xref: /linux/arch/x86/kvm/xen.c (revision 2573c25e2c482b53b6e1142ff3cd28f6de13e659)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5  *
6  * KVM Xen emulation
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include "x86.h"
11 #include "xen.h"
12 #include "hyperv.h"
13 #include "irq.h"
14 
15 #include <linux/eventfd.h>
16 #include <linux/kvm_host.h>
17 #include <linux/sched/stat.h>
18 
19 #include <trace/events/kvm.h>
20 #include <xen/interface/xen.h>
21 #include <xen/interface/vcpu.h>
22 #include <xen/interface/version.h>
23 #include <xen/interface/event_channel.h>
24 #include <xen/interface/sched.h>
25 
26 #include <asm/xen/cpuid.h>
27 #include <asm/pvclock.h>
28 
29 #include "cpuid.h"
30 #include "trace.h"
31 
32 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
33 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
34 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
35 
36 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
37 
38 static int kvm_xen_shared_info_init(struct kvm *kvm)
39 {
40 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
41 	struct pvclock_wall_clock *wc;
42 	u32 *wc_sec_hi;
43 	u32 wc_version;
44 	u64 wall_nsec;
45 	int ret = 0;
46 	int idx = srcu_read_lock(&kvm->srcu);
47 
48 	read_lock_irq(&gpc->lock);
49 	while (!kvm_gpc_check(gpc, PAGE_SIZE)) {
50 		read_unlock_irq(&gpc->lock);
51 
52 		ret = kvm_gpc_refresh(gpc, PAGE_SIZE);
53 		if (ret)
54 			goto out;
55 
56 		read_lock_irq(&gpc->lock);
57 	}
58 
59 	/*
60 	 * This code mirrors kvm_write_wall_clock() except that it writes
61 	 * directly through the pfn cache and doesn't mark the page dirty.
62 	 */
63 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
64 
65 	/* Paranoia checks on the 32-bit struct layout */
66 	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
67 	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
68 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
69 
70 #ifdef CONFIG_X86_64
71 	/* Paranoia checks on the 64-bit struct layout */
72 	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
73 	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
74 
75 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
76 		struct shared_info *shinfo = gpc->khva;
77 
78 		wc_sec_hi = &shinfo->wc_sec_hi;
79 		wc = &shinfo->wc;
80 	} else
81 #endif
82 	{
83 		struct compat_shared_info *shinfo = gpc->khva;
84 
85 		wc_sec_hi = &shinfo->arch.wc_sec_hi;
86 		wc = &shinfo->wc;
87 	}
88 
89 	/* Increment and ensure an odd value */
90 	wc_version = wc->version = (wc->version + 1) | 1;
91 	smp_wmb();
92 
93 	wc->nsec = do_div(wall_nsec, NSEC_PER_SEC);
94 	wc->sec = (u32)wall_nsec;
95 	*wc_sec_hi = wall_nsec >> 32;
96 	smp_wmb();
97 
98 	wc->version = wc_version + 1;
99 	read_unlock_irq(&gpc->lock);
100 
101 	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
102 
103 out:
104 	srcu_read_unlock(&kvm->srcu, idx);
105 	return ret;
106 }
107 
108 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
109 {
110 	if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
111 		struct kvm_xen_evtchn e;
112 
113 		e.vcpu_id = vcpu->vcpu_id;
114 		e.vcpu_idx = vcpu->vcpu_idx;
115 		e.port = vcpu->arch.xen.timer_virq;
116 		e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
117 
118 		kvm_xen_set_evtchn(&e, vcpu->kvm);
119 
120 		vcpu->arch.xen.timer_expires = 0;
121 		atomic_set(&vcpu->arch.xen.timer_pending, 0);
122 	}
123 }
124 
125 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
126 {
127 	struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
128 					     arch.xen.timer);
129 	struct kvm_xen_evtchn e;
130 	int rc;
131 
132 	if (atomic_read(&vcpu->arch.xen.timer_pending))
133 		return HRTIMER_NORESTART;
134 
135 	e.vcpu_id = vcpu->vcpu_id;
136 	e.vcpu_idx = vcpu->vcpu_idx;
137 	e.port = vcpu->arch.xen.timer_virq;
138 	e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
139 
140 	rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm);
141 	if (rc != -EWOULDBLOCK) {
142 		vcpu->arch.xen.timer_expires = 0;
143 		return HRTIMER_NORESTART;
144 	}
145 
146 	atomic_inc(&vcpu->arch.xen.timer_pending);
147 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
148 	kvm_vcpu_kick(vcpu);
149 
150 	return HRTIMER_NORESTART;
151 }
152 
153 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs,
154 				bool linux_wa)
155 {
156 	int64_t kernel_now, delta;
157 	uint64_t guest_now;
158 
159 	/*
160 	 * The guest provides the requested timeout in absolute nanoseconds
161 	 * of the KVM clock — as *it* sees it, based on the scaled TSC and
162 	 * the pvclock information provided by KVM.
163 	 *
164 	 * The kernel doesn't support hrtimers based on CLOCK_MONOTONIC_RAW
165 	 * so use CLOCK_MONOTONIC. In the timescales covered by timers, the
166 	 * difference won't matter much as there is no cumulative effect.
167 	 *
168 	 * Calculate the time for some arbitrary point in time around "now"
169 	 * in terms of both kvmclock and CLOCK_MONOTONIC. Calculate the
170 	 * delta between the kvmclock "now" value and the guest's requested
171 	 * timeout, apply the "Linux workaround" described below, and add
172 	 * the resulting delta to the CLOCK_MONOTONIC "now" value, to get
173 	 * the absolute CLOCK_MONOTONIC time at which the timer should
174 	 * fire.
175 	 */
176 	if (vcpu->arch.hv_clock.version && vcpu->kvm->arch.use_master_clock &&
177 	    static_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
178 		uint64_t host_tsc, guest_tsc;
179 
180 		if (!IS_ENABLED(CONFIG_64BIT) ||
181 		    !kvm_get_monotonic_and_clockread(&kernel_now, &host_tsc)) {
182 			/*
183 			 * Don't fall back to get_kvmclock_ns() because it's
184 			 * broken; it has a systemic error in its results
185 			 * because it scales directly from host TSC to
186 			 * nanoseconds, and doesn't scale first to guest TSC
187 			 * and *then* to nanoseconds as the guest does.
188 			 *
189 			 * There is a small error introduced here because time
190 			 * continues to elapse between the ktime_get() and the
191 			 * subsequent rdtsc(). But not the systemic drift due
192 			 * to get_kvmclock_ns().
193 			 */
194 			kernel_now = ktime_get(); /* This is CLOCK_MONOTONIC */
195 			host_tsc = rdtsc();
196 		}
197 
198 		/* Calculate the guest kvmclock as the guest would do it. */
199 		guest_tsc = kvm_read_l1_tsc(vcpu, host_tsc);
200 		guest_now = __pvclock_read_cycles(&vcpu->arch.hv_clock,
201 						  guest_tsc);
202 	} else {
203 		/*
204 		 * Without CONSTANT_TSC, get_kvmclock_ns() is the only option.
205 		 *
206 		 * Also if the guest PV clock hasn't been set up yet, as is
207 		 * likely to be the case during migration when the vCPU has
208 		 * not been run yet. It would be possible to calculate the
209 		 * scaling factors properly in that case but there's not much
210 		 * point in doing so. The get_kvmclock_ns() drift accumulates
211 		 * over time, so it's OK to use it at startup. Besides, on
212 		 * migration there's going to be a little bit of skew in the
213 		 * precise moment at which timers fire anyway. Often they'll
214 		 * be in the "past" by the time the VM is running again after
215 		 * migration.
216 		 */
217 		guest_now = get_kvmclock_ns(vcpu->kvm);
218 		kernel_now = ktime_get();
219 	}
220 
221 	delta = guest_abs - guest_now;
222 
223 	/*
224 	 * Xen has a 'Linux workaround' in do_set_timer_op() which checks for
225 	 * negative absolute timeout values (caused by integer overflow), and
226 	 * for values about 13 days in the future (2^50ns) which would be
227 	 * caused by jiffies overflow. For those cases, Xen sets the timeout
228 	 * 100ms in the future (not *too* soon, since if a guest really did
229 	 * set a long timeout on purpose we don't want to keep churning CPU
230 	 * time by waking it up).  Emulate Xen's workaround when starting the
231 	 * timer in response to __HYPERVISOR_set_timer_op.
232 	 */
233 	if (linux_wa &&
234 	    unlikely((int64_t)guest_abs < 0 ||
235 		     (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
236 		delta = 100 * NSEC_PER_MSEC;
237 		guest_abs = guest_now + delta;
238 	}
239 
240 	/*
241 	 * Avoid races with the old timer firing. Checking timer_expires
242 	 * to avoid calling hrtimer_cancel() will only have false positives
243 	 * so is fine.
