1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. 4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. 5 * 6 * KVM Xen emulation 7 */ 8 9 #include "x86.h" 10 #include "xen.h" 11 #include "hyperv.h" 12 #include "lapic.h" 13 14 #include <linux/eventfd.h> 15 #include <linux/kvm_host.h> 16 #include <linux/sched/stat.h> 17 18 #include <trace/events/kvm.h> 19 #include <xen/interface/xen.h> 20 #include <xen/interface/vcpu.h> 21 #include <xen/interface/version.h> 22 #include <xen/interface/event_channel.h> 23 #include <xen/interface/sched.h> 24 25 #include "trace.h" 26 27 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm); 28 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data); 29 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r); 30 31 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); 32 33 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn) 34 { 35 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 36 struct pvclock_wall_clock *wc; 37 gpa_t gpa = gfn_to_gpa(gfn); 38 u32 *wc_sec_hi; 39 u32 wc_version; 40 u64 wall_nsec; 41 int ret = 0; 42 int idx = srcu_read_lock(&kvm->srcu); 43 44 if (gfn == KVM_XEN_INVALID_GFN) { 45 kvm_gpc_deactivate(gpc); 46 goto out; 47 } 48 49 do { 50 ret = kvm_gpc_activate(gpc, gpa, PAGE_SIZE); 51 if (ret) 52 goto out; 53 54 /* 55 * This code mirrors kvm_write_wall_clock() except that it writes 56 * directly through the pfn cache and doesn't mark the page dirty. 57 */ 58 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 59 60 /* It could be invalid again already, so we need to check */ 61 read_lock_irq(&gpc->lock); 62 63 if (gpc->valid) 64 break; 65 66 read_unlock_irq(&gpc->lock); 67 } while (1); 68 69 /* Paranoia checks on the 32-bit struct layout */ 70 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); 71 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); 72 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 73 74 #ifdef CONFIG_X86_64 75 /* Paranoia checks on the 64-bit struct layout */ 76 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); 77 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); 78 79 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 80 struct shared_info *shinfo = gpc->khva; 81 82 wc_sec_hi = &shinfo->wc_sec_hi; 83 wc = &shinfo->wc; 84 } else 85 #endif 86 { 87 struct compat_shared_info *shinfo = gpc->khva; 88 89 wc_sec_hi = &shinfo->arch.wc_sec_hi; 90 wc = &shinfo->wc; 91 } 92 93 /* Increment and ensure an odd value */ 94 wc_version = wc->version = (wc->version + 1) | 1; 95 smp_wmb(); 96 97 wc->nsec = do_div(wall_nsec, 1000000000); 98 wc->sec = (u32)wall_nsec; 99 *wc_sec_hi = wall_nsec >> 32; 100 smp_wmb(); 101 102 wc->version = wc_version + 1; 103 read_unlock_irq(&gpc->lock); 104 105 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); 106 107 out: 108 srcu_read_unlock(&kvm->srcu, idx); 109 return ret; 110 } 111 112 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu) 113 { 114 if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) { 115 struct kvm_xen_evtchn e; 116 117 e.vcpu_id = vcpu->vcpu_id; 118 e.vcpu_idx = vcpu->vcpu_idx; 119 e.port = vcpu->arch.xen.timer_virq; 120 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 121 122 kvm_xen_set_evtchn(&e, vcpu->kvm); 123 124 vcpu->arch.xen.timer_expires = 0; 125 atomic_set(&vcpu->arch.xen.timer_pending, 0); 126 } 127 } 128 129 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer) 130 { 131 struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu, 132 arch.xen.timer); 133 if (atomic_read(&vcpu->arch.xen.timer_pending)) 134 return HRTIMER_NORESTART; 135 136 atomic_inc(&vcpu->arch.xen.timer_pending); 137 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 138 kvm_vcpu_kick(vcpu); 139 140 return HRTIMER_NORESTART; 141 } 142 143 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns) 144 { 145 atomic_set(&vcpu->arch.xen.timer_pending, 0); 146 vcpu->arch.xen.timer_expires = guest_abs; 147 148 if (delta_ns <= 0) { 149 xen_timer_callback(&vcpu->arch.xen.timer); 150 } else { 151 ktime_t ktime_now = ktime_get(); 152 hrtimer_start(&vcpu->arch.xen.timer, 153 ktime_add_ns(ktime_now, delta_ns), 154 HRTIMER_MODE_ABS_HARD); 155 } 156 } 157 158 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu) 159 { 160 hrtimer_cancel(&vcpu->arch.xen.timer); 161 vcpu->arch.xen.timer_expires = 0; 162 atomic_set(&vcpu->arch.xen.timer_pending, 0); 163 } 164 165 static void kvm_xen_init_timer(struct kvm_vcpu *vcpu) 166 { 167 hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC, 168 HRTIMER_MODE_ABS_HARD); 169 vcpu->arch.xen.timer.function = xen_timer_callback; 170 } 171 172 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic) 173 { 174 struct kvm_vcpu_xen *vx = &v->arch.xen; 175 struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache; 176 struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache; 177 size_t user_len, user_len1, user_len2; 178 struct vcpu_runstate_info rs; 179 unsigned long flags; 180 size_t times_ofs; 181 uint8_t *update_bit = NULL; 182 uint64_t entry_time; 183 uint64_t *rs_times; 184 int *rs_state; 185 186 /* 187 * The only difference between 32-bit and 64-bit versions of the 188 * runstate struct is the alignment of uint64_t in 32-bit, which 189 * means that the 64-bit version has an additional 4 bytes of 190 * padding after the first field 'state'. Let's be really really 191 * paranoid about that, and matching it with our internal data 192 * structures that we memcpy into it... 193 */ 194 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0); 195 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0); 196 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); 197 #ifdef CONFIG_X86_64 198 /* 199 * The 64-bit structure has 4 bytes of padding before 'state_entry_time' 200 * so each subsequent field is shifted by 4, and it's 4 bytes longer. 201 */ 202 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 203 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); 204 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != 205 offsetof(struct compat_vcpu_runstate_info, time) + 4); 206 BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4); 207 #endif 208 /* 209 * The state field is in the same place at the start of both structs, 210 * and is the same size (int) as vx->current_runstate. 211 */ 212 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 213 offsetof(struct compat_vcpu_runstate_info, state)); 214 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != 215 sizeof(vx->current_runstate)); 216 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != 217 sizeof(vx->current_runstate)); 218 219 /* 220 * The state_entry_time field is 64 bits in both versions, and the 221 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86 222 * is little-endian means that it's in the last *byte* of the word. 223 * That detail is important later. 224 */ 225 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != 226 sizeof(uint64_t)); 227 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != 228 sizeof(uint64_t)); 229 BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80); 230 231 /* 232 * The time array is four 64-bit quantities in both versions, matching 233 * the vx->runstate_times and immediately following state_entry_time. 234 */ 235 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 236 offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t)); 237 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != 238 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t)); 239 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 240 sizeof_field(struct compat_vcpu_runstate_info, time)); 241 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 242 sizeof(vx->runstate_times)); 243 244 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { 245 user_len = sizeof(struct vcpu_runstate_info); 246 times_ofs = offsetof(struct vcpu_runstate_info, 247 state_entry_time); 248 } else { 249 user_len = sizeof(struct compat_vcpu_runstate_info); 250 times_ofs = offsetof(struct compat_vcpu_runstate_info, 251 state_entry_time); 252 } 253 254 /* 255 * There are basically no alignment constraints. The guest can set it 256 * up so it crosses from one page to the next, and at arbitrary byte 257 * alignment (and the 32-bit ABI doesn't align the 64-bit integers 258 * anyway, even if the overall struct had been 64-bit aligned). 259 */ 260 if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) { 261 user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK); 262 user_len2 = user_len - user_len1; 263 } else { 264 user_len1 = user_len; 265 user_len2 = 0; 266 } 267 BUG_ON(user_len1 + user_len2 != user_len); 268 269 retry: 270 /* 271 * Attempt to obtain the GPC lock on *both* (if there are two) 272 * gfn_to_pfn caches that cover the region. 273 */ 274 if (atomic) { 275 local_irq_save(flags); 276 if (!read_trylock(&gpc1->lock)) { 277 local_irq_restore(flags); 278 return; 279 } 280 } else { 281 read_lock_irqsave(&gpc1->lock, flags); 282 } 283 while (!kvm_gpc_check(gpc1, user_len1)) { 284 read_unlock_irqrestore(&gpc1->lock, flags); 285 286 /* When invoked from kvm_sched_out() we cannot sleep */ 287 if (atomic) 288 return; 289 290 if (kvm_gpc_refresh(gpc1, user_len1)) 291 return; 292 293 read_lock_irqsave(&gpc1->lock, flags); 294 } 295 296 if (likely(!user_len2)) { 297 /* 298 * Set up three pointers directly to the runstate_info 299 * struct in the guest (via the GPC). 300 * 301 * • @rs_state → state field 302 * • @rs_times → state_entry_time field. 303 * • @update_bit → last byte of state_entry_time, which 304 * contains the XEN_RUNSTATE_UPDATE bit. 305 */ 306 rs_state = gpc1->khva; 307 rs_times = gpc1->khva + times_ofs; 308 if (v->kvm->arch.xen.runstate_update_flag) 309 update_bit = ((void *)(&rs_times[1])) - 1; 310 } else { 311 /* 312 * The guest's runstate_info is split across two pages and we 313 * need to hold and validate both GPCs simultaneously. We can 314 * declare a lock ordering GPC1 > GPC2 because nothing else 315 * takes them more than one at a time. Set a subclass on the 316 * gpc1 lock to make lockdep shut up about it. 317 */ 318 lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_); 319 if (atomic) { 320 if (!read_trylock(&gpc2->lock)) { 321 read_unlock_irqrestore(&gpc1->lock, flags); 322 return; 323 } 324 } else { 325 read_lock(&gpc2->lock); 326 } 327 328 if (!kvm_gpc_check(gpc2, user_len2)) { 329 read_unlock(&gpc2->lock); 330 read_unlock_irqrestore(&gpc1->lock, flags); 331 332 /* When invoked from kvm_sched_out() we cannot sleep */ 333 if (atomic) 334 return; 335 336 /* 337 * Use kvm_gpc_activate() here because if the runstate 338 * area was configured in 32-bit mode and only extends 339 * to the second page now because the guest changed to 340 * 64-bit mode, the second GPC won't have been set up. 341 */ 342 if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1, 343 user_len2)) 344 return; 345 346 /* 347 * We dropped the lock on GPC1 so we have to go all the 348 * way back and revalidate that too. 349 */ 350 goto retry; 351 } 352 353 /* 354 * In this case, the runstate_info struct will be assembled on 355 * the kernel stack (compat or not as appropriate) and will 356 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three 357 * rs pointers accordingly. 358 */ 359 rs_times = &rs.state_entry_time; 360 361 /* 362 * The rs_state pointer points to the start of what we'll 363 * copy to the guest, which in the case of a compat guest 364 * is the 32-bit field that the compiler thinks is padding. 365 */ 366 rs_state = ((void *)rs_times) - times_ofs; 367 368 /* 369 * The update_bit is still directly in the guest memory, 370 * via one GPC or the other. 371 */ 372 if (v->kvm->arch.xen.runstate_update_flag) { 373 if (user_len1 >= times_ofs + sizeof(uint64_t)) 374 update_bit = gpc1->khva + times_ofs + 375 sizeof(uint64_t) - 1; 376 else 377 update_bit = gpc2->khva + times_ofs + 378 sizeof(uint64_t) - 1 - user_len1; 379 } 380 381 #ifdef CONFIG_X86_64 382 /* 383 * Don't leak kernel memory through the padding in the 64-bit 384 * version of the struct. 385 */ 386 memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time)); 387 #endif 388 } 389 390 /* 391 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the 392 * state_entry_time field, directly in the guest. We need to set 393 * that (and write-barrier) before writing to the rest of the 394 * structure, and clear it last. Just as Xen does, we address the 395 * single *byte* in which it resides because it might be in a 396 * different cache line to the rest of the 64-bit word, due to 397 * the (lack of) alignment constraints. 398 */ 399 entry_time = vx->runstate_entry_time; 400 if (update_bit) { 401 entry_time |= XEN_RUNSTATE_UPDATE; 402 *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56; 403 smp_wmb(); 404 } 405 406 /* 407 * Now assemble the actual structure, either on our kernel stack 408 * or directly in the guest according to how the rs_state and 409 * rs_times pointers were set up above. 410 */ 411 *rs_state = vx->current_runstate; 412 rs_times[0] = entry_time; 413 memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times)); 414 415 /* For the split case, we have to then copy it to the guest. */ 416 if (user_len2) { 417 memcpy(gpc1->khva, rs_state, user_len1); 418 memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2); 419 } 420 smp_wmb(); 421 422 /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */ 423 if (update_bit) { 424 entry_time &= ~XEN_RUNSTATE_UPDATE; 425 *update_bit = entry_time >> 56; 426 smp_wmb(); 427 } 428 429 if (user_len2) 430 read_unlock(&gpc2->lock); 431 432 read_unlock_irqrestore(&gpc1->lock, flags); 433 434 mark_page_dirty_in_slot(v->kvm, gpc1->memslot, gpc1->gpa >> PAGE_SHIFT); 435 if (user_len2) 436 mark_page_dirty_in_slot(v->kvm, gpc2->memslot, gpc2->gpa >> PAGE_SHIFT); 437 } 438 439 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) 440 { 441 struct kvm_vcpu_xen *vx = &v->arch.xen; 442 u64 now = get_kvmclock_ns(v->kvm); 443 u64 delta_ns = now - vx->runstate_entry_time; 444 u64 run_delay = current->sched_info.run_delay; 445 446 if (unlikely(!vx->runstate_entry_time)) 447 vx->current_runstate = RUNSTATE_offline; 448 449 /* 450 * Time waiting for the scheduler isn't "stolen" if the 451 * vCPU wasn't running anyway. 452 */ 453 if (vx->current_runstate == RUNSTATE_running) { 454 u64 steal_ns = run_delay - vx->last_steal; 455 456 delta_ns -= steal_ns; 457 458 vx->runstate_times[RUNSTATE_runnable] += steal_ns; 459 } 460 vx->last_steal = run_delay; 461 462 vx->runstate_times[vx->current_runstate] += delta_ns; 463 vx->current_runstate = state; 464 vx->runstate_entry_time = now; 465 466 if (vx->runstate_cache.active) 467 kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable); 468 } 469 470 static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v) 471 { 472 struct kvm_lapic_irq irq = { }; 473 int r; 474 475 irq.dest_id = v->vcpu_id; 476 irq.vector = v->arch.xen.upcall_vector; 477 irq.dest_mode = APIC_DEST_PHYSICAL; 478 irq.shorthand = APIC_DEST_NOSHORT; 479 irq.delivery_mode = APIC_DM_FIXED; 480 irq.level = 1; 481 482 /* The fast version will always work for physical unicast */ 483 WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL)); 484 } 485 486 /* 487 * On event channel delivery, the vcpu_info may not have been accessible. 488 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which 489 * need to be marked into the vcpu_info (and evtchn_upcall_pending set). 