xref: /linux/arch/x86/kvm/x86.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/pci.h>
48 #include <trace/events/kvm.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include "trace.h"
52 
53 #include <asm/debugreg.h>
54 #include <asm/msr.h>
55 #include <asm/desc.h>
56 #include <asm/mtrr.h>
57 #include <asm/mce.h>
58 #include <asm/i387.h>
59 #include <asm/xcr.h>
60 #include <asm/pvclock.h>
61 #include <asm/div64.h>
62 
63 #define MAX_IO_MSRS 256
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
66 
67 #define emul_to_vcpu(ctxt) \
68 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
69 
70 /* EFER defaults:
71  * - enable syscall per default because its emulated by KVM
72  * - enable LME and LMA per default on 64 bit KVM
73  */
74 #ifdef CONFIG_X86_64
75 static
76 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
77 #else
78 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
79 #endif
80 
81 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
82 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83 
84 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
85 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
86 				    struct kvm_cpuid_entry2 __user *entries);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88 
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91 
92 int ignore_msrs = 0;
93 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
94 
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32  kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99 
100 #define KVM_NR_SHARED_MSRS 16
101 
102 struct kvm_shared_msrs_global {
103 	int nr;
104 	u32 msrs[KVM_NR_SHARED_MSRS];
105 };
106 
107 struct kvm_shared_msrs {
108 	struct user_return_notifier urn;
109 	bool registered;
110 	struct kvm_shared_msr_values {
111 		u64 host;
112 		u64 curr;
113 	} values[KVM_NR_SHARED_MSRS];
114 };
115 
116 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
117 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
118 
119 struct kvm_stats_debugfs_item debugfs_entries[] = {
120 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
121 	{ "pf_guest", VCPU_STAT(pf_guest) },
122 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
123 	{ "invlpg", VCPU_STAT(invlpg) },
124 	{ "exits", VCPU_STAT(exits) },
125 	{ "io_exits", VCPU_STAT(io_exits) },
126 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
127 	{ "signal_exits", VCPU_STAT(signal_exits) },
128 	{ "irq_window", VCPU_STAT(irq_window_exits) },
129 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
130 	{ "halt_exits", VCPU_STAT(halt_exits) },
131 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
132 	{ "hypercalls", VCPU_STAT(hypercalls) },
133 	{ "request_irq", VCPU_STAT(request_irq_exits) },
134 	{ "irq_exits", VCPU_STAT(irq_exits) },
135 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
136 	{ "efer_reload", VCPU_STAT(efer_reload) },
137 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
138 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
139 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
140 	{ "irq_injections", VCPU_STAT(irq_injections) },
141 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
142 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
143 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
144 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
145 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
146 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
147 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
148 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
149 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
150 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
151 	{ "largepages", VM_STAT(lpages) },
152 	{ NULL }
153 };
154 
155 u64 __read_mostly host_xcr0;
156 
157 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
158 
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
160 {
161 	int i;
162 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163 		vcpu->arch.apf.gfns[i] = ~0;
164 }
165 
166 static void kvm_on_user_return(struct user_return_notifier *urn)
167 {
168 	unsigned slot;
169 	struct kvm_shared_msrs *locals
170 		= container_of(urn, struct kvm_shared_msrs, urn);
171 	struct kvm_shared_msr_values *values;
172 
173 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174 		values = &locals->values[slot];
175 		if (values->host != values->curr) {
176 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
177 			values->curr = values->host;
178 		}
179 	}
180 	locals->registered = false;
181 	user_return_notifier_unregister(urn);
182 }
183 
184 static void shared_msr_update(unsigned slot, u32 msr)
185 {
186 	struct kvm_shared_msrs *smsr;
187 	u64 value;
188 
189 	smsr = &__get_cpu_var(shared_msrs);
190 	/* only read, and nobody should modify it at this time,
191 	 * so don't need lock */
192 	if (slot >= shared_msrs_global.nr) {
193 		printk(KERN_ERR "kvm: invalid MSR slot!");
194 		return;
195 	}
196 	rdmsrl_safe(msr, &value);
197 	smsr->values[slot].host = value;
198 	smsr->values[slot].curr = value;
199 }
200 
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
202 {
203 	if (slot >= shared_msrs_global.nr)
204 		shared_msrs_global.nr = slot + 1;
205 	shared_msrs_global.msrs[slot] = msr;
206 	/* we need ensured the shared_msr_global have been updated */
207 	smp_wmb();
208 }
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
210 
211 static void kvm_shared_msr_cpu_online(void)
212 {
213 	unsigned i;
214 
215 	for (i = 0; i < shared_msrs_global.nr; ++i)
216 		shared_msr_update(i, shared_msrs_global.msrs[i]);
217 }
218 
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
220 {
221 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222 
223 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
224 		return;
225 	smsr->values[slot].curr = value;
226 	wrmsrl(shared_msrs_global.msrs[slot], value);
227 	if (!smsr->registered) {
228 		smsr->urn.on_user_return = kvm_on_user_return;
229 		user_return_notifier_register(&smsr->urn);
230 		smsr->registered = true;
231 	}
232 }
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
234 
235 static void drop_user_return_notifiers(void *ignore)
236 {
237 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
238 
239 	if (smsr->registered)
240 		kvm_on_user_return(&smsr->urn);
241 }
242 
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
244 {
245 	if (irqchip_in_kernel(vcpu->kvm))
246 		return vcpu->arch.apic_base;
247 	else
248 		return vcpu->arch.apic_base;
249 }
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
251 
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
253 {
254 	/* TODO: reserve bits check */
255 	if (irqchip_in_kernel(vcpu->kvm))
256 		kvm_lapic_set_base(vcpu, data);
257 	else
258 		vcpu->arch.apic_base = data;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261 
262 #define EXCPT_BENIGN		0
263 #define EXCPT_CONTRIBUTORY	1
264 #define EXCPT_PF		2
265 
266 static int exception_class(int vector)
267 {
268 	switch (vector) {
269 	case PF_VECTOR:
270 		return EXCPT_PF;
271 	case DE_VECTOR:
272 	case TS_VECTOR:
273 	case NP_VECTOR:
274 	case SS_VECTOR:
275 	case GP_VECTOR:
276 		return EXCPT_CONTRIBUTORY;
277 	default:
278 		break;
279 	}
280 	return EXCPT_BENIGN;
281 }
282 
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284 		unsigned nr, bool has_error, u32 error_code,
285 		bool reinject)
286 {
287 	u32 prev_nr;
288 	int class1, class2;
289 
290 	kvm_make_request(KVM_REQ_EVENT, vcpu);
291 
292 	if (!vcpu->arch.exception.pending) {
293 	queue:
294 		vcpu->arch.exception.pending = true;
295 		vcpu->arch.exception.has_error_code = has_error;
296 		vcpu->arch.exception.nr = nr;
297 		vcpu->arch.exception.error_code = error_code;
298 		vcpu->arch.exception.reinject = reinject;
299 		return;
300 	}
301 
302 	/* to check exception */
303 	prev_nr = vcpu->arch.exception.nr;
304 	if (prev_nr == DF_VECTOR) {
305 		/* triple fault -> shutdown */
306 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307 		return;
308 	}
309 	class1 = exception_class(prev_nr);
310 	class2 = exception_class(nr);
311 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313 		/* generate double fault per SDM Table 5-5 */
314 		vcpu->arch.exception.pending = true;
315 		vcpu->arch.exception.has_error_code = true;
316 		vcpu->arch.exception.nr = DF_VECTOR;
317 		vcpu->arch.exception.error_code = 0;
318 	} else
319 		/* replace previous exception with a new one in a hope
320 		   that instruction re-execution will regenerate lost
321 		   exception */
322 		goto queue;
323 }
324 
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327 	kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330 
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333 	kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336 
337 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
338 {
339 	if (err)
340 		kvm_inject_gp(vcpu, 0);
341 	else
342 		kvm_x86_ops->skip_emulated_instruction(vcpu);
343 }
344 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
345 
346 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
347 {
348 	++vcpu->stat.pf_guest;
349 	vcpu->arch.cr2 = fault->address;
350 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
351 }
352 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
353 
354 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
355 {
356 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
357 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
358 	else
359 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360 }
361 
362 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
363 {
364 	atomic_inc(&vcpu->arch.nmi_queued);
365 	kvm_make_request(KVM_REQ_NMI, vcpu);
366 }
367 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
368 
369 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
372 }
373 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
374 
375 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
376 {
377 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
378 }
379 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380 
381 /*
382  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
383  * a #GP and return false.
384  */
385 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
386 {
387 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
388 		return true;
389 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
390 	return false;
391 }
392 EXPORT_SYMBOL_GPL(kvm_require_cpl);
393 
394 /*
395  * This function will be used to read from the physical memory of the currently
396  * running guest. The difference to kvm_read_guest_page is that this function
397  * can read from guest physical or from the guest's guest physical memory.
