xref: /linux/arch/x86/kvm/xen.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5  *
6  * KVM Xen emulation
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include "x86.h"
11 #include "xen.h"
12 #include "hyperv.h"
13 #include "lapic.h"
14 
15 #include <linux/eventfd.h>
16 #include <linux/kvm_host.h>
17 #include <linux/sched/stat.h>
18 
19 #include <trace/events/kvm.h>
20 #include <xen/interface/xen.h>
21 #include <xen/interface/vcpu.h>
22 #include <xen/interface/version.h>
23 #include <xen/interface/event_channel.h>
24 #include <xen/interface/sched.h>
25 
26 #include <asm/xen/cpuid.h>
27 
28 #include "cpuid.h"
29 #include "trace.h"
30 
31 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
32 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
33 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
34 
35 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
36 
37 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
38 {
39 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
40 	struct pvclock_wall_clock *wc;
41 	gpa_t gpa = gfn_to_gpa(gfn);
42 	u32 *wc_sec_hi;
43 	u32 wc_version;
44 	u64 wall_nsec;
45 	int ret = 0;
46 	int idx = srcu_read_lock(&kvm->srcu);
47 
48 	if (gfn == KVM_XEN_INVALID_GFN) {
49 		kvm_gpc_deactivate(gpc);
50 		goto out;
51 	}
52 
53 	do {
54 		ret = kvm_gpc_activate(gpc, gpa, PAGE_SIZE);
55 		if (ret)
56 			goto out;
57 
58 		/*
59 		 * This code mirrors kvm_write_wall_clock() except that it writes
60 		 * directly through the pfn cache and doesn't mark the page dirty.
61 		 */
62 		wall_nsec = kvm_get_wall_clock_epoch(kvm);
63 
64 		/* It could be invalid again already, so we need to check */
65 		read_lock_irq(&gpc->lock);
66 
67 		if (gpc->valid)
68 			break;
69 
70 		read_unlock_irq(&gpc->lock);
71 	} while (1);
72 
73 	/* Paranoia checks on the 32-bit struct layout */
74 	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
75 	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
76 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
77 
78 #ifdef CONFIG_X86_64
79 	/* Paranoia checks on the 64-bit struct layout */
80 	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
81 	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
82 
83 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
84 		struct shared_info *shinfo = gpc->khva;
85 
86 		wc_sec_hi = &shinfo->wc_sec_hi;
87 		wc = &shinfo->wc;
88 	} else
89 #endif
90 	{
91 		struct compat_shared_info *shinfo = gpc->khva;
92 
93 		wc_sec_hi = &shinfo->arch.wc_sec_hi;
94 		wc = &shinfo->wc;
95 	}
96 
97 	/* Increment and ensure an odd value */
98 	wc_version = wc->version = (wc->version + 1) | 1;
99 	smp_wmb();
100 
101 	wc->nsec = do_div(wall_nsec, NSEC_PER_SEC);
102 	wc->sec = (u32)wall_nsec;
103 	*wc_sec_hi = wall_nsec >> 32;
104 	smp_wmb();
105 
106 	wc->version = wc_version + 1;
107 	read_unlock_irq(&gpc->lock);
108 
109 	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
110 
111 out:
112 	srcu_read_unlock(&kvm->srcu, idx);
113 	return ret;
114 }
115 
116 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
117 {
118 	if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
119 		struct kvm_xen_evtchn e;
120 
121 		e.vcpu_id = vcpu->vcpu_id;
122 		e.vcpu_idx = vcpu->vcpu_idx;
123 		e.port = vcpu->arch.xen.timer_virq;
124 		e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
125 
126 		kvm_xen_set_evtchn(&e, vcpu->kvm);
127 
128 		vcpu->arch.xen.timer_expires = 0;
129 		atomic_set(&vcpu->arch.xen.timer_pending, 0);
130 	}
131 }
132 
133 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
134 {
135 	struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
136 					     arch.xen.timer);
137 	struct kvm_xen_evtchn e;
138 	int rc;
139 
140 	if (atomic_read(&vcpu->arch.xen.timer_pending))
141 		return HRTIMER_NORESTART;
142 
143 	e.vcpu_id = vcpu->vcpu_id;
144 	e.vcpu_idx = vcpu->vcpu_idx;
145 	e.port = vcpu->arch.xen.timer_virq;
146 	e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
147 
148 	rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm);
149 	if (rc != -EWOULDBLOCK) {
150 		vcpu->arch.xen.timer_expires = 0;
151 		return HRTIMER_NORESTART;
152 	}
153 
154 	atomic_inc(&vcpu->arch.xen.timer_pending);
155 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
156 	kvm_vcpu_kick(vcpu);
157 
158 	return HRTIMER_NORESTART;
159 }
160 
161 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns)
162 {
163 	/*
164 	 * Avoid races with the old timer firing. Checking timer_expires
165 	 * to avoid calling hrtimer_cancel() will only have false positives
166 	 * so is fine.
167 	 */
168 	if (vcpu->arch.xen.timer_expires)
169 		hrtimer_cancel(&vcpu->arch.xen.timer);
170 
171 	atomic_set(&vcpu->arch.xen.timer_pending, 0);
172 	vcpu->arch.xen.timer_expires = guest_abs;
173 
174 	if (delta_ns <= 0) {
175 		xen_timer_callback(&vcpu->arch.xen.timer);
176 	} else {
177 		ktime_t ktime_now = ktime_get();
178 		hrtimer_start(&vcpu->arch.xen.timer,
179 			      ktime_add_ns(ktime_now, delta_ns),
180 			      HRTIMER_MODE_ABS_HARD);
181 	}
182 }
183 
184 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
185 {
186 	hrtimer_cancel(&vcpu->arch.xen.timer);
187 	vcpu->arch.xen.timer_expires = 0;
188 	atomic_set(&vcpu->arch.xen.timer_pending, 0);
189 }
190 
191 static void kvm_xen_init_timer(struct kvm_vcpu *vcpu)
192 {
193 	hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC,
194 		     HRTIMER_MODE_ABS_HARD);
195 	vcpu->arch.xen.timer.function = xen_timer_callback;
196 }
197 
198 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
199 {
200 	struct kvm_vcpu_xen *vx = &v->arch.xen;
201 	struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
202 	struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
203 	size_t user_len, user_len1, user_len2;
204 	struct vcpu_runstate_info rs;
205 	unsigned long flags;
206 	size_t times_ofs;
207 	uint8_t *update_bit = NULL;
208 	uint64_t entry_time;
209 	uint64_t *rs_times;
210 	int *rs_state;
211 
212 	/*
213 	 * The only difference between 32-bit and 64-bit versions of the
214 	 * runstate struct is the alignment of uint64_t in 32-bit, which
215 	 * means that the 64-bit version has an additional 4 bytes of
216 	 * padding after the first field 'state'. Let's be really really
217 	 * paranoid about that, and matching it with our internal data
218 	 * structures that we memcpy into it...
219 	 */
220 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
221 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
222 	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
223 #ifdef CONFIG_X86_64
224 	/*
225 	 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
226 	 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
227 	 */
228 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
229 		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
230 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
231 		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
232 	BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
233 #endif
234 	/*
235 	 * The state field is in the same place at the start of both structs,
236 	 * and is the same size (int) as vx->current_runstate.
237 	 */
238 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
239 		     offsetof(struct compat_vcpu_runstate_info, state));
240 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
241 		     sizeof(vx->current_runstate));
242 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
243 		     sizeof(vx->current_runstate));
244 
245 	/*
246 	 * The state_entry_time field is 64 bits in both versions, and the
247 	 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
248 	 * is little-endian means that it's in the last *byte* of the word.
249 	 * That detail is important later.
250 	 */
251 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
252 		     sizeof(uint64_t));
253 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
254 		     sizeof(uint64_t));
255 	BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
256 
257 	/*
258 	 * The time array is four 64-bit quantities in both versions, matching
259 	 * the vx->runstate_times and immediately following state_entry_time.
260 	 */
261 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
262 		     offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
263 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
264 		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
265 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
266 		     sizeof_field(struct compat_vcpu_runstate_info, time));
267 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
268 		     sizeof(vx->runstate_times));
269 
270 	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
271 		user_len = sizeof(struct vcpu_runstate_info);
272 		times_ofs = offsetof(struct vcpu_runstate_info,
273 				     state_entry_time);
274 	} else {
275 		user_len = sizeof(struct compat_vcpu_runstate_info);
276 		times_ofs = offsetof(struct compat_vcpu_runstate_info,
277 				     state_entry_time);
278 	}
279 
280 	/*
281 	 * There are basically no alignment constraints. The guest can set it
282 	 * up so it crosses from one page to the next, and at arbitrary byte
283 	 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
284 	 * anyway, even if the overall struct had been 64-bit aligned).
