1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. 4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. 5 * 6 * KVM Xen emulation 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include "x86.h" 11 #include "xen.h" 12 #include "hyperv.h" 13 #include "irq.h" 14 15 #include <linux/eventfd.h> 16 #include <linux/kvm_host.h> 17 #include <linux/sched/stat.h> 18 19 #include <trace/events/kvm.h> 20 #include <xen/interface/xen.h> 21 #include <xen/interface/vcpu.h> 22 #include <xen/interface/version.h> 23 #include <xen/interface/event_channel.h> 24 #include <xen/interface/sched.h> 25 26 #include <asm/xen/cpuid.h> 27 #include <asm/pvclock.h> 28 29 #include "cpuid.h" 30 #include "trace.h" 31 32 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm); 33 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data); 34 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r); 35 36 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); 37 38 static int kvm_xen_shared_info_init(struct kvm *kvm) 39 { 40 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 41 struct pvclock_wall_clock *wc; 42 u32 *wc_sec_hi; 43 u32 wc_version; 44 u64 wall_nsec; 45 int ret = 0; 46 int idx = srcu_read_lock(&kvm->srcu); 47 48 read_lock_irq(&gpc->lock); 49 while (!kvm_gpc_check(gpc, PAGE_SIZE)) { 50 read_unlock_irq(&gpc->lock); 51 52 ret = kvm_gpc_refresh(gpc, PAGE_SIZE); 53 if (ret) 54 goto out; 55 56 read_lock_irq(&gpc->lock); 57 } 58 59 /* 60 * This code mirrors kvm_write_wall_clock() except that it writes 61 * directly through the pfn cache and doesn't mark the page dirty. 62 */ 63 wall_nsec = kvm_get_wall_clock_epoch(kvm); 64 65 /* Paranoia checks on the 32-bit struct layout */ 66 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); 67 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); 68 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 69 70 #ifdef CONFIG_X86_64 71 /* Paranoia checks on the 64-bit struct layout */ 72 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); 73 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); 74 75 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 76 struct shared_info *shinfo = gpc->khva; 77 78 wc_sec_hi = &shinfo->wc_sec_hi; 79 wc = &shinfo->wc; 80 } else 81 #endif 82 { 83 struct compat_shared_info *shinfo = gpc->khva; 84 85 wc_sec_hi = &shinfo->arch.wc_sec_hi; 86 wc = &shinfo->wc; 87 } 88 89 /* Increment and ensure an odd value */ 90 wc_version = wc->version = (wc->version + 1) | 1; 91 smp_wmb(); 92 93 wc->nsec = do_div(wall_nsec, NSEC_PER_SEC); 94 wc->sec = (u32)wall_nsec; 95 *wc_sec_hi = wall_nsec >> 32; 96 smp_wmb(); 97 98 wc->version = wc_version + 1; 99 read_unlock_irq(&gpc->lock); 100 101 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); 102 103 out: 104 srcu_read_unlock(&kvm->srcu, idx); 105 return ret; 106 } 107 108 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu) 109 { 110 if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) { 111 struct kvm_xen_evtchn e; 112 113 e.vcpu_id = vcpu->vcpu_id; 114 e.vcpu_idx = vcpu->vcpu_idx; 115 e.port = vcpu->arch.xen.timer_virq; 116 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 117 118 kvm_xen_set_evtchn(&e, vcpu->kvm); 119 120 vcpu->arch.xen.timer_expires = 0; 121 atomic_set(&vcpu->arch.xen.timer_pending, 0); 122 } 123 } 124 125 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer) 126 { 127 struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu, 128 arch.xen.timer); 129 struct kvm_xen_evtchn e; 130 int rc; 131 132 if (atomic_read(&vcpu->arch.xen.timer_pending)) 133 return HRTIMER_NORESTART; 134 135 e.vcpu_id = vcpu->vcpu_id; 136 e.vcpu_idx = vcpu->vcpu_idx; 137 e.port = vcpu->arch.xen.timer_virq; 138 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 139 140 rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm); 141 if (rc != -EWOULDBLOCK) { 142 vcpu->arch.xen.timer_expires = 0; 143 return HRTIMER_NORESTART; 144 } 145 146 atomic_inc(&vcpu->arch.xen.timer_pending); 147 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 148 kvm_vcpu_kick(vcpu); 149 150 return HRTIMER_NORESTART; 151 } 152 153 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, 154 bool linux_wa) 155 { 156 int64_t kernel_now, delta; 157 uint64_t guest_now; 158 159 /* 160 * The guest provides the requested timeout in absolute nanoseconds 161 * of the KVM clock — as *it* sees it, based on the scaled TSC and 162 * the pvclock information provided by KVM. 163 * 164 * The kernel doesn't support hrtimers based on CLOCK_MONOTONIC_RAW 165 * so use CLOCK_MONOTONIC. In the timescales covered by timers, the 166 * difference won't matter much as there is no cumulative effect. 167 * 168 * Calculate the time for some arbitrary point in time around "now" 169 * in terms of both kvmclock and CLOCK_MONOTONIC. Calculate the 170 * delta between the kvmclock "now" value and the guest's requested 171 * timeout, apply the "Linux workaround" described below, and add 172 * the resulting delta to the CLOCK_MONOTONIC "now" value, to get 173 * the absolute CLOCK_MONOTONIC time at which the timer should 174 * fire. 175 */ 176 if (vcpu->arch.hv_clock.version && vcpu->kvm->arch.use_master_clock && 177 static_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 178 uint64_t host_tsc, guest_tsc; 179 180 if (!IS_ENABLED(CONFIG_64BIT) || 181 !kvm_get_monotonic_and_clockread(&kernel_now, &host_tsc)) { 182 /* 183 * Don't fall back to get_kvmclock_ns() because it's 184 * broken; it has a systemic error in its results 185 * because it scales directly from host TSC to 186 * nanoseconds, and doesn't scale first to guest TSC 187 * and *then* to nanoseconds as the guest does. 188 * 189 * There is a small error introduced here because time 190 * continues to elapse between the ktime_get() and the 191 * subsequent rdtsc(). But not the systemic drift due 192 * to get_kvmclock_ns(). 193 */ 194 kernel_now = ktime_get(); /* This is CLOCK_MONOTONIC */ 195 host_tsc = rdtsc(); 196 } 197 198 /* Calculate the guest kvmclock as the guest would do it. */ 199 guest_tsc = kvm_read_l1_tsc(vcpu, host_tsc); 200 guest_now = __pvclock_read_cycles(&vcpu->arch.hv_clock, 201 guest_tsc); 202 } else { 203 /* 204 * Without CONSTANT_TSC, get_kvmclock_ns() is the only option. 205 * 206 * Also if the guest PV clock hasn't been set up yet, as is 207 * likely to be the case during migration when the vCPU has 208 * not been run yet. It would be possible to calculate the 209 * scaling factors properly in that case but there's not much 210 * point in doing so. The get_kvmclock_ns() drift accumulates 211 * over time, so it's OK to use it at startup. Besides, on 212 * migration there's going to be a little bit of skew in the 213 * precise moment at which timers fire anyway. Often they'll 214 * be in the "past" by the time the VM is running again after 215 * migration. 216 */ 217 guest_now = get_kvmclock_ns(vcpu->kvm); 218 kernel_now = ktime_get(); 219 } 220 221 delta = guest_abs - guest_now; 222 223 /* 224 * Xen has a 'Linux workaround' in do_set_timer_op() which checks for 225 * negative absolute timeout values (caused by integer overflow), and 226 * for values about 13 days in the future (2^50ns) which would be 227 * caused by jiffies overflow. For those cases, Xen sets the timeout 228 * 100ms in the future (not *too* soon, since if a guest really did 229 * set a long timeout on purpose we don't want to keep churning CPU 230 * time by waking it up). Emulate Xen's workaround when starting the 231 * timer in response to __HYPERVISOR_set_timer_op. 232 */ 233 if (linux_wa && 234 unlikely((int64_t)guest_abs < 0 || 235 (delta > 0 && (uint32_t) (delta >> 50) != 0))) { 236 delta = 100 * NSEC_PER_MSEC; 237 guest_abs = guest_now + delta; 238 } 239 240 /* 241 * Avoid races with the old timer firing. Checking timer_expires 242 * to avoid calling hrtimer_cancel() will only have false positives 243 * so is fine. 244 */ 245 if (vcpu->arch.xen.timer_expires) 246 hrtimer_cancel(&vcpu->arch.xen.timer); 247 248 atomic_set(&vcpu->arch.xen.timer_pending, 0); 249 vcpu->arch.xen.timer_expires = guest_abs; 250 251 if (delta <= 0) 252 xen_timer_callback(&vcpu->arch.xen.timer); 253 else 254 hrtimer_start(&vcpu->arch.xen.timer, 255 ktime_add_ns(kernel_now, delta), 256 HRTIMER_MODE_ABS_HARD); 257 } 258 259 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu) 260 { 261 hrtimer_cancel(&vcpu->arch.xen.timer); 262 vcpu->arch.xen.timer_expires = 0; 263 atomic_set(&vcpu->arch.xen.timer_pending, 0); 264 } 265 266 static void kvm_xen_init_timer(struct kvm_vcpu *vcpu) 267 { 268 hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC, 269 HRTIMER_MODE_ABS_HARD); 270 vcpu->arch.xen.timer.function = xen_timer_callback; 271 } 272 273 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic) 274 { 275 struct kvm_vcpu_xen *vx = &v->arch.xen; 276 struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache; 277 struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache; 278 size_t user_len, user_len1, user_len2; 279 struct vcpu_runstate_info rs; 280 unsigned long flags; 281 size_t times_ofs; 282 uint8_t *update_bit = NULL; 283 uint64_t entry_time; 284 uint64_t *rs_times; 285 int *rs_state; 286 287 /* 288 * The only difference between 32-bit and 64-bit versions of the 289 * runstate struct is the alignment of uint64_t in 32-bit, which 290 * means that the 64-bit version has an additional 4 bytes of 291 * padding after the first field 'state'. Let's be really really 292 * paranoid about that, and matching it with our internal data 293 * structures that we memcpy into it... 294 */ 295 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0); 296 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0); 297 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); 298 #ifdef CONFIG_X86_64 299 /* 300 * The 64-bit structure has 4 bytes of padding before 'state_entry_time' 301 * so each subsequent field is shifted by 4, and it's 4 bytes longer. 