xref: /linux/arch/x86/kvm/xen.c (revision e18655cf35a5958fbf4ae9ca3ebf28871a3a1801)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5  *
6  * KVM Xen emulation
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include "x86.h"
11 #include "xen.h"
12 #include "hyperv.h"
13 #include "irq.h"
14 
15 #include <linux/eventfd.h>
16 #include <linux/kvm_host.h>
17 #include <linux/sched/stat.h>
18 
19 #include <trace/events/kvm.h>
20 #include <xen/interface/xen.h>
21 #include <xen/interface/vcpu.h>
22 #include <xen/interface/version.h>
23 #include <xen/interface/event_channel.h>
24 #include <xen/interface/sched.h>
25 
26 #include <asm/xen/cpuid.h>
27 #include <asm/pvclock.h>
28 
29 #include "cpuid.h"
30 #include "trace.h"
31 
32 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
33 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
34 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
35 
36 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
37 
38 static int kvm_xen_shared_info_init(struct kvm *kvm)
39 {
40 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
41 	struct pvclock_wall_clock *wc;
42 	u32 *wc_sec_hi;
43 	u32 wc_version;
44 	u64 wall_nsec;
45 	int ret = 0;
46 	int idx = srcu_read_lock(&kvm->srcu);
47 
48 	read_lock_irq(&gpc->lock);
49 	while (!kvm_gpc_check(gpc, PAGE_SIZE)) {
50 		read_unlock_irq(&gpc->lock);
51 
52 		ret = kvm_gpc_refresh(gpc, PAGE_SIZE);
53 		if (ret)
54 			goto out;
55 
56 		read_lock_irq(&gpc->lock);
57 	}
58 
59 	/*
60 	 * This code mirrors kvm_write_wall_clock() except that it writes
61 	 * directly through the pfn cache and doesn't mark the page dirty.
62 	 */
63 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
64 
65 	/* Paranoia checks on the 32-bit struct layout */
66 	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
67 	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
68 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
69 
70 #ifdef CONFIG_X86_64
71 	/* Paranoia checks on the 64-bit struct layout */
72 	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
73 	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
74 
75 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
76 		struct shared_info *shinfo = gpc->khva;
77 
78 		wc_sec_hi = &shinfo->wc_sec_hi;
79 		wc = &shinfo->wc;
80 	} else
81 #endif
82 	{
83 		struct compat_shared_info *shinfo = gpc->khva;
84 
85 		wc_sec_hi = &shinfo->arch.wc_sec_hi;
86 		wc = &shinfo->wc;
87 	}
88 
89 	/* Increment and ensure an odd value */
90 	wc_version = wc->version = (wc->version + 1) | 1;
91 	smp_wmb();
92 
93 	wc->nsec = do_div(wall_nsec, NSEC_PER_SEC);
94 	wc->sec = (u32)wall_nsec;
95 	*wc_sec_hi = wall_nsec >> 32;
96 	smp_wmb();
97 
98 	wc->version = wc_version + 1;
99 	read_unlock_irq(&gpc->lock);
100 
101 	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
102 
103 out:
104 	srcu_read_unlock(&kvm->srcu, idx);
105 	return ret;
106 }
107 
108 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
109 {
110 	if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
111 		struct kvm_xen_evtchn e;
112 
113 		e.vcpu_id = vcpu->vcpu_id;
114 		e.vcpu_idx = vcpu->vcpu_idx;
115 		e.port = vcpu->arch.xen.timer_virq;
116 		e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
117 
118 		kvm_xen_set_evtchn(&e, vcpu->kvm);
119 
120 		vcpu->arch.xen.timer_expires = 0;
121 		atomic_set(&vcpu->arch.xen.timer_pending, 0);
122 	}
123 }
124 
125 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
126 {
127 	struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
128 					     arch.xen.timer);
129 	struct kvm_xen_evtchn e;
130 	int rc;
131 
132 	if (atomic_read(&vcpu->arch.xen.timer_pending))
133 		return HRTIMER_NORESTART;
134 
135 	e.vcpu_id = vcpu->vcpu_id;
136 	e.vcpu_idx = vcpu->vcpu_idx;
137 	e.port = vcpu->arch.xen.timer_virq;
138 	e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
139 
140 	rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm);
141 	if (rc != -EWOULDBLOCK) {
142 		vcpu->arch.xen.timer_expires = 0;
143 		return HRTIMER_NORESTART;
144 	}
145 
146 	atomic_inc(&vcpu->arch.xen.timer_pending);
147 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
148 	kvm_vcpu_kick(vcpu);
149 
150 	return HRTIMER_NORESTART;
151 }
152 
153 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs,
154 				bool linux_wa)
155 {
156 	int64_t kernel_now, delta;
157 	uint64_t guest_now;
158 
159 	/*
160 	 * The guest provides the requested timeout in absolute nanoseconds
161 	 * of the KVM clock — as *it* sees it, based on the scaled TSC and
162 	 * the pvclock information provided by KVM.
163 	 *
164 	 * The kernel doesn't support hrtimers based on CLOCK_MONOTONIC_RAW
165 	 * so use CLOCK_MONOTONIC. In the timescales covered by timers, the
166 	 * difference won't matter much as there is no cumulative effect.
167 	 *
168 	 * Calculate the time for some arbitrary point in time around "now"
169 	 * in terms of both kvmclock and CLOCK_MONOTONIC. Calculate the
170 	 * delta between the kvmclock "now" value and the guest's requested
171 	 * timeout, apply the "Linux workaround" described below, and add
172 	 * the resulting delta to the CLOCK_MONOTONIC "now" value, to get
173 	 * the absolute CLOCK_MONOTONIC time at which the timer should
174 	 * fire.
175 	 */
176 	if (vcpu->arch.hv_clock.version && vcpu->kvm->arch.use_master_clock &&
177 	    static_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
178 		uint64_t host_tsc, guest_tsc;
179 
180 		if (!IS_ENABLED(CONFIG_64BIT) ||
181 		    !kvm_get_monotonic_and_clockread(&kernel_now, &host_tsc)) {
182 			/*
183 			 * Don't fall back to get_kvmclock_ns() because it's
184 			 * broken; it has a systemic error in its results
185 			 * because it scales directly from host TSC to
186 			 * nanoseconds, and doesn't scale first to guest TSC
187 			 * and *then* to nanoseconds as the guest does.
188 			 *
189 			 * There is a small error introduced here because time
190 			 * continues to elapse between the ktime_get() and the
191 			 * subsequent rdtsc(). But not the systemic drift due
192 			 * to get_kvmclock_ns().
193 			 */
194 			kernel_now = ktime_get(); /* This is CLOCK_MONOTONIC */
195 			host_tsc = rdtsc();
196 		}
197 
198 		/* Calculate the guest kvmclock as the guest would do it. */
199 		guest_tsc = kvm_read_l1_tsc(vcpu, host_tsc);
200 		guest_now = __pvclock_read_cycles(&vcpu->arch.hv_clock,
201 						  guest_tsc);
202 	} else {
203 		/*
204 		 * Without CONSTANT_TSC, get_kvmclock_ns() is the only option.
205 		 *
206 		 * Also if the guest PV clock hasn't been set up yet, as is
207 		 * likely to be the case during migration when the vCPU has
208 		 * not been run yet. It would be possible to calculate the
209 		 * scaling factors properly in that case but there's not much
210 		 * point in doing so. The get_kvmclock_ns() drift accumulates
211 		 * over time, so it's OK to use it at startup. Besides, on
212 		 * migration there's going to be a little bit of skew in the
213 		 * precise moment at which timers fire anyway. Often they'll
214 		 * be in the "past" by the time the VM is running again after
215 		 * migration.
216 		 */
217 		guest_now = get_kvmclock_ns(vcpu->kvm);
218 		kernel_now = ktime_get();
219 	}
220 
221 	delta = guest_abs - guest_now;
222 
223 	/*
224 	 * Xen has a 'Linux workaround' in do_set_timer_op() which checks for
225 	 * negative absolute timeout values (caused by integer overflow), and
226 	 * for values about 13 days in the future (2^50ns) which would be
227 	 * caused by jiffies overflow. For those cases, Xen sets the timeout
228 	 * 100ms in the future (not *too* soon, since if a guest really did
229 	 * set a long timeout on purpose we don't want to keep churning CPU
230 	 * time by waking it up).  Emulate Xen's workaround when starting the
231 	 * timer in response to __HYPERVISOR_set_timer_op.
232 	 */
233 	if (linux_wa &&
234 	    unlikely((int64_t)guest_abs < 0 ||
235 		     (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
236 		delta = 100 * NSEC_PER_MSEC;
237 		guest_abs = guest_now + delta;
238 	}
239 
240 	/*
241 	 * Avoid races with the old timer firing. Checking timer_expires
242 	 * to avoid calling hrtimer_cancel() will only have false positives
243 	 * so is fine.
