1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. 4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. 5 * 6 * KVM Xen emulation 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include "x86.h" 11 #include "xen.h" 12 #include "hyperv.h" 13 #include "lapic.h" 14 15 #include <linux/eventfd.h> 16 #include <linux/kvm_host.h> 17 #include <linux/sched/stat.h> 18 19 #include <trace/events/kvm.h> 20 #include <xen/interface/xen.h> 21 #include <xen/interface/vcpu.h> 22 #include <xen/interface/version.h> 23 #include <xen/interface/event_channel.h> 24 #include <xen/interface/sched.h> 25 26 #include <asm/xen/cpuid.h> 27 28 #include "cpuid.h" 29 #include "trace.h" 30 31 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm); 32 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data); 33 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r); 34 35 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); 36 37 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn) 38 { 39 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 40 struct pvclock_wall_clock *wc; 41 gpa_t gpa = gfn_to_gpa(gfn); 42 u32 *wc_sec_hi; 43 u32 wc_version; 44 u64 wall_nsec; 45 int ret = 0; 46 int idx = srcu_read_lock(&kvm->srcu); 47 48 if (gfn == KVM_XEN_INVALID_GFN) { 49 kvm_gpc_deactivate(gpc); 50 goto out; 51 } 52 53 do { 54 ret = kvm_gpc_activate(gpc, gpa, PAGE_SIZE); 55 if (ret) 56 goto out; 57 58 /* 59 * This code mirrors kvm_write_wall_clock() except that it writes 60 * directly through the pfn cache and doesn't mark the page dirty. 61 */ 62 wall_nsec = kvm_get_wall_clock_epoch(kvm); 63 64 /* It could be invalid again already, so we need to check */ 65 read_lock_irq(&gpc->lock); 66 67 if (gpc->valid) 68 break; 69 70 read_unlock_irq(&gpc->lock); 71 } while (1); 72 73 /* Paranoia checks on the 32-bit struct layout */ 74 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); 75 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); 76 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 77 78 #ifdef CONFIG_X86_64 79 /* Paranoia checks on the 64-bit struct layout */ 80 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); 81 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); 82 83 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 84 struct shared_info *shinfo = gpc->khva; 85 86 wc_sec_hi = &shinfo->wc_sec_hi; 87 wc = &shinfo->wc; 88 } else 89 #endif 90 { 91 struct compat_shared_info *shinfo = gpc->khva; 92 93 wc_sec_hi = &shinfo->arch.wc_sec_hi; 94 wc = &shinfo->wc; 95 } 96 97 /* Increment and ensure an odd value */ 98 wc_version = wc->version = (wc->version + 1) | 1; 99 smp_wmb(); 100 101 wc->nsec = do_div(wall_nsec, NSEC_PER_SEC); 102 wc->sec = (u32)wall_nsec; 103 *wc_sec_hi = wall_nsec >> 32; 104 smp_wmb(); 105 106 wc->version = wc_version + 1; 107 read_unlock_irq(&gpc->lock); 108 109 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); 110 111 out: 112 srcu_read_unlock(&kvm->srcu, idx); 113 return ret; 114 } 115 116 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu) 117 { 118 if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) { 119 struct kvm_xen_evtchn e; 120 121 e.vcpu_id = vcpu->vcpu_id; 122 e.vcpu_idx = vcpu->vcpu_idx; 123 e.port = vcpu->arch.xen.timer_virq; 124 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 125 126 kvm_xen_set_evtchn(&e, vcpu->kvm); 127 128 vcpu->arch.xen.timer_expires = 0; 129 atomic_set(&vcpu->arch.xen.timer_pending, 0); 130 } 131 } 132 133 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer) 134 { 135 struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu, 136 arch.xen.timer); 137 struct kvm_xen_evtchn e; 138 int rc; 139 140 if (atomic_read(&vcpu->arch.xen.timer_pending)) 141 return HRTIMER_NORESTART; 142 143 e.vcpu_id = vcpu->vcpu_id; 144 e.vcpu_idx = vcpu->vcpu_idx; 145 e.port = vcpu->arch.xen.timer_virq; 146 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 147 148 rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm); 149 if (rc != -EWOULDBLOCK) { 150 vcpu->arch.xen.timer_expires = 0; 151 return HRTIMER_NORESTART; 152 } 153 154 atomic_inc(&vcpu->arch.xen.timer_pending); 155 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 156 kvm_vcpu_kick(vcpu); 157 158 return HRTIMER_NORESTART; 159 } 160 161 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns) 162 { 163 /* 164 * Avoid races with the old timer firing. Checking timer_expires 165 * to avoid calling hrtimer_cancel() will only have false positives 166 * so is fine. 167 */ 168 if (vcpu->arch.xen.timer_expires) 169 hrtimer_cancel(&vcpu->arch.xen.timer); 170 171 atomic_set(&vcpu->arch.xen.timer_pending, 0); 172 vcpu->arch.xen.timer_expires = guest_abs; 173 174 if (delta_ns <= 0) { 175 xen_timer_callback(&vcpu->arch.xen.timer); 176 } else { 177 ktime_t ktime_now = ktime_get(); 178 hrtimer_start(&vcpu->arch.xen.timer, 179 ktime_add_ns(ktime_now, delta_ns), 180 HRTIMER_MODE_ABS_HARD); 181 } 182 } 183 184 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu) 185 { 186 hrtimer_cancel(&vcpu->arch.xen.timer); 187 vcpu->arch.xen.timer_expires = 0; 188 atomic_set(&vcpu->arch.xen.timer_pending, 0); 189 } 190 191 static void kvm_xen_init_timer(struct kvm_vcpu *vcpu) 192 { 193 hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC, 194 HRTIMER_MODE_ABS_HARD); 195 vcpu->arch.xen.timer.function = xen_timer_callback; 196 } 197 198 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic) 199 { 200 struct kvm_vcpu_xen *vx = &v->arch.xen; 201 struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache; 202 struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache; 203 size_t user_len, user_len1, user_len2; 204 struct vcpu_runstate_info rs; 205 unsigned long flags; 206 size_t times_ofs; 207 uint8_t *update_bit = NULL; 208 uint64_t entry_time; 209 uint64_t *rs_times; 210 int *rs_state; 211 212 /* 213 * The only difference between 32-bit and 64-bit versions of the 214 * runstate struct is the alignment of uint64_t in 32-bit, which 215 * means that the 64-bit version has an additional 4 bytes of 216 * padding after the first field 'state'. Let's be really really 217 * paranoid about that, and matching it with our internal data 218 * structures that we memcpy into it... 219 */ 220 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0); 221 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0); 222 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); 223 #ifdef CONFIG_X86_64 224 /* 225 * The 64-bit structure has 4 bytes of padding before 'state_entry_time' 226 * so each subsequent field is shifted by 4, and it's 4 bytes longer. 227 */ 228 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 229 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); 230 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != 231 offsetof(struct compat_vcpu_runstate_info, time) + 4); 232 BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4); 233 #endif 234 /* 235 * The state field is in the same place at the start of both structs, 236 * and is the same size (int) as vx->current_runstate. 237 */ 238 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 239 offsetof(struct compat_vcpu_runstate_info, state)); 240 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != 241 sizeof(vx->current_runstate)); 242 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != 243 sizeof(vx->current_runstate)); 244 245 /* 246 * The state_entry_time field is 64 bits in both versions, and the 247 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86 248 * is little-endian means that it's in the last *byte* of the word. 249 * That detail is important later. 250 */ 251 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != 252 sizeof(uint64_t)); 253 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != 254 sizeof(uint64_t)); 255 BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80); 256 257 /* 258 * The time array is four 64-bit quantities in both versions, matching 259 * the vx->runstate_times and immediately following state_entry_time. 260 */ 261 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 262 offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t)); 263 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != 264 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t)); 265 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 266 sizeof_field(struct compat_vcpu_runstate_info, time)); 267 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 268 sizeof(vx->runstate_times)); 269 270 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { 271 user_len = sizeof(struct vcpu_runstate_info); 272 times_ofs = offsetof(struct vcpu_runstate_info, 273 state_entry_time); 274 } else { 275 user_len = sizeof(struct compat_vcpu_runstate_info); 276 times_ofs = offsetof(struct compat_vcpu_runstate_info, 277 state_entry_time); 278 } 279 280 /* 281 * There are basically no alignment constraints. The guest can set it 282 * up so it crosses from one page to the next, and at arbitrary byte 283 * alignment (and the 32-bit ABI doesn't align the 64-bit integers 284 * anyway, even if the overall struct had been 64-bit aligned). 285 */ 286 if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) { 287 user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK); 288 user_len2 = user_len - user_len1; 289 } else { 290 user_len1 = user_len; 291 user_len2 = 0; 292 } 293 BUG_ON(user_len1 + user_len2 != user_len); 294 295 retry: 296 /* 297 * Attempt to obtain the GPC lock on *both* (if there are two) 298 * gfn_to_pfn caches that cover the region. 299 */ 300 if (atomic) { 301 local_irq_save(flags); 302 if (!read_trylock(&gpc1->lock)) { 303 local_irq_restore(flags); 304 return; 305 } 306 } else { 307 read_lock_irqsave(&gpc1->lock, flags); 308 } 309 while (!kvm_gpc_check(gpc1, user_len1)) { 310 read_unlock_irqrestore(&gpc1->lock, flags); 311 312 /* When invoked from kvm_sched_out() we cannot sleep */ 313 if (atomic) 314 return; 315 316 if (kvm_gpc_refresh(gpc1, user_len1)) 317 return; 318 319 read_lock_irqsave(&gpc1->lock, flags); 320 } 321 322 if (likely(!user_len2)) { 323 /* 324 * Set up three pointers directly to the runstate_info 325 * struct in the guest (via the GPC). 326 * 327 * • @rs_state → state field 328 * • @rs_times → state_entry_time field. 329 * • @update_bit → last byte of state_entry_time, which 330 * contains the XEN_RUNSTATE_UPDATE bit. 331 */ 332 rs_state = gpc1->khva; 333 rs_times = gpc1->khva + times_ofs; 334 if (v->kvm->arch.xen.runstate_update_flag) 335 update_bit = ((void *)(&rs_times[1])) - 1; 336 } else { 337 /* 338 * The guest's runstate_info is split across two pages and we 339 * need to hold and validate both GPCs simultaneously. We can 340 * declare a lock ordering GPC1 > GPC2 because nothing else 341 * takes them more than one at a time. Set a subclass on the 342 * gpc1 lock to make lockdep shut up about it. 343 */ 344 lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_); 345 if (atomic) { 346 if (!read_trylock(&gpc2->lock)) { 347 read_unlock_irqrestore(&gpc1->lock, flags); 348 return; 349 } 350 } else { 351 read_lock(&gpc2->lock); 352 } 353 354 if (!kvm_gpc_check(gpc2, user_len2)) { 355 read_unlock(&gpc2->lock); 356 read_unlock_irqrestore(&gpc1->lock, flags); 357 358 /* When invoked from kvm_sched_out() we cannot sleep */ 359 if (atomic) 360 return; 361 362 /* 363 * Use kvm_gpc_activate() here because if the runstate 364 * area was configured in 32-bit mode and only extends 365 * to the second page now because the guest changed to 366 * 64-bit mode, the second GPC won't have been set up. 367 */ 368 if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1, 369 user_len2)) 370 return; 371 372 /* 373 * We dropped the lock on GPC1 so we have to go all the 374 * way back and revalidate that too. 375 */ 376 goto retry; 377 } 378 379 /* 380 * In this case, the runstate_info struct will be assembled on 381 * the kernel stack (compat or not as appropriate) and will 382 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three 383 * rs pointers accordingly. 384 */ 385 rs_times = &rs.state_entry_time; 386 387 /* 388 * The rs_state pointer points to the start of what we'll 389 * copy to the guest, which in the case of a compat guest 390 * is the 32-bit field that the compiler thinks is padding. 391 */ 392 rs_state = ((void *)rs_times) - times_ofs; 393 394 /* 395 * The update_bit is still directly in the guest memory, 396 * via one GPC or the other. 397 */ 398 if (v->kvm->arch.xen.runstate_update_flag) { 399 if (user_len1 >= times_ofs + sizeof(uint64_t)) 400 update_bit = gpc1->khva + times_ofs + 401 sizeof(uint64_t) - 1; 402 else 403 update_bit = gpc2->khva + times_ofs + 404 sizeof(uint64_t) - 1 - user_len1; 405 } 406 407 #ifdef CONFIG_X86_64 408 /* 409 * Don't leak kernel memory through the padding in the 64-bit 410 * version of the struct. 411 */ 412 memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time)); 413 #endif 414 } 415 416 /* 417 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the 418 * state_entry_time field, directly in the guest. We need to set 419 * that (and write-barrier) before writing to the rest of the 420 * structure, and clear it last. Just as Xen does, we address the 421 * single *byte* in which it resides because it might be in a 422 * different cache line to the rest of the 64-bit word, due to 423 * the (lack of) alignment constraints. 424 */ 425 entry_time = vx->runstate_entry_time; 426 if (update_bit) { 427 entry_time |= XEN_RUNSTATE_UPDATE; 428 *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56; 429 smp_wmb(); 430 } 431 432 /* 433 * Now assemble the actual structure, either on our kernel stack 434 * or directly in the guest according to how the rs_state and 435 * rs_times pointers were set up above. 436 */ 437 *rs_state = vx->current_runstate; 438 rs_times[0] = entry_time; 439 memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times)); 440 441 /* For the split case, we have to then copy it to the guest. */ 442 if (user_len2) { 443 memcpy(gpc1->khva, rs_state, user_len1); 444 memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2); 445 } 446 smp_wmb(); 447 448 /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */ 449 if (update_bit) { 450 entry_time &= ~XEN_RUNSTATE_UPDATE; 451 *update_bit = entry_time >> 56; 452 smp_wmb(); 453 } 454 455 if (user_len2) 456 read_unlock(&gpc2->lock); 457 458 read_unlock_irqrestore(&gpc1->lock, flags); 459 460 mark_page_dirty_in_slot(v->kvm, gpc1->memslot, gpc1->gpa >> PAGE_SHIFT); 461 if (user_len2) 462 mark_page_dirty_in_slot(v->kvm, gpc2->memslot, gpc2->gpa >> PAGE_SHIFT); 463 } 464 465 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) 466 { 467 struct kvm_vcpu_xen *vx = &v->arch.xen; 468 u64 now = get_kvmclock_ns(v->kvm); 469 u64 delta_ns = now - vx->runstate_entry_time; 470 u64 run_delay = current->sched_info.run_delay; 471 472 if (unlikely(!vx->runstate_entry_time)) 473 vx->current_runstate = RUNSTATE_offline; 474 475 /* 476 * Time waiting for the scheduler isn't "stolen" if the 477 * vCPU wasn't running anyway. 478 */ 479 if (vx->current_runstate == RUNSTATE_running) { 480 u64 steal_ns = run_delay - vx->last_steal; 481 482 delta_ns -= steal_ns; 483 484 vx->runstate_times[RUNSTATE_runnable] += steal_ns; 485 } 486 vx->last_steal = run_delay; 487 488 vx->runstate_times[vx->current_runstate] += delta_ns; 489 vx->current_runstate = state; 490 vx->runstate_entry_time = now; 491 492 if (vx->runstate_cache.active) 493 kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable); 494 } 495 496 static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v) 497 { 498 struct kvm_lapic_irq irq = { }; 499 int r; 500 501 irq.dest_id = v->vcpu_id; 502 irq.vector = v->arch.xen.upcall_vector; 503 irq.dest_mode = APIC_DEST_PHYSICAL; 504 irq.shorthand = APIC_DEST_NOSHORT; 505 irq.delivery_mode = APIC_DM_FIXED; 506 irq.level = 1; 507 508 /* The fast version will always work for physical unicast */ 509 WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL)); 510 } 511 512 /* 513 * On event channel delivery, the vcpu_info may not have been accessible. 514 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which 515 * need to be marked into the vcpu_info (and evtchn_upcall_pending set). 