302 */ 303 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 304 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); 305 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != 306 offsetof(struct compat_vcpu_runstate_info, time) + 4); 307 BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4); 308 #endif 309 /* 310 * The state field is in the same place at the start of both structs, 311 * and is the same size (int) as vx->current_runstate. 312 */ 313 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 314 offsetof(struct compat_vcpu_runstate_info, state)); 315 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != 316 sizeof(vx->current_runstate)); 317 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != 318 sizeof(vx->current_runstate)); 319 320 /* 321 * The state_entry_time field is 64 bits in both versions, and the 322 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86 323 * is little-endian means that it's in the last *byte* of the word. 324 * That detail is important later. 325 */ 326 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != 327 sizeof(uint64_t)); 328 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != 329 sizeof(uint64_t)); 330 BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80); 331 332 /* 333 * The time array is four 64-bit quantities in both versions, matching 334 * the vx->runstate_times and immediately following state_entry_time. 335 */ 336 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 337 offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t)); 338 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != 339 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t)); 340 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 341 sizeof_field(struct compat_vcpu_runstate_info, time)); 342 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 343 sizeof(vx->runstate_times)); 344 345 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { 346 user_len = sizeof(struct vcpu_runstate_info); 347 times_ofs = offsetof(struct vcpu_runstate_info, 348 state_entry_time); 349 } else { 350 user_len = sizeof(struct compat_vcpu_runstate_info); 351 times_ofs = offsetof(struct compat_vcpu_runstate_info, 352 state_entry_time); 353 } 354 355 /* 356 * There are basically no alignment constraints. The guest can set it 357 * up so it crosses from one page to the next, and at arbitrary byte 358 * alignment (and the 32-bit ABI doesn't align the 64-bit integers 359 * anyway, even if the overall struct had been 64-bit aligned). 360 */ 361 if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) { 362 user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK); 363 user_len2 = user_len - user_len1; 364 } else { 365 user_len1 = user_len; 366 user_len2 = 0; 367 } 368 BUG_ON(user_len1 + user_len2 != user_len); 369 370 retry: 371 /* 372 * Attempt to obtain the GPC lock on *both* (if there are two) 373 * gfn_to_pfn caches that cover the region. 374 */ 375 if (atomic) { 376 local_irq_save(flags); 377 if (!read_trylock(&gpc1->lock)) { 378 local_irq_restore(flags); 379 return; 380 } 381 } else { 382 read_lock_irqsave(&gpc1->lock, flags); 383 } 384 while (!kvm_gpc_check(gpc1, user_len1)) { 385 read_unlock_irqrestore(&gpc1->lock, flags); 386 387 /* When invoked from kvm_sched_out() we cannot sleep */ 388 if (atomic) 389 return; 390 391 if (kvm_gpc_refresh(gpc1, user_len1)) 392 return; 393 394 read_lock_irqsave(&gpc1->lock, flags); 395 } 396 397 if (likely(!user_len2)) { 398 /* 399 * Set up three pointers directly to the runstate_info 400 * struct in the guest (via the GPC). 401 * 402 * • @rs_state → state field 403 * • @rs_times → state_entry_time field. 404 * • @update_bit → last byte of state_entry_time, which 405 * contains the XEN_RUNSTATE_UPDATE bit. 406 */ 407 rs_state = gpc1->khva; 408 rs_times = gpc1->khva + times_ofs; 409 if (v->kvm->arch.xen.runstate_update_flag) 410 update_bit = ((void *)(&rs_times[1])) - 1; 411 } else { 412 /* 413 * The guest's runstate_info is split across two pages and we 414 * need to hold and validate both GPCs simultaneously. We can 415 * declare a lock ordering GPC1 > GPC2 because nothing else 416 * takes them more than one at a time. Set a subclass on the 417 * gpc1 lock to make lockdep shut up about it. 418 */ 419 lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_); 420 if (atomic) { 421 if (!read_trylock(&gpc2->lock)) { 422 read_unlock_irqrestore(&gpc1->lock, flags); 423 return; 424 } 425 } else { 426 read_lock(&gpc2->lock); 427 } 428 429 if (!kvm_gpc_check(gpc2, user_len2)) { 430 read_unlock(&gpc2->lock); 431 read_unlock_irqrestore(&gpc1->lock, flags); 432 433 /* When invoked from kvm_sched_out() we cannot sleep */ 434 if (atomic) 435 return; 436 437 /* 438 * Use kvm_gpc_activate() here because if the runstate 439 * area was configured in 32-bit mode and only extends 440 * to the second page now because the guest changed to 441 * 64-bit mode, the second GPC won't have been set up. 442 */ 443 if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1, 444 user_len2)) 445 return; 446 447 /* 448 * We dropped the lock on GPC1 so we have to go all the 449 * way back and revalidate that too. 450 */ 451 goto retry; 452 } 453 454 /* 455 * In this case, the runstate_info struct will be assembled on 456 * the kernel stack (compat or not as appropriate) and will 457 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three 458 * rs pointers accordingly. 459 */ 460 rs_times = &rs.state_entry_time; 461 462 /* 463 * The rs_state pointer points to the start of what we'll 464 * copy to the guest, which in the case of a compat guest 465 * is the 32-bit field that the compiler thinks is padding. 466 */ 467 rs_state = ((void *)rs_times) - times_ofs; 468 469 /* 470 * The update_bit is still directly in the guest memory, 471 * via one GPC or the other. 472 */ 473 if (v->kvm->arch.xen.runstate_update_flag) { 474 if (user_len1 >= times_ofs + sizeof(uint64_t)) 475 update_bit = gpc1->khva + times_ofs + 476 sizeof(uint64_t) - 1; 477 else 478 update_bit = gpc2->khva + times_ofs + 479 sizeof(uint64_t) - 1 - user_len1; 480 } 481 482 #ifdef CONFIG_X86_64 483 /* 484 * Don't leak kernel memory through the padding in the 64-bit 485 * version of the struct. 486 */ 487 memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time)); 488 #endif 489 } 490 491 /* 492 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the 493 * state_entry_time field, directly in the guest. We need to set 494 * that (and write-barrier) before writing to the rest of the 495 * structure, and clear it last. Just as Xen does, we address the 496 * single *byte* in which it resides because it might be in a 497 * different cache line to the rest of the 64-bit word, due to 498 * the (lack of) alignment constraints. 499 */ 500 entry_time = vx->runstate_entry_time; 501 if (update_bit) { 502 entry_time |= XEN_RUNSTATE_UPDATE; 503 *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56; 504 smp_wmb(); 505 } 506 507 /* 508 * Now assemble the actual structure, either on our kernel stack 509 * or directly in the guest according to how the rs_state and 510 * rs_times pointers were set up above. 