285 	 */
286 	if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
287 		user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
288 		user_len2 = user_len - user_len1;
289 	} else {
290 		user_len1 = user_len;
291 		user_len2 = 0;
292 	}
293 	BUG_ON(user_len1 + user_len2 != user_len);
294 
295  retry:
296 	/*
297 	 * Attempt to obtain the GPC lock on *both* (if there are two)
298 	 * gfn_to_pfn caches that cover the region.
299 	 */
300 	if (atomic) {
301 		local_irq_save(flags);
302 		if (!read_trylock(&gpc1->lock)) {
303 			local_irq_restore(flags);
304 			return;
305 		}
306 	} else {
307 		read_lock_irqsave(&gpc1->lock, flags);
308 	}
309 	while (!kvm_gpc_check(gpc1, user_len1)) {
310 		read_unlock_irqrestore(&gpc1->lock, flags);
311 
312 		/* When invoked from kvm_sched_out() we cannot sleep */
313 		if (atomic)
314 			return;
315 
316 		if (kvm_gpc_refresh(gpc1, user_len1))
317 			return;
318 
319 		read_lock_irqsave(&gpc1->lock, flags);
320 	}
321 
322 	if (likely(!user_len2)) {
323 		/*
324 		 * Set up three pointers directly to the runstate_info
325 		 * struct in the guest (via the GPC).
326 		 *
327 		 *  • @rs_state   → state field
328 		 *  • @rs_times   → state_entry_time field.
329 		 *  • @update_bit → last byte of state_entry_time, which
330 		 *                  contains the XEN_RUNSTATE_UPDATE bit.
331 		 */
332 		rs_state = gpc1->khva;
333 		rs_times = gpc1->khva + times_ofs;
334 		if (v->kvm->arch.xen.runstate_update_flag)
335 			update_bit = ((void *)(&rs_times[1])) - 1;
336 	} else {
337 		/*
338 		 * The guest's runstate_info is split across two pages and we
339 		 * need to hold and validate both GPCs simultaneously. We can
340 		 * declare a lock ordering GPC1 > GPC2 because nothing else
341 		 * takes them more than one at a time. Set a subclass on the
342 		 * gpc1 lock to make lockdep shut up about it.
343 		 */
344 		lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_);
345 		if (atomic) {
346 			if (!read_trylock(&gpc2->lock)) {
347 				read_unlock_irqrestore(&gpc1->lock, flags);
348 				return;
349 			}
350 		} else {
351 			read_lock(&gpc2->lock);
352 		}
353 
354 		if (!kvm_gpc_check(gpc2, user_len2)) {
355 			read_unlock(&gpc2->lock);
356 			read_unlock_irqrestore(&gpc1->lock, flags);
357 
358 			/* When invoked from kvm_sched_out() we cannot sleep */
359 			if (atomic)
360 				return;
361 
362 			/*
363 			 * Use kvm_gpc_activate() here because if the runstate
364 			 * area was configured in 32-bit mode and only extends
365 			 * to the second page now because the guest changed to
366 			 * 64-bit mode, the second GPC won't have been set up.
367 			 */
368 			if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
369 					     user_len2))
370 				return;
371 
372 			/*
373 			 * We dropped the lock on GPC1 so we have to go all the
374 			 * way back and revalidate that too.
375 			 */
376 			goto retry;
377 		}
378 
379 		/*
380 		 * In this case, the runstate_info struct will be assembled on
381 		 * the kernel stack (compat or not as appropriate) and will
382 		 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
383 		 * rs pointers accordingly.
384 		 */
385 		rs_times = &rs.state_entry_time;
386 
387 		/*
388 		 * The rs_state pointer points to the start of what we'll
389 		 * copy to the guest, which in the case of a compat guest
390 		 * is the 32-bit field that the compiler thinks is padding.
391 		 */
392 		rs_state = ((void *)rs_times) - times_ofs;
393 
394 		/*
395 		 * The update_bit is still directly in the guest memory,
396 		 * via one GPC or the other.
397 		 */
398 		if (v->kvm->arch.xen.runstate_update_flag) {
399 			if (user_len1 >= times_ofs + sizeof(uint64_t))
400 				update_bit = gpc1->khva + times_ofs +
401 					sizeof(uint64_t) - 1;
402 			else
403 				update_bit = gpc2->khva + times_ofs +
404 					sizeof(uint64_t) - 1 - user_len1;
405 		}
406 
407 #ifdef CONFIG_X86_64
408 		/*
409 		 * Don't leak kernel memory through the padding in the 64-bit
410 		 * version of the struct.
411 		 */
412 		memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
413 #endif
414 	}
415 
416 	/*
417 	 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
418 	 * state_entry_time field, directly in the guest. We need to set
419 	 * that (and write-barrier) before writing to the rest of the
420 	 * structure, and clear it last. Just as Xen does, we address the
421 	 * single *byte* in which it resides because it might be in a
422 	 * different cache line to the rest of the 64-bit word, due to
423 	 * the (lack of) alignment constraints.
424 	 */
425 	entry_time = vx->runstate_entry_time;
426 	if (update_bit) {
427 		entry_time |= XEN_RUNSTATE_UPDATE;
428 		*update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
429 		smp_wmb();
430 	}
431 
432 	/*
433 	 * Now assemble the actual structure, either on our kernel stack
434 	 * or directly in the guest according to how the rs_state and
435 	 * rs_times pointers were set up above.
436 	 */
437 	*rs_state = vx->current_runstate;
438 	rs_times[0] = entry_time;
439 	memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
440 
441 	/* For the split case, we have to then copy it to the guest. */
442 	if (user_len2) {
443 		memcpy(gpc1->khva, rs_state, user_len1);
444 		memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
445 	}
446 	smp_wmb();
447 
448 	/* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
449 	if (update_bit) {
450 		entry_time &= ~XEN_RUNSTATE_UPDATE;
451 		*update_bit = entry_time >> 56;
452 		smp_wmb();
453 	}
454 
455 	if (user_len2)
456 		read_unlock(&gpc2->lock);
457 
458 	read_unlock_irqrestore(&gpc1->lock, flags);
459 
460 	mark_page_dirty_in_slot(v->kvm, gpc1->memslot, gpc1->gpa >> PAGE_SHIFT);
461 	if (user_len2)
462 		mark_page_dirty_in_slot(v->kvm, gpc2->memslot, gpc2->gpa >> PAGE_SHIFT);
463 }
464 
465 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
466 {
467 	struct kvm_vcpu_xen *vx = &v->arch.xen;
468 	u64 now = get_kvmclock_ns(v->kvm);
469 	u64 delta_ns = now - vx->runstate_entry_time;
470 	u64 run_delay = current->sched_info.run_delay;
471 
472 	if (unlikely(!vx->runstate_entry_time))
473 		vx->current_runstate = RUNSTATE_offline;
474 
475 	/*
476 	 * Time waiting for the scheduler isn't "stolen" if the
477 	 * vCPU wasn't running anyway.
478 	 */
479 	if (vx->current_runstate == RUNSTATE_running) {
480 		u64 steal_ns = run_delay - vx->last_steal;
481 
482 		delta_ns -= steal_ns;
483 
484 		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
485 	}
486 	vx->last_steal = run_delay;
487 
488 	vx->runstate_times[vx->current_runstate] += delta_ns;
489 	vx->current_runstate = state;
490 	vx->runstate_entry_time = now;
491 
492 	if (vx->runstate_cache.active)
493 		kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
494 }
495 
496 static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
497 {
498 	struct kvm_lapic_irq irq = { };
499 	int r;
500 
501 	irq.dest_id = v->vcpu_id;
502 	irq.vector = v->arch.xen.upcall_vector;
503 	irq.dest_mode = APIC_DEST_PHYSICAL;
504 	irq.shorthand = APIC_DEST_NOSHORT;
505 	irq.delivery_mode = APIC_DM_FIXED;
506 	irq.level = 1;
507 
508 	/* The fast version will always work for physical unicast */
509 	WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL));
510 }
511 
512 /*
513  * On event channel delivery, the vcpu_info may not have been accessible.
514  * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
515  * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
516  * Do so now that we can sleep in the context of the vCPU to bring the
517  * page in, and refresh the pfn cache for it.
