1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. 4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. 5 * 6 * KVM Xen emulation 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include "x86.h" 11 #include "xen.h" 12 #include "hyperv.h" 13 #include "irq.h" 14 15 #include <linux/eventfd.h> 16 #include <linux/kvm_host.h> 17 #include <linux/sched/stat.h> 18 19 #include <trace/events/kvm.h> 20 #include <xen/interface/xen.h> 21 #include <xen/interface/vcpu.h> 22 #include <xen/interface/version.h> 23 #include <xen/interface/event_channel.h> 24 #include <xen/interface/sched.h> 25 26 #include <asm/xen/cpuid.h> 27 #include <asm/pvclock.h> 28 29 #include "cpuid.h" 30 #include "trace.h" 31 32 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm); 33 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data); 34 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r); 35 36 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); 37 38 static int kvm_xen_shared_info_init(struct kvm *kvm) 39 { 40 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 41 struct pvclock_wall_clock *wc; 42 u32 *wc_sec_hi; 43 u32 wc_version; 44 u64 wall_nsec; 45 int ret = 0; 46 int idx = srcu_read_lock(&kvm->srcu); 47 48 read_lock_irq(&gpc->lock); 49 while (!kvm_gpc_check(gpc, PAGE_SIZE)) { 50 read_unlock_irq(&gpc->lock); 51 52 ret = kvm_gpc_refresh(gpc, PAGE_SIZE); 53 if (ret) 54 goto out; 55 56 read_lock_irq(&gpc->lock); 57 } 58 59 /* 60 * This code mirrors kvm_write_wall_clock() except that it writes 61 * directly through the pfn cache and doesn't mark the page dirty. 62 */ 63 wall_nsec = kvm_get_wall_clock_epoch(kvm); 64 65 /* Paranoia checks on the 32-bit struct layout */ 66 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); 67 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); 68 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 69 70 #ifdef CONFIG_X86_64 71 /* Paranoia checks on the 64-bit struct layout */ 72 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); 73 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); 74 75 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 76 struct shared_info *shinfo = gpc->khva; 77 78 wc_sec_hi = &shinfo->wc_sec_hi; 79 wc = &shinfo->wc; 80 } else 81 #endif 82 { 83 struct compat_shared_info *shinfo = gpc->khva; 84 85 wc_sec_hi = &shinfo->arch.wc_sec_hi; 86 wc = &shinfo->wc; 87 } 88 89 /* Increment and ensure an odd value */ 90 wc_version = wc->version = (wc->version + 1) | 1; 91 smp_wmb(); 92 93 wc->nsec = do_div(wall_nsec, NSEC_PER_SEC); 94 wc->sec = (u32)wall_nsec; 95 *wc_sec_hi = wall_nsec >> 32; 96 smp_wmb(); 97 98 wc->version = wc_version + 1; 99 read_unlock_irq(&gpc->lock); 100 101 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); 102 103 out: 104 srcu_read_unlock(&kvm->srcu, idx); 105 return ret; 106 } 107 108 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu) 109 { 110 if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) { 111 struct kvm_xen_evtchn e; 112 113 e.vcpu_id = vcpu->vcpu_id; 114 e.vcpu_idx = vcpu->vcpu_idx; 115 e.port = vcpu->arch.xen.timer_virq; 116 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 117 118 kvm_xen_set_evtchn(&e, vcpu->kvm); 119 120 vcpu->arch.xen.timer_expires = 0; 121 atomic_set(&vcpu->arch.xen.timer_pending, 0); 122 } 123 } 124 125 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer) 126 { 127 struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu, 128 arch.xen.timer); 129 struct kvm_xen_evtchn e; 130 int rc; 131 132 if (atomic_read(&vcpu->arch.xen.timer_pending)) 133 return HRTIMER_NORESTART; 134 135 e.vcpu_id = vcpu->vcpu_id; 136 e.vcpu_idx = vcpu->vcpu_idx; 137 e.port = vcpu->arch.xen.timer_virq; 138 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 139 140 rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm); 141 if (rc != -EWOULDBLOCK) { 142 vcpu->arch.xen.timer_expires = 0; 143 return HRTIMER_NORESTART; 144 } 145 146 atomic_inc(&vcpu->arch.xen.timer_pending); 147 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 148 kvm_vcpu_kick(vcpu); 149 150 return HRTIMER_NORESTART; 151 } 152 153 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, 154 bool linux_wa) 155 { 156 int64_t kernel_now, delta; 157 uint64_t guest_now; 158 159 /* 160 * The guest provides the requested timeout in absolute nanoseconds 161 * of the KVM clock — as *it* sees it, based on the scaled TSC and 162 * the pvclock information provided by KVM. 163 * 164 * The kernel doesn't support hrtimers based on CLOCK_MONOTONIC_RAW 165 * so use CLOCK_MONOTONIC. In the timescales covered by timers, the 166 * difference won't matter much as there is no cumulative effect. 167 * 168 * Calculate the time for some arbitrary point in time around "now" 169 * in terms of both kvmclock and CLOCK_MONOTONIC. Calculate the 170 * delta between the kvmclock "now" value and the guest's requested 171 * timeout, apply the "Linux workaround" described below, and add 172 * the resulting delta to the CLOCK_MONOTONIC "now" value, to get 173 * the absolute CLOCK_MONOTONIC time at which the timer should 174 * fire. 175 */ 176 if (vcpu->arch.hv_clock.version && vcpu->kvm->arch.use_master_clock && 177 static_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 178 uint64_t host_tsc, guest_tsc; 179 180 if (!IS_ENABLED(CONFIG_64BIT) || 181 !kvm_get_monotonic_and_clockread(&kernel_now, &host_tsc)) { 182 /* 183 * Don't fall back to get_kvmclock_ns() because it's 184 * broken; it has a systemic error in its results 185 * because it scales directly from host TSC to 186 * nanoseconds, and doesn't scale first to guest TSC 187 * and *then* to nanoseconds as the guest does. 188 * 189 * There is a small error introduced here because time 190 * continues to elapse between the ktime_get() and the 191 * subsequent rdtsc(). But not the systemic drift due 192 * to get_kvmclock_ns(). 193 */ 194 kernel_now = ktime_get(); /* This is CLOCK_MONOTONIC */ 195 host_tsc = rdtsc(); 196 } 197 198 /* Calculate the guest kvmclock as the guest would do it. */ 199 guest_tsc = kvm_read_l1_tsc(vcpu, host_tsc); 200 guest_now = __pvclock_read_cycles(&vcpu->arch.hv_clock, 201 guest_tsc); 202 } else { 203 /* 204 * Without CONSTANT_TSC, get_kvmclock_ns() is the only option. 205 * 206 * Also if the guest PV clock hasn't been set up yet, as is 207 * likely to be the case during migration when the vCPU has 208 * not been run yet. It would be possible to calculate the 209 * scaling factors properly in that case but there's not much 210 * point in doing so. The get_kvmclock_ns() drift accumulates 211 * over time, so it's OK to use it at startup. Besides, on 212 * migration there's going to be a little bit of skew in the 213 * precise moment at which timers fire anyway. Often they'll 214 * be in the "past" by the time the VM is running again after 215 * migration. 216 */ 217 guest_now = get_kvmclock_ns(vcpu->kvm); 218 kernel_now = ktime_get(); 219 } 220 221 delta = guest_abs - guest_now; 222 223 /* 224 * Xen has a 'Linux workaround' in do_set_timer_op() which checks for 225 * negative absolute timeout values (caused by integer overflow), and 226 * for values about 13 days in the future (2^50ns) which would be 227 * caused by jiffies overflow. For those cases, Xen sets the timeout 228 * 100ms in the future (not *too* soon, since if a guest really did 229 * set a long timeout on purpose we don't want to keep churning CPU 230 * time by waking it up). Emulate Xen's workaround when starting the 231 * timer in response to __HYPERVISOR_set_timer_op. 232 */ 233 if (linux_wa && 234 unlikely((int64_t)guest_abs < 0 || 235 (delta > 0 && (uint32_t) (delta >> 50) != 0))) { 236 delta = 100 * NSEC_PER_MSEC; 237 guest_abs = guest_now + delta; 238 } 239 240 /* 241 * Avoid races with the old timer firing. Checking timer_expires 242 * to avoid calling hrtimer_cancel() will only have false positives 243 * so is fine. 244 */ 245 if (vcpu->arch.xen.timer_expires) 246 hrtimer_cancel(&vcpu->arch.xen.timer); 247 248 atomic_set(&vcpu->arch.xen.timer_pending, 0); 249 vcpu->arch.xen.timer_expires = guest_abs; 250 251 if (delta <= 0) 252 xen_timer_callback(&vcpu->arch.xen.timer); 253 else 254 hrtimer_start(&vcpu->arch.xen.timer, 255 ktime_add_ns(kernel_now, delta), 256 HRTIMER_MODE_ABS_HARD); 257 } 258 259 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu) 260 { 261 hrtimer_cancel(&vcpu->arch.xen.timer); 262 vcpu->arch.xen.timer_expires = 0; 263 atomic_set(&vcpu->arch.xen.timer_pending, 0); 264 } 265 266 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic) 267 { 268 struct kvm_vcpu_xen *vx = &v->arch.xen; 269 struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache; 270 struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache; 271 size_t user_len, user_len1, user_len2; 272 struct vcpu_runstate_info rs; 273 unsigned long flags; 274 size_t times_ofs; 275 uint8_t *update_bit = NULL; 276 uint64_t entry_time; 277 uint64_t *rs_times; 278 int *rs_state; 279 280 /* 281 * The only difference between 32-bit and 64-bit versions of the 282 * runstate struct is the alignment of uint64_t in 32-bit, which 283 * means that the 64-bit version has an additional 4 bytes of 284 * padding after the first field 'state'. Let's be really really 285 * paranoid about that, and matching it with our internal data 286 * structures that we memcpy into it... 287 */ 288 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0); 289 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0); 290 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); 291 #ifdef CONFIG_X86_64 292 /* 293 * The 64-bit structure has 4 bytes of padding before 'state_entry_time' 294 * so each subsequent field is shifted by 4, and it's 4 bytes longer. 