1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef ARCH_X86_KVM_X86_H 3 #define ARCH_X86_KVM_X86_H 4 5 #include <linux/kvm_host.h> 6 #include <asm/fpu/xstate.h> 7 #include <asm/mce.h> 8 #include <asm/pvclock.h> 9 #include "kvm_cache_regs.h" 10 #include "kvm_emulate.h" 11 #include "cpuid.h" 12 13 #define KVM_MAX_MCE_BANKS 32 14 15 struct kvm_caps { 16 /* control of guest tsc rate supported? */ 17 bool has_tsc_control; 18 /* maximum supported tsc_khz for guests */ 19 u32 max_guest_tsc_khz; 20 /* number of bits of the fractional part of the TSC scaling ratio */ 21 u8 tsc_scaling_ratio_frac_bits; 22 /* maximum allowed value of TSC scaling ratio */ 23 u64 max_tsc_scaling_ratio; 24 /* 1ull << kvm_caps.tsc_scaling_ratio_frac_bits */ 25 u64 default_tsc_scaling_ratio; 26 /* bus lock detection supported? */ 27 bool has_bus_lock_exit; 28 /* notify VM exit supported? */ 29 bool has_notify_vmexit; 30 /* bit mask of VM types */ 31 u32 supported_vm_types; 32 33 u64 supported_mce_cap; 34 u64 supported_xcr0; 35 u64 supported_xss; 36 u64 supported_perf_cap; 37 38 u64 supported_quirks; 39 u64 inapplicable_quirks; 40 }; 41 42 struct kvm_host_values { 43 /* 44 * The host's raw MAXPHYADDR, i.e. the number of non-reserved physical 45 * address bits irrespective of features that repurpose legal bits, 46 * e.g. MKTME. 47 */ 48 u8 maxphyaddr; 49 50 u64 efer; 51 u64 xcr0; 52 u64 xss; 53 u64 s_cet; 54 u64 arch_capabilities; 55 }; 56 57 void kvm_spurious_fault(void); 58 59 #define SIZE_OF_MEMSLOTS_HASHTABLE \ 60 (sizeof(((struct kvm_memslots *)0)->id_hash) * 2 * KVM_MAX_NR_ADDRESS_SPACES) 61 62 /* Sanity check the size of the memslot hash tables. */ 63 static_assert(SIZE_OF_MEMSLOTS_HASHTABLE == 64 (1024 * (1 + IS_ENABLED(CONFIG_X86_64)) * (1 + IS_ENABLED(CONFIG_KVM_SMM)))); 65 66 /* 67 * Assert that "struct kvm_{svm,vmx,tdx}" is an order-0 or order-1 allocation. 68 * Spilling over to an order-2 allocation isn't fundamentally problematic, but 69 * isn't expected to happen in the foreseeable future (O(years)). Assert that 70 * the size is an order-0 allocation when ignoring the memslot hash tables, to 71 * help detect and debug unexpected size increases. 72 */ 73 #define KVM_SANITY_CHECK_VM_STRUCT_SIZE(x) \ 74 do { \ 75 BUILD_BUG_ON(get_order(sizeof(struct x) - SIZE_OF_MEMSLOTS_HASHTABLE) && \ 76 !IS_ENABLED(CONFIG_DEBUG_KERNEL) && !IS_ENABLED(CONFIG_KASAN)); \ 77 BUILD_BUG_ON(get_order(sizeof(struct x)) > 1 && \ 78 !IS_ENABLED(CONFIG_DEBUG_KERNEL) && !IS_ENABLED(CONFIG_KASAN)); \ 79 } while (0) 80 81 #define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check) \ 82 ({ \ 83 bool failed = (consistency_check); \ 84 if (failed) \ 85 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \ 86 failed; \ 87 }) 88 89 /* 90 * The first...last VMX feature MSRs that are emulated by KVM. This may or may 91 * not cover all known VMX MSRs, as KVM doesn't emulate an MSR until there's an 92 * associated feature that KVM supports for nested virtualization. 93 */ 94 #define KVM_FIRST_EMULATED_VMX_MSR MSR_IA32_VMX_BASIC 95 #define KVM_LAST_EMULATED_VMX_MSR MSR_IA32_VMX_VMFUNC 96 97 #define KVM_DEFAULT_PLE_GAP 128 98 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096 99 #define KVM_DEFAULT_PLE_WINDOW_GROW 2 100 #define KVM_DEFAULT_PLE_WINDOW_SHRINK 0 101 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX UINT_MAX 102 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX USHRT_MAX 103 #define KVM_SVM_DEFAULT_PLE_WINDOW 3000 104 105 /* 106 * KVM's internal, non-ABI indices for synthetic MSRs. The values themselves 107 * are arbitrary and have no meaning, the only requirement is that they don't 108 * conflict with "real" MSRs that KVM supports. Use values at the upper end 109 * of KVM's reserved paravirtual MSR range to minimize churn, i.e. these values 110 * will be usable until KVM exhausts its supply of paravirtual MSR indices. 