xref: /linux/arch/x86/kvm/x86.c (revision f88c3fb81c4badb46c2fef7d168ff138043e86bb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94 
95 struct kvm_caps kvm_caps __read_mostly = {
96 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99 
100 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101 
102 #define emul_to_vcpu(ctxt) \
103 	((struct kvm_vcpu *)(ctxt)->vcpu)
104 
105 /* EFER defaults:
106  * - enable syscall per default because its emulated by KVM
107  * - enable LME and LMA per default on 64 bit KVM
108  */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115 
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117 
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119 
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121 
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124 
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131 
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134 
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137 
138 #define KVM_X86_OP(func)					     \
139 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
140 				*(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146 
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, 0644);
149 
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, 0644);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153 
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, 0644);
156 
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, 0444);
159 
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, 0644);
163 
164 /*
165  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167  * advancement entirely.  Any other value is used as-is and disables adaptive
168  * tuning, i.e. allows privileged userspace to set an exact advancement time.
169  */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, 0644);
172 
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, 0444);
175 
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, 0444);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179 
180 /*
181  * Flags to manipulate forced emulation behavior (any non-zero value will
182  * enable forced emulation).
183  */
184 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187 
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, 0644);
190 
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195 
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198 
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202 
203 /*
204  * Restoring the host value for MSRs that are only consumed when running in
205  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206  * returns to userspace, i.e. the kernel can run with the guest's value.
207  */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209 
210 struct kvm_user_return_msrs {
211 	struct user_return_notifier urn;
212 	bool registered;
213 	struct kvm_user_return_msr_values {
214 		u64 host;
215 		u64 curr;
216 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218 
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223 
224 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228 
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231 
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234 
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237 
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240 
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243 
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 	KVM_GENERIC_VM_STATS(),
246 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 	STATS_DESC_COUNTER(VM, mmu_pte_write),
248 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 	STATS_DESC_COUNTER(VM, mmu_flooded),
250 	STATS_DESC_COUNTER(VM, mmu_recycled),
251 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 	STATS_DESC_ICOUNTER(VM, pages_4k),
254 	STATS_DESC_ICOUNTER(VM, pages_2m),
255 	STATS_DESC_ICOUNTER(VM, pages_1g),
256 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260 
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 	.name_size = KVM_STATS_NAME_SIZE,
263 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 	.id_offset = sizeof(struct kvm_stats_header),
265 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 		       sizeof(kvm_vm_stats_desc),
268 };
269 
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 	KVM_GENERIC_VCPU_STATS(),
272 	STATS_DESC_COUNTER(VCPU, pf_taken),
273 	STATS_DESC_COUNTER(VCPU, pf_fixed),
274 	STATS_DESC_COUNTER(VCPU, pf_emulate),
275 	STATS_DESC_COUNTER(VCPU, pf_spurious),
276 	STATS_DESC_COUNTER(VCPU, pf_fast),
277 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 	STATS_DESC_COUNTER(VCPU, pf_guest),
279 	STATS_DESC_COUNTER(VCPU, tlb_flush),
280 	STATS_DESC_COUNTER(VCPU, invlpg),
281 	STATS_DESC_COUNTER(VCPU, exits),
282 	STATS_DESC_COUNTER(VCPU, io_exits),
283 	STATS_DESC_COUNTER(VCPU, mmio_exits),
284 	STATS_DESC_COUNTER(VCPU, signal_exits),
285 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 	STATS_DESC_COUNTER(VCPU, l1d_flush),
288 	STATS_DESC_COUNTER(VCPU, halt_exits),
289 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 	STATS_DESC_COUNTER(VCPU, irq_exits),
291 	STATS_DESC_COUNTER(VCPU, host_state_reload),
292 	STATS_DESC_COUNTER(VCPU, fpu_reload),
293 	STATS_DESC_COUNTER(VCPU, insn_emulation),
294 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 	STATS_DESC_COUNTER(VCPU, hypercalls),
296 	STATS_DESC_COUNTER(VCPU, irq_injections),
297 	STATS_DESC_COUNTER(VCPU, nmi_injections),
298 	STATS_DESC_COUNTER(VCPU, req_event),
299 	STATS_DESC_COUNTER(VCPU, nested_run),
300 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 	STATS_DESC_COUNTER(VCPU, preemption_reported),
303 	STATS_DESC_COUNTER(VCPU, preemption_other),
304 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307 
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 	.name_size = KVM_STATS_NAME_SIZE,
310 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 	.id_offset = sizeof(struct kvm_stats_header),
312 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 		       sizeof(kvm_vcpu_stats_desc),
315 };
316 
317 u64 __read_mostly host_xcr0;
318 
319 static struct kmem_cache *x86_emulator_cache;
320 
321 /*
322  * When called, it means the previous get/set msr reached an invalid msr.
323  * Return true if we want to ignore/silent this failed msr access.
324  */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 	const char *op = write ? "wrmsr" : "rdmsr";
328 
329 	if (ignore_msrs) {
330 		if (report_ignored_msrs)
331 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 				      op, msr, data);
333 		/* Mask the error */
334 		return true;
335 	} else {
336 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 				      op, msr, data);
338 		return false;
339 	}
340 }
341 
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 	unsigned int size = sizeof(struct x86_emulate_ctxt);
346 
347 	return kmem_cache_create_usercopy("x86_emulator", size,
348 					  __alignof__(struct x86_emulate_ctxt),
349 					  SLAB_ACCOUNT, useroffset,
350 					  size - useroffset, NULL);
351 }
352 
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354 
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 	int i;
358 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 		vcpu->arch.apf.gfns[i] = ~0;
360 }
361 
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 	unsigned slot;
365 	struct kvm_user_return_msrs *msrs
366 		= container_of(urn, struct kvm_user_return_msrs, urn);
367 	struct kvm_user_return_msr_values *values;
368 	unsigned long flags;
369 
370 	/*
371 	 * Disabling irqs at this point since the following code could be
372 	 * interrupted and executed through kvm_arch_hardware_disable()
373 	 */
374 	local_irq_save(flags);
375 	if (msrs->registered) {
376 		msrs->registered = false;
377 		user_return_notifier_unregister(urn);
378 	}
379 	local_irq_restore(flags);
380 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 		values = &msrs->values[slot];
382 		if (values->host != values->curr) {
383 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 			values->curr = values->host;
385 		}
386 	}
387 }
388 
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 	u64 val;
392 	int ret;
393 
394 	preempt_disable();
395 	ret = rdmsrl_safe(msr, &val);
396 	if (ret)
397 		goto out;
398 	ret = wrmsrl_safe(msr, val);
399 out:
400 	preempt_enable();
401 	return ret;
402 }
403 
404 int kvm_add_user_return_msr(u32 msr)
405 {
406 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407 
408 	if (kvm_probe_user_return_msr(msr))
409 		return -1;
410 
411 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 	return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415 
416 int kvm_find_user_return_msr(u32 msr)
417 {
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		if (kvm_uret_msrs_list[i] == msr)
422 			return i;
423 	}
424 	return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427 
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 	unsigned int cpu = smp_processor_id();
431 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 	u64 value;
433 	int i;
434 
435 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 		msrs->values[i].host = value;
438 		msrs->values[i].curr = value;
439 	}
440 }
441 
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 	unsigned int cpu = smp_processor_id();
445 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 	int err;
447 
448 	value = (value & mask) | (msrs->values[slot].host & ~mask);
449 	if (value == msrs->values[slot].curr)
450 		return 0;
451 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 	if (err)
453 		return 1;
454 
455 	msrs->values[slot].curr = value;
456 	if (!msrs->registered) {
457 		msrs->urn.on_user_return = kvm_on_user_return;
458 		user_return_notifier_register(&msrs->urn);
459 		msrs->registered = true;
460 	}
461 	return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464 
465 static void drop_user_return_notifiers(void)
466 {
467 	unsigned int cpu = smp_processor_id();
468 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469 
470 	if (msrs->registered)
471 		kvm_on_user_return(&msrs->urn);
472 }
473 
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 	return vcpu->arch.apic_base;
477 }
478 
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484 
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491 
492 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 		return 1;
494 	if (!msr_info->host_initiated) {
495 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 			return 1;
497 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 			return 1;
499 	}
500 
501 	kvm_lapic_set_base(vcpu, msr_info->data);
502 	kvm_recalculate_apic_map(vcpu->kvm);
503 	return 0;
504 }
505 
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515 	/* Fault while not rebooting.  We want the trace. */
516 	BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519 
520 #define EXCPT_BENIGN		0
521 #define EXCPT_CONTRIBUTORY	1
522 #define EXCPT_PF		2
523 
524 static int exception_class(int vector)
525 {
526 	switch (vector) {
527 	case PF_VECTOR:
528 		return EXCPT_PF;
529 	case DE_VECTOR:
530 	case TS_VECTOR:
531 	case NP_VECTOR:
532 	case SS_VECTOR:
533 	case GP_VECTOR:
534 		return EXCPT_CONTRIBUTORY;
535 	default:
536 		break;
537 	}
538 	return EXCPT_BENIGN;
539 }
540 
541 #define EXCPT_FAULT		0
542 #define EXCPT_TRAP		1
543 #define EXCPT_ABORT		2
544 #define EXCPT_INTERRUPT		3
545 #define EXCPT_DB		4
546 
547 static int exception_type(int vector)
548 {
549 	unsigned int mask;
550 
551 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 		return EXCPT_INTERRUPT;
553 
554 	mask = 1 << vector;
555 
556 	/*
557 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 	 */
560 	if (mask & (1 << DB_VECTOR))
561 		return EXCPT_DB;
562 
563 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 		return EXCPT_TRAP;
565 
566 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 		return EXCPT_ABORT;
568 
569 	/* Reserved exceptions will result in fault */
570 	return EXCPT_FAULT;
571 }
572 
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 				   struct kvm_queued_exception *ex)
575 {
576 	if (!ex->has_payload)
577 		return;
578 
579 	switch (ex->vector) {
580 	case DB_VECTOR:
581 		/*
582 		 * "Certain debug exceptions may clear bit 0-3.  The
583 		 * remaining contents of the DR6 register are never
584 		 * cleared by the processor".
585 		 */
586 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 		/*
588 		 * In order to reflect the #DB exception payload in guest
589 		 * dr6, three components need to be considered: active low
590 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 		 * DR6_BS and DR6_BT)
592 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 		 * In the target guest dr6:
594 		 * FIXED_1 bits should always be set.
595 		 * Active low bits should be cleared if 1-setting in payload.
596 		 * Active high bits should be set if 1-setting in payload.
597 		 *
598 		 * Note, the payload is compatible with the pending debug
599 		 * exceptions/exit qualification under VMX, that active_low bits
600 		 * are active high in payload.
601 		 * So they need to be flipped for DR6.
602 		 */
603 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 		vcpu->arch.dr6 |= ex->payload;
605 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606 
607 		/*
608 		 * The #DB payload is defined as compatible with the 'pending
609 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 		 * defined in the 'pending debug exceptions' field (enabled
611 		 * breakpoint), it is reserved and must be zero in DR6.
612 		 */
613 		vcpu->arch.dr6 &= ~BIT(12);
614 		break;
615 	case PF_VECTOR:
616 		vcpu->arch.cr2 = ex->payload;
617 		break;
618 	}
619 
620 	ex->has_payload = false;
621 	ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624 
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 				       bool has_error_code, u32 error_code,
627 				       bool has_payload, unsigned long payload)
628 {
629 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630 
631 	ex->vector = vector;
632 	ex->injected = false;
633 	ex->pending = true;
634 	ex->has_error_code = has_error_code;
635 	ex->error_code = error_code;
636 	ex->has_payload = has_payload;
637 	ex->payload = payload;
638 }
639 
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645 
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 		unsigned nr, bool has_error, u32 error_code,
648 	        bool has_payload, unsigned long payload, bool reinject)
649 {
650 	u32 prev_nr;
651 	int class1, class2;
652 
653 	kvm_make_request(KVM_REQ_EVENT, vcpu);
654 
655 	/*
656 	 * If the exception is destined for L2 and isn't being reinjected,
657 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658 	 * previously injected exception is not checked because it was checked
659 	 * when it was original queued, and re-checking is incorrect if _L1_
660 	 * injected the exception, in which case it's exempt from interception.
661 	 */
662 	if (!reinject && is_guest_mode(vcpu) &&
663 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 					   has_payload, payload);
666 		return;
667 	}
668 
669 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 	queue:
671 		if (reinject) {
672 			/*
673 			 * On VM-Entry, an exception can be pending if and only
674 			 * if event injection was blocked by nested_run_pending.
675 			 * In that case, however, vcpu_enter_guest() requests an
676 			 * immediate exit, and the guest shouldn't proceed far
677 			 * enough to need reinjection.
678 			 */
679 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 			vcpu->arch.exception.injected = true;
681 			if (WARN_ON_ONCE(has_payload)) {
682 				/*
683 				 * A reinjected event has already
684 				 * delivered its payload.
685 				 */
686 				has_payload = false;
687 				payload = 0;
688 			}
689 		} else {
690 			vcpu->arch.exception.pending = true;
691 			vcpu->arch.exception.injected = false;
692 		}
693 		vcpu->arch.exception.has_error_code = has_error;
694 		vcpu->arch.exception.vector = nr;
695 		vcpu->arch.exception.error_code = error_code;
696 		vcpu->arch.exception.has_payload = has_payload;
697 		vcpu->arch.exception.payload = payload;
698 		if (!is_guest_mode(vcpu))
699 			kvm_deliver_exception_payload(vcpu,
700 						      &vcpu->arch.exception);
701 		return;
702 	}
703 
704 	/* to check exception */
705 	prev_nr = vcpu->arch.exception.vector;
706 	if (prev_nr == DF_VECTOR) {
707 		/* triple fault -> shutdown */
708 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 		return;
710 	}
711 	class1 = exception_class(prev_nr);
712 	class2 = exception_class(nr);
713 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 		/*
716 		 * Synthesize #DF.  Clear the previously injected or pending
717 		 * exception so as not to incorrectly trigger shutdown.
718 		 */
719 		vcpu->arch.exception.injected = false;
720 		vcpu->arch.exception.pending = false;
721 
722 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 	} else {
724 		/* replace previous exception with a new one in a hope
725 		   that instruction re-execution will regenerate lost
726 		   exception */
727 		goto queue;
728 	}
729 }
730 
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736 
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742 
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 			   unsigned long payload)
745 {
746 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749 
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 				    u32 error_code, unsigned long payload)
752 {
753 	kvm_multiple_exception(vcpu, nr, true, error_code,
754 			       true, payload, false);
755 }
756 
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 	if (err)
760 		kvm_inject_gp(vcpu, 0);
761 	else
762 		return kvm_skip_emulated_instruction(vcpu);
763 
764 	return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767 
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 	if (err) {
771 		kvm_inject_gp(vcpu, 0);
772 		return 1;
773 	}
774 
775 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 				       EMULTYPE_COMPLETE_USER_EXIT);
777 }
778 
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 	++vcpu->stat.pf_guest;
782 
783 	/*
784 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 	 * whether or not L1 wants to intercept "regular" #PF.
786 	 */
787 	if (is_guest_mode(vcpu) && fault->async_page_fault)
788 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 					   true, fault->error_code,
790 					   true, fault->address);
791 	else
792 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 					fault->address);
794 }
795 
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 				    struct x86_exception *fault)
798 {
799 	struct kvm_mmu *fault_mmu;
800 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
801 
802 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 					       vcpu->arch.walk_mmu;
804 
805 	/*
806 	 * Invalidate the TLB entry for the faulting address, if it exists,
807 	 * else the access will fault indefinitely (and to emulate hardware).
808 	 */
809 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 	    !(fault->error_code & PFERR_RSVD_MASK))
811 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 					KVM_MMU_ROOT_CURRENT);
813 
814 	fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817 
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 	atomic_inc(&vcpu->arch.nmi_queued);
821 	kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823 
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829 
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835 
836 /*
837  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838  * a #GP and return false.
839  */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 		return true;
844 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 	return false;
846 }
847 
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 		return true;
852 
853 	kvm_queue_exception(vcpu, UD_VECTOR);
854 	return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857 
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862 
863 /*
864  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865  */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 	gpa_t real_gpa;
871 	int i;
872 	int ret;
873 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874 
875 	/*
876 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 	 * to an L1 GPA.
878 	 */
879 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 	if (real_gpa == INVALID_GPA)
882 		return 0;
883 
884 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
887 	if (ret < 0)
888 		return 0;
889 
890 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 		if ((pdpte[i] & PT_PRESENT_MASK) &&
892 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 			return 0;
894 		}
895 	}
896 
897 	/*
898 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 	 * Shadow page roots need to be reconstructed instead.
900 	 */
901 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903 
904 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 	vcpu->arch.pdptrs_from_userspace = false;
908 
909 	return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912 
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 	if (cr0 & 0xffffffff00000000UL)
917 		return false;
918 #endif
919 
920 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 		return false;
922 
923 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 		return false;
925 
926 	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928 
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 	/*
932 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
934 	 * as there are no permission bits to emulate.  If TDP is enabled, the
935 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 	 * translations does the right thing, but there's no need to unload the
937 	 * root as CR0.WP doesn't affect SPTEs.
938 	 */
939 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 		if (!(cr0 & X86_CR0_PG))
941 			return;
942 
943 		if (tdp_enabled) {
944 			kvm_init_mmu(vcpu);
945 			return;
946 		}
947 	}
948 
949 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 		kvm_clear_async_pf_completion_queue(vcpu);
951 		kvm_async_pf_hash_reset(vcpu);
952 
953 		/*
954 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 		 * perspective.
956 		 */
957 		if (!(cr0 & X86_CR0_PG))
958 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 	}
960 
961 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 		kvm_mmu_reset_context(vcpu);
963 
964 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 	    kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970 
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
974 
975 	if (!kvm_is_valid_cr0(vcpu, cr0))
976 		return 1;
977 
978 	cr0 |= X86_CR0_ET;
979 
980 	/* Write to CR0 reserved bits are ignored, even on Intel. */
981 	cr0 &= ~CR0_RESERVED_BITS;
982 
983 #ifdef CONFIG_X86_64
984 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 	    (cr0 & X86_CR0_PG)) {
986 		int cs_db, cs_l;
987 
988 		if (!is_pae(vcpu))
989 			return 1;
990 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 		if (cs_l)
992 			return 1;
993 	}
994 #endif
995 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 		return 1;
999 
1000 	if (!(cr0 & X86_CR0_PG) &&
1001 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 		return 1;
1003 
1004 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005 
1006 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007 
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011 
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017 
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 	if (vcpu->arch.guest_state_protected)
1021 		return;
1022 
1023 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024 
1025 		if (vcpu->arch.xcr0 != host_xcr0)
1026 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027 
1028 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 		    vcpu->arch.ia32_xss != host_xss)
1030 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 	}
1032 
1033 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 		write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040 
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 	if (vcpu->arch.guest_state_protected)
1044 		return;
1045 
1046 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 		vcpu->arch.pkru = rdpkru();
1050 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 			write_pkru(vcpu->arch.host_pkru);
1052 	}
1053 
1054 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055 
1056 		if (vcpu->arch.xcr0 != host_xcr0)
1057 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058 
1059 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 		    vcpu->arch.ia32_xss != host_xss)
1061 			wrmsrl(MSR_IA32_XSS, host_xss);
1062 	}
1063 
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066 
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073 
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 	u64 xcr0 = xcr;
1077 	u64 old_xcr0 = vcpu->arch.xcr0;
1078 	u64 valid_bits;
1079 
1080 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081 	if (index != XCR_XFEATURE_ENABLED_MASK)
1082 		return 1;
1083 	if (!(xcr0 & XFEATURE_MASK_FP))
1084 		return 1;
1085 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 		return 1;
1087 
1088 	/*
1089 	 * Do not allow the guest to set bits that we do not support
1090 	 * saving.  However, xcr0 bit 0 is always set, even if the
1091 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 	 */
1093 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 	if (xcr0 & ~valid_bits)
1095 		return 1;
1096 
1097 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 		return 1;
1100 
1101 	if (xcr0 & XFEATURE_MASK_AVX512) {
1102 		if (!(xcr0 & XFEATURE_MASK_YMM))
1103 			return 1;
1104 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 			return 1;
1106 	}
1107 
1108 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 		return 1;
1111 
1112 	vcpu->arch.xcr0 = xcr0;
1113 
1114 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 		kvm_update_cpuid_runtime(vcpu);
1116 	return 0;
1117 }
1118 
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 		kvm_inject_gp(vcpu, 0);
1125 		return 1;
1126 	}
1127 
1128 	return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131 
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 	if (cr4 & cr4_reserved_bits)
1135 		return false;
1136 
1137 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 		return false;
1139 
1140 	return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143 
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149 
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 		kvm_mmu_reset_context(vcpu);
1154 
1155 	/*
1156 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 	 * according to the SDM; however, stale prev_roots could be reused
1158 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 	 * so fall through.
1162 	 */
1163 	if (!tdp_enabled &&
1164 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 		kvm_mmu_unload(vcpu);
1166 
1167 	/*
1168 	 * The TLB has to be flushed for all PCIDs if any of the following
1169 	 * (architecturally required) changes happen:
1170 	 * - CR4.PCIDE is changed from 1 to 0
1171 	 * - CR4.PGE is toggled
1172 	 *
1173 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 	 */
1175 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178 
1179 	/*
1180 	 * The TLB has to be flushed for the current PCID if any of the
1181 	 * following (architecturally required) changes happen:
1182 	 * - CR4.SMEP is changed from 0 to 1
1183 	 * - CR4.PAE is toggled
1184 	 */
1185 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188 
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191 
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195 
1196 	if (!kvm_is_valid_cr4(vcpu, cr4))
1197 		return 1;
1198 
1199 	if (is_long_mode(vcpu)) {
1200 		if (!(cr4 & X86_CR4_PAE))
1201 			return 1;
1202 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 			return 1;
1204 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 		return 1;
1208 
1209 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 			return 1;
1213 	}
1214 
1215 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216 
1217 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222 
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 	unsigned long roots_to_free = 0;
1227 	int i;
1228 
1229 	/*
1230 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1233 	 * the invalidation, but the guest's TLB entries need to be flushed as
1234 	 * the CPU may have cached entries in its TLB for the target PCID.
1235 	 */
1236 	if (unlikely(tdp_enabled)) {
1237 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * If neither the current CR3 nor any of the prev_roots use the given
1243 	 * PCID, then nothing needs to be done here because a resync will
1244 	 * happen anyway before switching to any other CR3.
1245 	 */
1246 	if (kvm_get_active_pcid(vcpu) == pcid) {
1247 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 	}
1250 
1251 	/*
1252 	 * If PCID is disabled, there is no need to free prev_roots even if the
1253 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 	 * with PCIDE=0.
1255 	 */
1256 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 		return;
1258 
1259 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262 
1263 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265 
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 	bool skip_tlb_flush = false;
1269 	unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 		pcid = cr3 & X86_CR3_PCID_MASK;
1275 	}
1276 #endif
1277 
1278 	/* PDPTRs are always reloaded for PAE paging. */
1279 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 		goto handle_tlb_flush;
1281 
1282 	/*
1283 	 * Do not condition the GPA check on long mode, this helper is used to
1284 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 	 * the current vCPU mode is accurate.
1286 	 */
1287 	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1288 		return 1;
1289 
1290 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 		return 1;
1292 
1293 	if (cr3 != kvm_read_cr3(vcpu))
1294 		kvm_mmu_new_pgd(vcpu, cr3);
1295 
1296 	vcpu->arch.cr3 = cr3;
1297 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299 
1300 handle_tlb_flush:
1301 	/*
1302 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 	 * i.e. only PCID=0 can be relevant.
1307 	 */
1308 	if (!skip_tlb_flush)
1309 		kvm_invalidate_pcid(vcpu, pcid);
1310 
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314 
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 	if (cr8 & CR8_RESERVED_BITS)
1318 		return 1;
1319 	if (lapic_in_kernel(vcpu))
1320 		kvm_lapic_set_tpr(vcpu, cr8);
1321 	else
1322 		vcpu->arch.cr8 = cr8;
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326 
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 	if (lapic_in_kernel(vcpu))
1330 		return kvm_lapic_get_cr8(vcpu);
1331 	else
1332 		return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335 
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 	int i;
1339 
1340 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 	}
1344 }
1345 
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 	unsigned long dr7;
1349 
1350 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 		dr7 = vcpu->arch.guest_debug_dr7;
1352 	else
1353 		dr7 = vcpu->arch.dr7;
1354 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 	if (dr7 & DR7_BP_EN_MASK)
1357 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360 
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 	u64 fixed = DR6_FIXED_1;
1364 
1365 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 		fixed |= DR6_RTM;
1367 
1368 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 		fixed |= DR6_BUS_LOCK;
1370 	return fixed;
1371 }
1372 
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1376 
1377 	switch (dr) {
1378 	case 0 ... 3:
1379 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 			vcpu->arch.eff_db[dr] = val;
1382 		break;
1383 	case 4:
1384 	case 6:
1385 		if (!kvm_dr6_valid(val))
1386 			return 1; /* #GP */
1387 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 		break;
1389 	case 5:
1390 	default: /* 7 */
1391 		if (!kvm_dr7_valid(val))
1392 			return 1; /* #GP */
1393 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 		kvm_update_dr7(vcpu);
1395 		break;
1396 	}
1397 
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401 
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1405 
1406 	switch (dr) {
1407 	case 0 ... 3:
1408 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 		break;
1410 	case 4:
1411 	case 6:
1412 		*val = vcpu->arch.dr6;
1413 		break;
1414 	case 5:
1415 	default: /* 7 */
1416 		*val = vcpu->arch.dr7;
1417 		break;
1418 	}
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421 
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 	u32 ecx = kvm_rcx_read(vcpu);
1425 	u64 data;
1426 
1427 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 		kvm_inject_gp(vcpu, 0);
1429 		return 1;
1430 	}
1431 
1432 	kvm_rax_write(vcpu, (u32)data);
1433 	kvm_rdx_write(vcpu, data >> 32);
1434 	return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437 
1438 /*
1439  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443  * MSRs that KVM emulates without strictly requiring host support.
1444  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446  * msrs_to_save and emulated_msrs.
1447  */
1448 
1449 static const u32 msrs_to_save_base[] = {
1450 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 	MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 	MSR_IA32_UMWAIT_CONTROL,
1465 
1466 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468 
1469 static const u32 msrs_to_save_pmu[] = {
1470 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475 
1476 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485 
1486 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488 
1489 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494 
1495 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499 
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 			ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503 
1504 static const u32 emulated_msrs_all[] = {
1505 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 
1508 #ifdef CONFIG_KVM_HYPERV
1509 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1510 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1511 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1512 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1513 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1514 	HV_X64_MSR_RESET,
1515 	HV_X64_MSR_VP_INDEX,
1516 	HV_X64_MSR_VP_RUNTIME,
1517 	HV_X64_MSR_SCONTROL,
1518 	HV_X64_MSR_STIMER0_CONFIG,
1519 	HV_X64_MSR_VP_ASSIST_PAGE,
1520 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1521 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1522 	HV_X64_MSR_SYNDBG_OPTIONS,
1523 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1524 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1525 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1526 #endif
1527 
1528 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1529 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1530 
1531 	MSR_IA32_TSC_ADJUST,
1532 	MSR_IA32_TSC_DEADLINE,
1533 	MSR_IA32_ARCH_CAPABILITIES,
1534 	MSR_IA32_PERF_CAPABILITIES,
1535 	MSR_IA32_MISC_ENABLE,
1536 	MSR_IA32_MCG_STATUS,
1537 	MSR_IA32_MCG_CTL,
1538 	MSR_IA32_MCG_EXT_CTL,
1539 	MSR_IA32_SMBASE,
1540 	MSR_SMI_COUNT,
1541 	MSR_PLATFORM_INFO,
1542 	MSR_MISC_FEATURES_ENABLES,
1543 	MSR_AMD64_VIRT_SPEC_CTRL,
1544 	MSR_AMD64_TSC_RATIO,
1545 	MSR_IA32_POWER_CTL,
1546 	MSR_IA32_UCODE_REV,
1547 
1548 	/*
1549 	 * KVM always supports the "true" VMX control MSRs, even if the host
1550 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1551 	 * doesn't strictly require them to exist in the host (ignoring that
1552 	 * KVM would refuse to load in the first place if the core set of MSRs
1553 	 * aren't supported).
1554 	 */
1555 	MSR_IA32_VMX_BASIC,
1556 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1557 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1558 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1559 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1560 	MSR_IA32_VMX_MISC,
1561 	MSR_IA32_VMX_CR0_FIXED0,
1562 	MSR_IA32_VMX_CR4_FIXED0,
1563 	MSR_IA32_VMX_VMCS_ENUM,
1564 	MSR_IA32_VMX_PROCBASED_CTLS2,
1565 	MSR_IA32_VMX_EPT_VPID_CAP,
1566 	MSR_IA32_VMX_VMFUNC,
1567 
1568 	MSR_K7_HWCR,
1569 	MSR_KVM_POLL_CONTROL,
1570 };
1571 
1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1573 static unsigned num_emulated_msrs;
1574 
1575 /*
1576  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1577  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1578  * feature MSRs, but are handled separately to allow expedited lookups.
1579  */
1580 static const u32 msr_based_features_all_except_vmx[] = {
1581 	MSR_AMD64_DE_CFG,
1582 	MSR_IA32_UCODE_REV,
1583 	MSR_IA32_ARCH_CAPABILITIES,
1584 	MSR_IA32_PERF_CAPABILITIES,
1585 };
1586 
1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1588 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1589 static unsigned int num_msr_based_features;
1590 
1591 /*
1592  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1593  * patch, are immutable once the vCPU model is defined.
1594  */
1595 static bool kvm_is_immutable_feature_msr(u32 msr)
1596 {
1597 	int i;
1598 
1599 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1600 		return true;
1601 
1602 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1603 		if (msr == msr_based_features_all_except_vmx[i])
1604 			return msr != MSR_IA32_UCODE_REV;
1605 	}
1606 
1607 	return false;
1608 }
1609 
1610 /*
1611  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1612  * does not yet virtualize. These include:
1613  *   10 - MISC_PACKAGE_CTRLS
1614  *   11 - ENERGY_FILTERING_CTL
1615  *   12 - DOITM
1616  *   18 - FB_CLEAR_CTRL
1617  *   21 - XAPIC_DISABLE_STATUS
1618  *   23 - OVERCLOCKING_STATUS
1619  */
1620 
1621 #define KVM_SUPPORTED_ARCH_CAP \
1622 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1623 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1624 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1625 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1626 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1627 	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR)
1628 
1629 static u64 kvm_get_arch_capabilities(void)
1630 {
1631 	u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1632 
1633 	/*
1634 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1635 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1636 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1637 	 * L1 guests, so it need not worry about its own (L2) guests.
1638 	 */
1639 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1640 
1641 	/*
1642 	 * If we're doing cache flushes (either "always" or "cond")
1643 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1644 	 * If an outer hypervisor is doing the cache flush for us
1645 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1646 	 * capability to the guest too, and if EPT is disabled we're not
1647 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1648 	 * require a nested hypervisor to do a flush of its own.
1649 	 */
1650 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1651 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1652 
1653 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1654 		data |= ARCH_CAP_RDCL_NO;
1655 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1656 		data |= ARCH_CAP_SSB_NO;
1657 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1658 		data |= ARCH_CAP_MDS_NO;
1659 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1660 		data |= ARCH_CAP_RFDS_NO;
1661 
1662 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1663 		/*
1664 		 * If RTM=0 because the kernel has disabled TSX, the host might
1665 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1666 		 * and therefore knows that there cannot be TAA) but keep
1667 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1668 		 * and we want to allow migrating those guests to tsx=off hosts.
1669 		 */
1670 		data &= ~ARCH_CAP_TAA_NO;
1671 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1672 		data |= ARCH_CAP_TAA_NO;
1673 	} else {
1674 		/*
1675 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1676 		 * host so the guest can choose between disabling TSX or
1677 		 * using VERW to clear CPU buffers.
1678 		 */
1679 	}
1680 
1681 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1682 		data |= ARCH_CAP_GDS_NO;
1683 
1684 	return data;
1685 }
1686 
1687 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1688 {
1689 	switch (msr->index) {
1690 	case MSR_IA32_ARCH_CAPABILITIES:
1691 		msr->data = kvm_get_arch_capabilities();
1692 		break;
1693 	case MSR_IA32_PERF_CAPABILITIES:
1694 		msr->data = kvm_caps.supported_perf_cap;
1695 		break;
1696 	case MSR_IA32_UCODE_REV:
1697 		rdmsrl_safe(msr->index, &msr->data);
1698 		break;
1699 	default:
1700 		return static_call(kvm_x86_get_msr_feature)(msr);
1701 	}
1702 	return 0;
1703 }
1704 
1705 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1706 {
1707 	struct kvm_msr_entry msr;
1708 	int r;
1709 
1710 	/* Unconditionally clear the output for simplicity */
1711 	msr.data = 0;
1712 	msr.index = index;
1713 	r = kvm_get_msr_feature(&msr);
1714 
1715 	if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false))
1716 		r = 0;
1717 
1718 	*data = msr.data;
1719 
1720 	return r;
1721 }
1722 
1723 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1724 {
1725 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1726 		return false;
1727 
1728 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1729 		return false;
1730 
1731 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1732 		return false;
1733 
1734 	if (efer & (EFER_LME | EFER_LMA) &&
1735 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1736 		return false;
1737 
1738 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1739 		return false;
1740 
1741 	return true;
1742 
1743 }
1744 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1745 {
1746 	if (efer & efer_reserved_bits)
1747 		return false;
1748 
1749 	return __kvm_valid_efer(vcpu, efer);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1752 
1753 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1754 {
1755 	u64 old_efer = vcpu->arch.efer;
1756 	u64 efer = msr_info->data;
1757 	int r;
1758 
1759 	if (efer & efer_reserved_bits)
1760 		return 1;
1761 
1762 	if (!msr_info->host_initiated) {
1763 		if (!__kvm_valid_efer(vcpu, efer))
1764 			return 1;
1765 
1766 		if (is_paging(vcpu) &&
1767 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1768 			return 1;
1769 	}
1770 
1771 	efer &= ~EFER_LMA;
1772 	efer |= vcpu->arch.efer & EFER_LMA;
1773 
1774 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1775 	if (r) {
1776 		WARN_ON(r > 0);
1777 		return r;
1778 	}
1779 
1780 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1781 		kvm_mmu_reset_context(vcpu);
1782 
1783 	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1784 	    (efer & EFER_SVME))
1785 		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1786 
1787 	return 0;
1788 }
1789 
1790 void kvm_enable_efer_bits(u64 mask)
1791 {
1792        efer_reserved_bits &= ~mask;
1793 }
1794 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1795 
1796 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1797 {
1798 	struct kvm_x86_msr_filter *msr_filter;
1799 	struct msr_bitmap_range *ranges;
1800 	struct kvm *kvm = vcpu->kvm;
1801 	bool allowed;
1802 	int idx;
1803 	u32 i;
1804 
1805 	/* x2APIC MSRs do not support filtering. */
1806 	if (index >= 0x800 && index <= 0x8ff)
1807 		return true;
1808 
1809 	idx = srcu_read_lock(&kvm->srcu);
1810 
1811 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1812 	if (!msr_filter) {
1813 		allowed = true;
1814 		goto out;
1815 	}
1816 
1817 	allowed = msr_filter->default_allow;
1818 	ranges = msr_filter->ranges;
1819 
1820 	for (i = 0; i < msr_filter->count; i++) {
1821 		u32 start = ranges[i].base;
1822 		u32 end = start + ranges[i].nmsrs;
1823 		u32 flags = ranges[i].flags;
1824 		unsigned long *bitmap = ranges[i].bitmap;
1825 
1826 		if ((index >= start) && (index < end) && (flags & type)) {
1827 			allowed = test_bit(index - start, bitmap);
1828 			break;
1829 		}
1830 	}
1831 
1832 out:
1833 	srcu_read_unlock(&kvm->srcu, idx);
1834 
1835 	return allowed;
1836 }
1837 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1838 
1839 /*
1840  * Write @data into the MSR specified by @index.  Select MSR specific fault
1841  * checks are bypassed if @host_initiated is %true.
1842  * Returns 0 on success, non-0 otherwise.
1843  * Assumes vcpu_load() was already called.
1844  */
1845 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1846 			 bool host_initiated)
1847 {
1848 	struct msr_data msr;
1849 
1850 	switch (index) {
1851 	case MSR_FS_BASE:
1852 	case MSR_GS_BASE:
1853 	case MSR_KERNEL_GS_BASE:
1854 	case MSR_CSTAR:
1855 	case MSR_LSTAR:
1856 		if (is_noncanonical_address(data, vcpu))
1857 			return 1;
1858 		break;
1859 	case MSR_IA32_SYSENTER_EIP:
1860 	case MSR_IA32_SYSENTER_ESP:
1861 		/*
1862 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1863 		 * non-canonical address is written on Intel but not on
1864 		 * AMD (which ignores the top 32-bits, because it does
1865 		 * not implement 64-bit SYSENTER).
1866 		 *
1867 		 * 64-bit code should hence be able to write a non-canonical
1868 		 * value on AMD.  Making the address canonical ensures that
1869 		 * vmentry does not fail on Intel after writing a non-canonical
1870 		 * value, and that something deterministic happens if the guest
1871 		 * invokes 64-bit SYSENTER.
1872 		 */
1873 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1874 		break;
1875 	case MSR_TSC_AUX:
1876 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1877 			return 1;
1878 
1879 		if (!host_initiated &&
1880 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1881 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1882 			return 1;
1883 
1884 		/*
1885 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1886 		 * incomplete and conflicting architectural behavior.  Current
1887 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1888 		 * reserved and always read as zeros.  Enforce Intel's reserved
1889 		 * bits check if and only if the guest CPU is Intel, and clear
1890 		 * the bits in all other cases.  This ensures cross-vendor
1891 		 * migration will provide consistent behavior for the guest.
1892 		 */
1893 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1894 			return 1;
1895 
1896 		data = (u32)data;
1897 		break;
1898 	}
1899 
1900 	msr.data = data;
1901 	msr.index = index;
1902 	msr.host_initiated = host_initiated;
1903 
1904 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1905 }
1906 
1907 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1908 				     u32 index, u64 data, bool host_initiated)
1909 {
1910 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1911 
1912 	if (ret == KVM_MSR_RET_INVALID)
1913 		if (kvm_msr_ignored_check(index, data, true))
1914 			ret = 0;
1915 
1916 	return ret;
1917 }
1918 
1919 /*
1920  * Read the MSR specified by @index into @data.  Select MSR specific fault
1921  * checks are bypassed if @host_initiated is %true.
1922  * Returns 0 on success, non-0 otherwise.
1923  * Assumes vcpu_load() was already called.
1924  */
1925 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1926 		  bool host_initiated)
1927 {
1928 	struct msr_data msr;
1929 	int ret;
1930 
1931 	switch (index) {
1932 	case MSR_TSC_AUX:
1933 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1934 			return 1;
1935 
1936 		if (!host_initiated &&
1937 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1938 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1939 			return 1;
1940 		break;
1941 	}
1942 
1943 	msr.index = index;
1944 	msr.host_initiated = host_initiated;
1945 
1946 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1947 	if (!ret)
1948 		*data = msr.data;
1949 	return ret;
1950 }
1951 
1952 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1953 				     u32 index, u64 *data, bool host_initiated)
1954 {
1955 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1956 
1957 	if (ret == KVM_MSR_RET_INVALID) {
1958 		/* Unconditionally clear *data for simplicity */
1959 		*data = 0;
1960 		if (kvm_msr_ignored_check(index, 0, false))
1961 			ret = 0;
1962 	}
1963 
1964 	return ret;
1965 }
1966 
1967 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1968 {
1969 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1970 		return KVM_MSR_RET_FILTERED;
1971 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1972 }
1973 
1974 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1975 {
1976 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1977 		return KVM_MSR_RET_FILTERED;
1978 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1979 }
1980 
1981 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1982 {
1983 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_get_msr);
1986 
1987 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1988 {
1989 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1990 }
1991 EXPORT_SYMBOL_GPL(kvm_set_msr);
1992 
1993 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1994 {
1995 	if (!vcpu->run->msr.error) {
1996 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1997 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1998 	}
1999 }
2000 
2001 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2002 {
2003 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2004 }
2005 
2006 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2007 {
2008 	complete_userspace_rdmsr(vcpu);
2009 	return complete_emulated_msr_access(vcpu);
2010 }
2011 
2012 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2013 {
2014 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2015 }
2016 
2017 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2018 {
2019 	complete_userspace_rdmsr(vcpu);
2020 	return complete_fast_msr_access(vcpu);
2021 }
2022 
2023 static u64 kvm_msr_reason(int r)
2024 {
2025 	switch (r) {
2026 	case KVM_MSR_RET_INVALID:
2027 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2028 	case KVM_MSR_RET_FILTERED:
2029 		return KVM_MSR_EXIT_REASON_FILTER;
2030 	default:
2031 		return KVM_MSR_EXIT_REASON_INVAL;
2032 	}
2033 }
2034 
2035 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2036 			      u32 exit_reason, u64 data,
2037 			      int (*completion)(struct kvm_vcpu *vcpu),
2038 			      int r)
2039 {
2040 	u64 msr_reason = kvm_msr_reason(r);
2041 
2042 	/* Check if the user wanted to know about this MSR fault */
2043 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2044 		return 0;
2045 
2046 	vcpu->run->exit_reason = exit_reason;
2047 	vcpu->run->msr.error = 0;
2048 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2049 	vcpu->run->msr.reason = msr_reason;
2050 	vcpu->run->msr.index = index;
2051 	vcpu->run->msr.data = data;
2052 	vcpu->arch.complete_userspace_io = completion;
2053 
2054 	return 1;
2055 }
2056 
2057 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2058 {
2059 	u32 ecx = kvm_rcx_read(vcpu);
2060 	u64 data;
2061 	int r;
2062 
2063 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2064 
2065 	if (!r) {
2066 		trace_kvm_msr_read(ecx, data);
2067 
2068 		kvm_rax_write(vcpu, data & -1u);
2069 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2070 	} else {
2071 		/* MSR read failed? See if we should ask user space */
2072 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2073 				       complete_fast_rdmsr, r))
2074 			return 0;
2075 		trace_kvm_msr_read_ex(ecx);
2076 	}
2077 
2078 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2081 
2082 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2083 {
2084 	u32 ecx = kvm_rcx_read(vcpu);
2085 	u64 data = kvm_read_edx_eax(vcpu);
2086 	int r;
2087 
2088 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2089 
2090 	if (!r) {
2091 		trace_kvm_msr_write(ecx, data);
2092 	} else {
2093 		/* MSR write failed? See if we should ask user space */
2094 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2095 				       complete_fast_msr_access, r))
2096 			return 0;
2097 		/* Signal all other negative errors to userspace */
2098 		if (r < 0)
2099 			return r;
2100 		trace_kvm_msr_write_ex(ecx, data);
2101 	}
2102 
2103 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2104 }
2105 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2106 
2107 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2108 {
2109 	return kvm_skip_emulated_instruction(vcpu);
2110 }
2111 
2112 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2113 {
2114 	/* Treat an INVD instruction as a NOP and just skip it. */
2115 	return kvm_emulate_as_nop(vcpu);
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2118 
2119 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2120 {
2121 	kvm_queue_exception(vcpu, UD_VECTOR);
2122 	return 1;
2123 }
2124 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2125 
2126 
2127 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2128 {
2129 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2130 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2131 		return kvm_handle_invalid_op(vcpu);
2132 
2133 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2134 	return kvm_emulate_as_nop(vcpu);
2135 }
2136 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2137 {
2138 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2139 }
2140 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2141 
2142 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2143 {
2144 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2145 }
2146 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2147 
2148 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2149 {
2150 	xfer_to_guest_mode_prepare();
2151 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2152 		xfer_to_guest_mode_work_pending();
2153 }
2154 
2155 /*
2156  * The fast path for frequent and performance sensitive wrmsr emulation,
2157  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2158  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2159  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2160  * other cases which must be called after interrupts are enabled on the host.
2161  */
2162 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2163 {
2164 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2165 		return 1;
2166 
2167 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2168 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2169 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2170 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2171 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2172 
2173 	return 1;
2174 }
2175 
2176 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2177 {
2178 	if (!kvm_can_use_hv_timer(vcpu))
2179 		return 1;
2180 
2181 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2182 	return 0;
2183 }
2184 
2185 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2186 {
2187 	u32 msr = kvm_rcx_read(vcpu);
2188 	u64 data;
2189 	fastpath_t ret = EXIT_FASTPATH_NONE;
2190 
2191 	kvm_vcpu_srcu_read_lock(vcpu);
2192 
2193 	switch (msr) {
2194 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2195 		data = kvm_read_edx_eax(vcpu);
2196 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2197 			kvm_skip_emulated_instruction(vcpu);
2198 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2199 		}
2200 		break;
2201 	case MSR_IA32_TSC_DEADLINE:
2202 		data = kvm_read_edx_eax(vcpu);
2203 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2204 			kvm_skip_emulated_instruction(vcpu);
2205 			ret = EXIT_FASTPATH_REENTER_GUEST;
2206 		}
2207 		break;
2208 	default:
2209 		break;
2210 	}
2211 
2212 	if (ret != EXIT_FASTPATH_NONE)
2213 		trace_kvm_msr_write(msr, data);
2214 
2215 	kvm_vcpu_srcu_read_unlock(vcpu);
2216 
2217 	return ret;
2218 }
2219 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2220 
2221 /*
2222  * Adapt set_msr() to msr_io()'s calling convention
2223  */
2224 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2225 {
2226 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2227 }
2228 
2229 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2230 {
2231 	u64 val;
2232 
2233 	/*
2234 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2235 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2236 	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2237 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2238 	 * all MSRs when emulating RESET.
