1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 struct kvm_caps kvm_caps __read_mostly = { 96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 97 }; 98 EXPORT_SYMBOL_GPL(kvm_caps); 99 100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 101 102 #define emul_to_vcpu(ctxt) \ 103 ((struct kvm_vcpu *)(ctxt)->vcpu) 104 105 /* EFER defaults: 106 * - enable syscall per default because its emulated by KVM 107 * - enable LME and LMA per default on 64 bit KVM 108 */ 109 #ifdef CONFIG_X86_64 110 static 111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 112 #else 113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 114 #endif 115 116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 117 118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 119 120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 121 122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 124 125 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 126 static void process_nmi(struct kvm_vcpu *vcpu); 127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 128 static void store_regs(struct kvm_vcpu *vcpu); 129 static int sync_regs(struct kvm_vcpu *vcpu); 130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 131 132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 134 135 static DEFINE_MUTEX(vendor_module_lock); 136 struct kvm_x86_ops kvm_x86_ops __read_mostly; 137 138 #define KVM_X86_OP(func) \ 139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 140 *(((struct kvm_x86_ops *)0)->func)); 141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 143 #include <asm/kvm-x86-ops.h> 144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 146 147 static bool __read_mostly ignore_msrs = 0; 148 module_param(ignore_msrs, bool, 0644); 149 150 bool __read_mostly report_ignored_msrs = true; 151 module_param(report_ignored_msrs, bool, 0644); 152 EXPORT_SYMBOL_GPL(report_ignored_msrs); 153 154 unsigned int min_timer_period_us = 200; 155 module_param(min_timer_period_us, uint, 0644); 156 157 static bool __read_mostly kvmclock_periodic_sync = true; 158 module_param(kvmclock_periodic_sync, bool, 0444); 159 160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 161 static u32 __read_mostly tsc_tolerance_ppm = 250; 162 module_param(tsc_tolerance_ppm, uint, 0644); 163 164 /* 165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 166 * adaptive tuning starting from default advancement of 1000ns. '0' disables 167 * advancement entirely. Any other value is used as-is and disables adaptive 168 * tuning, i.e. allows privileged userspace to set an exact advancement time. 169 */ 170 static int __read_mostly lapic_timer_advance_ns = -1; 171 module_param(lapic_timer_advance_ns, int, 0644); 172 173 static bool __read_mostly vector_hashing = true; 174 module_param(vector_hashing, bool, 0444); 175 176 bool __read_mostly enable_vmware_backdoor = false; 177 module_param(enable_vmware_backdoor, bool, 0444); 178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 179 180 /* 181 * Flags to manipulate forced emulation behavior (any non-zero value will 182 * enable forced emulation). 183 */ 184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 185 static int __read_mostly force_emulation_prefix; 186 module_param(force_emulation_prefix, int, 0644); 187 188 int __read_mostly pi_inject_timer = -1; 189 module_param(pi_inject_timer, bint, 0644); 190 191 /* Enable/disable PMU virtualization */ 192 bool __read_mostly enable_pmu = true; 193 EXPORT_SYMBOL_GPL(enable_pmu); 194 module_param(enable_pmu, bool, 0444); 195 196 bool __read_mostly eager_page_split = true; 197 module_param(eager_page_split, bool, 0644); 198 199 /* Enable/disable SMT_RSB bug mitigation */ 200 static bool __read_mostly mitigate_smt_rsb; 201 module_param(mitigate_smt_rsb, bool, 0444); 202 203 /* 204 * Restoring the host value for MSRs that are only consumed when running in 205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 206 * returns to userspace, i.e. the kernel can run with the guest's value. 207 */ 208 #define KVM_MAX_NR_USER_RETURN_MSRS 16 209 210 struct kvm_user_return_msrs { 211 struct user_return_notifier urn; 212 bool registered; 213 struct kvm_user_return_msr_values { 214 u64 host; 215 u64 curr; 216 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 217 }; 218 219 u32 __read_mostly kvm_nr_uret_msrs; 220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 222 static struct kvm_user_return_msrs __percpu *user_return_msrs; 223 224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 228 229 u64 __read_mostly host_efer; 230 EXPORT_SYMBOL_GPL(host_efer); 231 232 bool __read_mostly allow_smaller_maxphyaddr = 0; 233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 234 235 bool __read_mostly enable_apicv = true; 236 EXPORT_SYMBOL_GPL(enable_apicv); 237 238 u64 __read_mostly host_xss; 239 EXPORT_SYMBOL_GPL(host_xss); 240 241 u64 __read_mostly host_arch_capabilities; 242 EXPORT_SYMBOL_GPL(host_arch_capabilities); 243 244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 245 KVM_GENERIC_VM_STATS(), 246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 247 STATS_DESC_COUNTER(VM, mmu_pte_write), 248 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 249 STATS_DESC_COUNTER(VM, mmu_flooded), 250 STATS_DESC_COUNTER(VM, mmu_recycled), 251 STATS_DESC_COUNTER(VM, mmu_cache_miss), 252 STATS_DESC_ICOUNTER(VM, mmu_unsync), 253 STATS_DESC_ICOUNTER(VM, pages_4k), 254 STATS_DESC_ICOUNTER(VM, pages_2m), 255 STATS_DESC_ICOUNTER(VM, pages_1g), 256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 259 }; 260 261 const struct kvm_stats_header kvm_vm_stats_header = { 262 .name_size = KVM_STATS_NAME_SIZE, 263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 264 .id_offset = sizeof(struct kvm_stats_header), 265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 267 sizeof(kvm_vm_stats_desc), 268 }; 269 270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 271 KVM_GENERIC_VCPU_STATS(), 272 STATS_DESC_COUNTER(VCPU, pf_taken), 273 STATS_DESC_COUNTER(VCPU, pf_fixed), 274 STATS_DESC_COUNTER(VCPU, pf_emulate), 275 STATS_DESC_COUNTER(VCPU, pf_spurious), 276 STATS_DESC_COUNTER(VCPU, pf_fast), 277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 278 STATS_DESC_COUNTER(VCPU, pf_guest), 279 STATS_DESC_COUNTER(VCPU, tlb_flush), 280 STATS_DESC_COUNTER(VCPU, invlpg), 281 STATS_DESC_COUNTER(VCPU, exits), 282 STATS_DESC_COUNTER(VCPU, io_exits), 283 STATS_DESC_COUNTER(VCPU, mmio_exits), 284 STATS_DESC_COUNTER(VCPU, signal_exits), 285 STATS_DESC_COUNTER(VCPU, irq_window_exits), 286 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 287 STATS_DESC_COUNTER(VCPU, l1d_flush), 288 STATS_DESC_COUNTER(VCPU, halt_exits), 289 STATS_DESC_COUNTER(VCPU, request_irq_exits), 290 STATS_DESC_COUNTER(VCPU, irq_exits), 291 STATS_DESC_COUNTER(VCPU, host_state_reload), 292 STATS_DESC_COUNTER(VCPU, fpu_reload), 293 STATS_DESC_COUNTER(VCPU, insn_emulation), 294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 295 STATS_DESC_COUNTER(VCPU, hypercalls), 296 STATS_DESC_COUNTER(VCPU, irq_injections), 297 STATS_DESC_COUNTER(VCPU, nmi_injections), 298 STATS_DESC_COUNTER(VCPU, req_event), 299 STATS_DESC_COUNTER(VCPU, nested_run), 300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 301 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 302 STATS_DESC_COUNTER(VCPU, preemption_reported), 303 STATS_DESC_COUNTER(VCPU, preemption_other), 304 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 305 STATS_DESC_COUNTER(VCPU, notify_window_exits), 306 }; 307 308 const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315 }; 316 317 u64 __read_mostly host_xcr0; 318 319 static struct kmem_cache *x86_emulator_cache; 320 321 /* 322 * When called, it means the previous get/set msr reached an invalid msr. 323 * Return true if we want to ignore/silent this failed msr access. 324 */ 325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 326 { 327 const char *op = write ? "wrmsr" : "rdmsr"; 328 329 if (ignore_msrs) { 330 if (report_ignored_msrs) 331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 332 op, msr, data); 333 /* Mask the error */ 334 return true; 335 } else { 336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 337 op, msr, data); 338 return false; 339 } 340 } 341 342 static struct kmem_cache *kvm_alloc_emulator_cache(void) 343 { 344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 345 unsigned int size = sizeof(struct x86_emulate_ctxt); 346 347 return kmem_cache_create_usercopy("x86_emulator", size, 348 __alignof__(struct x86_emulate_ctxt), 349 SLAB_ACCOUNT, useroffset, 350 size - useroffset, NULL); 351 } 352 353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 354 355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 356 { 357 int i; 358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 359 vcpu->arch.apf.gfns[i] = ~0; 360 } 361 362 static void kvm_on_user_return(struct user_return_notifier *urn) 363 { 364 unsigned slot; 365 struct kvm_user_return_msrs *msrs 366 = container_of(urn, struct kvm_user_return_msrs, urn); 367 struct kvm_user_return_msr_values *values; 368 unsigned long flags; 369 370 /* 371 * Disabling irqs at this point since the following code could be 372 * interrupted and executed through kvm_arch_hardware_disable() 373 */ 374 local_irq_save(flags); 375 if (msrs->registered) { 376 msrs->registered = false; 377 user_return_notifier_unregister(urn); 378 } 379 local_irq_restore(flags); 380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 381 values = &msrs->values[slot]; 382 if (values->host != values->curr) { 383 wrmsrl(kvm_uret_msrs_list[slot], values->host); 384 values->curr = values->host; 385 } 386 } 387 } 388 389 static int kvm_probe_user_return_msr(u32 msr) 390 { 391 u64 val; 392 int ret; 393 394 preempt_disable(); 395 ret = rdmsrl_safe(msr, &val); 396 if (ret) 397 goto out; 398 ret = wrmsrl_safe(msr, val); 399 out: 400 preempt_enable(); 401 return ret; 402 } 403 404 int kvm_add_user_return_msr(u32 msr) 405 { 406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 407 408 if (kvm_probe_user_return_msr(msr)) 409 return -1; 410 411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 412 return kvm_nr_uret_msrs++; 413 } 414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 415 416 int kvm_find_user_return_msr(u32 msr) 417 { 418 int i; 419 420 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 421 if (kvm_uret_msrs_list[i] == msr) 422 return i; 423 } 424 return -1; 425 } 426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 427 428 static void kvm_user_return_msr_cpu_online(void) 429 { 430 unsigned int cpu = smp_processor_id(); 431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 432 u64 value; 433 int i; 434 435 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 436 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 437 msrs->values[i].host = value; 438 msrs->values[i].curr = value; 439 } 440 } 441 442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 443 { 444 unsigned int cpu = smp_processor_id(); 445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 446 int err; 447 448 value = (value & mask) | (msrs->values[slot].host & ~mask); 449 if (value == msrs->values[slot].curr) 450 return 0; 451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 452 if (err) 453 return 1; 454 455 msrs->values[slot].curr = value; 456 if (!msrs->registered) { 457 msrs->urn.on_user_return = kvm_on_user_return; 458 user_return_notifier_register(&msrs->urn); 459 msrs->registered = true; 460 } 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 464 465 static void drop_user_return_notifiers(void) 466 { 467 unsigned int cpu = smp_processor_id(); 468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 469 470 if (msrs->registered) 471 kvm_on_user_return(&msrs->urn); 472 } 473 474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 475 { 476 return vcpu->arch.apic_base; 477 } 478 479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 480 { 481 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 482 } 483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 484 485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 486 { 487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 491 492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 493 return 1; 494 if (!msr_info->host_initiated) { 495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 496 return 1; 497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 498 return 1; 499 } 500 501 kvm_lapic_set_base(vcpu, msr_info->data); 502 kvm_recalculate_apic_map(vcpu->kvm); 503 return 0; 504 } 505 506 /* 507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 508 * 509 * Hardware virtualization extension instructions may fault if a reboot turns 510 * off virtualization while processes are running. Usually after catching the 511 * fault we just panic; during reboot instead the instruction is ignored. 512 */ 513 noinstr void kvm_spurious_fault(void) 514 { 515 /* Fault while not rebooting. We want the trace. */ 516 BUG_ON(!kvm_rebooting); 517 } 518 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 519 520 #define EXCPT_BENIGN 0 521 #define EXCPT_CONTRIBUTORY 1 522 #define EXCPT_PF 2 523 524 static int exception_class(int vector) 525 { 526 switch (vector) { 527 case PF_VECTOR: 528 return EXCPT_PF; 529 case DE_VECTOR: 530 case TS_VECTOR: 531 case NP_VECTOR: 532 case SS_VECTOR: 533 case GP_VECTOR: 534 return EXCPT_CONTRIBUTORY; 535 default: 536 break; 537 } 538 return EXCPT_BENIGN; 539 } 540 541 #define EXCPT_FAULT 0 542 #define EXCPT_TRAP 1 543 #define EXCPT_ABORT 2 544 #define EXCPT_INTERRUPT 3 545 #define EXCPT_DB 4 546 547 static int exception_type(int vector) 548 { 549 unsigned int mask; 550 551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 552 return EXCPT_INTERRUPT; 553 554 mask = 1 << vector; 555 556 /* 557 * #DBs can be trap-like or fault-like, the caller must check other CPU 558 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 559 */ 560 if (mask & (1 << DB_VECTOR)) 561 return EXCPT_DB; 562 563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 564 return EXCPT_TRAP; 565 566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 567 return EXCPT_ABORT; 568 569 /* Reserved exceptions will result in fault */ 570 return EXCPT_FAULT; 571 } 572 573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 574 struct kvm_queued_exception *ex) 575 { 576 if (!ex->has_payload) 577 return; 578 579 switch (ex->vector) { 580 case DB_VECTOR: 581 /* 582 * "Certain debug exceptions may clear bit 0-3. The 583 * remaining contents of the DR6 register are never 584 * cleared by the processor". 585 */ 586 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 587 /* 588 * In order to reflect the #DB exception payload in guest 589 * dr6, three components need to be considered: active low 590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 591 * DR6_BS and DR6_BT) 592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 593 * In the target guest dr6: 594 * FIXED_1 bits should always be set. 595 * Active low bits should be cleared if 1-setting in payload. 596 * Active high bits should be set if 1-setting in payload. 597 * 598 * Note, the payload is compatible with the pending debug 599 * exceptions/exit qualification under VMX, that active_low bits 600 * are active high in payload. 601 * So they need to be flipped for DR6. 602 */ 603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 604 vcpu->arch.dr6 |= ex->payload; 605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 606 607 /* 608 * The #DB payload is defined as compatible with the 'pending 609 * debug exceptions' field under VMX, not DR6. While bit 12 is 610 * defined in the 'pending debug exceptions' field (enabled 611 * breakpoint), it is reserved and must be zero in DR6. 612 */ 613 vcpu->arch.dr6 &= ~BIT(12); 614 break; 615 case PF_VECTOR: 616 vcpu->arch.cr2 = ex->payload; 617 break; 618 } 619 620 ex->has_payload = false; 621 ex->payload = 0; 622 } 623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 624 625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 626 bool has_error_code, u32 error_code, 627 bool has_payload, unsigned long payload) 628 { 629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 630 631 ex->vector = vector; 632 ex->injected = false; 633 ex->pending = true; 634 ex->has_error_code = has_error_code; 635 ex->error_code = error_code; 636 ex->has_payload = has_payload; 637 ex->payload = payload; 638 } 639 640 /* Forcibly leave the nested mode in cases like a vCPU reset */ 641 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 642 { 643 kvm_x86_ops.nested_ops->leave_nested(vcpu); 644 } 645 646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 647 unsigned nr, bool has_error, u32 error_code, 648 bool has_payload, unsigned long payload, bool reinject) 649 { 650 u32 prev_nr; 651 int class1, class2; 652 653 kvm_make_request(KVM_REQ_EVENT, vcpu); 654 655 /* 656 * If the exception is destined for L2 and isn't being reinjected, 657 * morph it to a VM-Exit if L1 wants to intercept the exception. A 658 * previously injected exception is not checked because it was checked 659 * when it was original queued, and re-checking is incorrect if _L1_ 660 * injected the exception, in which case it's exempt from interception. 661 */ 662 if (!reinject && is_guest_mode(vcpu) && 663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 665 has_payload, payload); 666 return; 667 } 668 669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 670 queue: 671 if (reinject) { 672 /* 673 * On VM-Entry, an exception can be pending if and only 674 * if event injection was blocked by nested_run_pending. 675 * In that case, however, vcpu_enter_guest() requests an 676 * immediate exit, and the guest shouldn't proceed far 677 * enough to need reinjection. 678 */ 679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 680 vcpu->arch.exception.injected = true; 681 if (WARN_ON_ONCE(has_payload)) { 682 /* 683 * A reinjected event has already 684 * delivered its payload. 685 */ 686 has_payload = false; 687 payload = 0; 688 } 689 } else { 690 vcpu->arch.exception.pending = true; 691 vcpu->arch.exception.injected = false; 692 } 693 vcpu->arch.exception.has_error_code = has_error; 694 vcpu->arch.exception.vector = nr; 695 vcpu->arch.exception.error_code = error_code; 696 vcpu->arch.exception.has_payload = has_payload; 697 vcpu->arch.exception.payload = payload; 698 if (!is_guest_mode(vcpu)) 699 kvm_deliver_exception_payload(vcpu, 700 &vcpu->arch.exception); 701 return; 702 } 703 704 /* to check exception */ 705 prev_nr = vcpu->arch.exception.vector; 706 if (prev_nr == DF_VECTOR) { 707 /* triple fault -> shutdown */ 708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 709 return; 710 } 711 class1 = exception_class(prev_nr); 712 class2 = exception_class(nr); 713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 715 /* 716 * Synthesize #DF. Clear the previously injected or pending 717 * exception so as not to incorrectly trigger shutdown. 718 */ 719 vcpu->arch.exception.injected = false; 720 vcpu->arch.exception.pending = false; 721 722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 723 } else { 724 /* replace previous exception with a new one in a hope 725 that instruction re-execution will regenerate lost 726 exception */ 727 goto queue; 728 } 729 } 730 731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 734 } 735 EXPORT_SYMBOL_GPL(kvm_queue_exception); 736 737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 738 { 739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 740 } 741 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 742 743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 744 unsigned long payload) 745 { 746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 747 } 748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 749 750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 751 u32 error_code, unsigned long payload) 752 { 753 kvm_multiple_exception(vcpu, nr, true, error_code, 754 true, payload, false); 755 } 756 757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 758 { 759 if (err) 760 kvm_inject_gp(vcpu, 0); 761 else 762 return kvm_skip_emulated_instruction(vcpu); 763 764 return 1; 765 } 766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 767 768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 769 { 770 if (err) { 771 kvm_inject_gp(vcpu, 0); 772 return 1; 773 } 774 775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 776 EMULTYPE_COMPLETE_USER_EXIT); 777 } 778 779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 780 { 781 ++vcpu->stat.pf_guest; 782 783 /* 784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 785 * whether or not L1 wants to intercept "regular" #PF. 786 */ 787 if (is_guest_mode(vcpu) && fault->async_page_fault) 788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 789 true, fault->error_code, 790 true, fault->address); 791 else 792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 793 fault->address); 794 } 795 796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 797 struct x86_exception *fault) 798 { 799 struct kvm_mmu *fault_mmu; 800 WARN_ON_ONCE(fault->vector != PF_VECTOR); 801 802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 803 vcpu->arch.walk_mmu; 804 805 /* 806 * Invalidate the TLB entry for the faulting address, if it exists, 807 * else the access will fault indefinitely (and to emulate hardware). 808 */ 809 if ((fault->error_code & PFERR_PRESENT_MASK) && 810 !(fault->error_code & PFERR_RSVD_MASK)) 811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 812 KVM_MMU_ROOT_CURRENT); 813 814 fault_mmu->inject_page_fault(vcpu, fault); 815 } 816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 817 818 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 819 { 820 atomic_inc(&vcpu->arch.nmi_queued); 821 kvm_make_request(KVM_REQ_NMI, vcpu); 822 } 823 824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 827 } 828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 829 830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 831 { 832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 833 } 834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 835 836 /* 837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 838 * a #GP and return false. 839 */ 840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 841 { 842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 843 return true; 844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 845 return false; 846 } 847 848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 849 { 850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 851 return true; 852 853 kvm_queue_exception(vcpu, UD_VECTOR); 854 return false; 855 } 856 EXPORT_SYMBOL_GPL(kvm_require_dr); 857 858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 859 { 860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 861 } 862 863 /* 864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 865 */ 866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 867 { 868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 870 gpa_t real_gpa; 871 int i; 872 int ret; 873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 874 875 /* 876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 877 * to an L1 GPA. 878 */ 879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 881 if (real_gpa == INVALID_GPA) 882 return 0; 883 884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 886 cr3 & GENMASK(11, 5), sizeof(pdpte)); 887 if (ret < 0) 888 return 0; 889 890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 891 if ((pdpte[i] & PT_PRESENT_MASK) && 892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 893 return 0; 894 } 895 } 896 897 /* 898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 899 * Shadow page roots need to be reconstructed instead. 900 */ 901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 903 904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 907 vcpu->arch.pdptrs_from_userspace = false; 908 909 return 1; 910 } 911 EXPORT_SYMBOL_GPL(load_pdptrs); 912 913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 914 { 915 #ifdef CONFIG_X86_64 916 if (cr0 & 0xffffffff00000000UL) 917 return false; 918 #endif 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return false; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return false; 925 926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 927 } 928 929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 930 { 931 /* 932 * CR0.WP is incorporated into the MMU role, but only for non-nested, 933 * indirect shadow MMUs. If paging is disabled, no updates are needed 934 * as there are no permission bits to emulate. If TDP is enabled, the 935 * MMU's metadata needs to be updated, e.g. so that emulating guest 936 * translations does the right thing, but there's no need to unload the 937 * root as CR0.WP doesn't affect SPTEs. 938 */ 939 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 940 if (!(cr0 & X86_CR0_PG)) 941 return; 942 943 if (tdp_enabled) { 944 kvm_init_mmu(vcpu); 945 return; 946 } 947 } 948 949 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 950 kvm_clear_async_pf_completion_queue(vcpu); 951 kvm_async_pf_hash_reset(vcpu); 952 953 /* 954 * Clearing CR0.PG is defined to flush the TLB from the guest's 955 * perspective. 956 */ 957 if (!(cr0 & X86_CR0_PG)) 958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 959 } 960 961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 962 kvm_mmu_reset_context(vcpu); 963 964 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 965 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) && 966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 968 } 969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 970 971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 972 { 973 unsigned long old_cr0 = kvm_read_cr0(vcpu); 974 975 if (!kvm_is_valid_cr0(vcpu, cr0)) 976 return 1; 977 978 cr0 |= X86_CR0_ET; 979 980 /* Write to CR0 reserved bits are ignored, even on Intel. */ 981 cr0 &= ~CR0_RESERVED_BITS; 982 983 #ifdef CONFIG_X86_64 984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 985 (cr0 & X86_CR0_PG)) { 986 int cs_db, cs_l; 987 988 if (!is_pae(vcpu)) 989 return 1; 990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 991 if (cs_l) 992 return 1; 993 } 994 #endif 995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if (!(cr0 & X86_CR0_PG) && 1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1002 return 1; 1003 1004 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1005 1006 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1007 1008 return 0; 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1011 1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1013 { 1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1015 } 1016 EXPORT_SYMBOL_GPL(kvm_lmsw); 1017 1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1019 { 1020 if (vcpu->arch.guest_state_protected) 1021 return; 1022 1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1027 1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1031 } 1032 1033 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1034 vcpu->arch.pkru != vcpu->arch.host_pkru && 1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1037 write_pkru(vcpu->arch.pkru); 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1040 1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1042 { 1043 if (vcpu->arch.guest_state_protected) 1044 return; 1045 1046 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1049 vcpu->arch.pkru = rdpkru(); 1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1051 write_pkru(vcpu->arch.host_pkru); 1052 } 1053 1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1055 1056 if (vcpu->arch.xcr0 != host_xcr0) 1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1058 1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1060 vcpu->arch.ia32_xss != host_xss) 1061 wrmsrl(MSR_IA32_XSS, host_xss); 1062 } 1063 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1066 1067 #ifdef CONFIG_X86_64 1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1069 { 1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1071 } 1072 #endif 1073 1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1075 { 1076 u64 xcr0 = xcr; 1077 u64 old_xcr0 = vcpu->arch.xcr0; 1078 u64 valid_bits; 1079 1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1081 if (index != XCR_XFEATURE_ENABLED_MASK) 1082 return 1; 1083 if (!(xcr0 & XFEATURE_MASK_FP)) 1084 return 1; 1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1086 return 1; 1087 1088 /* 1089 * Do not allow the guest to set bits that we do not support 1090 * saving. However, xcr0 bit 0 is always set, even if the 1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1092 */ 1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1094 if (xcr0 & ~valid_bits) 1095 return 1; 1096 1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1098 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1099 return 1; 1100 1101 if (xcr0 & XFEATURE_MASK_AVX512) { 1102 if (!(xcr0 & XFEATURE_MASK_YMM)) 1103 return 1; 1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1105 return 1; 1106 } 1107 1108 if ((xcr0 & XFEATURE_MASK_XTILE) && 1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1110 return 1; 1111 1112 vcpu->arch.xcr0 = xcr0; 1113 1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1115 kvm_update_cpuid_runtime(vcpu); 1116 return 0; 1117 } 1118 1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1120 { 1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 1128 return kvm_skip_emulated_instruction(vcpu); 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1131 1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1133 { 1134 if (cr4 & cr4_reserved_bits) 1135 return false; 1136 1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1138 return false; 1139 1140 return true; 1141 } 1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1143 1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1145 { 1146 return __kvm_is_valid_cr4(vcpu, cr4) && 1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1148 } 1149 1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1151 { 1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1153 kvm_mmu_reset_context(vcpu); 1154 1155 /* 1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1157 * according to the SDM; however, stale prev_roots could be reused 1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1161 * so fall through. 1162 */ 1163 if (!tdp_enabled && 1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1165 kvm_mmu_unload(vcpu); 1166 1167 /* 1168 * The TLB has to be flushed for all PCIDs if any of the following 1169 * (architecturally required) changes happen: 1170 * - CR4.PCIDE is changed from 1 to 0 1171 * - CR4.PGE is toggled 1172 * 1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1174 */ 1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1178 1179 /* 1180 * The TLB has to be flushed for the current PCID if any of the 1181 * following (architecturally required) changes happen: 1182 * - CR4.SMEP is changed from 0 to 1 1183 * - CR4.PAE is toggled 1184 */ 1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1188 1189 } 1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1191 1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1193 { 1194 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1195 1196 if (!kvm_is_valid_cr4(vcpu, cr4)) 1197 return 1; 1198 1199 if (is_long_mode(vcpu)) { 1200 if (!(cr4 & X86_CR4_PAE)) 1201 return 1; 1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1203 return 1; 1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1207 return 1; 1208 1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1212 return 1; 1213 } 1214 1215 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1216 1217 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1222 1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1224 { 1225 struct kvm_mmu *mmu = vcpu->arch.mmu; 1226 unsigned long roots_to_free = 0; 1227 int i; 1228 1229 /* 1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1232 * also via the emulator. KVM's TDP page tables are not in the scope of 1233 * the invalidation, but the guest's TLB entries need to be flushed as 1234 * the CPU may have cached entries in its TLB for the target PCID. 1235 */ 1236 if (unlikely(tdp_enabled)) { 1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1238 return; 1239 } 1240 1241 /* 1242 * If neither the current CR3 nor any of the prev_roots use the given 1243 * PCID, then nothing needs to be done here because a resync will 1244 * happen anyway before switching to any other CR3. 1245 */ 1246 if (kvm_get_active_pcid(vcpu) == pcid) { 1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1249 } 1250 1251 /* 1252 * If PCID is disabled, there is no need to free prev_roots even if the 1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1254 * with PCIDE=0. 1255 */ 1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1257 return; 1258 1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1262 1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1264 } 1265 1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1267 { 1268 bool skip_tlb_flush = false; 1269 unsigned long pcid = 0; 1270 #ifdef CONFIG_X86_64 1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1273 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1274 pcid = cr3 & X86_CR3_PCID_MASK; 1275 } 1276 #endif 1277 1278 /* PDPTRs are always reloaded for PAE paging. */ 1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1280 goto handle_tlb_flush; 1281 1282 /* 1283 * Do not condition the GPA check on long mode, this helper is used to 1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1285 * the current vCPU mode is accurate. 1286 */ 1287 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1288 return 1; 1289 1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1291 return 1; 1292 1293 if (cr3 != kvm_read_cr3(vcpu)) 1294 kvm_mmu_new_pgd(vcpu, cr3); 1295 1296 vcpu->arch.cr3 = cr3; 1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1299 1300 handle_tlb_flush: 1301 /* 1302 * A load of CR3 that flushes the TLB flushes only the current PCID, 1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1304 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1305 * and it's impossible to use a non-zero PCID when PCID is disabled, 1306 * i.e. only PCID=0 can be relevant. 1307 */ 1308 if (!skip_tlb_flush) 1309 kvm_invalidate_pcid(vcpu, pcid); 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1314 1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1316 { 1317 if (cr8 & CR8_RESERVED_BITS) 1318 return 1; 1319 if (lapic_in_kernel(vcpu)) 1320 kvm_lapic_set_tpr(vcpu, cr8); 1321 else 1322 vcpu->arch.cr8 = cr8; 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1326 1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1328 { 1329 if (lapic_in_kernel(vcpu)) 1330 return kvm_lapic_get_cr8(vcpu); 1331 else 1332 return vcpu->arch.cr8; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1335 1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1337 { 1338 int i; 1339 1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1341 for (i = 0; i < KVM_NR_DB_REGS; i++) 1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1343 } 1344 } 1345 1346 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1347 { 1348 unsigned long dr7; 1349 1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1351 dr7 = vcpu->arch.guest_debug_dr7; 1352 else 1353 dr7 = vcpu->arch.dr7; 1354 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1356 if (dr7 & DR7_BP_EN_MASK) 1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1358 } 1359 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1360 1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1362 { 1363 u64 fixed = DR6_FIXED_1; 1364 1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1366 fixed |= DR6_RTM; 1367 1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1369 fixed |= DR6_BUS_LOCK; 1370 return fixed; 1371 } 1372 1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1374 { 1375 size_t size = ARRAY_SIZE(vcpu->arch.db); 1376 1377 switch (dr) { 1378 case 0 ... 3: 1379 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1381 vcpu->arch.eff_db[dr] = val; 1382 break; 1383 case 4: 1384 case 6: 1385 if (!kvm_dr6_valid(val)) 1386 return 1; /* #GP */ 1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1388 break; 1389 case 5: 1390 default: /* 7 */ 1391 if (!kvm_dr7_valid(val)) 1392 return 1; /* #GP */ 1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1394 kvm_update_dr7(vcpu); 1395 break; 1396 } 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_set_dr); 1401 1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1403 { 1404 size_t size = ARRAY_SIZE(vcpu->arch.db); 1405 1406 switch (dr) { 1407 case 0 ... 3: 1408 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1409 break; 1410 case 4: 1411 case 6: 1412 *val = vcpu->arch.dr6; 1413 break; 1414 case 5: 1415 default: /* 7 */ 1416 *val = vcpu->arch.dr7; 1417 break; 1418 } 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_get_dr); 1421 1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1423 { 1424 u32 ecx = kvm_rcx_read(vcpu); 1425 u64 data; 1426 1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1428 kvm_inject_gp(vcpu, 0); 1429 return 1; 1430 } 1431 1432 kvm_rax_write(vcpu, (u32)data); 1433 kvm_rdx_write(vcpu, data >> 32); 1434 return kvm_skip_emulated_instruction(vcpu); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1437 1438 /* 1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1443 * MSRs that KVM emulates without strictly requiring host support. 1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1446 * msrs_to_save and emulated_msrs. 1447 */ 1448 1449 static const u32 msrs_to_save_base[] = { 1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1451 MSR_STAR, 1452 #ifdef CONFIG_X86_64 1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1454 #endif 1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1464 MSR_IA32_UMWAIT_CONTROL, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static const u32 msrs_to_save_pmu[] = { 1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1475 1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1485 1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1488 1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1494 1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1498 }; 1499 1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1501 ARRAY_SIZE(msrs_to_save_pmu)]; 1502 static unsigned num_msrs_to_save; 1503 1504 static const u32 emulated_msrs_all[] = { 1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1507 1508 #ifdef CONFIG_KVM_HYPERV 1509 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1510 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1511 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1512 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1513 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1514 HV_X64_MSR_RESET, 1515 HV_X64_MSR_VP_INDEX, 1516 HV_X64_MSR_VP_RUNTIME, 1517 HV_X64_MSR_SCONTROL, 1518 HV_X64_MSR_STIMER0_CONFIG, 1519 HV_X64_MSR_VP_ASSIST_PAGE, 1520 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1521 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1522 HV_X64_MSR_SYNDBG_OPTIONS, 1523 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1524 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1525 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1526 #endif 1527 1528 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1529 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1530 1531 MSR_IA32_TSC_ADJUST, 1532 MSR_IA32_TSC_DEADLINE, 1533 MSR_IA32_ARCH_CAPABILITIES, 1534 MSR_IA32_PERF_CAPABILITIES, 1535 MSR_IA32_MISC_ENABLE, 1536 MSR_IA32_MCG_STATUS, 1537 MSR_IA32_MCG_CTL, 1538 MSR_IA32_MCG_EXT_CTL, 1539 MSR_IA32_SMBASE, 1540 MSR_SMI_COUNT, 1541 MSR_PLATFORM_INFO, 1542 MSR_MISC_FEATURES_ENABLES, 1543 MSR_AMD64_VIRT_SPEC_CTRL, 1544 MSR_AMD64_TSC_RATIO, 1545 MSR_IA32_POWER_CTL, 1546 MSR_IA32_UCODE_REV, 1547 1548 /* 1549 * KVM always supports the "true" VMX control MSRs, even if the host 1550 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1551 * doesn't strictly require them to exist in the host (ignoring that 1552 * KVM would refuse to load in the first place if the core set of MSRs 1553 * aren't supported). 1554 */ 1555 MSR_IA32_VMX_BASIC, 1556 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1557 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1558 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1559 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1560 MSR_IA32_VMX_MISC, 1561 MSR_IA32_VMX_CR0_FIXED0, 1562 MSR_IA32_VMX_CR4_FIXED0, 1563 MSR_IA32_VMX_VMCS_ENUM, 1564 MSR_IA32_VMX_PROCBASED_CTLS2, 1565 MSR_IA32_VMX_EPT_VPID_CAP, 1566 MSR_IA32_VMX_VMFUNC, 1567 1568 MSR_K7_HWCR, 1569 MSR_KVM_POLL_CONTROL, 1570 }; 1571 1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1573 static unsigned num_emulated_msrs; 1574 1575 /* 1576 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1577 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1578 * feature MSRs, but are handled separately to allow expedited lookups. 1579 */ 1580 static const u32 msr_based_features_all_except_vmx[] = { 1581 MSR_AMD64_DE_CFG, 1582 MSR_IA32_UCODE_REV, 1583 MSR_IA32_ARCH_CAPABILITIES, 1584 MSR_IA32_PERF_CAPABILITIES, 1585 }; 1586 1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1588 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1589 static unsigned int num_msr_based_features; 1590 1591 /* 1592 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1593 * patch, are immutable once the vCPU model is defined. 1594 */ 1595 static bool kvm_is_immutable_feature_msr(u32 msr) 1596 { 1597 int i; 1598 1599 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1600 return true; 1601 1602 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1603 if (msr == msr_based_features_all_except_vmx[i]) 1604 return msr != MSR_IA32_UCODE_REV; 1605 } 1606 1607 return false; 1608 } 1609 1610 /* 1611 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1612 * does not yet virtualize. These include: 1613 * 10 - MISC_PACKAGE_CTRLS 1614 * 11 - ENERGY_FILTERING_CTL 1615 * 12 - DOITM 1616 * 18 - FB_CLEAR_CTRL 1617 * 21 - XAPIC_DISABLE_STATUS 1618 * 23 - OVERCLOCKING_STATUS 1619 */ 1620 1621 #define KVM_SUPPORTED_ARCH_CAP \ 1622 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1623 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1624 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1625 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1626 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1627 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR) 1628 1629 static u64 kvm_get_arch_capabilities(void) 1630 { 1631 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1632 1633 /* 1634 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1635 * the nested hypervisor runs with NX huge pages. If it is not, 1636 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1637 * L1 guests, so it need not worry about its own (L2) guests. 1638 */ 1639 data |= ARCH_CAP_PSCHANGE_MC_NO; 1640 1641 /* 1642 * If we're doing cache flushes (either "always" or "cond") 1643 * we will do one whenever the guest does a vmlaunch/vmresume. 1644 * If an outer hypervisor is doing the cache flush for us 1645 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1646 * capability to the guest too, and if EPT is disabled we're not 1647 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1648 * require a nested hypervisor to do a flush of its own. 1649 */ 1650 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1651 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1652 1653 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1654 data |= ARCH_CAP_RDCL_NO; 1655 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1656 data |= ARCH_CAP_SSB_NO; 1657 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1658 data |= ARCH_CAP_MDS_NO; 1659 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1660 data |= ARCH_CAP_RFDS_NO; 1661 1662 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1663 /* 1664 * If RTM=0 because the kernel has disabled TSX, the host might 1665 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1666 * and therefore knows that there cannot be TAA) but keep 1667 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1668 * and we want to allow migrating those guests to tsx=off hosts. 1669 */ 1670 data &= ~ARCH_CAP_TAA_NO; 1671 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1672 data |= ARCH_CAP_TAA_NO; 1673 } else { 1674 /* 1675 * Nothing to do here; we emulate TSX_CTRL if present on the 1676 * host so the guest can choose between disabling TSX or 1677 * using VERW to clear CPU buffers. 1678 */ 1679 } 1680 1681 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1682 data |= ARCH_CAP_GDS_NO; 1683 1684 return data; 1685 } 1686 1687 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1688 { 1689 switch (msr->index) { 1690 case MSR_IA32_ARCH_CAPABILITIES: 1691 msr->data = kvm_get_arch_capabilities(); 1692 break; 1693 case MSR_IA32_PERF_CAPABILITIES: 1694 msr->data = kvm_caps.supported_perf_cap; 1695 break; 1696 case MSR_IA32_UCODE_REV: 1697 rdmsrl_safe(msr->index, &msr->data); 1698 break; 1699 default: 1700 return static_call(kvm_x86_get_msr_feature)(msr); 1701 } 1702 return 0; 1703 } 1704 1705 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1706 { 1707 struct kvm_msr_entry msr; 1708 int r; 1709 1710 /* Unconditionally clear the output for simplicity */ 1711 msr.data = 0; 1712 msr.index = index; 1713 r = kvm_get_msr_feature(&msr); 1714 1715 if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false)) 1716 r = 0; 1717 1718 *data = msr.data; 1719 1720 return r; 1721 } 1722 1723 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1724 { 1725 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1726 return false; 1727 1728 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1729 return false; 1730 1731 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1732 return false; 1733 1734 if (efer & (EFER_LME | EFER_LMA) && 1735 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1736 return false; 1737 1738 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1739 return false; 1740 1741 return true; 1742 1743 } 1744 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1745 { 1746 if (efer & efer_reserved_bits) 1747 return false; 1748 1749 return __kvm_valid_efer(vcpu, efer); 1750 } 1751 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1752 1753 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1754 { 1755 u64 old_efer = vcpu->arch.efer; 1756 u64 efer = msr_info->data; 1757 int r; 1758 1759 if (efer & efer_reserved_bits) 1760 return 1; 1761 1762 if (!msr_info->host_initiated) { 1763 if (!__kvm_valid_efer(vcpu, efer)) 1764 return 1; 1765 1766 if (is_paging(vcpu) && 1767 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1768 return 1; 1769 } 1770 1771 efer &= ~EFER_LMA; 1772 efer |= vcpu->arch.efer & EFER_LMA; 1773 1774 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1775 if (r) { 1776 WARN_ON(r > 0); 1777 return r; 1778 } 1779 1780 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1781 kvm_mmu_reset_context(vcpu); 1782 1783 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1784 (efer & EFER_SVME)) 1785 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1786 1787 return 0; 1788 } 1789 1790 void kvm_enable_efer_bits(u64 mask) 1791 { 1792 efer_reserved_bits &= ~mask; 1793 } 1794 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1795 1796 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1797 { 1798 struct kvm_x86_msr_filter *msr_filter; 1799 struct msr_bitmap_range *ranges; 1800 struct kvm *kvm = vcpu->kvm; 1801 bool allowed; 1802 int idx; 1803 u32 i; 1804 1805 /* x2APIC MSRs do not support filtering. */ 1806 if (index >= 0x800 && index <= 0x8ff) 1807 return true; 1808 1809 idx = srcu_read_lock(&kvm->srcu); 1810 1811 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1812 if (!msr_filter) { 1813 allowed = true; 1814 goto out; 1815 } 1816 1817 allowed = msr_filter->default_allow; 1818 ranges = msr_filter->ranges; 1819 1820 for (i = 0; i < msr_filter->count; i++) { 1821 u32 start = ranges[i].base; 1822 u32 end = start + ranges[i].nmsrs; 1823 u32 flags = ranges[i].flags; 1824 unsigned long *bitmap = ranges[i].bitmap; 1825 1826 if ((index >= start) && (index < end) && (flags & type)) { 1827 allowed = test_bit(index - start, bitmap); 1828 break; 1829 } 1830 } 1831 1832 out: 1833 srcu_read_unlock(&kvm->srcu, idx); 1834 1835 return allowed; 1836 } 1837 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1838 1839 /* 1840 * Write @data into the MSR specified by @index. Select MSR specific fault 1841 * checks are bypassed if @host_initiated is %true. 1842 * Returns 0 on success, non-0 otherwise. 1843 * Assumes vcpu_load() was already called. 1844 */ 1845 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1846 bool host_initiated) 1847 { 1848 struct msr_data msr; 1849 1850 switch (index) { 1851 case MSR_FS_BASE: 1852 case MSR_GS_BASE: 1853 case MSR_KERNEL_GS_BASE: 1854 case MSR_CSTAR: 1855 case MSR_LSTAR: 1856 if (is_noncanonical_address(data, vcpu)) 1857 return 1; 1858 break; 1859 case MSR_IA32_SYSENTER_EIP: 1860 case MSR_IA32_SYSENTER_ESP: 1861 /* 1862 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1863 * non-canonical address is written on Intel but not on 1864 * AMD (which ignores the top 32-bits, because it does 1865 * not implement 64-bit SYSENTER). 1866 * 1867 * 64-bit code should hence be able to write a non-canonical 1868 * value on AMD. Making the address canonical ensures that 1869 * vmentry does not fail on Intel after writing a non-canonical 1870 * value, and that something deterministic happens if the guest 1871 * invokes 64-bit SYSENTER. 1872 */ 1873 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1874 break; 1875 case MSR_TSC_AUX: 1876 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1877 return 1; 1878 1879 if (!host_initiated && 1880 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1881 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1882 return 1; 1883 1884 /* 1885 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1886 * incomplete and conflicting architectural behavior. Current 1887 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1888 * reserved and always read as zeros. Enforce Intel's reserved 1889 * bits check if and only if the guest CPU is Intel, and clear 1890 * the bits in all other cases. This ensures cross-vendor 1891 * migration will provide consistent behavior for the guest. 1892 */ 1893 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1894 return 1; 1895 1896 data = (u32)data; 1897 break; 1898 } 1899 1900 msr.data = data; 1901 msr.index = index; 1902 msr.host_initiated = host_initiated; 1903 1904 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1905 } 1906 1907 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1908 u32 index, u64 data, bool host_initiated) 1909 { 1910 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1911 1912 if (ret == KVM_MSR_RET_INVALID) 1913 if (kvm_msr_ignored_check(index, data, true)) 1914 ret = 0; 1915 1916 return ret; 1917 } 1918 1919 /* 1920 * Read the MSR specified by @index into @data. Select MSR specific fault 1921 * checks are bypassed if @host_initiated is %true. 1922 * Returns 0 on success, non-0 otherwise. 1923 * Assumes vcpu_load() was already called. 