111 */ 112 113 #define MSR_KVM_INTERNAL_GUEST_SSP 0x4b564dff 114 115 static inline unsigned int __grow_ple_window(unsigned int val, 116 unsigned int base, unsigned int modifier, unsigned int max) 117 { 118 u64 ret = val; 119 120 if (modifier < 1) 121 return base; 122 123 if (modifier < base) 124 ret *= modifier; 125 else 126 ret += modifier; 127 128 return min(ret, (u64)max); 129 } 130 131 static inline unsigned int __shrink_ple_window(unsigned int val, 132 unsigned int base, unsigned int modifier, unsigned int min) 133 { 134 if (modifier < 1) 135 return base; 136 137 if (modifier < base) 138 val /= modifier; 139 else 140 val -= modifier; 141 142 return max(val, min); 143 } 144 145 #define MSR_IA32_CR_PAT_DEFAULT \ 146 PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC) 147 148 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu); 149 int kvm_check_nested_events(struct kvm_vcpu *vcpu); 150 151 /* Forcibly leave the nested mode in cases like a vCPU reset */ 152 static inline void kvm_leave_nested(struct kvm_vcpu *vcpu) 153 { 154 kvm_x86_ops.nested_ops->leave_nested(vcpu); 155 } 156 157 /* 158 * If IBRS is advertised to the vCPU, KVM must flush the indirect branch 159 * predictors when transitioning from L2 to L1, as L1 expects hardware (KVM in 160 * this case) to provide separate predictor modes. Bare metal isolates the host 161 * from the guest, but doesn't isolate different guests from one another (in 162 * this case L1 and L2). The exception is if bare metal supports same mode IBRS, 163 * which offers protection within the same mode, and hence protects L1 from L2. 164 */ 165 static inline void kvm_nested_vmexit_handle_ibrs(struct kvm_vcpu *vcpu) 166 { 167 if (cpu_feature_enabled(X86_FEATURE_AMD_IBRS_SAME_MODE)) 168 return; 169 170 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) || 171 guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBRS)) 172 indirect_branch_prediction_barrier(); 173 } 174 175 static inline bool kvm_vcpu_has_run(struct kvm_vcpu *vcpu) 176 { 177 return vcpu->arch.last_vmentry_cpu != -1; 178 } 179 180 static inline void kvm_set_mp_state(struct kvm_vcpu *vcpu, int mp_state) 181 { 182 vcpu->arch.mp_state = mp_state; 183 if (mp_state == KVM_MP_STATE_RUNNABLE) 184 vcpu->arch.pv.pv_unhalted = false; 185 } 186 187 static inline bool kvm_is_exception_pending(struct kvm_vcpu *vcpu) 188 { 189 return vcpu->arch.exception.pending || 190 vcpu->arch.exception_vmexit.pending || 191 kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 192 } 193 194 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu) 195 { 196 vcpu->arch.exception.pending = false; 197 vcpu->arch.exception.injected = false; 198 vcpu->arch.exception_vmexit.pending = false; 199 } 200 201 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector, 202 bool soft) 203 { 204 vcpu->arch.interrupt.injected = true; 205 vcpu->arch.interrupt.soft = soft; 206 vcpu->arch.interrupt.nr = vector; 207 } 208 209 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu) 210 { 211 vcpu->arch.interrupt.injected = false; 212 } 213 214 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu) 215 { 216 return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected || 217 vcpu->arch.nmi_injected; 218 } 219 220 static inline bool kvm_exception_is_soft(unsigned int nr) 221 { 222 return (nr == BP_VECTOR) || (nr == OF_VECTOR); 223 } 224 225 static inline bool is_protmode(struct kvm_vcpu *vcpu) 226 { 227 return kvm_is_cr0_bit_set(vcpu, X86_CR0_PE); 228 } 229 230 static inline bool is_long_mode(struct kvm_vcpu *vcpu) 231 { 232 #ifdef CONFIG_X86_64 233 return !!