2239 	 */
2240 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2241 		if (do_get_msr(vcpu, index, &val) || *data != val)
2242 			return -EINVAL;
2243 
2244 		return 0;
2245 	}
2246 
2247 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2248 }
2249 
2250 #ifdef CONFIG_X86_64
2251 struct pvclock_clock {
2252 	int vclock_mode;
2253 	u64 cycle_last;
2254 	u64 mask;
2255 	u32 mult;
2256 	u32 shift;
2257 	u64 base_cycles;
2258 	u64 offset;
2259 };
2260 
2261 struct pvclock_gtod_data {
2262 	seqcount_t	seq;
2263 
2264 	struct pvclock_clock clock; /* extract of a clocksource struct */
2265 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2266 
2267 	ktime_t		offs_boot;
2268 	u64		wall_time_sec;
2269 };
2270 
2271 static struct pvclock_gtod_data pvclock_gtod_data;
2272 
2273 static void update_pvclock_gtod(struct timekeeper *tk)
2274 {
2275 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2276 
2277 	write_seqcount_begin(&vdata->seq);
2278 
2279 	/* copy pvclock gtod data */
2280 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2281 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2282 	vdata->clock.mask		= tk->tkr_mono.mask;
2283 	vdata->clock.mult		= tk->tkr_mono.mult;
2284 	vdata->clock.shift		= tk->tkr_mono.shift;
2285 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2286 	vdata->clock.offset		= tk->tkr_mono.base;
2287 
2288 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2289 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2290 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2291 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2292 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2293 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2294 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2295 
2296 	vdata->wall_time_sec            = tk->xtime_sec;
2297 
2298 	vdata->offs_boot		= tk->offs_boot;
2299 
2300 	write_seqcount_end(&vdata->seq);
2301 }
2302 
2303 static s64 get_kvmclock_base_ns(void)
2304 {
2305 	/* Count up from boot time, but with the frequency of the raw clock.  */
2306 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2307 }
2308 #else
2309 static s64 get_kvmclock_base_ns(void)
2310 {
2311 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2312 	return ktime_get_boottime_ns();
2313 }
2314 #endif
2315 
2316 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2317 {
2318 	int version;
2319 	int r;
2320 	struct pvclock_wall_clock wc;
2321 	u32 wc_sec_hi;
2322 	u64 wall_nsec;
2323 
2324 	if (!wall_clock)
2325 		return;
2326 
2327 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2328 	if (r)
2329 		return;
2330 
2331 	if (version & 1)
2332 		++version;  /* first time write, random junk */
2333 
2334 	++version;
2335 
2336 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2337 		return;
2338 
2339 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2340 
2341 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2342 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2343 	wc.version = version;
2344 
2345 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2346 
2347 	if (sec_hi_ofs) {
2348 		wc_sec_hi = wall_nsec >> 32;
2349 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2350 				&wc_sec_hi, sizeof(wc_sec_hi));
2351 	}
2352 
2353 	version++;
2354 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2355 }
2356 
2357 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2358 				  bool old_msr, bool host_initiated)
2359 {
2360 	struct kvm_arch *ka = &vcpu->kvm->arch;
2361 
2362 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2363 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2364 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2365 
2366 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2367 	}
2368 
2369 	vcpu->arch.time = system_time;
2370 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2371 
2372 	/* we verify if the enable bit is set... */
2373 	if (system_time & 1)
2374 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2375 				 sizeof(struct pvclock_vcpu_time_info));
2376 	else
2377 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2378 
2379 	return;
2380 }
2381 
2382 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2383 {
2384 	do_shl32_div32(dividend, divisor);
2385 	return dividend;
2386 }
2387 
2388 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2389 			       s8 *pshift, u32 *pmultiplier)
2390 {
2391 	uint64_t scaled64;
2392 	int32_t  shift = 0;
2393 	uint64_t tps64;
2394 	uint32_t tps32;
2395 
2396 	tps64 = base_hz;
2397 	scaled64 = scaled_hz;
2398 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2399 		tps64 >>= 1;
2400 		shift--;
2401 	}
2402 
2403 	tps32 = (uint32_t)tps64;
2404 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2405 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2406 			scaled64 >>= 1;
2407 		else
2408 			tps32 <<= 1;
2409 		shift++;
2410 	}
2411 
2412 	*pshift = shift;
2413 	*pmultiplier = div_frac(scaled64, tps32);
2414 }
2415 
2416 #ifdef CONFIG_X86_64
2417 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2418 #endif
2419 
2420 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2421 static unsigned long max_tsc_khz;
2422 
2423 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2424 {
2425 	u64 v = (u64)khz * (1000000 + ppm);
2426 	do_div(v, 1000000);
2427 	return v;
2428 }
2429 
2430 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2431 
2432 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2433 {
2434 	u64 ratio;
2435 
2436 	/* Guest TSC same frequency as host TSC? */
2437 	if (!scale) {
2438 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2439 		return 0;
2440 	}
2441 
2442 	/* TSC scaling supported? */
2443 	if (!kvm_caps.has_tsc_control) {
2444 		if (user_tsc_khz > tsc_khz) {
2445 			vcpu->arch.tsc_catchup = 1;
2446 			vcpu->arch.tsc_always_catchup = 1;
2447 			return 0;
2448 		} else {
2449 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2450 			return -1;
2451 		}
2452 	}
2453 
2454 	/* TSC scaling required  - calculate ratio */
2455 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2456 				user_tsc_khz, tsc_khz);
2457 
2458 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2459 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2460 			            user_tsc_khz);
2461 		return -1;
2462 	}
2463 
2464 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2465 	return 0;
2466 }
2467 
2468 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2469 {
2470 	u32 thresh_lo, thresh_hi;
2471 	int use_scaling = 0;
2472 
2473 	/* tsc_khz can be zero if TSC calibration fails */
2474 	if (user_tsc_khz == 0) {
2475 		/* set tsc_scaling_ratio to a safe value */
2476 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2477 		return -1;
2478 	}
2479 
2480 	/* Compute a scale to convert nanoseconds in TSC cycles */
2481 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2482 			   &vcpu->arch.virtual_tsc_shift,
2483 			   &vcpu->arch.virtual_tsc_mult);
2484 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2485 
2486 	/*
2487 	 * Compute the variation in TSC rate which is acceptable
2488 	 * within the range of tolerance and decide if the
2489 	 * rate being applied is within that bounds of the hardware
2490 	 * rate.  If so, no scaling or compensation need be done.
2491 	 */
2492 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2493 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2494 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2495 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2496 			 user_tsc_khz, thresh_lo, thresh_hi);
2497 		use_scaling = 1;
2498 	}
2499 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2500 }
2501 
2502 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2503 {
2504 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2505 				      vcpu->arch.virtual_tsc_mult,
2506 				      vcpu->arch.virtual_tsc_shift);
2507 	tsc += vcpu->arch.this_tsc_write;
2508 	return tsc;
2509 }
2510 
2511 #ifdef CONFIG_X86_64
2512 static inline bool gtod_is_based_on_tsc(int mode)
2513 {
2514 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2515 }
2516 #endif
2517 
2518 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2519 {
2520 #ifdef CONFIG_X86_64
2521 	struct kvm_arch *ka = &vcpu->kvm->arch;
2522 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2523 
2524 	/*
2525 	 * To use the masterclock, the host clocksource must be based on TSC
2526 	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2527 	 * vCPUs doesn't include the reference vCPU, hence "+1".
2528 	 */
2529 	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2530 				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2531 				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2532 
2533 	/*
2534 	 * Request a masterclock update if the masterclock needs to be toggled
2535 	 * on/off, or when starting a new generation and the masterclock is
2536 	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2537 	 * taken _after_ the new generation is created).
2538 	 */
2539 	if ((ka->use_master_clock && new_generation) ||
2540 	    (ka->use_master_clock != use_master_clock))
2541 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2542 
2543 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2544 			    atomic_read(&vcpu->kvm->online_vcpus),
2545 		            ka->use_master_clock, gtod->clock.vclock_mode);
2546 #endif
2547 }
2548 
2549 /*
2550  * Multiply tsc by a fixed point number represented by ratio.
2551  *
2552  * The most significant 64-N bits (mult) of ratio represent the
2553  * integral part of the fixed point number; the remaining N bits
2554  * (frac) represent the fractional part, ie. ratio represents a fixed
2555  * point number (mult + frac * 2^(-N)).
2556  *
2557  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2558  */
2559 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2560 {
2561 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2562 }
2563 
2564 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2565 {
2566 	u64 _tsc = tsc;
2567 
2568 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2569 		_tsc = __scale_tsc(ratio, tsc);
2570 
2571 	return _tsc;
2572 }
2573 
2574 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2575 {
2576 	u64 tsc;
2577 
2578 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2579 
2580 	return target_tsc - tsc;
2581 }
2582 
2583 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2584 {
2585 	return vcpu->arch.l1_tsc_offset +
2586 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2589 
2590 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2591 {
2592 	u64 nested_offset;
2593 
2594 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2595 		nested_offset = l1_offset;
2596 	else
2597 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2598 						kvm_caps.tsc_scaling_ratio_frac_bits);
2599 
2600 	nested_offset += l2_offset;
2601 	return nested_offset;
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2604 
2605 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2606 {
2607 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2608 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2609 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2610 
2611 	return l1_multiplier;
2612 }
2613 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2614 
2615 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2616 {
2617 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2618 				   vcpu->arch.l1_tsc_offset,
2619 				   l1_offset);
2620 
2621 	vcpu->arch.l1_tsc_offset = l1_offset;
2622 
2623 	/*
2624 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2625 	 * according to the spec this should set L1's TSC (as opposed to
2626 	 * setting L1's offset for L2).
2627 	 */
2628 	if (is_guest_mode(vcpu))
2629 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2630 			l1_offset,
2631 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2632 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2633 	else
2634 		vcpu->arch.tsc_offset = l1_offset;
2635 
2636 	static_call(kvm_x86_write_tsc_offset)(vcpu);
2637 }
2638 
2639 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2640 {
2641 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2642 
2643 	/* Userspace is changing the multiplier while L2 is active */
2644 	if (is_guest_mode(vcpu))
2645 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2646 			l1_multiplier,
2647 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2648 	else
2649 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2650 
2651 	if (kvm_caps.has_tsc_control)
2652 		static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2653 }
2654 
2655 static inline bool kvm_check_tsc_unstable(void)
2656 {
2657 #ifdef CONFIG_X86_64
2658 	/*
2659 	 * TSC is marked unstable when we're running on Hyper-V,
2660 	 * 'TSC page' clocksource is good.
2661 	 */
2662 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2663 		return false;
2664 #endif
2665 	return check_tsc_unstable();
2666 }
2667 
2668 /*
2669  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2670  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2671  * participates in.
2672  */
2673 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2674 				  u64 ns, bool matched)
2675 {
2676 	struct kvm *kvm = vcpu->kvm;
2677 
2678 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2679 
2680 	/*
2681 	 * We also track th most recent recorded KHZ, write and time to
2682 	 * allow the matching interval to be extended at each write.
2683 	 */
2684 	kvm->arch.last_tsc_nsec = ns;
2685 	kvm->arch.last_tsc_write = tsc;
2686 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2687 	kvm->arch.last_tsc_offset = offset;
2688 
2689 	vcpu->arch.last_guest_tsc = tsc;
2690 
2691 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2692 
2693 	if (!matched) {
2694 		/*
2695 		 * We split periods of matched TSC writes into generations.
2696 		 * For each generation, we track the original measured
2697 		 * nanosecond time, offset, and write, so if TSCs are in
2698 		 * sync, we can match exact offset, and if not, we can match
2699 		 * exact software computation in compute_guest_tsc()
2700 		 *
2701 		 * These values are tracked in kvm->arch.cur_xxx variables.
2702 		 */
2703 		kvm->arch.cur_tsc_generation++;
2704 		kvm->arch.cur_tsc_nsec = ns;
2705 		kvm->arch.cur_tsc_write = tsc;
2706 		kvm->arch.cur_tsc_offset = offset;
2707 		kvm->arch.nr_vcpus_matched_tsc = 0;
2708 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2709 		kvm->arch.nr_vcpus_matched_tsc++;
2710 	}
2711 
2712 	/* Keep track of which generation this VCPU has synchronized to */
2713 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2714 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2715 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2716 
2717 	kvm_track_tsc_matching(vcpu, !matched);
2718 }
2719 
2720 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2721 {
2722 	u64 data = user_value ? *user_value : 0;
2723 	struct kvm *kvm = vcpu->kvm;
2724 	u64 offset, ns, elapsed;
2725 	unsigned long flags;
2726 	bool matched = false;
2727 	bool synchronizing = false;
2728 
2729 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2730 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2731 	ns = get_kvmclock_base_ns();
2732 	elapsed = ns - kvm->arch.last_tsc_nsec;
2733 
2734 	if (vcpu->arch.virtual_tsc_khz) {
2735 		if (data == 0) {
2736 			/*
2737 			 * Force synchronization when creating a vCPU, or when
2738 			 * userspace explicitly writes a zero value.
2739 			 */
2740 			synchronizing = true;
2741 		} else if (kvm->arch.user_set_tsc) {
2742 			u64 tsc_exp = kvm->arch.last_tsc_write +
2743 						nsec_to_cycles(vcpu, elapsed);
2744 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2745 			/*
2746 			 * Here lies UAPI baggage: when a user-initiated TSC write has
2747 			 * a small delta (1 second) of virtual cycle time against the
2748 			 * previously set vCPU, we assume that they were intended to be
2749 			 * in sync and the delta was only due to the racy nature of the
2750 			 * legacy API.
2751 			 *
2752 			 * This trick falls down when restoring a guest which genuinely
2753 			 * has been running for less time than the 1 second of imprecision
2754 			 * which we allow for in the legacy API. In this case, the first
2755 			 * value written by userspace (on any vCPU) should not be subject
2756 			 * to this 'correction' to make it sync up with values that only
2757 			 * come from the kernel's default vCPU creation. Make the 1-second
2758 			 * slop hack only trigger if the user_set_tsc flag is already set.
2759 			 */
2760 			synchronizing = data < tsc_exp + tsc_hz &&
2761 					data + tsc_hz > tsc_exp;
2762 		}
2763 	}
2764 
2765 	if (user_value)
2766 		kvm->arch.user_set_tsc = true;
2767 
2768 	/*
2769 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2770 	 * TSC, we add elapsed time in this computation.  We could let the
2771 	 * compensation code attempt to catch up if we fall behind, but
2772 	 * it's better to try to match offsets from the beginning.
2773          */
2774 	if (synchronizing &&
2775 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2776 		if (!kvm_check_tsc_unstable()) {
2777 			offset = kvm->arch.cur_tsc_offset;
2778 		} else {
2779 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2780 			data += delta;
2781 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2782 		}
2783 		matched = true;
2784 	}
2785 
2786 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2787 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2788 }
2789 
2790 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2791 					   s64 adjustment)
2792 {
2793 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2794 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2795 }
2796 
2797 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2798 {
2799 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2800 		WARN_ON(adjustment < 0);
2801 	adjustment = kvm_scale_tsc((u64) adjustment,
2802 				   vcpu->arch.l1_tsc_scaling_ratio);
2803 	adjust_tsc_offset_guest(vcpu, adjustment);
2804 }
2805 
2806 #ifdef CONFIG_X86_64
2807 
2808 static u64 read_tsc(void)
2809 {
2810 	u64 ret = (u64)rdtsc_ordered();
2811 	u64 last = pvclock_gtod_data.clock.cycle_last;
2812 
2813 	if (likely(ret >= last))
2814 		return ret;
2815 
2816 	/*
2817 	 * GCC likes to generate cmov here, but this branch is extremely
2818 	 * predictable (it's just a function of time and the likely is
2819 	 * very likely) and there's a data dependence, so force GCC
2820 	 * to generate a branch instead.  I don't barrier() because
2821 	 * we don't actually need a barrier, and if this function
2822 	 * ever gets inlined it will generate worse code.
2823 	 */
2824 	asm volatile ("");
2825 	return last;
2826 }
2827 
2828 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2829 			  int *mode)
2830 {
2831 	u64 tsc_pg_val;
2832 	long v;
2833 
2834 	switch (clock->vclock_mode) {
2835 	case VDSO_CLOCKMODE_HVCLOCK:
2836 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2837 					 tsc_timestamp, &tsc_pg_val)) {
2838 			/* TSC page valid */
2839 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2840 			v = (tsc_pg_val - clock->cycle_last) &
2841 				clock->mask;
2842 		} else {
2843 			/* TSC page invalid */
2844 			*mode = VDSO_CLOCKMODE_NONE;
2845 		}
2846 		break;
2847 	case VDSO_CLOCKMODE_TSC:
2848 		*mode = VDSO_CLOCKMODE_TSC;
2849 		*tsc_timestamp = read_tsc();
2850 		v = (*tsc_timestamp - clock->cycle_last) &
2851 			clock->mask;
2852 		break;
2853 	default:
2854 		*mode = VDSO_CLOCKMODE_NONE;
2855 	}
2856 
2857 	if (*mode == VDSO_CLOCKMODE_NONE)
2858 		*tsc_timestamp = v = 0;
2859 
2860 	return v * clock->mult;
2861 }
2862 
2863 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2864 {
2865 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2866 	unsigned long seq;
2867 	int mode;
2868 	u64 ns;
2869 
2870 	do {
2871 		seq = read_seqcount_begin(&gtod->seq);
2872 		ns = gtod->raw_clock.base_cycles;
2873 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2874 		ns >>= gtod->raw_clock.shift;
2875 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2876 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2877 	*t = ns;
2878 
2879 	return mode;
2880 }
2881 
2882 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2883 {
2884 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2885 	unsigned long seq;
2886 	int mode;
2887 	u64 ns;
2888 
2889 	do {
2890 		seq = read_seqcount_begin(&gtod->seq);
2891 		ts->tv_sec = gtod->wall_time_sec;
2892 		ns = gtod->clock.base_cycles;
2893 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2894 		ns >>= gtod->clock.shift;
2895 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2896 
2897 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2898 	ts->tv_nsec = ns;
2899 
2900 	return mode;
2901 }
2902 
2903 /* returns true if host is using TSC based clocksource */
2904 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2905 {
2906 	/* checked again under seqlock below */
2907 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2908 		return false;
2909 
2910 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2911 						      tsc_timestamp));
2912 }
2913 
2914 /* returns true if host is using TSC based clocksource */
2915 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2916 					   u64 *tsc_timestamp)
2917 {
2918 	/* checked again under seqlock below */
2919 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2920 		return false;
2921 
2922 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2923 }
2924 #endif
2925 
2926 /*
2927  *
2928  * Assuming a stable TSC across physical CPUS, and a stable TSC
2929  * across virtual CPUs, the following condition is possible.
2930  * Each numbered line represents an event visible to both
2931  * CPUs at the next numbered event.
2932  *
2933  * "timespecX" represents host monotonic time. "tscX" represents
2934  * RDTSC value.
2935  *
2936  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2937  *
2938  * 1.  read timespec0,tsc0
2939  * 2.					| timespec1 = timespec0 + N
2940  * 					| tsc1 = tsc0 + M
2941  * 3. transition to guest		| transition to guest
2942  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2943  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2944  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2945  *
2946  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2947  *
2948  * 	- ret0 < ret1
2949  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2950  *		...
2951  *	- 0 < N - M => M < N
2952  *
2953  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2954  * always the case (the difference between two distinct xtime instances
2955  * might be smaller then the difference between corresponding TSC reads,
2956  * when updating guest vcpus pvclock areas).
2957  *
2958  * To avoid that problem, do not allow visibility of distinct
2959  * system_timestamp/tsc_timestamp values simultaneously: use a master
2960  * copy of host monotonic time values. Update that master copy
2961  * in lockstep.
2962  *
2963  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2964  *
2965  */
2966 
2967 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2968 {
2969 #ifdef CONFIG_X86_64
2970 	struct kvm_arch *ka = &kvm->arch;
2971 	int vclock_mode;
2972 	bool host_tsc_clocksource, vcpus_matched;
2973 
2974 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2975 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2976 			atomic_read(&kvm->online_vcpus));
2977 
2978 	/*
2979 	 * If the host uses TSC clock, then passthrough TSC as stable
2980 	 * to the guest.
2981 	 */
2982 	host_tsc_clocksource = kvm_get_time_and_clockread(
2983 					&ka->master_kernel_ns,
2984 					&ka->master_cycle_now);
2985 
2986 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2987 				&& !ka->backwards_tsc_observed
2988 				&& !ka->boot_vcpu_runs_old_kvmclock;
2989 
2990 	if (ka->use_master_clock)
2991 		atomic_set(&kvm_guest_has_master_clock, 1);
2992 
2993 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2994 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2995 					vcpus_matched);
2996 #endif
2997 }
2998 
2999 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3000 {
3001 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3002 }
3003 
3004 static void __kvm_start_pvclock_update(struct kvm *kvm)
3005 {
3006 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3007 	write_seqcount_begin(&kvm->arch.pvclock_sc);
3008 }
3009 
3010 static void kvm_start_pvclock_update(struct kvm *kvm)
3011 {
3012 	kvm_make_mclock_inprogress_request(kvm);
3013 
3014 	/* no guest entries from this point */
3015 	__kvm_start_pvclock_update(kvm);
3016 }
3017 
3018 static void kvm_end_pvclock_update(struct kvm *kvm)
3019 {
3020 	struct kvm_arch *ka = &kvm->arch;
3021 	struct kvm_vcpu *vcpu;
3022 	unsigned long i;
3023 
3024 	write_seqcount_end(&ka->pvclock_sc);
3025 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3026 	kvm_for_each_vcpu(i, vcpu, kvm)
3027 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3028 
3029 	/* guest entries allowed */
3030 	kvm_for_each_vcpu(i, vcpu, kvm)
3031 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3032 }
3033 
3034 static void kvm_update_masterclock(struct kvm *kvm)
3035 {
3036 	kvm_hv_request_tsc_page_update(kvm);
3037 	kvm_start_pvclock_update(kvm);
3038 	pvclock_update_vm_gtod_copy(kvm);
3039 	kvm_end_pvclock_update(kvm);
3040 }
3041 
3042 /*
3043  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3044  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3045  * can change during boot even if the TSC is constant, as it's possible for KVM
3046  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3047  * notification when calibration completes, but practically speaking calibration
3048  * will complete before userspace is alive enough to create VMs.
3049  */
3050 static unsigned long get_cpu_tsc_khz(void)
3051 {
3052 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3053 		return tsc_khz;
3054 	else
3055 		return __this_cpu_read(cpu_tsc_khz);
3056 }
3057 
3058 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3059 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3060 {
3061 	struct kvm_arch *ka = &kvm->arch;
3062 	struct pvclock_vcpu_time_info hv_clock;
3063 
3064 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3065 	get_cpu();
3066 
3067 	data->flags = 0;
3068 	if (ka->use_master_clock &&
3069 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3070 #ifdef CONFIG_X86_64
3071 		struct timespec64 ts;
3072 
3073 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3074 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3075 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3076 		} else
3077 #endif
3078 		data->host_tsc = rdtsc();
3079 
3080 		data->flags |= KVM_CLOCK_TSC_STABLE;
3081 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3082 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3083 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3084 				   &hv_clock.tsc_shift,
3085 				   &hv_clock.tsc_to_system_mul);
3086 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3087 	} else {
3088 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3089 	}
3090 
3091 	put_cpu();
3092 }
3093 
3094 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3095 {
3096 	struct kvm_arch *ka = &kvm->arch;
3097 	unsigned seq;
3098 
3099 	do {
3100 		seq = read_seqcount_begin(&ka->pvclock_sc);
3101 		__get_kvmclock(kvm, data);
3102 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3103 }
3104 
3105 u64 get_kvmclock_ns(struct kvm *kvm)
3106 {
3107 	struct kvm_clock_data data;
3108 
3109 	get_kvmclock(kvm, &data);
3110 	return data.clock;
3111 }
3112 
3113 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3114 				    struct gfn_to_pfn_cache *gpc,
3115 				    unsigned int offset,
3116 				    bool force_tsc_unstable)
3117 {
3118 	struct kvm_vcpu_arch *vcpu = &v->arch;
3119 	struct pvclock_vcpu_time_info *guest_hv_clock;
3120 	unsigned long flags;
3121 
3122 	read_lock_irqsave(&gpc->lock, flags);
3123 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3124 		read_unlock_irqrestore(&gpc->lock, flags);
3125 
3126 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3127 			return;
3128 
3129 		read_lock_irqsave(&gpc->lock, flags);
3130 	}
3131 
3132 	guest_hv_clock = (void *)(gpc->khva + offset);
3133 
3134 	/*
3135 	 * This VCPU is paused, but it's legal for a guest to read another
3136 	 * VCPU's kvmclock, so we really have to follow the specification where
3137 	 * it says that version is odd if data is being modified, and even after
3138 	 * it is consistent.
3139 	 */
3140 
3141 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3142 	smp_wmb();
3143 
3144 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3145 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3146 
3147 	if (vcpu->pvclock_set_guest_stopped_request) {
3148 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3149 		vcpu->pvclock_set_guest_stopped_request = false;
3150 	}
3151 
3152 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3153 
3154 	if (force_tsc_unstable)
3155 		guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3156 
3157 	smp_wmb();
3158 
3159 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3160 
3161 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3162 	read_unlock_irqrestore(&gpc->lock, flags);
3163 
3164 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3165 }
3166 
3167 static int kvm_guest_time_update(struct kvm_vcpu *v)
3168 {
3169 	unsigned long flags, tgt_tsc_khz;
3170 	unsigned seq;
3171 	struct kvm_vcpu_arch *vcpu = &v->arch;
3172 	struct kvm_arch *ka = &v->kvm->arch;
3173 	s64 kernel_ns;
3174 	u64 tsc_timestamp, host_tsc;
3175 	u8 pvclock_flags;
3176 	bool use_master_clock;
3177 #ifdef CONFIG_KVM_XEN
3178 	/*
3179 	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3180 	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3181 	 * This default behaviour led to bugs in some guest kernels which cause
3182 	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3183 	 */
3184 	bool xen_pvclock_tsc_unstable =
3185 		ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3186 #endif
3187 
3188 	kernel_ns = 0;
3189 	host_tsc = 0;
3190 
3191 	/*
3192 	 * If the host uses TSC clock, then passthrough TSC as stable
3193 	 * to the guest.
3194 	 */
3195 	do {
3196 		seq = read_seqcount_begin(&ka->pvclock_sc);
3197 		use_master_clock = ka->use_master_clock;
3198 		if (use_master_clock) {
3199 			host_tsc = ka->master_cycle_now;
3200 			kernel_ns = ka->master_kernel_ns;
3201 		}
3202 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3203 
3204 	/* Keep irq disabled to prevent changes to the clock */
3205 	local_irq_save(flags);
3206 	tgt_tsc_khz = get_cpu_tsc_khz();
3207 	if (unlikely(tgt_tsc_khz == 0)) {
3208 		local_irq_restore(flags);
3209 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3210 		return 1;
3211 	}
3212 	if (!use_master_clock) {
3213 		host_tsc = rdtsc();
3214 		kernel_ns = get_kvmclock_base_ns();
3215 	}
3216 
3217 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3218 
3219 	/*
3220 	 * We may have to catch up the TSC to match elapsed wall clock
3221 	 * time for two reasons, even if kvmclock is used.
3222 	 *   1) CPU could have been running below the maximum TSC rate
3223 	 *   2) Broken TSC compensation resets the base at each VCPU
3224 	 *      entry to avoid unknown leaps of TSC even when running
3225 	 *      again on the same CPU.  This may cause apparent elapsed
3226 	 *      time to disappear, and the guest to stand still or run
3227 	 *	very slowly.
3228 	 */
3229 	if (vcpu->tsc_catchup) {
3230 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3231 		if (tsc > tsc_timestamp) {
3232 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3233 			tsc_timestamp = tsc;
3234 		}
3235 	}
3236 
3237 	local_irq_restore(flags);
3238 
3239 	/* With all the info we got, fill in the values */
3240 
3241 	if (kvm_caps.has_tsc_control)
3242 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3243 					    v->arch.l1_tsc_scaling_ratio);
3244 
3245 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3246 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3247 				   &vcpu->hv_clock.tsc_shift,
3248 				   &vcpu->hv_clock.tsc_to_system_mul);
3249 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3250 		kvm_xen_update_tsc_info(v);
3251 	}
3252 
3253 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3254 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3255 	vcpu->last_guest_tsc = tsc_timestamp;
3256 
3257 	/* If the host uses TSC clocksource, then it is stable */
3258 	pvclock_flags = 0;
3259 	if (use_master_clock)
3260 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3261 
3262 	vcpu->hv_clock.flags = pvclock_flags;
3263 
3264 	if (vcpu->pv_time.active)
3265 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3266 #ifdef CONFIG_KVM_XEN
3267 	if (vcpu->xen.vcpu_info_cache.active)
3268 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3269 					offsetof(struct compat_vcpu_info, time),
3270 					xen_pvclock_tsc_unstable);
3271 	if (vcpu->xen.vcpu_time_info_cache.active)
3272 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3273 					xen_pvclock_tsc_unstable);
3274 #endif
3275 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3276 	return 0;
3277 }
3278 
3279 /*
3280  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3281  * which it started (i.e. its epoch, when its kvmclock was zero).
3282  *
3283  * In fact those clocks are subtly different; wall clock frequency is
3284  * adjusted by NTP and has leap seconds, while the kvmclock is a
3285  * simple function of the TSC without any such adjustment.
3286  *
3287  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3288  * that and kvmclock, but even that would be subject to change over
3289  * time.
3290  *
3291  * Attempt to calculate the epoch at a given moment using the *same*
3292  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3293  * wallclock and kvmclock times, and subtracting one from the other.
3294  *
3295  * Fall back to using their values at slightly different moments by
3296  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3297  */
3298 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3299 {
3300 #ifdef CONFIG_X86_64
3301 	struct pvclock_vcpu_time_info hv_clock;
3302 	struct kvm_arch *ka = &kvm->arch;
3303 	unsigned long seq, local_tsc_khz;
3304 	struct timespec64 ts;
3305 	uint64_t host_tsc;
3306 
3307 	do {
3308 		seq = read_seqcount_begin(&ka->pvclock_sc);
3309 
3310 		local_tsc_khz = 0;
3311 		if (!ka->use_master_clock)
3312 			break;
3313 
3314 		/*
3315 		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3316 		 * on the same CPU.
3317 		 */
3318 		get_cpu();
3319 
3320 		local_tsc_khz = get_cpu_tsc_khz();
3321 
3322 		if (local_tsc_khz &&
3323 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3324 			local_tsc_khz = 0; /* Fall back to old method */
3325 
3326 		put_cpu();
3327 
3328 		/*
3329 		 * These values must be snapshotted within the seqcount loop.
3330 		 * After that, it's just mathematics which can happen on any
3331 		 * CPU at any time.
3332 		 */
3333 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3334 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3335 
3336 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3337 
3338 	/*
3339 	 * If the conditions were right, and obtaining the wallclock+TSC was
3340 	 * successful, calculate the KVM clock at the corresponding time and
3341 	 * subtract one from the other to get the guest's epoch in nanoseconds
3342 	 * since 1970-01-01.
3343 	 */
3344 	if (local_tsc_khz) {
3345 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3346 				   &hv_clock.tsc_shift,
3347 				   &hv_clock.tsc_to_system_mul);
3348 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3349 			__pvclock_read_cycles(&hv_clock, host_tsc);
3350 	}
3351 #endif
3352 	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3353 }
3354 
3355 /*
3356  * kvmclock updates which are isolated to a given vcpu, such as
3357  * vcpu->cpu migration, should not allow system_timestamp from
3358  * the rest of the vcpus to remain static. Otherwise ntp frequency
3359  * correction applies to one vcpu's system_timestamp but not
3360  * the others.
3361  *
3362  * So in those cases, request a kvmclock update for all vcpus.
3363  * We need to rate-limit these requests though, as they can
3364  * considerably slow guests that have a large number of vcpus.
3365  * The time for a remote vcpu to update its kvmclock is bound
3366  * by the delay we use to rate-limit the updates.
3367  */
3368 
3369 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3370 
3371 static void kvmclock_update_fn(struct work_struct *work)
3372 {
3373 	unsigned long i;
3374 	struct delayed_work *dwork = to_delayed_work(work);
3375 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3376 					   kvmclock_update_work);
3377 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3378 	struct kvm_vcpu *vcpu;
3379 
3380 	kvm_for_each_vcpu(i, vcpu, kvm) {
3381 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3382 		kvm_vcpu_kick(vcpu);
3383 	}
3384 }
3385 
3386 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3387 {
3388 	struct kvm *kvm = v->kvm;
3389 
3390 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3391 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3392 					KVMCLOCK_UPDATE_DELAY);
3393 }
3394 
3395 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3396 
3397 static void kvmclock_sync_fn(struct work_struct *work)
3398 {
3399 	struct delayed_work *dwork = to_delayed_work(work);
3400 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3401 					   kvmclock_sync_work);
3402 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3403 
3404 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3405 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3406 					KVMCLOCK_SYNC_PERIOD);
3407 }
3408 
3409 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3410 static bool is_mci_control_msr(u32 msr)
3411 {
3412 	return (msr & 3) == 0;
3413 }
3414 static bool is_mci_status_msr(u32 msr)
3415 {
3416 	return (msr & 3) == 1;
3417 }
3418 
3419 /*
3420  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3421  */
3422 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3423 {
3424 	/* McStatusWrEn enabled? */
3425 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3426 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3427 
3428 	return false;
3429 }
3430 
3431 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3432 {
3433 	u64 mcg_cap = vcpu->arch.mcg_cap;
3434 	unsigned bank_num = mcg_cap & 0xff;
3435 	u32 msr = msr_info->index;
3436 	u64 data = msr_info->data;
3437 	u32 offset, last_msr;
3438 
3439 	switch (msr) {
3440 	case MSR_IA32_MCG_STATUS:
3441 		vcpu->arch.mcg_status = data;
3442 		break;
3443 	case MSR_IA32_MCG_CTL:
3444 		if (!(mcg_cap & MCG_CTL_P) &&
3445 		    (data || !msr_info->host_initiated))
3446 			return 1;
3447 		if (data != 0 && data != ~(u64)0)
3448 			return 1;
3449 		vcpu->arch.mcg_ctl = data;
3450 		break;
3451 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3452 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3453 		if (msr > last_msr)
3454 			return 1;
3455 
3456 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3457 			return 1;
3458 		/* An attempt to write a 1 to a reserved bit raises #GP */
3459 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3460 			return 1;
3461 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3462 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3463 		vcpu->arch.mci_ctl2_banks[offset] = data;
3464 		break;
3465 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3466 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3467 		if (msr > last_msr)
3468 			return 1;
3469 
3470 		/*
3471 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3472 		 * values are architecturally undefined.  But, some Linux
3473 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3474 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3475 		 * other bits in order to avoid an uncaught #GP in the guest.
3476 		 *
3477 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3478 		 * single-bit ECC data errors.
3479 		 */
3480 		if (is_mci_control_msr(msr) &&
3481 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3482 			return 1;
3483 
3484 		/*
3485 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3486 		 * AMD-based CPUs allow non-zero values, but if and only if
3487 		 * HWCR[McStatusWrEn] is set.
3488 		 */
3489 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3490 		    data != 0 && !can_set_mci_status(vcpu))
3491 			return 1;
3492 
3493 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3494 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3495 		vcpu->arch.mce_banks[offset] = data;
3496 		break;
3497 	default:
3498 		return 1;
3499 	}
3500 	return 0;
3501 }
3502 
3503 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3504 {
3505 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3506 
3507 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3508 }
3509 
3510 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3511 {
3512 	gpa_t gpa = data & ~0x3f;
3513 
3514 	/* Bits 4:5 are reserved, Should be zero */
3515 	if (data & 0x30)
3516 		return 1;
3517 
3518 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3519 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3520 		return 1;
3521 
3522 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3523 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3524 		return 1;
3525 
3526 	if (!lapic_in_kernel(vcpu))
3527 		return data ? 1 : 0;
3528 
3529 	vcpu->arch.apf.msr_en_val = data;
3530 
3531 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3532 		kvm_clear_async_pf_completion_queue(vcpu);
3533 		kvm_async_pf_hash_reset(vcpu);
3534 		return 0;
3535 	}
3536 
3537 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3538 					sizeof(u64)))
3539 		return 1;
3540 
3541 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3542 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3543 
3544 	kvm_async_pf_wakeup_all(vcpu);
3545 
3546 	return 0;
3547 }
3548 
3549 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3550 {
3551 	/* Bits 8-63 are reserved */
3552 	if (data >> 8)
3553 		return 1;
3554 
3555 	if (!lapic_in_kernel(vcpu))
3556 		return 1;
3557 
3558 	vcpu->arch.apf.msr_int_val = data;
3559 
3560 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3561 
3562 	return 0;
3563 }
3564 
3565 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3566 {
3567 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3568 	vcpu->arch.time = 0;
3569 }
3570 
3571 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3572 {
3573 	++vcpu->stat.tlb_flush;
3574 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3575 
3576 	/* Flushing all ASIDs flushes the current ASID... */
3577 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3578 }
3579 
3580 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3581 {
3582 	++vcpu->stat.tlb_flush;
3583 
3584 	if (!tdp_enabled) {
3585 		/*
3586 		 * A TLB flush on behalf of the guest is equivalent to
3587 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3588 		 * a forced sync of the shadow page tables.  Ensure all the
3589 		 * roots are synced and the guest TLB in hardware is clean.
3590 		 */
3591 		kvm_mmu_sync_roots(vcpu);
3592 		kvm_mmu_sync_prev_roots(vcpu);
3593 	}
3594 
3595 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3596 
3597 	/*
3598 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3599 	 * grained flushing.
3600 	 */
3601 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3602 }
3603 
3604 
3605 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3606 {
3607 	++vcpu->stat.tlb_flush;
3608 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3609 }
3610 
3611 /*
3612  * Service "local" TLB flush requests, which are specific to the current MMU
3613  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3614  * TLB flushes that are targeted at an MMU context also need to be serviced
3615  * prior before nested VM-Enter/VM-Exit.
3616  */
3617 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3618 {
3619 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3620 		kvm_vcpu_flush_tlb_current(vcpu);
3621 
3622 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3623 		kvm_vcpu_flush_tlb_guest(vcpu);
3624 }
3625 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3626 
3627 static void record_steal_time(struct kvm_vcpu *vcpu)
3628 {
3629 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3630 	struct kvm_steal_time __user *st;
3631 	struct kvm_memslots *slots;
3632 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3633 	u64 steal;
3634 	u32 version;
3635 
3636 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3637 		kvm_xen_runstate_set_running(vcpu);
3638 		return;
3639 	}
3640 
3641 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3642 		return;
3643 
3644 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3645 		return;
3646 
3647 	slots = kvm_memslots(vcpu->kvm);
3648 
3649 	if (unlikely(slots->generation != ghc->generation ||
3650 		     gpa != ghc->gpa ||
3651 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3652 		/* We rely on the fact that it fits in a single page. */
3653 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3654 
3655 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3656 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3657 			return;
3658 	}
3659 
3660 	st = (struct kvm_steal_time __user *)ghc->hva;
3661 	/*
3662 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3663 	 * expensive IPIs.
3664 	 */
3665 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3666 		u8 st_preempted = 0;
3667 		int err = -EFAULT;
3668 
3669 		if (!user_access_begin(st, sizeof(*st)))
3670 			return;
3671 
3672 		asm volatile("1: xchgb %0, %2\n"
3673 			     "xor %1, %1\n"
3674 			     "2:\n"
3675 			     _ASM_EXTABLE_UA(1b, 2b)
3676 			     : "+q" (st_preempted),
3677 			       "+&r" (err),
3678 			       "+m" (st->preempted));
3679 		if (err)
3680 			goto out;
3681 
3682 		user_access_end();
3683 
3684 		vcpu->arch.st.preempted = 0;
3685 
3686 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3687 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3688 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3689 			kvm_vcpu_flush_tlb_guest(vcpu);
3690 
3691 		if (!user_access_begin(st, sizeof(*st)))
3692 			goto dirty;
3693 	} else {
3694 		if (!user_access_begin(st, sizeof(*st)))
3695 			return;
3696 
3697 		unsafe_put_user(0, &st->preempted, out);
3698 		vcpu->arch.st.preempted = 0;
3699 	}
3700 
3701 	unsafe_get_user(version, &st->version, out);
3702 	if (version & 1)
3703 		version += 1;  /* first time write, random junk */
3704 
3705 	version += 1;
3706 	unsafe_put_user(version, &st->version, out);
3707 
3708 	smp_wmb();
3709 
3710 	unsafe_get_user(steal, &st->steal, out);
3711 	steal += current->sched_info.run_delay -
3712 		vcpu->arch.st.last_steal;
3713 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3714 	unsafe_put_user(steal, &st->steal, out);
3715 
3716 	version += 1;
3717 	unsafe_put_user(version, &st->version, out);
3718 
3719  out:
3720 	user_access_end();
3721  dirty:
3722 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3723 }
3724 
3725 static bool kvm_is_msr_to_save(u32 msr_index)
3726 {
3727 	unsigned int i;
3728 
3729 	for (i = 0; i < num_msrs_to_save; i++) {
3730 		if (msrs_to_save[i] == msr_index)
3731 			return true;
3732 	}
3733 
3734 	return false;
3735 }
3736 
3737 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3738 {
3739 	u32 msr = msr_info->index;
3740 	u64 data = msr_info->data;
3741 
3742 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3743 		return kvm_xen_write_hypercall_page(vcpu, data);
3744 
3745 	switch (msr) {
3746 	case MSR_AMD64_NB_CFG:
3747 	case MSR_IA32_UCODE_WRITE:
3748 	case MSR_VM_HSAVE_PA:
3749 	case MSR_AMD64_PATCH_LOADER:
3750 	case MSR_AMD64_BU_CFG2:
3751 	case MSR_AMD64_DC_CFG:
3752 	case MSR_AMD64_TW_CFG:
3753 	case MSR_F15H_EX_CFG:
3754 		break;
3755 
3756 	case MSR_IA32_UCODE_REV:
3757 		if (msr_info->host_initiated)
3758 			vcpu->arch.microcode_version = data;
3759 		break;
3760 	case MSR_IA32_ARCH_CAPABILITIES:
3761 		if (!msr_info->host_initiated)
3762 			return 1;
3763 		vcpu->arch.arch_capabilities = data;
3764 		break;
3765 	case MSR_IA32_PERF_CAPABILITIES:
3766 		if (!msr_info->host_initiated)
3767 			return 1;
3768 		if (data & ~kvm_caps.supported_perf_cap)
3769 			return 1;
3770 
3771 		/*
3772 		 * Note, this is not just a performance optimization!  KVM
3773 		 * disallows changing feature MSRs after the vCPU has run; PMU
3774 		 * refresh will bug the VM if called after the vCPU has run.
3775 		 */
3776 		if (vcpu->arch.perf_capabilities == data)
3777 			break;
3778 
3779 		vcpu->arch.perf_capabilities = data;
3780 		kvm_pmu_refresh(vcpu);
3781 		break;
3782 	case MSR_IA32_PRED_CMD: {
3783 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3784 
3785 		if (!msr_info->host_initiated) {
3786 			if ((!guest_has_pred_cmd_msr(vcpu)))
3787 				return 1;
3788 
3789 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3790 			    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3791 				reserved_bits |= PRED_CMD_IBPB;
3792 
3793 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3794 				reserved_bits |= PRED_CMD_SBPB;
3795 		}
3796 
3797 		if (!boot_cpu_has(X86_FEATURE_IBPB))
3798 			reserved_bits |= PRED_CMD_IBPB;
3799 
3800 		if (!boot_cpu_has(X86_FEATURE_SBPB))
3801 			reserved_bits |= PRED_CMD_SBPB;
3802 
3803 		if (data & reserved_bits)
3804 			return 1;
3805 
3806 		if (!data)
3807 			break;
3808 
3809 		wrmsrl(MSR_IA32_PRED_CMD, data);
3810 		break;
3811 	}
3812 	case MSR_IA32_FLUSH_CMD:
3813 		if (!msr_info->host_initiated &&
3814 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3815 			return 1;
3816 
3817 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3818 			return 1;
3819 		if (!data)
3820 			break;
3821 
3822 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3823 		break;
3824 	case MSR_EFER:
3825 		return set_efer(vcpu, msr_info);
3826 	case MSR_K7_HWCR:
3827 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3828 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3829 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3830 
3831 		/*
3832 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3833 		 * through at least v6.6 whine if TscFreqSel is clear,
3834 		 * depending on F/M/S.
3835 		 */
3836 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3837 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3838 			return 1;
3839 		}
3840 		vcpu->arch.msr_hwcr = data;
3841 		break;
3842 	case MSR_FAM10H_MMIO_CONF_BASE:
3843 		if (data != 0) {
3844 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3845 			return 1;
3846 		}
3847 		break;
3848 	case MSR_IA32_CR_PAT:
3849 		if (!kvm_pat_valid(data))
3850 			return 1;
3851 
3852 		vcpu->arch.pat = data;
3853 		break;
3854 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3855 	case MSR_MTRRdefType:
3856 		return kvm_mtrr_set_msr(vcpu, msr, data);
3857 	case MSR_IA32_APICBASE:
3858 		return kvm_set_apic_base(vcpu, msr_info);
3859 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3860 		return kvm_x2apic_msr_write(vcpu, msr, data);
3861 	case MSR_IA32_TSC_DEADLINE:
3862 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3863 		break;
3864 	case MSR_IA32_TSC_ADJUST:
3865 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3866 			if (!msr_info->host_initiated) {
3867 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3868 				adjust_tsc_offset_guest(vcpu, adj);
3869 				/* Before back to guest, tsc_timestamp must be adjusted
3870 				 * as well, otherwise guest's percpu pvclock time could jump.