244 	 */
245 	if (vcpu->arch.xen.timer_expires)
246 		hrtimer_cancel(&vcpu->arch.xen.timer);
247 
248 	atomic_set(&vcpu->arch.xen.timer_pending, 0);
249 	vcpu->arch.xen.timer_expires = guest_abs;
250 
251 	if (delta <= 0)
252 		xen_timer_callback(&vcpu->arch.xen.timer);
253 	else
254 		hrtimer_start(&vcpu->arch.xen.timer,
255 			      ktime_add_ns(kernel_now, delta),
256 			      HRTIMER_MODE_ABS_HARD);
257 }
258 
259 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
260 {
261 	hrtimer_cancel(&vcpu->arch.xen.timer);
262 	vcpu->arch.xen.timer_expires = 0;
263 	atomic_set(&vcpu->arch.xen.timer_pending, 0);
264 }
265 
266 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
267 {
268 	struct kvm_vcpu_xen *vx = &v->arch.xen;
269 	struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
270 	struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
271 	size_t user_len, user_len1, user_len2;
272 	struct vcpu_runstate_info rs;
273 	unsigned long flags;
274 	size_t times_ofs;
275 	uint8_t *update_bit = NULL;
276 	uint64_t entry_time;
277 	uint64_t *rs_times;
278 	int *rs_state;
279 
280 	/*
281 	 * The only difference between 32-bit and 64-bit versions of the
282 	 * runstate struct is the alignment of uint64_t in 32-bit, which
283 	 * means that the 64-bit version has an additional 4 bytes of
284 	 * padding after the first field 'state'. Let's be really really
285 	 * paranoid about that, and matching it with our internal data
286 	 * structures that we memcpy into it...
287 	 */
288 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
289 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
290 	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
291 #ifdef CONFIG_X86_64
292 	/*
293 	 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
294 	 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
295 	 */
296 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
297 		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
298 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
299 		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
300 	BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
301 #endif
302 	/*
303 	 * The state field is in the same place at the start of both structs,
304 	 * and is the same size (int) as vx->current_runstate.
305 	 */
306 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
307 		     offsetof(struct compat_vcpu_runstate_info, state));
308 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
309 		     sizeof(vx->current_runstate));
310 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
311 		     sizeof(vx->current_runstate));
312 
313 	/*
314 	 * The state_entry_time field is 64 bits in both versions, and the
315 	 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
316 	 * is little-endian means that it's in the last *byte* of the word.
317 	 * That detail is important later.
318 	 */
319 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
320 		     sizeof(uint64_t));
321 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
322 		     sizeof(uint64_t));
323 	BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
324 
325 	/*
326 	 * The time array is four 64-bit quantities in both versions, matching
327 	 * the vx->runstate_times and immediately following state_entry_time.
328 	 */
329 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
330 		     offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
331 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
332 		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
333 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
334 		     sizeof_field(struct compat_vcpu_runstate_info, time));
335 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
336 		     sizeof(vx->runstate_times));
337 
338 	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
339 		user_len = sizeof(struct vcpu_runstate_info);
340 		times_ofs = offsetof(struct vcpu_runstate_info,
341 				     state_entry_time);
342 	} else {
343 		user_len = sizeof(struct compat_vcpu_runstate_info);
344 		times_ofs = offsetof(struct compat_vcpu_runstate_info,
345 				     state_entry_time);
346 	}
347 
348 	/*
349 	 * There are basically no alignment constraints. The guest can set it
350 	 * up so it crosses from one page to the next, and at arbitrary byte
351 	 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
352 	 * anyway, even if the overall struct had been 64-bit aligned).
353 	 */
354 	if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
355 		user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
356 		user_len2 = user_len - user_len1;
357 	} else {
358 		user_len1 = user_len;
359 		user_len2 = 0;
360 	}
361 	BUG_ON(user_len1 + user_len2 != user_len);
362 
363  retry:
364 	/*
365 	 * Attempt to obtain the GPC lock on *both* (if there are two)
366 	 * gfn_to_pfn caches that cover the region.
367 	 */
368 	if (atomic) {
369 		local_irq_save(flags);
370 		if (!read_trylock(&gpc1->lock)) {
371 			local_irq_restore(flags);
372 			return;
373 		}
374 	} else {
375 		read_lock_irqsave(&gpc1->lock, flags);
376 	}
377 	while (!kvm_gpc_check(gpc1, user_len1)) {
378 		read_unlock_irqrestore(&gpc1->lock, flags);
379 
380 		/* When invoked from kvm_sched_out() we cannot sleep */
381 		if (atomic)
382 			return;
383 
384 		if (kvm_gpc_refresh(gpc1, user_len1))
385 			return;
386 
387 		read_lock_irqsave(&gpc1->lock, flags);
388 	}
389 
390 	if (likely(!user_len2)) {
391 		/*
392 		 * Set up three pointers directly to the runstate_info
393 		 * struct in the guest (via the GPC).
394 		 *
395 		 *  • @rs_state   → state field
396 		 *  • @rs_times   → state_entry_time field.
397 		 *  • @update_bit → last byte of state_entry_time, which
398 		 *                  contains the XEN_RUNSTATE_UPDATE bit.
399 		 */
400 		rs_state = gpc1->khva;
401 		rs_times = gpc1->khva + times_ofs;
402 		if (v->kvm->arch.xen.runstate_update_flag)
403 			update_bit = ((void *)(&rs_times[1])) - 1;
404 	} else {
405 		/*
406 		 * The guest's runstate_info is split across two pages and we
407 		 * need to hold and validate both GPCs simultaneously. We can
408 		 * declare a lock ordering GPC1 > GPC2 because nothing else
409 		 * takes them more than one at a time. Set a subclass on the
410 		 * gpc1 lock to make lockdep shut up about it.
411 		 */
412 		lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_);
413 		if (atomic) {
414 			if (!read_trylock(&gpc2->lock)) {
415 				read_unlock_irqrestore(&gpc1->lock, flags);
416 				return;
417 			}
418 		} else {
419 			read_lock(&gpc2->lock);
420 		}
421 
422 		if (!kvm_gpc_check(gpc2, user_len2)) {
423 			read_unlock(&gpc2->lock);
424 			read_unlock_irqrestore(&gpc1->lock, flags);
425 
426 			/* When invoked from kvm_sched_out() we cannot sleep */
427 			if (atomic)
428 				return;
429 
430 			/*
431 			 * Use kvm_gpc_activate() here because if the runstate
432 			 * area was configured in 32-bit mode and only extends
433 			 * to the second page now because the guest changed to
434 			 * 64-bit mode, the second GPC won't have been set up.
435 			 */
436 			if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
437 					     user_len2))
438 				return;
439 
440 			/*
441 			 * We dropped the lock on GPC1 so we have to go all the
442 			 * way back and revalidate that too.
443 			 */
444 			goto retry;
445 		}
446 
447 		/*
448 		 * In this case, the runstate_info struct will be assembled on
449 		 * the kernel stack (compat or not as appropriate) and will
450 		 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
451 		 * rs pointers accordingly.
452 		 */
453 		rs_times = &rs.state_entry_time;
454 
455 		/*
456 		 * The rs_state pointer points to the start of what we'll
457 		 * copy to the guest, which in the case of a compat guest
458 		 * is the 32-bit field that the compiler thinks is padding.
459 		 */
460 		rs_state = ((void *)rs_times) - times_ofs;
461 
462 		/*
463 		 * The update_bit is still directly in the guest memory,
464 		 * via one GPC or the other.
465 		 */
466 		if (v->kvm->arch.xen.runstate_update_flag) {
467 			if (user_len1 >= times_ofs + sizeof(uint64_t))
468 				update_bit = gpc1->khva + times_ofs +
469 					sizeof(uint64_t) - 1;
470 			else
471 				update_bit = gpc2->khva + times_ofs +
472 					sizeof(uint64_t) - 1 - user_len1;
473 		}
474 
475 #ifdef CONFIG_X86_64
476 		/*
477 		 * Don't leak kernel memory through the padding in the 64-bit
478 		 * version of the struct.
479 		 */
480 		memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
481 #endif
482 	}
483 
484 	/*
485 	 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
486 	 * state_entry_time field, directly in the guest. We need to set
487 	 * that (and write-barrier) before writing to the rest of the
488 	 * structure, and clear it last. Just as Xen does, we address the
489 	 * single *byte* in which it resides because it might be in a
490 	 * different cache line to the rest of the 64-bit word, due to
491 	 * the (lack of) alignment constraints.
492 	 */
493 	entry_time = vx->runstate_entry_time;
494 	if (update_bit) {
495 		entry_time |= XEN_RUNSTATE_UPDATE;
496 		*update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
497 		smp_wmb();
498 	}
499 
500 	/*
501 	 * Now assemble the actual structure, either on our kernel stack
502 	 * or directly in the guest according to how the rs_state and
503 	 * rs_times pointers were set up above.
504 	 */
505 	*rs_state = vx->current_runstate;
506 	rs_times[0] = entry_time;
507 	memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
508 
509 	/* For the split case, we have to then copy it to the guest. */
510 	if (user_len2) {
511 		memcpy(gpc1->khva, rs_state, user_len1);
512 		memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
513 	}
514 	smp_wmb();
515 
516 	/* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
517 	if (update_bit) {
518 		entry_time &= ~XEN_RUNSTATE_UPDATE;
519 		*update_bit = entry_time >> 56;
520 		smp_wmb();
521 	}
522 
523 	if (user_len2) {
524 		kvm_gpc_mark_dirty_in_slot(gpc2);
525 		read_unlock(&gpc2->lock);
526 	}
527 
528 	kvm_gpc_mark_dirty_in_slot(gpc1);
529 	read_unlock_irqrestore(&gpc1->lock, flags);
530 }
531 
532 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
533 {
534 	struct kvm_vcpu_xen *vx = &v->arch.xen;
535 	u64 now = get_kvmclock_ns(v->kvm);
536 	u64 delta_ns = now - vx->runstate_entry_time;
537 	u64 run_delay = current->sched_info.run_delay;
538 
539 	if (unlikely(!vx->runstate_entry_time))
540 		vx->current_runstate = RUNSTATE_offline;
541 
542 	/*
543 	 * Time waiting for the scheduler isn't "stolen" if the
544 	 * vCPU wasn't running anyway.