490 * Do so now that we can sleep in the context of the vCPU to bring the 491 * page in, and refresh the pfn cache for it. 492 */ 493 void kvm_xen_inject_pending_events(struct kvm_vcpu *v) 494 { 495 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); 496 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; 497 unsigned long flags; 498 499 if (!evtchn_pending_sel) 500 return; 501 502 /* 503 * Yes, this is an open-coded loop. But that's just what put_user() 504 * does anyway. Page it in and retry the instruction. We're just a 505 * little more honest about it. 506 */ 507 read_lock_irqsave(&gpc->lock, flags); 508 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 509 read_unlock_irqrestore(&gpc->lock, flags); 510 511 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) 512 return; 513 514 read_lock_irqsave(&gpc->lock, flags); 515 } 516 517 /* Now gpc->khva is a valid kernel address for the vcpu_info */ 518 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { 519 struct vcpu_info *vi = gpc->khva; 520 521 asm volatile(LOCK_PREFIX "orq %0, %1\n" 522 "notq %0\n" 523 LOCK_PREFIX "andq %0, %2\n" 524 : "=r" (evtchn_pending_sel), 525 "+m" (vi->evtchn_pending_sel), 526 "+m" (v->arch.xen.evtchn_pending_sel) 527 : "0" (evtchn_pending_sel)); 528 WRITE_ONCE(vi->evtchn_upcall_pending, 1); 529 } else { 530 u32 evtchn_pending_sel32 = evtchn_pending_sel; 531 struct compat_vcpu_info *vi = gpc->khva; 532 533 asm volatile(LOCK_PREFIX "orl %0, %1\n" 534 "notl %0\n" 535 LOCK_PREFIX "andl %0, %2\n" 536 : "=r" (evtchn_pending_sel32), 537 "+m" (vi->evtchn_pending_sel), 538 "+m" (v->arch.xen.evtchn_pending_sel) 539 : "0" (evtchn_pending_sel32)); 540 WRITE_ONCE(vi->evtchn_upcall_pending, 1); 541 } 542 read_unlock_irqrestore(&gpc->lock, flags); 543 544 /* For the per-vCPU lapic vector, deliver it as MSI. */ 545 if (v->arch.xen.upcall_vector) 546 kvm_xen_inject_vcpu_vector(v); 547 548 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 549 } 550 551 int __kvm_xen_has_interrupt(struct kvm_vcpu *v) 552 { 553 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; 554 unsigned long flags; 555 u8 rc = 0; 556 557 /* 558 * If the global upcall vector (HVMIRQ_callback_vector) is set and 559 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. 560 */ 561 562 /* No need for compat handling here */ 563 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != 564 offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); 565 BUILD_BUG_ON(sizeof(rc) != 566 sizeof_field(struct vcpu_info, evtchn_upcall_pending)); 567 BUILD_BUG_ON(sizeof(rc) != 568 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); 569 570 read_lock_irqsave(&gpc->lock, flags); 571 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 572 read_unlock_irqrestore(&gpc->lock, flags); 573 574 /* 575 * This function gets called from kvm_vcpu_block() after setting the 576 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately 577 * from a HLT. So we really mustn't sleep. If the page ended up absent 578 * at that point, just return 1 in order to trigger an immediate wake, 579 * and we'll end up getting called again from a context where we *can* 580 * fault in the page and wait for it. 581 */ 582 if (in_atomic() || !task_is_running(current)) 583 return 1; 584 585 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) { 586 /* 587 * If this failed, userspace has screwed up the 588 * vcpu_info mapping. No interrupts for you. 589 */ 590 return 0; 591 } 592 read_lock_irqsave(&gpc->lock, flags); 593 } 594 595 rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending; 596 read_unlock_irqrestore(&gpc->lock, flags); 597 return rc; 598 } 599 600 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 601 { 602 int r = -ENOENT; 603 604 605 switch (data->type) { 606 case KVM_XEN_ATTR_TYPE_LONG_MODE: 607 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { 608 r = -EINVAL; 609 } else { 610 mutex_lock(&kvm->arch.xen.xen_lock); 611 kvm->arch.xen.long_mode = !!data->u.long_mode; 612 mutex_unlock(&kvm->arch.xen.xen_lock); 613 r = 0; 614 } 615 break; 616 617 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 618 mutex_lock(&kvm->arch.xen.xen_lock); 619 r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn); 620 mutex_unlock(&kvm->arch.xen.xen_lock); 621 break; 622 623 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 624 if (data->u.vector && data->u.vector < 0x10) 625 r = -EINVAL; 626 else { 627 mutex_lock(&kvm->arch.xen.xen_lock); 628 kvm->arch.xen.upcall_vector = data->u.vector; 629 mutex_unlock(&kvm->arch.xen.xen_lock); 630 r = 0; 631 } 632 break; 633 634 case KVM_XEN_ATTR_TYPE_EVTCHN: 635 r = kvm_xen_setattr_evtchn(kvm, data); 636 break; 637 638 case KVM_XEN_ATTR_TYPE_XEN_VERSION: 639 mutex_lock(&kvm->arch.xen.xen_lock); 640 kvm->arch.xen.xen_version = data->u.xen_version; 641 mutex_unlock(&kvm->arch.xen.xen_lock); 642 r = 0; 643 break; 644 645 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: 646 if (!sched_info_on()) { 647 r = -EOPNOTSUPP; 648 break; 649 } 650 mutex_lock(&kvm->arch.xen.xen_lock); 651 kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag; 652 mutex_unlock(&kvm->arch.xen.xen_lock); 653 r = 0; 654 break; 655 656 default: 657 break; 658 } 659 660 return r; 661 } 662 663 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 664 { 665 int r = -ENOENT; 666 667 mutex_lock(&kvm->arch.xen.xen_lock); 668 669 switch (data->type) { 670 case KVM_XEN_ATTR_TYPE_LONG_MODE: 671 data->u.long_mode = kvm->arch.xen.long_mode; 672 r = 0; 673 break; 674 675 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 676 if (kvm->arch.xen.shinfo_cache.active) 677 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); 678 else 679 data->u.shared_info.gfn = KVM_XEN_INVALID_GFN; 680 r = 0; 681 break; 682 683 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 684 data->u.vector = kvm->arch.xen.upcall_vector; 685 r = 0; 686 break; 687 688 case KVM_XEN_ATTR_TYPE_XEN_VERSION: 689 data->u.xen_version = kvm->arch.xen.xen_version; 690 r = 0; 691 break; 692 693 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: 694 if (!sched_info_on()) { 695 r = -EOPNOTSUPP; 696 break; 697 } 698 data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag; 699 r = 0; 700 break; 701 702 default: 703 break; 704 } 705 706 mutex_unlock(&kvm->arch.xen.xen_lock); 707 return r; 708 } 709 710 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 711 { 712 int idx, r = -ENOENT; 713 714 mutex_lock(&vcpu->kvm->arch.xen.xen_lock); 715 idx = srcu_read_lock(&vcpu->kvm->srcu); 716 717 switch (data->type) { 718 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 719 /* No compat necessary here. */ 720 BUILD_BUG_ON(sizeof(struct vcpu_info) != 721 sizeof(struct compat_vcpu_info)); 722 BUILD_BUG_ON(offsetof(struct vcpu_info, time) != 723 offsetof(struct compat_vcpu_info, time)); 724 725 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 726 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 727 r = 0; 728 break; 729 } 730 731 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache, 732 data->u.gpa, sizeof(struct vcpu_info)); 733 if (!r) 734 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 735 736 break; 737 738 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 739 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 740 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); 741 r = 0; 742 break; 743 } 744 745 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache, 746 data->u.gpa, 747 sizeof(struct pvclock_vcpu_time_info)); 748 if (!r) 749 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 750 break; 751 752 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: { 753 size_t sz, sz1, sz2; 754 755 if (!sched_info_on()) { 756 r = -EOPNOTSUPP; 757 break; 758 } 759 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 760 r = 0; 761 deactivate_out: 762 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); 763 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 764 break; 765 } 766 767 /* 768 * If the guest switches to 64-bit mode after setting the runstate 769 * address, that's actually OK. kvm_xen_update_runstate_guest() 770 * will cope. 771 */ 772 if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode) 