xref: /linux/arch/x86/kvm/x86.h (revision f694f30e81c4ade358eb8c75273bac1a48f0cb8f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_X86_H
3 #define ARCH_X86_KVM_X86_H
4 
5 #include <linux/kvm_host.h>
6 #include <asm/fpu/xstate.h>
7 #include <asm/mce.h>
8 #include <asm/pvclock.h>
9 #include "kvm_cache_regs.h"
10 #include "kvm_emulate.h"
11 #include "cpuid.h"
12 
13 #define KVM_MAX_MCE_BANKS 32
14 
15 struct kvm_caps {
16 	/* control of guest tsc rate supported? */
17 	bool has_tsc_control;
18 	/* maximum supported tsc_khz for guests */
19 	u32  max_guest_tsc_khz;
20 	/* number of bits of the fractional part of the TSC scaling ratio */
21 	u8   tsc_scaling_ratio_frac_bits;
22 	/* maximum allowed value of TSC scaling ratio */
23 	u64  max_tsc_scaling_ratio;
24 	/* 1ull << kvm_caps.tsc_scaling_ratio_frac_bits */
25 	u64  default_tsc_scaling_ratio;
26 	/* bus lock detection supported? */
27 	bool has_bus_lock_exit;
28 	/* notify VM exit supported? */
29 	bool has_notify_vmexit;
30 	/* bit mask of VM types */
31 	u32 supported_vm_types;
32 
33 	u64 supported_mce_cap;
34 	u64 supported_xcr0;
35 	u64 supported_xss;
36 	u64 supported_perf_cap;
37 
38 	u64 supported_quirks;
39 	u64 inapplicable_quirks;
40 };
41 
42 struct kvm_host_values {
43 	/*
44 	 * The host's raw MAXPHYADDR, i.e. the number of non-reserved physical
45 	 * address bits irrespective of features that repurpose legal bits,
46 	 * e.g. MKTME.
47 	 */
48 	u8 maxphyaddr;
49 
50 	u64 efer;
51 	u64 xcr0;
52 	u64 xss;
53 	u64 arch_capabilities;
54 };
55 
56 void kvm_spurious_fault(void);
57 
58 #define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check)		\
59 ({									\
60 	bool failed = (consistency_check);				\
61 	if (failed)							\
62 		trace_kvm_nested_vmenter_failed(#consistency_check, 0);	\
63 	failed;								\
64 })
65 
66 /*
67  * The first...last VMX feature MSRs that are emulated by KVM.  This may or may
68  * not cover all known VMX MSRs, as KVM doesn't emulate an MSR until there's an
69  * associated feature that KVM supports for nested virtualization.
70  */
71 #define KVM_FIRST_EMULATED_VMX_MSR	MSR_IA32_VMX_BASIC
72 #define KVM_LAST_EMULATED_VMX_MSR	MSR_IA32_VMX_VMFUNC
73 
74 #define KVM_DEFAULT_PLE_GAP		128
75 #define KVM_VMX_DEFAULT_PLE_WINDOW	4096
76 #define KVM_DEFAULT_PLE_WINDOW_GROW	2
77 #define KVM_DEFAULT_PLE_WINDOW_SHRINK	0
78 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX	UINT_MAX
79 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX	USHRT_MAX
80 #define KVM_SVM_DEFAULT_PLE_WINDOW	3000
81 
82 static inline unsigned int __grow_ple_window(unsigned int val,
83 		unsigned int base, unsigned int modifier, unsigned int max)
84 {
85 	u64 ret = val;
86 
87 	if (modifier < 1)
88 		return base;
89 
90 	if (modifier < base)
91 		ret *= modifier;
92 	else
93 		ret += modifier;
94 
95 	return min(ret, (u64)max);
96 }
97 
98 static inline unsigned int __shrink_ple_window(unsigned int val,
99 		unsigned int base, unsigned int modifier, unsigned int min)
100 {
101 	if (modifier < 1)
102 		return base;
103 
104 	if (modifier < base)
105 		val /= modifier;
106 	else
107 		val -= modifier;
108 
109 	return max(val, min);
110 }
111 
112 #define MSR_IA32_CR_PAT_DEFAULT	\
113 	PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC)
114 
115 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu);
116 int kvm_check_nested_events(struct kvm_vcpu *vcpu);
117 
118 /* Forcibly leave the nested mode in cases like a vCPU reset */
119 static inline void kvm_leave_nested(struct kvm_vcpu *vcpu)
120 {
121 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
122 }
123 
124 static inline bool kvm_vcpu_has_run(struct kvm_vcpu *vcpu)
125 {
126 	return vcpu->arch.last_vmentry_cpu != -1;
127 }
128 
129 static inline void kvm_set_mp_state(struct kvm_vcpu *vcpu, int mp_state)
130 {
131 	vcpu->arch.mp_state = mp_state;
132 	if (mp_state == KVM_MP_STATE_RUNNABLE)
