xref: /linux/arch/x86/kvm/x86.h (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_X86_H
3 #define ARCH_X86_KVM_X86_H
4 
5 #include <linux/kvm_host.h>
6 #include <asm/fpu/xstate.h>
7 #include <asm/mce.h>
8 #include <asm/pvclock.h>
9 #include "kvm_cache_regs.h"
10 #include "kvm_emulate.h"
11 #include "cpuid.h"
12 
13 struct kvm_caps {
14 	/* control of guest tsc rate supported? */
15 	bool has_tsc_control;
16 	/* maximum supported tsc_khz for guests */
17 	u32  max_guest_tsc_khz;
18 	/* number of bits of the fractional part of the TSC scaling ratio */
19 	u8   tsc_scaling_ratio_frac_bits;
20 	/* maximum allowed value of TSC scaling ratio */
21 	u64  max_tsc_scaling_ratio;
22 	/* 1ull << kvm_caps.tsc_scaling_ratio_frac_bits */
23 	u64  default_tsc_scaling_ratio;
24 	/* bus lock detection supported? */
25 	bool has_bus_lock_exit;
26 	/* notify VM exit supported? */
27 	bool has_notify_vmexit;
28 	/* bit mask of VM types */
29 	u32 supported_vm_types;
30 
31 	u64 supported_mce_cap;
32 	u64 supported_xcr0;
33 	u64 supported_xss;
34 	u64 supported_perf_cap;
35 };
36 
37 struct kvm_host_values {
38 	/*
39 	 * The host's raw MAXPHYADDR, i.e. the number of non-reserved physical
40 	 * address bits irrespective of features that repurpose legal bits,
41 	 * e.g. MKTME.
42 	 */
43 	u8 maxphyaddr;
44 
45 	u64 efer;
46 	u64 xcr0;
47 	u64 xss;
48 	u64 arch_capabilities;
49 };
50 
51 void kvm_spurious_fault(void);
52 
53 #define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check)		\
54 ({									\
55 	bool failed = (consistency_check);				\
56 	if (failed)							\
57 		trace_kvm_nested_vmenter_failed(#consistency_check, 0);	\
58 	failed;								\
59 })
60 
61 /*
62  * The first...last VMX feature MSRs that are emulated by KVM.  This may or may
63  * not cover all known VMX MSRs, as KVM doesn't emulate an MSR until there's an
64  * associated feature that KVM supports for nested virtualization.
65  */
66 #define KVM_FIRST_EMULATED_VMX_MSR	MSR_IA32_VMX_BASIC
67 #define KVM_LAST_EMULATED_VMX_MSR	MSR_IA32_VMX_VMFUNC
68 
69 #define KVM_DEFAULT_PLE_GAP		128
70 #define KVM_VMX_DEFAULT_PLE_WINDOW	4096
71 #define KVM_DEFAULT_PLE_WINDOW_GROW	2
72 #define KVM_DEFAULT_PLE_WINDOW_SHRINK	0
73 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX	UINT_MAX
74 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX	USHRT_MAX
75 #define KVM_SVM_DEFAULT_PLE_WINDOW	3000
76 
77 static inline unsigned int __grow_ple_window(unsigned int val,
78 		unsigned int base, unsigned int modifier, unsigned int max)
79 {
80 	u64 ret = val;
81 
82 	if (modifier < 1)
83 		return base;
84 
85 	if (modifier < base)
86 		ret *= modifier;
87 	else
88 		ret += modifier;
89 
90 	return min(ret, (u64)max);
91 }
92 
93 static inline unsigned int __shrink_ple_window(unsigned int val,
94 		unsigned int base, unsigned int modifier, unsigned int min)
95 {
96 	if (modifier < 1)
97 		return base;
98 
99 	if (modifier < base)
100 		val /= modifier;
101 	else
102 		val -= modifier;
103 
104 	return max(val, min);
105 }
106 
107 #define MSR_IA32_CR_PAT_DEFAULT	\
108 	PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC)
109 
110 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu);
111 int kvm_check_nested_events(struct kvm_vcpu *vcpu);
112 
113 /* Forcibly leave the nested mode in cases like a vCPU reset */
114 static inline void kvm_leave_nested(struct kvm_vcpu *vcpu)
115 {
116 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
117 }
118 
119 static inline bool kvm_vcpu_has_run(struct kvm_vcpu *vcpu)
120 {
121 	return vcpu->arch.last_vmentry_cpu != -1;
122 }
123 
124 static inline bool kvm_is_exception_pending(struct kvm_vcpu *vcpu)
125 {
126 	return vcpu->arch.exception.pending ||