244 	 */
245 	if (vcpu->arch.xen.timer_expires)
246 		hrtimer_cancel(&vcpu->arch.xen.timer);
247 
248 	atomic_set(&vcpu->arch.xen.timer_pending, 0);
249 	vcpu->arch.xen.timer_expires = guest_abs;
250 
251 	if (delta <= 0)
252 		xen_timer_callback(&vcpu->arch.xen.timer);
253 	else
254 		hrtimer_start(&vcpu->arch.xen.timer,
255 			      ktime_add_ns(kernel_now, delta),
256 			      HRTIMER_MODE_ABS_HARD);
257 }
258 
259 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
260 {
261 	hrtimer_cancel(&vcpu->arch.xen.timer);
262 	vcpu->arch.xen.timer_expires = 0;
263 	atomic_set(&vcpu->arch.xen.timer_pending, 0);
264 }
265 
266 static void kvm_xen_init_timer(struct kvm_vcpu *vcpu)
267 {
268 	hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC,
269 		     HRTIMER_MODE_ABS_HARD);
270 	vcpu->arch.xen.timer.function = xen_timer_callback;
271 }
272 
273 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
274 {
275 	struct kvm_vcpu_xen *vx = &v->arch.xen;
276 	struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
277 	struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
278 	size_t user_len, user_len1, user_len2;
279 	struct vcpu_runstate_info rs;
280 	unsigned long flags;
281 	size_t times_ofs;
282 	uint8_t *update_bit = NULL;
283 	uint64_t entry_time;
284 	uint64_t *rs_times;
285 	int *rs_state;
286 
287 	/*
288 	 * The only difference between 32-bit and 64-bit versions of the
289 	 * runstate struct is the alignment of uint64_t in 32-bit, which
290 	 * means that the 64-bit version has an additional 4 bytes of
291 	 * padding after the first field 'state'. Let's be really really
292 	 * paranoid about that, and matching it with our internal data
293 	 * structures that we memcpy into it...
294 	 */
295 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
296 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
297 	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
298 #ifdef CONFIG_X86_64
299 	/*
300 	 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
301 	 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
302 	 */
303 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
304 		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
305 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
306 		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
307 	BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
308 #endif
309 	/*
310 	 * The state field is in the same place at the start of both structs,
311 	 * and is the same size (int) as vx->current_runstate.
312 	 */
313 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
314 		     offsetof(struct compat_vcpu_runstate_info, state));
315 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
316 		     sizeof(vx->current_runstate));
317 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
318 		     sizeof(vx->current_runstate));
319 
320 	/*
321 	 * The state_entry_time field is 64 bits in both versions, and the
322 	 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
323 	 * is little-endian means that it's in the last *byte* of the word.
324 	 * That detail is important later.
325 	 */
326 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
327 		     sizeof(uint64_t));
328 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
329 		     sizeof(uint64_t));
330 	BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
331 
332 	/*
333 	 * The time array is four 64-bit quantities in both versions, matching
334 	 * the vx->runstate_times and immediately following state_entry_time.
335 	 */
336 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
337 		     offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
338 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
339 		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
340 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
341 		     sizeof_field(struct compat_vcpu_runstate_info, time));
342 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
343 		     sizeof(vx->runstate_times));
344 
345 	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
346 		user_len = sizeof(struct vcpu_runstate_info);
347 		times_ofs = offsetof(struct vcpu_runstate_info,
348 				     state_entry_time);
349 	} else {
350 		user_len = sizeof(struct compat_vcpu_runstate_info);
351 		times_ofs = offsetof(struct compat_vcpu_runstate_info,
352 				     state_entry_time);
353 	}
354 
355 	/*
356 	 * There are basically no alignment constraints. The guest can set it
357 	 * up so it crosses from one page to the next, and at arbitrary byte
358 	 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
359 	 * anyway, even if the overall struct had been 64-bit aligned).
360 	 */
361 	if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
362 		user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
363 		user_len2 = user_len - user_len1;
364 	} else {
365 		user_len1 = user_len;
366 		user_len2 = 0;
367 	}
368 	BUG_ON(user_len1 + user_len2 != user_len);
369 
370  retry:
371 	/*
372 	 * Attempt to obtain the GPC lock on *both* (if there are two)
373 	 * gfn_to_pfn caches that cover the region.
374 	 */
375 	if (atomic) {
376 		local_irq_save(flags);
377 		if (!read_trylock(&gpc1->lock)) {
378 			local_irq_restore(flags);
379 			return;
380 		}
381 	} else {
382 		read_lock_irqsave(&gpc1->lock, flags);
383 	}
384 	while (!kvm_gpc_check(gpc1, user_len1)) {
385 		read_unlock_irqrestore(&gpc1->lock, flags);
386 
387 		/* When invoked from kvm_sched_out() we cannot sleep */
388 		if (atomic)
389 			return;
390 
391 		if (kvm_gpc_refresh(gpc1, user_len1))
392 			return;
393 
394 		read_lock_irqsave(&gpc1->lock, flags);
395 	}
396 
397 	if (likely(!user_len2)) {
398 		/*
399 		 * Set up three pointers directly to the runstate_info
400 		 * struct in the guest (via the GPC).
401 		 *
402 		 *  • @rs_state   → state field
403 		 *  • @rs_times   → state_entry_time field.
404 		 *  • @update_bit → last byte of state_entry_time, which
405 		 *                  contains the XEN_RUNSTATE_UPDATE bit.
406 		 */
407 		rs_state = gpc1->khva;
408 		rs_times = gpc1->khva + times_ofs;
409 		if (v->kvm->arch.xen.runstate_update_flag)
410 			update_bit = ((void *)(&rs_times[1])) - 1;
411 	} else {
412 		/*
413 		 * The guest's runstate_info is split across two pages and we
414 		 * need to hold and validate both GPCs simultaneously. We can
415 		 * declare a lock ordering GPC1 > GPC2 because nothing else
416 		 * takes them more than one at a time. Set a subclass on the
417 		 * gpc1 lock to make lockdep shut up about it.
418 		 */
419 		lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_);
420 		if (atomic) {
421 			if (!read_trylock(&gpc2->lock)) {
422 				read_unlock_irqrestore(&gpc1->lock, flags);
423 				return;
424 			}
425 		} else {
426 			read_lock(&gpc2->lock);
427 		}
428 
429 		if (!kvm_gpc_check(gpc2, user_len2)) {
430 			read_unlock(&gpc2->lock);
431 			read_unlock_irqrestore(&gpc1->lock, flags);
432 
433 			/* When invoked from kvm_sched_out() we cannot sleep */
434 			if (atomic)
435 				return;
436 
437 			/*
438 			 * Use kvm_gpc_activate() here because if the runstate
439 			 * area was configured in 32-bit mode and only extends
440 			 * to the second page now because the guest changed to
441 			 * 64-bit mode, the second GPC won't have been set up.
442 			 */
443 			if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
444 					     user_len2))
445 				return;
446 
447 			/*
448 			 * We dropped the lock on GPC1 so we have to go all the
449 			 * way back and revalidate that too.
450 			 */
451 			goto retry;
452 		}
453 
454 		/*
455 		 * In this case, the runstate_info struct will be assembled on
456 		 * the kernel stack (compat or not as appropriate) and will
457 		 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
458 		 * rs pointers accordingly.
459 		 */
460 		rs_times = &rs.state_entry_time;
461 
462 		/*
463 		 * The rs_state pointer points to the start of what we'll
464 		 * copy to the guest, which in the case of a compat guest
465 		 * is the 32-bit field that the compiler thinks is padding.
466 		 */
467 		rs_state = ((void *)rs_times) - times_ofs;
468 
469 		/*
470 		 * The update_bit is still directly in the guest memory,
471 		 * via one GPC or the other.
472 		 */
473 		if (v->kvm->arch.xen.runstate_update_flag) {
474 			if (user_len1 >= times_ofs + sizeof(uint64_t))
475 				update_bit = gpc1->khva + times_ofs +
476 					sizeof(uint64_t) - 1;
477 			else
478 				update_bit = gpc2->khva + times_ofs +
479 					sizeof(uint64_t) - 1 - user_len1;
480 		}
481 
482 #ifdef CONFIG_X86_64
483 		/*
484 		 * Don't leak kernel memory through the padding in the 64-bit
485 		 * version of the struct.
486 		 */
487 		memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
488 #endif
489 	}
490 
491 	/*
492 	 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
493 	 * state_entry_time field, directly in the guest. We need to set
494 	 * that (and write-barrier) before writing to the rest of the
495 	 * structure, and clear it last. Just as Xen does, we address the
496 	 * single *byte* in which it resides because it might be in a
497 	 * different cache line to the rest of the 64-bit word, due to
498 	 * the (lack of) alignment constraints.
499 	 */
500 	entry_time = vx->runstate_entry_time;
501 	if (update_bit) {
502 		entry_time |= XEN_RUNSTATE_UPDATE;
503 		*update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
504 		smp_wmb();
505 	}
506 
507 	/*
508 	 * Now assemble the actual structure, either on our kernel stack
509 	 * or directly in the guest according to how the rs_state and
510 	 * rs_times pointers were set up above.