133 		vcpu->arch.pv.pv_unhalted = false;
134 }
135 
136 static inline bool kvm_is_exception_pending(struct kvm_vcpu *vcpu)
137 {
138 	return vcpu->arch.exception.pending ||
139 	       vcpu->arch.exception_vmexit.pending ||
140 	       kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
141 }
142 
143 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
144 {
145 	vcpu->arch.exception.pending = false;
146 	vcpu->arch.exception.injected = false;
147 	vcpu->arch.exception_vmexit.pending = false;
148 }
149 
150 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
151 	bool soft)
152 {
153 	vcpu->arch.interrupt.injected = true;
154 	vcpu->arch.interrupt.soft = soft;
155 	vcpu->arch.interrupt.nr = vector;
156 }
157 
158 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
159 {
160 	vcpu->arch.interrupt.injected = false;
161 }
162 
163 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
164 {
165 	return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected ||
166 		vcpu->arch.nmi_injected;
167 }
168 
169 static inline bool kvm_exception_is_soft(unsigned int nr)
170 {
171 	return (nr == BP_VECTOR) || (nr == OF_VECTOR);
172 }
173 
174 static inline bool is_protmode(struct kvm_vcpu *vcpu)
175 {
176 	return kvm_is_cr0_bit_set(vcpu, X86_CR0_PE);
177 }
178 
179 static inline bool is_long_mode(struct kvm_vcpu *vcpu)
180 {
181 #ifdef CONFIG_X86_64
182 	return !!(vcpu->arch.efer & EFER_LMA);
183 #else
184 	return false;
185 #endif
186 }
187 
188 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
189 {
190 	int cs_db, cs_l;
191 
192 	WARN_ON_ONCE(vcpu->arch.guest_state_protected);
193 
194 	if (!is_long_mode(vcpu))
195 		return false;
196 	kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
197 	return cs_l;
198 }
199 
200 static inline bool is_64_bit_hypercall(struct kvm_vcpu *vcpu)
201 {
202 	/*
203 	 * If running with protected guest state, the CS register is not
204 	 * accessible. The hypercall register values will have had to been
205 	 * provided in 64-bit mode, so assume the guest is in 64-bit.
206 	 */
207 	return vcpu->arch.guest_state_protected || is_64_bit_mode(vcpu);
208 }
209 
210 static inline bool x86_exception_has_error_code(unsigned int vector)
211 {
212 	static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) |
213 			BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) |
214 			BIT(PF_VECTOR) | BIT(AC_VECTOR);
215 
216 	return (1U << vector) & exception_has_error_code;
217 }
218 
219 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
220 {
221 	return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
222 }
223 
224 static inline bool is_pae(struct kvm_vcpu *vcpu)
225 {
226 	return kvm_is_cr4_bit_set(vcpu, X86_CR4_PAE);
227 }
228 
229 static inline bool is_pse(struct kvm_vcpu *vcpu)
230 {
231 	return kvm_is_cr4_bit_set(vcpu, X86_CR4_PSE);
232 }
233 
234 static inline bool is_paging(struct kvm_vcpu *vcpu)
235 {
236 	return likely(kvm_is_cr0_bit_set(vcpu, X86_CR0_PG));
237 }
238 
239 static inline bool is_pae_paging(struct kvm_vcpu *vcpu)
240 {
241 	return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu);
242 }
243 
244 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu)
245 {
246 	return kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 57 : 48;
247 }
248 
249 static inline u8 max_host_virt_addr_bits(void)
250 {
251 	return kvm_cpu_cap_has(X86_FEATURE_LA57) ? 57 : 48;
252 }
253 
254 /*
255  * x86 MSRs which contain linear addresses, x86 hidden segment bases, and
256  * IDT/GDT bases have static canonicality checks, the size of which depends
257  * only on the CPU's support for 5-level paging, rather than on the state of
258  * CR4.LA57.  This applies to both WRMSR and to other instructions that set
259  * their values, e.g. SGDT.
260  *
261  * KVM passes through most of these MSRS and also doesn't intercept the
262  * instructions that set the hidden segment bases.
