1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef ARCH_X86_KVM_X86_H 3 #define ARCH_X86_KVM_X86_H 4 5 #include <linux/kvm_host.h> 6 #include <asm/mce.h> 7 #include <asm/pvclock.h> 8 #include "kvm_cache_regs.h" 9 #include "kvm_emulate.h" 10 11 #define KVM_DEFAULT_PLE_GAP 128 12 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096 13 #define KVM_DEFAULT_PLE_WINDOW_GROW 2 14 #define KVM_DEFAULT_PLE_WINDOW_SHRINK 0 15 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX UINT_MAX 16 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX USHRT_MAX 17 #define KVM_SVM_DEFAULT_PLE_WINDOW 3000 18 19 static inline unsigned int __grow_ple_window(unsigned int val, 20 unsigned int base, unsigned int modifier, unsigned int max) 21 { 22 u64 ret = val; 23 24 if (modifier < 1) 25 return base; 26 27 if (modifier < base) 28 ret *= modifier; 29 else 30 ret += modifier; 31 32 return min(ret, (u64)max); 33 } 34 35 static inline unsigned int __shrink_ple_window(unsigned int val, 36 unsigned int base, unsigned int modifier, unsigned int min) 37 { 38 if (modifier < 1) 39 return base; 40 41 if (modifier < base) 42 val /= modifier; 43 else 44 val -= modifier; 45 46 return max(val, min); 47 } 48 49 #define MSR_IA32_CR_PAT_DEFAULT 0x0007040600070406ULL 50 51 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu) 52 { 53 vcpu->arch.exception.pending = false; 54 vcpu->arch.exception.injected = false; 55 } 56 57 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector, 58 bool soft) 59 { 60 vcpu->arch.interrupt.injected = true; 61 vcpu->arch.interrupt.soft = soft; 62 vcpu->arch.interrupt.nr = vector; 63 } 64 65 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu) 66 { 67 vcpu->arch.interrupt.injected = false; 68 } 69 70 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu) 71 { 72 return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected || 73 vcpu->arch.nmi_injected; 74 } 75 76 static inline bool kvm_exception_is_soft(unsigned int nr) 77 { 78 return (nr == BP_VECTOR) || (nr == OF_VECTOR); 79 } 80 81 static inline bool is_protmode(struct kvm_vcpu *vcpu) 82 { 83 return kvm_read_cr0_bits(vcpu, X86_CR0_PE); 84 } 85 86 static inline int is_long_mode(struct kvm_vcpu *vcpu) 87 { 88 #ifdef CONFIG_X86_64 89 return vcpu->arch.efer & EFER_LMA; 90 #else 91 return 0; 92 #endif 93 } 94 95 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu) 96 { 97 int cs_db, cs_l; 98 99 if (!is_long_mode(vcpu)) 100 return false; 101 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 102 return cs_l; 103 } 104 105 static inline bool is_la57_mode(struct kvm_vcpu *vcpu) 106 { 107 #ifdef CONFIG_X86_64 108 return (vcpu->arch.efer & EFER_LMA) && 109 kvm_read_cr4_bits(vcpu, X86_CR4_LA57); 110 #else 111 return 0; 112 #endif 113 } 114 115 static inline bool x86_exception_has_error_code(unsigned int vector) 116 { 117 static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) | 118 BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) | 119 BIT(PF_VECTOR) | BIT(AC_VECTOR); 120 121 return (1U << vector) & exception_has_error_code; 122 } 123 124 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu) 125 { 126 return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu; 127 } 128 129 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 130 { 131 ++vcpu->stat.tlb_flush; 132 static_call(kvm_x86_tlb_flush_current)(vcpu); 133 } 134 135 static inline int is_pae(struct kvm_vcpu *vcpu) 136 { 137 return kvm_read_cr4_bits(vcpu, X86_CR4_PAE); 138 } 139 140 static inline int is_pse(struct kvm_vcpu *vcpu) 141 { 142 return kvm_read_cr4_bits(vcpu, X86_CR4_PSE); 143 } 144 145 static inline int is_paging(struct kvm_vcpu *vcpu) 146 { 147 return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG)); 148 } 149 150 static inline bool is_pae_paging(struct kvm_vcpu *vcpu) 151 { 152 return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu); 153 } 154 155 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu) 156 { 157 return kvm_read_cr4_bits(vcpu, X86_CR4_LA57) ? 