295 */ 296 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 297 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); 298 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != 299 offsetof(struct compat_vcpu_runstate_info, time) + 4); 300 BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4); 301 #endif 302 /* 303 * The state field is in the same place at the start of both structs, 304 * and is the same size (int) as vx->current_runstate. 305 */ 306 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 307 offsetof(struct compat_vcpu_runstate_info, state)); 308 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != 309 sizeof(vx->current_runstate)); 310 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != 311 sizeof(vx->current_runstate)); 312 313 /* 314 * The state_entry_time field is 64 bits in both versions, and the 315 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86 316 * is little-endian means that it's in the last *byte* of the word. 317 * That detail is important later. 318 */ 319 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != 320 sizeof(uint64_t)); 321 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != 322 sizeof(uint64_t)); 323 BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80); 324 325 /* 326 * The time array is four 64-bit quantities in both versions, matching 327 * the vx->runstate_times and immediately following state_entry_time. 328 */ 329 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 330 offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t)); 331 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != 332 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t)); 333 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 334 sizeof_field(struct compat_vcpu_runstate_info, time)); 335 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 336 sizeof(vx->runstate_times)); 337 338 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { 339 user_len = sizeof(struct vcpu_runstate_info); 340 times_ofs = offsetof(struct vcpu_runstate_info, 341 state_entry_time); 342 } else { 343 user_len = sizeof(struct compat_vcpu_runstate_info); 344 times_ofs = offsetof(struct compat_vcpu_runstate_info, 345 state_entry_time); 346 } 347 348 /* 349 * There are basically no alignment constraints. The guest can set it 350 * up so it crosses from one page to the next, and at arbitrary byte 351 * alignment (and the 32-bit ABI doesn't align the 64-bit integers 352 * anyway, even if the overall struct had been 64-bit aligned). 353 */ 354 if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) { 355 user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK); 356 user_len2 = user_len - user_len1; 357 } else { 358 user_len1 = user_len; 359 user_len2 = 0; 360 } 361 BUG_ON(user_len1 + user_len2 != user_len); 362 363 retry: 364 /* 365 * Attempt to obtain the GPC lock on *both* (if there are two) 366 * gfn_to_pfn caches that cover the region. 367 */ 368 if (atomic) { 369 local_irq_save(flags); 370 if (!read_trylock(&gpc1->lock)) { 371 local_irq_restore(flags); 372 return; 373 } 374 } else { 375 read_lock_irqsave(&gpc1->lock, flags); 376 } 377 while (!kvm_gpc_check(gpc1, user_len1)) { 378 read_unlock_irqrestore(&gpc1->lock, flags); 379 380 /* When invoked from kvm_sched_out() we cannot sleep */ 381 if (atomic) 382 return; 383 384 if (kvm_gpc_refresh(gpc1, user_len1)) 385 return; 386 387 read_lock_irqsave(&gpc1->lock, flags); 388 } 389 390 if (likely(!user_len2)) { 391 /* 392 * Set up three pointers directly to the runstate_info 393 * struct in the guest (via the GPC). 394 * 395 * • @rs_state → state field 396 * • @rs_times → state_entry_time field. 397 * • @update_bit → last byte of state_entry_time, which 398 * contains the XEN_RUNSTATE_UPDATE bit. 399 */ 400 rs_state = gpc1->khva; 401 rs_times = gpc1->khva + times_ofs; 402 if (v->kvm->arch.xen.runstate_update_flag) 403 update_bit = ((void *)(&rs_times[1])) - 1; 404 } else { 405 /* 406 * The guest's runstate_info is split across two pages and we 407 * need to hold and validate both GPCs simultaneously. We can 408 * declare a lock ordering GPC1 > GPC2 because nothing else 409 * takes them more than one at a time. Set a subclass on the 410 * gpc1 lock to make lockdep shut up about it. 411 */ 412 lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_); 413 if (atomic) { 414 if (!read_trylock(&gpc2->lock)) { 415 read_unlock_irqrestore(&gpc1->lock, flags); 416 return; 417 } 418 } else { 419 read_lock(&gpc2->lock); 420 } 421 422 if (!kvm_gpc_check(gpc2, user_len2)) { 423 read_unlock(&gpc2->lock); 424 read_unlock_irqrestore(&gpc1->lock, flags); 425 426 /* When invoked from kvm_sched_out() we cannot sleep */ 427 if (atomic) 428 return; 429 430 /* 431 * Use kvm_gpc_activate() here because if the runstate 432 * area was configured in 32-bit mode and only extends 433 * to the second page now because the guest changed to 434 * 64-bit mode, the second GPC won't have been set up. 435 */ 436 if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1, 437 user_len2)) 438 return; 439 440 /* 441 * We dropped the lock on GPC1 so we have to go all the 442 * way back and revalidate that too. 443 */ 444 goto retry; 445 } 446 447 /* 448 * In this case, the runstate_info struct will be assembled on 449 * the kernel stack (compat or not as appropriate) and will 450 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three 451 * rs pointers accordingly. 452 */ 453 rs_times = &rs.state_entry_time; 454 455 /* 456 * The rs_state pointer points to the start of what we'll 457 * copy to the guest, which in the case of a compat guest 458 * is the 32-bit field that the compiler thinks is padding. 459 */ 460 rs_state = ((void *)rs_times) - times_ofs; 461 462 /* 463 * The update_bit is still directly in the guest memory, 464 * via one GPC or the other. 465 */ 466 if (v->kvm->arch.xen.runstate_update_flag) { 467 if (user_len1 >= times_ofs + sizeof(uint64_t)) 468 update_bit = gpc1->khva + times_ofs + 469 sizeof(uint64_t) - 1; 470 else 471 update_bit = gpc2->khva + times_ofs + 472 sizeof(uint64_t) - 1 - user_len1; 473 } 474 475 #ifdef CONFIG_X86_64 476 /* 477 * Don't leak kernel memory through the padding in the 64-bit 478 * version of the struct. 479 */ 480 memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time)); 481 #endif 482 } 483 484 /* 485 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the 486 * state_entry_time field, directly in the guest. We need to set 487 * that (and write-barrier) before writing to the rest of the 488 * structure, and clear it last. Just as Xen does, we address the 489 * single *byte* in which it resides because it might be in a 490 * different cache line to the rest of the 64-bit word, due to 491 * the (lack of) alignment constraints. 492 */ 493 entry_time = vx->runstate_entry_time; 494 if (update_bit) { 495 entry_time |= XEN_RUNSTATE_UPDATE; 496 *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56; 497 smp_wmb(); 498 } 499 500 /* 501 * Now assemble the actual structure, either on our kernel stack 502 * or directly in the guest according to how the rs_state and 503 * rs_times pointers were set up above. 504 */ 505 *rs_state = vx->current_runstate; 506 rs_times[0] = entry_time; 507 memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times)); 508 509 /* For the split case, we have to then copy it to the guest. */ 510 if (user_len2) { 511 memcpy(gpc1->khva, rs_state, user_len1); 512 memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2); 513 } 514 smp_wmb(); 515 516 /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */ 517 if (update_bit) { 518 entry_time &= ~XEN_RUNSTATE_UPDATE; 519 *update_bit = entry_time >> 56; 520 smp_wmb(); 521 } 522 523 if (user_len2) { 524 kvm_gpc_mark_dirty_in_slot(gpc2); 525 read_unlock(&gpc2->lock); 526 } 527 528 kvm_gpc_mark_dirty_in_slot(gpc1); 529 read_unlock_irqrestore(&gpc1->lock, flags); 530 } 531 532 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) 533 { 534 struct kvm_vcpu_xen *vx = &v->arch.xen; 535 u64 now = get_kvmclock_ns(v->kvm); 536 u64 delta_ns = now - vx->runstate_entry_time; 537 u64 run_delay = current->sched_info.run_delay; 538 539 if (unlikely(!vx->runstate_entry_time)) 540 vx->current_runstate = RUNSTATE_offline; 541 542 /* 543 * Time waiting for the scheduler isn't "stolen" if the 544 * vCPU wasn't running anyway. 