511 	 */
512 	*rs_state = vx->current_runstate;
513 	rs_times[0] = entry_time;
514 	memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
515 
516 	/* For the split case, we have to then copy it to the guest. */
517 	if (user_len2) {
518 		memcpy(gpc1->khva, rs_state, user_len1);
519 		memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
520 	}
521 	smp_wmb();
522 
523 	/* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
524 	if (update_bit) {
525 		entry_time &= ~XEN_RUNSTATE_UPDATE;
526 		*update_bit = entry_time >> 56;
527 		smp_wmb();
528 	}
529 
530 	if (user_len2) {
531 		kvm_gpc_mark_dirty_in_slot(gpc2);
532 		read_unlock(&gpc2->lock);
533 	}
534 
535 	kvm_gpc_mark_dirty_in_slot(gpc1);
536 	read_unlock_irqrestore(&gpc1->lock, flags);
537 }
538 
539 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
540 {
541 	struct kvm_vcpu_xen *vx = &v->arch.xen;
542 	u64 now = get_kvmclock_ns(v->kvm);
543 	u64 delta_ns = now - vx->runstate_entry_time;
544 	u64 run_delay = current->sched_info.run_delay;
545 
546 	if (unlikely(!vx->runstate_entry_time))
547 		vx->current_runstate = RUNSTATE_offline;
548 
549 	/*
550 	 * Time waiting for the scheduler isn't "stolen" if the
551 	 * vCPU wasn't running anyway.
552 	 */
553 	if (vx->current_runstate == RUNSTATE_running) {
554 		u64 steal_ns = run_delay - vx->last_steal;
555 
556 		delta_ns -= steal_ns;
557 
558 		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
559 	}
560 	vx->last_steal = run_delay;
561 
562 	vx->runstate_times[vx->current_runstate] += delta_ns;
563 	vx->current_runstate = state;
564 	vx->runstate_entry_time = now;
565 
566 	if (vx->runstate_cache.active)
567 		kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
568 }
569 
570 void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
571 {
572 	struct kvm_lapic_irq irq = { };
573 
574 	irq.dest_id = v->vcpu_id;
575 	irq.vector = v->arch.xen.upcall_vector;
576 	irq.dest_mode = APIC_DEST_PHYSICAL;
577 	irq.shorthand = APIC_DEST_NOSHORT;
578 	irq.delivery_mode = APIC_DM_FIXED;
579 	irq.level = 1;
580 
581 	kvm_irq_delivery_to_apic(v->kvm, NULL, &irq, NULL);
582 }
583 
584 /*
585  * On event channel delivery, the vcpu_info may not have been accessible.
586  * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
587  * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
588  * Do so now that we can sleep in the context of the vCPU to bring the
589  * page in, and refresh the pfn cache for it.
590  */
591 void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
592 {
593 	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
594 	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
595 	unsigned long flags;
596 
597 	if (!evtchn_pending_sel)
598 		return;
599 
600 	/*
601 	 * Yes, this is an open-coded loop. But that's just what put_user()
602 	 * does anyway. Page it in and retry the instruction. We're just a
603 	 * little more honest about it.
604 	 */
605 	read_lock_irqsave(&gpc->lock, flags);
606 	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
607 		read_unlock_irqrestore(&gpc->lock, flags);
608 
609 		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
610 			return;
611 
612 		read_lock_irqsave(&gpc->lock, flags);
613 	}
614 
615 	/* Now gpc->khva is a valid kernel address for the vcpu_info */
616 	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
617 		struct vcpu_info *vi = gpc->khva;
618 
619 		asm volatile(LOCK_PREFIX "orq %0, %1\n"
620 			     "notq %0\n"
621 			     LOCK_PREFIX "andq %0, %2\n"
622 			     : "=r" (evtchn_pending_sel),
623 			       "+m" (vi->evtchn_pending_sel),
624 			       "+m" (v->arch.xen.evtchn_pending_sel)
625 			     : "0" (evtchn_pending_sel));
626 		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
627 	} else {
628 		u32 evtchn_pending_sel32 = evtchn_pending_sel;
629 		struct compat_vcpu_info *vi = gpc->khva;
630 
631 		asm volatile(LOCK_PREFIX "orl %0, %1\n"
632 			     "notl %0\n"
633 			     LOCK_PREFIX "andl %0, %2\n"
634 			     : "=r" (evtchn_pending_sel32),
635 			       "+m" (vi->evtchn_pending_sel),
636 			       "+m" (v->arch.xen.evtchn_pending_sel)
637 			     : "0" (evtchn_pending_sel32));
638 		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
639 	}
640 
641 	kvm_gpc_mark_dirty_in_slot(gpc);
642 	read_unlock_irqrestore(&gpc->lock, flags);
643 
644 	/* For the per-vCPU lapic vector, deliver it as MSI. */
645 	if (v->arch.xen.upcall_vector)
646 		kvm_xen_inject_vcpu_vector(v);
647 }
648 
649 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
650 {
651 	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
652 	unsigned long flags;
653 	u8 rc = 0;
654 
655 	/*
656 	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
657 	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
658 	 */
659 
660 	/* No need for compat handling here */
661 	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
662 		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
663 	BUILD_BUG_ON(sizeof(rc) !=
664 		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
665 	BUILD_BUG_ON(sizeof(rc) !=
666 		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
667 
668 	read_lock_irqsave(&gpc->lock, flags);
669 	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
670 		read_unlock_irqrestore(&gpc->lock, flags);
671 
672 		/*
673 		 * This function gets called from kvm_vcpu_block() after setting the
674 		 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
675 		 * from a HLT. So we really mustn't sleep. If the page ended up absent
676 		 * at that point, just return 1 in order to trigger an immediate wake,
677 		 * and we'll end up getting called again from a context where we *can*
678 		 * fault in the page and wait for it.
679 		 */
680 		if (in_atomic() || !task_is_running(current))
681 			return 1;
682 
683 		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
684 			/*
685 			 * If this failed, userspace has screwed up the
686 			 * vcpu_info mapping. No interrupts for you.
687 			 */
688 			return 0;
689 		}
690 		read_lock_irqsave(&gpc->lock, flags);
691 	}
692 
693 	rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
694 	read_unlock_irqrestore(&gpc->lock, flags);
695 	return rc;
696 }
697 
698 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
699 {
700 	int r = -ENOENT;
701 
702 
703 	switch (data->type) {
704 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
705 		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
706 			r = -EINVAL;
707 		} else {
708 			mutex_lock(&kvm->arch.xen.xen_lock);
709 			kvm->arch.xen.long_mode = !!data->u.long_mode;
710 
711 			/*
712 			 * Re-initialize shared_info to put the wallclock in the
713 			 * correct place. Whilst it's not necessary to do this
714 			 * unless the mode is actually changed, it does no harm
715 			 * to make the call anyway.
716 			 */
717 			r = kvm->arch.xen.shinfo_cache.active ?
718 				kvm_xen_shared_info_init(kvm) : 0;
719 			mutex_unlock(&kvm->arch.xen.xen_lock);
720 		}
721 		break;
722 
723 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
724 	case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: {
725 		int idx;
726 
727 		mutex_lock(&kvm->arch.xen.xen_lock);
728 
729 		idx = srcu_read_lock(&kvm->srcu);
730 
731 		if (data->type == KVM_XEN_ATTR_TYPE_SHARED_INFO) {
732 			gfn_t gfn = data->u.shared_info.gfn;
733 
734 			if (gfn == KVM_XEN_INVALID_GFN) {
735 				kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
736 				r = 0;
737 			} else {
738 				r = kvm_gpc_activate(&kvm->arch.xen.shinfo_cache,
739 						     gfn_to_gpa(gfn), PAGE_SIZE);
740 			}
741 		} else {
742 			void __user * hva = u64_to_user_ptr(data->u.shared_info.hva);
743 
744 			if (!PAGE_ALIGNED(hva) || !access_ok(hva, PAGE_SIZE)) {
745 				r = -EINVAL;
746 			} else if (!hva) {
747 				kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
748 				r = 0;
749 			} else {
750 				r = kvm_gpc_activate_hva(&kvm->arch.xen.shinfo_cache,
751 							 (unsigned long)hva, PAGE_SIZE);
752 			}
753 		}
754 
755 		srcu_read_unlock(&kvm->srcu, idx);
756 
757 		if (!r && kvm->arch.xen.shinfo_cache.active)
758 			r = kvm_xen_shared_info_init(kvm);
759 
760 		mutex_unlock(&kvm->arch.xen.xen_lock);
761 		break;
762 	}
763 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
764 		if (data->u.vector && data->u.vector < 0x10)
765 			r = -EINVAL;
766 		else {
767 			mutex_lock(&kvm->arch.xen.xen_lock);
768 			kvm->arch.xen.upcall_vector = data->u.vector;
769 			mutex_unlock(&kvm->arch.xen.xen_lock);
770 			r = 0;
771 		}
772 		break;
773 
774 	case KVM_XEN_ATTR_TYPE_EVTCHN:
775 		r = kvm_xen_setattr_evtchn(kvm, data);
776 		break;
777 
778 	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
779 		mutex_lock(&kvm->arch.xen.xen_lock);
780 		kvm->arch.xen.xen_version = data->u.xen_version;
781 		mutex_unlock(&kvm->arch.xen.xen_lock);
782 		r = 0;
783 		break;
784 
785 	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
786 		if (!sched_info_on()) {
787 			r = -EOPNOTSUPP;
788 			break;
789 		}
790 		mutex_lock(&kvm->arch.xen.xen_lock);
791 		kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
792 		mutex_unlock(&kvm->arch.xen.xen_lock);
793 		r = 0;
794 		break;
795 
796 	default:
797 		break;
798 	}
799 
800 	return r;
801 }
802 
803 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
804 {
805 	int r = -ENOENT;
806 
807 	mutex_lock(&kvm->arch.xen.xen_lock);
808 
809 	switch (data->type) {
810 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
811 		data->u.long_mode = kvm->arch.xen.long_mode;
812 		r = 0;
813 		break;
814 
815 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
816 		if (kvm_gpc_is_gpa_active(&kvm->arch.xen.shinfo_cache))
817 			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
818 		else
819 			data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
820 		r = 0;
821 		break;
822 
823 	case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA:
824 		if (kvm_gpc_is_hva_active(&kvm->arch.xen.shinfo_cache))
825 			data->u.shared_info.hva = kvm->arch.xen.shinfo_cache.uhva;
826 		else
827 			data->u.shared_info.hva = 0;
828 		r = 0;
829 		break;
830 
831 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
832 		data->u.vector = kvm->arch.xen.upcall_vector;
833 		r = 0;
834 		break;
835 
836 	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
837 		data->u.xen_version = kvm->arch.xen.xen_version;
838 		r = 0;
839 		break;
840 
841 	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
842 		if (!sched_info_on()) {
843 			r = -EOPNOTSUPP;
844 			break;
845 		}
846 		data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
847 		r = 0;
848 		break;
849 
850 	default:
851 		break;
852 	}
853 
854 	mutex_unlock(&kvm->arch.xen.xen_lock);