1924 */ 1925 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1926 bool host_initiated) 1927 { 1928 struct msr_data msr; 1929 int ret; 1930 1931 switch (index) { 1932 case MSR_TSC_AUX: 1933 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1934 return 1; 1935 1936 if (!host_initiated && 1937 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1938 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1939 return 1; 1940 break; 1941 } 1942 1943 msr.index = index; 1944 msr.host_initiated = host_initiated; 1945 1946 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1947 if (!ret) 1948 *data = msr.data; 1949 return ret; 1950 } 1951 1952 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1953 u32 index, u64 *data, bool host_initiated) 1954 { 1955 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1956 1957 if (ret == KVM_MSR_RET_INVALID) { 1958 /* Unconditionally clear *data for simplicity */ 1959 *data = 0; 1960 if (kvm_msr_ignored_check(index, 0, false)) 1961 ret = 0; 1962 } 1963 1964 return ret; 1965 } 1966 1967 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1968 { 1969 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1970 return KVM_MSR_RET_FILTERED; 1971 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1972 } 1973 1974 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1975 { 1976 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1977 return KVM_MSR_RET_FILTERED; 1978 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1979 } 1980 1981 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1982 { 1983 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1984 } 1985 EXPORT_SYMBOL_GPL(kvm_get_msr); 1986 1987 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1988 { 1989 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1990 } 1991 EXPORT_SYMBOL_GPL(kvm_set_msr); 1992 1993 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1994 { 1995 if (!vcpu->run->msr.error) { 1996 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1997 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1998 } 1999 } 2000 2001 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 2002 { 2003 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2004 } 2005 2006 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2007 { 2008 complete_userspace_rdmsr(vcpu); 2009 return complete_emulated_msr_access(vcpu); 2010 } 2011 2012 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2013 { 2014 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2015 } 2016 2017 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2018 { 2019 complete_userspace_rdmsr(vcpu); 2020 return complete_fast_msr_access(vcpu); 2021 } 2022 2023 static u64 kvm_msr_reason(int r) 2024 { 2025 switch (r) { 2026 case KVM_MSR_RET_INVALID: 2027 return KVM_MSR_EXIT_REASON_UNKNOWN; 2028 case KVM_MSR_RET_FILTERED: 2029 return KVM_MSR_EXIT_REASON_FILTER; 2030 default: 2031 return KVM_MSR_EXIT_REASON_INVAL; 2032 } 2033 } 2034 2035 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2036 u32 exit_reason, u64 data, 2037 int (*completion)(struct kvm_vcpu *vcpu), 2038 int r) 2039 { 2040 u64 msr_reason = kvm_msr_reason(r); 2041 2042 /* Check if the user wanted to know about this MSR fault */ 2043 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2044 return 0; 2045 2046 vcpu->run->exit_reason = exit_reason; 2047 vcpu->run->msr.error = 0; 2048 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2049 vcpu->run->msr.reason = msr_reason; 2050 vcpu->run->msr.index = index; 2051 vcpu->run->msr.data = data; 2052 vcpu->arch.complete_userspace_io = completion; 2053 2054 return 1; 2055 } 2056 2057 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2058 { 2059 u32 ecx = kvm_rcx_read(vcpu); 2060 u64 data; 2061 int r; 2062 2063 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2064 2065 if (!r) { 2066 trace_kvm_msr_read(ecx, data); 2067 2068 kvm_rax_write(vcpu, data & -1u); 2069 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2070 } else { 2071 /* MSR read failed? See if we should ask user space */ 2072 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2073 complete_fast_rdmsr, r)) 2074 return 0; 2075 trace_kvm_msr_read_ex(ecx); 2076 } 2077 2078 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2079 } 2080 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2081 2082 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2083 { 2084 u32 ecx = kvm_rcx_read(vcpu); 2085 u64 data = kvm_read_edx_eax(vcpu); 2086 int r; 2087 2088 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2089 2090 if (!r) { 2091 trace_kvm_msr_write(ecx, data); 2092 } else { 2093 /* MSR write failed? See if we should ask user space */ 2094 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2095 complete_fast_msr_access, r)) 2096 return 0; 2097 /* Signal all other negative errors to userspace */ 2098 if (r < 0) 2099 return r; 2100 trace_kvm_msr_write_ex(ecx, data); 2101 } 2102 2103 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2104 } 2105 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2106 2107 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2108 { 2109 return kvm_skip_emulated_instruction(vcpu); 2110 } 2111 2112 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2113 { 2114 /* Treat an INVD instruction as a NOP and just skip it. */ 2115 return kvm_emulate_as_nop(vcpu); 2116 } 2117 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2118 2119 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2120 { 2121 kvm_queue_exception(vcpu, UD_VECTOR); 2122 return 1; 2123 } 2124 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2125 2126 2127 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2128 { 2129 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2130 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2131 return kvm_handle_invalid_op(vcpu); 2132 2133 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2134 return kvm_emulate_as_nop(vcpu); 2135 } 2136 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2137 { 2138 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2139 } 2140 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2141 2142 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2143 { 2144 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2145 } 2146 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2147 2148 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2149 { 2150 xfer_to_guest_mode_prepare(); 2151 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2152 xfer_to_guest_mode_work_pending(); 2153 } 2154 2155 /* 2156 * The fast path for frequent and performance sensitive wrmsr emulation, 2157 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2158 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2159 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2160 * other cases which must be called after interrupts are enabled on the host. 2161 */ 2162 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2163 { 2164 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2165 return 1; 2166 2167 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2168 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2169 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2170 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2171 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2172 2173 return 1; 2174 } 2175 2176 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2177 { 2178 if (!kvm_can_use_hv_timer(vcpu)) 2179 return 1; 2180 2181 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2182 return 0; 2183 } 2184 2185 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2186 { 2187 u32 msr = kvm_rcx_read(vcpu); 2188 u64 data; 2189 fastpath_t ret = EXIT_FASTPATH_NONE; 2190 2191 kvm_vcpu_srcu_read_lock(vcpu); 2192 2193 switch (msr) { 2194 case APIC_BASE_MSR + (APIC_ICR >> 4): 2195 data = kvm_read_edx_eax(vcpu); 2196 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2197 kvm_skip_emulated_instruction(vcpu); 2198 ret = EXIT_FASTPATH_EXIT_HANDLED; 2199 } 2200 break; 2201 case MSR_IA32_TSC_DEADLINE: 2202 data = kvm_read_edx_eax(vcpu); 2203 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2204 kvm_skip_emulated_instruction(vcpu); 2205 ret = EXIT_FASTPATH_REENTER_GUEST; 2206 } 2207 break; 2208 default: 2209 break; 2210 } 2211 2212 if (ret != EXIT_FASTPATH_NONE) 2213 trace_kvm_msr_write(msr, data); 2214 2215 kvm_vcpu_srcu_read_unlock(vcpu); 2216 2217 return ret; 2218 } 2219 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2220 2221 /* 2222 * Adapt set_msr() to msr_io()'s calling convention 2223 */ 2224 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2225 { 2226 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2227 } 2228 2229 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2230 { 2231 u64 val; 2232 2233 /* 2234 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2235 * not support modifying the guest vCPU model on the fly, e.g. changing 2236 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2237 * writes of the same value, e.g. to allow userspace to blindly stuff 2238 * all MSRs when emulating RESET. 2239 */ 2240 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2241 if (do_get_msr(vcpu, index, &val) || *data != val) 2242 return -EINVAL; 2243 2244 return 0; 2245 } 2246 2247 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2248 } 2249 2250 #ifdef CONFIG_X86_64 2251 struct pvclock_clock { 2252 int vclock_mode; 2253 u64 cycle_last; 2254 u64 mask; 2255 u32 mult; 2256 u32 shift; 2257 u64 base_cycles; 2258 u64 offset; 2259 }; 2260 2261 struct pvclock_gtod_data { 2262 seqcount_t seq; 2263 2264 struct pvclock_clock clock; /* extract of a clocksource struct */ 2265 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2266 2267 ktime_t offs_boot; 2268 u64 wall_time_sec; 2269 }; 2270 2271 static struct pvclock_gtod_data pvclock_gtod_data; 2272 2273 static void update_pvclock_gtod(struct timekeeper *tk) 2274 { 2275 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2276 2277 write_seqcount_begin(&vdata->seq); 2278 2279 /* copy pvclock gtod data */ 2280 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2281 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2282 vdata->clock.mask = tk->tkr_mono.mask; 2283 vdata->clock.mult = tk->tkr_mono.mult; 2284 vdata->clock.shift = tk->tkr_mono.shift; 2285 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2286 vdata->clock.offset = tk->tkr_mono.base; 2287 2288 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2289 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2290 vdata->raw_clock.mask = tk->tkr_raw.mask; 2291 vdata->raw_clock.mult = tk->tkr_raw.mult; 2292 vdata->raw_clock.shift = tk->tkr_raw.shift; 2293 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2294 vdata->raw_clock.offset = tk->tkr_raw.base; 2295 2296 vdata->wall_time_sec = tk->xtime_sec; 2297 2298 vdata->offs_boot = tk->offs_boot; 2299 2300 write_seqcount_end(&vdata->seq); 2301 } 2302 2303 static s64 get_kvmclock_base_ns(void) 2304 { 2305 /* Count up from boot time, but with the frequency of the raw clock. */ 2306 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2307 } 2308 #else 2309 static s64 get_kvmclock_base_ns(void) 2310 { 2311 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2312 return ktime_get_boottime_ns(); 2313 } 2314 #endif 2315 2316 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2317 { 2318 int version; 2319 int r; 2320 struct pvclock_wall_clock wc; 2321 u32 wc_sec_hi; 2322 u64 wall_nsec; 2323 2324 if (!wall_clock) 2325 return; 2326 2327 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2328 if (r) 2329 return; 2330 2331 if (version & 1) 2332 ++version; /* first time write, random junk */ 2333 2334 ++version; 2335 2336 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2337 return; 2338 2339 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2340 2341 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2342 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2343 wc.version = version; 2344 2345 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2346 2347 if (sec_hi_ofs) { 2348 wc_sec_hi = wall_nsec >> 32; 2349 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2350 &wc_sec_hi, sizeof(wc_sec_hi)); 2351 } 2352 2353 version++; 2354 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2355 } 2356 2357 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2358 bool old_msr, bool host_initiated) 2359 { 2360 struct kvm_arch *ka = &vcpu->kvm->arch; 2361 2362 if (vcpu->vcpu_id == 0 && !host_initiated) { 2363 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2364 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2365 2366 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2367 } 2368 2369 vcpu->arch.time = system_time; 2370 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2371 2372 /* we verify if the enable bit is set... */ 2373 if (system_time & 1) 2374 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2375 sizeof(struct pvclock_vcpu_time_info)); 2376 else 2377 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2378 2379 return; 2380 } 2381 2382 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2383 { 2384 do_shl32_div32(dividend, divisor); 2385 return dividend; 2386 } 2387 2388 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2389 s8 *pshift, u32 *pmultiplier) 2390 { 2391 uint64_t scaled64; 2392 int32_t shift = 0; 2393 uint64_t tps64; 2394 uint32_t tps32; 2395 2396 tps64 = base_hz; 2397 scaled64 = scaled_hz; 2398 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2399 tps64 >>= 1; 2400 shift--; 2401 } 2402 2403 tps32 = (uint32_t)tps64; 2404 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2405 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2406 scaled64 >>= 1; 2407 else 2408 tps32 <<= 1; 2409 shift++; 2410 } 2411 2412 *pshift = shift; 2413 *pmultiplier = div_frac(scaled64, tps32); 2414 } 2415 2416 #ifdef CONFIG_X86_64 2417 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2418 #endif 2419 2420 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2421 static unsigned long max_tsc_khz; 2422 2423 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2424 { 2425 u64 v = (u64)khz * (1000000 + ppm); 2426 do_div(v, 1000000); 2427 return v; 2428 } 2429 2430 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2431 2432 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2433 { 2434 u64 ratio; 2435 2436 /* Guest TSC same frequency as host TSC? */ 2437 if (!scale) { 2438 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2439 return 0; 2440 } 2441 2442 /* TSC scaling supported? */ 2443 if (!kvm_caps.has_tsc_control) { 2444 if (user_tsc_khz > tsc_khz) { 2445 vcpu->arch.tsc_catchup = 1; 2446 vcpu->arch.tsc_always_catchup = 1; 2447 return 0; 2448 } else { 2449 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2450 return -1; 2451 } 2452 } 2453 2454 /* TSC scaling required - calculate ratio */ 2455 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2456 user_tsc_khz, tsc_khz); 2457 2458 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2459 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2460 user_tsc_khz); 2461 return -1; 2462 } 2463 2464 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2465 return 0; 2466 } 2467 2468 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2469 { 2470 u32 thresh_lo, thresh_hi; 2471 int use_scaling = 0; 2472 2473 /* tsc_khz can be zero if TSC calibration fails */ 2474 if (user_tsc_khz == 0) { 2475 /* set tsc_scaling_ratio to a safe value */ 2476 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2477 return -1; 2478 } 2479 2480 /* Compute a scale to convert nanoseconds in TSC cycles */ 2481 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2482 &vcpu->arch.virtual_tsc_shift, 2483 &vcpu->arch.virtual_tsc_mult); 2484 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2485 2486 /* 2487 * Compute the variation in TSC rate which is acceptable 2488 * within the range of tolerance and decide if the 2489 * rate being applied is within that bounds of the hardware 2490 * rate. If so, no scaling or compensation need be done. 2491 */ 2492 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2493 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2494 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2495 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2496 user_tsc_khz, thresh_lo, thresh_hi); 2497 use_scaling = 1; 2498 } 2499 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2500 } 2501 2502 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2503 { 2504 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2505 vcpu->arch.virtual_tsc_mult, 2506 vcpu->arch.virtual_tsc_shift); 2507 tsc += vcpu->arch.this_tsc_write; 2508 return tsc; 2509 } 2510 2511 #ifdef CONFIG_X86_64 2512 static inline bool gtod_is_based_on_tsc(int mode) 2513 { 2514 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2515 } 2516 #endif 2517 2518 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2519 { 2520 #ifdef CONFIG_X86_64 2521 struct kvm_arch *ka = &vcpu->kvm->arch; 2522 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2523 2524 /* 2525 * To use the masterclock, the host clocksource must be based on TSC 2526 * and all vCPUs must have matching TSCs. Note, the count for matching 2527 * vCPUs doesn't include the reference vCPU, hence "+1". 2528 */ 2529 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2530 atomic_read(&vcpu->kvm->online_vcpus)) && 2531 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2532 2533 /* 2534 * Request a masterclock update if the masterclock needs to be toggled 2535 * on/off, or when starting a new generation and the masterclock is 2536 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2537 * taken _after_ the new generation is created). 2538 */ 2539 if ((ka->use_master_clock && new_generation) || 2540 (ka->use_master_clock != use_master_clock)) 2541 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2542 2543 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2544 atomic_read(&vcpu->kvm->online_vcpus), 2545 ka->use_master_clock, gtod->clock.vclock_mode); 2546 #endif 2547 } 2548 2549 /* 2550 * Multiply tsc by a fixed point number represented by ratio. 2551 * 2552 * The most significant 64-N bits (mult) of ratio represent the 2553 * integral part of the fixed point number; the remaining N bits 2554 * (frac) represent the fractional part, ie. ratio represents a fixed 2555 * point number (mult + frac * 2^(-N)). 2556 * 2557 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2558 */ 2559 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2560 { 2561 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2562 } 2563 2564 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2565 { 2566 u64 _tsc = tsc; 2567 2568 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2569 _tsc = __scale_tsc(ratio, tsc); 2570 2571 return _tsc; 2572 } 2573 2574 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2575 { 2576 u64 tsc; 2577 2578 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2579 2580 return target_tsc - tsc; 2581 } 2582 2583 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2584 { 2585 return vcpu->arch.l1_tsc_offset + 2586 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2587 } 2588 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2589 2590 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2591 { 2592 u64 nested_offset; 2593 2594 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2595 nested_offset = l1_offset; 2596 else 2597 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2598 kvm_caps.tsc_scaling_ratio_frac_bits); 2599 2600 nested_offset += l2_offset; 2601 return nested_offset; 2602 } 2603 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2604 2605 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2606 { 2607 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2608 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2609 kvm_caps.tsc_scaling_ratio_frac_bits); 2610 2611 return l1_multiplier; 2612 } 2613 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2614 2615 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2616 { 2617 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2618 vcpu->arch.l1_tsc_offset, 2619 l1_offset); 2620 2621 vcpu->arch.l1_tsc_offset = l1_offset; 2622 2623 /* 2624 * If we are here because L1 chose not to trap WRMSR to TSC then 2625 * according to the spec this should set L1's TSC (as opposed to 2626 * setting L1's offset for L2). 2627 */ 2628 if (is_guest_mode(vcpu)) 2629 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2630 l1_offset, 2631 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2632 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2633 else 2634 vcpu->arch.tsc_offset = l1_offset; 2635 2636 static_call(kvm_x86_write_tsc_offset)(vcpu); 2637 } 2638 2639 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2640 { 2641 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2642 2643 /* Userspace is changing the multiplier while L2 is active */ 2644 if (is_guest_mode(vcpu)) 2645 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2646 l1_multiplier, 2647 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2648 else 2649 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2650 2651 if (kvm_caps.has_tsc_control) 2652 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2653 } 2654 2655 static inline bool kvm_check_tsc_unstable(void) 2656 { 2657 #ifdef CONFIG_X86_64 2658 /* 2659 * TSC is marked unstable when we're running on Hyper-V, 2660 * 'TSC page' clocksource is good. 2661 */ 2662 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2663 return false; 2664 #endif 2665 return check_tsc_unstable(); 2666 } 2667 2668 /* 2669 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2670 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2671 * participates in. 2672 */ 2673 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2674 u64 ns, bool matched) 2675 { 2676 struct kvm *kvm = vcpu->kvm; 2677 2678 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2679 2680 /* 2681 * We also track th most recent recorded KHZ, write and time to 2682 * allow the matching interval to be extended at each write. 2683 */ 2684 kvm->arch.last_tsc_nsec = ns; 2685 kvm->arch.last_tsc_write = tsc; 2686 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2687 kvm->arch.last_tsc_offset = offset; 2688 2689 vcpu->arch.last_guest_tsc = tsc; 2690 2691 kvm_vcpu_write_tsc_offset(vcpu, offset); 2692 2693 if (!matched) { 2694 /* 2695 * We split periods of matched TSC writes into generations. 2696 * For each generation, we track the original measured 2697 * nanosecond time, offset, and write, so if TSCs are in 2698 * sync, we can match exact offset, and if not, we can match 2699 * exact software computation in compute_guest_tsc() 2700 * 2701 * These values are tracked in kvm->arch.cur_xxx variables. 2702 */ 2703 kvm->arch.cur_tsc_generation++; 2704 kvm->arch.cur_tsc_nsec = ns; 2705 kvm->arch.cur_tsc_write = tsc; 2706 kvm->arch.cur_tsc_offset = offset; 2707 kvm->arch.nr_vcpus_matched_tsc = 0; 2708 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2709 kvm->arch.nr_vcpus_matched_tsc++; 2710 } 2711 2712 /* Keep track of which generation this VCPU has synchronized to */ 2713 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2714 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2715 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2716 2717 kvm_track_tsc_matching(vcpu, !matched); 2718 } 2719 2720 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2721 { 2722 u64 data = user_value ? *user_value : 0; 2723 struct kvm *kvm = vcpu->kvm; 2724 u64 offset, ns, elapsed; 2725 unsigned long flags; 2726 bool matched = false; 2727 bool synchronizing = false; 2728 2729 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2730 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2731 ns = get_kvmclock_base_ns(); 2732 elapsed = ns - kvm->arch.last_tsc_nsec; 2733 2734 if (vcpu->arch.virtual_tsc_khz) { 2735 if (data == 0) { 2736 /* 2737 * Force synchronization when creating a vCPU, or when 2738 * userspace explicitly writes a zero value. 2739 */ 2740 synchronizing = true; 2741 } else if (kvm->arch.user_set_tsc) { 2742 u64 tsc_exp = kvm->arch.last_tsc_write + 2743 nsec_to_cycles(vcpu, elapsed); 2744 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2745 /* 2746 * Here lies UAPI baggage: when a user-initiated TSC write has 2747 * a small delta (1 second) of virtual cycle time against the 2748 * previously set vCPU, we assume that they were intended to be 2749 * in sync and the delta was only due to the racy nature of the 2750 * legacy API. 2751 * 2752 * This trick falls down when restoring a guest which genuinely 2753 * has been running for less time than the 1 second of imprecision 2754 * which we allow for in the legacy API. In this case, the first 2755 * value written by userspace (on any vCPU) should not be subject 2756 * to this 'correction' to make it sync up with values that only 2757 * come from the kernel's default vCPU creation. Make the 1-second 2758 * slop hack only trigger if the user_set_tsc flag is already set. 2759 */ 2760 synchronizing = data < tsc_exp + tsc_hz && 2761 data + tsc_hz > tsc_exp; 2762 } 2763 } 2764 2765 if (user_value) 2766 kvm->arch.user_set_tsc = true; 2767 2768 /* 2769 * For a reliable TSC, we can match TSC offsets, and for an unstable 2770 * TSC, we add elapsed time in this computation. We could let the 2771 * compensation code attempt to catch up if we fall behind, but 2772 * it's better to try to match offsets from the beginning. 2773 */ 2774 if (synchronizing && 2775 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2776 if (!kvm_check_tsc_unstable()) { 2777 offset = kvm->arch.cur_tsc_offset; 2778 } else { 2779 u64 delta = nsec_to_cycles(vcpu, elapsed); 2780 data += delta; 2781 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2782 } 2783 matched = true; 2784 } 2785 2786 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2787 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2788 } 2789 2790 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2791 s64 adjustment) 2792 { 2793 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2794 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2795 } 2796 2797 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2798 { 2799 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2800 WARN_ON(adjustment < 0); 2801 adjustment = kvm_scale_tsc((u64) adjustment, 2802 vcpu->arch.l1_tsc_scaling_ratio); 2803 adjust_tsc_offset_guest(vcpu, adjustment); 2804 } 2805 2806 #ifdef CONFIG_X86_64 2807 2808 static u64 read_tsc(void) 2809 { 2810 u64 ret = (u64)rdtsc_ordered(); 2811 u64 last = pvclock_gtod_data.clock.cycle_last; 2812 2813 if (likely(ret >= last)) 2814 return ret; 2815 2816 /* 2817 * GCC likes to generate cmov here, but this branch is extremely 2818 * predictable (it's just a function of time and the likely is 2819 * very likely) and there's a data dependence, so force GCC 2820 * to generate a branch instead. I don't barrier() because 2821 * we don't actually need a barrier, and if this function 2822 * ever gets inlined it will generate worse code. 2823 */ 2824 asm volatile (""); 2825 return last; 2826 } 2827 2828 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2829 int *mode) 2830 { 2831 u64 tsc_pg_val; 2832 long v; 2833 2834 switch (clock->vclock_mode) { 2835 case VDSO_CLOCKMODE_HVCLOCK: 2836 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2837 tsc_timestamp, &tsc_pg_val)) { 2838 /* TSC page valid */ 2839 *mode = VDSO_CLOCKMODE_HVCLOCK; 2840 v = (tsc_pg_val - clock->cycle_last) & 2841 clock->mask; 2842 } else { 2843 /* TSC page invalid */ 2844 *mode = VDSO_CLOCKMODE_NONE; 2845 } 2846 break; 2847 case VDSO_CLOCKMODE_TSC: 2848 *mode = VDSO_CLOCKMODE_TSC; 2849 *tsc_timestamp = read_tsc(); 2850 v = (*tsc_timestamp - clock->cycle_last) & 2851 clock->mask; 2852 break; 2853 default: 2854 *mode = VDSO_CLOCKMODE_NONE; 2855 } 2856 2857 if (*mode == VDSO_CLOCKMODE_NONE) 2858 *tsc_timestamp = v = 0; 2859 2860 return v * clock->mult; 2861 } 2862 2863 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2864 { 2865 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2866 unsigned long seq; 2867 int mode; 2868 u64 ns; 2869 2870 do { 2871 seq = read_seqcount_begin(>od->seq); 2872 ns = gtod->raw_clock.base_cycles; 2873 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2874 ns >>= gtod->raw_clock.shift; 2875 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2876 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2877 *t = ns; 2878 2879 return mode; 2880 } 2881 2882 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2883 { 2884 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2885 unsigned long seq; 2886 int mode; 2887 u64 ns; 2888 2889 do { 2890 seq = read_seqcount_begin(>od->seq); 2891 ts->tv_sec = gtod->wall_time_sec; 2892 ns = gtod->clock.base_cycles; 2893 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2894 ns >>= gtod->clock.shift; 2895 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2896 2897 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2898 ts->tv_nsec = ns; 2899 2900 return mode; 2901 } 2902 2903 /* returns true if host is using TSC based clocksource */ 2904 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2905 { 2906 /* checked again under seqlock below */ 2907 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2908 return false; 2909 2910 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2911 tsc_timestamp)); 2912 } 2913 2914 /* returns true if host is using TSC based clocksource */ 2915 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2916 u64 *tsc_timestamp) 2917 { 2918 /* checked again under seqlock below */ 2919 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2920 return false; 2921 2922 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2923 } 2924 #endif 2925 2926 /* 2927 * 2928 * Assuming a stable TSC across physical CPUS, and a stable TSC 2929 * across virtual CPUs, the following condition is possible. 2930 * Each numbered line represents an event visible to both 2931 * CPUs at the next numbered event. 2932 * 2933 * "timespecX" represents host monotonic time. "tscX" represents 2934 * RDTSC value. 2935 * 2936 * VCPU0 on CPU0 | VCPU1 on CPU1 2937 * 2938 * 1. read timespec0,tsc0 2939 * 2. | timespec1 = timespec0 + N 2940 * | tsc1 = tsc0 + M 2941 * 3. transition to guest | transition to guest 2942 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2943 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2944 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2945 * 2946 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2947 * 2948 * - ret0 < ret1 2949 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2950 * ... 2951 * - 0 < N - M => M < N 2952 * 2953 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2954 * always the case (the difference between two distinct xtime instances 2955 * might be smaller then the difference between corresponding TSC reads, 2956 * when updating guest vcpus pvclock areas). 2957 * 2958 * To avoid that problem, do not allow visibility of distinct 2959 * system_timestamp/tsc_timestamp values simultaneously: use a master 2960 * copy of host monotonic time values. Update that master copy 2961 * in lockstep. 2962 * 2963 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2964 * 2965 */ 2966 2967 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2968 { 2969 #ifdef CONFIG_X86_64 2970 struct kvm_arch *ka = &kvm->arch; 2971 int vclock_mode; 2972 bool host_tsc_clocksource, vcpus_matched; 2973 2974 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2975 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2976 atomic_read(&kvm->online_vcpus)); 2977 2978 /* 2979 * If the host uses TSC clock, then passthrough TSC as stable 2980 * to the guest. 2981 */ 2982 host_tsc_clocksource = kvm_get_time_and_clockread( 2983 &ka->master_kernel_ns, 2984 &ka->master_cycle_now); 2985 2986 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2987 && !ka->backwards_tsc_observed 2988 && !ka->boot_vcpu_runs_old_kvmclock; 2989 2990 if (ka->use_master_clock) 2991 atomic_set(&kvm_guest_has_master_clock, 1); 2992 2993 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2994 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2995 vcpus_matched); 2996 #endif 2997 } 2998 2999 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3000 { 3001 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3002 } 3003 3004 static void __kvm_start_pvclock_update(struct kvm *kvm) 3005 { 3006 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3007 write_seqcount_begin(&kvm->arch.pvclock_sc); 3008 } 3009 3010 static void kvm_start_pvclock_update(struct kvm *kvm) 3011 { 3012 kvm_make_mclock_inprogress_request(kvm); 3013 3014 /* no guest entries from this point */ 3015 __kvm_start_pvclock_update(kvm); 3016 } 3017 3018 static void kvm_end_pvclock_update(struct kvm *kvm) 3019 { 3020 struct kvm_arch *ka = &kvm->arch; 3021 struct kvm_vcpu *vcpu; 3022 unsigned long i; 3023 3024 write_seqcount_end(&ka->pvclock_sc); 3025 raw_spin_unlock_irq(&ka->tsc_write_lock); 3026 kvm_for_each_vcpu(i, vcpu, kvm) 3027 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3028 3029 /* guest entries allowed */ 3030 kvm_for_each_vcpu(i, vcpu, kvm) 3031 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3032 } 3033 3034 static void kvm_update_masterclock(struct kvm *kvm) 3035 { 3036 kvm_hv_request_tsc_page_update(kvm); 3037 kvm_start_pvclock_update(kvm); 3038 pvclock_update_vm_gtod_copy(kvm); 3039 kvm_end_pvclock_update(kvm); 3040 } 3041 3042 /* 3043 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3044 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3045 * can change during boot even if the TSC is constant, as it's possible for KVM 3046 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3047 * notification when calibration completes, but practically speaking calibration 3048 * will complete before userspace is alive enough to create VMs. 3049 */ 3050 static unsigned long get_cpu_tsc_khz(void) 3051 { 3052 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3053 return tsc_khz; 3054 else 3055 return __this_cpu_read(cpu_tsc_khz); 3056 } 3057 3058 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3059 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3060 { 3061 struct kvm_arch *ka = &kvm->arch; 3062 struct pvclock_vcpu_time_info hv_clock; 3063 3064 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3065 get_cpu(); 3066 3067 data->flags = 0; 3068 if (ka->use_master_clock && 3069 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3070 #ifdef CONFIG_X86_64 3071 struct timespec64 ts; 3072 3073 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3074 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3075 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3076 } else 3077 #endif 3078 data->host_tsc = rdtsc(); 3079 3080 data->flags |= KVM_CLOCK_TSC_STABLE; 3081 hv_clock.tsc_timestamp = ka->master_cycle_now; 3082 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3083 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3084 &hv_clock.tsc_shift, 3085 &hv_clock.tsc_to_system_mul); 3086 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3087 } else { 3088 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3089 } 3090 3091 put_cpu(); 3092 } 3093 3094 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3095 { 3096 struct kvm_arch *ka = &kvm->arch; 3097 unsigned seq; 3098 3099 do { 3100 seq = read_seqcount_begin(&ka->pvclock_sc); 3101 __get_kvmclock(kvm, data); 3102 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3103 } 3104 3105 u64 get_kvmclock_ns(struct kvm *kvm) 3106 { 3107 struct kvm_clock_data data; 3108 3109 get_kvmclock(kvm, &data); 3110 return data.clock; 3111 } 3112 3113 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3114 struct gfn_to_pfn_cache *gpc, 3115 unsigned int offset, 3116 bool force_tsc_unstable) 3117 { 3118 struct kvm_vcpu_arch *vcpu = &v->arch; 3119 struct pvclock_vcpu_time_info *guest_hv_clock; 3120 unsigned long flags; 3121 3122 read_lock_irqsave(&gpc->lock, flags); 3123 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3124 read_unlock_irqrestore(&gpc->lock, flags); 3125 3126 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3127 return; 3128 3129 read_lock_irqsave(&gpc->lock, flags); 3130 } 3131 3132 guest_hv_clock = (void *)(gpc->khva + offset); 3133 3134 /* 3135 * This VCPU is paused, but it's legal for a guest to read another 3136 * VCPU's kvmclock, so we really have to follow the specification where 3137 * it says that version is odd if data is being modified, and even after 3138 * it is consistent. 3139 */ 3140 3141 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3142 smp_wmb(); 3143 3144 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3145 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3146 3147 if (vcpu->pvclock_set_guest_stopped_request) { 3148 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3149 vcpu->pvclock_set_guest_stopped_request = false; 3150 } 3151 3152 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3153 3154 if (force_tsc_unstable) 3155 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT; 3156 3157 smp_wmb(); 3158 3159 guest_hv_clock->version = ++vcpu->hv_clock.version; 3160 3161 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3162 read_unlock_irqrestore(&gpc->lock, flags); 3163 3164 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3165 } 3166 3167 static int kvm_guest_time_update(struct kvm_vcpu *v) 3168 { 3169 unsigned long flags, tgt_tsc_khz; 3170 unsigned seq; 3171 struct kvm_vcpu_arch *vcpu = &v->arch; 3172 struct kvm_arch *ka = &v->kvm->arch; 3173 s64 kernel_ns; 3174 u64 tsc_timestamp, host_tsc; 3175 u8 pvclock_flags; 3176 bool use_master_clock; 3177 #ifdef CONFIG_KVM_XEN 3178 /* 3179 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3180 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3181 * This default behaviour led to bugs in some guest kernels which cause 3182 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3183 */ 3184 bool xen_pvclock_tsc_unstable = 3185 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 3186 #endif 3187 3188 kernel_ns = 0; 3189 host_tsc = 0; 3190 3191 /* 3192 * If the host uses TSC clock, then passthrough TSC as stable 3193 * to the guest. 3194 */ 3195 do { 3196 seq = read_seqcount_begin(&ka->pvclock_sc); 3197 use_master_clock = ka->use_master_clock; 3198 if (use_master_clock) { 3199 host_tsc = ka->master_cycle_now; 3200 kernel_ns = ka->master_kernel_ns; 3201 } 3202 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3203 3204 /* Keep irq disabled to prevent changes to the clock */ 3205 local_irq_save(flags); 3206 tgt_tsc_khz = get_cpu_tsc_khz(); 3207 if (unlikely(tgt_tsc_khz == 0)) { 3208 local_irq_restore(flags); 3209 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3210 return 1; 3211 } 3212 if (!use_master_clock) { 3213 host_tsc = rdtsc(); 3214 kernel_ns = get_kvmclock_base_ns(); 3215 } 3216 3217 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3218 3219 /* 3220 * We may have to catch up the TSC to match elapsed wall clock 3221 * time for two reasons, even if kvmclock is used. 3222 * 1) CPU could have been running below the maximum TSC rate 3223 * 2) Broken TSC compensation resets the base at each VCPU 3224 * entry to avoid unknown leaps of TSC even when running 3225 * again on the same CPU. This may cause apparent elapsed 3226 * time to disappear, and the guest to stand still or run 3227 * very slowly. 3228 */ 3229 if (vcpu->tsc_catchup) { 3230 u64 tsc = compute_guest_tsc(v, kernel_ns); 3231 if (tsc > tsc_timestamp) { 3232 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3233 tsc_timestamp = tsc; 3234 } 3235 } 3236 3237 local_irq_restore(flags); 3238 3239 /* With all the info we got, fill in the values */ 3240 3241 if (kvm_caps.has_tsc_control) 3242 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3243 v->arch.l1_tsc_scaling_ratio); 3244 3245 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3246 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3247 &vcpu->hv_clock.tsc_shift, 3248 &vcpu->hv_clock.tsc_to_system_mul); 3249 vcpu->hw_tsc_khz = tgt_tsc_khz; 3250 kvm_xen_update_tsc_info(v); 3251 } 3252 3253 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3254 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3255 vcpu->last_guest_tsc = tsc_timestamp; 3256 3257 /* If the host uses TSC clocksource, then it is stable */ 3258 pvclock_flags = 0; 3259 if (use_master_clock) 3260 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3261 3262 vcpu->hv_clock.flags = pvclock_flags; 3263 3264 if (vcpu->pv_time.active) 3265 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false); 3266 #ifdef CONFIG_KVM_XEN 3267 if (vcpu->xen.vcpu_info_cache.active) 3268 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3269 offsetof(struct compat_vcpu_info, time), 3270 xen_pvclock_tsc_unstable); 3271 if (vcpu->xen.vcpu_time_info_cache.active) 3272 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0, 3273 xen_pvclock_tsc_unstable); 3274 #endif 3275 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3276 return 0; 3277 } 3278 3279 /* 3280 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3281 * which it started (i.e. its epoch, when its kvmclock was zero). 3282 * 3283 * In fact those clocks are subtly different; wall clock frequency is 3284 * adjusted by NTP and has leap seconds, while the kvmclock is a 3285 * simple function of the TSC without any such adjustment. 3286 * 3287 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3288 * that and kvmclock, but even that would be subject to change over 3289 * time. 3290 * 3291 * Attempt to calculate the epoch at a given moment using the *same* 3292 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3293 * wallclock and kvmclock times, and subtracting one from the other. 3294 * 3295 * Fall back to using their values at slightly different moments by 3296 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3297 */ 3298 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3299 { 3300 #ifdef CONFIG_X86_64 3301 struct pvclock_vcpu_time_info hv_clock; 3302 struct kvm_arch *ka = &kvm->arch; 3303 unsigned long seq, local_tsc_khz; 3304 struct timespec64 ts; 3305 uint64_t host_tsc; 3306 3307 do { 3308 seq = read_seqcount_begin(&ka->pvclock_sc); 3309 3310 local_tsc_khz = 0; 3311 if (!ka->use_master_clock) 3312 break; 3313 3314 /* 3315 * The TSC read and the call to get_cpu_tsc_khz() must happen 3316 * on the same CPU. 3317 */ 3318 get_cpu(); 3319 3320 local_tsc_khz = get_cpu_tsc_khz(); 3321 3322 if (local_tsc_khz && 3323 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3324 local_tsc_khz = 0; /* Fall back to old method */ 3325 3326 put_cpu(); 3327 3328 /* 3329 * These values must be snapshotted within the seqcount loop. 3330 * After that, it's just mathematics which can happen on any 3331 * CPU at any time. 3332 */ 3333 hv_clock.tsc_timestamp = ka->master_cycle_now; 3334 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3335 3336 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3337 3338 /* 3339 * If the conditions were right, and obtaining the wallclock+TSC was 3340 * successful, calculate the KVM clock at the corresponding time and 3341 * subtract one from the other to get the guest's epoch in nanoseconds 3342 * since 1970-01-01. 3343 */ 3344 if (local_tsc_khz) { 3345 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3346 &hv_clock.tsc_shift, 3347 &hv_clock.tsc_to_system_mul); 3348 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3349 __pvclock_read_cycles(&hv_clock, host_tsc); 3350 } 3351 #endif 3352 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3353 } 3354 3355 /* 3356 * kvmclock updates which are isolated to a given vcpu, such as 3357 * vcpu->cpu migration, should not allow system_timestamp from 3358 * the rest of the vcpus to remain static. Otherwise ntp frequency 3359 * correction applies to one vcpu's system_timestamp but not 3360 * the others. 3361 * 3362 * So in those cases, request a kvmclock update for all vcpus. 3363 * We need to rate-limit these requests though, as they can 3364 * considerably slow guests that have a large number of vcpus. 3365 * The time for a remote vcpu to update its kvmclock is bound 3366 * by the delay we use to rate-limit the updates. 3367 */ 3368 3369 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3370 3371 static void kvmclock_update_fn(struct work_struct *work) 3372 { 3373 unsigned long i; 3374 struct delayed_work *dwork = to_delayed_work(work); 3375 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3376 kvmclock_update_work); 3377 struct kvm *kvm = container_of(ka, struct kvm, arch); 3378 struct kvm_vcpu *vcpu; 3379 3380 kvm_for_each_vcpu(i, vcpu, kvm) { 3381 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3382 kvm_vcpu_kick(vcpu); 3383 } 3384 } 3385 3386 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3387 { 3388 struct kvm *kvm = v->kvm; 3389 3390 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3391 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3392 KVMCLOCK_UPDATE_DELAY); 3393 } 3394 3395 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3396 3397 static void kvmclock_sync_fn(struct work_struct *work) 3398 { 3399 struct delayed_work *dwork = to_delayed_work(work); 3400 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3401 kvmclock_sync_work); 3402 struct kvm *kvm = container_of(ka, struct kvm, arch); 3403 3404 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3405 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3406 KVMCLOCK_SYNC_PERIOD); 3407 } 3408 3409 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3410 static bool is_mci_control_msr(u32 msr) 3411 { 3412 return (msr & 3) == 0; 3413 } 3414 static bool is_mci_status_msr(u32 msr) 3415 { 3416 return (msr & 3) == 1; 3417 } 3418 3419 /* 3420 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3421 */ 3422 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3423 { 3424 /* McStatusWrEn enabled? */ 3425 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3426 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3427 3428 return false; 3429 } 3430 3431 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3432 { 3433 u64 mcg_cap = vcpu->arch.mcg_cap; 3434 unsigned bank_num = mcg_cap & 0xff; 3435 u32 msr = msr_info->index; 3436 u64 data = msr_info->data; 3437 u32 offset, last_msr; 3438 3439 switch (msr) { 3440 case MSR_IA32_MCG_STATUS: 3441 vcpu->arch.mcg_status = data; 3442 break; 3443 case MSR_IA32_MCG_CTL: 3444 if (!(mcg_cap & MCG_CTL_P) && 3445 (data || !msr_info->host_initiated)) 3446 return 1; 3447 if (data != 0 && data != ~(u64)0) 3448 return 1; 3449 vcpu->arch.mcg_ctl = data; 3450 break; 3451 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3452 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3453 if (msr > last_msr) 3454 return 1; 3455 3456 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3457 return 1; 3458 /* An attempt to write a 1 to a reserved bit raises #GP */ 3459 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3460 return 1; 3461 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3462 last_msr + 1 - MSR_IA32_MC0_CTL2); 3463 vcpu->arch.mci_ctl2_banks[offset] = data; 3464 break; 3465 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3466 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3467 if (msr > last_msr) 3468 return 1; 3469 3470 /* 3471 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3472 * values are architecturally undefined. But, some Linux 3473 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3474 * issue on AMD K8s, allow bit 10 to be clear when setting all 3475 * other bits in order to avoid an uncaught #GP in the guest. 3476 * 3477 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3478 * single-bit ECC data errors. 3479 */ 3480 if (is_mci_control_msr(msr) && 3481 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3482 return 1; 3483 3484 /* 3485 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3486 * AMD-based CPUs allow non-zero values, but if and only if 3487 * HWCR[McStatusWrEn] is set. 3488 */ 3489 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3490 data != 0 && !can_set_mci_status(vcpu)) 3491 return 1; 3492 3493 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3494 last_msr + 1 - MSR_IA32_MC0_CTL); 3495 vcpu->arch.mce_banks[offset] = data; 3496 break; 3497 default: 3498 return 1; 3499 } 3500 return 0; 3501 } 3502 3503 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3504 { 3505 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3506 3507 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3508 } 3509 3510 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3511 { 3512 gpa_t gpa = data & ~0x3f; 3513 3514 /* Bits 4:5 are reserved, Should be zero */ 3515 if (data & 0x30) 3516 return 1; 3517 3518 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3519 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3520 return 1; 3521 3522 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3523 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3524 return 1; 3525 3526 if (!lapic_in_kernel(vcpu)) 3527 return data ? 1 : 0; 3528 3529 vcpu->arch.apf.msr_en_val = data; 3530 3531 if (!kvm_pv_async_pf_enabled(vcpu)) { 3532 kvm_clear_async_pf_completion_queue(vcpu); 3533 kvm_async_pf_hash_reset(vcpu); 3534 return 0; 3535 } 3536 3537 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3538 sizeof(u64))) 3539 return 1; 3540 3541 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3542 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3543 3544 kvm_async_pf_wakeup_all(vcpu); 3545 3546 return 0; 3547 } 3548 3549 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3550 { 3551 /* Bits 8-63 are reserved */ 3552 if (data >> 8) 3553 return 1; 3554 3555 if (!lapic_in_kernel(vcpu)) 3556 return 1; 3557 3558 vcpu->arch.apf.msr_int_val = data; 3559 3560 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3561 3562 return 0; 3563 } 3564 3565 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3566 { 3567 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3568 vcpu->arch.time = 0; 3569 } 3570 3571 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3572 { 3573 ++vcpu->stat.tlb_flush; 3574 static_call(kvm_x86_flush_tlb_all)(vcpu); 3575 3576 /* Flushing all ASIDs flushes the current ASID... */ 3577 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3578 } 3579 3580 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3581 { 3582 ++vcpu->stat.tlb_flush; 3583 3584 if (!tdp_enabled) { 3585 /* 3586 * A TLB flush on behalf of the guest is equivalent to 3587 * INVPCID(all), toggling CR4.PGE, etc., which requires 3588 * a forced sync of the shadow page tables. Ensure all the 3589 * roots are synced and the guest TLB in hardware is clean. 3590 */ 3591 kvm_mmu_sync_roots(vcpu); 3592 kvm_mmu_sync_prev_roots(vcpu); 3593 } 3594 3595 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3596 3597 /* 3598 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3599 * grained flushing. 