545 */ 546 if (vx->current_runstate == RUNSTATE_running) { 547 u64 steal_ns = run_delay - vx->last_steal; 548 549 delta_ns -= steal_ns; 550 551 vx->runstate_times[RUNSTATE_runnable] += steal_ns; 552 } 553 vx->last_steal = run_delay; 554 555 vx->runstate_times[vx->current_runstate] += delta_ns; 556 vx->current_runstate = state; 557 vx->runstate_entry_time = now; 558 559 if (vx->runstate_cache.active) 560 kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable); 561 } 562 563 void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v) 564 { 565 struct kvm_lapic_irq irq = { }; 566 567 irq.dest_id = v->vcpu_id; 568 irq.vector = v->arch.xen.upcall_vector; 569 irq.dest_mode = APIC_DEST_PHYSICAL; 570 irq.shorthand = APIC_DEST_NOSHORT; 571 irq.delivery_mode = APIC_DM_FIXED; 572 irq.level = 1; 573 574 kvm_irq_delivery_to_apic(v->kvm, NULL, &irq, NULL); 575 } 576 577 /* 578 * On event channel delivery, the vcpu_info may not have been accessible. 579 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which 580 * need to be marked into the vcpu_info (and evtchn_upcall_pending set). 581 * Do so now that we can sleep in the context of the vCPU to bring the 582 * page in, and refresh the pfn cache for it. 583 */ 584 void kvm_xen_inject_pending_events(struct kvm_vcpu *v) 585 { 586 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); 587 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; 588 unsigned long flags; 589 590 if (!evtchn_pending_sel) 591 return; 592 593 /* 594 * Yes, this is an open-coded loop. But that's just what put_user() 595 * does anyway. Page it in and retry the instruction. We're just a 596 * little more honest about it. 597 */ 598 read_lock_irqsave(&gpc->lock, flags); 599 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 600 read_unlock_irqrestore(&gpc->lock, flags); 601 602 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) 603 return; 604 605 read_lock_irqsave(&gpc->lock, flags); 606 } 607 608 /* Now gpc->khva is a valid kernel address for the vcpu_info */ 609 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { 610 struct vcpu_info *vi = gpc->khva; 611 612 asm volatile(LOCK_PREFIX "orq %0, %1\n" 613 "notq %0\n" 614 LOCK_PREFIX "andq %0, %2\n" 615 : "=r" (evtchn_pending_sel), 616 "+m" (vi->evtchn_pending_sel), 617 "+m" (v->arch.xen.evtchn_pending_sel) 618 : "0" (evtchn_pending_sel)); 619 WRITE_ONCE(vi->evtchn_upcall_pending, 1); 620 } else { 621 u32 evtchn_pending_sel32 = evtchn_pending_sel; 622 struct compat_vcpu_info *vi = gpc->khva; 623 624 asm volatile(LOCK_PREFIX "orl %0, %1\n" 625 "notl %0\n" 626 LOCK_PREFIX "andl %0, %2\n" 627 : "=r" (evtchn_pending_sel32), 628 "+m" (vi->evtchn_pending_sel), 629 "+m" (v->arch.xen.evtchn_pending_sel) 630 : "0" (evtchn_pending_sel32)); 631 WRITE_ONCE(vi->evtchn_upcall_pending, 1); 632 } 633 634 kvm_gpc_mark_dirty_in_slot(gpc); 635 read_unlock_irqrestore(&gpc->lock, flags); 636 637 /* For the per-vCPU lapic vector, deliver it as MSI. */ 638 if (v->arch.xen.upcall_vector) 639 kvm_xen_inject_vcpu_vector(v); 640 } 641 642 int __kvm_xen_has_interrupt(struct kvm_vcpu *v) 643 { 644 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; 645 unsigned long flags; 646 u8 rc = 0; 647 648 /* 649 * If the global upcall vector (HVMIRQ_callback_vector) is set and 650 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. 651 */ 652 653 /* No need for compat handling here */ 654 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != 655 offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); 656 BUILD_BUG_ON(sizeof(rc) != 657 sizeof_field(struct vcpu_info, evtchn_upcall_pending)); 658 BUILD_BUG_ON(sizeof(rc) != 659 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); 660 661 read_lock_irqsave(&gpc->lock, flags); 662 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 663 read_unlock_irqrestore(&gpc->lock, flags); 664 665 /* 666 * This function gets called from kvm_vcpu_block() after setting the 667 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately 668 * from a HLT. So we really mustn't sleep. If the page ended up absent 669 * at that point, just return 1 in order to trigger an immediate wake, 670 * and we'll end up getting called again from a context where we *can* 671 * fault in the page and wait for it. 672 */ 673 if (in_atomic() || !task_is_running(current)) 674 return 1; 675 676 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) { 677 /* 678 * If this failed, userspace has screwed up the 679 * vcpu_info mapping. No interrupts for you. 680 */ 681 return 0; 682 } 683 read_lock_irqsave(&gpc->lock, flags); 684 } 685 686 rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending; 687 read_unlock_irqrestore(&gpc->lock, flags); 688 return rc; 689 } 690 691 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 692 { 693 int r = -ENOENT; 694 695 696 switch (data->type) { 697 case KVM_XEN_ATTR_TYPE_LONG_MODE: 698 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { 699 r = -EINVAL; 700 } else { 701 mutex_lock(&kvm->arch.xen.xen_lock); 702 kvm->arch.xen.long_mode = !!data->u.long_mode; 703 704 /* 705 * Re-initialize shared_info to put the wallclock in the 706 * correct place. Whilst it's not necessary to do this 707 * unless the mode is actually changed, it does no harm 708 * to make the call anyway. 709 */ 710 r = kvm->arch.xen.shinfo_cache.active ? 711 kvm_xen_shared_info_init(kvm) : 0; 712 mutex_unlock(&kvm->arch.xen.xen_lock); 713 } 714 break; 715 716 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 717 case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: { 718 int idx; 719 720 mutex_lock(&kvm->arch.xen.xen_lock); 721 722 idx = srcu_read_lock(&kvm->srcu); 723 724 if (data->type == KVM_XEN_ATTR_TYPE_SHARED_INFO) { 725 gfn_t gfn = data->u.shared_info.gfn; 726 727 if (gfn == KVM_XEN_INVALID_GFN) { 728 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); 729 r = 0; 730 } else { 731 r = kvm_gpc_activate(&kvm->arch.xen.shinfo_cache, 732 gfn_to_gpa(gfn), PAGE_SIZE); 733 } 734 } else { 735 void __user * hva = u64_to_user_ptr(data->u.shared_info.hva); 736 737 if (!PAGE_ALIGNED(hva)) { 738 r = -EINVAL; 739 } else if (!hva) { 740 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); 741 r = 0; 742 } else { 743 r = kvm_gpc_activate_hva(&kvm->arch.xen.shinfo_cache, 744 (unsigned long)hva, PAGE_SIZE); 745 } 746 } 747 748 srcu_read_unlock(&kvm->srcu, idx); 749 750 if (!r && kvm->arch.xen.shinfo_cache.active) 751 r = kvm_xen_shared_info_init(kvm); 752 753 mutex_unlock(&kvm->arch.xen.xen_lock); 754 break; 755 } 756 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 757 if (data->u.vector && data->u.vector < 0x10) 758 r = -EINVAL; 759 else { 760 mutex_lock(&kvm->arch.xen.xen_lock); 761 kvm->arch.xen.upcall_vector = data->u.vector; 762 mutex_unlock(&kvm->arch.xen.xen_lock); 763 r = 0; 764 } 765 break; 766 767 case KVM_XEN_ATTR_TYPE_EVTCHN: 768 r = kvm_xen_setattr_evtchn(kvm, data); 769 break; 770 771 case KVM_XEN_ATTR_TYPE_XEN_VERSION: 772 mutex_lock(&kvm->arch.xen.xen_lock); 773 kvm->arch.xen.xen_version = data->u.xen_version; 774 mutex_unlock(&kvm->arch.xen.xen_lock); 775 r = 0; 776 break; 777 778 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: 779 if (!sched_info_on()) { 780 r = -EOPNOTSUPP; 781 break; 782 } 783 mutex_lock(&kvm->arch.xen.xen_lock); 784 kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag; 785 mutex_unlock(&kvm->arch.xen.xen_lock); 786 r = 0; 787 break; 788 789 default: 790 break; 791 } 792 793 return r; 794 } 795 796 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 797 { 798 int r = -ENOENT; 799 800 mutex_lock(&kvm->arch.xen.xen_lock); 801 802 switch (data->type) { 803 case KVM_XEN_ATTR_TYPE_LONG_MODE: 804 data->u.long_mode = kvm->arch.xen.long_mode; 805 r = 0; 806 break; 807 808 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 809 if (kvm_gpc_is_gpa_active(&kvm->arch.xen.shinfo_cache)) 810 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); 811 else 812 data->u.shared_info.gfn = KVM_XEN_INVALID_GFN; 813 r = 0; 814 break; 815 816 case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: 817 if (kvm_gpc_is_hva_active(&kvm->arch.xen.shinfo_cache)) 818 data->u.shared_info.hva = kvm->arch.xen.shinfo_cache.uhva; 819 else 820 data->u.shared_info.hva = 0; 821 r = 0; 822 break; 823 824 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 825 data->u.vector = kvm->arch.xen.upcall_vector; 826 r = 0; 827 break; 828 829 case KVM_XEN_ATTR_TYPE_XEN_VERSION: 830 data->u.xen_version = kvm->arch.xen.xen_version; 831 r = 0; 832 break; 833 834 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: 835 if (!sched_info_on()) { 836 r = -EOPNOTSUPP; 837 break; 838 } 839 data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag; 840 r = 0; 841 break; 842 843 default: 844 break; 845 } 846 847 mutex_unlock(&kvm->arch.xen.xen_lock); 848 return r; 849 } 850 851 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 852 { 853 int idx, r = -ENOENT; 854 855 mutex_lock(&vcpu->kvm->arch.xen.xen_lock); 856 idx = srcu_read_lock(&vcpu->kvm->srcu); 857 858 switch (data->type) { 859 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 860 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA: 861 /* No compat necessary here. */ 862 BUILD_BUG_ON(sizeof(struct vcpu_info) != 863 sizeof(struct compat_vcpu_info)); 864 BUILD_BUG_ON(offsetof(struct vcpu_info, time) != 865 offsetof(struct compat_vcpu_info, time)); 866 867 if (data->type == KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO) { 868 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 869 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 870 r = 0; 871 break; 872 } 873 874 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache, 875 data->u.gpa, sizeof(struct vcpu_info)); 876 } else { 877 if (data->u.hva == 0) { 878 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 879 r = 0; 880 break; 881 } 882 883 r = kvm_gpc_activate_hva(&vcpu->arch.xen.vcpu_info_cache, 884 data->u.hva, sizeof(struct vcpu_info)); 885 } 886 887 if (!r) 888 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 889 890 break; 891 892 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 893 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 894 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); 895 r = 0; 896 break; 897 } 898 899 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache, 900 data->u.gpa, 901 sizeof(struct pvclock_vcpu_time_info)); 902 if (!r) 903 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 904 break; 905 906 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: { 907 size_t sz, sz1, sz2; 908 909 if (!sched_info_on()) { 910 r = -EOPNOTSUPP; 911 break; 912 } 913 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 914 r = 0; 915 deactivate_out: 916 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); 917 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 918 break; 919 } 920 921 /* 922 * If the guest switches to 64-bit mode after setting the runstate 923 * address, that's actually OK. kvm_xen_update_runstate_guest() 924 * will cope. 925 */ 926 if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode) 927 sz = sizeof(struct vcpu_runstate_info); 928 else 929 sz = sizeof(struct compat_vcpu_runstate_info); 930 931 /* How much fits in the (first) page? */ 932 sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK); 933 r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache, 934 data->u.gpa, sz1); 935 if (r) 936 goto deactivate_out; 937 938 /* Either map the second page, or deactivate the second GPC */ 939 if (sz1 >= sz) { 940 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 941 } else { 942 sz2 = sz - sz1; 943 BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK); 944 r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache, 945 data->u.gpa + sz1, sz2); 946 if (r) 947 goto deactivate_out; 948 } 949 950 kvm_xen_update_runstate_guest(vcpu, false); 951 break; 952 } 953 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 954 if (!sched_info_on()) { 955 r = -EOPNOTSUPP; 956 break; 957 } 958 if (data->u.runstate.state > RUNSTATE_offline) { 959 r = -EINVAL; 960 break; 961 } 962 963 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 964 r = 0; 965 break; 966 967 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 968 if (!sched_info_on()) { 969 r = -EOPNOTSUPP; 970 break; 971 } 972 if (data->u.runstate.state > RUNSTATE_offline) { 973 r = -EINVAL; 974 break; 975 } 976 if (data->u.runstate.state_entry_time != 977 (data->u.runstate.time_running + 978 data->u.runstate.time_runnable + 979 data->u.runstate.time_blocked + 980 data->u.runstate.time_offline)) { 981 r = -EINVAL; 982 break; 983 } 984 if (get_kvmclock_ns(vcpu->kvm) < 985 data->u.runstate.state_entry_time) { 986 r = -EINVAL; 987 break; 988 } 989 990 vcpu->arch.xen.current_runstate = data->u.runstate.state; 991 vcpu->arch.xen.runstate_entry_time = 992 data->u.runstate.state_entry_time; 993 vcpu->arch.xen.runstate_times[RUNSTATE_running] = 994 data->u.runstate.time_running; 995 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = 996 data->u.runstate.time_runnable; 997 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = 998 data->u.runstate.time_blocked; 999 vcpu->arch.xen.runstate_times[RUNSTATE_offline] = 1000 data->u.runstate.time_offline; 1001 vcpu->arch.xen.last_steal = current->sched_info.run_delay; 1002 r = 0; 1003 break; 1004 1005 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 1006 if (!sched_info_on()) { 1007 r = -EOPNOTSUPP; 1008 break; 1009 } 1010 if (data->u.runstate.state > RUNSTATE_offline && 1011 data->u.runstate.state != (u64)-1) { 1012 r = -EINVAL; 1013 break; 1014 } 1015 /* The adjustment must add up */ 1016 if (data->u.runstate.state_entry_time != 1017 (data->u.runstate.time_running + 1018 data->u.runstate.time_runnable + 1019 data->u.runstate.time_blocked + 1020 data->u.runstate.time_offline)) { 1021 r = -EINVAL; 1022 break; 1023 } 1024 1025 if (get_kvmclock_ns(vcpu->kvm) < 1026 (vcpu->arch.xen.runstate_entry_time + 1027 data->u.runstate.state_entry_time)) { 1028 r = -EINVAL; 1029 break; 1030 } 1031 1032 vcpu->arch.xen.runstate_entry_time += 1033 data->u.runstate.state_entry_time; 1034 vcpu->arch.xen.runstate_times[RUNSTATE_running] += 1035 data->u.runstate.time_running; 1036 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += 1037 data->u.runstate.time_runnable; 1038 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += 1039 data->u.runstate.time_blocked; 1040 vcpu->arch.xen.runstate_times[RUNSTATE_offline] += 1041 data->u.runstate.time_offline; 1042 1043 if (data->u.runstate.state <= RUNSTATE_offline) 1044 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 1045 else if (vcpu->arch.xen.runstate_cache.active) 1046 kvm_xen_update_runstate_guest(vcpu, false); 1047 r = 0; 1048 break; 1049 1050 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: 1051 if (data->u.vcpu_id >= KVM_MAX_VCPUS) 1052 r = -EINVAL; 1053 else { 1054 vcpu->arch.xen.vcpu_id = data->u.vcpu_id; 1055 r = 0; 1056 } 1057 break; 1058 1059 case KVM_XEN_VCPU_ATTR_TYPE_TIMER: 1060 if (data->u.timer.port && 1061 data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) { 1062 r = -EINVAL; 1063 break; 1064 } 1065 1066 /* Stop the timer (if it's running) before changing the vector */ 1067 kvm_xen_stop_timer(vcpu); 1068 vcpu->arch.xen.timer_virq = data->u.timer.port; 1069 1070 /* Start the timer if the new value has a valid vector+expiry. */ 1071 if (data->u.timer.port && data->u.timer.expires_ns) 1072 kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, false); 1073 1074 r = 0; 1075 break; 1076 1077 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: 1078 if (data->u.vector && data->u.vector < 0x10) 1079 r = -EINVAL; 1080 else { 1081 vcpu->arch.xen.upcall_vector = data->u.vector; 1082 r = 0; 1083 } 1084 break; 1085 1086 default: 1087 break; 1088 } 1089 1090 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1091 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); 1092 return r; 1093 } 1094 1095 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 1096 { 1097 int r = -ENOENT; 1098 1099 mutex_lock(&vcpu->kvm->arch.xen.xen_lock); 1100 1101 switch (data->type) { 1102 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 1103 if (kvm_gpc_is_gpa_active(&vcpu->arch.xen.vcpu_info_cache)) 1104 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; 1105 else 1106 data->u.gpa = KVM_XEN_INVALID_GPA; 1107 r = 0; 1108 break; 1109 1110 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA: 1111 if (kvm_gpc_is_hva_active(&vcpu->arch.xen.vcpu_info_cache)) 1112 data->u.hva = vcpu->arch.xen.vcpu_info_cache.uhva; 1113 else 1114 data->u.hva = 0; 1115 r = 0; 1116 break; 1117 1118 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 1119 if (vcpu->arch.xen.vcpu_time_info_cache.active) 1120 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; 1121 else 1122 data->u.gpa = KVM_XEN_INVALID_GPA; 1123 r = 0; 1124 break; 1125 1126 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 1127 if (!sched_info_on()) { 