127 	       vcpu->arch.exception_vmexit.pending ||
128 	       kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
129 }
130 
131 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
132 {
133 	vcpu->arch.exception.pending = false;
134 	vcpu->arch.exception.injected = false;
135 	vcpu->arch.exception_vmexit.pending = false;
136 }
137 
138 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
139 	bool soft)
140 {
141 	vcpu->arch.interrupt.injected = true;
142 	vcpu->arch.interrupt.soft = soft;
143 	vcpu->arch.interrupt.nr = vector;
144 }
145 
146 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
147 {
148 	vcpu->arch.interrupt.injected = false;
149 }
150 
151 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
152 {
153 	return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected ||
154 		vcpu->arch.nmi_injected;
155 }
156 
157 static inline bool kvm_exception_is_soft(unsigned int nr)
158 {
159 	return (nr == BP_VECTOR) || (nr == OF_VECTOR);
160 }
161 
162 static inline bool is_protmode(struct kvm_vcpu *vcpu)
163 {
164 	return kvm_is_cr0_bit_set(vcpu, X86_CR0_PE);
165 }
166 
167 static inline bool is_long_mode(struct kvm_vcpu *vcpu)
168 {
169 #ifdef CONFIG_X86_64
170 	return !!(vcpu->arch.efer & EFER_LMA);
171 #else
172 	return false;
173 #endif
174 }
175 
176 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
177 {
178 	int cs_db, cs_l;
179 
180 	WARN_ON_ONCE(vcpu->arch.guest_state_protected);
181 
182 	if (!is_long_mode(vcpu))
183 		return false;
184 	kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
185 	return cs_l;
186 }
187 
188 static inline bool is_64_bit_hypercall(struct kvm_vcpu *vcpu)
189 {
190 	/*
191 	 * If running with protected guest state, the CS register is not
192 	 * accessible. The hypercall register values will have had to been
193 	 * provided in 64-bit mode, so assume the guest is in 64-bit.
194 	 */
195 	return vcpu->arch.guest_state_protected || is_64_bit_mode(vcpu);
196 }
197 
198 static inline bool x86_exception_has_error_code(unsigned int vector)
199 {
200 	static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) |
201 			BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) |
202 			BIT(PF_VECTOR) | BIT(AC_VECTOR);
203 
204 	return (1U << vector) & exception_has_error_code;
205 }
206 
207 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
208 {
209 	return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
210 }
211 
212 static inline bool is_pae(struct kvm_vcpu *vcpu)
213 {
214 	return kvm_is_cr4_bit_set(vcpu, X86_CR4_PAE);
215 }
216 
217 static inline bool is_pse(struct kvm_vcpu *vcpu)
218 {
219 	return kvm_is_cr4_bit_set(vcpu, X86_CR4_PSE);
220 }
221 
222 static inline bool is_paging(struct kvm_vcpu *vcpu)
223 {
224 	return likely(kvm_is_cr0_bit_set(vcpu, X86_CR0_PG));
225 }
226 
227 static inline bool is_pae_paging(struct kvm_vcpu *vcpu)
228 {
229 	return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu);
230 }
231 
232 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu)
233 {
234 	return kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 57 : 48;
235 }
236 
237 static inline u8 max_host_virt_addr_bits(void)
238 {
239 	return kvm_cpu_cap_has(X86_FEATURE_LA57) ? 57 : 48;
240 }
241 
242 /*
243  * x86 MSRs which contain linear addresses, x86 hidden segment bases, and
244  * IDT/GDT bases have static canonicality checks, the size of which depends
245  * only on the CPU's support for 5-level paging, rather than on the state of
246  * CR4.LA57.  This applies to both WRMSR and to other instructions that set
247  * their values, e.g. SGDT.
248  *
249  * KVM passes through most of these MSRS and also doesn't intercept the
250  * instructions that set the hidden segment bases.