(vcpu->arch.efer & EFER_LMA); 234 #else 235 return false; 236 #endif 237 } 238 239 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu) 240 { 241 int cs_db, cs_l; 242 243 WARN_ON_ONCE(vcpu->arch.guest_state_protected); 244 245 if (!is_long_mode(vcpu)) 246 return false; 247 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 248 return cs_l; 249 } 250 251 static inline bool is_64_bit_hypercall(struct kvm_vcpu *vcpu) 252 { 253 /* 254 * If running with protected guest state, the CS register is not 255 * accessible. The hypercall register values will have had to been 256 * provided in 64-bit mode, so assume the guest is in 64-bit. 257 */ 258 return vcpu->arch.guest_state_protected || is_64_bit_mode(vcpu); 259 } 260 261 static inline bool x86_exception_has_error_code(unsigned int vector) 262 { 263 static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) | 264 BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) | 265 BIT(PF_VECTOR) | BIT(AC_VECTOR); 266 267 return (1U << vector) & exception_has_error_code; 268 } 269 270 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu) 271 { 272 return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu; 273 } 274 275 static inline bool is_pae(struct kvm_vcpu *vcpu) 276 { 277 return kvm_is_cr4_bit_set(vcpu, X86_CR4_PAE); 278 } 279 280 static inline bool is_pse(struct kvm_vcpu *vcpu) 281 { 282 return kvm_is_cr4_bit_set(vcpu, X86_CR4_PSE); 283 } 284 285 static inline bool is_paging(struct kvm_vcpu *vcpu) 286 { 287 return likely(kvm_is_cr0_bit_set(vcpu, X86_CR0_PG)); 288 } 289 290 static inline bool is_pae_paging(struct kvm_vcpu *vcpu) 291 { 292 return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu); 293 } 294 295 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu) 296 { 297 return kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 57 : 48; 298 } 299 300 static inline u8 max_host_virt_addr_bits(void) 301 { 302 return kvm_cpu_cap_has(X86_FEATURE_LA57) ? 57 : 48; 303 } 304 305 /* 306 * x86 MSRs which contain linear addresses, x86 hidden segment bases, and 307 * IDT/GDT bases have static canonicality checks, the size of which depends 308 * only on the CPU's support for 5-level paging, rather than on the state of 309 * CR4.LA57. This applies to both WRMSR and to other instructions that set 310 * their values, e.g. SGDT. 311 * 312 * KVM passes through most of these MSRS and also doesn't intercept the 313 * instructions that set the hidden segment bases. 314 * 315 * Because of this, to be consistent with hardware, even if the guest doesn't 316 * have LA57 enabled in its CPUID, perform canonicality checks based on *host* 317 * support for 5 level paging. 318 * 319 * Finally, instructions which are related to MMU invalidation of a given 320 * linear address, also have a similar static canonical check on address. 321 * This allows for example to invalidate 5-level addresses of a guest from a 322 * host which uses 4-level paging. 323 */ 324 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu, 325 unsigned int flags) 326 { 327 if (flags & (X86EMUL_F_INVLPG | X86EMUL_F_MSR | X86EMUL_F_DT_LOAD)) 328 return !__is_canonical_address(la, max_host_virt_addr_bits()); 329 else 330 return !__is_canonical_address(la, vcpu_virt_addr_bits(vcpu)); 331 } 332 333 static inline bool is_noncanonical_msr_address(u64 la, struct kvm_vcpu *vcpu) 334 { 335 return is_noncanonical_address(la, vcpu, X86EMUL_F_MSR); 336 } 337 338 static inline bool is_noncanonical_base_address(u64 la, struct kvm_vcpu *vcpu) 339 { 340 return is_noncanonical_address(la, vcpu, X86EMUL_F_DT_LOAD); 341 } 342 343 static inline bool is_noncanonical_invlpg_address(u64 la, struct kvm_vcpu *vcpu) 344 { 345 return is_noncanonical_address(la, vcpu, X86EMUL_F_INVLPG); 346 } 347 348 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu, 349 gva_t gva, gfn_t gfn, unsigned access) 350 { 351 u64 gen = kvm_memslots(vcpu->kvm)->generation; 352 353 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 354 return; 355 356 /* 357 * If this is a shadow nested page table, the "GVA" is 358 * actually a nGPA. 359 */ 360 vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK; 361 vcpu->arch.mmio_access = access; 362 vcpu->arch.mmio_gfn = gfn; 363 vcpu->arch.mmio_gen = gen; 364 } 365 366 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu) 367 { 368 return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation; 369 } 370 371 /* 372 * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we 373 * clear all mmio cache info. 374 */ 375 #define MMIO_GVA_ANY (~(gva_t)0) 376 377 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva) 378 { 379 if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK)) 380 return; 381 382 vcpu->arch.mmio_gva = 0; 383 } 384 385 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva) 386 { 387 if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva && 388 vcpu->arch.mmio_gva == (gva & PAGE_MASK)) 389 return true; 390 391 return false; 392 } 393 394 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) 395 { 396 if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn && 397 vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT) 398 return true; 399 400 return false; 401 } 402 403 static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg) 404 { 405 unsigned long val = kvm_register_read_raw(vcpu, reg); 406 407 return is_64_bit_mode(vcpu) ? val : (u32)val; 408 } 409 410 static inline void kvm_register_write(struct kvm_vcpu *vcpu, 411 int reg, unsigned long val) 412 { 413 if (!is_64_bit_mode(vcpu)) 414 val = (u32)val; 415 return kvm_register_write_raw(vcpu, reg, val); 416 } 417 418 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk) 419 { 420 return !(kvm->arch.disabled_quirks & quirk); 421 } 422 423 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip); 424 425 u64 get_kvmclock_ns(struct kvm *kvm); 426 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm); 427 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp); 428 int kvm_guest_time_update(struct kvm_vcpu *v); 429 430 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 431 gva_t addr, void *val, unsigned int bytes, 432 struct x86_exception *exception); 433 434 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, 435 gva_t addr, void *val, unsigned int bytes, 436 struct x86_exception *exception); 437 438 int handle_ud(struct kvm_vcpu *vcpu); 439 440 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 441 struct kvm_queued_exception *ex); 442 443 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data); 444 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata); 445 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code); 446 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 447 void *insn, int insn_len); 448 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 449 int emulation_type, void *insn, int insn_len); 450 fastpath_t handle_fastpath_wrmsr(struct kvm_vcpu *vcpu); 451 fastpath_t handle_fastpath_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg); 452 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu); 453 fastpath_t handle_fastpath_invd(struct kvm_vcpu *vcpu); 454 455 extern struct kvm_caps kvm_caps; 456 extern struct kvm_host_values kvm_host; 457 458 extern bool enable_pmu; 459 460 /* 461 * Get a filtered version of KVM's supported XCR0 that strips out dynamic 462 * features for which the current process doesn't (yet) have permission to use. 463 * This is intended to be used only when enumerating support to userspace, 464 * e.g. in KVM_GET_SUPPORTED_CPUID and KVM_CAP_XSAVE2, it does NOT need to be 465 * used to check/restrict guest behavior as KVM rejects KVM_SET_CPUID{2} if 466 * userspace attempts to enable unpermitted features. 467 */ 468 static inline u64 kvm_get_filtered_xcr0(void) 469 { 470 u64 permitted_xcr0 = kvm_caps.supported_xcr0; 471 472 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA); 473 474 if (permitted_xcr0 & XFEATURE_MASK_USER_DYNAMIC) { 475 permitted_xcr0 &= xstate_get_guest_group_perm(); 476 477 /* 478 * Treat XTILE_CFG as unsupported if the current process isn't 479 * allowed to use XTILE_DATA, as attempting to set XTILE_CFG in 480 * XCR0 without setting XTILE_DATA is architecturally illegal. 481 */ 482 if (!