516 * Do so now that we can sleep in the context of the vCPU to bring the 517 * page in, and refresh the pfn cache for it. 518 */ 519 void kvm_xen_inject_pending_events(struct kvm_vcpu *v) 520 { 521 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); 522 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; 523 unsigned long flags; 524 525 if (!evtchn_pending_sel) 526 return; 527 528 /* 529 * Yes, this is an open-coded loop. But that's just what put_user() 530 * does anyway. Page it in and retry the instruction. We're just a 531 * little more honest about it. 532 */ 533 read_lock_irqsave(&gpc->lock, flags); 534 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 535 read_unlock_irqrestore(&gpc->lock, flags); 536 537 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) 538 return; 539 540 read_lock_irqsave(&gpc->lock, flags); 541 } 542 543 /* Now gpc->khva is a valid kernel address for the vcpu_info */ 544 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { 545 struct vcpu_info *vi = gpc->khva; 546 547 asm volatile(LOCK_PREFIX "orq %0, %1\n" 548 "notq %0\n" 549 LOCK_PREFIX "andq %0, %2\n" 550 : "=r" (evtchn_pending_sel), 551 "+m" (vi->evtchn_pending_sel), 552 "+m" (v->arch.xen.evtchn_pending_sel) 553 : "0" (evtchn_pending_sel)); 554 WRITE_ONCE(vi->evtchn_upcall_pending, 1); 555 } else { 556 u32 evtchn_pending_sel32 = evtchn_pending_sel; 557 struct compat_vcpu_info *vi = gpc->khva; 558 559 asm volatile(LOCK_PREFIX "orl %0, %1\n" 560 "notl %0\n" 561 LOCK_PREFIX "andl %0, %2\n" 562 : "=r" (evtchn_pending_sel32), 563 "+m" (vi->evtchn_pending_sel), 564 "+m" (v->arch.xen.evtchn_pending_sel) 565 : "0" (evtchn_pending_sel32)); 566 WRITE_ONCE(vi->evtchn_upcall_pending, 1); 567 } 568 read_unlock_irqrestore(&gpc->lock, flags); 569 570 /* For the per-vCPU lapic vector, deliver it as MSI. */ 571 if (v->arch.xen.upcall_vector) 572 kvm_xen_inject_vcpu_vector(v); 573 574 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 575 } 576 577 int __kvm_xen_has_interrupt(struct kvm_vcpu *v) 578 { 579 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; 580 unsigned long flags; 581 u8 rc = 0; 582 583 /* 584 * If the global upcall vector (HVMIRQ_callback_vector) is set and 585 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. 586 */ 587 588 /* No need for compat handling here */ 589 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != 590 offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); 591 BUILD_BUG_ON(sizeof(rc) != 592 sizeof_field(struct vcpu_info, evtchn_upcall_pending)); 593 BUILD_BUG_ON(sizeof(rc) != 594 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); 595 596 read_lock_irqsave(&gpc->lock, flags); 597 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 598 read_unlock_irqrestore(&gpc->lock, flags); 599 600 /* 601 * This function gets called from kvm_vcpu_block() after setting the 602 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately 603 * from a HLT. So we really mustn't sleep. If the page ended up absent 604 * at that point, just return 1 in order to trigger an immediate wake, 605 * and we'll end up getting called again from a context where we *can* 606 * fault in the page and wait for it. 607 */ 608 if (in_atomic() || !task_is_running(current)) 609 return 1; 610 611 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) { 612 /* 613 * If this failed, userspace has screwed up the 614 * vcpu_info mapping. No interrupts for you. 615 */ 616 return 0; 617 } 618 read_lock_irqsave(&gpc->lock, flags); 619 } 620 621 rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending; 622 read_unlock_irqrestore(&gpc->lock, flags); 623 return rc; 624 } 625 626 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 627 { 628 int r = -ENOENT; 629 630 631 switch (data->type) { 632 case KVM_XEN_ATTR_TYPE_LONG_MODE: 633 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { 634 r = -EINVAL; 635 } else { 636 mutex_lock(&kvm->arch.xen.xen_lock); 637 kvm->arch.xen.long_mode = !!data->u.long_mode; 638 mutex_unlock(&kvm->arch.xen.xen_lock); 639 r = 0; 640 } 641 break; 642 643 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 644 mutex_lock(&kvm->arch.xen.xen_lock); 645 r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn); 646 mutex_unlock(&kvm->arch.xen.xen_lock); 647 break; 648 649 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 650 if (data->u.vector && data->u.vector < 0x10) 651 r = -EINVAL; 652 else { 653 mutex_lock(&kvm->arch.xen.xen_lock); 654 kvm->arch.xen.upcall_vector = data->u.vector; 655 mutex_unlock(&kvm->arch.xen.xen_lock); 656 r = 0; 657 } 658 break; 659 660 case KVM_XEN_ATTR_TYPE_EVTCHN: 661 r = kvm_xen_setattr_evtchn(kvm, data); 662 break; 663 664 case KVM_XEN_ATTR_TYPE_XEN_VERSION: 665 mutex_lock(&kvm->arch.xen.xen_lock); 666 kvm->arch.xen.xen_version = data->u.xen_version; 667 mutex_unlock(&kvm->arch.xen.xen_lock); 668 r = 0; 669 break; 670 671 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: 672 if (!sched_info_on()) { 673 r = -EOPNOTSUPP; 674 break; 675 } 676 mutex_lock(&kvm->arch.xen.xen_lock); 677 kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag; 678 mutex_unlock(&kvm->arch.xen.xen_lock); 679 r = 0; 680 break; 681 682 default: 683 break; 684 } 685 686 return r; 687 } 688 689 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 690 { 691 int r = -ENOENT; 692 693 mutex_lock(&kvm->arch.xen.xen_lock); 694 695 switch (data->type) { 696 case KVM_XEN_ATTR_TYPE_LONG_MODE: 697 data->u.long_mode = kvm->arch.xen.long_mode; 698 r = 0; 699 break; 700 701 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 702 if (kvm->arch.xen.shinfo_cache.active) 703 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); 704 else 705 data->u.shared_info.gfn = KVM_XEN_INVALID_GFN; 706 r = 0; 707 break; 708 709 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 710 data->u.vector = kvm->arch.xen.upcall_vector; 711 r = 0; 712 break; 713 714 case KVM_XEN_ATTR_TYPE_XEN_VERSION: 715 data->u.xen_version = kvm->arch.xen.xen_version; 716 r = 0; 717 break; 718 719 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: 720 if (!sched_info_on()) { 721 r = -EOPNOTSUPP; 722 break; 723 } 724 data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag; 725 r = 0; 726 break; 727 728 default: 729 break; 730 } 731 732 mutex_unlock(&kvm->arch.xen.xen_lock); 733 return r; 734 } 735 736 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 737 { 738 int idx, r = -ENOENT; 739 740 mutex_lock(&vcpu->kvm->arch.xen.xen_lock); 741 idx = srcu_read_lock(&vcpu->kvm->srcu); 742 743 switch (data->type) { 744 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 745 /* No compat necessary here. */ 746 BUILD_BUG_ON(sizeof(struct vcpu_info) != 747 sizeof(struct compat_vcpu_info)); 748 BUILD_BUG_ON(offsetof(struct vcpu_info, time) != 749 offsetof(struct compat_vcpu_info, time)); 750 751 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 752 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 753 r = 0; 754 break; 755 } 756 757 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache, 758 data->u.gpa, sizeof(struct vcpu_info)); 759 if (!r) 760 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 761 762 break; 763 764 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 765 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 766 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); 767 r = 0; 768 break; 769 } 770 771 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache, 772 data->u.gpa, 773 sizeof(struct pvclock_vcpu_time_info)); 774 if (!r) 775 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 776 break; 777 778 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: { 779 size_t sz, sz1, sz2; 780 781 if (!sched_info_on()) { 782 r = -EOPNOTSUPP; 783 break; 784 } 785 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 786 r = 0; 787 deactivate_out: 788 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); 789 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 790 break; 791 } 792 793 /* 794 * If the guest switches to 64-bit mode after setting the runstate 795 * address, that's actually OK. kvm_xen_update_runstate_guest() 796 * will cope. 797 */ 798 if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode) 799 sz = sizeof(struct vcpu_runstate_info); 800 else 801 sz = sizeof(struct compat_vcpu_runstate_info); 802 803 /* How much fits in the (first) page? */ 804 sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK); 