855 	return r;
856 }
857 
858 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
859 {
860 	int idx, r = -ENOENT;
861 
862 	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
863 	idx = srcu_read_lock(&vcpu->kvm->srcu);
864 
865 	switch (data->type) {
866 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
867 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA:
868 		/* No compat necessary here. */
869 		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
870 			     sizeof(struct compat_vcpu_info));
871 		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
872 			     offsetof(struct compat_vcpu_info, time));
873 
874 		if (data->type == KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO) {
875 			if (data->u.gpa == KVM_XEN_INVALID_GPA) {
876 				kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
877 				r = 0;
878 				break;
879 			}
880 
881 			r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
882 					     data->u.gpa, sizeof(struct vcpu_info));
883 		} else {
884 			if (data->u.hva == 0) {
885 				kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
886 				r = 0;
887 				break;
888 			}
889 
890 			r = kvm_gpc_activate_hva(&vcpu->arch.xen.vcpu_info_cache,
891 						 data->u.hva, sizeof(struct vcpu_info));
892 		}
893 
894 		if (!r)
895 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
896 
897 		break;
898 
899 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
900 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
901 			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
902 			r = 0;
903 			break;
904 		}
905 
906 		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
907 				     data->u.gpa,
908 				     sizeof(struct pvclock_vcpu_time_info));
909 		if (!r)
910 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
911 		break;
912 
913 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
914 		size_t sz, sz1, sz2;
915 
916 		if (!sched_info_on()) {
917 			r = -EOPNOTSUPP;
918 			break;
919 		}
920 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
921 			r = 0;
922 		deactivate_out:
923 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
924 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
925 			break;
926 		}
927 
928 		/*
929 		 * If the guest switches to 64-bit mode after setting the runstate
930 		 * address, that's actually OK. kvm_xen_update_runstate_guest()
931 		 * will cope.
932 		 */
933 		if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
934 			sz = sizeof(struct vcpu_runstate_info);
935 		else
936 			sz = sizeof(struct compat_vcpu_runstate_info);
937 
938 		/* How much fits in the (first) page? */
939 		sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
940 		r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
941 				     data->u.gpa, sz1);
942 		if (r)
943 			goto deactivate_out;
944 
945 		/* Either map the second page, or deactivate the second GPC */
946 		if (sz1 >= sz) {
947 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
948 		} else {
949 			sz2 = sz - sz1;
950 			BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
951 			r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
952 					     data->u.gpa + sz1, sz2);
953 			if (r)
954 				goto deactivate_out;
955 		}
956 
957 		kvm_xen_update_runstate_guest(vcpu, false);
958 		break;
959 	}
960 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
961 		if (!sched_info_on()) {
962 			r = -EOPNOTSUPP;
963 			break;
964 		}
965 		if (data->u.runstate.state > RUNSTATE_offline) {
966 			r = -EINVAL;
967 			break;
968 		}
969 
970 		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
971 		r = 0;
972 		break;
973 
974 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
975 		if (!sched_info_on()) {
976 			r = -EOPNOTSUPP;
977 			break;
978 		}
979 		if (data->u.runstate.state > RUNSTATE_offline) {
980 			r = -EINVAL;
981 			break;
982 		}
983 		if (data->u.runstate.state_entry_time !=
984 		    (data->u.runstate.time_running +
985 		     data->u.runstate.time_runnable +
986 		     data->u.runstate.time_blocked +
987 		     data->u.runstate.time_offline)) {
988 			r = -EINVAL;
989 			break;
990 		}
991 		if (get_kvmclock_ns(vcpu->kvm) <
992 		    data->u.runstate.state_entry_time) {
993 			r = -EINVAL;
994 			break;
995 		}
996 
997 		vcpu->arch.xen.current_runstate = data->u.runstate.state;
998 		vcpu->arch.xen.runstate_entry_time =
999 			data->u.runstate.state_entry_time;
1000 		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
1001 			data->u.runstate.time_running;
1002 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
1003 			data->u.runstate.time_runnable;
1004 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
1005 			data->u.runstate.time_blocked;
1006 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
1007 			data->u.runstate.time_offline;
1008 		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
1009 		r = 0;
1010 		break;
1011 
1012 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1013 		if (!sched_info_on()) {
1014 			r = -EOPNOTSUPP;
1015 			break;
1016 		}
1017 		if (data->u.runstate.state > RUNSTATE_offline &&
1018 		    data->u.runstate.state != (u64)-1) {
1019 			r = -EINVAL;
1020 			break;
1021 		}
1022 		/* The adjustment must add up */
1023 		if (data->u.runstate.state_entry_time !=
1024 		    (data->u.runstate.time_running +
1025 		     data->u.runstate.time_runnable +
1026 		     data->u.runstate.time_blocked +
1027 		     data->u.runstate.time_offline)) {
1028 			r = -EINVAL;
1029 			break;
1030 		}
1031 
1032 		if (get_kvmclock_ns(vcpu->kvm) <
1033 		    (vcpu->arch.xen.runstate_entry_time +
1034 		     data->u.runstate.state_entry_time)) {
1035 			r = -EINVAL;
1036 			break;
1037 		}
1038 
1039 		vcpu->arch.xen.runstate_entry_time +=
1040 			data->u.runstate.state_entry_time;
1041 		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
1042 			data->u.runstate.time_running;
1043 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
1044 			data->u.runstate.time_runnable;
1045 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
1046 			data->u.runstate.time_blocked;
1047 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
1048 			data->u.runstate.time_offline;
1049 
1050 		if (data->u.runstate.state <= RUNSTATE_offline)
1051 			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
1052 		else if (vcpu->arch.xen.runstate_cache.active)
1053 			kvm_xen_update_runstate_guest(vcpu, false);
1054 		r = 0;
1055 		break;
1056 
1057 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1058 		if (data->u.vcpu_id >= KVM_MAX_VCPUS)
1059 			r = -EINVAL;
1060 		else {
1061 			vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
1062 			r = 0;
1063 		}
1064 		break;
1065 
1066 	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1067 		if (data->u.timer.port &&
1068 		    data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
1069 			r = -EINVAL;
1070 			break;
1071 		}
1072 
1073 		if (!vcpu->arch.xen.timer.function)
1074 			kvm_xen_init_timer(vcpu);
1075 
1076 		/* Stop the timer (if it's running) before changing the vector */
1077 		kvm_xen_stop_timer(vcpu);
1078 		vcpu->arch.xen.timer_virq = data->u.timer.port;
1079 
1080 		/* Start the timer if the new value has a valid vector+expiry. */
1081 		if (data->u.timer.port && data->u.timer.expires_ns)
1082 			kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, false);
1083 
1084 		r = 0;
1085 		break;
1086 
1087 	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1088 		if (data->u.vector && data->u.vector < 0x10)
1089 			r = -EINVAL;
1090 		else {
1091 			vcpu->arch.xen.upcall_vector = data->u.vector;
1092 			r = 0;
1093 		}
1094 		break;
1095 
1096 	default:
1097 		break;
1098 	}
1099 
1100 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1101 	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1102 	return r;
1103 }
1104 
1105 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
1106 {
1107 	int r = -ENOENT;
1108 
1109 	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
1110 
1111 	switch (data->type) {
1112 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
1113 		if (kvm_gpc_is_gpa_active(&vcpu->arch.xen.vcpu_info_cache))
1114 			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
1115 		else
1116 			data->u.gpa = KVM_XEN_INVALID_GPA;
1117 		r = 0;
1118 		break;
1119 
1120 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA:
1121 		if (kvm_gpc_is_hva_active(&vcpu->arch.xen.vcpu_info_cache))
1122 			data->u.hva = vcpu->arch.xen.vcpu_info_cache.uhva;
1123 		else
1124 			data->u.hva = 0;
1125 		r = 0;
1126 		break;
1127 
1128 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
1129 		if (vcpu->arch.xen.vcpu_time_info_cache.active)
1130 			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
1131 		else
1132 			data->u.gpa = KVM_XEN_INVALID_GPA;
1133 		r = 0;
1134 		break;
1135 
1136 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
1137 		if (!sched_info_on()) {
1138 			r = -EOPNOTSUPP;
1139 			break;
1140 		}
1141 		if (vcpu->arch.xen.runstate_cache.active) {
1142 			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
1143 			r = 0;
1144 		}
1145 		break;
1146 
1147 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
1148 		if (!sched_info_on()) {
1149 			r = -EOPNOTSUPP;
1150 			break;
1151 		}
1152 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
1153 		r = 0;
1154 		break;
1155 
1156 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
1157 		if (!sched_info_on()) {
1158 			r = -EOPNOTSUPP;
1159 			break;
1160 		}
1161 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
1162 		data->u.runstate.state_entry_time =
1163 			vcpu->arch.xen.runstate_entry_time;
1164 		data->u.runstate.time_running =
1165 			vcpu->arch.xen.runstate_times[RUNSTATE_running];
1166 		data->u.runstate.time_runnable =
1167 			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
1168 		data->u.runstate.time_blocked =
1169 			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
1170 		data->u.runstate.time_offline =
1171 			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
1172 		r = 0;
1173 		break;
1174 
1175 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1176 		r = -EINVAL;
1177 		break;
1178 
1179 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1180 		data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
1181 		r = 0;
1182 		break;
1183 
1184 	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1185 		/*
1186 		 * Ensure a consistent snapshot of state is captured, with a
1187 		 * timer either being pending, or the event channel delivered
1188 		 * to the corresponding bit in the shared_info. Not still
1189 		 * lurking in the timer_pending flag for deferred delivery.