1128 r = -EOPNOTSUPP; 1129 break; 1130 } 1131 if (vcpu->arch.xen.runstate_cache.active) { 1132 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; 1133 r = 0; 1134 } 1135 break; 1136 1137 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 1138 if (!sched_info_on()) { 1139 r = -EOPNOTSUPP; 1140 break; 1141 } 1142 data->u.runstate.state = vcpu->arch.xen.current_runstate; 1143 r = 0; 1144 break; 1145 1146 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 1147 if (!sched_info_on()) { 1148 r = -EOPNOTSUPP; 1149 break; 1150 } 1151 data->u.runstate.state = vcpu->arch.xen.current_runstate; 1152 data->u.runstate.state_entry_time = 1153 vcpu->arch.xen.runstate_entry_time; 1154 data->u.runstate.time_running = 1155 vcpu->arch.xen.runstate_times[RUNSTATE_running]; 1156 data->u.runstate.time_runnable = 1157 vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; 1158 data->u.runstate.time_blocked = 1159 vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; 1160 data->u.runstate.time_offline = 1161 vcpu->arch.xen.runstate_times[RUNSTATE_offline]; 1162 r = 0; 1163 break; 1164 1165 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 1166 r = -EINVAL; 1167 break; 1168 1169 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: 1170 data->u.vcpu_id = vcpu->arch.xen.vcpu_id; 1171 r = 0; 1172 break; 1173 1174 case KVM_XEN_VCPU_ATTR_TYPE_TIMER: 1175 /* 1176 * Ensure a consistent snapshot of state is captured, with a 1177 * timer either being pending, or the event channel delivered 1178 * to the corresponding bit in the shared_info. Not still 1179 * lurking in the timer_pending flag for deferred delivery. 1180 * Purely as an optimisation, if the timer_expires field is 1181 * zero, that means the timer isn't active (or even in the 1182 * timer_pending flag) and there is no need to cancel it. 1183 */ 1184 if (vcpu->arch.xen.timer_expires) { 1185 hrtimer_cancel(&vcpu->arch.xen.timer); 1186 kvm_xen_inject_timer_irqs(vcpu); 1187 } 1188 1189 data->u.timer.port = vcpu->arch.xen.timer_virq; 1190 data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 1191 data->u.timer.expires_ns = vcpu->arch.xen.timer_expires; 1192 1193 /* 1194 * The hrtimer may trigger and raise the IRQ immediately, 1195 * while the returned state causes it to be set up and 1196 * raised again on the destination system after migration. 1197 * That's fine, as the guest won't even have had a chance 1198 * to run and handle the interrupt. Asserting an already 1199 * pending event channel is idempotent. 1200 */ 1201 if (vcpu->arch.xen.timer_expires) 1202 hrtimer_start_expires(&vcpu->arch.xen.timer, 1203 HRTIMER_MODE_ABS_HARD); 1204 1205 r = 0; 1206 break; 1207 1208 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: 1209 data->u.vector = vcpu->arch.xen.upcall_vector; 1210 r = 0; 1211 break; 1212 1213 default: 1214 break; 1215 } 1216 1217 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); 1218 return r; 1219 } 1220 1221 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) 1222 { 1223 struct kvm *kvm = vcpu->kvm; 1224 u32 page_num = data & ~PAGE_MASK; 1225 u64 page_addr = data & PAGE_MASK; 1226 bool lm = is_long_mode(vcpu); 1227 int r = 0; 1228 1229 mutex_lock(&kvm->arch.xen.xen_lock); 1230 if (kvm->arch.xen.long_mode != lm) { 1231 kvm->arch.xen.long_mode = lm; 1232 1233 /* 1234 * Re-initialize shared_info to put the wallclock in the 1235 * correct place. 1236 */ 1237 if (kvm->arch.xen.shinfo_cache.active && 1238 kvm_xen_shared_info_init(kvm)) 1239 r = 1; 1240 } 1241 mutex_unlock(&kvm->arch.xen.xen_lock); 1242 1243 if (r) 1244 return r; 1245 1246 /* 1247 * If Xen hypercall intercept is enabled, fill the hypercall 1248 * page with VMCALL/VMMCALL instructions since that's what 1249 * we catch. Else the VMM has provided the hypercall pages 1250 * with instructions of its own choosing, so use those. 1251 */ 1252 if (kvm_xen_hypercall_enabled(kvm)) { 1253 u8 instructions[32]; 1254 int i; 1255 1256 if (page_num) 1257 return 1; 1258 1259 /* mov imm32, %eax */ 1260 instructions[0] = 0xb8; 1261 1262 /* vmcall / vmmcall */ 1263 kvm_x86_call(patch_hypercall)(vcpu, instructions + 5); 1264 1265 /* ret */ 1266 instructions[8] = 0xc3; 1267 1268 /* int3 to pad */ 1269 memset(instructions + 9, 0xcc, sizeof(instructions) - 9); 1270 1271 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { 1272 *(u32 *)&instructions[1] = i; 1273 if (kvm_vcpu_write_guest(vcpu, 1274 page_addr + (i * sizeof(instructions)), 1275 instructions, sizeof(instructions))) 1276 return 1; 1277 } 1278 } else { 1279 /* 1280 * Note, truncation is a non-issue as 'lm' is guaranteed to be 1281 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. 1282 */ 1283 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64 1284 : kvm->arch.xen_hvm_config.blob_addr_32; 1285 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1286 : kvm->arch.xen_hvm_config.blob_size_32; 1287 u8 *page; 1288 int ret; 1289 1290 if (page_num >= blob_size) 1291 return 1; 1292 1293 blob_addr += page_num * PAGE_SIZE; 1294 1295 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); 1296 if (IS_ERR(page)) 1297 return PTR_ERR(page); 1298 1299 ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE); 1300 kfree(page); 1301 if (ret) 1302 return 1; 1303 } 1304 return 0; 1305 } 1306 1307 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) 1308 { 1309 /* Only some feature flags need to be *enabled* by userspace */ 1310 u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 1311 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 1312 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 1313 u32 old_flags; 1314 1315 if (xhc->flags & ~permitted_flags) 1316 return -EINVAL; 1317 1318 /* 1319 * With hypercall interception the kernel generates its own 1320 * hypercall page so it must not be provided. 1321 */ 1322 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && 1323 (xhc->blob_addr_32 || xhc->blob_addr_64 || 1324 xhc->blob_size_32 || xhc->blob_size_64)) 1325 return -EINVAL; 1326 1327 mutex_lock(&kvm->arch.xen.xen_lock); 1328 1329 if (xhc->msr && !kvm->arch.xen_hvm_config.msr) 1330 static_branch_inc(&kvm_xen_enabled.key); 1331 else if (!xhc->msr && kvm->arch.xen_hvm_config.msr) 1332 static_branch_slow_dec_deferred(&kvm_xen_enabled); 1333 1334 old_flags = kvm->arch.xen_hvm_config.flags; 1335 memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc)); 1336 1337 mutex_unlock(&kvm->arch.xen.xen_lock); 1338 1339 if ((old_flags ^ xhc->flags) & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE) 1340 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 1341 1342 return 0; 1343 } 1344 1345 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 1346 { 1347 kvm_rax_write(vcpu, result); 1348 return kvm_skip_emulated_instruction(vcpu); 1349 } 1350 1351 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 1352 { 1353 struct kvm_run *run = vcpu->run; 1354 1355 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) 1356 return 1; 1357 1358 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); 1359 } 1360 1361 static inline int max_evtchn_port(struct kvm *kvm) 1362 { 1363 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) 1364 return EVTCHN_2L_NR_CHANNELS; 1365 else 1366 return COMPAT_EVTCHN_2L_NR_CHANNELS; 1367 } 1368 1369 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports, 1370 evtchn_port_t *ports) 1371 { 1372 struct kvm *kvm = vcpu->kvm; 1373 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1374 unsigned long *pending_bits; 1375 unsigned long flags; 1376 bool ret = true; 1377 int idx, i; 1378 1379 idx = srcu_read_lock(&kvm->srcu); 1380 read_lock_irqsave(&gpc->lock, flags); 1381 if (!kvm_gpc_check(gpc, PAGE_SIZE)) 1382 goto out_rcu; 1383 1384 ret = false; 1385 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1386 struct shared_info *shinfo = gpc->khva; 1387 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1388 } else { 1389 struct compat_shared_info *shinfo = gpc->khva; 1390 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1391 } 1392 1393 for (i = 0; i < nr_ports; i++) { 1394 if (test_bit(ports[i], pending_bits)) { 1395 ret = true; 1396 break; 1397 } 1398 } 1399 1400 out_rcu: 1401 read_unlock_irqrestore(&gpc->lock, flags); 1402 srcu_read_unlock(&kvm->srcu, idx); 1403 1404 return ret; 1405 } 1406 1407 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode, 1408 u64 param, u64 *r) 1409 { 1410 struct sched_poll sched_poll; 1411 evtchn_port_t port, *ports; 1412 struct x86_exception e; 1413 int i; 1414 1415 if (!lapic_in_kernel(vcpu) || 1416 !