xref: /linux/arch/x86/kvm/x86.h (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_X86_H
3 #define ARCH_X86_KVM_X86_H
4 
5 #include <linux/kvm_host.h>
6 #include <asm/mce.h>
7 #include <asm/pvclock.h>
8 #include "kvm_cache_regs.h"
9 #include "kvm_emulate.h"
10 
11 static __always_inline void kvm_guest_enter_irqoff(void)
12 {
13 	/*
14 	 * VMENTER enables interrupts (host state), but the kernel state is
15 	 * interrupts disabled when this is invoked. Also tell RCU about
16 	 * it. This is the same logic as for exit_to_user_mode().
17 	 *
18 	 * This ensures that e.g. latency analysis on the host observes
19 	 * guest mode as interrupt enabled.
20 	 *
21 	 * guest_enter_irqoff() informs context tracking about the
22 	 * transition to guest mode and if enabled adjusts RCU state
23 	 * accordingly.
24 	 */
25 	instrumentation_begin();
26 	trace_hardirqs_on_prepare();
27 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
28 	instrumentation_end();
29 
30 	guest_enter_irqoff();
31 	lockdep_hardirqs_on(CALLER_ADDR0);
32 }
33 
34 static __always_inline void kvm_guest_exit_irqoff(void)
35 {
36 	/*
37 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
38 	 * have them in state 'on' as recorded before entering guest mode.
39 	 * Same as enter_from_user_mode().
40 	 *
41 	 * context_tracking_guest_exit() restores host context and reinstates
42 	 * RCU if enabled and required.
43 	 *
44 	 * This needs to be done immediately after VM-Exit, before any code
45 	 * that might contain tracepoints or call out to the greater world,
46 	 * e.g. before x86_spec_ctrl_restore_host().
47 	 */
48 	lockdep_hardirqs_off(CALLER_ADDR0);
49 	context_tracking_guest_exit();
50 
51 	instrumentation_begin();
52 	trace_hardirqs_off_finish();
53 	instrumentation_end();
54 }
55 
56 #define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check)		\
57 ({									\
58 	bool failed = (consistency_check);				\
59 	if (failed)							\
60 		trace_kvm_nested_vmenter_failed(#consistency_check, 0);	\
61 	failed;								\
62 })
63 
64 #define KVM_DEFAULT_PLE_GAP		128
65 #define KVM_VMX_DEFAULT_PLE_WINDOW	4096
66 #define KVM_DEFAULT_PLE_WINDOW_GROW	2
67 #define KVM_DEFAULT_PLE_WINDOW_SHRINK	0
68 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX	UINT_MAX
69 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX	USHRT_MAX
70 #define KVM_SVM_DEFAULT_PLE_WINDOW	3000
71 
72 static inline unsigned int __grow_ple_window(unsigned int val,
73 		unsigned int base, unsigned int modifier, unsigned int max)
74 {
75 	u64 ret = val;
76 
77 	if (modifier < 1)
78 		return base;
79 
80 	if (modifier < base)
81 		ret *= modifier;
82 	else
83 		ret += modifier;
84 
85 	return min(ret, (u64)max);
86 }
87 
88 static inline unsigned int __shrink_ple_window(unsigned int val,
89 		unsigned int base, unsigned int modifier, unsigned int min)
90 {
91 	if (modifier < 1)
92 		return base;
93 
94 	if (modifier < base)
95 		val /= modifier;
96 	else
97 		val -= modifier;
98 
99 	return max(val, min);
100 }
101 
102 #define MSR_IA32_CR_PAT_DEFAULT  0x0007040600070406ULL
103 
104 int kvm_check_nested_events(struct kvm_vcpu *vcpu);
105 
106 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
107 {
108 	vcpu->arch.exception.pending = false;
109 	vcpu->arch.exception.injected = false;
110 }
111 
112 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
113 	bool soft)
114 {
115 	vcpu->arch.interrupt.injected = true;
116 	vcpu->arch.interrupt.soft = soft;
117 	vcpu->arch.interrupt.nr = vector;
118 }
119 
120 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
121 {
122 	vcpu->arch.interrupt.injected = false;
123 }
124 
125 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
126 {
127 	return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected ||
128 		vcpu->arch.nmi_injected;
129 }
130 
131 static inline bool kvm_exception_is_soft(unsigned int nr)
132 {
133 	return (nr == BP_VECTOR) || (nr == OF_VECTOR);
134 }
135 
136 static inline bool is_protmode(struct kvm_vcpu *vcpu)
137 {
138 	return kvm_read_cr0_bits(vcpu, X86_CR0_PE);
139 }
140 
141 static inline int is_long_mode(struct kvm_vcpu *vcpu)
142 {
143 #ifdef CONFIG_X86_64
144 	return vcpu->arch.efer & EFER_LMA;
145 #else
146 	return 0;
147 #endif
148 }
149 
150 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
151 {
152 	int cs_db, cs_l;
153 
154 	if (!is_long_mode(vcpu))
155 		return false;
156 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
157 	return cs_l;
158 }
159 
160 static inline bool x86_exception_has_error_code(unsigned int vector)
161 {
162 	static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) |
163 			BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) |
164 			BIT(PF_VECTOR) | BIT(AC_VECTOR);
165 
166 	return (1U << vector) & exception_has_error_code;
167 }
168 
169 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
170 {
171 	return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
172 }
173 
174 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