3600 */ 3601 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3602 } 3603 3604 3605 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3606 { 3607 ++vcpu->stat.tlb_flush; 3608 static_call(kvm_x86_flush_tlb_current)(vcpu); 3609 } 3610 3611 /* 3612 * Service "local" TLB flush requests, which are specific to the current MMU 3613 * context. In addition to the generic event handling in vcpu_enter_guest(), 3614 * TLB flushes that are targeted at an MMU context also need to be serviced 3615 * prior before nested VM-Enter/VM-Exit. 3616 */ 3617 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3618 { 3619 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3620 kvm_vcpu_flush_tlb_current(vcpu); 3621 3622 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3623 kvm_vcpu_flush_tlb_guest(vcpu); 3624 } 3625 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3626 3627 static void record_steal_time(struct kvm_vcpu *vcpu) 3628 { 3629 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3630 struct kvm_steal_time __user *st; 3631 struct kvm_memslots *slots; 3632 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3633 u64 steal; 3634 u32 version; 3635 3636 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3637 kvm_xen_runstate_set_running(vcpu); 3638 return; 3639 } 3640 3641 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3642 return; 3643 3644 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3645 return; 3646 3647 slots = kvm_memslots(vcpu->kvm); 3648 3649 if (unlikely(slots->generation != ghc->generation || 3650 gpa != ghc->gpa || 3651 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3652 /* We rely on the fact that it fits in a single page. */ 3653 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3654 3655 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3656 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3657 return; 3658 } 3659 3660 st = (struct kvm_steal_time __user *)ghc->hva; 3661 /* 3662 * Doing a TLB flush here, on the guest's behalf, can avoid 3663 * expensive IPIs. 3664 */ 3665 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3666 u8 st_preempted = 0; 3667 int err = -EFAULT; 3668 3669 if (!user_access_begin(st, sizeof(*st))) 3670 return; 3671 3672 asm volatile("1: xchgb %0, %2\n" 3673 "xor %1, %1\n" 3674 "2:\n" 3675 _ASM_EXTABLE_UA(1b, 2b) 3676 : "+q" (st_preempted), 3677 "+&r" (err), 3678 "+m" (st->preempted)); 3679 if (err) 3680 goto out; 3681 3682 user_access_end(); 3683 3684 vcpu->arch.st.preempted = 0; 3685 3686 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3687 st_preempted & KVM_VCPU_FLUSH_TLB); 3688 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3689 kvm_vcpu_flush_tlb_guest(vcpu); 3690 3691 if (!user_access_begin(st, sizeof(*st))) 3692 goto dirty; 3693 } else { 3694 if (!user_access_begin(st, sizeof(*st))) 3695 return; 3696 3697 unsafe_put_user(0, &st->preempted, out); 3698 vcpu->arch.st.preempted = 0; 3699 } 3700 3701 unsafe_get_user(version, &st->version, out); 3702 if (version & 1) 3703 version += 1; /* first time write, random junk */ 3704 3705 version += 1; 3706 unsafe_put_user(version, &st->version, out); 3707 3708 smp_wmb(); 3709 3710 unsafe_get_user(steal, &st->steal, out); 3711 steal += current->sched_info.run_delay - 3712 vcpu->arch.st.last_steal; 3713 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3714 unsafe_put_user(steal, &st->steal, out); 3715 3716 version += 1; 3717 unsafe_put_user(version, &st->version, out); 3718 3719 out: 3720 user_access_end(); 3721 dirty: 3722 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3723 } 3724 3725 static bool kvm_is_msr_to_save(u32 msr_index) 3726 { 3727 unsigned int i; 3728 3729 for (i = 0; i < num_msrs_to_save; i++) { 3730 if (msrs_to_save[i] == msr_index) 3731 return true; 3732 } 3733 3734 return false; 3735 } 3736 3737 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3738 { 3739 u32 msr = msr_info->index; 3740 u64 data = msr_info->data; 3741 3742 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3743 return kvm_xen_write_hypercall_page(vcpu, data); 3744 3745 switch (msr) { 3746 case MSR_AMD64_NB_CFG: 3747 case MSR_IA32_UCODE_WRITE: 3748 case MSR_VM_HSAVE_PA: 3749 case MSR_AMD64_PATCH_LOADER: 3750 case MSR_AMD64_BU_CFG2: 3751 case MSR_AMD64_DC_CFG: 3752 case MSR_AMD64_TW_CFG: 3753 case MSR_F15H_EX_CFG: 3754 break; 3755 3756 case MSR_IA32_UCODE_REV: 3757 if (msr_info->host_initiated) 3758 vcpu->arch.microcode_version = data; 3759 break; 3760 case MSR_IA32_ARCH_CAPABILITIES: 3761 if (!msr_info->host_initiated) 3762 return 1; 3763 vcpu->arch.arch_capabilities = data; 3764 break; 3765 case MSR_IA32_PERF_CAPABILITIES: 3766 if (!msr_info->host_initiated) 3767 return 1; 3768 if (data & ~kvm_caps.supported_perf_cap) 3769 return 1; 3770 3771 /* 3772 * Note, this is not just a performance optimization! KVM 3773 * disallows changing feature MSRs after the vCPU has run; PMU 3774 * refresh will bug the VM if called after the vCPU has run. 3775 */ 3776 if (vcpu->arch.perf_capabilities == data) 3777 break; 3778 3779 vcpu->arch.perf_capabilities = data; 3780 kvm_pmu_refresh(vcpu); 3781 break; 3782 case MSR_IA32_PRED_CMD: { 3783 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3784 3785 if (!msr_info->host_initiated) { 3786 if ((!guest_has_pred_cmd_msr(vcpu))) 3787 return 1; 3788 3789 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3790 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3791 reserved_bits |= PRED_CMD_IBPB; 3792 3793 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3794 reserved_bits |= PRED_CMD_SBPB; 3795 } 3796 3797 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3798 reserved_bits |= PRED_CMD_IBPB; 3799 3800 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3801 reserved_bits |= PRED_CMD_SBPB; 3802 3803 if (data & reserved_bits) 3804 return 1; 3805 3806 if (!data) 3807 break; 3808 3809 wrmsrl(MSR_IA32_PRED_CMD, data); 3810 break; 3811 } 3812 case MSR_IA32_FLUSH_CMD: 3813 if (!msr_info->host_initiated && 3814 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3815 return 1; 3816 3817 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3818 return 1; 3819 if (!data) 3820 break; 3821 3822 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3823 break; 3824 case MSR_EFER: 3825 return set_efer(vcpu, msr_info); 3826 case MSR_K7_HWCR: 3827 data &= ~(u64)0x40; /* ignore flush filter disable */ 3828 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3829 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3830 3831 /* 3832 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3833 * through at least v6.6 whine if TscFreqSel is clear, 3834 * depending on F/M/S. 3835 */ 3836 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3837 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3838 return 1; 3839 } 3840 vcpu->arch.msr_hwcr = data; 3841 break; 3842 case MSR_FAM10H_MMIO_CONF_BASE: 3843 if (data != 0) { 3844 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3845 return 1; 3846 } 3847 break; 3848 case MSR_IA32_CR_PAT: 3849 if (!kvm_pat_valid(data)) 3850 return 1; 3851 3852 vcpu->arch.pat = data; 3853 break; 3854 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3855 case MSR_MTRRdefType: 3856 return kvm_mtrr_set_msr(vcpu, msr, data); 3857 case MSR_IA32_APICBASE: 3858 return kvm_set_apic_base(vcpu, msr_info); 3859 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3860 return kvm_x2apic_msr_write(vcpu, msr, data); 3861 case MSR_IA32_TSC_DEADLINE: 3862 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3863 break; 3864 case MSR_IA32_TSC_ADJUST: 3865 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3866 if (!msr_info->host_initiated) { 3867 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3868 adjust_tsc_offset_guest(vcpu, adj); 3869 /* Before back to guest, tsc_timestamp must be adjusted 3870 * as well, otherwise guest's percpu pvclock time could jump. 3871 */ 3872 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3873 } 3874 vcpu->arch.ia32_tsc_adjust_msr = data; 3875 } 3876 break; 3877 case MSR_IA32_MISC_ENABLE: { 3878 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3879 3880 if (!msr_info->host_initiated) { 3881 /* RO bits */ 3882 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3883 return 1; 3884 3885 /* R bits, i.e. writes are ignored, but don't fault. */ 3886 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3887 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3888 } 3889 3890 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3891 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3892 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3893 return 1; 3894 vcpu->arch.ia32_misc_enable_msr = data; 3895 kvm_update_cpuid_runtime(vcpu); 3896 } else { 3897 vcpu->arch.ia32_misc_enable_msr = data; 3898 } 3899 break; 3900 } 3901 case MSR_IA32_SMBASE: 3902 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3903 return 1; 3904 vcpu->arch.smbase = data; 3905 break; 3906 case MSR_IA32_POWER_CTL: 3907 vcpu->arch.msr_ia32_power_ctl = data; 3908 break; 3909 case MSR_IA32_TSC: 3910 if (msr_info->host_initiated) { 3911 kvm_synchronize_tsc(vcpu, &data); 3912 } else { 3913 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3914 adjust_tsc_offset_guest(vcpu, adj); 3915 vcpu->arch.ia32_tsc_adjust_msr += adj; 3916 } 3917 break; 3918 case MSR_IA32_XSS: 3919 if (!msr_info->host_initiated && 3920 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3921 return 1; 3922 /* 3923 * KVM supports exposing PT to the guest, but does not support 3924 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3925 * XSAVES/XRSTORS to save/restore PT MSRs. 3926 */ 3927 if (data & ~kvm_caps.supported_xss) 3928 return 1; 3929 vcpu->arch.ia32_xss = data; 3930 kvm_update_cpuid_runtime(vcpu); 3931 break; 3932 case MSR_SMI_COUNT: 3933 if (!msr_info->host_initiated) 3934 return 1; 3935 vcpu->arch.smi_count = data; 3936 break; 3937 case MSR_KVM_WALL_CLOCK_NEW: 3938 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3939 return 1; 3940 3941 vcpu->kvm->arch.wall_clock = data; 3942 kvm_write_wall_clock(vcpu->kvm, data, 0); 3943 break; 3944 case MSR_KVM_WALL_CLOCK: 3945 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3946 return 1; 3947 3948 vcpu->kvm->arch.wall_clock = data; 3949 kvm_write_wall_clock(vcpu->kvm, data, 0); 3950 break; 3951 case MSR_KVM_SYSTEM_TIME_NEW: 3952 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3953 return 1; 3954 3955 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3956 break; 3957 case MSR_KVM_SYSTEM_TIME: 3958 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3959 return 1; 3960 3961 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3962 break; 3963 case MSR_KVM_ASYNC_PF_EN: 3964 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3965 return 1; 3966 3967 if (kvm_pv_enable_async_pf(vcpu, data)) 3968 return 1; 3969 break; 3970 case MSR_KVM_ASYNC_PF_INT: 3971 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3972 return 1; 3973 3974 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3975 return 1; 3976 break; 3977 case MSR_KVM_ASYNC_PF_ACK: 3978 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3979 return 1; 3980 if (data & 0x1) { 3981 vcpu->arch.apf.pageready_pending = false; 3982 kvm_check_async_pf_completion(vcpu); 3983 } 3984 break; 3985 case MSR_KVM_STEAL_TIME: 3986 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3987 return 1; 3988 3989 if (unlikely(!sched_info_on())) 3990 return 1; 3991 3992 if (data & KVM_STEAL_RESERVED_MASK) 3993 return 1; 3994 3995 vcpu->arch.st.msr_val = data; 3996 3997 if (!(data & KVM_MSR_ENABLED)) 3998 break; 3999 4000 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4001 4002 break; 4003 case MSR_KVM_PV_EOI_EN: 4004 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4005 return 1; 4006 4007 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4008 return 1; 4009 break; 4010 4011 case MSR_KVM_POLL_CONTROL: 4012 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4013 return 1; 4014 4015 /* only enable bit supported */ 4016 if (data & (-1ULL << 1)) 4017 return 1; 4018 4019 vcpu->arch.msr_kvm_poll_control = data; 4020 break; 4021 4022 case MSR_IA32_MCG_CTL: 4023 case MSR_IA32_MCG_STATUS: 4024 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4025 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4026 return set_msr_mce(vcpu, msr_info); 4027 4028 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4029 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4030 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4031 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4032 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4033 return kvm_pmu_set_msr(vcpu, msr_info); 4034 4035 if (data) 4036 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4037 break; 4038 case MSR_K7_CLK_CTL: 4039 /* 4040 * Ignore all writes to this no longer documented MSR. 4041 * Writes are only relevant for old K7 processors, 4042 * all pre-dating SVM, but a recommended workaround from 4043 * AMD for these chips. It is possible to specify the 4044 * affected processor models on the command line, hence 4045 * the need to ignore the workaround. 4046 */ 4047 break; 4048 #ifdef CONFIG_KVM_HYPERV 4049 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4050 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4051 case HV_X64_MSR_SYNDBG_OPTIONS: 4052 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4053 case HV_X64_MSR_CRASH_CTL: 4054 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4055 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4056 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4057 case HV_X64_MSR_TSC_EMULATION_STATUS: 4058 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4059 return kvm_hv_set_msr_common(vcpu, msr, data, 4060 msr_info->host_initiated); 4061 #endif 4062 case MSR_IA32_BBL_CR_CTL3: 4063 /* Drop writes to this legacy MSR -- see rdmsr 4064 * counterpart for further detail. 4065 */ 4066 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4067 break; 4068 case MSR_AMD64_OSVW_ID_LENGTH: 4069 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4070 return 1; 4071 vcpu->arch.osvw.length = data; 4072 break; 4073 case MSR_AMD64_OSVW_STATUS: 4074 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4075 return 1; 4076 vcpu->arch.osvw.status = data; 4077 break; 4078 case MSR_PLATFORM_INFO: 4079 if (!msr_info->host_initiated || 4080 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 4081 cpuid_fault_enabled(vcpu))) 4082 return 1; 4083 vcpu->arch.msr_platform_info = data; 4084 break; 4085 case MSR_MISC_FEATURES_ENABLES: 4086 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4087 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4088 !supports_cpuid_fault(vcpu))) 4089 return 1; 4090 vcpu->arch.msr_misc_features_enables = data; 4091 break; 4092 #ifdef CONFIG_X86_64 4093 case MSR_IA32_XFD: 4094 if (!msr_info->host_initiated && 4095 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4096 return 1; 4097 4098 if (data & ~kvm_guest_supported_xfd(vcpu)) 4099 return 1; 4100 4101 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4102 break; 4103 case MSR_IA32_XFD_ERR: 4104 if (!msr_info->host_initiated && 4105 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4106 return 1; 4107 4108 if (data & ~kvm_guest_supported_xfd(vcpu)) 4109 return 1; 4110 4111 vcpu->arch.guest_fpu.xfd_err = data; 4112 break; 4113 #endif 4114 default: 4115 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4116 return kvm_pmu_set_msr(vcpu, msr_info); 4117 4118 /* 4119 * Userspace is allowed to write '0' to MSRs that KVM reports 4120 * as to-be-saved, even if an MSRs isn't fully supported. 4121 */ 4122 if (msr_info->host_initiated && !data && 4123 kvm_is_msr_to_save(msr)) 4124 break; 4125 4126 return KVM_MSR_RET_INVALID; 4127 } 4128 return 0; 4129 } 4130 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4131 4132 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4133 { 4134 u64 data; 4135 u64 mcg_cap = vcpu->arch.mcg_cap; 4136 unsigned bank_num = mcg_cap & 0xff; 4137 u32 offset, last_msr; 4138 4139 switch (msr) { 4140 case MSR_IA32_P5_MC_ADDR: 4141 case MSR_IA32_P5_MC_TYPE: 4142 data = 0; 4143 break; 4144 case MSR_IA32_MCG_CAP: 4145 data = vcpu->arch.mcg_cap; 4146 break; 4147 case MSR_IA32_MCG_CTL: 4148 if (!(mcg_cap & MCG_CTL_P) && !host) 4149 return 1; 4150 data = vcpu->arch.mcg_ctl; 4151 break; 4152 case MSR_IA32_MCG_STATUS: 4153 data = vcpu->arch.mcg_status; 4154 break; 4155 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4156 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4157 if (msr > last_msr) 4158 return 1; 4159 4160 if (!(mcg_cap & MCG_CMCI_P) && !host) 4161 return 1; 4162 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4163 last_msr + 1 - MSR_IA32_MC0_CTL2); 4164 data = vcpu->arch.mci_ctl2_banks[offset]; 4165 break; 4166 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4167 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4168 if (msr > last_msr) 4169 return 1; 4170 4171 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4172 last_msr + 1 - MSR_IA32_MC0_CTL); 4173 data = vcpu->arch.mce_banks[offset]; 4174 break; 4175 default: 4176 return 1; 4177 } 4178 *pdata = data; 4179 return 0; 4180 } 4181 4182 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4183 { 4184 switch (msr_info->index) { 4185 case MSR_IA32_PLATFORM_ID: 4186 case MSR_IA32_EBL_CR_POWERON: 4187 case MSR_IA32_LASTBRANCHFROMIP: 4188 case MSR_IA32_LASTBRANCHTOIP: 4189 case MSR_IA32_LASTINTFROMIP: 4190 case MSR_IA32_LASTINTTOIP: 4191 case MSR_AMD64_SYSCFG: 4192 case MSR_K8_TSEG_ADDR: 4193 case MSR_K8_TSEG_MASK: 4194 case MSR_VM_HSAVE_PA: 4195 case MSR_K8_INT_PENDING_MSG: 4196 case MSR_AMD64_NB_CFG: 4197 case MSR_FAM10H_MMIO_CONF_BASE: 4198 case MSR_AMD64_BU_CFG2: 4199 case MSR_IA32_PERF_CTL: 4200 case MSR_AMD64_DC_CFG: 4201 case MSR_AMD64_TW_CFG: 4202 case MSR_F15H_EX_CFG: 4203 /* 4204 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4205 * limit) MSRs. Just return 0, as we do not want to expose the host 4206 * data here. Do not conditionalize this on CPUID, as KVM does not do 4207 * so for existing CPU-specific MSRs. 4208 */ 4209 case MSR_RAPL_POWER_UNIT: 4210 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4211 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4212 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4213 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4214 msr_info->data = 0; 4215 break; 4216 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4217 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4218 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4219 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4220 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4221 return kvm_pmu_get_msr(vcpu, msr_info); 4222 msr_info->data = 0; 4223 break; 4224 case MSR_IA32_UCODE_REV: 4225 msr_info->data = vcpu->arch.microcode_version; 4226 break; 4227 case MSR_IA32_ARCH_CAPABILITIES: 4228 if (!msr_info->host_initiated && 4229 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4230 return 1; 4231 msr_info->data = vcpu->arch.arch_capabilities; 4232 break; 4233 case MSR_IA32_PERF_CAPABILITIES: 4234 if (!msr_info->host_initiated && 4235 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4236 return 1; 4237 msr_info->data = vcpu->arch.perf_capabilities; 4238 break; 4239 case MSR_IA32_POWER_CTL: 4240 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4241 break; 4242 case MSR_IA32_TSC: { 4243 /* 4244 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4245 * even when not intercepted. AMD manual doesn't explicitly 4246 * state this but appears to behave the same. 4247 * 4248 * On userspace reads and writes, however, we unconditionally 4249 * return L1's TSC value to ensure backwards-compatible 4250 * behavior for migration. 4251 */ 4252 u64 offset, ratio; 4253 4254 if (msr_info->host_initiated) { 4255 offset = vcpu->arch.l1_tsc_offset; 4256 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4257 } else { 4258 offset = vcpu->arch.tsc_offset; 4259 ratio = vcpu->arch.tsc_scaling_ratio; 4260 } 4261 4262 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4263 break; 4264 } 4265 case MSR_IA32_CR_PAT: 4266 msr_info->data = vcpu->arch.pat; 4267 break; 4268 case MSR_MTRRcap: 4269 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4270 case MSR_MTRRdefType: 4271 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4272 case 0xcd: /* fsb frequency */ 4273 msr_info->data = 3; 4274 break; 4275 /* 4276 * MSR_EBC_FREQUENCY_ID 4277 * Conservative value valid for even the basic CPU models. 4278 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4279 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4280 * and 266MHz for model 3, or 4. Set Core Clock 4281 * Frequency to System Bus Frequency Ratio to 1 (bits 4282 * 31:24) even though these are only valid for CPU 4283 * models > 2, however guests may end up dividing or 4284 * multiplying by zero otherwise. 4285 */ 4286 case MSR_EBC_FREQUENCY_ID: 4287 msr_info->data = 1 << 24; 4288 break; 4289 case MSR_IA32_APICBASE: 4290 msr_info->data = kvm_get_apic_base(vcpu); 4291 break; 4292 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4293 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4294 case MSR_IA32_TSC_DEADLINE: 4295 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4296 break; 4297 case MSR_IA32_TSC_ADJUST: 4298 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4299 break; 4300 case MSR_IA32_MISC_ENABLE: 4301 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4302 break; 4303 case MSR_IA32_SMBASE: 4304 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4305 return 1; 4306 msr_info->data = vcpu->arch.smbase; 4307 break; 4308 case MSR_SMI_COUNT: 4309 msr_info->data = vcpu->arch.smi_count; 4310 break; 4311 case MSR_IA32_PERF_STATUS: 4312 /* TSC increment by tick */ 4313 msr_info->data = 1000ULL; 4314 /* CPU multiplier */ 4315 msr_info->data |= (((uint64_t)4ULL) << 40); 4316 break; 4317 case MSR_EFER: 4318 msr_info->data = vcpu->arch.efer; 4319 break; 4320 case MSR_KVM_WALL_CLOCK: 4321 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4322 return 1; 4323 4324 msr_info->data = vcpu->kvm->arch.wall_clock; 4325 break; 4326 case MSR_KVM_WALL_CLOCK_NEW: 4327 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4328 return 1; 4329 4330 msr_info->data = vcpu->kvm->arch.wall_clock; 4331 break; 4332 case MSR_KVM_SYSTEM_TIME: 4333 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4334 return 1; 4335 4336 msr_info->data = vcpu->arch.time; 4337 break; 4338 case MSR_KVM_SYSTEM_TIME_NEW: 4339 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4340 return 1; 4341 4342 msr_info->data = vcpu->arch.time; 4343 break; 4344 case MSR_KVM_ASYNC_PF_EN: 4345 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4346 return 1; 4347 4348 msr_info->data = vcpu->arch.apf.msr_en_val; 4349 break; 4350 case MSR_KVM_ASYNC_PF_INT: 4351 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4352 return 1; 4353 4354 msr_info->data = vcpu->arch.apf.msr_int_val; 4355 break; 4356 case MSR_KVM_ASYNC_PF_ACK: 4357 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4358 return 1; 4359 4360 msr_info->data = 0; 4361 break; 4362 case MSR_KVM_STEAL_TIME: 4363 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4364 return 1; 4365 4366 msr_info->data = vcpu->arch.st.msr_val; 4367 break; 4368 case MSR_KVM_PV_EOI_EN: 4369 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4370 return 1; 4371 4372 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4373 break; 4374 case MSR_KVM_POLL_CONTROL: 4375 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4376 return 1; 4377 4378 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4379 break; 4380 case MSR_IA32_P5_MC_ADDR: 4381 case MSR_IA32_P5_MC_TYPE: 4382 case MSR_IA32_MCG_CAP: 4383 case MSR_IA32_MCG_CTL: 4384 case MSR_IA32_MCG_STATUS: 4385 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4386 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4387 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4388 msr_info->host_initiated); 4389 case MSR_IA32_XSS: 4390 if (!msr_info->host_initiated && 4391 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4392 return 1; 4393 msr_info->data = vcpu->arch.ia32_xss; 4394 break; 4395 case MSR_K7_CLK_CTL: 4396 /* 4397 * Provide expected ramp-up count for K7. All other 4398 * are set to zero, indicating minimum divisors for 4399 * every field. 4400 * 4401 * This prevents guest kernels on AMD host with CPU 4402 * type 6, model 8 and higher from exploding due to 4403 * the rdmsr failing. 4404 */ 4405 msr_info->data = 0x20000000; 4406 break; 4407 #ifdef CONFIG_KVM_HYPERV 4408 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4409 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4410 case HV_X64_MSR_SYNDBG_OPTIONS: 4411 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4412 case HV_X64_MSR_CRASH_CTL: 4413 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4414 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4415 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4416 case HV_X64_MSR_TSC_EMULATION_STATUS: 4417 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4418 return kvm_hv_get_msr_common(vcpu, 4419 msr_info->index, &msr_info->data, 4420 msr_info->host_initiated); 4421 #endif 4422 case MSR_IA32_BBL_CR_CTL3: 4423 /* This legacy MSR exists but isn't fully documented in current 4424 * silicon. It is however accessed by winxp in very narrow 4425 * scenarios where it sets bit #19, itself documented as 4426 * a "reserved" bit. Best effort attempt to source coherent 4427 * read data here should the balance of the register be 4428 * interpreted by the guest: 4429 * 4430 * L2 cache control register 3: 64GB range, 256KB size, 4431 * enabled, latency 0x1, configured 4432 */ 4433 msr_info->data = 0xbe702111; 4434 break; 4435 case MSR_AMD64_OSVW_ID_LENGTH: 4436 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4437 return 1; 4438 msr_info->data = vcpu->arch.osvw.length; 4439 break; 4440 case MSR_AMD64_OSVW_STATUS: 4441 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4442 return 1; 4443 msr_info->data = vcpu->arch.osvw.status; 4444 break; 4445 case MSR_PLATFORM_INFO: 4446 if (!msr_info->host_initiated && 4447 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4448 return 1; 4449 msr_info->data = vcpu->arch.msr_platform_info; 4450 break; 4451 case MSR_MISC_FEATURES_ENABLES: 4452 msr_info->data = vcpu->arch.msr_misc_features_enables; 4453 break; 4454 case MSR_K7_HWCR: 4455 msr_info->data = vcpu->arch.msr_hwcr; 4456 break; 4457 #ifdef CONFIG_X86_64 4458 case MSR_IA32_XFD: 4459 if (!msr_info->host_initiated && 4460 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4461 return 1; 4462 4463 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4464 break; 4465 case MSR_IA32_XFD_ERR: 4466 if (!msr_info->host_initiated && 4467 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4468 return 1; 4469 4470 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4471 break; 4472 #endif 4473 default: 4474 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4475 return kvm_pmu_get_msr(vcpu, msr_info); 4476 4477 /* 4478 * Userspace is allowed to read MSRs that KVM reports as 4479 * to-be-saved, even if an MSR isn't fully supported. 4480 */ 4481 if (msr_info->host_initiated && 4482 kvm_is_msr_to_save(msr_info->index)) { 4483 msr_info->data = 0; 4484 break; 4485 } 4486 4487 return KVM_MSR_RET_INVALID; 4488 } 4489 return 0; 4490 } 4491 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4492 4493 /* 4494 * Read or write a bunch of msrs. All parameters are kernel addresses. 4495 * 4496 * @return number of msrs set successfully. 4497 */ 4498 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4499 struct kvm_msr_entry *entries, 4500 int (*do_msr)(struct kvm_vcpu *vcpu, 4501 unsigned index, u64 *data)) 4502 { 4503 int i; 4504 4505 for (i = 0; i < msrs->nmsrs; ++i) 4506 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4507 break; 4508 4509 return i; 4510 } 4511 4512 /* 4513 * Read or write a bunch of msrs. Parameters are user addresses. 4514 * 4515 * @return number of msrs set successfully. 4516 */ 4517 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4518 int (*do_msr)(struct kvm_vcpu *vcpu, 4519 unsigned index, u64 *data), 4520 int writeback) 4521 { 4522 struct kvm_msrs msrs; 4523 struct kvm_msr_entry *entries; 4524 unsigned size; 4525 int r; 4526 4527 r = -EFAULT; 4528 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4529 goto out; 4530 4531 r = -E2BIG; 4532 if (msrs.nmsrs >= MAX_IO_MSRS) 4533 goto out; 4534 4535 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4536 entries = memdup_user(user_msrs->entries, size); 4537 if (IS_ERR(entries)) { 4538 r = PTR_ERR(entries); 4539 goto out; 4540 } 4541 4542 r = __msr_io(vcpu, &msrs, entries, do_msr); 4543 4544 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4545 r = -EFAULT; 4546 4547 kfree(entries); 4548 out: 4549 return r; 4550 } 4551 4552 static inline bool kvm_can_mwait_in_guest(void) 4553 { 4554 return boot_cpu_has(X86_FEATURE_MWAIT) && 4555 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4556 boot_cpu_has(X86_FEATURE_ARAT); 4557 } 4558 4559 #ifdef CONFIG_KVM_HYPERV 4560 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4561 struct kvm_cpuid2 __user *cpuid_arg) 4562 { 4563 struct kvm_cpuid2 cpuid; 4564 int r; 4565 4566 r = -EFAULT; 4567 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4568 return r; 4569 4570 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4571 if (r) 4572 return r; 4573 4574 r = -EFAULT; 4575 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4576 return r; 4577 4578 return 0; 4579 } 4580 #endif 4581 4582 static bool kvm_is_vm_type_supported(unsigned long type) 4583 { 4584 return type == KVM_X86_DEFAULT_VM || 4585 (type == KVM_X86_SW_PROTECTED_VM && 4586 IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled); 4587 } 4588 4589 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4590 { 4591 int r = 0; 4592 4593 switch (ext) { 4594 case KVM_CAP_IRQCHIP: 4595 case KVM_CAP_HLT: 4596 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4597 case KVM_CAP_SET_TSS_ADDR: 4598 case KVM_CAP_EXT_CPUID: 4599 case KVM_CAP_EXT_EMUL_CPUID: 4600 case KVM_CAP_CLOCKSOURCE: 4601 case KVM_CAP_PIT: 4602 case KVM_CAP_NOP_IO_DELAY: 4603 case KVM_CAP_MP_STATE: 4604 case KVM_CAP_SYNC_MMU: 4605 case KVM_CAP_USER_NMI: 4606 case KVM_CAP_REINJECT_CONTROL: 4607 case KVM_CAP_IRQ_INJECT_STATUS: 4608 case KVM_CAP_IOEVENTFD: 4609 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4610 case KVM_CAP_PIT2: 4611 case KVM_CAP_PIT_STATE2: 4612 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4613 case KVM_CAP_VCPU_EVENTS: 4614 #ifdef CONFIG_KVM_HYPERV 4615 case KVM_CAP_HYPERV: 4616 case KVM_CAP_HYPERV_VAPIC: 4617 case KVM_CAP_HYPERV_SPIN: 4618 case KVM_CAP_HYPERV_TIME: 4619 case KVM_CAP_HYPERV_SYNIC: 4620 case KVM_CAP_HYPERV_SYNIC2: 4621 case KVM_CAP_HYPERV_VP_INDEX: 4622 case KVM_CAP_HYPERV_EVENTFD: 4623 case KVM_CAP_HYPERV_TLBFLUSH: 4624 case KVM_CAP_HYPERV_SEND_IPI: 4625 case KVM_CAP_HYPERV_CPUID: 4626 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4627 case KVM_CAP_SYS_HYPERV_CPUID: 4628 #endif 4629 case KVM_CAP_PCI_SEGMENT: 4630 case KVM_CAP_DEBUGREGS: 4631 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4632 case KVM_CAP_XSAVE: 4633 case KVM_CAP_ASYNC_PF: 4634 case KVM_CAP_ASYNC_PF_INT: 4635 case KVM_CAP_GET_TSC_KHZ: 4636 case KVM_CAP_KVMCLOCK_CTRL: 4637 case KVM_CAP_READONLY_MEM: 4638 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4639 case KVM_CAP_TSC_DEADLINE_TIMER: 4640 case KVM_CAP_DISABLE_QUIRKS: 4641 case KVM_CAP_SET_BOOT_CPU_ID: 4642 case KVM_CAP_SPLIT_IRQCHIP: 4643 case KVM_CAP_IMMEDIATE_EXIT: 4644 case KVM_CAP_PMU_EVENT_FILTER: 4645 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4646 case KVM_CAP_GET_MSR_FEATURES: 4647 case KVM_CAP_MSR_PLATFORM_INFO: 4648 case KVM_CAP_EXCEPTION_PAYLOAD: 4649 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4650 case KVM_CAP_SET_GUEST_DEBUG: 4651 case KVM_CAP_LAST_CPU: 4652 case KVM_CAP_X86_USER_SPACE_MSR: 4653 case KVM_CAP_X86_MSR_FILTER: 4654 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4655 #ifdef CONFIG_X86_SGX_KVM 4656 case KVM_CAP_SGX_ATTRIBUTE: 4657 #endif 4658 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4659 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4660 case KVM_CAP_SREGS2: 4661 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4662 case KVM_CAP_VCPU_ATTRIBUTES: 4663 case KVM_CAP_SYS_ATTRIBUTES: 4664 case KVM_CAP_VAPIC: 4665 case KVM_CAP_ENABLE_CAP: 4666 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4667 case KVM_CAP_IRQFD_RESAMPLE: 4668 case KVM_CAP_MEMORY_FAULT_INFO: 4669 r = 1; 4670 break; 4671 case KVM_CAP_EXIT_HYPERCALL: 4672 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4673 break; 4674 case KVM_CAP_SET_GUEST_DEBUG2: 4675 return KVM_GUESTDBG_VALID_MASK; 4676 #ifdef CONFIG_KVM_XEN 4677 case KVM_CAP_XEN_HVM: 4678 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4679 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4680 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4681 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4682 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4683 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 4684 if (sched_info_on()) 4685 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4686 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4687 break; 4688 #endif 4689 case KVM_CAP_SYNC_REGS: 4690 r = KVM_SYNC_X86_VALID_FIELDS; 4691 break; 4692 case KVM_CAP_ADJUST_CLOCK: 4693 r = KVM_CLOCK_VALID_FLAGS; 4694 break; 4695 case KVM_CAP_X86_DISABLE_EXITS: 4696 r = KVM_X86_DISABLE_EXITS_PAUSE; 4697 4698 if (!mitigate_smt_rsb) { 4699 r |= KVM_X86_DISABLE_EXITS_HLT | 4700 KVM_X86_DISABLE_EXITS_CSTATE; 4701 4702 if (kvm_can_mwait_in_guest()) 4703 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4704 } 4705 break; 4706 case KVM_CAP_X86_SMM: 4707 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4708 break; 4709 4710 /* SMBASE is usually relocated above 1M on modern chipsets, 4711 * and SMM handlers might indeed rely on 4G segment limits, 4712 * so do not report SMM to be available if real mode is 4713 * emulated via vm86 mode. Still, do not go to great lengths 4714 * to avoid userspace's usage of the feature, because it is a 4715 * fringe case that is not enabled except via specific settings 4716 * of the module parameters. 4717 */ 4718 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4719 break; 4720 case KVM_CAP_NR_VCPUS: 4721 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4722 break; 4723 case KVM_CAP_MAX_VCPUS: 4724 r = KVM_MAX_VCPUS; 4725 break; 4726 case KVM_CAP_MAX_VCPU_ID: 4727 r = KVM_MAX_VCPU_IDS; 4728 break; 4729 case KVM_CAP_PV_MMU: /* obsolete */ 4730 r = 0; 4731 break; 4732 case KVM_CAP_MCE: 4733 r = KVM_MAX_MCE_BANKS; 4734 break; 4735 case KVM_CAP_XCRS: 4736 r = boot_cpu_has(X86_FEATURE_XSAVE); 4737 break; 4738 case KVM_CAP_TSC_CONTROL: 4739 case KVM_CAP_VM_TSC_CONTROL: 4740 r = kvm_caps.has_tsc_control; 4741 break; 4742 case KVM_CAP_X2APIC_API: 4743 r = KVM_X2APIC_API_VALID_FLAGS; 4744 break; 4745 case KVM_CAP_NESTED_STATE: 4746 r = kvm_x86_ops.nested_ops->get_state ? 4747 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4748 break; 4749 #ifdef CONFIG_KVM_HYPERV 4750 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4751 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4752 break; 4753 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4754 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4755 break; 4756 #endif 4757 case KVM_CAP_SMALLER_MAXPHYADDR: 4758 r = (int) allow_smaller_maxphyaddr; 4759 break; 4760 case KVM_CAP_STEAL_TIME: 4761 r = sched_info_on(); 4762 break; 4763 case KVM_CAP_X86_BUS_LOCK_EXIT: 4764 if (kvm_caps.has_bus_lock_exit) 4765 r = KVM_BUS_LOCK_DETECTION_OFF | 4766 KVM_BUS_LOCK_DETECTION_EXIT; 4767 else 4768 r = 0; 4769 break; 4770 case KVM_CAP_XSAVE2: { 4771 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4772 if (r < sizeof(struct kvm_xsave)) 4773 r = sizeof(struct kvm_xsave); 4774 break; 4775 } 4776 case KVM_CAP_PMU_CAPABILITY: 4777 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4778 break; 4779 case KVM_CAP_DISABLE_QUIRKS2: 4780 r = KVM_X86_VALID_QUIRKS; 4781 break; 4782 case KVM_CAP_X86_NOTIFY_VMEXIT: 4783 r = kvm_caps.has_notify_vmexit; 4784 break; 4785 case KVM_CAP_VM_TYPES: 4786 r = BIT(KVM_X86_DEFAULT_VM); 4787 if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM)) 4788 r |= BIT(KVM_X86_SW_PROTECTED_VM); 4789 break; 4790 default: 4791 break; 4792 } 4793 return r; 4794 } 4795 4796 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4797 { 4798 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4799 4800 if ((u64)(unsigned long)uaddr != attr->addr) 4801 return ERR_PTR_USR(-EFAULT); 4802 return uaddr; 4803 } 4804 4805 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4806 { 4807 u64 __user *uaddr = kvm_get_attr_addr(attr); 4808 4809 if (attr->group) 4810 return -ENXIO; 4811 4812 if (IS_ERR(uaddr)) 4813 return PTR_ERR(uaddr); 4814 4815 switch (attr->attr) { 4816 case KVM_X86_XCOMP_GUEST_SUPP: 4817 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4818 return -EFAULT; 4819 return 0; 4820 default: 4821 return -ENXIO; 4822 } 4823 } 4824 4825 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4826 { 4827 if (attr->group) 4828 return -ENXIO; 4829 4830 switch (attr->attr) { 4831 case KVM_X86_XCOMP_GUEST_SUPP: 4832 return 0; 4833 default: 4834 return -ENXIO; 4835 } 4836 } 4837 4838 long kvm_arch_dev_ioctl(struct file *filp, 4839 unsigned int ioctl, unsigned long arg) 4840 { 4841 void __user *argp = (void __user *)arg; 4842 long r; 4843 4844 switch (ioctl) { 4845 case KVM_GET_MSR_INDEX_LIST: { 4846 struct kvm_msr_list __user *user_msr_list = argp; 4847 struct kvm_msr_list msr_list; 4848 unsigned n; 4849 4850 r = -EFAULT; 4851 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4852 goto out; 4853 n = msr_list.nmsrs; 4854 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4855 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4856 goto out; 4857 r = -E2BIG; 4858 if (n < msr_list.nmsrs) 4859 goto out; 4860 r = -EFAULT; 4861 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4862 num_msrs_to_save * sizeof(u32))) 4863 goto out; 4864 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4865 &emulated_msrs, 4866 num_emulated_msrs * sizeof(u32))) 4867 goto out; 4868 r = 0; 4869 break; 4870 } 4871 case KVM_GET_SUPPORTED_CPUID: 4872 case KVM_GET_EMULATED_CPUID: { 4873 struct kvm_cpuid2 __user *cpuid_arg = argp; 4874 struct kvm_cpuid2 cpuid; 4875 4876 r = -EFAULT; 4877 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4878 goto out; 4879 4880 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4881 ioctl); 4882 if (r) 4883 goto out; 4884 4885 r = -EFAULT; 4886 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4887 goto out; 4888 r = 0; 4889 break; 4890 } 4891 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4892 r = -EFAULT; 4893 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4894 sizeof(kvm_caps.supported_mce_cap))) 4895 goto out; 4896 r = 0; 4897 break; 4898 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4899 struct kvm_msr_list __user *user_msr_list = argp; 4900 struct kvm_msr_list msr_list; 4901 unsigned int n; 4902 4903 r = -EFAULT; 4904 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4905 goto out; 4906 n = msr_list.nmsrs; 4907 msr_list.nmsrs = num_msr_based_features; 4908 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4909 goto out; 4910 r = -E2BIG; 4911 if (n < msr_list.nmsrs) 4912 goto out; 4913 r = -EFAULT; 4914 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4915 num_msr_based_features * sizeof(u32))) 4916 goto out; 4917 r = 0; 4918 break; 4919 } 4920 case KVM_GET_MSRS: 4921 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4922 break; 4923 #ifdef CONFIG_KVM_HYPERV 4924 case KVM_GET_SUPPORTED_HV_CPUID: 4925 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4926 break; 4927 #endif 4928 case KVM_GET_DEVICE_ATTR: { 4929 struct kvm_device_attr attr; 4930 r = -EFAULT; 4931 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4932 break; 4933 r = kvm_x86_dev_get_attr(&attr); 4934 break; 4935 } 4936 case KVM_HAS_DEVICE_ATTR: { 4937 struct kvm_device_attr attr; 4938 r = -EFAULT; 4939 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4940 break; 4941 r = kvm_x86_dev_has_attr(&attr); 4942 break; 4943 } 4944 default: 4945 r = -EINVAL; 4946 break; 4947 } 4948 out: 4949 return r; 4950 } 4951 4952 static void wbinvd_ipi(void *garbage) 4953 { 4954 wbinvd(); 4955 } 4956 4957 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4958 { 4959 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4960 } 4961 4962 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4963 { 4964 /* Address WBINVD may be executed by guest */ 4965 if (need_emulate_wbinvd(vcpu)) { 4966 if (static_call(kvm_x86_has_wbinvd_exit)()) 4967 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4968 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4969 smp_call_function_single(vcpu->cpu, 4970 wbinvd_ipi, NULL, 1); 4971 } 4972 4973 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4974 4975 /* Save host pkru register if supported */ 4976 vcpu->arch.host_pkru = read_pkru(); 4977 4978 /* Apply any externally detected TSC adjustments (due to suspend) */ 4979 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4980 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4981 vcpu->arch.tsc_offset_adjustment = 0; 4982 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4983 } 4984 4985 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4986 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4987 rdtsc() - vcpu->arch.last_host_tsc; 4988 if (tsc_delta < 0) 4989 mark_tsc_unstable("KVM discovered backwards TSC"); 4990 4991 if (kvm_check_tsc_unstable()) { 4992 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4993 vcpu->arch.last_guest_tsc); 4994 kvm_vcpu_write_tsc_offset(vcpu, offset); 4995 vcpu->arch.tsc_catchup = 1; 4996 } 4997 4998 if (kvm_lapic_hv_timer_in_use(vcpu)) 4999 kvm_lapic_restart_hv_timer(vcpu); 5000 5001 /* 5002 * On a host with synchronized TSC, there is no need to update 5003 * kvmclock on vcpu->cpu migration 5004 */ 5005 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5006 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5007 if (vcpu->cpu != cpu) 5008 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5009 vcpu->cpu = cpu; 5010 } 5011 5012 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5013 } 5014 5015 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5016 { 5017 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5018 struct kvm_steal_time __user *st; 5019 struct kvm_memslots *slots; 5020 static const u8 preempted = KVM_VCPU_PREEMPTED; 5021 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5022 5023 /* 5024 * The vCPU can be marked preempted if and only if the VM-Exit was on 5025 * an instruction boundary and will not trigger guest emulation of any 5026 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5027 * when this is true, for example allowing the vCPU to be marked 5028 * preempted if and only if the VM-Exit was due to a host interrupt. 5029 */ 5030 if (!vcpu->arch.at_instruction_boundary) { 5031 vcpu->stat.preemption_other++; 5032 return; 5033 } 5034 5035 vcpu->stat.preemption_reported++; 5036 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5037 return; 5038 5039 if (vcpu->arch.st.preempted) 5040 return; 5041 5042 /* This happens on process exit */ 5043 if (unlikely(current->mm != vcpu->kvm->mm)) 5044 return; 5045 5046 slots = kvm_memslots(vcpu->kvm); 5047 5048 if (unlikely(slots->generation != ghc->generation || 5049 gpa != ghc->gpa || 5050 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5051 return; 5052 5053 st = (struct kvm_steal_time __user *)ghc->hva; 5054 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5055 5056 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5057 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5058 5059 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5060 } 5061 5062 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5063 { 5064 int idx; 5065 5066 if (vcpu->preempted) { 5067 if (!vcpu->arch.guest_state_protected) 5068 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 5069 5070 /* 5071 * Take the srcu lock as memslots will be accessed to check the gfn 5072 * cache generation against the memslots generation. 5073 */ 5074 idx = srcu_read_lock(&vcpu->kvm->srcu); 5075 if (kvm_xen_msr_enabled(vcpu->kvm)) 5076 kvm_xen_runstate_set_preempted(vcpu); 5077 else 5078 kvm_steal_time_set_preempted(vcpu); 5079 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5080 } 5081 5082 static_call(kvm_x86_vcpu_put)(vcpu); 5083 vcpu->arch.last_host_tsc = rdtsc(); 5084 } 5085 5086 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5087 struct kvm_lapic_state *s) 5088 { 5089 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 5090 5091 return kvm_apic_get_state(vcpu, s); 5092 } 5093 5094 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5095 struct kvm_lapic_state *s) 5096 { 5097 int r; 5098 5099 r = kvm_apic_set_state(vcpu, s); 5100 if (r) 5101 return r; 5102 update_cr8_intercept(vcpu); 5103 5104 return 0; 5105 } 5106 5107 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5108 { 5109 /* 5110 * We can accept userspace's request for interrupt injection 5111 * as long as we have a place to store the interrupt number. 5112 * The actual injection will happen when the CPU is able to 5113 * deliver the interrupt. 5114 */ 5115 if (kvm_cpu_has_extint(vcpu)) 5116 return false; 5117 5118 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5119 return (!lapic_in_kernel(vcpu) || 5120 kvm_apic_accept_pic_intr(vcpu)); 5121 } 5122 5123 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5124 { 5125 /* 5126 * Do not cause an interrupt window exit if an exception 5127 * is pending or an event needs reinjection; userspace 5128 * might want to inject the interrupt manually using KVM_SET_REGS 5129 * or KVM_SET_SREGS. For that to work, we must be at an 5130 * instruction boundary and with no events half-injected. 5131 */ 5132 return (kvm_arch_interrupt_allowed(vcpu) && 5133 kvm_cpu_accept_dm_intr(vcpu) && 5134 !kvm_event_needs_reinjection(vcpu) && 5135 !kvm_is_exception_pending(vcpu)); 5136 } 5137 5138 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5139 struct kvm_interrupt *irq) 5140 { 5141 if (irq->irq >= KVM_NR_INTERRUPTS) 5142 return -EINVAL; 5143 5144 if (!irqchip_in_kernel(vcpu->kvm)) { 5145 kvm_queue_interrupt(vcpu, irq->irq, false); 5146 kvm_make_request(KVM_REQ_EVENT, vcpu); 5147 return 0; 5148 } 5149 5150 /* 5151 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5152 * fail for in-kernel 8259. 5153 */ 5154 if (pic_in_kernel(vcpu->kvm)) 5155 return -ENXIO; 5156 5157 if (vcpu->arch.pending_external_vector != -1) 5158 return -EEXIST; 5159 5160 vcpu->arch.pending_external_vector = irq->irq; 5161 kvm_make_request(KVM_REQ_EVENT, vcpu); 5162 return 0; 5163 } 5164 5165 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5166 { 5167 kvm_inject_nmi(vcpu); 5168 5169 return 0; 5170 } 5171 5172 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5173 struct kvm_tpr_access_ctl *tac) 5174 { 5175 if (tac->flags) 5176 return -EINVAL; 5177 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5178 return 0; 5179 } 5180 5181 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5182 u64 mcg_cap) 5183 { 5184 int r; 5185 unsigned bank_num = mcg_cap & 0xff, bank; 5186 5187 r = -EINVAL; 5188 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5189 goto out; 5190 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5191 goto out; 5192 r = 0; 5193 vcpu->arch.mcg_cap = mcg_cap; 5194 /* Init IA32_MCG_CTL to all 1s */ 5195 if (mcg_cap & MCG_CTL_P) 5196 vcpu->arch.mcg_ctl = ~(u64)0; 5197 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5198 for (bank = 0; bank < bank_num; bank++) { 5199 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5200 if (mcg_cap & MCG_CMCI_P) 5201 vcpu->arch.mci_ctl2_banks[bank] = 0; 5202 } 5203 5204 kvm_apic_after_set_mcg_cap(vcpu); 5205 5206 static_call(kvm_x86_setup_mce)(vcpu); 5207 out: 5208 return r; 5209 } 5210 5211 /* 5212 * Validate this is an UCNA (uncorrectable no action) error by checking the 5213 * MCG_STATUS and MCi_STATUS registers: 5214 * - none of the bits for Machine Check Exceptions are set 5215 * - both the VAL (valid) and UC (uncorrectable) bits are set 5216 * MCI_STATUS_PCC - Processor Context Corrupted 5217 * MCI_STATUS_S - Signaled as a Machine Check Exception 5218 * MCI_STATUS_AR - Software recoverable Action Required 5219 */ 5220 static bool is_ucna(struct kvm_x86_mce *mce) 5221 { 5222 return !mce->mcg_status && 5223 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5224 (mce->status & MCI_STATUS_VAL) && 5225 (mce->status & MCI_STATUS_UC); 5226 } 5227 5228 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5229 { 5230 u64 mcg_cap = vcpu->arch.mcg_cap; 5231 5232 banks[1] = mce->status; 5233 banks[2] = mce->addr; 5234 banks[3] = mce->misc; 5235 vcpu->arch.mcg_status = mce->mcg_status; 5236 5237 if (!(mcg_cap & MCG_CMCI_P) || 5238 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5239 return 0; 5240 5241 if (lapic_in_kernel(vcpu)) 5242 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5243 5244 return 0; 5245 } 5246 5247 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5248 struct kvm_x86_mce *mce) 5249 { 5250 u64 mcg_cap = vcpu->arch.mcg_cap; 5251 unsigned bank_num = mcg_cap & 0xff; 5252 u64 *banks = vcpu->arch.mce_banks; 5253 5254 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5255 return -EINVAL; 5256 5257 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5258 5259 if (is_ucna(mce)) 5260 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5261 5262 /* 5263 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5264 * reporting is disabled 5265 */ 5266 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5267 vcpu->arch.mcg_ctl != ~(u64)0) 5268 return 0; 5269 /* 5270 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5271 * reporting is disabled for the bank 5272 */ 5273 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5274 return 0; 5275 if (mce->status & MCI_STATUS_UC) { 5276 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5277 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5278 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5279 return 0; 5280 } 5281 if (banks[1] & MCI_STATUS_VAL) 5282 mce->status |= MCI_STATUS_OVER; 5283 banks[2] = mce->addr; 5284 banks[3] = mce->misc; 5285 vcpu->arch.mcg_status = mce->mcg_status; 5286 banks[1] = mce->status; 5287 kvm_queue_exception(vcpu, MC_VECTOR); 5288 } else if (!(banks[1] & MCI_STATUS_VAL) 5289 || !(banks[1] & MCI_STATUS_UC)) { 5290 if (banks[1] & MCI_STATUS_VAL) 5291 mce->status |= MCI_STATUS_OVER; 5292 banks[2] = mce->addr; 5293 banks[3] = mce->misc; 5294 banks[1] = mce->status; 5295 } else 5296 banks[1] |= MCI_STATUS_OVER; 5297 return 0; 5298 } 5299 5300 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5301 struct kvm_vcpu_events *events) 5302 { 5303 struct kvm_queued_exception *ex; 5304 5305 process_nmi(vcpu); 5306 5307 #ifdef CONFIG_KVM_SMM 5308 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5309 process_smi(vcpu); 5310 #endif 5311 5312 /* 5313 * KVM's ABI only allows for one exception to be migrated. Luckily, 5314 * the only time there can be two queued exceptions is if there's a 5315 * non-exiting _injected_ exception, and a pending exiting exception. 5316 * In that case, ignore the VM-Exiting exception as it's an extension 5317 * of the injected exception. 5318 */ 5319 if (vcpu->arch.exception_vmexit.pending && 5320 !vcpu->arch.exception.pending && 5321 !vcpu->arch.exception.injected) 5322 ex = &vcpu->arch.exception_vmexit; 5323 else 5324 ex = &vcpu->arch.exception; 5325 5326 /* 5327 * In guest mode, payload delivery should be deferred if the exception 5328 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5329 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5330 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5331 * propagate the payload and so it cannot be safely deferred. Deliver 5332 * the payload if the capability hasn't been requested. 