3871 				 */
3872 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3873 			}
3874 			vcpu->arch.ia32_tsc_adjust_msr = data;
3875 		}
3876 		break;
3877 	case MSR_IA32_MISC_ENABLE: {
3878 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3879 
3880 		if (!msr_info->host_initiated) {
3881 			/* RO bits */
3882 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3883 				return 1;
3884 
3885 			/* R bits, i.e. writes are ignored, but don't fault. */
3886 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3887 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3888 		}
3889 
3890 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3891 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3892 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3893 				return 1;
3894 			vcpu->arch.ia32_misc_enable_msr = data;
3895 			kvm_update_cpuid_runtime(vcpu);
3896 		} else {
3897 			vcpu->arch.ia32_misc_enable_msr = data;
3898 		}
3899 		break;
3900 	}
3901 	case MSR_IA32_SMBASE:
3902 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3903 			return 1;
3904 		vcpu->arch.smbase = data;
3905 		break;
3906 	case MSR_IA32_POWER_CTL:
3907 		vcpu->arch.msr_ia32_power_ctl = data;
3908 		break;
3909 	case MSR_IA32_TSC:
3910 		if (msr_info->host_initiated) {
3911 			kvm_synchronize_tsc(vcpu, &data);
3912 		} else {
3913 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3914 			adjust_tsc_offset_guest(vcpu, adj);
3915 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3916 		}
3917 		break;
3918 	case MSR_IA32_XSS:
3919 		if (!msr_info->host_initiated &&
3920 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3921 			return 1;
3922 		/*
3923 		 * KVM supports exposing PT to the guest, but does not support
3924 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3925 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3926 		 */
3927 		if (data & ~kvm_caps.supported_xss)
3928 			return 1;
3929 		vcpu->arch.ia32_xss = data;
3930 		kvm_update_cpuid_runtime(vcpu);
3931 		break;
3932 	case MSR_SMI_COUNT:
3933 		if (!msr_info->host_initiated)
3934 			return 1;
3935 		vcpu->arch.smi_count = data;
3936 		break;
3937 	case MSR_KVM_WALL_CLOCK_NEW:
3938 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3939 			return 1;
3940 
3941 		vcpu->kvm->arch.wall_clock = data;
3942 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3943 		break;
3944 	case MSR_KVM_WALL_CLOCK:
3945 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3946 			return 1;
3947 
3948 		vcpu->kvm->arch.wall_clock = data;
3949 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3950 		break;
3951 	case MSR_KVM_SYSTEM_TIME_NEW:
3952 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3953 			return 1;
3954 
3955 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3956 		break;
3957 	case MSR_KVM_SYSTEM_TIME:
3958 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3959 			return 1;
3960 
3961 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3962 		break;
3963 	case MSR_KVM_ASYNC_PF_EN:
3964 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3965 			return 1;
3966 
3967 		if (kvm_pv_enable_async_pf(vcpu, data))
3968 			return 1;
3969 		break;
3970 	case MSR_KVM_ASYNC_PF_INT:
3971 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3972 			return 1;
3973 
3974 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3975 			return 1;
3976 		break;
3977 	case MSR_KVM_ASYNC_PF_ACK:
3978 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3979 			return 1;
3980 		if (data & 0x1) {
3981 			vcpu->arch.apf.pageready_pending = false;
3982 			kvm_check_async_pf_completion(vcpu);
3983 		}
3984 		break;
3985 	case MSR_KVM_STEAL_TIME:
3986 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3987 			return 1;
3988 
3989 		if (unlikely(!sched_info_on()))
3990 			return 1;
3991 
3992 		if (data & KVM_STEAL_RESERVED_MASK)
3993 			return 1;
3994 
3995 		vcpu->arch.st.msr_val = data;
3996 
3997 		if (!(data & KVM_MSR_ENABLED))
3998 			break;
3999 
4000 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4001 
4002 		break;
4003 	case MSR_KVM_PV_EOI_EN:
4004 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4005 			return 1;
4006 
4007 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4008 			return 1;
4009 		break;
4010 
4011 	case MSR_KVM_POLL_CONTROL:
4012 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4013 			return 1;
4014 
4015 		/* only enable bit supported */
4016 		if (data & (-1ULL << 1))
4017 			return 1;
4018 
4019 		vcpu->arch.msr_kvm_poll_control = data;
4020 		break;
4021 
4022 	case MSR_IA32_MCG_CTL:
4023 	case MSR_IA32_MCG_STATUS:
4024 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4025 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4026 		return set_msr_mce(vcpu, msr_info);
4027 
4028 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4029 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4030 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4031 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4032 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4033 			return kvm_pmu_set_msr(vcpu, msr_info);
4034 
4035 		if (data)
4036 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4037 		break;
4038 	case MSR_K7_CLK_CTL:
4039 		/*
4040 		 * Ignore all writes to this no longer documented MSR.
4041 		 * Writes are only relevant for old K7 processors,
4042 		 * all pre-dating SVM, but a recommended workaround from
4043 		 * AMD for these chips. It is possible to specify the
4044 		 * affected processor models on the command line, hence
4045 		 * the need to ignore the workaround.
4046 		 */
4047 		break;
4048 #ifdef CONFIG_KVM_HYPERV
4049 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4050 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4051 	case HV_X64_MSR_SYNDBG_OPTIONS:
4052 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4053 	case HV_X64_MSR_CRASH_CTL:
4054 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4055 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4056 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4057 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4058 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4059 		return kvm_hv_set_msr_common(vcpu, msr, data,
4060 					     msr_info->host_initiated);
4061 #endif
4062 	case MSR_IA32_BBL_CR_CTL3:
4063 		/* Drop writes to this legacy MSR -- see rdmsr
4064 		 * counterpart for further detail.
4065 		 */
4066 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4067 		break;
4068 	case MSR_AMD64_OSVW_ID_LENGTH:
4069 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4070 			return 1;
4071 		vcpu->arch.osvw.length = data;
4072 		break;
4073 	case MSR_AMD64_OSVW_STATUS:
4074 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4075 			return 1;
4076 		vcpu->arch.osvw.status = data;
4077 		break;
4078 	case MSR_PLATFORM_INFO:
4079 		if (!msr_info->host_initiated ||
4080 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4081 		     cpuid_fault_enabled(vcpu)))
4082 			return 1;
4083 		vcpu->arch.msr_platform_info = data;
4084 		break;
4085 	case MSR_MISC_FEATURES_ENABLES:
4086 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4087 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4088 		     !supports_cpuid_fault(vcpu)))
4089 			return 1;
4090 		vcpu->arch.msr_misc_features_enables = data;
4091 		break;
4092 #ifdef CONFIG_X86_64
4093 	case MSR_IA32_XFD:
4094 		if (!msr_info->host_initiated &&
4095 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4096 			return 1;
4097 
4098 		if (data & ~kvm_guest_supported_xfd(vcpu))
4099 			return 1;
4100 
4101 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4102 		break;
4103 	case MSR_IA32_XFD_ERR:
4104 		if (!msr_info->host_initiated &&
4105 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4106 			return 1;
4107 
4108 		if (data & ~kvm_guest_supported_xfd(vcpu))
4109 			return 1;
4110 
4111 		vcpu->arch.guest_fpu.xfd_err = data;
4112 		break;
4113 #endif
4114 	default:
4115 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4116 			return kvm_pmu_set_msr(vcpu, msr_info);
4117 
4118 		/*
4119 		 * Userspace is allowed to write '0' to MSRs that KVM reports
4120 		 * as to-be-saved, even if an MSRs isn't fully supported.
4121 		 */
4122 		if (msr_info->host_initiated && !data &&
4123 		    kvm_is_msr_to_save(msr))
4124 			break;
4125 
4126 		return KVM_MSR_RET_INVALID;
4127 	}
4128 	return 0;
4129 }
4130 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4131 
4132 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4133 {
4134 	u64 data;
4135 	u64 mcg_cap = vcpu->arch.mcg_cap;
4136 	unsigned bank_num = mcg_cap & 0xff;
4137 	u32 offset, last_msr;
4138 
4139 	switch (msr) {
4140 	case MSR_IA32_P5_MC_ADDR:
4141 	case MSR_IA32_P5_MC_TYPE:
4142 		data = 0;
4143 		break;
4144 	case MSR_IA32_MCG_CAP:
4145 		data = vcpu->arch.mcg_cap;
4146 		break;
4147 	case MSR_IA32_MCG_CTL:
4148 		if (!(mcg_cap & MCG_CTL_P) && !host)
4149 			return 1;
4150 		data = vcpu->arch.mcg_ctl;
4151 		break;
4152 	case MSR_IA32_MCG_STATUS:
4153 		data = vcpu->arch.mcg_status;
4154 		break;
4155 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4156 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4157 		if (msr > last_msr)
4158 			return 1;
4159 
4160 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4161 			return 1;
4162 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4163 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4164 		data = vcpu->arch.mci_ctl2_banks[offset];
4165 		break;
4166 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4167 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4168 		if (msr > last_msr)
4169 			return 1;
4170 
4171 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4172 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4173 		data = vcpu->arch.mce_banks[offset];
4174 		break;
4175 	default:
4176 		return 1;
4177 	}
4178 	*pdata = data;
4179 	return 0;
4180 }
4181 
4182 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4183 {
4184 	switch (msr_info->index) {
4185 	case MSR_IA32_PLATFORM_ID:
4186 	case MSR_IA32_EBL_CR_POWERON:
4187 	case MSR_IA32_LASTBRANCHFROMIP:
4188 	case MSR_IA32_LASTBRANCHTOIP:
4189 	case MSR_IA32_LASTINTFROMIP:
4190 	case MSR_IA32_LASTINTTOIP:
4191 	case MSR_AMD64_SYSCFG:
4192 	case MSR_K8_TSEG_ADDR:
4193 	case MSR_K8_TSEG_MASK:
4194 	case MSR_VM_HSAVE_PA:
4195 	case MSR_K8_INT_PENDING_MSG:
4196 	case MSR_AMD64_NB_CFG:
4197 	case MSR_FAM10H_MMIO_CONF_BASE:
4198 	case MSR_AMD64_BU_CFG2:
4199 	case MSR_IA32_PERF_CTL:
4200 	case MSR_AMD64_DC_CFG:
4201 	case MSR_AMD64_TW_CFG:
4202 	case MSR_F15H_EX_CFG:
4203 	/*
4204 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4205 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4206 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4207 	 * so for existing CPU-specific MSRs.
4208 	 */
4209 	case MSR_RAPL_POWER_UNIT:
4210 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4211 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4212 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4213 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4214 		msr_info->data = 0;
4215 		break;
4216 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4217 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4218 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4219 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4220 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4221 			return kvm_pmu_get_msr(vcpu, msr_info);
4222 		msr_info->data = 0;
4223 		break;
4224 	case MSR_IA32_UCODE_REV:
4225 		msr_info->data = vcpu->arch.microcode_version;
4226 		break;
4227 	case MSR_IA32_ARCH_CAPABILITIES:
4228 		if (!msr_info->host_initiated &&
4229 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4230 			return 1;
4231 		msr_info->data = vcpu->arch.arch_capabilities;
4232 		break;
4233 	case MSR_IA32_PERF_CAPABILITIES:
4234 		if (!msr_info->host_initiated &&
4235 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4236 			return 1;
4237 		msr_info->data = vcpu->arch.perf_capabilities;
4238 		break;
4239 	case MSR_IA32_POWER_CTL:
4240 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4241 		break;
4242 	case MSR_IA32_TSC: {
4243 		/*
4244 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4245 		 * even when not intercepted. AMD manual doesn't explicitly
4246 		 * state this but appears to behave the same.
4247 		 *
4248 		 * On userspace reads and writes, however, we unconditionally
4249 		 * return L1's TSC value to ensure backwards-compatible
4250 		 * behavior for migration.
4251 		 */
4252 		u64 offset, ratio;
4253 
4254 		if (msr_info->host_initiated) {
4255 			offset = vcpu->arch.l1_tsc_offset;
4256 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4257 		} else {
4258 			offset = vcpu->arch.tsc_offset;
4259 			ratio = vcpu->arch.tsc_scaling_ratio;
4260 		}
4261 
4262 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4263 		break;
4264 	}
4265 	case MSR_IA32_CR_PAT:
4266 		msr_info->data = vcpu->arch.pat;
4267 		break;
4268 	case MSR_MTRRcap:
4269 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4270 	case MSR_MTRRdefType:
4271 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4272 	case 0xcd: /* fsb frequency */
4273 		msr_info->data = 3;
4274 		break;
4275 		/*
4276 		 * MSR_EBC_FREQUENCY_ID
4277 		 * Conservative value valid for even the basic CPU models.
4278 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4279 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4280 		 * and 266MHz for model 3, or 4. Set Core Clock
4281 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4282 		 * 31:24) even though these are only valid for CPU
4283 		 * models > 2, however guests may end up dividing or
4284 		 * multiplying by zero otherwise.
4285 		 */
4286 	case MSR_EBC_FREQUENCY_ID:
4287 		msr_info->data = 1 << 24;
4288 		break;
4289 	case MSR_IA32_APICBASE:
4290 		msr_info->data = kvm_get_apic_base(vcpu);
4291 		break;
4292 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4293 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4294 	case MSR_IA32_TSC_DEADLINE:
4295 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4296 		break;
4297 	case MSR_IA32_TSC_ADJUST:
4298 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4299 		break;
4300 	case MSR_IA32_MISC_ENABLE:
4301 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4302 		break;
4303 	case MSR_IA32_SMBASE:
4304 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4305 			return 1;
4306 		msr_info->data = vcpu->arch.smbase;
4307 		break;
4308 	case MSR_SMI_COUNT:
4309 		msr_info->data = vcpu->arch.smi_count;
4310 		break;
4311 	case MSR_IA32_PERF_STATUS:
4312 		/* TSC increment by tick */
4313 		msr_info->data = 1000ULL;
4314 		/* CPU multiplier */
4315 		msr_info->data |= (((uint64_t)4ULL) << 40);
4316 		break;
4317 	case MSR_EFER:
4318 		msr_info->data = vcpu->arch.efer;
4319 		break;
4320 	case MSR_KVM_WALL_CLOCK:
4321 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4322 			return 1;
4323 
4324 		msr_info->data = vcpu->kvm->arch.wall_clock;
4325 		break;
4326 	case MSR_KVM_WALL_CLOCK_NEW:
4327 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4328 			return 1;
4329 
4330 		msr_info->data = vcpu->kvm->arch.wall_clock;
4331 		break;
4332 	case MSR_KVM_SYSTEM_TIME:
4333 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4334 			return 1;
4335 
4336 		msr_info->data = vcpu->arch.time;
4337 		break;
4338 	case MSR_KVM_SYSTEM_TIME_NEW:
4339 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4340 			return 1;
4341 
4342 		msr_info->data = vcpu->arch.time;
4343 		break;
4344 	case MSR_KVM_ASYNC_PF_EN:
4345 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4346 			return 1;
4347 
4348 		msr_info->data = vcpu->arch.apf.msr_en_val;
4349 		break;
4350 	case MSR_KVM_ASYNC_PF_INT:
4351 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4352 			return 1;
4353 
4354 		msr_info->data = vcpu->arch.apf.msr_int_val;
4355 		break;
4356 	case MSR_KVM_ASYNC_PF_ACK:
4357 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4358 			return 1;
4359 
4360 		msr_info->data = 0;
4361 		break;
4362 	case MSR_KVM_STEAL_TIME:
4363 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4364 			return 1;
4365 
4366 		msr_info->data = vcpu->arch.st.msr_val;
4367 		break;
4368 	case MSR_KVM_PV_EOI_EN:
4369 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4370 			return 1;
4371 
4372 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4373 		break;
4374 	case MSR_KVM_POLL_CONTROL:
4375 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4376 			return 1;
4377 
4378 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4379 		break;
4380 	case MSR_IA32_P5_MC_ADDR:
4381 	case MSR_IA32_P5_MC_TYPE:
4382 	case MSR_IA32_MCG_CAP:
4383 	case MSR_IA32_MCG_CTL:
4384 	case MSR_IA32_MCG_STATUS:
4385 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4386 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4387 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4388 				   msr_info->host_initiated);
4389 	case MSR_IA32_XSS:
4390 		if (!msr_info->host_initiated &&
4391 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4392 			return 1;
4393 		msr_info->data = vcpu->arch.ia32_xss;
4394 		break;
4395 	case MSR_K7_CLK_CTL:
4396 		/*
4397 		 * Provide expected ramp-up count for K7. All other
4398 		 * are set to zero, indicating minimum divisors for
4399 		 * every field.
4400 		 *
4401 		 * This prevents guest kernels on AMD host with CPU
4402 		 * type 6, model 8 and higher from exploding due to
4403 		 * the rdmsr failing.
4404 		 */
4405 		msr_info->data = 0x20000000;
4406 		break;
4407 #ifdef CONFIG_KVM_HYPERV
4408 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4409 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4410 	case HV_X64_MSR_SYNDBG_OPTIONS:
4411 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4412 	case HV_X64_MSR_CRASH_CTL:
4413 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4414 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4415 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4416 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4417 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4418 		return kvm_hv_get_msr_common(vcpu,
4419 					     msr_info->index, &msr_info->data,
4420 					     msr_info->host_initiated);
4421 #endif
4422 	case MSR_IA32_BBL_CR_CTL3:
4423 		/* This legacy MSR exists but isn't fully documented in current
4424 		 * silicon.  It is however accessed by winxp in very narrow
4425 		 * scenarios where it sets bit #19, itself documented as
4426 		 * a "reserved" bit.  Best effort attempt to source coherent
4427 		 * read data here should the balance of the register be
4428 		 * interpreted by the guest:
4429 		 *
4430 		 * L2 cache control register 3: 64GB range, 256KB size,
4431 		 * enabled, latency 0x1, configured
4432 		 */
4433 		msr_info->data = 0xbe702111;
4434 		break;
4435 	case MSR_AMD64_OSVW_ID_LENGTH:
4436 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4437 			return 1;
4438 		msr_info->data = vcpu->arch.osvw.length;
4439 		break;
4440 	case MSR_AMD64_OSVW_STATUS:
4441 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4442 			return 1;
4443 		msr_info->data = vcpu->arch.osvw.status;
4444 		break;
4445 	case MSR_PLATFORM_INFO:
4446 		if (!msr_info->host_initiated &&
4447 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4448 			return 1;
4449 		msr_info->data = vcpu->arch.msr_platform_info;
4450 		break;
4451 	case MSR_MISC_FEATURES_ENABLES:
4452 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4453 		break;
4454 	case MSR_K7_HWCR:
4455 		msr_info->data = vcpu->arch.msr_hwcr;
4456 		break;
4457 #ifdef CONFIG_X86_64
4458 	case MSR_IA32_XFD:
4459 		if (!msr_info->host_initiated &&
4460 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4461 			return 1;
4462 
4463 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4464 		break;
4465 	case MSR_IA32_XFD_ERR:
4466 		if (!msr_info->host_initiated &&
4467 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4468 			return 1;
4469 
4470 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4471 		break;
4472 #endif
4473 	default:
4474 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4475 			return kvm_pmu_get_msr(vcpu, msr_info);
4476 
4477 		/*
4478 		 * Userspace is allowed to read MSRs that KVM reports as
4479 		 * to-be-saved, even if an MSR isn't fully supported.
4480 		 */
4481 		if (msr_info->host_initiated &&
4482 		    kvm_is_msr_to_save(msr_info->index)) {
4483 			msr_info->data = 0;
4484 			break;
4485 		}
4486 
4487 		return KVM_MSR_RET_INVALID;
4488 	}
4489 	return 0;
4490 }
4491 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4492 
4493 /*
4494  * Read or write a bunch of msrs. All parameters are kernel addresses.
4495  *
4496  * @return number of msrs set successfully.
4497  */
4498 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4499 		    struct kvm_msr_entry *entries,
4500 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4501 				  unsigned index, u64 *data))
4502 {
4503 	int i;
4504 
4505 	for (i = 0; i < msrs->nmsrs; ++i)
4506 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4507 			break;
4508 
4509 	return i;
4510 }
4511 
4512 /*
4513  * Read or write a bunch of msrs. Parameters are user addresses.
4514  *
4515  * @return number of msrs set successfully.
4516  */
4517 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4518 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4519 				unsigned index, u64 *data),
4520 		  int writeback)
4521 {
4522 	struct kvm_msrs msrs;
4523 	struct kvm_msr_entry *entries;
4524 	unsigned size;
4525 	int r;
4526 
4527 	r = -EFAULT;
4528 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4529 		goto out;
4530 
4531 	r = -E2BIG;
4532 	if (msrs.nmsrs >= MAX_IO_MSRS)
4533 		goto out;
4534 
4535 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4536 	entries = memdup_user(user_msrs->entries, size);
4537 	if (IS_ERR(entries)) {
4538 		r = PTR_ERR(entries);
4539 		goto out;
4540 	}
4541 
4542 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4543 
4544 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4545 		r = -EFAULT;
4546 
4547 	kfree(entries);
4548 out:
4549 	return r;
4550 }
4551 
4552 static inline bool kvm_can_mwait_in_guest(void)
4553 {
4554 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4555 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4556 		boot_cpu_has(X86_FEATURE_ARAT);
4557 }
4558 
4559 #ifdef CONFIG_KVM_HYPERV
4560 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4561 					    struct kvm_cpuid2 __user *cpuid_arg)
4562 {
4563 	struct kvm_cpuid2 cpuid;
4564 	int r;
4565 
4566 	r = -EFAULT;
4567 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4568 		return r;
4569 
4570 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4571 	if (r)
4572 		return r;
4573 
4574 	r = -EFAULT;
4575 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4576 		return r;
4577 
4578 	return 0;
4579 }
4580 #endif
4581 
4582 static bool kvm_is_vm_type_supported(unsigned long type)
4583 {
4584 	return type == KVM_X86_DEFAULT_VM ||
4585 	       (type == KVM_X86_SW_PROTECTED_VM &&
4586 		IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled);
4587 }
4588 
4589 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4590 {
4591 	int r = 0;
4592 
4593 	switch (ext) {
4594 	case KVM_CAP_IRQCHIP:
4595 	case KVM_CAP_HLT:
4596 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4597 	case KVM_CAP_SET_TSS_ADDR:
4598 	case KVM_CAP_EXT_CPUID:
4599 	case KVM_CAP_EXT_EMUL_CPUID:
4600 	case KVM_CAP_CLOCKSOURCE:
4601 	case KVM_CAP_PIT:
4602 	case KVM_CAP_NOP_IO_DELAY:
4603 	case KVM_CAP_MP_STATE:
4604 	case KVM_CAP_SYNC_MMU:
4605 	case KVM_CAP_USER_NMI:
4606 	case KVM_CAP_REINJECT_CONTROL:
4607 	case KVM_CAP_IRQ_INJECT_STATUS:
4608 	case KVM_CAP_IOEVENTFD:
4609 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4610 	case KVM_CAP_PIT2:
4611 	case KVM_CAP_PIT_STATE2:
4612 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4613 	case KVM_CAP_VCPU_EVENTS:
4614 #ifdef CONFIG_KVM_HYPERV
4615 	case KVM_CAP_HYPERV:
4616 	case KVM_CAP_HYPERV_VAPIC:
4617 	case KVM_CAP_HYPERV_SPIN:
4618 	case KVM_CAP_HYPERV_TIME:
4619 	case KVM_CAP_HYPERV_SYNIC:
4620 	case KVM_CAP_HYPERV_SYNIC2:
4621 	case KVM_CAP_HYPERV_VP_INDEX:
4622 	case KVM_CAP_HYPERV_EVENTFD:
4623 	case KVM_CAP_HYPERV_TLBFLUSH:
4624 	case KVM_CAP_HYPERV_SEND_IPI:
4625 	case KVM_CAP_HYPERV_CPUID:
4626 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4627 	case KVM_CAP_SYS_HYPERV_CPUID:
4628 #endif
4629 	case KVM_CAP_PCI_SEGMENT:
4630 	case KVM_CAP_DEBUGREGS:
4631 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4632 	case KVM_CAP_XSAVE:
4633 	case KVM_CAP_ASYNC_PF:
4634 	case KVM_CAP_ASYNC_PF_INT:
4635 	case KVM_CAP_GET_TSC_KHZ:
4636 	case KVM_CAP_KVMCLOCK_CTRL:
4637 	case KVM_CAP_READONLY_MEM:
4638 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4639 	case KVM_CAP_TSC_DEADLINE_TIMER:
4640 	case KVM_CAP_DISABLE_QUIRKS:
4641 	case KVM_CAP_SET_BOOT_CPU_ID:
4642  	case KVM_CAP_SPLIT_IRQCHIP:
4643 	case KVM_CAP_IMMEDIATE_EXIT:
4644 	case KVM_CAP_PMU_EVENT_FILTER:
4645 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4646 	case KVM_CAP_GET_MSR_FEATURES:
4647 	case KVM_CAP_MSR_PLATFORM_INFO:
4648 	case KVM_CAP_EXCEPTION_PAYLOAD:
4649 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4650 	case KVM_CAP_SET_GUEST_DEBUG:
4651 	case KVM_CAP_LAST_CPU:
4652 	case KVM_CAP_X86_USER_SPACE_MSR:
4653 	case KVM_CAP_X86_MSR_FILTER:
4654 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4655 #ifdef CONFIG_X86_SGX_KVM
4656 	case KVM_CAP_SGX_ATTRIBUTE:
4657 #endif
4658 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4659 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4660 	case KVM_CAP_SREGS2:
4661 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4662 	case KVM_CAP_VCPU_ATTRIBUTES:
4663 	case KVM_CAP_SYS_ATTRIBUTES:
4664 	case KVM_CAP_VAPIC:
4665 	case KVM_CAP_ENABLE_CAP:
4666 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4667 	case KVM_CAP_IRQFD_RESAMPLE:
4668 	case KVM_CAP_MEMORY_FAULT_INFO:
4669 		r = 1;
4670 		break;
4671 	case KVM_CAP_EXIT_HYPERCALL:
4672 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4673 		break;
4674 	case KVM_CAP_SET_GUEST_DEBUG2:
4675 		return KVM_GUESTDBG_VALID_MASK;
4676 #ifdef CONFIG_KVM_XEN
4677 	case KVM_CAP_XEN_HVM:
4678 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4679 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4680 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4681 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4682 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4683 		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
4684 		if (sched_info_on())
4685 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4686 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4687 		break;
4688 #endif
4689 	case KVM_CAP_SYNC_REGS:
4690 		r = KVM_SYNC_X86_VALID_FIELDS;
4691 		break;
4692 	case KVM_CAP_ADJUST_CLOCK:
4693 		r = KVM_CLOCK_VALID_FLAGS;
4694 		break;
4695 	case KVM_CAP_X86_DISABLE_EXITS:
4696 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4697 
4698 		if (!mitigate_smt_rsb) {
4699 			r |= KVM_X86_DISABLE_EXITS_HLT |
4700 			     KVM_X86_DISABLE_EXITS_CSTATE;
4701 
4702 			if (kvm_can_mwait_in_guest())
4703 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4704 		}
4705 		break;
4706 	case KVM_CAP_X86_SMM:
4707 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4708 			break;
4709 
4710 		/* SMBASE is usually relocated above 1M on modern chipsets,
4711 		 * and SMM handlers might indeed rely on 4G segment limits,
4712 		 * so do not report SMM to be available if real mode is
4713 		 * emulated via vm86 mode.  Still, do not go to great lengths
4714 		 * to avoid userspace's usage of the feature, because it is a
4715 		 * fringe case that is not enabled except via specific settings
4716 		 * of the module parameters.
4717 		 */
4718 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4719 		break;
4720 	case KVM_CAP_NR_VCPUS:
4721 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4722 		break;
4723 	case KVM_CAP_MAX_VCPUS:
4724 		r = KVM_MAX_VCPUS;
4725 		break;
4726 	case KVM_CAP_MAX_VCPU_ID:
4727 		r = KVM_MAX_VCPU_IDS;
4728 		break;
4729 	case KVM_CAP_PV_MMU:	/* obsolete */
4730 		r = 0;
4731 		break;
4732 	case KVM_CAP_MCE:
4733 		r = KVM_MAX_MCE_BANKS;
4734 		break;
4735 	case KVM_CAP_XCRS:
4736 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4737 		break;
4738 	case KVM_CAP_TSC_CONTROL:
4739 	case KVM_CAP_VM_TSC_CONTROL:
4740 		r = kvm_caps.has_tsc_control;
4741 		break;
4742 	case KVM_CAP_X2APIC_API:
4743 		r = KVM_X2APIC_API_VALID_FLAGS;
4744 		break;
4745 	case KVM_CAP_NESTED_STATE:
4746 		r = kvm_x86_ops.nested_ops->get_state ?
4747 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4748 		break;
4749 #ifdef CONFIG_KVM_HYPERV
4750 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4751 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4752 		break;
4753 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4754 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4755 		break;
4756 #endif
4757 	case KVM_CAP_SMALLER_MAXPHYADDR:
4758 		r = (int) allow_smaller_maxphyaddr;
4759 		break;
4760 	case KVM_CAP_STEAL_TIME:
4761 		r = sched_info_on();
4762 		break;
4763 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4764 		if (kvm_caps.has_bus_lock_exit)
4765 			r = KVM_BUS_LOCK_DETECTION_OFF |
4766 			    KVM_BUS_LOCK_DETECTION_EXIT;
4767 		else
4768 			r = 0;
4769 		break;
4770 	case KVM_CAP_XSAVE2: {
4771 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4772 		if (r < sizeof(struct kvm_xsave))
4773 			r = sizeof(struct kvm_xsave);
4774 		break;
4775 	}
4776 	case KVM_CAP_PMU_CAPABILITY:
4777 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4778 		break;
4779 	case KVM_CAP_DISABLE_QUIRKS2:
4780 		r = KVM_X86_VALID_QUIRKS;
4781 		break;
4782 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4783 		r = kvm_caps.has_notify_vmexit;
4784 		break;
4785 	case KVM_CAP_VM_TYPES:
4786 		r = BIT(KVM_X86_DEFAULT_VM);
4787 		if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM))
4788 			r |= BIT(KVM_X86_SW_PROTECTED_VM);
4789 		break;
4790 	default:
4791 		break;
4792 	}
4793 	return r;
4794 }
4795 
4796 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4797 {
4798 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4799 
4800 	if ((u64)(unsigned long)uaddr != attr->addr)
4801 		return ERR_PTR_USR(-EFAULT);
4802 	return uaddr;
4803 }
4804 
4805 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4806 {
4807 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4808 
4809 	if (attr->group)
4810 		return -ENXIO;
4811 
4812 	if (IS_ERR(uaddr))
4813 		return PTR_ERR(uaddr);
4814 
4815 	switch (attr->attr) {
4816 	case KVM_X86_XCOMP_GUEST_SUPP:
4817 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4818 			return -EFAULT;
4819 		return 0;
4820 	default:
4821 		return -ENXIO;
4822 	}
4823 }
4824 
4825 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4826 {
4827 	if (attr->group)
4828 		return -ENXIO;
4829 
4830 	switch (attr->attr) {
4831 	case KVM_X86_XCOMP_GUEST_SUPP:
4832 		return 0;
4833 	default:
4834 		return -ENXIO;
4835 	}
4836 }
4837 
4838 long kvm_arch_dev_ioctl(struct file *filp,
4839 			unsigned int ioctl, unsigned long arg)
4840 {
4841 	void __user *argp = (void __user *)arg;
4842 	long r;
4843 
4844 	switch (ioctl) {
4845 	case KVM_GET_MSR_INDEX_LIST: {
4846 		struct kvm_msr_list __user *user_msr_list = argp;
4847 		struct kvm_msr_list msr_list;
4848 		unsigned n;
4849 
4850 		r = -EFAULT;
4851 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4852 			goto out;
4853 		n = msr_list.nmsrs;
4854 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4855 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4856 			goto out;
4857 		r = -E2BIG;
4858 		if (n < msr_list.nmsrs)
4859 			goto out;
4860 		r = -EFAULT;
4861 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4862 				 num_msrs_to_save * sizeof(u32)))
4863 			goto out;
4864 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4865 				 &emulated_msrs,
4866 				 num_emulated_msrs * sizeof(u32)))
4867 			goto out;
4868 		r = 0;
4869 		break;
4870 	}
4871 	case KVM_GET_SUPPORTED_CPUID:
4872 	case KVM_GET_EMULATED_CPUID: {
4873 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4874 		struct kvm_cpuid2 cpuid;
4875 
4876 		r = -EFAULT;
4877 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4878 			goto out;
4879 
4880 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4881 					    ioctl);
4882 		if (r)
4883 			goto out;
4884 
4885 		r = -EFAULT;
4886 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4887 			goto out;
4888 		r = 0;
4889 		break;
4890 	}
4891 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4892 		r = -EFAULT;
4893 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4894 				 sizeof(kvm_caps.supported_mce_cap)))
4895 			goto out;
4896 		r = 0;
4897 		break;
4898 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4899 		struct kvm_msr_list __user *user_msr_list = argp;
4900 		struct kvm_msr_list msr_list;
4901 		unsigned int n;
4902 
4903 		r = -EFAULT;
4904 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4905 			goto out;
4906 		n = msr_list.nmsrs;
4907 		msr_list.nmsrs = num_msr_based_features;
4908 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4909 			goto out;
4910 		r = -E2BIG;
4911 		if (n < msr_list.nmsrs)
4912 			goto out;
4913 		r = -EFAULT;
4914 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4915 				 num_msr_based_features * sizeof(u32)))
4916 			goto out;
4917 		r = 0;
4918 		break;
4919 	}
4920 	case KVM_GET_MSRS:
4921 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4922 		break;
4923 #ifdef CONFIG_KVM_HYPERV
4924 	case KVM_GET_SUPPORTED_HV_CPUID:
4925 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4926 		break;
4927 #endif
4928 	case KVM_GET_DEVICE_ATTR: {
4929 		struct kvm_device_attr attr;
4930 		r = -EFAULT;
4931 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4932 			break;
4933 		r = kvm_x86_dev_get_attr(&attr);
4934 		break;
4935 	}
4936 	case KVM_HAS_DEVICE_ATTR: {
4937 		struct kvm_device_attr attr;
4938 		r = -EFAULT;
4939 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4940 			break;
4941 		r = kvm_x86_dev_has_attr(&attr);
4942 		break;
4943 	}
4944 	default:
4945 		r = -EINVAL;
4946 		break;
4947 	}
4948 out:
4949 	return r;
4950 }
4951 
4952 static void wbinvd_ipi(void *garbage)
4953 {
4954 	wbinvd();
4955 }
4956 
4957 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4958 {
4959 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4960 }
4961 
4962 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4963 {
4964 	/* Address WBINVD may be executed by guest */
4965 	if (need_emulate_wbinvd(vcpu)) {
4966 		if (static_call(kvm_x86_has_wbinvd_exit)())
4967 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4968 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4969 			smp_call_function_single(vcpu->cpu,
4970 					wbinvd_ipi, NULL, 1);
4971 	}
4972 
4973 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4974 
4975 	/* Save host pkru register if supported */
4976 	vcpu->arch.host_pkru = read_pkru();
4977 
4978 	/* Apply any externally detected TSC adjustments (due to suspend) */
4979 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4980 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4981 		vcpu->arch.tsc_offset_adjustment = 0;
4982 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4983 	}
4984 
4985 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4986 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4987 				rdtsc() - vcpu->arch.last_host_tsc;
4988 		if (tsc_delta < 0)
4989 			mark_tsc_unstable("KVM discovered backwards TSC");
4990 
4991 		if (kvm_check_tsc_unstable()) {
4992 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4993 						vcpu->arch.last_guest_tsc);
4994 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4995 			vcpu->arch.tsc_catchup = 1;
4996 		}
4997 
4998 		if (kvm_lapic_hv_timer_in_use(vcpu))
4999 			kvm_lapic_restart_hv_timer(vcpu);
5000 
5001 		/*
5002 		 * On a host with synchronized TSC, there is no need to update
5003 		 * kvmclock on vcpu->cpu migration
5004 		 */
5005 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5006 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5007 		if (vcpu->cpu != cpu)
5008 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5009 		vcpu->cpu = cpu;
5010 	}
5011 
5012 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5013 }
5014 
5015 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5016 {
5017 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5018 	struct kvm_steal_time __user *st;
5019 	struct kvm_memslots *slots;
5020 	static const u8 preempted = KVM_VCPU_PREEMPTED;
5021 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5022 
5023 	/*
5024 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5025 	 * an instruction boundary and will not trigger guest emulation of any
5026 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5027 	 * when this is true, for example allowing the vCPU to be marked
5028 	 * preempted if and only if the VM-Exit was due to a host interrupt.
5029 	 */
5030 	if (!vcpu->arch.at_instruction_boundary) {
5031 		vcpu->stat.preemption_other++;
5032 		return;
5033 	}
5034 
5035 	vcpu->stat.preemption_reported++;
5036 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5037 		return;
5038 
5039 	if (vcpu->arch.st.preempted)
5040 		return;
5041 
5042 	/* This happens on process exit */
5043 	if (unlikely(current->mm != vcpu->kvm->mm))
5044 		return;
5045 
5046 	slots = kvm_memslots(vcpu->kvm);
5047 
5048 	if (unlikely(slots->generation != ghc->generation ||
5049 		     gpa != ghc->gpa ||
5050 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5051 		return;
5052 
5053 	st = (struct kvm_steal_time __user *)ghc->hva;
5054 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5055 
5056 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5057 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5058 
5059 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5060 }
5061 
5062 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5063 {
5064 	int idx;
5065 
5066 	if (vcpu->preempted) {
5067 		if (!vcpu->arch.guest_state_protected)
5068 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
5069 
5070 		/*
5071 		 * Take the srcu lock as memslots will be accessed to check the gfn
5072 		 * cache generation against the memslots generation.
5073 		 */
5074 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5075 		if (kvm_xen_msr_enabled(vcpu->kvm))
5076 			kvm_xen_runstate_set_preempted(vcpu);
5077 		else
5078 			kvm_steal_time_set_preempted(vcpu);
5079 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5080 	}
5081 
5082 	static_call(kvm_x86_vcpu_put)(vcpu);
5083 	vcpu->arch.last_host_tsc = rdtsc();
5084 }
5085 
5086 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5087 				    struct kvm_lapic_state *s)
5088 {
5089 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5090 
5091 	return kvm_apic_get_state(vcpu, s);
5092 }
5093 
5094 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5095 				    struct kvm_lapic_state *s)
5096 {
5097 	int r;
5098 
5099 	r = kvm_apic_set_state(vcpu, s);
5100 	if (r)
5101 		return r;
5102 	update_cr8_intercept(vcpu);
5103 
5104 	return 0;
5105 }
5106 
5107 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5108 {
5109 	/*
5110 	 * We can accept userspace's request for interrupt injection
5111 	 * as long as we have a place to store the interrupt number.
5112 	 * The actual injection will happen when the CPU is able to
5113 	 * deliver the interrupt.
5114 	 */
5115 	if (kvm_cpu_has_extint(vcpu))
5116 		return false;
5117 
5118 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5119 	return (!lapic_in_kernel(vcpu) ||
5120 		kvm_apic_accept_pic_intr(vcpu));
5121 }
5122 
5123 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5124 {
5125 	/*
5126 	 * Do not cause an interrupt window exit if an exception
5127 	 * is pending or an event needs reinjection; userspace
5128 	 * might want to inject the interrupt manually using KVM_SET_REGS
5129 	 * or KVM_SET_SREGS.  For that to work, we must be at an
5130 	 * instruction boundary and with no events half-injected.
5131 	 */
5132 	return (kvm_arch_interrupt_allowed(vcpu) &&
5133 		kvm_cpu_accept_dm_intr(vcpu) &&
5134 		!kvm_event_needs_reinjection(vcpu) &&
5135 		!kvm_is_exception_pending(vcpu));
5136 }
5137 
5138 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5139 				    struct kvm_interrupt *irq)
5140 {
5141 	if (irq->irq >= KVM_NR_INTERRUPTS)
5142 		return -EINVAL;
5143 
5144 	if (!irqchip_in_kernel(vcpu->kvm)) {
5145 		kvm_queue_interrupt(vcpu, irq->irq, false);
5146 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5147 		return 0;
5148 	}
5149 
5150 	/*
5151 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5152 	 * fail for in-kernel 8259.
5153 	 */
5154 	if (pic_in_kernel(vcpu->kvm))
5155 		return -ENXIO;
5156 
5157 	if (vcpu->arch.pending_external_vector != -1)
5158 		return -EEXIST;
5159 
5160 	vcpu->arch.pending_external_vector = irq->irq;
5161 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5162 	return 0;
5163 }
5164 
5165 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5166 {
5167 	kvm_inject_nmi(vcpu);
5168 
5169 	return 0;
5170 }
5171 
5172 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5173 					   struct kvm_tpr_access_ctl *tac)
5174 {
5175 	if (tac->flags)
5176 		return -EINVAL;
5177 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5178 	return 0;
5179 }
5180 
5181 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5182 					u64 mcg_cap)
5183 {
5184 	int r;
5185 	unsigned bank_num = mcg_cap & 0xff, bank;
5186 
5187 	r = -EINVAL;
5188 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5189 		goto out;
5190 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5191 		goto out;
5192 	r = 0;
5193 	vcpu->arch.mcg_cap = mcg_cap;
5194 	/* Init IA32_MCG_CTL to all 1s */
5195 	if (mcg_cap & MCG_CTL_P)
5196 		vcpu->arch.mcg_ctl = ~(u64)0;
5197 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5198 	for (bank = 0; bank < bank_num; bank++) {
5199 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5200 		if (mcg_cap & MCG_CMCI_P)
5201 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5202 	}
5203 
5204 	kvm_apic_after_set_mcg_cap(vcpu);
5205 
5206 	static_call(kvm_x86_setup_mce)(vcpu);
5207 out:
5208 	return r;
5209 }
5210 
5211 /*
5212  * Validate this is an UCNA (uncorrectable no action) error by checking the
5213  * MCG_STATUS and MCi_STATUS registers:
5214  * - none of the bits for Machine Check Exceptions are set
5215  * - both the VAL (valid) and UC (uncorrectable) bits are set
5216  * MCI_STATUS_PCC - Processor Context Corrupted
5217  * MCI_STATUS_S - Signaled as a Machine Check Exception
5218  * MCI_STATUS_AR - Software recoverable Action Required
5219  */
5220 static bool is_ucna(struct kvm_x86_mce *mce)
5221 {
5222 	return	!mce->mcg_status &&
5223 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5224 		(mce->status & MCI_STATUS_VAL) &&
5225 		(mce->status & MCI_STATUS_UC);
5226 }
5227 
5228 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5229 {
5230 	u64 mcg_cap = vcpu->arch.mcg_cap;
5231 
5232 	banks[1] = mce->status;
5233 	banks[2] = mce->addr;
5234 	banks[3] = mce->misc;
5235 	vcpu->arch.mcg_status = mce->mcg_status;
5236 
5237 	if (!(mcg_cap & MCG_CMCI_P) ||
5238 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5239 		return 0;
5240 
5241 	if (lapic_in_kernel(vcpu))
5242 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5243 
5244 	return 0;
5245 }
5246 
5247 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5248 				      struct kvm_x86_mce *mce)
5249 {
5250 	u64 mcg_cap = vcpu->arch.mcg_cap;
5251 	unsigned bank_num = mcg_cap & 0xff;
5252 	u64 *banks = vcpu->arch.mce_banks;
5253 
5254 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5255 		return -EINVAL;
5256 
5257 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5258 
5259 	if (is_ucna(mce))
5260 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5261 
5262 	/*
5263 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5264 	 * reporting is disabled
5265 	 */
5266 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5267 	    vcpu->arch.mcg_ctl != ~(u64)0)
5268 		return 0;
5269 	/*
5270 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5271 	 * reporting is disabled for the bank
5272 	 */
5273 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5274 		return 0;
5275 	if (mce->status & MCI_STATUS_UC) {
5276 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5277 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5278 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5279 			return 0;
5280 		}
5281 		if (banks[1] & MCI_STATUS_VAL)
5282 			mce->status |= MCI_STATUS_OVER;
5283 		banks[2] = mce->addr;
5284 		banks[3] = mce->misc;
5285 		vcpu->arch.mcg_status = mce->mcg_status;
5286 		banks[1] = mce->status;
5287 		kvm_queue_exception(vcpu, MC_VECTOR);
5288 	} else if (!(banks[1] & MCI_STATUS_VAL)
5289 		   || !(banks[1] & MCI_STATUS_UC)) {
5290 		if (banks[1] & MCI_STATUS_VAL)
5291 			mce->status |= MCI_STATUS_OVER;
5292 		banks[2] = mce->addr;
5293 		banks[3] = mce->misc;
5294 		banks[1] = mce->status;
5295 	} else
5296 		banks[1] |= MCI_STATUS_OVER;
5297 	return 0;
5298 }
5299 
5300 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5301 					       struct kvm_vcpu_events *events)
5302 {
5303 	struct kvm_queued_exception *ex;
5304 
5305 	process_nmi(vcpu);
5306 
5307 #ifdef CONFIG_KVM_SMM
5308 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5309 		process_smi(vcpu);
5310 #endif
5311 
5312 	/*
5313 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5314 	 * the only time there can be two queued exceptions is if there's a
5315 	 * non-exiting _injected_ exception, and a pending exiting exception.
5316 	 * In that case, ignore the VM-Exiting exception as it's an extension
5317 	 * of the injected exception.
5318 	 */
5319 	if (vcpu->arch.exception_vmexit.pending &&
5320 	    !vcpu->arch.exception.pending &&
5321 	    !vcpu->arch.exception.injected)
5322 		ex = &vcpu->arch.exception_vmexit;
5323 	else
5324 		ex = &vcpu->arch.exception;
5325 
5326 	/*
5327 	 * In guest mode, payload delivery should be deferred if the exception
5328 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5329 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5330 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5331 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5332 	 * the payload if the capability hasn't been requested.
5333 	 */
5334 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5335 	    ex->pending && ex->has_payload)
5336 		kvm_deliver_exception_payload(vcpu, ex);
5337 
5338 	memset(events, 0, sizeof(*events));
5339 
5340 	/*
5341 	 * The API doesn't provide the instruction length for software
5342 	 * exceptions, so don't report them. As long as the guest RIP
5343 	 * isn't advanced, we should expect to encounter the exception
5344 	 * again.
5345 	 */
5346 	if (!kvm_exception_is_soft(ex->vector)) {
5347 		events->exception.injected = ex->injected;
5348 		events->exception.pending = ex->pending;
5349 		/*
5350 		 * For ABI compatibility, deliberately conflate
5351 		 * pending and injected exceptions when
5352 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5353 		 */
5354 		if (!vcpu->kvm->arch.exception_payload_enabled)
5355 			events->exception.injected |= ex->pending;
5356 	}
5357 	events->exception.nr = ex->vector;
5358 	events->exception.has_error_code = ex->has_error_code;
5359 	events->exception.error_code = ex->error_code;
5360 	events->exception_has_payload = ex->has_payload;
5361 	events->exception_payload = ex->payload;
5362 
5363 	events->interrupt.injected =
5364 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5365 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5366 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5367 
5368 	events->nmi.injected = vcpu->arch.nmi_injected;
5369 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5370 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5371 
5372 	/* events->sipi_vector is never valid when reporting to user space */
5373 
5374 #ifdef CONFIG_KVM_SMM
5375 	events->smi.smm = is_smm(vcpu);
5376 	events->smi.pending = vcpu->arch.smi_pending;
5377 	events->smi.smm_inside_nmi =
5378 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5379 #endif
5380 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5381 
5382 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5383 			 | KVM_VCPUEVENT_VALID_SHADOW
5384 			 | KVM_VCPUEVENT_VALID_SMM);
5385 	if (vcpu->kvm->arch.exception_payload_enabled)
5386 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5387 	if (vcpu->kvm->arch.triple_fault_event) {
5388 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5389 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5390 	}
5391 }
5392 
5393 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5394 					      struct kvm_vcpu_events *events)
5395 {
5396 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5397 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5398 			      | KVM_VCPUEVENT_VALID_SHADOW
5399 			      | KVM_VCPUEVENT_VALID_SMM
5400 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5401 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5402 		return -EINVAL;
5403 
5404 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5405 		if (!vcpu->kvm->arch.exception_payload_enabled)
5406 			return -EINVAL;
5407 		if (events->exception.pending)
5408 			events->exception.injected = 0;
5409 		else
5410 			events->exception_has_payload = 0;
5411 	} else {
5412 		events->exception.pending = 0;
5413 		events->exception_has_payload = 0;
5414 	}
5415 
5416 	if ((events->exception.injected || events->exception.pending) &&
5417 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5418 		return -EINVAL;
5419 
5420 	/* INITs are latched while in SMM */
5421 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5422 	    (events->smi.smm || events->smi.pending) &&
5423 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5424 		return -EINVAL;
5425 
5426 	process_nmi(vcpu);
5427 
5428 	/*
5429 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5430 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5431 	 * pending exceptions, already-injected exceptions are not subject to
5432 	 * intercpetion.  Note, userspace that conflates pending and injected
5433 	 * is hosed, and will incorrectly convert an injected exception into a
5434 	 * pending exception, which in turn may cause a spurious VM-Exit.