175 {
176 	++vcpu->stat.tlb_flush;
177 	static_call(kvm_x86_tlb_flush_current)(vcpu);
178 }
179 
180 static inline int is_pae(struct kvm_vcpu *vcpu)
181 {
182 	return kvm_read_cr4_bits(vcpu, X86_CR4_PAE);
183 }
184 
185 static inline int is_pse(struct kvm_vcpu *vcpu)
186 {
187 	return kvm_read_cr4_bits(vcpu, X86_CR4_PSE);
188 }
189 
190 static inline int is_paging(struct kvm_vcpu *vcpu)
191 {
192 	return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG));
193 }
194 
195 static inline bool is_pae_paging(struct kvm_vcpu *vcpu)
196 {
197 	return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu);
198 }
199 
200 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu)
201 {
202 	return kvm_read_cr4_bits(vcpu, X86_CR4_LA57) ? 57 : 48;
203 }
204 
205 static inline u64 get_canonical(u64 la, u8 vaddr_bits)
206 {
207 	return ((int64_t)la << (64 - vaddr_bits)) >> (64 - vaddr_bits);
208 }
209 
210 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu)
211 {
212 	return get_canonical(la, vcpu_virt_addr_bits(vcpu)) != la;
213 }
214 
215 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
216 					gva_t gva, gfn_t gfn, unsigned access)
217 {
218 	u64 gen = kvm_memslots(vcpu->kvm)->generation;
219 
220 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
221 		return;
222 
223 	/*
224 	 * If this is a shadow nested page table, the "GVA" is
225 	 * actually a nGPA.
226 	 */
227 	vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK;
228 	vcpu->arch.mmio_access = access;
229 	vcpu->arch.mmio_gfn = gfn;
230 	vcpu->arch.mmio_gen = gen;
231 }
232 
233 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
234 {
235 	return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
236 }
237 
238 /*
239  * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
240  * clear all mmio cache info.
241  */
242 #define MMIO_GVA_ANY (~(gva_t)0)
243 
244 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
245 {
246 	if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
247 		return;
248 
249 	vcpu->arch.mmio_gva = 0;
250 }
251 
252 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
253 {
254 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
255 	      vcpu->arch.mmio_gva == (gva & PAGE_MASK))
256 		return true;
257 
258 	return false;
259 }
260 
261 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
262 {
263 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
264 	      vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
265 		return true;
266 
267 	return false;
268 }
269 
270 static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg)
271 {
272 	unsigned long val = kvm_register_read_raw(vcpu, reg);
273 
274 	return is_64_bit_mode(vcpu) ? val : (u32)val;
275 }
276 
277 static inline void kvm_register_write(struct kvm_vcpu *vcpu,
278 				       int reg, unsigned long val)
279 {
280 	if (!is_64_bit_mode(vcpu))
281 		val = (u32)val;
282 	return kvm_register_write_raw(vcpu, reg, val);
283 }
284 
285 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
286 {
287 	return !(kvm->arch.disabled_quirks & quirk);
288 }
289 
290 static inline bool kvm_vcpu_latch_init(struct kvm_vcpu *vcpu)
291 {
292 	return is_smm(vcpu) || static_call(kvm_x86_apic_init_signal_blocked)(vcpu);
293 }
294 
295 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs);
296 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
297 
298 u64 get_kvmclock_ns(struct kvm *kvm);
299 
300 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
301 	gva_t addr, void *val, unsigned int bytes,
302 	struct x86_exception *exception);
303 
304 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
305 	gva_t addr, void *val, unsigned int bytes,
306 	struct x86_exception *exception);
307 
308 int handle_ud(struct kvm_vcpu *vcpu);
309 
310 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu);
311 
312 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu);
313 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);
314 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data);
315 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
316 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
317 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
318 					  int page_num);
319 bool kvm_vector_hashing_enabled(void);
320 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code);
321 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
322 				    void *insn, int insn_len);
323 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
324 			    int emulation_type, void *insn, int insn_len);
325 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu);
326 
327 extern u64 host_xcr0;
328 extern u64 supported_xcr0;
329 extern u64 host_xss;
330 extern u64 supported_xss;
331 
332 static inline bool kvm_mpx_supported(void)
333 {
334 	return (supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
335 		== (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
336 }
337 
338 extern unsigned int min_timer_period_us;
339 
340 extern bool enable_vmware_backdoor;