805 r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache, 806 data->u.gpa, sz1); 807 if (r) 808 goto deactivate_out; 809 810 /* Either map the second page, or deactivate the second GPC */ 811 if (sz1 >= sz) { 812 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 813 } else { 814 sz2 = sz - sz1; 815 BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK); 816 r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache, 817 data->u.gpa + sz1, sz2); 818 if (r) 819 goto deactivate_out; 820 } 821 822 kvm_xen_update_runstate_guest(vcpu, false); 823 break; 824 } 825 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 826 if (!sched_info_on()) { 827 r = -EOPNOTSUPP; 828 break; 829 } 830 if (data->u.runstate.state > RUNSTATE_offline) { 831 r = -EINVAL; 832 break; 833 } 834 835 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 836 r = 0; 837 break; 838 839 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 840 if (!sched_info_on()) { 841 r = -EOPNOTSUPP; 842 break; 843 } 844 if (data->u.runstate.state > RUNSTATE_offline) { 845 r = -EINVAL; 846 break; 847 } 848 if (data->u.runstate.state_entry_time != 849 (data->u.runstate.time_running + 850 data->u.runstate.time_runnable + 851 data->u.runstate.time_blocked + 852 data->u.runstate.time_offline)) { 853 r = -EINVAL; 854 break; 855 } 856 if (get_kvmclock_ns(vcpu->kvm) < 857 data->u.runstate.state_entry_time) { 858 r = -EINVAL; 859 break; 860 } 861 862 vcpu->arch.xen.current_runstate = data->u.runstate.state; 863 vcpu->arch.xen.runstate_entry_time = 864 data->u.runstate.state_entry_time; 865 vcpu->arch.xen.runstate_times[RUNSTATE_running] = 866 data->u.runstate.time_running; 867 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = 868 data->u.runstate.time_runnable; 869 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = 870 data->u.runstate.time_blocked; 871 vcpu->arch.xen.runstate_times[RUNSTATE_offline] = 872 data->u.runstate.time_offline; 873 vcpu->arch.xen.last_steal = current->sched_info.run_delay; 874 r = 0; 875 break; 876 877 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 878 if (!sched_info_on()) { 879 r = -EOPNOTSUPP; 880 break; 881 } 882 if (data->u.runstate.state > RUNSTATE_offline && 883 data->u.runstate.state != (u64)-1) { 884 r = -EINVAL; 885 break; 886 } 887 /* The adjustment must add up */ 888 if (data->u.runstate.state_entry_time != 889 (data->u.runstate.time_running + 890 data->u.runstate.time_runnable + 891 data->u.runstate.time_blocked + 892 data->u.runstate.time_offline)) { 893 r = -EINVAL; 894 break; 895 } 896 897 if (get_kvmclock_ns(vcpu->kvm) < 898 (vcpu->arch.xen.runstate_entry_time + 899 data->u.runstate.state_entry_time)) { 900 r = -EINVAL; 901 break; 902 } 903 904 vcpu->arch.xen.runstate_entry_time += 905 data->u.runstate.state_entry_time; 906 vcpu->arch.xen.runstate_times[RUNSTATE_running] += 907 data->u.runstate.time_running; 908 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += 909 data->u.runstate.time_runnable; 910 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += 911 data->u.runstate.time_blocked; 912 vcpu->arch.xen.runstate_times[RUNSTATE_offline] += 913 data->u.runstate.time_offline; 914 915 if (data->u.runstate.state <= RUNSTATE_offline) 916 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 917 else if (vcpu->arch.xen.runstate_cache.active) 918 kvm_xen_update_runstate_guest(vcpu, false); 919 r = 0; 920 break; 921 922 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: 923 if (data->u.vcpu_id >= KVM_MAX_VCPUS) 924 r = -EINVAL; 925 else { 926 vcpu->arch.xen.vcpu_id = data->u.vcpu_id; 927 r = 0; 928 } 929 break; 930 931 case KVM_XEN_VCPU_ATTR_TYPE_TIMER: 932 if (data->u.timer.port && 933 data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) { 934 r = -EINVAL; 935 break; 936 } 937 938 if (!vcpu->arch.xen.timer.function) 939 kvm_xen_init_timer(vcpu); 940 941 /* Stop the timer (if it's running) before changing the vector */ 942 kvm_xen_stop_timer(vcpu); 943 vcpu->arch.xen.timer_virq = data->u.timer.port; 944 945 /* Start the timer if the new value has a valid vector+expiry. */ 946 if (data->u.timer.port && data->u.timer.expires_ns) 947 kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, 948 data->u.timer.expires_ns - 949 get_kvmclock_ns(vcpu->kvm)); 950 951 r = 0; 952 break; 953 954 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: 955 if (data->u.vector && data->u.vector < 0x10) 956 r = -EINVAL; 957 else { 958 vcpu->arch.xen.upcall_vector = data->u.vector; 959 r = 0; 960 } 961 break; 962 963 default: 964 break; 965 } 966 967 srcu_read_unlock(&vcpu->kvm->srcu, idx); 968 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); 969 return r; 970 } 971 972 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 973 { 974 int r = -ENOENT; 975 976 mutex_lock(&vcpu->kvm->arch.xen.xen_lock); 977 978 switch (data->type) { 979 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 980 if (vcpu->arch.xen.vcpu_info_cache.active) 981 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; 982 else 983 data->u.gpa = KVM_XEN_INVALID_GPA; 984 r = 0; 985 break; 986 987 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 988 if (vcpu->arch.xen.vcpu_time_info_cache.active) 989 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; 990 else 991 data->u.gpa = KVM_XEN_INVALID_GPA; 992 r = 0; 993 break; 994 995 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 996 if (!sched_info_on()) { 997 r = -EOPNOTSUPP; 998 break; 999 } 1000 if (vcpu->arch.xen.runstate_cache.active) { 1001 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; 1002 r = 0; 1003 } 1004 break; 1005 1006 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 1007 if (!sched_info_on()) { 1008 r = -EOPNOTSUPP; 1009 break; 1010 } 1011 data->u.runstate.state = vcpu->arch.xen.current_runstate; 1012 r = 0; 1013 break; 1014 1015 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 1016 if (!sched_info_on()) { 1017 r = -EOPNOTSUPP; 1018 break; 1019 } 1020 data->u.runstate.state = vcpu->arch.xen.current_runstate; 1021 data->u.runstate.state_entry_time = 1022 vcpu->arch.xen.runstate_entry_time; 1023 data->u.runstate.time_running = 1024 vcpu->arch.xen.runstate_times[RUNSTATE_running]; 1025 data->u.runstate.time_runnable = 1026 vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; 1027 data->u.runstate.time_blocked = 1028 vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; 1029 data->u.runstate.time_offline = 1030 vcpu->arch.xen.runstate_times[RUNSTATE_offline]; 1031 r = 0; 1032 break; 1033 1034 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 1035 r = -EINVAL; 1036 break; 1037 1038 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: 1039 data->u.vcpu_id = vcpu->arch.xen.vcpu_id; 1040 r = 0; 1041 break; 1042 1043 case KVM_XEN_VCPU_ATTR_TYPE_TIMER: 1044 /* 1045 * Ensure a consistent snapshot of state is captured, with a 1046 * timer either being pending, or the event channel delivered 1047 * to the corresponding bit in the shared_info. Not still 1048 * lurking in the timer_pending flag for deferred delivery. 1049 * Purely as an optimisation, if the timer_expires field is 1050 * zero, that means the timer isn't active (or even in the 1051 * timer_pending flag) and there is no need to cancel it. 1052 */ 1053 if (vcpu->arch.xen.timer_expires) { 1054 hrtimer_cancel(&vcpu->arch.xen.timer); 1055 kvm_xen_inject_timer_irqs(vcpu); 1056 } 1057 1058 data->u.timer.port = vcpu->arch.xen.timer_virq; 1059 data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 1060 data->u.timer.expires_ns = vcpu->arch.xen.timer_expires; 1061 1062 /* 1063 * The hrtimer may trigger and raise the IRQ immediately, 1064 * while the returned state causes it to be set up and 1065 * raised again on the destination system after migration. 1066 * That's fine, as the guest won't even have had a chance 1067 * to run and handle the interrupt. Asserting an already 1068 * pending event channel is idempotent. 