1190 		 * Purely as an optimisation, if the timer_expires field is
1191 		 * zero, that means the timer isn't active (or even in the
1192 		 * timer_pending flag) and there is no need to cancel it.
1193 		 */
1194 		if (vcpu->arch.xen.timer_expires) {
1195 			hrtimer_cancel(&vcpu->arch.xen.timer);
1196 			kvm_xen_inject_timer_irqs(vcpu);
1197 		}
1198 
1199 		data->u.timer.port = vcpu->arch.xen.timer_virq;
1200 		data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1201 		data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1202 
1203 		/*
1204 		 * The hrtimer may trigger and raise the IRQ immediately,
1205 		 * while the returned state causes it to be set up and
1206 		 * raised again on the destination system after migration.
1207 		 * That's fine, as the guest won't even have had a chance
1208 		 * to run and handle the interrupt. Asserting an already
1209 		 * pending event channel is idempotent.
1210 		 */
1211 		if (vcpu->arch.xen.timer_expires)
1212 			hrtimer_start_expires(&vcpu->arch.xen.timer,
1213 					      HRTIMER_MODE_ABS_HARD);
1214 
1215 		r = 0;
1216 		break;
1217 
1218 	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1219 		data->u.vector = vcpu->arch.xen.upcall_vector;
1220 		r = 0;
1221 		break;
1222 
1223 	default:
1224 		break;
1225 	}
1226 
1227 	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1228 	return r;
1229 }
1230 
1231 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1232 {
1233 	struct kvm *kvm = vcpu->kvm;
1234 	u32 page_num = data & ~PAGE_MASK;
1235 	u64 page_addr = data & PAGE_MASK;
1236 	bool lm = is_long_mode(vcpu);
1237 	int r = 0;
1238 
1239 	mutex_lock(&kvm->arch.xen.xen_lock);
1240 	if (kvm->arch.xen.long_mode != lm) {
1241 		kvm->arch.xen.long_mode = lm;
1242 
1243 		/*
1244 		 * Re-initialize shared_info to put the wallclock in the
1245 		 * correct place.
1246 		 */
1247 		if (kvm->arch.xen.shinfo_cache.active &&
1248 		    kvm_xen_shared_info_init(kvm))
1249 			r = 1;
1250 	}
1251 	mutex_unlock(&kvm->arch.xen.xen_lock);
1252 
1253 	if (r)
1254 		return r;
1255 
1256 	/*
1257 	 * If Xen hypercall intercept is enabled, fill the hypercall
1258 	 * page with VMCALL/VMMCALL instructions since that's what
1259 	 * we catch. Else the VMM has provided the hypercall pages
1260 	 * with instructions of its own choosing, so use those.
1261 	 */
1262 	if (kvm_xen_hypercall_enabled(kvm)) {
1263 		u8 instructions[32];
1264 		int i;
1265 
1266 		if (page_num)
1267 			return 1;
1268 
1269 		/* mov imm32, %eax */
1270 		instructions[0] = 0xb8;
1271 
1272 		/* vmcall / vmmcall */
1273 		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
1274 
1275 		/* ret */
1276 		instructions[8] = 0xc3;
1277 
1278 		/* int3 to pad */
1279 		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1280 
1281 		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1282 			*(u32 *)&instructions[1] = i;
1283 			if (kvm_vcpu_write_guest(vcpu,
1284 						 page_addr + (i * sizeof(instructions)),
1285 						 instructions, sizeof(instructions)))
1286 				return 1;
1287 		}
1288 	} else {
1289 		/*
1290 		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1291 		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1292 		 */
1293 		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1294 				     : kvm->arch.xen_hvm_config.blob_addr_32;
1295 		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1296 				  : kvm->arch.xen_hvm_config.blob_size_32;
1297 		u8 *page;
1298 		int ret;
1299 
1300 		if (page_num >= blob_size)
1301 			return 1;
1302 
1303 		blob_addr += page_num * PAGE_SIZE;
1304 
1305 		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1306 		if (IS_ERR(page))
1307 			return PTR_ERR(page);
1308 
1309 		ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE);
1310 		kfree(page);
1311 		if (ret)
1312 			return 1;
1313 	}
1314 	return 0;
1315 }
1316 
1317 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1318 {
1319 	/* Only some feature flags need to be *enabled* by userspace */
1320 	u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1321 		KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
1322 		KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
1323 	u32 old_flags;
1324 
1325 	if (xhc->flags & ~permitted_flags)
1326 		return -EINVAL;
1327 
1328 	/*
1329 	 * With hypercall interception the kernel generates its own
1330 	 * hypercall page so it must not be provided.
1331 	 */
1332 	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1333 	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1334 	     xhc->blob_size_32 || xhc->blob_size_64))
1335 		return -EINVAL;
1336 
1337 	mutex_lock(&kvm->arch.xen.xen_lock);
1338 
1339 	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1340 		static_branch_inc(&kvm_xen_enabled.key);
1341 	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1342 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
1343 
1344 	old_flags = kvm->arch.xen_hvm_config.flags;
1345 	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1346 
1347 	mutex_unlock(&kvm->arch.xen.xen_lock);
1348 
1349 	if ((old_flags ^ xhc->flags) & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
1350 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
1351 
1352 	return 0;
1353 }
1354 
1355 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1356 {
1357 	kvm_rax_write(vcpu, result);
1358 	return kvm_skip_emulated_instruction(vcpu);
1359 }
1360 
1361 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1362 {
1363 	struct kvm_run *run = vcpu->run;
1364 
1365 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1366 		return 1;
1367 
1368 	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1369 }
1370 
1371 static inline int max_evtchn_port(struct kvm *kvm)
1372 {
1373 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1374 		return EVTCHN_2L_NR_CHANNELS;
1375 	else
1376 		return COMPAT_EVTCHN_2L_NR_CHANNELS;
1377 }
1378 
1379 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1380 			       evtchn_port_t *ports)
1381 {
1382 	struct kvm *kvm = vcpu->kvm;
1383 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1384 	unsigned long *pending_bits;
1385 	unsigned long flags;
1386 	bool ret = true;
1387 	int idx, i;
1388 
1389 	idx = srcu_read_lock(&kvm->srcu);
1390 	read_lock_irqsave(&gpc->lock, flags);
1391 	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1392 		goto out_rcu;
1393 
1394 	ret = false;
1395 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1396 		struct shared_info *shinfo = gpc->khva;
1397 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1398 	} else {
1399 		struct compat_shared_info *shinfo = gpc->khva;
1400 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1401 	}
1402 
1403 	for (i = 0; i < nr_ports; i++) {
1404 		if (test_bit(ports[i], pending_bits)) {
1405 			ret = true;
1406 			break;
1407 		}
1408 	}
1409 
1410  out_rcu:
1411 	read_unlock_irqrestore(&gpc->lock, flags);
1412 	srcu_read_unlock(&kvm->srcu, idx);
1413 
1414 	return ret;
1415 }
1416 
1417 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1418 				 u64 param, u64 *r)
1419 {
1420 	struct sched_poll sched_poll;
1421 	evtchn_port_t port, *ports;
1422 	struct x86_exception e;
1423 	int i;
1424 
1425 	if (!lapic_in_kernel(vcpu) ||
1426 	    !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1427 		return false;
1428 
1429 	if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1430 		struct compat_sched_poll sp32;
1431 
1432 		/* Sanity check that the compat struct definition is correct */
1433 		BUILD_BUG_ON(sizeof(sp32) != 16);
1434 
1435 		if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) {
1436 			*r = -EFAULT;
1437 			return true;
1438 		}
1439 
1440 		/*
1441 		 * This is a 32-bit pointer to an array of evtchn_port_t which
1442 		 * are uint32_t, so once it's converted no further compat
1443 		 * handling is needed.