5435 	 */
5436 	vcpu->arch.exception_from_userspace = events->exception.pending;
5437 
5438 	vcpu->arch.exception_vmexit.pending = false;
5439 
5440 	vcpu->arch.exception.injected = events->exception.injected;
5441 	vcpu->arch.exception.pending = events->exception.pending;
5442 	vcpu->arch.exception.vector = events->exception.nr;
5443 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5444 	vcpu->arch.exception.error_code = events->exception.error_code;
5445 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5446 	vcpu->arch.exception.payload = events->exception_payload;
5447 
5448 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5449 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5450 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5451 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5452 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5453 						events->interrupt.shadow);
5454 
5455 	vcpu->arch.nmi_injected = events->nmi.injected;
5456 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5457 		vcpu->arch.nmi_pending = 0;
5458 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5459 		if (events->nmi.pending)
5460 			kvm_make_request(KVM_REQ_NMI, vcpu);
5461 	}
5462 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5463 
5464 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5465 	    lapic_in_kernel(vcpu))
5466 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5467 
5468 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5469 #ifdef CONFIG_KVM_SMM
5470 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5471 			kvm_leave_nested(vcpu);
5472 			kvm_smm_changed(vcpu, events->smi.smm);
5473 		}
5474 
5475 		vcpu->arch.smi_pending = events->smi.pending;
5476 
5477 		if (events->smi.smm) {
5478 			if (events->smi.smm_inside_nmi)
5479 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5480 			else
5481 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5482 		}
5483 
5484 #else
5485 		if (events->smi.smm || events->smi.pending ||
5486 		    events->smi.smm_inside_nmi)
5487 			return -EINVAL;
5488 #endif
5489 
5490 		if (lapic_in_kernel(vcpu)) {
5491 			if (events->smi.latched_init)
5492 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5493 			else
5494 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5495 		}
5496 	}
5497 
5498 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5499 		if (!vcpu->kvm->arch.triple_fault_event)
5500 			return -EINVAL;
5501 		if (events->triple_fault.pending)
5502 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5503 		else
5504 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5505 	}
5506 
5507 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5508 
5509 	return 0;
5510 }
5511 
5512 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5513 					     struct kvm_debugregs *dbgregs)
5514 {
5515 	unsigned long val;
5516 
5517 	memset(dbgregs, 0, sizeof(*dbgregs));
5518 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5519 	kvm_get_dr(vcpu, 6, &val);
5520 	dbgregs->dr6 = val;
5521 	dbgregs->dr7 = vcpu->arch.dr7;
5522 }
5523 
5524 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5525 					    struct kvm_debugregs *dbgregs)
5526 {
5527 	if (dbgregs->flags)
5528 		return -EINVAL;
5529 
5530 	if (!kvm_dr6_valid(dbgregs->dr6))
5531 		return -EINVAL;
5532 	if (!kvm_dr7_valid(dbgregs->dr7))
5533 		return -EINVAL;
5534 
5535 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5536 	kvm_update_dr0123(vcpu);
5537 	vcpu->arch.dr6 = dbgregs->dr6;
5538 	vcpu->arch.dr7 = dbgregs->dr7;
5539 	kvm_update_dr7(vcpu);
5540 
5541 	return 0;
5542 }
5543 
5544 
5545 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5546 					  u8 *state, unsigned int size)
5547 {
5548 	/*
5549 	 * Only copy state for features that are enabled for the guest.  The
5550 	 * state itself isn't problematic, but setting bits in the header for
5551 	 * features that are supported in *this* host but not exposed to the
5552 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5553 	 * compatible host without the features that are NOT exposed to the
5554 	 * guest.
5555 	 *
5556 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5557 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5558 	 * supported by the host.
5559 	 */
5560 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5561 			     XFEATURE_MASK_FPSSE;
5562 
5563 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5564 		return;
5565 
5566 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5567 				       supported_xcr0, vcpu->arch.pkru);
5568 }
5569 
5570 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5571 					 struct kvm_xsave *guest_xsave)
5572 {
5573 	kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5574 				      sizeof(guest_xsave->region));
5575 }
5576 
5577 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5578 					struct kvm_xsave *guest_xsave)
5579 {
5580 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5581 		return 0;
5582 
5583 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5584 					      guest_xsave->region,
5585 					      kvm_caps.supported_xcr0,
5586 					      &vcpu->arch.pkru);
5587 }
5588 
5589 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5590 					struct kvm_xcrs *guest_xcrs)
5591 {
5592 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5593 		guest_xcrs->nr_xcrs = 0;
5594 		return;
5595 	}
5596 
5597 	guest_xcrs->nr_xcrs = 1;
5598 	guest_xcrs->flags = 0;
5599 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5600 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5601 }
5602 
5603 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5604 				       struct kvm_xcrs *guest_xcrs)
5605 {
5606 	int i, r = 0;
5607 
5608 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5609 		return -EINVAL;
5610 
5611 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5612 		return -EINVAL;
5613 
5614 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5615 		/* Only support XCR0 currently */
5616 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5617 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5618 				guest_xcrs->xcrs[i].value);
5619 			break;
5620 		}
5621 	if (r)
5622 		r = -EINVAL;
5623 	return r;
5624 }
5625 
5626 /*
5627  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5628  * stopped by the hypervisor.  This function will be called from the host only.
5629  * EINVAL is returned when the host attempts to set the flag for a guest that
5630  * does not support pv clocks.
5631  */
5632 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5633 {
5634 	if (!vcpu->arch.pv_time.active)
5635 		return -EINVAL;
5636 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5637 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5638 	return 0;
5639 }
5640 
5641 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5642 				 struct kvm_device_attr *attr)
5643 {
5644 	int r;
5645 
5646 	switch (attr->attr) {
5647 	case KVM_VCPU_TSC_OFFSET:
5648 		r = 0;
5649 		break;
5650 	default:
5651 		r = -ENXIO;
5652 	}
5653 
5654 	return r;
5655 }
5656 
5657 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5658 				 struct kvm_device_attr *attr)
5659 {
5660 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5661 	int r;
5662 
5663 	if (IS_ERR(uaddr))
5664 		return PTR_ERR(uaddr);
5665 
5666 	switch (attr->attr) {
5667 	case KVM_VCPU_TSC_OFFSET:
5668 		r = -EFAULT;
5669 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5670 			break;
5671 		r = 0;
5672 		break;
5673 	default:
5674 		r = -ENXIO;
5675 	}
5676 
5677 	return r;
5678 }
5679 
5680 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5681 				 struct kvm_device_attr *attr)
5682 {
5683 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5684 	struct kvm *kvm = vcpu->kvm;
5685 	int r;
5686 
5687 	if (IS_ERR(uaddr))
5688 		return PTR_ERR(uaddr);
5689 
5690 	switch (attr->attr) {
5691 	case KVM_VCPU_TSC_OFFSET: {
5692 		u64 offset, tsc, ns;
5693 		unsigned long flags;
5694 		bool matched;
5695 
5696 		r = -EFAULT;
5697 		if (get_user(offset, uaddr))
5698 			break;
5699 
5700 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5701 
5702 		matched = (vcpu->arch.virtual_tsc_khz &&
5703 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5704 			   kvm->arch.last_tsc_offset == offset);
5705 
5706 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5707 		ns = get_kvmclock_base_ns();
5708 
5709 		kvm->arch.user_set_tsc = true;
5710 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5711 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5712 
5713 		r = 0;
5714 		break;
5715 	}
5716 	default:
5717 		r = -ENXIO;
5718 	}
5719 
5720 	return r;
5721 }
5722 
5723 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5724 				      unsigned int ioctl,
5725 				      void __user *argp)
5726 {
5727 	struct kvm_device_attr attr;
5728 	int r;
5729 
5730 	if (copy_from_user(&attr, argp, sizeof(attr)))
5731 		return -EFAULT;
5732 
5733 	if (attr.group != KVM_VCPU_TSC_CTRL)
5734 		return -ENXIO;
5735 
5736 	switch (ioctl) {
5737 	case KVM_HAS_DEVICE_ATTR:
5738 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5739 		break;
5740 	case KVM_GET_DEVICE_ATTR:
5741 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5742 		break;
5743 	case KVM_SET_DEVICE_ATTR:
5744 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5745 		break;
5746 	}
5747 
5748 	return r;
5749 }
5750 
5751 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5752 				     struct kvm_enable_cap *cap)
5753 {
5754 	if (cap->flags)
5755 		return -EINVAL;
5756 
5757 	switch (cap->cap) {
5758 #ifdef CONFIG_KVM_HYPERV
5759 	case KVM_CAP_HYPERV_SYNIC2:
5760 		if (cap->args[0])
5761 			return -EINVAL;
5762 		fallthrough;
5763 
5764 	case KVM_CAP_HYPERV_SYNIC:
5765 		if (!irqchip_in_kernel(vcpu->kvm))
5766 			return -EINVAL;
5767 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5768 					     KVM_CAP_HYPERV_SYNIC2);
5769 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5770 		{
5771 			int r;
5772 			uint16_t vmcs_version;
5773 			void __user *user_ptr;
5774 
5775 			if (!kvm_x86_ops.nested_ops->enable_evmcs)
5776 				return -ENOTTY;
5777 			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5778 			if (!r) {
5779 				user_ptr = (void __user *)(uintptr_t)cap->args[0];
5780 				if (copy_to_user(user_ptr, &vmcs_version,
5781 						 sizeof(vmcs_version)))
5782 					r = -EFAULT;
5783 			}
5784 			return r;
5785 		}
5786 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5787 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5788 			return -ENOTTY;
5789 
5790 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5791 
5792 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5793 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5794 #endif
5795 
5796 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5797 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5798 		if (vcpu->arch.pv_cpuid.enforce)
5799 			kvm_update_pv_runtime(vcpu);
5800 
5801 		return 0;
5802 	default:
5803 		return -EINVAL;
5804 	}
5805 }
5806 
5807 long kvm_arch_vcpu_ioctl(struct file *filp,
5808 			 unsigned int ioctl, unsigned long arg)
5809 {
5810 	struct kvm_vcpu *vcpu = filp->private_data;
5811 	void __user *argp = (void __user *)arg;
5812 	int r;
5813 	union {
5814 		struct kvm_sregs2 *sregs2;
5815 		struct kvm_lapic_state *lapic;
5816 		struct kvm_xsave *xsave;
5817 		struct kvm_xcrs *xcrs;
5818 		void *buffer;
5819 	} u;
5820 
5821 	vcpu_load(vcpu);
5822 
5823 	u.buffer = NULL;
5824 	switch (ioctl) {
5825 	case KVM_GET_LAPIC: {
5826 		r = -EINVAL;
5827 		if (!lapic_in_kernel(vcpu))
5828 			goto out;
5829 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5830 				GFP_KERNEL_ACCOUNT);
5831 
5832 		r = -ENOMEM;
5833 		if (!u.lapic)
5834 			goto out;
5835 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5836 		if (r)
5837 			goto out;
5838 		r = -EFAULT;
5839 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5840 			goto out;
5841 		r = 0;
5842 		break;
5843 	}
5844 	case KVM_SET_LAPIC: {
5845 		r = -EINVAL;
5846 		if (!lapic_in_kernel(vcpu))
5847 			goto out;
5848 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5849 		if (IS_ERR(u.lapic)) {
5850 			r = PTR_ERR(u.lapic);
5851 			goto out_nofree;
5852 		}
5853 
5854 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5855 		break;
5856 	}
5857 	case KVM_INTERRUPT: {
5858 		struct kvm_interrupt irq;
5859 
5860 		r = -EFAULT;
5861 		if (copy_from_user(&irq, argp, sizeof(irq)))
5862 			goto out;
5863 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5864 		break;
5865 	}
5866 	case KVM_NMI: {
5867 		r = kvm_vcpu_ioctl_nmi(vcpu);
5868 		break;
5869 	}
5870 	case KVM_SMI: {
5871 		r = kvm_inject_smi(vcpu);
5872 		break;
5873 	}
5874 	case KVM_SET_CPUID: {
5875 		struct kvm_cpuid __user *cpuid_arg = argp;
5876 		struct kvm_cpuid cpuid;
5877 
5878 		r = -EFAULT;
5879 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5880 			goto out;
5881 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5882 		break;
5883 	}
5884 	case KVM_SET_CPUID2: {
5885 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5886 		struct kvm_cpuid2 cpuid;
5887 
5888 		r = -EFAULT;
5889 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5890 			goto out;
5891 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5892 					      cpuid_arg->entries);
5893 		break;
5894 	}
5895 	case KVM_GET_CPUID2: {
5896 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5897 		struct kvm_cpuid2 cpuid;
5898 
5899 		r = -EFAULT;
5900 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5901 			goto out;
5902 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5903 					      cpuid_arg->entries);
5904 		if (r)
5905 			goto out;
5906 		r = -EFAULT;
5907 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5908 			goto out;
5909 		r = 0;
5910 		break;
5911 	}
5912 	case KVM_GET_MSRS: {
5913 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5914 		r = msr_io(vcpu, argp, do_get_msr, 1);
5915 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5916 		break;
5917 	}
5918 	case KVM_SET_MSRS: {
5919 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5920 		r = msr_io(vcpu, argp, do_set_msr, 0);
5921 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5922 		break;
5923 	}
5924 	case KVM_TPR_ACCESS_REPORTING: {
5925 		struct kvm_tpr_access_ctl tac;
5926 
5927 		r = -EFAULT;
5928 		if (copy_from_user(&tac, argp, sizeof(tac)))
5929 			goto out;
5930 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5931 		if (r)
5932 			goto out;
5933 		r = -EFAULT;
5934 		if (copy_to_user(argp, &tac, sizeof(tac)))
5935 			goto out;
5936 		r = 0;
5937 		break;
5938 	};
5939 	case KVM_SET_VAPIC_ADDR: {
5940 		struct kvm_vapic_addr va;
5941 		int idx;
5942 
5943 		r = -EINVAL;
5944 		if (!lapic_in_kernel(vcpu))
5945 			goto out;
5946 		r = -EFAULT;
5947 		if (copy_from_user(&va, argp, sizeof(va)))
5948 			goto out;
5949 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5950 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5951 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5952 		break;
5953 	}
5954 	case KVM_X86_SETUP_MCE: {
5955 		u64 mcg_cap;
5956 
5957 		r = -EFAULT;
5958 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5959 			goto out;
5960 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5961 		break;
5962 	}
5963 	case KVM_X86_SET_MCE: {
5964 		struct kvm_x86_mce mce;
5965 
5966 		r = -EFAULT;
5967 		if (copy_from_user(&mce, argp, sizeof(mce)))
5968 			goto out;
5969 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5970 		break;
5971 	}
5972 	case KVM_GET_VCPU_EVENTS: {
5973 		struct kvm_vcpu_events events;
5974 
5975 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5976 
5977 		r = -EFAULT;
5978 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5979 			break;
5980 		r = 0;
5981 		break;
5982 	}
5983 	case KVM_SET_VCPU_EVENTS: {
5984 		struct kvm_vcpu_events events;
5985 
5986 		r = -EFAULT;
5987 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5988 			break;
5989 
5990 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5991 		break;
5992 	}
5993 	case KVM_GET_DEBUGREGS: {
5994 		struct kvm_debugregs dbgregs;
5995 
5996 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5997 
5998 		r = -EFAULT;
5999 		if (copy_to_user(argp, &dbgregs,
6000 				 sizeof(struct kvm_debugregs)))
6001 			break;
6002 		r = 0;
6003 		break;
6004 	}
6005 	case KVM_SET_DEBUGREGS: {
6006 		struct kvm_debugregs dbgregs;
6007 
6008 		r = -EFAULT;
6009 		if (copy_from_user(&dbgregs, argp,
6010 				   sizeof(struct kvm_debugregs)))
6011 			break;
6012 
6013 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6014 		break;
6015 	}
6016 	case KVM_GET_XSAVE: {
6017 		r = -EINVAL;
6018 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6019 			break;
6020 
6021 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6022 		r = -ENOMEM;
6023 		if (!u.xsave)
6024 			break;
6025 
6026 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6027 
6028 		r = -EFAULT;
6029 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6030 			break;
6031 		r = 0;
6032 		break;
6033 	}
6034 	case KVM_SET_XSAVE: {
6035 		int size = vcpu->arch.guest_fpu.uabi_size;
6036 
6037 		u.xsave = memdup_user(argp, size);
6038 		if (IS_ERR(u.xsave)) {
6039 			r = PTR_ERR(u.xsave);
6040 			goto out_nofree;
6041 		}
6042 
6043 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6044 		break;
6045 	}
6046 
6047 	case KVM_GET_XSAVE2: {
6048 		int size = vcpu->arch.guest_fpu.uabi_size;
6049 
6050 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6051 		r = -ENOMEM;
6052 		if (!u.xsave)
6053 			break;
6054 
6055 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6056 
6057 		r = -EFAULT;
6058 		if (copy_to_user(argp, u.xsave, size))
6059 			break;
6060 
6061 		r = 0;
6062 		break;
6063 	}
6064 
6065 	case KVM_GET_XCRS: {
6066 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6067 		r = -ENOMEM;
6068 		if (!u.xcrs)
6069 			break;
6070 
6071 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6072 
6073 		r = -EFAULT;
6074 		if (copy_to_user(argp, u.xcrs,
6075 				 sizeof(struct kvm_xcrs)))
6076 			break;
6077 		r = 0;
6078 		break;
6079 	}
6080 	case KVM_SET_XCRS: {
6081 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6082 		if (IS_ERR(u.xcrs)) {
6083 			r = PTR_ERR(u.xcrs);
6084 			goto out_nofree;
6085 		}
6086 
6087 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6088 		break;
6089 	}
6090 	case KVM_SET_TSC_KHZ: {
6091 		u32 user_tsc_khz;
6092 
6093 		r = -EINVAL;
6094 		user_tsc_khz = (u32)arg;
6095 
6096 		if (kvm_caps.has_tsc_control &&
6097 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6098 			goto out;
6099 
6100 		if (user_tsc_khz == 0)
6101 			user_tsc_khz = tsc_khz;
6102 
6103 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6104 			r = 0;
6105 
6106 		goto out;
6107 	}
6108 	case KVM_GET_TSC_KHZ: {
6109 		r = vcpu->arch.virtual_tsc_khz;
6110 		goto out;
6111 	}
6112 	case KVM_KVMCLOCK_CTRL: {
6113 		r = kvm_set_guest_paused(vcpu);
6114 		goto out;
6115 	}
6116 	case KVM_ENABLE_CAP: {
6117 		struct kvm_enable_cap cap;
6118 
6119 		r = -EFAULT;
6120 		if (copy_from_user(&cap, argp, sizeof(cap)))
6121 			goto out;
6122 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6123 		break;
6124 	}
6125 	case KVM_GET_NESTED_STATE: {
6126 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6127 		u32 user_data_size;
6128 
6129 		r = -EINVAL;
6130 		if (!kvm_x86_ops.nested_ops->get_state)
6131 			break;
6132 
6133 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6134 		r = -EFAULT;
6135 		if (get_user(user_data_size, &user_kvm_nested_state->size))
6136 			break;
6137 
6138 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6139 						     user_data_size);
6140 		if (r < 0)
6141 			break;
6142 
6143 		if (r > user_data_size) {
6144 			if (put_user(r, &user_kvm_nested_state->size))
6145 				r = -EFAULT;
6146 			else
6147 				r = -E2BIG;
6148 			break;
6149 		}
6150 
6151 		r = 0;
6152 		break;
6153 	}
6154 	case KVM_SET_NESTED_STATE: {
6155 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6156 		struct kvm_nested_state kvm_state;
6157 		int idx;
6158 
6159 		r = -EINVAL;
6160 		if (!kvm_x86_ops.nested_ops->set_state)
6161 			break;
6162 
6163 		r = -EFAULT;
6164 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6165 			break;
6166 
6167 		r = -EINVAL;
6168 		if (kvm_state.size < sizeof(kvm_state))
6169 			break;
6170 
6171 		if (kvm_state.flags &
6172 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6173 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6174 		      | KVM_STATE_NESTED_GIF_SET))
6175 			break;
6176 
6177 		/* nested_run_pending implies guest_mode.  */
6178 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6179 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6180 			break;
6181 
6182 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6183 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6184 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6185 		break;
6186 	}
6187 #ifdef CONFIG_KVM_HYPERV
6188 	case KVM_GET_SUPPORTED_HV_CPUID:
6189 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6190 		break;
6191 #endif
6192 #ifdef CONFIG_KVM_XEN
6193 	case KVM_XEN_VCPU_GET_ATTR: {
6194 		struct kvm_xen_vcpu_attr xva;
6195 
6196 		r = -EFAULT;
6197 		if (copy_from_user(&xva, argp, sizeof(xva)))
6198 			goto out;
6199 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6200 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6201 			r = -EFAULT;
6202 		break;
6203 	}
6204 	case KVM_XEN_VCPU_SET_ATTR: {
6205 		struct kvm_xen_vcpu_attr xva;
6206 
6207 		r = -EFAULT;
6208 		if (copy_from_user(&xva, argp, sizeof(xva)))
6209 			goto out;
6210 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6211 		break;
6212 	}
6213 #endif
6214 	case KVM_GET_SREGS2: {
6215 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6216 		r = -ENOMEM;
6217 		if (!u.sregs2)
6218 			goto out;
6219 		__get_sregs2(vcpu, u.sregs2);
6220 		r = -EFAULT;
6221 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6222 			goto out;
6223 		r = 0;
6224 		break;
6225 	}
6226 	case KVM_SET_SREGS2: {
6227 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6228 		if (IS_ERR(u.sregs2)) {
6229 			r = PTR_ERR(u.sregs2);
6230 			u.sregs2 = NULL;
6231 			goto out;
6232 		}
6233 		r = __set_sregs2(vcpu, u.sregs2);
6234 		break;
6235 	}
6236 	case KVM_HAS_DEVICE_ATTR:
6237 	case KVM_GET_DEVICE_ATTR:
6238 	case KVM_SET_DEVICE_ATTR:
6239 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6240 		break;
6241 	default:
6242 		r = -EINVAL;
6243 	}
6244 out:
6245 	kfree(u.buffer);
6246 out_nofree:
6247 	vcpu_put(vcpu);
6248 	return r;
6249 }
6250 
6251 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6252 {
6253 	return VM_FAULT_SIGBUS;
6254 }
6255 
6256 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6257 {
6258 	int ret;
6259 
6260 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6261 		return -EINVAL;
6262 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6263 	return ret;
6264 }
6265 
6266 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6267 					      u64 ident_addr)
6268 {
6269 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6270 }
6271 
6272 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6273 					 unsigned long kvm_nr_mmu_pages)
6274 {
6275 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6276 		return -EINVAL;
6277 
6278 	mutex_lock(&kvm->slots_lock);
6279 
6280 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6281 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6282 
6283 	mutex_unlock(&kvm->slots_lock);
6284 	return 0;
6285 }
6286 
6287 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6288 {
6289 	struct kvm_pic *pic = kvm->arch.vpic;
6290 	int r;
6291 
6292 	r = 0;
6293 	switch (chip->chip_id) {
6294 	case KVM_IRQCHIP_PIC_MASTER:
6295 		memcpy(&chip->chip.pic, &pic->pics[0],
6296 			sizeof(struct kvm_pic_state));
6297 		break;
6298 	case KVM_IRQCHIP_PIC_SLAVE:
6299 		memcpy(&chip->chip.pic, &pic->pics[1],
6300 			sizeof(struct kvm_pic_state));
6301 		break;
6302 	case KVM_IRQCHIP_IOAPIC:
6303 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6304 		break;
6305 	default:
6306 		r = -EINVAL;
6307 		break;
6308 	}
6309 	return r;
6310 }
6311 
6312 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6313 {
6314 	struct kvm_pic *pic = kvm->arch.vpic;
6315 	int r;
6316 
6317 	r = 0;
6318 	switch (chip->chip_id) {
6319 	case KVM_IRQCHIP_PIC_MASTER:
6320 		spin_lock(&pic->lock);
6321 		memcpy(&pic->pics[0], &chip->chip.pic,
6322 			sizeof(struct kvm_pic_state));
6323 		spin_unlock(&pic->lock);
6324 		break;
6325 	case KVM_IRQCHIP_PIC_SLAVE:
6326 		spin_lock(&pic->lock);
6327 		memcpy(&pic->pics[1], &chip->chip.pic,
6328 			sizeof(struct kvm_pic_state));
6329 		spin_unlock(&pic->lock);
6330 		break;
6331 	case KVM_IRQCHIP_IOAPIC:
6332 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6333 		break;
6334 	default:
6335 		r = -EINVAL;
6336 		break;
6337 	}
6338 	kvm_pic_update_irq(pic);
6339 	return r;
6340 }
6341 
6342 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6343 {
6344 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6345 
6346 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6347 
6348 	mutex_lock(&kps->lock);
6349 	memcpy(ps, &kps->channels, sizeof(*ps));
6350 	mutex_unlock(&kps->lock);
6351 	return 0;
6352 }
6353 
6354 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6355 {
6356 	int i;
6357 	struct kvm_pit *pit = kvm->arch.vpit;
6358 
6359 	mutex_lock(&pit->pit_state.lock);
6360 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6361 	for (i = 0; i < 3; i++)
6362 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6363 	mutex_unlock(&pit->pit_state.lock);
6364 	return 0;
6365 }
6366 
6367 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6368 {
6369 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6370 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6371 		sizeof(ps->channels));
6372 	ps->flags = kvm->arch.vpit->pit_state.flags;
6373 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6374 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6375 	return 0;
6376 }
6377 
6378 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6379 {
6380 	int start = 0;
6381 	int i;
6382 	u32 prev_legacy, cur_legacy;
6383 	struct kvm_pit *pit = kvm->arch.vpit;
6384 
6385 	mutex_lock(&pit->pit_state.lock);
6386 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6387 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6388 	if (!prev_legacy && cur_legacy)
6389 		start = 1;
6390 	memcpy(&pit->pit_state.channels, &ps->channels,
6391 	       sizeof(pit->pit_state.channels));
6392 	pit->pit_state.flags = ps->flags;
6393 	for (i = 0; i < 3; i++)
6394 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6395 				   start && i == 0);
6396 	mutex_unlock(&pit->pit_state.lock);
6397 	return 0;
6398 }
6399 
6400 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6401 				 struct kvm_reinject_control *control)
6402 {
6403 	struct kvm_pit *pit = kvm->arch.vpit;
6404 
6405 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6406 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6407 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6408 	 */
6409 	mutex_lock(&pit->pit_state.lock);
6410 	kvm_pit_set_reinject(pit, control->pit_reinject);
6411 	mutex_unlock(&pit->pit_state.lock);
6412 
6413 	return 0;
6414 }
6415 
6416 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6417 {
6418 
6419 	/*
6420 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6421 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6422 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6423 	 * VM-Exit.
6424 	 */
6425 	struct kvm_vcpu *vcpu;
6426 	unsigned long i;
6427 
6428 	if (!kvm_x86_ops.cpu_dirty_log_size)
6429 		return;
6430 
6431 	kvm_for_each_vcpu(i, vcpu, kvm)
6432 		kvm_vcpu_kick(vcpu);
6433 }
6434 
6435 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6436 			bool line_status)
6437 {
6438 	if (!irqchip_in_kernel(kvm))
6439 		return -ENXIO;
6440 
6441 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6442 					irq_event->irq, irq_event->level,
6443 					line_status);
6444 	return 0;
6445 }
6446 
6447 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6448 			    struct kvm_enable_cap *cap)
6449 {
6450 	int r;
6451 
6452 	if (cap->flags)
6453 		return -EINVAL;
6454 
6455 	switch (cap->cap) {
6456 	case KVM_CAP_DISABLE_QUIRKS2:
6457 		r = -EINVAL;
6458 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6459 			break;
6460 		fallthrough;
6461 	case KVM_CAP_DISABLE_QUIRKS:
6462 		kvm->arch.disabled_quirks = cap->args[0];
6463 		r = 0;
6464 		break;
6465 	case KVM_CAP_SPLIT_IRQCHIP: {
6466 		mutex_lock(&kvm->lock);
6467 		r = -EINVAL;
6468 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6469 			goto split_irqchip_unlock;
6470 		r = -EEXIST;
6471 		if (irqchip_in_kernel(kvm))
6472 			goto split_irqchip_unlock;
6473 		if (kvm->created_vcpus)
6474 			goto split_irqchip_unlock;
6475 		r = kvm_setup_empty_irq_routing(kvm);
6476 		if (r)
6477 			goto split_irqchip_unlock;
6478 		/* Pairs with irqchip_in_kernel. */
6479 		smp_wmb();
6480 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6481 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6482 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6483 		r = 0;
6484 split_irqchip_unlock:
6485 		mutex_unlock(&kvm->lock);
6486 		break;
6487 	}
6488 	case KVM_CAP_X2APIC_API:
6489 		r = -EINVAL;
6490 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6491 			break;
6492 
6493 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6494 			kvm->arch.x2apic_format = true;
6495 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6496 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6497 
6498 		r = 0;
6499 		break;
6500 	case KVM_CAP_X86_DISABLE_EXITS:
6501 		r = -EINVAL;
6502 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6503 			break;
6504 
6505 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6506 			kvm->arch.pause_in_guest = true;
6507 
6508 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6509 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6510 
6511 		if (!mitigate_smt_rsb) {
6512 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6513 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6514 				pr_warn_once(SMT_RSB_MSG);
6515 
6516 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6517 			    kvm_can_mwait_in_guest())
6518 				kvm->arch.mwait_in_guest = true;
6519 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6520 				kvm->arch.hlt_in_guest = true;
6521 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6522 				kvm->arch.cstate_in_guest = true;
6523 		}
6524 
6525 		r = 0;
6526 		break;
6527 	case KVM_CAP_MSR_PLATFORM_INFO:
6528 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6529 		r = 0;
6530 		break;
6531 	case KVM_CAP_EXCEPTION_PAYLOAD:
6532 		kvm->arch.exception_payload_enabled = cap->args[0];
6533 		r = 0;
6534 		break;
6535 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6536 		kvm->arch.triple_fault_event = cap->args[0];
6537 		r = 0;
6538 		break;
6539 	case KVM_CAP_X86_USER_SPACE_MSR:
6540 		r = -EINVAL;
6541 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6542 			break;
6543 		kvm->arch.user_space_msr_mask = cap->args[0];
6544 		r = 0;
6545 		break;
6546 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6547 		r = -EINVAL;
6548 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6549 			break;
6550 
6551 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6552 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6553 			break;
6554 
6555 		if (kvm_caps.has_bus_lock_exit &&
6556 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6557 			kvm->arch.bus_lock_detection_enabled = true;
6558 		r = 0;
6559 		break;
6560 #ifdef CONFIG_X86_SGX_KVM
6561 	case KVM_CAP_SGX_ATTRIBUTE: {
6562 		unsigned long allowed_attributes = 0;
6563 
6564 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6565 		if (r)
6566 			break;
6567 
6568 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6569 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6570 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6571 			kvm->arch.sgx_provisioning_allowed = true;
6572 		else
6573 			r = -EINVAL;
6574 		break;
6575 	}
6576 #endif
6577 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6578 		r = -EINVAL;
6579 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6580 			break;
6581 
6582 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6583 		break;
6584 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6585 		r = -EINVAL;
6586 		if (!kvm_x86_ops.vm_move_enc_context_from)
6587 			break;
6588 
6589 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6590 		break;
6591 	case KVM_CAP_EXIT_HYPERCALL:
6592 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6593 			r = -EINVAL;
6594 			break;
6595 		}
6596 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6597 		r = 0;
6598 		break;
6599 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6600 		r = -EINVAL;
6601 		if (cap->args[0] & ~1)
6602 			break;
6603 		kvm->arch.exit_on_emulation_error = cap->args[0];
6604 		r = 0;
6605 		break;
6606 	case KVM_CAP_PMU_CAPABILITY:
6607 		r = -EINVAL;
6608 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6609 			break;
6610 
6611 		mutex_lock(&kvm->lock);
6612 		if (!kvm->created_vcpus) {
6613 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6614 			r = 0;
6615 		}
6616 		mutex_unlock(&kvm->lock);
6617 		break;
6618 	case KVM_CAP_MAX_VCPU_ID:
6619 		r = -EINVAL;
6620 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6621 			break;
6622 
6623 		mutex_lock(&kvm->lock);
6624 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6625 			r = 0;
6626 		} else if (!kvm->arch.max_vcpu_ids) {
6627 			kvm->arch.max_vcpu_ids = cap->args[0];
6628 			r = 0;
6629 		}
6630 		mutex_unlock(&kvm->lock);
6631 		break;
6632 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6633 		r = -EINVAL;
6634 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6635 			break;
6636 		if (!kvm_caps.has_notify_vmexit)
6637 			break;
6638 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6639 			break;
6640 		mutex_lock(&kvm->lock);
6641 		if (!kvm->created_vcpus) {
6642 			kvm->arch.notify_window = cap->args[0] >> 32;
6643 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6644 			r = 0;
6645 		}
6646 		mutex_unlock(&kvm->lock);
6647 		break;
6648 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6649 		r = -EINVAL;
6650 
6651 		/*
6652 		 * Since the risk of disabling NX hugepages is a guest crashing
6653 		 * the system, ensure the userspace process has permission to
6654 		 * reboot the system.
6655 		 *
6656 		 * Note that unlike the reboot() syscall, the process must have
6657 		 * this capability in the root namespace because exposing
6658 		 * /dev/kvm into a container does not limit the scope of the
6659 		 * iTLB multihit bug to that container. In other words,
6660 		 * this must use capable(), not ns_capable().
6661 		 */
6662 		if (!capable(CAP_SYS_BOOT)) {
6663 			r = -EPERM;
6664 			break;
6665 		}
6666 
6667 		if (cap->args[0])
6668 			break;
6669 
6670 		mutex_lock(&kvm->lock);
6671 		if (!kvm->created_vcpus) {
6672 			kvm->arch.disable_nx_huge_pages = true;
6673 			r = 0;
6674 		}
6675 		mutex_unlock(&kvm->lock);
6676 		break;
6677 	default:
6678 		r = -EINVAL;
6679 		break;
6680 	}
6681 	return r;
6682 }
6683 
6684 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6685 {
6686 	struct kvm_x86_msr_filter *msr_filter;
6687 
6688 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6689 	if (!msr_filter)
6690 		return NULL;
6691 
6692 	msr_filter->default_allow = default_allow;
6693 	return msr_filter;
6694 }
6695 
6696 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6697 {
6698 	u32 i;
6699 
6700 	if (!msr_filter)
6701 		return;
6702 
6703 	for (i = 0; i < msr_filter->count; i++)
6704 		kfree(msr_filter->ranges[i].bitmap);
6705 
6706 	kfree(msr_filter);
6707 }
6708 
6709 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6710 			      struct kvm_msr_filter_range *user_range)
6711 {
6712 	unsigned long *bitmap;
6713 	size_t bitmap_size;
6714 
6715 	if (!user_range->nmsrs)
6716 		return 0;
6717 
6718 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6719 		return -EINVAL;
6720 
6721 	if (!user_range->flags)
6722 		return -EINVAL;
6723 
6724 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6725 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6726 		return -EINVAL;
6727 
6728 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6729 	if (IS_ERR(bitmap))
6730 		return PTR_ERR(bitmap);
6731 
6732 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6733 		.flags = user_range->flags,
6734 		.base = user_range->base,
6735 		.nmsrs = user_range->nmsrs,
6736 		.bitmap = bitmap,
6737 	};
6738 
6739 	msr_filter->count++;
6740 	return 0;
6741 }
6742 
6743 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6744 				       struct kvm_msr_filter *filter)
6745 {
6746 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6747 	bool default_allow;
6748 	bool empty = true;
6749 	int r;
6750 	u32 i;
6751 
6752 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6753 		return -EINVAL;
6754 
6755 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6756 		empty &= !filter->ranges[i].nmsrs;
6757 
6758 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6759 	if (empty && !default_allow)
6760 		return -EINVAL;
6761 
6762 	new_filter = kvm_alloc_msr_filter(default_allow);
6763 	if (!new_filter)
6764 		return -ENOMEM;
6765 
6766 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6767 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6768 		if (r) {
6769 			kvm_free_msr_filter(new_filter);
6770 			return r;
6771 		}
6772 	}
6773 
6774 	mutex_lock(&kvm->lock);
6775 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6776 					 mutex_is_locked(&kvm->lock));
6777 	mutex_unlock(&kvm->lock);
6778 	synchronize_srcu(&kvm->srcu);
6779 
6780 	kvm_free_msr_filter(old_filter);
6781 
6782 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6783 
6784 	return 0;
6785 }
6786 
6787 #ifdef CONFIG_KVM_COMPAT
6788 /* for KVM_X86_SET_MSR_FILTER */
6789 struct kvm_msr_filter_range_compat {
6790 	__u32 flags;
6791 	__u32 nmsrs;
6792 	__u32 base;
6793 	__u32 bitmap;
6794 };
6795 
6796 struct kvm_msr_filter_compat {
6797 	__u32 flags;
6798 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6799 };
6800 
6801 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6802 
6803 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6804 			      unsigned long arg)
6805 {
6806 	void __user *argp = (void __user *)arg;
6807 	struct kvm *kvm = filp->private_data;
6808 	long r = -ENOTTY;
6809 
6810 	switch (ioctl) {
6811 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6812 		struct kvm_msr_filter __user *user_msr_filter = argp;
6813 		struct kvm_msr_filter_compat filter_compat;
6814 		struct kvm_msr_filter filter;
6815 		int i;
6816 
6817 		if (copy_from_user(&filter_compat, user_msr_filter,
6818 				   sizeof(filter_compat)))
6819 			return -EFAULT;
6820 
6821 		filter.flags = filter_compat.flags;
6822 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6823 			struct kvm_msr_filter_range_compat *cr;
6824 
6825 			cr = &filter_compat.ranges[i];
6826 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6827 				.flags = cr->flags,
6828 				.nmsrs = cr->nmsrs,
6829 				.base = cr->base,
6830 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6831 			};
6832 		}
6833 
6834 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6835 		break;
6836 	}
6837 	}
6838 
6839 	return r;
6840 }
6841 #endif
6842 
6843 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6844 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6845 {
6846 	struct kvm_vcpu *vcpu;
6847 	unsigned long i;
6848 	int ret = 0;
6849 
6850 	mutex_lock(&kvm->lock);
6851 	kvm_for_each_vcpu(i, vcpu, kvm) {
6852 		if (!vcpu->arch.pv_time.active)
6853 			continue;
6854 
6855 		ret = kvm_set_guest_paused(vcpu);
6856 		if (ret) {
6857 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6858 				vcpu->vcpu_id, ret);
6859 			break;
6860 		}
6861 	}
6862 	mutex_unlock(&kvm->lock);
6863 
6864 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6865 }
6866 
6867 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6868 {
6869 	switch (state) {
6870 	case PM_HIBERNATION_PREPARE:
6871 	case PM_SUSPEND_PREPARE:
6872 		return kvm_arch_suspend_notifier(kvm);
6873 	}
6874 
6875 	return NOTIFY_DONE;
6876 }
6877 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6878 
6879 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6880 {
6881 	struct kvm_clock_data data = { 0 };
6882 
6883 	get_kvmclock(kvm, &data);
6884 	if (copy_to_user(argp, &data, sizeof(data)))
6885 		return -EFAULT;
6886 
6887 	return 0;
6888 }
6889 
6890 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6891 {
6892 	struct kvm_arch *ka = &kvm->arch;
6893 	struct kvm_clock_data data;
6894 	u64 now_raw_ns;
6895 
6896 	if (copy_from_user(&data, argp, sizeof(data)))
6897 		return -EFAULT;
6898 
6899 	/*
6900 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6901 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6902 	 */
6903 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6904 		return -EINVAL;
6905 
6906 	kvm_hv_request_tsc_page_update(kvm);
6907 	kvm_start_pvclock_update(kvm);
6908 	pvclock_update_vm_gtod_copy(kvm);
6909 
6910 	/*
6911 	 * This pairs with kvm_guest_time_update(): when masterclock is
6912 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6913 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6914 	 * is slightly ahead) here we risk going negative on unsigned
6915 	 * 'system_time' when 'data.clock' is very small.
6916 	 */
6917 	if (data.flags & KVM_CLOCK_REALTIME) {
6918 		u64 now_real_ns = ktime_get_real_ns();
6919 
6920 		/*
6921 		 * Avoid stepping the kvmclock backwards.
6922 		 */
6923 		if (now_real_ns > data.realtime)
6924 			data.clock += now_real_ns - data.realtime;
6925 	}
6926 
6927 	if (ka->use_master_clock)
6928 		now_raw_ns = ka->master_kernel_ns;
6929 	else
6930 		now_raw_ns = get_kvmclock_base_ns();
6931 	ka->kvmclock_offset = data.clock - now_raw_ns;
6932 	kvm_end_pvclock_update(kvm);
6933 	return 0;
6934 }
6935 
6936 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6937 {
6938 	struct kvm *kvm = filp->private_data;
6939 	void __user *argp = (void __user *)arg;
6940 	int r = -ENOTTY;
6941 	/*
6942 	 * This union makes it completely explicit to gcc-3.x
6943 	 * that these two variables' stack usage should be
6944 	 * combined, not added together.
6945 	 */
6946 	union {
6947 		struct kvm_pit_state ps;
6948 		struct kvm_pit_state2 ps2;
6949 		struct kvm_pit_config pit_config;
6950 	} u;
6951 
6952 	switch (ioctl) {
6953 	case KVM_SET_TSS_ADDR:
6954 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6955 		break;
6956 	case KVM_SET_IDENTITY_MAP_ADDR: {
6957 		u64 ident_addr;
6958 
6959 		mutex_lock(&kvm->lock);
6960 		r = -EINVAL;
6961 		if (kvm->created_vcpus)
6962 			goto set_identity_unlock;
6963 		r = -EFAULT;
6964 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6965 			goto set_identity_unlock;
6966 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6967 set_identity_unlock:
6968 		mutex_unlock(&kvm->lock);
6969 		break;
6970 	}
6971 	case KVM_SET_NR_MMU_PAGES:
6972 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6973 		break;
6974 	case KVM_CREATE_IRQCHIP: {
6975 		mutex_lock(&kvm->lock);
6976 
6977 		r = -EEXIST;
6978 		if (irqchip_in_kernel(kvm))
6979 			goto create_irqchip_unlock;
6980 
6981 		r = -EINVAL;
6982 		if (kvm->created_vcpus)
6983 			goto create_irqchip_unlock;
6984 
6985 		r = kvm_pic_init(kvm);
6986 		if (r)
6987 			goto create_irqchip_unlock;
6988 
6989 		r = kvm_ioapic_init(kvm);
6990 		if (r) {
6991 			kvm_pic_destroy(kvm);
6992 			goto create_irqchip_unlock;
6993 		}
6994 
6995 		r = kvm_setup_default_irq_routing(kvm);
6996 		if (r) {
6997 			kvm_ioapic_destroy(kvm);
6998 			kvm_pic_destroy(kvm);
6999 			goto create_irqchip_unlock;
7000 		}
7001 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7002 		smp_wmb();
7003 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7004 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7005 	create_irqchip_unlock:
7006 		mutex_unlock(&kvm->lock);
7007 		break;
7008 	}
7009 	case KVM_CREATE_PIT:
7010 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7011 		goto create_pit;
7012 	case KVM_CREATE_PIT2:
7013 		r = -EFAULT;
7014 		if (copy_from_user(&u.pit_config, argp,
7015 				   sizeof(struct kvm_pit_config)))
7016 			goto out;
7017 	create_pit:
7018 		mutex_lock(&kvm->lock);
7019 		r = -EEXIST;
7020 		if (kvm->arch.vpit)
7021 			goto create_pit_unlock;
7022 		r = -ENOENT;
7023 		if (!pic_in_kernel(kvm))
7024 			goto create_pit_unlock;
7025 		r = -ENOMEM;
7026 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7027 		if (kvm->arch.vpit)
7028 			r = 0;
7029 	create_pit_unlock:
7030 		mutex_unlock(&kvm->lock);
7031 		break;
7032 	case KVM_GET_IRQCHIP: {
7033 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7034 		struct kvm_irqchip *chip;
7035 
7036 		chip = memdup_user(argp, sizeof(*chip));
7037 		if (IS_ERR(chip)) {
7038 			r = PTR_ERR(chip);
7039 			goto out;
7040 		}
7041 
7042 		r = -ENXIO;
7043 		if (!irqchip_kernel(kvm))
7044 			goto get_irqchip_out;
7045 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7046 		if (r)
7047 			goto get_irqchip_out;
7048 		r = -EFAULT;
7049 		if (copy_to_user(argp, chip, sizeof(*chip)))
7050 			goto get_irqchip_out;
7051 		r = 0;
7052 	get_irqchip_out:
7053 		kfree(chip);
7054 		break;
7055 	}
7056 	case KVM_SET_IRQCHIP: {
7057 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7058 		struct kvm_irqchip *chip;
7059 
7060 		chip = memdup_user(argp, sizeof(*chip));
7061 		if (IS_ERR(chip)) {
7062 			r = PTR_ERR(chip);
7063 			goto out;
7064 		}
7065 
7066 		r = -ENXIO;
7067 		if (!irqchip_kernel(kvm))
7068 			goto set_irqchip_out;
7069 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7070 	set_irqchip_out:
7071 		kfree(chip);
7072 		break;
7073 	}
7074 	case KVM_GET_PIT: {
7075 		r = -EFAULT;
7076 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7077 			goto out;
7078 		r = -ENXIO;
7079 		if (!kvm->arch.vpit)
7080 			goto out;
7081 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7082 		if (r)
7083 			goto out;
7084 		r = -EFAULT;
7085 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7086 			goto out;
7087 		r = 0;
7088 		break;
7089 	}
7090 	case KVM_SET_PIT: {
7091 		r = -EFAULT;
7092 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7093 			goto out;
7094 		mutex_lock(&kvm->lock);
7095 		r = -ENXIO;
7096 		if (!kvm->arch.vpit)
7097 			goto set_pit_out;
7098 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7099 set_pit_out:
7100 		mutex_unlock(&kvm->lock);
7101 		break;
7102 	}
7103 	case KVM_GET_PIT2: {
7104 		r = -ENXIO;
7105 		if (!kvm->arch.vpit)
7106 			goto out;
7107 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7108 		if (r)
7109 			goto out;
7110 		r = -EFAULT;
7111 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7112 			goto out;
7113 		r = 0;
7114 		break;
7115 	}
7116 	case KVM_SET_PIT2: {
7117 		r = -EFAULT;
7118 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7119 			goto out;
7120 		mutex_lock(&kvm->lock);
7121 		r = -ENXIO;
7122 		if (!kvm->arch.vpit)
7123 			goto set_pit2_out;
7124 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7125 set_pit2_out:
7126 		mutex_unlock(&kvm->lock);
7127 		break;
7128 	}
7129 	case KVM_REINJECT_CONTROL: {
7130 		struct kvm_reinject_control control;
7131 		r =  -EFAULT;
7132 		if (copy_from_user(&control, argp, sizeof(control)))
7133 			goto out;
7134 		r = -ENXIO;
7135 		if (!kvm->arch.vpit)
7136 			goto out;
7137 		r = kvm_vm_ioctl_reinject(kvm, &control);
7138 		break;
7139 	}
7140 	case KVM_SET_BOOT_CPU_ID:
7141 		r = 0;
7142 		mutex_lock(&kvm->lock);
7143 		if (kvm->created_vcpus)
7144 			r = -EBUSY;
7145 		else
7146 			kvm->arch.bsp_vcpu_id = arg;
7147 		mutex_unlock(&kvm->lock);
7148 		break;
7149 #ifdef CONFIG_KVM_XEN
7150 	case KVM_XEN_HVM_CONFIG: {
7151 		struct kvm_xen_hvm_config xhc;
7152 		r = -EFAULT;
7153 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7154 			goto out;
7155 		r = kvm_xen_hvm_config(kvm, &xhc);
7156 		break;
7157 	}
7158 	case KVM_XEN_HVM_GET_ATTR: {
7159 		struct kvm_xen_hvm_attr xha;
7160 
7161 		r = -EFAULT;
7162 		if (copy_from_user(&xha, argp, sizeof(xha)))
7163 			goto out;
7164 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7165 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7166 			r = -EFAULT;
7167 		break;
7168 	}
7169 	case KVM_XEN_HVM_SET_ATTR: {
7170 		struct kvm_xen_hvm_attr xha;
7171 
7172 		r = -EFAULT;
7173 		if (copy_from_user(&xha, argp, sizeof(xha)))
7174 			goto out;
7175 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7176 		break;
7177 	}
7178 	case KVM_XEN_HVM_EVTCHN_SEND: {
7179 		struct kvm_irq_routing_xen_evtchn uxe;
7180 
7181 		r = -EFAULT;
7182 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7183 			goto out;
7184 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7185 		break;
7186 	}
7187 #endif
7188 	case KVM_SET_CLOCK:
7189 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7190 		break;
7191 	case KVM_GET_CLOCK:
7192 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7193 		break;
7194 	case KVM_SET_TSC_KHZ: {
7195 		u32 user_tsc_khz;
7196 
7197 		r = -EINVAL;
7198 		user_tsc_khz = (u32)arg;
7199 
7200 		if (kvm_caps.has_tsc_control &&
7201 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7202 			goto out;
7203 
7204 		if (user_tsc_khz == 0)
7205 			user_tsc_khz = tsc_khz;
7206 
7207 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7208 		r = 0;
7209 
7210 		goto out;
7211 	}
7212 	case KVM_GET_TSC_KHZ: {
7213 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7214 		goto out;
7215 	}
7216 	case KVM_MEMORY_ENCRYPT_OP: {
7217 		r = -ENOTTY;
7218 		if (!kvm_x86_ops.mem_enc_ioctl)
7219 			goto out;
7220 
7221 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7222 		break;
7223 	}
7224 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7225 		struct kvm_enc_region region;
7226 
7227 		r = -EFAULT;
7228 		if (copy_from_user(&region, argp, sizeof(region)))
7229 			goto out;
7230 
7231 		r = -ENOTTY;
7232 		if (!kvm_x86_ops.mem_enc_register_region)
7233 			goto out;
7234 
7235 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7236 		break;
7237 	}
7238 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7239 		struct kvm_enc_region region;
7240 
7241 		r = -EFAULT;
7242 		if (copy_from_user(&region, argp, sizeof(region)))
7243 			goto out;
7244 
7245 		r = -ENOTTY;
7246 		if (!kvm_x86_ops.mem_enc_unregister_region)
7247 			goto out;
7248 
7249 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7250 		break;
7251 	}
7252 #ifdef CONFIG_KVM_HYPERV
7253 	case KVM_HYPERV_EVENTFD: {
7254 		struct kvm_hyperv_eventfd hvevfd;
7255 
7256 		r = -EFAULT;
7257 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7258 			goto out;
7259 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7260 		break;
7261 	}
7262 #endif
7263 	case KVM_SET_PMU_EVENT_FILTER:
7264 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7265 		break;
7266 	case KVM_X86_SET_MSR_FILTER: {
7267 		struct kvm_msr_filter __user *user_msr_filter = argp;
7268 		struct kvm_msr_filter filter;
7269 
7270 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7271 			return -EFAULT;
7272 
7273 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7274 		break;
7275 	}
7276 	default:
7277 		r = -ENOTTY;
7278 	}
7279 out:
7280 	return r;
7281 }
7282 
7283 static void kvm_probe_feature_msr(u32 msr_index)
7284 {
7285 	struct kvm_msr_entry msr = {
7286 		.index = msr_index,
7287 	};
7288 
7289 	if (kvm_get_msr_feature(&msr))
7290 		return;
7291 
7292 	msr_based_features[num_msr_based_features++] = msr_index;
7293 }
7294 
7295 static void kvm_probe_msr_to_save(u32 msr_index)
7296 {
7297 	u32 dummy[2];
7298 
7299 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7300 		return;
7301 
7302 	/*
7303 	 * Even MSRs that are valid in the host may not be exposed to guests in
7304 	 * some cases.