1069 */ 1070 if (vcpu->arch.xen.timer_expires) 1071 hrtimer_start_expires(&vcpu->arch.xen.timer, 1072 HRTIMER_MODE_ABS_HARD); 1073 1074 r = 0; 1075 break; 1076 1077 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: 1078 data->u.vector = vcpu->arch.xen.upcall_vector; 1079 r = 0; 1080 break; 1081 1082 default: 1083 break; 1084 } 1085 1086 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); 1087 return r; 1088 } 1089 1090 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) 1091 { 1092 struct kvm *kvm = vcpu->kvm; 1093 u32 page_num = data & ~PAGE_MASK; 1094 u64 page_addr = data & PAGE_MASK; 1095 bool lm = is_long_mode(vcpu); 1096 1097 /* Latch long_mode for shared_info pages etc. */ 1098 vcpu->kvm->arch.xen.long_mode = lm; 1099 1100 /* 1101 * If Xen hypercall intercept is enabled, fill the hypercall 1102 * page with VMCALL/VMMCALL instructions since that's what 1103 * we catch. Else the VMM has provided the hypercall pages 1104 * with instructions of its own choosing, so use those. 1105 */ 1106 if (kvm_xen_hypercall_enabled(kvm)) { 1107 u8 instructions[32]; 1108 int i; 1109 1110 if (page_num) 1111 return 1; 1112 1113 /* mov imm32, %eax */ 1114 instructions[0] = 0xb8; 1115 1116 /* vmcall / vmmcall */ 1117 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5); 1118 1119 /* ret */ 1120 instructions[8] = 0xc3; 1121 1122 /* int3 to pad */ 1123 memset(instructions + 9, 0xcc, sizeof(instructions) - 9); 1124 1125 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { 1126 *(u32 *)&instructions[1] = i; 1127 if (kvm_vcpu_write_guest(vcpu, 1128 page_addr + (i * sizeof(instructions)), 1129 instructions, sizeof(instructions))) 1130 return 1; 1131 } 1132 } else { 1133 /* 1134 * Note, truncation is a non-issue as 'lm' is guaranteed to be 1135 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. 1136 */ 1137 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64 1138 : kvm->arch.xen_hvm_config.blob_addr_32; 1139 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1140 : kvm->arch.xen_hvm_config.blob_size_32; 1141 u8 *page; 1142 int ret; 1143 1144 if (page_num >= blob_size) 1145 return 1; 1146 1147 blob_addr += page_num * PAGE_SIZE; 1148 1149 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); 1150 if (IS_ERR(page)) 1151 return PTR_ERR(page); 1152 1153 ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE); 1154 kfree(page); 1155 if (ret) 1156 return 1; 1157 } 1158 return 0; 1159 } 1160 1161 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) 1162 { 1163 /* Only some feature flags need to be *enabled* by userspace */ 1164 u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 1165 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 1166 1167 if (xhc->flags & ~permitted_flags) 1168 return -EINVAL; 1169 1170 /* 1171 * With hypercall interception the kernel generates its own 1172 * hypercall page so it must not be provided. 1173 */ 1174 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && 1175 (xhc->blob_addr_32 || xhc->blob_addr_64 || 1176 xhc->blob_size_32 || xhc->blob_size_64)) 1177 return -EINVAL; 1178 1179 mutex_lock(&kvm->arch.xen.xen_lock); 1180 1181 if (xhc->msr && !kvm->arch.xen_hvm_config.msr) 1182 static_branch_inc(&kvm_xen_enabled.key); 1183 else if (!xhc->msr && kvm->arch.xen_hvm_config.msr) 1184 static_branch_slow_dec_deferred(&kvm_xen_enabled); 1185 1186 memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc)); 1187 1188 mutex_unlock(&kvm->arch.xen.xen_lock); 1189 return 0; 1190 } 1191 1192 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 1193 { 1194 kvm_rax_write(vcpu, result); 1195 return kvm_skip_emulated_instruction(vcpu); 1196 } 1197 1198 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 1199 { 1200 struct kvm_run *run = vcpu->run; 1201 1202 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) 1203 return 1; 1204 1205 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); 1206 } 1207 1208 static inline int max_evtchn_port(struct kvm *kvm) 1209 { 1210 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) 1211 return EVTCHN_2L_NR_CHANNELS; 1212 else 1213 return COMPAT_EVTCHN_2L_NR_CHANNELS; 1214 } 1215 1216 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports, 1217 evtchn_port_t *ports) 1218 { 1219 struct kvm *kvm = vcpu->kvm; 1220 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1221 unsigned long *pending_bits; 1222 unsigned long flags; 1223 bool ret = true; 1224 int idx, i; 1225 1226 idx = srcu_read_lock(&kvm->srcu); 1227 read_lock_irqsave(&gpc->lock, flags); 1228 if (!kvm_gpc_check(gpc, PAGE_SIZE)) 1229 goto out_rcu; 1230 1231 ret = false; 1232 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1233 struct shared_info *shinfo = gpc->khva; 1234 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1235 } else { 1236 struct compat_shared_info *shinfo = gpc->khva; 1237 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1238 } 1239 1240 for (i = 0; i < nr_ports; i++) { 1241 if (test_bit(ports[i], pending_bits)) { 1242 ret = true; 1243 break; 1244 } 1245 } 1246 1247 out_rcu: 1248 read_unlock_irqrestore(&gpc->lock, flags); 1249 srcu_read_unlock(&kvm->srcu, idx); 1250 1251 return ret; 1252 } 1253 1254 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode, 1255 u64 param, u64 *r) 1256 { 1257 struct sched_poll sched_poll; 1258 evtchn_port_t port, *ports; 1259 struct x86_exception e; 1260 int i; 1261 1262 if (!lapic_in_kernel(vcpu) || 1263 !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND)) 1264 return false; 1265 1266 if (IS_ENABLED(CONFIG_64BIT) && !longmode) { 1267 struct compat_sched_poll sp32; 1268 1269 /* Sanity check that the compat struct definition is correct */ 1270 BUILD_BUG_ON(sizeof(sp32) != 16); 1271 1272 if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) { 1273 *r = -EFAULT; 1274 return true; 1275 } 1276 1277 /* 1278 * This is a 32-bit pointer to an array of evtchn_port_t which 1279 * are uint32_t, so once it's converted no further compat 1280 * handling is needed. 1281 */ 1282 sched_poll.ports = (void *)(unsigned long)(sp32.ports); 1283 sched_poll.nr_ports = sp32.nr_ports; 1284 sched_poll.timeout = sp32.timeout; 1285 } else { 1286 if (kvm_read_guest_virt(vcpu, param, &sched_poll, 1287 sizeof(sched_poll), &e)) { 1288 *r = -EFAULT; 1289 return true; 1290 } 1291 } 1292 1293 if (unlikely(sched_poll.nr_ports > 1)) { 1294 /* Xen (unofficially) limits number of pollers to 128 */ 1295 if (sched_poll.nr_ports > 128) { 1296 *r = -EINVAL; 1297 return true; 1298 } 1299 1300 ports = kmalloc_array(sched_poll.nr_ports, 1301 sizeof(*ports), GFP_KERNEL); 1302 if (!ports) { 1303 *r = -ENOMEM; 1304 return true; 1305 } 1306 } else 1307 ports = &port; 1308 1309 if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports, 1310 sched_poll.nr_ports * sizeof(*ports), &e)) { 1311 *r = -EFAULT; 1312 return true; 1313 } 1314 1315 for (i = 0; i < sched_poll.nr_ports; i++) { 1316 if (ports[i] >= max_evtchn_port(vcpu->kvm)) { 1317 *r = -EINVAL; 1318 goto out; 1319 } 1320 } 1321 1322 if (sched_poll.nr_ports == 1) 1323 vcpu->arch.xen.poll_evtchn = port; 1324 else 1325 vcpu->arch.xen.poll_evtchn = -1; 1326 1327 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); 1328 1329 if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) { 1330 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 1331 1332 if (sched_poll.timeout) 1333 mod_timer(&vcpu->arch.xen.poll_timer, 1334 jiffies + nsecs_to_jiffies(sched_poll.timeout)); 1335 1336 kvm_vcpu_halt(vcpu); 1337 1338 if (sched_poll.timeout) 1339 del_timer(&vcpu->arch.xen.poll_timer); 1340 1341 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 1342 } 1343 1344 vcpu->arch.xen.poll_evtchn = 0; 1345 *r = 0; 1346 out: 1347 /* Really, this is only needed in case of timeout */ 1348 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); 1349 1350 if (unlikely(sched_poll.nr_ports > 1)) 1351 kfree(ports); 1352 return true; 1353 } 1354 1355 static void cancel_evtchn_poll(struct timer_list *t) 1356 { 1357 struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer); 1358 1359 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1360 kvm_vcpu_kick(vcpu); 1361 } 1362 1363 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode, 1364 int cmd, u64 param, u64 *r) 1365 { 1366 switch (cmd) { 1367 case SCHEDOP_poll: 1368 if (kvm_xen_schedop_poll(vcpu, longmode, param, r)) 1369 return true; 1370 fallthrough; 1371 case SCHEDOP_yield: 1372 kvm_vcpu_on_spin(vcpu, true); 1373 *r = 0; 1374 return true; 1375 default: 1376 break; 1377 } 1378 1379 return false; 1380 } 1381 1382 struct compat_vcpu_set_singleshot_timer { 1383 uint64_t timeout_abs_ns; 1384 uint32_t flags; 1385 } __attribute__((packed)); 1386 1387 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd, 1388 int vcpu_id, u64 param, u64 *r) 1389 { 1390 struct vcpu_set_singleshot_timer oneshot; 1391 struct x86_exception e; 1392 s64 delta; 1393 1394 if (!kvm_xen_timer_enabled(vcpu)) 1395 return false; 1396 1397 switch (cmd) { 1398 case VCPUOP_set_singleshot_timer: 1399 if (vcpu->arch.xen.vcpu_id != vcpu_id) { 1400 *r = -EINVAL; 1401 return true; 1402 } 1403 1404 /* 1405 * The only difference for 32-bit compat is the 4 bytes of 1406 * padding after the interesting part of the structure. So 1407 * for a faithful emulation of Xen we have to *try* to copy 1408 * the padding and return -EFAULT if we can't. Otherwise we 1409 * might as well just have copied the 12-byte 32-bit struct. 