1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. 4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. 5 * 6 * KVM Xen emulation 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include "x86.h" 11 #include "xen.h" 12 #include "hyperv.h" 13 #include "irq.h" 14 15 #include <linux/eventfd.h> 16 #include <linux/kvm_host.h> 17 #include <linux/sched/stat.h> 18 19 #include <trace/events/kvm.h> 20 #include <xen/interface/xen.h> 21 #include <xen/interface/vcpu.h> 22 #include <xen/interface/version.h> 23 #include <xen/interface/event_channel.h> 24 #include <xen/interface/sched.h> 25 26 #include <asm/xen/cpuid.h> 27 #include <asm/pvclock.h> 28 29 #include "cpuid.h" 30 #include "trace.h" 31 32 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm); 33 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data); 34 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r); 35 36 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); 37 38 static int kvm_xen_shared_info_init(struct kvm *kvm) 39 { 40 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 41 struct pvclock_wall_clock *wc; 42 u32 *wc_sec_hi; 43 u32 wc_version; 44 u64 wall_nsec; 45 int ret = 0; 46 int idx = srcu_read_lock(&kvm->srcu); 47 48 read_lock_irq(&gpc->lock); 49 while (!kvm_gpc_check(gpc, PAGE_SIZE)) { 50 read_unlock_irq(&gpc->lock); 51 52 ret = kvm_gpc_refresh(gpc, PAGE_SIZE); 53 if (ret) 54 goto out; 55 56 read_lock_irq(&gpc->lock); 57 } 58 59 /* 60 * This code mirrors kvm_write_wall_clock() except that it writes 61 * directly through the pfn cache and doesn't mark the page dirty. 62 */ 63 wall_nsec = kvm_get_wall_clock_epoch(kvm); 64 65 /* Paranoia checks on the 32-bit struct layout */ 66 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); 67 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); 68 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 69 70 #ifdef CONFIG_X86_64 71 /* Paranoia checks on the 64-bit struct layout */ 72 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); 73 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); 74 75 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 76 struct shared_info *shinfo = gpc->khva; 77 78 wc_sec_hi = &shinfo->wc_sec_hi; 79 wc = &shinfo->wc; 80 } else 81 #endif 82 { 83 struct compat_shared_info *shinfo = gpc->khva; 84 85 wc_sec_hi = &shinfo->arch.wc_sec_hi; 86 wc = &shinfo->wc; 87 } 88 89 /* Increment and ensure an odd value */ 90 wc_version = wc->version = (wc->version + 1) | 1; 91 smp_wmb(); 92 93 wc->nsec = do_div(wall_nsec, NSEC_PER_SEC); 94 wc->sec = (u32)wall_nsec; 95 *wc_sec_hi = wall_nsec >> 32; 96 smp_wmb(); 97 98 wc->version = wc_version + 1; 99 read_unlock_irq(&gpc->lock); 100 101 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); 102 103 out: 104 srcu_read_unlock(&kvm->srcu, idx); 105 return ret; 106 } 107 108 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu) 109 { 110 if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) { 111 struct kvm_xen_evtchn e; 112 113 e.vcpu_id = vcpu->vcpu_id; 114 e.vcpu_idx = vcpu->vcpu_idx; 115 e.port = vcpu->arch.xen.timer_virq; 116 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 117 118 kvm_xen_set_evtchn(&e, vcpu->kvm); 119 120 vcpu->arch.xen.timer_expires = 0; 121 atomic_set(&vcpu->arch.xen.timer_pending, 0); 122 } 123 } 124 125 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer) 126 { 127 struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu, 128 arch.xen.timer); 129 struct kvm_xen_evtchn e; 130 int rc; 131 132 if (atomic_read(&vcpu->arch.xen.timer_pending)) 133 return HRTIMER_NORESTART; 134 135 e.vcpu_id = vcpu->vcpu_id; 136 e.vcpu_idx = vcpu->vcpu_idx; 137 e.port = vcpu->arch.xen.timer_virq; 138 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 139 140 rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm); 141 if (rc != -EWOULDBLOCK) { 142 vcpu->arch.xen.timer_expires = 0; 143 return HRTIMER_NORESTART; 144 } 145 146 atomic_inc(&vcpu->arch.xen.timer_pending); 147 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 148 kvm_vcpu_kick(vcpu); 149 150 return HRTIMER_NORESTART; 151 } 152 153 static int xen_get_guest_pvclock(struct kvm_vcpu *vcpu, 154 struct pvclock_vcpu_time_info *hv_clock, 155 struct gfn_to_pfn_cache *gpc, 156 unsigned int offset) 157 { 158 unsigned long flags; 159 int r; 160 161 read_lock_irqsave(&gpc->lock, flags); 162 while (!kvm_gpc_check(gpc, offset + sizeof(*hv_clock))) { 163 read_unlock_irqrestore(&gpc->lock, flags); 164 165 r = kvm_gpc_refresh(gpc, offset + sizeof(*hv_clock)); 166 if (r) 167 return r; 168 169 read_lock_irqsave(&gpc->lock, flags); 170 } 171 172 memcpy(hv_clock, gpc->khva + offset, sizeof(*hv_clock)); 173 read_unlock_irqrestore(&gpc->lock, flags); 174 175 /* 176 * Sanity check TSC shift+multiplier to verify the guest's view of time 177 * is more or less consistent. 178 */ 179 if (hv_clock->tsc_shift != vcpu->arch.pvclock_tsc_shift || 180 hv_clock->tsc_to_system_mul != vcpu->arch.pvclock_tsc_mul) 181 return -EINVAL; 182 183 return 0; 184 } 185 186 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, 187 bool linux_wa) 188 { 189 struct kvm_vcpu_xen *xen = &vcpu->arch.xen; 190 int64_t kernel_now, delta; 191 uint64_t guest_now; 192 int r = -EOPNOTSUPP; 193 194 /* 195 * The guest provides the requested timeout in absolute nanoseconds 196 * of the KVM clock — as *it* sees it, based on the scaled TSC and 197 * the pvclock information provided by KVM. 198 * 199 * The kernel doesn't support hrtimers based on CLOCK_MONOTONIC_RAW 200 * so use CLOCK_MONOTONIC. In the timescales covered by timers, the 201 * difference won't matter much as there is no cumulative effect. 202 * 203 * Calculate the time for some arbitrary point in time around "now" 204 * in terms of both kvmclock and CLOCK_MONOTONIC. Calculate the 205 * delta between the kvmclock "now" value and the guest's requested 206 * timeout, apply the "Linux workaround" described below, and add 207 * the resulting delta to the CLOCK_MONOTONIC "now" value, to get 208 * the absolute CLOCK_MONOTONIC time at which the timer should 209 * fire. 210 */ 211 do { 212 struct pvclock_vcpu_time_info hv_clock; 213 uint64_t host_tsc, guest_tsc; 214 215 if (!static_cpu_has(X86_FEATURE_CONSTANT_TSC) || 216 !vcpu->kvm->arch.use_master_clock) 217 break; 218 219 /* 220 * If both Xen PV clocks are active, arbitrarily try to use the 221 * compat clock first, but also try to use the non-compat clock 222 * if the compat clock is unusable. The two PV clocks hold the 223 * same information, but it's possible one (or both) is stale 224 * and/or currently unreachable. 225 */ 226 if (xen->vcpu_info_cache.active) 227 r = xen_get_guest_pvclock(vcpu, &hv_clock, &xen->vcpu_info_cache, 228 offsetof(struct compat_vcpu_info, time)); 229 if (r && xen->vcpu_time_info_cache.active) 230 r = xen_get_guest_pvclock(vcpu, &hv_clock, &xen->vcpu_time_info_cache, 0); 231 if (r) 232 break; 233 234 if (!IS_ENABLED(CONFIG_64BIT) || 235 !kvm_get_monotonic_and_clockread(&kernel_now, &host_tsc)) { 236 /* 237 * Don't fall back to get_kvmclock_ns() because it's 238 * broken; it has a systemic error in its results 239 * because it scales directly from host TSC to 240 * nanoseconds, and doesn't scale first to guest TSC 241 * and *then* to nanoseconds as the guest does. 242 * 243 * There is a small error introduced here because time 244 * continues to elapse between the ktime_get() and the 245 * subsequent rdtsc(). But not the systemic drift due 246 * to get_kvmclock_ns(). 247 */ 248 kernel_now = ktime_get(); /* This is CLOCK_MONOTONIC */ 249 host_tsc = rdtsc(); 250 } 251 252 /* Calculate the guest kvmclock as the guest would do it. */ 253 guest_tsc = kvm_read_l1_tsc(vcpu, host_tsc); 254 guest_now = __pvclock_read_cycles(&hv_clock, guest_tsc); 255 } while (0); 256 257 if (r) { 258 /* 259 * Without CONSTANT_TSC, get_kvmclock_ns() is the only option. 260 * 261 * Also if the guest PV clock hasn't been set up yet, as is 262 * likely to be the case during migration when the vCPU has 263 * not been run yet. It would be possible to calculate the 264 * scaling factors properly in that case but there's not much 265 * point in doing so. The get_kvmclock_ns() drift accumulates 266 * over time, so it's OK to use it at startup. Besides, on 267 * migration there's going to be a little bit of skew in the 268 * precise moment at which timers fire anyway. Often they'll 269 * be in the "past" by the time the VM is running again after 270 * migration. 