518  */
519 void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
520 {
521 	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
522 	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
523 	unsigned long flags;
524 
525 	if (!evtchn_pending_sel)
526 		return;
527 
528 	/*
529 	 * Yes, this is an open-coded loop. But that's just what put_user()
530 	 * does anyway. Page it in and retry the instruction. We're just a
531 	 * little more honest about it.
532 	 */
533 	read_lock_irqsave(&gpc->lock, flags);
534 	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
535 		read_unlock_irqrestore(&gpc->lock, flags);
536 
537 		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
538 			return;
539 
540 		read_lock_irqsave(&gpc->lock, flags);
541 	}
542 
543 	/* Now gpc->khva is a valid kernel address for the vcpu_info */
544 	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
545 		struct vcpu_info *vi = gpc->khva;
546 
547 		asm volatile(LOCK_PREFIX "orq %0, %1\n"
548 			     "notq %0\n"
549 			     LOCK_PREFIX "andq %0, %2\n"
550 			     : "=r" (evtchn_pending_sel),
551 			       "+m" (vi->evtchn_pending_sel),
552 			       "+m" (v->arch.xen.evtchn_pending_sel)
553 			     : "0" (evtchn_pending_sel));
554 		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
555 	} else {
556 		u32 evtchn_pending_sel32 = evtchn_pending_sel;
557 		struct compat_vcpu_info *vi = gpc->khva;
558 
559 		asm volatile(LOCK_PREFIX "orl %0, %1\n"
560 			     "notl %0\n"
561 			     LOCK_PREFIX "andl %0, %2\n"
562 			     : "=r" (evtchn_pending_sel32),
563 			       "+m" (vi->evtchn_pending_sel),
564 			       "+m" (v->arch.xen.evtchn_pending_sel)
565 			     : "0" (evtchn_pending_sel32));
566 		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
567 	}
568 	read_unlock_irqrestore(&gpc->lock, flags);
569 
570 	/* For the per-vCPU lapic vector, deliver it as MSI. */
571 	if (v->arch.xen.upcall_vector)
572 		kvm_xen_inject_vcpu_vector(v);
573 
574 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
575 }
576 
577 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
578 {
579 	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
580 	unsigned long flags;
581 	u8 rc = 0;
582 
583 	/*
584 	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
585 	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
586 	 */
587 
588 	/* No need for compat handling here */
589 	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
590 		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
591 	BUILD_BUG_ON(sizeof(rc) !=
592 		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
593 	BUILD_BUG_ON(sizeof(rc) !=
594 		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
595 
596 	read_lock_irqsave(&gpc->lock, flags);
597 	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
598 		read_unlock_irqrestore(&gpc->lock, flags);
599 
600 		/*
601 		 * This function gets called from kvm_vcpu_block() after setting the
602 		 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
603 		 * from a HLT. So we really mustn't sleep. If the page ended up absent
604 		 * at that point, just return 1 in order to trigger an immediate wake,
605 		 * and we'll end up getting called again from a context where we *can*
606 		 * fault in the page and wait for it.
607 		 */
608 		if (in_atomic() || !task_is_running(current))
609 			return 1;
610 
611 		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
612 			/*
613 			 * If this failed, userspace has screwed up the
614 			 * vcpu_info mapping. No interrupts for you.
615 			 */
616 			return 0;
617 		}
618 		read_lock_irqsave(&gpc->lock, flags);
619 	}
620 
621 	rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
622 	read_unlock_irqrestore(&gpc->lock, flags);
623 	return rc;
624 }
625 
626 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
627 {
628 	int r = -ENOENT;
629 
630 
631 	switch (data->type) {
632 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
633 		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
634 			r = -EINVAL;
635 		} else {
636 			mutex_lock(&kvm->arch.xen.xen_lock);
637 			kvm->arch.xen.long_mode = !!data->u.long_mode;
638 			mutex_unlock(&kvm->arch.xen.xen_lock);
639 			r = 0;
640 		}
641 		break;
642 
643 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
644 		mutex_lock(&kvm->arch.xen.xen_lock);
645 		r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
646 		mutex_unlock(&kvm->arch.xen.xen_lock);
647 		break;
648 
649 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
650 		if (data->u.vector && data->u.vector < 0x10)
651 			r = -EINVAL;
652 		else {
653 			mutex_lock(&kvm->arch.xen.xen_lock);
654 			kvm->arch.xen.upcall_vector = data->u.vector;
655 			mutex_unlock(&kvm->arch.xen.xen_lock);
656 			r = 0;
657 		}
658 		break;
659 
660 	case KVM_XEN_ATTR_TYPE_EVTCHN:
661 		r = kvm_xen_setattr_evtchn(kvm, data);
662 		break;
663 
664 	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
665 		mutex_lock(&kvm->arch.xen.xen_lock);
666 		kvm->arch.xen.xen_version = data->u.xen_version;
667 		mutex_unlock(&kvm->arch.xen.xen_lock);
668 		r = 0;
669 		break;
670 
671 	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
672 		if (!sched_info_on()) {
673 			r = -EOPNOTSUPP;
674 			break;
675 		}
676 		mutex_lock(&kvm->arch.xen.xen_lock);
677 		kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
678 		mutex_unlock(&kvm->arch.xen.xen_lock);
679 		r = 0;
680 		break;
681 
682 	default:
683 		break;
684 	}
685 
686 	return r;
687 }
688 
689 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
690 {
691 	int r = -ENOENT;
692 
693 	mutex_lock(&kvm->arch.xen.xen_lock);
694 
695 	switch (data->type) {
696 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
697 		data->u.long_mode = kvm->arch.xen.long_mode;
698 		r = 0;
699 		break;
700 
701 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
702 		if (kvm->arch.xen.shinfo_cache.active)
703 			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
704 		else
705 			data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
706 		r = 0;
707 		break;
708 
709 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
710 		data->u.vector = kvm->arch.xen.upcall_vector;
711 		r = 0;
712 		break;
713 
714 	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
715 		data->u.xen_version = kvm->arch.xen.xen_version;
716 		r = 0;
717 		break;
718 
719 	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
720 		if (!sched_info_on()) {
721 			r = -EOPNOTSUPP;
722 			break;
723 		}
724 		data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
725 		r = 0;
726 		break;
727 
728 	default:
729 		break;
730 	}
731 
732 	mutex_unlock(&kvm->arch.xen.xen_lock);
733 	return r;
734 }
735 
736 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
737 {
738 	int idx, r = -ENOENT;
739 
740 	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
741 	idx = srcu_read_lock(&vcpu->kvm->srcu);
742 
743 	switch (data->type) {
744 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
745 		/* No compat necessary here. */
746 		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
747 			     sizeof(struct compat_vcpu_info));
748 		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
749 			     offsetof(struct compat_vcpu_info, time));
750 
751 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
752 			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
753 			r = 0;
754 			break;
755 		}
756 
757 		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
758 				     data->u.gpa, sizeof(struct vcpu_info));
759 		if (!r)
760 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
761 
762 		break;
763 
764 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
765 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
766 			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
767 			r = 0;
768 			break;
769 		}
770 
771 		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
772 				     data->u.gpa,
773 				     sizeof(struct pvclock_vcpu_time_info));
774 		if (!r)
775 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
776 		break;
777 
778 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
779 		size_t sz, sz1, sz2;
780 
781 		if (!sched_info_on()) {
782 			r = -EOPNOTSUPP;
783 			break;
784 		}
785 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
786 			r = 0;
787 		deactivate_out:
788 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
789 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
790 			break;
791 		}
792 
793 		/*
794 		 * If the guest switches to 64-bit mode after setting the runstate
795 		 * address, that's actually OK. kvm_xen_update_runstate_guest()
796 		 * will cope.