1444 		 */
1445 		sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1446 		sched_poll.nr_ports = sp32.nr_ports;
1447 		sched_poll.timeout = sp32.timeout;
1448 	} else {
1449 		if (kvm_read_guest_virt(vcpu, param, &sched_poll,
1450 					sizeof(sched_poll), &e)) {
1451 			*r = -EFAULT;
1452 			return true;
1453 		}
1454 	}
1455 
1456 	if (unlikely(sched_poll.nr_ports > 1)) {
1457 		/* Xen (unofficially) limits number of pollers to 128 */
1458 		if (sched_poll.nr_ports > 128) {
1459 			*r = -EINVAL;
1460 			return true;
1461 		}
1462 
1463 		ports = kmalloc_array(sched_poll.nr_ports,
1464 				      sizeof(*ports), GFP_KERNEL);
1465 		if (!ports) {
1466 			*r = -ENOMEM;
1467 			return true;
1468 		}
1469 	} else
1470 		ports = &port;
1471 
1472 	if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports,
1473 				sched_poll.nr_ports * sizeof(*ports), &e)) {
1474 		*r = -EFAULT;
1475 		return true;
1476 	}
1477 
1478 	for (i = 0; i < sched_poll.nr_ports; i++) {
1479 		if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1480 			*r = -EINVAL;
1481 			goto out;
1482 		}
1483 	}
1484 
1485 	if (sched_poll.nr_ports == 1)
1486 		vcpu->arch.xen.poll_evtchn = port;
1487 	else
1488 		vcpu->arch.xen.poll_evtchn = -1;
1489 
1490 	set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1491 
1492 	if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1493 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1494 
1495 		if (sched_poll.timeout)
1496 			mod_timer(&vcpu->arch.xen.poll_timer,
1497 				  jiffies + nsecs_to_jiffies(sched_poll.timeout));
1498 
1499 		kvm_vcpu_halt(vcpu);
1500 
1501 		if (sched_poll.timeout)
1502 			del_timer(&vcpu->arch.xen.poll_timer);
1503 
1504 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1505 	}
1506 
1507 	vcpu->arch.xen.poll_evtchn = 0;
1508 	*r = 0;
1509 out:
1510 	/* Really, this is only needed in case of timeout */
1511 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1512 
1513 	if (unlikely(sched_poll.nr_ports > 1))
1514 		kfree(ports);
1515 	return true;
1516 }
1517 
1518 static void cancel_evtchn_poll(struct timer_list *t)
1519 {
1520 	struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1521 
1522 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1523 	kvm_vcpu_kick(vcpu);
1524 }
1525 
1526 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1527 				   int cmd, u64 param, u64 *r)
1528 {
1529 	switch (cmd) {
1530 	case SCHEDOP_poll:
1531 		if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1532 			return true;
1533 		fallthrough;
1534 	case SCHEDOP_yield:
1535 		kvm_vcpu_on_spin(vcpu, true);
1536 		*r = 0;
1537 		return true;
1538 	default:
1539 		break;
1540 	}
1541 
1542 	return false;
1543 }
1544 
1545 struct compat_vcpu_set_singleshot_timer {
1546     uint64_t timeout_abs_ns;
1547     uint32_t flags;
1548 } __attribute__((packed));
1549 
1550 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1551 				  int vcpu_id, u64 param, u64 *r)
1552 {
1553 	struct vcpu_set_singleshot_timer oneshot;
1554 	struct x86_exception e;
1555 
1556 	if (!kvm_xen_timer_enabled(vcpu))
1557 		return false;
1558 
1559 	switch (cmd) {
1560 	case VCPUOP_set_singleshot_timer:
1561 		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1562 			*r = -EINVAL;
1563 			return true;
1564 		}
1565 
1566 		/*
1567 		 * The only difference for 32-bit compat is the 4 bytes of
1568 		 * padding after the interesting part of the structure. So
1569 		 * for a faithful emulation of Xen we have to *try* to copy
1570 		 * the padding and return -EFAULT if we can't. Otherwise we
1571 		 * might as well just have copied the 12-byte 32-bit struct.
1572 		 */
1573 		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1574 			     offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1575 		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1576 			     sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1577 		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1578 			     offsetof(struct vcpu_set_singleshot_timer, flags));
1579 		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1580 			     sizeof_field(struct vcpu_set_singleshot_timer, flags));
1581 
1582 		if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) :
1583 					sizeof(struct compat_vcpu_set_singleshot_timer), &e)) {
1584 			*r = -EFAULT;
1585 			return true;
1586 		}
1587 
1588 		kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, false);
1589 		*r = 0;
1590 		return true;
1591 
1592 	case VCPUOP_stop_singleshot_timer:
1593 		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1594 			*r = -EINVAL;
1595 			return true;
1596 		}
1597 		kvm_xen_stop_timer(vcpu);
1598 		*r = 0;
1599 		return true;
1600 	}
1601 
1602 	return false;
1603 }
1604 
1605 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1606 				       u64 *r)
1607 {
1608 	if (!kvm_xen_timer_enabled(vcpu))
1609 		return false;
1610 
1611 	if (timeout)
1612 		kvm_xen_start_timer(vcpu, timeout, true);
1613 	else
1614 		kvm_xen_stop_timer(vcpu);
1615 
1616 	*r = 0;
1617 	return true;
1618 }
1619 
1620 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1621 {
1622 	bool longmode;
1623 	u64 input, params[6], r = -ENOSYS;
1624 	bool handled = false;
1625 	u8 cpl;
1626 
1627 	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1628 
1629 	/* Hyper-V hypercalls get bit 31 set in EAX */
1630 	if ((input & 0x80000000) &&
1631 	    kvm_hv_hypercall_enabled(vcpu))
1632 		return kvm_hv_hypercall(vcpu);
1633 
1634 	longmode = is_64_bit_hypercall(vcpu);
1635 	if (!longmode) {
1636 		params[0] = (u32)kvm_rbx_read(vcpu);
1637 		params[1] = (u32)kvm_rcx_read(vcpu);
1638 		params[2] = (u32)kvm_rdx_read(vcpu);
1639 		params[3] = (u32)kvm_rsi_read(vcpu);
1640 		params[4] = (u32)kvm_rdi_read(vcpu);
1641 		params[5] = (u32)kvm_rbp_read(vcpu);
1642 	}
1643 #ifdef CONFIG_X86_64
1644 	else {
1645 		params[0] = (u64)kvm_rdi_read(vcpu);
1646 		params[1] = (u64)kvm_rsi_read(vcpu);
1647 		params[2] = (u64)kvm_rdx_read(vcpu);
1648 		params[3] = (u64)kvm_r10_read(vcpu);
1649 		params[4] = (u64)kvm_r8_read(vcpu);
1650 		params[5] = (u64)kvm_r9_read(vcpu);
1651 	}
1652 #endif
1653 	cpl = static_call(kvm_x86_get_cpl)(vcpu);
1654 	trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1655 				params[3], params[4], params[5]);
1656 
1657 	/*
1658 	 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1659 	 * are permitted in guest userspace can be handled by the VMM.
1660 	 */
1661 	if (unlikely(cpl > 0))
1662 		goto handle_in_userspace;
1663 
1664 	switch (input) {
1665 	case __HYPERVISOR_xen_version:
1666 		if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1667 			r = vcpu->kvm->arch.xen.xen_version;
1668 			handled = true;
1669 		}
1670 		break;
1671 	case __HYPERVISOR_event_channel_op:
1672 		if (params[0] == EVTCHNOP_send)
1673 			handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1674 		break;
1675 	case __HYPERVISOR_sched_op:
1676 		handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1677 						 params[1], &r);
1678 		break;
1679 	case __HYPERVISOR_vcpu_op:
1680 		handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1681 						params[2], &r);
1682 		break;
1683 	case __HYPERVISOR_set_timer_op: {
1684 		u64 timeout = params[0];
1685 		/* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1686 		if (!longmode)
1687 			timeout |= params[1] << 32;
1688 		handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1689 		break;
1690 	}
1691 	default:
1692 		break;
1693 	}
1694 
1695 	if (handled)
1696 		return kvm_xen_hypercall_set_result(vcpu, r);
1697 
1698 handle_in_userspace:
1699 	vcpu->run->exit_reason = KVM_EXIT_XEN;
1700 	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1701 	vcpu->run->xen.u.hcall.longmode = longmode;
1702 	vcpu->run->xen.u.hcall.cpl = cpl;
1703 	vcpu->run->xen.u.hcall.input = input;
1704 	vcpu->run->xen.u.hcall.params[0] = params[0];
1705 	vcpu->run->xen.u.hcall.params[1] = params[1];
1706 	vcpu->run->xen.u.hcall.params[2] = params[2];
1707 	vcpu->run->xen.u.hcall.params[3] = params[3];
1708 	vcpu->run->xen.u.hcall.params[4] = params[4];
1709 	vcpu->run->xen.u.hcall.params[5] = params[5];
1710 	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1711 	vcpu->arch.complete_userspace_io =
1712 		kvm_xen_hypercall_complete_userspace;
1713 
1714 	return 0;
1715 }
1716 
1717 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1718 {
1719 	int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1720 
1721 	if ((poll_evtchn == port || poll_evtchn == -1) &&
1722 	    test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1723 		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1724 		kvm_vcpu_kick(vcpu);
1725 	}
1726 }
1727 
1728 /*
1729  * The return value from this function is propagated to kvm_set_irq() API,
1730  * so it returns:
1731  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1732  *  = 0   Interrupt was coalesced (previous irq is still pending)
1733  *  > 0   Number of CPUs interrupt was delivered to
1734  *
1735  * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1736  * only check on its return value is a comparison with -EWOULDBLOCK'.