271 */ 272 guest_now = get_kvmclock_ns(vcpu->kvm); 273 kernel_now = ktime_get(); 274 } 275 276 delta = guest_abs - guest_now; 277 278 /* 279 * Xen has a 'Linux workaround' in do_set_timer_op() which checks for 280 * negative absolute timeout values (caused by integer overflow), and 281 * for values about 13 days in the future (2^50ns) which would be 282 * caused by jiffies overflow. For those cases, Xen sets the timeout 283 * 100ms in the future (not *too* soon, since if a guest really did 284 * set a long timeout on purpose we don't want to keep churning CPU 285 * time by waking it up). Emulate Xen's workaround when starting the 286 * timer in response to __HYPERVISOR_set_timer_op. 287 */ 288 if (linux_wa && 289 unlikely((int64_t)guest_abs < 0 || 290 (delta > 0 && (uint32_t) (delta >> 50) != 0))) { 291 delta = 100 * NSEC_PER_MSEC; 292 guest_abs = guest_now + delta; 293 } 294 295 /* 296 * Avoid races with the old timer firing. Checking timer_expires 297 * to avoid calling hrtimer_cancel() will only have false positives 298 * so is fine. 299 */ 300 if (vcpu->arch.xen.timer_expires) 301 hrtimer_cancel(&vcpu->arch.xen.timer); 302 303 atomic_set(&vcpu->arch.xen.timer_pending, 0); 304 vcpu->arch.xen.timer_expires = guest_abs; 305 306 if (delta <= 0) 307 xen_timer_callback(&vcpu->arch.xen.timer); 308 else 309 hrtimer_start(&vcpu->arch.xen.timer, 310 ktime_add_ns(kernel_now, delta), 311 HRTIMER_MODE_ABS_HARD); 312 } 313 314 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu) 315 { 316 hrtimer_cancel(&vcpu->arch.xen.timer); 317 vcpu->arch.xen.timer_expires = 0; 318 atomic_set(&vcpu->arch.xen.timer_pending, 0); 319 } 320 321 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic) 322 { 323 struct kvm_vcpu_xen *vx = &v->arch.xen; 324 struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache; 325 struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache; 326 size_t user_len, user_len1, user_len2; 327 struct vcpu_runstate_info rs; 328 unsigned long flags; 329 size_t times_ofs; 330 uint8_t *update_bit = NULL; 331 uint64_t entry_time; 332 uint64_t *rs_times; 333 int *rs_state; 334 335 /* 336 * The only difference between 32-bit and 64-bit versions of the 337 * runstate struct is the alignment of uint64_t in 32-bit, which 338 * means that the 64-bit version has an additional 4 bytes of 339 * padding after the first field 'state'. Let's be really really 340 * paranoid about that, and matching it with our internal data 341 * structures that we memcpy into it... 342 */ 343 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0); 344 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0); 345 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); 346 #ifdef CONFIG_X86_64 347 /* 348 * The 64-bit structure has 4 bytes of padding before 'state_entry_time' 349 * so each subsequent field is shifted by 4, and it's 4 bytes longer. 350 */ 351 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 352 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); 353 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != 354 offsetof(struct compat_vcpu_runstate_info, time) + 4); 355 BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4); 356 #endif 357 /* 358 * The state field is in the same place at the start of both structs, 359 * and is the same size (int) as vx->current_runstate. 360 */ 361 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 362 offsetof(struct compat_vcpu_runstate_info, state)); 363 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != 364 sizeof(vx->current_runstate)); 365 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != 366 sizeof(vx->current_runstate)); 367 368 /* 369 * The state_entry_time field is 64 bits in both versions, and the 370 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86 371 * is little-endian means that it's in the last *byte* of the word. 372 * That detail is important later. 373 */ 374 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != 375 sizeof(uint64_t)); 376 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != 377 sizeof(uint64_t)); 378 BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80); 379 380 /* 381 * The time array is four 64-bit quantities in both versions, matching 382 * the vx->runstate_times and immediately following state_entry_time. 383 */ 384 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 385 offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t)); 386 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != 387 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t)); 388 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 389 sizeof_field(struct compat_vcpu_runstate_info, time)); 390 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 391 sizeof(vx->runstate_times)); 392 393 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { 394 user_len = sizeof(struct vcpu_runstate_info); 395 times_ofs = offsetof(struct vcpu_runstate_info, 396 state_entry_time); 397 } else { 398 user_len = sizeof(struct compat_vcpu_runstate_info); 399 times_ofs = offsetof(struct compat_vcpu_runstate_info, 400 state_entry_time); 401 } 402 403 /* 404 * There are basically no alignment constraints. The guest can set it 405 * up so it crosses from one page to the next, and at arbitrary byte 406 * alignment (and the 32-bit ABI doesn't align the 64-bit integers 407 * anyway, even if the overall struct had been 64-bit aligned). 408 */ 409 if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) { 410 user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK); 411 user_len2 = user_len - user_len1; 412 } else { 413 user_len1 = user_len; 414 user_len2 = 0; 415 } 416 BUG_ON(user_len1 + user_len2 != user_len); 417 418 retry: 419 /* 420 * Attempt to obtain the GPC lock on *both* (if there are two) 421 * gfn_to_pfn caches that cover the region. 422 */ 423 if (atomic) { 424 local_irq_save(flags); 425 if (!read_trylock(&gpc1->lock)) { 426 local_irq_restore(flags); 427 return; 428 } 429 } else { 430 read_lock_irqsave(&gpc1->lock, flags); 431 } 432 while (!kvm_gpc_check(gpc1, user_len1)) { 433 read_unlock_irqrestore(&gpc1->lock, flags); 434 435 /* When invoked from kvm_sched_out() we cannot sleep */ 436 if (atomic) 437 return; 438 439 if (kvm_gpc_refresh(gpc1, user_len1)) 440 return; 441 442 read_lock_irqsave(&gpc1->lock, flags); 443 } 444 445 if (likely(!user_len2)) { 446 /* 447 * Set up three pointers directly to the runstate_info 448 * struct in the guest (via the GPC). 449 * 450 * • @rs_state → state field 451 * • @rs_times → state_entry_time field. 452 * • @update_bit → last byte of state_entry_time, which 453 * contains the XEN_RUNSTATE_UPDATE bit. 454 */ 455 rs_state = gpc1->khva; 456 rs_times = gpc1->khva + times_ofs; 457 if (v->kvm->arch.xen.runstate_update_flag) 458 update_bit = ((void *)(&rs_times[1])) - 1; 459 } else { 460 /* 461 * The guest's runstate_info is split across two pages and we 462 * need to hold and validate both GPCs simultaneously. We can 463 * declare a lock ordering GPC1 > GPC2 because nothing else 464 * takes them more than one at a time. Set a subclass on the 465 * gpc1 lock to make lockdep shut up about it. 466 */ 467 lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_); 468 if (atomic) { 469 if (!read_trylock(&gpc2->lock)) { 470 read_unlock_irqrestore(&gpc1->lock, flags); 471 return; 472 } 473 } else { 474 read_lock(&gpc2->lock); 475 } 476 477 if (!kvm_gpc_check(gpc2, user_len2)) { 478 read_unlock(&gpc2->lock); 479 read_unlock_irqrestore(&gpc1->lock, flags); 480 481 /* When invoked from kvm_sched_out() we cannot sleep */ 482 if (atomic) 483 return; 484 485 /* 486 * Use kvm_gpc_activate() here because if the runstate 487 * area was configured in 32-bit mode and only extends 488 * to the second page now because the guest changed to 489 * 64-bit mode, the second GPC won't have been set up. 490 */ 491 if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1, 492 user_len2)) 493 return; 494 495 /* 496 * We dropped the lock on GPC1 so we have to go all the 497 * way back and revalidate that too. 498 */ 499 goto retry; 500 } 501 502 /* 503 * In this case, the runstate_info struct will be assembled on 504 * the kernel stack (compat or not as appropriate) and will 505 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three 506 * rs pointers accordingly. 507 */ 508 rs_times = &rs.state_entry_time; 509 510 /* 511 * The rs_state pointer points to the start of what we'll 512 * copy to the guest, which in the case of a compat guest 513 * is the 32-bit field that the compiler thinks is padding. 514 */ 515 rs_state = ((void *)rs_times) - times_ofs; 516 517 /* 518 * The update_bit is still directly in the guest memory, 519 * via one GPC or the other. 520 */ 521 if (v->kvm->arch.xen.runstate_update_flag) { 522 if (user_len1 >= times_ofs + sizeof(uint64_t)) 523 update_bit = gpc1->khva + times_ofs + 524 sizeof(uint64_t) - 1; 525 else 526 update_bit = gpc2->khva + times_ofs + 527 sizeof(uint64_t) - 1 - user_len1; 528 } 529 530 #ifdef CONFIG_X86_64 531 /* 532 * Don't leak kernel memory through the padding in the 64-bit 533 * version of the struct. 534 */ 535 memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time)); 536 #endif 537 } 538 539 /* 540 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the 541 * state_entry_time field, directly in the guest. We need to set 542 * that (and write-barrier) before writing to the rest of the 543 * structure, and clear it last. Just as Xen does, we address the 544 * single *byte* in which it resides because it might be in a 545 * different cache line to the rest of the 64-bit word, due to 546 * the (lack of) alignment constraints. 