5333 */ 5334 if (!vcpu->kvm->arch.exception_payload_enabled && 5335 ex->pending && ex->has_payload) 5336 kvm_deliver_exception_payload(vcpu, ex); 5337 5338 memset(events, 0, sizeof(*events)); 5339 5340 /* 5341 * The API doesn't provide the instruction length for software 5342 * exceptions, so don't report them. As long as the guest RIP 5343 * isn't advanced, we should expect to encounter the exception 5344 * again. 5345 */ 5346 if (!kvm_exception_is_soft(ex->vector)) { 5347 events->exception.injected = ex->injected; 5348 events->exception.pending = ex->pending; 5349 /* 5350 * For ABI compatibility, deliberately conflate 5351 * pending and injected exceptions when 5352 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5353 */ 5354 if (!vcpu->kvm->arch.exception_payload_enabled) 5355 events->exception.injected |= ex->pending; 5356 } 5357 events->exception.nr = ex->vector; 5358 events->exception.has_error_code = ex->has_error_code; 5359 events->exception.error_code = ex->error_code; 5360 events->exception_has_payload = ex->has_payload; 5361 events->exception_payload = ex->payload; 5362 5363 events->interrupt.injected = 5364 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5365 events->interrupt.nr = vcpu->arch.interrupt.nr; 5366 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5367 5368 events->nmi.injected = vcpu->arch.nmi_injected; 5369 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5370 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5371 5372 /* events->sipi_vector is never valid when reporting to user space */ 5373 5374 #ifdef CONFIG_KVM_SMM 5375 events->smi.smm = is_smm(vcpu); 5376 events->smi.pending = vcpu->arch.smi_pending; 5377 events->smi.smm_inside_nmi = 5378 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5379 #endif 5380 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5381 5382 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5383 | KVM_VCPUEVENT_VALID_SHADOW 5384 | KVM_VCPUEVENT_VALID_SMM); 5385 if (vcpu->kvm->arch.exception_payload_enabled) 5386 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5387 if (vcpu->kvm->arch.triple_fault_event) { 5388 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5389 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5390 } 5391 } 5392 5393 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5394 struct kvm_vcpu_events *events) 5395 { 5396 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5397 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5398 | KVM_VCPUEVENT_VALID_SHADOW 5399 | KVM_VCPUEVENT_VALID_SMM 5400 | KVM_VCPUEVENT_VALID_PAYLOAD 5401 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5402 return -EINVAL; 5403 5404 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5405 if (!vcpu->kvm->arch.exception_payload_enabled) 5406 return -EINVAL; 5407 if (events->exception.pending) 5408 events->exception.injected = 0; 5409 else 5410 events->exception_has_payload = 0; 5411 } else { 5412 events->exception.pending = 0; 5413 events->exception_has_payload = 0; 5414 } 5415 5416 if ((events->exception.injected || events->exception.pending) && 5417 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5418 return -EINVAL; 5419 5420 /* INITs are latched while in SMM */ 5421 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5422 (events->smi.smm || events->smi.pending) && 5423 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5424 return -EINVAL; 5425 5426 process_nmi(vcpu); 5427 5428 /* 5429 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5430 * morph the exception to a VM-Exit if appropriate. Do this only for 5431 * pending exceptions, already-injected exceptions are not subject to 5432 * intercpetion. Note, userspace that conflates pending and injected 5433 * is hosed, and will incorrectly convert an injected exception into a 5434 * pending exception, which in turn may cause a spurious VM-Exit. 5435 */ 5436 vcpu->arch.exception_from_userspace = events->exception.pending; 5437 5438 vcpu->arch.exception_vmexit.pending = false; 5439 5440 vcpu->arch.exception.injected = events->exception.injected; 5441 vcpu->arch.exception.pending = events->exception.pending; 5442 vcpu->arch.exception.vector = events->exception.nr; 5443 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5444 vcpu->arch.exception.error_code = events->exception.error_code; 5445 vcpu->arch.exception.has_payload = events->exception_has_payload; 5446 vcpu->arch.exception.payload = events->exception_payload; 5447 5448 vcpu->arch.interrupt.injected = events->interrupt.injected; 5449 vcpu->arch.interrupt.nr = events->interrupt.nr; 5450 vcpu->arch.interrupt.soft = events->interrupt.soft; 5451 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5452 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5453 events->interrupt.shadow); 5454 5455 vcpu->arch.nmi_injected = events->nmi.injected; 5456 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5457 vcpu->arch.nmi_pending = 0; 5458 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5459 if (events->nmi.pending) 5460 kvm_make_request(KVM_REQ_NMI, vcpu); 5461 } 5462 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5463 5464 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5465 lapic_in_kernel(vcpu)) 5466 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5467 5468 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5469 #ifdef CONFIG_KVM_SMM 5470 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5471 kvm_leave_nested(vcpu); 5472 kvm_smm_changed(vcpu, events->smi.smm); 5473 } 5474 5475 vcpu->arch.smi_pending = events->smi.pending; 5476 5477 if (events->smi.smm) { 5478 if (events->smi.smm_inside_nmi) 5479 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5480 else 5481 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5482 } 5483 5484 #else 5485 if (events->smi.smm || events->smi.pending || 5486 events->smi.smm_inside_nmi) 5487 return -EINVAL; 5488 #endif 5489 5490 if (lapic_in_kernel(vcpu)) { 5491 if (events->smi.latched_init) 5492 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5493 else 5494 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5495 } 5496 } 5497 5498 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5499 if (!vcpu->kvm->arch.triple_fault_event) 5500 return -EINVAL; 5501 if (events->triple_fault.pending) 5502 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5503 else 5504 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5505 } 5506 5507 kvm_make_request(KVM_REQ_EVENT, vcpu); 5508 5509 return 0; 5510 } 5511 5512 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5513 struct kvm_debugregs *dbgregs) 5514 { 5515 unsigned long val; 5516 5517 memset(dbgregs, 0, sizeof(*dbgregs)); 5518 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5519 kvm_get_dr(vcpu, 6, &val); 5520 dbgregs->dr6 = val; 5521 dbgregs->dr7 = vcpu->arch.dr7; 5522 } 5523 5524 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5525 struct kvm_debugregs *dbgregs) 5526 { 5527 if (dbgregs->flags) 5528 return -EINVAL; 5529 5530 if (!kvm_dr6_valid(dbgregs->dr6)) 5531 return -EINVAL; 5532 if (!kvm_dr7_valid(dbgregs->dr7)) 5533 return -EINVAL; 5534 5535 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5536 kvm_update_dr0123(vcpu); 5537 vcpu->arch.dr6 = dbgregs->dr6; 5538 vcpu->arch.dr7 = dbgregs->dr7; 5539 kvm_update_dr7(vcpu); 5540 5541 return 0; 5542 } 5543 5544 5545 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5546 u8 *state, unsigned int size) 5547 { 5548 /* 5549 * Only copy state for features that are enabled for the guest. The 5550 * state itself isn't problematic, but setting bits in the header for 5551 * features that are supported in *this* host but not exposed to the 5552 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5553 * compatible host without the features that are NOT exposed to the 5554 * guest. 5555 * 5556 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5557 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5558 * supported by the host. 5559 */ 5560 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5561 XFEATURE_MASK_FPSSE; 5562 5563 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5564 return; 5565 5566 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5567 supported_xcr0, vcpu->arch.pkru); 5568 } 5569 5570 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5571 struct kvm_xsave *guest_xsave) 5572 { 5573 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5574 sizeof(guest_xsave->region)); 5575 } 5576 5577 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5578 struct kvm_xsave *guest_xsave) 5579 { 5580 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5581 return 0; 5582 5583 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5584 guest_xsave->region, 5585 kvm_caps.supported_xcr0, 5586 &vcpu->arch.pkru); 5587 } 5588 5589 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5590 struct kvm_xcrs *guest_xcrs) 5591 { 5592 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5593 guest_xcrs->nr_xcrs = 0; 5594 return; 5595 } 5596 5597 guest_xcrs->nr_xcrs = 1; 5598 guest_xcrs->flags = 0; 5599 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5600 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5601 } 5602 5603 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5604 struct kvm_xcrs *guest_xcrs) 5605 { 5606 int i, r = 0; 5607 5608 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5609 return -EINVAL; 5610 5611 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5612 return -EINVAL; 5613 5614 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5615 /* Only support XCR0 currently */ 5616 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5617 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5618 guest_xcrs->xcrs[i].value); 5619 break; 5620 } 5621 if (r) 5622 r = -EINVAL; 5623 return r; 5624 } 5625 5626 /* 5627 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5628 * stopped by the hypervisor. This function will be called from the host only. 5629 * EINVAL is returned when the host attempts to set the flag for a guest that 5630 * does not support pv clocks. 5631 */ 5632 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5633 { 5634 if (!vcpu->arch.pv_time.active) 5635 return -EINVAL; 5636 vcpu->arch.pvclock_set_guest_stopped_request = true; 5637 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5638 return 0; 5639 } 5640 5641 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5642 struct kvm_device_attr *attr) 5643 { 5644 int r; 5645 5646 switch (attr->attr) { 5647 case KVM_VCPU_TSC_OFFSET: 5648 r = 0; 5649 break; 5650 default: 5651 r = -ENXIO; 5652 } 5653 5654 return r; 5655 } 5656 5657 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5658 struct kvm_device_attr *attr) 5659 { 5660 u64 __user *uaddr = kvm_get_attr_addr(attr); 5661 int r; 5662 5663 if (IS_ERR(uaddr)) 5664 return PTR_ERR(uaddr); 5665 5666 switch (attr->attr) { 5667 case KVM_VCPU_TSC_OFFSET: 5668 r = -EFAULT; 5669 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5670 break; 5671 r = 0; 5672 break; 5673 default: 5674 r = -ENXIO; 5675 } 5676 5677 return r; 5678 } 5679 5680 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5681 struct kvm_device_attr *attr) 5682 { 5683 u64 __user *uaddr = kvm_get_attr_addr(attr); 5684 struct kvm *kvm = vcpu->kvm; 5685 int r; 5686 5687 if (IS_ERR(uaddr)) 5688 return PTR_ERR(uaddr); 5689 5690 switch (attr->attr) { 5691 case KVM_VCPU_TSC_OFFSET: { 5692 u64 offset, tsc, ns; 5693 unsigned long flags; 5694 bool matched; 5695 5696 r = -EFAULT; 5697 if (get_user(offset, uaddr)) 5698 break; 5699 5700 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5701 5702 matched = (vcpu->arch.virtual_tsc_khz && 5703 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5704 kvm->arch.last_tsc_offset == offset); 5705 5706 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5707 ns = get_kvmclock_base_ns(); 5708 5709 kvm->arch.user_set_tsc = true; 5710 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5711 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5712 5713 r = 0; 5714 break; 5715 } 5716 default: 5717 r = -ENXIO; 5718 } 5719 5720 return r; 5721 } 5722 5723 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5724 unsigned int ioctl, 5725 void __user *argp) 5726 { 5727 struct kvm_device_attr attr; 5728 int r; 5729 5730 if (copy_from_user(&attr, argp, sizeof(attr))) 5731 return -EFAULT; 5732 5733 if (attr.group != KVM_VCPU_TSC_CTRL) 5734 return -ENXIO; 5735 5736 switch (ioctl) { 5737 case KVM_HAS_DEVICE_ATTR: 5738 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5739 break; 5740 case KVM_GET_DEVICE_ATTR: 5741 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5742 break; 5743 case KVM_SET_DEVICE_ATTR: 5744 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5745 break; 5746 } 5747 5748 return r; 5749 } 5750 5751 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5752 struct kvm_enable_cap *cap) 5753 { 5754 if (cap->flags) 5755 return -EINVAL; 5756 5757 switch (cap->cap) { 5758 #ifdef CONFIG_KVM_HYPERV 5759 case KVM_CAP_HYPERV_SYNIC2: 5760 if (cap->args[0]) 5761 return -EINVAL; 5762 fallthrough; 5763 5764 case KVM_CAP_HYPERV_SYNIC: 5765 if (!irqchip_in_kernel(vcpu->kvm)) 5766 return -EINVAL; 5767 return kvm_hv_activate_synic(vcpu, cap->cap == 5768 KVM_CAP_HYPERV_SYNIC2); 5769 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5770 { 5771 int r; 5772 uint16_t vmcs_version; 5773 void __user *user_ptr; 5774 5775 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5776 return -ENOTTY; 5777 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5778 if (!r) { 5779 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5780 if (copy_to_user(user_ptr, &vmcs_version, 5781 sizeof(vmcs_version))) 5782 r = -EFAULT; 5783 } 5784 return r; 5785 } 5786 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5787 if (!kvm_x86_ops.enable_l2_tlb_flush) 5788 return -ENOTTY; 5789 5790 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5791 5792 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5793 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5794 #endif 5795 5796 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5797 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5798 if (vcpu->arch.pv_cpuid.enforce) 5799 kvm_update_pv_runtime(vcpu); 5800 5801 return 0; 5802 default: 5803 return -EINVAL; 5804 } 5805 } 5806 5807 long kvm_arch_vcpu_ioctl(struct file *filp, 5808 unsigned int ioctl, unsigned long arg) 5809 { 5810 struct kvm_vcpu *vcpu = filp->private_data; 5811 void __user *argp = (void __user *)arg; 5812 int r; 5813 union { 5814 struct kvm_sregs2 *sregs2; 5815 struct kvm_lapic_state *lapic; 5816 struct kvm_xsave *xsave; 5817 struct kvm_xcrs *xcrs; 5818 void *buffer; 5819 } u; 5820 5821 vcpu_load(vcpu); 5822 5823 u.buffer = NULL; 5824 switch (ioctl) { 5825 case KVM_GET_LAPIC: { 5826 r = -EINVAL; 5827 if (!lapic_in_kernel(vcpu)) 5828 goto out; 5829 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5830 GFP_KERNEL_ACCOUNT); 5831 5832 r = -ENOMEM; 5833 if (!u.lapic) 5834 goto out; 5835 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5836 if (r) 5837 goto out; 5838 r = -EFAULT; 5839 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5840 goto out; 5841 r = 0; 5842 break; 5843 } 5844 case KVM_SET_LAPIC: { 5845 r = -EINVAL; 5846 if (!lapic_in_kernel(vcpu)) 5847 goto out; 5848 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5849 if (IS_ERR(u.lapic)) { 5850 r = PTR_ERR(u.lapic); 5851 goto out_nofree; 5852 } 5853 5854 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5855 break; 5856 } 5857 case KVM_INTERRUPT: { 5858 struct kvm_interrupt irq; 5859 5860 r = -EFAULT; 5861 if (copy_from_user(&irq, argp, sizeof(irq))) 5862 goto out; 5863 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5864 break; 5865 } 5866 case KVM_NMI: { 5867 r = kvm_vcpu_ioctl_nmi(vcpu); 5868 break; 5869 } 5870 case KVM_SMI: { 5871 r = kvm_inject_smi(vcpu); 5872 break; 5873 } 5874 case KVM_SET_CPUID: { 5875 struct kvm_cpuid __user *cpuid_arg = argp; 5876 struct kvm_cpuid cpuid; 5877 5878 r = -EFAULT; 5879 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5880 goto out; 5881 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5882 break; 5883 } 5884 case KVM_SET_CPUID2: { 5885 struct kvm_cpuid2 __user *cpuid_arg = argp; 5886 struct kvm_cpuid2 cpuid; 5887 5888 r = -EFAULT; 5889 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5890 goto out; 5891 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5892 cpuid_arg->entries); 5893 break; 5894 } 5895 case KVM_GET_CPUID2: { 5896 struct kvm_cpuid2 __user *cpuid_arg = argp; 5897 struct kvm_cpuid2 cpuid; 5898 5899 r = -EFAULT; 5900 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5901 goto out; 5902 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5903 cpuid_arg->entries); 5904 if (r) 5905 goto out; 5906 r = -EFAULT; 5907 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5908 goto out; 5909 r = 0; 5910 break; 5911 } 5912 case KVM_GET_MSRS: { 5913 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5914 r = msr_io(vcpu, argp, do_get_msr, 1); 5915 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5916 break; 5917 } 5918 case KVM_SET_MSRS: { 5919 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5920 r = msr_io(vcpu, argp, do_set_msr, 0); 5921 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5922 break; 5923 } 5924 case KVM_TPR_ACCESS_REPORTING: { 5925 struct kvm_tpr_access_ctl tac; 5926 5927 r = -EFAULT; 5928 if (copy_from_user(&tac, argp, sizeof(tac))) 5929 goto out; 5930 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5931 if (r) 5932 goto out; 5933 r = -EFAULT; 5934 if (copy_to_user(argp, &tac, sizeof(tac))) 5935 goto out; 5936 r = 0; 5937 break; 5938 }; 5939 case KVM_SET_VAPIC_ADDR: { 5940 struct kvm_vapic_addr va; 5941 int idx; 5942 5943 r = -EINVAL; 5944 if (!lapic_in_kernel(vcpu)) 5945 goto out; 5946 r = -EFAULT; 5947 if (copy_from_user(&va, argp, sizeof(va))) 5948 goto out; 5949 idx = srcu_read_lock(&vcpu->kvm->srcu); 5950 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5951 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5952 break; 5953 } 5954 case KVM_X86_SETUP_MCE: { 5955 u64 mcg_cap; 5956 5957 r = -EFAULT; 5958 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5959 goto out; 5960 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5961 break; 5962 } 5963 case KVM_X86_SET_MCE: { 5964 struct kvm_x86_mce mce; 5965 5966 r = -EFAULT; 5967 if (copy_from_user(&mce, argp, sizeof(mce))) 5968 goto out; 5969 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5970 break; 5971 } 5972 case KVM_GET_VCPU_EVENTS: { 5973 struct kvm_vcpu_events events; 5974 5975 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5976 5977 r = -EFAULT; 5978 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5979 break; 5980 r = 0; 5981 break; 5982 } 5983 case KVM_SET_VCPU_EVENTS: { 5984 struct kvm_vcpu_events events; 5985 5986 r = -EFAULT; 5987 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5988 break; 5989 5990 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5991 break; 5992 } 5993 case KVM_GET_DEBUGREGS: { 5994 struct kvm_debugregs dbgregs; 5995 5996 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5997 5998 r = -EFAULT; 5999 if (copy_to_user(argp, &dbgregs, 6000 sizeof(struct kvm_debugregs))) 6001 break; 6002 r = 0; 6003 break; 6004 } 6005 case KVM_SET_DEBUGREGS: { 6006 struct kvm_debugregs dbgregs; 6007 6008 r = -EFAULT; 6009 if (copy_from_user(&dbgregs, argp, 6010 sizeof(struct kvm_debugregs))) 6011 break; 6012 6013 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6014 break; 6015 } 6016 case KVM_GET_XSAVE: { 6017 r = -EINVAL; 6018 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6019 break; 6020 6021 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 6022 r = -ENOMEM; 6023 if (!u.xsave) 6024 break; 6025 6026 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6027 6028 r = -EFAULT; 6029 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6030 break; 6031 r = 0; 6032 break; 6033 } 6034 case KVM_SET_XSAVE: { 6035 int size = vcpu->arch.guest_fpu.uabi_size; 6036 6037 u.xsave = memdup_user(argp, size); 6038 if (IS_ERR(u.xsave)) { 6039 r = PTR_ERR(u.xsave); 6040 goto out_nofree; 6041 } 6042 6043 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6044 break; 6045 } 6046 6047 case KVM_GET_XSAVE2: { 6048 int size = vcpu->arch.guest_fpu.uabi_size; 6049 6050 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 6051 r = -ENOMEM; 6052 if (!u.xsave) 6053 break; 6054 6055 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6056 6057 r = -EFAULT; 6058 if (copy_to_user(argp, u.xsave, size)) 6059 break; 6060 6061 r = 0; 6062 break; 6063 } 6064 6065 case KVM_GET_XCRS: { 6066 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 6067 r = -ENOMEM; 6068 if (!u.xcrs) 6069 break; 6070 6071 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6072 6073 r = -EFAULT; 6074 if (copy_to_user(argp, u.xcrs, 6075 sizeof(struct kvm_xcrs))) 6076 break; 6077 r = 0; 6078 break; 6079 } 6080 case KVM_SET_XCRS: { 6081 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6082 if (IS_ERR(u.xcrs)) { 6083 r = PTR_ERR(u.xcrs); 6084 goto out_nofree; 6085 } 6086 6087 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6088 break; 6089 } 6090 case KVM_SET_TSC_KHZ: { 6091 u32 user_tsc_khz; 6092 6093 r = -EINVAL; 6094 user_tsc_khz = (u32)arg; 6095 6096 if (kvm_caps.has_tsc_control && 6097 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6098 goto out; 6099 6100 if (user_tsc_khz == 0) 6101 user_tsc_khz = tsc_khz; 6102 6103 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6104 r = 0; 6105 6106 goto out; 6107 } 6108 case KVM_GET_TSC_KHZ: { 6109 r = vcpu->arch.virtual_tsc_khz; 6110 goto out; 6111 } 6112 case KVM_KVMCLOCK_CTRL: { 6113 r = kvm_set_guest_paused(vcpu); 6114 goto out; 6115 } 6116 case KVM_ENABLE_CAP: { 6117 struct kvm_enable_cap cap; 6118 6119 r = -EFAULT; 6120 if (copy_from_user(&cap, argp, sizeof(cap))) 6121 goto out; 6122 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6123 break; 6124 } 6125 case KVM_GET_NESTED_STATE: { 6126 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6127 u32 user_data_size; 6128 6129 r = -EINVAL; 6130 if (!kvm_x86_ops.nested_ops->get_state) 6131 break; 6132 6133 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6134 r = -EFAULT; 6135 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6136 break; 6137 6138 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6139 user_data_size); 6140 if (r < 0) 6141 break; 6142 6143 if (r > user_data_size) { 6144 if (put_user(r, &user_kvm_nested_state->size)) 6145 r = -EFAULT; 6146 else 6147 r = -E2BIG; 6148 break; 6149 } 6150 6151 r = 0; 6152 break; 6153 } 6154 case KVM_SET_NESTED_STATE: { 6155 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6156 struct kvm_nested_state kvm_state; 6157 int idx; 6158 6159 r = -EINVAL; 6160 if (!kvm_x86_ops.nested_ops->set_state) 6161 break; 6162 6163 r = -EFAULT; 6164 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6165 break; 6166 6167 r = -EINVAL; 6168 if (kvm_state.size < sizeof(kvm_state)) 6169 break; 6170 6171 if (kvm_state.flags & 6172 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6173 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6174 | KVM_STATE_NESTED_GIF_SET)) 6175 break; 6176 6177 /* nested_run_pending implies guest_mode. */ 6178 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6179 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6180 break; 6181 6182 idx = srcu_read_lock(&vcpu->kvm->srcu); 6183 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6184 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6185 break; 6186 } 6187 #ifdef CONFIG_KVM_HYPERV 6188 case KVM_GET_SUPPORTED_HV_CPUID: 6189 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6190 break; 6191 #endif 6192 #ifdef CONFIG_KVM_XEN 6193 case KVM_XEN_VCPU_GET_ATTR: { 6194 struct kvm_xen_vcpu_attr xva; 6195 6196 r = -EFAULT; 6197 if (copy_from_user(&xva, argp, sizeof(xva))) 6198 goto out; 6199 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6200 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6201 r = -EFAULT; 6202 break; 6203 } 6204 case KVM_XEN_VCPU_SET_ATTR: { 6205 struct kvm_xen_vcpu_attr xva; 6206 6207 r = -EFAULT; 6208 if (copy_from_user(&xva, argp, sizeof(xva))) 6209 goto out; 6210 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6211 break; 6212 } 6213 #endif 6214 case KVM_GET_SREGS2: { 6215 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6216 r = -ENOMEM; 6217 if (!u.sregs2) 6218 goto out; 6219 __get_sregs2(vcpu, u.sregs2); 6220 r = -EFAULT; 6221 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6222 goto out; 6223 r = 0; 6224 break; 6225 } 6226 case KVM_SET_SREGS2: { 6227 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6228 if (IS_ERR(u.sregs2)) { 6229 r = PTR_ERR(u.sregs2); 6230 u.sregs2 = NULL; 6231 goto out; 6232 } 6233 r = __set_sregs2(vcpu, u.sregs2); 6234 break; 6235 } 6236 case KVM_HAS_DEVICE_ATTR: 6237 case KVM_GET_DEVICE_ATTR: 6238 case KVM_SET_DEVICE_ATTR: 6239 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6240 break; 6241 default: 6242 r = -EINVAL; 6243 } 6244 out: 6245 kfree(u.buffer); 6246 out_nofree: 6247 vcpu_put(vcpu); 6248 return r; 6249 } 6250 6251 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6252 { 6253 return VM_FAULT_SIGBUS; 6254 } 6255 6256 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6257 { 6258 int ret; 6259 6260 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6261 return -EINVAL; 6262 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6263 return ret; 6264 } 6265 6266 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6267 u64 ident_addr) 6268 { 6269 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6270 } 6271 6272 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6273 unsigned long kvm_nr_mmu_pages) 6274 { 6275 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6276 return -EINVAL; 6277 6278 mutex_lock(&kvm->slots_lock); 6279 6280 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6281 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6282 6283 mutex_unlock(&kvm->slots_lock); 6284 return 0; 6285 } 6286 6287 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6288 { 6289 struct kvm_pic *pic = kvm->arch.vpic; 6290 int r; 6291 6292 r = 0; 6293 switch (chip->chip_id) { 6294 case KVM_IRQCHIP_PIC_MASTER: 6295 memcpy(&chip->chip.pic, &pic->pics[0], 6296 sizeof(struct kvm_pic_state)); 6297 break; 6298 case KVM_IRQCHIP_PIC_SLAVE: 6299 memcpy(&chip->chip.pic, &pic->pics[1], 6300 sizeof(struct kvm_pic_state)); 6301 break; 6302 case KVM_IRQCHIP_IOAPIC: 6303 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6304 break; 6305 default: 6306 r = -EINVAL; 6307 break; 6308 } 6309 return r; 6310 } 6311 6312 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6313 { 6314 struct kvm_pic *pic = kvm->arch.vpic; 6315 int r; 6316 6317 r = 0; 6318 switch (chip->chip_id) { 6319 case KVM_IRQCHIP_PIC_MASTER: 6320 spin_lock(&pic->lock); 6321 memcpy(&pic->pics[0], &chip->chip.pic, 6322 sizeof(struct kvm_pic_state)); 6323 spin_unlock(&pic->lock); 6324 break; 6325 case KVM_IRQCHIP_PIC_SLAVE: 6326 spin_lock(&pic->lock); 6327 memcpy(&pic->pics[1], &chip->chip.pic, 6328 sizeof(struct kvm_pic_state)); 6329 spin_unlock(&pic->lock); 6330 break; 6331 case KVM_IRQCHIP_IOAPIC: 6332 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6333 break; 6334 default: 6335 r = -EINVAL; 6336 break; 6337 } 6338 kvm_pic_update_irq(pic); 6339 return r; 6340 } 6341 6342 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6343 { 6344 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6345 6346 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6347 6348 mutex_lock(&kps->lock); 6349 memcpy(ps, &kps->channels, sizeof(*ps)); 6350 mutex_unlock(&kps->lock); 6351 return 0; 6352 } 6353 6354 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6355 { 6356 int i; 6357 struct kvm_pit *pit = kvm->arch.vpit; 6358 6359 mutex_lock(&pit->pit_state.lock); 6360 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6361 for (i = 0; i < 3; i++) 6362 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6363 mutex_unlock(&pit->pit_state.lock); 6364 return 0; 6365 } 6366 6367 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6368 { 6369 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6370 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6371 sizeof(ps->channels)); 6372 ps->flags = kvm->arch.vpit->pit_state.flags; 6373 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6374 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6375 return 0; 6376 } 6377 6378 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6379 { 6380 int start = 0; 6381 int i; 6382 u32 prev_legacy, cur_legacy; 6383 struct kvm_pit *pit = kvm->arch.vpit; 6384 6385 mutex_lock(&pit->pit_state.lock); 6386 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6387 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6388 if (!prev_legacy && cur_legacy) 6389 start = 1; 6390 memcpy(&pit->pit_state.channels, &ps->channels, 6391 sizeof(pit->pit_state.channels)); 6392 pit->pit_state.flags = ps->flags; 6393 for (i = 0; i < 3; i++) 6394 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6395 start && i == 0); 6396 mutex_unlock(&pit->pit_state.lock); 6397 return 0; 6398 } 6399 6400 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6401 struct kvm_reinject_control *control) 6402 { 6403 struct kvm_pit *pit = kvm->arch.vpit; 6404 6405 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6406 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6407 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6408 */ 6409 mutex_lock(&pit->pit_state.lock); 6410 kvm_pit_set_reinject(pit, control->pit_reinject); 6411 mutex_unlock(&pit->pit_state.lock); 6412 6413 return 0; 6414 } 6415 6416 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6417 { 6418 6419 /* 6420 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6421 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6422 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6423 * VM-Exit. 6424 */ 6425 struct kvm_vcpu *vcpu; 6426 unsigned long i; 6427 6428 if (!kvm_x86_ops.cpu_dirty_log_size) 6429 return; 6430 6431 kvm_for_each_vcpu(i, vcpu, kvm) 6432 kvm_vcpu_kick(vcpu); 6433 } 6434 6435 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6436 bool line_status) 6437 { 6438 if (!irqchip_in_kernel(kvm)) 6439 return -ENXIO; 6440 6441 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6442 irq_event->irq, irq_event->level, 6443 line_status); 6444 return 0; 6445 } 6446 6447 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6448 struct kvm_enable_cap *cap) 6449 { 6450 int r; 6451 6452 if (cap->flags) 6453 return -EINVAL; 6454 6455 switch (cap->cap) { 6456 case KVM_CAP_DISABLE_QUIRKS2: 6457 r = -EINVAL; 6458 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6459 break; 6460 fallthrough; 6461 case KVM_CAP_DISABLE_QUIRKS: 6462 kvm->arch.disabled_quirks = cap->args[0]; 6463 r = 0; 6464 break; 6465 case KVM_CAP_SPLIT_IRQCHIP: { 6466 mutex_lock(&kvm->lock); 6467 r = -EINVAL; 6468 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6469 goto split_irqchip_unlock; 6470 r = -EEXIST; 6471 if (irqchip_in_kernel(kvm)) 6472 goto split_irqchip_unlock; 6473 if (kvm->created_vcpus) 6474 goto split_irqchip_unlock; 6475 r = kvm_setup_empty_irq_routing(kvm); 6476 if (r) 6477 goto split_irqchip_unlock; 6478 /* Pairs with irqchip_in_kernel. */ 6479 smp_wmb(); 6480 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6481 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6482 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6483 r = 0; 6484 split_irqchip_unlock: 6485 mutex_unlock(&kvm->lock); 6486 break; 6487 } 6488 case KVM_CAP_X2APIC_API: 6489 r = -EINVAL; 6490 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6491 break; 6492 6493 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6494 kvm->arch.x2apic_format = true; 6495 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6496 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6497 6498 r = 0; 6499 break; 6500 case KVM_CAP_X86_DISABLE_EXITS: 6501 r = -EINVAL; 6502 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6503 break; 6504 6505 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6506 kvm->arch.pause_in_guest = true; 6507 6508 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6509 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6510 6511 if (!mitigate_smt_rsb) { 6512 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6513 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6514 pr_warn_once(SMT_RSB_MSG); 6515 6516 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6517 kvm_can_mwait_in_guest()) 6518 kvm->arch.mwait_in_guest = true; 6519 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6520 kvm->arch.hlt_in_guest = true; 6521 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6522 kvm->arch.cstate_in_guest = true; 6523 } 6524 6525 r = 0; 6526 break; 6527 case KVM_CAP_MSR_PLATFORM_INFO: 6528 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6529 r = 0; 6530 break; 6531 case KVM_CAP_EXCEPTION_PAYLOAD: 6532 kvm->arch.exception_payload_enabled = cap->args[0]; 6533 r = 0; 6534 break; 6535 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6536 kvm->arch.triple_fault_event = cap->args[0]; 6537 r = 0; 6538 break; 6539 case KVM_CAP_X86_USER_SPACE_MSR: 6540 r = -EINVAL; 6541 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6542 break; 6543 kvm->arch.user_space_msr_mask = cap->args[0]; 6544 r = 0; 6545 break; 6546 case KVM_CAP_X86_BUS_LOCK_EXIT: 6547 r = -EINVAL; 6548 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6549 break; 6550 6551 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6552 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6553 break; 6554 6555 if (kvm_caps.has_bus_lock_exit && 6556 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6557 kvm->arch.bus_lock_detection_enabled = true; 6558 r = 0; 6559 break; 6560 #ifdef CONFIG_X86_SGX_KVM 6561 case KVM_CAP_SGX_ATTRIBUTE: { 6562 unsigned long allowed_attributes = 0; 6563 6564 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6565 if (r) 6566 break; 6567 6568 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6569 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6570 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6571 kvm->arch.sgx_provisioning_allowed = true; 6572 else 6573 r = -EINVAL; 6574 break; 6575 } 6576 #endif 6577 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6578 r = -EINVAL; 6579 if (!kvm_x86_ops.vm_copy_enc_context_from) 6580 break; 6581 6582 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6583 break; 6584 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6585 r = -EINVAL; 6586 if (!kvm_x86_ops.vm_move_enc_context_from) 6587 break; 6588 6589 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6590 break; 6591 case KVM_CAP_EXIT_HYPERCALL: 6592 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6593 r = -EINVAL; 6594 break; 6595 } 6596 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6597 r = 0; 6598 break; 6599 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6600 r = -EINVAL; 6601 if (cap->args[0] & ~1) 6602 break; 6603 kvm->arch.exit_on_emulation_error = cap->args[0]; 6604 r = 0; 6605 break; 6606 case KVM_CAP_PMU_CAPABILITY: 6607 r = -EINVAL; 6608 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6609 break; 6610 6611 mutex_lock(&kvm->lock); 6612 if (!kvm->created_vcpus) { 6613 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6614 r = 0; 6615 } 6616 mutex_unlock(&kvm->lock); 6617 break; 6618 case KVM_CAP_MAX_VCPU_ID: 6619 r = -EINVAL; 6620 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6621 break; 6622 6623 mutex_lock(&kvm->lock); 6624 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6625 r = 0; 6626 } else if (!kvm->arch.max_vcpu_ids) { 6627 kvm->arch.max_vcpu_ids = cap->args[0]; 6628 r = 0; 6629 } 6630 mutex_unlock(&kvm->lock); 6631 break; 6632 case KVM_CAP_X86_NOTIFY_VMEXIT: 6633 r = -EINVAL; 6634 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6635 break; 6636 if (!kvm_caps.has_notify_vmexit) 6637 break; 6638 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6639 break; 6640 mutex_lock(&kvm->lock); 6641 if (!kvm->created_vcpus) { 6642 kvm->arch.notify_window = cap->args[0] >> 32; 6643 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6644 r = 0; 6645 } 6646 mutex_unlock(&kvm->lock); 6647 break; 6648 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6649 r = -EINVAL; 6650 6651 /* 6652 * Since the risk of disabling NX hugepages is a guest crashing 6653 * the system, ensure the userspace process has permission to 6654 * reboot the system. 6655 * 6656 * Note that unlike the reboot() syscall, the process must have 6657 * this capability in the root namespace because exposing 6658 * /dev/kvm into a container does not limit the scope of the 6659 * iTLB multihit bug to that container. In other words, 6660 * this must use capable(), not ns_capable(). 6661 */ 6662 if (!capable(CAP_SYS_BOOT)) { 6663 r = -EPERM; 6664 break; 6665 } 6666 6667 if (cap->args[0]) 6668 break; 6669 6670 mutex_lock(&kvm->lock); 6671 if (!kvm->created_vcpus) { 6672 kvm->arch.disable_nx_huge_pages = true; 6673 r = 0; 6674 } 6675 mutex_unlock(&kvm->lock); 6676 break; 6677 default: 6678 r = -EINVAL; 6679 break; 6680 } 6681 return r; 6682 } 6683 6684 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6685 { 6686 struct kvm_x86_msr_filter *msr_filter; 6687 6688 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6689 if (!msr_filter) 6690 return NULL; 6691 6692 msr_filter->default_allow = default_allow; 6693 return msr_filter; 6694 } 6695 6696 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6697 { 6698 u32 i; 6699 6700 if (!msr_filter) 6701 return; 6702 6703 for (i = 0; i < msr_filter->count; i++) 6704 kfree(msr_filter->ranges[i].bitmap); 6705 6706 kfree(msr_filter); 6707 } 6708 6709 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6710 struct kvm_msr_filter_range *user_range) 6711 { 6712 unsigned long *bitmap; 6713 size_t bitmap_size; 6714 6715 if (!user_range->nmsrs) 6716 return 0; 6717 6718 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6719 return -EINVAL; 6720 6721 if (!user_range->flags) 6722 return -EINVAL; 6723 6724 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6725 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6726 return -EINVAL; 6727 6728 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6729 if (IS_ERR(bitmap)) 6730 return PTR_ERR(bitmap); 6731 6732 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6733 .flags = user_range->flags, 6734 .base = user_range->base, 6735 .nmsrs = user_range->nmsrs, 6736 .bitmap = bitmap, 6737 }; 6738 6739 msr_filter->count++; 6740 return 0; 6741 } 6742 6743 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6744 struct kvm_msr_filter *filter) 6745 { 6746 struct kvm_x86_msr_filter *new_filter, *old_filter; 6747 bool default_allow; 6748 bool empty = true; 6749 int r; 6750 u32 i; 6751 6752 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6753 return -EINVAL; 6754 6755 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6756 empty &= !filter->ranges[i].nmsrs; 6757 6758 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6759 if (empty && !default_allow) 6760 return -EINVAL; 6761 6762 new_filter = kvm_alloc_msr_filter(default_allow); 6763 if (!new_filter) 6764 return -ENOMEM; 6765 6766 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6767 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6768 if (r) { 6769 kvm_free_msr_filter(new_filter); 6770 return r; 6771 } 6772 } 6773 6774 mutex_lock(&kvm->lock); 6775 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6776 mutex_is_locked(&kvm->lock)); 6777 mutex_unlock(&kvm->lock); 6778 synchronize_srcu(&kvm->srcu); 6779 6780 kvm_free_msr_filter(old_filter); 6781 6782 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6783 6784 return 0; 6785 } 6786 6787 #ifdef CONFIG_KVM_COMPAT 6788 /* for KVM_X86_SET_MSR_FILTER */ 6789 struct kvm_msr_filter_range_compat { 6790 __u32 flags; 6791 __u32 nmsrs; 6792 __u32 base; 6793 __u32 bitmap; 6794 }; 6795 6796 struct kvm_msr_filter_compat { 6797 __u32 flags; 6798 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6799 }; 6800 6801 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6802 6803 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6804 unsigned long arg) 6805 { 6806 void __user *argp = (void __user *)arg; 6807 struct kvm *kvm = filp->private_data; 6808 long r = -ENOTTY; 6809 6810 switch (ioctl) { 6811 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6812 struct kvm_msr_filter __user *user_msr_filter = argp; 6813 struct kvm_msr_filter_compat filter_compat; 6814 struct kvm_msr_filter filter; 6815 int i; 6816 6817 if (copy_from_user(&filter_compat, user_msr_filter, 6818 sizeof(filter_compat))) 6819 return -EFAULT; 6820 6821 filter.flags = filter_compat.flags; 6822 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6823 struct kvm_msr_filter_range_compat *cr; 6824 6825 cr = &filter_compat.ranges[i]; 6826 filter.ranges[i] = (struct kvm_msr_filter_range) { 6827 .flags = cr->flags, 6828 .nmsrs = cr->nmsrs, 6829 .base = cr->base, 6830 .bitmap = (__u8 *)(ulong)cr->bitmap, 6831 }; 6832 } 6833 6834 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6835 break; 6836 } 6837 } 6838 6839 return r; 6840 } 6841 #endif 6842 6843 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6844 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6845 { 6846 struct kvm_vcpu *vcpu; 6847 unsigned long i; 6848 int ret = 0; 6849 6850 mutex_lock(&kvm->lock); 6851 kvm_for_each_vcpu(i, vcpu, kvm) { 6852 if (!vcpu->arch.pv_time.active) 6853 continue; 6854 6855 ret = kvm_set_guest_paused(vcpu); 6856 if (ret) { 6857 kvm_err("Failed to pause guest VCPU%d: %d\n", 6858 vcpu->vcpu_id, ret); 6859 break; 6860 } 6861 } 6862 mutex_unlock(&kvm->lock); 6863 6864 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6865 } 6866 6867 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6868 { 6869 switch (state) { 6870 case PM_HIBERNATION_PREPARE: 6871 case PM_SUSPEND_PREPARE: 6872 return kvm_arch_suspend_notifier(kvm); 6873 } 6874 6875 return NOTIFY_DONE; 6876 } 6877 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6878 6879 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6880 { 6881 struct kvm_clock_data data = { 0 }; 6882 6883 get_kvmclock(kvm, &data); 6884 if (copy_to_user(argp, &data, sizeof(data))) 6885 return -EFAULT; 6886 6887 return 0; 6888 } 6889 6890 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6891 { 6892 struct kvm_arch *ka = &kvm->arch; 6893 struct kvm_clock_data data; 6894 u64 now_raw_ns; 6895 6896 if (copy_from_user(&data, argp, sizeof(data))) 6897 return -EFAULT; 6898 6899 /* 6900 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6901 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6902 */ 6903 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6904 return -EINVAL; 6905 6906 kvm_hv_request_tsc_page_update(kvm); 6907 kvm_start_pvclock_update(kvm); 6908 pvclock_update_vm_gtod_copy(kvm); 6909 6910 /* 6911 * This pairs with kvm_guest_time_update(): when masterclock is 6912 * in use, we use master_kernel_ns + kvmclock_offset to set 6913 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6914 * is slightly ahead) here we risk going negative on unsigned 6915 * 'system_time' when 'data.clock' is very small. 6916 */ 6917 if (data.flags & KVM_CLOCK_REALTIME) { 6918 u64 now_real_ns = ktime_get_real_ns(); 6919 6920 /* 6921 * Avoid stepping the kvmclock backwards. 6922 */ 6923 if (now_real_ns > data.realtime) 6924 data.clock += now_real_ns - data.realtime; 6925 } 6926 6927 if (ka->use_master_clock) 6928 now_raw_ns = ka->master_kernel_ns; 6929 else 6930 now_raw_ns = get_kvmclock_base_ns(); 6931 ka->kvmclock_offset = data.clock - now_raw_ns; 6932 kvm_end_pvclock_update(kvm); 6933 return 0; 6934 } 6935 6936 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6937 { 6938 struct kvm *kvm = filp->private_data; 6939 void __user *argp = (void __user *)arg; 6940 int r = -ENOTTY; 6941 /* 6942 * This union makes it completely explicit to gcc-3.x 6943 * that these two variables' stack usage should be 6944 * combined, not added together. 6945 */ 6946 union { 6947 struct kvm_pit_state ps; 6948 struct kvm_pit_state2 ps2; 6949 struct kvm_pit_config pit_config; 6950 } u; 6951 6952 switch (ioctl) { 6953 case KVM_SET_TSS_ADDR: 6954 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6955 break; 6956 case KVM_SET_IDENTITY_MAP_ADDR: { 6957 u64 ident_addr; 6958 6959 mutex_lock(&kvm->lock); 6960 r = -EINVAL; 6961 if (kvm->created_vcpus) 6962 goto set_identity_unlock; 6963 r = -EFAULT; 6964 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6965 goto set_identity_unlock; 6966 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6967 set_identity_unlock: 6968 mutex_unlock(&kvm->lock); 6969 break; 6970 } 6971 case KVM_SET_NR_MMU_PAGES: 6972 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6973 break; 6974 case KVM_CREATE_IRQCHIP: { 6975 mutex_lock(&kvm->lock); 6976 6977 r = -EEXIST; 6978 if (irqchip_in_kernel(kvm)) 6979 goto create_irqchip_unlock; 6980 6981 r = -EINVAL; 6982 if (kvm->created_vcpus) 6983 goto create_irqchip_unlock; 6984 6985 r = kvm_pic_init(kvm); 6986 if (r) 6987 goto create_irqchip_unlock; 6988 6989 r = kvm_ioapic_init(kvm); 6990 if (r) { 6991 kvm_pic_destroy(kvm); 6992 goto create_irqchip_unlock; 6993 } 6994 6995 r = kvm_setup_default_irq_routing(kvm); 6996 if (r) { 6997 kvm_ioapic_destroy(kvm); 6998 kvm_pic_destroy(kvm); 6999 goto create_irqchip_unlock; 7000 } 7001 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 7002 smp_wmb(); 7003 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7004 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7005 create_irqchip_unlock: 7006 mutex_unlock(&kvm->lock); 7007 break; 7008 } 7009 case KVM_CREATE_PIT: 7010 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7011 goto create_pit; 7012 case KVM_CREATE_PIT2: 7013 r = -EFAULT; 7014 if (copy_from_user(&u.pit_config, argp, 7015 sizeof(struct kvm_pit_config))) 7016 goto out; 7017 create_pit: 7018 mutex_lock(&kvm->lock); 7019 r = -EEXIST; 7020 if (kvm->arch.vpit) 7021 goto create_pit_unlock; 7022 r = -ENOENT; 7023 if (!pic_in_kernel(kvm)) 7024 goto create_pit_unlock; 7025 r = -ENOMEM; 7026 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7027 if (kvm->arch.vpit) 7028 r = 0; 7029 create_pit_unlock: 7030 mutex_unlock(&kvm->lock); 7031 break; 7032 case KVM_GET_IRQCHIP: { 7033 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7034 struct kvm_irqchip *chip; 7035 7036 chip = memdup_user(argp, sizeof(*chip)); 7037 if (IS_ERR(chip)) { 7038 r = PTR_ERR(chip); 7039 goto out; 7040 } 7041 7042 r = -ENXIO; 7043 if (!irqchip_kernel(kvm)) 7044 goto get_irqchip_out; 7045 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7046 if (r) 7047 goto get_irqchip_out; 7048 r = -EFAULT; 7049 if (copy_to_user(argp, chip, sizeof(*chip))) 7050 goto get_irqchip_out; 7051 r = 0; 7052 get_irqchip_out: 7053 kfree(chip); 7054 break; 7055 } 7056 case KVM_SET_IRQCHIP: { 7057 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7058 struct kvm_irqchip *chip; 7059 7060 chip = memdup_user(argp, sizeof(*chip)); 7061 if (IS_ERR(chip)) { 7062 r = PTR_ERR(chip); 7063 goto out; 7064 } 7065 7066 r = -ENXIO; 7067 if (!irqchip_kernel(kvm)) 7068 goto set_irqchip_out; 7069 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7070 set_irqchip_out: 7071 kfree(chip); 7072 break; 7073 } 7074 case KVM_GET_PIT: { 7075 r = -EFAULT; 7076 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7077 goto out; 7078 r = -ENXIO; 7079 if (!kvm->arch.vpit) 7080 goto out; 7081 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7082 if (r) 7083 goto out; 7084 r = -EFAULT; 7085 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7086 goto out; 7087 r = 0; 7088 break; 7089 } 7090 case KVM_SET_PIT: { 7091 r = -EFAULT; 7092 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7093 goto out; 7094 mutex_lock(&kvm->lock); 7095 r = -ENXIO; 7096 if (!kvm->arch.vpit) 7097 goto set_pit_out; 7098 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7099 set_pit_out: 7100 mutex_unlock(&kvm->lock); 7101 break; 7102 } 7103 case KVM_GET_PIT2: { 7104 r = -ENXIO; 7105 if (!kvm->arch.vpit) 7106 goto out; 7107 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7108 if (r) 7109 goto out; 7110 r = -EFAULT; 7111 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7112 goto out; 7113 r = 0; 7114 break; 7115 } 7116 case KVM_SET_PIT2: { 7117 r = -EFAULT; 7118 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7119 goto out; 7120 mutex_lock(&kvm->lock); 7121 r = -ENXIO; 7122 if (!kvm->arch.vpit) 7123 goto set_pit2_out; 7124 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7125 set_pit2_out: 7126 mutex_unlock(&kvm->lock); 7127 break; 7128 } 7129 case KVM_REINJECT_CONTROL: { 7130 struct kvm_reinject_control control; 7131 r = -EFAULT; 7132 if (copy_from_user(&control, argp, sizeof(control))) 7133 goto out; 7134 r = -ENXIO; 7135 if (!kvm->arch.vpit) 7136 goto out; 7137 r = kvm_vm_ioctl_reinject(kvm, &control); 7138 break; 7139 } 7140 case KVM_SET_BOOT_CPU_ID: 7141 r = 0; 7142 mutex_lock(&kvm->lock); 7143 if (kvm->created_vcpus) 7144 r = -EBUSY; 7145 else 7146 kvm->arch.bsp_vcpu_id = arg; 7147 mutex_unlock(&kvm->lock); 7148 break; 7149 #ifdef CONFIG_KVM_XEN 7150 case KVM_XEN_HVM_CONFIG: { 7151 struct kvm_xen_hvm_config xhc; 7152 r = -EFAULT; 7153 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7154 goto out; 7155 r = kvm_xen_hvm_config(kvm, &xhc); 7156 break; 7157 } 7158 case KVM_XEN_HVM_GET_ATTR: { 7159 struct kvm_xen_hvm_attr xha; 7160 7161 r = -EFAULT; 7162 if (copy_from_user(&xha, argp, sizeof(xha))) 7163 goto out; 7164 r = kvm_xen_hvm_get_attr(kvm, &xha); 7165 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7166 r = -EFAULT; 7167 break; 7168 } 7169 case KVM_XEN_HVM_SET_ATTR: { 7170 struct kvm_xen_hvm_attr xha; 7171 7172 r = -EFAULT; 7173 if (copy_from_user(&xha, argp, sizeof(xha))) 7174 goto out; 7175 r = kvm_xen_hvm_set_attr(kvm, &xha); 7176 break; 7177 } 7178 case KVM_XEN_HVM_EVTCHN_SEND: { 7179 struct kvm_irq_routing_xen_evtchn uxe; 7180 7181 r = -EFAULT; 7182 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7183 goto out; 7184 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7185 break; 7186 } 7187 #endif 7188 case KVM_SET_CLOCK: 7189 r = kvm_vm_ioctl_set_clock(kvm, argp); 7190 break; 7191 case KVM_GET_CLOCK: 7192 r = kvm_vm_ioctl_get_clock(kvm, argp); 7193 break; 7194 case KVM_SET_TSC_KHZ: { 7195 u32 user_tsc_khz; 7196 7197 r = -EINVAL; 7198 user_tsc_khz = (u32)arg; 7199 7200 if (kvm_caps.has_tsc_control && 7201 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7202 goto out; 7203 7204 if (user_tsc_khz == 0) 7205 user_tsc_khz = tsc_khz; 7206 7207 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7208 r = 0; 7209 7210 goto out; 7211 } 7212 case KVM_GET_TSC_KHZ: { 7213 r = READ_ONCE(kvm->arch.default_tsc_khz); 7214 goto out; 7215 } 7216 case KVM_MEMORY_ENCRYPT_OP: { 7217 r = -ENOTTY; 7218 if (!kvm_x86_ops.mem_enc_ioctl) 7219 goto out; 7220 7221 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7222 break; 7223 } 7224 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7225 struct kvm_enc_region region; 7226 7227 r = -EFAULT; 7228 if (copy_from_user(®ion, argp, sizeof(region))) 7229 goto out; 7230 7231 r = -ENOTTY; 7232 if (!kvm_x86_ops.mem_enc_register_region) 7233 goto out; 7234 7235 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7236 break; 7237 } 7238 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7239 struct kvm_enc_region region; 7240 7241 r = -EFAULT; 7242 if (copy_from_user(®ion, argp, sizeof(region))) 7243 goto out; 7244 7245 r = -ENOTTY; 7246 if (!kvm_x86_ops.mem_enc_unregister_region) 7247 goto out; 7248 7249 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7250 break; 7251 } 7252 #ifdef CONFIG_KVM_HYPERV 7253 case KVM_HYPERV_EVENTFD: { 7254 struct kvm_hyperv_eventfd hvevfd; 7255 7256 r = -EFAULT; 7257 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7258 goto out; 7259 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7260 break; 7261 } 7262 #endif 7263 case KVM_SET_PMU_EVENT_FILTER: 7264 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7265 break; 7266 case KVM_X86_SET_MSR_FILTER: { 7267 struct kvm_msr_filter __user *user_msr_filter = argp; 7268 struct kvm_msr_filter filter; 7269 7270 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7271 return -EFAULT; 7272 7273 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7274 break; 7275 } 7276 default: 7277 r = -ENOTTY; 7278 } 7279 out: 7280 return r; 7281 } 7282 7283 static void kvm_probe_feature_msr(u32 msr_index) 7284 { 7285 struct kvm_msr_entry msr = { 7286 .index = msr_index, 7287 }; 7288 7289 if (kvm_get_msr_feature(&msr)) 7290 return; 7291 7292 msr_based_features[num_msr_based_features++] = msr_index; 7293 } 7294 7295 static void kvm_probe_msr_to_save(u32 msr_index) 7296 { 7297 u32 dummy[2]; 7298 7299 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7300 return; 7301 7302 /* 7303 * Even MSRs that are valid in the host may not be exposed to guests in 7304 * some cases. 