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND)) 1417 return false; 1418 1419 if (IS_ENABLED(CONFIG_64BIT) && !longmode) { 1420 struct compat_sched_poll sp32; 1421 1422 /* Sanity check that the compat struct definition is correct */ 1423 BUILD_BUG_ON(sizeof(sp32) != 16); 1424 1425 if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) { 1426 *r = -EFAULT; 1427 return true; 1428 } 1429 1430 /* 1431 * This is a 32-bit pointer to an array of evtchn_port_t which 1432 * are uint32_t, so once it's converted no further compat 1433 * handling is needed. 1434 */ 1435 sched_poll.ports = (void *)(unsigned long)(sp32.ports); 1436 sched_poll.nr_ports = sp32.nr_ports; 1437 sched_poll.timeout = sp32.timeout; 1438 } else { 1439 if (kvm_read_guest_virt(vcpu, param, &sched_poll, 1440 sizeof(sched_poll), &e)) { 1441 *r = -EFAULT; 1442 return true; 1443 } 1444 } 1445 1446 if (unlikely(sched_poll.nr_ports > 1)) { 1447 /* Xen (unofficially) limits number of pollers to 128 */ 1448 if (sched_poll.nr_ports > 128) { 1449 *r = -EINVAL; 1450 return true; 1451 } 1452 1453 ports = kmalloc_array(sched_poll.nr_ports, 1454 sizeof(*ports), GFP_KERNEL); 1455 if (!ports) { 1456 *r = -ENOMEM; 1457 return true; 1458 } 1459 } else 1460 ports = &port; 1461 1462 if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports, 1463 sched_poll.nr_ports * sizeof(*ports), &e)) { 1464 *r = -EFAULT; 1465 return true; 1466 } 1467 1468 for (i = 0; i < sched_poll.nr_ports; i++) { 1469 if (ports[i] >= max_evtchn_port(vcpu->kvm)) { 1470 *r = -EINVAL; 1471 goto out; 1472 } 1473 } 1474 1475 if (sched_poll.nr_ports == 1) 1476 vcpu->arch.xen.poll_evtchn = port; 1477 else 1478 vcpu->arch.xen.poll_evtchn = -1; 1479 1480 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); 1481 1482 if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) { 1483 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 1484 1485 if (sched_poll.timeout) 1486 mod_timer(&vcpu->arch.xen.poll_timer, 1487 jiffies + nsecs_to_jiffies(sched_poll.timeout)); 1488 1489 kvm_vcpu_halt(vcpu); 1490 1491 if (sched_poll.timeout) 1492 del_timer(&vcpu->arch.xen.poll_timer); 1493 1494 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 1495 } 1496 1497 vcpu->arch.xen.poll_evtchn = 0; 1498 *r = 0; 1499 out: 1500 /* Really, this is only needed in case of timeout */ 1501 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); 1502 1503 if (unlikely(sched_poll.nr_ports > 1)) 1504 kfree(ports); 1505 return true; 1506 } 1507 1508 static void cancel_evtchn_poll(struct timer_list *t) 1509 { 1510 struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer); 1511 1512 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1513 kvm_vcpu_kick(vcpu); 1514 } 1515 1516 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode, 1517 int cmd, u64 param, u64 *r) 1518 { 1519 switch (cmd) { 1520 case SCHEDOP_poll: 1521 if (kvm_xen_schedop_poll(vcpu, longmode, param, r)) 1522 return true; 1523 fallthrough; 1524 case SCHEDOP_yield: 1525 kvm_vcpu_on_spin(vcpu, true); 1526 *r = 0; 1527 return true; 1528 default: 1529 break; 1530 } 1531 1532 return false; 1533 } 1534 1535 struct compat_vcpu_set_singleshot_timer { 1536 uint64_t timeout_abs_ns; 1537 uint32_t flags; 1538 } __attribute__((packed)); 1539 1540 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd, 1541 int vcpu_id, u64 param, u64 *r) 1542 { 1543 struct vcpu_set_singleshot_timer oneshot; 1544 struct x86_exception e; 1545 1546 if (!kvm_xen_timer_enabled(vcpu)) 1547 return false; 1548 1549 switch (cmd) { 1550 case VCPUOP_set_singleshot_timer: 1551 if (vcpu->arch.xen.vcpu_id != vcpu_id) { 1552 *r = -EINVAL; 1553 return true; 1554 } 1555 1556 /* 1557 * The only difference for 32-bit compat is the 4 bytes of 1558 * padding after the interesting part of the structure. So 1559 * for a faithful emulation of Xen we have to *try* to copy 1560 * the padding and return -EFAULT if we can't. Otherwise we 1561 * might as well just have copied the 12-byte 32-bit struct. 1562 */ 1563 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != 1564 offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns)); 1565 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != 1566 sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns)); 1567 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) != 1568 offsetof(struct vcpu_set_singleshot_timer, flags)); 1569 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) != 1570 sizeof_field(struct vcpu_set_singleshot_timer, flags)); 1571 1572 if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) : 1573 sizeof(struct compat_vcpu_set_singleshot_timer), &e)) { 1574 *r = -EFAULT; 1575 return true; 1576 } 1577 1578 kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, false); 1579 *r = 0; 1580 return true; 1581 1582 case VCPUOP_stop_singleshot_timer: 1583 if (vcpu->arch.xen.vcpu_id != vcpu_id) { 1584 *r = -EINVAL; 1585 return true; 1586 } 1587 kvm_xen_stop_timer(vcpu); 1588 *r = 0; 1589 return true; 1590 } 1591 1592 return false; 1593 } 1594 1595 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout, 1596 u64 *r) 1597 { 1598 if (!kvm_xen_timer_enabled(vcpu)) 1599 return false; 1600 1601 if (timeout) 1602 kvm_xen_start_timer(vcpu, timeout, true); 1603 else 1604 kvm_xen_stop_timer(vcpu); 1605 1606 *r = 0; 1607 return true; 1608 } 1609 1610 int kvm_xen_hypercall(struct kvm_vcpu *vcpu) 1611 { 1612 bool longmode; 1613 u64 input, params[6], r = -ENOSYS; 1614 bool handled = false; 1615 u8 cpl; 1616 1617 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); 1618 1619 /* Hyper-V hypercalls get bit 31 set in EAX */ 1620 if ((input & 0x80000000) && 1621 kvm_hv_hypercall_enabled(vcpu)) 1622 return kvm_hv_hypercall(vcpu); 1623 1624 longmode = is_64_bit_hypercall(vcpu); 1625 if (!longmode) { 1626 params[0] = (u32)kvm_rbx_read(vcpu); 1627 params[1] = (u32)kvm_rcx_read(vcpu); 1628 params[2] = (u32)kvm_rdx_read(vcpu); 1629 params[3] = (u32)kvm_rsi_read(vcpu); 1630 params[4] = (u32)kvm_rdi_read(vcpu); 1631 params[5] = (u32)kvm_rbp_read(vcpu); 1632 } 1633 #ifdef CONFIG_X86_64 1634 else { 1635 params[0] = (u64)kvm_rdi_read(vcpu); 1636 params[1] = (u64)kvm_rsi_read(vcpu); 1637 params[2] = (u64)kvm_rdx_read(vcpu); 1638 params[3] = (u64)kvm_r10_read(vcpu); 1639 params[4] = (u64)kvm_r8_read(vcpu); 1640 params[5] = (u64)kvm_r9_read(vcpu); 1641 } 1642 #endif 1643 cpl = kvm_x86_call(get_cpl)(vcpu); 1644 trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2], 1645 params[3], params[4], params[5]); 1646 1647 /* 1648 * Only allow hypercall acceleration for CPL0. The rare hypercalls that 1649 * are permitted in guest userspace can be handled by the VMM. 1650 */ 1651 if (unlikely(cpl > 0)) 1652 goto handle_in_userspace; 1653 1654 switch (input) { 1655 case __HYPERVISOR_xen_version: 1656 if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) { 1657 r = vcpu->kvm->arch.xen.xen_version; 1658 handled = true; 1659 } 1660 break; 1661 case __HYPERVISOR_event_channel_op: 1662 if (params[0] == EVTCHNOP_send) 1663 handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r); 1664 break; 1665 case __HYPERVISOR_sched_op: 1666 handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0], 1667 params[1], &r); 1668 break; 1669 case __HYPERVISOR_vcpu_op: 1670 handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1], 1671 params[2], &r); 1672 break; 1673 case __HYPERVISOR_set_timer_op: { 1674 u64 timeout = params[0]; 1675 /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */ 1676 if (!longmode) 1677 timeout |= params[1] << 32; 1678 handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r); 1679 break; 1680 } 1681 default: 1682 break; 1683 } 1684 1685 if (handled) 1686 return kvm_xen_hypercall_set_result(vcpu, r); 1687 1688 handle_in_userspace: 1689 vcpu->run->exit_reason = KVM_EXIT_XEN; 1690 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; 1691 vcpu->run->xen.u.hcall.longmode = longmode; 1692 vcpu->run->xen.u.hcall.cpl = cpl; 1693 vcpu->run->xen.u.hcall.input = input; 1694 vcpu->run->xen.u.hcall.params[0] = params[0]; 1695 vcpu->run->xen.u.hcall.params[1] = params[1]; 1696 vcpu->run->xen.u.hcall.params[2] = params[2]; 1697 vcpu->run->xen.u.hcall.params[3] = params[3]; 1698 vcpu->run->xen.u.hcall.params[4] = params[4]; 1699 vcpu->run->xen.u.hcall.params[5] = params[5]; 1700 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); 1701 vcpu->arch.complete_userspace_io = 1702 kvm_xen_hypercall_complete_userspace; 1703 1704 return 0; 1705 } 1706 1707 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port) 1708 { 1709 int poll_evtchn = vcpu->arch.xen.poll_evtchn; 1710 1711 if ((poll_evtchn == port || poll_evtchn == -1) && 1712 test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) { 1713 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1714 kvm_vcpu_kick(vcpu); 1715 } 1716 } 1717 1718 /* 1719 * The return value from this function is propagated to kvm_set_irq() API, 1720 * so it returns: 1721 * < 0 Interrupt was ignored (masked or not delivered for other reasons) 1722 * = 0 Interrupt was coalesced (previous irq is still pending) 1723 * > 0 Number of CPUs interrupt was delivered to 1724 * 1725 * It is also called directly from kvm_arch_set_irq_inatomic(), where the 1726 * only check on its return value is a comparison with -EWOULDBLOCK'. 