547 */ 548 entry_time = vx->runstate_entry_time; 549 if (update_bit) { 550 entry_time |= XEN_RUNSTATE_UPDATE; 551 *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56; 552 smp_wmb(); 553 } 554 555 /* 556 * Now assemble the actual structure, either on our kernel stack 557 * or directly in the guest according to how the rs_state and 558 * rs_times pointers were set up above. 559 */ 560 *rs_state = vx->current_runstate; 561 rs_times[0] = entry_time; 562 memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times)); 563 564 /* For the split case, we have to then copy it to the guest. */ 565 if (user_len2) { 566 memcpy(gpc1->khva, rs_state, user_len1); 567 memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2); 568 } 569 smp_wmb(); 570 571 /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */ 572 if (update_bit) { 573 entry_time &= ~XEN_RUNSTATE_UPDATE; 574 *update_bit = entry_time >> 56; 575 smp_wmb(); 576 } 577 578 if (user_len2) { 579 kvm_gpc_mark_dirty_in_slot(gpc2); 580 read_unlock(&gpc2->lock); 581 } 582 583 kvm_gpc_mark_dirty_in_slot(gpc1); 584 read_unlock_irqrestore(&gpc1->lock, flags); 585 } 586 587 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) 588 { 589 struct kvm_vcpu_xen *vx = &v->arch.xen; 590 u64 now = get_kvmclock_ns(v->kvm); 591 u64 delta_ns = now - vx->runstate_entry_time; 592 u64 run_delay = current->sched_info.run_delay; 593 594 if (unlikely(!vx->runstate_entry_time)) 595 vx->current_runstate = RUNSTATE_offline; 596 597 /* 598 * Time waiting for the scheduler isn't "stolen" if the 599 * vCPU wasn't running anyway. 600 */ 601 if (vx->current_runstate == RUNSTATE_running) { 602 u64 steal_ns = run_delay - vx->last_steal; 603 604 delta_ns -= steal_ns; 605 606 vx->runstate_times[RUNSTATE_runnable] += steal_ns; 607 } 608 vx->last_steal = run_delay; 609 610 vx->runstate_times[vx->current_runstate] += delta_ns; 611 vx->current_runstate = state; 612 vx->runstate_entry_time = now; 613 614 if (vx->runstate_cache.active) 615 kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable); 616 } 617 618 void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v) 619 { 620 struct kvm_lapic_irq irq = { }; 621 622 irq.dest_id = v->vcpu_id; 623 irq.vector = v->arch.xen.upcall_vector; 624 irq.dest_mode = APIC_DEST_PHYSICAL; 625 irq.shorthand = APIC_DEST_NOSHORT; 626 irq.delivery_mode = APIC_DM_FIXED; 627 irq.level = 1; 628 629 kvm_irq_delivery_to_apic(v->kvm, NULL, &irq, NULL); 630 } 631 632 /* 633 * On event channel delivery, the vcpu_info may not have been accessible. 634 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which 635 * need to be marked into the vcpu_info (and evtchn_upcall_pending set). 636 * Do so now that we can sleep in the context of the vCPU to bring the 637 * page in, and refresh the pfn cache for it. 638 */ 639 void kvm_xen_inject_pending_events(struct kvm_vcpu *v) 640 { 641 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); 642 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; 643 unsigned long flags; 644 645 if (!evtchn_pending_sel) 646 return; 647 648 /* 649 * Yes, this is an open-coded loop. But that's just what put_user() 650 * does anyway. Page it in and retry the instruction. We're just a 651 * little more honest about it. 652 */ 653 read_lock_irqsave(&gpc->lock, flags); 654 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 655 read_unlock_irqrestore(&gpc->lock, flags); 656 657 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) 658 return; 659 660 read_lock_irqsave(&gpc->lock, flags); 661 } 662 663 /* Now gpc->khva is a valid kernel address for the vcpu_info */ 664 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { 665 struct vcpu_info *vi = gpc->khva; 666 667 asm volatile(LOCK_PREFIX "orq %0, %1\n" 668 "notq %0\n" 669 LOCK_PREFIX "andq %0, %2\n" 670 : "=r" (evtchn_pending_sel), 671 "+m" (vi->evtchn_pending_sel), 672 "+m" (v->arch.xen.evtchn_pending_sel) 673 : "0" (evtchn_pending_sel)); 674 WRITE_ONCE(vi->evtchn_upcall_pending, 1); 675 } else { 676 u32 evtchn_pending_sel32 = evtchn_pending_sel; 677 struct compat_vcpu_info *vi = gpc->khva; 678 679 asm volatile(LOCK_PREFIX "orl %0, %1\n" 680 "notl %0\n" 681 LOCK_PREFIX "andl %0, %2\n" 682 : "=r" (evtchn_pending_sel32), 683 "+m" (vi->evtchn_pending_sel), 684 "+m" (v->arch.xen.evtchn_pending_sel) 685 : "0" (evtchn_pending_sel32)); 686 WRITE_ONCE(vi->evtchn_upcall_pending, 1); 687 } 688 689 kvm_gpc_mark_dirty_in_slot(gpc); 690 read_unlock_irqrestore(&gpc->lock, flags); 691 692 /* For the per-vCPU lapic vector, deliver it as MSI. */ 693 if (v->arch.xen.upcall_vector) 694 kvm_xen_inject_vcpu_vector(v); 695 } 696 697 int __kvm_xen_has_interrupt(struct kvm_vcpu *v) 698 { 699 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; 700 unsigned long flags; 701 u8 rc = 0; 702 703 /* 704 * If the global upcall vector (HVMIRQ_callback_vector) is set and 705 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. 706 */ 707 708 /* No need for compat handling here */ 709 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != 710 offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); 711 BUILD_BUG_ON(sizeof(rc) != 712 sizeof_field(struct vcpu_info, evtchn_upcall_pending)); 713 BUILD_BUG_ON(sizeof(rc) != 714 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); 715 716 read_lock_irqsave(&gpc->lock, flags); 717 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 718 read_unlock_irqrestore(&gpc->lock, flags); 719 720 /* 721 * This function gets called from kvm_vcpu_block() after setting the 722 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately 723 * from a HLT. So we really mustn't sleep. If the page ended up absent 724 * at that point, just return 1 in order to trigger an immediate wake, 725 * and we'll end up getting called again from a context where we *can* 726 * fault in the page and wait for it. 727 */ 728 if (in_atomic() || !task_is_running(current)) 729 return 1; 730 731 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) { 732 /* 733 * If this failed, userspace has screwed up the 734 * vcpu_info mapping. No interrupts for you. 735 */ 736 return 0; 737 } 738 read_lock_irqsave(&gpc->lock, flags); 739 } 740 741 rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending; 742 read_unlock_irqrestore(&gpc->lock, flags); 743 return rc; 744 } 745 746 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 747 { 748 int r = -ENOENT; 749 750 751 switch (data->type) { 752 case KVM_XEN_ATTR_TYPE_LONG_MODE: 753 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { 754 r = -EINVAL; 755 } else { 756 mutex_lock(&kvm->arch.xen.xen_lock); 757 kvm->arch.xen.long_mode = !!data->u.long_mode; 758 759 /* 760 * Re-initialize shared_info to put the wallclock in the 761 * correct place. Whilst it's not necessary to do this 762 * unless the mode is actually changed, it does no harm 763 * to make the call anyway. 764 */ 765 r = kvm->arch.xen.shinfo_cache.active ? 766 kvm_xen_shared_info_init(kvm) : 0; 767 mutex_unlock(&kvm->arch.xen.xen_lock); 768 } 769 break; 770 771 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 772 case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: { 773 int idx; 774 775 mutex_lock(&kvm->arch.xen.xen_lock); 776 777 idx = srcu_read_lock(&kvm->srcu); 778 779 if (data->type == KVM_XEN_ATTR_TYPE_SHARED_INFO) { 780 gfn_t gfn = data->u.shared_info.gfn; 781 782 if (gfn == KVM_XEN_INVALID_GFN) { 783 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); 784 r = 0; 785 } else { 786 r = kvm_gpc_activate(&kvm->arch.xen.shinfo_cache, 787 gfn_to_gpa(gfn), PAGE_SIZE); 788 } 789 } else { 790 void __user * hva = u64_to_user_ptr(data->u.shared_info.hva); 791 792 if (!PAGE_ALIGNED(hva)) { 793 r = -EINVAL; 794 } else if (!hva) { 795 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); 796 r = 0; 797 } else { 798 r = kvm_gpc_activate_hva(&kvm->arch.xen.shinfo_cache, 799 (unsigned long)hva, PAGE_SIZE); 800 } 801 } 802 803 srcu_read_unlock(&kvm->srcu, idx); 804 805 if (!r && kvm->arch.xen.shinfo_cache.active) 806 r = kvm_xen_shared_info_init(kvm); 807 808 mutex_unlock(&kvm->arch.xen.xen_lock); 809 break; 810 } 811 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 812 if (data->u.vector && data->u.vector < 0x10) 813 r = -EINVAL; 814 else { 815 mutex_lock(&kvm->arch.xen.xen_lock); 816 kvm->arch.xen.upcall_vector = data->u.vector; 817 mutex_unlock(&kvm->arch.xen.xen_lock); 818 r = 0; 819 } 820 break; 821 822 case KVM_XEN_ATTR_TYPE_EVTCHN: 823 r = kvm_xen_setattr_evtchn(kvm, data); 824 break; 825 826 case KVM_XEN_ATTR_TYPE_XEN_VERSION: 827 mutex_lock(&kvm->arch.xen.xen_lock); 828 kvm->arch.xen.xen_version = data->u.xen_version; 829 mutex_unlock(&kvm->arch.xen.xen_lock); 830 r = 0; 831 break; 832 833 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: 834 if (!sched_info_on()) { 835 r = -EOPNOTSUPP; 836 break; 837 } 838 mutex_lock(&kvm->arch.xen.xen_lock); 839 kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag; 840 