7305 	 */
7306 	switch (msr_index) {
7307 	case MSR_IA32_BNDCFGS:
7308 		if (!kvm_mpx_supported())
7309 			return;
7310 		break;
7311 	case MSR_TSC_AUX:
7312 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7313 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7314 			return;
7315 		break;
7316 	case MSR_IA32_UMWAIT_CONTROL:
7317 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7318 			return;
7319 		break;
7320 	case MSR_IA32_RTIT_CTL:
7321 	case MSR_IA32_RTIT_STATUS:
7322 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7323 			return;
7324 		break;
7325 	case MSR_IA32_RTIT_CR3_MATCH:
7326 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7327 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7328 			return;
7329 		break;
7330 	case MSR_IA32_RTIT_OUTPUT_BASE:
7331 	case MSR_IA32_RTIT_OUTPUT_MASK:
7332 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7333 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7334 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7335 			return;
7336 		break;
7337 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7338 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7339 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7340 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7341 			return;
7342 		break;
7343 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7344 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7345 		    kvm_pmu_cap.num_counters_gp)
7346 			return;
7347 		break;
7348 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7349 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7350 		    kvm_pmu_cap.num_counters_gp)
7351 			return;
7352 		break;
7353 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7354 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7355 		    kvm_pmu_cap.num_counters_fixed)
7356 			return;
7357 		break;
7358 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7359 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7360 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7361 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7362 			return;
7363 		break;
7364 	case MSR_IA32_XFD:
7365 	case MSR_IA32_XFD_ERR:
7366 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7367 			return;
7368 		break;
7369 	case MSR_IA32_TSX_CTRL:
7370 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7371 			return;
7372 		break;
7373 	default:
7374 		break;
7375 	}
7376 
7377 	msrs_to_save[num_msrs_to_save++] = msr_index;
7378 }
7379 
7380 static void kvm_init_msr_lists(void)
7381 {
7382 	unsigned i;
7383 
7384 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7385 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7386 
7387 	num_msrs_to_save = 0;
7388 	num_emulated_msrs = 0;
7389 	num_msr_based_features = 0;
7390 
7391 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7392 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7393 
7394 	if (enable_pmu) {
7395 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7396 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7397 	}
7398 
7399 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7400 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7401 			continue;
7402 
7403 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7404 	}
7405 
7406 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7407 		kvm_probe_feature_msr(i);
7408 
7409 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7410 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7411 }
7412 
7413 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7414 			   const void *v)
7415 {
7416 	int handled = 0;
7417 	int n;
7418 
7419 	do {
7420 		n = min(len, 8);
7421 		if (!(lapic_in_kernel(vcpu) &&
7422 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7423 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7424 			break;
7425 		handled += n;
7426 		addr += n;
7427 		len -= n;
7428 		v += n;
7429 	} while (len);
7430 
7431 	return handled;
7432 }
7433 
7434 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7435 {
7436 	int handled = 0;
7437 	int n;
7438 
7439 	do {
7440 		n = min(len, 8);
7441 		if (!(lapic_in_kernel(vcpu) &&
7442 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7443 					 addr, n, v))
7444 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7445 			break;
7446 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7447 		handled += n;
7448 		addr += n;
7449 		len -= n;
7450 		v += n;
7451 	} while (len);
7452 
7453 	return handled;
7454 }
7455 
7456 void kvm_set_segment(struct kvm_vcpu *vcpu,
7457 		     struct kvm_segment *var, int seg)
7458 {
7459 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7460 }
7461 
7462 void kvm_get_segment(struct kvm_vcpu *vcpu,
7463 		     struct kvm_segment *var, int seg)
7464 {
7465 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7466 }
7467 
7468 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7469 			   struct x86_exception *exception)
7470 {
7471 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7472 	gpa_t t_gpa;
7473 
7474 	BUG_ON(!mmu_is_nested(vcpu));
7475 
7476 	/* NPT walks are always user-walks */
7477 	access |= PFERR_USER_MASK;
7478 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7479 
7480 	return t_gpa;
7481 }
7482 
7483 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7484 			      struct x86_exception *exception)
7485 {
7486 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7487 
7488 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7489 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7490 }
7491 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7492 
7493 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7494 			       struct x86_exception *exception)
7495 {
7496 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7497 
7498 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7499 	access |= PFERR_WRITE_MASK;
7500 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7501 }
7502 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7503 
7504 /* uses this to access any guest's mapped memory without checking CPL */
7505 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7506 				struct x86_exception *exception)
7507 {
7508 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7509 
7510 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7511 }
7512 
7513 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7514 				      struct kvm_vcpu *vcpu, u64 access,
7515 				      struct x86_exception *exception)
7516 {
7517 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7518 	void *data = val;
7519 	int r = X86EMUL_CONTINUE;
7520 
7521 	while (bytes) {
7522 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7523 		unsigned offset = addr & (PAGE_SIZE-1);
7524 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7525 		int ret;
7526 
7527 		if (gpa == INVALID_GPA)
7528 			return X86EMUL_PROPAGATE_FAULT;
7529 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7530 					       offset, toread);
7531 		if (ret < 0) {
7532 			r = X86EMUL_IO_NEEDED;
7533 			goto out;
7534 		}
7535 
7536 		bytes -= toread;
7537 		data += toread;
7538 		addr += toread;
7539 	}
7540 out:
7541 	return r;
7542 }
7543 
7544 /* used for instruction fetching */
7545 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7546 				gva_t addr, void *val, unsigned int bytes,
7547 				struct x86_exception *exception)
7548 {
7549 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7550 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7551 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7552 	unsigned offset;
7553 	int ret;
7554 
7555 	/* Inline kvm_read_guest_virt_helper for speed.  */
7556 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7557 				    exception);
7558 	if (unlikely(gpa == INVALID_GPA))
7559 		return X86EMUL_PROPAGATE_FAULT;
7560 
7561 	offset = addr & (PAGE_SIZE-1);
7562 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7563 		bytes = (unsigned)PAGE_SIZE - offset;
7564 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7565 				       offset, bytes);
7566 	if (unlikely(ret < 0))
7567 		return X86EMUL_IO_NEEDED;
7568 
7569 	return X86EMUL_CONTINUE;
7570 }
7571 
7572 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7573 			       gva_t addr, void *val, unsigned int bytes,
7574 			       struct x86_exception *exception)
7575 {
7576 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7577 
7578 	/*
7579 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7580 	 * is returned, but our callers are not ready for that and they blindly
7581 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7582 	 * uninitialized kernel stack memory into cr2 and error code.
7583 	 */
7584 	memset(exception, 0, sizeof(*exception));
7585 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7586 					  exception);
7587 }
7588 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7589 
7590 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7591 			     gva_t addr, void *val, unsigned int bytes,
7592 			     struct x86_exception *exception, bool system)
7593 {
7594 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7595 	u64 access = 0;
7596 
7597 	if (system)
7598 		access |= PFERR_IMPLICIT_ACCESS;
7599 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7600 		access |= PFERR_USER_MASK;
7601 
7602 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7603 }
7604 
7605 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7606 				      struct kvm_vcpu *vcpu, u64 access,
7607 				      struct x86_exception *exception)
7608 {
7609 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7610 	void *data = val;
7611 	int r = X86EMUL_CONTINUE;
7612 
7613 	while (bytes) {
7614 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7615 		unsigned offset = addr & (PAGE_SIZE-1);
7616 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7617 		int ret;
7618 
7619 		if (gpa == INVALID_GPA)
7620 			return X86EMUL_PROPAGATE_FAULT;
7621 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7622 		if (ret < 0) {
7623 			r = X86EMUL_IO_NEEDED;
7624 			goto out;
7625 		}
7626 
7627 		bytes -= towrite;
7628 		data += towrite;
7629 		addr += towrite;
7630 	}
7631 out:
7632 	return r;
7633 }
7634 
7635 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7636 			      unsigned int bytes, struct x86_exception *exception,
7637 			      bool system)
7638 {
7639 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7640 	u64 access = PFERR_WRITE_MASK;
7641 
7642 	if (system)
7643 		access |= PFERR_IMPLICIT_ACCESS;
7644 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7645 		access |= PFERR_USER_MASK;
7646 
7647 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7648 					   access, exception);
7649 }
7650 
7651 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7652 				unsigned int bytes, struct x86_exception *exception)
7653 {
7654 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7655 	vcpu->arch.l1tf_flush_l1d = true;
7656 
7657 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7658 					   PFERR_WRITE_MASK, exception);
7659 }
7660 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7661 
7662 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7663 				  void *insn, int insn_len)
7664 {
7665 	return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7666 							      insn, insn_len);
7667 }
7668 
7669 int handle_ud(struct kvm_vcpu *vcpu)
7670 {
7671 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7672 	int fep_flags = READ_ONCE(force_emulation_prefix);
7673 	int emul_type = EMULTYPE_TRAP_UD;
7674 	char sig[5]; /* ud2; .ascii "kvm" */
7675 	struct x86_exception e;
7676 	int r;
7677 
7678 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7679 	if (r != X86EMUL_CONTINUE)
7680 		return 1;
7681 
7682 	if (fep_flags &&
7683 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7684 				sig, sizeof(sig), &e) == 0 &&
7685 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7686 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7687 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7688 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7689 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7690 	}
7691 
7692 	return kvm_emulate_instruction(vcpu, emul_type);
7693 }
7694 EXPORT_SYMBOL_GPL(handle_ud);
7695 
7696 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7697 			    gpa_t gpa, bool write)
7698 {
7699 	/* For APIC access vmexit */
7700 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7701 		return 1;
7702 
7703 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7704 		trace_vcpu_match_mmio(gva, gpa, write, true);
7705 		return 1;
7706 	}
7707 
7708 	return 0;
7709 }
7710 
7711 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7712 				gpa_t *gpa, struct x86_exception *exception,
7713 				bool write)
7714 {
7715 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7716 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7717 		| (write ? PFERR_WRITE_MASK : 0);
7718 
7719 	/*
7720 	 * currently PKRU is only applied to ept enabled guest so
7721 	 * there is no pkey in EPT page table for L1 guest or EPT
7722 	 * shadow page table for L2 guest.
7723 	 */
7724 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7725 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7726 			      vcpu->arch.mmio_access, 0, access))) {
7727 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7728 					(gva & (PAGE_SIZE - 1));
7729 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7730 		return 1;
7731 	}
7732 
7733 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7734 
7735 	if (*gpa == INVALID_GPA)
7736 		return -1;
7737 
7738 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7739 }
7740 
7741 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7742 			const void *val, int bytes)
7743 {
7744 	int ret;
7745 
7746 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7747 	if (ret < 0)
7748 		return 0;
7749 	kvm_page_track_write(vcpu, gpa, val, bytes);
7750 	return 1;
7751 }
7752 
7753 struct read_write_emulator_ops {
7754 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7755 				  int bytes);
7756 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7757 				  void *val, int bytes);
7758 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7759 			       int bytes, void *val);
7760 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7761 				    void *val, int bytes);
7762 	bool write;
7763 };
7764 
7765 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7766 {
7767 	if (vcpu->mmio_read_completed) {
7768 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7769 			       vcpu->mmio_fragments[0].gpa, val);
7770 		vcpu->mmio_read_completed = 0;
7771 		return 1;
7772 	}
7773 
7774 	return 0;
7775 }
7776 
7777 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7778 			void *val, int bytes)
7779 {
7780 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7781 }
7782 
7783 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7784 			 void *val, int bytes)
7785 {
7786 	return emulator_write_phys(vcpu, gpa, val, bytes);
7787 }
7788 
7789 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7790 {
7791 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7792 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7793 }
7794 
7795 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7796 			  void *val, int bytes)
7797 {
7798 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7799 	return X86EMUL_IO_NEEDED;
7800 }
7801 
7802 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7803 			   void *val, int bytes)
7804 {
7805 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7806 
7807 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7808 	return X86EMUL_CONTINUE;
7809 }
7810 
7811 static const struct read_write_emulator_ops read_emultor = {
7812 	.read_write_prepare = read_prepare,
7813 	.read_write_emulate = read_emulate,
7814 	.read_write_mmio = vcpu_mmio_read,
7815 	.read_write_exit_mmio = read_exit_mmio,
7816 };
7817 
7818 static const struct read_write_emulator_ops write_emultor = {
7819 	.read_write_emulate = write_emulate,
7820 	.read_write_mmio = write_mmio,
7821 	.read_write_exit_mmio = write_exit_mmio,
7822 	.write = true,
7823 };
7824 
7825 static int emulator_read_write_onepage(unsigned long addr, void *val,
7826 				       unsigned int bytes,
7827 				       struct x86_exception *exception,
7828 				       struct kvm_vcpu *vcpu,
7829 				       const struct read_write_emulator_ops *ops)
7830 {
7831 	gpa_t gpa;
7832 	int handled, ret;
7833 	bool write = ops->write;
7834 	struct kvm_mmio_fragment *frag;
7835 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7836 
7837 	/*
7838 	 * If the exit was due to a NPF we may already have a GPA.
7839 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7840 	 * Note, this cannot be used on string operations since string
7841 	 * operation using rep will only have the initial GPA from the NPF
7842 	 * occurred.
7843 	 */
7844 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7845 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7846 		gpa = ctxt->gpa_val;
7847 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7848 	} else {
7849 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7850 		if (ret < 0)
7851 			return X86EMUL_PROPAGATE_FAULT;
7852 	}
7853 
7854 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7855 		return X86EMUL_CONTINUE;
7856 
7857 	/*
7858 	 * Is this MMIO handled locally?
7859 	 */
7860 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7861 	if (handled == bytes)
7862 		return X86EMUL_CONTINUE;
7863 
7864 	gpa += handled;
7865 	bytes -= handled;
7866 	val += handled;
7867 
7868 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7869 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7870 	frag->gpa = gpa;
7871 	frag->data = val;
7872 	frag->len = bytes;
7873 	return X86EMUL_CONTINUE;
7874 }
7875 
7876 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7877 			unsigned long addr,
7878 			void *val, unsigned int bytes,
7879 			struct x86_exception *exception,
7880 			const struct read_write_emulator_ops *ops)
7881 {
7882 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7883 	gpa_t gpa;
7884 	int rc;
7885 
7886 	if (ops->read_write_prepare &&
7887 		  ops->read_write_prepare(vcpu, val, bytes))
7888 		return X86EMUL_CONTINUE;
7889 
7890 	vcpu->mmio_nr_fragments = 0;
7891 
7892 	/* Crossing a page boundary? */
7893 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7894 		int now;
7895 
7896 		now = -addr & ~PAGE_MASK;
7897 		rc = emulator_read_write_onepage(addr, val, now, exception,
7898 						 vcpu, ops);
7899 
7900 		if (rc != X86EMUL_CONTINUE)
7901 			return rc;
7902 		addr += now;
7903 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7904 			addr = (u32)addr;
7905 		val += now;
7906 		bytes -= now;
7907 	}
7908 
7909 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7910 					 vcpu, ops);
7911 	if (rc != X86EMUL_CONTINUE)
7912 		return rc;
7913 
7914 	if (!vcpu->mmio_nr_fragments)
7915 		return rc;
7916 
7917 	gpa = vcpu->mmio_fragments[0].gpa;
7918 
7919 	vcpu->mmio_needed = 1;
7920 	vcpu->mmio_cur_fragment = 0;
7921 
7922 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7923 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7924 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7925 	vcpu->run->mmio.phys_addr = gpa;
7926 
7927 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7928 }
7929 
7930 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7931 				  unsigned long addr,
7932 				  void *val,
7933 				  unsigned int bytes,
7934 				  struct x86_exception *exception)
7935 {
7936 	return emulator_read_write(ctxt, addr, val, bytes,
7937 				   exception, &read_emultor);
7938 }
7939 
7940 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7941 			    unsigned long addr,
7942 			    const void *val,
7943 			    unsigned int bytes,
7944 			    struct x86_exception *exception)
7945 {
7946 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7947 				   exception, &write_emultor);
7948 }
7949 
7950 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7951 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7952 
7953 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7954 				     unsigned long addr,
7955 				     const void *old,
7956 				     const void *new,
7957 				     unsigned int bytes,
7958 				     struct x86_exception *exception)
7959 {
7960 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7961 	u64 page_line_mask;
7962 	unsigned long hva;
7963 	gpa_t gpa;
7964 	int r;
7965 
7966 	/* guests cmpxchg8b have to be emulated atomically */
7967 	if (bytes > 8 || (bytes & (bytes - 1)))
7968 		goto emul_write;
7969 
7970 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7971 
7972 	if (gpa == INVALID_GPA ||
7973 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7974 		goto emul_write;
7975 
7976 	/*
7977 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7978 	 * enabled in the host and the access splits a cache line.
7979 	 */
7980 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7981 		page_line_mask = ~(cache_line_size() - 1);
7982 	else
7983 		page_line_mask = PAGE_MASK;
7984 
7985 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7986 		goto emul_write;
7987 
7988 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7989 	if (kvm_is_error_hva(hva))
7990 		goto emul_write;
7991 
7992 	hva += offset_in_page(gpa);
7993 
7994 	switch (bytes) {
7995 	case 1:
7996 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7997 		break;
7998 	case 2:
7999 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
8000 		break;
8001 	case 4:
8002 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8003 		break;
8004 	case 8:
8005 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8006 		break;
8007 	default:
8008 		BUG();
8009 	}
8010 
8011 	if (r < 0)
8012 		return X86EMUL_UNHANDLEABLE;
8013 
8014 	/*
8015 	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8016 	 * successful, as the old value is written back on failure.  Note, for
8017 	 * live migration, this is unnecessarily conservative as CMPXCHG writes
8018 	 * back the original value and the access is atomic, but KVM's ABI is
8019 	 * that all writes are dirty logged, regardless of the value written.
8020 	 */
8021 	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8022 
8023 	if (r)
8024 		return X86EMUL_CMPXCHG_FAILED;
8025 
8026 	kvm_page_track_write(vcpu, gpa, new, bytes);
8027 
8028 	return X86EMUL_CONTINUE;
8029 
8030 emul_write:
8031 	pr_warn_once("emulating exchange as write\n");
8032 
8033 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8034 }
8035 
8036 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8037 			       unsigned short port, void *data,
8038 			       unsigned int count, bool in)
8039 {
8040 	unsigned i;
8041 	int r;
8042 
8043 	WARN_ON_ONCE(vcpu->arch.pio.count);
8044 	for (i = 0; i < count; i++) {
8045 		if (in)
8046 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8047 		else
8048 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8049 
8050 		if (r) {
8051 			if (i == 0)
8052 				goto userspace_io;
8053 
8054 			/*
8055 			 * Userspace must have unregistered the device while PIO
8056 			 * was running.  Drop writes / read as 0.
8057 			 */
8058 			if (in)
8059 				memset(data, 0, size * (count - i));
8060 			break;
8061 		}
8062 
8063 		data += size;
8064 	}
8065 	return 1;
8066 
8067 userspace_io:
8068 	vcpu->arch.pio.port = port;
8069 	vcpu->arch.pio.in = in;
8070 	vcpu->arch.pio.count = count;
8071 	vcpu->arch.pio.size = size;
8072 
8073 	if (in)
8074 		memset(vcpu->arch.pio_data, 0, size * count);
8075 	else
8076 		memcpy(vcpu->arch.pio_data, data, size * count);
8077 
8078 	vcpu->run->exit_reason = KVM_EXIT_IO;
8079 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8080 	vcpu->run->io.size = size;
8081 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8082 	vcpu->run->io.count = count;
8083 	vcpu->run->io.port = port;
8084 	return 0;
8085 }
8086 
8087 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8088       			   unsigned short port, void *val, unsigned int count)
8089 {
8090 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8091 	if (r)
8092 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8093 
8094 	return r;
8095 }
8096 
8097 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8098 {
8099 	int size = vcpu->arch.pio.size;
8100 	unsigned int count = vcpu->arch.pio.count;
8101 	memcpy(val, vcpu->arch.pio_data, size * count);
8102 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8103 	vcpu->arch.pio.count = 0;
8104 }
8105 
8106 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8107 				    int size, unsigned short port, void *val,
8108 				    unsigned int count)
8109 {
8110 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8111 	if (vcpu->arch.pio.count) {
8112 		/*
8113 		 * Complete a previous iteration that required userspace I/O.
8114 		 * Note, @count isn't guaranteed to match pio.count as userspace
8115 		 * can modify ECX before rerunning the vCPU.  Ignore any such
8116 		 * shenanigans as KVM doesn't support modifying the rep count,
8117 		 * and the emulator ensures @count doesn't overflow the buffer.
8118 		 */
8119 		complete_emulator_pio_in(vcpu, val);
8120 		return 1;
8121 	}
8122 
8123 	return emulator_pio_in(vcpu, size, port, val, count);
8124 }
8125 
8126 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8127 			    unsigned short port, const void *val,
8128 			    unsigned int count)
8129 {
8130 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8131 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8132 }
8133 
8134 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8135 				     int size, unsigned short port,
8136 				     const void *val, unsigned int count)
8137 {
8138 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8139 }
8140 
8141 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8142 {
8143 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8144 }
8145 
8146 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8147 {
8148 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8149 }
8150 
8151 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8152 {
8153 	if (!need_emulate_wbinvd(vcpu))
8154 		return X86EMUL_CONTINUE;
8155 
8156 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
8157 		int cpu = get_cpu();
8158 
8159 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8160 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8161 				wbinvd_ipi, NULL, 1);
8162 		put_cpu();
8163 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8164 	} else
8165 		wbinvd();
8166 	return X86EMUL_CONTINUE;
8167 }
8168 
8169 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8170 {
8171 	kvm_emulate_wbinvd_noskip(vcpu);
8172 	return kvm_skip_emulated_instruction(vcpu);
8173 }
8174 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8175 
8176 
8177 
8178 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8179 {
8180 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8181 }
8182 
8183 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8184 			    unsigned long *dest)
8185 {
8186 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8187 }
8188 
8189 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8190 			   unsigned long value)
8191 {
8192 
8193 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8194 }
8195 
8196 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8197 {
8198 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8199 }
8200 
8201 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8202 {
8203 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8204 	unsigned long value;
8205 
8206 	switch (cr) {
8207 	case 0:
8208 		value = kvm_read_cr0(vcpu);
8209 		break;
8210 	case 2:
8211 		value = vcpu->arch.cr2;
8212 		break;
8213 	case 3:
8214 		value = kvm_read_cr3(vcpu);
8215 		break;
8216 	case 4:
8217 		value = kvm_read_cr4(vcpu);
8218 		break;
8219 	case 8:
8220 		value = kvm_get_cr8(vcpu);
8221 		break;
8222 	default:
8223 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8224 		return 0;
8225 	}
8226 
8227 	return value;
8228 }
8229 
8230 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8231 {
8232 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8233 	int res = 0;
8234 
8235 	switch (cr) {
8236 	case 0:
8237 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8238 		break;
8239 	case 2:
8240 		vcpu->arch.cr2 = val;
8241 		break;
8242 	case 3:
8243 		res = kvm_set_cr3(vcpu, val);
8244 		break;
8245 	case 4:
8246 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8247 		break;
8248 	case 8:
8249 		res = kvm_set_cr8(vcpu, val);
8250 		break;
8251 	default:
8252 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8253 		res = -1;
8254 	}
8255 
8256 	return res;
8257 }
8258 
8259 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8260 {
8261 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8262 }
8263 
8264 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8265 {
8266 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8267 }
8268 
8269 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8270 {
8271 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8272 }
8273 
8274 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8275 {
8276 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8277 }
8278 
8279 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8280 {
8281 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8282 }
8283 
8284 static unsigned long emulator_get_cached_segment_base(
8285 	struct x86_emulate_ctxt *ctxt, int seg)
8286 {
8287 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8288 }
8289 
8290 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8291 				 struct desc_struct *desc, u32 *base3,
8292 				 int seg)
8293 {
8294 	struct kvm_segment var;
8295 
8296 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8297 	*selector = var.selector;
8298 
8299 	if (var.unusable) {
8300 		memset(desc, 0, sizeof(*desc));
8301 		if (base3)
8302 			*base3 = 0;
8303 		return false;
8304 	}
8305 
8306 	if (var.g)
8307 		var.limit >>= 12;
8308 	set_desc_limit(desc, var.limit);
8309 	set_desc_base(desc, (unsigned long)var.base);
8310 #ifdef CONFIG_X86_64
8311 	if (base3)
8312 		*base3 = var.base >> 32;
8313 #endif
8314 	desc->type = var.type;
8315 	desc->s = var.s;
8316 	desc->dpl = var.dpl;
8317 	desc->p = var.present;
8318 	desc->avl = var.avl;
8319 	desc->l = var.l;
8320 	desc->d = var.db;
8321 	desc->g = var.g;
8322 
8323 	return true;
8324 }
8325 
8326 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8327 				 struct desc_struct *desc, u32 base3,
8328 				 int seg)
8329 {
8330 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8331 	struct kvm_segment var;
8332 
8333 	var.selector = selector;
8334 	var.base = get_desc_base(desc);
8335 #ifdef CONFIG_X86_64
8336 	var.base |= ((u64)base3) << 32;
8337 #endif
8338 	var.limit = get_desc_limit(desc);
8339 	if (desc->g)
8340 		var.limit = (var.limit << 12) | 0xfff;
8341 	var.type = desc->type;
8342 	var.dpl = desc->dpl;
8343 	var.db = desc->d;
8344 	var.s = desc->s;
8345 	var.l = desc->l;
8346 	var.g = desc->g;
8347 	var.avl = desc->avl;
8348 	var.present = desc->p;
8349 	var.unusable = !var.present;
8350 	var.padding = 0;
8351 
8352 	kvm_set_segment(vcpu, &var, seg);
8353 	return;
8354 }
8355 
8356 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8357 					u32 msr_index, u64 *pdata)
8358 {
8359 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8360 	int r;
8361 
8362 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8363 	if (r < 0)
8364 		return X86EMUL_UNHANDLEABLE;
8365 
8366 	if (r) {
8367 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8368 				       complete_emulated_rdmsr, r))
8369 			return X86EMUL_IO_NEEDED;
8370 
8371 		trace_kvm_msr_read_ex(msr_index);
8372 		return X86EMUL_PROPAGATE_FAULT;
8373 	}
8374 
8375 	trace_kvm_msr_read(msr_index, *pdata);
8376 	return X86EMUL_CONTINUE;
8377 }
8378 
8379 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8380 					u32 msr_index, u64 data)
8381 {
8382 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8383 	int r;
8384 
8385 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8386 	if (r < 0)
8387 		return X86EMUL_UNHANDLEABLE;
8388 
8389 	if (r) {
8390 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8391 				       complete_emulated_msr_access, r))
8392 			return X86EMUL_IO_NEEDED;
8393 
8394 		trace_kvm_msr_write_ex(msr_index, data);
8395 		return X86EMUL_PROPAGATE_FAULT;
8396 	}
8397 
8398 	trace_kvm_msr_write(msr_index, data);
8399 	return X86EMUL_CONTINUE;
8400 }
8401 
8402 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8403 			    u32 msr_index, u64 *pdata)
8404 {
8405 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8406 }
8407 
8408 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8409 			      u32 pmc)
8410 {
8411 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8412 		return 0;
8413 	return -EINVAL;
8414 }
8415 
8416 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8417 			     u32 pmc, u64 *pdata)
8418 {
8419 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8420 }
8421 
8422 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8423 {
8424 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8425 }
8426 
8427 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8428 			      struct x86_instruction_info *info,
8429 			      enum x86_intercept_stage stage)
8430 {
8431 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8432 					    &ctxt->exception);
8433 }
8434 
8435 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8436 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8437 			      bool exact_only)
8438 {
8439 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8440 }
8441 
8442 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8443 {
8444 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8445 }
8446 
8447 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8448 {
8449 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8450 }
8451 
8452 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8453 {
8454 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8455 }
8456 
8457 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8458 {
8459 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8460 }
8461 
8462 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8463 {
8464 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8465 }
8466 
8467 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8468 {
8469 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8470 }
8471 
8472 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8473 {
8474 	return is_smm(emul_to_vcpu(ctxt));
8475 }
8476 
8477 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8478 {
8479 	return is_guest_mode(emul_to_vcpu(ctxt));
8480 }
8481 
8482 #ifndef CONFIG_KVM_SMM
8483 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8484 {
8485 	WARN_ON_ONCE(1);
8486 	return X86EMUL_UNHANDLEABLE;
8487 }
8488 #endif
8489 
8490 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8491 {
8492 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8493 }
8494 
8495 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8496 {
8497 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8498 }
8499 
8500 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8501 {
8502 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8503 
8504 	if (!kvm->vm_bugged)
8505 		kvm_vm_bugged(kvm);
8506 }
8507 
8508 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8509 					gva_t addr, unsigned int flags)
8510 {
8511 	if (!kvm_x86_ops.get_untagged_addr)
8512 		return addr;
8513 
8514 	return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8515 }
8516 
8517 static const struct x86_emulate_ops emulate_ops = {
8518 	.vm_bugged           = emulator_vm_bugged,
8519 	.read_gpr            = emulator_read_gpr,
8520 	.write_gpr           = emulator_write_gpr,
8521 	.read_std            = emulator_read_std,
8522 	.write_std           = emulator_write_std,
8523 	.fetch               = kvm_fetch_guest_virt,
8524 	.read_emulated       = emulator_read_emulated,
8525 	.write_emulated      = emulator_write_emulated,
8526 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8527 	.invlpg              = emulator_invlpg,
8528 	.pio_in_emulated     = emulator_pio_in_emulated,
8529 	.pio_out_emulated    = emulator_pio_out_emulated,
8530 	.get_segment         = emulator_get_segment,
8531 	.set_segment         = emulator_set_segment,
8532 	.get_cached_segment_base = emulator_get_cached_segment_base,
8533 	.get_gdt             = emulator_get_gdt,
8534 	.get_idt	     = emulator_get_idt,
8535 	.set_gdt             = emulator_set_gdt,
8536 	.set_idt	     = emulator_set_idt,
8537 	.get_cr              = emulator_get_cr,
8538 	.set_cr              = emulator_set_cr,
8539 	.cpl                 = emulator_get_cpl,
8540 	.get_dr              = emulator_get_dr,
8541 	.set_dr              = emulator_set_dr,
8542 	.set_msr_with_filter = emulator_set_msr_with_filter,
8543 	.get_msr_with_filter = emulator_get_msr_with_filter,
8544 	.get_msr             = emulator_get_msr,
8545 	.check_pmc	     = emulator_check_pmc,
8546 	.read_pmc            = emulator_read_pmc,
8547 	.halt                = emulator_halt,
8548 	.wbinvd              = emulator_wbinvd,
8549 	.fix_hypercall       = emulator_fix_hypercall,
8550 	.intercept           = emulator_intercept,
8551 	.get_cpuid           = emulator_get_cpuid,
8552 	.guest_has_movbe     = emulator_guest_has_movbe,
8553 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8554 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8555 	.set_nmi_mask        = emulator_set_nmi_mask,
8556 	.is_smm              = emulator_is_smm,
8557 	.is_guest_mode       = emulator_is_guest_mode,
8558 	.leave_smm           = emulator_leave_smm,
8559 	.triple_fault        = emulator_triple_fault,
8560 	.set_xcr             = emulator_set_xcr,
8561 	.get_untagged_addr   = emulator_get_untagged_addr,
8562 };
8563 
8564 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8565 {
8566 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8567 	/*
8568 	 * an sti; sti; sequence only disable interrupts for the first
8569 	 * instruction. So, if the last instruction, be it emulated or
8570 	 * not, left the system with the INT_STI flag enabled, it
8571 	 * means that the last instruction is an sti. We should not
8572 	 * leave the flag on in this case. The same goes for mov ss
8573 	 */
8574 	if (int_shadow & mask)
8575 		mask = 0;
8576 	if (unlikely(int_shadow || mask)) {
8577 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8578 		if (!mask)
8579 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8580 	}
8581 }
8582 
8583 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8584 {
8585 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8586 
8587 	if (ctxt->exception.vector == PF_VECTOR)
8588 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8589 	else if (ctxt->exception.error_code_valid)
8590 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8591 				      ctxt->exception.error_code);
8592 	else
8593 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8594 }
8595 
8596 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8597 {
8598 	struct x86_emulate_ctxt *ctxt;
8599 
8600 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8601 	if (!ctxt) {
8602 		pr_err("failed to allocate vcpu's emulator\n");
8603 		return NULL;
8604 	}
8605 
8606 	ctxt->vcpu = vcpu;
8607 	ctxt->ops = &emulate_ops;
8608 	vcpu->arch.emulate_ctxt = ctxt;
8609 
8610 	return ctxt;
8611 }
8612 
8613 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8614 {
8615 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8616 	int cs_db, cs_l;
8617 
8618 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8619 
8620 	ctxt->gpa_available = false;
8621 	ctxt->eflags = kvm_get_rflags(vcpu);
8622 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8623 
8624 	ctxt->eip = kvm_rip_read(vcpu);
8625 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8626 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8627 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8628 		     cs_db				? X86EMUL_MODE_PROT32 :
8629 							  X86EMUL_MODE_PROT16;
8630 	ctxt->interruptibility = 0;
8631 	ctxt->have_exception = false;
8632 	ctxt->exception.vector = -1;
8633 	ctxt->perm_ok = false;
8634 
8635 	init_decode_cache(ctxt);
8636 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8637 }
8638 
8639 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8640 {
8641 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8642 	int ret;
8643 
8644 	init_emulate_ctxt(vcpu);
8645 
8646 	ctxt->op_bytes = 2;
8647 	ctxt->ad_bytes = 2;
8648 	ctxt->_eip = ctxt->eip + inc_eip;
8649 	ret = emulate_int_real(ctxt, irq);
8650 
8651 	if (ret != X86EMUL_CONTINUE) {
8652 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8653 	} else {
8654 		ctxt->eip = ctxt->_eip;
8655 		kvm_rip_write(vcpu, ctxt->eip);
8656 		kvm_set_rflags(vcpu, ctxt->eflags);
8657 	}
8658 }
8659 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8660 
8661 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8662 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8663 {
8664 	struct kvm_run *run = vcpu->run;
8665 	u64 info[5];
8666 	u8 info_start;
8667 
8668 	/*
8669 	 * Zero the whole array used to retrieve the exit info, as casting to
8670 	 * u32 for select entries will leave some chunks uninitialized.
8671 	 */
8672 	memset(&info, 0, sizeof(info));
8673 
8674 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8675 					   &info[2], (u32 *)&info[3],
8676 					   (u32 *)&info[4]);
8677 
8678 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8679 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8680 
8681 	/*
8682 	 * There's currently space for 13 entries, but 5 are used for the exit
8683 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8684 	 * when expanding kvm_run.emulation_failure in the future.
8685 	 */
8686 	if (WARN_ON_ONCE(ndata > 4))
8687 		ndata = 4;
8688 
8689 	/* Always include the flags as a 'data' entry. */
8690 	info_start = 1;
8691 	run->emulation_failure.flags = 0;
8692 
8693 	if (insn_size) {
8694 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8695 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8696 		info_start += 2;
8697 		run->emulation_failure.flags |=
8698 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8699 		run->emulation_failure.insn_size = insn_size;
8700 		memset(run->emulation_failure.insn_bytes, 0x90,
8701 		       sizeof(run->emulation_failure.insn_bytes));
8702 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8703 	}
8704 
8705 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8706 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8707 	       ndata * sizeof(data[0]));
8708 
8709 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8710 }
8711 
8712 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8713 {
8714 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8715 
8716 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8717 				       ctxt->fetch.end - ctxt->fetch.data);
8718 }
8719 
8720 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8721 					  u8 ndata)
8722 {
8723 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8724 }
8725 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8726 
8727 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8728 {
8729 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8730 }
8731 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8732 
8733 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8734 {
8735 	struct kvm *kvm = vcpu->kvm;
8736 
8737 	++vcpu->stat.insn_emulation_fail;
8738 	trace_kvm_emulate_insn_failed(vcpu);
8739 
8740 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8741 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8742 		return 1;
8743 	}
8744 
8745 	if (kvm->arch.exit_on_emulation_error ||
8746 	    (emulation_type & EMULTYPE_SKIP)) {
8747 		prepare_emulation_ctxt_failure_exit(vcpu);
8748 		return 0;
8749 	}
8750 
8751 	kvm_queue_exception(vcpu, UD_VECTOR);
8752 
8753 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8754 		prepare_emulation_ctxt_failure_exit(vcpu);
8755 		return 0;
8756 	}
8757 
8758 	return 1;
8759 }
8760 
8761 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8762 				  int emulation_type)
8763 {
8764 	gpa_t gpa = cr2_or_gpa;
8765 	kvm_pfn_t pfn;
8766 
8767 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8768 		return false;
8769 
8770 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8771 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8772 		return false;
8773 
8774 	if (!vcpu->arch.mmu->root_role.direct) {
8775 		/*
8776 		 * Write permission should be allowed since only
8777 		 * write access need to be emulated.
8778 		 */
8779 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8780 
8781 		/*
8782 		 * If the mapping is invalid in guest, let cpu retry
8783 		 * it to generate fault.
8784 		 */
8785 		if (gpa == INVALID_GPA)
8786 			return true;
8787 	}
8788 
8789 	/*
8790 	 * Do not retry the unhandleable instruction if it faults on the
8791 	 * readonly host memory, otherwise it will goto a infinite loop:
8792 	 * retry instruction -> write #PF -> emulation fail -> retry
8793 	 * instruction -> ...
8794 	 */
8795 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8796 
8797 	/*
8798 	 * If the instruction failed on the error pfn, it can not be fixed,
8799 	 * report the error to userspace.
8800 	 */
8801 	if (is_error_noslot_pfn(pfn))
8802 		return false;
8803 
8804 	kvm_release_pfn_clean(pfn);
8805 
8806 	/* The instructions are well-emulated on direct mmu. */
8807 	if (vcpu->arch.mmu->root_role.direct) {
8808 		unsigned int indirect_shadow_pages;
8809 
8810 		write_lock(&vcpu->kvm->mmu_lock);
8811 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8812 		write_unlock(&vcpu->kvm->mmu_lock);
8813 
8814 		if (indirect_shadow_pages)
8815 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8816 
8817 		return true;
8818 	}
8819 
8820 	/*
8821 	 * if emulation was due to access to shadowed page table
8822 	 * and it failed try to unshadow page and re-enter the
8823 	 * guest to let CPU execute the instruction.
8824 	 */
8825 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8826 
8827 	/*
8828 	 * If the access faults on its page table, it can not
8829 	 * be fixed by unprotecting shadow page and it should
8830 	 * be reported to userspace.
8831 	 */
8832 	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8833 }
8834 
8835 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8836 			      gpa_t cr2_or_gpa,  int emulation_type)
8837 {
8838 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8839 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8840 
8841 	last_retry_eip = vcpu->arch.last_retry_eip;
8842 	last_retry_addr = vcpu->arch.last_retry_addr;
8843 
8844 	/*
8845 	 * If the emulation is caused by #PF and it is non-page_table
8846 	 * writing instruction, it means the VM-EXIT is caused by shadow
8847 	 * page protected, we can zap the shadow page and retry this
8848 	 * instruction directly.
8849 	 *
8850 	 * Note: if the guest uses a non-page-table modifying instruction
8851 	 * on the PDE that points to the instruction, then we will unmap
8852 	 * the instruction and go to an infinite loop. So, we cache the
8853 	 * last retried eip and the last fault address, if we meet the eip
8854 	 * and the address again, we can break out of the potential infinite
8855 	 * loop.
8856 	 */
8857 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8858 
8859 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8860 		return false;
8861 
8862 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8863 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8864 		return false;
8865 
8866 	if (x86_page_table_writing_insn(ctxt))
8867 		return false;
8868 
8869 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8870 		return false;
8871 
8872 	vcpu->arch.last_retry_eip = ctxt->eip;
8873 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8874 
8875 	if (!vcpu->arch.mmu->root_role.direct)
8876 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8877 
8878 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8879 
8880 	return true;
8881 }
8882 
8883 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8884 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8885 
8886 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8887 				unsigned long *db)
8888 {
8889 	u32 dr6 = 0;
8890 	int i;
8891 	u32 enable, rwlen;
8892 
8893 	enable = dr7;
8894 	rwlen = dr7 >> 16;
8895 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8896 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8897 			dr6 |= (1 << i);
8898 	return dr6;
8899 }
8900 
8901 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8902 {
8903 	struct kvm_run *kvm_run = vcpu->run;
8904 
8905 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8906 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8907 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8908 		kvm_run->debug.arch.exception = DB_VECTOR;
8909 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8910 		return 0;
8911 	}
8912 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8913 	return 1;
8914 }
8915 
8916 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8917 {
8918 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8919 	int r;
8920 
8921 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8922 	if (unlikely(!r))
8923 		return 0;
8924 
8925 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8926 
8927 	/*
8928 	 * rflags is the old, "raw" value of the flags.  The new value has
8929 	 * not been saved yet.
8930 	 *
8931 	 * This is correct even for TF set by the guest, because "the
8932 	 * processor will not generate this exception after the instruction
8933 	 * that sets the TF flag".
8934 	 */
8935 	if (unlikely(rflags & X86_EFLAGS_TF))
8936 		r = kvm_vcpu_do_singlestep(vcpu);
8937 	return r;
8938 }
8939 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8940 
8941 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8942 {
8943 	u32 shadow;
8944 
8945 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8946 		return true;
8947 
8948 	/*
8949 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8950 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8951 	 * to avoid the relatively expensive CPUID lookup.