1727 */ 1728 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm) 1729 { 1730 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1731 struct kvm_vcpu *vcpu; 1732 unsigned long *pending_bits, *mask_bits; 1733 unsigned long flags; 1734 int port_word_bit; 1735 bool kick_vcpu = false; 1736 int vcpu_idx, idx, rc; 1737 1738 vcpu_idx = READ_ONCE(xe->vcpu_idx); 1739 if (vcpu_idx >= 0) 1740 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 1741 else { 1742 vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id); 1743 if (!vcpu) 1744 return -EINVAL; 1745 WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx); 1746 } 1747 1748 if (xe->port >= max_evtchn_port(kvm)) 1749 return -EINVAL; 1750 1751 rc = -EWOULDBLOCK; 1752 1753 idx = srcu_read_lock(&kvm->srcu); 1754 1755 read_lock_irqsave(&gpc->lock, flags); 1756 if (!kvm_gpc_check(gpc, PAGE_SIZE)) 1757 goto out_rcu; 1758 1759 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1760 struct shared_info *shinfo = gpc->khva; 1761 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1762 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 1763 port_word_bit = xe->port / 64; 1764 } else { 1765 struct compat_shared_info *shinfo = gpc->khva; 1766 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1767 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 1768 port_word_bit = xe->port / 32; 1769 } 1770 1771 /* 1772 * If this port wasn't already set, and if it isn't masked, then 1773 * we try to set the corresponding bit in the in-kernel shadow of 1774 * evtchn_pending_sel for the target vCPU. And if *that* wasn't 1775 * already set, then we kick the vCPU in question to write to the 1776 * *real* evtchn_pending_sel in its own guest vcpu_info struct. 1777 */ 1778 if (test_and_set_bit(xe->port, pending_bits)) { 1779 rc = 0; /* It was already raised */ 1780 } else if (test_bit(xe->port, mask_bits)) { 1781 rc = -ENOTCONN; /* Masked */ 1782 kvm_xen_check_poller(vcpu, xe->port); 1783 } else { 1784 rc = 1; /* Delivered to the bitmap in shared_info. */ 1785 /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */ 1786 read_unlock_irqrestore(&gpc->lock, flags); 1787 gpc = &vcpu->arch.xen.vcpu_info_cache; 1788 1789 read_lock_irqsave(&gpc->lock, flags); 1790 if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 1791 /* 1792 * Could not access the vcpu_info. Set the bit in-kernel 1793 * and prod the vCPU to deliver it for itself. 1794 */ 1795 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) 1796 kick_vcpu = true; 1797 goto out_rcu; 1798 } 1799 1800 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1801 struct vcpu_info *vcpu_info = gpc->khva; 1802 if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) { 1803 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); 1804 kick_vcpu = true; 1805 } 1806 } else { 1807 struct compat_vcpu_info *vcpu_info = gpc->khva; 1808 if (!test_and_set_bit(port_word_bit, 1809 (unsigned long *)&vcpu_info->evtchn_pending_sel)) { 1810 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); 1811 kick_vcpu = true; 1812 } 1813 } 1814 1815 /* For the per-vCPU lapic vector, deliver it as MSI. */ 1816 if (kick_vcpu && vcpu->arch.xen.upcall_vector) { 1817 kvm_xen_inject_vcpu_vector(vcpu); 1818 kick_vcpu = false; 1819 } 1820 } 1821 1822 out_rcu: 1823 read_unlock_irqrestore(&gpc->lock, flags); 1824 srcu_read_unlock(&kvm->srcu, idx); 1825 1826 if (kick_vcpu) { 1827 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1828 kvm_vcpu_kick(vcpu); 1829 } 1830 1831 return rc; 1832 } 1833 1834 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm) 1835 { 1836 bool mm_borrowed = false; 1837 int rc; 1838 1839 rc = kvm_xen_set_evtchn_fast(xe, kvm); 1840 if (rc != -EWOULDBLOCK) 1841 return rc; 1842 1843 if (current->mm != kvm->mm) { 1844 /* 1845 * If not on a thread which already belongs to this KVM, 1846 * we'd better be in the irqfd workqueue. 1847 */ 1848 if (WARN_ON_ONCE(current->mm)) 1849 return -EINVAL; 1850 1851 kthread_use_mm(kvm->mm); 1852 mm_borrowed = true; 1853 } 1854 1855 /* 1856 * It is theoretically possible for the page to be unmapped 1857 * and the MMU notifier to invalidate the shared_info before 1858 * we even get to use it. In that case, this looks like an 1859 * infinite loop. It was tempting to do it via the userspace 1860 * HVA instead... but that just *hides* the fact that it's 1861 * an infinite loop, because if a fault occurs and it waits 1862 * for the page to come back, it can *still* immediately 1863 * fault and have to wait again, repeatedly. 1864 * 1865 * Conversely, the page could also have been reinstated by 1866 * another thread before we even obtain the mutex above, so 1867 * check again *first* before remapping it. 1868 */ 1869 do { 1870 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1871 int idx; 1872 1873 rc = kvm_xen_set_evtchn_fast(xe, kvm); 1874 if (rc != -EWOULDBLOCK) 1875 break; 1876 1877 idx = srcu_read_lock(&kvm->srcu); 1878 rc = kvm_gpc_refresh(gpc, PAGE_SIZE); 1879 srcu_read_unlock(&kvm->srcu, idx); 1880 } while(!rc); 1881 1882 if (mm_borrowed) 1883 kthread_unuse_mm(kvm->mm); 1884 1885 return rc; 1886 } 1887 1888 /* This is the version called from kvm_set_irq() as the .set function */ 1889 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 1890 int irq_source_id, int level, bool line_status) 1891 { 1892 if (!level) 1893 return -EINVAL; 1894 1895 return kvm_xen_set_evtchn(&e->xen_evtchn, kvm); 1896 } 1897 1898 /* 1899 * Set up an event channel interrupt from the KVM IRQ routing table. 1900 * Used for e.g. PIRQ from passed through physical devices. 1901 */ 1902 int kvm_xen_setup_evtchn(struct kvm *kvm, 1903 struct kvm_kernel_irq_routing_entry *e, 1904 const struct kvm_irq_routing_entry *ue) 1905 1906 { 1907 struct kvm_vcpu *vcpu; 1908 1909 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm)) 1910 return -EINVAL; 1911 1912 /* We only support 2 level event channels for now */ 1913 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1914 return -EINVAL; 1915 1916 /* 1917 * Xen gives us interesting mappings from vCPU index to APIC ID, 1918 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs 1919 * to find it. Do that once at setup time, instead of every time. 1920 * But beware that on live update / live migration, the routing 1921 * table might be reinstated before the vCPU threads have finished 1922 * recreating their vCPUs. 1923 */ 1924 vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu); 1925 if (vcpu) 1926 e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx; 1927 else 1928 e->xen_evtchn.vcpu_idx = -1; 1929 1930 e->xen_evtchn.port = ue->u.xen_evtchn.port; 1931 e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu; 1932 e->xen_evtchn.priority = ue->u.xen_evtchn.priority; 1933 e->set = evtchn_set_fn; 1934 1935 return 0; 1936 } 1937 1938 /* 1939 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl. 1940 */ 1941 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe) 1942 { 1943 struct kvm_xen_evtchn e; 1944 int ret; 1945 1946 if (!uxe->port || uxe->port >= max_evtchn_port(kvm)) 1947 return -EINVAL; 1948 1949 /* We only support 2 level event channels for now */ 1950 if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1951 return -EINVAL; 1952 1953 e.port = uxe->port; 1954 e.vcpu_id = uxe->vcpu; 1955 e.vcpu_idx = -1; 1956 e.priority = uxe->priority; 1957 1958 ret = kvm_xen_set_evtchn(&e, kvm); 1959 1960 /* 1961 * None of that 'return 1 if it actually got delivered' nonsense. 1962 * We don't care if it was masked (-ENOTCONN) either. 1963 */ 1964 if (ret > 0 || ret == -ENOTCONN) 1965 ret = 0; 1966 1967 return ret; 1968 } 1969 1970 /* 1971 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall. 1972 */ 1973 struct evtchnfd { 1974 u32 send_port; 1975 u32 type; 1976 union { 1977 struct kvm_xen_evtchn port; 1978 struct { 1979 u32 port; /* zero */ 1980 struct eventfd_ctx *ctx; 1981 } eventfd; 1982 } deliver; 1983 }; 1984 1985 /* 1986 * Update target vCPU or priority for a registered sending channel. 1987 */ 1988 static int kvm_xen_eventfd_update(struct kvm *kvm, 1989 struct kvm_xen_hvm_attr *data) 1990 { 1991 u32 port = data->u.evtchn.send_port; 1992 struct evtchnfd *evtchnfd; 1993 int ret; 1994 1995 /* Protect writes to evtchnfd as well as the idr lookup. */ 1996 mutex_lock(&kvm->arch.xen.xen_lock); 1997 evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port); 1998 1999 ret = -ENOENT; 2000 if (!evtchnfd) 2001 goto out_unlock; 2002 2003 /* For an UPDATE, nothing may change except the priority/vcpu */ 2004 ret = -EINVAL; 2005 if (evtchnfd->type != data->u.evtchn.type) 2006 goto out_unlock; 2007 2008 /* 2009 * Port cannot change, and if it's zero that was an eventfd 2010 * which can't be changed either. 