mutex_unlock(&kvm->arch.xen.xen_lock); 841 r = 0; 842 break; 843 844 default: 845 break; 846 } 847 848 return r; 849 } 850 851 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 852 { 853 int r = -ENOENT; 854 855 mutex_lock(&kvm->arch.xen.xen_lock); 856 857 switch (data->type) { 858 case KVM_XEN_ATTR_TYPE_LONG_MODE: 859 data->u.long_mode = kvm->arch.xen.long_mode; 860 r = 0; 861 break; 862 863 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 864 if (kvm_gpc_is_gpa_active(&kvm->arch.xen.shinfo_cache)) 865 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); 866 else 867 data->u.shared_info.gfn = KVM_XEN_INVALID_GFN; 868 r = 0; 869 break; 870 871 case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: 872 if (kvm_gpc_is_hva_active(&kvm->arch.xen.shinfo_cache)) 873 data->u.shared_info.hva = kvm->arch.xen.shinfo_cache.uhva; 874 else 875 data->u.shared_info.hva = 0; 876 r = 0; 877 break; 878 879 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 880 data->u.vector = kvm->arch.xen.upcall_vector; 881 r = 0; 882 break; 883 884 case KVM_XEN_ATTR_TYPE_XEN_VERSION: 885 data->u.xen_version = kvm->arch.xen.xen_version; 886 r = 0; 887 break; 888 889 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: 890 if (!sched_info_on()) { 891 r = -EOPNOTSUPP; 892 break; 893 } 894 data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag; 895 r = 0; 896 break; 897 898 default: 899 break; 900 } 901 902 mutex_unlock(&kvm->arch.xen.xen_lock); 903 return r; 904 } 905 906 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 907 { 908 int idx, r = -ENOENT; 909 910 mutex_lock(&vcpu->kvm->arch.xen.xen_lock); 911 idx = srcu_read_lock(&vcpu->kvm->srcu); 912 913 switch (data->type) { 914 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 915 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA: 916 /* No compat necessary here. */ 917 BUILD_BUG_ON(sizeof(struct vcpu_info) != 918 sizeof(struct compat_vcpu_info)); 919 BUILD_BUG_ON(offsetof(struct vcpu_info, time) != 920 offsetof(struct compat_vcpu_info, time)); 921 922 if (data->type == KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO) { 923 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 924 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 925 r = 0; 926 break; 927 } 928 929 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache, 930 data->u.gpa, sizeof(struct vcpu_info)); 931 } else { 932 if (data->u.hva == 0) { 933 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 934 r = 0; 935 break; 936 } 937 938 r = kvm_gpc_activate_hva(&vcpu->arch.xen.vcpu_info_cache, 939 data->u.hva, sizeof(struct vcpu_info)); 940 } 941 942 if (!r) 943 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 944 945 break; 946 947 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 948 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 949 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); 950 r = 0; 951 break; 952 } 953 954 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache, 955 data->u.gpa, 956 sizeof(struct pvclock_vcpu_time_info)); 957 if (!r) 958 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 959 break; 960 961 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: { 962 size_t sz, sz1, sz2; 963 964 if (!sched_info_on()) { 965 r = -EOPNOTSUPP; 966 break; 967 } 968 if (data->u.gpa == KVM_XEN_INVALID_GPA) { 969 r = 0; 970 deactivate_out: 971 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); 972 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 973 break; 974 } 975 976 /* 977 * If the guest switches to 64-bit mode after setting the runstate 978 * address, that's actually OK. kvm_xen_update_runstate_guest() 979 * will cope. 980 */ 981 if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode) 982 sz = sizeof(struct vcpu_runstate_info); 983 else 984 sz = sizeof(struct compat_vcpu_runstate_info); 985 986 /* How much fits in the (first) page? */ 987 sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK); 988 r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache, 989 data->u.gpa, sz1); 990 if (r) 991 goto deactivate_out; 992 993 /* Either map the second page, or deactivate the second GPC */ 994 if (sz1 >= sz) { 995 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 996 } else { 997 sz2 = sz - sz1; 998 BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK); 999 r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache, 1000 data->u.gpa + sz1, sz2); 1001 if (r) 1002 goto deactivate_out; 1003 } 1004 1005 kvm_xen_update_runstate_guest(vcpu, false); 1006 break; 1007 } 1008 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 1009 if (!sched_info_on()) { 1010 r = -EOPNOTSUPP; 1011 break; 1012 } 1013 if (data->u.runstate.state > RUNSTATE_offline) { 1014 r = -EINVAL; 1015 break; 1016 } 1017 1018 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 1019 r = 0; 1020 break; 1021 1022 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 1023 if (!sched_info_on()) { 1024 r = -EOPNOTSUPP; 1025 break; 1026 } 1027 if (data->u.runstate.state > RUNSTATE_offline) { 1028 r = -EINVAL; 1029 break; 1030 } 1031 if (data->u.runstate.state_entry_time != 1032 (data->u.runstate.time_running + 1033 data->u.runstate.time_runnable + 1034 data->u.runstate.time_blocked + 1035 data->u.runstate.time_offline)) { 1036 r = -EINVAL; 1037 break; 1038 } 1039 if (get_kvmclock_ns(vcpu->kvm) < 1040 data->u.runstate.state_entry_time) { 1041 r = -EINVAL; 1042 break; 1043 } 1044 1045 vcpu->arch.xen.current_runstate = data->u.runstate.state; 1046 vcpu->arch.xen.runstate_entry_time = 1047 data->u.runstate.state_entry_time; 1048 vcpu->arch.xen.runstate_times[RUNSTATE_running] = 1049 data->u.runstate.time_running; 1050 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = 1051 data->u.runstate.time_runnable; 1052 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = 1053 data->u.runstate.time_blocked; 1054 vcpu->arch.xen.runstate_times[RUNSTATE_offline] = 1055 data->u.runstate.time_offline; 1056 vcpu->arch.xen.last_steal = current->sched_info.run_delay; 1057 r = 0; 1058 break; 1059 1060 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 1061 if (!sched_info_on()) { 1062 r = -EOPNOTSUPP; 1063 break; 1064 } 1065 if (data->u.runstate.state > RUNSTATE_offline && 1066 data->u.runstate.state != (u64)-1) { 1067 r = -EINVAL; 1068 break; 1069 } 1070 /* The adjustment must add up */ 1071 if (data->u.runstate.state_entry_time != 1072 (data->u.runstate.time_running + 1073 data->u.runstate.time_runnable + 1074 data->u.runstate.time_blocked + 1075 data->u.runstate.time_offline)) { 1076 r = -EINVAL; 1077 break; 1078 } 1079 1080 if (get_kvmclock_ns(vcpu->kvm) < 1081 (vcpu->arch.xen.runstate_entry_time + 1082 data->u.runstate.state_entry_time)) { 1083 r = -EINVAL; 1084 break; 1085 } 1086 1087 vcpu->arch.xen.runstate_entry_time += 1088 data->u.runstate.state_entry_time; 1089 vcpu->arch.xen.runstate_times[RUNSTATE_running] += 1090 data->u.runstate.time_running; 1091 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += 1092 data->u.runstate.time_runnable; 1093 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += 1094 data->u.runstate.time_blocked; 1095 vcpu->arch.xen.runstate_times[RUNSTATE_offline] += 1096 data->u.runstate.time_offline; 1097 1098 if (data->u.runstate.state <= RUNSTATE_offline) 1099 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 1100 else if (vcpu->arch.xen.runstate_cache.active) 1101 kvm_xen_update_runstate_guest(vcpu, false); 1102 r = 0; 1103 break; 1104 1105 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: 1106 if (data->u.vcpu_id >= KVM_MAX_VCPUS) 1107 r = -EINVAL; 1108 else { 1109 vcpu->arch.xen.vcpu_id = data->u.vcpu_id; 1110 r = 0; 1111 } 1112 break; 1113 1114 case KVM_XEN_VCPU_ATTR_TYPE_TIMER: 1115 if (data->u.timer.port && 1116 data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) { 1117 r = -EINVAL; 1118 break; 1119 } 1120 1121 /* Stop the timer (if it's running) before changing the vector */ 1122 kvm_xen_stop_timer(vcpu); 1123 vcpu->arch.xen.timer_virq = data->u.timer.port; 1124 1125 /* Start the timer if the new value has a valid vector+expiry. */ 1126 if (data->u.timer.port && data->u.timer.expires_ns) 1127 kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, false); 1128 1129 r = 0; 1130 break; 1131 1132 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: 1133 if (data->u.vector && data->u.vector < 0x10) 1134 r = -EINVAL; 1135 else { 1136 vcpu->arch.xen.upcall_vector = data->u.vector; 1137 r = 0; 1138 } 1139 break; 1140 1141 default: 1142 break; 1143 } 1144 1145 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1146 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); 1147 return r; 1148 } 1149 1150 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 1151 { 1152 int r = -ENOENT; 1153 1154 mutex_lock(&vcpu->kvm->arch.xen.xen_lock); 1155 1156 switch (data->type) { 1157 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 1158 if (kvm_gpc_is_gpa_active(&vcpu->arch.xen.vcpu_info_cache)) 1159 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; 1160 