398  */
399 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
400 			    gfn_t ngfn, void *data, int offset, int len,
401 			    u32 access)
402 {
403 	gfn_t real_gfn;
404 	gpa_t ngpa;
405 
406 	ngpa     = gfn_to_gpa(ngfn);
407 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
408 	if (real_gfn == UNMAPPED_GVA)
409 		return -EFAULT;
410 
411 	real_gfn = gpa_to_gfn(real_gfn);
412 
413 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
414 }
415 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
416 
417 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
418 			       void *data, int offset, int len, u32 access)
419 {
420 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
421 				       data, offset, len, access);
422 }
423 
424 /*
425  * Load the pae pdptrs.  Return true is they are all valid.
426  */
427 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
428 {
429 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
430 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
431 	int i;
432 	int ret;
433 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
434 
435 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
436 				      offset * sizeof(u64), sizeof(pdpte),
437 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
438 	if (ret < 0) {
439 		ret = 0;
440 		goto out;
441 	}
442 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
443 		if (is_present_gpte(pdpte[i]) &&
444 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
445 			ret = 0;
446 			goto out;
447 		}
448 	}
449 	ret = 1;
450 
451 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
452 	__set_bit(VCPU_EXREG_PDPTR,
453 		  (unsigned long *)&vcpu->arch.regs_avail);
454 	__set_bit(VCPU_EXREG_PDPTR,
455 		  (unsigned long *)&vcpu->arch.regs_dirty);
456 out:
457 
458 	return ret;
459 }
460 EXPORT_SYMBOL_GPL(load_pdptrs);
461 
462 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
463 {
464 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
465 	bool changed = true;
466 	int offset;
467 	gfn_t gfn;
468 	int r;
469 
470 	if (is_long_mode(vcpu) || !is_pae(vcpu))
471 		return false;
472 
473 	if (!test_bit(VCPU_EXREG_PDPTR,
474 		      (unsigned long *)&vcpu->arch.regs_avail))
475 		return true;
476 
477 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
478 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
479 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
480 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
481 	if (r < 0)
482 		goto out;
483 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
484 out:
485 
486 	return changed;
487 }
488 
489 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
490 {
491 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
492 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
493 				    X86_CR0_CD | X86_CR0_NW;
494 
495 	cr0 |= X86_CR0_ET;
496 
497 #ifdef CONFIG_X86_64
498 	if (cr0 & 0xffffffff00000000UL)
499 		return 1;
500 #endif
501 
502 	cr0 &= ~CR0_RESERVED_BITS;
503 
504 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
505 		return 1;
506 
507 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
508 		return 1;
509 
510 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
511 #ifdef CONFIG_X86_64
512 		if ((vcpu->arch.efer & EFER_LME)) {
513 			int cs_db, cs_l;
514 
515 			if (!is_pae(vcpu))
516 				return 1;
517 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
518 			if (cs_l)
519 				return 1;
520 		} else
521 #endif
522 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
523 						 kvm_read_cr3(vcpu)))
524 			return 1;
525 	}
526 
527 	kvm_x86_ops->set_cr0(vcpu, cr0);
528 
529 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
530 		kvm_clear_async_pf_completion_queue(vcpu);
531 		kvm_async_pf_hash_reset(vcpu);
532 	}
533 
534 	if ((cr0 ^ old_cr0) & update_bits)
535 		kvm_mmu_reset_context(vcpu);
536 	return 0;
537 }
538 EXPORT_SYMBOL_GPL(kvm_set_cr0);
539 
540 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
541 {
542 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
543 }
544 EXPORT_SYMBOL_GPL(kvm_lmsw);
545 
546 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
547 {
548 	u64 xcr0;
549 
550 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
551 	if (index != XCR_XFEATURE_ENABLED_MASK)
552 		return 1;
553 	xcr0 = xcr;
554 	if (kvm_x86_ops->get_cpl(vcpu) != 0)
555 		return 1;
556 	if (!(xcr0 & XSTATE_FP))
557 		return 1;
558 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
559 		return 1;
560 	if (xcr0 & ~host_xcr0)
561 		return 1;
562 	vcpu->arch.xcr0 = xcr0;
563 	vcpu->guest_xcr0_loaded = 0;
564 	return 0;
565 }
566 
567 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
568 {
569 	if (__kvm_set_xcr(vcpu, index, xcr)) {
570 		kvm_inject_gp(vcpu, 0);
571 		return 1;
572 	}
573 	return 0;
574 }
575 EXPORT_SYMBOL_GPL(kvm_set_xcr);
576 
577 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
578 {
579 	struct kvm_cpuid_entry2 *best;
580 
581 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
582 	return best && (best->ecx & bit(X86_FEATURE_XSAVE));
583 }
584 
585 static bool guest_cpuid_has_smep(struct kvm_vcpu *vcpu)
586 {
587 	struct kvm_cpuid_entry2 *best;
588 
589 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
590 	return best && (best->ebx & bit(X86_FEATURE_SMEP));
591 }
592 
593 static bool guest_cpuid_has_fsgsbase(struct kvm_vcpu *vcpu)
594 {
595 	struct kvm_cpuid_entry2 *best;
596 
597 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
598 	return best && (best->ebx & bit(X86_FEATURE_FSGSBASE));
599 }
600 
601 static void update_cpuid(struct kvm_vcpu *vcpu)
602 {
603 	struct kvm_cpuid_entry2 *best;
604 	struct kvm_lapic *apic = vcpu->arch.apic;
605 	u32 timer_mode_mask;
606 
607 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
608 	if (!best)
609 		return;
610 
611 	/* Update OSXSAVE bit */
612 	if (cpu_has_xsave && best->function == 0x1) {
613 		best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
614 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
615 			best->ecx |= bit(X86_FEATURE_OSXSAVE);
616 	}
617 
618 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
619 		best->function == 0x1) {
620 		best->ecx |= bit(X86_FEATURE_TSC_DEADLINE_TIMER);
621 		timer_mode_mask = 3 << 17;
622 	} else
623 		timer_mode_mask = 1 << 17;
624 
625 	if (apic)
626 		apic->lapic_timer.timer_mode_mask = timer_mode_mask;
627 }
628 
629 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
630 {
631 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
632 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
633 				   X86_CR4_PAE | X86_CR4_SMEP;
634 	if (cr4 & CR4_RESERVED_BITS)
635 		return 1;
636 
637 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
638 		return 1;
639 
640 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
641 		return 1;
642 
643 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
644 		return 1;
645 
646 	if (is_long_mode(vcpu)) {
647 		if (!(cr4 & X86_CR4_PAE))
648 			return 1;
649 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
650 		   && ((cr4 ^ old_cr4) & pdptr_bits)
651 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
652 				   kvm_read_cr3(vcpu)))
653 		return 1;
654 
655 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
656 		return 1;
657 
658 	if ((cr4 ^ old_cr4) & pdptr_bits)
659 		kvm_mmu_reset_context(vcpu);
660 
661 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
662 		update_cpuid(vcpu);
663 
664 	return 0;
665 }
666 EXPORT_SYMBOL_GPL(kvm_set_cr4);
667 
668 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
669 {
670 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
671 		kvm_mmu_sync_roots(vcpu);
672 		kvm_mmu_flush_tlb(vcpu);
673 		return 0;
674 	}
675 
676 	if (is_long_mode(vcpu)) {
677 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
678 			return 1;
679 	} else {
680 		if (is_pae(vcpu)) {
681 			if (cr3 & CR3_PAE_RESERVED_BITS)
682 				return 1;
683 			if (is_paging(vcpu) &&
684 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
685 				return 1;
686 		}
687 		/*
688 		 * We don't check reserved bits in nonpae mode, because
689 		 * this isn't enforced, and VMware depends on this.
690 		 */
691 	}
692 
693 	/*
694 	 * Does the new cr3 value map to physical memory? (Note, we
695 	 * catch an invalid cr3 even in real-mode, because it would
696 	 * cause trouble later on when we turn on paging anyway.)
697 	 *
698 	 * A real CPU would silently accept an invalid cr3 and would
699 	 * attempt to use it - with largely undefined (and often hard
700 	 * to debug) behavior on the guest side.