251  *
252  * Because of this, to be consistent with hardware, even if the guest doesn't
253  * have LA57 enabled in its CPUID, perform canonicality checks based on *host*
254  * support for 5 level paging.
255  *
256  * Finally, instructions which are related to MMU invalidation of a given
257  * linear address, also have a similar static canonical check on address.
258  * This allows for example to invalidate 5-level addresses of a guest from a
259  * host which uses 4-level paging.
260  */
261 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu,
262 					   unsigned int flags)
263 {
264 	if (flags & (X86EMUL_F_INVLPG | X86EMUL_F_MSR | X86EMUL_F_DT_LOAD))
265 		return !__is_canonical_address(la, max_host_virt_addr_bits());
266 	else
267 		return !__is_canonical_address(la, vcpu_virt_addr_bits(vcpu));
268 }
269 
270 static inline bool is_noncanonical_msr_address(u64 la, struct kvm_vcpu *vcpu)
271 {
272 	return is_noncanonical_address(la, vcpu, X86EMUL_F_MSR);
273 }
274 
275 static inline bool is_noncanonical_base_address(u64 la, struct kvm_vcpu *vcpu)
276 {
277 	return is_noncanonical_address(la, vcpu, X86EMUL_F_DT_LOAD);
278 }
279 
280 static inline bool is_noncanonical_invlpg_address(u64 la, struct kvm_vcpu *vcpu)
281 {
282 	return is_noncanonical_address(la, vcpu, X86EMUL_F_INVLPG);
283 }
284 
285 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
286 					gva_t gva, gfn_t gfn, unsigned access)
287 {
288 	u64 gen = kvm_memslots(vcpu->kvm)->generation;
289 
290 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
291 		return;
292 
293 	/*
294 	 * If this is a shadow nested page table, the "GVA" is
295 	 * actually a nGPA.
296 	 */
297 	vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK;
298 	vcpu->arch.mmio_access = access;
299 	vcpu->arch.mmio_gfn = gfn;
300 	vcpu->arch.mmio_gen = gen;
301 }
302 
303 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
304 {
305 	return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
306 }
307 
308 /*
309  * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
310  * clear all mmio cache info.
311  */
312 #define MMIO_GVA_ANY (~(gva_t)0)
313 
314 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
315 {
316 	if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
317 		return;
318 
319 	vcpu->arch.mmio_gva = 0;
320 }
321 
322 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
323 {
324 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
325 	      vcpu->arch.mmio_gva == (gva & PAGE_MASK))
326 		return true;
327 
328 	return false;
329 }
330 
331 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
332 {
333 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
334 	      vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
335 		return true;
336 
337 	return false;
338 }
339 
340 static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg)
341 {
342 	unsigned long val = kvm_register_read_raw(vcpu, reg);
343 
344 	return is_64_bit_mode(vcpu) ? val : (u32)val;
345 }
346 
347 static inline void kvm_register_write(struct kvm_vcpu *vcpu,
348 				       int reg, unsigned long val)
349 {
350 	if (!is_64_bit_mode(vcpu))
351 		val = (u32)val;
352 	return kvm_register_write_raw(vcpu, reg, val);
353 }
354 
355 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
356 {
357 	return !(kvm->arch.disabled_quirks & quirk);
358 }
359 
360 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
361 
362 u64 get_kvmclock_ns(struct kvm *kvm);
363 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm);
364 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp);
365 
366 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
367 	gva_t addr, void *val, unsigned int bytes,
368 	struct x86_exception *exception);
369 
370 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
371 	gva_t addr, void *val, unsigned int bytes,
372 	struct x86_exception *exception);
373 
374 int handle_ud(struct kvm_vcpu *vcpu);
375 
376 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
377 				   struct kvm_queued_exception *ex);
378 
379 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
380 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
381 bool kvm_vector_hashing_enabled(void);
382 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code);
383 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
384 				    void *insn, int insn_len);
385 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
386 			    int emulation_type, void *insn, int insn_len);
387 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu);
388 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu);
389 
390 extern struct kvm_caps kvm_caps;
391 extern struct kvm_host_values kvm_host;
392 
393 extern bool enable_pmu;
394 
395 /*
396  * Get a filtered version of KVM's supported XCR0 that strips out dynamic
397  * features for which the current process doesn't (yet) have permission to use.