797 		 */
798 		if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
799 			sz = sizeof(struct vcpu_runstate_info);
800 		else
801 			sz = sizeof(struct compat_vcpu_runstate_info);
802 
803 		/* How much fits in the (first) page? */
804 		sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
805 		r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
806 				     data->u.gpa, sz1);
807 		if (r)
808 			goto deactivate_out;
809 
810 		/* Either map the second page, or deactivate the second GPC */
811 		if (sz1 >= sz) {
812 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
813 		} else {
814 			sz2 = sz - sz1;
815 			BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
816 			r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
817 					     data->u.gpa + sz1, sz2);
818 			if (r)
819 				goto deactivate_out;
820 		}
821 
822 		kvm_xen_update_runstate_guest(vcpu, false);
823 		break;
824 	}
825 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
826 		if (!sched_info_on()) {
827 			r = -EOPNOTSUPP;
828 			break;
829 		}
830 		if (data->u.runstate.state > RUNSTATE_offline) {
831 			r = -EINVAL;
832 			break;
833 		}
834 
835 		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
836 		r = 0;
837 		break;
838 
839 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
840 		if (!sched_info_on()) {
841 			r = -EOPNOTSUPP;
842 			break;
843 		}
844 		if (data->u.runstate.state > RUNSTATE_offline) {
845 			r = -EINVAL;
846 			break;
847 		}
848 		if (data->u.runstate.state_entry_time !=
849 		    (data->u.runstate.time_running +
850 		     data->u.runstate.time_runnable +
851 		     data->u.runstate.time_blocked +
852 		     data->u.runstate.time_offline)) {
853 			r = -EINVAL;
854 			break;
855 		}
856 		if (get_kvmclock_ns(vcpu->kvm) <
857 		    data->u.runstate.state_entry_time) {
858 			r = -EINVAL;
859 			break;
860 		}
861 
862 		vcpu->arch.xen.current_runstate = data->u.runstate.state;
863 		vcpu->arch.xen.runstate_entry_time =
864 			data->u.runstate.state_entry_time;
865 		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
866 			data->u.runstate.time_running;
867 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
868 			data->u.runstate.time_runnable;
869 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
870 			data->u.runstate.time_blocked;
871 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
872 			data->u.runstate.time_offline;
873 		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
874 		r = 0;
875 		break;
876 
877 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
878 		if (!sched_info_on()) {
879 			r = -EOPNOTSUPP;
880 			break;
881 		}
882 		if (data->u.runstate.state > RUNSTATE_offline &&
883 		    data->u.runstate.state != (u64)-1) {
884 			r = -EINVAL;
885 			break;
886 		}
887 		/* The adjustment must add up */
888 		if (data->u.runstate.state_entry_time !=
889 		    (data->u.runstate.time_running +
890 		     data->u.runstate.time_runnable +
891 		     data->u.runstate.time_blocked +
892 		     data->u.runstate.time_offline)) {
893 			r = -EINVAL;
894 			break;
895 		}
896 
897 		if (get_kvmclock_ns(vcpu->kvm) <
898 		    (vcpu->arch.xen.runstate_entry_time +
899 		     data->u.runstate.state_entry_time)) {
900 			r = -EINVAL;
901 			break;
902 		}
903 
904 		vcpu->arch.xen.runstate_entry_time +=
905 			data->u.runstate.state_entry_time;
906 		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
907 			data->u.runstate.time_running;
908 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
909 			data->u.runstate.time_runnable;
910 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
911 			data->u.runstate.time_blocked;
912 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
913 			data->u.runstate.time_offline;
914 
915 		if (data->u.runstate.state <= RUNSTATE_offline)
916 			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
917 		else if (vcpu->arch.xen.runstate_cache.active)
918 			kvm_xen_update_runstate_guest(vcpu, false);
919 		r = 0;
920 		break;
921 
922 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
923 		if (data->u.vcpu_id >= KVM_MAX_VCPUS)
924 			r = -EINVAL;
925 		else {
926 			vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
927 			r = 0;
928 		}
929 		break;
930 
931 	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
932 		if (data->u.timer.port &&
933 		    data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
934 			r = -EINVAL;
935 			break;
936 		}
937 
938 		if (!vcpu->arch.xen.timer.function)
939 			kvm_xen_init_timer(vcpu);
940 
941 		/* Stop the timer (if it's running) before changing the vector */
942 		kvm_xen_stop_timer(vcpu);
943 		vcpu->arch.xen.timer_virq = data->u.timer.port;
944 
945 		/* Start the timer if the new value has a valid vector+expiry. */
946 		if (data->u.timer.port && data->u.timer.expires_ns)
947 			kvm_xen_start_timer(vcpu, data->u.timer.expires_ns,
948 					    data->u.timer.expires_ns -
949 					    get_kvmclock_ns(vcpu->kvm));
950 
951 		r = 0;
952 		break;
953 
954 	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
955 		if (data->u.vector && data->u.vector < 0x10)
956 			r = -EINVAL;
957 		else {
958 			vcpu->arch.xen.upcall_vector = data->u.vector;
959 			r = 0;
960 		}
961 		break;
962 
963 	default:
964 		break;
965 	}
966 
967 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
968 	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
969 	return r;
970 }
971 
972 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
973 {
974 	int r = -ENOENT;
975 
976 	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
977 
978 	switch (data->type) {
979 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
980 		if (vcpu->arch.xen.vcpu_info_cache.active)
981 			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
982 		else
983 			data->u.gpa = KVM_XEN_INVALID_GPA;
984 		r = 0;
985 		break;
986 
987 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
988 		if (vcpu->arch.xen.vcpu_time_info_cache.active)
989 			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
990 		else
991 			data->u.gpa = KVM_XEN_INVALID_GPA;
992 		r = 0;
993 		break;
994 
995 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
996 		if (!sched_info_on()) {
997 			r = -EOPNOTSUPP;
998 			break;
999 		}
1000 		if (vcpu->arch.xen.runstate_cache.active) {
1001 			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
1002 			r = 0;
1003 		}
1004 		break;
1005 
1006 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
1007 		if (!sched_info_on()) {
1008 			r = -EOPNOTSUPP;
1009 			break;
1010 		}
1011 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
1012 		r = 0;
1013 		break;
1014 
1015 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
1016 		if (!sched_info_on()) {
1017 			r = -EOPNOTSUPP;
1018 			break;
1019 		}
1020 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
1021 		data->u.runstate.state_entry_time =
1022 			vcpu->arch.xen.runstate_entry_time;
1023 		data->u.runstate.time_running =
1024 			vcpu->arch.xen.runstate_times[RUNSTATE_running];
1025 		data->u.runstate.time_runnable =
1026 			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
1027 		data->u.runstate.time_blocked =
1028 			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
1029 		data->u.runstate.time_offline =
1030 			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
1031 		r = 0;
1032 		break;
1033 
1034 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1035 		r = -EINVAL;
1036 		break;
1037 
1038 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1039 		data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
1040 		r = 0;
1041 		break;
1042 
1043 	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1044 		/*
1045 		 * Ensure a consistent snapshot of state is captured, with a
1046 		 * timer either being pending, or the event channel delivered
1047 		 * to the corresponding bit in the shared_info. Not still
1048 		 * lurking in the timer_pending flag for deferred delivery.
1049 		 * Purely as an optimisation, if the timer_expires field is
1050 		 * zero, that means the timer isn't active (or even in the
1051 		 * timer_pending flag) and there is no need to cancel it.
1052 		 */
1053 		if (vcpu->arch.xen.timer_expires) {
1054 			hrtimer_cancel(&vcpu->arch.xen.timer);
1055 			kvm_xen_inject_timer_irqs(vcpu);
1056 		}
1057 
1058 		data->u.timer.port = vcpu->arch.xen.timer_virq;
1059 		data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1060 		data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1061 
1062 		/*
1063 		 * The hrtimer may trigger and raise the IRQ immediately,
1064 		 * while the returned state causes it to be set up and
1065 		 * raised again on the destination system after migration.
1066 		 * That's fine, as the guest won't even have had a chance
1067 		 * to run and handle the interrupt. Asserting an already
1068 		 * pending event channel is idempotent.
1069 		 */
1070 		if (vcpu->arch.xen.timer_expires)
1071 			hrtimer_start_expires(&vcpu->arch.xen.timer,
1072 					      HRTIMER_MODE_ABS_HARD);
1073 
1074 		r = 0;
1075 		break;
1076 
1077 	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1078 		data->u.vector = vcpu->arch.xen.upcall_vector;
1079 		r = 0;
1080 		break;
1081 
1082 	default:
1083 		break;
1084 	}
1085 
1086 	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1087 	return r;
1088 }
1089 
1090 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1091 {
1092 	struct kvm *kvm = vcpu->kvm;
1093 	u32 page_num = data & ~PAGE_MASK;
1094 	u64 page_addr = data & PAGE_MASK;
1095 	bool lm = is_long_mode(vcpu);
1096 
1097 	/* Latch long_mode for shared_info pages etc. */
1098 	vcpu->kvm->arch.xen.long_mode = lm;
1099 
1100 	/*
1101 	 * If Xen hypercall intercept is enabled, fill the hypercall
1102 	 * page with VMCALL/VMMCALL instructions since that's what
1103 	 * we catch. Else the VMM has provided the hypercall pages
1104 	 * with instructions of its own choosing, so use those.