545 	 */
546 	if (vx->current_runstate == RUNSTATE_running) {
547 		u64 steal_ns = run_delay - vx->last_steal;
548 
549 		delta_ns -= steal_ns;
550 
551 		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
552 	}
553 	vx->last_steal = run_delay;
554 
555 	vx->runstate_times[vx->current_runstate] += delta_ns;
556 	vx->current_runstate = state;
557 	vx->runstate_entry_time = now;
558 
559 	if (vx->runstate_cache.active)
560 		kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
561 }
562 
563 void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
564 {
565 	struct kvm_lapic_irq irq = { };
566 
567 	irq.dest_id = v->vcpu_id;
568 	irq.vector = v->arch.xen.upcall_vector;
569 	irq.dest_mode = APIC_DEST_PHYSICAL;
570 	irq.shorthand = APIC_DEST_NOSHORT;
571 	irq.delivery_mode = APIC_DM_FIXED;
572 	irq.level = 1;
573 
574 	kvm_irq_delivery_to_apic(v->kvm, NULL, &irq, NULL);
575 }
576 
577 /*
578  * On event channel delivery, the vcpu_info may not have been accessible.
579  * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
580  * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
581  * Do so now that we can sleep in the context of the vCPU to bring the
582  * page in, and refresh the pfn cache for it.
583  */
584 void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
585 {
586 	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
587 	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
588 	unsigned long flags;
589 
590 	if (!evtchn_pending_sel)
591 		return;
592 
593 	/*
594 	 * Yes, this is an open-coded loop. But that's just what put_user()
595 	 * does anyway. Page it in and retry the instruction. We're just a
596 	 * little more honest about it.
597 	 */
598 	read_lock_irqsave(&gpc->lock, flags);
599 	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
600 		read_unlock_irqrestore(&gpc->lock, flags);
601 
602 		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
603 			return;
604 
605 		read_lock_irqsave(&gpc->lock, flags);
606 	}
607 
608 	/* Now gpc->khva is a valid kernel address for the vcpu_info */
609 	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
610 		struct vcpu_info *vi = gpc->khva;
611 
612 		asm volatile(LOCK_PREFIX "orq %0, %1\n"
613 			     "notq %0\n"
614 			     LOCK_PREFIX "andq %0, %2\n"
615 			     : "=r" (evtchn_pending_sel),
616 			       "+m" (vi->evtchn_pending_sel),
617 			       "+m" (v->arch.xen.evtchn_pending_sel)
618 			     : "0" (evtchn_pending_sel));
619 		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
620 	} else {
621 		u32 evtchn_pending_sel32 = evtchn_pending_sel;
622 		struct compat_vcpu_info *vi = gpc->khva;
623 
624 		asm volatile(LOCK_PREFIX "orl %0, %1\n"
625 			     "notl %0\n"
626 			     LOCK_PREFIX "andl %0, %2\n"
627 			     : "=r" (evtchn_pending_sel32),
628 			       "+m" (vi->evtchn_pending_sel),
629 			       "+m" (v->arch.xen.evtchn_pending_sel)
630 			     : "0" (evtchn_pending_sel32));
631 		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
632 	}
633 
634 	kvm_gpc_mark_dirty_in_slot(gpc);
635 	read_unlock_irqrestore(&gpc->lock, flags);
636 
637 	/* For the per-vCPU lapic vector, deliver it as MSI. */
638 	if (v->arch.xen.upcall_vector)
639 		kvm_xen_inject_vcpu_vector(v);
640 }
641 
642 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
643 {
644 	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
645 	unsigned long flags;
646 	u8 rc = 0;
647 
648 	/*
649 	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
650 	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
651 	 */
652 
653 	/* No need for compat handling here */
654 	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
655 		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
656 	BUILD_BUG_ON(sizeof(rc) !=
657 		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
658 	BUILD_BUG_ON(sizeof(rc) !=
659 		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
660 
661 	read_lock_irqsave(&gpc->lock, flags);
662 	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
663 		read_unlock_irqrestore(&gpc->lock, flags);
664 
665 		/*
666 		 * This function gets called from kvm_vcpu_block() after setting the
667 		 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
668 		 * from a HLT. So we really mustn't sleep. If the page ended up absent
669 		 * at that point, just return 1 in order to trigger an immediate wake,
670 		 * and we'll end up getting called again from a context where we *can*
671 		 * fault in the page and wait for it.
672 		 */
673 		if (in_atomic() || !task_is_running(current))
674 			return 1;
675 
676 		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
677 			/*
678 			 * If this failed, userspace has screwed up the
679 			 * vcpu_info mapping. No interrupts for you.
680 			 */
681 			return 0;
682 		}
683 		read_lock_irqsave(&gpc->lock, flags);
684 	}
685 
686 	rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
687 	read_unlock_irqrestore(&gpc->lock, flags);
688 	return rc;
689 }
690 
691 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
692 {
693 	int r = -ENOENT;
694 
695 
696 	switch (data->type) {
697 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
698 		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
699 			r = -EINVAL;
700 		} else {
701 			mutex_lock(&kvm->arch.xen.xen_lock);
702 			kvm->arch.xen.long_mode = !!data->u.long_mode;
703 
704 			/*
705 			 * Re-initialize shared_info to put the wallclock in the
706 			 * correct place. Whilst it's not necessary to do this
707 			 * unless the mode is actually changed, it does no harm
708 			 * to make the call anyway.
709 			 */
710 			r = kvm->arch.xen.shinfo_cache.active ?
711 				kvm_xen_shared_info_init(kvm) : 0;
712 			mutex_unlock(&kvm->arch.xen.xen_lock);
713 		}
714 		break;
715 
716 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
717 	case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: {
718 		int idx;
719 
720 		mutex_lock(&kvm->arch.xen.xen_lock);
721 
722 		idx = srcu_read_lock(&kvm->srcu);
723 
724 		if (data->type == KVM_XEN_ATTR_TYPE_SHARED_INFO) {
725 			gfn_t gfn = data->u.shared_info.gfn;
726 
727 			if (gfn == KVM_XEN_INVALID_GFN) {
728 				kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
729 				r = 0;
730 			} else {
731 				r = kvm_gpc_activate(&kvm->arch.xen.shinfo_cache,
732 						     gfn_to_gpa(gfn), PAGE_SIZE);
733 			}
734 		} else {
735 			void __user * hva = u64_to_user_ptr(data->u.shared_info.hva);
736 
737 			if (!PAGE_ALIGNED(hva)) {
738 				r = -EINVAL;
739 			} else if (!hva) {
740 				kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
741 				r = 0;
742 			} else {
743 				r = kvm_gpc_activate_hva(&kvm->arch.xen.shinfo_cache,
744 							 (unsigned long)hva, PAGE_SIZE);
745 			}
746 		}
747 
748 		srcu_read_unlock(&kvm->srcu, idx);
749 
750 		if (!r && kvm->arch.xen.shinfo_cache.active)
751 			r = kvm_xen_shared_info_init(kvm);
752 
753 		mutex_unlock(&kvm->arch.xen.xen_lock);
754 		break;
755 	}
756 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
757 		if (data->u.vector && data->u.vector < 0x10)
758 			r = -EINVAL;
759 		else {
760 			mutex_lock(&kvm->arch.xen.xen_lock);
761 			kvm->arch.xen.upcall_vector = data->u.vector;
762 			mutex_unlock(&kvm->arch.xen.xen_lock);
763 			r = 0;
764 		}
765 		break;
766 
767 	case KVM_XEN_ATTR_TYPE_EVTCHN:
768 		r = kvm_xen_setattr_evtchn(kvm, data);
769 		break;
770 
771 	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
772 		mutex_lock(&kvm->arch.xen.xen_lock);
773 		kvm->arch.xen.xen_version = data->u.xen_version;
774 		mutex_unlock(&kvm->arch.xen.xen_lock);
775 		r = 0;
776 		break;
777 
778 	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
779 		if (!sched_info_on()) {
780 			r = -EOPNOTSUPP;
781 			break;
782 		}
783 		mutex_lock(&kvm->arch.xen.xen_lock);
784 		kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
785 		mutex_unlock(&kvm->arch.xen.xen_lock);
786 		r = 0;
787 		break;
788 
789 	default:
790 		break;
791 	}
792 
793 	return r;
794 }
795 
796 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
797 {
798 	int r = -ENOENT;
799 
800 	mutex_lock(&kvm->arch.xen.xen_lock);
801 
802 	switch (data->type) {
803 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
804 		data->u.long_mode = kvm->arch.xen.long_mode;
805 		r = 0;
806 		break;
807 
808 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
809 		if (kvm_gpc_is_gpa_active(&kvm->arch.xen.shinfo_cache))
810 			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
811 		else
812 			data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
813 		r = 0;
814 		break;
815 
816 	case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA:
817 		if (kvm_gpc_is_hva_active(&kvm->arch.xen.shinfo_cache))
818 			data->u.shared_info.hva = kvm->arch.xen.shinfo_cache.uhva;
819 		else
820 			data->u.shared_info.hva = 0;
821 		r = 0;
822 		break;
823 
824 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
825 		data->u.vector = kvm->arch.xen.upcall_vector;
826 		r = 0;
827 		break;
828 
829 	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
830 		data->u.xen_version = kvm->arch.xen.xen_version;
831 		r = 0;
832 		break;
833 
834 	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
835 		if (!sched_info_on()) {
836 			r = -EOPNOTSUPP;
837 			break;
838 		}
839 		data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
840 		r = 0;
841 		break;
842 
843 	default:
844 		break;
845 	}
846 
847 	mutex_unlock(&kvm->arch.xen.xen_lock);
848 	return r;
849 }
850 
851 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
852 {
853 	int idx, r = -ENOENT;
854 
855 	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
856 	idx = srcu_read_lock(&vcpu->kvm->srcu);
857 
858 	switch (data->type) {
859 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
860 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA:
861 		/* No compat necessary here. */
862 		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
863 			     sizeof(struct compat_vcpu_info));
864 		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