7305 */ 7306 switch (msr_index) { 7307 case MSR_IA32_BNDCFGS: 7308 if (!kvm_mpx_supported()) 7309 return; 7310 break; 7311 case MSR_TSC_AUX: 7312 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7313 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7314 return; 7315 break; 7316 case MSR_IA32_UMWAIT_CONTROL: 7317 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7318 return; 7319 break; 7320 case MSR_IA32_RTIT_CTL: 7321 case MSR_IA32_RTIT_STATUS: 7322 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7323 return; 7324 break; 7325 case MSR_IA32_RTIT_CR3_MATCH: 7326 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7327 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7328 return; 7329 break; 7330 case MSR_IA32_RTIT_OUTPUT_BASE: 7331 case MSR_IA32_RTIT_OUTPUT_MASK: 7332 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7333 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7334 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7335 return; 7336 break; 7337 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7338 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7339 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7340 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7341 return; 7342 break; 7343 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7344 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7345 kvm_pmu_cap.num_counters_gp) 7346 return; 7347 break; 7348 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7349 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7350 kvm_pmu_cap.num_counters_gp) 7351 return; 7352 break; 7353 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7354 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7355 kvm_pmu_cap.num_counters_fixed) 7356 return; 7357 break; 7358 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7359 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7360 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7361 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7362 return; 7363 break; 7364 case MSR_IA32_XFD: 7365 case MSR_IA32_XFD_ERR: 7366 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7367 return; 7368 break; 7369 case MSR_IA32_TSX_CTRL: 7370 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7371 return; 7372 break; 7373 default: 7374 break; 7375 } 7376 7377 msrs_to_save[num_msrs_to_save++] = msr_index; 7378 } 7379 7380 static void kvm_init_msr_lists(void) 7381 { 7382 unsigned i; 7383 7384 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7385 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7386 7387 num_msrs_to_save = 0; 7388 num_emulated_msrs = 0; 7389 num_msr_based_features = 0; 7390 7391 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7392 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7393 7394 if (enable_pmu) { 7395 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7396 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7397 } 7398 7399 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7400 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7401 continue; 7402 7403 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7404 } 7405 7406 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7407 kvm_probe_feature_msr(i); 7408 7409 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7410 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7411 } 7412 7413 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7414 const void *v) 7415 { 7416 int handled = 0; 7417 int n; 7418 7419 do { 7420 n = min(len, 8); 7421 if (!(lapic_in_kernel(vcpu) && 7422 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7423 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7424 break; 7425 handled += n; 7426 addr += n; 7427 len -= n; 7428 v += n; 7429 } while (len); 7430 7431 return handled; 7432 } 7433 7434 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7435 { 7436 int handled = 0; 7437 int n; 7438 7439 do { 7440 n = min(len, 8); 7441 if (!(lapic_in_kernel(vcpu) && 7442 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7443 addr, n, v)) 7444 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7445 break; 7446 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7447 handled += n; 7448 addr += n; 7449 len -= n; 7450 v += n; 7451 } while (len); 7452 7453 return handled; 7454 } 7455 7456 void kvm_set_segment(struct kvm_vcpu *vcpu, 7457 struct kvm_segment *var, int seg) 7458 { 7459 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7460 } 7461 7462 void kvm_get_segment(struct kvm_vcpu *vcpu, 7463 struct kvm_segment *var, int seg) 7464 { 7465 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7466 } 7467 7468 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7469 struct x86_exception *exception) 7470 { 7471 struct kvm_mmu *mmu = vcpu->arch.mmu; 7472 gpa_t t_gpa; 7473 7474 BUG_ON(!mmu_is_nested(vcpu)); 7475 7476 /* NPT walks are always user-walks */ 7477 access |= PFERR_USER_MASK; 7478 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7479 7480 return t_gpa; 7481 } 7482 7483 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7484 struct x86_exception *exception) 7485 { 7486 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7487 7488 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7489 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7490 } 7491 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7492 7493 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7494 struct x86_exception *exception) 7495 { 7496 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7497 7498 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7499 access |= PFERR_WRITE_MASK; 7500 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7501 } 7502 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7503 7504 /* uses this to access any guest's mapped memory without checking CPL */ 7505 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7506 struct x86_exception *exception) 7507 { 7508 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7509 7510 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7511 } 7512 7513 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7514 struct kvm_vcpu *vcpu, u64 access, 7515 struct x86_exception *exception) 7516 { 7517 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7518 void *data = val; 7519 int r = X86EMUL_CONTINUE; 7520 7521 while (bytes) { 7522 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7523 unsigned offset = addr & (PAGE_SIZE-1); 7524 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7525 int ret; 7526 7527 if (gpa == INVALID_GPA) 7528 return X86EMUL_PROPAGATE_FAULT; 7529 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7530 offset, toread); 7531 if (ret < 0) { 7532 r = X86EMUL_IO_NEEDED; 7533 goto out; 7534 } 7535 7536 bytes -= toread; 7537 data += toread; 7538 addr += toread; 7539 } 7540 out: 7541 return r; 7542 } 7543 7544 /* used for instruction fetching */ 7545 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7546 gva_t addr, void *val, unsigned int bytes, 7547 struct x86_exception *exception) 7548 { 7549 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7550 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7551 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7552 unsigned offset; 7553 int ret; 7554 7555 /* Inline kvm_read_guest_virt_helper for speed. */ 7556 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7557 exception); 7558 if (unlikely(gpa == INVALID_GPA)) 7559 return X86EMUL_PROPAGATE_FAULT; 7560 7561 offset = addr & (PAGE_SIZE-1); 7562 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7563 bytes = (unsigned)PAGE_SIZE - offset; 7564 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7565 offset, bytes); 7566 if (unlikely(ret < 0)) 7567 return X86EMUL_IO_NEEDED; 7568 7569 return X86EMUL_CONTINUE; 7570 } 7571 7572 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7573 gva_t addr, void *val, unsigned int bytes, 7574 struct x86_exception *exception) 7575 { 7576 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7577 7578 /* 7579 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7580 * is returned, but our callers are not ready for that and they blindly 7581 * call kvm_inject_page_fault. Ensure that they at least do not leak 7582 * uninitialized kernel stack memory into cr2 and error code. 7583 */ 7584 memset(exception, 0, sizeof(*exception)); 7585 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7586 exception); 7587 } 7588 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7589 7590 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7591 gva_t addr, void *val, unsigned int bytes, 7592 struct x86_exception *exception, bool system) 7593 { 7594 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7595 u64 access = 0; 7596 7597 if (system) 7598 access |= PFERR_IMPLICIT_ACCESS; 7599 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7600 access |= PFERR_USER_MASK; 7601 7602 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7603 } 7604 7605 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7606 struct kvm_vcpu *vcpu, u64 access, 7607 struct x86_exception *exception) 7608 { 7609 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7610 void *data = val; 7611 int r = X86EMUL_CONTINUE; 7612 7613 while (bytes) { 7614 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7615 unsigned offset = addr & (PAGE_SIZE-1); 7616 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7617 int ret; 7618 7619 if (gpa == INVALID_GPA) 7620 return X86EMUL_PROPAGATE_FAULT; 7621 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7622 if (ret < 0) { 7623 r = X86EMUL_IO_NEEDED; 7624 goto out; 7625 } 7626 7627 bytes -= towrite; 7628 data += towrite; 7629 addr += towrite; 7630 } 7631 out: 7632 return r; 7633 } 7634 7635 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7636 unsigned int bytes, struct x86_exception *exception, 7637 bool system) 7638 { 7639 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7640 u64 access = PFERR_WRITE_MASK; 7641 7642 if (system) 7643 access |= PFERR_IMPLICIT_ACCESS; 7644 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7645 access |= PFERR_USER_MASK; 7646 7647 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7648 access, exception); 7649 } 7650 7651 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7652 unsigned int bytes, struct x86_exception *exception) 7653 { 7654 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7655 vcpu->arch.l1tf_flush_l1d = true; 7656 7657 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7658 PFERR_WRITE_MASK, exception); 7659 } 7660 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7661 7662 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7663 void *insn, int insn_len) 7664 { 7665 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type, 7666 insn, insn_len); 7667 } 7668 7669 int handle_ud(struct kvm_vcpu *vcpu) 7670 { 7671 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7672 int fep_flags = READ_ONCE(force_emulation_prefix); 7673 int emul_type = EMULTYPE_TRAP_UD; 7674 char sig[5]; /* ud2; .ascii "kvm" */ 7675 struct x86_exception e; 7676 int r; 7677 7678 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7679 if (r != X86EMUL_CONTINUE) 7680 return 1; 7681 7682 if (fep_flags && 7683 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7684 sig, sizeof(sig), &e) == 0 && 7685 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7686 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7687 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7688 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7689 emul_type = EMULTYPE_TRAP_UD_FORCED; 7690 } 7691 7692 return kvm_emulate_instruction(vcpu, emul_type); 7693 } 7694 EXPORT_SYMBOL_GPL(handle_ud); 7695 7696 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7697 gpa_t gpa, bool write) 7698 { 7699 /* For APIC access vmexit */ 7700 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7701 return 1; 7702 7703 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7704 trace_vcpu_match_mmio(gva, gpa, write, true); 7705 return 1; 7706 } 7707 7708 return 0; 7709 } 7710 7711 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7712 gpa_t *gpa, struct x86_exception *exception, 7713 bool write) 7714 { 7715 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7716 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7717 | (write ? PFERR_WRITE_MASK : 0); 7718 7719 /* 7720 * currently PKRU is only applied to ept enabled guest so 7721 * there is no pkey in EPT page table for L1 guest or EPT 7722 * shadow page table for L2 guest. 7723 */ 7724 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7725 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7726 vcpu->arch.mmio_access, 0, access))) { 7727 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7728 (gva & (PAGE_SIZE - 1)); 7729 trace_vcpu_match_mmio(gva, *gpa, write, false); 7730 return 1; 7731 } 7732 7733 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7734 7735 if (*gpa == INVALID_GPA) 7736 return -1; 7737 7738 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7739 } 7740 7741 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7742 const void *val, int bytes) 7743 { 7744 int ret; 7745 7746 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7747 if (ret < 0) 7748 return 0; 7749 kvm_page_track_write(vcpu, gpa, val, bytes); 7750 return 1; 7751 } 7752 7753 struct read_write_emulator_ops { 7754 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7755 int bytes); 7756 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7757 void *val, int bytes); 7758 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7759 int bytes, void *val); 7760 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7761 void *val, int bytes); 7762 bool write; 7763 }; 7764 7765 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7766 { 7767 if (vcpu->mmio_read_completed) { 7768 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7769 vcpu->mmio_fragments[0].gpa, val); 7770 vcpu->mmio_read_completed = 0; 7771 return 1; 7772 } 7773 7774 return 0; 7775 } 7776 7777 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7778 void *val, int bytes) 7779 { 7780 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7781 } 7782 7783 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7784 void *val, int bytes) 7785 { 7786 return emulator_write_phys(vcpu, gpa, val, bytes); 7787 } 7788 7789 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7790 { 7791 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7792 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7793 } 7794 7795 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7796 void *val, int bytes) 7797 { 7798 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7799 return X86EMUL_IO_NEEDED; 7800 } 7801 7802 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7803 void *val, int bytes) 7804 { 7805 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7806 7807 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7808 return X86EMUL_CONTINUE; 7809 } 7810 7811 static const struct read_write_emulator_ops read_emultor = { 7812 .read_write_prepare = read_prepare, 7813 .read_write_emulate = read_emulate, 7814 .read_write_mmio = vcpu_mmio_read, 7815 .read_write_exit_mmio = read_exit_mmio, 7816 }; 7817 7818 static const struct read_write_emulator_ops write_emultor = { 7819 .read_write_emulate = write_emulate, 7820 .read_write_mmio = write_mmio, 7821 .read_write_exit_mmio = write_exit_mmio, 7822 .write = true, 7823 }; 7824 7825 static int emulator_read_write_onepage(unsigned long addr, void *val, 7826 unsigned int bytes, 7827 struct x86_exception *exception, 7828 struct kvm_vcpu *vcpu, 7829 const struct read_write_emulator_ops *ops) 7830 { 7831 gpa_t gpa; 7832 int handled, ret; 7833 bool write = ops->write; 7834 struct kvm_mmio_fragment *frag; 7835 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7836 7837 /* 7838 * If the exit was due to a NPF we may already have a GPA. 7839 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7840 * Note, this cannot be used on string operations since string 7841 * operation using rep will only have the initial GPA from the NPF 7842 * occurred. 7843 */ 7844 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7845 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7846 gpa = ctxt->gpa_val; 7847 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7848 } else { 7849 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7850 if (ret < 0) 7851 return X86EMUL_PROPAGATE_FAULT; 7852 } 7853 7854 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7855 return X86EMUL_CONTINUE; 7856 7857 /* 7858 * Is this MMIO handled locally? 7859 */ 7860 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7861 if (handled == bytes) 7862 return X86EMUL_CONTINUE; 7863 7864 gpa += handled; 7865 bytes -= handled; 7866 val += handled; 7867 7868 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7869 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7870 frag->gpa = gpa; 7871 frag->data = val; 7872 frag->len = bytes; 7873 return X86EMUL_CONTINUE; 7874 } 7875 7876 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7877 unsigned long addr, 7878 void *val, unsigned int bytes, 7879 struct x86_exception *exception, 7880 const struct read_write_emulator_ops *ops) 7881 { 7882 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7883 gpa_t gpa; 7884 int rc; 7885 7886 if (ops->read_write_prepare && 7887 ops->read_write_prepare(vcpu, val, bytes)) 7888 return X86EMUL_CONTINUE; 7889 7890 vcpu->mmio_nr_fragments = 0; 7891 7892 /* Crossing a page boundary? */ 7893 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7894 int now; 7895 7896 now = -addr & ~PAGE_MASK; 7897 rc = emulator_read_write_onepage(addr, val, now, exception, 7898 vcpu, ops); 7899 7900 if (rc != X86EMUL_CONTINUE) 7901 return rc; 7902 addr += now; 7903 if (ctxt->mode != X86EMUL_MODE_PROT64) 7904 addr = (u32)addr; 7905 val += now; 7906 bytes -= now; 7907 } 7908 7909 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7910 vcpu, ops); 7911 if (rc != X86EMUL_CONTINUE) 7912 return rc; 7913 7914 if (!vcpu->mmio_nr_fragments) 7915 return rc; 7916 7917 gpa = vcpu->mmio_fragments[0].gpa; 7918 7919 vcpu->mmio_needed = 1; 7920 vcpu->mmio_cur_fragment = 0; 7921 7922 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7923 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7924 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7925 vcpu->run->mmio.phys_addr = gpa; 7926 7927 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7928 } 7929 7930 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7931 unsigned long addr, 7932 void *val, 7933 unsigned int bytes, 7934 struct x86_exception *exception) 7935 { 7936 return emulator_read_write(ctxt, addr, val, bytes, 7937 exception, &read_emultor); 7938 } 7939 7940 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7941 unsigned long addr, 7942 const void *val, 7943 unsigned int bytes, 7944 struct x86_exception *exception) 7945 { 7946 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7947 exception, &write_emultor); 7948 } 7949 7950 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7951 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7952 7953 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7954 unsigned long addr, 7955 const void *old, 7956 const void *new, 7957 unsigned int bytes, 7958 struct x86_exception *exception) 7959 { 7960 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7961 u64 page_line_mask; 7962 unsigned long hva; 7963 gpa_t gpa; 7964 int r; 7965 7966 /* guests cmpxchg8b have to be emulated atomically */ 7967 if (bytes > 8 || (bytes & (bytes - 1))) 7968 goto emul_write; 7969 7970 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7971 7972 if (gpa == INVALID_GPA || 7973 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7974 goto emul_write; 7975 7976 /* 7977 * Emulate the atomic as a straight write to avoid #AC if SLD is 7978 * enabled in the host and the access splits a cache line. 7979 */ 7980 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7981 page_line_mask = ~(cache_line_size() - 1); 7982 else 7983 page_line_mask = PAGE_MASK; 7984 7985 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7986 goto emul_write; 7987 7988 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7989 if (kvm_is_error_hva(hva)) 7990 goto emul_write; 7991 7992 hva += offset_in_page(gpa); 7993 7994 switch (bytes) { 7995 case 1: 7996 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7997 break; 7998 case 2: 7999 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8000 break; 8001 case 4: 8002 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8003 break; 8004 case 8: 8005 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8006 break; 8007 default: 8008 BUG(); 8009 } 8010 8011 if (r < 0) 8012 return X86EMUL_UNHANDLEABLE; 8013 8014 /* 8015 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8016 * successful, as the old value is written back on failure. Note, for 8017 * live migration, this is unnecessarily conservative as CMPXCHG writes 8018 * back the original value and the access is atomic, but KVM's ABI is 8019 * that all writes are dirty logged, regardless of the value written. 8020 */ 8021 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8022 8023 if (r) 8024 return X86EMUL_CMPXCHG_FAILED; 8025 8026 kvm_page_track_write(vcpu, gpa, new, bytes); 8027 8028 return X86EMUL_CONTINUE; 8029 8030 emul_write: 8031 pr_warn_once("emulating exchange as write\n"); 8032 8033 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8034 } 8035 8036 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8037 unsigned short port, void *data, 8038 unsigned int count, bool in) 8039 { 8040 unsigned i; 8041 int r; 8042 8043 WARN_ON_ONCE(vcpu->arch.pio.count); 8044 for (i = 0; i < count; i++) { 8045 if (in) 8046 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8047 else 8048 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8049 8050 if (r) { 8051 if (i == 0) 8052 goto userspace_io; 8053 8054 /* 8055 * Userspace must have unregistered the device while PIO 8056 * was running. Drop writes / read as 0. 8057 */ 8058 if (in) 8059 memset(data, 0, size * (count - i)); 8060 break; 8061 } 8062 8063 data += size; 8064 } 8065 return 1; 8066 8067 userspace_io: 8068 vcpu->arch.pio.port = port; 8069 vcpu->arch.pio.in = in; 8070 vcpu->arch.pio.count = count; 8071 vcpu->arch.pio.size = size; 8072 8073 if (in) 8074 memset(vcpu->arch.pio_data, 0, size * count); 8075 else 8076 memcpy(vcpu->arch.pio_data, data, size * count); 8077 8078 vcpu->run->exit_reason = KVM_EXIT_IO; 8079 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8080 vcpu->run->io.size = size; 8081 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8082 vcpu->run->io.count = count; 8083 vcpu->run->io.port = port; 8084 return 0; 8085 } 8086 8087 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8088 unsigned short port, void *val, unsigned int count) 8089 { 8090 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8091 if (r) 8092 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8093 8094 return r; 8095 } 8096 8097 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8098 { 8099 int size = vcpu->arch.pio.size; 8100 unsigned int count = vcpu->arch.pio.count; 8101 memcpy(val, vcpu->arch.pio_data, size * count); 8102 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8103 vcpu->arch.pio.count = 0; 8104 } 8105 8106 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8107 int size, unsigned short port, void *val, 8108 unsigned int count) 8109 { 8110 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8111 if (vcpu->arch.pio.count) { 8112 /* 8113 * Complete a previous iteration that required userspace I/O. 8114 * Note, @count isn't guaranteed to match pio.count as userspace 8115 * can modify ECX before rerunning the vCPU. Ignore any such 8116 * shenanigans as KVM doesn't support modifying the rep count, 8117 * and the emulator ensures @count doesn't overflow the buffer. 8118 */ 8119 complete_emulator_pio_in(vcpu, val); 8120 return 1; 8121 } 8122 8123 return emulator_pio_in(vcpu, size, port, val, count); 8124 } 8125 8126 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8127 unsigned short port, const void *val, 8128 unsigned int count) 8129 { 8130 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8131 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8132 } 8133 8134 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8135 int size, unsigned short port, 8136 const void *val, unsigned int count) 8137 { 8138 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8139 } 8140 8141 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8142 { 8143 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 8144 } 8145 8146 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8147 { 8148 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8149 } 8150 8151 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8152 { 8153 if (!need_emulate_wbinvd(vcpu)) 8154 return X86EMUL_CONTINUE; 8155 8156 if (static_call(kvm_x86_has_wbinvd_exit)()) { 8157 int cpu = get_cpu(); 8158 8159 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8160 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8161 wbinvd_ipi, NULL, 1); 8162 put_cpu(); 8163 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8164 } else 8165 wbinvd(); 8166 return X86EMUL_CONTINUE; 8167 } 8168 8169 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8170 { 8171 kvm_emulate_wbinvd_noskip(vcpu); 8172 return kvm_skip_emulated_instruction(vcpu); 8173 } 8174 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8175 8176 8177 8178 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8179 { 8180 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8181 } 8182 8183 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 8184 unsigned long *dest) 8185 { 8186 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 8187 } 8188 8189 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8190 unsigned long value) 8191 { 8192 8193 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8194 } 8195 8196 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8197 { 8198 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8199 } 8200 8201 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8202 { 8203 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8204 unsigned long value; 8205 8206 switch (cr) { 8207 case 0: 8208 value = kvm_read_cr0(vcpu); 8209 break; 8210 case 2: 8211 value = vcpu->arch.cr2; 8212 break; 8213 case 3: 8214 value = kvm_read_cr3(vcpu); 8215 break; 8216 case 4: 8217 value = kvm_read_cr4(vcpu); 8218 break; 8219 case 8: 8220 value = kvm_get_cr8(vcpu); 8221 break; 8222 default: 8223 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8224 return 0; 8225 } 8226 8227 return value; 8228 } 8229 8230 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8231 { 8232 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8233 int res = 0; 8234 8235 switch (cr) { 8236 case 0: 8237 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8238 break; 8239 case 2: 8240 vcpu->arch.cr2 = val; 8241 break; 8242 case 3: 8243 res = kvm_set_cr3(vcpu, val); 8244 break; 8245 case 4: 8246 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8247 break; 8248 case 8: 8249 res = kvm_set_cr8(vcpu, val); 8250 break; 8251 default: 8252 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8253 res = -1; 8254 } 8255 8256 return res; 8257 } 8258 8259 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8260 { 8261 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8262 } 8263 8264 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8265 { 8266 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8267 } 8268 8269 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8270 { 8271 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8272 } 8273 8274 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8275 { 8276 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8277 } 8278 8279 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8280 { 8281 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8282 } 8283 8284 static unsigned long emulator_get_cached_segment_base( 8285 struct x86_emulate_ctxt *ctxt, int seg) 8286 { 8287 return get_segment_base(emul_to_vcpu(ctxt), seg); 8288 } 8289 8290 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8291 struct desc_struct *desc, u32 *base3, 8292 int seg) 8293 { 8294 struct kvm_segment var; 8295 8296 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8297 *selector = var.selector; 8298 8299 if (var.unusable) { 8300 memset(desc, 0, sizeof(*desc)); 8301 if (base3) 8302 *base3 = 0; 8303 return false; 8304 } 8305 8306 if (var.g) 8307 var.limit >>= 12; 8308 set_desc_limit(desc, var.limit); 8309 set_desc_base(desc, (unsigned long)var.base); 8310 #ifdef CONFIG_X86_64 8311 if (base3) 8312 *base3 = var.base >> 32; 8313 #endif 8314 desc->type = var.type; 8315 desc->s = var.s; 8316 desc->dpl = var.dpl; 8317 desc->p = var.present; 8318 desc->avl = var.avl; 8319 desc->l = var.l; 8320 desc->d = var.db; 8321 desc->g = var.g; 8322 8323 return true; 8324 } 8325 8326 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8327 struct desc_struct *desc, u32 base3, 8328 int seg) 8329 { 8330 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8331 struct kvm_segment var; 8332 8333 var.selector = selector; 8334 var.base = get_desc_base(desc); 8335 #ifdef CONFIG_X86_64 8336 var.base |= ((u64)base3) << 32; 8337 #endif 8338 var.limit = get_desc_limit(desc); 8339 if (desc->g) 8340 var.limit = (var.limit << 12) | 0xfff; 8341 var.type = desc->type; 8342 var.dpl = desc->dpl; 8343 var.db = desc->d; 8344 var.s = desc->s; 8345 var.l = desc->l; 8346 var.g = desc->g; 8347 var.avl = desc->avl; 8348 var.present = desc->p; 8349 var.unusable = !var.present; 8350 var.padding = 0; 8351 8352 kvm_set_segment(vcpu, &var, seg); 8353 return; 8354 } 8355 8356 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8357 u32 msr_index, u64 *pdata) 8358 { 8359 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8360 int r; 8361 8362 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8363 if (r < 0) 8364 return X86EMUL_UNHANDLEABLE; 8365 8366 if (r) { 8367 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8368 complete_emulated_rdmsr, r)) 8369 return X86EMUL_IO_NEEDED; 8370 8371 trace_kvm_msr_read_ex(msr_index); 8372 return X86EMUL_PROPAGATE_FAULT; 8373 } 8374 8375 trace_kvm_msr_read(msr_index, *pdata); 8376 return X86EMUL_CONTINUE; 8377 } 8378 8379 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8380 u32 msr_index, u64 data) 8381 { 8382 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8383 int r; 8384 8385 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8386 if (r < 0) 8387 return X86EMUL_UNHANDLEABLE; 8388 8389 if (r) { 8390 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8391 complete_emulated_msr_access, r)) 8392 return X86EMUL_IO_NEEDED; 8393 8394 trace_kvm_msr_write_ex(msr_index, data); 8395 return X86EMUL_PROPAGATE_FAULT; 8396 } 8397 8398 trace_kvm_msr_write(msr_index, data); 8399 return X86EMUL_CONTINUE; 8400 } 8401 8402 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8403 u32 msr_index, u64 *pdata) 8404 { 8405 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8406 } 8407 8408 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8409 u32 pmc) 8410 { 8411 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8412 return 0; 8413 return -EINVAL; 8414 } 8415 8416 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8417 u32 pmc, u64 *pdata) 8418 { 8419 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8420 } 8421 8422 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8423 { 8424 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8425 } 8426 8427 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8428 struct x86_instruction_info *info, 8429 enum x86_intercept_stage stage) 8430 { 8431 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8432 &ctxt->exception); 8433 } 8434 8435 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8436 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8437 bool exact_only) 8438 { 8439 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8440 } 8441 8442 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8443 { 8444 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8445 } 8446 8447 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8448 { 8449 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8450 } 8451 8452 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8453 { 8454 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8455 } 8456 8457 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8458 { 8459 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8460 } 8461 8462 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8463 { 8464 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8465 } 8466 8467 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8468 { 8469 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8470 } 8471 8472 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8473 { 8474 return is_smm(emul_to_vcpu(ctxt)); 8475 } 8476 8477 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8478 { 8479 return is_guest_mode(emul_to_vcpu(ctxt)); 8480 } 8481 8482 #ifndef CONFIG_KVM_SMM 8483 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8484 { 8485 WARN_ON_ONCE(1); 8486 return X86EMUL_UNHANDLEABLE; 8487 } 8488 #endif 8489 8490 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8491 { 8492 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8493 } 8494 8495 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8496 { 8497 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8498 } 8499 8500 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8501 { 8502 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8503 8504 if (!kvm->vm_bugged) 8505 kvm_vm_bugged(kvm); 8506 } 8507 8508 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8509 gva_t addr, unsigned int flags) 8510 { 8511 if (!kvm_x86_ops.get_untagged_addr) 8512 return addr; 8513 8514 return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags); 8515 } 8516 8517 static const struct x86_emulate_ops emulate_ops = { 8518 .vm_bugged = emulator_vm_bugged, 8519 .read_gpr = emulator_read_gpr, 8520 .write_gpr = emulator_write_gpr, 8521 .read_std = emulator_read_std, 8522 .write_std = emulator_write_std, 8523 .fetch = kvm_fetch_guest_virt, 8524 .read_emulated = emulator_read_emulated, 8525 .write_emulated = emulator_write_emulated, 8526 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8527 .invlpg = emulator_invlpg, 8528 .pio_in_emulated = emulator_pio_in_emulated, 8529 .pio_out_emulated = emulator_pio_out_emulated, 8530 .get_segment = emulator_get_segment, 8531 .set_segment = emulator_set_segment, 8532 .get_cached_segment_base = emulator_get_cached_segment_base, 8533 .get_gdt = emulator_get_gdt, 8534 .get_idt = emulator_get_idt, 8535 .set_gdt = emulator_set_gdt, 8536 .set_idt = emulator_set_idt, 8537 .get_cr = emulator_get_cr, 8538 .set_cr = emulator_set_cr, 8539 .cpl = emulator_get_cpl, 8540 .get_dr = emulator_get_dr, 8541 .set_dr = emulator_set_dr, 8542 .set_msr_with_filter = emulator_set_msr_with_filter, 8543 .get_msr_with_filter = emulator_get_msr_with_filter, 8544 .get_msr = emulator_get_msr, 8545 .check_pmc = emulator_check_pmc, 8546 .read_pmc = emulator_read_pmc, 8547 .halt = emulator_halt, 8548 .wbinvd = emulator_wbinvd, 8549 .fix_hypercall = emulator_fix_hypercall, 8550 .intercept = emulator_intercept, 8551 .get_cpuid = emulator_get_cpuid, 8552 .guest_has_movbe = emulator_guest_has_movbe, 8553 .guest_has_fxsr = emulator_guest_has_fxsr, 8554 .guest_has_rdpid = emulator_guest_has_rdpid, 8555 .set_nmi_mask = emulator_set_nmi_mask, 8556 .is_smm = emulator_is_smm, 8557 .is_guest_mode = emulator_is_guest_mode, 8558 .leave_smm = emulator_leave_smm, 8559 .triple_fault = emulator_triple_fault, 8560 .set_xcr = emulator_set_xcr, 8561 .get_untagged_addr = emulator_get_untagged_addr, 8562 }; 8563 8564 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8565 { 8566 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8567 /* 8568 * an sti; sti; sequence only disable interrupts for the first 8569 * instruction. So, if the last instruction, be it emulated or 8570 * not, left the system with the INT_STI flag enabled, it 8571 * means that the last instruction is an sti. We should not 8572 * leave the flag on in this case. The same goes for mov ss 8573 */ 8574 if (int_shadow & mask) 8575 mask = 0; 8576 if (unlikely(int_shadow || mask)) { 8577 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8578 if (!mask) 8579 kvm_make_request(KVM_REQ_EVENT, vcpu); 8580 } 8581 } 8582 8583 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8584 { 8585 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8586 8587 if (ctxt->exception.vector == PF_VECTOR) 8588 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8589 else if (ctxt->exception.error_code_valid) 8590 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8591 ctxt->exception.error_code); 8592 else 8593 kvm_queue_exception(vcpu, ctxt->exception.vector); 8594 } 8595 8596 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8597 { 8598 struct x86_emulate_ctxt *ctxt; 8599 8600 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8601 if (!ctxt) { 8602 pr_err("failed to allocate vcpu's emulator\n"); 8603 return NULL; 8604 } 8605 8606 ctxt->vcpu = vcpu; 8607 ctxt->ops = &emulate_ops; 8608 vcpu->arch.emulate_ctxt = ctxt; 8609 8610 return ctxt; 8611 } 8612 8613 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8614 { 8615 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8616 int cs_db, cs_l; 8617 8618 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8619 8620 ctxt->gpa_available = false; 8621 ctxt->eflags = kvm_get_rflags(vcpu); 8622 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8623 8624 ctxt->eip = kvm_rip_read(vcpu); 8625 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8626 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8627 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8628 cs_db ? X86EMUL_MODE_PROT32 : 8629 X86EMUL_MODE_PROT16; 8630 ctxt->interruptibility = 0; 8631 ctxt->have_exception = false; 8632 ctxt->exception.vector = -1; 8633 ctxt->perm_ok = false; 8634 8635 init_decode_cache(ctxt); 8636 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8637 } 8638 8639 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8640 { 8641 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8642 int ret; 8643 8644 init_emulate_ctxt(vcpu); 8645 8646 ctxt->op_bytes = 2; 8647 ctxt->ad_bytes = 2; 8648 ctxt->_eip = ctxt->eip + inc_eip; 8649 ret = emulate_int_real(ctxt, irq); 8650 8651 if (ret != X86EMUL_CONTINUE) { 8652 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8653 } else { 8654 ctxt->eip = ctxt->_eip; 8655 kvm_rip_write(vcpu, ctxt->eip); 8656 kvm_set_rflags(vcpu, ctxt->eflags); 8657 } 8658 } 8659 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8660 8661 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8662 u8 ndata, u8 *insn_bytes, u8 insn_size) 8663 { 8664 struct kvm_run *run = vcpu->run; 8665 u64 info[5]; 8666 u8 info_start; 8667 8668 /* 8669 * Zero the whole array used to retrieve the exit info, as casting to 8670 * u32 for select entries will leave some chunks uninitialized. 8671 */ 8672 memset(&info, 0, sizeof(info)); 8673 8674 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8675 &info[2], (u32 *)&info[3], 8676 (u32 *)&info[4]); 8677 8678 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8679 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8680 8681 /* 8682 * There's currently space for 13 entries, but 5 are used for the exit 8683 * reason and info. Restrict to 4 to reduce the maintenance burden 8684 * when expanding kvm_run.emulation_failure in the future. 8685 */ 8686 if (WARN_ON_ONCE(ndata > 4)) 8687 ndata = 4; 8688 8689 /* Always include the flags as a 'data' entry. */ 8690 info_start = 1; 8691 run->emulation_failure.flags = 0; 8692 8693 if (insn_size) { 8694 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8695 sizeof(run->emulation_failure.insn_bytes) != 16)); 8696 info_start += 2; 8697 run->emulation_failure.flags |= 8698 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8699 run->emulation_failure.insn_size = insn_size; 8700 memset(run->emulation_failure.insn_bytes, 0x90, 8701 sizeof(run->emulation_failure.insn_bytes)); 8702 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8703 } 8704 8705 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8706 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8707 ndata * sizeof(data[0])); 8708 8709 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8710 } 8711 8712 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8713 { 8714 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8715 8716 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8717 ctxt->fetch.end - ctxt->fetch.data); 8718 } 8719 8720 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8721 u8 ndata) 8722 { 8723 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8724 } 8725 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8726 8727 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8728 { 8729 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8730 } 8731 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8732 8733 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8734 { 8735 struct kvm *kvm = vcpu->kvm; 8736 8737 ++vcpu->stat.insn_emulation_fail; 8738 trace_kvm_emulate_insn_failed(vcpu); 8739 8740 if (emulation_type & EMULTYPE_VMWARE_GP) { 8741 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8742 return 1; 8743 } 8744 8745 if (kvm->arch.exit_on_emulation_error || 8746 (emulation_type & EMULTYPE_SKIP)) { 8747 prepare_emulation_ctxt_failure_exit(vcpu); 8748 return 0; 8749 } 8750 8751 kvm_queue_exception(vcpu, UD_VECTOR); 8752 8753 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8754 prepare_emulation_ctxt_failure_exit(vcpu); 8755 return 0; 8756 } 8757 8758 return 1; 8759 } 8760 8761 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8762 int emulation_type) 8763 { 8764 gpa_t gpa = cr2_or_gpa; 8765 kvm_pfn_t pfn; 8766 8767 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8768 return false; 8769 8770 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8771 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8772 return false; 8773 8774 if (!vcpu->arch.mmu->root_role.direct) { 8775 /* 8776 * Write permission should be allowed since only 8777 * write access need to be emulated. 8778 */ 8779 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8780 8781 /* 8782 * If the mapping is invalid in guest, let cpu retry 8783 * it to generate fault. 8784 */ 8785 if (gpa == INVALID_GPA) 8786 return true; 8787 } 8788 8789 /* 8790 * Do not retry the unhandleable instruction if it faults on the 8791 * readonly host memory, otherwise it will goto a infinite loop: 8792 * retry instruction -> write #PF -> emulation fail -> retry 8793 * instruction -> ... 8794 */ 8795 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8796 8797 /* 8798 * If the instruction failed on the error pfn, it can not be fixed, 8799 * report the error to userspace. 8800 */ 8801 if (is_error_noslot_pfn(pfn)) 8802 return false; 8803 8804 kvm_release_pfn_clean(pfn); 8805 8806 /* The instructions are well-emulated on direct mmu. */ 8807 if (vcpu->arch.mmu->root_role.direct) { 8808 unsigned int indirect_shadow_pages; 8809 8810 write_lock(&vcpu->kvm->mmu_lock); 8811 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8812 write_unlock(&vcpu->kvm->mmu_lock); 8813 8814 if (indirect_shadow_pages) 8815 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8816 8817 return true; 8818 } 8819 8820 /* 8821 * if emulation was due to access to shadowed page table 8822 * and it failed try to unshadow page and re-enter the 8823 * guest to let CPU execute the instruction. 8824 */ 8825 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8826 8827 /* 8828 * If the access faults on its page table, it can not 8829 * be fixed by unprotecting shadow page and it should 8830 * be reported to userspace. 8831 */ 8832 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8833 } 8834 8835 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8836 gpa_t cr2_or_gpa, int emulation_type) 8837 { 8838 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8839 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8840 8841 last_retry_eip = vcpu->arch.last_retry_eip; 8842 last_retry_addr = vcpu->arch.last_retry_addr; 8843 8844 /* 8845 * If the emulation is caused by #PF and it is non-page_table 8846 * writing instruction, it means the VM-EXIT is caused by shadow 8847 * page protected, we can zap the shadow page and retry this 8848 * instruction directly. 8849 * 8850 * Note: if the guest uses a non-page-table modifying instruction 8851 * on the PDE that points to the instruction, then we will unmap 8852 * the instruction and go to an infinite loop. So, we cache the 8853 * last retried eip and the last fault address, if we meet the eip 8854 * and the address again, we can break out of the potential infinite 8855 * loop. 8856 */ 8857 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8858 8859 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8860 return false; 8861 8862 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8863 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8864 return false; 8865 8866 if (x86_page_table_writing_insn(ctxt)) 8867 return false; 8868 8869 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8870 return false; 8871 8872 vcpu->arch.last_retry_eip = ctxt->eip; 8873 vcpu->arch.last_retry_addr = cr2_or_gpa; 8874 8875 if (!vcpu->arch.mmu->root_role.direct) 8876 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8877 8878 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8879 8880 return true; 8881 } 8882 8883 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8884 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8885 8886 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8887 unsigned long *db) 8888 { 8889 u32 dr6 = 0; 8890 int i; 8891 u32 enable, rwlen; 8892 8893 enable = dr7; 8894 rwlen = dr7 >> 16; 8895 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8896 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8897 dr6 |= (1 << i); 8898 return dr6; 8899 } 8900 8901 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8902 { 8903 struct kvm_run *kvm_run = vcpu->run; 8904 8905 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8906 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8907 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8908 kvm_run->debug.arch.exception = DB_VECTOR; 8909 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8910 return 0; 8911 } 8912 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8913 return 1; 8914 } 8915 8916 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8917 { 8918 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8919 int r; 8920 8921 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8922 if (unlikely(!r)) 8923 return 0; 8924 8925 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8926 8927 /* 8928 * rflags is the old, "raw" value of the flags. The new value has 8929 * not been saved yet. 8930 * 8931 * This is correct even for TF set by the guest, because "the 8932 * processor will not generate this exception after the instruction 8933 * that sets the TF flag". 8934 */ 8935 if (unlikely(rflags & X86_EFLAGS_TF)) 8936 r = kvm_vcpu_do_singlestep(vcpu); 8937 return r; 8938 } 8939 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8940 8941 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8942 { 8943 u32 shadow; 8944 8945 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8946 return true; 8947 8948 /* 8949 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8950 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8951 * to avoid the relatively expensive CPUID lookup. 8952 */ 8953 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8954 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8955 guest_cpuid_is_intel(vcpu); 8956 } 8957 8958 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8959 int emulation_type, int *r) 8960 { 8961 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8962 8963 /* 8964 * Do not check for code breakpoints if hardware has already done the 8965 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8966 * the instruction has passed all exception checks, and all intercepted 8967 * exceptions that trigger emulation have lower priority than code 8968 * breakpoints, i.e. the fact that the intercepted exception occurred 8969 * means any code breakpoints have already been serviced. 8970 * 8971 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8972 * hardware has checked the RIP of the magic prefix, but not the RIP of 8973 * the instruction being emulated. The intent of forced emulation is 8974 * to behave as if KVM intercepted the instruction without an exception 8975 * and without a prefix. 8976 */ 8977 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8978 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8979 return false; 8980 8981 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8982 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8983 struct kvm_run *kvm_run = vcpu->run; 8984 unsigned long eip = kvm_get_linear_rip(vcpu); 8985 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8986 vcpu->arch.guest_debug_dr7, 8987 vcpu->arch.eff_db); 8988 8989 if (dr6 != 0) { 8990 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8991 kvm_run->debug.arch.pc = eip; 8992 kvm_run->debug.arch.exception = DB_VECTOR; 8993 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8994 *r = 0; 8995 return true; 8996 } 8997 } 8998 8999 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 9000 !kvm_is_code_breakpoint_inhibited(vcpu)) { 9001 unsigned long eip = kvm_get_linear_rip(vcpu); 9002 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9003 vcpu->arch.dr7, 9004 vcpu->arch.db); 9005 9006 if (dr6 != 0) { 9007 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 9008 *r = 1; 9009 return true; 9010 } 9011 } 9012 9013 return false; 9014 } 9015 9016 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9017 { 9018 switch (ctxt->opcode_len) { 9019 case 1: 9020 switch (ctxt->b) { 9021 case 0xe4: /* IN */ 9022 case 0xe5: 9023 case 0xec: 9024 case 0xed: 9025 case 0xe6: /* OUT */ 9026 case 0xe7: 9027 case 0xee: 9028 case 0xef: 9029 case 0x6c: /* INS */ 9030 case 0x6d: 9031 case 0x6e: /* OUTS */ 9032 case 0x6f: 9033 return true; 9034 } 9035 break; 9036 case 2: 9037 switch (ctxt->b) { 9038 case 0x33: /* RDPMC */ 9039 return true; 9040 } 9041 break; 9042 } 9043 9044 return false; 9045 } 9046 9047 /* 9048 * Decode an instruction for emulation. The caller is responsible for handling 9049 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9050 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9051 * code breakpoints have higher priority and thus have already been done by 9052 * hardware. 