773 sz = sizeof(struct vcpu_runstate_info); 774 else 775 sz = sizeof(struct compat_vcpu_runstate_info); 776 777 /* How much fits in the (first) page? */ 778 sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK); 779 r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache, 780 data->u.gpa, sz1); 781 if (r) 782 goto deactivate_out; 783 784 /* Either map the second page, or deactivate the second GPC */ 785 if (sz1 >= sz) { 786 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 787 } else { 788 sz2 = sz - sz1; 789 BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK); 790 r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache, 791 data->u.gpa + sz1, sz2); 792 if (r) 793 goto deactivate_out; 794 } 795 796 kvm_xen_update_runstate_guest(vcpu, false); 797 break; 798 } 799 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 800 if (!sched_info_on()) { 801 r = -EOPNOTSUPP; 802 break; 803 } 804 if (data->u.runstate.state > RUNSTATE_offline) { 805 r = -EINVAL; 806 break; 807 } 808 809 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 810 r = 0; 811 break; 812 813 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 814 if (!sched_info_on()) { 815 r = -EOPNOTSUPP; 816 break; 817 } 818 if (data->u.runstate.state > RUNSTATE_offline) { 819 r = -EINVAL; 820 break; 821 } 822 if (data->u.runstate.state_entry_time != 823 (data->u.runstate.time_running + 824 data->u.runstate.time_runnable + 825 data->u.runstate.time_blocked + 826 data->u.runstate.time_offline)) { 827 r = -EINVAL; 828 break; 829 } 830 if (get_kvmclock_ns(vcpu->kvm) < 831 data->u.runstate.state_entry_time) { 832 r = -EINVAL; 833 break; 834 } 835 836 vcpu->arch.xen.current_runstate = data->u.runstate.state; 837 vcpu->arch.xen.runstate_entry_time = 838 data->u.runstate.state_entry_time; 839 vcpu->arch.xen.runstate_times[RUNSTATE_running] = 840 data->u.runstate.time_running; 841 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = 842 data->u.runstate.time_runnable; 843 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = 844 data->u.runstate.time_blocked; 845 vcpu->arch.xen.runstate_times[RUNSTATE_offline] = 846 data->u.runstate.time_offline; 847 vcpu->arch.xen.last_steal = current->sched_info.run_delay; 848 r = 0; 849 break; 850 851 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 852 if (!sched_info_on()) { 853 r = -EOPNOTSUPP; 854 break; 855 } 856 if (data->u.runstate.state > RUNSTATE_offline && 857 data->u.runstate.state != (u64)-1) { 858 r = -EINVAL; 859 break; 860 } 861 /* The adjustment must add up */ 862 if (data->u.runstate.state_entry_time != 863 (data->u.runstate.time_running + 864 data->u.runstate.time_runnable + 865 data->u.runstate.time_blocked + 866 data->u.runstate.time_offline)) { 867 r = -EINVAL; 868 break; 869 } 870 871 if (get_kvmclock_ns(vcpu->kvm) < 872 (vcpu->arch.xen.runstate_entry_time + 873 data->u.runstate.state_entry_time)) { 874 r = -EINVAL; 875 break; 876 } 877 878 vcpu->arch.xen.runstate_entry_time += 879 data->u.runstate.state_entry_time; 880 vcpu->arch.xen.runstate_times[RUNSTATE_running] += 881 data->u.runstate.time_running; 882 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += 883 data->u.runstate.time_runnable; 884 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += 885 data->u.runstate.time_blocked; 886 vcpu->arch.xen.runstate_times[RUNSTATE_offline] += 887 data->u.runstate.time_offline; 888 889 if (data->u.runstate.state <= RUNSTATE_offline) 890 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 891 else if (vcpu->arch.xen.runstate_cache.active) 892 kvm_xen_update_runstate_guest(vcpu, false); 893 r = 0; 894 break; 895 896 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: 897 if (data->u.vcpu_id >= KVM_MAX_VCPUS) 898 r = -EINVAL; 899 else { 900 vcpu->arch.xen.vcpu_id = data->u.vcpu_id; 901 r = 0; 902 } 903 break; 904 905 case KVM_XEN_VCPU_ATTR_TYPE_TIMER: 906 if (data->u.timer.port && 907 data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) { 908 r = -EINVAL; 909 break; 910 } 911 912 if (!vcpu->arch.xen.timer.function) 913 kvm_xen_init_timer(vcpu); 914 915 /* Stop the timer (if it's running) before changing the vector */ 916 kvm_xen_stop_timer(vcpu); 917 vcpu->arch.xen.timer_virq = data->u.timer.port; 918 919 /* Start the timer if the new value has a valid vector+expiry. */ 920 if (data->u.timer.port && data->u.timer.expires_ns) 921 kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, 922 data->u.timer.expires_ns - 923 get_kvmclock_ns(vcpu->kvm)); 924 925 r = 0; 926 break; 927 928 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: 929 if (data->u.vector && data->u.vector < 0x10) 930 r = -EINVAL; 931 else { 932 vcpu->arch.xen.upcall_vector = data->u.vector; 933 r = 0; 934 } 935 break; 936 937 default: 938 break; 939 } 940 941 srcu_read_unlock(&vcpu->kvm->srcu, idx); 942 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); 943 return r; 944 } 945 946 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 947 { 948 int r = -ENOENT; 949 950 mutex_lock(&vcpu->kvm->arch.xen.xen_lock); 951 952 switch (data->type) { 953 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 954 if (vcpu->arch.xen.vcpu_info_cache.active) 955 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; 956 else 957 data->u.gpa = KVM_XEN_INVALID_GPA; 958 r = 0; 959 break; 960 961 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 962 if (vcpu->arch.xen.vcpu_time_info_cache.active) 963 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; 964 else 965 data->u.gpa = KVM_XEN_INVALID_GPA; 966 r = 0; 967 break; 968 969 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 970 if (!sched_info_on()) { 971 r = -EOPNOTSUPP; 972 break; 973 } 974 if (vcpu->arch.xen.runstate_cache.active) { 975 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; 976 r = 0; 977 } 978 break; 979 980 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 981 if (!sched_info_on()) { 982 r = -EOPNOTSUPP; 983 break; 984 } 985 data->u.runstate.state = vcpu->arch.xen.current_runstate; 986 r = 0; 987 break; 988 989 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 990 if (!sched_info_on()) { 991 r = -EOPNOTSUPP; 992 break; 993 } 994 data->u.runstate.state = vcpu->arch.xen.current_runstate; 995 data->u.runstate.state_entry_time = 996 vcpu->arch.xen.runstate_entry_time; 997 data->u.runstate.time_running = 998 vcpu->arch.xen.runstate_times[RUNSTATE_running]; 999 data->u.runstate.time_runnable = 1000 vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; 1001 data->u.runstate.time_blocked = 1002 vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; 1003 data->u.runstate.time_offline = 1004 vcpu->arch.xen.runstate_times[RUNSTATE_offline]; 1005 r = 0; 1006 break; 1007 1008 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 1009 r = -EINVAL; 1010 break; 1011 1012 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: 1013 data->u.vcpu_id = vcpu->arch.xen.vcpu_id; 1014 r = 0; 1015 break; 1016 1017 case KVM_XEN_VCPU_ATTR_TYPE_TIMER: 1018 data->u.timer.port = vcpu->arch.xen.timer_virq; 1019 data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 1020 data->u.timer.expires_ns = vcpu->arch.xen.timer_expires; 1021 r = 0; 1022 break; 1023 1024 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: 1025 data->u.vector = vcpu->arch.xen.upcall_vector; 1026 r = 0; 1027 break; 1028 1029 default: 1030 break; 1031 } 1032 1033 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); 1034 return r; 1035 } 1036 1037 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) 1038 { 1039 struct kvm *kvm = vcpu->kvm; 1040 u32 page_num = data & ~PAGE_MASK; 1041 u64 page_addr = data & PAGE_MASK; 1042 bool lm = is_long_mode(vcpu); 1043 1044 /* Latch long_mode for shared_info pages etc. */ 1045 vcpu->kvm->arch.xen.long_mode = lm; 1046 1047 /* 1048 * If Xen hypercall intercept is enabled, fill the hypercall 1049 * page with VMCALL/VMMCALL instructions since that's what 1050 * we catch. Else the VMM has provided the hypercall pages 1051 * with instructions of its own choosing, so use those. 