865 			     offsetof(struct compat_vcpu_info, time));
866 
867 		if (data->type == KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO) {
868 			if (data->u.gpa == KVM_XEN_INVALID_GPA) {
869 				kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
870 				r = 0;
871 				break;
872 			}
873 
874 			r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
875 					     data->u.gpa, sizeof(struct vcpu_info));
876 		} else {
877 			if (data->u.hva == 0) {
878 				kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
879 				r = 0;
880 				break;
881 			}
882 
883 			r = kvm_gpc_activate_hva(&vcpu->arch.xen.vcpu_info_cache,
884 						 data->u.hva, sizeof(struct vcpu_info));
885 		}
886 
887 		if (!r)
888 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
889 
890 		break;
891 
892 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
893 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
894 			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
895 			r = 0;
896 			break;
897 		}
898 
899 		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
900 				     data->u.gpa,
901 				     sizeof(struct pvclock_vcpu_time_info));
902 		if (!r)
903 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
904 		break;
905 
906 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
907 		size_t sz, sz1, sz2;
908 
909 		if (!sched_info_on()) {
910 			r = -EOPNOTSUPP;
911 			break;
912 		}
913 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
914 			r = 0;
915 		deactivate_out:
916 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
917 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
918 			break;
919 		}
920 
921 		/*
922 		 * If the guest switches to 64-bit mode after setting the runstate
923 		 * address, that's actually OK. kvm_xen_update_runstate_guest()
924 		 * will cope.
925 		 */
926 		if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
927 			sz = sizeof(struct vcpu_runstate_info);
928 		else
929 			sz = sizeof(struct compat_vcpu_runstate_info);
930 
931 		/* How much fits in the (first) page? */
932 		sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
933 		r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
934 				     data->u.gpa, sz1);
935 		if (r)
936 			goto deactivate_out;
937 
938 		/* Either map the second page, or deactivate the second GPC */
939 		if (sz1 >= sz) {
940 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
941 		} else {
942 			sz2 = sz - sz1;
943 			BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
944 			r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
945 					     data->u.gpa + sz1, sz2);
946 			if (r)
947 				goto deactivate_out;
948 		}
949 
950 		kvm_xen_update_runstate_guest(vcpu, false);
951 		break;
952 	}
953 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
954 		if (!sched_info_on()) {
955 			r = -EOPNOTSUPP;
956 			break;
957 		}
958 		if (data->u.runstate.state > RUNSTATE_offline) {
959 			r = -EINVAL;
960 			break;
961 		}
962 
963 		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
964 		r = 0;
965 		break;
966 
967 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
968 		if (!sched_info_on()) {
969 			r = -EOPNOTSUPP;
970 			break;
971 		}
972 		if (data->u.runstate.state > RUNSTATE_offline) {
973 			r = -EINVAL;
974 			break;
975 		}
976 		if (data->u.runstate.state_entry_time !=
977 		    (data->u.runstate.time_running +
978 		     data->u.runstate.time_runnable +
979 		     data->u.runstate.time_blocked +
980 		     data->u.runstate.time_offline)) {
981 			r = -EINVAL;
982 			break;
983 		}
984 		if (get_kvmclock_ns(vcpu->kvm) <
985 		    data->u.runstate.state_entry_time) {
986 			r = -EINVAL;
987 			break;
988 		}
989 
990 		vcpu->arch.xen.current_runstate = data->u.runstate.state;
991 		vcpu->arch.xen.runstate_entry_time =
992 			data->u.runstate.state_entry_time;
993 		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
994 			data->u.runstate.time_running;
995 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
996 			data->u.runstate.time_runnable;
997 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
998 			data->u.runstate.time_blocked;
999 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
1000 			data->u.runstate.time_offline;
1001 		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
1002 		r = 0;
1003 		break;
1004 
1005 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1006 		if (!sched_info_on()) {
1007 			r = -EOPNOTSUPP;
1008 			break;
1009 		}
1010 		if (data->u.runstate.state > RUNSTATE_offline &&
1011 		    data->u.runstate.state != (u64)-1) {
1012 			r = -EINVAL;
1013 			break;
1014 		}
1015 		/* The adjustment must add up */
1016 		if (data->u.runstate.state_entry_time !=
1017 		    (data->u.runstate.time_running +
1018 		     data->u.runstate.time_runnable +
1019 		     data->u.runstate.time_blocked +
1020 		     data->u.runstate.time_offline)) {
1021 			r = -EINVAL;
1022 			break;
1023 		}
1024 
1025 		if (get_kvmclock_ns(vcpu->kvm) <
1026 		    (vcpu->arch.xen.runstate_entry_time +
1027 		     data->u.runstate.state_entry_time)) {
1028 			r = -EINVAL;
1029 			break;
1030 		}
1031 
1032 		vcpu->arch.xen.runstate_entry_time +=
1033 			data->u.runstate.state_entry_time;
1034 		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
1035 			data->u.runstate.time_running;
1036 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
1037 			data->u.runstate.time_runnable;
1038 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
1039 			data->u.runstate.time_blocked;
1040 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
1041 			data->u.runstate.time_offline;
1042 
1043 		if (data->u.runstate.state <= RUNSTATE_offline)
1044 			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
1045 		else if (vcpu->arch.xen.runstate_cache.active)
1046 			kvm_xen_update_runstate_guest(vcpu, false);
1047 		r = 0;
1048 		break;
1049 
1050 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1051 		if (data->u.vcpu_id >= KVM_MAX_VCPUS)
1052 			r = -EINVAL;
1053 		else {
1054 			vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
1055 			r = 0;
1056 		}
1057 		break;
1058 
1059 	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1060 		if (data->u.timer.port &&
1061 		    data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
1062 			r = -EINVAL;
1063 			break;
1064 		}
1065 
1066 		/* Stop the timer (if it's running) before changing the vector */
1067 		kvm_xen_stop_timer(vcpu);
1068 		vcpu->arch.xen.timer_virq = data->u.timer.port;
1069 
1070 		/* Start the timer if the new value has a valid vector+expiry. */
1071 		if (data->u.timer.port && data->u.timer.expires_ns)
1072 			kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, false);
1073 
1074 		r = 0;
1075 		break;
1076 
1077 	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1078 		if (data->u.vector && data->u.vector < 0x10)
1079 			r = -EINVAL;
1080 		else {
1081 			vcpu->arch.xen.upcall_vector = data->u.vector;
1082 			r = 0;
1083 		}
1084 		break;
1085 
1086 	default:
1087 		break;
1088 	}
1089 
1090 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1091 	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1092 	return r;
1093 }
1094 
1095 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
1096 {
1097 	int r = -ENOENT;
1098 
1099 	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
1100 
1101 	switch (data->type) {
1102 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
1103 		if (kvm_gpc_is_gpa_active(&vcpu->arch.xen.vcpu_info_cache))
1104 			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
1105 		else
1106 			data->u.gpa = KVM_XEN_INVALID_GPA;
1107 		r = 0;
1108 		break;
1109 
1110 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA:
1111 		if (kvm_gpc_is_hva_active(&vcpu->arch.xen.vcpu_info_cache))
1112 			data->u.hva = vcpu->arch.xen.vcpu_info_cache.uhva;
1113 		else
1114 			data->u.hva = 0;
1115 		r = 0;
1116 		break;
1117 
1118 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
1119 		if (vcpu->arch.xen.vcpu_time_info_cache.active)
1120 			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
1121 		else
1122 			data->u.gpa = KVM_XEN_INVALID_GPA;
1123 		r = 0;
1124 		break;
1125 
1126 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
1127 		if (!sched_info_on()) {
1128 			r = -EOPNOTSUPP;
1129 			break;
1130 		}
1131 		if (vcpu->arch.xen.runstate_cache.active) {
1132 			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
1133 			r = 0;
1134 		}
1135 		break;
1136 
1137 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
1138 		if (!sched_info_on()) {
1139 			r = -EOPNOTSUPP;
1140 			break;
1141 		}
1142 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
1143 		r = 0;
1144 		break;
1145 
1146 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
1147 		if (!sched_info_on()) {
1148 			r = -EOPNOTSUPP;
1149 			break;
1150 		}
1151 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
1152 		data->u.runstate.state_entry_time =
1153 			vcpu->arch.xen.runstate_entry_time;
1154 		data->u.runstate.time_running =
1155 			vcpu->arch.xen.runstate_times[RUNSTATE_running];
1156 		data->u.runstate.time_runnable =
1157 			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
1158 		data->u.runstate.time_blocked =
1159 			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
1160 		data->u.runstate.time_offline =
1161 			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
1162 		r = 0;
1163 		break;
1164 
1165 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1166 		r = -EINVAL;
1167 		break;
1168 
1169 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1170 		data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
1171 		r = 0;
1172 		break;
1173 
1174 	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1175 		/*
1176 		 * Ensure a consistent snapshot of state is captured, with a
1177 		 * timer either being pending, or the event channel delivered
1178 		 * to the corresponding bit in the shared_info. Not still
1179 		 * lurking in the timer_pending flag for deferred delivery.
