 * reflect this fact.
1226 	 */
1227 	if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1228 		goto out;
1229 
1230 	linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1231 
1232 	/* Limit linear address to 20 bits */
1233 	if (v8086_mode(regs))
1234 		linear_addr &= 0xfffff;
1235 
1236 out:
1237 	return (void __user *)linear_addr;
1238 }
1239 
1240 /**
1241  * get_addr_ref_32() - Obtain a 32-bit linear address
1242  * @insn:	Instruction with ModRM, SIB bytes and displacement
1243  * @regs:	Register values as seen when entering kernel mode
1244  *
1245  * This function is to be used with 32-bit address encodings to obtain the
1246  * linear memory address referred by the instruction's ModRM, SIB,
1247  * displacement bytes and segment base address, as applicable. If in protected
1248  * mode, segment limits are enforced.
1249  *
1250  * Returns:
1251  *
1252  * Linear address referenced by instruction and registers on success.
1253  *
1254  * -1L on error.
1255  */
1256 static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1257 {
1258 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1259 	int eff_addr, regoff;
1260 	long tmp;
1261 	int ret;
1262 
1263 	if (insn->addr_bytes != 4)
1264 		goto out;
1265 
1266 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1267 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1268 		if (ret)
1269 			goto out;
1270 
1271 		eff_addr = tmp;
1272 
1273 	} else {
1274 		if (insn->sib.nbytes) {
1275 			ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1276 			if (ret)
1277 				goto out;
1278 
1279 			eff_addr = tmp;
1280 		} else {
1281 			ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1282 			if (ret)
1283 				goto out;
1284 
1285 			eff_addr = tmp;
1286 		}
1287 	}
1288 
1289 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1290 	if (ret)
1291 		goto out;
1292 
1293 	/*
1294 	 * In protected mode, before computing the linear address, make sure
1295 	 * the effective address is within the limits of the segment.
1296 	 * 32-bit addresses can be used in long and virtual-8086 modes if an
1297 	 * address override prefix is used. In such cases, segment limits are
1298 	 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1299 	 * to reflect this situation.
1300 	 *
1301 	 * After computed, the effective address is treated as an unsigned
1302 	 * quantity.
1303 	 */
1304 	if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1305 		goto out;
1306 
1307 	/*
1308 	 * Even though 32-bit address encodings are allowed in virtual-8086
1309 	 * mode, the address range is still limited to [0x-0xffff].
1310 	 */
1311 	if (v8086_mode(regs) && (eff_addr & ~0xffff))
1312 		goto out;
1313 
1314 	/*
1315 	 * Data type long could be 64 bits in size. Ensure that our 32-bit
1316 	 * effective address is not sign-extended when computing the linear
1317 	 * address.
1318 	 */
1319 	linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1320 
1321 	/* Limit linear address to 20 bits */
1322 	if (v8086_mode(regs))
1323 		linear_addr &= 0xfffff;
1324 
1325 out:
1326 	return (void __user *)linear_addr;
1327 }
1328 
1329 /**
1330  * get_addr_ref_64() - Obtain a 64-bit linear address
1331  * @insn:	Instruction struct with ModRM and SIB bytes and displacement
1332  * @regs:	Structure with register values as seen when entering kernel mode
1333  *
1334  * This function is to be used with 64-bit address encodings to obtain the
1335  * linear memory address referred by the instruction's ModRM, SIB,
1336  * displacement bytes and segment base address, as applicable.
1337  *
1338  * Returns:
1339  *
1340  * Linear address referenced by instruction and registers on success.
1341  *
1342  * -1L on error.
1343  */
1344 #ifndef CONFIG_X86_64
1345 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1346 {
1347 	return (void __user *)-1L;
1348 }
1349 #else
1350 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1351 {
1352 	unsigned long linear_addr = -1L, seg_base;
1353 	int regoff, ret;
1354 	long eff_addr;
1355 
1356 	if (insn->addr_bytes != 8)
1357 		goto out;
1358 
1359 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1360 		ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1361 		if (ret)
1362 			goto out;
1363 
1364 	} else {
1365 		if (insn->sib.nbytes) {
1366 			ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1367 			if (ret)
1368 				goto out;
1369 		} else {
1370 			ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1371 			if (ret)
1372 				goto out;
1373 		}
1374 
1375 	}
1376 
1377 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1378 	if (ret)
1379 		goto out;
1380 
1381 	linear_addr = (unsigned long)eff_addr + seg_base;
1382 
1383 out:
1384 	return (void __user *)linear_addr;
1385 }
1386 #endif /* CONFIG_X86_64 */
1387 
1388 /**
1389  * insn_get_addr_ref() - Obtain the linear address referred by instruction
1390  * @insn:	Instruction structure containing ModRM byte and displacement
1391  * @regs:	Structure with register values as seen when entering kernel mode
1392  *
1393  * Obtain the linear address referred by the instruction's ModRM, SIB and
1394  * displacement bytes, and segment base, as applicable. In protected mode,
1395  * segment limits are enforced.
1396  *
1397  * Returns:
1398  *
1399  * Linear address referenced by instruction and registers on success.