1410 */ 1411 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != 1412 offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns)); 1413 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != 1414 sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns)); 1415 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) != 1416 offsetof(struct vcpu_set_singleshot_timer, flags)); 1417 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) != 1418 sizeof_field(struct vcpu_set_singleshot_timer, flags)); 1419 1420 if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) : 1421 sizeof(struct compat_vcpu_set_singleshot_timer), &e)) { 1422 *r = -EFAULT; 1423 return true; 1424 } 1425 1426 /* A delta <= 0 results in an immediate callback, which is what we want */ 1427 delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm); 1428 kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta); 1429 *r = 0; 1430 return true; 1431 1432 case VCPUOP_stop_singleshot_timer: 1433 if (vcpu->arch.xen.vcpu_id != vcpu_id) { 1434 *r = -EINVAL; 1435 return true; 1436 } 1437 kvm_xen_stop_timer(vcpu); 1438 *r = 0; 1439 return true; 1440 } 1441 1442 return false; 1443 } 1444 1445 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout, 1446 u64 *r) 1447 { 1448 if (!kvm_xen_timer_enabled(vcpu)) 1449 return false; 1450 1451 if (timeout) { 1452 uint64_t guest_now = get_kvmclock_ns(vcpu->kvm); 1453 int64_t delta = timeout - guest_now; 1454 1455 /* Xen has a 'Linux workaround' in do_set_timer_op() which 1456 * checks for negative absolute timeout values (caused by 1457 * integer overflow), and for values about 13 days in the 1458 * future (2^50ns) which would be caused by jiffies 1459 * overflow. For those cases, it sets the timeout 100ms in 1460 * the future (not *too* soon, since if a guest really did 1461 * set a long timeout on purpose we don't want to keep 1462 * churning CPU time by waking it up). 1463 */ 1464 if (unlikely((int64_t)timeout < 0 || 1465 (delta > 0 && (uint32_t) (delta >> 50) != 0))) { 1466 delta = 100 * NSEC_PER_MSEC; 1467 timeout = guest_now + delta; 1468 } 1469 1470 kvm_xen_start_timer(vcpu, timeout, delta); 1471 } else { 1472 kvm_xen_stop_timer(vcpu); 1473 } 1474 1475 *r = 0; 1476 return true; 1477 } 1478 1479 int kvm_xen_hypercall(struct kvm_vcpu *vcpu) 1480 { 1481 bool longmode; 1482 u64 input, params[6], r = -ENOSYS; 1483 bool handled = false; 1484 u8 cpl; 1485 1486 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); 1487 1488 /* Hyper-V hypercalls get bit 31 set in EAX */ 1489 if ((input & 0x80000000) && 1490 kvm_hv_hypercall_enabled(vcpu)) 1491 return kvm_hv_hypercall(vcpu); 1492 1493 longmode = is_64_bit_hypercall(vcpu); 1494 if (!longmode) { 1495 params[0] = (u32)kvm_rbx_read(vcpu); 1496 params[1] = (u32)kvm_rcx_read(vcpu); 1497 params[2] = (u32)kvm_rdx_read(vcpu); 1498 params[3] = (u32)kvm_rsi_read(vcpu); 1499 params[4] = (u32)kvm_rdi_read(vcpu); 1500 params[5] = (u32)kvm_rbp_read(vcpu); 1501 } 1502 #ifdef CONFIG_X86_64 1503 else { 1504 params[0] = (u64)kvm_rdi_read(vcpu); 1505 params[1] = (u64)kvm_rsi_read(vcpu); 1506 params[2] = (u64)kvm_rdx_read(vcpu); 1507 params[3] = (u64)kvm_r10_read(vcpu); 1508 params[4] = (u64)kvm_r8_read(vcpu); 1509 params[5] = (u64)kvm_r9_read(vcpu); 1510 } 1511 #endif 1512 cpl = static_call(kvm_x86_get_cpl)(vcpu); 1513 trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2], 1514 params[3], params[4], params[5]); 1515 1516 /* 1517 * Only allow hypercall acceleration for CPL0. The rare hypercalls that 1518 * are permitted in guest userspace can be handled by the VMM. 1519 */ 1520 if (unlikely(cpl > 0)) 1521 goto handle_in_userspace; 1522 1523 switch (input) { 1524 case __HYPERVISOR_xen_version: 1525 if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) { 1526 r = vcpu->kvm->arch.xen.xen_version; 1527 handled = true; 1528 } 1529 break; 1530 case __HYPERVISOR_event_channel_op: 1531 if (params[0] == EVTCHNOP_send) 1532 handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r); 1533 break; 1534 case __HYPERVISOR_sched_op: 1535 handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0], 1536 params[1], &r); 1537 break; 1538 case __HYPERVISOR_vcpu_op: 1539 handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1], 1540 params[2], &r); 1541 break; 1542 case __HYPERVISOR_set_timer_op: { 1543 u64 timeout = params[0]; 1544 /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */ 1545 if (!longmode) 1546 timeout |= params[1] << 32; 1547 handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r); 1548 break; 1549 } 1550 default: 1551 break; 1552 } 1553 1554 if (handled) 1555 return kvm_xen_hypercall_set_result(vcpu, r); 1556 1557 handle_in_userspace: 1558 vcpu->run->exit_reason = KVM_EXIT_XEN; 1559 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; 1560 vcpu->run->xen.u.hcall.longmode = longmode; 1561 vcpu->run->xen.u.hcall.cpl = cpl; 1562 vcpu->run->xen.u.hcall.input = input; 1563 vcpu->run->xen.u.hcall.params[0] = params[0]; 1564 vcpu->run->xen.u.hcall.params[1] = params[1]; 1565 vcpu->run->xen.u.hcall.params[2] = params[2]; 1566 vcpu->run->xen.u.hcall.params[3] = params[3]; 1567 vcpu->run->xen.u.hcall.params[4] = params[4]; 1568 vcpu->run->xen.u.hcall.params[5] = params[5]; 1569 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); 1570 vcpu->arch.complete_userspace_io = 1571 kvm_xen_hypercall_complete_userspace; 1572 1573 return 0; 1574 } 1575 1576 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port) 1577 { 1578 int poll_evtchn = vcpu->arch.xen.poll_evtchn; 1579 1580 if ((poll_evtchn == port || poll_evtchn == -1) && 1581 test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) { 1582 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1583 kvm_vcpu_kick(vcpu); 1584 } 1585 } 1586 1587 /* 1588 * The return value from this function is propagated to kvm_set_irq() API, 1589 * so it returns: 1590 * < 0 Interrupt was ignored (masked or not delivered for other reasons) 1591 * = 0 Interrupt was coalesced (previous irq is still pending) 1592 * > 0 Number of CPUs interrupt was delivered to 1593 * 1594 * It is also called directly from kvm_arch_set_irq_inatomic(), where the 1595 * only check on its return value is a comparison with -EWOULDBLOCK'. 1596 */ 1597 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm) 1598 { 1599 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1600 struct kvm_vcpu *vcpu; 1601 unsigned long *pending_bits, *mask_bits; 1602 unsigned long flags; 1603 int port_word_bit; 1604 bool kick_vcpu = false; 1605 int vcpu_idx, idx, rc; 1606 1607 vcpu_idx = READ_ONCE(xe->vcpu_idx); 1608 if (vcpu_idx >= 0) 1609 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 1610 else { 1611 vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id); 1612 if (!vcpu) 1613 return -EINVAL; 1614 WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx); 1615 } 1616 1617 if (!vcpu->arch.xen.vcpu_info_cache.active) 1618 return -EINVAL; 1619 1620 if (xe->port >= max_evtchn_port(kvm)) 1621 return -EINVAL; 1622 1623 rc = -EWOULDBLOCK; 1624 1625 idx = srcu_read_lock(&kvm->srcu); 1626 1627 read_lock_irqsave(&gpc->lock, flags); 1628 if (!kvm_gpc_check(gpc, PAGE_SIZE)) 1629 goto out_rcu; 1630 1631 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1632 struct shared_info *shinfo = gpc->khva; 1633 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1634 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 1635 port_word_bit = xe->port / 64; 1636 } else { 1637 struct compat_shared_info *shinfo = gpc->khva; 1638 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1639 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 1640 port_word_bit = xe->port / 32; 1641 } 1642 1643 /* 1644 * If this port wasn't already set, and if it isn't masked, then 1645 * we try to set the corresponding bit in the in-kernel shadow of 1646 * evtchn_pending_sel for the target vCPU. And if *that* wasn't 1647 * already set, then we kick the vCPU in question to write to the 1648 * *real* evtchn_pending_sel in its own guest vcpu_info struct. 