511 */ 512 *rs_state = vx->current_runstate; 513 rs_times[0] = entry_time; 514 memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times)); 515 516 /* For the split case, we have to then copy it to the guest. */ 517 if (user_len2) { 518 memcpy(gpc1->khva, rs_state, user_len1); 519 memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2); 520 } 521 smp_wmb(); 522 523 /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */ 524 if (update_bit) { 525 entry_time &= ~XEN_RUNSTATE_UPDATE; 526 *update_bit = entry_time >> 56; 527 smp_wmb(); 528 } 529 530 if (user_len2) { 531 kvm_gpc_mark_dirty_in_slot(gpc2); 532 read_unlock(&gpc2->lock); 533 } 534 535 kvm_gpc_mark_dirty_in_slot(gpc1); 536 read_unlock_irqrestore(&gpc1->lock, flags); 537 } 538 539 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) 540 { 541 struct kvm_vcpu_xen *vx = &v->arch.xen; 542 u64 now = get_kvmclock_ns(v->kvm); 543 u64 delta_ns = now - vx->runstate_entry_time; 544 u64 run_delay = current->sched_info.run_delay; 545 546 if (unlikely(!vx->runstate_entry_time)) 547 vx->current_runstate = RUNSTATE_offline; 548 549 /* 550 * Time waiting for the scheduler isn't "stolen" if the 551 * vCPU wasn't running anyway. 552 */ 553 if (vx->current_runstate == RUNSTATE_running) { 554 u64 steal_ns = run_delay - vx->last_steal; 555 556 delta_ns -= steal_ns; 557 558 vx->runstate_times[RUNSTATE_runnable] += steal_ns; 559 } 560 vx->last_steal = run_delay; 561 562 vx->runstate_times[vx->current_runstate] += delta_ns; 563 vx->current_runstate = state; 564 vx->runstate_entry_time = now; 565 566 if (vx->runstate_cache.active) 567 kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable); 568 } 569 570 void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v) 571 { 572 struct kvm_lapic_irq irq = { }; 573 574 irq.dest_id = v->vcpu_id; 575 irq.vector = v->arch.xen.upcall_vector; 576 irq.dest_mode = APIC_DEST_PHYSICAL; 577 irq.shorthand = APIC_DEST_NOSHORT; 578 irq.delivery_mode = APIC_DM_FIXED; 579 irq.level = 1; 580 581 kvm_irq_delivery_to_apic(v->kvm, NULL, &irq, NULL); 582 } 583 584 /* 585 * On event channel delivery, the vcpu_info may not have been accessible. 586 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which 587 * need to be marked into the vcpu_info (and evtchn_upcall_pending set). 588 * Do so now that we can sleep in the context of the vCPU to bring the 589 * page in, and refresh the pfn cache for it. 590 */ 591 void kvm_xen_inject_pending_events(struct kvm_vcpu *v) 592 { 593 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); 594 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; 595 unsigned long flags; 596 597 if (!evtchn_pending_sel) 598 return; 599 600 /* 601 * Yes, this is an open-coded loop. But that's just what put_user() 602 * does anyway. Page it in and retry the instruction. We're just a 603 * little more honest about it. 604 */ 605 read_lock_irqsave(&gpc->lock, flags); 606 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 607 read_unlock_irqrestore(&gpc->lock, flags); 608 609 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) 610 return; 611 612 read_lock_irqsave(&gpc->lock, flags); 613 } 614 615 /* Now gpc->khva is a valid kernel address for the vcpu_info */ 616 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { 617 struct vcpu_info *vi = gpc->khva; 618 619 asm volatile(LOCK_PREFIX "orq %0, %1\n" 620 "notq %0\n" 621 LOCK_PREFIX "andq %0, %2\n" 622 : "=r" (evtchn_pending_sel), 623 "+m" (vi->evtchn_pending_sel), 624 "+m" (v->arch.xen.evtchn_pending_sel) 625 : "0" (evtchn_pending_sel)); 626 WRITE_ONCE(vi->evtchn_upcall_pending, 1); 627 } else { 628 u32 evtchn_pending_sel32 = evtchn_pending_sel; 629 struct compat_vcpu_info *vi = gpc->khva; 630 631 asm volatile(LOCK_PREFIX "orl %0, %1\n" 632 "notl %0\n" 633 LOCK_PREFIX "andl %0, %2\n" 634 : "=r" (evtchn_pending_sel32), 635 "+m" (vi->evtchn_pending_sel), 636 "+m" (v->arch.xen.evtchn_pending_sel) 637 : "0" (evtchn_pending_sel32)); 638 WRITE_ONCE(vi->evtchn_upcall_pending, 1); 639 } 640 641 kvm_gpc_mark_dirty_in_slot(gpc); 642 read_unlock_irqrestore(&gpc->lock, flags); 643 644 /* For the per-vCPU lapic vector, deliver it as MSI. */ 645 if (v->arch.xen.upcall_vector) 646 kvm_xen_inject_vcpu_vector(v); 647 } 648 649 int __kvm_xen_has_interrupt(struct kvm_vcpu *v) 650 { 651 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; 652 unsigned long flags; 653 u8 rc = 0; 654 655 /* 656 * If the global upcall vector (HVMIRQ_callback_vector) is set and 657 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. 658 */ 659 660 /* No need for compat handling here */ 661 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != 662 offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); 663 BUILD_BUG_ON(sizeof(rc) != 664 sizeof_field(struct vcpu_info, evtchn_upcall_pending)); 665 BUILD_BUG_ON(sizeof(rc) != 666 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); 667 668 read_lock_irqsave(&gpc->lock, flags); 669 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 670 read_unlock_irqrestore(&gpc->lock, flags); 671 672 /* 673 * This function gets called from kvm_vcpu_block() after setting the 674 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately 675 * from a HLT. So we really mustn't sleep. If the page ended up absent 676 * at that point, just return 1 in order to trigger an immediate wake, 677 * and we'll end up getting called again from a context where we *can* 678 * fault in the page and wait for it. 679 */ 680 if (in_atomic() || !task_is_running(current)) 681 return 1; 682 683 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) { 684 /* 685 * If this failed, userspace has screwed up the 686 * vcpu_info mapping. No interrupts for you. 687 */ 688 return 0; 689 } 690 read_lock_irqsave(&gpc->lock, flags); 691 } 692 693 rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending; 694 read_unlock_irqrestore(&gpc->lock, flags); 695 return rc; 696 } 697 698 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 699 { 700 int r = -ENOENT; 701 702 703 switch (data->type) { 704 case KVM_XEN_ATTR_TYPE_LONG_MODE: 705 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { 706 r = -EINVAL; 707 } else { 708 mutex_lock(&kvm->arch.xen.xen_lock); 709 kvm->arch.xen.long_mode = !!data->u.long_mode; 710 711 /* 712 * Re-initialize shared_info to put the wallclock in the 713 * correct place. Whilst it's not necessary to do this 714 * unless the mode is actually changed, it does no harm 715 * to make the call anyway. 716 */ 717 r = kvm->arch.xen.shinfo_cache.active ? 718 kvm_xen_shared_info_init(kvm) : 0; 719 mutex_unlock(&kvm->arch.xen.xen_lock); 720 } 721 break; 722 723 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 724 case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: { 725 int idx; 726 727 mutex_lock(&kvm->arch.xen.xen_lock); 728 729 idx = srcu_read_lock(&kvm->srcu); 730 731 if (data->type == KVM_XEN_ATTR_TYPE_SHARED_INFO) { 732 gfn_t gfn = data->u.shared_info.gfn; 733 734 if (gfn == KVM_XEN_INVALID_GFN) { 735 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); 736 r = 0; 737 } else { 738 r = kvm_gpc_activate(&kvm->arch.xen.shinfo_cache, 739 gfn_to_gpa(gfn), PAGE_SIZE); 740 } 741 } else { 742 void __user * hva = u64_to_user_ptr(data->u.shared_info.hva); 743 744 if (!PAGE_ALIGNED(hva) || !access_ok(hva, PAGE_SIZE)) { 745 r = -EINVAL; 746 } else if (!hva) { 747 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); 748 r = 0; 749 } else { 750 r = kvm_gpc_activate_hva(&kvm->arch.xen.shinfo_cache, 751 (unsigned long)hva, PAGE_SIZE); 752 } 753 } 754 755 srcu_read_unlock(&kvm->srcu, idx); 756 757 if (!r && kvm->arch.xen.shinfo_cache.active) 758 r = kvm_xen_shared_info_init(kvm); 759 760 mutex_unlock(&kvm->arch.xen.xen_lock); 761 break; 762 } 763 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 764 if (data->u.vector && data->u.vector < 0x10) 765 r = -EINVAL; 766 else { 767 mutex_lock(&kvm->arch.xen.xen_lock); 768 kvm->arch.xen.upcall_vector = data->u.vector; 769 mutex_unlock(&kvm->arch.xen.xen_lock); 770 r = 0; 771 } 772 break; 773 774 case KVM_XEN_ATTR_TYPE_EVTCHN: 775 r = kvm_xen_setattr_evtchn(kvm, data); 776 break; 777 778 case KVM_XEN_ATTR_TYPE_XEN_VERSION: 779 mutex_lock(&kvm->arch.xen.xen_lock); 780 kvm->arch.xen.xen_version = data->u.xen_version; 781 mutex_unlock(&kvm->arch.xen.xen_lock); 782 r = 0; 783 break; 784 785 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: 786 if (!sched_info_on()) { 787 r = -EOPNOTSUPP; 788 break; 789 } 790 mutex_lock(&kvm->arch.xen.xen_lock); 791 kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag; 792 mutex_unlock(&kvm->arch.xen.xen_lock); 793 r = 0; 794 break; 795 796 default: 797 break; 798 } 799 800 return r; 801 } 802 803 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 804 { 805 int r = -ENOENT; 806 807 mutex_lock(&kvm->arch.xen.xen_lock); 808 809 switch (data->type) { 810 case KVM_XEN_ATTR_TYPE_LONG_MODE: 811 data->u.long_mode = kvm->arch.xen.long_mode; 812 r = 0; 813 break; 814 815 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 816 if (kvm_gpc_is_gpa_active(&kvm->arch.xen.shinfo_cache)) 817 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); 818 else 819 data->u.shared_info.gfn = KVM_XEN_INVALID_GFN; 820 r = 0; 821 break; 822 823 case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: 