1180 		 * Purely as an optimisation, if the timer_expires field is
1181 		 * zero, that means the timer isn't active (or even in the
1182 		 * timer_pending flag) and there is no need to cancel it.
1183 		 */
1184 		if (vcpu->arch.xen.timer_expires) {
1185 			hrtimer_cancel(&vcpu->arch.xen.timer);
1186 			kvm_xen_inject_timer_irqs(vcpu);
1187 		}
1188 
1189 		data->u.timer.port = vcpu->arch.xen.timer_virq;
1190 		data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1191 		data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1192 
1193 		/*
1194 		 * The hrtimer may trigger and raise the IRQ immediately,
1195 		 * while the returned state causes it to be set up and
1196 		 * raised again on the destination system after migration.
1197 		 * That's fine, as the guest won't even have had a chance
1198 		 * to run and handle the interrupt. Asserting an already
1199 		 * pending event channel is idempotent.
1200 		 */
1201 		if (vcpu->arch.xen.timer_expires)
1202 			hrtimer_start_expires(&vcpu->arch.xen.timer,
1203 					      HRTIMER_MODE_ABS_HARD);
1204 
1205 		r = 0;
1206 		break;
1207 
1208 	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1209 		data->u.vector = vcpu->arch.xen.upcall_vector;
1210 		r = 0;
1211 		break;
1212 
1213 	default:
1214 		break;
1215 	}
1216 
1217 	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1218 	return r;
1219 }
1220 
1221 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1222 {
1223 	struct kvm *kvm = vcpu->kvm;
1224 	u32 page_num = data & ~PAGE_MASK;
1225 	u64 page_addr = data & PAGE_MASK;
1226 	bool lm = is_long_mode(vcpu);
1227 	int r = 0;
1228 
1229 	mutex_lock(&kvm->arch.xen.xen_lock);
1230 	if (kvm->arch.xen.long_mode != lm) {
1231 		kvm->arch.xen.long_mode = lm;
1232 
1233 		/*
1234 		 * Re-initialize shared_info to put the wallclock in the
1235 		 * correct place.
1236 		 */
1237 		if (kvm->arch.xen.shinfo_cache.active &&
1238 		    kvm_xen_shared_info_init(kvm))
1239 			r = 1;
1240 	}
1241 	mutex_unlock(&kvm->arch.xen.xen_lock);
1242 
1243 	if (r)
1244 		return r;
1245 
1246 	/*
1247 	 * If Xen hypercall intercept is enabled, fill the hypercall
1248 	 * page with VMCALL/VMMCALL instructions since that's what
1249 	 * we catch. Else the VMM has provided the hypercall pages
1250 	 * with instructions of its own choosing, so use those.
1251 	 */
1252 	if (kvm_xen_hypercall_enabled(kvm)) {
1253 		u8 instructions[32];
1254 		int i;
1255 
1256 		if (page_num)
1257 			return 1;
1258 
1259 		/* mov imm32, %eax */
1260 		instructions[0] = 0xb8;
1261 
1262 		/* vmcall / vmmcall */
1263 		kvm_x86_call(patch_hypercall)(vcpu, instructions + 5);
1264 
1265 		/* ret */
1266 		instructions[8] = 0xc3;
1267 
1268 		/* int3 to pad */
1269 		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1270 
1271 		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1272 			*(u32 *)&instructions[1] = i;
1273 			if (kvm_vcpu_write_guest(vcpu,
1274 						 page_addr + (i * sizeof(instructions)),
1275 						 instructions, sizeof(instructions)))
1276 				return 1;
1277 		}
1278 	} else {
1279 		/*
1280 		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1281 		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1282 		 */
1283 		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1284 				     : kvm->arch.xen_hvm_config.blob_addr_32;
1285 		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1286 				  : kvm->arch.xen_hvm_config.blob_size_32;
1287 		u8 *page;
1288 		int ret;
1289 
1290 		if (page_num >= blob_size)
1291 			return 1;
1292 
1293 		blob_addr += page_num * PAGE_SIZE;
1294 
1295 		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1296 		if (IS_ERR(page))
1297 			return PTR_ERR(page);
1298 
1299 		ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE);
1300 		kfree(page);
1301 		if (ret)
1302 			return 1;
1303 	}
1304 	return 0;
1305 }
1306 
1307 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1308 {
1309 	/* Only some feature flags need to be *enabled* by userspace */
1310 	u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1311 		KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
1312 		KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
1313 	u32 old_flags;
1314 
1315 	if (xhc->flags & ~permitted_flags)
1316 		return -EINVAL;
1317 
1318 	/*
1319 	 * With hypercall interception the kernel generates its own
1320 	 * hypercall page so it must not be provided.
1321 	 */
1322 	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1323 	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1324 	     xhc->blob_size_32 || xhc->blob_size_64))
1325 		return -EINVAL;
1326 
1327 	mutex_lock(&kvm->arch.xen.xen_lock);
1328 
1329 	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1330 		static_branch_inc(&kvm_xen_enabled.key);
1331 	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1332 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
1333 
1334 	old_flags = kvm->arch.xen_hvm_config.flags;
1335 	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1336 
1337 	mutex_unlock(&kvm->arch.xen.xen_lock);
1338 
1339 	if ((old_flags ^ xhc->flags) & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
1340 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
1341 
1342 	return 0;
1343 }
1344 
1345 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1346 {
1347 	kvm_rax_write(vcpu, result);
1348 	return kvm_skip_emulated_instruction(vcpu);
1349 }
1350 
1351 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1352 {
1353 	struct kvm_run *run = vcpu->run;
1354 
1355 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1356 		return 1;
1357 
1358 	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1359 }
1360 
1361 static inline int max_evtchn_port(struct kvm *kvm)
1362 {
1363 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1364 		return EVTCHN_2L_NR_CHANNELS;
1365 	else
1366 		return COMPAT_EVTCHN_2L_NR_CHANNELS;
1367 }
1368 
1369 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1370 			       evtchn_port_t *ports)
1371 {
1372 	struct kvm *kvm = vcpu->kvm;
1373 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1374 	unsigned long *pending_bits;
1375 	unsigned long flags;
1376 	bool ret = true;
1377 	int idx, i;
1378 
1379 	idx = srcu_read_lock(&kvm->srcu);
1380 	read_lock_irqsave(&gpc->lock, flags);
1381 	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1382 		goto out_rcu;
1383 
1384 	ret = false;
1385 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1386 		struct shared_info *shinfo = gpc->khva;
1387 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1388 	} else {
1389 		struct compat_shared_info *shinfo = gpc->khva;
1390 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1391 	}
1392 
1393 	for (i = 0; i < nr_ports; i++) {
1394 		if (test_bit(ports[i], pending_bits)) {
1395 			ret = true;
1396 			break;
1397 		}
1398 	}
1399 
1400  out_rcu:
1401 	read_unlock_irqrestore(&gpc->lock, flags);
1402 	srcu_read_unlock(&kvm->srcu, idx);
1403 
1404 	return ret;
1405 }
1406 
1407 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1408 				 u64 param, u64 *r)
1409 {
1410 	struct sched_poll sched_poll;
1411 	evtchn_port_t port, *ports;
1412 	struct x86_exception e;
1413 	int i;
1414 
1415 	if (!lapic_in_kernel(vcpu) ||
1416 	    !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1417 		return false;
1418 
1419 	if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1420 		struct compat_sched_poll sp32;
1421 
1422 		/* Sanity check that the compat struct definition is correct */
1423 		BUILD_BUG_ON(sizeof(sp32) != 16);
1424 
1425 		if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) {
1426 			*r = -EFAULT;
1427 			return true;
1428 		}
1429 
1430 		/*
1431 		 * This is a 32-bit pointer to an array of evtchn_port_t which
1432 		 * are uint32_t, so once it's converted no further compat
1433 		 * handling is needed.