1105 	 */
1106 	if (kvm_xen_hypercall_enabled(kvm)) {
1107 		u8 instructions[32];
1108 		int i;
1109 
1110 		if (page_num)
1111 			return 1;
1112 
1113 		/* mov imm32, %eax */
1114 		instructions[0] = 0xb8;
1115 
1116 		/* vmcall / vmmcall */
1117 		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
1118 
1119 		/* ret */
1120 		instructions[8] = 0xc3;
1121 
1122 		/* int3 to pad */
1123 		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1124 
1125 		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1126 			*(u32 *)&instructions[1] = i;
1127 			if (kvm_vcpu_write_guest(vcpu,
1128 						 page_addr + (i * sizeof(instructions)),
1129 						 instructions, sizeof(instructions)))
1130 				return 1;
1131 		}
1132 	} else {
1133 		/*
1134 		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1135 		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1136 		 */
1137 		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1138 				     : kvm->arch.xen_hvm_config.blob_addr_32;
1139 		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1140 				  : kvm->arch.xen_hvm_config.blob_size_32;
1141 		u8 *page;
1142 		int ret;
1143 
1144 		if (page_num >= blob_size)
1145 			return 1;
1146 
1147 		blob_addr += page_num * PAGE_SIZE;
1148 
1149 		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1150 		if (IS_ERR(page))
1151 			return PTR_ERR(page);
1152 
1153 		ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE);
1154 		kfree(page);
1155 		if (ret)
1156 			return 1;
1157 	}
1158 	return 0;
1159 }
1160 
1161 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1162 {
1163 	/* Only some feature flags need to be *enabled* by userspace */
1164 	u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1165 		KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
1166 		KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
1167 	u32 old_flags;
1168 
1169 	if (xhc->flags & ~permitted_flags)
1170 		return -EINVAL;
1171 
1172 	/*
1173 	 * With hypercall interception the kernel generates its own
1174 	 * hypercall page so it must not be provided.
1175 	 */
1176 	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1177 	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1178 	     xhc->blob_size_32 || xhc->blob_size_64))
1179 		return -EINVAL;
1180 
1181 	mutex_lock(&kvm->arch.xen.xen_lock);
1182 
1183 	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1184 		static_branch_inc(&kvm_xen_enabled.key);
1185 	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1186 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
1187 
1188 	old_flags = kvm->arch.xen_hvm_config.flags;
1189 	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1190 
1191 	mutex_unlock(&kvm->arch.xen.xen_lock);
1192 
1193 	if ((old_flags ^ xhc->flags) & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
1194 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
1195 
1196 	return 0;
1197 }
1198 
1199 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1200 {
1201 	kvm_rax_write(vcpu, result);
1202 	return kvm_skip_emulated_instruction(vcpu);
1203 }
1204 
1205 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1206 {
1207 	struct kvm_run *run = vcpu->run;
1208 
1209 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1210 		return 1;
1211 
1212 	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1213 }
1214 
1215 static inline int max_evtchn_port(struct kvm *kvm)
1216 {
1217 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1218 		return EVTCHN_2L_NR_CHANNELS;
1219 	else
1220 		return COMPAT_EVTCHN_2L_NR_CHANNELS;
1221 }
1222 
1223 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1224 			       evtchn_port_t *ports)
1225 {
1226 	struct kvm *kvm = vcpu->kvm;
1227 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1228 	unsigned long *pending_bits;
1229 	unsigned long flags;
1230 	bool ret = true;
1231 	int idx, i;
1232 
1233 	idx = srcu_read_lock(&kvm->srcu);
1234 	read_lock_irqsave(&gpc->lock, flags);
1235 	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1236 		goto out_rcu;
1237 
1238 	ret = false;
1239 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1240 		struct shared_info *shinfo = gpc->khva;
1241 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1242 	} else {
1243 		struct compat_shared_info *shinfo = gpc->khva;
1244 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1245 	}
1246 
1247 	for (i = 0; i < nr_ports; i++) {
1248 		if (test_bit(ports[i], pending_bits)) {
1249 			ret = true;
1250 			break;
1251 		}
1252 	}
1253 
1254  out_rcu:
1255 	read_unlock_irqrestore(&gpc->lock, flags);
1256 	srcu_read_unlock(&kvm->srcu, idx);
1257 
1258 	return ret;
1259 }
1260 
1261 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1262 				 u64 param, u64 *r)
1263 {
1264 	struct sched_poll sched_poll;
1265 	evtchn_port_t port, *ports;
1266 	struct x86_exception e;
1267 	int i;
1268 
1269 	if (!lapic_in_kernel(vcpu) ||
1270 	    !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1271 		return false;
1272 
1273 	if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1274 		struct compat_sched_poll sp32;
1275 
1276 		/* Sanity check that the compat struct definition is correct */
1277 		BUILD_BUG_ON(sizeof(sp32) != 16);
1278 
1279 		if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) {
1280 			*r = -EFAULT;
1281 			return true;
1282 		}
1283 
1284 		/*
1285 		 * This is a 32-bit pointer to an array of evtchn_port_t which
1286 		 * are uint32_t, so once it's converted no further compat
1287 		 * handling is needed.
1288 		 */
1289 		sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1290 		sched_poll.nr_ports = sp32.nr_ports;
1291 		sched_poll.timeout = sp32.timeout;
1292 	} else {
1293 		if (kvm_read_guest_virt(vcpu, param, &sched_poll,
1294 					sizeof(sched_poll), &e)) {
1295 			*r = -EFAULT;
1296 			return true;
1297 		}
1298 	}
1299 
1300 	if (unlikely(sched_poll.nr_ports > 1)) {
1301 		/* Xen (unofficially) limits number of pollers to 128 */
1302 		if (sched_poll.nr_ports > 128) {
1303 			*r = -EINVAL;
1304 			return true;
1305 		}
1306 
1307 		ports = kmalloc_array(sched_poll.nr_ports,
1308 				      sizeof(*ports), GFP_KERNEL);
1309 		if (!ports) {
1310 			*r = -ENOMEM;
1311 			return true;
1312 		}
1313 	} else
1314 		ports = &port;
1315 
1316 	if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports,
1317 				sched_poll.nr_ports * sizeof(*ports), &e)) {
1318 		*r = -EFAULT;
1319 		return true;
1320 	}
1321 
1322 	for (i = 0; i < sched_poll.nr_ports; i++) {
1323 		if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1324 			*r = -EINVAL;
1325 			goto out;
1326 		}
1327 	}
1328 
1329 	if (sched_poll.nr_ports == 1)
1330 		vcpu->arch.xen.poll_evtchn = port;
1331 	else
1332 		vcpu->arch.xen.poll_evtchn = -1;
1333 
1334 	set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1335 
1336 	if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1337 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1338 
1339 		if (sched_poll.timeout)
1340 			mod_timer(&vcpu->arch.xen.poll_timer,
1341 				  jiffies + nsecs_to_jiffies(sched_poll.timeout));
1342 
1343 		kvm_vcpu_halt(vcpu);
1344 
1345 		if (sched_poll.timeout)
1346 			del_timer(&vcpu->arch.xen.poll_timer);
1347 
1348 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1349 	}
1350 
1351 	vcpu->arch.xen.poll_evtchn = 0;
1352 	*r = 0;
1353 out:
1354 	/* Really, this is only needed in case of timeout */
1355 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1356 
1357 	if (unlikely(sched_poll.nr_ports > 1))
1358 		kfree(ports);
1359 	return true;
1360 }
1361 
1362 static void cancel_evtchn_poll(struct timer_list *t)
1363 {
1364 	struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1365 
1366 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1367 	kvm_vcpu_kick(vcpu);
1368 }
1369 
1370 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1371 				   int cmd, u64 param, u64 *r)
1372 {
1373 	switch (cmd) {
1374 	case SCHEDOP_poll:
1375 		if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1376 			return true;
1377 		fallthrough;
1378 	case SCHEDOP_yield:
1379 		kvm_vcpu_on_spin(vcpu, true);
1380 		*r = 0;
1381 		return true;
1382 	default:
1383 		break;
1384 	}
1385 
1386 	return false;
1387 }
1388 
1389 struct compat_vcpu_set_singleshot_timer {
1390     uint64_t timeout_abs_ns;
1391     uint32_t flags;
1392 } __attribute__((packed));
1393 
1394 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1395 				  int vcpu_id, u64 param, u64 *r)
1396 {
1397 	struct vcpu_set_singleshot_timer oneshot;
1398 	struct x86_exception e;
1399 	s64 delta;
1400 
1401 	if (!kvm_xen_timer_enabled(vcpu))
1402 		return false;
1403 
1404 	switch (cmd) {
1405 	case VCPUOP_set_singleshot_timer:
1406 		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1407 			*r = -EINVAL;
1408 			return true;
1409 		}
1410 
1411 		/*
1412 		 * The only difference for 32-bit compat is the 4 bytes of
1413 		 * padding after the interesting part of the structure. So
1414 		 * for a faithful emulation of Xen we have to *try* to copy
1415 		 * the padding and return -EFAULT if we can't. Otherwise we
1416 		 * might as well just have copied the 12-byte 32-bit struct.