398  * This is intended to be used only when enumerating support to userspace,
399  * e.g. in KVM_GET_SUPPORTED_CPUID and KVM_CAP_XSAVE2, it does NOT need to be
400  * used to check/restrict guest behavior as KVM rejects KVM_SET_CPUID{2} if
401  * userspace attempts to enable unpermitted features.
402  */
403 static inline u64 kvm_get_filtered_xcr0(void)
404 {
405 	u64 permitted_xcr0 = kvm_caps.supported_xcr0;
406 
407 	BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
408 
409 	if (permitted_xcr0 & XFEATURE_MASK_USER_DYNAMIC) {
410 		permitted_xcr0 &= xstate_get_guest_group_perm();
411 
412 		/*
413 		 * Treat XTILE_CFG as unsupported if the current process isn't
414 		 * allowed to use XTILE_DATA, as attempting to set XTILE_CFG in
415 		 * XCR0 without setting XTILE_DATA is architecturally illegal.
416 		 */
417 		if (!(permitted_xcr0 & XFEATURE_MASK_XTILE_DATA))
418 			permitted_xcr0 &= ~XFEATURE_MASK_XTILE_CFG;
419 	}
420 	return permitted_xcr0;
421 }
422 
423 static inline bool kvm_mpx_supported(void)
424 {
425 	return (kvm_caps.supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
426 		== (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
427 }
428 
429 extern unsigned int min_timer_period_us;
430 
431 extern bool enable_vmware_backdoor;
432 
433 extern int pi_inject_timer;
434 
435 extern bool report_ignored_msrs;
436 
437 extern bool eager_page_split;
438 
439 static inline void kvm_pr_unimpl_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
440 {
441 	if (report_ignored_msrs)
442 		vcpu_unimpl(vcpu, "Unhandled WRMSR(0x%x) = 0x%llx\n", msr, data);
443 }
444 
445 static inline void kvm_pr_unimpl_rdmsr(struct kvm_vcpu *vcpu, u32 msr)
446 {
447 	if (report_ignored_msrs)
448 		vcpu_unimpl(vcpu, "Unhandled RDMSR(0x%x)\n", msr);
449 }
450 
451 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
452 {
453 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
454 				   vcpu->arch.virtual_tsc_shift);
455 }
456 
457 /* Same "calling convention" as do_div:
458  * - divide (n << 32) by base
459  * - put result in n
460  * - return remainder
461  */
462 #define do_shl32_div32(n, base)					\
463 	({							\
464 	    u32 __quot, __rem;					\
465 	    asm("divl %2" : "=a" (__quot), "=d" (__rem)		\
466 			: "rm" (base), "0" (0), "1" ((u32) n));	\
467 	    n = __quot;						\
468 	    __rem;						\
469 	 })
470 
471 static inline bool kvm_mwait_in_guest(struct kvm *kvm)
472 {
473 	return kvm->arch.mwait_in_guest;
474 }
475 
476 static inline bool kvm_hlt_in_guest(struct kvm *kvm)
477 {
478 	return kvm->arch.hlt_in_guest;
479 }
480 
481 static inline bool kvm_pause_in_guest(struct kvm *kvm)
482 {
483 	return kvm->arch.pause_in_guest;
484 }
485 
486 static inline bool kvm_cstate_in_guest(struct kvm *kvm)
487 {
488 	return kvm->arch.cstate_in_guest;
489 }
490 
491 static inline bool kvm_notify_vmexit_enabled(struct kvm *kvm)
492 {
493 	return kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_ENABLED;
494 }
495 
496 static __always_inline void kvm_before_interrupt(struct kvm_vcpu *vcpu,
497 						 enum kvm_intr_type intr)
498 {
499 	WRITE_ONCE(vcpu->arch.handling_intr_from_guest, (u8)intr);
500 }
501 
502 static __always_inline void kvm_after_interrupt(struct kvm_vcpu *vcpu)
503 {
504 	WRITE_ONCE(vcpu->arch.handling_intr_from_guest, 0);
505 }
506 
507 static inline bool kvm_handling_nmi_from_guest(struct kvm_vcpu *vcpu)
508 {
509 	return vcpu->arch.handling_intr_from_guest == KVM_HANDLING_NMI;
510 }
511 
512 static inline bool kvm_pat_valid(u64 data)
513 {
514 	if (data & 0xF8F8F8F8F8F8F8F8ull)
515 		return false;
516 	/* 0, 1, 4, 5, 6, 7 are valid values.  */
517 	return (data | ((data & 0x0202020202020202ull) << 1)) == data;
518 }
519 
520 static inline bool kvm_dr7_valid(u64 data)
521 {
522 	/* Bits [63:32] are reserved */
523 	return !(data >> 32);
524 }
525 static inline bool kvm_dr6_valid(u64 data)
526 {
527 	/* Bits [63:32] are reserved */
528 	return !(data >> 32);
529 }
530 
531 /*
532  * Trigger machine check on the host. We assume all the MSRs are already set up
533  * by the CPU and that we still run on the same CPU as the MCE occurred on.