1434 		 */
1435 		sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1436 		sched_poll.nr_ports = sp32.nr_ports;
1437 		sched_poll.timeout = sp32.timeout;
1438 	} else {
1439 		if (kvm_read_guest_virt(vcpu, param, &sched_poll,
1440 					sizeof(sched_poll), &e)) {
1441 			*r = -EFAULT;
1442 			return true;
1443 		}
1444 	}
1445 
1446 	if (unlikely(sched_poll.nr_ports > 1)) {
1447 		/* Xen (unofficially) limits number of pollers to 128 */
1448 		if (sched_poll.nr_ports > 128) {
1449 			*r = -EINVAL;
1450 			return true;
1451 		}
1452 
1453 		ports = kmalloc_array(sched_poll.nr_ports,
1454 				      sizeof(*ports), GFP_KERNEL);
1455 		if (!ports) {
1456 			*r = -ENOMEM;
1457 			return true;
1458 		}
1459 	} else
1460 		ports = &port;
1461 
1462 	if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports,
1463 				sched_poll.nr_ports * sizeof(*ports), &e)) {
1464 		*r = -EFAULT;
1465 		return true;
1466 	}
1467 
1468 	for (i = 0; i < sched_poll.nr_ports; i++) {
1469 		if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1470 			*r = -EINVAL;
1471 			goto out;
1472 		}
1473 	}
1474 
1475 	if (sched_poll.nr_ports == 1)
1476 		vcpu->arch.xen.poll_evtchn = port;
1477 	else
1478 		vcpu->arch.xen.poll_evtchn = -1;
1479 
1480 	set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1481 
1482 	if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1483 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1484 
1485 		if (sched_poll.timeout)
1486 			mod_timer(&vcpu->arch.xen.poll_timer,
1487 				  jiffies + nsecs_to_jiffies(sched_poll.timeout));
1488 
1489 		kvm_vcpu_halt(vcpu);
1490 
1491 		if (sched_poll.timeout)
1492 			del_timer(&vcpu->arch.xen.poll_timer);
1493 
1494 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1495 	}
1496 
1497 	vcpu->arch.xen.poll_evtchn = 0;
1498 	*r = 0;
1499 out:
1500 	/* Really, this is only needed in case of timeout */
1501 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1502 
1503 	if (unlikely(sched_poll.nr_ports > 1))
1504 		kfree(ports);
1505 	return true;
1506 }
1507 
1508 static void cancel_evtchn_poll(struct timer_list *t)
1509 {
1510 	struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1511 
1512 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1513 	kvm_vcpu_kick(vcpu);
1514 }
1515 
1516 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1517 				   int cmd, u64 param, u64 *r)
1518 {
1519 	switch (cmd) {
1520 	case SCHEDOP_poll:
1521 		if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1522 			return true;
1523 		fallthrough;
1524 	case SCHEDOP_yield:
1525 		kvm_vcpu_on_spin(vcpu, true);
1526 		*r = 0;
1527 		return true;
1528 	default:
1529 		break;
1530 	}
1531 
1532 	return false;
1533 }
1534 
1535 struct compat_vcpu_set_singleshot_timer {
1536     uint64_t timeout_abs_ns;
1537     uint32_t flags;
1538 } __attribute__((packed));
1539 
1540 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1541 				  int vcpu_id, u64 param, u64 *r)
1542 {
1543 	struct vcpu_set_singleshot_timer oneshot;
1544 	struct x86_exception e;
1545 
1546 	if (!kvm_xen_timer_enabled(vcpu))
1547 		return false;
1548 
1549 	switch (cmd) {
1550 	case VCPUOP_set_singleshot_timer:
1551 		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1552 			*r = -EINVAL;
1553 			return true;
1554 		}
1555 
1556 		/*
1557 		 * The only difference for 32-bit compat is the 4 bytes of
1558 		 * padding after the interesting part of the structure. So
1559 		 * for a faithful emulation of Xen we have to *try* to copy
1560 		 * the padding and return -EFAULT if we can't. Otherwise we
1561 		 * might as well just have copied the 12-byte 32-bit struct.
1562 		 */
1563 		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1564 			     offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1565 		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1566 			     sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1567 		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1568 			     offsetof(struct vcpu_set_singleshot_timer, flags));
1569 		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1570 			     sizeof_field(struct vcpu_set_singleshot_timer, flags));
1571 
1572 		if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) :
1573 					sizeof(struct compat_vcpu_set_singleshot_timer), &e)) {
1574 			*r = -EFAULT;
1575 			return true;
1576 		}
1577 
1578 		kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, false);
1579 		*r = 0;
1580 		return true;
1581 
1582 	case VCPUOP_stop_singleshot_timer:
1583 		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1584 			*r = -EINVAL;
1585 			return true;
1586 		}
1587 		kvm_xen_stop_timer(vcpu);
1588 		*r = 0;
1589 		return true;
1590 	}
1591 
1592 	return false;
1593 }
1594 
1595 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1596 				       u64 *r)
1597 {
1598 	if (!kvm_xen_timer_enabled(vcpu))
1599 		return false;
1600 
1601 	if (timeout)
1602 		kvm_xen_start_timer(vcpu, timeout, true);
1603 	else
1604 		kvm_xen_stop_timer(vcpu);
1605 
1606 	*r = 0;
1607 	return true;
1608 }
1609 
1610 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1611 {
1612 	bool longmode;
1613 	u64 input, params[6], r = -ENOSYS;
1614 	bool handled = false;
1615 	u8 cpl;
1616 
1617 	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1618 
1619 	/* Hyper-V hypercalls get bit 31 set in EAX */
1620 	if ((input & 0x80000000) &&
1621 	    kvm_hv_hypercall_enabled(vcpu))
1622 		return kvm_hv_hypercall(vcpu);
1623 
1624 	longmode = is_64_bit_hypercall(vcpu);
1625 	if (!longmode) {
1626 		params[0] = (u32)kvm_rbx_read(vcpu);
1627 		params[1] = (u32)kvm_rcx_read(vcpu);
1628 		params[2] = (u32)kvm_rdx_read(vcpu);
1629 		params[3] = (u32)kvm_rsi_read(vcpu);
1630 		params[4] = (u32)kvm_rdi_read(vcpu);
1631 		params[5] = (u32)kvm_rbp_read(vcpu);
1632 	}
1633 #ifdef CONFIG_X86_64
1634 	else {
1635 		params[0] = (u64)kvm_rdi_read(vcpu);
1636 		params[1] = (u64)kvm_rsi_read(vcpu);
1637 		params[2] = (u64)kvm_rdx_read(vcpu);
1638 		params[3] = (u64)kvm_r10_read(vcpu);
1639 		params[4] = (u64)kvm_r8_read(vcpu);
1640 		params[5] = (u64)kvm_r9_read(vcpu);
1641 	}
1642 #endif
1643 	cpl = kvm_x86_call(get_cpl)(vcpu);
1644 	trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1645 				params[3], params[4], params[5]);
1646 
1647 	/*
1648 	 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1649 	 * are permitted in guest userspace can be handled by the VMM.
1650 	 */
1651 	if (unlikely(cpl > 0))
1652 		goto handle_in_userspace;
1653 
1654 	switch (input) {
1655 	case __HYPERVISOR_xen_version:
1656 		if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1657 			r = vcpu->kvm->arch.xen.xen_version;
1658 			handled = true;
1659 		}
1660 		break;
1661 	case __HYPERVISOR_event_channel_op:
1662 		if (params[0] == EVTCHNOP_send)
1663 			handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1664 		break;
1665 	case __HYPERVISOR_sched_op:
1666 		handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1667 						 params[1], &r);
1668 		break;
1669 	case __HYPERVISOR_vcpu_op:
1670 		handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1671 						params[2], &r);
1672 		break;
1673 	case __HYPERVISOR_set_timer_op: {
1674 		u64 timeout = params[0];
1675 		/* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1676 		if (!longmode)
1677 			timeout |= params[1] << 32;
1678 		handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1679 		break;
1680 	}
1681 	default:
1682 		break;
1683 	}
1684 
1685 	if (handled)
1686 		return kvm_xen_hypercall_set_result(vcpu, r);
1687 
1688 handle_in_userspace:
1689 	vcpu->run->exit_reason = KVM_EXIT_XEN;
1690 	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1691 	vcpu->run->xen.u.hcall.longmode = longmode;
1692 	vcpu->run->xen.u.hcall.cpl = cpl;
1693 	vcpu->run->xen.u.hcall.input = input;
1694 	vcpu->run->xen.u.hcall.params[0] = params[0];
1695 	vcpu->run->xen.u.hcall.params[1] = params[1];
1696 	vcpu->run->xen.u.hcall.params[2] = params[2];
1697 	vcpu->run->xen.u.hcall.params[3] = params[3];
1698 	vcpu->run->xen.u.hcall.params[4] = params[4];
1699 	vcpu->run->xen.u.hcall.params[5] = params[5];
1700 	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1701 	vcpu->arch.complete_userspace_io =
1702 		kvm_xen_hypercall_complete_userspace;
1703 
1704 	return 0;
1705 }
1706 
1707 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1708 {
1709 	int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1710 
1711 	if ((poll_evtchn == port || poll_evtchn == -1) &&
1712 	    test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1713 		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1714 		kvm_vcpu_kick(vcpu);
1715 	}
1716 }
1717 
1718 /*
1719  * The return value from this function is propagated to kvm_set_irq() API,
1720  * so it returns:
1721  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1722  *  = 0   Interrupt was coalesced (previous irq is still pending)
1723  *  > 0   Number of CPUs interrupt was delivered to
1724  *
1725  * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1726  * only check on its return value is a comparison with -EWOULDBLOCK'.