1649 */ 1650 if (test_and_set_bit(xe->port, pending_bits)) { 1651 rc = 0; /* It was already raised */ 1652 } else if (test_bit(xe->port, mask_bits)) { 1653 rc = -ENOTCONN; /* Masked */ 1654 kvm_xen_check_poller(vcpu, xe->port); 1655 } else { 1656 rc = 1; /* Delivered to the bitmap in shared_info. */ 1657 /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */ 1658 read_unlock_irqrestore(&gpc->lock, flags); 1659 gpc = &vcpu->arch.xen.vcpu_info_cache; 1660 1661 read_lock_irqsave(&gpc->lock, flags); 1662 if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 1663 /* 1664 * Could not access the vcpu_info. Set the bit in-kernel 1665 * and prod the vCPU to deliver it for itself. 1666 */ 1667 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) 1668 kick_vcpu = true; 1669 goto out_rcu; 1670 } 1671 1672 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1673 struct vcpu_info *vcpu_info = gpc->khva; 1674 if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) { 1675 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); 1676 kick_vcpu = true; 1677 } 1678 } else { 1679 struct compat_vcpu_info *vcpu_info = gpc->khva; 1680 if (!test_and_set_bit(port_word_bit, 1681 (unsigned long *)&vcpu_info->evtchn_pending_sel)) { 1682 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); 1683 kick_vcpu = true; 1684 } 1685 } 1686 1687 /* For the per-vCPU lapic vector, deliver it as MSI. */ 1688 if (kick_vcpu && vcpu->arch.xen.upcall_vector) { 1689 kvm_xen_inject_vcpu_vector(vcpu); 1690 kick_vcpu = false; 1691 } 1692 } 1693 1694 out_rcu: 1695 read_unlock_irqrestore(&gpc->lock, flags); 1696 srcu_read_unlock(&kvm->srcu, idx); 1697 1698 if (kick_vcpu) { 1699 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1700 kvm_vcpu_kick(vcpu); 1701 } 1702 1703 return rc; 1704 } 1705 1706 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm) 1707 { 1708 bool mm_borrowed = false; 1709 int rc; 1710 1711 rc = kvm_xen_set_evtchn_fast(xe, kvm); 1712 if (rc != -EWOULDBLOCK) 1713 return rc; 1714 1715 if (current->mm != kvm->mm) { 1716 /* 1717 * If not on a thread which already belongs to this KVM, 1718 * we'd better be in the irqfd workqueue. 1719 */ 1720 if (WARN_ON_ONCE(current->mm)) 1721 return -EINVAL; 1722 1723 kthread_use_mm(kvm->mm); 1724 mm_borrowed = true; 1725 } 1726 1727 mutex_lock(&kvm->arch.xen.xen_lock); 1728 1729 /* 1730 * It is theoretically possible for the page to be unmapped 1731 * and the MMU notifier to invalidate the shared_info before 1732 * we even get to use it. In that case, this looks like an 1733 * infinite loop. It was tempting to do it via the userspace 1734 * HVA instead... but that just *hides* the fact that it's 1735 * an infinite loop, because if a fault occurs and it waits 1736 * for the page to come back, it can *still* immediately 1737 * fault and have to wait again, repeatedly. 1738 * 1739 * Conversely, the page could also have been reinstated by 1740 * another thread before we even obtain the mutex above, so 1741 * check again *first* before remapping it. 1742 */ 1743 do { 1744 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1745 int idx; 1746 1747 rc = kvm_xen_set_evtchn_fast(xe, kvm); 1748 if (rc != -EWOULDBLOCK) 1749 break; 1750 1751 idx = srcu_read_lock(&kvm->srcu); 1752 rc = kvm_gpc_refresh(gpc, PAGE_SIZE); 1753 srcu_read_unlock(&kvm->srcu, idx); 1754 } while(!rc); 1755 1756 mutex_unlock(&kvm->arch.xen.xen_lock); 1757 1758 if (mm_borrowed) 1759 kthread_unuse_mm(kvm->mm); 1760 1761 return rc; 1762 } 1763 1764 /* This is the version called from kvm_set_irq() as the .set function */ 1765 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 1766 int irq_source_id, int level, bool line_status) 1767 { 1768 if (!level) 1769 return -EINVAL; 1770 1771 return kvm_xen_set_evtchn(&e->xen_evtchn, kvm); 1772 } 1773 1774 /* 1775 * Set up an event channel interrupt from the KVM IRQ routing table. 1776 * Used for e.g. PIRQ from passed through physical devices. 1777 */ 1778 int kvm_xen_setup_evtchn(struct kvm *kvm, 1779 struct kvm_kernel_irq_routing_entry *e, 1780 const struct kvm_irq_routing_entry *ue) 1781 1782 { 1783 struct kvm_vcpu *vcpu; 1784 1785 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm)) 1786 return -EINVAL; 1787 1788 /* We only support 2 level event channels for now */ 1789 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1790 return -EINVAL; 1791 1792 /* 1793 * Xen gives us interesting mappings from vCPU index to APIC ID, 1794 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs 1795 * to find it. Do that once at setup time, instead of every time. 1796 * But beware that on live update / live migration, the routing 1797 * table might be reinstated before the vCPU threads have finished 1798 * recreating their vCPUs. 1799 */ 1800 vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu); 1801 if (vcpu) 1802 e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx; 1803 else 1804 e->xen_evtchn.vcpu_idx = -1; 1805 1806 e->xen_evtchn.port = ue->u.xen_evtchn.port; 1807 e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu; 1808 e->xen_evtchn.priority = ue->u.xen_evtchn.priority; 1809 e->set = evtchn_set_fn; 1810 1811 return 0; 1812 } 1813 1814 /* 1815 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl. 1816 */ 1817 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe) 1818 { 1819 struct kvm_xen_evtchn e; 1820 int ret; 1821 1822 if (!uxe->port || uxe->port >= max_evtchn_port(kvm)) 1823 return -EINVAL; 1824 1825 /* We only support 2 level event channels for now */ 1826 if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1827 return -EINVAL; 1828 1829 e.port = uxe->port; 1830 e.vcpu_id = uxe->vcpu; 1831 e.vcpu_idx = -1; 1832 e.priority = uxe->priority; 1833 1834 ret = kvm_xen_set_evtchn(&e, kvm); 1835 1836 /* 1837 * None of that 'return 1 if it actually got delivered' nonsense. 1838 * We don't care if it was masked (-ENOTCONN) either. 1839 */ 1840 if (ret > 0 || ret == -ENOTCONN) 1841 ret = 0; 1842 1843 return ret; 1844 } 1845 1846 /* 1847 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall. 1848 */ 1849 struct evtchnfd { 1850 u32 send_port; 1851 u32 type; 1852 union { 1853 struct kvm_xen_evtchn port; 1854 struct { 1855 u32 port; /* zero */ 1856 struct eventfd_ctx *ctx; 1857 } eventfd; 1858 } deliver; 1859 }; 1860 1861 /* 1862 * Update target vCPU or priority for a registered sending channel. 1863 */ 1864 static int kvm_xen_eventfd_update(struct kvm *kvm, 1865 struct kvm_xen_hvm_attr *data) 1866 { 1867 u32 port = data->u.evtchn.send_port; 1868 struct evtchnfd *evtchnfd; 1869 int ret; 1870 1871 /* Protect writes to evtchnfd as well as the idr lookup. */ 1872 mutex_lock(&kvm->arch.xen.xen_lock); 1873 evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port); 1874 1875 ret = -ENOENT; 1876 if (!evtchnfd) 1877 goto out_unlock; 1878 1879 /* For an UPDATE, nothing may change except the priority/vcpu */ 1880 ret = -EINVAL; 1881 if (evtchnfd->type != data->u.evtchn.type) 1882 goto out_unlock; 1883 1884 /* 1885 * Port cannot change, and if it's zero that was an eventfd 1886 * which can't be changed either. 