9053 * 9054 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9055 * response to a machine check. 9056 */ 9057 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9058 void *insn, int insn_len) 9059 { 9060 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9061 int r; 9062 9063 init_emulate_ctxt(vcpu); 9064 9065 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9066 9067 trace_kvm_emulate_insn_start(vcpu); 9068 ++vcpu->stat.insn_emulation; 9069 9070 return r; 9071 } 9072 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9073 9074 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9075 int emulation_type, void *insn, int insn_len) 9076 { 9077 int r; 9078 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9079 bool writeback = true; 9080 9081 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9082 if (r != X86EMUL_CONTINUE) { 9083 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9084 return 1; 9085 9086 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9087 return handle_emulation_failure(vcpu, emulation_type); 9088 } 9089 9090 vcpu->arch.l1tf_flush_l1d = true; 9091 9092 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9093 kvm_clear_exception_queue(vcpu); 9094 9095 /* 9096 * Return immediately if RIP hits a code breakpoint, such #DBs 9097 * are fault-like and are higher priority than any faults on 9098 * the code fetch itself. 9099 */ 9100 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9101 return r; 9102 9103 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9104 insn, insn_len); 9105 if (r != EMULATION_OK) { 9106 if ((emulation_type & EMULTYPE_TRAP_UD) || 9107 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9108 kvm_queue_exception(vcpu, UD_VECTOR); 9109 return 1; 9110 } 9111 if (reexecute_instruction(vcpu, cr2_or_gpa, 9112 emulation_type)) 9113 return 1; 9114 9115 if (ctxt->have_exception && 9116 !(emulation_type & EMULTYPE_SKIP)) { 9117 /* 9118 * #UD should result in just EMULATION_FAILED, and trap-like 9119 * exception should not be encountered during decode. 9120 */ 9121 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9122 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9123 inject_emulated_exception(vcpu); 9124 return 1; 9125 } 9126 return handle_emulation_failure(vcpu, emulation_type); 9127 } 9128 } 9129 9130 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9131 !is_vmware_backdoor_opcode(ctxt)) { 9132 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9133 return 1; 9134 } 9135 9136 /* 9137 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9138 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9139 * The caller is responsible for updating interruptibility state and 9140 * injecting single-step #DBs. 9141 */ 9142 if (emulation_type & EMULTYPE_SKIP) { 9143 if (ctxt->mode != X86EMUL_MODE_PROT64) 9144 ctxt->eip = (u32)ctxt->_eip; 9145 else 9146 ctxt->eip = ctxt->_eip; 9147 9148 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9149 r = 1; 9150 goto writeback; 9151 } 9152 9153 kvm_rip_write(vcpu, ctxt->eip); 9154 if (ctxt->eflags & X86_EFLAGS_RF) 9155 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9156 return 1; 9157 } 9158 9159 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 9160 return 1; 9161 9162 /* this is needed for vmware backdoor interface to work since it 9163 changes registers values during IO operation */ 9164 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9165 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9166 emulator_invalidate_register_cache(ctxt); 9167 } 9168 9169 restart: 9170 if (emulation_type & EMULTYPE_PF) { 9171 /* Save the faulting GPA (cr2) in the address field */ 9172 ctxt->exception.address = cr2_or_gpa; 9173 9174 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9175 if (vcpu->arch.mmu->root_role.direct) { 9176 ctxt->gpa_available = true; 9177 ctxt->gpa_val = cr2_or_gpa; 9178 } 9179 } else { 9180 /* Sanitize the address out of an abundance of paranoia. */ 9181 ctxt->exception.address = 0; 9182 } 9183 9184 r = x86_emulate_insn(ctxt); 9185 9186 if (r == EMULATION_INTERCEPTED) 9187 return 1; 9188 9189 if (r == EMULATION_FAILED) { 9190 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 9191 return 1; 9192 9193 return handle_emulation_failure(vcpu, emulation_type); 9194 } 9195 9196 if (ctxt->have_exception) { 9197 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9198 vcpu->mmio_needed = false; 9199 r = 1; 9200 inject_emulated_exception(vcpu); 9201 } else if (vcpu->arch.pio.count) { 9202 if (!vcpu->arch.pio.in) { 9203 /* FIXME: return into emulator if single-stepping. */ 9204 vcpu->arch.pio.count = 0; 9205 } else { 9206 writeback = false; 9207 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9208 } 9209 r = 0; 9210 } else if (vcpu->mmio_needed) { 9211 ++vcpu->stat.mmio_exits; 9212 9213 if (!vcpu->mmio_is_write) 9214 writeback = false; 9215 r = 0; 9216 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9217 } else if (vcpu->arch.complete_userspace_io) { 9218 writeback = false; 9219 r = 0; 9220 } else if (r == EMULATION_RESTART) 9221 goto restart; 9222 else 9223 r = 1; 9224 9225 writeback: 9226 if (writeback) { 9227 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9228 toggle_interruptibility(vcpu, ctxt->interruptibility); 9229 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9230 9231 /* 9232 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9233 * only supports code breakpoints and general detect #DB, both 9234 * of which are fault-like. 9235 */ 9236 if (!ctxt->have_exception || 9237 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9238 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9239 if (ctxt->is_branch) 9240 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9241 kvm_rip_write(vcpu, ctxt->eip); 9242 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9243 r = kvm_vcpu_do_singlestep(vcpu); 9244 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9245 __kvm_set_rflags(vcpu, ctxt->eflags); 9246 } 9247 9248 /* 9249 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9250 * do nothing, and it will be requested again as soon as 9251 * the shadow expires. But we still need to check here, 9252 * because POPF has no interrupt shadow. 9253 */ 9254 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9255 kvm_make_request(KVM_REQ_EVENT, vcpu); 9256 } else 9257 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9258 9259 return r; 9260 } 9261 9262 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9263 { 9264 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9265 } 9266 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9267 9268 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9269 void *insn, int insn_len) 9270 { 9271 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9272 } 9273 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9274 9275 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9276 { 9277 vcpu->arch.pio.count = 0; 9278 return 1; 9279 } 9280 9281 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9282 { 9283 vcpu->arch.pio.count = 0; 9284 9285 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9286 return 1; 9287 9288 return kvm_skip_emulated_instruction(vcpu); 9289 } 9290 9291 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9292 unsigned short port) 9293 { 9294 unsigned long val = kvm_rax_read(vcpu); 9295 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9296 9297 if (ret) 9298 return ret; 9299 9300 /* 9301 * Workaround userspace that relies on old KVM behavior of %rip being 9302 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9303 */ 9304 if (port == 0x7e && 9305 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9306 vcpu->arch.complete_userspace_io = 9307 complete_fast_pio_out_port_0x7e; 9308 kvm_skip_emulated_instruction(vcpu); 9309 } else { 9310 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9311 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9312 } 9313 return 0; 9314 } 9315 9316 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9317 { 9318 unsigned long val; 9319 9320 /* We should only ever be called with arch.pio.count equal to 1 */ 9321 BUG_ON(vcpu->arch.pio.count != 1); 9322 9323 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9324 vcpu->arch.pio.count = 0; 9325 return 1; 9326 } 9327 9328 /* For size less than 4 we merge, else we zero extend */ 9329 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9330 9331 complete_emulator_pio_in(vcpu, &val); 9332 kvm_rax_write(vcpu, val); 9333 9334 return kvm_skip_emulated_instruction(vcpu); 9335 } 9336 9337 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9338 unsigned short port) 9339 { 9340 unsigned long val; 9341 int ret; 9342 9343 /* For size less than 4 we merge, else we zero extend */ 9344 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9345 9346 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9347 if (ret) { 9348 kvm_rax_write(vcpu, val); 9349 return ret; 9350 } 9351 9352 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9353 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9354 9355 return 0; 9356 } 9357 9358 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9359 { 9360 int ret; 9361 9362 if (in) 9363 ret = kvm_fast_pio_in(vcpu, size, port); 9364 else 9365 ret = kvm_fast_pio_out(vcpu, size, port); 9366 return ret && kvm_skip_emulated_instruction(vcpu); 9367 } 9368 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9369 9370 static int kvmclock_cpu_down_prep(unsigned int cpu) 9371 { 9372 __this_cpu_write(cpu_tsc_khz, 0); 9373 return 0; 9374 } 9375 9376 static void tsc_khz_changed(void *data) 9377 { 9378 struct cpufreq_freqs *freq = data; 9379 unsigned long khz; 9380 9381 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9382 9383 if (data) 9384 khz = freq->new; 9385 else 9386 khz = cpufreq_quick_get(raw_smp_processor_id()); 9387 if (!khz) 9388 khz = tsc_khz; 9389 __this_cpu_write(cpu_tsc_khz, khz); 9390 } 9391 9392 #ifdef CONFIG_X86_64 9393 static void kvm_hyperv_tsc_notifier(void) 9394 { 9395 struct kvm *kvm; 9396 int cpu; 9397 9398 mutex_lock(&kvm_lock); 9399 list_for_each_entry(kvm, &vm_list, vm_list) 9400 kvm_make_mclock_inprogress_request(kvm); 9401 9402 /* no guest entries from this point */ 9403 hyperv_stop_tsc_emulation(); 9404 9405 /* TSC frequency always matches when on Hyper-V */ 9406 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9407 for_each_present_cpu(cpu) 9408 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9409 } 9410 kvm_caps.max_guest_tsc_khz = tsc_khz; 9411 9412 list_for_each_entry(kvm, &vm_list, vm_list) { 9413 __kvm_start_pvclock_update(kvm); 9414 pvclock_update_vm_gtod_copy(kvm); 9415 kvm_end_pvclock_update(kvm); 9416 } 9417 9418 mutex_unlock(&kvm_lock); 9419 } 9420 #endif 9421 9422 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9423 { 9424 struct kvm *kvm; 9425 struct kvm_vcpu *vcpu; 9426 int send_ipi = 0; 9427 unsigned long i; 9428 9429 /* 9430 * We allow guests to temporarily run on slowing clocks, 9431 * provided we notify them after, or to run on accelerating 9432 * clocks, provided we notify them before. Thus time never 9433 * goes backwards. 9434 * 9435 * However, we have a problem. We can't atomically update 9436 * the frequency of a given CPU from this function; it is 9437 * merely a notifier, which can be called from any CPU. 9438 * Changing the TSC frequency at arbitrary points in time 9439 * requires a recomputation of local variables related to 9440 * the TSC for each VCPU. We must flag these local variables 9441 * to be updated and be sure the update takes place with the 9442 * new frequency before any guests proceed. 9443 * 9444 * Unfortunately, the combination of hotplug CPU and frequency 9445 * change creates an intractable locking scenario; the order 9446 * of when these callouts happen is undefined with respect to 9447 * CPU hotplug, and they can race with each other. As such, 9448 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9449 * undefined; you can actually have a CPU frequency change take 9450 * place in between the computation of X and the setting of the 9451 * variable. To protect against this problem, all updates of 9452 * the per_cpu tsc_khz variable are done in an interrupt 9453 * protected IPI, and all callers wishing to update the value 9454 * must wait for a synchronous IPI to complete (which is trivial 9455 * if the caller is on the CPU already). This establishes the 9456 * necessary total order on variable updates. 9457 * 9458 * Note that because a guest time update may take place 9459 * anytime after the setting of the VCPU's request bit, the 9460 * correct TSC value must be set before the request. However, 9461 * to ensure the update actually makes it to any guest which 9462 * starts running in hardware virtualization between the set 9463 * and the acquisition of the spinlock, we must also ping the 9464 * CPU after setting the request bit. 9465 * 9466 */ 9467 9468 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9469 9470 mutex_lock(&kvm_lock); 9471 list_for_each_entry(kvm, &vm_list, vm_list) { 9472 kvm_for_each_vcpu(i, vcpu, kvm) { 9473 if (vcpu->cpu != cpu) 9474 continue; 9475 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9476 if (vcpu->cpu != raw_smp_processor_id()) 9477 send_ipi = 1; 9478 } 9479 } 9480 mutex_unlock(&kvm_lock); 9481 9482 if (freq->old < freq->new && send_ipi) { 9483 /* 9484 * We upscale the frequency. Must make the guest 9485 * doesn't see old kvmclock values while running with 9486 * the new frequency, otherwise we risk the guest sees 9487 * time go backwards. 9488 * 9489 * In case we update the frequency for another cpu 9490 * (which might be in guest context) send an interrupt 9491 * to kick the cpu out of guest context. Next time 9492 * guest context is entered kvmclock will be updated, 9493 * so the guest will not see stale values. 9494 */ 9495 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9496 } 9497 } 9498 9499 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9500 void *data) 9501 { 9502 struct cpufreq_freqs *freq = data; 9503 int cpu; 9504 9505 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9506 return 0; 9507 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9508 return 0; 9509 9510 for_each_cpu(cpu, freq->policy->cpus) 9511 __kvmclock_cpufreq_notifier(freq, cpu); 9512 9513 return 0; 9514 } 9515 9516 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9517 .notifier_call = kvmclock_cpufreq_notifier 9518 }; 9519 9520 static int kvmclock_cpu_online(unsigned int cpu) 9521 { 9522 tsc_khz_changed(NULL); 9523 return 0; 9524 } 9525 9526 static void kvm_timer_init(void) 9527 { 9528 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9529 max_tsc_khz = tsc_khz; 9530 9531 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9532 struct cpufreq_policy *policy; 9533 int cpu; 9534 9535 cpu = get_cpu(); 9536 policy = cpufreq_cpu_get(cpu); 9537 if (policy) { 9538 if (policy->cpuinfo.max_freq) 9539 max_tsc_khz = policy->cpuinfo.max_freq; 9540 cpufreq_cpu_put(policy); 9541 } 9542 put_cpu(); 9543 } 9544 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9545 CPUFREQ_TRANSITION_NOTIFIER); 9546 9547 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9548 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9549 } 9550 } 9551 9552 #ifdef CONFIG_X86_64 9553 static void pvclock_gtod_update_fn(struct work_struct *work) 9554 { 9555 struct kvm *kvm; 9556 struct kvm_vcpu *vcpu; 9557 unsigned long i; 9558 9559 mutex_lock(&kvm_lock); 9560 list_for_each_entry(kvm, &vm_list, vm_list) 9561 kvm_for_each_vcpu(i, vcpu, kvm) 9562 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9563 atomic_set(&kvm_guest_has_master_clock, 0); 9564 mutex_unlock(&kvm_lock); 9565 } 9566 9567 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9568 9569 /* 9570 * Indirection to move queue_work() out of the tk_core.seq write held 9571 * region to prevent possible deadlocks against time accessors which 9572 * are invoked with work related locks held. 9573 */ 9574 static void pvclock_irq_work_fn(struct irq_work *w) 9575 { 9576 queue_work(system_long_wq, &pvclock_gtod_work); 9577 } 9578 9579 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9580 9581 /* 9582 * Notification about pvclock gtod data update. 9583 */ 9584 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9585 void *priv) 9586 { 9587 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9588 struct timekeeper *tk = priv; 9589 9590 update_pvclock_gtod(tk); 9591 9592 /* 9593 * Disable master clock if host does not trust, or does not use, 9594 * TSC based clocksource. Delegate queue_work() to irq_work as 9595 * this is invoked with tk_core.seq write held. 9596 */ 9597 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9598 atomic_read(&kvm_guest_has_master_clock) != 0) 9599 irq_work_queue(&pvclock_irq_work); 9600 return 0; 9601 } 9602 9603 static struct notifier_block pvclock_gtod_notifier = { 9604 .notifier_call = pvclock_gtod_notify, 9605 }; 9606 #endif 9607 9608 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9609 { 9610 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9611 9612 #define __KVM_X86_OP(func) \ 9613 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9614 #define KVM_X86_OP(func) \ 9615 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9616 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9617 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9618 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9619 (void *)__static_call_return0); 9620 #include <asm/kvm-x86-ops.h> 9621 #undef __KVM_X86_OP 9622 9623 kvm_pmu_ops_update(ops->pmu_ops); 9624 } 9625 9626 static int kvm_x86_check_processor_compatibility(void) 9627 { 9628 int cpu = smp_processor_id(); 9629 struct cpuinfo_x86 *c = &cpu_data(cpu); 9630 9631 /* 9632 * Compatibility checks are done when loading KVM and when enabling 9633 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9634 * compatible, i.e. KVM should never perform a compatibility check on 9635 * an offline CPU. 9636 */ 9637 WARN_ON(!cpu_online(cpu)); 9638 9639 if (__cr4_reserved_bits(cpu_has, c) != 9640 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9641 return -EIO; 9642 9643 return static_call(kvm_x86_check_processor_compatibility)(); 9644 } 9645 9646 static void kvm_x86_check_cpu_compat(void *ret) 9647 { 9648 *(int *)ret = kvm_x86_check_processor_compatibility(); 9649 } 9650 9651 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9652 { 9653 u64 host_pat; 9654 int r, cpu; 9655 9656 if (kvm_x86_ops.hardware_enable) { 9657 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9658 return -EEXIST; 9659 } 9660 9661 /* 9662 * KVM explicitly assumes that the guest has an FPU and 9663 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9664 * vCPU's FPU state as a fxregs_state struct. 9665 */ 9666 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9667 pr_err("inadequate fpu\n"); 9668 return -EOPNOTSUPP; 9669 } 9670 9671 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9672 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9673 return -EOPNOTSUPP; 9674 } 9675 9676 /* 9677 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9678 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9679 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9680 * with an exception. PAT[0] is set to WB on RESET and also by the 9681 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9682 */ 9683 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9684 (host_pat & GENMASK(2, 0)) != 6) { 9685 pr_err("host PAT[0] is not WB\n"); 9686 return -EIO; 9687 } 9688 9689 x86_emulator_cache = kvm_alloc_emulator_cache(); 9690 if (!x86_emulator_cache) { 9691 pr_err("failed to allocate cache for x86 emulator\n"); 9692 return -ENOMEM; 9693 } 9694 9695 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9696 if (!user_return_msrs) { 9697 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9698 r = -ENOMEM; 9699 goto out_free_x86_emulator_cache; 9700 } 9701 kvm_nr_uret_msrs = 0; 9702 9703 r = kvm_mmu_vendor_module_init(); 9704 if (r) 9705 goto out_free_percpu; 9706 9707 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9708 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9709 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9710 } 9711 9712 rdmsrl_safe(MSR_EFER, &host_efer); 9713 9714 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9715 rdmsrl(MSR_IA32_XSS, host_xss); 9716 9717 kvm_init_pmu_capability(ops->pmu_ops); 9718 9719 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9720 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9721 9722 r = ops->hardware_setup(); 9723 if (r != 0) 9724 goto out_mmu_exit; 9725 9726 kvm_ops_update(ops); 9727 9728 for_each_online_cpu(cpu) { 9729 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9730 if (r < 0) 9731 goto out_unwind_ops; 9732 } 9733 9734 /* 9735 * Point of no return! DO NOT add error paths below this point unless 9736 * absolutely necessary, as most operations from this point forward 9737 * require unwinding. 9738 */ 9739 kvm_timer_init(); 9740 9741 if (pi_inject_timer == -1) 9742 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9743 #ifdef CONFIG_X86_64 9744 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9745 9746 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9747 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9748 #endif 9749 9750 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9751 9752 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9753 kvm_caps.supported_xss = 0; 9754 9755 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9756 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9757 #undef __kvm_cpu_cap_has 9758 9759 if (kvm_caps.has_tsc_control) { 9760 /* 9761 * Make sure the user can only configure tsc_khz values that 9762 * fit into a signed integer. 9763 * A min value is not calculated because it will always 9764 * be 1 on all machines. 9765 */ 9766 u64 max = min(0x7fffffffULL, 9767 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9768 kvm_caps.max_guest_tsc_khz = max; 9769 } 9770 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9771 kvm_init_msr_lists(); 9772 return 0; 9773 9774 out_unwind_ops: 9775 kvm_x86_ops.hardware_enable = NULL; 9776 static_call(kvm_x86_hardware_unsetup)(); 9777 out_mmu_exit: 9778 kvm_mmu_vendor_module_exit(); 9779 out_free_percpu: 9780 free_percpu(user_return_msrs); 9781 out_free_x86_emulator_cache: 9782 kmem_cache_destroy(x86_emulator_cache); 9783 return r; 9784 } 9785 9786 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9787 { 9788 int r; 9789 9790 mutex_lock(&vendor_module_lock); 9791 r = __kvm_x86_vendor_init(ops); 9792 mutex_unlock(&vendor_module_lock); 9793 9794 return r; 9795 } 9796 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9797 9798 void kvm_x86_vendor_exit(void) 9799 { 9800 kvm_unregister_perf_callbacks(); 9801 9802 #ifdef CONFIG_X86_64 9803 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9804 clear_hv_tscchange_cb(); 9805 #endif 9806 kvm_lapic_exit(); 9807 9808 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9809 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9810 CPUFREQ_TRANSITION_NOTIFIER); 9811 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9812 } 9813 #ifdef CONFIG_X86_64 9814 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9815 irq_work_sync(&pvclock_irq_work); 9816 cancel_work_sync(&pvclock_gtod_work); 9817 #endif 9818 static_call(kvm_x86_hardware_unsetup)(); 9819 kvm_mmu_vendor_module_exit(); 9820 free_percpu(user_return_msrs); 9821 kmem_cache_destroy(x86_emulator_cache); 9822 #ifdef CONFIG_KVM_XEN 9823 static_key_deferred_flush(&kvm_xen_enabled); 9824 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9825 #endif 9826 mutex_lock(&vendor_module_lock); 9827 kvm_x86_ops.hardware_enable = NULL; 9828 mutex_unlock(&vendor_module_lock); 9829 } 9830 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9831 9832 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9833 { 9834 /* 9835 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9836 * local APIC is in-kernel, the run loop will detect the non-runnable 9837 * state and halt the vCPU. Exit to userspace if the local APIC is 9838 * managed by userspace, in which case userspace is responsible for 9839 * handling wake events. 9840 */ 9841 ++vcpu->stat.halt_exits; 9842 if (lapic_in_kernel(vcpu)) { 9843 vcpu->arch.mp_state = state; 9844 return 1; 9845 } else { 9846 vcpu->run->exit_reason = reason; 9847 return 0; 9848 } 9849 } 9850 9851 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9852 { 9853 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9854 } 9855 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9856 9857 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9858 { 9859 int ret = kvm_skip_emulated_instruction(vcpu); 9860 /* 9861 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9862 * KVM_EXIT_DEBUG here. 9863 */ 9864 return kvm_emulate_halt_noskip(vcpu) && ret; 9865 } 9866 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9867 9868 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9869 { 9870 int ret = kvm_skip_emulated_instruction(vcpu); 9871 9872 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9873 KVM_EXIT_AP_RESET_HOLD) && ret; 9874 } 9875 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9876 9877 #ifdef CONFIG_X86_64 9878 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9879 unsigned long clock_type) 9880 { 9881 struct kvm_clock_pairing clock_pairing; 9882 struct timespec64 ts; 9883 u64 cycle; 9884 int ret; 9885 9886 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9887 return -KVM_EOPNOTSUPP; 9888 9889 /* 9890 * When tsc is in permanent catchup mode guests won't be able to use 9891 * pvclock_read_retry loop to get consistent view of pvclock 9892 */ 9893 if (vcpu->arch.tsc_always_catchup) 9894 return -KVM_EOPNOTSUPP; 9895 9896 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9897 return -KVM_EOPNOTSUPP; 9898 9899 clock_pairing.sec = ts.tv_sec; 9900 clock_pairing.nsec = ts.tv_nsec; 9901 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9902 clock_pairing.flags = 0; 9903 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9904 9905 ret = 0; 9906 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9907 sizeof(struct kvm_clock_pairing))) 9908 ret = -KVM_EFAULT; 9909 9910 return ret; 9911 } 9912 #endif 9913 9914 /* 9915 * kvm_pv_kick_cpu_op: Kick a vcpu. 9916 * 9917 * @apicid - apicid of vcpu to be kicked. 9918 */ 9919 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9920 { 9921 /* 9922 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9923 * common code, e.g. for tracing. Defer initialization to the compiler. 9924 */ 9925 struct kvm_lapic_irq lapic_irq = { 9926 .delivery_mode = APIC_DM_REMRD, 9927 .dest_mode = APIC_DEST_PHYSICAL, 9928 .shorthand = APIC_DEST_NOSHORT, 9929 .dest_id = apicid, 9930 }; 9931 9932 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9933 } 9934 9935 bool kvm_apicv_activated(struct kvm *kvm) 9936 { 9937 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9938 } 9939 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9940 9941 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9942 { 9943 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9944 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9945 9946 return (vm_reasons | vcpu_reasons) == 0; 9947 } 9948 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9949 9950 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9951 enum kvm_apicv_inhibit reason, bool set) 9952 { 9953 if (set) 9954 __set_bit(reason, inhibits); 9955 else 9956 __clear_bit(reason, inhibits); 9957 9958 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9959 } 9960 9961 static void kvm_apicv_init(struct kvm *kvm) 9962 { 9963 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9964 9965 init_rwsem(&kvm->arch.apicv_update_lock); 9966 9967 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9968 9969 if (!enable_apicv) 9970 set_or_clear_apicv_inhibit(inhibits, 9971 APICV_INHIBIT_REASON_DISABLE, true); 9972 } 9973 9974 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9975 { 9976 struct kvm_vcpu *target = NULL; 9977 struct kvm_apic_map *map; 9978 9979 vcpu->stat.directed_yield_attempted++; 9980 9981 if (single_task_running()) 9982 goto no_yield; 9983 9984 rcu_read_lock(); 9985 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9986 9987 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9988 target = map->phys_map[dest_id]->vcpu; 9989 9990 rcu_read_unlock(); 9991 9992 if (!target || !READ_ONCE(target->ready)) 9993 goto no_yield; 9994 9995 /* Ignore requests to yield to self */ 9996 if (vcpu == target) 9997 goto no_yield; 9998 9999 if (kvm_vcpu_yield_to(target) <= 0) 10000 goto no_yield; 10001 10002 vcpu->stat.directed_yield_successful++; 10003 10004 no_yield: 10005 return; 10006 } 10007 10008 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 10009 { 10010 u64 ret = vcpu->run->hypercall.ret; 10011 10012 if (!is_64_bit_mode(vcpu)) 10013 ret = (u32)ret; 10014 kvm_rax_write(vcpu, ret); 10015 ++vcpu->stat.hypercalls; 10016 return kvm_skip_emulated_instruction(vcpu); 10017 } 10018 10019 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10020 { 10021 unsigned long nr, a0, a1, a2, a3, ret; 10022 int op_64_bit; 10023 10024 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10025 return kvm_xen_hypercall(vcpu); 10026 10027 if (kvm_hv_hypercall_enabled(vcpu)) 10028 return kvm_hv_hypercall(vcpu); 10029 10030 nr = kvm_rax_read(vcpu); 10031 a0 = kvm_rbx_read(vcpu); 10032 a1 = kvm_rcx_read(vcpu); 10033 a2 = kvm_rdx_read(vcpu); 10034 a3 = kvm_rsi_read(vcpu); 10035 10036 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10037 10038 op_64_bit = is_64_bit_hypercall(vcpu); 10039 if (!op_64_bit) { 10040 nr &= 0xFFFFFFFF; 10041 a0 &= 0xFFFFFFFF; 10042 a1 &= 0xFFFFFFFF; 10043 a2 &= 0xFFFFFFFF; 10044 a3 &= 0xFFFFFFFF; 10045 } 10046 10047 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 10048 ret = -KVM_EPERM; 10049 goto out; 10050 } 10051 10052 ret = -KVM_ENOSYS; 10053 10054 switch (nr) { 10055 case KVM_HC_VAPIC_POLL_IRQ: 10056 ret = 0; 10057 break; 10058 case KVM_HC_KICK_CPU: 10059 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10060 break; 10061 10062 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10063 kvm_sched_yield(vcpu, a1); 10064 ret = 0; 10065 break; 10066 #ifdef CONFIG_X86_64 10067 case KVM_HC_CLOCK_PAIRING: 10068 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10069 break; 10070 #endif 10071 case KVM_HC_SEND_IPI: 10072 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10073 break; 10074 10075 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10076 break; 10077 case KVM_HC_SCHED_YIELD: 10078 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10079 break; 10080 10081 kvm_sched_yield(vcpu, a0); 10082 ret = 0; 10083 break; 10084 case KVM_HC_MAP_GPA_RANGE: { 10085 u64 gpa = a0, npages = a1, attrs = a2; 10086 10087 ret = -KVM_ENOSYS; 10088 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10089 break; 10090 10091 if (!PAGE_ALIGNED(gpa) || !npages || 10092 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10093 ret = -KVM_EINVAL; 10094 break; 10095 } 10096 10097 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10098 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10099 vcpu->run->hypercall.args[0] = gpa; 10100 vcpu->run->hypercall.args[1] = npages; 10101 vcpu->run->hypercall.args[2] = attrs; 10102 vcpu->run->hypercall.flags = 0; 10103 if (op_64_bit) 10104 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10105 10106 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10107 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10108 return 0; 10109 } 10110 default: 10111 ret = -KVM_ENOSYS; 10112 break; 10113 } 10114 out: 10115 if (!op_64_bit) 10116 ret = (u32)ret; 10117 kvm_rax_write(vcpu, ret); 10118 10119 ++vcpu->stat.hypercalls; 10120 return kvm_skip_emulated_instruction(vcpu); 10121 } 10122 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10123 10124 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10125 { 10126 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10127 char instruction[3]; 10128 unsigned long rip = kvm_rip_read(vcpu); 10129 10130 /* 10131 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10132 * the pieces. 10133 */ 10134 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10135 ctxt->exception.error_code_valid = false; 10136 ctxt->exception.vector = UD_VECTOR; 10137 ctxt->have_exception = true; 10138 return X86EMUL_PROPAGATE_FAULT; 10139 } 10140 10141 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 10142 10143 return emulator_write_emulated(ctxt, rip, instruction, 3, 10144 &ctxt->exception); 10145 } 10146 10147 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10148 { 10149 return vcpu->run->request_interrupt_window && 10150 likely(!pic_in_kernel(vcpu->kvm)); 10151 } 10152 10153 /* Called within kvm->srcu read side. */ 10154 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10155 { 10156 struct kvm_run *kvm_run = vcpu->run; 10157 10158 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 10159 kvm_run->cr8 = kvm_get_cr8(vcpu); 10160 kvm_run->apic_base = kvm_get_apic_base(vcpu); 10161 10162 kvm_run->ready_for_interrupt_injection = 10163 pic_in_kernel(vcpu->kvm) || 10164 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10165 10166 if (is_smm(vcpu)) 10167 kvm_run->flags |= KVM_RUN_X86_SMM; 10168 } 10169 10170 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10171 { 10172 int max_irr, tpr; 10173 10174 if (!kvm_x86_ops.update_cr8_intercept) 10175 return; 10176 10177 if (!lapic_in_kernel(vcpu)) 10178 return; 10179 10180 if (vcpu->arch.apic->apicv_active) 10181 return; 10182 10183 if (!vcpu->arch.apic->vapic_addr) 10184 max_irr = kvm_lapic_find_highest_irr(vcpu); 10185 else 10186 max_irr = -1; 10187 10188 if (max_irr != -1) 10189 max_irr >>= 4; 10190 10191 tpr = kvm_lapic_get_cr8(vcpu); 10192 10193 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 10194 } 10195 10196 10197 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10198 { 10199 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10200 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10201 return 1; 10202 } 10203 10204 return kvm_x86_ops.nested_ops->check_events(vcpu); 10205 } 10206 10207 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10208 { 10209 /* 10210 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10211 * exceptions don't report error codes. The presence of an error code 10212 * is carried with the exception and only stripped when the exception 10213 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10214 * report an error code despite the CPU being in Real Mode. 10215 */ 10216 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10217 10218 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10219 vcpu->arch.exception.has_error_code, 10220 vcpu->arch.exception.error_code, 10221 vcpu->arch.exception.injected); 10222 10223 static_call(kvm_x86_inject_exception)(vcpu); 10224 } 10225 10226 /* 10227 * Check for any event (interrupt or exception) that is ready to be injected, 10228 * and if there is at least one event, inject the event with the highest 10229 * priority. This handles both "pending" events, i.e. events that have never 10230 * been injected into the guest, and "injected" events, i.e. events that were 10231 * injected as part of a previous VM-Enter, but weren't successfully delivered 10232 * and need to be re-injected. 10233 * 10234 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10235 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10236 * be able to inject exceptions in the "middle" of an instruction, and so must 10237 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10238 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10239 * boundaries is necessary and correct. 10240 * 10241 * For simplicity, KVM uses a single path to inject all events (except events 10242 * that are injected directly from L1 to L2) and doesn't explicitly track 10243 * instruction boundaries for asynchronous events. However, because VM-Exits 10244 * that can occur during instruction execution typically result in KVM skipping 10245 * the instruction or injecting an exception, e.g. instruction and exception 10246 * intercepts, and because pending exceptions have higher priority than pending 10247 * interrupts, KVM still honors instruction boundaries in most scenarios. 10248 * 10249 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10250 * the instruction or inject an exception, then KVM can incorrecty inject a new 10251 * asynchronous event if the event became pending after the CPU fetched the 10252 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10253 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10254 * injected on the restarted instruction instead of being deferred until the 10255 * instruction completes. 10256 * 10257 * In practice, this virtualization hole is unlikely to be observed by the 10258 * guest, and even less likely to cause functional problems. To detect the 10259 * hole, the guest would have to trigger an event on a side effect of an early 10260 * phase of instruction execution, e.g. on the instruction fetch from memory. 10261 * And for it to be a functional problem, the guest would need to depend on the 10262 * ordering between that side effect, the instruction completing, _and_ the 10263 * delivery of the asynchronous event. 10264 */ 10265 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10266 bool *req_immediate_exit) 10267 { 10268 bool can_inject; 10269 int r; 10270 10271 /* 10272 * Process nested events first, as nested VM-Exit supersedes event 10273 * re-injection. If there's an event queued for re-injection, it will 10274 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10275 */ 10276 if (is_guest_mode(vcpu)) 10277 r = kvm_check_nested_events(vcpu); 10278 else 10279 r = 0; 10280 10281 /* 10282 * Re-inject exceptions and events *especially* if immediate entry+exit 10283 * to/from L2 is needed, as any event that has already been injected 10284 * into L2 needs to complete its lifecycle before injecting a new event. 10285 * 10286 * Don't re-inject an NMI or interrupt if there is a pending exception. 10287 * This collision arises if an exception occurred while vectoring the 10288 * injected event, KVM intercepted said exception, and KVM ultimately 10289 * determined the fault belongs to the guest and queues the exception 10290 * for injection back into the guest. 10291 * 10292 * "Injected" interrupts can also collide with pending exceptions if 10293 * userspace ignores the "ready for injection" flag and blindly queues 10294 * an interrupt. In that case, prioritizing the exception is correct, 10295 * as the exception "occurred" before the exit to userspace. Trap-like 10296 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10297 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10298 * priority, they're only generated (pended) during instruction 10299 * execution, and interrupts are recognized at instruction boundaries. 10300 * Thus a pending fault-like exception means the fault occurred on the 10301 * *previous* instruction and must be serviced prior to recognizing any 10302 * new events in order to fully complete the previous instruction. 10303 */ 10304 if (vcpu->arch.exception.injected) 10305 kvm_inject_exception(vcpu); 10306 else if (kvm_is_exception_pending(vcpu)) 10307 ; /* see above */ 10308 else if (vcpu->arch.nmi_injected) 10309 static_call(kvm_x86_inject_nmi)(vcpu); 10310 else if (vcpu->arch.interrupt.injected) 10311 static_call(kvm_x86_inject_irq)(vcpu, true); 10312 10313 /* 10314 * Exceptions that morph to VM-Exits are handled above, and pending 10315 * exceptions on top of injected exceptions that do not VM-Exit should 10316 * either morph to #DF or, sadly, override the injected exception. 10317 */ 10318 WARN_ON_ONCE(vcpu->arch.exception.injected && 10319 vcpu->arch.exception.pending); 10320 10321 /* 10322 * Bail if immediate entry+exit to/from the guest is needed to complete 10323 * nested VM-Enter or event re-injection so that a different pending 10324 * event can be serviced (or if KVM needs to exit to userspace). 10325 * 10326 * Otherwise, continue processing events even if VM-Exit occurred. The 10327 * VM-Exit will have cleared exceptions that were meant for L2, but 10328 * there may now be events that can be injected into L1. 10329 */ 10330 if (r < 0) 10331 goto out; 10332 10333 /* 10334 * A pending exception VM-Exit should either result in nested VM-Exit 10335 * or force an immediate re-entry and exit to/from L2, and exception 10336 * VM-Exits cannot be injected (flag should _never_ be set). 10337 */ 10338 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10339 vcpu->arch.exception_vmexit.pending); 10340 10341 /* 10342 * New events, other than exceptions, cannot be injected if KVM needs 10343 * to re-inject a previous event. See above comments on re-injecting 10344 * for why pending exceptions get priority. 10345 */ 10346 can_inject = !kvm_event_needs_reinjection(vcpu); 10347 10348 if (vcpu->arch.exception.pending) { 10349 /* 10350 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10351 * value pushed on the stack. Trap-like exception and all #DBs 10352 * leave RF as-is (KVM follows Intel's behavior in this regard; 10353 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10354 * 10355 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10356 * describe the behavior of General Detect #DBs, which are 10357 * fault-like. They do _not_ set RF, a la code breakpoints. 10358 */ 10359 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10360 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10361 X86_EFLAGS_RF); 10362 10363 if (vcpu->arch.exception.vector == DB_VECTOR) { 10364 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10365 if (vcpu->arch.dr7 & DR7_GD) { 10366 vcpu->arch.dr7 &= ~DR7_GD; 10367 kvm_update_dr7(vcpu); 10368 } 10369 } 10370 10371 kvm_inject_exception(vcpu); 10372 10373 vcpu->arch.exception.pending = false; 10374 vcpu->arch.exception.injected = true; 10375 10376 can_inject = false; 10377 } 10378 10379 /* Don't inject interrupts if the user asked to avoid doing so */ 10380 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10381 return 0; 10382 10383 /* 10384 * Finally, inject interrupt events. If an event cannot be injected 10385 * due to architectural conditions (e.g. IF=0) a window-open exit 10386 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10387 * and can architecturally be injected, but we cannot do it right now: 10388 * an interrupt could have arrived just now and we have to inject it 10389 * as a vmexit, or there could already an event in the queue, which is 10390 * indicated by can_inject. In that case we request an immediate exit 10391 * in order to make progress and get back here for another iteration. 10392 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10393 */ 10394 #ifdef CONFIG_KVM_SMM 10395 if (vcpu->arch.smi_pending) { 10396 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10397 if (r < 0) 10398 goto out; 10399 if (r) { 10400 vcpu->arch.smi_pending = false; 10401 ++vcpu->arch.smi_count; 10402 enter_smm(vcpu); 10403 can_inject = false; 10404 } else 10405 static_call(kvm_x86_enable_smi_window)(vcpu); 10406 } 10407 #endif 10408 10409 if (vcpu->arch.nmi_pending) { 10410 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10411 if (r < 0) 10412 goto out; 10413 if (r) { 10414 --vcpu->arch.nmi_pending; 10415 vcpu->arch.nmi_injected = true; 10416 static_call(kvm_x86_inject_nmi)(vcpu); 10417 can_inject = false; 10418 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10419 } 10420 if (vcpu->arch.nmi_pending) 10421 static_call(kvm_x86_enable_nmi_window)(vcpu); 10422 } 10423 10424 if (kvm_cpu_has_injectable_intr(vcpu)) { 10425 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10426 if (r < 0) 10427 goto out; 10428 if (r) { 10429 int irq = kvm_cpu_get_interrupt(vcpu); 10430 10431 if (!WARN_ON_ONCE(irq == -1)) { 10432 kvm_queue_interrupt(vcpu, irq, false); 10433 static_call(kvm_x86_inject_irq)(vcpu, false); 10434 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10435 } 10436 } 10437 if (kvm_cpu_has_injectable_intr(vcpu)) 10438 static_call(kvm_x86_enable_irq_window)(vcpu); 10439 } 10440 10441 if (is_guest_mode(vcpu) && 10442 kvm_x86_ops.nested_ops->has_events && 10443 kvm_x86_ops.nested_ops->has_events(vcpu)) 10444 *req_immediate_exit = true; 10445 10446 /* 10447 * KVM must never queue a new exception while injecting an event; KVM 10448 * is done emulating and should only propagate the to-be-injected event 10449 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10450 * infinite loop as KVM will bail from VM-Enter to inject the pending 10451 * exception and start the cycle all over. 10452 * 10453 * Exempt triple faults as they have special handling and won't put the 10454 * vCPU into an infinite loop. Triple fault can be queued when running 10455 * VMX without unrestricted guest, as that requires KVM to emulate Real 10456 * Mode events (see kvm_inject_realmode_interrupt()). 10457 */ 10458 WARN_ON_ONCE(vcpu->arch.exception.pending || 10459 vcpu->arch.exception_vmexit.pending); 10460 return 0; 10461 10462 out: 10463 if (r == -EBUSY) { 10464 *req_immediate_exit = true; 10465 r = 0; 10466 } 10467 return r; 10468 } 10469 10470 static void process_nmi(struct kvm_vcpu *vcpu) 10471 { 10472 unsigned int limit; 10473 10474 /* 10475 * x86 is limited to one NMI pending, but because KVM can't react to 10476 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10477 * scheduled out, KVM needs to play nice with two queued NMIs showing 10478 * up at the same time. To handle this scenario, allow two NMIs to be 10479 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10480 * waiting for a previous NMI injection to complete (which effectively 10481 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10482 * will request an NMI window to handle the second NMI. 10483 */ 10484 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10485 limit = 1; 10486 else 10487 limit = 2; 10488 10489 /* 10490 * Adjust the limit to account for pending virtual NMIs, which aren't 10491 * tracked in vcpu->arch.nmi_pending. 10492 */ 10493 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10494 limit--; 10495 10496 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10497 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10498 10499 if (vcpu->arch.nmi_pending && 10500 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10501 vcpu->arch.nmi_pending--; 10502 10503 if (vcpu->arch.nmi_pending) 10504 kvm_make_request(KVM_REQ_EVENT, vcpu); 10505 } 10506 10507 /* Return total number of NMIs pending injection to the VM */ 10508 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10509 { 10510 return vcpu->arch.nmi_pending + 10511 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10512 } 10513 10514 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10515 unsigned long *vcpu_bitmap) 10516 { 10517 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10518 } 10519 10520 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10521 { 10522 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10523 } 10524 10525 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10526 { 10527 struct kvm_lapic *apic = vcpu->arch.apic; 10528 bool activate; 10529 10530 if (!lapic_in_kernel(vcpu)) 10531 return; 10532 10533 down_read(&vcpu->kvm->arch.apicv_update_lock); 10534 preempt_disable(); 10535 10536 /* Do not activate APICV when APIC is disabled */ 10537 activate = kvm_vcpu_apicv_activated(vcpu) && 10538 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10539 10540 if (apic->apicv_active == activate) 10541 goto out; 10542 10543 apic->apicv_active = activate; 10544 kvm_apic_update_apicv(vcpu); 10545 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10546 10547 /* 10548 * When APICv gets disabled, we may still have injected interrupts 10549 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10550 * still active when the interrupt got accepted. Make sure 10551 * kvm_check_and_inject_events() is called to check for that. 10552 */ 10553 if (!apic->apicv_active) 10554 kvm_make_request(KVM_REQ_EVENT, vcpu); 10555 10556 out: 10557 preempt_enable(); 10558 up_read(&vcpu->kvm->arch.apicv_update_lock); 10559 } 10560 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10561 10562 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10563 { 10564 if (!lapic_in_kernel(vcpu)) 10565 return; 10566 10567 /* 10568 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10569 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10570 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10571 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10572 * this case so that KVM can the AVIC doorbell to inject interrupts to 10573 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10574 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10575 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10576 * access page is sticky. 10577 */ 10578 if (apic_x2apic_mode(vcpu->arch.apic) && 10579 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10580 kvm_inhibit_apic_access_page(vcpu); 10581 10582 __kvm_vcpu_update_apicv(vcpu); 10583 } 10584 10585 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10586 enum kvm_apicv_inhibit reason, bool set) 10587 { 10588 unsigned long old, new; 10589 10590 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10591 10592 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10593 return; 10594 10595 old = new = kvm->arch.apicv_inhibit_reasons; 10596 10597 set_or_clear_apicv_inhibit(&new, reason, set); 10598 10599 if (!!old != !!new) { 10600 /* 10601 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10602 * false positives in the sanity check WARN in svm_vcpu_run(). 10603 * This task will wait for all vCPUs to ack the kick IRQ before 10604 * updating apicv_inhibit_reasons, and all other vCPUs will 10605 * block on acquiring apicv_update_lock so that vCPUs can't 10606 * redo svm_vcpu_run() without seeing the new inhibit state. 10607 * 10608 * Note, holding apicv_update_lock and taking it in the read 10609 * side (handling the request) also prevents other vCPUs from 10610 * servicing the request with a stale apicv_inhibit_reasons. 