701 	 */
702 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
703 		return 1;
704 	vcpu->arch.cr3 = cr3;
705 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
706 	vcpu->arch.mmu.new_cr3(vcpu);
707 	return 0;
708 }
709 EXPORT_SYMBOL_GPL(kvm_set_cr3);
710 
711 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
712 {
713 	if (cr8 & CR8_RESERVED_BITS)
714 		return 1;
715 	if (irqchip_in_kernel(vcpu->kvm))
716 		kvm_lapic_set_tpr(vcpu, cr8);
717 	else
718 		vcpu->arch.cr8 = cr8;
719 	return 0;
720 }
721 EXPORT_SYMBOL_GPL(kvm_set_cr8);
722 
723 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
724 {
725 	if (irqchip_in_kernel(vcpu->kvm))
726 		return kvm_lapic_get_cr8(vcpu);
727 	else
728 		return vcpu->arch.cr8;
729 }
730 EXPORT_SYMBOL_GPL(kvm_get_cr8);
731 
732 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
733 {
734 	switch (dr) {
735 	case 0 ... 3:
736 		vcpu->arch.db[dr] = val;
737 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
738 			vcpu->arch.eff_db[dr] = val;
739 		break;
740 	case 4:
741 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
742 			return 1; /* #UD */
743 		/* fall through */
744 	case 6:
745 		if (val & 0xffffffff00000000ULL)
746 			return -1; /* #GP */
747 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
748 		break;
749 	case 5:
750 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
751 			return 1; /* #UD */
752 		/* fall through */
753 	default: /* 7 */
754 		if (val & 0xffffffff00000000ULL)
755 			return -1; /* #GP */
756 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
757 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
758 			kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
759 			vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
760 		}
761 		break;
762 	}
763 
764 	return 0;
765 }
766 
767 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
768 {
769 	int res;
770 
771 	res = __kvm_set_dr(vcpu, dr, val);
772 	if (res > 0)
773 		kvm_queue_exception(vcpu, UD_VECTOR);
774 	else if (res < 0)
775 		kvm_inject_gp(vcpu, 0);
776 
777 	return res;
778 }
779 EXPORT_SYMBOL_GPL(kvm_set_dr);
780 
781 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
782 {
783 	switch (dr) {
784 	case 0 ... 3:
785 		*val = vcpu->arch.db[dr];
786 		break;
787 	case 4:
788 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
789 			return 1;
790 		/* fall through */
791 	case 6:
792 		*val = vcpu->arch.dr6;
793 		break;
794 	case 5:
795 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
796 			return 1;
797 		/* fall through */
798 	default: /* 7 */
799 		*val = vcpu->arch.dr7;
800 		break;
801 	}
802 
803 	return 0;
804 }
805 
806 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
807 {
808 	if (_kvm_get_dr(vcpu, dr, val)) {
809 		kvm_queue_exception(vcpu, UD_VECTOR);
810 		return 1;
811 	}
812 	return 0;
813 }
814 EXPORT_SYMBOL_GPL(kvm_get_dr);
815 
816 /*
817  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
818  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
819  *
820  * This list is modified at module load time to reflect the
821  * capabilities of the host cpu. This capabilities test skips MSRs that are
822  * kvm-specific. Those are put in the beginning of the list.
823  */
824 
825 #define KVM_SAVE_MSRS_BEGIN	9
826 static u32 msrs_to_save[] = {
827 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
828 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
829 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
830 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
831 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
832 	MSR_STAR,
833 #ifdef CONFIG_X86_64
834 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
835 #endif
836 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
837 };
838 
839 static unsigned num_msrs_to_save;
840 
841 static u32 emulated_msrs[] = {
842 	MSR_IA32_TSCDEADLINE,
843 	MSR_IA32_MISC_ENABLE,
844 	MSR_IA32_MCG_STATUS,
845 	MSR_IA32_MCG_CTL,
846 };
847 
848 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
849 {
850 	u64 old_efer = vcpu->arch.efer;
851 
852 	if (efer & efer_reserved_bits)
853 		return 1;
854 
855 	if (is_paging(vcpu)
856 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
857 		return 1;
858 
859 	if (efer & EFER_FFXSR) {
860 		struct kvm_cpuid_entry2 *feat;
861 
862 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
863 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
864 			return 1;
865 	}
866 
867 	if (efer & EFER_SVME) {
868 		struct kvm_cpuid_entry2 *feat;
869 
870 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
871 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
872 			return 1;
873 	}
874 
875 	efer &= ~EFER_LMA;
876 	efer |= vcpu->arch.efer & EFER_LMA;
877 
878 	kvm_x86_ops->set_efer(vcpu, efer);
879 
880 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
881 
882 	/* Update reserved bits */
883 	if ((efer ^ old_efer) & EFER_NX)
884 		kvm_mmu_reset_context(vcpu);
885 
886 	return 0;
887 }
888 
889 void kvm_enable_efer_bits(u64 mask)
890 {
891        efer_reserved_bits &= ~mask;
892 }
893 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
894 
895 
896 /*
897  * Writes msr value into into the appropriate "register".
898  * Returns 0 on success, non-0 otherwise.
899  * Assumes vcpu_load() was already called.
900  */
901 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
902 {
903 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
904 }
905 
906 /*
907  * Adapt set_msr() to msr_io()'s calling convention
908  */
909 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
910 {
911 	return kvm_set_msr(vcpu, index, *data);
912 }
913 
914 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
915 {
916 	int version;
917 	int r;
918 	struct pvclock_wall_clock wc;
919 	struct timespec boot;
920 
921 	if (!wall_clock)
922 		return;
923 
924 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
925 	if (r)
926 		return;
927 
928 	if (version & 1)
929 		++version;  /* first time write, random junk */
930 
931 	++version;
932 
933 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
934 
935 	/*
936 	 * The guest calculates current wall clock time by adding
937 	 * system time (updated by kvm_guest_time_update below) to the
938 	 * wall clock specified here.  guest system time equals host
939 	 * system time for us, thus we must fill in host boot time here.
940 	 */
941 	getboottime(&boot);
942 
943 	wc.sec = boot.tv_sec;
944 	wc.nsec = boot.tv_nsec;
945 	wc.version = version;
946 
947 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
948 
949 	version++;
950 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
951 }
952 
953 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
954 {
955 	uint32_t quotient, remainder;
956 
957 	/* Don't try to replace with do_div(), this one calculates
958 	 * "(dividend << 32) / divisor" */
959 	__asm__ ( "divl %4"
960 		  : "=a" (quotient), "=d" (remainder)
961 		  : "0" (0), "1" (dividend), "r" (divisor) );
962 	return quotient;
963 }
964 
965 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
966 			       s8 *pshift, u32 *pmultiplier)
967 {
968 	uint64_t scaled64;
969 	int32_t  shift = 0;
970 	uint64_t tps64;
971 	uint32_t tps32;
972 
973 	tps64 = base_khz * 1000LL;
974 	scaled64 = scaled_khz * 1000LL;
975 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
976 		tps64 >>= 1;
977 		shift--;
978 	}
979 
980 	tps32 = (uint32_t)tps64;
981 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
982 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
983 			scaled64 >>= 1;
984 		else
985 			tps32 <<= 1;
986 		shift++;
987 	}
988 
989 	*pshift = shift;
990 	*pmultiplier = div_frac(scaled64, tps32);
991 
992 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
993 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
994 }
995 
996 static inline u64 get_kernel_ns(void)
997 {
998 	struct timespec ts;
999 
1000 	WARN_ON(preemptible());
1001 	ktime_get_ts(&ts);
1002 	monotonic_to_bootbased(&ts);
1003 	return timespec_to_ns(&ts);
1004 }
1005 
1006 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1007 unsigned long max_tsc_khz;
1008 
1009 static inline int kvm_tsc_changes_freq(void)
1010 {
1011 	int cpu = get_cpu();
1012 	int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1013 		  cpufreq_quick_get(cpu) != 0;
1014 	put_cpu();
1015 	return ret;
1016 }
1017 
1018 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
1019 {
1020 	if (vcpu->arch.virtual_tsc_khz)
1021 		return vcpu->arch.virtual_tsc_khz;
1022 	else
1023 		return __this_cpu_read(cpu_tsc_khz);
1024 }
1025 
1026 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1027 {
1028 	u64 ret;
1029 
1030 	WARN_ON(preemptible());
1031 	if (kvm_tsc_changes_freq())
1032 		printk_once(KERN_WARNING
1033 		 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
1034 	ret = nsec * vcpu_tsc_khz(vcpu);
1035 	do_div(ret, USEC_PER_SEC);
1036 	return ret;
1037 }
1038 
1039 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1040 {
1041 	/* Compute a scale to convert nanoseconds in TSC cycles */
1042 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1043 			   &vcpu->arch.tsc_catchup_shift,
1044 			   &vcpu->arch.tsc_catchup_mult);
1045 }
1046 
1047 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1048 {
1049 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1050 				      vcpu->arch.tsc_catchup_mult,
1051 				      vcpu->arch.tsc_catchup_shift);
1052 	tsc += vcpu->arch.last_tsc_write;
1053 	return tsc;
1054 }
1055 
1056 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1057 {
1058 	struct kvm *kvm = vcpu->kvm;
1059 	u64 offset, ns, elapsed;
1060 	unsigned long flags;
1061 	s64 sdiff;
1062 
1063 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1064 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1065 	ns = get_kernel_ns();
1066 	elapsed = ns - kvm->arch.last_tsc_nsec;
1067 	sdiff = data - kvm->arch.last_tsc_write;
1068 	if (sdiff < 0)
1069 		sdiff = -sdiff;
1070 
1071 	/*
1072 	 * Special case: close write to TSC within 5 seconds of
1073 	 * another CPU is interpreted as an attempt to synchronize
1074 	 * The 5 seconds is to accommodate host load / swapping as
1075 	 * well as any reset of TSC during the boot process.
1076 	 *
1077 	 * In that case, for a reliable TSC, we can match TSC offsets,
1078 	 * or make a best guest using elapsed value.