1737  */
1738 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1739 {
1740 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1741 	struct kvm_vcpu *vcpu;
1742 	unsigned long *pending_bits, *mask_bits;
1743 	unsigned long flags;
1744 	int port_word_bit;
1745 	bool kick_vcpu = false;
1746 	int vcpu_idx, idx, rc;
1747 
1748 	vcpu_idx = READ_ONCE(xe->vcpu_idx);
1749 	if (vcpu_idx >= 0)
1750 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1751 	else {
1752 		vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1753 		if (!vcpu)
1754 			return -EINVAL;
1755 		WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1756 	}
1757 
1758 	if (xe->port >= max_evtchn_port(kvm))
1759 		return -EINVAL;
1760 
1761 	rc = -EWOULDBLOCK;
1762 
1763 	idx = srcu_read_lock(&kvm->srcu);
1764 
1765 	read_lock_irqsave(&gpc->lock, flags);
1766 	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1767 		goto out_rcu;
1768 
1769 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1770 		struct shared_info *shinfo = gpc->khva;
1771 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1772 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1773 		port_word_bit = xe->port / 64;
1774 	} else {
1775 		struct compat_shared_info *shinfo = gpc->khva;
1776 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1777 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1778 		port_word_bit = xe->port / 32;
1779 	}
1780 
1781 	/*
1782 	 * If this port wasn't already set, and if it isn't masked, then
1783 	 * we try to set the corresponding bit in the in-kernel shadow of
1784 	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1785 	 * already set, then we kick the vCPU in question to write to the
1786 	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1787 	 */
1788 	if (test_and_set_bit(xe->port, pending_bits)) {
1789 		rc = 0; /* It was already raised */
1790 	} else if (test_bit(xe->port, mask_bits)) {
1791 		rc = -ENOTCONN; /* Masked */
1792 		kvm_xen_check_poller(vcpu, xe->port);
1793 	} else {
1794 		rc = 1; /* Delivered to the bitmap in shared_info. */
1795 		/* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1796 		read_unlock_irqrestore(&gpc->lock, flags);
1797 		gpc = &vcpu->arch.xen.vcpu_info_cache;
1798 
1799 		read_lock_irqsave(&gpc->lock, flags);
1800 		if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1801 			/*
1802 			 * Could not access the vcpu_info. Set the bit in-kernel
1803 			 * and prod the vCPU to deliver it for itself.
1804 			 */
1805 			if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1806 				kick_vcpu = true;
1807 			goto out_rcu;
1808 		}
1809 
1810 		if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1811 			struct vcpu_info *vcpu_info = gpc->khva;
1812 			if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1813 				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1814 				kick_vcpu = true;
1815 			}
1816 		} else {
1817 			struct compat_vcpu_info *vcpu_info = gpc->khva;
1818 			if (!test_and_set_bit(port_word_bit,
1819 					      (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1820 				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1821 				kick_vcpu = true;
1822 			}
1823 		}
1824 
1825 		/* For the per-vCPU lapic vector, deliver it as MSI. */
1826 		if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1827 			kvm_xen_inject_vcpu_vector(vcpu);
1828 			kick_vcpu = false;
1829 		}
1830 	}
1831 
1832  out_rcu:
1833 	read_unlock_irqrestore(&gpc->lock, flags);
1834 	srcu_read_unlock(&kvm->srcu, idx);
1835 
1836 	if (kick_vcpu) {
1837 		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1838 		kvm_vcpu_kick(vcpu);
1839 	}
1840 
1841 	return rc;
1842 }
1843 
1844 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1845 {
1846 	bool mm_borrowed = false;
1847 	int rc;
1848 
1849 	rc = kvm_xen_set_evtchn_fast(xe, kvm);
1850 	if (rc != -EWOULDBLOCK)
1851 		return rc;
1852 
1853 	if (current->mm != kvm->mm) {
1854 		/*
1855 		 * If not on a thread which already belongs to this KVM,
1856 		 * we'd better be in the irqfd workqueue.
1857 		 */
1858 		if (WARN_ON_ONCE(current->mm))
1859 			return -EINVAL;
1860 
1861 		kthread_use_mm(kvm->mm);
1862 		mm_borrowed = true;
1863 	}
1864 
1865 	/*
1866 	 * It is theoretically possible for the page to be unmapped
1867 	 * and the MMU notifier to invalidate the shared_info before
1868 	 * we even get to use it. In that case, this looks like an
1869 	 * infinite loop. It was tempting to do it via the userspace
1870 	 * HVA instead... but that just *hides* the fact that it's
1871 	 * an infinite loop, because if a fault occurs and it waits
1872 	 * for the page to come back, it can *still* immediately
1873 	 * fault and have to wait again, repeatedly.
1874 	 *
1875 	 * Conversely, the page could also have been reinstated by
1876 	 * another thread before we even obtain the mutex above, so
1877 	 * check again *first* before remapping it.
1878 	 */
1879 	do {
1880 		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1881 		int idx;
1882 
1883 		rc = kvm_xen_set_evtchn_fast(xe, kvm);
1884 		if (rc != -EWOULDBLOCK)
1885 			break;
1886 
1887 		idx = srcu_read_lock(&kvm->srcu);
1888 		rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1889 		srcu_read_unlock(&kvm->srcu, idx);
1890 	} while(!rc);
1891 
1892 	if (mm_borrowed)
1893 		kthread_unuse_mm(kvm->mm);
1894 
1895 	return rc;
1896 }
1897 
1898 /* This is the version called from kvm_set_irq() as the .set function */
1899 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1900 			 int irq_source_id, int level, bool line_status)
1901 {
1902 	if (!level)
1903 		return -EINVAL;
1904 
1905 	return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1906 }
1907 
1908 /*
1909  * Set up an event channel interrupt from the KVM IRQ routing table.
1910  * Used for e.g. PIRQ from passed through physical devices.
1911  */
1912 int kvm_xen_setup_evtchn(struct kvm *kvm,
1913 			 struct kvm_kernel_irq_routing_entry *e,
1914 			 const struct kvm_irq_routing_entry *ue)
1915 
1916 {
1917 	struct kvm_vcpu *vcpu;
1918 
1919 	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1920 		return -EINVAL;
1921 
1922 	/* We only support 2 level event channels for now */
1923 	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1924 		return -EINVAL;
1925 
1926 	/*
1927 	 * Xen gives us interesting mappings from vCPU index to APIC ID,
1928 	 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1929 	 * to find it. Do that once at setup time, instead of every time.
1930 	 * But beware that on live update / live migration, the routing
1931 	 * table might be reinstated before the vCPU threads have finished
1932 	 * recreating their vCPUs.
1933 	 */
1934 	vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1935 	if (vcpu)
1936 		e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1937 	else
1938 		e->xen_evtchn.vcpu_idx = -1;
1939 
1940 	e->xen_evtchn.port = ue->u.xen_evtchn.port;
1941 	e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1942 	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1943 	e->set = evtchn_set_fn;
1944 
1945 	return 0;
1946 }
1947 
1948 /*
1949  * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1950  */
1951 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1952 {
1953 	struct kvm_xen_evtchn e;
1954 	int ret;
1955 
1956 	if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1957 		return -EINVAL;
1958 
1959 	/* We only support 2 level event channels for now */
1960 	if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1961 		return -EINVAL;
1962 
1963 	e.port = uxe->port;
1964 	e.vcpu_id = uxe->vcpu;
1965 	e.vcpu_idx = -1;
1966 	e.priority = uxe->priority;
1967 
1968 	ret = kvm_xen_set_evtchn(&e, kvm);
1969 
1970 	/*
1971 	 * None of that 'return 1 if it actually got delivered' nonsense.
1972 	 * We don't care if it was masked (-ENOTCONN) either.
1973 	 */
1974 	if (ret > 0 || ret == -ENOTCONN)
1975 		ret = 0;
1976 
1977 	return ret;
1978 }
1979 
1980 /*
1981  * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1982  */
1983 struct evtchnfd {
1984 	u32 send_port;
1985 	u32 type;
1986 	union {
1987 		struct kvm_xen_evtchn port;
1988 		struct {
1989 			u32 port; /* zero */
1990 			struct eventfd_ctx *ctx;
1991 		} eventfd;
1992 	} deliver;
1993 };
1994 
1995 /*
1996  * Update target vCPU or priority for a registered sending channel.
1997  */
1998 static int kvm_xen_eventfd_update(struct kvm *kvm,
1999 				  struct kvm_xen_hvm_attr *data)
2000 {
2001 	u32 port = data->u.evtchn.send_port;
2002 	struct evtchnfd *evtchnfd;
2003 	int ret;
2004 
2005 	/* Protect writes to evtchnfd as well as the idr lookup.  */
2006 	mutex_lock(&kvm->arch.xen.xen_lock);
2007 	evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
2008 
2009 	ret = -ENOENT;
2010 	if (!evtchnfd)
2011 		goto out_unlock;
2012 
2013 	/* For an UPDATE, nothing may change except the priority/vcpu */
2014 	ret = -EINVAL;
2015 	if (evtchnfd->type != data->u.evtchn.type)
2016 		goto out_unlock;
2017 
2018 	/*
2019 	 * Port cannot change, and if it's zero that was an eventfd
2020 	 * which can't be changed either.