341 
342 extern int pi_inject_timer;
343 
344 extern struct static_key kvm_no_apic_vcpu;
345 
346 extern bool report_ignored_msrs;
347 
348 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
349 {
350 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
351 				   vcpu->arch.virtual_tsc_shift);
352 }
353 
354 /* Same "calling convention" as do_div:
355  * - divide (n << 32) by base
356  * - put result in n
357  * - return remainder
358  */
359 #define do_shl32_div32(n, base)					\
360 	({							\
361 	    u32 __quot, __rem;					\
362 	    asm("divl %2" : "=a" (__quot), "=d" (__rem)		\
363 			: "rm" (base), "0" (0), "1" ((u32) n));	\
364 	    n = __quot;						\
365 	    __rem;						\
366 	 })
367 
368 static inline bool kvm_mwait_in_guest(struct kvm *kvm)
369 {
370 	return kvm->arch.mwait_in_guest;
371 }
372 
373 static inline bool kvm_hlt_in_guest(struct kvm *kvm)
374 {
375 	return kvm->arch.hlt_in_guest;
376 }
377 
378 static inline bool kvm_pause_in_guest(struct kvm *kvm)
379 {
380 	return kvm->arch.pause_in_guest;
381 }
382 
383 static inline bool kvm_cstate_in_guest(struct kvm *kvm)
384 {
385 	return kvm->arch.cstate_in_guest;
386 }
387 
388 DECLARE_PER_CPU(struct kvm_vcpu *, current_vcpu);
389 
390 static inline void kvm_before_interrupt(struct kvm_vcpu *vcpu)
391 {
392 	__this_cpu_write(current_vcpu, vcpu);
393 }
394 
395 static inline void kvm_after_interrupt(struct kvm_vcpu *vcpu)
396 {
397 	__this_cpu_write(current_vcpu, NULL);
398 }
399 
400 
401 static inline bool kvm_pat_valid(u64 data)
402 {
403 	if (data & 0xF8F8F8F8F8F8F8F8ull)
404 		return false;
405 	/* 0, 1, 4, 5, 6, 7 are valid values.  */
406 	return (data | ((data & 0x0202020202020202ull) << 1)) == data;
407 }
408 
409 static inline bool kvm_dr7_valid(u64 data)
410 {
411 	/* Bits [63:32] are reserved */
412 	return !(data >> 32);
413 }
414 static inline bool kvm_dr6_valid(u64 data)
415 {
416 	/* Bits [63:32] are reserved */
417 	return !(data >> 32);
418 }
419 
420 /*
421  * Trigger machine check on the host. We assume all the MSRs are already set up
422  * by the CPU and that we still run on the same CPU as the MCE occurred on.
423  * We pass a fake environment to the machine check handler because we want
424  * the guest to be always treated like user space, no matter what context
425  * it used internally.
426  */
427 static inline void kvm_machine_check(void)
428 {
429 #if defined(CONFIG_X86_MCE)
430 	struct pt_regs regs = {
431 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
432 		.flags = X86_EFLAGS_IF,
433 	};
434 
435 	do_machine_check(&regs);
436 #endif
437 }
438 
439 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu);
440 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu);
441 int kvm_spec_ctrl_test_value(u64 value);
442 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
443 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
444 			      struct x86_exception *e);
445 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva);
446 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type);
447 
448 /*
449  * Internal error codes that are used to indicate that MSR emulation encountered
450  * an error that should result in #GP in the guest, unless userspace
451  * handles it.
452  */
453 #define  KVM_MSR_RET_INVALID	2	/* in-kernel MSR emulation #GP condition */
454 #define  KVM_MSR_RET_FILTERED	3	/* #GP due to userspace MSR filter */
455 
456 #define __cr4_reserved_bits(__cpu_has, __c)             \
457 ({                                                      \
458 	u64 __reserved_bits = CR4_RESERVED_BITS;        \
459                                                         \
460 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))         \
461 		__reserved_bits |= X86_CR4_OSXSAVE;     \
462 	if (!__cpu_has(__c, X86_FEATURE_SMEP))          \
463 		__reserved_bits |= X86_CR4_SMEP;        \
464 	if (!__cpu_has(__c, X86_FEATURE_SMAP))          \
465 		__reserved_bits |= X86_CR4_SMAP;        \
466 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))      \
467 		__reserved_bits |= X86_CR4_FSGSBASE;    \
468 	if (!__cpu_has(__c, X86_FEATURE_PKU))           \
469 		__reserved_bits |= X86_CR4_PKE;         \
470 	if (!__cpu_has(__c, X86_FEATURE_LA57))          \
471 		__reserved_bits |= X86_CR4_LA57;        \
472 	if (!__cpu_has(__c, X86_FEATURE_UMIP))          \
473 		__reserved_bits |= X86_CR4_UMIP;        \
474 	if (!__cpu_has(__c, X86_FEATURE_VMX))           \
475 		__reserved_bits |= X86_CR4_VMXE;        \
476 	if (!__cpu_has(__c, X86_FEATURE_PCID))          \
477 		__reserved_bits |= X86_CR4_PCIDE;       \
478 	__reserved_bits;                                \
479 })
480 
481 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
482 			  void *dst);
483 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
484 			 void *dst);
485 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
486 			 unsigned int port, void *data,  unsigned int count,
487 			 int in);
488 
489 #endif
490