1079 	 */
1080 	if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1081 	    elapsed < 5ULL * NSEC_PER_SEC) {
1082 		if (!check_tsc_unstable()) {
1083 			offset = kvm->arch.last_tsc_offset;
1084 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1085 		} else {
1086 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1087 			offset += delta;
1088 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1089 		}
1090 		ns = kvm->arch.last_tsc_nsec;
1091 	}
1092 	kvm->arch.last_tsc_nsec = ns;
1093 	kvm->arch.last_tsc_write = data;
1094 	kvm->arch.last_tsc_offset = offset;
1095 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1096 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1097 
1098 	/* Reset of TSC must disable overshoot protection below */
1099 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1100 	vcpu->arch.last_tsc_write = data;
1101 	vcpu->arch.last_tsc_nsec = ns;
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1104 
1105 static int kvm_guest_time_update(struct kvm_vcpu *v)
1106 {
1107 	unsigned long flags;
1108 	struct kvm_vcpu_arch *vcpu = &v->arch;
1109 	void *shared_kaddr;
1110 	unsigned long this_tsc_khz;
1111 	s64 kernel_ns, max_kernel_ns;
1112 	u64 tsc_timestamp;
1113 
1114 	/* Keep irq disabled to prevent changes to the clock */
1115 	local_irq_save(flags);
1116 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1117 	kernel_ns = get_kernel_ns();
1118 	this_tsc_khz = vcpu_tsc_khz(v);
1119 	if (unlikely(this_tsc_khz == 0)) {
1120 		local_irq_restore(flags);
1121 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1122 		return 1;
1123 	}
1124 
1125 	/*
1126 	 * We may have to catch up the TSC to match elapsed wall clock
1127 	 * time for two reasons, even if kvmclock is used.
1128 	 *   1) CPU could have been running below the maximum TSC rate
1129 	 *   2) Broken TSC compensation resets the base at each VCPU
1130 	 *      entry to avoid unknown leaps of TSC even when running
1131 	 *      again on the same CPU.  This may cause apparent elapsed
1132 	 *      time to disappear, and the guest to stand still or run
1133 	 *	very slowly.
1134 	 */
1135 	if (vcpu->tsc_catchup) {
1136 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1137 		if (tsc > tsc_timestamp) {
1138 			kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1139 			tsc_timestamp = tsc;
1140 		}
1141 	}
1142 
1143 	local_irq_restore(flags);
1144 
1145 	if (!vcpu->time_page)
1146 		return 0;
1147 
1148 	/*
1149 	 * Time as measured by the TSC may go backwards when resetting the base
1150 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1151 	 * higher than the resolution of the other clock scales.  Thus, many
1152 	 * possible measurments of the TSC correspond to one measurement of any
1153 	 * other clock, and so a spread of values is possible.  This is not a
1154 	 * problem for the computation of the nanosecond clock; with TSC rates
1155 	 * around 1GHZ, there can only be a few cycles which correspond to one
1156 	 * nanosecond value, and any path through this code will inevitably
1157 	 * take longer than that.  However, with the kernel_ns value itself,
1158 	 * the precision may be much lower, down to HZ granularity.  If the
1159 	 * first sampling of TSC against kernel_ns ends in the low part of the
1160 	 * range, and the second in the high end of the range, we can get:
1161 	 *
1162 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1163 	 *
1164 	 * As the sampling errors potentially range in the thousands of cycles,
1165 	 * it is possible such a time value has already been observed by the
1166 	 * guest.  To protect against this, we must compute the system time as
1167 	 * observed by the guest and ensure the new system time is greater.
1168 	 */
1169 	max_kernel_ns = 0;
1170 	if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1171 		max_kernel_ns = vcpu->last_guest_tsc -
1172 				vcpu->hv_clock.tsc_timestamp;
1173 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1174 				    vcpu->hv_clock.tsc_to_system_mul,
1175 				    vcpu->hv_clock.tsc_shift);
1176 		max_kernel_ns += vcpu->last_kernel_ns;
1177 	}
1178 
1179 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1180 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1181 				   &vcpu->hv_clock.tsc_shift,
1182 				   &vcpu->hv_clock.tsc_to_system_mul);
1183 		vcpu->hw_tsc_khz = this_tsc_khz;
1184 	}
1185 
1186 	if (max_kernel_ns > kernel_ns)
1187 		kernel_ns = max_kernel_ns;
1188 
1189 	/* With all the info we got, fill in the values */
1190 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1191 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1192 	vcpu->last_kernel_ns = kernel_ns;
1193 	vcpu->last_guest_tsc = tsc_timestamp;
1194 	vcpu->hv_clock.flags = 0;
1195 
1196 	/*
1197 	 * The interface expects us to write an even number signaling that the
1198 	 * update is finished. Since the guest won't see the intermediate
1199 	 * state, we just increase by 2 at the end.
1200 	 */
1201 	vcpu->hv_clock.version += 2;
1202 
1203 	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1204 
1205 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1206 	       sizeof(vcpu->hv_clock));
1207 
1208 	kunmap_atomic(shared_kaddr, KM_USER0);
1209 
1210 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1211 	return 0;
1212 }
1213 
1214 static bool msr_mtrr_valid(unsigned msr)
1215 {
1216 	switch (msr) {
1217 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1218 	case MSR_MTRRfix64K_00000:
1219 	case MSR_MTRRfix16K_80000:
1220 	case MSR_MTRRfix16K_A0000:
1221 	case MSR_MTRRfix4K_C0000:
1222 	case MSR_MTRRfix4K_C8000:
1223 	case MSR_MTRRfix4K_D0000:
1224 	case MSR_MTRRfix4K_D8000:
1225 	case MSR_MTRRfix4K_E0000:
1226 	case MSR_MTRRfix4K_E8000:
1227 	case MSR_MTRRfix4K_F0000:
1228 	case MSR_MTRRfix4K_F8000:
1229 	case MSR_MTRRdefType:
1230 	case MSR_IA32_CR_PAT:
1231 		return true;
1232 	case 0x2f8:
1233 		return true;
1234 	}
1235 	return false;
1236 }
1237 
1238 static bool valid_pat_type(unsigned t)
1239 {
1240 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1241 }
1242 
1243 static bool valid_mtrr_type(unsigned t)
1244 {
1245 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1246 }
1247 
1248 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1249 {
1250 	int i;
1251 
1252 	if (!msr_mtrr_valid(msr))
1253 		return false;
1254 
1255 	if (msr == MSR_IA32_CR_PAT) {
1256 		for (i = 0; i < 8; i++)
1257 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1258 				return false;
1259 		return true;
1260 	} else if (msr == MSR_MTRRdefType) {
1261 		if (data & ~0xcff)
1262 			return false;
1263 		return valid_mtrr_type(data & 0xff);
1264 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1265 		for (i = 0; i < 8 ; i++)
1266 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1267 				return false;
1268 		return true;
1269 	}
1270 
1271 	/* variable MTRRs */
1272 	return valid_mtrr_type(data & 0xff);
1273 }
1274 
1275 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1276 {
1277 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1278 
1279 	if (!mtrr_valid(vcpu, msr, data))
1280 		return 1;
1281 
1282 	if (msr == MSR_MTRRdefType) {
1283 		vcpu->arch.mtrr_state.def_type = data;
1284 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1285 	} else if (msr == MSR_MTRRfix64K_00000)
1286 		p[0] = data;
1287 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1288 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1289 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1290 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1291 	else if (msr == MSR_IA32_CR_PAT)
1292 		vcpu->arch.pat = data;
1293 	else {	/* Variable MTRRs */
1294 		int idx, is_mtrr_mask;
1295 		u64 *pt;
1296 
1297 		idx = (msr - 0x200) / 2;
1298 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1299 		if (!is_mtrr_mask)
1300 			pt =
1301 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1302 		else
1303 			pt =
1304 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1305 		*pt = data;
1306 	}
1307 
1308 	kvm_mmu_reset_context(vcpu);
1309 	return 0;
1310 }
1311 
1312 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1313 {
1314 	u64 mcg_cap = vcpu->arch.mcg_cap;
1315 	unsigned bank_num = mcg_cap & 0xff;
1316 
1317 	switch (msr) {
1318 	case MSR_IA32_MCG_STATUS:
1319 		vcpu->arch.mcg_status = data;
1320 		break;
1321 	case MSR_IA32_MCG_CTL:
1322 		if (!(mcg_cap & MCG_CTL_P))
1323 			return 1;
1324 		if (data != 0 && data != ~(u64)0)
1325 			return -1;
1326 		vcpu->arch.mcg_ctl = data;
1327 		break;
1328 	default:
1329 		if (msr >= MSR_IA32_MC0_CTL &&
1330 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1331 			u32 offset = msr - MSR_IA32_MC0_CTL;
1332 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1333 			 * some Linux kernels though clear bit 10 in bank 4 to
1334 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1335 			 * this to avoid an uncatched #GP in the guest
1336 			 */
1337 			if ((offset & 0x3) == 0 &&
1338 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1339 				return -1;
1340 			vcpu->arch.mce_banks[offset] = data;
1341 			break;
1342 		}
1343 		return 1;
1344 	}
1345 	return 0;
1346 }
1347 
1348 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1349 {
1350 	struct kvm *kvm = vcpu->kvm;
1351 	int lm = is_long_mode(vcpu);
1352 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1353 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1354 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1355 		: kvm->arch.xen_hvm_config.blob_size_32;
1356 	u32 page_num = data & ~PAGE_MASK;