else 1161 data->u.gpa = KVM_XEN_INVALID_GPA; 1162 r = 0; 1163 break; 1164 1165 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA: 1166 if (kvm_gpc_is_hva_active(&vcpu->arch.xen.vcpu_info_cache)) 1167 data->u.hva = vcpu->arch.xen.vcpu_info_cache.uhva; 1168 else 1169 data->u.hva = 0; 1170 r = 0; 1171 break; 1172 1173 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 1174 if (vcpu->arch.xen.vcpu_time_info_cache.active) 1175 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; 1176 else 1177 data->u.gpa = KVM_XEN_INVALID_GPA; 1178 r = 0; 1179 break; 1180 1181 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 1182 if (!sched_info_on()) { 1183 r = -EOPNOTSUPP; 1184 break; 1185 } 1186 if (vcpu->arch.xen.runstate_cache.active) { 1187 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; 1188 r = 0; 1189 } 1190 break; 1191 1192 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 1193 if (!sched_info_on()) { 1194 r = -EOPNOTSUPP; 1195 break; 1196 } 1197 data->u.runstate.state = vcpu->arch.xen.current_runstate; 1198 r = 0; 1199 break; 1200 1201 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 1202 if (!sched_info_on()) { 1203 r = -EOPNOTSUPP; 1204 break; 1205 } 1206 data->u.runstate.state = vcpu->arch.xen.current_runstate; 1207 data->u.runstate.state_entry_time = 1208 vcpu->arch.xen.runstate_entry_time; 1209 data->u.runstate.time_running = 1210 vcpu->arch.xen.runstate_times[RUNSTATE_running]; 1211 data->u.runstate.time_runnable = 1212 vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; 1213 data->u.runstate.time_blocked = 1214 vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; 1215 data->u.runstate.time_offline = 1216 vcpu->arch.xen.runstate_times[RUNSTATE_offline]; 1217 r = 0; 1218 break; 1219 1220 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 1221 r = -EINVAL; 1222 break; 1223 1224 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: 1225 data->u.vcpu_id = vcpu->arch.xen.vcpu_id; 1226 r = 0; 1227 break; 1228 1229 case KVM_XEN_VCPU_ATTR_TYPE_TIMER: 1230 /* 1231 * Ensure a consistent snapshot of state is captured, with a 1232 * timer either being pending, or the event channel delivered 1233 * to the corresponding bit in the shared_info. Not still 1234 * lurking in the timer_pending flag for deferred delivery. 1235 * Purely as an optimisation, if the timer_expires field is 1236 * zero, that means the timer isn't active (or even in the 1237 * timer_pending flag) and there is no need to cancel it. 1238 */ 1239 if (vcpu->arch.xen.timer_expires) { 1240 hrtimer_cancel(&vcpu->arch.xen.timer); 1241 kvm_xen_inject_timer_irqs(vcpu); 1242 } 1243 1244 data->u.timer.port = vcpu->arch.xen.timer_virq; 1245 data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 1246 data->u.timer.expires_ns = vcpu->arch.xen.timer_expires; 1247 1248 /* 1249 * The hrtimer may trigger and raise the IRQ immediately, 1250 * while the returned state causes it to be set up and 1251 * raised again on the destination system after migration. 1252 * That's fine, as the guest won't even have had a chance 1253 * to run and handle the interrupt. Asserting an already 1254 * pending event channel is idempotent. 1255 */ 1256 if (vcpu->arch.xen.timer_expires) 1257 hrtimer_start_expires(&vcpu->arch.xen.timer, 1258 HRTIMER_MODE_ABS_HARD); 1259 1260 r = 0; 1261 break; 1262 1263 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: 1264 data->u.vector = vcpu->arch.xen.upcall_vector; 1265 r = 0; 1266 break; 1267 1268 default: 1269 break; 1270 } 1271 1272 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); 1273 return r; 1274 } 1275 1276 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) 1277 { 1278 struct kvm *kvm = vcpu->kvm; 1279 u32 page_num = data & ~PAGE_MASK; 1280 u64 page_addr = data & PAGE_MASK; 1281 bool lm = is_long_mode(vcpu); 1282 int r = 0; 1283 1284 mutex_lock(&kvm->arch.xen.xen_lock); 1285 if (kvm->arch.xen.long_mode != lm) { 1286 kvm->arch.xen.long_mode = lm; 1287 1288 /* 1289 * Re-initialize shared_info to put the wallclock in the 1290 * correct place. 1291 */ 1292 if (kvm->arch.xen.shinfo_cache.active && 1293 kvm_xen_shared_info_init(kvm)) 1294 r = 1; 1295 } 1296 mutex_unlock(&kvm->arch.xen.xen_lock); 1297 1298 if (r) 1299 return r; 1300 1301 /* 1302 * If Xen hypercall intercept is enabled, fill the hypercall 1303 * page with VMCALL/VMMCALL instructions since that's what 1304 * we catch. Else the VMM has provided the hypercall pages 1305 * with instructions of its own choosing, so use those. 1306 */ 1307 if (kvm_xen_hypercall_enabled(kvm)) { 1308 u8 instructions[32]; 1309 int i; 1310 1311 if (page_num) 1312 return 1; 1313 1314 /* mov imm32, %eax */ 1315 instructions[0] = 0xb8; 1316 1317 /* vmcall / vmmcall */ 1318 kvm_x86_call(patch_hypercall)(vcpu, instructions + 5); 1319 1320 /* ret */ 1321 instructions[8] = 0xc3; 1322 1323 /* int3 to pad */ 1324 memset(instructions + 9, 0xcc, sizeof(instructions) - 9); 1325 1326 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { 1327 *(u32 *)&instructions[1] = i; 1328 if (kvm_vcpu_write_guest(vcpu, 1329 page_addr + (i * sizeof(instructions)), 1330 instructions, sizeof(instructions))) 1331 return 1; 1332 } 1333 } else { 1334 /* 1335 * Note, truncation is a non-issue as 'lm' is guaranteed to be 1336 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. 1337 */ 1338 hva_t blob_addr = lm ? kvm->arch.xen.hvm_config.blob_addr_64 1339 : kvm->arch.xen.hvm_config.blob_addr_32; 1340 u8 blob_size = lm ? kvm->arch.xen.hvm_config.blob_size_64 1341 : kvm->arch.xen.hvm_config.blob_size_32; 1342 u8 *page; 1343 int ret; 1344 1345 if (page_num >= blob_size) 1346 return 1; 1347 1348 blob_addr += page_num * PAGE_SIZE; 1349 1350 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); 1351 if (IS_ERR(page)) 1352 return PTR_ERR(page); 1353 1354 ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE); 1355 kfree(page); 1356 if (ret) 1357 return 1; 1358 } 1359 return 0; 1360 } 1361 1362 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) 1363 { 1364 /* Only some feature flags need to be *enabled* by userspace */ 1365 u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 1366 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 1367 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 1368 u32 old_flags; 1369 1370 if (xhc->flags & ~permitted_flags) 1371 return -EINVAL; 1372 1373 /* 1374 * With hypercall interception the kernel generates its own 1375 * hypercall page so it must not be provided. 1376 */ 1377 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && 1378 (xhc->blob_addr_32 || xhc->blob_addr_64 || 1379 xhc->blob_size_32 || xhc->blob_size_64)) 1380 return -EINVAL; 1381 1382 /* 1383 * Restrict the MSR to the range that is unofficially reserved for 1384 * synthetic, virtualization-defined MSRs, e.g. to prevent confusing 1385 * KVM by colliding with a real MSR that requires special handling. 1386 */ 1387 if (xhc->msr && 1388 (xhc->msr < KVM_XEN_MSR_MIN_INDEX || xhc->msr > KVM_XEN_MSR_MAX_INDEX)) 1389 return -EINVAL; 1390 1391 mutex_lock(&kvm->arch.xen.xen_lock); 1392 1393 if (xhc->msr && !kvm->arch.xen.hvm_config.msr) 1394 static_branch_inc(&kvm_xen_enabled.key); 1395 else if (!xhc->msr && kvm->arch.xen.hvm_config.msr) 1396 static_branch_slow_dec_deferred(&kvm_xen_enabled); 1397 1398 old_flags = kvm->arch.xen.hvm_config.flags; 1399 memcpy(&kvm->arch.xen.hvm_config, xhc, sizeof(*xhc)); 1400 1401 mutex_unlock(&kvm->arch.xen.xen_lock); 1402 1403 if ((old_flags ^ xhc->flags) & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE) 1404 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 1405 1406 return 0; 1407 } 1408 1409 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 1410 { 1411 kvm_rax_write(vcpu, result); 1412 return kvm_skip_emulated_instruction(vcpu); 1413 } 1414 1415 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 1416 { 1417 struct kvm_run *run = vcpu->run; 1418 1419 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) 1420 return 1; 1421 1422 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); 1423 } 1424 1425 static inline int max_evtchn_port(struct kvm *kvm) 1426 { 1427 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) 1428 return EVTCHN_2L_NR_CHANNELS; 1429 else 1430 return COMPAT_EVTCHN_2L_NR_CHANNELS; 1431 } 1432 1433 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports, 1434 evtchn_port_t *ports) 1435 { 1436 struct kvm *kvm = vcpu->kvm; 1437 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1438 unsigned long *pending_bits; 1439 unsigned long flags; 1440 bool ret = true; 1441 int idx, i; 1442 1443 idx = srcu_read_lock(&kvm->srcu); 1444 read_lock_irqsave(&gpc->lock, flags); 1445 if (!kvm_gpc_check(gpc, PAGE_SIZE)) 1446 goto out_rcu; 1447 1448 ret = false; 1449 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1450 struct shared_info *shinfo = gpc->khva; 1451 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1452 } else { 1453 struct compat_shared_info *shinfo = gpc->khva; 1454 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1455 } 1456 1457 for (i = 0; i < nr_ports; i++) { 1458 if (test_bit(ports[i], pending_bits)) { 1459 ret = true; 1460 break; 1461 } 1462 } 1463 1464 out_rcu: 1465 read_unlock_irqrestore(&gpc->lock, flags); 1466 srcu_read_unlock(&kvm->srcu, idx); 1467 1468 return ret; 1469 } 1470 1471 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode, 1472 u64 param, u64 *r) 1473 { 1474 struct sched_poll sched_poll; 1475 evtchn_port_t port, *ports; 1476 struct x86_exception e; 1477 int i; 1478 1479 if (!lapic_in_kernel(vcpu) || 1480 !