1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef ARCH_X86_KVM_X86_H 3 #define ARCH_X86_KVM_X86_H 4 5 #include <linux/kvm_host.h> 6 #include <asm/fpu/xstate.h> 7 #include <asm/mce.h> 8 #include <asm/pvclock.h> 9 #include "kvm_cache_regs.h" 10 #include "kvm_emulate.h" 11 #include "cpuid.h" 12 13 struct kvm_caps { 14 /* control of guest tsc rate supported? */ 15 bool has_tsc_control; 16 /* maximum supported tsc_khz for guests */ 17 u32 max_guest_tsc_khz; 18 /* number of bits of the fractional part of the TSC scaling ratio */ 19 u8 tsc_scaling_ratio_frac_bits; 20 /* maximum allowed value of TSC scaling ratio */ 21 u64 max_tsc_scaling_ratio; 22 /* 1ull << kvm_caps.tsc_scaling_ratio_frac_bits */ 23 u64 default_tsc_scaling_ratio; 24 /* bus lock detection supported? */ 25 bool has_bus_lock_exit; 26 /* notify VM exit supported? */ 27 bool has_notify_vmexit; 28 /* bit mask of VM types */ 29 u32 supported_vm_types; 30 31 u64 supported_mce_cap; 32 u64 supported_xcr0; 33 u64 supported_xss; 34 u64 supported_perf_cap; 35 }; 36 37 struct kvm_host_values { 38 /* 39 * The host's raw MAXPHYADDR, i.e. the number of non-reserved physical 40 * address bits irrespective of features that repurpose legal bits, 41 * e.g. MKTME. 42 */ 43 u8 maxphyaddr; 44 45 u64 efer; 46 u64 xcr0; 47 u64 xss; 48 u64 arch_capabilities; 49 }; 50 51 void kvm_spurious_fault(void); 52 53 #define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check) \ 54 ({ \ 55 bool failed = (consistency_check); \ 56 if (failed) \ 57 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \ 58 failed; \ 59 }) 60 61 /* 62 * The first...last VMX feature MSRs that are emulated by KVM. This may or may 63 * not cover all known VMX MSRs, as KVM doesn't emulate an MSR until there's an 64 * associated feature that KVM supports for nested virtualization. 65 */ 66 #define KVM_FIRST_EMULATED_VMX_MSR MSR_IA32_VMX_BASIC 67 #define KVM_LAST_EMULATED_VMX_MSR MSR_IA32_VMX_VMFUNC 68 69 #define KVM_DEFAULT_PLE_GAP 128 70 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096 71 #define KVM_DEFAULT_PLE_WINDOW_GROW 2 72 #define KVM_DEFAULT_PLE_WINDOW_SHRINK 0 73 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX UINT_MAX 74 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX USHRT_MAX 75 #define KVM_SVM_DEFAULT_PLE_WINDOW 3000 76 77 static inline unsigned int __grow_ple_window(unsigned int val, 78 unsigned int base, unsigned int modifier, unsigned int max) 79 { 80 u64 ret = val; 81 82 if (modifier < 1) 83 return base; 84 85 if (modifier < base) 86 ret *= modifier; 87 else 88 ret += modifier; 89 90 return min(ret, (u64)max); 91 } 92 93 static inline unsigned int __shrink_ple_window(unsigned int val, 94 unsigned int base, unsigned int modifier, unsigned int min) 95 { 96 if (modifier < 1) 97 return base; 98 99 if (modifier < base) 100 val /= modifier; 101 else 102 val -= modifier; 103 104 return max(val, min); 105 } 106 107 #define MSR_IA32_CR_PAT_DEFAULT \ 108 PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC) 109 110 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu); 111 int kvm_check_nested_events(struct kvm_vcpu *vcpu); 112 113 /* Forcibly leave the nested mode in cases like a vCPU reset */ 114 static inline void kvm_leave_nested(struct kvm_vcpu *vcpu) 115 { 116 kvm_x86_ops.nested_ops->leave_nested(vcpu); 117 } 118 119 static inline bool kvm_vcpu_has_run(struct kvm_vcpu *vcpu) 120 { 121 return vcpu->arch.last_vmentry_cpu != -1; 122 } 123 124 static inline bool kvm_is_exception_pending(struct kvm_vcpu *vcpu) 125 { 126 return vcpu->arch.exception.pending || 127 vcpu->arch.exception_vmexit.pending || 128 kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 129 } 130 131 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu) 132 { 133 vcpu->arch.exception.pending = false; 134 vcpu->arch.exception.injected = false; 135 vcpu->arch.exception_vmexit.pending = false; 136 } 137 138 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector, 139 bool soft) 140 { 141 vcpu->arch.interrupt.injected = true; 142 vcpu->arch.interrupt.soft = soft; 143 vcpu->arch.interrupt.nr = vector; 144 } 145 146 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu) 147 { 148 vcpu->arch.interrupt.injected = false; 149 } 150 151 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu) 152 { 153 return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected || 154 vcpu->arch.nmi_injected; 155 } 156 157 static inline bool kvm_exception_is_soft(unsigned int nr) 158 { 159 return (nr == BP_VECTOR) || (nr == OF_VECTOR); 160 } 161 162 static inline bool is_protmode(struct kvm_vcpu *vcpu) 163 { 164 return kvm_is_cr0_bit_set(vcpu, X86_CR0_PE); 165 } 166 167 static inline bool is_long_mode(struct kvm_vcpu *vcpu) 168 { 169 #ifdef CONFIG_X86_64 170 return !!(vcpu->arch.efer & EFER_LMA); 171 #else 172 return false; 173 #endif 174 } 175 176 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu) 177 { 178 int cs_db, cs_l; 179 180 WARN_ON_ONCE(vcpu->arch.guest_state_protected); 181 182 if (!is_long_mode(vcpu)) 183 return false; 184 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 185 return cs_l; 186 } 187 188 static inline bool is_64_bit_hypercall(struct kvm_vcpu *vcpu) 189 { 190 /* 191 * If running with protected guest state, the CS register is not 192 * accessible. The hypercall register values will have had to been 193 * provided in 64-bit mode, so assume the guest is in 64-bit. 194 */ 195 return vcpu->arch.guest_state_protected || is_64_bit_mode(vcpu); 196 } 197 198 static inline bool x86_exception_has_error_code(unsigned int vector) 199 { 200 static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) | 201 BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) | 202 BIT(PF_VECTOR) | BIT(AC_VECTOR); 203 204 return (1U << vector) & exception_has_error_code; 205 } 206 207 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu) 208 { 209 return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu; 210 } 211 212 static inline bool is_pae(struct kvm_vcpu *vcpu) 213 { 214 return kvm_is_cr4_bit_set(vcpu, X86_CR4_PAE); 215 } 216 217 static inline bool is_pse(struct kvm_vcpu *vcpu) 218 { 219 return kvm_is_cr4_bit_set(vcpu, X86_CR4_PSE); 220 } 221 222 static inline bool is_paging(struct kvm_vcpu *vcpu) 223 { 224 return likely(kvm_is_cr0_bit_set(vcpu, X86_CR0_PG)); 225 } 226 227 static inline bool is_pae_paging(struct kvm_vcpu *vcpu) 228 { 229 return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu); 230 } 231 232 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu) 233 { 234 return kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 57 : 48; 235 } 236 237 static inline u8 max_host_virt_addr_bits(void) 238 { 239 return kvm_cpu_cap_has(X86_FEATURE_LA57) ? 57 : 48; 240 } 241 242 /* 243 * x86 MSRs which contain linear addresses, x86 hidden segment bases, and 244 * IDT/GDT bases have static canonicality checks, the size of which depends 245 * only on the CPU's support for 5-level paging, rather than on the state of 246 * CR4.LA57. This applies to both WRMSR and to other instructions that set 247 * their values, e.g. SGDT. 248 * 249 * KVM passes through most of these MSRS and also doesn't intercept the 250 * instructions that set the hidden segment bases. 251 * 252 * Because of this, to be consistent with hardware, even if the guest doesn't 253 * have LA57 enabled in its CPUID, perform canonicality checks based on *host* 254 * support for 5 level paging. 255 * 256 * Finally, instructions which are related to MMU invalidation of a given 257 * linear address, also have a similar static canonical check on address. 