1357 	u64 page_addr = data & PAGE_MASK;
1358 	u8 *page;
1359 	int r;
1360 
1361 	r = -E2BIG;
1362 	if (page_num >= blob_size)
1363 		goto out;
1364 	r = -ENOMEM;
1365 	page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1366 	if (!page)
1367 		goto out;
1368 	r = -EFAULT;
1369 	if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1370 		goto out_free;
1371 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1372 		goto out_free;
1373 	r = 0;
1374 out_free:
1375 	kfree(page);
1376 out:
1377 	return r;
1378 }
1379 
1380 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1381 {
1382 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1383 }
1384 
1385 static bool kvm_hv_msr_partition_wide(u32 msr)
1386 {
1387 	bool r = false;
1388 	switch (msr) {
1389 	case HV_X64_MSR_GUEST_OS_ID:
1390 	case HV_X64_MSR_HYPERCALL:
1391 		r = true;
1392 		break;
1393 	}
1394 
1395 	return r;
1396 }
1397 
1398 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1399 {
1400 	struct kvm *kvm = vcpu->kvm;
1401 
1402 	switch (msr) {
1403 	case HV_X64_MSR_GUEST_OS_ID:
1404 		kvm->arch.hv_guest_os_id = data;
1405 		/* setting guest os id to zero disables hypercall page */
1406 		if (!kvm->arch.hv_guest_os_id)
1407 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1408 		break;
1409 	case HV_X64_MSR_HYPERCALL: {
1410 		u64 gfn;
1411 		unsigned long addr;
1412 		u8 instructions[4];
1413 
1414 		/* if guest os id is not set hypercall should remain disabled */
1415 		if (!kvm->arch.hv_guest_os_id)
1416 			break;
1417 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1418 			kvm->arch.hv_hypercall = data;
1419 			break;
1420 		}
1421 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1422 		addr = gfn_to_hva(kvm, gfn);
1423 		if (kvm_is_error_hva(addr))
1424 			return 1;
1425 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1426 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1427 		if (__copy_to_user((void __user *)addr, instructions, 4))
1428 			return 1;
1429 		kvm->arch.hv_hypercall = data;
1430 		break;
1431 	}
1432 	default:
1433 		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1434 			  "data 0x%llx\n", msr, data);
1435 		return 1;
1436 	}
1437 	return 0;
1438 }
1439 
1440 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1441 {
1442 	switch (msr) {
1443 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1444 		unsigned long addr;
1445 
1446 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1447 			vcpu->arch.hv_vapic = data;
1448 			break;
1449 		}
1450 		addr = gfn_to_hva(vcpu->kvm, data >>
1451 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1452 		if (kvm_is_error_hva(addr))
1453 			return 1;
1454 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1455 			return 1;
1456 		vcpu->arch.hv_vapic = data;
1457 		break;
1458 	}
1459 	case HV_X64_MSR_EOI:
1460 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1461 	case HV_X64_MSR_ICR:
1462 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1463 	case HV_X64_MSR_TPR:
1464 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1465 	default:
1466 		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1467 			  "data 0x%llx\n", msr, data);
1468 		return 1;
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1475 {
1476 	gpa_t gpa = data & ~0x3f;
1477 
1478 	/* Bits 2:5 are resrved, Should be zero */
1479 	if (data & 0x3c)
1480 		return 1;
1481 
1482 	vcpu->arch.apf.msr_val = data;
1483 
1484 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1485 		kvm_clear_async_pf_completion_queue(vcpu);
1486 		kvm_async_pf_hash_reset(vcpu);
1487 		return 0;
1488 	}
1489 
1490 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1491 		return 1;
1492 
1493 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1494 	kvm_async_pf_wakeup_all(vcpu);
1495 	return 0;
1496 }
1497 
1498 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1499 {
1500 	if (vcpu->arch.time_page) {
1501 		kvm_release_page_dirty(vcpu->arch.time_page);
1502 		vcpu->arch.time_page = NULL;
1503 	}
1504 }
1505 
1506 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1507 {
1508 	u64 delta;
1509 
1510 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1511 		return;
1512 
1513 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1514 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1515 	vcpu->arch.st.accum_steal = delta;
1516 }
1517 
1518 static void record_steal_time(struct kvm_vcpu *vcpu)
1519 {
1520 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1521 		return;
1522 
1523 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1524 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1525 		return;
1526 
1527 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1528 	vcpu->arch.st.steal.version += 2;
1529 	vcpu->arch.st.accum_steal = 0;
1530 
1531 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1532 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1533 }
1534 
1535 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1536 {
1537 	switch (msr) {
1538 	case MSR_EFER:
1539 		return set_efer(vcpu, data);
1540 	case MSR_K7_HWCR:
1541 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1542 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1543 		if (data != 0) {
1544 			pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1545 				data);
1546 			return 1;
1547 		}
1548 		break;
1549 	case MSR_FAM10H_MMIO_CONF_BASE:
1550 		if (data != 0) {
1551 			pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1552 				"0x%llx\n", data);
1553 			return 1;
1554 		}
1555 		break;
1556 	case MSR_AMD64_NB_CFG:
1557 		break;
1558 	case MSR_IA32_DEBUGCTLMSR:
1559 		if (!data) {
1560 			/* We support the non-activated case already */
1561 			break;
1562 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1563 			/* Values other than LBR and BTF are vendor-specific,
1564 			   thus reserved and should throw a #GP */
1565 			return 1;
1566 		}
1567 		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1568 			__func__, data);
1569 		break;
1570 	case MSR_IA32_UCODE_REV:
1571 	case MSR_IA32_UCODE_WRITE:
1572 	case MSR_VM_HSAVE_PA:
1573 	case MSR_AMD64_PATCH_LOADER:
1574 		break;
1575 	case 0x200 ... 0x2ff:
1576 		return set_msr_mtrr(vcpu, msr, data);
1577 	case MSR_IA32_APICBASE:
1578 		kvm_set_apic_base(vcpu, data);
1579 		break;
1580 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1581 		return kvm_x2apic_msr_write(vcpu, msr, data);
1582 	case MSR_IA32_TSCDEADLINE:
1583 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
1584 		break;
1585 	case MSR_IA32_MISC_ENABLE:
1586 		vcpu->arch.ia32_misc_enable_msr = data;
1587 		break;
1588 	case MSR_KVM_WALL_CLOCK_NEW:
1589 	case MSR_KVM_WALL_CLOCK:
1590 		vcpu->kvm->arch.wall_clock = data;
1591 		kvm_write_wall_clock(vcpu->kvm, data);
1592 		break;
1593 	case MSR_KVM_SYSTEM_TIME_NEW:
1594 	case MSR_KVM_SYSTEM_TIME: {
1595 		kvmclock_reset(vcpu);
1596 
1597 		vcpu->arch.time = data;
1598 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1599 
1600 		/* we verify if the enable bit is set... */
1601 		if (!(data & 1))
1602 			break;
1603 
1604 		/* ...but clean it before doing the actual write */
1605 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1606 
1607 		vcpu->arch.time_page =
1608 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1609 
1610 		if (is_error_page(vcpu->arch.time_page)) {
1611 			kvm_release_page_clean(vcpu->arch.time_page);
1612 			vcpu->arch.time_page = NULL;
1613 		}
1614 		break;
1615 	}
1616 	case MSR_KVM_ASYNC_PF_EN:
1617 		if (kvm_pv_enable_async_pf(vcpu, data))
1618 			return 1;
1619 		break;
1620 	case MSR_KVM_STEAL_TIME:
1621 
1622 		if (unlikely(!sched_info_on()))
1623 			return 1;
1624 
1625 		if (data & KVM_STEAL_RESERVED_MASK)
1626 			return 1;
1627 
1628 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1629 							data & KVM_STEAL_VALID_BITS))
1630 			return 1;
1631 
1632 		vcpu->arch.st.msr_val = data;
1633 
1634 		if (!(data & KVM_MSR_ENABLED))
1635 			break;
1636 
1637 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
1638 
1639 		preempt_disable();
1640 		accumulate_steal_time(vcpu);
1641 		preempt_enable();
1642 
1643 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1644 
1645 		break;
1646 
1647 	case MSR_IA32_MCG_CTL:
1648 	case MSR_IA32_MCG_STATUS:
1649 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1650 		return set_msr_mce(vcpu, msr, data);
1651 
1652 	/* Performance counters are not protected by a CPUID bit,
1653 	 * so we should check all of them in the generic path for the sake of
1654 	 * cross vendor migration.
1655 	 * Writing a zero into the event select MSRs disables them,
1656 	 * which we perfectly emulate ;-). Any other value should be at least
1657 	 * reported, some guests depend on them.
1658 	 */
1659 	case MSR_P6_EVNTSEL0:
1660 	case MSR_P6_EVNTSEL1:
1661 	case MSR_K7_EVNTSEL0:
1662 	case MSR_K7_EVNTSEL1:
1663 	case MSR_K7_EVNTSEL2:
1664 	case MSR_K7_EVNTSEL3:
1665 		if (data != 0)
1666 			pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1667 				"0x%x data 0x%llx\n", msr, data);
1668 		break;
1669 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
1670 	 * so we ignore writes to make it happy.
1671 	 */
1672 	case MSR_P6_PERFCTR0:
1673 	case MSR_P6_PERFCTR1:
1674 	case MSR_K7_PERFCTR0:
1675 	case MSR_K7_PERFCTR1:
1676 	case MSR_K7_PERFCTR2:
1677 	case MSR_K7_PERFCTR3:
1678 		pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1679 			"0x%x data 0x%llx\n", msr, data);
1680 		break;
1681 	case MSR_K7_CLK_CTL:
1682 		/*
1683 		 * Ignore all writes to this no longer documented MSR.