1052 */ 1053 if (kvm_xen_hypercall_enabled(kvm)) { 1054 u8 instructions[32]; 1055 int i; 1056 1057 if (page_num) 1058 return 1; 1059 1060 /* mov imm32, %eax */ 1061 instructions[0] = 0xb8; 1062 1063 /* vmcall / vmmcall */ 1064 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5); 1065 1066 /* ret */ 1067 instructions[8] = 0xc3; 1068 1069 /* int3 to pad */ 1070 memset(instructions + 9, 0xcc, sizeof(instructions) - 9); 1071 1072 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { 1073 *(u32 *)&instructions[1] = i; 1074 if (kvm_vcpu_write_guest(vcpu, 1075 page_addr + (i * sizeof(instructions)), 1076 instructions, sizeof(instructions))) 1077 return 1; 1078 } 1079 } else { 1080 /* 1081 * Note, truncation is a non-issue as 'lm' is guaranteed to be 1082 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. 1083 */ 1084 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64 1085 : kvm->arch.xen_hvm_config.blob_addr_32; 1086 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1087 : kvm->arch.xen_hvm_config.blob_size_32; 1088 u8 *page; 1089 int ret; 1090 1091 if (page_num >= blob_size) 1092 return 1; 1093 1094 blob_addr += page_num * PAGE_SIZE; 1095 1096 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); 1097 if (IS_ERR(page)) 1098 return PTR_ERR(page); 1099 1100 ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE); 1101 kfree(page); 1102 if (ret) 1103 return 1; 1104 } 1105 return 0; 1106 } 1107 1108 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) 1109 { 1110 /* Only some feature flags need to be *enabled* by userspace */ 1111 u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 1112 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 1113 1114 if (xhc->flags & ~permitted_flags) 1115 return -EINVAL; 1116 1117 /* 1118 * With hypercall interception the kernel generates its own 1119 * hypercall page so it must not be provided. 1120 */ 1121 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && 1122 (xhc->blob_addr_32 || xhc->blob_addr_64 || 1123 xhc->blob_size_32 || xhc->blob_size_64)) 1124 return -EINVAL; 1125 1126 mutex_lock(&kvm->arch.xen.xen_lock); 1127 1128 if (xhc->msr && !kvm->arch.xen_hvm_config.msr) 1129 static_branch_inc(&kvm_xen_enabled.key); 1130 else if (!xhc->msr && kvm->arch.xen_hvm_config.msr) 1131 static_branch_slow_dec_deferred(&kvm_xen_enabled); 1132 1133 memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc)); 1134 1135 mutex_unlock(&kvm->arch.xen.xen_lock); 1136 return 0; 1137 } 1138 1139 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 1140 { 1141 kvm_rax_write(vcpu, result); 1142 return kvm_skip_emulated_instruction(vcpu); 1143 } 1144 1145 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 1146 { 1147 struct kvm_run *run = vcpu->run; 1148 1149 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) 1150 return 1; 1151 1152 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); 1153 } 1154 1155 static inline int max_evtchn_port(struct kvm *kvm) 1156 { 1157 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) 1158 return EVTCHN_2L_NR_CHANNELS; 1159 else 1160 return COMPAT_EVTCHN_2L_NR_CHANNELS; 1161 } 1162 1163 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports, 1164 evtchn_port_t *ports) 1165 { 1166 struct kvm *kvm = vcpu->kvm; 1167 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1168 unsigned long *pending_bits; 1169 unsigned long flags; 1170 bool ret = true; 1171 int idx, i; 1172 1173 idx = srcu_read_lock(&kvm->srcu); 1174 read_lock_irqsave(&gpc->lock, flags); 1175 if (!kvm_gpc_check(gpc, PAGE_SIZE)) 1176 goto out_rcu; 1177 1178 ret = false; 1179 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1180 struct shared_info *shinfo = gpc->khva; 1181 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1182 } else { 1183 struct compat_shared_info *shinfo = gpc->khva; 1184 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1185 } 1186 1187 for (i = 0; i < nr_ports; i++) { 1188 if (test_bit(ports[i], pending_bits)) { 1189 ret = true; 1190 break; 1191 } 1192 } 1193 1194 out_rcu: 1195 read_unlock_irqrestore(&gpc->lock, flags); 1196 srcu_read_unlock(&kvm->srcu, idx); 1197 1198 return ret; 1199 } 1200 1201 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode, 1202 u64 param, u64 *r) 1203 { 1204 struct sched_poll sched_poll; 1205 evtchn_port_t port, *ports; 1206 struct x86_exception e; 1207 int i; 1208 1209 if (!lapic_in_kernel(vcpu) || 1210 !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND)) 1211 return false; 1212 1213 if (IS_ENABLED(CONFIG_64BIT) && !longmode) { 1214 struct compat_sched_poll sp32; 1215 1216 /* Sanity check that the compat struct definition is correct */ 1217 BUILD_BUG_ON(sizeof(sp32) != 16); 1218 1219 if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) { 1220 *r = -EFAULT; 1221 return true; 1222 } 1223 1224 /* 1225 * This is a 32-bit pointer to an array of evtchn_port_t which 1226 * are uint32_t, so once it's converted no further compat 1227 * handling is needed. 1228 */ 1229 sched_poll.ports = (void *)(unsigned long)(sp32.ports); 1230 sched_poll.nr_ports = sp32.nr_ports; 1231 sched_poll.timeout = sp32.timeout; 1232 } else { 1233 if (kvm_read_guest_virt(vcpu, param, &sched_poll, 1234 sizeof(sched_poll), &e)) { 1235 *r = -EFAULT; 1236 return true; 1237 } 1238 } 1239 1240 if (unlikely(sched_poll.nr_ports > 1)) { 1241 /* Xen (unofficially) limits number of pollers to 128 */ 1242 if (sched_poll.nr_ports > 128) { 1243 *r = -EINVAL; 1244 return true; 1245 } 1246 1247 ports = kmalloc_array(sched_poll.nr_ports, 1248 sizeof(*ports), GFP_KERNEL); 1249 if (!ports) { 1250 *r = -ENOMEM; 1251 return true; 1252 } 1253 } else 1254 ports = &port; 1255 1256 if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports, 1257 sched_poll.nr_ports * sizeof(*ports), &e)) { 1258 *r = -EFAULT; 1259 return true; 1260 } 1261 1262 for (i = 0; i < sched_poll.nr_ports; i++) { 1263 if (ports[i] >= max_evtchn_port(vcpu->kvm)) { 1264 *r = -EINVAL; 1265 goto out; 1266 } 1267 } 1268 1269 if (sched_poll.nr_ports == 1) 1270 vcpu->arch.xen.poll_evtchn = port; 1271 else 1272 vcpu->arch.xen.poll_evtchn = -1; 1273 1274 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); 1275 1276 if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) { 1277 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 1278 1279 if (sched_poll.timeout) 1280 mod_timer(&vcpu->arch.xen.poll_timer, 1281 jiffies + nsecs_to_jiffies(sched_poll.timeout)); 1282 1283 kvm_vcpu_halt(vcpu); 1284 1285 if (sched_poll.timeout) 1286 del_timer(&vcpu->arch.xen.poll_timer); 1287 1288 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 1289 } 1290 1291 vcpu->arch.xen.poll_evtchn = 0; 1292 *r = 0; 1293 out: 1294 /* Really, this is only needed in case of timeout */ 1295 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); 1296 1297 if (unlikely(sched_poll.nr_ports > 1)) 1298 kfree(ports); 1299 return true; 1300 } 1301 1302 static void cancel_evtchn_poll(struct timer_list *t) 1303 { 1304 struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer); 1305 1306 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1307 kvm_vcpu_kick(vcpu); 1308 } 1309 1310 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode, 1311 int cmd, u64 param, u64 *r) 1312 { 1313 switch (cmd) { 1314 case SCHEDOP_poll: 1315 if (kvm_xen_schedop_poll(vcpu, longmode, param, r)) 1316 return true; 1317 fallthrough; 1318 case SCHEDOP_yield: 1319 kvm_vcpu_on_spin(vcpu, true); 1320 *r = 0; 1321 return true; 1322 default: 1323 break; 1324 } 1325 1326 return false; 1327 } 1328 1329 struct compat_vcpu_set_singleshot_timer { 1330 uint64_t timeout_abs_ns; 1331 uint32_t flags; 1332 } __attribute__((packed)); 1333 1334 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd, 1335 int vcpu_id, u64 param, u64 *r) 1336 { 1337 struct vcpu_set_singleshot_timer oneshot; 1338 struct x86_exception e; 1339 s64 delta; 1340 1341 if (!kvm_xen_timer_enabled(vcpu)) 1342 return false; 1343 1344 switch (cmd) { 1345 case VCPUOP_set_singleshot_timer: 1346 if (vcpu->arch.xen.vcpu_id != vcpu_id) { 1347 *r = -EINVAL; 1348 return true; 1349 } 1350 1351 /* 1352 * The only difference for 32-bit compat is the 4 bytes of 1353 * padding after the interesting part of the structure. So 1354 * for a faithful emulation of Xen we have to *try* to copy 1355 * the padding and return -EFAULT if we can't. Otherwise we 1356 * might as well just have copied the 12-byte 32-bit struct. 