258 * This allows for example to invalidate 5-level addresses of a guest from a 259 * host which uses 4-level paging. 260 */ 261 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu, 262 unsigned int flags) 263 { 264 if (flags & (X86EMUL_F_INVLPG | X86EMUL_F_MSR | X86EMUL_F_DT_LOAD)) 265 return !__is_canonical_address(la, max_host_virt_addr_bits()); 266 else 267 return !__is_canonical_address(la, vcpu_virt_addr_bits(vcpu)); 268 } 269 270 static inline bool is_noncanonical_msr_address(u64 la, struct kvm_vcpu *vcpu) 271 { 272 return is_noncanonical_address(la, vcpu, X86EMUL_F_MSR); 273 } 274 275 static inline bool is_noncanonical_base_address(u64 la, struct kvm_vcpu *vcpu) 276 { 277 return is_noncanonical_address(la, vcpu, X86EMUL_F_DT_LOAD); 278 } 279 280 static inline bool is_noncanonical_invlpg_address(u64 la, struct kvm_vcpu *vcpu) 281 { 282 return is_noncanonical_address(la, vcpu, X86EMUL_F_INVLPG); 283 } 284 285 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu, 286 gva_t gva, gfn_t gfn, unsigned access) 287 { 288 u64 gen = kvm_memslots(vcpu->kvm)->generation; 289 290 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 291 return; 292 293 /* 294 * If this is a shadow nested page table, the "GVA" is 295 * actually a nGPA. 296 */ 297 vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK; 298 vcpu->arch.mmio_access = access; 299 vcpu->arch.mmio_gfn = gfn; 300 vcpu->arch.mmio_gen = gen; 301 } 302 303 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu) 304 { 305 return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation; 306 } 307 308 /* 309 * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we 310 * clear all mmio cache info. 311 */ 312 #define MMIO_GVA_ANY (~(gva_t)0) 313 314 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva) 315 { 316 if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK)) 317 return; 318 319 vcpu->arch.mmio_gva = 0; 320 } 321 322 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva) 323 { 324 if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva && 325 vcpu->arch.mmio_gva == (gva & PAGE_MASK)) 326 return true; 327 328 return false; 329 } 330 331 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) 332 { 333 if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn && 334 vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT) 335 return true; 336 337 return false; 338 } 339 340 static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg) 341 { 342 unsigned long val = kvm_register_read_raw(vcpu, reg); 343 344 return is_64_bit_mode(vcpu) ? val : (u32)val; 345 } 346 347 static inline void kvm_register_write(struct kvm_vcpu *vcpu, 348 int reg, unsigned long val) 349 { 350 if (!is_64_bit_mode(vcpu)) 351 val = (u32)val; 352 return kvm_register_write_raw(vcpu, reg, val); 353 } 354 355 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk) 356 { 357 return !(kvm->arch.disabled_quirks & quirk); 358 } 359 360 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip); 361 362 u64 get_kvmclock_ns(struct kvm *kvm); 363 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm); 364 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp); 365 366 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 367 gva_t addr, void *val, unsigned int bytes, 368 struct x86_exception *exception); 369 370 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, 371 gva_t addr, void *val, unsigned int bytes, 372 struct x86_exception *exception); 373 374 int handle_ud(struct kvm_vcpu *vcpu); 375 376 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 377 struct kvm_queued_exception *ex); 378 379 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data); 380 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata); 381 bool kvm_vector_hashing_enabled(void); 382 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code); 383 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 