57 : 48; 158 } 159 160 static inline u64 get_canonical(u64 la, u8 vaddr_bits) 161 { 162 return ((int64_t)la << (64 - vaddr_bits)) >> (64 - vaddr_bits); 163 } 164 165 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu) 166 { 167 return get_canonical(la, vcpu_virt_addr_bits(vcpu)) != la; 168 } 169 170 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu, 171 gva_t gva, gfn_t gfn, unsigned access) 172 { 173 u64 gen = kvm_memslots(vcpu->kvm)->generation; 174 175 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 176 return; 177 178 /* 179 * If this is a shadow nested page table, the "GVA" is 180 * actually a nGPA. 181 */ 182 vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK; 183 vcpu->arch.mmio_access = access; 184 vcpu->arch.mmio_gfn = gfn; 185 vcpu->arch.mmio_gen = gen; 186 } 187 188 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu) 189 { 190 return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation; 191 } 192 193 /* 194 * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we 195 * clear all mmio cache info. 196 */ 197 #define MMIO_GVA_ANY (~(gva_t)0) 198 199 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva) 200 { 201 if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK)) 202 return; 203 204 vcpu->arch.mmio_gva = 0; 205 } 206 207 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva) 208 { 209 if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva && 210 vcpu->arch.mmio_gva == (gva & PAGE_MASK)) 211 return true; 212 213 return false; 214 } 215 216 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) 217 { 218 if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn && 219 vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT) 220 return true; 221 222 return false; 223 } 224 225 static inline unsigned long kvm_register_readl(struct kvm_vcpu *vcpu, int reg) 226 { 227 unsigned long val = kvm_register_read(vcpu, reg); 228 229 return is_64_bit_mode(vcpu) ? val : (u32)val; 230 } 231 232 static inline void kvm_register_writel(struct kvm_vcpu *vcpu, 233 int reg, unsigned long val) 234 { 235 if (!is_64_bit_mode(vcpu)) 236 val = (u32)val; 237 return kvm_register_write(vcpu, reg, val); 238 } 239 240 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk) 241 { 242 return !(kvm->arch.disabled_quirks & quirk); 243 } 244 245 static inline bool kvm_vcpu_latch_init(struct kvm_vcpu *vcpu) 246 { 247 return is_smm(vcpu) || static_call(kvm_x86_apic_init_signal_blocked)(vcpu); 248 } 249 250 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs); 251 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip); 252 253 u64 get_kvmclock_ns(struct kvm *kvm); 254 255 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 256 gva_t addr, void *val, unsigned int bytes, 257 struct x86_exception *exception); 258 259 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, 260 gva_t addr, void *val, unsigned int bytes, 261 struct x86_exception *exception); 262 263 int handle_ud(struct kvm_vcpu *vcpu); 264 265 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu); 266 267 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu); 268 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn); 269 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data); 270 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data); 271 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata); 272 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, 273 int page_num); 274 bool kvm_vector_hashing_enabled(void); 275 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code); 276 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 277 void *insn, int insn_len); 278 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 279 int emulation_type, void *insn, int insn_len); 280 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu); 281 282 extern u64 host_xcr0; 283 extern u64 supported_xcr0; 284 extern u64 host_xss; 285 extern u64 supported_xss; 286 287 static inline bool kvm_mpx_supported(void) 288 { 289 return (supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR)) 290 == (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 291 } 292 293 extern unsigned int min_timer_period_us; 294 295 extern bool enable_vmware_backdoor; 296 297 extern int pi_inject_timer; 298 299 extern struct static_key kvm_no_apic_vcpu; 300 301 extern bool report_ignored_msrs; 302 303 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 304 { 305 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 306 vcpu->arch.virtual_tsc_shift); 307 } 308 309 /* Same "calling convention" as do_div: 310 * - divide (n << 32) by base 311 * - put result in n 312 * - return remainder 313 */ 314 #define do_shl32_div32(n, base) \ 315 ({ \ 316 u32 __quot, __rem; \ 317 asm("divl %2" : "=a" (__quot), "=d" (__rem) \ 318 : "rm" (base), "0" (0), "1" ((u32) n)); \ 319 n = __quot; \ 320 __rem; \ 321 }) 322 323 static inline bool kvm_mwait_in_guest(struct kvm *kvm) 324 { 325 return kvm->arch.mwait_in_guest; 326 } 327 328 static inline bool kvm_hlt_in_guest(struct kvm *kvm) 329 { 330 return kvm->arch.hlt_in_guest; 331 } 332 333 static inline bool kvm_pause_in_guest(struct kvm *kvm) 334 { 335 return kvm->arch.pause_in_guest; 336 } 337 338 static inline bool kvm_cstate_in_guest(struct kvm *kvm) 339 { 340 return kvm->arch.cstate_in_guest; 341 } 342 343 DECLARE_PER_CPU(struct kvm_vcpu *, current_vcpu); 344 345 static inline void kvm_before_interrupt(struct kvm_vcpu *vcpu) 346 { 347 __this_cpu_write(current_vcpu, vcpu); 348 } 349 350 static inline void kvm_after_interrupt(struct kvm_vcpu *vcpu) 351 { 352 __this_cpu_write(current_vcpu, NULL); 353 } 354 355 356 static inline bool kvm_pat_valid(u64 data) 357 { 358 if (data & 0xF8F8F8F8F8F8F8F8ull) 359 return false; 360 /* 0, 1, 4, 5, 6, 7 are valid values. */ 361 return (data | ((data & 0x0202020202020202ull) << 1)) == data; 362 } 363 364 static inline bool kvm_dr7_valid(u64 data) 365 { 366 /* Bits [63:32] are reserved */ 367 return !(data >> 32); 368 } 369 static inline bool kvm_dr6_valid(u64 data) 370 { 371 /* Bits [63:32] are reserved */ 372 return !(data >> 32); 373 } 374 375 /* 376 * Trigger machine check on the host. We assume all the MSRs are already set up 377 * by the CPU and that we still run on the same CPU as the MCE occurred on. 378 * We pass a fake environment to the machine check handler because we want 379 * the guest to be always treated like user space, no matter what context 380 * it used internally. 381 */ 382 static inline void kvm_machine_check(void) 383 { 384 #if defined(CONFIG_X86_MCE) 385 struct pt_regs regs = { 386 .cs = 3, /* Fake ring 3 no matter what the guest ran on */ 387 .flags = X86_EFLAGS_IF, 388 }; 389 390 do_machine_check(®s); 391 #endif 392 } 393 394 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu); 395 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu); 396 int kvm_spec_ctrl_test_value(u64 value); 397 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 398 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 399 struct x86_exception *e); 400 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva); 401 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type); 402 403 /* 404 * Internal error codes that are used to indicate that MSR emulation encountered 405 * an error that should result in #GP in the guest, unless userspace 406 * handles it. 407 */ 408 #define KVM_MSR_RET_INVALID 2 /* in-kernel MSR emulation #GP condition */ 409 #define KVM_MSR_RET_FILTERED 3 /* #GP due to userspace MSR filter */ 410 411 #define __cr4_reserved_bits(__cpu_has, __c) \ 412 ({ \ 413 u64 __reserved_bits = CR4_RESERVED_BITS; \ 414 \ 415 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \ 416 __reserved_bits |= X86_CR4_OSXSAVE; \ 417 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \ 418 __reserved_bits |= X86_CR4_SMEP; \ 419 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \ 420 __reserved_bits |= X86_CR4_SMAP; \ 421 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \ 422 __reserved_bits |= X86_CR4_FSGSBASE; \ 423 if (!__cpu_has(__c, X86_FEATURE_PKU)) \ 424 __reserved_bits |= X86_CR4_PKE; \ 425 if (!__cpu_has(__c, X86_FEATURE_LA57)) \ 426 __reserved_bits |= X86_CR4_LA57; \ 427 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \ 428 __reserved_bits |= X86_CR4_UMIP; \ 429 if (!__cpu_has(__c, X86_FEATURE_VMX)) \ 430 __reserved_bits |= X86_CR4_VMXE; \ 431 if (!__cpu_has(__c, X86_FEATURE_PCID)) \ 432 __reserved_bits |= X86_CR4_PCIDE; \ 433 __reserved_bits; \ 434 }) 435 436 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes, 437 void *dst); 438 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes, 439 void *dst); 440 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 441 unsigned int port, void *data, unsigned int count, 442 int in); 443 444 #endif 445