1357 */ 1358 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != 1359 offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns)); 1360 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != 1361 sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns)); 1362 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) != 1363 offsetof(struct vcpu_set_singleshot_timer, flags)); 1364 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) != 1365 sizeof_field(struct vcpu_set_singleshot_timer, flags)); 1366 1367 if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) : 1368 sizeof(struct compat_vcpu_set_singleshot_timer), &e)) { 1369 *r = -EFAULT; 1370 return true; 1371 } 1372 1373 delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm); 1374 if ((oneshot.flags & VCPU_SSHOTTMR_future) && delta < 0) { 1375 *r = -ETIME; 1376 return true; 1377 } 1378 1379 kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta); 1380 *r = 0; 1381 return true; 1382 1383 case VCPUOP_stop_singleshot_timer: 1384 if (vcpu->arch.xen.vcpu_id != vcpu_id) { 1385 *r = -EINVAL; 1386 return true; 1387 } 1388 kvm_xen_stop_timer(vcpu); 1389 *r = 0; 1390 return true; 1391 } 1392 1393 return false; 1394 } 1395 1396 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout, 1397 u64 *r) 1398 { 1399 if (!kvm_xen_timer_enabled(vcpu)) 1400 return false; 1401 1402 if (timeout) { 1403 uint64_t guest_now = get_kvmclock_ns(vcpu->kvm); 1404 int64_t delta = timeout - guest_now; 1405 1406 /* Xen has a 'Linux workaround' in do_set_timer_op() which 1407 * checks for negative absolute timeout values (caused by 1408 * integer overflow), and for values about 13 days in the 1409 * future (2^50ns) which would be caused by jiffies 1410 * overflow. For those cases, it sets the timeout 100ms in 1411 * the future (not *too* soon, since if a guest really did 1412 * set a long timeout on purpose we don't want to keep 1413 * churning CPU time by waking it up). 1414 */ 1415 if (unlikely((int64_t)timeout < 0 || 1416 (delta > 0 && (uint32_t) (delta >> 50) != 0))) { 1417 delta = 100 * NSEC_PER_MSEC; 1418 timeout = guest_now + delta; 1419 } 1420 1421 kvm_xen_start_timer(vcpu, timeout, delta); 1422 } else { 1423 kvm_xen_stop_timer(vcpu); 1424 } 1425 1426 *r = 0; 1427 return true; 1428 } 1429 1430 int kvm_xen_hypercall(struct kvm_vcpu *vcpu) 1431 { 1432 bool longmode; 1433 u64 input, params[6], r = -ENOSYS; 1434 bool handled = false; 1435 u8 cpl; 1436 1437 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); 1438 1439 /* Hyper-V hypercalls get bit 31 set in EAX */ 1440 if ((input & 0x80000000) && 1441 kvm_hv_hypercall_enabled(vcpu)) 1442 return kvm_hv_hypercall(vcpu); 1443 1444 longmode = is_64_bit_hypercall(vcpu); 1445 if (!longmode) { 1446 params[0] = (u32)kvm_rbx_read(vcpu); 1447 params[1] = (u32)kvm_rcx_read(vcpu); 1448 params[2] = (u32)kvm_rdx_read(vcpu); 1449 params[3] = (u32)kvm_rsi_read(vcpu); 1450 params[4] = (u32)kvm_rdi_read(vcpu); 1451 params[5] = (u32)kvm_rbp_read(vcpu); 1452 } 1453 #ifdef CONFIG_X86_64 1454 else { 1455 params[0] = (u64)kvm_rdi_read(vcpu); 1456 params[1] = (u64)kvm_rsi_read(vcpu); 1457 params[2] = (u64)kvm_rdx_read(vcpu); 1458 params[3] = (u64)kvm_r10_read(vcpu); 1459 params[4] = (u64)kvm_r8_read(vcpu); 1460 params[5] = (u64)kvm_r9_read(vcpu); 1461 } 1462 #endif 1463 cpl = static_call(kvm_x86_get_cpl)(vcpu); 1464 trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2], 1465 params[3], params[4], params[5]); 1466 1467 /* 1468 * Only allow hypercall acceleration for CPL0. The rare hypercalls that 1469 * are permitted in guest userspace can be handled by the VMM. 1470 */ 1471 if (unlikely(cpl > 0)) 1472 goto handle_in_userspace; 1473 1474 switch (input) { 1475 case __HYPERVISOR_xen_version: 1476 if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) { 1477 r = vcpu->kvm->arch.xen.xen_version; 1478 handled = true; 1479 } 1480 break; 1481 case __HYPERVISOR_event_channel_op: 1482 if (params[0] == EVTCHNOP_send) 1483 handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r); 1484 break; 1485 case __HYPERVISOR_sched_op: 1486 handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0], 1487 params[1], &r); 1488 break; 1489 case __HYPERVISOR_vcpu_op: 1490 handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1], 1491 params[2], &r); 1492 break; 1493 case __HYPERVISOR_set_timer_op: { 1494 u64 timeout = params[0]; 1495 /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */ 1496 if (!longmode) 1497 timeout |= params[1] << 32; 1498 handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r); 1499 break; 1500 } 1501 default: 1502 break; 1503 } 1504 1505 if (handled) 1506 return kvm_xen_hypercall_set_result(vcpu, r); 1507 1508 handle_in_userspace: 1509 vcpu->run->exit_reason = KVM_EXIT_XEN; 1510 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; 1511 vcpu->run->xen.u.hcall.longmode = longmode; 1512 vcpu->run->xen.u.hcall.cpl = cpl; 1513 vcpu->run->xen.u.hcall.input = input; 1514 vcpu->run->xen.u.hcall.params[0] = params[0]; 1515 vcpu->run->xen.u.hcall.params[1] = params[1]; 1516 vcpu->run->xen.u.hcall.params[2] = params[2]; 1517 vcpu->run->xen.u.hcall.params[3] = params[3]; 1518 vcpu->run->xen.u.hcall.params[4] = params[4]; 1519 vcpu->run->xen.u.hcall.params[5] = params[5]; 1520 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); 1521 vcpu->arch.complete_userspace_io = 1522 kvm_xen_hypercall_complete_userspace; 1523 1524 return 0; 1525 } 1526 1527 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port) 1528 { 1529 int poll_evtchn = vcpu->arch.xen.poll_evtchn; 1530 1531 if ((poll_evtchn == port || poll_evtchn == -1) && 1532 test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) { 1533 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1534 kvm_vcpu_kick(vcpu); 1535 } 1536 } 1537 1538 /* 1539 * The return value from this function is propagated to kvm_set_irq() API, 1540 * so it returns: 1541 * < 0 Interrupt was ignored (masked or not delivered for other reasons) 1542 * = 0 Interrupt was coalesced (previous irq is still pending) 1543 * > 0 Number of CPUs interrupt was delivered to 1544 * 1545 * It is also called directly from kvm_arch_set_irq_inatomic(), where the 1546 * only check on its return value is a comparison with -EWOULDBLOCK'. 1547 */ 1548 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm) 1549 { 1550 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1551 struct kvm_vcpu *vcpu; 1552 unsigned long *pending_bits, *mask_bits; 1553 unsigned long flags; 1554 int port_word_bit; 1555 bool kick_vcpu = false; 1556 int vcpu_idx, idx, rc; 1557 1558 vcpu_idx = READ_ONCE(xe->vcpu_idx); 1559 if (vcpu_idx >= 0) 1560 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 1561 else { 1562 vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id); 1563 if (!vcpu) 1564 return -EINVAL; 1565 WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx); 1566 } 1567 1568 if (!vcpu->arch.xen.vcpu_info_cache.active) 1569 return -EINVAL; 1570 1571 if (xe->port >= max_evtchn_port(kvm)) 1572 return -EINVAL; 1573 1574 rc = -EWOULDBLOCK; 1575 1576 idx = srcu_read_lock(&kvm->srcu); 1577 1578 read_lock_irqsave(&gpc->lock, flags); 1579 if (!kvm_gpc_check(gpc, PAGE_SIZE)) 1580 goto out_rcu; 1581 1582 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1583 struct shared_info *shinfo = gpc->khva; 1584 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1585 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 1586 port_word_bit = xe->port / 64; 1587 } else { 1588 struct compat_shared_info *shinfo = gpc->khva; 1589 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1590 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 1591 port_word_bit = xe->port / 32; 1592 } 1593 1594 /* 1595 * If this port wasn't already set, and if it isn't masked, then 1596 * we try to set the corresponding bit in the in-kernel shadow of 1597 * evtchn_pending_sel for the target vCPU. And if *that* wasn't 1598 * already set, then we kick the vCPU in question to write to the 1599 * *real* evtchn_pending_sel in its own guest vcpu_info struct. 