384 void *insn, int insn_len); 385 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 386 int emulation_type, void *insn, int insn_len); 387 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu); 388 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu); 389 390 extern struct kvm_caps kvm_caps; 391 extern struct kvm_host_values kvm_host; 392 393 extern bool enable_pmu; 394 395 /* 396 * Get a filtered version of KVM's supported XCR0 that strips out dynamic 397 * features for which the current process doesn't (yet) have permission to use. 398 * This is intended to be used only when enumerating support to userspace, 399 * e.g. in KVM_GET_SUPPORTED_CPUID and KVM_CAP_XSAVE2, it does NOT need to be 400 * used to check/restrict guest behavior as KVM rejects KVM_SET_CPUID{2} if 401 * userspace attempts to enable unpermitted features. 402 */ 403 static inline u64 kvm_get_filtered_xcr0(void) 404 { 405 u64 permitted_xcr0 = kvm_caps.supported_xcr0; 406 407 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA); 408 409 if (permitted_xcr0 & XFEATURE_MASK_USER_DYNAMIC) { 410 permitted_xcr0 &= xstate_get_guest_group_perm(); 411 412 /* 413 * Treat XTILE_CFG as unsupported if the current process isn't 414 * allowed to use XTILE_DATA, as attempting to set XTILE_CFG in 415 * XCR0 without setting XTILE_DATA is architecturally illegal. 416 */ 417 if (!(permitted_xcr0 & XFEATURE_MASK_XTILE_DATA)) 418 permitted_xcr0 &= ~XFEATURE_MASK_XTILE_CFG; 419 } 420 return permitted_xcr0; 421 } 422 423 static inline bool kvm_mpx_supported(void) 424 { 425 return (kvm_caps.supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR)) 426 == (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 427 } 428 429 extern unsigned int min_timer_period_us; 430 431 extern bool enable_vmware_backdoor; 432 433 extern int pi_inject_timer; 434 435 extern bool report_ignored_msrs; 436 437 extern bool eager_page_split; 438 439 static inline void kvm_pr_unimpl_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 440 { 441 if (report_ignored_msrs) 442 vcpu_unimpl(vcpu, "Unhandled WRMSR(0x%x) = 0x%llx\n", msr, data); 443 } 444 445 static inline void kvm_pr_unimpl_rdmsr(struct kvm_vcpu *vcpu, u32 msr) 446 { 447 if (report_ignored_msrs) 448 vcpu_unimpl(vcpu, "Unhandled RDMSR(0x%x)\n", msr); 449 } 450 451 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 452 { 453 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 454 vcpu->arch.virtual_tsc_shift); 455 } 456 457 /* Same "calling convention" as do_div: 458 * - divide (n << 32) by base 459 * - put result in n 460 * - return remainder 461 */ 462 #define do_shl32_div32(n, base) \ 463 ({ \ 464 u32 __quot, __rem; \ 465 asm("divl %2" : "=a" (__quot), "=d" (__rem) \ 466 : "rm" (base), "0" (0), "1" ((u32) n)); \ 467 n = __quot; \ 468 __rem; \ 469 }) 470 471 static inline bool kvm_mwait_in_guest(struct kvm *kvm) 472 { 473 return kvm->arch.mwait_in_guest; 474 } 475 476 static inline bool kvm_hlt_in_guest(struct kvm *kvm) 477 { 478 return kvm->arch.hlt_in_guest; 479 } 480 481 static inline bool kvm_pause_in_guest(struct kvm *kvm) 482 { 483 return kvm->arch.pause_in_guest; 484 } 485 486 static inline bool kvm_cstate_in_guest(struct kvm *kvm) 487 { 488 return kvm->arch.cstate_in_guest; 489 } 490 491 static inline bool kvm_notify_vmexit_enabled(struct kvm *kvm) 492 { 493 return kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_ENABLED; 494 } 495 496 static __always_inline void kvm_before_interrupt(struct kvm_vcpu *vcpu, 497 enum kvm_intr_type intr) 498 { 499 WRITE_ONCE(vcpu->arch.handling_intr_from_guest, (u8)intr); 500 } 501 502 static __always_inline void kvm_after_interrupt(struct kvm_vcpu *vcpu) 503 { 504 WRITE_ONCE(vcpu->arch.handling_intr_from_guest, 0); 505 } 506 507 static inline bool kvm_handling_nmi_from_guest(struct kvm_vcpu *vcpu) 508 { 509 return vcpu->arch.handling_intr_from_guest == KVM_HANDLING_NMI; 510 } 511 512 static inline bool kvm_pat_valid(u64 data) 513 { 514 if (data & 0xF8F8F8F8F8F8F8F8ull) 515 return false; 516 /* 0, 1, 4, 5, 6, 7 are valid values. */ 517 return (data | ((data & 0x0202020202020202ull) << 1)) == data; 518 } 519 520 static inline bool kvm_dr7_valid(u64 data) 521 { 522 /* Bits [63:32] are reserved */ 523 return !