263  *
264  * Because of this, to be consistent with hardware, even if the guest doesn't
265  * have LA57 enabled in its CPUID, perform canonicality checks based on *host*
266  * support for 5 level paging.
267  *
268  * Finally, instructions which are related to MMU invalidation of a given
269  * linear address, also have a similar static canonical check on address.
270  * This allows for example to invalidate 5-level addresses of a guest from a
271  * host which uses 4-level paging.
272  */
273 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu,
274 					   unsigned int flags)
275 {
276 	if (flags & (X86EMUL_F_INVLPG | X86EMUL_F_MSR | X86EMUL_F_DT_LOAD))
277 		return !__is_canonical_address(la, max_host_virt_addr_bits());
278 	else
279 		return !__is_canonical_address(la, vcpu_virt_addr_bits(vcpu));
280 }
281 
282 static inline bool is_noncanonical_msr_address(u64 la, struct kvm_vcpu *vcpu)
283 {
284 	return is_noncanonical_address(la, vcpu, X86EMUL_F_MSR);
285 }
286 
287 static inline bool is_noncanonical_base_address(u64 la, struct kvm_vcpu *vcpu)
288 {
289 	return is_noncanonical_address(la, vcpu, X86EMUL_F_DT_LOAD);
290 }
291 
292 static inline bool is_noncanonical_invlpg_address(u64 la, struct kvm_vcpu *vcpu)
293 {
294 	return is_noncanonical_address(la, vcpu, X86EMUL_F_INVLPG);
295 }
296 
297 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
298 					gva_t gva, gfn_t gfn, unsigned access)
299 {
300 	u64 gen = kvm_memslots(vcpu->kvm)->generation;
301 
302 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
303 		return;
304 
305 	/*
306 	 * If this is a shadow nested page table, the "GVA" is
307 	 * actually a nGPA.
308 	 */
309 	vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK;
310 	vcpu->arch.mmio_access = access;
311 	vcpu->arch.mmio_gfn = gfn;
312 	vcpu->arch.mmio_gen = gen;
313 }
314 
315 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
316 {
317 	return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
318 }
319 
320 /*
321  * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
322  * clear all mmio cache info.
323  */
324 #define MMIO_GVA_ANY (~(gva_t)0)
325 
326 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
327 {
328 	if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
329 		return;
330 
331 	vcpu->arch.mmio_gva = 0;
332 }
333 
334 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
335 {
336 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
337 	      vcpu->arch.mmio_gva == (gva & PAGE_MASK))
338 		return true;
339 
340 	return false;
341 }
342 
343 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
344 {
345 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
346 	      vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
347 		return true;
348 
349 	return false;
350 }
351 
352 static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg)
353 {
354 	unsigned long val = kvm_register_read_raw(vcpu, reg);
355 
356 	return is_64_bit_mode(vcpu) ? val : (u32)val;
357 }
358 
359 static inline void kvm_register_write(struct kvm_vcpu *vcpu,
360 				       int reg, unsigned long val)
361 {
362 	if (!is_64_bit_mode(vcpu))
363 		val = (u32)val;
364 	return kvm_register_write_raw(vcpu, reg, val);
365 }
366 
367 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
368 {
369 	return !(kvm->arch.disabled_quirks & quirk);
370 }
371 
372 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
373 
374 u64 get_kvmclock_ns(struct kvm *kvm);
375 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm);
376 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp);
377 int kvm_guest_time_update(struct kvm_vcpu *v);
378 
379 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
380 	gva_t addr, void *val, unsigned int bytes,
381 	struct x86_exception *exception);
382 
383 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
384 	gva_t addr, void *val, unsigned int bytes,
385 	struct x86_exception *exception);
386 
387 int handle_ud(struct kvm_vcpu *vcpu);
388 
389 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
390 				   struct kvm_queued_exception *ex);
391 
392 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
393 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
394 bool kvm_vector_hashing_enabled(void);
395 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code);
396 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
397 				    void *insn, int insn_len);
398 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
399 			    int emulation_type, void *insn, int insn_len);
400 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu);
401 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu);
402 
403 extern struct kvm_caps kvm_caps;
404 extern struct kvm_host_values kvm_host;
405 
406 extern bool enable_pmu;
407 
408 /*
409  * Get a filtered version of KVM's supported XCR0 that strips out dynamic
410  * features for which the current process doesn't (yet) have permission to use.
411  * This is intended to be used only when enumerating support to userspace,
412  * e.g. in KVM_GET_SUPPORTED_CPUID and KVM_CAP_XSAVE2, it does NOT need to be
413  * used to check/restrict guest behavior as KVM rejects KVM_SET_CPUID{2} if
414  * userspace attempts to enable unpermitted features.