1684 		 * Writes are only relevant for old K7 processors,
1685 		 * all pre-dating SVM, but a recommended workaround from
1686 		 * AMD for these chips. It is possible to speicify the
1687 		 * affected processor models on the command line, hence
1688 		 * the need to ignore the workaround.
1689 		 */
1690 		break;
1691 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1692 		if (kvm_hv_msr_partition_wide(msr)) {
1693 			int r;
1694 			mutex_lock(&vcpu->kvm->lock);
1695 			r = set_msr_hyperv_pw(vcpu, msr, data);
1696 			mutex_unlock(&vcpu->kvm->lock);
1697 			return r;
1698 		} else
1699 			return set_msr_hyperv(vcpu, msr, data);
1700 		break;
1701 	case MSR_IA32_BBL_CR_CTL3:
1702 		/* Drop writes to this legacy MSR -- see rdmsr
1703 		 * counterpart for further detail.
1704 		 */
1705 		pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1706 		break;
1707 	default:
1708 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1709 			return xen_hvm_config(vcpu, data);
1710 		if (!ignore_msrs) {
1711 			pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1712 				msr, data);
1713 			return 1;
1714 		} else {
1715 			pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1716 				msr, data);
1717 			break;
1718 		}
1719 	}
1720 	return 0;
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1723 
1724 
1725 /*
1726  * Reads an msr value (of 'msr_index') into 'pdata'.
1727  * Returns 0 on success, non-0 otherwise.
1728  * Assumes vcpu_load() was already called.
1729  */
1730 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1731 {
1732 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1733 }
1734 
1735 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1736 {
1737 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1738 
1739 	if (!msr_mtrr_valid(msr))
1740 		return 1;
1741 
1742 	if (msr == MSR_MTRRdefType)
1743 		*pdata = vcpu->arch.mtrr_state.def_type +
1744 			 (vcpu->arch.mtrr_state.enabled << 10);
1745 	else if (msr == MSR_MTRRfix64K_00000)
1746 		*pdata = p[0];
1747 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1748 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1749 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1750 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1751 	else if (msr == MSR_IA32_CR_PAT)
1752 		*pdata = vcpu->arch.pat;
1753 	else {	/* Variable MTRRs */
1754 		int idx, is_mtrr_mask;
1755 		u64 *pt;
1756 
1757 		idx = (msr - 0x200) / 2;
1758 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1759 		if (!is_mtrr_mask)
1760 			pt =
1761 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1762 		else
1763 			pt =
1764 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1765 		*pdata = *pt;
1766 	}
1767 
1768 	return 0;
1769 }
1770 
1771 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1772 {
1773 	u64 data;
1774 	u64 mcg_cap = vcpu->arch.mcg_cap;
1775 	unsigned bank_num = mcg_cap & 0xff;
1776 
1777 	switch (msr) {
1778 	case MSR_IA32_P5_MC_ADDR:
1779 	case MSR_IA32_P5_MC_TYPE:
1780 		data = 0;
1781 		break;
1782 	case MSR_IA32_MCG_CAP:
1783 		data = vcpu->arch.mcg_cap;
1784 		break;
1785 	case MSR_IA32_MCG_CTL:
1786 		if (!(mcg_cap & MCG_CTL_P))
1787 			return 1;
1788 		data = vcpu->arch.mcg_ctl;
1789 		break;
1790 	case MSR_IA32_MCG_STATUS:
1791 		data = vcpu->arch.mcg_status;
1792 		break;
1793 	default:
1794 		if (msr >= MSR_IA32_MC0_CTL &&
1795 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1796 			u32 offset = msr - MSR_IA32_MC0_CTL;
1797 			data = vcpu->arch.mce_banks[offset];
1798 			break;
1799 		}
1800 		return 1;
1801 	}
1802 	*pdata = data;
1803 	return 0;
1804 }
1805 
1806 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1807 {
1808 	u64 data = 0;
1809 	struct kvm *kvm = vcpu->kvm;
1810 
1811 	switch (msr) {
1812 	case HV_X64_MSR_GUEST_OS_ID:
1813 		data = kvm->arch.hv_guest_os_id;
1814 		break;
1815 	case HV_X64_MSR_HYPERCALL:
1816 		data = kvm->arch.hv_hypercall;
1817 		break;
1818 	default:
1819 		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1820 		return 1;
1821 	}
1822 
1823 	*pdata = data;
1824 	return 0;
1825 }
1826 
1827 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1828 {
1829 	u64 data = 0;
1830 
1831 	switch (msr) {
1832 	case HV_X64_MSR_VP_INDEX: {
1833 		int r;
1834 		struct kvm_vcpu *v;
1835 		kvm_for_each_vcpu(r, v, vcpu->kvm)
1836 			if (v == vcpu)
1837 				data = r;
1838 		break;
1839 	}
1840 	case HV_X64_MSR_EOI:
1841 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1842 	case HV_X64_MSR_ICR:
1843 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1844 	case HV_X64_MSR_TPR:
1845 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1846 	case HV_X64_MSR_APIC_ASSIST_PAGE:
1847 		data = vcpu->arch.hv_vapic;
1848 		break;
1849 	default:
1850 		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1851 		return 1;
1852 	}
1853 	*pdata = data;
1854 	return 0;
1855 }
1856 
1857 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1858 {
1859 	u64 data;
1860 
1861 	switch (msr) {
1862 	case MSR_IA32_PLATFORM_ID:
1863 	case MSR_IA32_EBL_CR_POWERON:
1864 	case MSR_IA32_DEBUGCTLMSR:
1865 	case MSR_IA32_LASTBRANCHFROMIP:
1866 	case MSR_IA32_LASTBRANCHTOIP:
1867 	case MSR_IA32_LASTINTFROMIP:
1868 	case MSR_IA32_LASTINTTOIP:
1869 	case MSR_K8_SYSCFG:
1870 	case MSR_K7_HWCR:
1871 	case MSR_VM_HSAVE_PA:
1872 	case MSR_P6_PERFCTR0:
1873 	case MSR_P6_PERFCTR1:
1874 	case MSR_P6_EVNTSEL0:
1875 	case MSR_P6_EVNTSEL1:
1876 	case MSR_K7_EVNTSEL0:
1877 	case MSR_K7_PERFCTR0:
1878 	case MSR_K8_INT_PENDING_MSG:
1879 	case MSR_AMD64_NB_CFG:
1880 	case MSR_FAM10H_MMIO_CONF_BASE:
1881 		data = 0;
1882 		break;
1883 	case MSR_IA32_UCODE_REV:
1884 		data = 0x100000000ULL;
1885 		break;
1886 	case MSR_MTRRcap:
1887 		data = 0x500 | KVM_NR_VAR_MTRR;
1888 		break;
1889 	case 0x200 ... 0x2ff:
1890 		return get_msr_mtrr(vcpu, msr, pdata);
1891 	case 0xcd: /* fsb frequency */
1892 		data = 3;
1893 		break;
1894 		/*
1895 		 * MSR_EBC_FREQUENCY_ID
1896 		 * Conservative value valid for even the basic CPU models.
1897 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1898 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1899 		 * and 266MHz for model 3, or 4. Set Core Clock
1900 		 * Frequency to System Bus Frequency Ratio to 1 (bits
1901 		 * 31:24) even though these are only valid for CPU
1902 		 * models > 2, however guests may end up dividing or
1903 		 * multiplying by zero otherwise.
1904 		 */
1905 	case MSR_EBC_FREQUENCY_ID:
1906 		data = 1 << 24;
1907 		break;
1908 	case MSR_IA32_APICBASE:
1909 		data = kvm_get_apic_base(vcpu);
1910 		break;
1911 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1912 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
1913 		break;
1914 	case MSR_IA32_TSCDEADLINE:
1915 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
1916 		break;
1917 	case MSR_IA32_MISC_ENABLE:
1918 		data = vcpu->arch.ia32_misc_enable_msr;
1919 		break;
1920 	case MSR_IA32_PERF_STATUS:
1921 		/* TSC increment by tick */
1922 		data = 1000ULL;
1923 		/* CPU multiplier */
1924 		data |= (((uint64_t)4ULL) << 40);
1925 		break;
1926 	case MSR_EFER:
1927 		data = vcpu->arch.efer;
1928 		break;
1929 	case MSR_KVM_WALL_CLOCK:
1930 	case MSR_KVM_WALL_CLOCK_NEW:
1931 		data = vcpu->kvm->arch.wall_clock;
1932 		break;
1933 	case MSR_KVM_SYSTEM_TIME:
1934 	case MSR_KVM_SYSTEM_TIME_NEW:
1935 		data = vcpu->arch.time;
1936 		break;
1937 	case MSR_KVM_ASYNC_PF_EN:
1938 		data = vcpu->arch.apf.msr_val;
1939 		break;
1940 	case MSR_KVM_STEAL_TIME:
1941 		data = vcpu->arch.st.msr_val;
1942 		break;
1943 	case MSR_IA32_P5_MC_ADDR:
1944 	case MSR_IA32_P5_MC_TYPE:
1945 	case MSR_IA32_MCG_CAP:
1946 	case MSR_IA32_MCG_CTL:
1947 	case MSR_IA32_MCG_STATUS:
1948 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1949 		return get_msr_mce(vcpu, msr, pdata);
1950 	case MSR_K7_CLK_CTL:
1951 		/*
1952 		 * Provide expected ramp-up count for K7. All other
1953 		 * are set to zero, indicating minimum divisors for
1954 		 * every field.