1727  */
1728 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1729 {
1730 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1731 	struct kvm_vcpu *vcpu;
1732 	unsigned long *pending_bits, *mask_bits;
1733 	unsigned long flags;
1734 	int port_word_bit;
1735 	bool kick_vcpu = false;
1736 	int vcpu_idx, idx, rc;
1737 
1738 	vcpu_idx = READ_ONCE(xe->vcpu_idx);
1739 	if (vcpu_idx >= 0)
1740 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1741 	else {
1742 		vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1743 		if (!vcpu)
1744 			return -EINVAL;
1745 		WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1746 	}
1747 
1748 	if (xe->port >= max_evtchn_port(kvm))
1749 		return -EINVAL;
1750 
1751 	rc = -EWOULDBLOCK;
1752 
1753 	idx = srcu_read_lock(&kvm->srcu);
1754 
1755 	read_lock_irqsave(&gpc->lock, flags);
1756 	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1757 		goto out_rcu;
1758 
1759 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1760 		struct shared_info *shinfo = gpc->khva;
1761 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1762 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1763 		port_word_bit = xe->port / 64;
1764 	} else {
1765 		struct compat_shared_info *shinfo = gpc->khva;
1766 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1767 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1768 		port_word_bit = xe->port / 32;
1769 	}
1770 
1771 	/*
1772 	 * If this port wasn't already set, and if it isn't masked, then
1773 	 * we try to set the corresponding bit in the in-kernel shadow of
1774 	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1775 	 * already set, then we kick the vCPU in question to write to the
1776 	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1777 	 */
1778 	if (test_and_set_bit(xe->port, pending_bits)) {
1779 		rc = 0; /* It was already raised */
1780 	} else if (test_bit(xe->port, mask_bits)) {
1781 		rc = -ENOTCONN; /* Masked */
1782 		kvm_xen_check_poller(vcpu, xe->port);
1783 	} else {
1784 		rc = 1; /* Delivered to the bitmap in shared_info. */
1785 		/* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1786 		read_unlock_irqrestore(&gpc->lock, flags);
1787 		gpc = &vcpu->arch.xen.vcpu_info_cache;
1788 
1789 		read_lock_irqsave(&gpc->lock, flags);
1790 		if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1791 			/*
1792 			 * Could not access the vcpu_info. Set the bit in-kernel
1793 			 * and prod the vCPU to deliver it for itself.
1794 			 */
1795 			if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1796 				kick_vcpu = true;
1797 			goto out_rcu;
1798 		}
1799 
1800 		if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1801 			struct vcpu_info *vcpu_info = gpc->khva;
1802 			if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1803 				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1804 				kick_vcpu = true;
1805 			}
1806 		} else {
1807 			struct compat_vcpu_info *vcpu_info = gpc->khva;
1808 			if (!test_and_set_bit(port_word_bit,
1809 					      (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1810 				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1811 				kick_vcpu = true;
1812 			}
1813 		}
1814 
1815 		/* For the per-vCPU lapic vector, deliver it as MSI. */
1816 		if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1817 			kvm_xen_inject_vcpu_vector(vcpu);
1818 			kick_vcpu = false;
1819 		}
1820 	}
1821 
1822  out_rcu:
1823 	read_unlock_irqrestore(&gpc->lock, flags);
1824 	srcu_read_unlock(&kvm->srcu, idx);
1825 
1826 	if (kick_vcpu) {
1827 		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1828 		kvm_vcpu_kick(vcpu);
1829 	}
1830 
1831 	return rc;
1832 }
1833 
1834 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1835 {
1836 	bool mm_borrowed = false;
1837 	int rc;
1838 
1839 	rc = kvm_xen_set_evtchn_fast(xe, kvm);
1840 	if (rc != -EWOULDBLOCK)
1841 		return rc;
1842 
1843 	if (current->mm != kvm->mm) {
1844 		/*
1845 		 * If not on a thread which already belongs to this KVM,
1846 		 * we'd better be in the irqfd workqueue.
1847 		 */
1848 		if (WARN_ON_ONCE(current->mm))
1849 			return -EINVAL;
1850 
1851 		kthread_use_mm(kvm->mm);
1852 		mm_borrowed = true;
1853 	}
1854 
1855 	/*
1856 	 * It is theoretically possible for the page to be unmapped
1857 	 * and the MMU notifier to invalidate the shared_info before
1858 	 * we even get to use it. In that case, this looks like an
1859 	 * infinite loop. It was tempting to do it via the userspace
1860 	 * HVA instead... but that just *hides* the fact that it's
1861 	 * an infinite loop, because if a fault occurs and it waits
1862 	 * for the page to come back, it can *still* immediately
1863 	 * fault and have to wait again, repeatedly.
1864 	 *
1865 	 * Conversely, the page could also have been reinstated by
1866 	 * another thread before we even obtain the mutex above, so
1867 	 * check again *first* before remapping it.
1868 	 */
1869 	do {
1870 		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1871 		int idx;
1872 
1873 		rc = kvm_xen_set_evtchn_fast(xe, kvm);
1874 		if (rc != -EWOULDBLOCK)
1875 			break;
1876 
1877 		idx = srcu_read_lock(&kvm->srcu);
1878 		rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1879 		srcu_read_unlock(&kvm->srcu, idx);
1880 	} while(!rc);
1881 
1882 	if (mm_borrowed)
1883 		kthread_unuse_mm(kvm->mm);
1884 
1885 	return rc;
1886 }
1887 
1888 /* This is the version called from kvm_set_irq() as the .set function */
1889 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1890 			 int irq_source_id, int level, bool line_status)
1891 {
1892 	if (!level)
1893 		return -EINVAL;
1894 
1895 	return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1896 }
1897 
1898 /*
1899  * Set up an event channel interrupt from the KVM IRQ routing table.
1900  * Used for e.g. PIRQ from passed through physical devices.
1901  */
1902 int kvm_xen_setup_evtchn(struct kvm *kvm,
1903 			 struct kvm_kernel_irq_routing_entry *e,
1904 			 const struct kvm_irq_routing_entry *ue)
1905 
1906 {
1907 	struct kvm_vcpu *vcpu;
1908 
1909 	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1910 		return -EINVAL;
1911 
1912 	/* We only support 2 level event channels for now */
1913 	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1914 		return -EINVAL;
1915 
1916 	/*
1917 	 * Xen gives us interesting mappings from vCPU index to APIC ID,
1918 	 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1919 	 * to find it. Do that once at setup time, instead of every time.
1920 	 * But beware that on live update / live migration, the routing
1921 	 * table might be reinstated before the vCPU threads have finished
1922 	 * recreating their vCPUs.
1923 	 */
1924 	vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1925 	if (vcpu)
1926 		e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1927 	else
1928 		e->xen_evtchn.vcpu_idx = -1;
1929 
1930 	e->xen_evtchn.port = ue->u.xen_evtchn.port;
1931 	e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1932 	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1933 	e->set = evtchn_set_fn;
1934 
1935 	return 0;
1936 }
1937 
1938 /*
1939  * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1940  */
1941 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1942 {
1943 	struct kvm_xen_evtchn e;
1944 	int ret;
1945 
1946 	if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1947 		return -EINVAL;
1948 
1949 	/* We only support 2 level event channels for now */
1950 	if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1951 		return -EINVAL;
1952 
1953 	e.port = uxe->port;
1954 	e.vcpu_id = uxe->vcpu;
1955 	e.vcpu_idx = -1;
1956 	e.priority = uxe->priority;
1957 
1958 	ret = kvm_xen_set_evtchn(&e, kvm);
1959 
1960 	/*
1961 	 * None of that 'return 1 if it actually got delivered' nonsense.
1962 	 * We don't care if it was masked (-ENOTCONN) either.
1963 	 */
1964 	if (ret > 0 || ret == -ENOTCONN)
1965 		ret = 0;
1966 
1967 	return ret;
1968 }
1969 
1970 /*
1971  * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1972  */
1973 struct evtchnfd {
1974 	u32 send_port;
1975 	u32 type;
1976 	union {
1977 		struct kvm_xen_evtchn port;
1978 		struct {
1979 			u32 port; /* zero */
1980 			struct eventfd_ctx *ctx;
1981 		} eventfd;
1982 	} deliver;
1983 };
1984 
1985 /*
1986  * Update target vCPU or priority for a registered sending channel.
1987  */
1988 static int kvm_xen_eventfd_update(struct kvm *kvm,
1989 				  struct kvm_xen_hvm_attr *data)
1990 {
1991 	u32 port = data->u.evtchn.send_port;
1992 	struct evtchnfd *evtchnfd;
1993 	int ret;
1994 
1995 	/* Protect writes to evtchnfd as well as the idr lookup.  */
1996 	mutex_lock(&kvm->arch.xen.xen_lock);
1997 	evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
1998 
1999 	ret = -ENOENT;
2000 	if (!evtchnfd)
2001 		goto out_unlock;
2002 
2003 	/* For an UPDATE, nothing may change except the priority/vcpu */
2004 	ret = -EINVAL;
2005 	if (evtchnfd->type != data->u.evtchn.type)
2006 		goto out_unlock;
2007 
2008 	/*
2009 	 * Port cannot change, and if it's zero that was an eventfd
2010 	 * which can't be changed either.