415  */
416 static inline u64 kvm_get_filtered_xcr0(void)
417 {
418 	u64 permitted_xcr0 = kvm_caps.supported_xcr0;
419 
420 	BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
421 
422 	if (permitted_xcr0 & XFEATURE_MASK_USER_DYNAMIC) {
423 		permitted_xcr0 &= xstate_get_guest_group_perm();
424 
425 		/*
426 		 * Treat XTILE_CFG as unsupported if the current process isn't
427 		 * allowed to use XTILE_DATA, as attempting to set XTILE_CFG in
428 		 * XCR0 without setting XTILE_DATA is architecturally illegal.
429 		 */
430 		if (!(permitted_xcr0 & XFEATURE_MASK_XTILE_DATA))
431 			permitted_xcr0 &= ~XFEATURE_MASK_XTILE_CFG;
432 	}
433 	return permitted_xcr0;
434 }
435 
436 static inline bool kvm_mpx_supported(void)
437 {
438 	return (kvm_caps.supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
439 		== (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
440 }
441 
442 extern unsigned int min_timer_period_us;
443 
444 extern bool enable_vmware_backdoor;
445 
446 extern int pi_inject_timer;
447 
448 extern bool report_ignored_msrs;
449 
450 extern bool eager_page_split;
451 
452 static inline void kvm_pr_unimpl_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
453 {
454 	if (report_ignored_msrs)
455 		vcpu_unimpl(vcpu, "Unhandled WRMSR(0x%x) = 0x%llx\n", msr, data);
456 }
457 
458 static inline void kvm_pr_unimpl_rdmsr(struct kvm_vcpu *vcpu, u32 msr)
459 {
460 	if (report_ignored_msrs)
461 		vcpu_unimpl(vcpu, "Unhandled RDMSR(0x%x)\n", msr);
462 }
463 
464 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
465 {
466 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
467 				   vcpu->arch.virtual_tsc_shift);
468 }
469 
470 /* Same "calling convention" as do_div:
471  * - divide (n << 32) by base
472  * - put result in n
473  * - return remainder
474  */
475 #define do_shl32_div32(n, base)					\
476 	({							\
477 	    u32 __quot, __rem;					\
478 	    asm("divl %2" : "=a" (__quot), "=d" (__rem)		\
479 			: "rm" (base), "0" (0), "1" ((u32) n));	\
480 	    n = __quot;						\
481 	    __rem;						\
482 	 })
483 
484 static inline bool kvm_mwait_in_guest(struct kvm *kvm)
485 {
486 	return kvm->arch.mwait_in_guest;
487 }
488 
489 static inline bool kvm_hlt_in_guest(struct kvm *kvm)
490 {
491 	return kvm->arch.hlt_in_guest;
492 }
493 
494 static inline bool kvm_pause_in_guest(struct kvm *kvm)
495 {
496 	return kvm->arch.pause_in_guest;
497 }
498 
499 static inline bool kvm_cstate_in_guest(struct kvm *kvm)
500 {
501 	return kvm->arch.cstate_in_guest;
502 }
503 
504 static inline bool kvm_notify_vmexit_enabled(struct kvm *kvm)
505 {
506 	return kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_ENABLED;
507 }
508 
509 static __always_inline void kvm_before_interrupt(struct kvm_vcpu *vcpu,
510 						 enum kvm_intr_type intr)
511 {
512 	WRITE_ONCE(vcpu->arch.handling_intr_from_guest, (u8)intr);
513 }
514 
515 static __always_inline void kvm_after_interrupt(struct kvm_vcpu *vcpu)
516 {
517 	WRITE_ONCE(vcpu->arch.handling_intr_from_guest, 0);
518 }
519 
520 static inline bool kvm_handling_nmi_from_guest(struct kvm_vcpu *vcpu)
521 {
522 	return vcpu->arch.handling_intr_from_guest == KVM_HANDLING_NMI;
523 }
524 
525 static inline bool kvm_pat_valid(u64 data)
526 {
527 	if (data & 0xF8F8F8F8F8F8F8F8ull)
528 		return false;
529 	/* 0, 1, 4, 5, 6, 7 are valid values.  */
530 	return (data | ((data & 0x0202020202020202ull) << 1)) == data;
531 }
532 
533 static inline bool kvm_dr7_valid(u64 data)
534 {
535 	/* Bits [63:32] are reserved */
536 	return !(data >> 32);
537 }
538 static inline bool kvm_dr6_valid(u64 data)
539 {
540 	/* Bits [63:32] are reserved */
541 	return !(data >> 32);
542 }
543 
544 /*
545  * Trigger machine check on the host. We assume all the MSRs are already set up
546  * by the CPU and that we still run on the same CPU as the MCE occurred on.