1417 		 */
1418 		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1419 			     offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1420 		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1421 			     sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1422 		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1423 			     offsetof(struct vcpu_set_singleshot_timer, flags));
1424 		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1425 			     sizeof_field(struct vcpu_set_singleshot_timer, flags));
1426 
1427 		if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) :
1428 					sizeof(struct compat_vcpu_set_singleshot_timer), &e)) {
1429 			*r = -EFAULT;
1430 			return true;
1431 		}
1432 
1433 		/* A delta <= 0 results in an immediate callback, which is what we want */
1434 		delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm);
1435 		kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta);
1436 		*r = 0;
1437 		return true;
1438 
1439 	case VCPUOP_stop_singleshot_timer:
1440 		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1441 			*r = -EINVAL;
1442 			return true;
1443 		}
1444 		kvm_xen_stop_timer(vcpu);
1445 		*r = 0;
1446 		return true;
1447 	}
1448 
1449 	return false;
1450 }
1451 
1452 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1453 				       u64 *r)
1454 {
1455 	if (!kvm_xen_timer_enabled(vcpu))
1456 		return false;
1457 
1458 	if (timeout) {
1459 		uint64_t guest_now = get_kvmclock_ns(vcpu->kvm);
1460 		int64_t delta = timeout - guest_now;
1461 
1462 		/* Xen has a 'Linux workaround' in do_set_timer_op() which
1463 		 * checks for negative absolute timeout values (caused by
1464 		 * integer overflow), and for values about 13 days in the
1465 		 * future (2^50ns) which would be caused by jiffies
1466 		 * overflow. For those cases, it sets the timeout 100ms in
1467 		 * the future (not *too* soon, since if a guest really did
1468 		 * set a long timeout on purpose we don't want to keep
1469 		 * churning CPU time by waking it up).
1470 		 */
1471 		if (unlikely((int64_t)timeout < 0 ||
1472 			     (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
1473 			delta = 100 * NSEC_PER_MSEC;
1474 			timeout = guest_now + delta;
1475 		}
1476 
1477 		kvm_xen_start_timer(vcpu, timeout, delta);
1478 	} else {
1479 		kvm_xen_stop_timer(vcpu);
1480 	}
1481 
1482 	*r = 0;
1483 	return true;
1484 }
1485 
1486 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1487 {
1488 	bool longmode;
1489 	u64 input, params[6], r = -ENOSYS;
1490 	bool handled = false;
1491 	u8 cpl;
1492 
1493 	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1494 
1495 	/* Hyper-V hypercalls get bit 31 set in EAX */
1496 	if ((input & 0x80000000) &&
1497 	    kvm_hv_hypercall_enabled(vcpu))
1498 		return kvm_hv_hypercall(vcpu);
1499 
1500 	longmode = is_64_bit_hypercall(vcpu);
1501 	if (!longmode) {
1502 		params[0] = (u32)kvm_rbx_read(vcpu);
1503 		params[1] = (u32)kvm_rcx_read(vcpu);
1504 		params[2] = (u32)kvm_rdx_read(vcpu);
1505 		params[3] = (u32)kvm_rsi_read(vcpu);
1506 		params[4] = (u32)kvm_rdi_read(vcpu);
1507 		params[5] = (u32)kvm_rbp_read(vcpu);
1508 	}
1509 #ifdef CONFIG_X86_64
1510 	else {
1511 		params[0] = (u64)kvm_rdi_read(vcpu);
1512 		params[1] = (u64)kvm_rsi_read(vcpu);
1513 		params[2] = (u64)kvm_rdx_read(vcpu);
1514 		params[3] = (u64)kvm_r10_read(vcpu);
1515 		params[4] = (u64)kvm_r8_read(vcpu);
1516 		params[5] = (u64)kvm_r9_read(vcpu);
1517 	}
1518 #endif
1519 	cpl = static_call(kvm_x86_get_cpl)(vcpu);
1520 	trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1521 				params[3], params[4], params[5]);
1522 
1523 	/*
1524 	 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1525 	 * are permitted in guest userspace can be handled by the VMM.
1526 	 */
1527 	if (unlikely(cpl > 0))
1528 		goto handle_in_userspace;
1529 
1530 	switch (input) {
1531 	case __HYPERVISOR_xen_version:
1532 		if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1533 			r = vcpu->kvm->arch.xen.xen_version;
1534 			handled = true;
1535 		}
1536 		break;
1537 	case __HYPERVISOR_event_channel_op:
1538 		if (params[0] == EVTCHNOP_send)
1539 			handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1540 		break;
1541 	case __HYPERVISOR_sched_op:
1542 		handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1543 						 params[1], &r);
1544 		break;
1545 	case __HYPERVISOR_vcpu_op:
1546 		handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1547 						params[2], &r);
1548 		break;
1549 	case __HYPERVISOR_set_timer_op: {
1550 		u64 timeout = params[0];
1551 		/* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1552 		if (!longmode)
1553 			timeout |= params[1] << 32;
1554 		handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1555 		break;
1556 	}
1557 	default:
1558 		break;
1559 	}
1560 
1561 	if (handled)
1562 		return kvm_xen_hypercall_set_result(vcpu, r);
1563 
1564 handle_in_userspace:
1565 	vcpu->run->exit_reason = KVM_EXIT_XEN;
1566 	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1567 	vcpu->run->xen.u.hcall.longmode = longmode;
1568 	vcpu->run->xen.u.hcall.cpl = cpl;
1569 	vcpu->run->xen.u.hcall.input = input;
1570 	vcpu->run->xen.u.hcall.params[0] = params[0];
1571 	vcpu->run->xen.u.hcall.params[1] = params[1];
1572 	vcpu->run->xen.u.hcall.params[2] = params[2];
1573 	vcpu->run->xen.u.hcall.params[3] = params[3];
1574 	vcpu->run->xen.u.hcall.params[4] = params[4];
1575 	vcpu->run->xen.u.hcall.params[5] = params[5];
1576 	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1577 	vcpu->arch.complete_userspace_io =
1578 		kvm_xen_hypercall_complete_userspace;
1579 
1580 	return 0;
1581 }
1582 
1583 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1584 {
1585 	int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1586 
1587 	if ((poll_evtchn == port || poll_evtchn == -1) &&
1588 	    test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1589 		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1590 		kvm_vcpu_kick(vcpu);
1591 	}
1592 }
1593 
1594 /*
1595  * The return value from this function is propagated to kvm_set_irq() API,
1596  * so it returns:
1597  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1598  *  = 0   Interrupt was coalesced (previous irq is still pending)
1599  *  > 0   Number of CPUs interrupt was delivered to
1600  *
1601  * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1602  * only check on its return value is a comparison with -EWOULDBLOCK'.
1603  */
1604 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1605 {
1606 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1607 	struct kvm_vcpu *vcpu;
1608 	unsigned long *pending_bits, *mask_bits;
1609 	unsigned long flags;
1610 	int port_word_bit;
1611 	bool kick_vcpu = false;
1612 	int vcpu_idx, idx, rc;
1613 
1614 	vcpu_idx = READ_ONCE(xe->vcpu_idx);
1615 	if (vcpu_idx >= 0)
1616 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1617 	else {
1618 		vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1619 		if (!vcpu)
1620 			return -EINVAL;
1621 		WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1622 	}
1623 
1624 	if (!vcpu->arch.xen.vcpu_info_cache.active)
1625 		return -EINVAL;
1626 
1627 	if (xe->port >= max_evtchn_port(kvm))
1628 		return -EINVAL;
1629 
1630 	rc = -EWOULDBLOCK;
1631 
1632 	idx = srcu_read_lock(&kvm->srcu);
1633 
1634 	read_lock_irqsave(&gpc->lock, flags);
1635 	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1636 		goto out_rcu;
1637 
1638 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1639 		struct shared_info *shinfo = gpc->khva;
1640 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1641 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1642 		port_word_bit = xe->port / 64;
1643 	} else {
1644 		struct compat_shared_info *shinfo = gpc->khva;
1645 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1646 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1647 		port_word_bit = xe->port / 32;
1648 	}
1649 
1650 	/*
1651 	 * If this port wasn't already set, and if it isn't masked, then
1652 	 * we try to set the corresponding bit in the in-kernel shadow of
1653 	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1654 	 * already set, then we kick the vCPU in question to write to the
1655 	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1656 	 */
1657 	if (test_and_set_bit(xe->port, pending_bits)) {
1658 		rc = 0; /* It was already raised */
1659 	} else if (test_bit(xe->port, mask_bits)) {
1660 		rc = -ENOTCONN; /* Masked */
1661 		kvm_xen_check_poller(vcpu, xe->port);
1662 	} else {
1663 		rc = 1; /* Delivered to the bitmap in shared_info. */
1664 		/* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1665 		read_unlock_irqrestore(&gpc->lock, flags);
1666 		gpc = &vcpu->arch.xen.vcpu_info_cache;
1667 
1668 		read_lock_irqsave(&gpc->lock, flags);
1669 		if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1670 			/*
1671 			 * Could not access the vcpu_info. Set the bit in-kernel
1672 			 * and prod the vCPU to deliver it for itself.