824 if (kvm_gpc_is_hva_active(&kvm->arch.xen.shinfo_cache)) 825 data->u.shared_info.hva = kvm->arch.xen.shinfo_cache.uhva; 826 else 827 data->u.shared_info.hva = 0; 828 r = 0; 829 break; 830 831 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 832 data->u.vector = kvm->arch.xen.upcall_vector; 833 r = 0; 834 break; 835 836 case KVM_XEN_ATTR_TYPE_XEN_VERSION: 837 data->u.xen_version = kvm->arch.xen.xen_version; 838 r = 0; 839 break; 840 841 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: 842 if (!sched_info_on()) { 843 r = -EOPNOTSUPP; 844 break; 845 } 846 data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag; 847 r = 0; 848 break; 849 850 default: 851 break; 852 } 853 854 mutex_unlock(&kvm->arch.xen.xen_lock); 855 return r; 856 } 857 858 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 859 { 860 int idx, r = -ENOENT; 861 862 mutex_lock(&vcpu->kvm->arch.xen.xen_lock); 863 idx = srcu_read_lock(&vcpu->kvm->srcu); 864 865 switch (data->type) { 866 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 867 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA: 868 /* No compat necessary here. */ 869 BUILD_BUG_ON(sizeof(struct vcpu_info) != 870 sizeof(struct compat_vcpu_info)); 871 BUILD_BUG_ON(offsetof(struct vcpu_info, time) != 872 offsetof(struct compat_vcpu_info, time)); 873 874 if (data->type == KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO) { 875 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 876 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 877 r = 0; 878 break; 879 } 880 881 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache, 882 data->u.gpa, sizeof(struct vcpu_info)); 883 } else { 884 if (data->u.hva == 0) { 885 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 886 r = 0; 887 break; 888 } 889 890 r = kvm_gpc_activate_hva(&vcpu->arch.xen.vcpu_info_cache, 891 data->u.hva, sizeof(struct vcpu_info)); 892 } 893 894 if (!r) 895 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 896 897 break; 898 899 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 900 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 901 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); 902 r = 0; 903 break; 904 } 905 906 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache, 907 data->u.gpa, 908 sizeof(struct pvclock_vcpu_time_info)); 909 if (!r) 910 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 911 break; 912 913 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: { 914 size_t sz, sz1, sz2; 915 916 if (!sched_info_on()) { 917 r = -EOPNOTSUPP; 918 break; 919 } 920 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 921 r = 0; 922 deactivate_out: 923 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); 924 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 925 break; 926 } 927 928 /* 929 * If the guest switches to 64-bit mode after setting the runstate 930 * address, that's actually OK. kvm_xen_update_runstate_guest() 931 * will cope. 932 */ 933 if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode) 934 sz = sizeof(struct vcpu_runstate_info); 935 else 936 sz = sizeof(struct compat_vcpu_runstate_info); 937 938 /* How much fits in the (first) page? */ 939 sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK); 940 r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache, 941 data->u.gpa, sz1); 942 if (r) 943 goto deactivate_out; 944 945 /* Either map the second page, or deactivate the second GPC */ 946 if (sz1 >= sz) { 947 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 948 } else { 949 sz2 = sz - sz1; 950 BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK); 951 r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache, 952 data->u.gpa + sz1, sz2); 953 if (r) 954 goto deactivate_out; 955 } 956 957 kvm_xen_update_runstate_guest(vcpu, false); 958 break; 959 } 960 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 961 if (!sched_info_on()) { 962 r = -EOPNOTSUPP; 963 break; 964 } 965 if (data->u.runstate.state > RUNSTATE_offline) { 966 r = -EINVAL; 967 break; 968 } 969 970 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 971 r = 0; 972 break; 973 974 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 975 if (!sched_info_on()) { 976 r = -EOPNOTSUPP; 977 break; 978 } 979 if (data->u.runstate.state > RUNSTATE_offline) { 980 r = -EINVAL; 981 break; 982 } 983 if (data->u.runstate.state_entry_time != 984 (data->u.runstate.time_running + 985 data->u.runstate.time_runnable + 986 data->u.runstate.time_blocked + 987 data->u.runstate.time_offline)) { 988 r = -EINVAL; 989 break; 990 } 991 if (get_kvmclock_ns(vcpu->kvm) < 992 data->u.runstate.state_entry_time) { 993 r = -EINVAL; 994 break; 995 } 996 997 vcpu->arch.xen.current_runstate = data->u.runstate.state; 998 vcpu->arch.xen.runstate_entry_time = 999 data->u.runstate.state_entry_time; 1000 vcpu->arch.xen.runstate_times[RUNSTATE_running] = 1001 data->u.runstate.time_running; 1002 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = 1003 data->u.runstate.time_runnable; 1004 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = 1005 data->u.runstate.time_blocked; 1006 vcpu->arch.xen.runstate_times[RUNSTATE_offline] = 1007 data->u.runstate.time_offline; 1008 vcpu->arch.xen.last_steal = current->sched_info.run_delay; 1009 r = 0; 1010 break; 1011 1012 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 1013 if (!sched_info_on()) { 1014 r = -EOPNOTSUPP; 1015 break; 1016 } 1017 if (data->u.runstate.state > RUNSTATE_offline && 1018 data->u.runstate.state != (u64)-1) { 1019 r = -EINVAL; 1020 break; 1021 } 1022 /* The adjustment must add up */ 1023 if (data->u.runstate.state_entry_time != 1024 (data->u.runstate.time_running + 1025 data->u.runstate.time_runnable + 1026 data->u.runstate.time_blocked + 1027 data->u.runstate.time_offline)) { 1028 r = -EINVAL; 1029 break; 1030 } 1031 1032 if (get_kvmclock_ns(vcpu->kvm) < 1033 (vcpu->arch.xen.runstate_entry_time + 1034 data->u.runstate.state_entry_time)) { 1035 r = -EINVAL; 1036 break; 1037 } 1038 1039 vcpu->arch.xen.runstate_entry_time += 1040 data->u.runstate.state_entry_time; 1041 vcpu->arch.xen.runstate_times[RUNSTATE_running] += 1042 data->u.runstate.time_running; 1043 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += 1044 data->u.runstate.time_runnable; 1045 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += 1046 data->u.runstate.time_blocked; 1047 vcpu->arch.xen.runstate_times[RUNSTATE_offline] += 1048 data->u.runstate.time_offline; 1049 1050 if (data->u.runstate.state <= RUNSTATE_offline) 1051 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 1052 else if (vcpu->arch.xen.runstate_cache.active) 1053 kvm_xen_update_runstate_guest(vcpu, false); 1054 r = 0; 1055 break; 1056 1057 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: 1058 if (data->u.vcpu_id >= KVM_MAX_VCPUS) 1059 r = -EINVAL; 1060 else { 1061 vcpu->arch.xen.vcpu_id = data->u.vcpu_id; 1062 r = 0; 1063 } 1064 break; 1065 1066 case KVM_XEN_VCPU_ATTR_TYPE_TIMER: 1067 if (data->u.timer.port && 1068 data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) { 1069 r = -EINVAL; 1070 break; 1071 } 1072 1073 if (!vcpu->arch.xen.timer.function) 1074 kvm_xen_init_timer(vcpu); 1075 1076 /* Stop the timer (if it's running) before changing the vector */ 1077 kvm_xen_stop_timer(vcpu); 1078 vcpu->arch.xen.timer_virq = data->u.timer.port; 1079 1080 /* Start the timer if the new value has a valid vector+expiry. */ 1081 if (data->u.timer.port && data->u.timer.expires_ns) 1082 kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, false); 1083 1084 r = 0; 1085 break; 1086 1087 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: 1088 if (data->u.vector && data->u.vector < 0x10) 1089 r = -EINVAL; 1090 else { 1091 vcpu->arch.xen.upcall_vector = data->u.vector; 1092 r = 0; 1093 } 1094 break; 1095 1096 default: 1097 break; 1098 } 1099 1100 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1101 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); 1102 return r; 1103 } 1104 1105 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 1106 { 1107 int r = -ENOENT; 1108 1109 mutex_lock(&vcpu->kvm->arch.xen.xen_lock); 1110 1111 switch (data->type) { 1112 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 1113 if (kvm_gpc_is_gpa_active(&vcpu->arch.xen.vcpu_info_cache)) 1114 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; 1115 else 1116 data->u.gpa = KVM_XEN_INVALID_GPA; 1117 r = 0; 1118 break; 1119 1120 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA: 1121 if (kvm_gpc_is_hva_active(&vcpu->arch.xen.vcpu_info_cache)) 1122 data->u.hva = vcpu->arch.xen.vcpu_info_cache.uhva; 1123 else 1124 data->u.hva = 0; 1125 r = 0; 1126 break; 1127 1128 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 1129 if (vcpu->arch.xen.vcpu_time_info_cache.active) 1130 