547  * We pass a fake environment to the machine check handler because we want
548  * the guest to be always treated like user space, no matter what context
549  * it used internally.
550  */
551 static inline void kvm_machine_check(void)
552 {
553 #if defined(CONFIG_X86_MCE)
554 	struct pt_regs regs = {
555 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
556 		.flags = X86_EFLAGS_IF,
557 	};
558 
559 	do_machine_check(&regs);
560 #endif
561 }
562 
563 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu);
564 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu);
565 int kvm_spec_ctrl_test_value(u64 value);
566 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
567 			      struct x86_exception *e);
568 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva);
569 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type);
570 
571 enum kvm_msr_access {
572 	MSR_TYPE_R	= BIT(0),
573 	MSR_TYPE_W	= BIT(1),
574 	MSR_TYPE_RW	= MSR_TYPE_R | MSR_TYPE_W,
575 };
576 
577 /*
578  * Internal error codes that are used to indicate that MSR emulation encountered
579  * an error that should result in #GP in the guest, unless userspace handles it.
580  * Note, '1', '0', and negative numbers are off limits, as they are used by KVM
581  * as part of KVM's lightly documented internal KVM_RUN return codes.
582  *
583  * UNSUPPORTED	- The MSR isn't supported, either because it is completely
584  *		  unknown to KVM, or because the MSR should not exist according
585  *		  to the vCPU model.
586  *
587  * FILTERED	- Access to the MSR is denied by a userspace MSR filter.
588  */
589 #define  KVM_MSR_RET_UNSUPPORTED	2
590 #define  KVM_MSR_RET_FILTERED		3
591 
592 static inline bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
593 {
594 	return !(cr4 & vcpu->arch.cr4_guest_rsvd_bits);
595 }
596 
597 #define __cr4_reserved_bits(__cpu_has, __c)             \
598 ({                                                      \
599 	u64 __reserved_bits = CR4_RESERVED_BITS;        \
600                                                         \
601 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))         \
602 		__reserved_bits |= X86_CR4_OSXSAVE;     \
603 	if (!__cpu_has(__c, X86_FEATURE_SMEP))          \
604 		__reserved_bits |= X86_CR4_SMEP;        \
605 	if (!__cpu_has(__c, X86_FEATURE_SMAP))          \
606 		__reserved_bits |= X86_CR4_SMAP;        \
607 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))      \
608 		__reserved_bits |= X86_CR4_FSGSBASE;    \
609 	if (!__cpu_has(__c, X86_FEATURE_PKU))           \
610 		__reserved_bits |= X86_CR4_PKE;         \
611 	if (!__cpu_has(__c, X86_FEATURE_LA57))          \
612 		__reserved_bits |= X86_CR4_LA57;        \
613 	if (!__cpu_has(__c, X86_FEATURE_UMIP))          \
614 		__reserved_bits |= X86_CR4_UMIP;        \
615 	if (!__cpu_has(__c, X86_FEATURE_VMX))           \
616 		__reserved_bits |= X86_CR4_VMXE;        \
617 	if (!__cpu_has(__c, X86_FEATURE_PCID))          \
618 		__reserved_bits |= X86_CR4_PCIDE;       \
619 	if (!__cpu_has(__c, X86_FEATURE_LAM))           \
620 		__reserved_bits |= X86_CR4_LAM_SUP;     \
621 	__reserved_bits;                                \
622 })
623 
624 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
625 			  void *dst);
626 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
627 			 void *dst);
628 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
629 			 unsigned int port, void *data,  unsigned int count,
630 			 int in);
631 
632 static inline bool user_exit_on_hypercall(struct kvm *kvm, unsigned long hc_nr)
633 {
634 	return kvm->arch.hypercall_exit_enabled & BIT(hc_nr);
635 }
636 
637 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
638 			      int (*complete_hypercall)(struct kvm_vcpu *));
639 
640 #define __kvm_emulate_hypercall(_vcpu, cpl, complete_hypercall)			\
641 ({										\
642 	int __ret;								\
643 	__ret = ____kvm_emulate_hypercall(_vcpu, cpl, complete_hypercall);	\
644 										\
645 	if (__ret > 0)								\
646 		__ret = complete_hypercall(_vcpu);				\
647 	__ret;									\
648 })
649 
650 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
651 
652 #endif
653