1673 			 */
1674 			if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1675 				kick_vcpu = true;
1676 			goto out_rcu;
1677 		}
1678 
1679 		if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1680 			struct vcpu_info *vcpu_info = gpc->khva;
1681 			if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1682 				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1683 				kick_vcpu = true;
1684 			}
1685 		} else {
1686 			struct compat_vcpu_info *vcpu_info = gpc->khva;
1687 			if (!test_and_set_bit(port_word_bit,
1688 					      (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1689 				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1690 				kick_vcpu = true;
1691 			}
1692 		}
1693 
1694 		/* For the per-vCPU lapic vector, deliver it as MSI. */
1695 		if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1696 			kvm_xen_inject_vcpu_vector(vcpu);
1697 			kick_vcpu = false;
1698 		}
1699 	}
1700 
1701  out_rcu:
1702 	read_unlock_irqrestore(&gpc->lock, flags);
1703 	srcu_read_unlock(&kvm->srcu, idx);
1704 
1705 	if (kick_vcpu) {
1706 		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1707 		kvm_vcpu_kick(vcpu);
1708 	}
1709 
1710 	return rc;
1711 }
1712 
1713 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1714 {
1715 	bool mm_borrowed = false;
1716 	int rc;
1717 
1718 	rc = kvm_xen_set_evtchn_fast(xe, kvm);
1719 	if (rc != -EWOULDBLOCK)
1720 		return rc;
1721 
1722 	if (current->mm != kvm->mm) {
1723 		/*
1724 		 * If not on a thread which already belongs to this KVM,
1725 		 * we'd better be in the irqfd workqueue.
1726 		 */
1727 		if (WARN_ON_ONCE(current->mm))
1728 			return -EINVAL;
1729 
1730 		kthread_use_mm(kvm->mm);
1731 		mm_borrowed = true;
1732 	}
1733 
1734 	mutex_lock(&kvm->arch.xen.xen_lock);
1735 
1736 	/*
1737 	 * It is theoretically possible for the page to be unmapped
1738 	 * and the MMU notifier to invalidate the shared_info before
1739 	 * we even get to use it. In that case, this looks like an
1740 	 * infinite loop. It was tempting to do it via the userspace
1741 	 * HVA instead... but that just *hides* the fact that it's
1742 	 * an infinite loop, because if a fault occurs and it waits
1743 	 * for the page to come back, it can *still* immediately
1744 	 * fault and have to wait again, repeatedly.
1745 	 *
1746 	 * Conversely, the page could also have been reinstated by
1747 	 * another thread before we even obtain the mutex above, so
1748 	 * check again *first* before remapping it.
1749 	 */
1750 	do {
1751 		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1752 		int idx;
1753 
1754 		rc = kvm_xen_set_evtchn_fast(xe, kvm);
1755 		if (rc != -EWOULDBLOCK)
1756 			break;
1757 
1758 		idx = srcu_read_lock(&kvm->srcu);
1759 		rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1760 		srcu_read_unlock(&kvm->srcu, idx);
1761 	} while(!rc);
1762 
1763 	mutex_unlock(&kvm->arch.xen.xen_lock);
1764 
1765 	if (mm_borrowed)
1766 		kthread_unuse_mm(kvm->mm);
1767 
1768 	return rc;
1769 }
1770 
1771 /* This is the version called from kvm_set_irq() as the .set function */
1772 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1773 			 int irq_source_id, int level, bool line_status)
1774 {
1775 	if (!level)
1776 		return -EINVAL;
1777 
1778 	return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1779 }
1780 
1781 /*
1782  * Set up an event channel interrupt from the KVM IRQ routing table.
1783  * Used for e.g. PIRQ from passed through physical devices.
1784  */
1785 int kvm_xen_setup_evtchn(struct kvm *kvm,
1786 			 struct kvm_kernel_irq_routing_entry *e,
1787 			 const struct kvm_irq_routing_entry *ue)
1788 
1789 {
1790 	struct kvm_vcpu *vcpu;
1791 
1792 	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1793 		return -EINVAL;
1794 
1795 	/* We only support 2 level event channels for now */
1796 	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1797 		return -EINVAL;
1798 
1799 	/*
1800 	 * Xen gives us interesting mappings from vCPU index to APIC ID,
1801 	 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1802 	 * to find it. Do that once at setup time, instead of every time.
1803 	 * But beware that on live update / live migration, the routing
1804 	 * table might be reinstated before the vCPU threads have finished
1805 	 * recreating their vCPUs.
1806 	 */
1807 	vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1808 	if (vcpu)
1809 		e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1810 	else
1811 		e->xen_evtchn.vcpu_idx = -1;
1812 
1813 	e->xen_evtchn.port = ue->u.xen_evtchn.port;
1814 	e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1815 	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1816 	e->set = evtchn_set_fn;
1817 
1818 	return 0;
1819 }
1820 
1821 /*
1822  * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1823  */
1824 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1825 {
1826 	struct kvm_xen_evtchn e;
1827 	int ret;
1828 
1829 	if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1830 		return -EINVAL;
1831 
1832 	/* We only support 2 level event channels for now */
1833 	if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1834 		return -EINVAL;
1835 
1836 	e.port = uxe->port;
1837 	e.vcpu_id = uxe->vcpu;
1838 	e.vcpu_idx = -1;
1839 	e.priority = uxe->priority;
1840 
1841 	ret = kvm_xen_set_evtchn(&e, kvm);
1842 
1843 	/*
1844 	 * None of that 'return 1 if it actually got delivered' nonsense.
1845 	 * We don't care if it was masked (-ENOTCONN) either.
1846 	 */
1847 	if (ret > 0 || ret == -ENOTCONN)
1848 		ret = 0;
1849 
1850 	return ret;
1851 }
1852 
1853 /*
1854  * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1855  */
1856 struct evtchnfd {
1857 	u32 send_port;
1858 	u32 type;
1859 	union {
1860 		struct kvm_xen_evtchn port;
1861 		struct {
1862 			u32 port; /* zero */
1863 			struct eventfd_ctx *ctx;
1864 		} eventfd;
1865 	} deliver;
1866 };
1867 
1868 /*
1869  * Update target vCPU or priority for a registered sending channel.
1870  */
1871 static int kvm_xen_eventfd_update(struct kvm *kvm,
1872 				  struct kvm_xen_hvm_attr *data)
1873 {
1874 	u32 port = data->u.evtchn.send_port;
1875 	struct evtchnfd *evtchnfd;
1876 	int ret;
1877 
1878 	/* Protect writes to evtchnfd as well as the idr lookup.  */
1879 	mutex_lock(&kvm->arch.xen.xen_lock);
1880 	evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
1881 
1882 	ret = -ENOENT;
1883 	if (!evtchnfd)
1884 		goto out_unlock;
1885 
1886 	/* For an UPDATE, nothing may change except the priority/vcpu */
1887 	ret = -EINVAL;
1888 	if (evtchnfd->type != data->u.evtchn.type)
1889 		goto out_unlock;
1890 
1891 	/*
1892 	 * Port cannot change, and if it's zero that was an eventfd
1893 	 * which can't be changed either.
1894 	 */
1895 	if (!evtchnfd->deliver.port.port ||
1896 	    evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
1897 		goto out_unlock;
1898 
1899 	/* We only support 2 level event channels for now */
1900 	if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1901 		goto out_unlock;
1902 
1903 	evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1904 	if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
1905 		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1906 		evtchnfd->deliver.port.vcpu_idx = -1;
1907 	}
1908 	ret = 0;
1909 out_unlock:
1910 	mutex_unlock(&kvm->arch.xen.xen_lock);
1911 	return ret;
1912 }
1913 
1914 /*
1915  * Configure the target (eventfd or local port delivery) for sending on
1916  * a given event channel.