1887 */ 1888 if (!evtchnfd->deliver.port.port || 1889 evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port) 1890 goto out_unlock; 1891 1892 /* We only support 2 level event channels for now */ 1893 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1894 goto out_unlock; 1895 1896 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; 1897 if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) { 1898 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; 1899 evtchnfd->deliver.port.vcpu_idx = -1; 1900 } 1901 ret = 0; 1902 out_unlock: 1903 mutex_unlock(&kvm->arch.xen.xen_lock); 1904 return ret; 1905 } 1906 1907 /* 1908 * Configure the target (eventfd or local port delivery) for sending on 1909 * a given event channel. 1910 */ 1911 static int kvm_xen_eventfd_assign(struct kvm *kvm, 1912 struct kvm_xen_hvm_attr *data) 1913 { 1914 u32 port = data->u.evtchn.send_port; 1915 struct eventfd_ctx *eventfd = NULL; 1916 struct evtchnfd *evtchnfd; 1917 int ret = -EINVAL; 1918 1919 evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL); 1920 if (!evtchnfd) 1921 return -ENOMEM; 1922 1923 switch(data->u.evtchn.type) { 1924 case EVTCHNSTAT_ipi: 1925 /* IPI must map back to the same port# */ 1926 if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port) 1927 goto out_noeventfd; /* -EINVAL */ 1928 break; 1929 1930 case EVTCHNSTAT_interdomain: 1931 if (data->u.evtchn.deliver.port.port) { 1932 if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm)) 1933 goto out_noeventfd; /* -EINVAL */ 1934 } else { 1935 eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd); 1936 if (IS_ERR(eventfd)) { 1937 ret = PTR_ERR(eventfd); 1938 goto out_noeventfd; 1939 } 1940 } 1941 break; 1942 1943 case EVTCHNSTAT_virq: 1944 case EVTCHNSTAT_closed: 1945 case EVTCHNSTAT_unbound: 1946 case EVTCHNSTAT_pirq: 1947 default: /* Unknown event channel type */ 1948 goto out; /* -EINVAL */ 1949 } 1950 1951 evtchnfd->send_port = data->u.evtchn.send_port; 1952 evtchnfd->type = data->u.evtchn.type; 1953 if (eventfd) { 1954 evtchnfd->deliver.eventfd.ctx = eventfd; 1955 } else { 1956 /* We only support 2 level event channels for now */ 1957 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1958 goto out; /* -EINVAL; */ 1959 1960 evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port; 1961 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; 1962 evtchnfd->deliver.port.vcpu_idx = -1; 1963 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; 1964 } 1965 1966 mutex_lock(&kvm->arch.xen.xen_lock); 1967 ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1, 1968 GFP_KERNEL); 1969 mutex_unlock(&kvm->arch.xen.xen_lock); 1970 if (ret >= 0) 1971 return 0; 1972 1973 if (ret == -ENOSPC) 1974 ret = -EEXIST; 1975 out: 1976 if (eventfd) 1977 eventfd_ctx_put(eventfd); 1978 out_noeventfd: 1979 kfree(evtchnfd); 1980 return ret; 1981 } 1982 1983 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port) 1984 { 1985 struct evtchnfd *evtchnfd; 1986 1987 mutex_lock(&kvm->arch.xen.xen_lock); 1988 evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port); 1989 mutex_unlock(&kvm->arch.xen.xen_lock); 1990 1991 if (!evtchnfd) 1992 return -ENOENT; 1993 1994 synchronize_srcu(&kvm->srcu); 1995 if (!evtchnfd->deliver.port.port) 1996 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 1997 kfree(evtchnfd); 1998 return 0; 1999 } 2000 2001 static int kvm_xen_eventfd_reset(struct kvm *kvm) 2002 { 2003 struct evtchnfd *evtchnfd, **all_evtchnfds; 2004 int i; 2005 int n = 0; 2006 2007 mutex_lock(&kvm->arch.xen.xen_lock); 2008 2009 /* 2010 * Because synchronize_srcu() cannot be called inside the 2011 * critical section, first collect all the evtchnfd objects 2012 * in an array as they are removed from evtchn_ports. 2013 */ 2014 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) 2015 n++; 2016 2017 all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL); 2018 if (!all_evtchnfds) { 2019 mutex_unlock(&kvm->arch.xen.xen_lock); 2020 return -ENOMEM; 2021 } 2022 2023 n = 0; 2024 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { 2025 all_evtchnfds[n++] = evtchnfd; 2026 idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port); 2027 } 2028 mutex_unlock(&kvm->arch.xen.xen_lock); 2029 2030 synchronize_srcu(&kvm->srcu); 2031 2032 while (n--) { 2033 evtchnfd = all_evtchnfds[n]; 2034 if (!evtchnfd->deliver.port.port) 2035 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 2036 kfree(evtchnfd); 2037 } 2038 kfree(all_evtchnfds); 2039 2040 return 0; 2041 } 2042 2043 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 2044 { 2045 u32 port = data->u.evtchn.send_port; 2046 2047 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET) 2048 return kvm_xen_eventfd_reset(kvm); 2049 2050 if (!port || port >= max_evtchn_port(kvm)) 2051 return -EINVAL; 2052 2053 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN) 2054 return kvm_xen_eventfd_deassign(kvm, port); 2055 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE) 2056 return kvm_xen_eventfd_update(kvm, data); 2057 if (data->u.evtchn.flags) 2058 return -EINVAL; 2059 2060 return kvm_xen_eventfd_assign(kvm, data); 2061 } 2062 2063 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r) 2064 { 2065 struct evtchnfd *evtchnfd; 2066 struct evtchn_send send; 2067 struct x86_exception e; 2068 2069 /* Sanity check: this structure is the same for 32-bit and 64-bit */ 2070 BUILD_BUG_ON(sizeof(send) != 4); 2071 if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) { 2072 *r = -EFAULT; 2073 return true; 2074 } 2075 2076 /* 2077 * evtchnfd is protected by kvm->srcu; the idr lookup instead 2078 * is protected by RCU. 2079 */ 2080 rcu_read_lock(); 2081 evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port); 2082 rcu_read_unlock(); 2083 if (!evtchnfd) 2084 return false; 2085 2086 if (evtchnfd->deliver.port.port) { 2087 int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm); 2088 if (ret < 0 && ret != -ENOTCONN) 2089 return false; 2090 } else { 2091 eventfd_signal(evtchnfd->deliver.eventfd.ctx, 1); 2092 } 2093 2094 *r = 0; 2095 return true; 2096 } 2097 2098 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu) 2099 { 2100 vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx; 2101 vcpu->arch.xen.poll_evtchn = 0; 2102 2103 timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0); 2104 2105 kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm, NULL, 2106 KVM_HOST_USES_PFN); 2107 kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm, NULL, 2108 KVM_HOST_USES_PFN); 2109 kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm, NULL, 2110 KVM_HOST_USES_PFN); 2111 kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm, NULL, 2112 KVM_HOST_USES_PFN); 2113 } 2114 2115 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu) 2116 { 2117 if (kvm_xen_timer_enabled(vcpu)) 2118 kvm_xen_stop_timer(vcpu); 2119 2120 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); 2121 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 2122 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 2123 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); 2124 2125 del_timer_sync(&vcpu->arch.xen.poll_timer); 2126 } 2127 2128 void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu) 2129 { 2130 struct kvm_cpuid_entry2 *entry; 2131 u32 function; 2132 2133 if (!vcpu->arch.xen.cpuid.base) 2134 return; 2135 2136 function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3); 2137 if (function > vcpu->arch.xen.cpuid.limit) 2138 return; 2139 2140 entry = kvm_find_cpuid_entry_index(vcpu, function, 1); 2141 if (entry) { 2142 entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul; 2143 entry->edx = vcpu->arch.hv_clock.tsc_shift; 2144 } 2145 2146 entry = kvm_find_cpuid_entry_index(vcpu, function, 2); 2147 if (entry) 2148 entry->eax = vcpu->arch.hw_tsc_khz; 2149 } 2150 2151 void kvm_xen_init_vm(struct kvm *kvm) 2152 { 2153 mutex_init(&kvm->arch.xen.xen_lock); 2154 idr_init(&kvm->arch.xen.evtchn_ports); 2155 kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm, NULL, KVM_HOST_USES_PFN); 2156 } 2157 2158 void kvm_xen_destroy_vm(struct kvm *kvm) 2159 { 2160 struct evtchnfd *evtchnfd; 2161 int i; 2162 2163 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); 2164 2165 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { 2166 if (!evtchnfd->deliver.port.port) 2167 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 2168 kfree(evtchnfd); 2169 } 2170 idr_destroy(&kvm->arch.xen.evtchn_ports); 2171 2172 if (kvm->arch.xen_hvm_config.msr) 2173 static_branch_slow_dec_deferred(&kvm_xen_enabled); 2174 } 2175