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; 1131 else 1132 data->u.gpa = KVM_XEN_INVALID_GPA; 1133 r = 0; 1134 break; 1135 1136 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 1137 if (!sched_info_on()) { 1138 r = -EOPNOTSUPP; 1139 break; 1140 } 1141 if (vcpu->arch.xen.runstate_cache.active) { 1142 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; 1143 r = 0; 1144 } 1145 break; 1146 1147 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 1148 if (!sched_info_on()) { 1149 r = -EOPNOTSUPP; 1150 break; 1151 } 1152 data->u.runstate.state = vcpu->arch.xen.current_runstate; 1153 r = 0; 1154 break; 1155 1156 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 1157 if (!sched_info_on()) { 1158 r = -EOPNOTSUPP; 1159 break; 1160 } 1161 data->u.runstate.state = vcpu->arch.xen.current_runstate; 1162 data->u.runstate.state_entry_time = 1163 vcpu->arch.xen.runstate_entry_time; 1164 data->u.runstate.time_running = 1165 vcpu->arch.xen.runstate_times[RUNSTATE_running]; 1166 data->u.runstate.time_runnable = 1167 vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; 1168 data->u.runstate.time_blocked = 1169 vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; 1170 data->u.runstate.time_offline = 1171 vcpu->arch.xen.runstate_times[RUNSTATE_offline]; 1172 r = 0; 1173 break; 1174 1175 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 1176 r = -EINVAL; 1177 break; 1178 1179 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: 1180 data->u.vcpu_id = vcpu->arch.xen.vcpu_id; 1181 r = 0; 1182 break; 1183 1184 case KVM_XEN_VCPU_ATTR_TYPE_TIMER: 1185 /* 1186 * Ensure a consistent snapshot of state is captured, with a 1187 * timer either being pending, or the event channel delivered 1188 * to the corresponding bit in the shared_info. Not still 1189 * lurking in the timer_pending flag for deferred delivery. 1190 * Purely as an optimisation, if the timer_expires field is 1191 * zero, that means the timer isn't active (or even in the 1192 * timer_pending flag) and there is no need to cancel it. 1193 */ 1194 if (vcpu->arch.xen.timer_expires) { 1195 hrtimer_cancel(&vcpu->arch.xen.timer); 1196 kvm_xen_inject_timer_irqs(vcpu); 1197 } 1198 1199 data->u.timer.port = vcpu->arch.xen.timer_virq; 1200 data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 1201 data->u.timer.expires_ns = vcpu->arch.xen.timer_expires; 1202 1203 /* 1204 * The hrtimer may trigger and raise the IRQ immediately, 1205 * while the returned state causes it to be set up and 1206 * raised again on the destination system after migration. 1207 * That's fine, as the guest won't even have had a chance 1208 * to run and handle the interrupt. Asserting an already 1209 * pending event channel is idempotent. 1210 */ 1211 if (vcpu->arch.xen.timer_expires) 1212 hrtimer_start_expires(&vcpu->arch.xen.timer, 1213 HRTIMER_MODE_ABS_HARD); 1214 1215 r = 0; 1216 break; 1217 1218 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: 1219 data->u.vector = vcpu->arch.xen.upcall_vector; 1220 r = 0; 1221 break; 1222 1223 default: 1224 break; 1225 } 1226 1227 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); 1228 return r; 1229 } 1230 1231 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) 1232 { 1233 struct kvm *kvm = vcpu->kvm; 1234 u32 page_num = data & ~PAGE_MASK; 1235 u64 page_addr = data & PAGE_MASK; 1236 bool lm = is_long_mode(vcpu); 1237 int r = 0; 1238 1239 mutex_lock(&kvm->arch.xen.xen_lock); 1240 if (kvm->arch.xen.long_mode != lm) { 1241 kvm->arch.xen.long_mode = lm; 1242 1243 /* 1244 * Re-initialize shared_info to put the wallclock in the 1245 * correct place. 1246 */ 1247 if (kvm->arch.xen.shinfo_cache.active && 1248 kvm_xen_shared_info_init(kvm)) 1249 r = 1; 1250 } 1251 mutex_unlock(&kvm->arch.xen.xen_lock); 1252 1253 if (r) 1254 return r; 1255 1256 /* 1257 * If Xen hypercall intercept is enabled, fill the hypercall 1258 * page with VMCALL/VMMCALL instructions since that's what 1259 * we catch. Else the VMM has provided the hypercall pages 1260 * with instructions of its own choosing, so use those. 1261 */ 1262 if (kvm_xen_hypercall_enabled(kvm)) { 1263 u8 instructions[32]; 1264 int i; 1265 1266 if (page_num) 1267 return 1; 1268 1269 /* mov imm32, %eax */ 1270 instructions[0] = 0xb8; 1271 1272 /* vmcall / vmmcall */ 1273 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5); 1274 1275 /* ret */ 1276 instructions[8] = 0xc3; 1277 1278 /* int3 to pad */ 1279 memset(instructions + 9, 0xcc, sizeof(instructions) - 9); 1280 1281 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { 1282 *(u32 *)&instructions[1] = i; 1283 if (kvm_vcpu_write_guest(vcpu, 1284 page_addr + (i * sizeof(instructions)), 1285 instructions, sizeof(instructions))) 1286 return 1; 1287 } 1288 } else { 1289 /* 1290 * Note, truncation is a non-issue as 'lm' is guaranteed to be 1291 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. 1292 */ 1293 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64 1294 : kvm->arch.xen_hvm_config.blob_addr_32; 1295 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1296 : kvm->arch.xen_hvm_config.blob_size_32; 1297 u8 *page; 1298 int ret; 1299 1300 if (page_num >= blob_size) 1301 return 1; 1302 1303 blob_addr += page_num * PAGE_SIZE; 1304 1305 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); 1306 if (IS_ERR(page)) 1307 return PTR_ERR(page); 1308 1309 ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE); 1310 kfree(page); 1311 if (ret) 1312 return 1; 1313 } 1314 return 0; 1315 } 1316 1317 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) 1318 { 1319 /* Only some feature flags need to be *enabled* by userspace */ 1320 u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 1321 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 1322 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 1323 u32 old_flags; 1324 1325 if (xhc->flags & ~permitted_flags) 1326 return -EINVAL; 1327 1328 /* 1329 * With hypercall interception the kernel generates its own 1330 * hypercall page so it must not be provided. 1331 */ 1332 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && 1333 (xhc->blob_addr_32 || xhc->blob_addr_64 || 1334 xhc->blob_size_32 || xhc->blob_size_64)) 1335 return -EINVAL; 1336 1337 mutex_lock(&kvm->arch.xen.xen_lock); 1338 1339 if (xhc->msr && !kvm->arch.xen_hvm_config.msr) 1340 static_branch_inc(&kvm_xen_enabled.key); 1341 else if (!xhc->msr && kvm->arch.xen_hvm_config.msr) 1342 static_branch_slow_dec_deferred(&kvm_xen_enabled); 1343 1344 old_flags = kvm->arch.xen_hvm_config.flags; 1345 memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc)); 1346 1347 mutex_unlock(&kvm->arch.xen.xen_lock); 1348 1349 if ((old_flags ^ xhc->flags) & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE) 1350 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 1351 1352 return 0; 1353 } 1354 1355 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 1356 { 1357 kvm_rax_write(vcpu, result); 1358 return kvm_skip_emulated_instruction(vcpu); 1359 } 1360 1361 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 1362 { 1363 struct kvm_run *run = vcpu->run; 1364 1365 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) 1366 return 1; 1367 1368 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); 1369 } 1370 1371 static inline int max_evtchn_port(struct kvm *kvm) 1372 { 1373 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) 1374 return EVTCHN_2L_NR_CHANNELS; 1375 else 1376 return COMPAT_EVTCHN_2L_NR_CHANNELS; 1377 } 1378 1379 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports, 1380 evtchn_port_t *ports) 1381 { 1382 struct kvm *kvm = vcpu->kvm; 1383 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1384 unsigned long *pending_bits; 1385 unsigned long flags; 1386 bool ret = true; 1387 int idx, i; 1388 1389 idx = srcu_read_lock(&kvm->srcu); 1390 read_lock_irqsave(&gpc->lock, flags); 1391 if (!kvm_gpc_check(gpc, PAGE_SIZE)) 1392 goto out_rcu; 1393 1394 ret = false; 1395 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1396 struct shared_info *shinfo = gpc->khva; 1397 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1398 } else { 1399 struct compat_shared_info *shinfo = gpc->khva; 1400 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1401 } 1402 1403 for (i = 0; i < nr_ports; i++) { 1404 if (test_bit(ports[i], pending_bits)) { 1405 ret = true; 1406 break; 1407 } 1408 } 1409 1410 out_rcu: 1411 read_unlock_irqrestore(&gpc->lock, flags); 1412 srcu_read_unlock(&kvm->srcu, idx); 1413 1414 return ret; 1415 } 1416 1417 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode, 1418 u64 param, u64 *r) 1419 { 1420 struct sched_poll sched_poll; 1421 evtchn_port_t port, *ports; 1422 struct x86_exception e; 1423 int i; 1424 1425 if (!lapic_in_kernel(vcpu) || 1426 !