(permitted_xcr0 & XFEATURE_MASK_XTILE_DATA)) 483 permitted_xcr0 &= ~XFEATURE_MASK_XTILE_CFG; 484 } 485 return permitted_xcr0; 486 } 487 488 static inline bool kvm_mpx_supported(void) 489 { 490 return (kvm_caps.supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR)) 491 == (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 492 } 493 494 extern unsigned int min_timer_period_us; 495 496 extern bool enable_vmware_backdoor; 497 498 extern int pi_inject_timer; 499 500 extern bool report_ignored_msrs; 501 502 extern bool eager_page_split; 503 504 static inline void kvm_pr_unimpl_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 505 { 506 if (report_ignored_msrs) 507 vcpu_unimpl(vcpu, "Unhandled WRMSR(0x%x) = 0x%llx\n", msr, data); 508 } 509 510 static inline void kvm_pr_unimpl_rdmsr(struct kvm_vcpu *vcpu, u32 msr) 511 { 512 if (report_ignored_msrs) 513 vcpu_unimpl(vcpu, "Unhandled RDMSR(0x%x)\n", msr); 514 } 515 516 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 517 { 518 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 519 vcpu->arch.virtual_tsc_shift); 520 } 521 522 /* Same "calling convention" as do_div: 523 * - divide (n << 32) by base 524 * - put result in n 525 * - return remainder 526 */ 527 #define do_shl32_div32(n, base) \ 528 ({ \ 529 u32 __quot, __rem; \ 530 asm("divl %2" : "=a" (__quot), "=d" (__rem) \ 531 : "rm" (base), "0" (0), "1" ((u32) n)); \ 532 n = __quot; \ 533 __rem; \ 534 }) 535 536 static inline void kvm_disable_exits(struct kvm *kvm, u64 mask) 537 { 538 kvm->arch.disabled_exits |= mask; 539 } 540 541 static inline bool kvm_mwait_in_guest(struct kvm *kvm) 542 { 543 return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_MWAIT; 544 } 545 546 static inline bool kvm_hlt_in_guest(struct kvm *kvm) 547 { 548 return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_HLT; 549 } 550 551 static inline bool kvm_pause_in_guest(struct kvm *kvm) 552 { 553 return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_PAUSE; 554 } 555 556 static inline bool kvm_cstate_in_guest(struct kvm *kvm) 557 { 558 return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_CSTATE; 559 } 560 561 static inline bool kvm_aperfmperf_in_guest(struct kvm *kvm) 562 { 563 return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_APERFMPERF; 564 } 565 566 static inline bool kvm_notify_vmexit_enabled(struct kvm *kvm) 567 { 568 return kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_ENABLED; 569 } 570 571 static __always_inline void kvm_before_interrupt(struct kvm_vcpu *vcpu, 572 enum kvm_intr_type intr) 573 { 574 WRITE_ONCE(vcpu->arch.handling_intr_from_guest, (u8)intr); 575 } 576 577 static __always_inline void kvm_after_interrupt(struct kvm_vcpu *vcpu) 578 { 579 WRITE_ONCE(vcpu->arch.handling_intr_from_guest, 0); 580 } 581 582 static inline bool kvm_handling_nmi_from_guest(struct kvm_vcpu *vcpu) 583 { 584 return vcpu->arch.handling_intr_from_guest == KVM_HANDLING_NMI; 585 } 586 587 static inline bool kvm_pat_valid(u64 data) 588 { 589 if (data & 0xF8F8F8F8F8F8F8F8ull) 590 return false; 591 /* 0, 1, 4, 5, 6, 7 are valid values. */ 592 return (data | ((data & 0x0202020202020202ull) << 1)) == data; 593 } 594 595 static inline bool kvm_dr7_valid(u64 data) 596 { 597 /* Bits [63:32] are reserved */ 598 return !(data >> 32); 599 } 600 static inline bool kvm_dr6_valid(u64 data) 601 { 602 /* Bits [63:32] are reserved */ 603 return !(data >> 32); 604 } 605 606 /* 607 * Trigger machine check on the host. We assume all the MSRs are already set up 608 * by the CPU and that we still run on the same CPU as the MCE occurred on. 609 * We pass a fake environment to the machine check handler because we want 610 * the guest to be always treated like user space, no matter what context 611 * it used internally. 