1400  *
1401  * -1L on error.
1402  */
1403 void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1404 {
1405 	if (!insn || !regs)
1406 		return (void __user *)-1L;
1407 
1408 	switch (insn->addr_bytes) {
1409 	case 2:
1410 		return get_addr_ref_16(insn, regs);
1411 	case 4:
1412 		return get_addr_ref_32(insn, regs);
1413 	case 8:
1414 		return get_addr_ref_64(insn, regs);
1415 	default:
1416 		return (void __user *)-1L;
1417 	}
1418 }
1419 
1420 int insn_get_effective_ip(struct pt_regs *regs, unsigned long *ip)
1421 {
1422 	unsigned long seg_base = 0;
1423 
1424 	/*
1425 	 * If not in user-space long mode, a custom code segment could be in
1426 	 * use. This is true in protected mode (if the process defined a local
1427 	 * descriptor table), or virtual-8086 mode. In most of the cases
1428 	 * seg_base will be zero as in USER_CS.
1429 	 */
1430 	if (!user_64bit_mode(regs)) {
1431 		seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS);
1432 		if (seg_base == -1L)
1433 			return -EINVAL;
1434 	}
1435 
1436 	*ip = seg_base + regs->ip;
1437 
1438 	return 0;
1439 }
1440 
1441 /**
1442  * insn_fetch_from_user() - Copy instruction bytes from user-space memory
1443  * @regs:	Structure with register values as seen when entering kernel mode
1444  * @buf:	Array to store the fetched instruction
1445  *
1446  * Gets the linear address of the instruction and copies the instruction bytes
1447  * to the buf.
1448  *
1449  * Returns:
1450  *
1451  * - number of instruction bytes copied.
1452  * - 0 if nothing was copied.
1453  * - -EINVAL if the linear address of the instruction could not be calculated
1454  */
1455 int insn_fetch_from_user(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1456 {
1457 	unsigned long ip;
1458 	int not_copied;
1459 
1460 	if (insn_get_effective_ip(regs, &ip))
1461 		return -EINVAL;
1462 
1463 	not_copied = copy_from_user(buf, (void __user *)ip, MAX_INSN_SIZE);
1464 
1465 	return MAX_INSN_SIZE - not_copied;
1466 }
1467 
1468 /**
1469  * insn_fetch_from_user_inatomic() - Copy instruction bytes from user-space memory
1470  *                                   while in atomic code
1471  * @regs:	Structure with register values as seen when entering kernel mode
1472  * @buf:	Array to store the fetched instruction
1473  *
1474  * Gets the linear address of the instruction and copies the instruction bytes
1475  * to the buf. This function must be used in atomic context.
1476  *
1477  * Returns:
1478  *
1479  *  - number of instruction bytes copied.
1480  *  - 0 if nothing was copied.
1481  *  - -EINVAL if the linear address of the instruction could not be calculated.
1482  */
1483 int insn_fetch_from_user_inatomic(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1484 {
1485 	unsigned long ip;
1486 	int not_copied;
1487 
1488 	if (insn_get_effective_ip(regs, &ip))
1489 		return -EINVAL;
1490 
1491 	not_copied = __copy_from_user_inatomic(buf, (void __user *)ip, MAX_INSN_SIZE);
1492 
1493 	return MAX_INSN_SIZE - not_copied;
1494 }
1495 
1496 /**
1497  * insn_decode_from_regs() - Decode an instruction
1498  * @insn:	Structure to store decoded instruction
1499  * @regs:	Structure with register values as seen when entering kernel mode
1500  * @buf:	Buffer containing the instruction bytes
1501  * @buf_size:   Number of instruction bytes available in buf
1502  *
1503  * Decodes the instruction provided in buf and stores the decoding results in
1504  * insn. Also determines the correct address and operand sizes.
1505  *
1506  * Returns:
1507  *
1508  * True if instruction was decoded, False otherwise.
1509  */
1510 bool insn_decode_from_regs(struct insn *insn, struct pt_regs *regs,
1511 			   unsigned char buf[MAX_INSN_SIZE], int buf_size)
1512 {
1513 	int seg_defs;
1514 
1515 	insn_init(insn, buf, buf_size, user_64bit_mode(regs));
1516 
1517 	/*
1518 	 * Override the default operand and address sizes with what is specified
1519 	 * in the code segment descriptor. The instruction decoder only sets
1520 	 * the address size it to either 4 or 8 address bytes and does nothing
1521 	 * for the operand bytes. This OK for most of the cases, but we could
1522 	 * have special cases where, for instance, a 16-bit code segment
1523 	 * descriptor is used.
1524 	 * If there is an address override prefix, the instruction decoder
1525 	 * correctly updates these values, even for 16-bit defaults.
1526 	 */
1527 	seg_defs = insn_get_code_seg_params(regs);
1528 	if (seg_defs == -EINVAL)
1529 		return false;
1530 
1531 	insn->addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs);
1532 	insn->opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs);
1533 
1534 	if (insn_get_length(insn))
1535 		return false;
1536 
1537 	if (buf_size < insn->length)
1538 		return false;
1539 
1540 	return true;
1541 }
1542