10611 */ 10612 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10613 kvm->arch.apicv_inhibit_reasons = new; 10614 if (new) { 10615 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10616 int idx = srcu_read_lock(&kvm->srcu); 10617 10618 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10619 srcu_read_unlock(&kvm->srcu, idx); 10620 } 10621 } else { 10622 kvm->arch.apicv_inhibit_reasons = new; 10623 } 10624 } 10625 10626 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10627 enum kvm_apicv_inhibit reason, bool set) 10628 { 10629 if (!enable_apicv) 10630 return; 10631 10632 down_write(&kvm->arch.apicv_update_lock); 10633 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10634 up_write(&kvm->arch.apicv_update_lock); 10635 } 10636 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10637 10638 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10639 { 10640 if (!kvm_apic_present(vcpu)) 10641 return; 10642 10643 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10644 10645 if (irqchip_split(vcpu->kvm)) 10646 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10647 else { 10648 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10649 if (ioapic_in_kernel(vcpu->kvm)) 10650 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10651 } 10652 10653 if (is_guest_mode(vcpu)) 10654 vcpu->arch.load_eoi_exitmap_pending = true; 10655 else 10656 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10657 } 10658 10659 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10660 { 10661 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10662 return; 10663 10664 #ifdef CONFIG_KVM_HYPERV 10665 if (to_hv_vcpu(vcpu)) { 10666 u64 eoi_exit_bitmap[4]; 10667 10668 bitmap_or((ulong *)eoi_exit_bitmap, 10669 vcpu->arch.ioapic_handled_vectors, 10670 to_hv_synic(vcpu)->vec_bitmap, 256); 10671 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10672 return; 10673 } 10674 #endif 10675 static_call_cond(kvm_x86_load_eoi_exitmap)( 10676 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10677 } 10678 10679 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10680 { 10681 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10682 } 10683 10684 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10685 { 10686 if (!lapic_in_kernel(vcpu)) 10687 return; 10688 10689 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10690 } 10691 10692 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10693 { 10694 smp_send_reschedule(vcpu->cpu); 10695 } 10696 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10697 10698 /* 10699 * Called within kvm->srcu read side. 10700 * Returns 1 to let vcpu_run() continue the guest execution loop without 10701 * exiting to the userspace. Otherwise, the value will be returned to the 10702 * userspace. 10703 */ 10704 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10705 { 10706 int r; 10707 bool req_int_win = 10708 dm_request_for_irq_injection(vcpu) && 10709 kvm_cpu_accept_dm_intr(vcpu); 10710 fastpath_t exit_fastpath; 10711 10712 bool req_immediate_exit = false; 10713 10714 if (kvm_request_pending(vcpu)) { 10715 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10716 r = -EIO; 10717 goto out; 10718 } 10719 10720 if (kvm_dirty_ring_check_request(vcpu)) { 10721 r = 0; 10722 goto out; 10723 } 10724 10725 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10726 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10727 r = 0; 10728 goto out; 10729 } 10730 } 10731 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10732 kvm_mmu_free_obsolete_roots(vcpu); 10733 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10734 __kvm_migrate_timers(vcpu); 10735 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10736 kvm_update_masterclock(vcpu->kvm); 10737 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10738 kvm_gen_kvmclock_update(vcpu); 10739 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10740 r = kvm_guest_time_update(vcpu); 10741 if (unlikely(r)) 10742 goto out; 10743 } 10744 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10745 kvm_mmu_sync_roots(vcpu); 10746 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10747 kvm_mmu_load_pgd(vcpu); 10748 10749 /* 10750 * Note, the order matters here, as flushing "all" TLB entries 10751 * also flushes the "current" TLB entries, i.e. servicing the 10752 * flush "all" will clear any request to flush "current". 10753 */ 10754 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10755 kvm_vcpu_flush_tlb_all(vcpu); 10756 10757 kvm_service_local_tlb_flush_requests(vcpu); 10758 10759 /* 10760 * Fall back to a "full" guest flush if Hyper-V's precise 10761 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10762 * the flushes are considered "remote" and not "local" because 10763 * the requests can be initiated from other vCPUs. 10764 */ 10765 #ifdef CONFIG_KVM_HYPERV 10766 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10767 kvm_hv_vcpu_flush_tlb(vcpu)) 10768 kvm_vcpu_flush_tlb_guest(vcpu); 10769 #endif 10770 10771 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10772 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10773 r = 0; 10774 goto out; 10775 } 10776 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10777 if (is_guest_mode(vcpu)) 10778 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10779 10780 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10781 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10782 vcpu->mmio_needed = 0; 10783 r = 0; 10784 goto out; 10785 } 10786 } 10787 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10788 /* Page is swapped out. Do synthetic halt */ 10789 vcpu->arch.apf.halted = true; 10790 r = 1; 10791 goto out; 10792 } 10793 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10794 record_steal_time(vcpu); 10795 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10796 kvm_pmu_handle_event(vcpu); 10797 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10798 kvm_pmu_deliver_pmi(vcpu); 10799 #ifdef CONFIG_KVM_SMM 10800 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10801 process_smi(vcpu); 10802 #endif 10803 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10804 process_nmi(vcpu); 10805 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10806 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10807 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10808 vcpu->arch.ioapic_handled_vectors)) { 10809 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10810 vcpu->run->eoi.vector = 10811 vcpu->arch.pending_ioapic_eoi; 10812 r = 0; 10813 goto out; 10814 } 10815 } 10816 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10817 vcpu_scan_ioapic(vcpu); 10818 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10819 vcpu_load_eoi_exitmap(vcpu); 10820 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10821 kvm_vcpu_reload_apic_access_page(vcpu); 10822 #ifdef CONFIG_KVM_HYPERV 10823 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10824 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10825 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10826 vcpu->run->system_event.ndata = 0; 10827 r = 0; 10828 goto out; 10829 } 10830 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10831 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10832 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10833 vcpu->run->system_event.ndata = 0; 10834 r = 0; 10835 goto out; 10836 } 10837 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10838 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10839 10840 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10841 vcpu->run->hyperv = hv_vcpu->exit; 10842 r = 0; 10843 goto out; 10844 } 10845 10846 /* 10847 * KVM_REQ_HV_STIMER has to be processed after 10848 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10849 * depend on the guest clock being up-to-date 10850 */ 10851 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10852 kvm_hv_process_stimers(vcpu); 10853 #endif 10854 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10855 kvm_vcpu_update_apicv(vcpu); 10856 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10857 kvm_check_async_pf_completion(vcpu); 10858 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10859 static_call(kvm_x86_msr_filter_changed)(vcpu); 10860 10861 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10862 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10863 } 10864 10865 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10866 kvm_xen_has_interrupt(vcpu)) { 10867 ++vcpu->stat.req_event; 10868 r = kvm_apic_accept_events(vcpu); 10869 if (r < 0) { 10870 r = 0; 10871 goto out; 10872 } 10873 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10874 r = 1; 10875 goto out; 10876 } 10877 10878 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10879 if (r < 0) { 10880 r = 0; 10881 goto out; 10882 } 10883 if (req_int_win) 10884 static_call(kvm_x86_enable_irq_window)(vcpu); 10885 10886 if (kvm_lapic_enabled(vcpu)) { 10887 update_cr8_intercept(vcpu); 10888 kvm_lapic_sync_to_vapic(vcpu); 10889 } 10890 } 10891 10892 r = kvm_mmu_reload(vcpu); 10893 if (unlikely(r)) { 10894 goto cancel_injection; 10895 } 10896 10897 preempt_disable(); 10898 10899 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10900 10901 /* 10902 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10903 * IPI are then delayed after guest entry, which ensures that they 10904 * result in virtual interrupt delivery. 10905 */ 10906 local_irq_disable(); 10907 10908 /* Store vcpu->apicv_active before vcpu->mode. */ 10909 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10910 10911 kvm_vcpu_srcu_read_unlock(vcpu); 10912 10913 /* 10914 * 1) We should set ->mode before checking ->requests. Please see 10915 * the comment in kvm_vcpu_exiting_guest_mode(). 10916 * 10917 * 2) For APICv, we should set ->mode before checking PID.ON. This 10918 * pairs with the memory barrier implicit in pi_test_and_set_on 10919 * (see vmx_deliver_posted_interrupt). 10920 * 10921 * 3) This also orders the write to mode from any reads to the page 10922 * tables done while the VCPU is running. Please see the comment 10923 * in kvm_flush_remote_tlbs. 10924 */ 10925 smp_mb__after_srcu_read_unlock(); 10926 10927 /* 10928 * Process pending posted interrupts to handle the case where the 10929 * notification IRQ arrived in the host, or was never sent (because the 10930 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10931 * status, KVM doesn't update assigned devices when APICv is inhibited, 10932 * i.e. they can post interrupts even if APICv is temporarily disabled. 10933 */ 10934 if (kvm_lapic_enabled(vcpu)) 10935 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10936 10937 if (kvm_vcpu_exit_request(vcpu)) { 10938 vcpu->mode = OUTSIDE_GUEST_MODE; 10939 smp_wmb(); 10940 local_irq_enable(); 10941 preempt_enable(); 10942 kvm_vcpu_srcu_read_lock(vcpu); 10943 r = 1; 10944 goto cancel_injection; 10945 } 10946 10947 if (req_immediate_exit) { 10948 kvm_make_request(KVM_REQ_EVENT, vcpu); 10949 static_call(kvm_x86_request_immediate_exit)(vcpu); 10950 } 10951 10952 fpregs_assert_state_consistent(); 10953 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10954 switch_fpu_return(); 10955 10956 if (vcpu->arch.guest_fpu.xfd_err) 10957 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10958 10959 if (unlikely(vcpu->arch.switch_db_regs)) { 10960 set_debugreg(0, 7); 10961 set_debugreg(vcpu->arch.eff_db[0], 0); 10962 set_debugreg(vcpu->arch.eff_db[1], 1); 10963 set_debugreg(vcpu->arch.eff_db[2], 2); 10964 set_debugreg(vcpu->arch.eff_db[3], 3); 10965 } else if (unlikely(hw_breakpoint_active())) { 10966 set_debugreg(0, 7); 10967 } 10968 10969 guest_timing_enter_irqoff(); 10970 10971 for (;;) { 10972 /* 10973 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10974 * update must kick and wait for all vCPUs before toggling the 10975 * per-VM state, and responding vCPUs must wait for the update 10976 * to complete before servicing KVM_REQ_APICV_UPDATE. 10977 */ 10978 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10979 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10980 10981 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10982 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10983 break; 10984 10985 if (kvm_lapic_enabled(vcpu)) 10986 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10987 10988 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10989 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10990 break; 10991 } 10992 10993 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10994 ++vcpu->stat.exits; 10995 } 10996 10997 /* 10998 * Do this here before restoring debug registers on the host. And 10999 * since we do this before handling the vmexit, a DR access vmexit 11000 * can (a) read the correct value of the debug registers, (b) set 11001 * KVM_DEBUGREG_WONT_EXIT again. 11002 */ 11003 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 11004 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 11005 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 11006 kvm_update_dr0123(vcpu); 11007 kvm_update_dr7(vcpu); 11008 } 11009 11010 /* 11011 * If the guest has used debug registers, at least dr7 11012 * will be disabled while returning to the host. 11013 * If we don't have active breakpoints in the host, we don't 11014 * care about the messed up debug address registers. But if 11015 * we have some of them active, restore the old state. 11016 */ 11017 if (hw_breakpoint_active()) 11018 hw_breakpoint_restore(); 11019 11020 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11021 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11022 11023 vcpu->mode = OUTSIDE_GUEST_MODE; 11024 smp_wmb(); 11025 11026 /* 11027 * Sync xfd before calling handle_exit_irqoff() which may 11028 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11029 * in #NM irqoff handler). 11030 */ 11031 if (vcpu->arch.xfd_no_write_intercept) 11032 fpu_sync_guest_vmexit_xfd_state(); 11033 11034 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 11035 11036 if (vcpu->arch.guest_fpu.xfd_err) 11037 wrmsrl(MSR_IA32_XFD_ERR, 0); 11038 11039 /* 11040 * Consume any pending interrupts, including the possible source of 11041 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11042 * An instruction is required after local_irq_enable() to fully unblock 11043 * interrupts on processors that implement an interrupt shadow, the 11044 * stat.exits increment will do nicely. 11045 */ 11046 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11047 local_irq_enable(); 11048 ++vcpu->stat.exits; 11049 local_irq_disable(); 11050 kvm_after_interrupt(vcpu); 11051 11052 /* 11053 * Wait until after servicing IRQs to account guest time so that any 11054 * ticks that occurred while running the guest are properly accounted 11055 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11056 * of accounting via context tracking, but the loss of accuracy is 11057 * acceptable for all known use cases. 11058 */ 11059 guest_timing_exit_irqoff(); 11060 11061 local_irq_enable(); 11062 preempt_enable(); 11063 11064 kvm_vcpu_srcu_read_lock(vcpu); 11065 11066 /* 11067 * Profile KVM exit RIPs: 11068 */ 11069 if (unlikely(prof_on == KVM_PROFILING)) { 11070 unsigned long rip = kvm_rip_read(vcpu); 11071 profile_hit(KVM_PROFILING, (void *)rip); 11072 } 11073 11074 if (unlikely(vcpu->arch.tsc_always_catchup)) 11075 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11076 11077 if (vcpu->arch.apic_attention) 11078 kvm_lapic_sync_from_vapic(vcpu); 11079 11080 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 11081 return r; 11082 11083 cancel_injection: 11084 if (req_immediate_exit) 11085 kvm_make_request(KVM_REQ_EVENT, vcpu); 11086 static_call(kvm_x86_cancel_injection)(vcpu); 11087 if (unlikely(vcpu->arch.apic_attention)) 11088 kvm_lapic_sync_from_vapic(vcpu); 11089 out: 11090 return r; 11091 } 11092 11093 /* Called within kvm->srcu read side. */ 11094 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11095 { 11096 bool hv_timer; 11097 11098 if (!kvm_arch_vcpu_runnable(vcpu)) { 11099 /* 11100 * Switch to the software timer before halt-polling/blocking as 11101 * the guest's timer may be a break event for the vCPU, and the 11102 * hypervisor timer runs only when the CPU is in guest mode. 11103 * Switch before halt-polling so that KVM recognizes an expired 11104 * timer before blocking. 11105 */ 11106 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11107 if (hv_timer) 11108 kvm_lapic_switch_to_sw_timer(vcpu); 11109 11110 kvm_vcpu_srcu_read_unlock(vcpu); 11111 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11112 kvm_vcpu_halt(vcpu); 11113 else 11114 kvm_vcpu_block(vcpu); 11115 kvm_vcpu_srcu_read_lock(vcpu); 11116 11117 if (hv_timer) 11118 kvm_lapic_switch_to_hv_timer(vcpu); 11119 11120 /* 11121 * If the vCPU is not runnable, a signal or another host event 11122 * of some kind is pending; service it without changing the 11123 * vCPU's activity state. 11124 */ 11125 if (!kvm_arch_vcpu_runnable(vcpu)) 11126 return 1; 11127 } 11128 11129 /* 11130 * Evaluate nested events before exiting the halted state. This allows 11131 * the halt state to be recorded properly in the VMCS12's activity 11132 * state field (AMD does not have a similar field and a VM-Exit always 11133 * causes a spurious wakeup from HLT). 11134 */ 11135 if (is_guest_mode(vcpu)) { 11136 if (kvm_check_nested_events(vcpu) < 0) 11137 return 0; 11138 } 11139 11140 if (kvm_apic_accept_events(vcpu) < 0) 11141 return 0; 11142 switch(vcpu->arch.mp_state) { 11143 case KVM_MP_STATE_HALTED: 11144 case KVM_MP_STATE_AP_RESET_HOLD: 11145 vcpu->arch.pv.pv_unhalted = false; 11146 vcpu->arch.mp_state = 11147 KVM_MP_STATE_RUNNABLE; 11148 fallthrough; 11149 case KVM_MP_STATE_RUNNABLE: 11150 vcpu->arch.apf.halted = false; 11151 break; 11152 case KVM_MP_STATE_INIT_RECEIVED: 11153 break; 11154 default: 11155 WARN_ON_ONCE(1); 11156 break; 11157 } 11158 return 1; 11159 } 11160 11161 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11162 { 11163 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11164 !vcpu->arch.apf.halted); 11165 } 11166 11167 /* Called within kvm->srcu read side. */ 11168 static int vcpu_run(struct kvm_vcpu *vcpu) 11169 { 11170 int r; 11171 11172 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11173 vcpu->arch.l1tf_flush_l1d = true; 11174 11175 for (;;) { 11176 /* 11177 * If another guest vCPU requests a PV TLB flush in the middle 11178 * of instruction emulation, the rest of the emulation could 11179 * use a stale page translation. Assume that any code after 11180 * this point can start executing an instruction. 11181 */ 11182 vcpu->arch.at_instruction_boundary = false; 11183 if (kvm_vcpu_running(vcpu)) { 11184 r = vcpu_enter_guest(vcpu); 11185 } else { 11186 r = vcpu_block(vcpu); 11187 } 11188 11189 if (r <= 0) 11190 break; 11191 11192 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11193 if (kvm_xen_has_pending_events(vcpu)) 11194 kvm_xen_inject_pending_events(vcpu); 11195 11196 if (kvm_cpu_has_pending_timer(vcpu)) 11197 kvm_inject_pending_timer_irqs(vcpu); 11198 11199 if (dm_request_for_irq_injection(vcpu) && 11200 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11201 r = 0; 11202 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11203 ++vcpu->stat.request_irq_exits; 11204 break; 11205 } 11206 11207 if (__xfer_to_guest_mode_work_pending()) { 11208 kvm_vcpu_srcu_read_unlock(vcpu); 11209 r = xfer_to_guest_mode_handle_work(vcpu); 11210 kvm_vcpu_srcu_read_lock(vcpu); 11211 if (r) 11212 return r; 11213 } 11214 } 11215 11216 return r; 11217 } 11218 11219 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11220 { 11221 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11222 } 11223 11224 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11225 { 11226 BUG_ON(!vcpu->arch.pio.count); 11227 11228 return complete_emulated_io(vcpu); 11229 } 11230 11231 /* 11232 * Implements the following, as a state machine: 11233 * 11234 * read: 11235 * for each fragment 11236 * for each mmio piece in the fragment 11237 * write gpa, len 11238 * exit 11239 * copy data 11240 * execute insn 11241 * 11242 * write: 11243 * for each fragment 11244 * for each mmio piece in the fragment 11245 * write gpa, len 11246 * copy data 11247 * exit 11248 */ 11249 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11250 { 11251 struct kvm_run *run = vcpu->run; 11252 struct kvm_mmio_fragment *frag; 11253 unsigned len; 11254 11255 BUG_ON(!vcpu->mmio_needed); 11256 11257 /* Complete previous fragment */ 11258 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11259 len = min(8u, frag->len); 11260 if (!vcpu->mmio_is_write) 11261 memcpy(frag->data, run->mmio.data, len); 11262 11263 if (frag->len <= 8) { 11264 /* Switch to the next fragment. */ 11265 frag++; 11266 vcpu->mmio_cur_fragment++; 11267 } else { 11268 /* Go forward to the next mmio piece. */ 11269 frag->data += len; 11270 frag->gpa += len; 11271 frag->len -= len; 11272 } 11273 11274 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11275 vcpu->mmio_needed = 0; 11276 11277 /* FIXME: return into emulator if single-stepping. */ 11278 if (vcpu->mmio_is_write) 11279 return 1; 11280 vcpu->mmio_read_completed = 1; 11281 return complete_emulated_io(vcpu); 11282 } 11283 11284 run->exit_reason = KVM_EXIT_MMIO; 11285 run->mmio.phys_addr = frag->gpa; 11286 if (vcpu->mmio_is_write) 11287 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11288 run->mmio.len = min(8u, frag->len); 11289 run->mmio.is_write = vcpu->mmio_is_write; 11290 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11291 return 0; 11292 } 11293 11294 /* Swap (qemu) user FPU context for the guest FPU context. */ 11295 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11296 { 11297 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11298 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11299 trace_kvm_fpu(1); 11300 } 11301 11302 /* When vcpu_run ends, restore user space FPU context. */ 11303 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11304 { 11305 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11306 ++vcpu->stat.fpu_reload; 11307 trace_kvm_fpu(0); 11308 } 11309 11310 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11311 { 11312 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11313 struct kvm_run *kvm_run = vcpu->run; 11314 int r; 11315 11316 vcpu_load(vcpu); 11317 kvm_sigset_activate(vcpu); 11318 kvm_run->flags = 0; 11319 kvm_load_guest_fpu(vcpu); 11320 11321 kvm_vcpu_srcu_read_lock(vcpu); 11322 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11323 if (kvm_run->immediate_exit) { 11324 r = -EINTR; 11325 goto out; 11326 } 11327 11328 /* 11329 * Don't bother switching APIC timer emulation from the 11330 * hypervisor timer to the software timer, the only way for the 11331 * APIC timer to be active is if userspace stuffed vCPU state, 11332 * i.e. put the vCPU into a nonsensical state. Only an INIT 11333 * will transition the vCPU out of UNINITIALIZED (without more 11334 * state stuffing from userspace), which will reset the local 11335 * APIC and thus cancel the timer or drop the IRQ (if the timer 11336 * already expired). 11337 */ 11338 kvm_vcpu_srcu_read_unlock(vcpu); 11339 kvm_vcpu_block(vcpu); 11340 kvm_vcpu_srcu_read_lock(vcpu); 11341 11342 if (kvm_apic_accept_events(vcpu) < 0) { 11343 r = 0; 11344 goto out; 11345 } 11346 r = -EAGAIN; 11347 if (signal_pending(current)) { 11348 r = -EINTR; 11349 kvm_run->exit_reason = KVM_EXIT_INTR; 11350 ++vcpu->stat.signal_exits; 11351 } 11352 goto out; 11353 } 11354 11355 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11356 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11357 r = -EINVAL; 11358 goto out; 11359 } 11360 11361 if (kvm_run->kvm_dirty_regs) { 11362 r = sync_regs(vcpu); 11363 if (r != 0) 11364 goto out; 11365 } 11366 11367 /* re-sync apic's tpr */ 11368 if (!lapic_in_kernel(vcpu)) { 11369 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11370 r = -EINVAL; 11371 goto out; 11372 } 11373 } 11374 11375 /* 11376 * If userspace set a pending exception and L2 is active, convert it to 11377 * a pending VM-Exit if L1 wants to intercept the exception. 11378 */ 11379 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11380 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11381 ex->error_code)) { 11382 kvm_queue_exception_vmexit(vcpu, ex->vector, 11383 ex->has_error_code, ex->error_code, 11384 ex->has_payload, ex->payload); 11385 ex->injected = false; 11386 ex->pending = false; 11387 } 11388 vcpu->arch.exception_from_userspace = false; 11389 11390 if (unlikely(vcpu->arch.complete_userspace_io)) { 11391 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11392 vcpu->arch.complete_userspace_io = NULL; 11393 r = cui(vcpu); 11394 if (r <= 0) 11395 goto out; 11396 } else { 11397 WARN_ON_ONCE(vcpu->arch.pio.count); 11398 WARN_ON_ONCE(vcpu->mmio_needed); 11399 } 11400 11401 if (kvm_run->immediate_exit) { 11402 r = -EINTR; 11403 goto out; 11404 } 11405 11406 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11407 if (r <= 0) 11408 goto out; 11409 11410 r = vcpu_run(vcpu); 11411 11412 out: 11413 kvm_put_guest_fpu(vcpu); 11414 if (kvm_run->kvm_valid_regs) 11415 store_regs(vcpu); 11416 post_kvm_run_save(vcpu); 11417 kvm_vcpu_srcu_read_unlock(vcpu); 11418 11419 kvm_sigset_deactivate(vcpu); 11420 vcpu_put(vcpu); 11421 return r; 11422 } 11423 11424 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11425 { 11426 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11427 /* 11428 * We are here if userspace calls get_regs() in the middle of 11429 * instruction emulation. Registers state needs to be copied 11430 * back from emulation context to vcpu. Userspace shouldn't do 11431 * that usually, but some bad designed PV devices (vmware 11432 * backdoor interface) need this to work 11433 */ 11434 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11435 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11436 } 11437 regs->rax = kvm_rax_read(vcpu); 11438 regs->rbx = kvm_rbx_read(vcpu); 11439 regs->rcx = kvm_rcx_read(vcpu); 11440 regs->rdx = kvm_rdx_read(vcpu); 11441 regs->rsi = kvm_rsi_read(vcpu); 11442 regs->rdi = kvm_rdi_read(vcpu); 11443 regs->rsp = kvm_rsp_read(vcpu); 11444 regs->rbp = kvm_rbp_read(vcpu); 11445 #ifdef CONFIG_X86_64 11446 regs->r8 = kvm_r8_read(vcpu); 11447 regs->r9 = kvm_r9_read(vcpu); 11448 regs->r10 = kvm_r10_read(vcpu); 11449 regs->r11 = kvm_r11_read(vcpu); 11450 regs->r12 = kvm_r12_read(vcpu); 11451 regs->r13 = kvm_r13_read(vcpu); 11452 regs->r14 = kvm_r14_read(vcpu); 11453 regs->r15 = kvm_r15_read(vcpu); 11454 #endif 11455 11456 regs->rip = kvm_rip_read(vcpu); 11457 regs->rflags = kvm_get_rflags(vcpu); 11458 } 11459 11460 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11461 { 11462 vcpu_load(vcpu); 11463 __get_regs(vcpu, regs); 11464 vcpu_put(vcpu); 11465 return 0; 11466 } 11467 11468 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11469 { 11470 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11471 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11472 11473 kvm_rax_write(vcpu, regs->rax); 11474 kvm_rbx_write(vcpu, regs->rbx); 11475 kvm_rcx_write(vcpu, regs->rcx); 11476 kvm_rdx_write(vcpu, regs->rdx); 11477 kvm_rsi_write(vcpu, regs->rsi); 11478 kvm_rdi_write(vcpu, regs->rdi); 11479 kvm_rsp_write(vcpu, regs->rsp); 11480 kvm_rbp_write(vcpu, regs->rbp); 11481 #ifdef CONFIG_X86_64 11482 kvm_r8_write(vcpu, regs->r8); 11483 kvm_r9_write(vcpu, regs->r9); 11484 kvm_r10_write(vcpu, regs->r10); 11485 kvm_r11_write(vcpu, regs->r11); 11486 kvm_r12_write(vcpu, regs->r12); 11487 kvm_r13_write(vcpu, regs->r13); 11488 kvm_r14_write(vcpu, regs->r14); 11489 kvm_r15_write(vcpu, regs->r15); 11490 #endif 11491 11492 kvm_rip_write(vcpu, regs->rip); 11493 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11494 11495 vcpu->arch.exception.pending = false; 11496 vcpu->arch.exception_vmexit.pending = false; 11497 11498 kvm_make_request(KVM_REQ_EVENT, vcpu); 11499 } 11500 11501 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11502 { 11503 vcpu_load(vcpu); 11504 __set_regs(vcpu, regs); 11505 vcpu_put(vcpu); 11506 return 0; 11507 } 11508 11509 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11510 { 11511 struct desc_ptr dt; 11512 11513 if (vcpu->arch.guest_state_protected) 11514 goto skip_protected_regs; 11515 11516 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11517 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11518 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11519 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11520 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11521 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11522 11523 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11524 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11525 11526 static_call(kvm_x86_get_idt)(vcpu, &dt); 11527 sregs->idt.limit = dt.size; 11528 sregs->idt.base = dt.address; 11529 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11530 sregs->gdt.limit = dt.size; 11531 sregs->gdt.base = dt.address; 11532 11533 sregs->cr2 = vcpu->arch.cr2; 11534 sregs->cr3 = kvm_read_cr3(vcpu); 11535 11536 skip_protected_regs: 11537 sregs->cr0 = kvm_read_cr0(vcpu); 11538 sregs->cr4 = kvm_read_cr4(vcpu); 11539 sregs->cr8 = kvm_get_cr8(vcpu); 11540 sregs->efer = vcpu->arch.efer; 11541 sregs->apic_base = kvm_get_apic_base(vcpu); 11542 } 11543 11544 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11545 { 11546 __get_sregs_common(vcpu, sregs); 11547 11548 if (vcpu->arch.guest_state_protected) 11549 return; 11550 11551 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11552 set_bit(vcpu->arch.interrupt.nr, 11553 (unsigned long *)sregs->interrupt_bitmap); 11554 } 11555 11556 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11557 { 11558 int i; 11559 11560 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11561 11562 if (vcpu->arch.guest_state_protected) 11563 return; 11564 11565 if (is_pae_paging(vcpu)) { 11566 for (i = 0 ; i < 4 ; i++) 11567 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11568 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11569 } 11570 } 11571 11572 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11573 struct kvm_sregs *sregs) 11574 { 11575 vcpu_load(vcpu); 11576 __get_sregs(vcpu, sregs); 11577 vcpu_put(vcpu); 11578 return 0; 11579 } 11580 11581 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11582 struct kvm_mp_state *mp_state) 11583 { 11584 int r; 11585 11586 vcpu_load(vcpu); 11587 if (kvm_mpx_supported()) 11588 kvm_load_guest_fpu(vcpu); 11589 11590 r = kvm_apic_accept_events(vcpu); 11591 if (r < 0) 11592 goto out; 11593 r = 0; 11594 11595 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11596 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11597 vcpu->arch.pv.pv_unhalted) 11598 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11599 else 11600 mp_state->mp_state = vcpu->arch.mp_state; 11601 11602 out: 11603 if (kvm_mpx_supported()) 11604 kvm_put_guest_fpu(vcpu); 11605 vcpu_put(vcpu); 11606 return r; 11607 } 11608 11609 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11610 struct kvm_mp_state *mp_state) 11611 { 11612 int ret = -EINVAL; 11613 11614 vcpu_load(vcpu); 11615 11616 switch (mp_state->mp_state) { 11617 case KVM_MP_STATE_UNINITIALIZED: 11618 case KVM_MP_STATE_HALTED: 11619 case KVM_MP_STATE_AP_RESET_HOLD: 11620 case KVM_MP_STATE_INIT_RECEIVED: 11621 case KVM_MP_STATE_SIPI_RECEIVED: 11622 if (!lapic_in_kernel(vcpu)) 11623 goto out; 11624 break; 11625 11626 case KVM_MP_STATE_RUNNABLE: 11627 break; 11628 11629 default: 11630 goto out; 11631 } 11632 11633 /* 11634 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11635 * forcing the guest into INIT/SIPI if those events are supposed to be 11636 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11637 * if an SMI is pending as well. 11638 */ 11639 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11640 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11641 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11642 goto out; 11643 11644 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11645 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11646 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11647 } else 11648 vcpu->arch.mp_state = mp_state->mp_state; 11649 kvm_make_request(KVM_REQ_EVENT, vcpu); 11650 11651 ret = 0; 11652 out: 11653 vcpu_put(vcpu); 11654 return ret; 11655 } 11656 11657 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11658 int reason, bool has_error_code, u32 error_code) 11659 { 11660 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11661 int ret; 11662 11663 init_emulate_ctxt(vcpu); 11664 11665 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11666 has_error_code, error_code); 11667 if (ret) { 11668 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11669 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11670 vcpu->run->internal.ndata = 0; 11671 return 0; 11672 } 11673 11674 kvm_rip_write(vcpu, ctxt->eip); 11675 kvm_set_rflags(vcpu, ctxt->eflags); 11676 return 1; 11677 } 11678 EXPORT_SYMBOL_GPL(kvm_task_switch); 11679 11680 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11681 { 11682 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11683 /* 11684 * When EFER.LME and CR0.PG are set, the processor is in 11685 * 64-bit mode (though maybe in a 32-bit code segment). 11686 * CR4.PAE and EFER.LMA must be set. 11687 */ 11688 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11689 return false; 11690 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11691 return false; 11692 } else { 11693 /* 11694 * Not in 64-bit mode: EFER.LMA is clear and the code 11695 * segment cannot be 64-bit. 11696 */ 11697 if (sregs->efer & EFER_LMA || sregs->cs.l) 11698 return false; 11699 } 11700 11701 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11702 kvm_is_valid_cr0(vcpu, sregs->cr0); 11703 } 11704 11705 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11706 int *mmu_reset_needed, bool update_pdptrs) 11707 { 11708 struct msr_data apic_base_msr; 11709 int idx; 11710 struct desc_ptr dt; 11711 11712 if (!kvm_is_valid_sregs(vcpu, sregs)) 11713 return -EINVAL; 11714 11715 apic_base_msr.data = sregs->apic_base; 11716 apic_base_msr.host_initiated = true; 11717 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11718 return -EINVAL; 11719 11720 if (vcpu->arch.guest_state_protected) 11721 return 0; 11722 11723 dt.size = sregs->idt.limit; 11724 dt.address = sregs->idt.base; 11725 static_call(kvm_x86_set_idt)(vcpu, &dt); 11726 dt.size = sregs->gdt.limit; 11727 dt.address = sregs->gdt.base; 11728 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11729 11730 vcpu->arch.cr2 = sregs->cr2; 11731 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11732 vcpu->arch.cr3 = sregs->cr3; 11733 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11734 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11735 11736 kvm_set_cr8(vcpu, sregs->cr8); 11737 11738 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11739 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11740 11741 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11742 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11743 11744 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11745 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11746 11747 if (update_pdptrs) { 11748 idx = srcu_read_lock(&vcpu->kvm->srcu); 11749 if (is_pae_paging(vcpu)) { 11750 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11751 *mmu_reset_needed = 1; 11752 } 11753 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11754 } 11755 11756 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11757 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11758 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11759 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11760 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11761 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11762 11763 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11764 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11765 11766 update_cr8_intercept(vcpu); 11767 11768 /* Older userspace won't unhalt the vcpu on reset. */ 11769 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11770 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11771 !is_protmode(vcpu)) 11772 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11773 11774 return 0; 11775 } 11776 11777 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11778 { 11779 int pending_vec, max_bits; 11780 int mmu_reset_needed = 0; 11781 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11782 11783 if (ret) 11784 return ret; 11785 11786 if (mmu_reset_needed) { 11787 kvm_mmu_reset_context(vcpu); 11788 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11789 } 11790 11791 max_bits = KVM_NR_INTERRUPTS; 11792 pending_vec = find_first_bit( 11793 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11794 11795 if (pending_vec < max_bits) { 11796 kvm_queue_interrupt(vcpu, pending_vec, false); 11797 pr_debug("Set back pending irq %d\n", pending_vec); 11798 kvm_make_request(KVM_REQ_EVENT, vcpu); 11799 } 11800 return 0; 11801 } 11802 11803 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11804 { 11805 int mmu_reset_needed = 0; 11806 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11807 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11808 !(sregs2->efer & EFER_LMA); 11809 int i, ret; 11810 11811 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11812 return -EINVAL; 11813 11814 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11815 return -EINVAL; 11816 11817 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11818 &mmu_reset_needed, !valid_pdptrs); 11819 if (ret) 11820 return ret; 11821 11822 if (valid_pdptrs) { 11823 for (i = 0; i < 4 ; i++) 11824 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11825 11826 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11827 mmu_reset_needed = 1; 11828 vcpu->arch.pdptrs_from_userspace = true; 11829 } 11830 if (mmu_reset_needed) { 11831 kvm_mmu_reset_context(vcpu); 11832 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11833 } 11834 return 0; 11835 } 11836 11837 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11838 struct kvm_sregs *sregs) 11839 { 11840 int ret; 11841 11842 vcpu_load(vcpu); 11843 ret = __set_sregs(vcpu, sregs); 11844 vcpu_put(vcpu); 11845 return ret; 11846 } 11847 11848 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11849 { 11850 bool set = false; 11851 struct kvm_vcpu *vcpu; 11852 unsigned long i; 11853 11854 if (!enable_apicv) 11855 return; 11856 11857 down_write(&kvm->arch.apicv_update_lock); 11858 11859 kvm_for_each_vcpu(i, vcpu, kvm) { 11860 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11861 set = true; 11862 break; 11863 } 11864 } 11865 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11866 up_write(&kvm->arch.apicv_update_lock); 11867 } 11868 11869 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11870 struct kvm_guest_debug *dbg) 11871 { 11872 unsigned long rflags; 11873 int i, r; 11874 11875 if (vcpu->arch.guest_state_protected) 11876 return -EINVAL; 11877 11878 vcpu_load(vcpu); 11879 11880 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11881 r = -EBUSY; 11882 if (kvm_is_exception_pending(vcpu)) 11883 goto out; 11884 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11885 kvm_queue_exception(vcpu, DB_VECTOR); 11886 else 11887 kvm_queue_exception(vcpu, BP_VECTOR); 11888 } 11889 11890 /* 11891 * Read rflags as long as potentially injected trace flags are still 11892 * filtered out. 11893 */ 11894 rflags = kvm_get_rflags(vcpu); 11895 11896 vcpu->guest_debug = dbg->control; 11897 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11898 vcpu->guest_debug = 0; 11899 11900 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11901 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11902 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11903 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11904 } else { 11905 for (i = 0; i < KVM_NR_DB_REGS; i++) 11906 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11907 } 11908 kvm_update_dr7(vcpu); 11909 11910 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11911 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11912 11913 /* 11914 * Trigger an rflags update that will inject or remove the trace 11915 * flags. 11916 */ 11917 kvm_set_rflags(vcpu, rflags); 11918 11919 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11920 11921 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11922 11923 r = 0; 11924 11925 out: 11926 vcpu_put(vcpu); 11927 return r; 11928 } 11929 11930 /* 11931 * Translate a guest virtual address to a guest physical address. 11932 */ 11933 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11934 struct kvm_translation *tr) 11935 { 11936 unsigned long vaddr = tr->linear_address; 11937 gpa_t gpa; 11938 int idx; 11939 11940 vcpu_load(vcpu); 11941 11942 idx = srcu_read_lock(&vcpu->kvm->srcu); 11943 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11944 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11945 tr->physical_address = gpa; 11946 tr->valid = gpa != INVALID_GPA; 11947 tr->writeable = 1; 11948 tr->usermode = 0; 11949 11950 vcpu_put(vcpu); 11951 return 0; 11952 } 11953 11954 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11955 { 11956 struct fxregs_state *fxsave; 11957 11958 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11959 return 0; 11960 11961 vcpu_load(vcpu); 11962 11963 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11964 memcpy(fpu->fpr, fxsave->st_space, 128); 11965 fpu->fcw = fxsave->cwd; 11966 fpu->fsw = fxsave->swd; 11967 fpu->ftwx = fxsave->twd; 11968 fpu->last_opcode = fxsave->fop; 11969 fpu->last_ip = fxsave->rip; 11970 fpu->last_dp = fxsave->rdp; 11971 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11972 11973 vcpu_put(vcpu); 11974 return 0; 11975 } 11976 11977 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11978 { 11979 struct fxregs_state *fxsave; 11980 11981 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11982 return 0; 11983 11984 vcpu_load(vcpu); 11985 11986 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11987 11988 memcpy(fxsave->st_space, fpu->fpr, 128); 11989 fxsave->cwd = fpu->fcw; 11990 fxsave->swd = fpu->fsw; 11991 fxsave->twd = fpu->ftwx; 11992 fxsave->fop = fpu->last_opcode; 11993 fxsave->rip = fpu->last_ip; 11994 fxsave->rdp = fpu->last_dp; 11995 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11996 11997 vcpu_put(vcpu); 11998 return 0; 11999 } 12000 12001 static void store_regs(struct kvm_vcpu *vcpu) 12002 { 12003 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12004 12005 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12006 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12007 12008 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12009 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12010 12011 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12012 kvm_vcpu_ioctl_x86_get_vcpu_events( 12013 vcpu, &vcpu->run->s.regs.events); 12014 } 12015 12016 static int sync_regs(struct kvm_vcpu *vcpu) 12017 { 12018 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12019 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12020 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12021 } 12022 12023 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12024 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12025 12026 if (__set_sregs(vcpu, &sregs)) 12027 return -EINVAL; 12028 12029 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12030 } 12031 12032 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12033 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12034 12035 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12036 return -EINVAL; 12037 12038 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12039 } 12040 12041 return 0; 12042 } 12043 12044 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12045 { 12046 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12047 pr_warn_once("SMP vm created on host with unstable TSC; " 12048 "guest TSC will not be reliable\n"); 12049 12050 if (!kvm->arch.max_vcpu_ids) 12051 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12052 12053 if (id >= kvm->arch.max_vcpu_ids) 12054 return -EINVAL; 12055 12056 return static_call(kvm_x86_vcpu_precreate)(kvm); 12057 } 12058 12059 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12060 { 12061 struct page *page; 12062 int r; 12063 12064 vcpu->arch.last_vmentry_cpu = -1; 12065 vcpu->arch.regs_avail = ~0; 12066 vcpu->arch.regs_dirty = ~0; 12067 12068 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 12069 12070 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12071 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12072 else 12073 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 12074 12075 r = kvm_mmu_create(vcpu); 12076 if (r < 0) 12077 return r; 12078 12079 if (irqchip_in_kernel(vcpu->kvm)) { 12080 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 12081 if (r < 0) 12082 goto fail_mmu_destroy; 12083 12084 /* 12085 * Defer evaluating inhibits until the vCPU is first run, as 12086 * this vCPU will not get notified of any changes until this 12087 * vCPU is visible to other vCPUs (marked online and added to 12088 * the set of vCPUs). Opportunistically mark APICv active as 12089 * VMX in particularly is highly unlikely to have inhibits. 12090 * Ignore the current per-VM APICv state so that vCPU creation 12091 * is guaranteed to run with a deterministic value, the request 12092 * will ensure the vCPU gets the correct state before VM-Entry. 12093 */ 12094 if (enable_apicv) { 12095 vcpu->arch.apic->apicv_active = true; 12096 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 12097 } 12098 } else 12099 static_branch_inc(&kvm_has_noapic_vcpu); 12100 12101 r = -ENOMEM; 12102 12103 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12104 if (!page) 12105 goto fail_free_lapic; 12106 vcpu->arch.pio_data = page_address(page); 12107 12108 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12109 GFP_KERNEL_ACCOUNT); 12110 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12111 GFP_KERNEL_ACCOUNT); 12112 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12113 goto fail_free_mce_banks; 12114 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12115 12116 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12117 GFP_KERNEL_ACCOUNT)) 12118 goto fail_free_mce_banks; 12119 12120 if (!alloc_emulate_ctxt(vcpu)) 12121 goto free_wbinvd_dirty_mask; 12122 12123 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12124 pr_err("failed to allocate vcpu's fpu\n"); 12125 goto free_emulate_ctxt; 12126 } 12127 12128 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12129 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12130 12131 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12132 12133 kvm_async_pf_hash_reset(vcpu); 12134 12135 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12136 kvm_pmu_init(vcpu); 12137 12138 vcpu->arch.pending_external_vector = -1; 12139 vcpu->arch.preempted_in_kernel = false; 12140 12141 #if IS_ENABLED(CONFIG_HYPERV) 12142 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12143 #endif 12144 12145 r = static_call(kvm_x86_vcpu_create)(vcpu); 12146 if (r) 12147 goto free_guest_fpu; 12148 12149 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12150 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12151 kvm_xen_init_vcpu(vcpu); 12152 kvm_vcpu_mtrr_init(vcpu); 12153 vcpu_load(vcpu); 12154 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12155 kvm_vcpu_reset(vcpu, false); 12156 kvm_init_mmu(vcpu); 12157 vcpu_put(vcpu); 12158 return 0; 12159 12160 free_guest_fpu: 12161 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12162 free_emulate_ctxt: 12163 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12164 free_wbinvd_dirty_mask: 12165 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12166 fail_free_mce_banks: 12167 kfree(vcpu->arch.mce_banks); 12168 kfree(vcpu->arch.mci_ctl2_banks); 12169 free_page((unsigned long)vcpu->arch.pio_data); 12170 fail_free_lapic: 12171 kvm_free_lapic(vcpu); 12172 fail_mmu_destroy: 12173 kvm_mmu_destroy(vcpu); 12174 return r; 12175 } 12176 12177 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12178 { 12179 struct kvm *kvm = vcpu->kvm; 12180 12181 if (mutex_lock_killable(&vcpu->mutex)) 12182 return; 12183 vcpu_load(vcpu); 12184 kvm_synchronize_tsc(vcpu, NULL); 12185 vcpu_put(vcpu); 12186 12187 /* poll control enabled by default */ 12188 vcpu->arch.msr_kvm_poll_control = 1; 12189 12190 mutex_unlock(&vcpu->mutex); 12191 12192 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12193 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12194 KVMCLOCK_SYNC_PERIOD); 12195 } 12196 12197 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12198 { 12199 int idx; 12200 12201 kvmclock_reset(vcpu); 12202 12203 static_call(kvm_x86_vcpu_free)(vcpu); 12204 12205 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12206 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12207 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12208 12209 kvm_xen_destroy_vcpu(vcpu); 12210 kvm_hv_vcpu_uninit(vcpu); 12211 kvm_pmu_destroy(vcpu); 12212 kfree(vcpu->arch.mce_banks); 12213 kfree(vcpu->arch.mci_ctl2_banks); 12214 kvm_free_lapic(vcpu); 12215 idx = srcu_read_lock(&vcpu->kvm->srcu); 12216 kvm_mmu_destroy(vcpu); 12217 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12218 free_page((unsigned long)vcpu->arch.pio_data); 12219 kvfree(vcpu->arch.cpuid_entries); 12220 if (!lapic_in_kernel(vcpu)) 12221 static_branch_dec(&kvm_has_noapic_vcpu); 12222 } 12223 12224 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12225 { 12226 struct kvm_cpuid_entry2 *cpuid_0x1; 12227 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12228 unsigned long new_cr0; 12229 12230 /* 12231 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12232 * to handle side effects. RESET emulation hits those flows and relies 12233 * on emulated/virtualized registers, including those that are loaded 12234 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12235 * to detect improper or missing initialization. 12236 */ 12237 WARN_ON_ONCE(!init_event && 12238 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12239 12240 /* 12241 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12242 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12243 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12244 * bits), i.e. virtualization is disabled. 12245 */ 12246 if (is_guest_mode(vcpu)) 12247 kvm_leave_nested(vcpu); 12248 12249 kvm_lapic_reset(vcpu, init_event); 12250 12251 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12252 vcpu->arch.hflags = 0; 12253 12254 vcpu->arch.smi_pending = 0; 12255 vcpu->arch.smi_count = 0; 12256 atomic_set(&vcpu->arch.nmi_queued, 0); 12257 vcpu->arch.nmi_pending = 0; 12258 vcpu->arch.nmi_injected = false; 12259 kvm_clear_interrupt_queue(vcpu); 12260 kvm_clear_exception_queue(vcpu); 12261 12262 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12263 kvm_update_dr0123(vcpu); 12264 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12265 vcpu->arch.dr7 = DR7_FIXED_1; 12266 kvm_update_dr7(vcpu); 12267 12268 vcpu->arch.cr2 = 0; 12269 12270 kvm_make_request(KVM_REQ_EVENT, vcpu); 12271 vcpu->arch.apf.msr_en_val = 0; 12272 vcpu->arch.apf.msr_int_val = 0; 12273 vcpu->arch.st.msr_val = 0; 12274 12275 kvmclock_reset(vcpu); 12276 12277 kvm_clear_async_pf_completion_queue(vcpu); 12278 kvm_async_pf_hash_reset(vcpu); 12279 vcpu->arch.apf.halted = false; 12280 12281 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12282 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12283 12284 /* 12285 * All paths that lead to INIT are required to load the guest's 12286 * FPU state (because most paths are buried in KVM_RUN). 