612 */ 613 static inline void kvm_machine_check(void) 614 { 615 #if defined(CONFIG_X86_MCE) 616 struct pt_regs regs = { 617 .cs = 3, /* Fake ring 3 no matter what the guest ran on */ 618 .flags = X86_EFLAGS_IF, 619 }; 620 621 do_machine_check(®s); 622 #endif 623 } 624 625 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu); 626 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu); 627 int kvm_spec_ctrl_test_value(u64 value); 628 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 629 struct x86_exception *e); 630 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva); 631 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type); 632 633 enum kvm_msr_access { 634 MSR_TYPE_R = BIT(0), 635 MSR_TYPE_W = BIT(1), 636 MSR_TYPE_RW = MSR_TYPE_R | MSR_TYPE_W, 637 }; 638 639 /* 640 * Internal error codes that are used to indicate that MSR emulation encountered 641 * an error that should result in #GP in the guest, unless userspace handles it. 642 * Note, '1', '0', and negative numbers are off limits, as they are used by KVM 643 * as part of KVM's lightly documented internal KVM_RUN return codes. 644 * 645 * UNSUPPORTED - The MSR isn't supported, either because it is completely 646 * unknown to KVM, or because the MSR should not exist according 647 * to the vCPU model. 648 * 649 * FILTERED - Access to the MSR is denied by a userspace MSR filter. 650 */ 651 #define KVM_MSR_RET_UNSUPPORTED 2 652 #define KVM_MSR_RET_FILTERED 3 653 654 static inline bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 655 { 656 return !(cr4 & vcpu->arch.cr4_guest_rsvd_bits); 657 } 658 659 #define __cr4_reserved_bits(__cpu_has, __c) \ 660 ({ \ 661 u64 __reserved_bits = CR4_RESERVED_BITS; \ 662 \ 663 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \ 664 __reserved_bits |= X86_CR4_OSXSAVE; \ 665 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \ 666 __reserved_bits |= X86_CR4_SMEP; \ 667 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \ 668 __reserved_bits |= X86_CR4_SMAP; \ 669 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \ 670 __reserved_bits |= X86_CR4_FSGSBASE; \ 671 if (!__cpu_has(__c, X86_FEATURE_PKU)) \ 672 __reserved_bits |= X86_CR4_PKE; \ 673 if (!__cpu_has(__c, X86_FEATURE_LA57)) \ 674 __reserved_bits |= X86_CR4_LA57; \ 675 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \ 676 __reserved_bits |= X86_CR4_UMIP; \ 677 if (!__cpu_has(__c, X86_FEATURE_VMX)) \ 678 __reserved_bits |= X86_CR4_VMXE; \ 679 if (!__cpu_has(__c, X86_FEATURE_PCID)) \ 680 __reserved_bits |= X86_CR4_PCIDE; \ 681 if (!__cpu_has(__c, X86_FEATURE_LAM)) \ 682 __reserved_bits |= X86_CR4_LAM_SUP; \ 683 if (!__cpu_has(__c, X86_FEATURE_SHSTK) && \ 684 !__cpu_has(__c, X86_FEATURE_IBT)) \ 685 __reserved_bits |= X86_CR4_CET; \ 686 __reserved_bits; \ 687 }) 688 689 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes, 690 void *dst); 691 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes, 692 void *dst); 693 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 694 unsigned int port, void *data, unsigned int count, 695 int in); 696 697 static inline bool user_exit_on_hypercall(struct kvm *kvm, unsigned long hc_nr) 698 { 699 return kvm->arch.hypercall_exit_enabled & BIT(hc_nr); 700 } 701 702 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl, 703 int (*complete_hypercall)(struct kvm_vcpu *)); 704 705 #define __kvm_emulate_hypercall(_vcpu, cpl, complete_hypercall) \ 706 ({ \ 707 int __ret; \ 708 __ret = ____kvm_emulate_hypercall(_vcpu, cpl, complete_hypercall); \ 709 \ 710 if (__ret > 0) \ 711 __ret = complete_hypercall(_vcpu); \ 712 __ret; \ 713 }) 714 715 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 716 717 #define CET_US_RESERVED_BITS GENMASK(9, 6) 718 #define CET_US_SHSTK_MASK_BITS GENMASK(1, 0) 719 #define CET_US_IBT_MASK_BITS (GENMASK_ULL(5, 2) | GENMASK_ULL(63, 10)) 720 #define CET_US_LEGACY_BITMAP_BASE(data) ((data) >> 12) 721 722 static inline bool kvm_is_valid_u_s_cet(struct kvm_vcpu *vcpu, u64 data) 723 { 724 if (data & CET_US_RESERVED_BITS) 725 return false; 726 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) && 727 (data & CET_US_SHSTK_MASK_BITS)) 728 return false; 729 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) && 730 (data & CET_US_IBT_MASK_BITS)) 731 return false; 732 if (!IS_ALIGNED(CET_US_LEGACY_BITMAP_BASE(data), 4)) 733 return false; 734 /* IBT can be suppressed iff the TRACKER isn't WAIT_ENDBR. */ 735 if ((data & CET_SUPPRESS) && (data & CET_WAIT_ENDBR)) 736 return false; 737 738 return true; 739 } 740 #endif 741