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND)) 1427 return false; 1428 1429 if (IS_ENABLED(CONFIG_64BIT) && !longmode) { 1430 struct compat_sched_poll sp32; 1431 1432 /* Sanity check that the compat struct definition is correct */ 1433 BUILD_BUG_ON(sizeof(sp32) != 16); 1434 1435 if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) { 1436 *r = -EFAULT; 1437 return true; 1438 } 1439 1440 /* 1441 * This is a 32-bit pointer to an array of evtchn_port_t which 1442 * are uint32_t, so once it's converted no further compat 1443 * handling is needed. 1444 */ 1445 sched_poll.ports = (void *)(unsigned long)(sp32.ports); 1446 sched_poll.nr_ports = sp32.nr_ports; 1447 sched_poll.timeout = sp32.timeout; 1448 } else { 1449 if (kvm_read_guest_virt(vcpu, param, &sched_poll, 1450 sizeof(sched_poll), &e)) { 1451 *r = -EFAULT; 1452 return true; 1453 } 1454 } 1455 1456 if (unlikely(sched_poll.nr_ports > 1)) { 1457 /* Xen (unofficially) limits number of pollers to 128 */ 1458 if (sched_poll.nr_ports > 128) { 1459 *r = -EINVAL; 1460 return true; 1461 } 1462 1463 ports = kmalloc_array(sched_poll.nr_ports, 1464 sizeof(*ports), GFP_KERNEL); 1465 if (!ports) { 1466 *r = -ENOMEM; 1467 return true; 1468 } 1469 } else 1470 ports = &port; 1471 1472 if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports, 1473 sched_poll.nr_ports * sizeof(*ports), &e)) { 1474 *r = -EFAULT; 1475 return true; 1476 } 1477 1478 for (i = 0; i < sched_poll.nr_ports; i++) { 1479 if (ports[i] >= max_evtchn_port(vcpu->kvm)) { 1480 *r = -EINVAL; 1481 goto out; 1482 } 1483 } 1484 1485 if (sched_poll.nr_ports == 1) 1486 vcpu->arch.xen.poll_evtchn = port; 1487 else 1488 vcpu->arch.xen.poll_evtchn = -1; 1489 1490 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); 1491 1492 if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) { 1493 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 1494 1495 if (sched_poll.timeout) 1496 mod_timer(&vcpu->arch.xen.poll_timer, 1497 jiffies + nsecs_to_jiffies(sched_poll.timeout)); 1498 1499 kvm_vcpu_halt(vcpu); 1500 1501 if (sched_poll.timeout) 1502 del_timer(&vcpu->arch.xen.poll_timer); 1503 1504 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 1505 } 1506 1507 vcpu->arch.xen.poll_evtchn = 0; 1508 *r = 0; 1509 out: 1510 /* Really, this is only needed in case of timeout */ 1511 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); 1512 1513 if (unlikely(sched_poll.nr_ports > 1)) 1514 kfree(ports); 1515 return true; 1516 } 1517 1518 static void cancel_evtchn_poll(struct timer_list *t) 1519 { 1520 struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer); 1521 1522 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1523 kvm_vcpu_kick(vcpu); 1524 } 1525 1526 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode, 1527 int cmd, u64 param, u64 *r) 1528 { 1529 switch (cmd) { 1530 case SCHEDOP_poll: 1531 if (kvm_xen_schedop_poll(vcpu, longmode, param, r)) 1532 return true; 1533 fallthrough; 1534 case SCHEDOP_yield: 1535 kvm_vcpu_on_spin(vcpu, true); 1536 *r = 0; 1537 return true; 1538 default: 1539 break; 1540 } 1541 1542 return false; 1543 } 1544 1545 struct compat_vcpu_set_singleshot_timer { 1546 uint64_t timeout_abs_ns; 1547 uint32_t flags; 1548 } __attribute__((packed)); 1549 1550 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd, 1551 int vcpu_id, u64 param, u64 *r) 1552 { 1553 struct vcpu_set_singleshot_timer oneshot; 1554 struct x86_exception e; 1555 1556 if (!kvm_xen_timer_enabled(vcpu)) 1557 return false; 1558 1559 switch (cmd) { 1560 case VCPUOP_set_singleshot_timer: 1561 if (vcpu->arch.xen.vcpu_id != vcpu_id) { 1562 *r = -EINVAL; 1563 return true; 1564 } 1565 1566 /* 1567 * The only difference for 32-bit compat is the 4 bytes of 1568 * padding after the interesting part of the structure. So 1569 * for a faithful emulation of Xen we have to *try* to copy 1570 * the padding and return -EFAULT if we can't. Otherwise we 1571 * might as well just have copied the 12-byte 32-bit struct. 1572 */ 1573 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != 1574 offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns)); 1575 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != 1576 sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns)); 1577 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) != 1578 offsetof(struct vcpu_set_singleshot_timer, flags)); 1579 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) != 1580 sizeof_field(struct vcpu_set_singleshot_timer, flags)); 1581 1582 if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) : 1583 sizeof(struct compat_vcpu_set_singleshot_timer), &e)) { 1584 *r = -EFAULT; 1585 return true; 1586 } 1587 1588 kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, false); 1589 *r = 0; 1590 return true; 1591 1592 case VCPUOP_stop_singleshot_timer: 1593 if (vcpu->arch.xen.vcpu_id != vcpu_id) { 1594 *r = -EINVAL; 1595 return true; 1596 } 1597 kvm_xen_stop_timer(vcpu); 1598 *r = 0; 1599 return true; 1600 } 1601 1602 return false; 1603 } 1604 1605 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout, 1606 u64 *r) 1607 { 1608 if (!kvm_xen_timer_enabled(vcpu)) 1609 return false; 1610 1611 if (timeout) 1612 kvm_xen_start_timer(vcpu, timeout, true); 1613 else 1614 kvm_xen_stop_timer(vcpu); 1615 1616 *r = 0; 1617 return true; 1618 } 1619 1620 int kvm_xen_hypercall(struct kvm_vcpu *vcpu) 1621 { 1622 bool longmode; 1623 u64 input, params[6], r = -ENOSYS; 1624 bool handled = false; 1625 u8 cpl; 1626 1627 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); 1628 1629 /* Hyper-V hypercalls get bit 31 set in EAX */ 1630 if ((input & 0x80000000) && 1631 kvm_hv_hypercall_enabled(vcpu)) 1632 return kvm_hv_hypercall(vcpu); 1633 1634 longmode = is_64_bit_hypercall(vcpu); 1635 if (!longmode) { 1636 params[0] = (u32)kvm_rbx_read(vcpu); 1637 params[1] = (u32)kvm_rcx_read(vcpu); 1638 params[2] = (u32)kvm_rdx_read(vcpu); 1639 params[3] = (u32)kvm_rsi_read(vcpu); 1640 params[4] = (u32)kvm_rdi_read(vcpu); 1641 params[5] = (u32)kvm_rbp_read(vcpu); 1642 } 1643 #ifdef CONFIG_X86_64 1644 else { 1645 params[0] = (u64)kvm_rdi_read(vcpu); 1646 params[1] = (u64)kvm_rsi_read(vcpu); 1647 params[2] = (u64)kvm_rdx_read(vcpu); 1648 params[3] = (u64)kvm_r10_read(vcpu); 1649 params[4] = (u64)kvm_r8_read(vcpu); 1650 params[5] = (u64)kvm_r9_read(vcpu); 1651 } 1652 #endif 1653 cpl = static_call(kvm_x86_get_cpl)(vcpu); 1654 trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2], 1655 params[3], params[4], params[5]); 1656 1657 /* 1658 * Only allow hypercall acceleration for CPL0. The rare hypercalls that 1659 * are permitted in guest userspace can be handled by the VMM. 1660 */ 1661 if (unlikely(cpl > 0)) 1662 goto handle_in_userspace; 1663 1664 switch (input) { 1665 case __HYPERVISOR_xen_version: 1666 if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) { 1667 r = vcpu->kvm->arch.xen.xen_version; 1668 handled = true; 1669 } 1670 break; 1671 case __HYPERVISOR_event_channel_op: 1672 if (params[0] == EVTCHNOP_send) 1673 handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r); 1674 break; 1675 case __HYPERVISOR_sched_op: 1676 handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0], 1677 params[1], &r); 1678 break; 1679 case __HYPERVISOR_vcpu_op: 1680 handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1], 1681 params[2], &r); 1682 break; 1683 case __HYPERVISOR_set_timer_op: { 1684 u64 timeout = params[0]; 1685 /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */ 1686 if (!longmode) 1687 timeout |= params[1] << 32; 1688 handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r); 1689 break; 1690 } 1691 default: 1692 break; 1693 } 1694 1695 if (handled) 1696 return kvm_xen_hypercall_set_result(vcpu, r); 1697 1698 handle_in_userspace: 1699 vcpu->run->exit_reason = KVM_EXIT_XEN; 1700 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; 1701 vcpu->run->xen.u.hcall.longmode = longmode; 1702 vcpu->run->xen.u.hcall.cpl = cpl; 1703 vcpu->run->xen.u.hcall.input = input; 1704 vcpu->run->xen.u.hcall.params[0] = params[0]; 1705 vcpu->run->xen.u.hcall.params[1] = params[1]; 1706 vcpu->run->xen.u.hcall.params[2] = params[2]; 1707 vcpu->run->xen.u.hcall.params[3] = params[3]; 1708 vcpu->run->xen.u.hcall.params[4] = params[4]; 1709 vcpu->run->xen.u.hcall.params[5] = params[5]; 1710 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); 1711 vcpu->arch.complete_userspace_io = 1712 kvm_xen_hypercall_complete_userspace; 1713 1714 return 0; 1715 } 1716 1717 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port) 1718 { 1719 int poll_evtchn = vcpu->arch.xen.poll_evtchn; 1720 1721 if ((poll_evtchn == port || poll_evtchn == -1) && 1722 test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) { 1723 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1724 kvm_vcpu_kick(vcpu); 1725 } 1726 } 1727 1728 /* 1729 * The return value from this function is propagated to kvm_set_irq() API, 1730 * so it returns: 1731 * < 0 Interrupt was ignored (masked or not delivered for other reasons) 1732 * = 0 Interrupt was coalesced (previous irq is still pending) 1733 * > 0 Number of CPUs interrupt was delivered to 1734 * 1735 * It is also called directly from kvm_arch_set_irq_inatomic(), where the 1736 * only check on its return value is a comparison with -EWOULDBLOCK'. 