2021 	 */
2022 	if (!evtchnfd->deliver.port.port ||
2023 	    evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
2024 		goto out_unlock;
2025 
2026 	/* We only support 2 level event channels for now */
2027 	if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2028 		goto out_unlock;
2029 
2030 	evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
2031 	if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
2032 		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
2033 		evtchnfd->deliver.port.vcpu_idx = -1;
2034 	}
2035 	ret = 0;
2036 out_unlock:
2037 	mutex_unlock(&kvm->arch.xen.xen_lock);
2038 	return ret;
2039 }
2040 
2041 /*
2042  * Configure the target (eventfd or local port delivery) for sending on
2043  * a given event channel.
2044  */
2045 static int kvm_xen_eventfd_assign(struct kvm *kvm,
2046 				  struct kvm_xen_hvm_attr *data)
2047 {
2048 	u32 port = data->u.evtchn.send_port;
2049 	struct eventfd_ctx *eventfd = NULL;
2050 	struct evtchnfd *evtchnfd;
2051 	int ret = -EINVAL;
2052 
2053 	evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
2054 	if (!evtchnfd)
2055 		return -ENOMEM;
2056 
2057 	switch(data->u.evtchn.type) {
2058 	case EVTCHNSTAT_ipi:
2059 		/* IPI  must map back to the same port# */
2060 		if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
2061 			goto out_noeventfd; /* -EINVAL */
2062 		break;
2063 
2064 	case EVTCHNSTAT_interdomain:
2065 		if (data->u.evtchn.deliver.port.port) {
2066 			if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
2067 				goto out_noeventfd; /* -EINVAL */
2068 		} else {
2069 			eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
2070 			if (IS_ERR(eventfd)) {
2071 				ret = PTR_ERR(eventfd);
2072 				goto out_noeventfd;
2073 			}
2074 		}
2075 		break;
2076 
2077 	case EVTCHNSTAT_virq:
2078 	case EVTCHNSTAT_closed:
2079 	case EVTCHNSTAT_unbound:
2080 	case EVTCHNSTAT_pirq:
2081 	default: /* Unknown event channel type */
2082 		goto out; /* -EINVAL */
2083 	}
2084 
2085 	evtchnfd->send_port = data->u.evtchn.send_port;
2086 	evtchnfd->type = data->u.evtchn.type;
2087 	if (eventfd) {
2088 		evtchnfd->deliver.eventfd.ctx = eventfd;
2089 	} else {
2090 		/* We only support 2 level event channels for now */
2091 		if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2092 			goto out; /* -EINVAL; */
2093 
2094 		evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
2095 		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
2096 		evtchnfd->deliver.port.vcpu_idx = -1;
2097 		evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
2098 	}
2099 
2100 	mutex_lock(&kvm->arch.xen.xen_lock);
2101 	ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
2102 			GFP_KERNEL);
2103 	mutex_unlock(&kvm->arch.xen.xen_lock);
2104 	if (ret >= 0)
2105 		return 0;
2106 
2107 	if (ret == -ENOSPC)
2108 		ret = -EEXIST;
2109 out:
2110 	if (eventfd)
2111 		eventfd_ctx_put(eventfd);
2112 out_noeventfd:
2113 	kfree(evtchnfd);
2114 	return ret;
2115 }
2116 
2117 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
2118 {
2119 	struct evtchnfd *evtchnfd;
2120 
2121 	mutex_lock(&kvm->arch.xen.xen_lock);
2122 	evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
2123 	mutex_unlock(&kvm->arch.xen.xen_lock);
2124 
2125 	if (!evtchnfd)
2126 		return -ENOENT;
2127 
2128 	synchronize_srcu(&kvm->srcu);
2129 	if (!evtchnfd->deliver.port.port)
2130 		eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2131 	kfree(evtchnfd);
2132 	return 0;
2133 }
2134 
2135 static int kvm_xen_eventfd_reset(struct kvm *kvm)
2136 {
2137 	struct evtchnfd *evtchnfd, **all_evtchnfds;
2138 	int i;
2139 	int n = 0;
2140 
2141 	mutex_lock(&kvm->arch.xen.xen_lock);
2142 
2143 	/*
2144 	 * Because synchronize_srcu() cannot be called inside the
2145 	 * critical section, first collect all the evtchnfd objects
2146 	 * in an array as they are removed from evtchn_ports.
2147 	 */
2148 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
2149 		n++;
2150 
2151 	all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL);
2152 	if (!all_evtchnfds) {
2153 		mutex_unlock(&kvm->arch.xen.xen_lock);
2154 		return -ENOMEM;
2155 	}
2156 
2157 	n = 0;
2158 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2159 		all_evtchnfds[n++] = evtchnfd;
2160 		idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
2161 	}
2162 	mutex_unlock(&kvm->arch.xen.xen_lock);
2163 
2164 	synchronize_srcu(&kvm->srcu);
2165 
2166 	while (n--) {
2167 		evtchnfd = all_evtchnfds[n];
2168 		if (!evtchnfd->deliver.port.port)
2169 			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2170 		kfree(evtchnfd);
2171 	}
2172 	kfree(all_evtchnfds);
2173 
2174 	return 0;
2175 }
2176 
2177 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
2178 {
2179 	u32 port = data->u.evtchn.send_port;
2180 
2181 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
2182 		return kvm_xen_eventfd_reset(kvm);
2183 
2184 	if (!port || port >= max_evtchn_port(kvm))
2185 		return -EINVAL;
2186 
2187 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
2188 		return kvm_xen_eventfd_deassign(kvm, port);
2189 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
2190 		return kvm_xen_eventfd_update(kvm, data);
2191 	if (data->u.evtchn.flags)
2192 		return -EINVAL;
2193 
2194 	return kvm_xen_eventfd_assign(kvm, data);
2195 }
2196 
2197 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2198 {
2199 	struct evtchnfd *evtchnfd;
2200 	struct evtchn_send send;
2201 	struct x86_exception e;
2202 
2203 	/* Sanity check: this structure is the same for 32-bit and 64-bit */
2204 	BUILD_BUG_ON(sizeof(send) != 4);
2205 	if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) {
2206 		*r = -EFAULT;
2207 		return true;
2208 	}
2209 
2210 	/*
2211 	 * evtchnfd is protected by kvm->srcu; the idr lookup instead
2212 	 * is protected by RCU.
2213 	 */
2214 	rcu_read_lock();
2215 	evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2216 	rcu_read_unlock();
2217 	if (!evtchnfd)
2218 		return false;
2219 
2220 	if (evtchnfd->deliver.port.port) {
2221 		int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2222 		if (ret < 0 && ret != -ENOTCONN)
2223 			return false;
2224 	} else {
2225 		eventfd_signal(evtchnfd->deliver.eventfd.ctx);
2226 	}
2227 
2228 	*r = 0;
2229 	return true;
2230 }
2231 
2232 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2233 {
2234 	vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2235 	vcpu->arch.xen.poll_evtchn = 0;
2236 
2237 	timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2238 
2239 	kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm);
2240 	kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm);
2241 	kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm);
2242 	kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm);
2243 }
2244 
2245 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2246 {
2247 	if (kvm_xen_timer_enabled(vcpu))
2248 		kvm_xen_stop_timer(vcpu);
2249 
2250 	kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2251 	kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2252 	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2253 	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2254 
2255 	del_timer_sync(&vcpu->arch.xen.poll_timer);
2256 }
2257 
2258 void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu)
2259 {
2260 	struct kvm_cpuid_entry2 *entry;
2261 	u32 function;
2262 
2263 	if (!vcpu->arch.xen.cpuid.base)
2264 		return;
2265 
2266 	function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3);
2267 	if (function > vcpu->arch.xen.cpuid.limit)
2268 		return;
2269 
2270 	entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2271 	if (entry) {
2272 		entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul;
2273 		entry->edx = vcpu->arch.hv_clock.tsc_shift;
2274 	}
2275 
2276 	entry = kvm_find_cpuid_entry_index(vcpu, function, 2);
2277 	if (entry)
2278 		entry->eax = vcpu->arch.hw_tsc_khz;
2279 }
2280 
2281 void kvm_xen_init_vm(struct kvm *kvm)
2282 {
2283 	mutex_init(&kvm->arch.xen.xen_lock);
2284 	idr_init(&kvm->arch.xen.evtchn_ports);
2285 	kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm);
2286 }
2287 
2288 void kvm_xen_destroy_vm(struct kvm *kvm)
2289 {
2290 	struct evtchnfd *evtchnfd;
2291 	int i;
2292 
2293 	kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2294 
2295 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2296 		if (!evtchnfd->deliver.port.port)
2297 			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2298 		kfree(evtchnfd);
2299 	}
2300 	idr_destroy(&kvm->arch.xen.evtchn_ports);
2301 
2302 	if (kvm->arch.xen_hvm_config.msr)
2303 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
2304 }
2305