534  * We pass a fake environment to the machine check handler because we want
535  * the guest to be always treated like user space, no matter what context
536  * it used internally.
537  */
538 static inline void kvm_machine_check(void)
539 {
540 #if defined(CONFIG_X86_MCE)
541 	struct pt_regs regs = {
542 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
543 		.flags = X86_EFLAGS_IF,
544 	};
545 
546 	do_machine_check(&regs);
547 #endif
548 }
549 
550 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu);
551 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu);
552 int kvm_spec_ctrl_test_value(u64 value);
553 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
554 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
555 			      struct x86_exception *e);
556 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva);
557 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type);
558 
559 enum kvm_msr_access {
560 	MSR_TYPE_R	= BIT(0),
561 	MSR_TYPE_W	= BIT(1),
562 	MSR_TYPE_RW	= MSR_TYPE_R | MSR_TYPE_W,
563 };
564 
565 /*
566  * Internal error codes that are used to indicate that MSR emulation encountered
567  * an error that should result in #GP in the guest, unless userspace handles it.
568  * Note, '1', '0', and negative numbers are off limits, as they are used by KVM
569  * as part of KVM's lightly documented internal KVM_RUN return codes.
570  *
571  * UNSUPPORTED	- The MSR isn't supported, either because it is completely
572  *		  unknown to KVM, or because the MSR should not exist according
573  *		  to the vCPU model.
574  *
575  * FILTERED	- Access to the MSR is denied by a userspace MSR filter.
576  */
577 #define  KVM_MSR_RET_UNSUPPORTED	2
578 #define  KVM_MSR_RET_FILTERED		3
579 
580 #define __cr4_reserved_bits(__cpu_has, __c)             \
581 ({                                                      \
582 	u64 __reserved_bits = CR4_RESERVED_BITS;        \
583                                                         \
584 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))         \
585 		__reserved_bits |= X86_CR4_OSXSAVE;     \
586 	if (!__cpu_has(__c, X86_FEATURE_SMEP))          \
587 		__reserved_bits |= X86_CR4_SMEP;        \
588 	if (!__cpu_has(__c, X86_FEATURE_SMAP))          \
589 		__reserved_bits |= X86_CR4_SMAP;        \
590 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))      \
591 		__reserved_bits |= X86_CR4_FSGSBASE;    \
592 	if (!__cpu_has(__c, X86_FEATURE_PKU))           \
593 		__reserved_bits |= X86_CR4_PKE;         \
594 	if (!__cpu_has(__c, X86_FEATURE_LA57))          \
595 		__reserved_bits |= X86_CR4_LA57;        \
596 	if (!__cpu_has(__c, X86_FEATURE_UMIP))          \
597 		__reserved_bits |= X86_CR4_UMIP;        \
598 	if (!__cpu_has(__c, X86_FEATURE_VMX))           \
599 		__reserved_bits |= X86_CR4_VMXE;        \
600 	if (!__cpu_has(__c, X86_FEATURE_PCID))          \
601 		__reserved_bits |= X86_CR4_PCIDE;       \
602 	if (!__cpu_has(__c, X86_FEATURE_LAM))           \
603 		__reserved_bits |= X86_CR4_LAM_SUP;     \
604 	__reserved_bits;                                \
605 })
606 
607 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
608 			  void *dst);
609 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
610 			 void *dst);
611 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
612 			 unsigned int port, void *data,  unsigned int count,
613 			 int in);
614 
615 #endif
616