8952 	 */
8953 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8954 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8955 	       guest_cpuid_is_intel(vcpu);
8956 }
8957 
8958 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8959 					   int emulation_type, int *r)
8960 {
8961 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8962 
8963 	/*
8964 	 * Do not check for code breakpoints if hardware has already done the
8965 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8966 	 * the instruction has passed all exception checks, and all intercepted
8967 	 * exceptions that trigger emulation have lower priority than code
8968 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8969 	 * means any code breakpoints have already been serviced.
8970 	 *
8971 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8972 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8973 	 * the instruction being emulated.  The intent of forced emulation is
8974 	 * to behave as if KVM intercepted the instruction without an exception
8975 	 * and without a prefix.
8976 	 */
8977 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8978 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8979 		return false;
8980 
8981 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8982 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8983 		struct kvm_run *kvm_run = vcpu->run;
8984 		unsigned long eip = kvm_get_linear_rip(vcpu);
8985 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8986 					   vcpu->arch.guest_debug_dr7,
8987 					   vcpu->arch.eff_db);
8988 
8989 		if (dr6 != 0) {
8990 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8991 			kvm_run->debug.arch.pc = eip;
8992 			kvm_run->debug.arch.exception = DB_VECTOR;
8993 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8994 			*r = 0;
8995 			return true;
8996 		}
8997 	}
8998 
8999 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9000 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
9001 		unsigned long eip = kvm_get_linear_rip(vcpu);
9002 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9003 					   vcpu->arch.dr7,
9004 					   vcpu->arch.db);
9005 
9006 		if (dr6 != 0) {
9007 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9008 			*r = 1;
9009 			return true;
9010 		}
9011 	}
9012 
9013 	return false;
9014 }
9015 
9016 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9017 {
9018 	switch (ctxt->opcode_len) {
9019 	case 1:
9020 		switch (ctxt->b) {
9021 		case 0xe4:	/* IN */
9022 		case 0xe5:
9023 		case 0xec:
9024 		case 0xed:
9025 		case 0xe6:	/* OUT */
9026 		case 0xe7:
9027 		case 0xee:
9028 		case 0xef:
9029 		case 0x6c:	/* INS */
9030 		case 0x6d:
9031 		case 0x6e:	/* OUTS */
9032 		case 0x6f:
9033 			return true;
9034 		}
9035 		break;
9036 	case 2:
9037 		switch (ctxt->b) {
9038 		case 0x33:	/* RDPMC */
9039 			return true;
9040 		}
9041 		break;
9042 	}
9043 
9044 	return false;
9045 }
9046 
9047 /*
9048  * Decode an instruction for emulation.  The caller is responsible for handling
9049  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9050  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9051  * code breakpoints have higher priority and thus have already been done by
9052  * hardware.
9053  *
9054  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9055  *     response to a machine check.
9056  */
9057 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9058 				    void *insn, int insn_len)
9059 {
9060 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9061 	int r;
9062 
9063 	init_emulate_ctxt(vcpu);
9064 
9065 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9066 
9067 	trace_kvm_emulate_insn_start(vcpu);
9068 	++vcpu->stat.insn_emulation;
9069 
9070 	return r;
9071 }
9072 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9073 
9074 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9075 			    int emulation_type, void *insn, int insn_len)
9076 {
9077 	int r;
9078 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9079 	bool writeback = true;
9080 
9081 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9082 	if (r != X86EMUL_CONTINUE) {
9083 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9084 			return 1;
9085 
9086 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9087 		return handle_emulation_failure(vcpu, emulation_type);
9088 	}
9089 
9090 	vcpu->arch.l1tf_flush_l1d = true;
9091 
9092 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9093 		kvm_clear_exception_queue(vcpu);
9094 
9095 		/*
9096 		 * Return immediately if RIP hits a code breakpoint, such #DBs
9097 		 * are fault-like and are higher priority than any faults on
9098 		 * the code fetch itself.
9099 		 */
9100 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9101 			return r;
9102 
9103 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9104 						    insn, insn_len);
9105 		if (r != EMULATION_OK)  {
9106 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9107 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9108 				kvm_queue_exception(vcpu, UD_VECTOR);
9109 				return 1;
9110 			}
9111 			if (reexecute_instruction(vcpu, cr2_or_gpa,
9112 						  emulation_type))
9113 				return 1;
9114 
9115 			if (ctxt->have_exception &&
9116 			    !(emulation_type & EMULTYPE_SKIP)) {
9117 				/*
9118 				 * #UD should result in just EMULATION_FAILED, and trap-like
9119 				 * exception should not be encountered during decode.
9120 				 */
9121 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9122 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9123 				inject_emulated_exception(vcpu);
9124 				return 1;
9125 			}
9126 			return handle_emulation_failure(vcpu, emulation_type);
9127 		}
9128 	}
9129 
9130 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9131 	    !is_vmware_backdoor_opcode(ctxt)) {
9132 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9133 		return 1;
9134 	}
9135 
9136 	/*
9137 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9138 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9139 	 * The caller is responsible for updating interruptibility state and
9140 	 * injecting single-step #DBs.
9141 	 */
9142 	if (emulation_type & EMULTYPE_SKIP) {
9143 		if (ctxt->mode != X86EMUL_MODE_PROT64)
9144 			ctxt->eip = (u32)ctxt->_eip;
9145 		else
9146 			ctxt->eip = ctxt->_eip;
9147 
9148 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9149 			r = 1;
9150 			goto writeback;
9151 		}
9152 
9153 		kvm_rip_write(vcpu, ctxt->eip);
9154 		if (ctxt->eflags & X86_EFLAGS_RF)
9155 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9156 		return 1;
9157 	}
9158 
9159 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9160 		return 1;
9161 
9162 	/* this is needed for vmware backdoor interface to work since it
9163 	   changes registers values  during IO operation */
9164 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9165 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9166 		emulator_invalidate_register_cache(ctxt);
9167 	}
9168 
9169 restart:
9170 	if (emulation_type & EMULTYPE_PF) {
9171 		/* Save the faulting GPA (cr2) in the address field */
9172 		ctxt->exception.address = cr2_or_gpa;
9173 
9174 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9175 		if (vcpu->arch.mmu->root_role.direct) {
9176 			ctxt->gpa_available = true;
9177 			ctxt->gpa_val = cr2_or_gpa;
9178 		}
9179 	} else {
9180 		/* Sanitize the address out of an abundance of paranoia. */
9181 		ctxt->exception.address = 0;
9182 	}
9183 
9184 	r = x86_emulate_insn(ctxt);
9185 
9186 	if (r == EMULATION_INTERCEPTED)
9187 		return 1;
9188 
9189 	if (r == EMULATION_FAILED) {
9190 		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9191 			return 1;
9192 
9193 		return handle_emulation_failure(vcpu, emulation_type);
9194 	}
9195 
9196 	if (ctxt->have_exception) {
9197 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9198 		vcpu->mmio_needed = false;
9199 		r = 1;
9200 		inject_emulated_exception(vcpu);
9201 	} else if (vcpu->arch.pio.count) {
9202 		if (!vcpu->arch.pio.in) {
9203 			/* FIXME: return into emulator if single-stepping.  */
9204 			vcpu->arch.pio.count = 0;
9205 		} else {
9206 			writeback = false;
9207 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9208 		}
9209 		r = 0;
9210 	} else if (vcpu->mmio_needed) {
9211 		++vcpu->stat.mmio_exits;
9212 
9213 		if (!vcpu->mmio_is_write)
9214 			writeback = false;
9215 		r = 0;
9216 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9217 	} else if (vcpu->arch.complete_userspace_io) {
9218 		writeback = false;
9219 		r = 0;
9220 	} else if (r == EMULATION_RESTART)
9221 		goto restart;
9222 	else
9223 		r = 1;
9224 
9225 writeback:
9226 	if (writeback) {
9227 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9228 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9229 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9230 
9231 		/*
9232 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9233 		 * only supports code breakpoints and general detect #DB, both
9234 		 * of which are fault-like.
9235 		 */
9236 		if (!ctxt->have_exception ||
9237 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9238 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9239 			if (ctxt->is_branch)
9240 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9241 			kvm_rip_write(vcpu, ctxt->eip);
9242 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9243 				r = kvm_vcpu_do_singlestep(vcpu);
9244 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9245 			__kvm_set_rflags(vcpu, ctxt->eflags);
9246 		}
9247 
9248 		/*
9249 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9250 		 * do nothing, and it will be requested again as soon as
9251 		 * the shadow expires.  But we still need to check here,
9252 		 * because POPF has no interrupt shadow.
9253 		 */
9254 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9255 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9256 	} else
9257 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9258 
9259 	return r;
9260 }
9261 
9262 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9263 {
9264 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9265 }
9266 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9267 
9268 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9269 					void *insn, int insn_len)
9270 {
9271 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9272 }
9273 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9274 
9275 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9276 {
9277 	vcpu->arch.pio.count = 0;
9278 	return 1;
9279 }
9280 
9281 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9282 {
9283 	vcpu->arch.pio.count = 0;
9284 
9285 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9286 		return 1;
9287 
9288 	return kvm_skip_emulated_instruction(vcpu);
9289 }
9290 
9291 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9292 			    unsigned short port)
9293 {
9294 	unsigned long val = kvm_rax_read(vcpu);
9295 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9296 
9297 	if (ret)
9298 		return ret;
9299 
9300 	/*
9301 	 * Workaround userspace that relies on old KVM behavior of %rip being
9302 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9303 	 */
9304 	if (port == 0x7e &&
9305 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9306 		vcpu->arch.complete_userspace_io =
9307 			complete_fast_pio_out_port_0x7e;
9308 		kvm_skip_emulated_instruction(vcpu);
9309 	} else {
9310 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9311 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9312 	}
9313 	return 0;
9314 }
9315 
9316 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9317 {
9318 	unsigned long val;
9319 
9320 	/* We should only ever be called with arch.pio.count equal to 1 */
9321 	BUG_ON(vcpu->arch.pio.count != 1);
9322 
9323 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9324 		vcpu->arch.pio.count = 0;
9325 		return 1;
9326 	}
9327 
9328 	/* For size less than 4 we merge, else we zero extend */
9329 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9330 
9331 	complete_emulator_pio_in(vcpu, &val);
9332 	kvm_rax_write(vcpu, val);
9333 
9334 	return kvm_skip_emulated_instruction(vcpu);
9335 }
9336 
9337 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9338 			   unsigned short port)
9339 {
9340 	unsigned long val;
9341 	int ret;
9342 
9343 	/* For size less than 4 we merge, else we zero extend */
9344 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9345 
9346 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9347 	if (ret) {
9348 		kvm_rax_write(vcpu, val);
9349 		return ret;
9350 	}
9351 
9352 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9353 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9354 
9355 	return 0;
9356 }
9357 
9358 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9359 {
9360 	int ret;
9361 
9362 	if (in)
9363 		ret = kvm_fast_pio_in(vcpu, size, port);
9364 	else
9365 		ret = kvm_fast_pio_out(vcpu, size, port);
9366 	return ret && kvm_skip_emulated_instruction(vcpu);
9367 }
9368 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9369 
9370 static int kvmclock_cpu_down_prep(unsigned int cpu)
9371 {
9372 	__this_cpu_write(cpu_tsc_khz, 0);
9373 	return 0;
9374 }
9375 
9376 static void tsc_khz_changed(void *data)
9377 {
9378 	struct cpufreq_freqs *freq = data;
9379 	unsigned long khz;
9380 
9381 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9382 
9383 	if (data)
9384 		khz = freq->new;
9385 	else
9386 		khz = cpufreq_quick_get(raw_smp_processor_id());
9387 	if (!khz)
9388 		khz = tsc_khz;
9389 	__this_cpu_write(cpu_tsc_khz, khz);
9390 }
9391 
9392 #ifdef CONFIG_X86_64
9393 static void kvm_hyperv_tsc_notifier(void)
9394 {
9395 	struct kvm *kvm;
9396 	int cpu;
9397 
9398 	mutex_lock(&kvm_lock);
9399 	list_for_each_entry(kvm, &vm_list, vm_list)
9400 		kvm_make_mclock_inprogress_request(kvm);
9401 
9402 	/* no guest entries from this point */
9403 	hyperv_stop_tsc_emulation();
9404 
9405 	/* TSC frequency always matches when on Hyper-V */
9406 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9407 		for_each_present_cpu(cpu)
9408 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9409 	}
9410 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9411 
9412 	list_for_each_entry(kvm, &vm_list, vm_list) {
9413 		__kvm_start_pvclock_update(kvm);
9414 		pvclock_update_vm_gtod_copy(kvm);
9415 		kvm_end_pvclock_update(kvm);
9416 	}
9417 
9418 	mutex_unlock(&kvm_lock);
9419 }
9420 #endif
9421 
9422 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9423 {
9424 	struct kvm *kvm;
9425 	struct kvm_vcpu *vcpu;
9426 	int send_ipi = 0;
9427 	unsigned long i;
9428 
9429 	/*
9430 	 * We allow guests to temporarily run on slowing clocks,
9431 	 * provided we notify them after, or to run on accelerating
9432 	 * clocks, provided we notify them before.  Thus time never
9433 	 * goes backwards.
9434 	 *
9435 	 * However, we have a problem.  We can't atomically update
9436 	 * the frequency of a given CPU from this function; it is
9437 	 * merely a notifier, which can be called from any CPU.
9438 	 * Changing the TSC frequency at arbitrary points in time
9439 	 * requires a recomputation of local variables related to
9440 	 * the TSC for each VCPU.  We must flag these local variables
9441 	 * to be updated and be sure the update takes place with the
9442 	 * new frequency before any guests proceed.
9443 	 *
9444 	 * Unfortunately, the combination of hotplug CPU and frequency
9445 	 * change creates an intractable locking scenario; the order
9446 	 * of when these callouts happen is undefined with respect to
9447 	 * CPU hotplug, and they can race with each other.  As such,
9448 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9449 	 * undefined; you can actually have a CPU frequency change take
9450 	 * place in between the computation of X and the setting of the
9451 	 * variable.  To protect against this problem, all updates of
9452 	 * the per_cpu tsc_khz variable are done in an interrupt
9453 	 * protected IPI, and all callers wishing to update the value
9454 	 * must wait for a synchronous IPI to complete (which is trivial
9455 	 * if the caller is on the CPU already).  This establishes the
9456 	 * necessary total order on variable updates.
9457 	 *
9458 	 * Note that because a guest time update may take place
9459 	 * anytime after the setting of the VCPU's request bit, the
9460 	 * correct TSC value must be set before the request.  However,
9461 	 * to ensure the update actually makes it to any guest which
9462 	 * starts running in hardware virtualization between the set
9463 	 * and the acquisition of the spinlock, we must also ping the
9464 	 * CPU after setting the request bit.
9465 	 *
9466 	 */
9467 
9468 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9469 
9470 	mutex_lock(&kvm_lock);
9471 	list_for_each_entry(kvm, &vm_list, vm_list) {
9472 		kvm_for_each_vcpu(i, vcpu, kvm) {
9473 			if (vcpu->cpu != cpu)
9474 				continue;
9475 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9476 			if (vcpu->cpu != raw_smp_processor_id())
9477 				send_ipi = 1;
9478 		}
9479 	}
9480 	mutex_unlock(&kvm_lock);
9481 
9482 	if (freq->old < freq->new && send_ipi) {
9483 		/*
9484 		 * We upscale the frequency.  Must make the guest
9485 		 * doesn't see old kvmclock values while running with
9486 		 * the new frequency, otherwise we risk the guest sees
9487 		 * time go backwards.
9488 		 *
9489 		 * In case we update the frequency for another cpu
9490 		 * (which might be in guest context) send an interrupt
9491 		 * to kick the cpu out of guest context.  Next time
9492 		 * guest context is entered kvmclock will be updated,
9493 		 * so the guest will not see stale values.
9494 		 */
9495 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9496 	}
9497 }
9498 
9499 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9500 				     void *data)
9501 {
9502 	struct cpufreq_freqs *freq = data;
9503 	int cpu;
9504 
9505 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9506 		return 0;
9507 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9508 		return 0;
9509 
9510 	for_each_cpu(cpu, freq->policy->cpus)
9511 		__kvmclock_cpufreq_notifier(freq, cpu);
9512 
9513 	return 0;
9514 }
9515 
9516 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9517 	.notifier_call  = kvmclock_cpufreq_notifier
9518 };
9519 
9520 static int kvmclock_cpu_online(unsigned int cpu)
9521 {
9522 	tsc_khz_changed(NULL);
9523 	return 0;
9524 }
9525 
9526 static void kvm_timer_init(void)
9527 {
9528 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9529 		max_tsc_khz = tsc_khz;
9530 
9531 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9532 			struct cpufreq_policy *policy;
9533 			int cpu;
9534 
9535 			cpu = get_cpu();
9536 			policy = cpufreq_cpu_get(cpu);
9537 			if (policy) {
9538 				if (policy->cpuinfo.max_freq)
9539 					max_tsc_khz = policy->cpuinfo.max_freq;
9540 				cpufreq_cpu_put(policy);
9541 			}
9542 			put_cpu();
9543 		}
9544 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9545 					  CPUFREQ_TRANSITION_NOTIFIER);
9546 
9547 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9548 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9549 	}
9550 }
9551 
9552 #ifdef CONFIG_X86_64
9553 static void pvclock_gtod_update_fn(struct work_struct *work)
9554 {
9555 	struct kvm *kvm;
9556 	struct kvm_vcpu *vcpu;
9557 	unsigned long i;
9558 
9559 	mutex_lock(&kvm_lock);
9560 	list_for_each_entry(kvm, &vm_list, vm_list)
9561 		kvm_for_each_vcpu(i, vcpu, kvm)
9562 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9563 	atomic_set(&kvm_guest_has_master_clock, 0);
9564 	mutex_unlock(&kvm_lock);
9565 }
9566 
9567 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9568 
9569 /*
9570  * Indirection to move queue_work() out of the tk_core.seq write held
9571  * region to prevent possible deadlocks against time accessors which
9572  * are invoked with work related locks held.
9573  */
9574 static void pvclock_irq_work_fn(struct irq_work *w)
9575 {
9576 	queue_work(system_long_wq, &pvclock_gtod_work);
9577 }
9578 
9579 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9580 
9581 /*
9582  * Notification about pvclock gtod data update.
9583  */
9584 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9585 			       void *priv)
9586 {
9587 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9588 	struct timekeeper *tk = priv;
9589 
9590 	update_pvclock_gtod(tk);
9591 
9592 	/*
9593 	 * Disable master clock if host does not trust, or does not use,
9594 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9595 	 * this is invoked with tk_core.seq write held.
9596 	 */
9597 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9598 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9599 		irq_work_queue(&pvclock_irq_work);
9600 	return 0;
9601 }
9602 
9603 static struct notifier_block pvclock_gtod_notifier = {
9604 	.notifier_call = pvclock_gtod_notify,
9605 };
9606 #endif
9607 
9608 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9609 {
9610 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9611 
9612 #define __KVM_X86_OP(func) \
9613 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9614 #define KVM_X86_OP(func) \
9615 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9616 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9617 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9618 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9619 					   (void *)__static_call_return0);
9620 #include <asm/kvm-x86-ops.h>
9621 #undef __KVM_X86_OP
9622 
9623 	kvm_pmu_ops_update(ops->pmu_ops);
9624 }
9625 
9626 static int kvm_x86_check_processor_compatibility(void)
9627 {
9628 	int cpu = smp_processor_id();
9629 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9630 
9631 	/*
9632 	 * Compatibility checks are done when loading KVM and when enabling
9633 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9634 	 * compatible, i.e. KVM should never perform a compatibility check on
9635 	 * an offline CPU.
9636 	 */
9637 	WARN_ON(!cpu_online(cpu));
9638 
9639 	if (__cr4_reserved_bits(cpu_has, c) !=
9640 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9641 		return -EIO;
9642 
9643 	return static_call(kvm_x86_check_processor_compatibility)();
9644 }
9645 
9646 static void kvm_x86_check_cpu_compat(void *ret)
9647 {
9648 	*(int *)ret = kvm_x86_check_processor_compatibility();
9649 }
9650 
9651 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9652 {
9653 	u64 host_pat;
9654 	int r, cpu;
9655 
9656 	if (kvm_x86_ops.hardware_enable) {
9657 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9658 		return -EEXIST;
9659 	}
9660 
9661 	/*
9662 	 * KVM explicitly assumes that the guest has an FPU and
9663 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9664 	 * vCPU's FPU state as a fxregs_state struct.
9665 	 */
9666 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9667 		pr_err("inadequate fpu\n");
9668 		return -EOPNOTSUPP;
9669 	}
9670 
9671 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9672 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9673 		return -EOPNOTSUPP;
9674 	}
9675 
9676 	/*
9677 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9678 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9679 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9680 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9681 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9682 	 */
9683 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9684 	    (host_pat & GENMASK(2, 0)) != 6) {
9685 		pr_err("host PAT[0] is not WB\n");
9686 		return -EIO;
9687 	}
9688 
9689 	x86_emulator_cache = kvm_alloc_emulator_cache();
9690 	if (!x86_emulator_cache) {
9691 		pr_err("failed to allocate cache for x86 emulator\n");
9692 		return -ENOMEM;
9693 	}
9694 
9695 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9696 	if (!user_return_msrs) {
9697 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9698 		r = -ENOMEM;
9699 		goto out_free_x86_emulator_cache;
9700 	}
9701 	kvm_nr_uret_msrs = 0;
9702 
9703 	r = kvm_mmu_vendor_module_init();
9704 	if (r)
9705 		goto out_free_percpu;
9706 
9707 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9708 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9709 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9710 	}
9711 
9712 	rdmsrl_safe(MSR_EFER, &host_efer);
9713 
9714 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9715 		rdmsrl(MSR_IA32_XSS, host_xss);
9716 
9717 	kvm_init_pmu_capability(ops->pmu_ops);
9718 
9719 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9720 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9721 
9722 	r = ops->hardware_setup();
9723 	if (r != 0)
9724 		goto out_mmu_exit;
9725 
9726 	kvm_ops_update(ops);
9727 
9728 	for_each_online_cpu(cpu) {
9729 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9730 		if (r < 0)
9731 			goto out_unwind_ops;
9732 	}
9733 
9734 	/*
9735 	 * Point of no return!  DO NOT add error paths below this point unless
9736 	 * absolutely necessary, as most operations from this point forward
9737 	 * require unwinding.
9738 	 */
9739 	kvm_timer_init();
9740 
9741 	if (pi_inject_timer == -1)
9742 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9743 #ifdef CONFIG_X86_64
9744 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9745 
9746 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9747 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9748 #endif
9749 
9750 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9751 
9752 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9753 		kvm_caps.supported_xss = 0;
9754 
9755 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9756 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9757 #undef __kvm_cpu_cap_has
9758 
9759 	if (kvm_caps.has_tsc_control) {
9760 		/*
9761 		 * Make sure the user can only configure tsc_khz values that
9762 		 * fit into a signed integer.
9763 		 * A min value is not calculated because it will always
9764 		 * be 1 on all machines.
9765 		 */
9766 		u64 max = min(0x7fffffffULL,
9767 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9768 		kvm_caps.max_guest_tsc_khz = max;
9769 	}
9770 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9771 	kvm_init_msr_lists();
9772 	return 0;
9773 
9774 out_unwind_ops:
9775 	kvm_x86_ops.hardware_enable = NULL;
9776 	static_call(kvm_x86_hardware_unsetup)();
9777 out_mmu_exit:
9778 	kvm_mmu_vendor_module_exit();
9779 out_free_percpu:
9780 	free_percpu(user_return_msrs);
9781 out_free_x86_emulator_cache:
9782 	kmem_cache_destroy(x86_emulator_cache);
9783 	return r;
9784 }
9785 
9786 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9787 {
9788 	int r;
9789 
9790 	mutex_lock(&vendor_module_lock);
9791 	r = __kvm_x86_vendor_init(ops);
9792 	mutex_unlock(&vendor_module_lock);
9793 
9794 	return r;
9795 }
9796 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9797 
9798 void kvm_x86_vendor_exit(void)
9799 {
9800 	kvm_unregister_perf_callbacks();
9801 
9802 #ifdef CONFIG_X86_64
9803 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9804 		clear_hv_tscchange_cb();
9805 #endif
9806 	kvm_lapic_exit();
9807 
9808 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9809 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9810 					    CPUFREQ_TRANSITION_NOTIFIER);
9811 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9812 	}
9813 #ifdef CONFIG_X86_64
9814 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9815 	irq_work_sync(&pvclock_irq_work);
9816 	cancel_work_sync(&pvclock_gtod_work);
9817 #endif
9818 	static_call(kvm_x86_hardware_unsetup)();
9819 	kvm_mmu_vendor_module_exit();
9820 	free_percpu(user_return_msrs);
9821 	kmem_cache_destroy(x86_emulator_cache);
9822 #ifdef CONFIG_KVM_XEN
9823 	static_key_deferred_flush(&kvm_xen_enabled);
9824 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9825 #endif
9826 	mutex_lock(&vendor_module_lock);
9827 	kvm_x86_ops.hardware_enable = NULL;
9828 	mutex_unlock(&vendor_module_lock);
9829 }
9830 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9831 
9832 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9833 {
9834 	/*
9835 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9836 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9837 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9838 	 * managed by userspace, in which case userspace is responsible for
9839 	 * handling wake events.
9840 	 */
9841 	++vcpu->stat.halt_exits;
9842 	if (lapic_in_kernel(vcpu)) {
9843 		vcpu->arch.mp_state = state;
9844 		return 1;
9845 	} else {
9846 		vcpu->run->exit_reason = reason;
9847 		return 0;
9848 	}
9849 }
9850 
9851 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9852 {
9853 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9854 }
9855 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9856 
9857 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9858 {
9859 	int ret = kvm_skip_emulated_instruction(vcpu);
9860 	/*
9861 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9862 	 * KVM_EXIT_DEBUG here.
9863 	 */
9864 	return kvm_emulate_halt_noskip(vcpu) && ret;
9865 }
9866 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9867 
9868 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9869 {
9870 	int ret = kvm_skip_emulated_instruction(vcpu);
9871 
9872 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9873 					KVM_EXIT_AP_RESET_HOLD) && ret;
9874 }
9875 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9876 
9877 #ifdef CONFIG_X86_64
9878 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9879 			        unsigned long clock_type)
9880 {
9881 	struct kvm_clock_pairing clock_pairing;
9882 	struct timespec64 ts;
9883 	u64 cycle;
9884 	int ret;
9885 
9886 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9887 		return -KVM_EOPNOTSUPP;
9888 
9889 	/*
9890 	 * When tsc is in permanent catchup mode guests won't be able to use
9891 	 * pvclock_read_retry loop to get consistent view of pvclock
9892 	 */
9893 	if (vcpu->arch.tsc_always_catchup)
9894 		return -KVM_EOPNOTSUPP;
9895 
9896 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9897 		return -KVM_EOPNOTSUPP;
9898 
9899 	clock_pairing.sec = ts.tv_sec;
9900 	clock_pairing.nsec = ts.tv_nsec;
9901 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9902 	clock_pairing.flags = 0;
9903 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9904 
9905 	ret = 0;
9906 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9907 			    sizeof(struct kvm_clock_pairing)))
9908 		ret = -KVM_EFAULT;
9909 
9910 	return ret;
9911 }
9912 #endif
9913 
9914 /*
9915  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9916  *
9917  * @apicid - apicid of vcpu to be kicked.
9918  */
9919 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9920 {
9921 	/*
9922 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9923 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9924 	 */
9925 	struct kvm_lapic_irq lapic_irq = {
9926 		.delivery_mode = APIC_DM_REMRD,
9927 		.dest_mode = APIC_DEST_PHYSICAL,
9928 		.shorthand = APIC_DEST_NOSHORT,
9929 		.dest_id = apicid,
9930 	};
9931 
9932 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9933 }
9934 
9935 bool kvm_apicv_activated(struct kvm *kvm)
9936 {
9937 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9938 }
9939 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9940 
9941 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9942 {
9943 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9944 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9945 
9946 	return (vm_reasons | vcpu_reasons) == 0;
9947 }
9948 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9949 
9950 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9951 				       enum kvm_apicv_inhibit reason, bool set)
9952 {
9953 	if (set)
9954 		__set_bit(reason, inhibits);
9955 	else
9956 		__clear_bit(reason, inhibits);
9957 
9958 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9959 }
9960 
9961 static void kvm_apicv_init(struct kvm *kvm)
9962 {
9963 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9964 
9965 	init_rwsem(&kvm->arch.apicv_update_lock);
9966 
9967 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9968 
9969 	if (!enable_apicv)
9970 		set_or_clear_apicv_inhibit(inhibits,
9971 					   APICV_INHIBIT_REASON_DISABLE, true);
9972 }
9973 
9974 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9975 {
9976 	struct kvm_vcpu *target = NULL;
9977 	struct kvm_apic_map *map;
9978 
9979 	vcpu->stat.directed_yield_attempted++;
9980 
9981 	if (single_task_running())
9982 		goto no_yield;
9983 
9984 	rcu_read_lock();
9985 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9986 
9987 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9988 		target = map->phys_map[dest_id]->vcpu;
9989 
9990 	rcu_read_unlock();
9991 
9992 	if (!target || !READ_ONCE(target->ready))
9993 		goto no_yield;
9994 
9995 	/* Ignore requests to yield to self */
9996 	if (vcpu == target)
9997 		goto no_yield;
9998 
9999 	if (kvm_vcpu_yield_to(target) <= 0)
10000 		goto no_yield;
10001 
10002 	vcpu->stat.directed_yield_successful++;
10003 
10004 no_yield:
10005 	return;
10006 }
10007 
10008 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10009 {
10010 	u64 ret = vcpu->run->hypercall.ret;
10011 
10012 	if (!is_64_bit_mode(vcpu))
10013 		ret = (u32)ret;
10014 	kvm_rax_write(vcpu, ret);
10015 	++vcpu->stat.hypercalls;
10016 	return kvm_skip_emulated_instruction(vcpu);
10017 }
10018 
10019 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10020 {
10021 	unsigned long nr, a0, a1, a2, a3, ret;
10022 	int op_64_bit;
10023 
10024 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10025 		return kvm_xen_hypercall(vcpu);
10026 
10027 	if (kvm_hv_hypercall_enabled(vcpu))
10028 		return kvm_hv_hypercall(vcpu);
10029 
10030 	nr = kvm_rax_read(vcpu);
10031 	a0 = kvm_rbx_read(vcpu);
10032 	a1 = kvm_rcx_read(vcpu);
10033 	a2 = kvm_rdx_read(vcpu);
10034 	a3 = kvm_rsi_read(vcpu);
10035 
10036 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10037 
10038 	op_64_bit = is_64_bit_hypercall(vcpu);
10039 	if (!op_64_bit) {
10040 		nr &= 0xFFFFFFFF;
10041 		a0 &= 0xFFFFFFFF;
10042 		a1 &= 0xFFFFFFFF;
10043 		a2 &= 0xFFFFFFFF;
10044 		a3 &= 0xFFFFFFFF;
10045 	}
10046 
10047 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
10048 		ret = -KVM_EPERM;
10049 		goto out;
10050 	}
10051 
10052 	ret = -KVM_ENOSYS;
10053 
10054 	switch (nr) {
10055 	case KVM_HC_VAPIC_POLL_IRQ:
10056 		ret = 0;
10057 		break;
10058 	case KVM_HC_KICK_CPU:
10059 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10060 			break;
10061 
10062 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10063 		kvm_sched_yield(vcpu, a1);
10064 		ret = 0;
10065 		break;
10066 #ifdef CONFIG_X86_64
10067 	case KVM_HC_CLOCK_PAIRING:
10068 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10069 		break;
10070 #endif
10071 	case KVM_HC_SEND_IPI:
10072 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10073 			break;
10074 
10075 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10076 		break;
10077 	case KVM_HC_SCHED_YIELD:
10078 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10079 			break;
10080 
10081 		kvm_sched_yield(vcpu, a0);
10082 		ret = 0;
10083 		break;
10084 	case KVM_HC_MAP_GPA_RANGE: {
10085 		u64 gpa = a0, npages = a1, attrs = a2;
10086 
10087 		ret = -KVM_ENOSYS;
10088 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10089 			break;
10090 
10091 		if (!PAGE_ALIGNED(gpa) || !npages ||
10092 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10093 			ret = -KVM_EINVAL;
10094 			break;
10095 		}
10096 
10097 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10098 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10099 		vcpu->run->hypercall.args[0]  = gpa;
10100 		vcpu->run->hypercall.args[1]  = npages;
10101 		vcpu->run->hypercall.args[2]  = attrs;
10102 		vcpu->run->hypercall.flags    = 0;
10103 		if (op_64_bit)
10104 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10105 
10106 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10107 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10108 		return 0;
10109 	}
10110 	default:
10111 		ret = -KVM_ENOSYS;
10112 		break;
10113 	}
10114 out:
10115 	if (!op_64_bit)
10116 		ret = (u32)ret;
10117 	kvm_rax_write(vcpu, ret);
10118 
10119 	++vcpu->stat.hypercalls;
10120 	return kvm_skip_emulated_instruction(vcpu);
10121 }
10122 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10123 
10124 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10125 {
10126 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10127 	char instruction[3];
10128 	unsigned long rip = kvm_rip_read(vcpu);
10129 
10130 	/*
10131 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10132 	 * the pieces.
10133 	 */
10134 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10135 		ctxt->exception.error_code_valid = false;
10136 		ctxt->exception.vector = UD_VECTOR;
10137 		ctxt->have_exception = true;
10138 		return X86EMUL_PROPAGATE_FAULT;
10139 	}
10140 
10141 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10142 
10143 	return emulator_write_emulated(ctxt, rip, instruction, 3,
10144 		&ctxt->exception);
10145 }
10146 
10147 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10148 {
10149 	return vcpu->run->request_interrupt_window &&
10150 		likely(!pic_in_kernel(vcpu->kvm));
10151 }
10152 
10153 /* Called within kvm->srcu read side.  */
10154 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10155 {
10156 	struct kvm_run *kvm_run = vcpu->run;
10157 
10158 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10159 	kvm_run->cr8 = kvm_get_cr8(vcpu);
10160 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
10161 
10162 	kvm_run->ready_for_interrupt_injection =
10163 		pic_in_kernel(vcpu->kvm) ||
10164 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10165 
10166 	if (is_smm(vcpu))
10167 		kvm_run->flags |= KVM_RUN_X86_SMM;
10168 }
10169 
10170 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10171 {
10172 	int max_irr, tpr;
10173 
10174 	if (!kvm_x86_ops.update_cr8_intercept)
10175 		return;
10176 
10177 	if (!lapic_in_kernel(vcpu))
10178 		return;
10179 
10180 	if (vcpu->arch.apic->apicv_active)
10181 		return;
10182 
10183 	if (!vcpu->arch.apic->vapic_addr)
10184 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10185 	else
10186 		max_irr = -1;
10187 
10188 	if (max_irr != -1)
10189 		max_irr >>= 4;
10190 
10191 	tpr = kvm_lapic_get_cr8(vcpu);
10192 
10193 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10194 }
10195 
10196 
10197 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10198 {
10199 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10200 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10201 		return 1;
10202 	}
10203 
10204 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10205 }
10206 
10207 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10208 {
10209 	/*
10210 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10211 	 * exceptions don't report error codes.  The presence of an error code
10212 	 * is carried with the exception and only stripped when the exception
10213 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10214 	 * report an error code despite the CPU being in Real Mode.
10215 	 */
10216 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10217 
10218 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10219 				vcpu->arch.exception.has_error_code,
10220 				vcpu->arch.exception.error_code,
10221 				vcpu->arch.exception.injected);
10222 
10223 	static_call(kvm_x86_inject_exception)(vcpu);
10224 }
10225 
10226 /*
10227  * Check for any event (interrupt or exception) that is ready to be injected,
10228  * and if there is at least one event, inject the event with the highest
10229  * priority.  This handles both "pending" events, i.e. events that have never
10230  * been injected into the guest, and "injected" events, i.e. events that were
10231  * injected as part of a previous VM-Enter, but weren't successfully delivered
10232  * and need to be re-injected.
10233  *
10234  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10235  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10236  * be able to inject exceptions in the "middle" of an instruction, and so must
10237  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10238  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10239  * boundaries is necessary and correct.
10240  *
10241  * For simplicity, KVM uses a single path to inject all events (except events
10242  * that are injected directly from L1 to L2) and doesn't explicitly track
10243  * instruction boundaries for asynchronous events.  However, because VM-Exits
10244  * that can occur during instruction execution typically result in KVM skipping
10245  * the instruction or injecting an exception, e.g. instruction and exception
10246  * intercepts, and because pending exceptions have higher priority than pending
10247  * interrupts, KVM still honors instruction boundaries in most scenarios.
10248  *
10249  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10250  * the instruction or inject an exception, then KVM can incorrecty inject a new
10251  * asynchronous event if the event became pending after the CPU fetched the
10252  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10253  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10254  * injected on the restarted instruction instead of being deferred until the
10255  * instruction completes.
10256  *
10257  * In practice, this virtualization hole is unlikely to be observed by the
10258  * guest, and even less likely to cause functional problems.  To detect the
10259  * hole, the guest would have to trigger an event on a side effect of an early
10260  * phase of instruction execution, e.g. on the instruction fetch from memory.
10261  * And for it to be a functional problem, the guest would need to depend on the
10262  * ordering between that side effect, the instruction completing, _and_ the
10263  * delivery of the asynchronous event.
10264  */
10265 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10266 				       bool *req_immediate_exit)
10267 {
10268 	bool can_inject;
10269 	int r;
10270 
10271 	/*
10272 	 * Process nested events first, as nested VM-Exit supersedes event
10273 	 * re-injection.  If there's an event queued for re-injection, it will
10274 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10275 	 */
10276 	if (is_guest_mode(vcpu))
10277 		r = kvm_check_nested_events(vcpu);
10278 	else
10279 		r = 0;
10280 
10281 	/*
10282 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10283 	 * to/from L2 is needed, as any event that has already been injected
10284 	 * into L2 needs to complete its lifecycle before injecting a new event.
10285 	 *
10286 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10287 	 * This collision arises if an exception occurred while vectoring the
10288 	 * injected event, KVM intercepted said exception, and KVM ultimately
10289 	 * determined the fault belongs to the guest and queues the exception
10290 	 * for injection back into the guest.
10291 	 *
10292 	 * "Injected" interrupts can also collide with pending exceptions if
10293 	 * userspace ignores the "ready for injection" flag and blindly queues
10294 	 * an interrupt.  In that case, prioritizing the exception is correct,
10295 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10296 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10297 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10298 	 * priority, they're only generated (pended) during instruction
10299 	 * execution, and interrupts are recognized at instruction boundaries.
10300 	 * Thus a pending fault-like exception means the fault occurred on the
10301 	 * *previous* instruction and must be serviced prior to recognizing any
10302 	 * new events in order to fully complete the previous instruction.
10303 	 */
10304 	if (vcpu->arch.exception.injected)
10305 		kvm_inject_exception(vcpu);
10306 	else if (kvm_is_exception_pending(vcpu))
10307 		; /* see above */
10308 	else if (vcpu->arch.nmi_injected)
10309 		static_call(kvm_x86_inject_nmi)(vcpu);
10310 	else if (vcpu->arch.interrupt.injected)
10311 		static_call(kvm_x86_inject_irq)(vcpu, true);
10312 
10313 	/*
10314 	 * Exceptions that morph to VM-Exits are handled above, and pending
10315 	 * exceptions on top of injected exceptions that do not VM-Exit should
10316 	 * either morph to #DF or, sadly, override the injected exception.
10317 	 */
10318 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10319 		     vcpu->arch.exception.pending);
10320 
10321 	/*
10322 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10323 	 * nested VM-Enter or event re-injection so that a different pending
10324 	 * event can be serviced (or if KVM needs to exit to userspace).
10325 	 *
10326 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10327 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10328 	 * there may now be events that can be injected into L1.
10329 	 */
10330 	if (r < 0)
10331 		goto out;
10332 
10333 	/*
10334 	 * A pending exception VM-Exit should either result in nested VM-Exit
10335 	 * or force an immediate re-entry and exit to/from L2, and exception
10336 	 * VM-Exits cannot be injected (flag should _never_ be set).
10337 	 */
10338 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10339 		     vcpu->arch.exception_vmexit.pending);
10340 
10341 	/*
10342 	 * New events, other than exceptions, cannot be injected if KVM needs
10343 	 * to re-inject a previous event.  See above comments on re-injecting
10344 	 * for why pending exceptions get priority.
10345 	 */
10346 	can_inject = !kvm_event_needs_reinjection(vcpu);
10347 
10348 	if (vcpu->arch.exception.pending) {
10349 		/*
10350 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10351 		 * value pushed on the stack.  Trap-like exception and all #DBs
10352 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10353 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10354 		 *
10355 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10356 		 * describe the behavior of General Detect #DBs, which are
10357 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10358 		 */
10359 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10360 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10361 					     X86_EFLAGS_RF);
10362 
10363 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10364 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10365 			if (vcpu->arch.dr7 & DR7_GD) {
10366 				vcpu->arch.dr7 &= ~DR7_GD;
10367 				kvm_update_dr7(vcpu);
10368 			}
10369 		}
10370 
10371 		kvm_inject_exception(vcpu);
10372 
10373 		vcpu->arch.exception.pending = false;
10374 		vcpu->arch.exception.injected = true;
10375 
10376 		can_inject = false;
10377 	}
10378 
10379 	/* Don't inject interrupts if the user asked to avoid doing so */
10380 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10381 		return 0;
10382 
10383 	/*
10384 	 * Finally, inject interrupt events.  If an event cannot be injected
10385 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10386 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10387 	 * and can architecturally be injected, but we cannot do it right now:
10388 	 * an interrupt could have arrived just now and we have to inject it
10389 	 * as a vmexit, or there could already an event in the queue, which is
10390 	 * indicated by can_inject.  In that case we request an immediate exit
10391 	 * in order to make progress and get back here for another iteration.
10392 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10393 	 */
10394 #ifdef CONFIG_KVM_SMM
10395 	if (vcpu->arch.smi_pending) {
10396 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10397 		if (r < 0)
10398 			goto out;
10399 		if (r) {
10400 			vcpu->arch.smi_pending = false;
10401 			++vcpu->arch.smi_count;
10402 			enter_smm(vcpu);
10403 			can_inject = false;
10404 		} else
10405 			static_call(kvm_x86_enable_smi_window)(vcpu);
10406 	}
10407 #endif
10408 
10409 	if (vcpu->arch.nmi_pending) {
10410 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10411 		if (r < 0)
10412 			goto out;
10413 		if (r) {
10414 			--vcpu->arch.nmi_pending;
10415 			vcpu->arch.nmi_injected = true;
10416 			static_call(kvm_x86_inject_nmi)(vcpu);
10417 			can_inject = false;
10418 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10419 		}
10420 		if (vcpu->arch.nmi_pending)
10421 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10422 	}
10423 
10424 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10425 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10426 		if (r < 0)
10427 			goto out;
10428 		if (r) {
10429 			int irq = kvm_cpu_get_interrupt(vcpu);
10430 
10431 			if (!WARN_ON_ONCE(irq == -1)) {
10432 				kvm_queue_interrupt(vcpu, irq, false);
10433 				static_call(kvm_x86_inject_irq)(vcpu, false);
10434 				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10435 			}
10436 		}
10437 		if (kvm_cpu_has_injectable_intr(vcpu))
10438 			static_call(kvm_x86_enable_irq_window)(vcpu);
10439 	}
10440 
10441 	if (is_guest_mode(vcpu) &&
10442 	    kvm_x86_ops.nested_ops->has_events &&
10443 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10444 		*req_immediate_exit = true;
10445 
10446 	/*
10447 	 * KVM must never queue a new exception while injecting an event; KVM
10448 	 * is done emulating and should only propagate the to-be-injected event
10449 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10450 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10451 	 * exception and start the cycle all over.
10452 	 *
10453 	 * Exempt triple faults as they have special handling and won't put the
10454 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10455 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10456 	 * Mode events (see kvm_inject_realmode_interrupt()).
10457 	 */
10458 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10459 		     vcpu->arch.exception_vmexit.pending);
10460 	return 0;
10461 
10462 out:
10463 	if (r == -EBUSY) {
10464 		*req_immediate_exit = true;
10465 		r = 0;
10466 	}
10467 	return r;
10468 }
10469 
10470 static void process_nmi(struct kvm_vcpu *vcpu)
10471 {
10472 	unsigned int limit;
10473 
10474 	/*
10475 	 * x86 is limited to one NMI pending, but because KVM can't react to
10476 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10477 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10478 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10479 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10480 	 * waiting for a previous NMI injection to complete (which effectively
10481 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10482 	 * will request an NMI window to handle the second NMI.
10483 	 */
10484 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10485 		limit = 1;
10486 	else
10487 		limit = 2;
10488 
10489 	/*
10490 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10491 	 * tracked in vcpu->arch.nmi_pending.
10492 	 */
10493 	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10494 		limit--;
10495 
10496 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10497 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10498 
10499 	if (vcpu->arch.nmi_pending &&
10500 	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10501 		vcpu->arch.nmi_pending--;
10502 
10503 	if (vcpu->arch.nmi_pending)
10504 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10505 }
10506 
10507 /* Return total number of NMIs pending injection to the VM */
10508 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10509 {
10510 	return vcpu->arch.nmi_pending +
10511 	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10512 }
10513 
10514 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10515 				       unsigned long *vcpu_bitmap)
10516 {
10517 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10518 }
10519 
10520 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10521 {
10522 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10523 }
10524 
10525 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10526 {
10527 	struct kvm_lapic *apic = vcpu->arch.apic;
10528 	bool activate;
10529 
10530 	if (!lapic_in_kernel(vcpu))
10531 		return;
10532 
10533 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10534 	preempt_disable();
10535 
10536 	/* Do not activate APICV when APIC is disabled */
10537 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10538 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10539 
10540 	if (apic->apicv_active == activate)
10541 		goto out;
10542 
10543 	apic->apicv_active = activate;
10544 	kvm_apic_update_apicv(vcpu);
10545 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10546 
10547 	/*
10548 	 * When APICv gets disabled, we may still have injected interrupts
10549 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10550 	 * still active when the interrupt got accepted. Make sure
10551 	 * kvm_check_and_inject_events() is called to check for that.
10552 	 */
10553 	if (!apic->apicv_active)
10554 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10555 
10556 out:
10557 	preempt_enable();
10558 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10559 }
10560 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10561 
10562 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10563 {
10564 	if (!lapic_in_kernel(vcpu))
10565 		return;
10566 
10567 	/*
10568 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10569 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10570 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10571 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10572 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10573 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10574 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10575 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10576 	 * access page is sticky.
10577 	 */
10578 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10579 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10580 		kvm_inhibit_apic_access_page(vcpu);
10581 
10582 	__kvm_vcpu_update_apicv(vcpu);
10583 }
10584 
10585 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10586 				      enum kvm_apicv_inhibit reason, bool set)
10587 {
10588 	unsigned long old, new;
10589 
10590 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10591 
10592 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10593 		return;
10594 
10595 	old = new = kvm->arch.apicv_inhibit_reasons;
10596 
10597 	set_or_clear_apicv_inhibit(&new, reason, set);
10598 
10599 	if (!!old != !!new) {
10600 		/*
10601 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10602 		 * false positives in the sanity check WARN in svm_vcpu_run().