(data >> 32); 524 } 525 static inline bool kvm_dr6_valid(u64 data) 526 { 527 /* Bits [63:32] are reserved */ 528 return !(data >> 32); 529 } 530 531 /* 532 * Trigger machine check on the host. We assume all the MSRs are already set up 533 * by the CPU and that we still run on the same CPU as the MCE occurred on. 534 * We pass a fake environment to the machine check handler because we want 535 * the guest to be always treated like user space, no matter what context 536 * it used internally. 537 */ 538 static inline void kvm_machine_check(void) 539 { 540 #if defined(CONFIG_X86_MCE) 541 struct pt_regs regs = { 542 .cs = 3, /* Fake ring 3 no matter what the guest ran on */ 543 .flags = X86_EFLAGS_IF, 544 }; 545 546 do_machine_check(®s); 547 #endif 548 } 549 550 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu); 551 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu); 552 int kvm_spec_ctrl_test_value(u64 value); 553 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 554 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 555 struct x86_exception *e); 556 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva); 557 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type); 558 559 enum kvm_msr_access { 560 MSR_TYPE_R = BIT(0), 561 MSR_TYPE_W = BIT(1), 562 MSR_TYPE_RW = MSR_TYPE_R | MSR_TYPE_W, 563 }; 564 565 /* 566 * Internal error codes that are used to indicate that MSR emulation encountered 567 * an error that should result in #GP in the guest, unless userspace handles it. 568 * Note, '1', '0', and negative numbers are off limits, as they are used by KVM 569 * as part of KVM's lightly documented internal KVM_RUN return codes. 570 * 571 * UNSUPPORTED - The MSR isn't supported, either because it is completely 572 * unknown to KVM, or because the MSR should not exist according 573 * to the vCPU model. 574 * 575 * FILTERED - Access to the MSR is denied by a userspace MSR filter. 576 */ 577 #define KVM_MSR_RET_UNSUPPORTED 2 578 #define KVM_MSR_RET_FILTERED 3 579 580 #define __cr4_reserved_bits(__cpu_has, __c) \ 581 ({ \ 582 u64 __reserved_bits = CR4_RESERVED_BITS; \ 583 \ 584 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \ 585 __reserved_bits |= X86_CR4_OSXSAVE; \ 586 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \ 587 __reserved_bits |= X86_CR4_SMEP; \ 588 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \ 589 __reserved_bits |= X86_CR4_SMAP; \ 590 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \ 591 __reserved_bits |= X86_CR4_FSGSBASE; \ 592 if (!__cpu_has(__c, X86_FEATURE_PKU)) \ 593 __reserved_bits |= X86_CR4_PKE; \ 594 if (!__cpu_has(__c, X86_FEATURE_LA57)) \ 595 __reserved_bits |= X86_CR4_LA57; \ 596 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \ 597 __reserved_bits |= X86_CR4_UMIP; \ 598 if (!__cpu_has(__c, X86_FEATURE_VMX)) \ 599 __reserved_bits |= X86_CR4_VMXE; \ 600 if (!__cpu_has(__c, X86_FEATURE_PCID)) \ 601 __reserved_bits |= X86_CR4_PCIDE; \ 602 if (!__cpu_has(__c, X86_FEATURE_LAM)) \ 603 __reserved_bits |= X86_CR4_LAM_SUP; \ 604 __reserved_bits; \ 605 }) 606 607 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes, 608 void *dst); 609 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes, 610 void *dst); 611 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 612 unsigned int port, void *data, unsigned int count, 613 int in); 614 615 #endif 616