(vcpu->kvm->arch.xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND)) 1481 return false; 1482 1483 if (IS_ENABLED(CONFIG_64BIT) && !longmode) { 1484 struct compat_sched_poll sp32; 1485 1486 /* Sanity check that the compat struct definition is correct */ 1487 BUILD_BUG_ON(sizeof(sp32) != 16); 1488 1489 if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) { 1490 *r = -EFAULT; 1491 return true; 1492 } 1493 1494 /* 1495 * This is a 32-bit pointer to an array of evtchn_port_t which 1496 * are uint32_t, so once it's converted no further compat 1497 * handling is needed. 1498 */ 1499 sched_poll.ports = (void *)(unsigned long)(sp32.ports); 1500 sched_poll.nr_ports = sp32.nr_ports; 1501 sched_poll.timeout = sp32.timeout; 1502 } else { 1503 if (kvm_read_guest_virt(vcpu, param, &sched_poll, 1504 sizeof(sched_poll), &e)) { 1505 *r = -EFAULT; 1506 return true; 1507 } 1508 } 1509 1510 if (unlikely(sched_poll.nr_ports > 1)) { 1511 /* Xen (unofficially) limits number of pollers to 128 */ 1512 if (sched_poll.nr_ports > 128) { 1513 *r = -EINVAL; 1514 return true; 1515 } 1516 1517 ports = kmalloc_array(sched_poll.nr_ports, 1518 sizeof(*ports), GFP_KERNEL); 1519 if (!ports) { 1520 *r = -ENOMEM; 1521 return true; 1522 } 1523 } else 1524 ports = &port; 1525 1526 if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports, 1527 sched_poll.nr_ports * sizeof(*ports), &e)) { 1528 *r = -EFAULT; 1529 goto out; 1530 } 1531 1532 for (i = 0; i < sched_poll.nr_ports; i++) { 1533 if (ports[i] >= max_evtchn_port(vcpu->kvm)) { 1534 *r = -EINVAL; 1535 goto out; 1536 } 1537 } 1538 1539 if (sched_poll.nr_ports == 1) 1540 vcpu->arch.xen.poll_evtchn = port; 1541 else 1542 vcpu->arch.xen.poll_evtchn = -1; 1543 1544 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); 1545 1546 if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) { 1547 kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED); 1548 1549 if (sched_poll.timeout) 1550 mod_timer(&vcpu->arch.xen.poll_timer, 1551 jiffies + nsecs_to_jiffies(sched_poll.timeout)); 1552 1553 kvm_vcpu_halt(vcpu); 1554 1555 if (sched_poll.timeout) 1556 timer_delete(&vcpu->arch.xen.poll_timer); 1557 1558 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 1559 } 1560 1561 vcpu->arch.xen.poll_evtchn = 0; 1562 *r = 0; 1563 out: 1564 /* Really, this is only needed in case of timeout */ 1565 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); 1566 1567 if (unlikely(sched_poll.nr_ports > 1)) 1568 kfree(ports); 1569 return true; 1570 } 1571 1572 static void cancel_evtchn_poll(struct timer_list *t) 1573 { 1574 struct kvm_vcpu *vcpu = timer_container_of(vcpu, t, 1575 arch.xen.poll_timer); 1576 1577 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1578 kvm_vcpu_kick(vcpu); 1579 } 1580 1581 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode, 1582 int cmd, u64 param, u64 *r) 1583 { 1584 switch (cmd) { 1585 case SCHEDOP_poll: 1586 if (kvm_xen_schedop_poll(vcpu, longmode, param, r)) 1587 return true; 1588 fallthrough; 1589 case SCHEDOP_yield: 1590 kvm_vcpu_on_spin(vcpu, true); 1591 *r = 0; 1592 return true; 1593 default: 1594 break; 1595 } 1596 1597 return false; 1598 } 1599 1600 struct compat_vcpu_set_singleshot_timer { 1601 uint64_t timeout_abs_ns; 1602 uint32_t flags; 1603 } __attribute__((packed)); 1604 1605 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd, 1606 int vcpu_id, u64 param, u64 *r) 1607 { 1608 struct vcpu_set_singleshot_timer oneshot; 1609 struct x86_exception e; 1610 1611 if (!kvm_xen_timer_enabled(vcpu)) 1612 return false; 1613 1614 switch (cmd) { 1615 case VCPUOP_set_singleshot_timer: 1616 if (vcpu->arch.xen.vcpu_id != vcpu_id) { 1617 *r = -EINVAL; 1618 return true; 1619 } 1620 1621 /* 1622 * The only difference for 32-bit compat is the 4 bytes of 1623 * padding after the interesting part of the structure. So 1624 * for a faithful emulation of Xen we have to *try* to copy 1625 * the padding and return -EFAULT if we can't. Otherwise we 1626 * might as well just have copied the 12-byte 32-bit struct. 1627 */ 1628 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != 1629 offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns)); 1630 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != 1631 sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns)); 1632 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) != 1633 offsetof(struct vcpu_set_singleshot_timer, flags)); 1634 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) != 1635 sizeof_field(struct vcpu_set_singleshot_timer, flags)); 1636 1637 if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) : 1638 sizeof(struct compat_vcpu_set_singleshot_timer), &e)) { 1639 *r = -EFAULT; 1640 return true; 1641 } 1642 1643 kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, false); 1644 *r = 0; 1645 return true; 1646 1647 case VCPUOP_stop_singleshot_timer: 1648 if (vcpu->arch.xen.vcpu_id != vcpu_id) { 1649 *r = -EINVAL; 1650 return true; 1651 } 1652 kvm_xen_stop_timer(vcpu); 1653 *r = 0; 1654 return true; 1655 } 1656 1657 return false; 1658 } 1659 1660 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout, 1661 u64 *r) 1662 { 1663 if (!kvm_xen_timer_enabled(vcpu)) 1664 return false; 1665 1666 if (timeout) 1667 kvm_xen_start_timer(vcpu, timeout, true); 1668 else 1669 kvm_xen_stop_timer(vcpu); 1670 1671 *r = 0; 1672 return true; 1673 } 1674 1675 int kvm_xen_hypercall(struct kvm_vcpu *vcpu) 1676 { 1677 bool longmode; 1678 u64 input, params[6], r = -ENOSYS; 1679 bool handled = false; 1680 u8 cpl; 1681 1682 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); 1683 1684 /* Hyper-V hypercalls get bit 31 set in EAX */ 1685 if ((input & 0x80000000) && 1686 kvm_hv_hypercall_enabled(vcpu)) 1687 return kvm_hv_hypercall(vcpu); 1688 1689 longmode = is_64_bit_hypercall(vcpu); 1690 if (!longmode) { 1691 params[0] = (u32)kvm_rbx_read(vcpu); 1692 params[1] = (u32)kvm_rcx_read(vcpu); 1693 params[2] = (u32)kvm_rdx_read(vcpu); 1694 params[3] = (u32)kvm_rsi_read(vcpu); 1695 params[4] = (u32)kvm_rdi_read(vcpu); 1696 params[5] = (u32)kvm_rbp_read(vcpu); 1697 } 1698 #ifdef CONFIG_X86_64 1699 else { 1700 params[0] = (u64)kvm_rdi_read(vcpu); 1701 params[1] = (u64)kvm_rsi_read(vcpu); 1702 params[2] = (u64)kvm_rdx_read(vcpu); 1703 params[3] = (u64)kvm_r10_read(vcpu); 1704 params[4] = (u64)kvm_r8_read(vcpu); 1705 params[5] = (u64)kvm_r9_read(vcpu); 1706 } 1707 #endif 1708 cpl = kvm_x86_call(get_cpl)(vcpu); 1709 trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2], 1710 params[3], params[4], params[5]); 1711 1712 /* 1713 * Only allow hypercall acceleration for CPL0. The rare hypercalls that 1714 * are permitted in guest userspace can be handled by the VMM. 1715 */ 1716 if (unlikely(cpl > 0)) 1717 goto handle_in_userspace; 1718 1719 switch (input) { 1720 case __HYPERVISOR_xen_version: 1721 if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) { 1722 r = vcpu->kvm->arch.xen.xen_version; 1723 handled = true; 1724 } 1725 break; 1726 case __HYPERVISOR_event_channel_op: 1727 if (params[0] == EVTCHNOP_send) 1728 handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r); 1729 break; 1730 case __HYPERVISOR_sched_op: 1731 handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0], 1732 params[1], &r); 1733 break; 1734 case __HYPERVISOR_vcpu_op: 1735 handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1], 1736 params[2], &r); 1737 break; 1738 case __HYPERVISOR_set_timer_op: { 1739 u64 timeout = params[0]; 1740 /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */ 1741 if (!longmode) 1742 timeout |= params[1] << 32; 1743 handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r); 1744 break; 1745 } 1746 default: 1747 break; 1748 } 1749 1750 if (handled) 1751 return kvm_xen_hypercall_set_result(vcpu, r); 1752 1753 handle_in_userspace: 1754 vcpu->run->exit_reason = KVM_EXIT_XEN; 1755 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; 1756 vcpu->run->xen.u.hcall.longmode = longmode; 1757 vcpu->run->xen.u.hcall.cpl = cpl; 1758 vcpu->run->xen.u.hcall.input = input; 1759 vcpu->run->xen.u.hcall.params[0] = params[0]; 1760 vcpu->run->xen.u.hcall.params[1] = params[1]; 1761 vcpu->run->xen.u.hcall.params[2] = params[2]; 1762 vcpu->run->xen.u.hcall.params[3] = params[3]; 1763 vcpu->run->xen.u.hcall.params[4] = params[4]; 1764 vcpu->run->xen.u.hcall.params[5] = params[5]; 1765 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); 1766 vcpu->arch.complete_userspace_io = 1767 kvm_xen_hypercall_complete_userspace; 1768 1769 return 0; 1770 } 1771 1772 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port) 1773 { 1774 int poll_evtchn = vcpu->arch.xen.poll_evtchn; 1775 1776 if ((poll_evtchn == port || poll_evtchn == -1) && 1777 test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) { 1778 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1779 kvm_vcpu_kick(vcpu); 1780 } 1781 } 1782 1783 /* 1784 * The return value from this function is propagated to kvm_set_irq() API, 1785 * so it returns: 1786 * < 0 Interrupt was ignored (masked or not delivered for other reasons) 1787 * = 0 Interrupt was coalesced (previous irq is still pending) 1788 * > 0 Number of CPUs interrupt was delivered to 1789 * 1790 * It is also called directly from kvm_arch_set_irq_inatomic(), where the 1791 * only check on its return value is a comparison with -EWOULDBLOCK'. 