1600 */ 1601 if (test_and_set_bit(xe->port, pending_bits)) { 1602 rc = 0; /* It was already raised */ 1603 } else if (test_bit(xe->port, mask_bits)) { 1604 rc = -ENOTCONN; /* Masked */ 1605 kvm_xen_check_poller(vcpu, xe->port); 1606 } else { 1607 rc = 1; /* Delivered to the bitmap in shared_info. */ 1608 /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */ 1609 read_unlock_irqrestore(&gpc->lock, flags); 1610 gpc = &vcpu->arch.xen.vcpu_info_cache; 1611 1612 read_lock_irqsave(&gpc->lock, flags); 1613 if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 1614 /* 1615 * Could not access the vcpu_info. Set the bit in-kernel 1616 * and prod the vCPU to deliver it for itself. 1617 */ 1618 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) 1619 kick_vcpu = true; 1620 goto out_rcu; 1621 } 1622 1623 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1624 struct vcpu_info *vcpu_info = gpc->khva; 1625 if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) { 1626 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); 1627 kick_vcpu = true; 1628 } 1629 } else { 1630 struct compat_vcpu_info *vcpu_info = gpc->khva; 1631 if (!test_and_set_bit(port_word_bit, 1632 (unsigned long *)&vcpu_info->evtchn_pending_sel)) { 1633 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); 1634 kick_vcpu = true; 1635 } 1636 } 1637 1638 /* For the per-vCPU lapic vector, deliver it as MSI. */ 1639 if (kick_vcpu && vcpu->arch.xen.upcall_vector) { 1640 kvm_xen_inject_vcpu_vector(vcpu); 1641 kick_vcpu = false; 1642 } 1643 } 1644 1645 out_rcu: 1646 read_unlock_irqrestore(&gpc->lock, flags); 1647 srcu_read_unlock(&kvm->srcu, idx); 1648 1649 if (kick_vcpu) { 1650 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1651 kvm_vcpu_kick(vcpu); 1652 } 1653 1654 return rc; 1655 } 1656 1657 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm) 1658 { 1659 bool mm_borrowed = false; 1660 int rc; 1661 1662 rc = kvm_xen_set_evtchn_fast(xe, kvm); 1663 if (rc != -EWOULDBLOCK) 1664 return rc; 1665 1666 if (current->mm != kvm->mm) { 1667 /* 1668 * If not on a thread which already belongs to this KVM, 1669 * we'd better be in the irqfd workqueue. 1670 */ 1671 if (WARN_ON_ONCE(current->mm)) 1672 return -EINVAL; 1673 1674 kthread_use_mm(kvm->mm); 1675 mm_borrowed = true; 1676 } 1677 1678 mutex_lock(&kvm->arch.xen.xen_lock); 1679 1680 /* 1681 * It is theoretically possible for the page to be unmapped 1682 * and the MMU notifier to invalidate the shared_info before 1683 * we even get to use it. In that case, this looks like an 1684 * infinite loop. It was tempting to do it via the userspace 1685 * HVA instead... but that just *hides* the fact that it's 1686 * an infinite loop, because if a fault occurs and it waits 1687 * for the page to come back, it can *still* immediately 1688 * fault and have to wait again, repeatedly. 1689 * 1690 * Conversely, the page could also have been reinstated by 1691 * another thread before we even obtain the mutex above, so 1692 * check again *first* before remapping it. 1693 */ 1694 do { 1695 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1696 int idx; 1697 1698 rc = kvm_xen_set_evtchn_fast(xe, kvm); 1699 if (rc != -EWOULDBLOCK) 1700 break; 1701 1702 idx = srcu_read_lock(&kvm->srcu); 1703 rc = kvm_gpc_refresh(gpc, PAGE_SIZE); 1704 srcu_read_unlock(&kvm->srcu, idx); 1705 } while(!rc); 1706 1707 mutex_unlock(&kvm->arch.xen.xen_lock); 1708 1709 if (mm_borrowed) 1710 kthread_unuse_mm(kvm->mm); 1711 1712 return rc; 1713 } 1714 1715 /* This is the version called from kvm_set_irq() as the .set function */ 1716 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 1717 int irq_source_id, int level, bool line_status) 1718 { 1719 if (!level) 1720 return -EINVAL; 1721 1722 return kvm_xen_set_evtchn(&e->xen_evtchn, kvm); 1723 } 1724 1725 /* 1726 * Set up an event channel interrupt from the KVM IRQ routing table. 1727 * Used for e.g. PIRQ from passed through physical devices. 1728 */ 1729 int kvm_xen_setup_evtchn(struct kvm *kvm, 1730 struct kvm_kernel_irq_routing_entry *e, 1731 const struct kvm_irq_routing_entry *ue) 1732 1733 { 1734 struct kvm_vcpu *vcpu; 1735 1736 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm)) 1737 return -EINVAL; 1738 1739 /* We only support 2 level event channels for now */ 1740 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1741 return -EINVAL; 1742 1743 /* 1744 * Xen gives us interesting mappings from vCPU index to APIC ID, 1745 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs 1746 * to find it. Do that once at setup time, instead of every time. 1747 * But beware that on live update / live migration, the routing 1748 * table might be reinstated before the vCPU threads have finished 1749 * recreating their vCPUs. 1750 */ 1751 vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu); 1752 if (vcpu) 1753 e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx; 1754 else 1755 e->xen_evtchn.vcpu_idx = -1; 1756 1757 e->xen_evtchn.port = ue->u.xen_evtchn.port; 1758 e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu; 1759 e->xen_evtchn.priority = ue->u.xen_evtchn.priority; 1760 e->set = evtchn_set_fn; 1761 1762 return 0; 1763 } 1764 1765 /* 1766 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl. 1767 */ 1768 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe) 1769 { 1770 struct kvm_xen_evtchn e; 1771 int ret; 1772 1773 if (!uxe->port || uxe->port >= max_evtchn_port(kvm)) 1774 return -EINVAL; 1775 1776 /* We only support 2 level event channels for now */ 1777 if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1778 return -EINVAL; 1779 1780 e.port = uxe->port; 1781 e.vcpu_id = uxe->vcpu; 1782 e.vcpu_idx = -1; 1783 e.priority = uxe->priority; 1784 1785 ret = kvm_xen_set_evtchn(&e, kvm); 1786 1787 /* 1788 * None of that 'return 1 if it actually got delivered' nonsense. 1789 * We don't care if it was masked (-ENOTCONN) either. 1790 */ 1791 if (ret > 0 || ret == -ENOTCONN) 1792 ret = 0; 1793 1794 return ret; 1795 } 1796 1797 /* 1798 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall. 1799 */ 1800 struct evtchnfd { 1801 u32 send_port; 1802 u32 type; 1803 union { 1804 struct kvm_xen_evtchn port; 1805 struct { 1806 u32 port; /* zero */ 1807 struct eventfd_ctx *ctx; 1808 } eventfd; 1809 } deliver; 1810 }; 1811 1812 /* 1813 * Update target vCPU or priority for a registered sending channel. 1814 */ 1815 static int kvm_xen_eventfd_update(struct kvm *kvm, 1816 struct kvm_xen_hvm_attr *data) 1817 { 1818 u32 port = data->u.evtchn.send_port; 1819 struct evtchnfd *evtchnfd; 1820 int ret; 1821 1822 /* Protect writes to evtchnfd as well as the idr lookup. */ 1823 mutex_lock(&kvm->arch.xen.xen_lock); 1824 evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port); 1825 1826 ret = -ENOENT; 1827 if (!evtchnfd) 1828 goto out_unlock; 1829 1830 /* For an UPDATE, nothing may change except the priority/vcpu */ 1831 ret = -EINVAL; 1832 if (evtchnfd->type != data->u.evtchn.type) 1833 goto out_unlock; 1834 1835 /* 1836 * Port cannot change, and if it's zero that was an eventfd 1837 * which can't be changed either. 