1955 		 *
1956 		 * This prevents guest kernels on AMD host with CPU
1957 		 * type 6, model 8 and higher from exploding due to
1958 		 * the rdmsr failing.
1959 		 */
1960 		data = 0x20000000;
1961 		break;
1962 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1963 		if (kvm_hv_msr_partition_wide(msr)) {
1964 			int r;
1965 			mutex_lock(&vcpu->kvm->lock);
1966 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
1967 			mutex_unlock(&vcpu->kvm->lock);
1968 			return r;
1969 		} else
1970 			return get_msr_hyperv(vcpu, msr, pdata);
1971 		break;
1972 	case MSR_IA32_BBL_CR_CTL3:
1973 		/* This legacy MSR exists but isn't fully documented in current
1974 		 * silicon.  It is however accessed by winxp in very narrow
1975 		 * scenarios where it sets bit #19, itself documented as
1976 		 * a "reserved" bit.  Best effort attempt to source coherent
1977 		 * read data here should the balance of the register be
1978 		 * interpreted by the guest:
1979 		 *
1980 		 * L2 cache control register 3: 64GB range, 256KB size,
1981 		 * enabled, latency 0x1, configured
1982 		 */
1983 		data = 0xbe702111;
1984 		break;
1985 	default:
1986 		if (!ignore_msrs) {
1987 			pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1988 			return 1;
1989 		} else {
1990 			pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1991 			data = 0;
1992 		}
1993 		break;
1994 	}
1995 	*pdata = data;
1996 	return 0;
1997 }
1998 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1999 
2000 /*
2001  * Read or write a bunch of msrs. All parameters are kernel addresses.
2002  *
2003  * @return number of msrs set successfully.
2004  */
2005 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2006 		    struct kvm_msr_entry *entries,
2007 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2008 				  unsigned index, u64 *data))
2009 {
2010 	int i, idx;
2011 
2012 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2013 	for (i = 0; i < msrs->nmsrs; ++i)
2014 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2015 			break;
2016 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2017 
2018 	return i;
2019 }
2020 
2021 /*
2022  * Read or write a bunch of msrs. Parameters are user addresses.
2023  *
2024  * @return number of msrs set successfully.
2025  */
2026 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2027 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2028 				unsigned index, u64 *data),
2029 		  int writeback)
2030 {
2031 	struct kvm_msrs msrs;
2032 	struct kvm_msr_entry *entries;
2033 	int r, n;
2034 	unsigned size;
2035 
2036 	r = -EFAULT;
2037 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2038 		goto out;
2039 
2040 	r = -E2BIG;
2041 	if (msrs.nmsrs >= MAX_IO_MSRS)
2042 		goto out;
2043 
2044 	r = -ENOMEM;
2045 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2046 	entries = kmalloc(size, GFP_KERNEL);
2047 	if (!entries)
2048 		goto out;
2049 
2050 	r = -EFAULT;
2051 	if (copy_from_user(entries, user_msrs->entries, size))
2052 		goto out_free;
2053 
2054 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2055 	if (r < 0)
2056 		goto out_free;
2057 
2058 	r = -EFAULT;
2059 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2060 		goto out_free;
2061 
2062 	r = n;
2063 
2064 out_free:
2065 	kfree(entries);
2066 out:
2067 	return r;
2068 }
2069 
2070 int kvm_dev_ioctl_check_extension(long ext)
2071 {
2072 	int r;
2073 
2074 	switch (ext) {
2075 	case KVM_CAP_IRQCHIP:
2076 	case KVM_CAP_HLT:
2077 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2078 	case KVM_CAP_SET_TSS_ADDR:
2079 	case KVM_CAP_EXT_CPUID:
2080 	case KVM_CAP_CLOCKSOURCE:
2081 	case KVM_CAP_PIT:
2082 	case KVM_CAP_NOP_IO_DELAY:
2083 	case KVM_CAP_MP_STATE:
2084 	case KVM_CAP_SYNC_MMU:
2085 	case KVM_CAP_USER_NMI:
2086 	case KVM_CAP_REINJECT_CONTROL:
2087 	case KVM_CAP_IRQ_INJECT_STATUS:
2088 	case KVM_CAP_ASSIGN_DEV_IRQ:
2089 	case KVM_CAP_IRQFD:
2090 	case KVM_CAP_IOEVENTFD:
2091 	case KVM_CAP_PIT2:
2092 	case KVM_CAP_PIT_STATE2:
2093 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2094 	case KVM_CAP_XEN_HVM:
2095 	case KVM_CAP_ADJUST_CLOCK:
2096 	case KVM_CAP_VCPU_EVENTS:
2097 	case KVM_CAP_HYPERV:
2098 	case KVM_CAP_HYPERV_VAPIC:
2099 	case KVM_CAP_HYPERV_SPIN:
2100 	case KVM_CAP_PCI_SEGMENT:
2101 	case KVM_CAP_DEBUGREGS:
2102 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2103 	case KVM_CAP_XSAVE:
2104 	case KVM_CAP_ASYNC_PF:
2105 	case KVM_CAP_GET_TSC_KHZ:
2106 		r = 1;
2107 		break;
2108 	case KVM_CAP_COALESCED_MMIO:
2109 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2110 		break;
2111 	case KVM_CAP_VAPIC:
2112 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2113 		break;
2114 	case KVM_CAP_NR_VCPUS:
2115 		r = KVM_SOFT_MAX_VCPUS;
2116 		break;
2117 	case KVM_CAP_MAX_VCPUS:
2118 		r = KVM_MAX_VCPUS;
2119 		break;
2120 	case KVM_CAP_NR_MEMSLOTS:
2121 		r = KVM_MEMORY_SLOTS;
2122 		break;
2123 	case KVM_CAP_PV_MMU:	/* obsolete */
2124 		r = 0;
2125 		break;
2126 	case KVM_CAP_IOMMU:
2127 		r = iommu_present(&pci_bus_type);
2128 		break;
2129 	case KVM_CAP_MCE:
2130 		r = KVM_MAX_MCE_BANKS;
2131 		break;
2132 	case KVM_CAP_XCRS:
2133 		r = cpu_has_xsave;
2134 		break;
2135 	case KVM_CAP_TSC_CONTROL:
2136 		r = kvm_has_tsc_control;
2137 		break;
2138 	default:
2139 		r = 0;
2140 		break;
2141 	}
2142 	return r;
2143 
2144 }
2145 
2146 long kvm_arch_dev_ioctl(struct file *filp,
2147 			unsigned int ioctl, unsigned long arg)
2148 {
2149 	void __user *argp = (void __user *)arg;
2150 	long r;
2151 
2152 	switch (ioctl) {
2153 	case KVM_GET_MSR_INDEX_LIST: {
2154 		struct kvm_msr_list __user *user_msr_list = argp;
2155 		struct kvm_msr_list msr_list;
2156 		unsigned n;
2157 
2158 		r = -EFAULT;
2159 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2160 			goto out;
2161 		n = msr_list.nmsrs;
2162 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2163 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2164 			goto out;
2165 		r = -E2BIG;
2166 		if (n < msr_list.nmsrs)
2167 			goto out;
2168 		r = -EFAULT;
2169 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2170 				 num_msrs_to_save * sizeof(u32)))
2171 			goto out;
2172 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2173 				 &emulated_msrs,
2174 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2175 			goto out;
2176 		r = 0;
2177 		break;
2178 	}
2179 	case KVM_GET_SUPPORTED_CPUID: {
2180 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2181 		struct kvm_cpuid2 cpuid;
2182 
2183 		r = -EFAULT;
2184 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2185 			goto out;
2186 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2187 						      cpuid_arg->entries);
2188 		if (r)
2189 			goto out;
2190 
2191 		r = -EFAULT;
2192 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2193 			goto out;
2194 		r = 0;
2195 		break;
2196 	}
2197 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2198 		u64 mce_cap;
2199 
2200 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2201 		r = -EFAULT;
2202 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2203 			goto out;
2204 		r = 0;
2205 		break;
2206 	}
2207 	default:
2208 		r = -EINVAL;
2209 	}
2210 out:
2211 	return r;
2212 }
2213 
2214 static void wbinvd_ipi(void *garbage)
2215 {
2216 	wbinvd();
2217 }
2218 
2219 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2220 {
2221 	return vcpu->kvm->arch.iommu_domain &&
2222 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2223 }
2224 
2225 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2226 {
2227 	/* Address WBINVD may be executed by guest */
2228 	if (need_emulate_wbinvd(vcpu)) {
2229 		if (kvm_x86_ops->has_wbinvd_exit())
2230 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2231 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2232 			smp_call_function_single(vcpu->cpu,
2233 					wbinvd_ipi, NULL, 1);
2234 	}
2235 
2236 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2237 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2238 		/* Make sure TSC doesn't go backwards */
2239 		s64 tsc_delta;
2240 		u64 tsc;
2241 
2242 		tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2243 		tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2244 			     tsc - vcpu->arch.last_guest_tsc;
2245 
2246 		if (tsc_delta < 0)
2247 			mark_tsc_unstable("KVM discovered backwards TSC");
2248 		if (check_tsc_unstable()) {
2249 			kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2250 			vcpu->arch.tsc_catchup = 1;
2251 		}
2252 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2253 		if (vcpu->cpu != cpu)
2254 			kvm_migrate_timers(vcpu);
2255 		vcpu->cpu = cpu;
2256 	}
2257 
2258 	accumulate_steal_time(vcpu);
2259 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2260 }
2261 
2262 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2263 {
2264 	kvm_x86_ops->vcpu_put(vcpu);
2265 	kvm_put_guest_fpu(vcpu);
2266 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2267 }