1792 */ 1793 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm) 1794 { 1795 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1796 struct kvm_vcpu *vcpu; 1797 unsigned long *pending_bits, *mask_bits; 1798 unsigned long flags; 1799 int port_word_bit; 1800 bool kick_vcpu = false; 1801 int vcpu_idx, idx, rc; 1802 1803 vcpu_idx = READ_ONCE(xe->vcpu_idx); 1804 if (vcpu_idx >= 0) 1805 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 1806 else { 1807 vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id); 1808 if (!vcpu) 1809 return -EINVAL; 1810 WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx); 1811 } 1812 1813 if (xe->port >= max_evtchn_port(kvm)) 1814 return -EINVAL; 1815 1816 rc = -EWOULDBLOCK; 1817 1818 idx = srcu_read_lock(&kvm->srcu); 1819 1820 read_lock_irqsave(&gpc->lock, flags); 1821 if (!kvm_gpc_check(gpc, PAGE_SIZE)) 1822 goto out_rcu; 1823 1824 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1825 struct shared_info *shinfo = gpc->khva; 1826 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1827 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 1828 port_word_bit = xe->port / 64; 1829 } else { 1830 struct compat_shared_info *shinfo = gpc->khva; 1831 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1832 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 1833 port_word_bit = xe->port / 32; 1834 } 1835 1836 /* 1837 * If this port wasn't already set, and if it isn't masked, then 1838 * we try to set the corresponding bit in the in-kernel shadow of 1839 * evtchn_pending_sel for the target vCPU. And if *that* wasn't 1840 * already set, then we kick the vCPU in question to write to the 1841 * *real* evtchn_pending_sel in its own guest vcpu_info struct. 1842 */ 1843 if (test_and_set_bit(xe->port, pending_bits)) { 1844 rc = 0; /* It was already raised */ 1845 } else if (test_bit(xe->port, mask_bits)) { 1846 rc = -ENOTCONN; /* Masked */ 1847 kvm_xen_check_poller(vcpu, xe->port); 1848 } else { 1849 rc = 1; /* Delivered to the bitmap in shared_info. */ 1850 /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */ 1851 read_unlock_irqrestore(&gpc->lock, flags); 1852 gpc = &vcpu->arch.xen.vcpu_info_cache; 1853 1854 read_lock_irqsave(&gpc->lock, flags); 1855 if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { 1856 /* 1857 * Could not access the vcpu_info. Set the bit in-kernel 1858 * and prod the vCPU to deliver it for itself. 1859 */ 1860 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) 1861 kick_vcpu = true; 1862 goto out_rcu; 1863 } 1864 1865 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1866 struct vcpu_info *vcpu_info = gpc->khva; 1867 if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) { 1868 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); 1869 kick_vcpu = true; 1870 } 1871 } else { 1872 struct compat_vcpu_info *vcpu_info = gpc->khva; 1873 if (!test_and_set_bit(port_word_bit, 1874 (unsigned long *)&vcpu_info->evtchn_pending_sel)) { 1875 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); 1876 kick_vcpu = true; 1877 } 1878 } 1879 1880 /* For the per-vCPU lapic vector, deliver it as MSI. */ 1881 if (kick_vcpu && vcpu->arch.xen.upcall_vector) { 1882 kvm_xen_inject_vcpu_vector(vcpu); 1883 kick_vcpu = false; 1884 } 1885 } 1886 1887 out_rcu: 1888 read_unlock_irqrestore(&gpc->lock, flags); 1889 srcu_read_unlock(&kvm->srcu, idx); 1890 1891 if (kick_vcpu) { 1892 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1893 kvm_vcpu_kick(vcpu); 1894 } 1895 1896 return rc; 1897 } 1898 1899 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm) 1900 { 1901 bool mm_borrowed = false; 1902 int rc; 1903 1904 rc = kvm_xen_set_evtchn_fast(xe, kvm); 1905 if (rc != -EWOULDBLOCK) 1906 return rc; 1907 1908 if (current->mm != kvm->mm) { 1909 /* 1910 * If not on a thread which already belongs to this KVM, 1911 * we'd better be in the irqfd workqueue. 1912 */ 1913 if (WARN_ON_ONCE(current->mm)) 1914 return -EINVAL; 1915 1916 kthread_use_mm(kvm->mm); 1917 mm_borrowed = true; 1918 } 1919 1920 /* 1921 * It is theoretically possible for the page to be unmapped 1922 * and the MMU notifier to invalidate the shared_info before 1923 * we even get to use it. In that case, this looks like an 1924 * infinite loop. It was tempting to do it via the userspace 1925 * HVA instead... but that just *hides* the fact that it's 1926 * an infinite loop, because if a fault occurs and it waits 1927 * for the page to come back, it can *still* immediately 1928 * fault and have to wait again, repeatedly. 1929 * 1930 * Conversely, the page could also have been reinstated by 1931 * another thread before we even obtain the mutex above, so 1932 * check again *first* before remapping it. 1933 */ 1934 do { 1935 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1936 int idx; 1937 1938 rc = kvm_xen_set_evtchn_fast(xe, kvm); 1939 if (rc != -EWOULDBLOCK) 1940 break; 1941 1942 idx = srcu_read_lock(&kvm->srcu); 1943 rc = kvm_gpc_refresh(gpc, PAGE_SIZE); 1944 srcu_read_unlock(&kvm->srcu, idx); 1945 } while(!rc); 1946 1947 if (mm_borrowed) 1948 kthread_unuse_mm(kvm->mm); 1949 1950 return rc; 1951 } 1952 1953 /* This is the version called from kvm_set_irq() as the .set function */ 1954 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 1955 int irq_source_id, int level, bool line_status) 1956 { 1957 if (!level) 1958 return -EINVAL; 1959 1960 return kvm_xen_set_evtchn(&e->xen_evtchn, kvm); 1961 } 1962 1963 /* 1964 * Set up an event channel interrupt from the KVM IRQ routing table. 1965 * Used for e.g. PIRQ from passed through physical devices. 1966 */ 1967 int kvm_xen_setup_evtchn(struct kvm *kvm, 1968 struct kvm_kernel_irq_routing_entry *e, 1969 const struct kvm_irq_routing_entry *ue) 1970 1971 { 1972 struct kvm_vcpu *vcpu; 1973 1974 /* 1975 * Don't check for the port being within range of max_evtchn_port(). 1976 * Userspace can configure what ever targets it likes; events just won't 1977 * be delivered if/while the target is invalid, just like userspace can 1978 * configure MSIs which target non-existent APICs. 1979 * 1980 * This allow on Live Migration and Live Update, the IRQ routing table 1981 * can be restored *independently* of other things like creating vCPUs, 1982 * without imposing an ordering dependency on userspace. In this 1983 * particular case, the problematic ordering would be with setting the 1984 * Xen 'long mode' flag, which changes max_evtchn_port() to allow 4096 1985 * instead of 1024 event channels. 1986 */ 1987 1988 /* We only support 2 level event channels for now */ 1989 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1990 return -EINVAL; 1991 1992 /* 1993 * Xen gives us interesting mappings from vCPU index to APIC ID, 1994 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs 1995 * to find it. Do that once at setup time, instead of every time. 1996 * But beware that on live update / live migration, the routing 1997 * table might be reinstated before the vCPU threads have finished 1998 * recreating their vCPUs. 1999 */ 2000 vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu); 2001 if (vcpu) 2002 e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx; 2003 else 2004 e->xen_evtchn.vcpu_idx = -1; 2005 2006 e->xen_evtchn.port = ue->u.xen_evtchn.port; 2007 e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu; 2008 e->xen_evtchn.priority = ue->u.xen_evtchn.priority; 2009 e->set = evtchn_set_fn; 2010 2011 return 0; 2012 } 2013 2014 /* 2015 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl. 2016 */ 2017 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe) 2018 { 2019 struct kvm_xen_evtchn e; 2020 int ret; 2021 2022 if (!uxe->port || uxe->port >= max_evtchn_port(kvm)) 2023 return -EINVAL; 2024 2025 /* We only support 2 level event channels for now */ 2026 if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 2027 return -EINVAL; 2028 2029 e.port = uxe->port; 2030 e.vcpu_id = uxe->vcpu; 2031 e.vcpu_idx = -1; 2032 e.priority = uxe->priority; 2033 2034 ret = kvm_xen_set_evtchn(&e, kvm); 2035 2036 /* 2037 * None of that 'return 1 if it actually got delivered' nonsense. 2038 * We don't care if it was masked (-ENOTCONN) either. 