12287 */ 12288 if (init_event) 12289 kvm_put_guest_fpu(vcpu); 12290 12291 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12292 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12293 12294 if (init_event) 12295 kvm_load_guest_fpu(vcpu); 12296 } 12297 12298 if (!init_event) { 12299 vcpu->arch.smbase = 0x30000; 12300 12301 vcpu->arch.msr_misc_features_enables = 0; 12302 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12303 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12304 12305 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12306 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12307 } 12308 12309 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12310 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12311 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12312 12313 /* 12314 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12315 * if no CPUID match is found. Note, it's impossible to get a match at 12316 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12317 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12318 * on RESET. But, go through the motions in case that's ever remedied. 12319 */ 12320 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12321 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12322 12323 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12324 12325 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12326 kvm_rip_write(vcpu, 0xfff0); 12327 12328 vcpu->arch.cr3 = 0; 12329 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12330 12331 /* 12332 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12333 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12334 * (or qualify) that with a footnote stating that CD/NW are preserved. 12335 */ 12336 new_cr0 = X86_CR0_ET; 12337 if (init_event) 12338 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12339 else 12340 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12341 12342 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12343 static_call(kvm_x86_set_cr4)(vcpu, 0); 12344 static_call(kvm_x86_set_efer)(vcpu, 0); 12345 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12346 12347 /* 12348 * On the standard CR0/CR4/EFER modification paths, there are several 12349 * complex conditions determining whether the MMU has to be reset and/or 12350 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12351 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12352 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12353 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12354 */ 12355 if (old_cr0 & X86_CR0_PG) { 12356 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12357 kvm_mmu_reset_context(vcpu); 12358 } 12359 12360 /* 12361 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12362 * APM states the TLBs are untouched by INIT, but it also states that 12363 * the TLBs are flushed on "External initialization of the processor." 12364 * Flush the guest TLB regardless of vendor, there is no meaningful 12365 * benefit in relying on the guest to flush the TLB immediately after 12366 * INIT. A spurious TLB flush is benign and likely negligible from a 12367 * performance perspective. 12368 */ 12369 if (init_event) 12370 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12371 } 12372 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12373 12374 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12375 { 12376 struct kvm_segment cs; 12377 12378 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12379 cs.selector = vector << 8; 12380 cs.base = vector << 12; 12381 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12382 kvm_rip_write(vcpu, 0); 12383 } 12384 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12385 12386 int kvm_arch_hardware_enable(void) 12387 { 12388 struct kvm *kvm; 12389 struct kvm_vcpu *vcpu; 12390 unsigned long i; 12391 int ret; 12392 u64 local_tsc; 12393 u64 max_tsc = 0; 12394 bool stable, backwards_tsc = false; 12395 12396 kvm_user_return_msr_cpu_online(); 12397 12398 ret = kvm_x86_check_processor_compatibility(); 12399 if (ret) 12400 return ret; 12401 12402 ret = static_call(kvm_x86_hardware_enable)(); 12403 if (ret != 0) 12404 return ret; 12405 12406 local_tsc = rdtsc(); 12407 stable = !kvm_check_tsc_unstable(); 12408 list_for_each_entry(kvm, &vm_list, vm_list) { 12409 kvm_for_each_vcpu(i, vcpu, kvm) { 12410 if (!stable && vcpu->cpu == smp_processor_id()) 12411 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12412 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12413 backwards_tsc = true; 12414 if (vcpu->arch.last_host_tsc > max_tsc) 12415 max_tsc = vcpu->arch.last_host_tsc; 12416 } 12417 } 12418 } 12419 12420 /* 12421 * Sometimes, even reliable TSCs go backwards. This happens on 12422 * platforms that reset TSC during suspend or hibernate actions, but 12423 * maintain synchronization. We must compensate. Fortunately, we can 12424 * detect that condition here, which happens early in CPU bringup, 12425 * before any KVM threads can be running. Unfortunately, we can't 12426 * bring the TSCs fully up to date with real time, as we aren't yet far 12427 * enough into CPU bringup that we know how much real time has actually 12428 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12429 * variables that haven't been updated yet. 12430 * 12431 * So we simply find the maximum observed TSC above, then record the 12432 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12433 * the adjustment will be applied. Note that we accumulate 12434 * adjustments, in case multiple suspend cycles happen before some VCPU 12435 * gets a chance to run again. In the event that no KVM threads get a 12436 * chance to run, we will miss the entire elapsed period, as we'll have 12437 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12438 * loose cycle time. This isn't too big a deal, since the loss will be 12439 * uniform across all VCPUs (not to mention the scenario is extremely 12440 * unlikely). It is possible that a second hibernate recovery happens 12441 * much faster than a first, causing the observed TSC here to be 12442 * smaller; this would require additional padding adjustment, which is 12443 * why we set last_host_tsc to the local tsc observed here. 12444 * 12445 * N.B. - this code below runs only on platforms with reliable TSC, 12446 * as that is the only way backwards_tsc is set above. Also note 12447 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12448 * have the same delta_cyc adjustment applied if backwards_tsc 12449 * is detected. Note further, this adjustment is only done once, 12450 * as we reset last_host_tsc on all VCPUs to stop this from being 12451 * called multiple times (one for each physical CPU bringup). 12452 * 12453 * Platforms with unreliable TSCs don't have to deal with this, they 12454 * will be compensated by the logic in vcpu_load, which sets the TSC to 12455 * catchup mode. This will catchup all VCPUs to real time, but cannot 12456 * guarantee that they stay in perfect synchronization. 12457 */ 12458 if (backwards_tsc) { 12459 u64 delta_cyc = max_tsc - local_tsc; 12460 list_for_each_entry(kvm, &vm_list, vm_list) { 12461 kvm->arch.backwards_tsc_observed = true; 12462 kvm_for_each_vcpu(i, vcpu, kvm) { 12463 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12464 vcpu->arch.last_host_tsc = local_tsc; 12465 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12466 } 12467 12468 /* 12469 * We have to disable TSC offset matching.. if you were 12470 * booting a VM while issuing an S4 host suspend.... 12471 * you may have some problem. Solving this issue is 12472 * left as an exercise to the reader. 12473 */ 12474 kvm->arch.last_tsc_nsec = 0; 12475 kvm->arch.last_tsc_write = 0; 12476 } 12477 12478 } 12479 return 0; 12480 } 12481 12482 void kvm_arch_hardware_disable(void) 12483 { 12484 static_call(kvm_x86_hardware_disable)(); 12485 drop_user_return_notifiers(); 12486 } 12487 12488 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12489 { 12490 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12491 } 12492 12493 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12494 { 12495 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12496 } 12497 12498 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12499 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12500 12501 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12502 { 12503 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12504 12505 vcpu->arch.l1tf_flush_l1d = true; 12506 if (pmu->version && unlikely(pmu->event_count)) { 12507 pmu->need_cleanup = true; 12508 kvm_make_request(KVM_REQ_PMU, vcpu); 12509 } 12510 static_call(kvm_x86_sched_in)(vcpu, cpu); 12511 } 12512 12513 void kvm_arch_free_vm(struct kvm *kvm) 12514 { 12515 #if IS_ENABLED(CONFIG_HYPERV) 12516 kfree(kvm->arch.hv_pa_pg); 12517 #endif 12518 __kvm_arch_free_vm(kvm); 12519 } 12520 12521 12522 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12523 { 12524 int ret; 12525 unsigned long flags; 12526 12527 if (!kvm_is_vm_type_supported(type)) 12528 return -EINVAL; 12529 12530 kvm->arch.vm_type = type; 12531 12532 ret = kvm_page_track_init(kvm); 12533 if (ret) 12534 goto out; 12535 12536 kvm_mmu_init_vm(kvm); 12537 12538 ret = static_call(kvm_x86_vm_init)(kvm); 12539 if (ret) 12540 goto out_uninit_mmu; 12541 12542 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12543 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12544 12545 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12546 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12547 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12548 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12549 &kvm->arch.irq_sources_bitmap); 12550 12551 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12552 mutex_init(&kvm->arch.apic_map_lock); 12553 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12554 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12555 12556 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12557 pvclock_update_vm_gtod_copy(kvm); 12558 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12559 12560 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12561 kvm->arch.guest_can_read_msr_platform_info = true; 12562 kvm->arch.enable_pmu = enable_pmu; 12563 12564 #if IS_ENABLED(CONFIG_HYPERV) 12565 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12566 kvm->arch.hv_root_tdp = INVALID_PAGE; 12567 #endif 12568 12569 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12570 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12571 12572 kvm_apicv_init(kvm); 12573 kvm_hv_init_vm(kvm); 12574 kvm_xen_init_vm(kvm); 12575 12576 return 0; 12577 12578 out_uninit_mmu: 12579 kvm_mmu_uninit_vm(kvm); 12580 kvm_page_track_cleanup(kvm); 12581 out: 12582 return ret; 12583 } 12584 12585 int kvm_arch_post_init_vm(struct kvm *kvm) 12586 { 12587 return kvm_mmu_post_init_vm(kvm); 12588 } 12589 12590 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12591 { 12592 vcpu_load(vcpu); 12593 kvm_mmu_unload(vcpu); 12594 vcpu_put(vcpu); 12595 } 12596 12597 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12598 { 12599 unsigned long i; 12600 struct kvm_vcpu *vcpu; 12601 12602 kvm_for_each_vcpu(i, vcpu, kvm) { 12603 kvm_clear_async_pf_completion_queue(vcpu); 12604 kvm_unload_vcpu_mmu(vcpu); 12605 } 12606 } 12607 12608 void kvm_arch_sync_events(struct kvm *kvm) 12609 { 12610 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12611 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12612 kvm_free_pit(kvm); 12613 } 12614 12615 /** 12616 * __x86_set_memory_region: Setup KVM internal memory slot 12617 * 12618 * @kvm: the kvm pointer to the VM. 12619 * @id: the slot ID to setup. 12620 * @gpa: the GPA to install the slot (unused when @size == 0). 12621 * @size: the size of the slot. Set to zero to uninstall a slot. 12622 * 12623 * This function helps to setup a KVM internal memory slot. Specify 12624 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12625 * slot. The return code can be one of the following: 12626 * 12627 * HVA: on success (uninstall will return a bogus HVA) 12628 * -errno: on error 12629 * 12630 * The caller should always use IS_ERR() to check the return value 12631 * before use. Note, the KVM internal memory slots are guaranteed to 12632 * remain valid and unchanged until the VM is destroyed, i.e., the 12633 * GPA->HVA translation will not change. However, the HVA is a user 12634 * address, i.e. its accessibility is not guaranteed, and must be 12635 * accessed via __copy_{to,from}_user(). 12636 */ 12637 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12638 u32 size) 12639 { 12640 int i, r; 12641 unsigned long hva, old_npages; 12642 struct kvm_memslots *slots = kvm_memslots(kvm); 12643 struct kvm_memory_slot *slot; 12644 12645 /* Called with kvm->slots_lock held. */ 12646 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12647 return ERR_PTR_USR(-EINVAL); 12648 12649 slot = id_to_memslot(slots, id); 12650 if (size) { 12651 if (slot && slot->npages) 12652 return ERR_PTR_USR(-EEXIST); 12653 12654 /* 12655 * MAP_SHARED to prevent internal slot pages from being moved 12656 * by fork()/COW. 12657 */ 12658 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12659 MAP_SHARED | MAP_ANONYMOUS, 0); 12660 if (IS_ERR_VALUE(hva)) 12661 return (void __user *)hva; 12662 } else { 12663 if (!slot || !slot->npages) 12664 return NULL; 12665 12666 old_npages = slot->npages; 12667 hva = slot->userspace_addr; 12668 } 12669 12670 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12671 struct kvm_userspace_memory_region2 m; 12672 12673 m.slot = id | (i << 16); 12674 m.flags = 0; 12675 m.guest_phys_addr = gpa; 12676 m.userspace_addr = hva; 12677 m.memory_size = size; 12678 r = __kvm_set_memory_region(kvm, &m); 12679 if (r < 0) 12680 return ERR_PTR_USR(r); 12681 } 12682 12683 if (!size) 12684 vm_munmap(hva, old_npages * PAGE_SIZE); 12685 12686 return (void __user *)hva; 12687 } 12688 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12689 12690 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12691 { 12692 kvm_mmu_pre_destroy_vm(kvm); 12693 } 12694 12695 void kvm_arch_destroy_vm(struct kvm *kvm) 12696 { 12697 if (current->mm == kvm->mm) { 12698 /* 12699 * Free memory regions allocated on behalf of userspace, 12700 * unless the memory map has changed due to process exit 12701 * or fd copying. 12702 */ 12703 mutex_lock(&kvm->slots_lock); 12704 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12705 0, 0); 12706 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12707 0, 0); 12708 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12709 mutex_unlock(&kvm->slots_lock); 12710 } 12711 kvm_unload_vcpu_mmus(kvm); 12712 static_call_cond(kvm_x86_vm_destroy)(kvm); 12713 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12714 kvm_pic_destroy(kvm); 12715 kvm_ioapic_destroy(kvm); 12716 kvm_destroy_vcpus(kvm); 12717 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12718 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12719 kvm_mmu_uninit_vm(kvm); 12720 kvm_page_track_cleanup(kvm); 12721 kvm_xen_destroy_vm(kvm); 12722 kvm_hv_destroy_vm(kvm); 12723 } 12724 12725 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12726 { 12727 int i; 12728 12729 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12730 kvfree(slot->arch.rmap[i]); 12731 slot->arch.rmap[i] = NULL; 12732 } 12733 } 12734 12735 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12736 { 12737 int i; 12738 12739 memslot_rmap_free(slot); 12740 12741 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12742 kvfree(slot->arch.lpage_info[i - 1]); 12743 slot->arch.lpage_info[i - 1] = NULL; 12744 } 12745 12746 kvm_page_track_free_memslot(slot); 12747 } 12748 12749 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12750 { 12751 const int sz = sizeof(*slot->arch.rmap[0]); 12752 int i; 12753 12754 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12755 int level = i + 1; 12756 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12757 12758 if (slot->arch.rmap[i]) 12759 continue; 12760 12761 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12762 if (!slot->arch.rmap[i]) { 12763 memslot_rmap_free(slot); 12764 return -ENOMEM; 12765 } 12766 } 12767 12768 return 0; 12769 } 12770 12771 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12772 struct kvm_memory_slot *slot) 12773 { 12774 unsigned long npages = slot->npages; 12775 int i, r; 12776 12777 /* 12778 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12779 * old arrays will be freed by __kvm_set_memory_region() if installing 12780 * the new memslot is successful. 12781 */ 12782 memset(&slot->arch, 0, sizeof(slot->arch)); 12783 12784 if (kvm_memslots_have_rmaps(kvm)) { 12785 r = memslot_rmap_alloc(slot, npages); 12786 if (r) 12787 return r; 12788 } 12789 12790 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12791 struct kvm_lpage_info *linfo; 12792 unsigned long ugfn; 12793 int lpages; 12794 int level = i + 1; 12795 12796 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12797 12798 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12799 if (!linfo) 12800 goto out_free; 12801 12802 slot->arch.lpage_info[i - 1] = linfo; 12803 12804 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12805 linfo[0].disallow_lpage = 1; 12806 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12807 linfo[lpages - 1].disallow_lpage = 1; 12808 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12809 /* 12810 * If the gfn and userspace address are not aligned wrt each 12811 * other, disable large page support for this slot. 12812 */ 12813 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12814 unsigned long j; 12815 12816 for (j = 0; j < lpages; ++j) 12817 linfo[j].disallow_lpage = 1; 12818 } 12819 } 12820 12821 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12822 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12823 #endif 12824 12825 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12826 goto out_free; 12827 12828 return 0; 12829 12830 out_free: 12831 memslot_rmap_free(slot); 12832 12833 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12834 kvfree(slot->arch.lpage_info[i - 1]); 12835 slot->arch.lpage_info[i - 1] = NULL; 12836 } 12837 return -ENOMEM; 12838 } 12839 12840 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12841 { 12842 struct kvm_vcpu *vcpu; 12843 unsigned long i; 12844 12845 /* 12846 * memslots->generation has been incremented. 12847 * mmio generation may have reached its maximum value. 12848 */ 12849 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12850 12851 /* Force re-initialization of steal_time cache */ 12852 kvm_for_each_vcpu(i, vcpu, kvm) 12853 kvm_vcpu_kick(vcpu); 12854 } 12855 12856 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12857 const struct kvm_memory_slot *old, 12858 struct kvm_memory_slot *new, 12859 enum kvm_mr_change change) 12860 { 12861 /* 12862 * KVM doesn't support moving memslots when there are external page 12863 * trackers attached to the VM, i.e. if KVMGT is in use. 12864 */ 12865 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12866 return -EINVAL; 12867 12868 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12869 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12870 return -EINVAL; 12871 12872 return kvm_alloc_memslot_metadata(kvm, new); 12873 } 12874 12875 if (change == KVM_MR_FLAGS_ONLY) 12876 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12877 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12878 return -EIO; 12879 12880 return 0; 12881 } 12882 12883 12884 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12885 { 12886 int nr_slots; 12887 12888 if (!kvm_x86_ops.cpu_dirty_log_size) 12889 return; 12890 12891 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12892 if ((enable && nr_slots == 1) || !nr_slots) 12893 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12894 } 12895 12896 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12897 struct kvm_memory_slot *old, 12898 const struct kvm_memory_slot *new, 12899 enum kvm_mr_change change) 12900 { 12901 u32 old_flags = old ? old->flags : 0; 12902 u32 new_flags = new ? new->flags : 0; 12903 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12904 12905 /* 12906 * Update CPU dirty logging if dirty logging is being toggled. This 12907 * applies to all operations. 12908 */ 12909 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12910 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12911 12912 /* 12913 * Nothing more to do for RO slots (which can't be dirtied and can't be 12914 * made writable) or CREATE/MOVE/DELETE of a slot. 12915 * 12916 * For a memslot with dirty logging disabled: 12917 * CREATE: No dirty mappings will already exist. 12918 * MOVE/DELETE: The old mappings will already have been cleaned up by 12919 * kvm_arch_flush_shadow_memslot() 12920 * 12921 * For a memslot with dirty logging enabled: 12922 * CREATE: No shadow pages exist, thus nothing to write-protect 12923 * and no dirty bits to clear. 12924 * MOVE/DELETE: The old mappings will already have been cleaned up by 12925 * kvm_arch_flush_shadow_memslot(). 12926 */ 12927 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12928 return; 12929 12930 /* 12931 * READONLY and non-flags changes were filtered out above, and the only 12932 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12933 * logging isn't being toggled on or off. 12934 */ 12935 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12936 return; 12937 12938 if (!log_dirty_pages) { 12939 /* 12940 * Dirty logging tracks sptes in 4k granularity, meaning that 12941 * large sptes have to be split. If live migration succeeds, 12942 * the guest in the source machine will be destroyed and large 12943 * sptes will be created in the destination. However, if the 12944 * guest continues to run in the source machine (for example if 12945 * live migration fails), small sptes will remain around and 12946 * cause bad performance. 12947 * 12948 * Scan sptes if dirty logging has been stopped, dropping those 12949 * which can be collapsed into a single large-page spte. Later 12950 * page faults will create the large-page sptes. 12951 */ 12952 kvm_mmu_zap_collapsible_sptes(kvm, new); 12953 } else { 12954 /* 12955 * Initially-all-set does not require write protecting any page, 12956 * because they're all assumed to be dirty. 12957 */ 12958 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12959 return; 12960 12961 if (READ_ONCE(eager_page_split)) 12962 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12963 12964 if (kvm_x86_ops.cpu_dirty_log_size) { 12965 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12966 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12967 } else { 12968 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12969 } 12970 12971 /* 12972 * Unconditionally flush the TLBs after enabling dirty logging. 12973 * A flush is almost always going to be necessary (see below), 12974 * and unconditionally flushing allows the helpers to omit 12975 * the subtly complex checks when removing write access. 12976 * 12977 * Do the flush outside of mmu_lock to reduce the amount of 12978 * time mmu_lock is held. Flushing after dropping mmu_lock is 12979 * safe as KVM only needs to guarantee the slot is fully 12980 * write-protected before returning to userspace, i.e. before 12981 * userspace can consume the dirty status. 12982 * 12983 * Flushing outside of mmu_lock requires KVM to be careful when 12984 * making decisions based on writable status of an SPTE, e.g. a 12985 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12986 * 12987 * Specifically, KVM also write-protects guest page tables to 12988 * monitor changes when using shadow paging, and must guarantee 12989 * no CPUs can write to those page before mmu_lock is dropped. 12990 * Because CPUs may have stale TLB entries at this point, a 12991 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12992 * 12993 * KVM also allows making SPTES writable outside of mmu_lock, 12994 * e.g. to allow dirty logging without taking mmu_lock. 12995 * 12996 * To handle these scenarios, KVM uses a separate software-only 12997 * bit (MMU-writable) to track if a SPTE is !writable due to 12998 * a guest page table being write-protected (KVM clears the 12999 * MMU-writable flag when write-protecting for shadow paging). 13000 * 13001 * The use of MMU-writable is also the primary motivation for 13002 * the unconditional flush. Because KVM must guarantee that a 13003 * CPU doesn't contain stale, writable TLB entries for a 13004 * !MMU-writable SPTE, KVM must flush if it encounters any 13005 * MMU-writable SPTE regardless of whether the actual hardware 13006 * writable bit was set. I.e. KVM is almost guaranteed to need 13007 * to flush, while unconditionally flushing allows the "remove 13008 * write access" helpers to ignore MMU-writable entirely. 13009 * 13010 * See is_writable_pte() for more details (the case involving 13011 * access-tracked SPTEs is particularly relevant). 13012 */ 13013 kvm_flush_remote_tlbs_memslot(kvm, new); 13014 } 13015 } 13016 13017 void kvm_arch_commit_memory_region(struct kvm *kvm, 13018 struct kvm_memory_slot *old, 13019 const struct kvm_memory_slot *new, 13020 enum kvm_mr_change change) 13021 { 13022 if (change == KVM_MR_DELETE) 13023 kvm_page_track_delete_slot(kvm, old); 13024 13025 if (!kvm->arch.n_requested_mmu_pages && 13026 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13027 unsigned long nr_mmu_pages; 13028 13029 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13030 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13031 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13032 } 13033 13034 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13035 13036 /* Free the arrays associated with the old memslot. */ 13037 if (change == KVM_MR_MOVE) 13038 kvm_arch_free_memslot(kvm, old); 13039 } 13040 13041 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 13042 { 13043 return (is_guest_mode(vcpu) && 13044 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 13045 } 13046 13047 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 13048 { 13049 if (!list_empty_careful(&vcpu->async_pf.done)) 13050 return true; 13051 13052 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 13053 kvm_apic_init_sipi_allowed(vcpu)) 13054 return true; 13055 13056 if (vcpu->arch.pv.pv_unhalted) 13057 return true; 13058 13059 if (kvm_is_exception_pending(vcpu)) 13060 return true; 13061 13062 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13063 (vcpu->arch.nmi_pending && 13064 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 13065 return true; 13066 13067 #ifdef CONFIG_KVM_SMM 13068 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 13069 (vcpu->arch.smi_pending && 13070 static_call(kvm_x86_smi_allowed)(vcpu, false))) 13071 return true; 13072 #endif 13073 13074 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 13075 return true; 13076 13077 if (kvm_arch_interrupt_allowed(vcpu) && 13078 (kvm_cpu_has_interrupt(vcpu) || 13079 kvm_guest_apic_has_interrupt(vcpu))) 13080 return true; 13081 13082 if (kvm_hv_has_stimer_pending(vcpu)) 13083 return true; 13084 13085 if (is_guest_mode(vcpu) && 13086 kvm_x86_ops.nested_ops->has_events && 13087 kvm_x86_ops.nested_ops->has_events(vcpu)) 13088 return true; 13089 13090 if (kvm_xen_has_pending_events(vcpu)) 13091 return true; 13092 13093 return false; 13094 } 13095 13096 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 13097 { 13098 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 13099 } 13100 13101 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 13102 { 13103 if (kvm_vcpu_apicv_active(vcpu) && 13104 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 13105 return true; 13106 13107 return false; 13108 } 13109 13110 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 13111 { 13112 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 13113 return true; 13114 13115 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13116 #ifdef CONFIG_KVM_SMM 13117 kvm_test_request(KVM_REQ_SMI, vcpu) || 13118 #endif 13119 kvm_test_request(KVM_REQ_EVENT, vcpu)) 13120 return true; 13121 13122 return kvm_arch_dy_has_pending_interrupt(vcpu); 13123 } 13124 13125 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13126 { 13127 if (vcpu->arch.guest_state_protected) 13128 return true; 13129 13130 if (vcpu != kvm_get_running_vcpu()) 13131 return vcpu->arch.preempted_in_kernel; 13132 13133 return static_call(kvm_x86_get_cpl)(vcpu) == 0; 13134 } 13135 13136 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13137 { 13138 return kvm_rip_read(vcpu); 13139 } 13140 13141 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13142 { 13143 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13144 } 13145 13146 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13147 { 13148 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 13149 } 13150 13151 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13152 { 13153 /* Can't read the RIP when guest state is protected, just return 0 */ 13154 if (vcpu->arch.guest_state_protected) 13155 return 0; 13156 13157 if (is_64_bit_mode(vcpu)) 13158 return kvm_rip_read(vcpu); 13159 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13160 kvm_rip_read(vcpu)); 13161 } 13162 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13163 13164 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13165 { 13166 return kvm_get_linear_rip(vcpu) == linear_rip; 13167 } 13168 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13169 13170 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13171 { 13172 unsigned long rflags; 13173 13174 rflags = static_call(kvm_x86_get_rflags)(vcpu); 13175 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13176 rflags &= ~X86_EFLAGS_TF; 13177 return rflags; 13178 } 13179 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13180 13181 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13182 { 13183 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13184 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13185 rflags |= X86_EFLAGS_TF; 13186 static_call(kvm_x86_set_rflags)(vcpu, rflags); 13187 } 13188 13189 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13190 { 13191 __kvm_set_rflags(vcpu, rflags); 13192 kvm_make_request(KVM_REQ_EVENT, vcpu); 13193 } 13194 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13195 13196 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13197 { 13198 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13199 13200 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13201 } 13202 13203 static inline u32 kvm_async_pf_next_probe(u32 key) 13204 { 13205 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13206 } 13207 13208 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13209 { 13210 u32 key = kvm_async_pf_hash_fn(gfn); 13211 13212 while (vcpu->arch.apf.gfns[key] != ~0) 13213 key = kvm_async_pf_next_probe(key); 13214 13215 vcpu->arch.apf.gfns[key] = gfn; 13216 } 13217 13218 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13219 { 13220 int i; 13221 u32 key = kvm_async_pf_hash_fn(gfn); 13222 13223 for (i = 0; i < ASYNC_PF_PER_VCPU && 13224 (vcpu->arch.apf.gfns[key] != gfn && 13225 vcpu->arch.apf.gfns[key] != ~0); i++) 13226 key = kvm_async_pf_next_probe(key); 13227 13228 return key; 13229 } 13230 13231 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13232 { 13233 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13234 } 13235 13236 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13237 { 13238 u32 i, j, k; 13239 13240 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13241 13242 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13243 return; 13244 13245 while (true) { 13246 vcpu->arch.apf.gfns[i] = ~0; 13247 do { 13248 j = kvm_async_pf_next_probe(j); 13249 if (vcpu->arch.apf.gfns[j] == ~0) 13250 return; 13251 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13252 /* 13253 * k lies cyclically in ]i,j] 13254 * | i.k.j | 13255 * |....j i.k.| or |.k..j i...| 13256 */ 13257 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13258 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13259 i = j; 13260 } 13261 } 13262 13263 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13264 { 13265 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13266 13267 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13268 sizeof(reason)); 13269 } 13270 13271 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13272 { 13273 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13274 13275 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13276 &token, offset, sizeof(token)); 13277 } 13278 13279 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13280 { 13281 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13282 u32 val; 13283 13284 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13285 &val, offset, sizeof(val))) 13286 return false; 13287 13288 return !val; 13289 } 13290 13291 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13292 { 13293 13294 if (!kvm_pv_async_pf_enabled(vcpu)) 13295 return false; 13296 13297 if (vcpu->arch.apf.send_user_only && 13298 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13299 return false; 13300 13301 if (is_guest_mode(vcpu)) { 13302 /* 13303 * L1 needs to opt into the special #PF vmexits that are 13304 * used to deliver async page faults. 13305 */ 13306 return vcpu->arch.apf.delivery_as_pf_vmexit; 13307 } else { 13308 /* 13309 * Play it safe in case the guest temporarily disables paging. 13310 * The real mode IDT in particular is unlikely to have a #PF 13311 * exception setup. 13312 */ 13313 return is_paging(vcpu); 13314 } 13315 } 13316 13317 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13318 { 13319 if (unlikely(!lapic_in_kernel(vcpu) || 13320 kvm_event_needs_reinjection(vcpu) || 13321 kvm_is_exception_pending(vcpu))) 13322 return false; 13323 13324 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13325 return false; 13326 13327 /* 13328 * If interrupts are off we cannot even use an artificial 13329 * halt state. 13330 */ 13331 return kvm_arch_interrupt_allowed(vcpu); 13332 } 13333 13334 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13335 struct kvm_async_pf *work) 13336 { 13337 struct x86_exception fault; 13338 13339 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13340 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13341 13342 if (kvm_can_deliver_async_pf(vcpu) && 13343 !apf_put_user_notpresent(vcpu)) { 13344 fault.vector = PF_VECTOR; 13345 fault.error_code_valid = true; 13346 fault.error_code = 0; 13347 fault.nested_page_fault = false; 13348 fault.address = work->arch.token; 13349 fault.async_page_fault = true; 13350 kvm_inject_page_fault(vcpu, &fault); 13351 return true; 13352 } else { 13353 /* 13354 * It is not possible to deliver a paravirtualized asynchronous 13355 * page fault, but putting the guest in an artificial halt state 13356 * can be beneficial nevertheless: if an interrupt arrives, we 13357 * can deliver it timely and perhaps the guest will schedule 13358 * another process. When the instruction that triggered a page 13359 * fault is retried, hopefully the page will be ready in the host. 13360 */ 13361 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13362 return false; 13363 } 13364 } 13365 13366 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13367 struct kvm_async_pf *work) 13368 { 13369 struct kvm_lapic_irq irq = { 13370 .delivery_mode = APIC_DM_FIXED, 13371 .vector = vcpu->arch.apf.vec 13372 }; 13373 13374 if (work->wakeup_all) 13375 work->arch.token = ~0; /* broadcast wakeup */ 13376 else 13377 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13378 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13379 13380 if ((work->wakeup_all || work->notpresent_injected) && 13381 kvm_pv_async_pf_enabled(vcpu) && 13382 !apf_put_user_ready(vcpu, work->arch.token)) { 13383 vcpu->arch.apf.pageready_pending = true; 13384 kvm_apic_set_irq(vcpu, &irq, NULL); 13385 } 13386 13387 vcpu->arch.apf.halted = false; 13388 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13389 } 13390 13391 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13392 { 13393 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13394 if (!vcpu->arch.apf.pageready_pending) 13395 kvm_vcpu_kick(vcpu); 13396 } 13397 13398 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13399 { 13400 if (!kvm_pv_async_pf_enabled(vcpu)) 13401 return true; 13402 else 13403 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13404 } 13405 13406 void kvm_arch_start_assignment(struct kvm *kvm) 13407 { 13408 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13409 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13410 } 13411 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13412 13413 void kvm_arch_end_assignment(struct kvm *kvm) 13414 { 13415 atomic_dec(&kvm->arch.assigned_device_count); 13416 } 13417 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13418 13419 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13420 { 13421 return raw_atomic_read(&kvm->arch.assigned_device_count); 13422 } 13423 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13424 13425 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13426 { 13427 /* 13428 * Non-coherent DMA assignment and de-assignment will affect 13429 * whether KVM honors guest MTRRs and cause changes in memtypes 13430 * in TDP. 13431 * So, pass %true unconditionally to indicate non-coherent DMA was, 13432 * or will be involved, and that zapping SPTEs might be necessary. 13433 */ 13434 if (__kvm_mmu_honors_guest_mtrrs(true)) 13435 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13436 } 13437 13438 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13439 { 13440 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13441 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13442 } 13443 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13444 13445 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13446 { 13447 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13448 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13449 } 13450 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13451 13452 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13453 { 13454 return atomic_read(&kvm->arch.noncoherent_dma_count); 13455 } 13456 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13457 13458 bool kvm_arch_has_irq_bypass(void) 13459 { 13460 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13461 } 13462 13463 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13464 struct irq_bypass_producer *prod) 13465 { 13466 struct kvm_kernel_irqfd *irqfd = 13467 container_of(cons, struct kvm_kernel_irqfd, consumer); 13468 int ret; 13469 13470 irqfd->producer = prod; 13471 kvm_arch_start_assignment(irqfd->kvm); 13472 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13473 prod->irq, irqfd->gsi, 1); 13474 13475 if (ret) 13476 kvm_arch_end_assignment(irqfd->kvm); 13477 13478 return ret; 13479 } 13480 13481 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13482 struct irq_bypass_producer *prod) 13483 { 13484 int ret; 13485 struct kvm_kernel_irqfd *irqfd = 13486 container_of(cons, struct kvm_kernel_irqfd, consumer); 13487 13488 WARN_ON(irqfd->producer != prod); 13489 irqfd->producer = NULL; 13490 13491 /* 13492 * When producer of consumer is unregistered, we change back to 13493 * remapped mode, so we can re-use the current implementation 13494 * when the irq is masked/disabled or the consumer side (KVM 13495 * int this case doesn't want to receive the interrupts. 13496 */ 13497 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13498 if (ret) 13499 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13500 " fails: %d\n", irqfd->consumer.token, ret); 13501 13502 kvm_arch_end_assignment(irqfd->kvm); 13503 } 13504 13505 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13506 uint32_t guest_irq, bool set) 13507 { 13508 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13509 } 13510 13511 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13512 struct kvm_kernel_irq_routing_entry *new) 13513 { 13514 if (new->type != KVM_IRQ_ROUTING_MSI) 13515 return true; 13516 13517 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13518 } 13519 13520 bool kvm_vector_hashing_enabled(void) 13521 { 13522 return vector_hashing; 13523 } 13524 13525 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13526 { 13527 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13528 } 13529 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13530 13531 13532 int kvm_spec_ctrl_test_value(u64 value) 13533 { 13534 /* 13535 * test that setting IA32_SPEC_CTRL to given value 13536 * is allowed by the host processor 13537 */ 13538 13539 u64 saved_value; 13540 unsigned long flags; 13541 int ret = 0; 13542 13543 local_irq_save(flags); 13544 13545 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13546 ret = 1; 13547 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13548 ret = 1; 13549 else 13550 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13551 13552 local_irq_restore(flags); 13553 13554 return ret; 13555 } 13556 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13557 13558 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13559 { 13560 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13561 struct x86_exception fault; 13562 u64 access = error_code & 13563 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13564 13565 if (!(error_code & PFERR_PRESENT_MASK) || 13566 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13567 /* 13568 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13569 * tables probably do not match the TLB. Just proceed 13570 * with the error code that the processor gave. 13571 */ 13572 fault.vector = PF_VECTOR; 13573 fault.error_code_valid = true; 13574 fault.error_code = error_code; 13575 fault.nested_page_fault = false; 13576 fault.address = gva; 13577 fault.async_page_fault = false; 13578 } 13579 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13580 } 13581 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13582 13583 /* 13584 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13585 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13586 * indicates whether exit to userspace is needed. 13587 */ 13588 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13589 struct x86_exception *e) 13590 { 13591 if (r == X86EMUL_PROPAGATE_FAULT) { 13592 if (KVM_BUG_ON(!e, vcpu->kvm)) 13593 return -EIO; 13594 13595 kvm_inject_emulated_page_fault(vcpu, e); 13596 return 1; 13597 } 13598 13599 /* 13600 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13601 * while handling a VMX instruction KVM could've handled the request 13602 * correctly by exiting to userspace and performing I/O but there 13603 * doesn't seem to be a real use-case behind such requests, just return 13604 * KVM_EXIT_INTERNAL_ERROR for now. 13605 */ 13606 kvm_prepare_emulation_failure_exit(vcpu); 13607 13608 return 0; 13609 } 13610 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13611 13612 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13613 { 13614 bool pcid_enabled; 13615 struct x86_exception e; 13616 struct { 13617 u64 pcid; 13618 u64 gla; 13619 } operand; 13620 int r; 13621 13622 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13623 if (r != X86EMUL_CONTINUE) 13624 return kvm_handle_memory_failure(vcpu, r, &e); 13625 13626 if (operand.pcid >> 12 != 0) { 13627 kvm_inject_gp(vcpu, 0); 13628 return 1; 13629 } 13630 13631 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13632 13633 switch (type) { 13634 case INVPCID_TYPE_INDIV_ADDR: 13635 /* 13636 * LAM doesn't apply to addresses that are inputs to TLB 13637 * invalidation. 13638 */ 13639 if ((!pcid_enabled && (operand.pcid != 0)) || 13640 is_noncanonical_address(operand.gla, vcpu)) { 13641 kvm_inject_gp(vcpu, 0); 13642 return 1; 13643 } 13644 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13645 return kvm_skip_emulated_instruction(vcpu); 13646 13647 case INVPCID_TYPE_SINGLE_CTXT: 13648 if (!pcid_enabled && (operand.pcid != 0)) { 13649 kvm_inject_gp(vcpu, 0); 13650 return 1; 13651 } 13652 13653 kvm_invalidate_pcid(vcpu, operand.pcid); 13654 return kvm_skip_emulated_instruction(vcpu); 13655 13656 case INVPCID_TYPE_ALL_NON_GLOBAL: 13657 /* 13658 * Currently, KVM doesn't mark global entries in the shadow 13659 * page tables, so a non-global flush just degenerates to a 13660 * global flush. If needed, we could optimize this later by 13661 * keeping track of global entries in shadow page tables. 13662 */ 13663 13664 fallthrough; 13665 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13666 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13667 return kvm_skip_emulated_instruction(vcpu); 13668 13669 default: 13670 kvm_inject_gp(vcpu, 0); 13671 return 1; 13672 } 13673 } 13674 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13675 13676 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13677 { 13678 struct kvm_run *run = vcpu->run; 13679 struct kvm_mmio_fragment *frag; 13680 unsigned int len; 13681 13682 BUG_ON(!vcpu->mmio_needed); 13683 13684 /* Complete previous fragment */ 13685 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13686 len = min(8u, frag->len); 13687 if (!vcpu->mmio_is_write) 13688 memcpy(frag->data, run->mmio.data, len); 13689 13690 if (frag->len <= 8) { 13691 /* Switch to the next fragment. */ 13692 frag++; 13693 vcpu->mmio_cur_fragment++; 13694 } else { 13695 /* Go forward to the next mmio piece. */ 13696 frag->data += len; 13697 frag->gpa += len; 13698 frag->len -= len; 13699 } 13700 13701 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13702 vcpu->mmio_needed = 0; 13703 13704 // VMG change, at this point, we're always done 13705 // RIP has already been advanced 13706 return 1; 13707 } 13708 13709 // More MMIO is needed 13710 run->mmio.phys_addr = frag->gpa; 13711 run->mmio.len = min(8u, frag->len); 13712 run->mmio.is_write = vcpu->mmio_is_write; 13713 if (run->mmio.is_write) 13714 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13715 run->exit_reason = KVM_EXIT_MMIO; 13716 13717 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13718 13719 return 0; 13720 } 13721 13722 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13723 void *data) 13724 { 13725 int handled; 13726 struct kvm_mmio_fragment *frag; 13727 13728 if (!data) 13729 return -EINVAL; 13730 13731 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13732 if (handled == bytes) 13733 return 1; 13734 13735 bytes -= handled; 13736 gpa += handled; 13737 data += handled; 13738 13739 /*TODO: Check if need to increment number of frags */ 13740 frag = vcpu->mmio_fragments; 13741 vcpu->mmio_nr_fragments = 1; 13742 frag->len = bytes; 13743 frag->gpa = gpa; 13744 frag->data = data; 13745 13746 vcpu->mmio_needed = 1; 13747 vcpu->mmio_cur_fragment = 0; 13748 13749 vcpu->run->mmio.phys_addr = gpa; 13750 vcpu->run->mmio.len = min(8u, frag->len); 13751 vcpu->run->mmio.is_write = 1; 13752 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13753 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13754 13755 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13756 13757 return 0; 13758 } 13759 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13760 13761 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13762 void *data) 13763 { 13764 int handled; 13765 struct kvm_mmio_fragment *frag; 13766 13767 if (!data) 13768 return -EINVAL; 13769 13770 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13771 if (handled == bytes) 13772 return 1; 13773 13774 bytes -= handled; 13775 gpa += handled; 13776 data += handled; 13777 13778 /*TODO: Check if need to increment number of frags */ 13779 frag = vcpu->mmio_fragments; 13780 vcpu->mmio_nr_fragments = 1; 13781 frag->len = bytes; 13782 frag->gpa = gpa; 13783 frag->data = data; 13784 13785 vcpu->mmio_needed = 1; 13786 vcpu->mmio_cur_fragment = 0; 13787 13788 vcpu->run->mmio.phys_addr = gpa; 13789 vcpu->run->mmio.len = min(8u, frag->len); 13790 vcpu->run->mmio.is_write = 0; 13791 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13792 13793 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13794 13795 return 0; 13796 } 13797 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13798 13799 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13800 { 13801 vcpu->arch.sev_pio_count -= count; 13802 vcpu->arch.sev_pio_data += count * size; 13803 } 13804 13805 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13806 unsigned int port); 13807 13808 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13809 { 13810 int size = vcpu->arch.pio.size; 13811 int port = vcpu->arch.pio.port; 13812 13813 vcpu->arch.pio.count = 0; 13814 if (vcpu->arch.sev_pio_count) 13815 return kvm_sev_es_outs(vcpu, size, port); 13816 return 1; 13817 } 13818 13819 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13820 unsigned int port) 13821 { 13822 for (;;) { 13823 unsigned int count = 13824 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13825 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13826 13827 /* memcpy done already by emulator_pio_out. */ 13828 advance_sev_es_emulated_pio(vcpu, count, size); 13829 if (!ret) 13830 break; 13831 13832 /* Emulation done by the kernel. */ 13833 if (!vcpu->arch.sev_pio_count) 13834 return 1; 13835 } 13836 13837 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13838 return 0; 13839 } 13840 13841 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13842 unsigned int port); 13843 13844 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13845 { 13846 unsigned count = vcpu->arch.pio.count; 13847 int size = vcpu->arch.pio.size; 13848 int port = vcpu->arch.pio.port; 13849 13850 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13851 advance_sev_es_emulated_pio(vcpu, count, size); 13852 if (vcpu->arch.sev_pio_count) 13853 return kvm_sev_es_ins(vcpu, size, port); 13854 return 1; 13855 } 13856 13857 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13858 unsigned int port) 13859 { 13860 for (;;) { 13861 unsigned int count = 13862 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13863 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13864 break; 13865 13866 /* Emulation done by the kernel. */ 13867 advance_sev_es_emulated_pio(vcpu, count, size); 13868 if (!vcpu->arch.sev_pio_count) 13869 return 1; 13870 } 13871 13872 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13873 return 0; 13874 } 13875 13876 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13877 unsigned int port, void *data, unsigned int count, 13878 int in) 13879 { 13880 vcpu->arch.sev_pio_data = data; 13881 vcpu->arch.sev_pio_count = count; 13882 return in ? kvm_sev_es_ins(vcpu, size, port) 13883 : kvm_sev_es_outs(vcpu, size, port); 13884 } 13885 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13886 13887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13906 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13907 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13908 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13909 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13910 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13911 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13913 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13914 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13915 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13916 13917 static int __init kvm_x86_init(void) 13918 { 13919 kvm_mmu_x86_module_init(); 13920 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13921 return 0; 13922 } 13923 module_init(kvm_x86_init); 13924 13925 static void __exit kvm_x86_exit(void) 13926 { 13927 /* 13928 * If module_init() is implemented, module_exit() must also be 13929 * implemented to allow module unload. 13930 */ 13931 } 13932 module_exit(kvm_x86_exit); 13933