2011 */ 2012 if (!evtchnfd->deliver.port.port || 2013 evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port) 2014 goto out_unlock; 2015 2016 /* We only support 2 level event channels for now */ 2017 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 2018 goto out_unlock; 2019 2020 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; 2021 if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) { 2022 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; 2023 evtchnfd->deliver.port.vcpu_idx = -1; 2024 } 2025 ret = 0; 2026 out_unlock: 2027 mutex_unlock(&kvm->arch.xen.xen_lock); 2028 return ret; 2029 } 2030 2031 /* 2032 * Configure the target (eventfd or local port delivery) for sending on 2033 * a given event channel. 2034 */ 2035 static int kvm_xen_eventfd_assign(struct kvm *kvm, 2036 struct kvm_xen_hvm_attr *data) 2037 { 2038 u32 port = data->u.evtchn.send_port; 2039 struct eventfd_ctx *eventfd = NULL; 2040 struct evtchnfd *evtchnfd; 2041 int ret = -EINVAL; 2042 2043 evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL); 2044 if (!evtchnfd) 2045 return -ENOMEM; 2046 2047 switch(data->u.evtchn.type) { 2048 case EVTCHNSTAT_ipi: 2049 /* IPI must map back to the same port# */ 2050 if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port) 2051 goto out_noeventfd; /* -EINVAL */ 2052 break; 2053 2054 case EVTCHNSTAT_interdomain: 2055 if (data->u.evtchn.deliver.port.port) { 2056 if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm)) 2057 goto out_noeventfd; /* -EINVAL */ 2058 } else { 2059 eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd); 2060 if (IS_ERR(eventfd)) { 2061 ret = PTR_ERR(eventfd); 2062 goto out_noeventfd; 2063 } 2064 } 2065 break; 2066 2067 case EVTCHNSTAT_virq: 2068 case EVTCHNSTAT_closed: 2069 case EVTCHNSTAT_unbound: 2070 case EVTCHNSTAT_pirq: 2071 default: /* Unknown event channel type */ 2072 goto out; /* -EINVAL */ 2073 } 2074 2075 evtchnfd->send_port = data->u.evtchn.send_port; 2076 evtchnfd->type = data->u.evtchn.type; 2077 if (eventfd) { 2078 evtchnfd->deliver.eventfd.ctx = eventfd; 2079 } else { 2080 /* We only support 2 level event channels for now */ 2081 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 2082 goto out; /* -EINVAL; */ 2083 2084 evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port; 2085 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; 2086 evtchnfd->deliver.port.vcpu_idx = -1; 2087 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; 2088 } 2089 2090 mutex_lock(&kvm->arch.xen.xen_lock); 2091 ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1, 2092 GFP_KERNEL); 2093 mutex_unlock(&kvm->arch.xen.xen_lock); 2094 if (ret >= 0) 2095 return 0; 2096 2097 if (ret == -ENOSPC) 2098 ret = -EEXIST; 2099 out: 2100 if (eventfd) 2101 eventfd_ctx_put(eventfd); 2102 out_noeventfd: 2103 kfree(evtchnfd); 2104 return ret; 2105 } 2106 2107 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port) 2108 { 2109 struct evtchnfd *evtchnfd; 2110 2111 mutex_lock(&kvm->arch.xen.xen_lock); 2112 evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port); 2113 mutex_unlock(&kvm->arch.xen.xen_lock); 2114 2115 if (!evtchnfd) 2116 return -ENOENT; 2117 2118 synchronize_srcu(&kvm->srcu); 2119 if (!evtchnfd->deliver.port.port) 2120 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 2121 kfree(evtchnfd); 2122 return 0; 2123 } 2124 2125 static int kvm_xen_eventfd_reset(struct kvm *kvm) 2126 { 2127 struct evtchnfd *evtchnfd, **all_evtchnfds; 2128 int i; 2129 int n = 0; 2130 2131 mutex_lock(&kvm->arch.xen.xen_lock); 2132 2133 /* 2134 * Because synchronize_srcu() cannot be called inside the 2135 * critical section, first collect all the evtchnfd objects 2136 * in an array as they are removed from evtchn_ports. 2137 */ 2138 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) 2139 n++; 2140 2141 all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL); 2142 if (!all_evtchnfds) { 2143 mutex_unlock(&kvm->arch.xen.xen_lock); 2144 return -ENOMEM; 2145 } 2146 2147 n = 0; 2148 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { 2149 all_evtchnfds[n++] = evtchnfd; 2150 idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port); 2151 } 2152 mutex_unlock(&kvm->arch.xen.xen_lock); 2153 2154 synchronize_srcu(&kvm->srcu); 2155 2156 while (n--) { 2157 evtchnfd = all_evtchnfds[n]; 2158 if (!evtchnfd->deliver.port.port) 2159 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 2160 kfree(evtchnfd); 2161 } 2162 kfree(all_evtchnfds); 2163 2164 return 0; 2165 } 2166 2167 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 2168 { 2169 u32 port = data->u.evtchn.send_port; 2170 2171 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET) 2172 return kvm_xen_eventfd_reset(kvm); 2173 2174 if (!port || port >= max_evtchn_port(kvm)) 2175 return -EINVAL; 2176 2177 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN) 2178 return kvm_xen_eventfd_deassign(kvm, port); 2179 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE) 2180 return kvm_xen_eventfd_update(kvm, data); 2181 if (data->u.evtchn.flags) 2182 return -EINVAL; 2183 2184 return kvm_xen_eventfd_assign(kvm, data); 2185 } 2186 2187 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r) 2188 { 2189 struct evtchnfd *evtchnfd; 2190 struct evtchn_send send; 2191 struct x86_exception e; 2192 2193 /* Sanity check: this structure is the same for 32-bit and 64-bit */ 2194 BUILD_BUG_ON(sizeof(send) != 4); 2195 if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) { 2196 *r = -EFAULT; 2197 return true; 2198 } 2199 2200 /* 2201 * evtchnfd is protected by kvm->srcu; the idr lookup instead 2202 * is protected by RCU. 2203 */ 2204 rcu_read_lock(); 2205 evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port); 2206 rcu_read_unlock(); 2207 if (!evtchnfd) 2208 return false; 2209 2210 if (evtchnfd->deliver.port.port) { 2211 int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm); 2212 if (ret < 0 && ret != -ENOTCONN) 2213 return false; 2214 } else { 2215 eventfd_signal(evtchnfd->deliver.eventfd.ctx); 2216 } 2217 2218 *r = 0; 2219 return true; 2220 } 2221 2222 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu) 2223 { 2224 vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx; 2225 vcpu->arch.xen.poll_evtchn = 0; 2226 2227 timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0); 2228 hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 2229 vcpu->arch.xen.timer.function = xen_timer_callback; 2230 2231 kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm); 2232 kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm); 2233 kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm); 2234 kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm); 2235 } 2236 2237 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu) 2238 { 2239 if (kvm_xen_timer_enabled(vcpu)) 2240 kvm_xen_stop_timer(vcpu); 2241 2242 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); 2243 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 2244 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 2245 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); 2246 2247 del_timer_sync(&vcpu->arch.xen.poll_timer); 2248 } 2249 2250 void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu) 2251 { 2252 struct kvm_cpuid_entry2 *entry; 2253 u32 function; 2254 2255 if (!vcpu->arch.xen.cpuid.base) 2256 return; 2257 2258 function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3); 2259 if (function > vcpu->arch.xen.cpuid.limit) 2260 return; 2261 2262 entry = kvm_find_cpuid_entry_index(vcpu, function, 1); 2263 if (entry) { 2264 entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul; 2265 entry->edx = vcpu->arch.hv_clock.tsc_shift; 2266 } 2267 2268 entry = kvm_find_cpuid_entry_index(vcpu, function, 2); 2269 if (entry) 2270 entry->eax = vcpu->arch.hw_tsc_khz; 2271 } 2272 2273 void kvm_xen_init_vm(struct kvm *kvm) 2274 { 2275 mutex_init(&kvm->arch.xen.xen_lock); 2276 idr_init(&kvm->arch.xen.evtchn_ports); 2277 kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm); 2278 } 2279 2280 void kvm_xen_destroy_vm(struct kvm *kvm) 2281 { 2282 struct evtchnfd *evtchnfd; 2283 int i; 2284 2285 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); 2286 2287 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { 2288 if (!evtchnfd->deliver.port.port) 2289 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 2290 kfree(evtchnfd); 2291 } 2292 idr_destroy(&kvm->arch.xen.evtchn_ports); 2293 2294 if (kvm->arch.xen_hvm_config.msr) 2295 static_branch_slow_dec_deferred(&kvm_xen_enabled); 2296 } 2297