1737 */ 1738 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm) 1739 { 1740 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1741 struct kvm_vcpu *vcpu; 1742 unsigned long *pending_bits, *mask_bits; 1743 unsigned long flags; 1744 int port_word_bit; 1745 bool kick_vcpu = false; 1746 int vcpu_idx, idx, rc; 1747 1748 vcpu_idx = READ_ONCE(xe->vcpu_idx); 1749 if (vcpu_idx >= 0) 1750 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 1751 else { 1752 vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id); 1753 if (!vcpu) 1754 return -EINVAL; 1755 WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx); 1756 } 1757 1758 if (xe->port >= max_evtchn_port(kvm)) 1759 return -EINVAL; 1760 1761 rc = -EWOULDBLOCK; 1762 1763 idx = srcu_read_lock(&kvm->srcu); 1764 1765 read_lock_irqsave(&gpc->lock, flags); 1766 if (!kvm_gpc_check(gpc, PAGE_SIZE)) 1767 goto out_rcu; 1768 1769 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1770 struct shared_info *shinfo = gpc->khva; 1771 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1772 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 1773 port_word_bit = xe->port / 64; 1774 } else { 1775 struct compat_shared_info *shinfo = gpc->khva; 1776 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1777 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 1778 port_word_bit = xe->port / 32; 1779 } 1780 1781 /* 1782 * If this port wasn't already set, and if it isn't masked, then 1783 * we try to set the corresponding bit in the in-kernel shadow of 1784 * evtchn_pending_sel for the target vCPU. And if *that* wasn't 1785 * already set, then we kick the vCPU in question to write to the 1786 * *real* evtchn_pending_sel in its own guest vcpu_info struct. 1787 */ 1788 if (test_and_set_bit(xe->port, pending_bits)) { 1789 rc = 0; /* It was already raised */ 1790 } else if (test_bit(xe->port, mask_bits)) { 1791 rc = -ENOTCONN; /* Masked */ 1792 kvm_xen_check_poller(vcpu, xe->port); 1793 } else { 1794 rc = 1; /* Delivered to the bitmap in shared_info. */ 1795 /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */ 1796 read_unlock_irqrestore(&gpc->lock, flags); 1797 gpc = &vcpu->arch.xen.vcpu_info_cache; 1798 1799 read_lock_irqsave(&gpc->lock, flags); 1800 if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 1801 /* 1802 * Could not access the vcpu_info. Set the bit in-kernel 1803 * and prod the vCPU to deliver it for itself. 1804 */ 1805 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) 1806 kick_vcpu = true; 1807 goto out_rcu; 1808 } 1809 1810 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1811 struct vcpu_info *vcpu_info = gpc->khva; 1812 if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) { 1813 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); 1814 kick_vcpu = true; 1815 } 1816 } else { 1817 struct compat_vcpu_info *vcpu_info = gpc->khva; 1818 if (!test_and_set_bit(port_word_bit, 1819 (unsigned long *)&vcpu_info->evtchn_pending_sel)) { 1820 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); 1821 kick_vcpu = true; 1822 } 1823 } 1824 1825 /* For the per-vCPU lapic vector, deliver it as MSI. */ 1826 if (kick_vcpu && vcpu->arch.xen.upcall_vector) { 1827 kvm_xen_inject_vcpu_vector(vcpu); 1828 kick_vcpu = false; 1829 } 1830 } 1831 1832 out_rcu: 1833 read_unlock_irqrestore(&gpc->lock, flags); 1834 srcu_read_unlock(&kvm->srcu, idx); 1835 1836 if (kick_vcpu) { 1837 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1838 kvm_vcpu_kick(vcpu); 1839 } 1840 1841 return rc; 1842 } 1843 1844 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm) 1845 { 1846 bool mm_borrowed = false; 1847 int rc; 1848 1849 rc = kvm_xen_set_evtchn_fast(xe, kvm); 1850 if (rc != -EWOULDBLOCK) 1851 return rc; 1852 1853 if (current->mm != kvm->mm) { 1854 /* 1855 * If not on a thread which already belongs to this KVM, 1856 * we'd better be in the irqfd workqueue. 1857 */ 1858 if (WARN_ON_ONCE(current->mm)) 1859 return -EINVAL; 1860 1861 kthread_use_mm(kvm->mm); 1862 mm_borrowed = true; 1863 } 1864 1865 /* 1866 * It is theoretically possible for the page to be unmapped 1867 * and the MMU notifier to invalidate the shared_info before 1868 * we even get to use it. In that case, this looks like an 1869 * infinite loop. It was tempting to do it via the userspace 1870 * HVA instead... but that just *hides* the fact that it's 1871 * an infinite loop, because if a fault occurs and it waits 1872 * for the page to come back, it can *still* immediately 1873 * fault and have to wait again, repeatedly. 1874 * 1875 * Conversely, the page could also have been reinstated by 1876 * another thread before we even obtain the mutex above, so 1877 * check again *first* before remapping it. 1878 */ 1879 do { 1880 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1881 int idx; 1882 1883 rc = kvm_xen_set_evtchn_fast(xe, kvm); 1884 if (rc != -EWOULDBLOCK) 1885 break; 1886 1887 idx = srcu_read_lock(&kvm->srcu); 1888 rc = kvm_gpc_refresh(gpc, PAGE_SIZE); 1889 srcu_read_unlock(&kvm->srcu, idx); 1890 } while(!rc); 1891 1892 if (mm_borrowed) 1893 kthread_unuse_mm(kvm->mm); 1894 1895 return rc; 1896 } 1897 1898 /* This is the version called from kvm_set_irq() as the .set function */ 1899 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 1900 int irq_source_id, int level, bool line_status) 1901 { 1902 if (!level) 1903 return -EINVAL; 1904 1905 return kvm_xen_set_evtchn(&e->xen_evtchn, kvm); 1906 } 1907 1908 /* 1909 * Set up an event channel interrupt from the KVM IRQ routing table. 1910 * Used for e.g. PIRQ from passed through physical devices. 1911 */ 1912 int kvm_xen_setup_evtchn(struct kvm *kvm, 1913 struct kvm_kernel_irq_routing_entry *e, 1914 const struct kvm_irq_routing_entry *ue) 1915 1916 { 1917 struct kvm_vcpu *vcpu; 1918 1919 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm)) 1920 return -EINVAL; 1921 1922 /* We only support 2 level event channels for now */ 1923 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1924 return -EINVAL; 1925 1926 /* 1927 * Xen gives us interesting mappings from vCPU index to APIC ID, 1928 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs 1929 * to find it. Do that once at setup time, instead of every time. 1930 * But beware that on live update / live migration, the routing 1931 * table might be reinstated before the vCPU threads have finished 1932 * recreating their vCPUs. 1933 */ 1934 vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu); 1935 if (vcpu) 1936 e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx; 1937 else 1938 e->xen_evtchn.vcpu_idx = -1; 1939 1940 e->xen_evtchn.port = ue->u.xen_evtchn.port; 1941 e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu; 1942 e->xen_evtchn.priority = ue->u.xen_evtchn.priority; 1943 e->set = evtchn_set_fn; 1944 1945 return 0; 1946 } 1947 1948 /* 1949 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl. 1950 */ 1951 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe) 1952 { 1953 struct kvm_xen_evtchn e; 1954 int ret; 1955 1956 if (!uxe->port || uxe->port >= max_evtchn_port(kvm)) 1957 return -EINVAL; 1958 1959 /* We only support 2 level event channels for now */ 1960 if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1961 return -EINVAL; 1962 1963 e.port = uxe->port; 1964 e.vcpu_id = uxe->vcpu; 1965 e.vcpu_idx = -1; 1966 e.priority = uxe->priority; 1967 1968 ret = kvm_xen_set_evtchn(&e, kvm); 1969 1970 /* 1971 * None of that 'return 1 if it actually got delivered' nonsense. 1972 * We don't care if it was masked (-ENOTCONN) either. 1973 */ 1974 if (ret > 0 || ret == -ENOTCONN) 1975 ret = 0; 1976 1977 return ret; 1978 } 1979 1980 /* 1981 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall. 1982 */ 1983 struct evtchnfd { 1984 u32 send_port; 1985 u32 type; 1986 union { 1987 struct kvm_xen_evtchn port; 1988 struct { 1989 u32 port; /* zero */ 1990 struct eventfd_ctx *ctx; 1991 } eventfd; 1992 } deliver; 1993 }; 1994 1995 /* 1996 * Update target vCPU or priority for a registered sending channel. 