2011 	 */
2012 	if (!evtchnfd->deliver.port.port ||
2013 	    evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
2014 		goto out_unlock;
2015 
2016 	/* We only support 2 level event channels for now */
2017 	if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2018 		goto out_unlock;
2019 
2020 	evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
2021 	if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
2022 		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
2023 		evtchnfd->deliver.port.vcpu_idx = -1;
2024 	}
2025 	ret = 0;
2026 out_unlock:
2027 	mutex_unlock(&kvm->arch.xen.xen_lock);
2028 	return ret;
2029 }
2030 
2031 /*
2032  * Configure the target (eventfd or local port delivery) for sending on
2033  * a given event channel.
2034  */
2035 static int kvm_xen_eventfd_assign(struct kvm *kvm,
2036 				  struct kvm_xen_hvm_attr *data)
2037 {
2038 	u32 port = data->u.evtchn.send_port;
2039 	struct eventfd_ctx *eventfd = NULL;
2040 	struct evtchnfd *evtchnfd;
2041 	int ret = -EINVAL;
2042 
2043 	evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
2044 	if (!evtchnfd)
2045 		return -ENOMEM;
2046 
2047 	switch(data->u.evtchn.type) {
2048 	case EVTCHNSTAT_ipi:
2049 		/* IPI  must map back to the same port# */
2050 		if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
2051 			goto out_noeventfd; /* -EINVAL */
2052 		break;
2053 
2054 	case EVTCHNSTAT_interdomain:
2055 		if (data->u.evtchn.deliver.port.port) {
2056 			if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
2057 				goto out_noeventfd; /* -EINVAL */
2058 		} else {
2059 			eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
2060 			if (IS_ERR(eventfd)) {
2061 				ret = PTR_ERR(eventfd);
2062 				goto out_noeventfd;
2063 			}
2064 		}
2065 		break;
2066 
2067 	case EVTCHNSTAT_virq:
2068 	case EVTCHNSTAT_closed:
2069 	case EVTCHNSTAT_unbound:
2070 	case EVTCHNSTAT_pirq:
2071 	default: /* Unknown event channel type */
2072 		goto out; /* -EINVAL */
2073 	}
2074 
2075 	evtchnfd->send_port = data->u.evtchn.send_port;
2076 	evtchnfd->type = data->u.evtchn.type;
2077 	if (eventfd) {
2078 		evtchnfd->deliver.eventfd.ctx = eventfd;
2079 	} else {
2080 		/* We only support 2 level event channels for now */
2081 		if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2082 			goto out; /* -EINVAL; */
2083 
2084 		evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
2085 		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
2086 		evtchnfd->deliver.port.vcpu_idx = -1;
2087 		evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
2088 	}
2089 
2090 	mutex_lock(&kvm->arch.xen.xen_lock);
2091 	ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
2092 			GFP_KERNEL);
2093 	mutex_unlock(&kvm->arch.xen.xen_lock);
2094 	if (ret >= 0)
2095 		return 0;
2096 
2097 	if (ret == -ENOSPC)
2098 		ret = -EEXIST;
2099 out:
2100 	if (eventfd)
2101 		eventfd_ctx_put(eventfd);
2102 out_noeventfd:
2103 	kfree(evtchnfd);
2104 	return ret;
2105 }
2106 
2107 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
2108 {
2109 	struct evtchnfd *evtchnfd;
2110 
2111 	mutex_lock(&kvm->arch.xen.xen_lock);
2112 	evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
2113 	mutex_unlock(&kvm->arch.xen.xen_lock);
2114 
2115 	if (!evtchnfd)
2116 		return -ENOENT;
2117 
2118 	synchronize_srcu(&kvm->srcu);
2119 	if (!evtchnfd->deliver.port.port)
2120 		eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2121 	kfree(evtchnfd);
2122 	return 0;
2123 }
2124 
2125 static int kvm_xen_eventfd_reset(struct kvm *kvm)
2126 {
2127 	struct evtchnfd *evtchnfd, **all_evtchnfds;
2128 	int i;
2129 	int n = 0;
2130 
2131 	mutex_lock(&kvm->arch.xen.xen_lock);
2132 
2133 	/*
2134 	 * Because synchronize_srcu() cannot be called inside the
2135 	 * critical section, first collect all the evtchnfd objects
2136 	 * in an array as they are removed from evtchn_ports.
2137 	 */
2138 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
2139 		n++;
2140 
2141 	all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL);
2142 	if (!all_evtchnfds) {
2143 		mutex_unlock(&kvm->arch.xen.xen_lock);
2144 		return -ENOMEM;
2145 	}
2146 
2147 	n = 0;
2148 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2149 		all_evtchnfds[n++] = evtchnfd;
2150 		idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
2151 	}
2152 	mutex_unlock(&kvm->arch.xen.xen_lock);
2153 
2154 	synchronize_srcu(&kvm->srcu);
2155 
2156 	while (n--) {
2157 		evtchnfd = all_evtchnfds[n];
2158 		if (!evtchnfd->deliver.port.port)
2159 			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2160 		kfree(evtchnfd);
2161 	}
2162 	kfree(all_evtchnfds);
2163 
2164 	return 0;
2165 }
2166 
2167 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
2168 {
2169 	u32 port = data->u.evtchn.send_port;
2170 
2171 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
2172 		return kvm_xen_eventfd_reset(kvm);
2173 
2174 	if (!port || port >= max_evtchn_port(kvm))
2175 		return -EINVAL;
2176 
2177 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
2178 		return kvm_xen_eventfd_deassign(kvm, port);
2179 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
2180 		return kvm_xen_eventfd_update(kvm, data);
2181 	if (data->u.evtchn.flags)
2182 		return -EINVAL;
2183 
2184 	return kvm_xen_eventfd_assign(kvm, data);
2185 }
2186 
2187 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2188 {
2189 	struct evtchnfd *evtchnfd;
2190 	struct evtchn_send send;
2191 	struct x86_exception e;
2192 
2193 	/* Sanity check: this structure is the same for 32-bit and 64-bit */
2194 	BUILD_BUG_ON(sizeof(send) != 4);
2195 	if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) {
2196 		*r = -EFAULT;
2197 		return true;
2198 	}
2199 
2200 	/*
2201 	 * evtchnfd is protected by kvm->srcu; the idr lookup instead
2202 	 * is protected by RCU.
2203 	 */
2204 	rcu_read_lock();
2205 	evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2206 	rcu_read_unlock();
2207 	if (!evtchnfd)
2208 		return false;
2209 
2210 	if (evtchnfd->deliver.port.port) {
2211 		int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2212 		if (ret < 0 && ret != -ENOTCONN)
2213 			return false;
2214 	} else {
2215 		eventfd_signal(evtchnfd->deliver.eventfd.ctx);
2216 	}
2217 
2218 	*r = 0;
2219 	return true;
2220 }
2221 
2222 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2223 {
2224 	vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2225 	vcpu->arch.xen.poll_evtchn = 0;
2226 
2227 	timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2228 	hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
2229 	vcpu->arch.xen.timer.function = xen_timer_callback;
2230 
2231 	kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm);
2232 	kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm);
2233 	kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm);
2234 	kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm);
2235 }
2236 
2237 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2238 {
2239 	if (kvm_xen_timer_enabled(vcpu))
2240 		kvm_xen_stop_timer(vcpu);
2241 
2242 	kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2243 	kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2244 	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2245 	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2246 
2247 	del_timer_sync(&vcpu->arch.xen.poll_timer);
2248 }
2249 
2250 void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu)
2251 {
2252 	struct kvm_cpuid_entry2 *entry;
2253 	u32 function;
2254 
2255 	if (!vcpu->arch.xen.cpuid.base)
2256 		return;
2257 
2258 	function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3);
2259 	if (function > vcpu->arch.xen.cpuid.limit)
2260 		return;
2261 
2262 	entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2263 	if (entry) {
2264 		entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul;
2265 		entry->edx = vcpu->arch.hv_clock.tsc_shift;
2266 	}
2267 
2268 	entry = kvm_find_cpuid_entry_index(vcpu, function, 2);
2269 	if (entry)
2270 		entry->eax = vcpu->arch.hw_tsc_khz;
2271 }
2272 
2273 void kvm_xen_init_vm(struct kvm *kvm)
2274 {
2275 	mutex_init(&kvm->arch.xen.xen_lock);
2276 	idr_init(&kvm->arch.xen.evtchn_ports);
2277 	kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm);
2278 }
2279 
2280 void kvm_xen_destroy_vm(struct kvm *kvm)
2281 {
2282 	struct evtchnfd *evtchnfd;
2283 	int i;
2284 
2285 	kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2286 
2287 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2288 		if (!evtchnfd->deliver.port.port)
2289 			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2290 		kfree(evtchnfd);
2291 	}
2292 	idr_destroy(&kvm->arch.xen.evtchn_ports);
2293 
2294 	if (kvm->arch.xen_hvm_config.msr)
2295 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
2296 }
2297