1917  */
1918 static int kvm_xen_eventfd_assign(struct kvm *kvm,
1919 				  struct kvm_xen_hvm_attr *data)
1920 {
1921 	u32 port = data->u.evtchn.send_port;
1922 	struct eventfd_ctx *eventfd = NULL;
1923 	struct evtchnfd *evtchnfd;
1924 	int ret = -EINVAL;
1925 
1926 	evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
1927 	if (!evtchnfd)
1928 		return -ENOMEM;
1929 
1930 	switch(data->u.evtchn.type) {
1931 	case EVTCHNSTAT_ipi:
1932 		/* IPI  must map back to the same port# */
1933 		if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
1934 			goto out_noeventfd; /* -EINVAL */
1935 		break;
1936 
1937 	case EVTCHNSTAT_interdomain:
1938 		if (data->u.evtchn.deliver.port.port) {
1939 			if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
1940 				goto out_noeventfd; /* -EINVAL */
1941 		} else {
1942 			eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
1943 			if (IS_ERR(eventfd)) {
1944 				ret = PTR_ERR(eventfd);
1945 				goto out_noeventfd;
1946 			}
1947 		}
1948 		break;
1949 
1950 	case EVTCHNSTAT_virq:
1951 	case EVTCHNSTAT_closed:
1952 	case EVTCHNSTAT_unbound:
1953 	case EVTCHNSTAT_pirq:
1954 	default: /* Unknown event channel type */
1955 		goto out; /* -EINVAL */
1956 	}
1957 
1958 	evtchnfd->send_port = data->u.evtchn.send_port;
1959 	evtchnfd->type = data->u.evtchn.type;
1960 	if (eventfd) {
1961 		evtchnfd->deliver.eventfd.ctx = eventfd;
1962 	} else {
1963 		/* We only support 2 level event channels for now */
1964 		if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1965 			goto out; /* -EINVAL; */
1966 
1967 		evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
1968 		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1969 		evtchnfd->deliver.port.vcpu_idx = -1;
1970 		evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1971 	}
1972 
1973 	mutex_lock(&kvm->arch.xen.xen_lock);
1974 	ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
1975 			GFP_KERNEL);
1976 	mutex_unlock(&kvm->arch.xen.xen_lock);
1977 	if (ret >= 0)
1978 		return 0;
1979 
1980 	if (ret == -ENOSPC)
1981 		ret = -EEXIST;
1982 out:
1983 	if (eventfd)
1984 		eventfd_ctx_put(eventfd);
1985 out_noeventfd:
1986 	kfree(evtchnfd);
1987 	return ret;
1988 }
1989 
1990 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
1991 {
1992 	struct evtchnfd *evtchnfd;
1993 
1994 	mutex_lock(&kvm->arch.xen.xen_lock);
1995 	evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
1996 	mutex_unlock(&kvm->arch.xen.xen_lock);
1997 
1998 	if (!evtchnfd)
1999 		return -ENOENT;
2000 
2001 	synchronize_srcu(&kvm->srcu);
2002 	if (!evtchnfd->deliver.port.port)
2003 		eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2004 	kfree(evtchnfd);
2005 	return 0;
2006 }
2007 
2008 static int kvm_xen_eventfd_reset(struct kvm *kvm)
2009 {
2010 	struct evtchnfd *evtchnfd, **all_evtchnfds;
2011 	int i;
2012 	int n = 0;
2013 
2014 	mutex_lock(&kvm->arch.xen.xen_lock);
2015 
2016 	/*
2017 	 * Because synchronize_srcu() cannot be called inside the
2018 	 * critical section, first collect all the evtchnfd objects
2019 	 * in an array as they are removed from evtchn_ports.
2020 	 */
2021 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
2022 		n++;
2023 
2024 	all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL);
2025 	if (!all_evtchnfds) {
2026 		mutex_unlock(&kvm->arch.xen.xen_lock);
2027 		return -ENOMEM;
2028 	}
2029 
2030 	n = 0;
2031 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2032 		all_evtchnfds[n++] = evtchnfd;
2033 		idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
2034 	}
2035 	mutex_unlock(&kvm->arch.xen.xen_lock);
2036 
2037 	synchronize_srcu(&kvm->srcu);
2038 
2039 	while (n--) {
2040 		evtchnfd = all_evtchnfds[n];
2041 		if (!evtchnfd->deliver.port.port)
2042 			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2043 		kfree(evtchnfd);
2044 	}
2045 	kfree(all_evtchnfds);
2046 
2047 	return 0;
2048 }
2049 
2050 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
2051 {
2052 	u32 port = data->u.evtchn.send_port;
2053 
2054 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
2055 		return kvm_xen_eventfd_reset(kvm);
2056 
2057 	if (!port || port >= max_evtchn_port(kvm))
2058 		return -EINVAL;
2059 
2060 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
2061 		return kvm_xen_eventfd_deassign(kvm, port);
2062 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
2063 		return kvm_xen_eventfd_update(kvm, data);
2064 	if (data->u.evtchn.flags)
2065 		return -EINVAL;
2066 
2067 	return kvm_xen_eventfd_assign(kvm, data);
2068 }
2069 
2070 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2071 {
2072 	struct evtchnfd *evtchnfd;
2073 	struct evtchn_send send;
2074 	struct x86_exception e;
2075 
2076 	/* Sanity check: this structure is the same for 32-bit and 64-bit */
2077 	BUILD_BUG_ON(sizeof(send) != 4);
2078 	if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) {
2079 		*r = -EFAULT;
2080 		return true;
2081 	}
2082 
2083 	/*
2084 	 * evtchnfd is protected by kvm->srcu; the idr lookup instead
2085 	 * is protected by RCU.
2086 	 */
2087 	rcu_read_lock();
2088 	evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2089 	rcu_read_unlock();
2090 	if (!evtchnfd)
2091 		return false;
2092 
2093 	if (evtchnfd->deliver.port.port) {
2094 		int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2095 		if (ret < 0 && ret != -ENOTCONN)
2096 			return false;
2097 	} else {
2098 		eventfd_signal(evtchnfd->deliver.eventfd.ctx);
2099 	}
2100 
2101 	*r = 0;
2102 	return true;
2103 }
2104 
2105 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2106 {
2107 	vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2108 	vcpu->arch.xen.poll_evtchn = 0;
2109 
2110 	timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2111 
2112 	kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm, NULL,
2113 		     KVM_HOST_USES_PFN);
2114 	kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm, NULL,
2115 		     KVM_HOST_USES_PFN);
2116 	kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm, NULL,
2117 		     KVM_HOST_USES_PFN);
2118 	kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm, NULL,
2119 		     KVM_HOST_USES_PFN);
2120 }
2121 
2122 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2123 {
2124 	if (kvm_xen_timer_enabled(vcpu))
2125 		kvm_xen_stop_timer(vcpu);
2126 
2127 	kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2128 	kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2129 	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2130 	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2131 
2132 	del_timer_sync(&vcpu->arch.xen.poll_timer);
2133 }
2134 
2135 void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu)
2136 {
2137 	struct kvm_cpuid_entry2 *entry;
2138 	u32 function;
2139 
2140 	if (!vcpu->arch.xen.cpuid.base)
2141 		return;
2142 
2143 	function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3);
2144 	if (function > vcpu->arch.xen.cpuid.limit)
2145 		return;
2146 
2147 	entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2148 	if (entry) {
2149 		entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul;
2150 		entry->edx = vcpu->arch.hv_clock.tsc_shift;
2151 	}
2152 
2153 	entry = kvm_find_cpuid_entry_index(vcpu, function, 2);
2154 	if (entry)
2155 		entry->eax = vcpu->arch.hw_tsc_khz;
2156 }
2157 
2158 void kvm_xen_init_vm(struct kvm *kvm)
2159 {
2160 	mutex_init(&kvm->arch.xen.xen_lock);
2161 	idr_init(&kvm->arch.xen.evtchn_ports);
2162 	kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm, NULL, KVM_HOST_USES_PFN);
2163 }
2164 
2165 void kvm_xen_destroy_vm(struct kvm *kvm)
2166 {
2167 	struct evtchnfd *evtchnfd;
2168 	int i;
2169 
2170 	kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2171 
2172 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2173 		if (!evtchnfd->deliver.port.port)
2174 			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2175 		kfree(evtchnfd);
2176 	}
2177 	idr_destroy(&kvm->arch.xen.evtchn_ports);
2178 
2179 	if (kvm->arch.xen_hvm_config.msr)
2180 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
2181 }
2182