10603 		 * This task will wait for all vCPUs to ack the kick IRQ before
10604 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10605 		 * block on acquiring apicv_update_lock so that vCPUs can't
10606 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10607 		 *
10608 		 * Note, holding apicv_update_lock and taking it in the read
10609 		 * side (handling the request) also prevents other vCPUs from
10610 		 * servicing the request with a stale apicv_inhibit_reasons.
10611 		 */
10612 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10613 		kvm->arch.apicv_inhibit_reasons = new;
10614 		if (new) {
10615 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10616 			int idx = srcu_read_lock(&kvm->srcu);
10617 
10618 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10619 			srcu_read_unlock(&kvm->srcu, idx);
10620 		}
10621 	} else {
10622 		kvm->arch.apicv_inhibit_reasons = new;
10623 	}
10624 }
10625 
10626 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10627 				    enum kvm_apicv_inhibit reason, bool set)
10628 {
10629 	if (!enable_apicv)
10630 		return;
10631 
10632 	down_write(&kvm->arch.apicv_update_lock);
10633 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10634 	up_write(&kvm->arch.apicv_update_lock);
10635 }
10636 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10637 
10638 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10639 {
10640 	if (!kvm_apic_present(vcpu))
10641 		return;
10642 
10643 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10644 
10645 	if (irqchip_split(vcpu->kvm))
10646 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10647 	else {
10648 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10649 		if (ioapic_in_kernel(vcpu->kvm))
10650 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10651 	}
10652 
10653 	if (is_guest_mode(vcpu))
10654 		vcpu->arch.load_eoi_exitmap_pending = true;
10655 	else
10656 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10657 }
10658 
10659 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10660 {
10661 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10662 		return;
10663 
10664 #ifdef CONFIG_KVM_HYPERV
10665 	if (to_hv_vcpu(vcpu)) {
10666 		u64 eoi_exit_bitmap[4];
10667 
10668 		bitmap_or((ulong *)eoi_exit_bitmap,
10669 			  vcpu->arch.ioapic_handled_vectors,
10670 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10671 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10672 		return;
10673 	}
10674 #endif
10675 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10676 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10677 }
10678 
10679 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10680 {
10681 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10682 }
10683 
10684 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10685 {
10686 	if (!lapic_in_kernel(vcpu))
10687 		return;
10688 
10689 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10690 }
10691 
10692 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10693 {
10694 	smp_send_reschedule(vcpu->cpu);
10695 }
10696 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10697 
10698 /*
10699  * Called within kvm->srcu read side.
10700  * Returns 1 to let vcpu_run() continue the guest execution loop without
10701  * exiting to the userspace.  Otherwise, the value will be returned to the
10702  * userspace.
10703  */
10704 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10705 {
10706 	int r;
10707 	bool req_int_win =
10708 		dm_request_for_irq_injection(vcpu) &&
10709 		kvm_cpu_accept_dm_intr(vcpu);
10710 	fastpath_t exit_fastpath;
10711 
10712 	bool req_immediate_exit = false;
10713 
10714 	if (kvm_request_pending(vcpu)) {
10715 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10716 			r = -EIO;
10717 			goto out;
10718 		}
10719 
10720 		if (kvm_dirty_ring_check_request(vcpu)) {
10721 			r = 0;
10722 			goto out;
10723 		}
10724 
10725 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10726 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10727 				r = 0;
10728 				goto out;
10729 			}
10730 		}
10731 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10732 			kvm_mmu_free_obsolete_roots(vcpu);
10733 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10734 			__kvm_migrate_timers(vcpu);
10735 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10736 			kvm_update_masterclock(vcpu->kvm);
10737 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10738 			kvm_gen_kvmclock_update(vcpu);
10739 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10740 			r = kvm_guest_time_update(vcpu);
10741 			if (unlikely(r))
10742 				goto out;
10743 		}
10744 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10745 			kvm_mmu_sync_roots(vcpu);
10746 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10747 			kvm_mmu_load_pgd(vcpu);
10748 
10749 		/*
10750 		 * Note, the order matters here, as flushing "all" TLB entries
10751 		 * also flushes the "current" TLB entries, i.e. servicing the
10752 		 * flush "all" will clear any request to flush "current".
10753 		 */
10754 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10755 			kvm_vcpu_flush_tlb_all(vcpu);
10756 
10757 		kvm_service_local_tlb_flush_requests(vcpu);
10758 
10759 		/*
10760 		 * Fall back to a "full" guest flush if Hyper-V's precise
10761 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10762 		 * the flushes are considered "remote" and not "local" because
10763 		 * the requests can be initiated from other vCPUs.
10764 		 */
10765 #ifdef CONFIG_KVM_HYPERV
10766 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10767 		    kvm_hv_vcpu_flush_tlb(vcpu))
10768 			kvm_vcpu_flush_tlb_guest(vcpu);
10769 #endif
10770 
10771 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10772 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10773 			r = 0;
10774 			goto out;
10775 		}
10776 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10777 			if (is_guest_mode(vcpu))
10778 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10779 
10780 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10781 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10782 				vcpu->mmio_needed = 0;
10783 				r = 0;
10784 				goto out;
10785 			}
10786 		}
10787 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10788 			/* Page is swapped out. Do synthetic halt */
10789 			vcpu->arch.apf.halted = true;
10790 			r = 1;
10791 			goto out;
10792 		}
10793 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10794 			record_steal_time(vcpu);
10795 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10796 			kvm_pmu_handle_event(vcpu);
10797 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10798 			kvm_pmu_deliver_pmi(vcpu);
10799 #ifdef CONFIG_KVM_SMM
10800 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10801 			process_smi(vcpu);
10802 #endif
10803 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10804 			process_nmi(vcpu);
10805 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10806 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10807 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10808 				     vcpu->arch.ioapic_handled_vectors)) {
10809 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10810 				vcpu->run->eoi.vector =
10811 						vcpu->arch.pending_ioapic_eoi;
10812 				r = 0;
10813 				goto out;
10814 			}
10815 		}
10816 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10817 			vcpu_scan_ioapic(vcpu);
10818 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10819 			vcpu_load_eoi_exitmap(vcpu);
10820 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10821 			kvm_vcpu_reload_apic_access_page(vcpu);
10822 #ifdef CONFIG_KVM_HYPERV
10823 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10824 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10825 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10826 			vcpu->run->system_event.ndata = 0;
10827 			r = 0;
10828 			goto out;
10829 		}
10830 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10831 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10832 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10833 			vcpu->run->system_event.ndata = 0;
10834 			r = 0;
10835 			goto out;
10836 		}
10837 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10838 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10839 
10840 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10841 			vcpu->run->hyperv = hv_vcpu->exit;
10842 			r = 0;
10843 			goto out;
10844 		}
10845 
10846 		/*
10847 		 * KVM_REQ_HV_STIMER has to be processed after
10848 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10849 		 * depend on the guest clock being up-to-date
10850 		 */
10851 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10852 			kvm_hv_process_stimers(vcpu);
10853 #endif
10854 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10855 			kvm_vcpu_update_apicv(vcpu);
10856 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10857 			kvm_check_async_pf_completion(vcpu);
10858 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10859 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10860 
10861 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10862 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10863 	}
10864 
10865 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10866 	    kvm_xen_has_interrupt(vcpu)) {
10867 		++vcpu->stat.req_event;
10868 		r = kvm_apic_accept_events(vcpu);
10869 		if (r < 0) {
10870 			r = 0;
10871 			goto out;
10872 		}
10873 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10874 			r = 1;
10875 			goto out;
10876 		}
10877 
10878 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10879 		if (r < 0) {
10880 			r = 0;
10881 			goto out;
10882 		}
10883 		if (req_int_win)
10884 			static_call(kvm_x86_enable_irq_window)(vcpu);
10885 
10886 		if (kvm_lapic_enabled(vcpu)) {
10887 			update_cr8_intercept(vcpu);
10888 			kvm_lapic_sync_to_vapic(vcpu);
10889 		}
10890 	}
10891 
10892 	r = kvm_mmu_reload(vcpu);
10893 	if (unlikely(r)) {
10894 		goto cancel_injection;
10895 	}
10896 
10897 	preempt_disable();
10898 
10899 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10900 
10901 	/*
10902 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10903 	 * IPI are then delayed after guest entry, which ensures that they
10904 	 * result in virtual interrupt delivery.
10905 	 */
10906 	local_irq_disable();
10907 
10908 	/* Store vcpu->apicv_active before vcpu->mode.  */
10909 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10910 
10911 	kvm_vcpu_srcu_read_unlock(vcpu);
10912 
10913 	/*
10914 	 * 1) We should set ->mode before checking ->requests.  Please see
10915 	 * the comment in kvm_vcpu_exiting_guest_mode().
10916 	 *
10917 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10918 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10919 	 * (see vmx_deliver_posted_interrupt).
10920 	 *
10921 	 * 3) This also orders the write to mode from any reads to the page
10922 	 * tables done while the VCPU is running.  Please see the comment
10923 	 * in kvm_flush_remote_tlbs.
10924 	 */
10925 	smp_mb__after_srcu_read_unlock();
10926 
10927 	/*
10928 	 * Process pending posted interrupts to handle the case where the
10929 	 * notification IRQ arrived in the host, or was never sent (because the
10930 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10931 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10932 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10933 	 */
10934 	if (kvm_lapic_enabled(vcpu))
10935 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10936 
10937 	if (kvm_vcpu_exit_request(vcpu)) {
10938 		vcpu->mode = OUTSIDE_GUEST_MODE;
10939 		smp_wmb();
10940 		local_irq_enable();
10941 		preempt_enable();
10942 		kvm_vcpu_srcu_read_lock(vcpu);
10943 		r = 1;
10944 		goto cancel_injection;
10945 	}
10946 
10947 	if (req_immediate_exit) {
10948 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10949 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10950 	}
10951 
10952 	fpregs_assert_state_consistent();
10953 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10954 		switch_fpu_return();
10955 
10956 	if (vcpu->arch.guest_fpu.xfd_err)
10957 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10958 
10959 	if (unlikely(vcpu->arch.switch_db_regs)) {
10960 		set_debugreg(0, 7);
10961 		set_debugreg(vcpu->arch.eff_db[0], 0);
10962 		set_debugreg(vcpu->arch.eff_db[1], 1);
10963 		set_debugreg(vcpu->arch.eff_db[2], 2);
10964 		set_debugreg(vcpu->arch.eff_db[3], 3);
10965 	} else if (unlikely(hw_breakpoint_active())) {
10966 		set_debugreg(0, 7);
10967 	}
10968 
10969 	guest_timing_enter_irqoff();
10970 
10971 	for (;;) {
10972 		/*
10973 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10974 		 * update must kick and wait for all vCPUs before toggling the
10975 		 * per-VM state, and responding vCPUs must wait for the update
10976 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10977 		 */
10978 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10979 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10980 
10981 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10982 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10983 			break;
10984 
10985 		if (kvm_lapic_enabled(vcpu))
10986 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10987 
10988 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10989 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10990 			break;
10991 		}
10992 
10993 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10994 		++vcpu->stat.exits;
10995 	}
10996 
10997 	/*
10998 	 * Do this here before restoring debug registers on the host.  And
10999 	 * since we do this before handling the vmexit, a DR access vmexit
11000 	 * can (a) read the correct value of the debug registers, (b) set
11001 	 * KVM_DEBUGREG_WONT_EXIT again.
11002 	 */
11003 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11004 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11005 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
11006 		kvm_update_dr0123(vcpu);
11007 		kvm_update_dr7(vcpu);
11008 	}
11009 
11010 	/*
11011 	 * If the guest has used debug registers, at least dr7
11012 	 * will be disabled while returning to the host.
11013 	 * If we don't have active breakpoints in the host, we don't
11014 	 * care about the messed up debug address registers. But if
11015 	 * we have some of them active, restore the old state.
11016 	 */
11017 	if (hw_breakpoint_active())
11018 		hw_breakpoint_restore();
11019 
11020 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11021 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11022 
11023 	vcpu->mode = OUTSIDE_GUEST_MODE;
11024 	smp_wmb();
11025 
11026 	/*
11027 	 * Sync xfd before calling handle_exit_irqoff() which may
11028 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11029 	 * in #NM irqoff handler).
11030 	 */
11031 	if (vcpu->arch.xfd_no_write_intercept)
11032 		fpu_sync_guest_vmexit_xfd_state();
11033 
11034 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11035 
11036 	if (vcpu->arch.guest_fpu.xfd_err)
11037 		wrmsrl(MSR_IA32_XFD_ERR, 0);
11038 
11039 	/*
11040 	 * Consume any pending interrupts, including the possible source of
11041 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11042 	 * An instruction is required after local_irq_enable() to fully unblock
11043 	 * interrupts on processors that implement an interrupt shadow, the
11044 	 * stat.exits increment will do nicely.
11045 	 */
11046 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11047 	local_irq_enable();
11048 	++vcpu->stat.exits;
11049 	local_irq_disable();
11050 	kvm_after_interrupt(vcpu);
11051 
11052 	/*
11053 	 * Wait until after servicing IRQs to account guest time so that any
11054 	 * ticks that occurred while running the guest are properly accounted
11055 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11056 	 * of accounting via context tracking, but the loss of accuracy is
11057 	 * acceptable for all known use cases.
11058 	 */
11059 	guest_timing_exit_irqoff();
11060 
11061 	local_irq_enable();
11062 	preempt_enable();
11063 
11064 	kvm_vcpu_srcu_read_lock(vcpu);
11065 
11066 	/*
11067 	 * Profile KVM exit RIPs:
11068 	 */
11069 	if (unlikely(prof_on == KVM_PROFILING)) {
11070 		unsigned long rip = kvm_rip_read(vcpu);
11071 		profile_hit(KVM_PROFILING, (void *)rip);
11072 	}
11073 
11074 	if (unlikely(vcpu->arch.tsc_always_catchup))
11075 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11076 
11077 	if (vcpu->arch.apic_attention)
11078 		kvm_lapic_sync_from_vapic(vcpu);
11079 
11080 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11081 	return r;
11082 
11083 cancel_injection:
11084 	if (req_immediate_exit)
11085 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11086 	static_call(kvm_x86_cancel_injection)(vcpu);
11087 	if (unlikely(vcpu->arch.apic_attention))
11088 		kvm_lapic_sync_from_vapic(vcpu);
11089 out:
11090 	return r;
11091 }
11092 
11093 /* Called within kvm->srcu read side.  */
11094 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11095 {
11096 	bool hv_timer;
11097 
11098 	if (!kvm_arch_vcpu_runnable(vcpu)) {
11099 		/*
11100 		 * Switch to the software timer before halt-polling/blocking as
11101 		 * the guest's timer may be a break event for the vCPU, and the
11102 		 * hypervisor timer runs only when the CPU is in guest mode.
11103 		 * Switch before halt-polling so that KVM recognizes an expired
11104 		 * timer before blocking.
11105 		 */
11106 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11107 		if (hv_timer)
11108 			kvm_lapic_switch_to_sw_timer(vcpu);
11109 
11110 		kvm_vcpu_srcu_read_unlock(vcpu);
11111 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11112 			kvm_vcpu_halt(vcpu);
11113 		else
11114 			kvm_vcpu_block(vcpu);
11115 		kvm_vcpu_srcu_read_lock(vcpu);
11116 
11117 		if (hv_timer)
11118 			kvm_lapic_switch_to_hv_timer(vcpu);
11119 
11120 		/*
11121 		 * If the vCPU is not runnable, a signal or another host event
11122 		 * of some kind is pending; service it without changing the
11123 		 * vCPU's activity state.
11124 		 */
11125 		if (!kvm_arch_vcpu_runnable(vcpu))
11126 			return 1;
11127 	}
11128 
11129 	/*
11130 	 * Evaluate nested events before exiting the halted state.  This allows
11131 	 * the halt state to be recorded properly in the VMCS12's activity
11132 	 * state field (AMD does not have a similar field and a VM-Exit always
11133 	 * causes a spurious wakeup from HLT).
11134 	 */
11135 	if (is_guest_mode(vcpu)) {
11136 		if (kvm_check_nested_events(vcpu) < 0)
11137 			return 0;
11138 	}
11139 
11140 	if (kvm_apic_accept_events(vcpu) < 0)
11141 		return 0;
11142 	switch(vcpu->arch.mp_state) {
11143 	case KVM_MP_STATE_HALTED:
11144 	case KVM_MP_STATE_AP_RESET_HOLD:
11145 		vcpu->arch.pv.pv_unhalted = false;
11146 		vcpu->arch.mp_state =
11147 			KVM_MP_STATE_RUNNABLE;
11148 		fallthrough;
11149 	case KVM_MP_STATE_RUNNABLE:
11150 		vcpu->arch.apf.halted = false;
11151 		break;
11152 	case KVM_MP_STATE_INIT_RECEIVED:
11153 		break;
11154 	default:
11155 		WARN_ON_ONCE(1);
11156 		break;
11157 	}
11158 	return 1;
11159 }
11160 
11161 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11162 {
11163 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11164 		!vcpu->arch.apf.halted);
11165 }
11166 
11167 /* Called within kvm->srcu read side.  */
11168 static int vcpu_run(struct kvm_vcpu *vcpu)
11169 {
11170 	int r;
11171 
11172 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11173 	vcpu->arch.l1tf_flush_l1d = true;
11174 
11175 	for (;;) {
11176 		/*
11177 		 * If another guest vCPU requests a PV TLB flush in the middle
11178 		 * of instruction emulation, the rest of the emulation could
11179 		 * use a stale page translation. Assume that any code after
11180 		 * this point can start executing an instruction.
11181 		 */
11182 		vcpu->arch.at_instruction_boundary = false;
11183 		if (kvm_vcpu_running(vcpu)) {
11184 			r = vcpu_enter_guest(vcpu);
11185 		} else {
11186 			r = vcpu_block(vcpu);
11187 		}
11188 
11189 		if (r <= 0)
11190 			break;
11191 
11192 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11193 		if (kvm_xen_has_pending_events(vcpu))
11194 			kvm_xen_inject_pending_events(vcpu);
11195 
11196 		if (kvm_cpu_has_pending_timer(vcpu))
11197 			kvm_inject_pending_timer_irqs(vcpu);
11198 
11199 		if (dm_request_for_irq_injection(vcpu) &&
11200 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11201 			r = 0;
11202 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11203 			++vcpu->stat.request_irq_exits;
11204 			break;
11205 		}
11206 
11207 		if (__xfer_to_guest_mode_work_pending()) {
11208 			kvm_vcpu_srcu_read_unlock(vcpu);
11209 			r = xfer_to_guest_mode_handle_work(vcpu);
11210 			kvm_vcpu_srcu_read_lock(vcpu);
11211 			if (r)
11212 				return r;
11213 		}
11214 	}
11215 
11216 	return r;
11217 }
11218 
11219 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11220 {
11221 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11222 }
11223 
11224 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11225 {
11226 	BUG_ON(!vcpu->arch.pio.count);
11227 
11228 	return complete_emulated_io(vcpu);
11229 }
11230 
11231 /*
11232  * Implements the following, as a state machine:
11233  *
11234  * read:
11235  *   for each fragment
11236  *     for each mmio piece in the fragment
11237  *       write gpa, len
11238  *       exit
11239  *       copy data
11240  *   execute insn
11241  *
11242  * write:
11243  *   for each fragment
11244  *     for each mmio piece in the fragment
11245  *       write gpa, len
11246  *       copy data
11247  *       exit
11248  */
11249 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11250 {
11251 	struct kvm_run *run = vcpu->run;
11252 	struct kvm_mmio_fragment *frag;
11253 	unsigned len;
11254 
11255 	BUG_ON(!vcpu->mmio_needed);
11256 
11257 	/* Complete previous fragment */
11258 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11259 	len = min(8u, frag->len);
11260 	if (!vcpu->mmio_is_write)
11261 		memcpy(frag->data, run->mmio.data, len);
11262 
11263 	if (frag->len <= 8) {
11264 		/* Switch to the next fragment. */
11265 		frag++;
11266 		vcpu->mmio_cur_fragment++;
11267 	} else {
11268 		/* Go forward to the next mmio piece. */
11269 		frag->data += len;
11270 		frag->gpa += len;
11271 		frag->len -= len;
11272 	}
11273 
11274 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11275 		vcpu->mmio_needed = 0;
11276 
11277 		/* FIXME: return into emulator if single-stepping.  */
11278 		if (vcpu->mmio_is_write)
11279 			return 1;
11280 		vcpu->mmio_read_completed = 1;
11281 		return complete_emulated_io(vcpu);
11282 	}
11283 
11284 	run->exit_reason = KVM_EXIT_MMIO;
11285 	run->mmio.phys_addr = frag->gpa;
11286 	if (vcpu->mmio_is_write)
11287 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11288 	run->mmio.len = min(8u, frag->len);
11289 	run->mmio.is_write = vcpu->mmio_is_write;
11290 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11291 	return 0;
11292 }
11293 
11294 /* Swap (qemu) user FPU context for the guest FPU context. */
11295 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11296 {
11297 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11298 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11299 	trace_kvm_fpu(1);
11300 }
11301 
11302 /* When vcpu_run ends, restore user space FPU context. */
11303 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11304 {
11305 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11306 	++vcpu->stat.fpu_reload;
11307 	trace_kvm_fpu(0);
11308 }
11309 
11310 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11311 {
11312 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11313 	struct kvm_run *kvm_run = vcpu->run;
11314 	int r;
11315 
11316 	vcpu_load(vcpu);
11317 	kvm_sigset_activate(vcpu);
11318 	kvm_run->flags = 0;
11319 	kvm_load_guest_fpu(vcpu);
11320 
11321 	kvm_vcpu_srcu_read_lock(vcpu);
11322 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11323 		if (kvm_run->immediate_exit) {
11324 			r = -EINTR;
11325 			goto out;
11326 		}
11327 
11328 		/*
11329 		 * Don't bother switching APIC timer emulation from the
11330 		 * hypervisor timer to the software timer, the only way for the
11331 		 * APIC timer to be active is if userspace stuffed vCPU state,
11332 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11333 		 * will transition the vCPU out of UNINITIALIZED (without more
11334 		 * state stuffing from userspace), which will reset the local
11335 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11336 		 * already expired).
11337 		 */
11338 		kvm_vcpu_srcu_read_unlock(vcpu);
11339 		kvm_vcpu_block(vcpu);
11340 		kvm_vcpu_srcu_read_lock(vcpu);
11341 
11342 		if (kvm_apic_accept_events(vcpu) < 0) {
11343 			r = 0;
11344 			goto out;
11345 		}
11346 		r = -EAGAIN;
11347 		if (signal_pending(current)) {
11348 			r = -EINTR;
11349 			kvm_run->exit_reason = KVM_EXIT_INTR;
11350 			++vcpu->stat.signal_exits;
11351 		}
11352 		goto out;
11353 	}
11354 
11355 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11356 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11357 		r = -EINVAL;
11358 		goto out;
11359 	}
11360 
11361 	if (kvm_run->kvm_dirty_regs) {
11362 		r = sync_regs(vcpu);
11363 		if (r != 0)
11364 			goto out;
11365 	}
11366 
11367 	/* re-sync apic's tpr */
11368 	if (!lapic_in_kernel(vcpu)) {
11369 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11370 			r = -EINVAL;
11371 			goto out;
11372 		}
11373 	}
11374 
11375 	/*
11376 	 * If userspace set a pending exception and L2 is active, convert it to
11377 	 * a pending VM-Exit if L1 wants to intercept the exception.
11378 	 */
11379 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11380 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11381 							ex->error_code)) {
11382 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11383 					   ex->has_error_code, ex->error_code,
11384 					   ex->has_payload, ex->payload);
11385 		ex->injected = false;
11386 		ex->pending = false;
11387 	}
11388 	vcpu->arch.exception_from_userspace = false;
11389 
11390 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11391 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11392 		vcpu->arch.complete_userspace_io = NULL;
11393 		r = cui(vcpu);
11394 		if (r <= 0)
11395 			goto out;
11396 	} else {
11397 		WARN_ON_ONCE(vcpu->arch.pio.count);
11398 		WARN_ON_ONCE(vcpu->mmio_needed);
11399 	}
11400 
11401 	if (kvm_run->immediate_exit) {
11402 		r = -EINTR;
11403 		goto out;
11404 	}
11405 
11406 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11407 	if (r <= 0)
11408 		goto out;
11409 
11410 	r = vcpu_run(vcpu);
11411 
11412 out:
11413 	kvm_put_guest_fpu(vcpu);
11414 	if (kvm_run->kvm_valid_regs)
11415 		store_regs(vcpu);
11416 	post_kvm_run_save(vcpu);
11417 	kvm_vcpu_srcu_read_unlock(vcpu);
11418 
11419 	kvm_sigset_deactivate(vcpu);
11420 	vcpu_put(vcpu);
11421 	return r;
11422 }
11423 
11424 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11425 {
11426 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11427 		/*
11428 		 * We are here if userspace calls get_regs() in the middle of
11429 		 * instruction emulation. Registers state needs to be copied
11430 		 * back from emulation context to vcpu. Userspace shouldn't do
11431 		 * that usually, but some bad designed PV devices (vmware
11432 		 * backdoor interface) need this to work
11433 		 */
11434 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11435 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11436 	}
11437 	regs->rax = kvm_rax_read(vcpu);
11438 	regs->rbx = kvm_rbx_read(vcpu);
11439 	regs->rcx = kvm_rcx_read(vcpu);
11440 	regs->rdx = kvm_rdx_read(vcpu);
11441 	regs->rsi = kvm_rsi_read(vcpu);
11442 	regs->rdi = kvm_rdi_read(vcpu);
11443 	regs->rsp = kvm_rsp_read(vcpu);
11444 	regs->rbp = kvm_rbp_read(vcpu);
11445 #ifdef CONFIG_X86_64
11446 	regs->r8 = kvm_r8_read(vcpu);
11447 	regs->r9 = kvm_r9_read(vcpu);
11448 	regs->r10 = kvm_r10_read(vcpu);
11449 	regs->r11 = kvm_r11_read(vcpu);
11450 	regs->r12 = kvm_r12_read(vcpu);
11451 	regs->r13 = kvm_r13_read(vcpu);
11452 	regs->r14 = kvm_r14_read(vcpu);
11453 	regs->r15 = kvm_r15_read(vcpu);
11454 #endif
11455 
11456 	regs->rip = kvm_rip_read(vcpu);
11457 	regs->rflags = kvm_get_rflags(vcpu);
11458 }
11459 
11460 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11461 {
11462 	vcpu_load(vcpu);
11463 	__get_regs(vcpu, regs);
11464 	vcpu_put(vcpu);
11465 	return 0;
11466 }
11467 
11468 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11469 {
11470 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11471 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11472 
11473 	kvm_rax_write(vcpu, regs->rax);
11474 	kvm_rbx_write(vcpu, regs->rbx);
11475 	kvm_rcx_write(vcpu, regs->rcx);
11476 	kvm_rdx_write(vcpu, regs->rdx);
11477 	kvm_rsi_write(vcpu, regs->rsi);
11478 	kvm_rdi_write(vcpu, regs->rdi);
11479 	kvm_rsp_write(vcpu, regs->rsp);
11480 	kvm_rbp_write(vcpu, regs->rbp);
11481 #ifdef CONFIG_X86_64
11482 	kvm_r8_write(vcpu, regs->r8);
11483 	kvm_r9_write(vcpu, regs->r9);
11484 	kvm_r10_write(vcpu, regs->r10);
11485 	kvm_r11_write(vcpu, regs->r11);
11486 	kvm_r12_write(vcpu, regs->r12);
11487 	kvm_r13_write(vcpu, regs->r13);
11488 	kvm_r14_write(vcpu, regs->r14);
11489 	kvm_r15_write(vcpu, regs->r15);
11490 #endif
11491 
11492 	kvm_rip_write(vcpu, regs->rip);
11493 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11494 
11495 	vcpu->arch.exception.pending = false;
11496 	vcpu->arch.exception_vmexit.pending = false;
11497 
11498 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11499 }
11500 
11501 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11502 {
11503 	vcpu_load(vcpu);
11504 	__set_regs(vcpu, regs);
11505 	vcpu_put(vcpu);
11506 	return 0;
11507 }
11508 
11509 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11510 {
11511 	struct desc_ptr dt;
11512 
11513 	if (vcpu->arch.guest_state_protected)
11514 		goto skip_protected_regs;
11515 
11516 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11517 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11518 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11519 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11520 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11521 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11522 
11523 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11524 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11525 
11526 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11527 	sregs->idt.limit = dt.size;
11528 	sregs->idt.base = dt.address;
11529 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11530 	sregs->gdt.limit = dt.size;
11531 	sregs->gdt.base = dt.address;
11532 
11533 	sregs->cr2 = vcpu->arch.cr2;
11534 	sregs->cr3 = kvm_read_cr3(vcpu);
11535 
11536 skip_protected_regs:
11537 	sregs->cr0 = kvm_read_cr0(vcpu);
11538 	sregs->cr4 = kvm_read_cr4(vcpu);
11539 	sregs->cr8 = kvm_get_cr8(vcpu);
11540 	sregs->efer = vcpu->arch.efer;
11541 	sregs->apic_base = kvm_get_apic_base(vcpu);
11542 }
11543 
11544 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11545 {
11546 	__get_sregs_common(vcpu, sregs);
11547 
11548 	if (vcpu->arch.guest_state_protected)
11549 		return;
11550 
11551 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11552 		set_bit(vcpu->arch.interrupt.nr,
11553 			(unsigned long *)sregs->interrupt_bitmap);
11554 }
11555 
11556 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11557 {
11558 	int i;
11559 
11560 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11561 
11562 	if (vcpu->arch.guest_state_protected)
11563 		return;
11564 
11565 	if (is_pae_paging(vcpu)) {
11566 		for (i = 0 ; i < 4 ; i++)
11567 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11568 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11569 	}
11570 }
11571 
11572 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11573 				  struct kvm_sregs *sregs)
11574 {
11575 	vcpu_load(vcpu);
11576 	__get_sregs(vcpu, sregs);
11577 	vcpu_put(vcpu);
11578 	return 0;
11579 }
11580 
11581 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11582 				    struct kvm_mp_state *mp_state)
11583 {
11584 	int r;
11585 
11586 	vcpu_load(vcpu);
11587 	if (kvm_mpx_supported())
11588 		kvm_load_guest_fpu(vcpu);
11589 
11590 	r = kvm_apic_accept_events(vcpu);
11591 	if (r < 0)
11592 		goto out;
11593 	r = 0;
11594 
11595 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11596 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11597 	    vcpu->arch.pv.pv_unhalted)
11598 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11599 	else
11600 		mp_state->mp_state = vcpu->arch.mp_state;
11601 
11602 out:
11603 	if (kvm_mpx_supported())
11604 		kvm_put_guest_fpu(vcpu);
11605 	vcpu_put(vcpu);
11606 	return r;
11607 }
11608 
11609 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11610 				    struct kvm_mp_state *mp_state)
11611 {
11612 	int ret = -EINVAL;
11613 
11614 	vcpu_load(vcpu);
11615 
11616 	switch (mp_state->mp_state) {
11617 	case KVM_MP_STATE_UNINITIALIZED:
11618 	case KVM_MP_STATE_HALTED:
11619 	case KVM_MP_STATE_AP_RESET_HOLD:
11620 	case KVM_MP_STATE_INIT_RECEIVED:
11621 	case KVM_MP_STATE_SIPI_RECEIVED:
11622 		if (!lapic_in_kernel(vcpu))
11623 			goto out;
11624 		break;
11625 
11626 	case KVM_MP_STATE_RUNNABLE:
11627 		break;
11628 
11629 	default:
11630 		goto out;
11631 	}
11632 
11633 	/*
11634 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11635 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11636 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11637 	 * if an SMI is pending as well.
11638 	 */
11639 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11640 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11641 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11642 		goto out;
11643 
11644 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11645 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11646 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11647 	} else
11648 		vcpu->arch.mp_state = mp_state->mp_state;
11649 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11650 
11651 	ret = 0;
11652 out:
11653 	vcpu_put(vcpu);
11654 	return ret;
11655 }
11656 
11657 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11658 		    int reason, bool has_error_code, u32 error_code)
11659 {
11660 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11661 	int ret;
11662 
11663 	init_emulate_ctxt(vcpu);
11664 
11665 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11666 				   has_error_code, error_code);
11667 	if (ret) {
11668 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11669 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11670 		vcpu->run->internal.ndata = 0;
11671 		return 0;
11672 	}
11673 
11674 	kvm_rip_write(vcpu, ctxt->eip);
11675 	kvm_set_rflags(vcpu, ctxt->eflags);
11676 	return 1;
11677 }
11678 EXPORT_SYMBOL_GPL(kvm_task_switch);
11679 
11680 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11681 {
11682 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11683 		/*
11684 		 * When EFER.LME and CR0.PG are set, the processor is in
11685 		 * 64-bit mode (though maybe in a 32-bit code segment).
11686 		 * CR4.PAE and EFER.LMA must be set.
11687 		 */
11688 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11689 			return false;
11690 		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11691 			return false;
11692 	} else {
11693 		/*
11694 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11695 		 * segment cannot be 64-bit.
11696 		 */
11697 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11698 			return false;
11699 	}
11700 
11701 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11702 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11703 }
11704 
11705 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11706 		int *mmu_reset_needed, bool update_pdptrs)
11707 {
11708 	struct msr_data apic_base_msr;
11709 	int idx;
11710 	struct desc_ptr dt;
11711 
11712 	if (!kvm_is_valid_sregs(vcpu, sregs))
11713 		return -EINVAL;
11714 
11715 	apic_base_msr.data = sregs->apic_base;
11716 	apic_base_msr.host_initiated = true;
11717 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11718 		return -EINVAL;
11719 
11720 	if (vcpu->arch.guest_state_protected)
11721 		return 0;
11722 
11723 	dt.size = sregs->idt.limit;
11724 	dt.address = sregs->idt.base;
11725 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11726 	dt.size = sregs->gdt.limit;
11727 	dt.address = sregs->gdt.base;
11728 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11729 
11730 	vcpu->arch.cr2 = sregs->cr2;
11731 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11732 	vcpu->arch.cr3 = sregs->cr3;
11733 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11734 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11735 
11736 	kvm_set_cr8(vcpu, sregs->cr8);
11737 
11738 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11739 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11740 
11741 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11742 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11743 
11744 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11745 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11746 
11747 	if (update_pdptrs) {
11748 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11749 		if (is_pae_paging(vcpu)) {
11750 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11751 			*mmu_reset_needed = 1;
11752 		}
11753 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11754 	}
11755 
11756 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11757 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11758 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11759 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11760 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11761 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11762 
11763 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11764 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11765 
11766 	update_cr8_intercept(vcpu);
11767 
11768 	/* Older userspace won't unhalt the vcpu on reset. */
11769 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11770 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11771 	    !is_protmode(vcpu))
11772 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11773 
11774 	return 0;
11775 }
11776 
11777 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11778 {
11779 	int pending_vec, max_bits;
11780 	int mmu_reset_needed = 0;
11781 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11782 
11783 	if (ret)
11784 		return ret;
11785 
11786 	if (mmu_reset_needed) {
11787 		kvm_mmu_reset_context(vcpu);
11788 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11789 	}
11790 
11791 	max_bits = KVM_NR_INTERRUPTS;
11792 	pending_vec = find_first_bit(
11793 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11794 
11795 	if (pending_vec < max_bits) {
11796 		kvm_queue_interrupt(vcpu, pending_vec, false);
11797 		pr_debug("Set back pending irq %d\n", pending_vec);
11798 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11799 	}
11800 	return 0;
11801 }
11802 
11803 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11804 {
11805 	int mmu_reset_needed = 0;
11806 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11807 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11808 		!(sregs2->efer & EFER_LMA);
11809 	int i, ret;
11810 
11811 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11812 		return -EINVAL;
11813 
11814 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11815 		return -EINVAL;
11816 
11817 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11818 				 &mmu_reset_needed, !valid_pdptrs);
11819 	if (ret)
11820 		return ret;
11821 
11822 	if (valid_pdptrs) {
11823 		for (i = 0; i < 4 ; i++)
11824 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11825 
11826 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11827 		mmu_reset_needed = 1;
11828 		vcpu->arch.pdptrs_from_userspace = true;
11829 	}
11830 	if (mmu_reset_needed) {
11831 		kvm_mmu_reset_context(vcpu);
11832 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11833 	}
11834 	return 0;
11835 }
11836 
11837 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11838 				  struct kvm_sregs *sregs)
11839 {
11840 	int ret;
11841 
11842 	vcpu_load(vcpu);
11843 	ret = __set_sregs(vcpu, sregs);
11844 	vcpu_put(vcpu);
11845 	return ret;
11846 }
11847 
11848 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11849 {
11850 	bool set = false;
11851 	struct kvm_vcpu *vcpu;
11852 	unsigned long i;
11853 
11854 	if (!enable_apicv)
11855 		return;
11856 
11857 	down_write(&kvm->arch.apicv_update_lock);
11858 
11859 	kvm_for_each_vcpu(i, vcpu, kvm) {
11860 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11861 			set = true;
11862 			break;
11863 		}
11864 	}
11865 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11866 	up_write(&kvm->arch.apicv_update_lock);
11867 }
11868 
11869 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11870 					struct kvm_guest_debug *dbg)
11871 {
11872 	unsigned long rflags;
11873 	int i, r;
11874 
11875 	if (vcpu->arch.guest_state_protected)
11876 		return -EINVAL;
11877 
11878 	vcpu_load(vcpu);
11879 
11880 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11881 		r = -EBUSY;
11882 		if (kvm_is_exception_pending(vcpu))
11883 			goto out;
11884 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11885 			kvm_queue_exception(vcpu, DB_VECTOR);
11886 		else
11887 			kvm_queue_exception(vcpu, BP_VECTOR);
11888 	}
11889 
11890 	/*
11891 	 * Read rflags as long as potentially injected trace flags are still
11892 	 * filtered out.
11893 	 */
11894 	rflags = kvm_get_rflags(vcpu);
11895 
11896 	vcpu->guest_debug = dbg->control;
11897 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11898 		vcpu->guest_debug = 0;
11899 
11900 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11901 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11902 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11903 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11904 	} else {
11905 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11906 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11907 	}
11908 	kvm_update_dr7(vcpu);
11909 
11910 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11911 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11912 
11913 	/*
11914 	 * Trigger an rflags update that will inject or remove the trace
11915 	 * flags.
11916 	 */
11917 	kvm_set_rflags(vcpu, rflags);
11918 
11919 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11920 
11921 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11922 
11923 	r = 0;
11924 
11925 out:
11926 	vcpu_put(vcpu);
11927 	return r;
11928 }
11929 
11930 /*
11931  * Translate a guest virtual address to a guest physical address.
11932  */
11933 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11934 				    struct kvm_translation *tr)
11935 {
11936 	unsigned long vaddr = tr->linear_address;
11937 	gpa_t gpa;
11938 	int idx;
11939 
11940 	vcpu_load(vcpu);
11941 
11942 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11943 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11944 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11945 	tr->physical_address = gpa;
11946 	tr->valid = gpa != INVALID_GPA;
11947 	tr->writeable = 1;
11948 	tr->usermode = 0;
11949 
11950 	vcpu_put(vcpu);
11951 	return 0;
11952 }
11953 
11954 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11955 {
11956 	struct fxregs_state *fxsave;
11957 
11958 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11959 		return 0;
11960 
11961 	vcpu_load(vcpu);
11962 
11963 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11964 	memcpy(fpu->fpr, fxsave->st_space, 128);
11965 	fpu->fcw = fxsave->cwd;
11966 	fpu->fsw = fxsave->swd;
11967 	fpu->ftwx = fxsave->twd;
11968 	fpu->last_opcode = fxsave->fop;
11969 	fpu->last_ip = fxsave->rip;
11970 	fpu->last_dp = fxsave->rdp;
11971 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11972 
11973 	vcpu_put(vcpu);
11974 	return 0;
11975 }
11976 
11977 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11978 {
11979 	struct fxregs_state *fxsave;
11980 
11981 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11982 		return 0;
11983 
11984 	vcpu_load(vcpu);
11985 
11986 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11987 
11988 	memcpy(fxsave->st_space, fpu->fpr, 128);
11989 	fxsave->cwd = fpu->fcw;
11990 	fxsave->swd = fpu->fsw;
11991 	fxsave->twd = fpu->ftwx;
11992 	fxsave->fop = fpu->last_opcode;
11993 	fxsave->rip = fpu->last_ip;
11994 	fxsave->rdp = fpu->last_dp;
11995 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11996 
11997 	vcpu_put(vcpu);
11998 	return 0;
11999 }
12000 
12001 static void store_regs(struct kvm_vcpu *vcpu)
12002 {
12003 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12004 
12005 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12006 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
12007 
12008 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12009 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12010 
12011 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12012 		kvm_vcpu_ioctl_x86_get_vcpu_events(
12013 				vcpu, &vcpu->run->s.regs.events);
12014 }
12015 
12016 static int sync_regs(struct kvm_vcpu *vcpu)
12017 {
12018 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12019 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12020 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12021 	}
12022 
12023 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12024 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12025 
12026 		if (__set_sregs(vcpu, &sregs))
12027 			return -EINVAL;
12028 
12029 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12030 	}
12031 
12032 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12033 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12034 
12035 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12036 			return -EINVAL;
12037 
12038 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12039 	}
12040 
12041 	return 0;
12042 }
12043 
12044 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12045 {
12046 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12047 		pr_warn_once("SMP vm created on host with unstable TSC; "
12048 			     "guest TSC will not be reliable\n");
12049 
12050 	if (!kvm->arch.max_vcpu_ids)
12051 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12052 
12053 	if (id >= kvm->arch.max_vcpu_ids)
12054 		return -EINVAL;
12055 
12056 	return static_call(kvm_x86_vcpu_precreate)(kvm);
12057 }
12058 
12059 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12060 {
12061 	struct page *page;
12062 	int r;
12063 
12064 	vcpu->arch.last_vmentry_cpu = -1;
12065 	vcpu->arch.regs_avail = ~0;
12066 	vcpu->arch.regs_dirty = ~0;
12067 
12068 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
12069 
12070 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12071 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12072 	else
12073 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12074 
12075 	r = kvm_mmu_create(vcpu);
12076 	if (r < 0)
12077 		return r;
12078 
12079 	if (irqchip_in_kernel(vcpu->kvm)) {
12080 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
12081 		if (r < 0)
12082 			goto fail_mmu_destroy;
12083 
12084 		/*
12085 		 * Defer evaluating inhibits until the vCPU is first run, as
12086 		 * this vCPU will not get notified of any changes until this
12087 		 * vCPU is visible to other vCPUs (marked online and added to
12088 		 * the set of vCPUs).  Opportunistically mark APICv active as
12089 		 * VMX in particularly is highly unlikely to have inhibits.
12090 		 * Ignore the current per-VM APICv state so that vCPU creation
12091 		 * is guaranteed to run with a deterministic value, the request
12092 		 * will ensure the vCPU gets the correct state before VM-Entry.
12093 		 */
12094 		if (enable_apicv) {
12095 			vcpu->arch.apic->apicv_active = true;
12096 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
12097 		}
12098 	} else
12099 		static_branch_inc(&kvm_has_noapic_vcpu);
12100 
12101 	r = -ENOMEM;
12102 
12103 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12104 	if (!page)
12105 		goto fail_free_lapic;
12106 	vcpu->arch.pio_data = page_address(page);
12107 
12108 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12109 				       GFP_KERNEL_ACCOUNT);
12110 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12111 					    GFP_KERNEL_ACCOUNT);
12112 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12113 		goto fail_free_mce_banks;
12114 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12115 
12116 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12117 				GFP_KERNEL_ACCOUNT))
12118 		goto fail_free_mce_banks;
12119 
12120 	if (!alloc_emulate_ctxt(vcpu))
12121 		goto free_wbinvd_dirty_mask;
12122 
12123 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12124 		pr_err("failed to allocate vcpu's fpu\n");
12125 		goto free_emulate_ctxt;
12126 	}
12127 
12128 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12129 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12130 
12131 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12132 
12133 	kvm_async_pf_hash_reset(vcpu);
12134 
12135 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12136 	kvm_pmu_init(vcpu);
12137 
12138 	vcpu->arch.pending_external_vector = -1;
12139 	vcpu->arch.preempted_in_kernel = false;
12140 
12141 #if IS_ENABLED(CONFIG_HYPERV)
12142 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12143 #endif
12144 
12145 	r = static_call(kvm_x86_vcpu_create)(vcpu);
12146 	if (r)
12147 		goto free_guest_fpu;
12148 
12149 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12150 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12151 	kvm_xen_init_vcpu(vcpu);
12152 	kvm_vcpu_mtrr_init(vcpu);
12153 	vcpu_load(vcpu);
12154 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12155 	kvm_vcpu_reset(vcpu, false);
12156 	kvm_init_mmu(vcpu);
12157 	vcpu_put(vcpu);
12158 	return 0;
12159 
12160 free_guest_fpu:
12161 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12162 free_emulate_ctxt:
12163 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12164 free_wbinvd_dirty_mask:
12165 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12166 fail_free_mce_banks:
12167 	kfree(vcpu->arch.mce_banks);
12168 	kfree(vcpu->arch.mci_ctl2_banks);
12169 	free_page((unsigned long)vcpu->arch.pio_data);
12170 fail_free_lapic:
12171 	kvm_free_lapic(vcpu);
12172 fail_mmu_destroy:
12173 	kvm_mmu_destroy(vcpu);
12174 	return r;
12175 }
12176 
12177 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12178 {
12179 	struct kvm *kvm = vcpu->kvm;
12180 
12181 	if (mutex_lock_killable(&vcpu->mutex))
12182 		return;
12183 	vcpu_load(vcpu);
12184 	kvm_synchronize_tsc(vcpu, NULL);
12185 	vcpu_put(vcpu);
12186 
12187 	/* poll control enabled by default */
12188 	vcpu->arch.msr_kvm_poll_control = 1;
12189 
12190 	mutex_unlock(&vcpu->mutex);
12191 
12192 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12193 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12194 						KVMCLOCK_SYNC_PERIOD);
12195 }
12196 
12197 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12198 {
12199 	int idx;
12200 
12201 	kvmclock_reset(vcpu);
12202 
12203 	static_call(kvm_x86_vcpu_free)(vcpu);
12204 
12205 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12206 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12207 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12208 
12209 	kvm_xen_destroy_vcpu(vcpu);
12210 	kvm_hv_vcpu_uninit(vcpu);
12211 	kvm_pmu_destroy(vcpu);
12212 	kfree(vcpu->arch.mce_banks);
12213 	kfree(vcpu->arch.mci_ctl2_banks);
12214 	kvm_free_lapic(vcpu);
12215 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12216 	kvm_mmu_destroy(vcpu);
12217 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12218 	free_page((unsigned long)vcpu->arch.pio_data);
12219 	kvfree(vcpu->arch.cpuid_entries);
12220 	if (!lapic_in_kernel(vcpu))
12221 		static_branch_dec(&kvm_has_noapic_vcpu);
12222 }
12223 
12224 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12225 {
12226 	struct kvm_cpuid_entry2 *cpuid_0x1;
12227 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12228 	unsigned long new_cr0;
12229 
12230 	/*
12231 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12232 	 * to handle side effects.  RESET emulation hits those flows and relies
12233 	 * on emulated/virtualized registers, including those that are loaded
12234 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12235 	 * to detect improper or missing initialization.