1838 */ 1839 if (!evtchnfd->deliver.port.port || 1840 evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port) 1841 goto out_unlock; 1842 1843 /* We only support 2 level event channels for now */ 1844 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1845 goto out_unlock; 1846 1847 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; 1848 if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) { 1849 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; 1850 evtchnfd->deliver.port.vcpu_idx = -1; 1851 } 1852 ret = 0; 1853 out_unlock: 1854 mutex_unlock(&kvm->arch.xen.xen_lock); 1855 return ret; 1856 } 1857 1858 /* 1859 * Configure the target (eventfd or local port delivery) for sending on 1860 * a given event channel. 1861 */ 1862 static int kvm_xen_eventfd_assign(struct kvm *kvm, 1863 struct kvm_xen_hvm_attr *data) 1864 { 1865 u32 port = data->u.evtchn.send_port; 1866 struct eventfd_ctx *eventfd = NULL; 1867 struct evtchnfd *evtchnfd; 1868 int ret = -EINVAL; 1869 1870 evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL); 1871 if (!evtchnfd) 1872 return -ENOMEM; 1873 1874 switch(data->u.evtchn.type) { 1875 case EVTCHNSTAT_ipi: 1876 /* IPI must map back to the same port# */ 1877 if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port) 1878 goto out_noeventfd; /* -EINVAL */ 1879 break; 1880 1881 case EVTCHNSTAT_interdomain: 1882 if (data->u.evtchn.deliver.port.port) { 1883 if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm)) 1884 goto out_noeventfd; /* -EINVAL */ 1885 } else { 1886 eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd); 1887 if (IS_ERR(eventfd)) { 1888 ret = PTR_ERR(eventfd); 1889 goto out_noeventfd; 1890 } 1891 } 1892 break; 1893 1894 case EVTCHNSTAT_virq: 1895 case EVTCHNSTAT_closed: 1896 case EVTCHNSTAT_unbound: 1897 case EVTCHNSTAT_pirq: 1898 default: /* Unknown event channel type */ 1899 goto out; /* -EINVAL */ 1900 } 1901 1902 evtchnfd->send_port = data->u.evtchn.send_port; 1903 evtchnfd->type = data->u.evtchn.type; 1904 if (eventfd) { 1905 evtchnfd->deliver.eventfd.ctx = eventfd; 1906 } else { 1907 /* We only support 2 level event channels for now */ 1908 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1909 goto out; /* -EINVAL; */ 1910 1911 evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port; 1912 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; 1913 evtchnfd->deliver.port.vcpu_idx = -1; 1914 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; 1915 } 1916 1917 mutex_lock(&kvm->arch.xen.xen_lock); 1918 ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1, 1919 GFP_KERNEL); 1920 mutex_unlock(&kvm->arch.xen.xen_lock); 1921 if (ret >= 0) 1922 return 0; 1923 1924 if (ret == -ENOSPC) 1925 ret = -EEXIST; 1926 out: 1927 if (eventfd) 1928 eventfd_ctx_put(eventfd); 1929 out_noeventfd: 1930 kfree(evtchnfd); 1931 return ret; 1932 } 1933 1934 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port) 1935 { 1936 struct evtchnfd *evtchnfd; 1937 1938 mutex_lock(&kvm->arch.xen.xen_lock); 1939 evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port); 1940 mutex_unlock(&kvm->arch.xen.xen_lock); 1941 1942 if (!evtchnfd) 1943 return -ENOENT; 1944 1945 synchronize_srcu(&kvm->srcu); 1946 if (!evtchnfd->deliver.port.port) 1947 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 1948 kfree(evtchnfd); 1949 return 0; 1950 } 1951 1952 static int kvm_xen_eventfd_reset(struct kvm *kvm) 1953 { 1954 struct evtchnfd *evtchnfd, **all_evtchnfds; 1955 int i; 1956 int n = 0; 1957 1958 mutex_lock(&kvm->arch.xen.xen_lock); 1959 1960 /* 1961 * Because synchronize_srcu() cannot be called inside the 1962 * critical section, first collect all the evtchnfd objects 1963 * in an array as they are removed from evtchn_ports. 1964 */ 1965 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) 1966 n++; 1967 1968 all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL); 1969 if (!all_evtchnfds) { 1970 mutex_unlock(&kvm->arch.xen.xen_lock); 1971 return -ENOMEM; 1972 } 1973 1974 n = 0; 1975 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { 1976 all_evtchnfds[n++] = evtchnfd; 1977 idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port); 1978 } 1979 mutex_unlock(&kvm->arch.xen.xen_lock); 1980 1981 synchronize_srcu(&kvm->srcu); 1982 1983 while (n--) { 1984 evtchnfd = all_evtchnfds[n]; 1985 if (!evtchnfd->deliver.port.port) 1986 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 1987 kfree(evtchnfd); 1988 } 1989 kfree(all_evtchnfds); 1990 1991 return 0; 1992 } 1993 1994 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 1995 { 1996 u32 port = data->u.evtchn.send_port; 1997 1998 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET) 1999 return kvm_xen_eventfd_reset(kvm); 2000 2001 if (!port || port >= max_evtchn_port(kvm)) 2002 return -EINVAL; 2003 2004 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN) 2005 return kvm_xen_eventfd_deassign(kvm, port); 2006 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE) 2007 return kvm_xen_eventfd_update(kvm, data); 2008 if (data->u.evtchn.flags) 2009 return -EINVAL; 2010 2011 return kvm_xen_eventfd_assign(kvm, data); 2012 } 2013 2014 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r) 2015 { 2016 struct evtchnfd *evtchnfd; 2017 struct evtchn_send send; 2018 struct x86_exception e; 2019 2020 /* Sanity check: this structure is the same for 32-bit and 64-bit */ 2021 BUILD_BUG_ON(sizeof(send) != 4); 2022 if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) { 2023 *r = -EFAULT; 2024 return true; 2025 } 2026 2027 /* 2028 * evtchnfd is protected by kvm->srcu; the idr lookup instead 2029 * is protected by RCU. 2030 */ 2031 rcu_read_lock(); 2032 evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port); 2033 rcu_read_unlock(); 2034 if (!evtchnfd) 2035 return false; 2036 2037 if (evtchnfd->deliver.port.port) { 2038 int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm); 2039 if (ret < 0 && ret != -ENOTCONN) 2040 return false; 2041 } else { 2042 eventfd_signal(evtchnfd->deliver.eventfd.ctx, 1); 2043 } 2044 2045 *r = 0; 2046 return true; 2047 } 2048 2049 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu) 2050 { 2051 vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx; 2052 vcpu->arch.xen.poll_evtchn = 0; 2053 2054 timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0); 2055 2056 kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm, NULL, 2057 KVM_HOST_USES_PFN); 2058 kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm, NULL, 2059 KVM_HOST_USES_PFN); 2060 kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm, NULL, 2061 KVM_HOST_USES_PFN); 2062 kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm, NULL, 2063 KVM_HOST_USES_PFN); 2064 } 2065 2066 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu) 2067 { 2068 if (kvm_xen_timer_enabled(vcpu)) 2069 kvm_xen_stop_timer(vcpu); 2070 2071 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); 2072 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 2073 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 2074 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); 2075 2076 del_timer_sync(&vcpu->arch.xen.poll_timer); 2077 } 2078 2079 void kvm_xen_init_vm(struct kvm *kvm) 2080 { 2081 mutex_init(&kvm->arch.xen.xen_lock); 2082 idr_init(&kvm->arch.xen.evtchn_ports); 2083 kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm, NULL, KVM_HOST_USES_PFN); 2084 } 2085 2086 void kvm_xen_destroy_vm(struct kvm *kvm) 2087 { 2088 struct evtchnfd *evtchnfd; 2089 int i; 2090 2091 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); 2092 2093 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { 2094 if (!evtchnfd->deliver.port.port) 2095 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 2096 kfree(evtchnfd); 2097 } 2098 idr_destroy(&kvm->arch.xen.evtchn_ports); 2099 2100 if (kvm->arch.xen_hvm_config.msr) 2101 static_branch_slow_dec_deferred(&kvm_xen_enabled); 2102 } 2103