2039 */ 2040 if (ret > 0 || ret == -ENOTCONN) 2041 ret = 0; 2042 2043 return ret; 2044 } 2045 2046 /* 2047 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall. 2048 */ 2049 struct evtchnfd { 2050 u32 send_port; 2051 u32 type; 2052 union { 2053 struct kvm_xen_evtchn port; 2054 struct { 2055 u32 port; /* zero */ 2056 struct eventfd_ctx *ctx; 2057 } eventfd; 2058 } deliver; 2059 }; 2060 2061 /* 2062 * Update target vCPU or priority for a registered sending channel. 2063 */ 2064 static int kvm_xen_eventfd_update(struct kvm *kvm, 2065 struct kvm_xen_hvm_attr *data) 2066 { 2067 u32 port = data->u.evtchn.send_port; 2068 struct evtchnfd *evtchnfd; 2069 int ret; 2070 2071 /* Protect writes to evtchnfd as well as the idr lookup. */ 2072 mutex_lock(&kvm->arch.xen.xen_lock); 2073 evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port); 2074 2075 ret = -ENOENT; 2076 if (!evtchnfd) 2077 goto out_unlock; 2078 2079 /* For an UPDATE, nothing may change except the priority/vcpu */ 2080 ret = -EINVAL; 2081 if (evtchnfd->type != data->u.evtchn.type) 2082 goto out_unlock; 2083 2084 /* 2085 * Port cannot change, and if it's zero that was an eventfd 2086 * which can't be changed either. 2087 */ 2088 if (!evtchnfd->deliver.port.port || 2089 evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port) 2090 goto out_unlock; 2091 2092 /* We only support 2 level event channels for now */ 2093 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 2094 goto out_unlock; 2095 2096 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; 2097 if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) { 2098 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; 2099 evtchnfd->deliver.port.vcpu_idx = -1; 2100 } 2101 ret = 0; 2102 out_unlock: 2103 mutex_unlock(&kvm->arch.xen.xen_lock); 2104 return ret; 2105 } 2106 2107 /* 2108 * Configure the target (eventfd or local port delivery) for sending on 2109 * a given event channel. 2110 */ 2111 static int kvm_xen_eventfd_assign(struct kvm *kvm, 2112 struct kvm_xen_hvm_attr *data) 2113 { 2114 u32 port = data->u.evtchn.send_port; 2115 struct eventfd_ctx *eventfd = NULL; 2116 struct evtchnfd *evtchnfd; 2117 int ret = -EINVAL; 2118 2119 evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL); 2120 if (!evtchnfd) 2121 return -ENOMEM; 2122 2123 switch(data->u.evtchn.type) { 2124 case EVTCHNSTAT_ipi: 2125 /* IPI must map back to the same port# */ 2126 if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port) 2127 goto out_noeventfd; /* -EINVAL */ 2128 break; 2129 2130 case EVTCHNSTAT_interdomain: 2131 if (data->u.evtchn.deliver.port.port) { 2132 if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm)) 2133 goto out_noeventfd; /* -EINVAL */ 2134 } else { 2135 eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd); 2136 if (IS_ERR(eventfd)) { 2137 ret = PTR_ERR(eventfd); 2138 goto out_noeventfd; 2139 } 2140 } 2141 break; 2142 2143 case EVTCHNSTAT_virq: 2144 case EVTCHNSTAT_closed: 2145 case EVTCHNSTAT_unbound: 2146 case EVTCHNSTAT_pirq: 2147 default: /* Unknown event channel type */ 2148 goto out; /* -EINVAL */ 2149 } 2150 2151 evtchnfd->send_port = data->u.evtchn.send_port; 2152 evtchnfd->type = data->u.evtchn.type; 2153 if (eventfd) { 2154 evtchnfd->deliver.eventfd.ctx = eventfd; 2155 } else { 2156 /* We only support 2 level event channels for now */ 2157 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 2158 goto out; /* -EINVAL; */ 2159 2160 evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port; 2161 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; 2162 evtchnfd->deliver.port.vcpu_idx = -1; 2163 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; 2164 } 2165 2166 mutex_lock(&kvm->arch.xen.xen_lock); 2167 ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1, 2168 GFP_KERNEL); 2169 mutex_unlock(&kvm->arch.xen.xen_lock); 2170 if (ret >= 0) 2171 return 0; 2172 2173 if (ret == -ENOSPC) 2174 ret = -EEXIST; 2175 out: 2176 if (eventfd) 2177 eventfd_ctx_put(eventfd); 2178 out_noeventfd: 2179 kfree(evtchnfd); 2180 return ret; 2181 } 2182 2183 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port) 2184 { 2185 struct evtchnfd *evtchnfd; 2186 2187 mutex_lock(&kvm->arch.xen.xen_lock); 2188 evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port); 2189 mutex_unlock(&kvm->arch.xen.xen_lock); 2190 2191 if (!evtchnfd) 2192 return -ENOENT; 2193 2194 synchronize_srcu(&kvm->srcu); 2195 if (!evtchnfd->deliver.port.port) 2196 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 2197 kfree(evtchnfd); 2198 return 0; 2199 } 2200 2201 static int kvm_xen_eventfd_reset(struct kvm *kvm) 2202 { 2203 struct evtchnfd *evtchnfd, **all_evtchnfds; 2204 int i; 2205 int n = 0; 2206 2207 mutex_lock(&kvm->arch.xen.xen_lock); 2208 2209 /* 2210 * Because synchronize_srcu() cannot be called inside the 2211 * critical section, first collect all the evtchnfd objects 2212 * in an array as they are removed from evtchn_ports. 2213 */ 2214 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) 2215 n++; 2216 2217 all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL); 2218 if (!all_evtchnfds) { 2219 mutex_unlock(&kvm->arch.xen.xen_lock); 2220 return -ENOMEM; 2221 } 2222 2223 n = 0; 2224 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { 2225 all_evtchnfds[n++] = evtchnfd; 2226 idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port); 2227 } 2228 mutex_unlock(&kvm->arch.xen.xen_lock); 2229 2230 synchronize_srcu(&kvm->srcu); 2231 2232 while (n--) { 2233 evtchnfd = all_evtchnfds[n]; 2234 if (!evtchnfd->deliver.port.port) 2235 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 2236 kfree(evtchnfd); 2237 } 2238 kfree(all_evtchnfds); 2239 2240 return 0; 2241 } 2242 2243 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 2244 { 2245 u32 port = data->u.evtchn.send_port; 2246 2247 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET) 2248 return kvm_xen_eventfd_reset(kvm); 2249 2250 if (!port || port >= max_evtchn_port(kvm)) 2251 return -EINVAL; 2252 2253 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN) 2254 return kvm_xen_eventfd_deassign(kvm, port); 2255 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE) 2256 return kvm_xen_eventfd_update(kvm, data); 2257 if (data->u.evtchn.flags) 2258 return -EINVAL; 2259 2260 return kvm_xen_eventfd_assign(kvm, data); 2261 } 2262 2263 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r) 2264 { 2265 struct evtchnfd *evtchnfd; 2266 struct evtchn_send send; 2267 struct x86_exception e; 2268 2269 /* Sanity check: this structure is the same for 32-bit and 64-bit */ 2270 BUILD_BUG_ON(sizeof(send) != 4); 2271 if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) { 2272 *r = -EFAULT; 2273 return true; 2274 } 2275 2276 /* 2277 * evtchnfd is protected by kvm->srcu; the idr lookup instead 2278 * is protected by RCU. 2279 */ 2280 rcu_read_lock(); 2281 evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port); 2282 rcu_read_unlock(); 2283 if (!evtchnfd) 2284 return false; 2285 2286 if (evtchnfd->deliver.port.port) { 2287 int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm); 2288 if (ret < 0 && ret != -ENOTCONN) 2289 return false; 2290 } else { 2291 eventfd_signal(evtchnfd->deliver.eventfd.ctx); 2292 } 2293 2294 *r = 0; 2295 return true; 2296 } 2297 2298 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu) 2299 { 2300 vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx; 2301 vcpu->arch.xen.poll_evtchn = 0; 2302 2303 timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0); 2304 hrtimer_setup(&vcpu->arch.xen.timer, xen_timer_callback, CLOCK_MONOTONIC, 2305 HRTIMER_MODE_ABS_HARD); 2306 2307 kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm); 2308 kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm); 2309 kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm); 2310 kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm); 2311 } 2312 2313 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu) 2314 { 2315 if (kvm_xen_timer_enabled(vcpu)) 2316 kvm_xen_stop_timer(vcpu); 2317 2318 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); 2319 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); 2320 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); 2321 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); 2322 2323 timer_delete_sync(&vcpu->arch.xen.poll_timer); 2324 } 2325 2326 void kvm_xen_init_vm(struct kvm *kvm) 2327 { 2328 mutex_init(&kvm->arch.xen.xen_lock); 2329 idr_init(&kvm->arch.xen.evtchn_ports); 2330 kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm); 2331 } 2332 2333 void kvm_xen_destroy_vm(struct kvm *kvm) 2334 { 2335 struct evtchnfd *evtchnfd; 2336 int i; 2337 2338 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); 2339 2340 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { 2341 if (!evtchnfd->deliver.port.port) 2342 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 2343 kfree(evtchnfd); 2344 } 2345 idr_destroy(&kvm->arch.xen.evtchn_ports); 2346 2347 if (kvm->arch.xen.hvm_config.msr) 2348 static_branch_slow_dec_deferred(&kvm_xen_enabled); 2349 } 2350