1997 */ 1998 static int kvm_xen_eventfd_update(struct kvm *kvm, 1999 struct kvm_xen_hvm_attr *data) 2000 { 2001 u32 port = data->u.evtchn.send_port; 2002 struct evtchnfd *evtchnfd; 2003 int ret; 2004 2005 /* Protect writes to evtchnfd as well as the idr lookup. */ 2006 mutex_lock(&kvm->arch.xen.xen_lock); 2007 evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port); 2008 2009 ret = -ENOENT; 2010 if (!evtchnfd) 2011 goto out_unlock; 2012 2013 /* For an UPDATE, nothing may change except the priority/vcpu */ 2014 ret = -EINVAL; 2015 if (evtchnfd->type != data->u.evtchn.type) 2016 goto out_unlock; 2017 2018 /* 2019 * Port cannot change, and if it's zero that was an eventfd 2020 * which can't be changed either. 2021 */ 2022 if (!evtchnfd->deliver.port.port || 2023 evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port) 2024 goto out_unlock; 2025 2026 /* We only support 2 level event channels for now */ 2027 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 2028 goto out_unlock; 2029 2030 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; 2031 if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) { 2032 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; 2033 evtchnfd->deliver.port.vcpu_idx = -1; 2034 } 2035 ret = 0; 2036 out_unlock: 2037 mutex_unlock(&kvm->arch.xen.xen_lock); 2038 return ret; 2039 } 2040 2041 /* 2042 * Configure the target (eventfd or local port delivery) for sending on 2043 * a given event channel. 2044 */ 2045 static int kvm_xen_eventfd_assign(struct kvm *kvm, 2046 struct kvm_xen_hvm_attr *data) 2047 { 2048 u32 port = data->u.evtchn.send_port; 2049 struct eventfd_ctx *eventfd = NULL; 2050 struct evtchnfd *evtchnfd; 2051 int ret = -EINVAL; 2052 2053 evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL); 2054 if (!evtchnfd) 2055 return -ENOMEM; 2056 2057 switch(data->u.evtchn.type) { 2058 case EVTCHNSTAT_ipi: 2059 /* IPI must map back to the same port# */ 2060 if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port) 2061 goto out_noeventfd; /* -EINVAL */ 2062 break; 2063 2064 case EVTCHNSTAT_interdomain: 2065 if (data->u.evtchn.deliver.port.port) { 2066 if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm)) 2067 goto out_noeventfd; /* -EINVAL */ 2068 } else { 2069 eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd); 2070 if (IS_ERR(eventfd)) { 2071 ret = PTR_ERR(eventfd); 2072 goto out_noeventfd; 2073 } 2074 } 2075 break; 2076 2077 case EVTCHNSTAT_virq: 2078 case EVTCHNSTAT_closed: 2079 case EVTCHNSTAT_unbound: 2080 case EVTCHNSTAT_pirq: 2081 default: /* Unknown event channel type */ 2082 goto out; /* -EINVAL */ 2083 } 2084 2085 evtchnfd->send_port = data->u.evtchn.send_port; 2086 evtchnfd->type = data->u.evtchn.type; 2087 if (eventfd) { 2088 evtchnfd->deliver.eventfd.ctx = eventfd; 2089 } else { 2090 /* We only support 2 level event channels for now */ 2091 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 2092 goto out; /* -EINVAL; */ 2093 2094 evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port; 2095 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; 2096 evtchnfd->deliver.port.vcpu_idx = -1; 2097 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; 2098 } 2099 2100 mutex_lock(&kvm->arch.xen.xen_lock); 2101 ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1, 2102 GFP_KERNEL); 2103 mutex_unlock(&kvm->arch.xen.xen_lock); 2104 if (ret >= 0) 2105 return 0; 2106 2107 if (ret == -ENOSPC) 2108 ret = -EEXIST; 2109 out: 2110 if (eventfd) 2111 eventfd_ctx_put(eventfd); 2112 out_noeventfd: 2113 kfree(evtchnfd); 2114 return ret; 2115 } 2116 2117 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port) 2118 { 2119 struct evtchnfd *evtchnfd; 2120 2121 mutex_lock(&kvm->arch.xen.xen_lock); 2122 evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port); 2123 mutex_unlock(&kvm->arch.xen.xen_lock); 2124 2125 if (!evtchnfd) 2126 return -ENOENT; 2127 2128 synchronize_srcu(&kvm->srcu); 2129 if (!evtchnfd->deliver.port.port) 2130 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 2131 kfree(evtchnfd); 2132 return 0; 2133 } 2134 2135 static int kvm_xen_eventfd_reset(struct kvm *kvm) 2136 { 2137 struct evtchnfd *evtchnfd, **all_evtchnfds; 2138 int i; 2139 int n = 0; 2140 2141 mutex_lock(&kvm->arch.xen.xen_lock); 2142 2143 /* 2144 * Because synchronize_srcu() cannot be called inside the 2145 * critical section, first collect all the evtchnfd objects 2146 * in an array as they are removed from evtchn_ports. 2147 */ 2148 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) 2149 n++; 2150 2151 all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL); 2152 if (!all_evtchnfds) { 2153 mutex_unlock(&kvm->arch.xen.xen_lock); 2154 return -ENOMEM; 2155 } 2156 2157 n = 0; 2158 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { 2159 all_evtchnfds[n++] = evtchnfd; 2160 idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port); 2161 } 2162 mutex_unlock(&kvm->arch.xen.xen_lock); 2163 2164 synchronize_srcu(&kvm->srcu); 2165 2166 while (n--) { 2167 evtchnfd = all_evtchnfds[n]; 2168 if (!evtchnfd->deliver.port.port) 2169 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 2170 kfree(evtchnfd); 2171 } 2172 kfree(all_evtchnfds); 2173 2174 return 0; 2175 } 2176 2177 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 2178 { 2179 u32 port = data->u.evtchn.send_port; 2180 2181 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET) 2182 return kvm_xen_eventfd_reset(kvm); 2183 2184 if (!port || port >= max_evtchn_port(kvm)) 2185 return -EINVAL; 2186 2187 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN) 2188 return kvm_xen_eventfd_deassign(kvm, port); 2189 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE) 2190 return kvm_xen_eventfd_update(kvm, data); 2191 if (data->u.evtchn.flags) 2192 return -EINVAL; 2193 2194 return kvm_xen_eventfd_assign(kvm, data); 2195 } 2196 2197 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r) 2198 { 2199 struct evtchnfd *evtchnfd; 2200 struct evtchn_send send; 2201 struct x86_exception e; 2202 2203 /* Sanity check: this structure is the same for 32-bit and 64-bit */ 2204 BUILD_BUG_ON(sizeof(send) != 4); 2205 if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) { 2206 *r = -EFAULT; 2207 return true; 2208 } 2209 2210 /* 2211 * evtchnfd is protected by kvm->srcu; the idr lookup instead 2212 * is protected by RCU. 2213 */ 2214 rcu_read_lock(); 2215 evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port); 2216 rcu_read_unlock(); 2217 if (!evtchnfd) 2218 return false; 2219 2220 if (evtchnfd->deliver.port.port) { 2221 int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm); 2222 if (ret < 0 && ret != -ENOTCONN) 2223 return false; 2224 } else { 2225 eventfd_signal(evtchnfd->deliver.eventfd.ctx); 2226 } 2227 2228 *r = 0; 2229 return true; 2230 } 2231 2232 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu) 2233 { 2234 vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx; 2235 vcpu->arch.xen.poll_evtchn = 0; 2236 2237 timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0); 2238 2239 kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm); 2240 kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm); 2241 kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm); 2242 kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm); 2243 } 2244 2245 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu) 2246 { 2247 if (kvm_xen_timer_enabled(vcpu)) 2248 kvm_xen_stop_timer(vcpu); 2249 2250 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); 2251 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 2252 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 2253 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); 2254 2255 del_timer_sync(&vcpu->arch.xen.poll_timer); 2256 } 2257 2258 void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu) 2259 { 2260 struct kvm_cpuid_entry2 *entry; 2261 u32 function; 2262 2263 if (!vcpu->arch.xen.cpuid.base) 2264 return; 2265 2266 function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3); 2267 if (function > vcpu->arch.xen.cpuid.limit) 2268 return; 2269 2270 entry = kvm_find_cpuid_entry_index(vcpu, function, 1); 2271 if (entry) { 2272 entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul; 2273 entry->edx = vcpu->arch.hv_clock.tsc_shift; 2274 } 2275 2276 entry = kvm_find_cpuid_entry_index(vcpu, function, 2); 2277 if (entry) 2278 entry->eax = vcpu->arch.hw_tsc_khz; 2279 } 2280 2281 void kvm_xen_init_vm(struct kvm *kvm) 2282 { 2283 mutex_init(&kvm->arch.xen.xen_lock); 2284 idr_init(&kvm->arch.xen.evtchn_ports); 2285 kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm); 2286 } 2287 2288 void kvm_xen_destroy_vm(struct kvm *kvm) 2289 { 2290 struct evtchnfd *evtchnfd; 2291 int i; 2292 2293 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); 2294 2295 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { 2296 if (!evtchnfd->deliver.port.port) 2297 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 2298 kfree(evtchnfd); 2299 } 2300 idr_destroy(&kvm->arch.xen.evtchn_ports); 2301 2302 if (kvm->arch.xen_hvm_config.msr) 2303 static_branch_slow_dec_deferred(&kvm_xen_enabled); 2304 } 2305