12236 	 */
12237 	WARN_ON_ONCE(!init_event &&
12238 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12239 
12240 	/*
12241 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12242 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12243 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12244 	 * bits), i.e. virtualization is disabled.
12245 	 */
12246 	if (is_guest_mode(vcpu))
12247 		kvm_leave_nested(vcpu);
12248 
12249 	kvm_lapic_reset(vcpu, init_event);
12250 
12251 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12252 	vcpu->arch.hflags = 0;
12253 
12254 	vcpu->arch.smi_pending = 0;
12255 	vcpu->arch.smi_count = 0;
12256 	atomic_set(&vcpu->arch.nmi_queued, 0);
12257 	vcpu->arch.nmi_pending = 0;
12258 	vcpu->arch.nmi_injected = false;
12259 	kvm_clear_interrupt_queue(vcpu);
12260 	kvm_clear_exception_queue(vcpu);
12261 
12262 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12263 	kvm_update_dr0123(vcpu);
12264 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12265 	vcpu->arch.dr7 = DR7_FIXED_1;
12266 	kvm_update_dr7(vcpu);
12267 
12268 	vcpu->arch.cr2 = 0;
12269 
12270 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12271 	vcpu->arch.apf.msr_en_val = 0;
12272 	vcpu->arch.apf.msr_int_val = 0;
12273 	vcpu->arch.st.msr_val = 0;
12274 
12275 	kvmclock_reset(vcpu);
12276 
12277 	kvm_clear_async_pf_completion_queue(vcpu);
12278 	kvm_async_pf_hash_reset(vcpu);
12279 	vcpu->arch.apf.halted = false;
12280 
12281 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12282 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12283 
12284 		/*
12285 		 * All paths that lead to INIT are required to load the guest's
12286 		 * FPU state (because most paths are buried in KVM_RUN).
12287 		 */
12288 		if (init_event)
12289 			kvm_put_guest_fpu(vcpu);
12290 
12291 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12292 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12293 
12294 		if (init_event)
12295 			kvm_load_guest_fpu(vcpu);
12296 	}
12297 
12298 	if (!init_event) {
12299 		vcpu->arch.smbase = 0x30000;
12300 
12301 		vcpu->arch.msr_misc_features_enables = 0;
12302 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12303 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12304 
12305 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12306 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12307 	}
12308 
12309 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12310 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12311 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12312 
12313 	/*
12314 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12315 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12316 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12317 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12318 	 * on RESET.  But, go through the motions in case that's ever remedied.
12319 	 */
12320 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12321 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12322 
12323 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12324 
12325 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12326 	kvm_rip_write(vcpu, 0xfff0);
12327 
12328 	vcpu->arch.cr3 = 0;
12329 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12330 
12331 	/*
12332 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12333 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12334 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12335 	 */
12336 	new_cr0 = X86_CR0_ET;
12337 	if (init_event)
12338 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12339 	else
12340 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12341 
12342 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12343 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12344 	static_call(kvm_x86_set_efer)(vcpu, 0);
12345 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12346 
12347 	/*
12348 	 * On the standard CR0/CR4/EFER modification paths, there are several
12349 	 * complex conditions determining whether the MMU has to be reset and/or
12350 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12351 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12352 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12353 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12354 	 */
12355 	if (old_cr0 & X86_CR0_PG) {
12356 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12357 		kvm_mmu_reset_context(vcpu);
12358 	}
12359 
12360 	/*
12361 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12362 	 * APM states the TLBs are untouched by INIT, but it also states that
12363 	 * the TLBs are flushed on "External initialization of the processor."
12364 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12365 	 * benefit in relying on the guest to flush the TLB immediately after
12366 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12367 	 * performance perspective.
12368 	 */
12369 	if (init_event)
12370 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12371 }
12372 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12373 
12374 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12375 {
12376 	struct kvm_segment cs;
12377 
12378 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12379 	cs.selector = vector << 8;
12380 	cs.base = vector << 12;
12381 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12382 	kvm_rip_write(vcpu, 0);
12383 }
12384 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12385 
12386 int kvm_arch_hardware_enable(void)
12387 {
12388 	struct kvm *kvm;
12389 	struct kvm_vcpu *vcpu;
12390 	unsigned long i;
12391 	int ret;
12392 	u64 local_tsc;
12393 	u64 max_tsc = 0;
12394 	bool stable, backwards_tsc = false;
12395 
12396 	kvm_user_return_msr_cpu_online();
12397 
12398 	ret = kvm_x86_check_processor_compatibility();
12399 	if (ret)
12400 		return ret;
12401 
12402 	ret = static_call(kvm_x86_hardware_enable)();
12403 	if (ret != 0)
12404 		return ret;
12405 
12406 	local_tsc = rdtsc();
12407 	stable = !kvm_check_tsc_unstable();
12408 	list_for_each_entry(kvm, &vm_list, vm_list) {
12409 		kvm_for_each_vcpu(i, vcpu, kvm) {
12410 			if (!stable && vcpu->cpu == smp_processor_id())
12411 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12412 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12413 				backwards_tsc = true;
12414 				if (vcpu->arch.last_host_tsc > max_tsc)
12415 					max_tsc = vcpu->arch.last_host_tsc;
12416 			}
12417 		}
12418 	}
12419 
12420 	/*
12421 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12422 	 * platforms that reset TSC during suspend or hibernate actions, but
12423 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12424 	 * detect that condition here, which happens early in CPU bringup,
12425 	 * before any KVM threads can be running.  Unfortunately, we can't
12426 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12427 	 * enough into CPU bringup that we know how much real time has actually
12428 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12429 	 * variables that haven't been updated yet.
12430 	 *
12431 	 * So we simply find the maximum observed TSC above, then record the
12432 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12433 	 * the adjustment will be applied.  Note that we accumulate
12434 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12435 	 * gets a chance to run again.  In the event that no KVM threads get a
12436 	 * chance to run, we will miss the entire elapsed period, as we'll have
12437 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12438 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12439 	 * uniform across all VCPUs (not to mention the scenario is extremely
12440 	 * unlikely). It is possible that a second hibernate recovery happens
12441 	 * much faster than a first, causing the observed TSC here to be
12442 	 * smaller; this would require additional padding adjustment, which is
12443 	 * why we set last_host_tsc to the local tsc observed here.
12444 	 *
12445 	 * N.B. - this code below runs only on platforms with reliable TSC,
12446 	 * as that is the only way backwards_tsc is set above.  Also note
12447 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12448 	 * have the same delta_cyc adjustment applied if backwards_tsc
12449 	 * is detected.  Note further, this adjustment is only done once,
12450 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12451 	 * called multiple times (one for each physical CPU bringup).
12452 	 *
12453 	 * Platforms with unreliable TSCs don't have to deal with this, they
12454 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12455 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12456 	 * guarantee that they stay in perfect synchronization.
12457 	 */
12458 	if (backwards_tsc) {
12459 		u64 delta_cyc = max_tsc - local_tsc;
12460 		list_for_each_entry(kvm, &vm_list, vm_list) {
12461 			kvm->arch.backwards_tsc_observed = true;
12462 			kvm_for_each_vcpu(i, vcpu, kvm) {
12463 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12464 				vcpu->arch.last_host_tsc = local_tsc;
12465 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12466 			}
12467 
12468 			/*
12469 			 * We have to disable TSC offset matching.. if you were
12470 			 * booting a VM while issuing an S4 host suspend....
12471 			 * you may have some problem.  Solving this issue is
12472 			 * left as an exercise to the reader.
12473 			 */
12474 			kvm->arch.last_tsc_nsec = 0;
12475 			kvm->arch.last_tsc_write = 0;
12476 		}
12477 
12478 	}
12479 	return 0;
12480 }
12481 
12482 void kvm_arch_hardware_disable(void)
12483 {
12484 	static_call(kvm_x86_hardware_disable)();
12485 	drop_user_return_notifiers();
12486 }
12487 
12488 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12489 {
12490 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12491 }
12492 
12493 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12494 {
12495 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12496 }
12497 
12498 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12499 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12500 
12501 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12502 {
12503 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12504 
12505 	vcpu->arch.l1tf_flush_l1d = true;
12506 	if (pmu->version && unlikely(pmu->event_count)) {
12507 		pmu->need_cleanup = true;
12508 		kvm_make_request(KVM_REQ_PMU, vcpu);
12509 	}
12510 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12511 }
12512 
12513 void kvm_arch_free_vm(struct kvm *kvm)
12514 {
12515 #if IS_ENABLED(CONFIG_HYPERV)
12516 	kfree(kvm->arch.hv_pa_pg);
12517 #endif
12518 	__kvm_arch_free_vm(kvm);
12519 }
12520 
12521 
12522 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12523 {
12524 	int ret;
12525 	unsigned long flags;
12526 
12527 	if (!kvm_is_vm_type_supported(type))
12528 		return -EINVAL;
12529 
12530 	kvm->arch.vm_type = type;
12531 
12532 	ret = kvm_page_track_init(kvm);
12533 	if (ret)
12534 		goto out;
12535 
12536 	kvm_mmu_init_vm(kvm);
12537 
12538 	ret = static_call(kvm_x86_vm_init)(kvm);
12539 	if (ret)
12540 		goto out_uninit_mmu;
12541 
12542 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12543 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12544 
12545 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12546 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12547 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12548 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12549 		&kvm->arch.irq_sources_bitmap);
12550 
12551 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12552 	mutex_init(&kvm->arch.apic_map_lock);
12553 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12554 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12555 
12556 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12557 	pvclock_update_vm_gtod_copy(kvm);
12558 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12559 
12560 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12561 	kvm->arch.guest_can_read_msr_platform_info = true;
12562 	kvm->arch.enable_pmu = enable_pmu;
12563 
12564 #if IS_ENABLED(CONFIG_HYPERV)
12565 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12566 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12567 #endif
12568 
12569 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12570 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12571 
12572 	kvm_apicv_init(kvm);
12573 	kvm_hv_init_vm(kvm);
12574 	kvm_xen_init_vm(kvm);
12575 
12576 	return 0;
12577 
12578 out_uninit_mmu:
12579 	kvm_mmu_uninit_vm(kvm);
12580 	kvm_page_track_cleanup(kvm);
12581 out:
12582 	return ret;
12583 }
12584 
12585 int kvm_arch_post_init_vm(struct kvm *kvm)
12586 {
12587 	return kvm_mmu_post_init_vm(kvm);
12588 }
12589 
12590 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12591 {
12592 	vcpu_load(vcpu);
12593 	kvm_mmu_unload(vcpu);
12594 	vcpu_put(vcpu);
12595 }
12596 
12597 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12598 {
12599 	unsigned long i;
12600 	struct kvm_vcpu *vcpu;
12601 
12602 	kvm_for_each_vcpu(i, vcpu, kvm) {
12603 		kvm_clear_async_pf_completion_queue(vcpu);
12604 		kvm_unload_vcpu_mmu(vcpu);
12605 	}
12606 }
12607 
12608 void kvm_arch_sync_events(struct kvm *kvm)
12609 {
12610 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12611 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12612 	kvm_free_pit(kvm);
12613 }
12614 
12615 /**
12616  * __x86_set_memory_region: Setup KVM internal memory slot
12617  *
12618  * @kvm: the kvm pointer to the VM.
12619  * @id: the slot ID to setup.
12620  * @gpa: the GPA to install the slot (unused when @size == 0).
12621  * @size: the size of the slot. Set to zero to uninstall a slot.
12622  *
12623  * This function helps to setup a KVM internal memory slot.  Specify
12624  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12625  * slot.  The return code can be one of the following:
12626  *
12627  *   HVA:           on success (uninstall will return a bogus HVA)
12628  *   -errno:        on error
12629  *
12630  * The caller should always use IS_ERR() to check the return value
12631  * before use.  Note, the KVM internal memory slots are guaranteed to
12632  * remain valid and unchanged until the VM is destroyed, i.e., the
12633  * GPA->HVA translation will not change.  However, the HVA is a user
12634  * address, i.e. its accessibility is not guaranteed, and must be
12635  * accessed via __copy_{to,from}_user().
12636  */
12637 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12638 				      u32 size)
12639 {
12640 	int i, r;
12641 	unsigned long hva, old_npages;
12642 	struct kvm_memslots *slots = kvm_memslots(kvm);
12643 	struct kvm_memory_slot *slot;
12644 
12645 	/* Called with kvm->slots_lock held.  */
12646 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12647 		return ERR_PTR_USR(-EINVAL);
12648 
12649 	slot = id_to_memslot(slots, id);
12650 	if (size) {
12651 		if (slot && slot->npages)
12652 			return ERR_PTR_USR(-EEXIST);
12653 
12654 		/*
12655 		 * MAP_SHARED to prevent internal slot pages from being moved
12656 		 * by fork()/COW.
12657 		 */
12658 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12659 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12660 		if (IS_ERR_VALUE(hva))
12661 			return (void __user *)hva;
12662 	} else {
12663 		if (!slot || !slot->npages)
12664 			return NULL;
12665 
12666 		old_npages = slot->npages;
12667 		hva = slot->userspace_addr;
12668 	}
12669 
12670 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12671 		struct kvm_userspace_memory_region2 m;
12672 
12673 		m.slot = id | (i << 16);
12674 		m.flags = 0;
12675 		m.guest_phys_addr = gpa;
12676 		m.userspace_addr = hva;
12677 		m.memory_size = size;
12678 		r = __kvm_set_memory_region(kvm, &m);
12679 		if (r < 0)
12680 			return ERR_PTR_USR(r);
12681 	}
12682 
12683 	if (!size)
12684 		vm_munmap(hva, old_npages * PAGE_SIZE);
12685 
12686 	return (void __user *)hva;
12687 }
12688 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12689 
12690 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12691 {
12692 	kvm_mmu_pre_destroy_vm(kvm);
12693 }
12694 
12695 void kvm_arch_destroy_vm(struct kvm *kvm)
12696 {
12697 	if (current->mm == kvm->mm) {
12698 		/*
12699 		 * Free memory regions allocated on behalf of userspace,
12700 		 * unless the memory map has changed due to process exit
12701 		 * or fd copying.
12702 		 */
12703 		mutex_lock(&kvm->slots_lock);
12704 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12705 					0, 0);
12706 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12707 					0, 0);
12708 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12709 		mutex_unlock(&kvm->slots_lock);
12710 	}
12711 	kvm_unload_vcpu_mmus(kvm);
12712 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12713 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12714 	kvm_pic_destroy(kvm);
12715 	kvm_ioapic_destroy(kvm);
12716 	kvm_destroy_vcpus(kvm);
12717 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12718 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12719 	kvm_mmu_uninit_vm(kvm);
12720 	kvm_page_track_cleanup(kvm);
12721 	kvm_xen_destroy_vm(kvm);
12722 	kvm_hv_destroy_vm(kvm);
12723 }
12724 
12725 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12726 {
12727 	int i;
12728 
12729 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12730 		kvfree(slot->arch.rmap[i]);
12731 		slot->arch.rmap[i] = NULL;
12732 	}
12733 }
12734 
12735 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12736 {
12737 	int i;
12738 
12739 	memslot_rmap_free(slot);
12740 
12741 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12742 		kvfree(slot->arch.lpage_info[i - 1]);
12743 		slot->arch.lpage_info[i - 1] = NULL;
12744 	}
12745 
12746 	kvm_page_track_free_memslot(slot);
12747 }
12748 
12749 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12750 {
12751 	const int sz = sizeof(*slot->arch.rmap[0]);
12752 	int i;
12753 
12754 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12755 		int level = i + 1;
12756 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12757 
12758 		if (slot->arch.rmap[i])
12759 			continue;
12760 
12761 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12762 		if (!slot->arch.rmap[i]) {
12763 			memslot_rmap_free(slot);
12764 			return -ENOMEM;
12765 		}
12766 	}
12767 
12768 	return 0;
12769 }
12770 
12771 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12772 				      struct kvm_memory_slot *slot)
12773 {
12774 	unsigned long npages = slot->npages;
12775 	int i, r;
12776 
12777 	/*
12778 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12779 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12780 	 * the new memslot is successful.
12781 	 */
12782 	memset(&slot->arch, 0, sizeof(slot->arch));
12783 
12784 	if (kvm_memslots_have_rmaps(kvm)) {
12785 		r = memslot_rmap_alloc(slot, npages);
12786 		if (r)
12787 			return r;
12788 	}
12789 
12790 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12791 		struct kvm_lpage_info *linfo;
12792 		unsigned long ugfn;
12793 		int lpages;
12794 		int level = i + 1;
12795 
12796 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12797 
12798 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12799 		if (!linfo)
12800 			goto out_free;
12801 
12802 		slot->arch.lpage_info[i - 1] = linfo;
12803 
12804 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12805 			linfo[0].disallow_lpage = 1;
12806 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12807 			linfo[lpages - 1].disallow_lpage = 1;
12808 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12809 		/*
12810 		 * If the gfn and userspace address are not aligned wrt each
12811 		 * other, disable large page support for this slot.
12812 		 */
12813 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12814 			unsigned long j;
12815 
12816 			for (j = 0; j < lpages; ++j)
12817 				linfo[j].disallow_lpage = 1;
12818 		}
12819 	}
12820 
12821 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12822 	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12823 #endif
12824 
12825 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12826 		goto out_free;
12827 
12828 	return 0;
12829 
12830 out_free:
12831 	memslot_rmap_free(slot);
12832 
12833 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12834 		kvfree(slot->arch.lpage_info[i - 1]);
12835 		slot->arch.lpage_info[i - 1] = NULL;
12836 	}
12837 	return -ENOMEM;
12838 }
12839 
12840 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12841 {
12842 	struct kvm_vcpu *vcpu;
12843 	unsigned long i;
12844 
12845 	/*
12846 	 * memslots->generation has been incremented.
12847 	 * mmio generation may have reached its maximum value.
12848 	 */
12849 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12850 
12851 	/* Force re-initialization of steal_time cache */
12852 	kvm_for_each_vcpu(i, vcpu, kvm)
12853 		kvm_vcpu_kick(vcpu);
12854 }
12855 
12856 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12857 				   const struct kvm_memory_slot *old,
12858 				   struct kvm_memory_slot *new,
12859 				   enum kvm_mr_change change)
12860 {
12861 	/*
12862 	 * KVM doesn't support moving memslots when there are external page
12863 	 * trackers attached to the VM, i.e. if KVMGT is in use.
12864 	 */
12865 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12866 		return -EINVAL;
12867 
12868 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12869 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12870 			return -EINVAL;
12871 
12872 		return kvm_alloc_memslot_metadata(kvm, new);
12873 	}
12874 
12875 	if (change == KVM_MR_FLAGS_ONLY)
12876 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12877 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12878 		return -EIO;
12879 
12880 	return 0;
12881 }
12882 
12883 
12884 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12885 {
12886 	int nr_slots;
12887 
12888 	if (!kvm_x86_ops.cpu_dirty_log_size)
12889 		return;
12890 
12891 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12892 	if ((enable && nr_slots == 1) || !nr_slots)
12893 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12894 }
12895 
12896 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12897 				     struct kvm_memory_slot *old,
12898 				     const struct kvm_memory_slot *new,
12899 				     enum kvm_mr_change change)
12900 {
12901 	u32 old_flags = old ? old->flags : 0;
12902 	u32 new_flags = new ? new->flags : 0;
12903 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12904 
12905 	/*
12906 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12907 	 * applies to all operations.
12908 	 */
12909 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12910 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12911 
12912 	/*
12913 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12914 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12915 	 *
12916 	 * For a memslot with dirty logging disabled:
12917 	 * CREATE:      No dirty mappings will already exist.
12918 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12919 	 *		kvm_arch_flush_shadow_memslot()
12920 	 *
12921 	 * For a memslot with dirty logging enabled:
12922 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12923 	 *		and no dirty bits to clear.
12924 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12925 	 *		kvm_arch_flush_shadow_memslot().
12926 	 */
12927 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12928 		return;
12929 
12930 	/*
12931 	 * READONLY and non-flags changes were filtered out above, and the only
12932 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12933 	 * logging isn't being toggled on or off.
12934 	 */
12935 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12936 		return;
12937 
12938 	if (!log_dirty_pages) {
12939 		/*
12940 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12941 		 * large sptes have to be split.  If live migration succeeds,
12942 		 * the guest in the source machine will be destroyed and large
12943 		 * sptes will be created in the destination.  However, if the
12944 		 * guest continues to run in the source machine (for example if
12945 		 * live migration fails), small sptes will remain around and
12946 		 * cause bad performance.
12947 		 *
12948 		 * Scan sptes if dirty logging has been stopped, dropping those
12949 		 * which can be collapsed into a single large-page spte.  Later
12950 		 * page faults will create the large-page sptes.
12951 		 */
12952 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12953 	} else {
12954 		/*
12955 		 * Initially-all-set does not require write protecting any page,
12956 		 * because they're all assumed to be dirty.
12957 		 */
12958 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12959 			return;
12960 
12961 		if (READ_ONCE(eager_page_split))
12962 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12963 
12964 		if (kvm_x86_ops.cpu_dirty_log_size) {
12965 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12966 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12967 		} else {
12968 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12969 		}
12970 
12971 		/*
12972 		 * Unconditionally flush the TLBs after enabling dirty logging.
12973 		 * A flush is almost always going to be necessary (see below),
12974 		 * and unconditionally flushing allows the helpers to omit
12975 		 * the subtly complex checks when removing write access.
12976 		 *
12977 		 * Do the flush outside of mmu_lock to reduce the amount of
12978 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12979 		 * safe as KVM only needs to guarantee the slot is fully
12980 		 * write-protected before returning to userspace, i.e. before
12981 		 * userspace can consume the dirty status.
12982 		 *
12983 		 * Flushing outside of mmu_lock requires KVM to be careful when
12984 		 * making decisions based on writable status of an SPTE, e.g. a
12985 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12986 		 *
12987 		 * Specifically, KVM also write-protects guest page tables to
12988 		 * monitor changes when using shadow paging, and must guarantee
12989 		 * no CPUs can write to those page before mmu_lock is dropped.
12990 		 * Because CPUs may have stale TLB entries at this point, a
12991 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12992 		 *
12993 		 * KVM also allows making SPTES writable outside of mmu_lock,
12994 		 * e.g. to allow dirty logging without taking mmu_lock.
12995 		 *
12996 		 * To handle these scenarios, KVM uses a separate software-only
12997 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12998 		 * a guest page table being write-protected (KVM clears the
12999 		 * MMU-writable flag when write-protecting for shadow paging).
13000 		 *
13001 		 * The use of MMU-writable is also the primary motivation for
13002 		 * the unconditional flush.  Because KVM must guarantee that a
13003 		 * CPU doesn't contain stale, writable TLB entries for a
13004 		 * !MMU-writable SPTE, KVM must flush if it encounters any
13005 		 * MMU-writable SPTE regardless of whether the actual hardware
13006 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
13007 		 * to flush, while unconditionally flushing allows the "remove
13008 		 * write access" helpers to ignore MMU-writable entirely.
13009 		 *
13010 		 * See is_writable_pte() for more details (the case involving
13011 		 * access-tracked SPTEs is particularly relevant).
13012 		 */
13013 		kvm_flush_remote_tlbs_memslot(kvm, new);
13014 	}
13015 }
13016 
13017 void kvm_arch_commit_memory_region(struct kvm *kvm,
13018 				struct kvm_memory_slot *old,
13019 				const struct kvm_memory_slot *new,
13020 				enum kvm_mr_change change)
13021 {
13022 	if (change == KVM_MR_DELETE)
13023 		kvm_page_track_delete_slot(kvm, old);
13024 
13025 	if (!kvm->arch.n_requested_mmu_pages &&
13026 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13027 		unsigned long nr_mmu_pages;
13028 
13029 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13030 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13031 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13032 	}
13033 
13034 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13035 
13036 	/* Free the arrays associated with the old memslot. */
13037 	if (change == KVM_MR_MOVE)
13038 		kvm_arch_free_memslot(kvm, old);
13039 }
13040 
13041 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13042 {
13043 	return (is_guest_mode(vcpu) &&
13044 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13045 }
13046 
13047 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13048 {
13049 	if (!list_empty_careful(&vcpu->async_pf.done))
13050 		return true;
13051 
13052 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13053 	    kvm_apic_init_sipi_allowed(vcpu))
13054 		return true;
13055 
13056 	if (vcpu->arch.pv.pv_unhalted)
13057 		return true;
13058 
13059 	if (kvm_is_exception_pending(vcpu))
13060 		return true;
13061 
13062 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13063 	    (vcpu->arch.nmi_pending &&
13064 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13065 		return true;
13066 
13067 #ifdef CONFIG_KVM_SMM
13068 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13069 	    (vcpu->arch.smi_pending &&
13070 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
13071 		return true;
13072 #endif
13073 
13074 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
13075 		return true;
13076 
13077 	if (kvm_arch_interrupt_allowed(vcpu) &&
13078 	    (kvm_cpu_has_interrupt(vcpu) ||
13079 	    kvm_guest_apic_has_interrupt(vcpu)))
13080 		return true;
13081 
13082 	if (kvm_hv_has_stimer_pending(vcpu))
13083 		return true;
13084 
13085 	if (is_guest_mode(vcpu) &&
13086 	    kvm_x86_ops.nested_ops->has_events &&
13087 	    kvm_x86_ops.nested_ops->has_events(vcpu))
13088 		return true;
13089 
13090 	if (kvm_xen_has_pending_events(vcpu))
13091 		return true;
13092 
13093 	return false;
13094 }
13095 
13096 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13097 {
13098 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13099 }
13100 
13101 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13102 {
13103 	if (kvm_vcpu_apicv_active(vcpu) &&
13104 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
13105 		return true;
13106 
13107 	return false;
13108 }
13109 
13110 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13111 {
13112 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13113 		return true;
13114 
13115 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13116 #ifdef CONFIG_KVM_SMM
13117 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
13118 #endif
13119 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
13120 		return true;
13121 
13122 	return kvm_arch_dy_has_pending_interrupt(vcpu);
13123 }
13124 
13125 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13126 {
13127 	if (vcpu->arch.guest_state_protected)
13128 		return true;
13129 
13130 	if (vcpu != kvm_get_running_vcpu())
13131 		return vcpu->arch.preempted_in_kernel;
13132 
13133 	return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13134 }
13135 
13136 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13137 {
13138 	return kvm_rip_read(vcpu);
13139 }
13140 
13141 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13142 {
13143 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13144 }
13145 
13146 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13147 {
13148 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13149 }
13150 
13151 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13152 {
13153 	/* Can't read the RIP when guest state is protected, just return 0 */
13154 	if (vcpu->arch.guest_state_protected)
13155 		return 0;
13156 
13157 	if (is_64_bit_mode(vcpu))
13158 		return kvm_rip_read(vcpu);
13159 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13160 		     kvm_rip_read(vcpu));
13161 }
13162 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13163 
13164 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13165 {
13166 	return kvm_get_linear_rip(vcpu) == linear_rip;
13167 }
13168 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13169 
13170 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13171 {
13172 	unsigned long rflags;
13173 
13174 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
13175 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13176 		rflags &= ~X86_EFLAGS_TF;
13177 	return rflags;
13178 }
13179 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13180 
13181 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13182 {
13183 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13184 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13185 		rflags |= X86_EFLAGS_TF;
13186 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
13187 }
13188 
13189 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13190 {
13191 	__kvm_set_rflags(vcpu, rflags);
13192 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13193 }
13194 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13195 
13196 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13197 {
13198 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13199 
13200 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13201 }
13202 
13203 static inline u32 kvm_async_pf_next_probe(u32 key)
13204 {
13205 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13206 }
13207 
13208 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13209 {
13210 	u32 key = kvm_async_pf_hash_fn(gfn);
13211 
13212 	while (vcpu->arch.apf.gfns[key] != ~0)
13213 		key = kvm_async_pf_next_probe(key);
13214 
13215 	vcpu->arch.apf.gfns[key] = gfn;
13216 }
13217 
13218 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13219 {
13220 	int i;
13221 	u32 key = kvm_async_pf_hash_fn(gfn);
13222 
13223 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13224 		     (vcpu->arch.apf.gfns[key] != gfn &&
13225 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13226 		key = kvm_async_pf_next_probe(key);
13227 
13228 	return key;
13229 }
13230 
13231 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13232 {
13233 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13234 }
13235 
13236 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13237 {
13238 	u32 i, j, k;
13239 
13240 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13241 
13242 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13243 		return;
13244 
13245 	while (true) {
13246 		vcpu->arch.apf.gfns[i] = ~0;
13247 		do {
13248 			j = kvm_async_pf_next_probe(j);
13249 			if (vcpu->arch.apf.gfns[j] == ~0)
13250 				return;
13251 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13252 			/*
13253 			 * k lies cyclically in ]i,j]
13254 			 * |    i.k.j |
13255 			 * |....j i.k.| or  |.k..j i...|
13256 			 */
13257 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13258 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13259 		i = j;
13260 	}
13261 }
13262 
13263 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13264 {
13265 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13266 
13267 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13268 				      sizeof(reason));
13269 }
13270 
13271 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13272 {
13273 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13274 
13275 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13276 					     &token, offset, sizeof(token));
13277 }
13278 
13279 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13280 {
13281 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13282 	u32 val;
13283 
13284 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13285 					 &val, offset, sizeof(val)))
13286 		return false;
13287 
13288 	return !val;
13289 }
13290 
13291 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13292 {
13293 
13294 	if (!kvm_pv_async_pf_enabled(vcpu))
13295 		return false;
13296 
13297 	if (vcpu->arch.apf.send_user_only &&
13298 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13299 		return false;
13300 
13301 	if (is_guest_mode(vcpu)) {
13302 		/*
13303 		 * L1 needs to opt into the special #PF vmexits that are
13304 		 * used to deliver async page faults.
13305 		 */
13306 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13307 	} else {
13308 		/*
13309 		 * Play it safe in case the guest temporarily disables paging.
13310 		 * The real mode IDT in particular is unlikely to have a #PF
13311 		 * exception setup.
13312 		 */
13313 		return is_paging(vcpu);
13314 	}
13315 }
13316 
13317 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13318 {
13319 	if (unlikely(!lapic_in_kernel(vcpu) ||
13320 		     kvm_event_needs_reinjection(vcpu) ||
13321 		     kvm_is_exception_pending(vcpu)))
13322 		return false;
13323 
13324 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13325 		return false;
13326 
13327 	/*
13328 	 * If interrupts are off we cannot even use an artificial
13329 	 * halt state.
13330 	 */
13331 	return kvm_arch_interrupt_allowed(vcpu);
13332 }
13333 
13334 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13335 				     struct kvm_async_pf *work)
13336 {
13337 	struct x86_exception fault;
13338 
13339 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13340 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13341 
13342 	if (kvm_can_deliver_async_pf(vcpu) &&
13343 	    !apf_put_user_notpresent(vcpu)) {
13344 		fault.vector = PF_VECTOR;
13345 		fault.error_code_valid = true;
13346 		fault.error_code = 0;
13347 		fault.nested_page_fault = false;
13348 		fault.address = work->arch.token;
13349 		fault.async_page_fault = true;
13350 		kvm_inject_page_fault(vcpu, &fault);
13351 		return true;
13352 	} else {
13353 		/*
13354 		 * It is not possible to deliver a paravirtualized asynchronous
13355 		 * page fault, but putting the guest in an artificial halt state
13356 		 * can be beneficial nevertheless: if an interrupt arrives, we
13357 		 * can deliver it timely and perhaps the guest will schedule
13358 		 * another process.  When the instruction that triggered a page
13359 		 * fault is retried, hopefully the page will be ready in the host.
13360 		 */
13361 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13362 		return false;
13363 	}
13364 }
13365 
13366 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13367 				 struct kvm_async_pf *work)
13368 {
13369 	struct kvm_lapic_irq irq = {
13370 		.delivery_mode = APIC_DM_FIXED,
13371 		.vector = vcpu->arch.apf.vec
13372 	};
13373 
13374 	if (work->wakeup_all)
13375 		work->arch.token = ~0; /* broadcast wakeup */
13376 	else
13377 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13378 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13379 
13380 	if ((work->wakeup_all || work->notpresent_injected) &&
13381 	    kvm_pv_async_pf_enabled(vcpu) &&
13382 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13383 		vcpu->arch.apf.pageready_pending = true;
13384 		kvm_apic_set_irq(vcpu, &irq, NULL);
13385 	}
13386 
13387 	vcpu->arch.apf.halted = false;
13388 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13389 }
13390 
13391 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13392 {
13393 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13394 	if (!vcpu->arch.apf.pageready_pending)
13395 		kvm_vcpu_kick(vcpu);
13396 }
13397 
13398 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13399 {
13400 	if (!kvm_pv_async_pf_enabled(vcpu))
13401 		return true;
13402 	else
13403 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13404 }
13405 
13406 void kvm_arch_start_assignment(struct kvm *kvm)
13407 {
13408 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13409 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13410 }
13411 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13412 
13413 void kvm_arch_end_assignment(struct kvm *kvm)
13414 {
13415 	atomic_dec(&kvm->arch.assigned_device_count);
13416 }
13417 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13418 
13419 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13420 {
13421 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13422 }
13423 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13424 
13425 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13426 {
13427 	/*
13428 	 * Non-coherent DMA assignment and de-assignment will affect
13429 	 * whether KVM honors guest MTRRs and cause changes in memtypes
13430 	 * in TDP.
13431 	 * So, pass %true unconditionally to indicate non-coherent DMA was,
13432 	 * or will be involved, and that zapping SPTEs might be necessary.
13433 	 */
13434 	if (__kvm_mmu_honors_guest_mtrrs(true))
13435 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13436 }
13437 
13438 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13439 {
13440 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13441 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13442 }
13443 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13444 
13445 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13446 {
13447 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13448 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13449 }
13450 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13451 
13452 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13453 {
13454 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13455 }
13456 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13457 
13458 bool kvm_arch_has_irq_bypass(void)
13459 {
13460 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13461 }
13462 
13463 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13464 				      struct irq_bypass_producer *prod)
13465 {
13466 	struct kvm_kernel_irqfd *irqfd =
13467 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13468 	int ret;
13469 
13470 	irqfd->producer = prod;
13471 	kvm_arch_start_assignment(irqfd->kvm);
13472 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13473 					 prod->irq, irqfd->gsi, 1);
13474 
13475 	if (ret)
13476 		kvm_arch_end_assignment(irqfd->kvm);
13477 
13478 	return ret;
13479 }
13480 
13481 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13482 				      struct irq_bypass_producer *prod)
13483 {
13484 	int ret;
13485 	struct kvm_kernel_irqfd *irqfd =
13486 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13487 
13488 	WARN_ON(irqfd->producer != prod);
13489 	irqfd->producer = NULL;
13490 
13491 	/*
13492 	 * When producer of consumer is unregistered, we change back to
13493 	 * remapped mode, so we can re-use the current implementation
13494 	 * when the irq is masked/disabled or the consumer side (KVM
13495 	 * int this case doesn't want to receive the interrupts.
13496 	*/
13497 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13498 	if (ret)
13499 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13500 		       " fails: %d\n", irqfd->consumer.token, ret);
13501 
13502 	kvm_arch_end_assignment(irqfd->kvm);
13503 }
13504 
13505 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13506 				   uint32_t guest_irq, bool set)
13507 {
13508 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13509 }
13510 
13511 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13512 				  struct kvm_kernel_irq_routing_entry *new)
13513 {
13514 	if (new->type != KVM_IRQ_ROUTING_MSI)
13515 		return true;
13516 
13517 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13518 }
13519 
13520 bool kvm_vector_hashing_enabled(void)
13521 {
13522 	return vector_hashing;
13523 }
13524 
13525 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13526 {
13527 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13528 }
13529 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13530 
13531 
13532 int kvm_spec_ctrl_test_value(u64 value)
13533 {
13534 	/*
13535 	 * test that setting IA32_SPEC_CTRL to given value
13536 	 * is allowed by the host processor
13537 	 */
13538 
13539 	u64 saved_value;
13540 	unsigned long flags;
13541 	int ret = 0;
13542 
13543 	local_irq_save(flags);
13544 
13545 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13546 		ret = 1;
13547 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13548 		ret = 1;
13549 	else
13550 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13551 
13552 	local_irq_restore(flags);
13553 
13554 	return ret;
13555 }
13556 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13557 
13558 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13559 {
13560 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13561 	struct x86_exception fault;
13562 	u64 access = error_code &
13563 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13564 
13565 	if (!(error_code & PFERR_PRESENT_MASK) ||
13566 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13567 		/*
13568 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13569 		 * tables probably do not match the TLB.  Just proceed
13570 		 * with the error code that the processor gave.
13571 		 */
13572 		fault.vector = PF_VECTOR;
13573 		fault.error_code_valid = true;
13574 		fault.error_code = error_code;
13575 		fault.nested_page_fault = false;
13576 		fault.address = gva;
13577 		fault.async_page_fault = false;
13578 	}
13579 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13580 }
13581 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13582 
13583 /*
13584  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13585  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13586  * indicates whether exit to userspace is needed.
13587  */
13588 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13589 			      struct x86_exception *e)
13590 {
13591 	if (r == X86EMUL_PROPAGATE_FAULT) {
13592 		if (KVM_BUG_ON(!e, vcpu->kvm))
13593 			return -EIO;
13594 
13595 		kvm_inject_emulated_page_fault(vcpu, e);
13596 		return 1;
13597 	}
13598 
13599 	/*
13600 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13601 	 * while handling a VMX instruction KVM could've handled the request
13602 	 * correctly by exiting to userspace and performing I/O but there
13603 	 * doesn't seem to be a real use-case behind such requests, just return
13604 	 * KVM_EXIT_INTERNAL_ERROR for now.
13605 	 */
13606 	kvm_prepare_emulation_failure_exit(vcpu);
13607 
13608 	return 0;
13609 }
13610 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13611 
13612 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13613 {
13614 	bool pcid_enabled;
13615 	struct x86_exception e;
13616 	struct {
13617 		u64 pcid;
13618 		u64 gla;
13619 	} operand;
13620 	int r;
13621 
13622 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13623 	if (r != X86EMUL_CONTINUE)
13624 		return kvm_handle_memory_failure(vcpu, r, &e);
13625 
13626 	if (operand.pcid >> 12 != 0) {
13627 		kvm_inject_gp(vcpu, 0);
13628 		return 1;
13629 	}
13630 
13631 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13632 
13633 	switch (type) {
13634 	case INVPCID_TYPE_INDIV_ADDR:
13635 		/*
13636 		 * LAM doesn't apply to addresses that are inputs to TLB
13637 		 * invalidation.
13638 		 */
13639 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13640 		    is_noncanonical_address(operand.gla, vcpu)) {
13641 			kvm_inject_gp(vcpu, 0);
13642 			return 1;
13643 		}
13644 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13645 		return kvm_skip_emulated_instruction(vcpu);
13646 
13647 	case INVPCID_TYPE_SINGLE_CTXT:
13648 		if (!pcid_enabled && (operand.pcid != 0)) {
13649 			kvm_inject_gp(vcpu, 0);
13650 			return 1;
13651 		}
13652 
13653 		kvm_invalidate_pcid(vcpu, operand.pcid);
13654 		return kvm_skip_emulated_instruction(vcpu);
13655 
13656 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13657 		/*
13658 		 * Currently, KVM doesn't mark global entries in the shadow
13659 		 * page tables, so a non-global flush just degenerates to a
13660 		 * global flush. If needed, we could optimize this later by
13661 		 * keeping track of global entries in shadow page tables.
13662 		 */
13663 
13664 		fallthrough;
13665 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13666 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13667 		return kvm_skip_emulated_instruction(vcpu);
13668 
13669 	default:
13670 		kvm_inject_gp(vcpu, 0);
13671 		return 1;
13672 	}
13673 }
13674 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13675 
13676 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13677 {
13678 	struct kvm_run *run = vcpu->run;
13679 	struct kvm_mmio_fragment *frag;
13680 	unsigned int len;
13681 
13682 	BUG_ON(!vcpu->mmio_needed);
13683 
13684 	/* Complete previous fragment */
13685 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13686 	len = min(8u, frag->len);
13687 	if (!vcpu->mmio_is_write)
13688 		memcpy(frag->data, run->mmio.data, len);
13689 
13690 	if (frag->len <= 8) {
13691 		/* Switch to the next fragment. */
13692 		frag++;
13693 		vcpu->mmio_cur_fragment++;
13694 	} else {
13695 		/* Go forward to the next mmio piece. */
13696 		frag->data += len;
13697 		frag->gpa += len;
13698 		frag->len -= len;
13699 	}
13700 
13701 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13702 		vcpu->mmio_needed = 0;
13703 
13704 		// VMG change, at this point, we're always done
13705 		// RIP has already been advanced
13706 		return 1;
13707 	}
13708 
13709 	// More MMIO is needed
13710 	run->mmio.phys_addr = frag->gpa;
13711 	run->mmio.len = min(8u, frag->len);
13712 	run->mmio.is_write = vcpu->mmio_is_write;
13713 	if (run->mmio.is_write)
13714 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13715 	run->exit_reason = KVM_EXIT_MMIO;
13716 
13717 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13718 
13719 	return 0;
13720 }
13721 
13722 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13723 			  void *data)
13724 {
13725 	int handled;
13726 	struct kvm_mmio_fragment *frag;
13727 
13728 	if (!data)
13729 		return -EINVAL;
13730 
13731 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13732 	if (handled == bytes)
13733 		return 1;
13734 
13735 	bytes -= handled;
13736 	gpa += handled;
13737 	data += handled;
13738 
13739 	/*TODO: Check if need to increment number of frags */
13740 	frag = vcpu->mmio_fragments;
13741 	vcpu->mmio_nr_fragments = 1;
13742 	frag->len = bytes;
13743 	frag->gpa = gpa;
13744 	frag->data = data;
13745 
13746 	vcpu->mmio_needed = 1;
13747 	vcpu->mmio_cur_fragment = 0;
13748 
13749 	vcpu->run->mmio.phys_addr = gpa;
13750 	vcpu->run->mmio.len = min(8u, frag->len);
13751 	vcpu->run->mmio.is_write = 1;
13752 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13753 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13754 
13755 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13756 
13757 	return 0;
13758 }
13759 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13760 
13761 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13762 			 void *data)
13763 {
13764 	int handled;
13765 	struct kvm_mmio_fragment *frag;
13766 
13767 	if (!data)
13768 		return -EINVAL;
13769 
13770 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13771 	if (handled == bytes)
13772 		return 1;
13773 
13774 	bytes -= handled;
13775 	gpa += handled;
13776 	data += handled;
13777 
13778 	/*TODO: Check if need to increment number of frags */
13779 	frag = vcpu->mmio_fragments;
13780 	vcpu->mmio_nr_fragments = 1;
13781 	frag->len = bytes;
13782 	frag->gpa = gpa;
13783 	frag->data = data;
13784 
13785 	vcpu->mmio_needed = 1;
13786 	vcpu->mmio_cur_fragment = 0;
13787 
13788 	vcpu->run->mmio.phys_addr = gpa;
13789 	vcpu->run->mmio.len = min(8u, frag->len);
13790 	vcpu->run->mmio.is_write = 0;
13791 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13792 
13793 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13794 
13795 	return 0;
13796 }
13797 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13798 
13799 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13800 {
13801 	vcpu->arch.sev_pio_count -= count;
13802 	vcpu->arch.sev_pio_data += count * size;
13803 }
13804 
13805 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13806 			   unsigned int port);
13807 
13808 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13809 {
13810 	int size = vcpu->arch.pio.size;
13811 	int port = vcpu->arch.pio.port;
13812 
13813 	vcpu->arch.pio.count = 0;
13814 	if (vcpu->arch.sev_pio_count)
13815 		return kvm_sev_es_outs(vcpu, size, port);
13816 	return 1;
13817 }
13818 
13819 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13820 			   unsigned int port)
13821 {
13822 	for (;;) {
13823 		unsigned int count =
13824 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13825 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13826 
13827 		/* memcpy done already by emulator_pio_out.  */
13828 		advance_sev_es_emulated_pio(vcpu, count, size);
13829 		if (!ret)
13830 			break;
13831 
13832 		/* Emulation done by the kernel.  */
13833 		if (!vcpu->arch.sev_pio_count)
13834 			return 1;
13835 	}
13836 
13837 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13838 	return 0;
13839 }
13840 
13841 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13842 			  unsigned int port);
13843 
13844 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13845 {
13846 	unsigned count = vcpu->arch.pio.count;
13847 	int size = vcpu->arch.pio.size;
13848 	int port = vcpu->arch.pio.port;
13849 
13850 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13851 	advance_sev_es_emulated_pio(vcpu, count, size);
13852 	if (vcpu->arch.sev_pio_count)
13853 		return kvm_sev_es_ins(vcpu, size, port);
13854 	return 1;
13855 }
13856 
13857 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13858 			  unsigned int port)
13859 {
13860 	for (;;) {
13861 		unsigned int count =
13862 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13863 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13864 			break;
13865 
13866 		/* Emulation done by the kernel.  */
13867 		advance_sev_es_emulated_pio(vcpu, count, size);
13868 		if (!vcpu->arch.sev_pio_count)
13869 			return 1;
13870 	}
13871 
13872 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13873 	return 0;
13874 }
13875 
13876 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13877 			 unsigned int port, void *data,  unsigned int count,
13878 			 int in)
13879 {
13880 	vcpu->arch.sev_pio_data = data;
13881 	vcpu->arch.sev_pio_count = count;
13882 	return in ? kvm_sev_es_ins(vcpu, size, port)
13883 		  : kvm_sev_es_outs(vcpu, size, port);
13884 }
13885 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13886 
13887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13906 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13907 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13908 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13909 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13910 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13911 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13913 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13914 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13915 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13916 
13917 static int __init kvm_x86_init(void)
13918 {
13919 	kvm_mmu_x86_module_init();
13920 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13921 	return 0;
13922 }
13923 module_init(kvm_x86_init);
13924 
13925 static void __exit kvm_x86_exit(void)
13926 {
13927 	/*
13928 	 * If module_init() is implemented, module_exit() must also be
13929 	 * implemented to allow module unload.
13930 	 */
13931 }
13932 module_exit(kvm_x86_exit);
13933