2268 
2269 static int is_efer_nx(void)
2270 {
2271 	unsigned long long efer = 0;
2272 
2273 	rdmsrl_safe(MSR_EFER, &efer);
2274 	return efer & EFER_NX;
2275 }
2276 
2277 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2278 {
2279 	int i;
2280 	struct kvm_cpuid_entry2 *e, *entry;
2281 
2282 	entry = NULL;
2283 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2284 		e = &vcpu->arch.cpuid_entries[i];
2285 		if (e->function == 0x80000001) {
2286 			entry = e;
2287 			break;
2288 		}
2289 	}
2290 	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2291 		entry->edx &= ~(1 << 20);
2292 		printk(KERN_INFO "kvm: guest NX capability removed\n");
2293 	}
2294 }
2295 
2296 /* when an old userspace process fills a new kernel module */
2297 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2298 				    struct kvm_cpuid *cpuid,
2299 				    struct kvm_cpuid_entry __user *entries)
2300 {
2301 	int r, i;
2302 	struct kvm_cpuid_entry *cpuid_entries;
2303 
2304 	r = -E2BIG;
2305 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2306 		goto out;
2307 	r = -ENOMEM;
2308 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2309 	if (!cpuid_entries)
2310 		goto out;
2311 	r = -EFAULT;
2312 	if (copy_from_user(cpuid_entries, entries,
2313 			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2314 		goto out_free;
2315 	for (i = 0; i < cpuid->nent; i++) {
2316 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2317 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2318 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2319 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2320 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2321 		vcpu->arch.cpuid_entries[i].index = 0;
2322 		vcpu->arch.cpuid_entries[i].flags = 0;
2323 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
2324 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
2325 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
2326 	}
2327 	vcpu->arch.cpuid_nent = cpuid->nent;
2328 	cpuid_fix_nx_cap(vcpu);
2329 	r = 0;
2330 	kvm_apic_set_version(vcpu);
2331 	kvm_x86_ops->cpuid_update(vcpu);
2332 	update_cpuid(vcpu);
2333 
2334 out_free:
2335 	vfree(cpuid_entries);
2336 out:
2337 	return r;
2338 }
2339 
2340 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2341 				     struct kvm_cpuid2 *cpuid,
2342 				     struct kvm_cpuid_entry2 __user *entries)
2343 {
2344 	int r;
2345 
2346 	r = -E2BIG;
2347 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2348 		goto out;
2349 	r = -EFAULT;
2350 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2351 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2352 		goto out;
2353 	vcpu->arch.cpuid_nent = cpuid->nent;
2354 	kvm_apic_set_version(vcpu);
2355 	kvm_x86_ops->cpuid_update(vcpu);
2356 	update_cpuid(vcpu);
2357 	return 0;
2358 
2359 out:
2360 	return r;
2361 }
2362 
2363 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2364 				     struct kvm_cpuid2 *cpuid,
2365 				     struct kvm_cpuid_entry2 __user *entries)
2366 {
2367 	int r;
2368 
2369 	r = -E2BIG;
2370 	if (cpuid->nent < vcpu->arch.cpuid_nent)
2371 		goto out;
2372 	r = -EFAULT;
2373 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2374 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2375 		goto out;
2376 	return 0;
2377 
2378 out:
2379 	cpuid->nent = vcpu->arch.cpuid_nent;
2380 	return r;
2381 }
2382 
2383 static void cpuid_mask(u32 *word, int wordnum)
2384 {
2385 	*word &= boot_cpu_data.x86_capability[wordnum];
2386 }
2387 
2388 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2389 			   u32 index)
2390 {
2391 	entry->function = function;
2392 	entry->index = index;
2393 	cpuid_count(entry->function, entry->index,
2394 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2395 	entry->flags = 0;
2396 }
2397 
2398 static bool supported_xcr0_bit(unsigned bit)
2399 {
2400 	u64 mask = ((u64)1 << bit);
2401 
2402 	return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
2403 }
2404 
2405 #define F(x) bit(X86_FEATURE_##x)
2406 
2407 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2408 			 u32 index, int *nent, int maxnent)
2409 {
2410 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2411 #ifdef CONFIG_X86_64
2412 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2413 				? F(GBPAGES) : 0;
2414 	unsigned f_lm = F(LM);
2415 #else
2416 	unsigned f_gbpages = 0;
2417 	unsigned f_lm = 0;
2418 #endif
2419 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2420 
2421 	/* cpuid 1.edx */
2422 	const u32 kvm_supported_word0_x86_features =
2423 		F(FPU) | F(VME) | F(DE) | F(PSE) |
2424 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2425 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2426 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2427 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2428 		0 /* Reserved, DS, ACPI */ | F(MMX) |
2429 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2430 		0 /* HTT, TM, Reserved, PBE */;
2431 	/* cpuid 0x80000001.edx */
2432 	const u32 kvm_supported_word1_x86_features =
2433 		F(FPU) | F(VME) | F(DE) | F(PSE) |
2434 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2435 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2436 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2437 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
2438 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2439 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2440 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2441 	/* cpuid 1.ecx */
2442 	const u32 kvm_supported_word4_x86_features =
2443 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2444 		0 /* DS-CPL, VMX, SMX, EST */ |
2445 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2446 		0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2447 		0 /* Reserved, DCA */ | F(XMM4_1) |
2448 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2449 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2450 		F(F16C) | F(RDRAND);
2451 	/* cpuid 0x80000001.ecx */
2452 	const u32 kvm_supported_word6_x86_features =
2453 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2454 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2455 		F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2456 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2457 
2458 	/* cpuid 0xC0000001.edx */
2459 	const u32 kvm_supported_word5_x86_features =
2460 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
2461 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
2462 		F(PMM) | F(PMM_EN);
2463 
2464 	/* cpuid 7.0.ebx */
2465 	const u32 kvm_supported_word9_x86_features =
2466 		F(SMEP) | F(FSGSBASE) | F(ERMS);
2467 
2468 	/* all calls to cpuid_count() should be made on the same cpu */
2469 	get_cpu();
2470 	do_cpuid_1_ent(entry, function, index);
2471 	++*nent;
2472 
2473 	switch (function) {
2474 	case 0:
2475 		entry->eax = min(entry->eax, (u32)0xd);
2476 		break;
2477 	case 1:
2478 		entry->edx &= kvm_supported_word0_x86_features;
2479 		cpuid_mask(&entry->edx, 0);
2480 		entry->ecx &= kvm_supported_word4_x86_features;
2481 		cpuid_mask(&entry->ecx, 4);
2482 		/* we support x2apic emulation even if host does not support
2483 		 * it since we emulate x2apic in software */
2484 		entry->ecx |= F(X2APIC);
2485 		break;
2486 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
2487 	 * may return different values. This forces us to get_cpu() before
2488 	 * issuing the first command, and also to emulate this annoying behavior
2489 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2490 	case 2: {
2491 		int t, times = entry->eax & 0xff;
2492 
2493 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2494 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2495 		for (t = 1; t < times && *nent < maxnent; ++t) {
2496 			do_cpuid_1_ent(&entry[t], function, 0);
2497 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2498 			++*nent;
2499 		}
2500 		break;
2501 	}
2502 	/* function 4 has additional index. */
2503 	case 4: {
2504 		int i, cache_type;
2505 
2506 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2507 		/* read more entries until cache_type is zero */
2508 		for (i = 1; *nent < maxnent; ++i) {
2509 			cache_type = entry[i - 1].eax & 0x1f;
2510 			if (!cache_type)
2511 				break;
2512 			do_cpuid_1_ent(&entry[i], function, i);
2513 			entry[i].flags |=
2514 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2515 			++*nent;
2516 		}
2517 		break;
2518 	}
2519 	case 7: {
2520 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2521 		/* Mask ebx against host capbability word 9 */
2522 		if (index == 0) {
2523 			entry->ebx &= kvm_supported_word9_x86_features;
2524 			cpuid_mask(&entry->ebx, 9);
2525 		} else
2526 			entry->ebx = 0;
2527 		entry->eax = 0;
2528 		entry->ecx = 0;
2529 		entry->edx = 0;
2530 		break;
2531 	}
2532 	case 9:
2533 		break;
2534 	/* function 0xb has additional index. */
2535 	case 0xb: {
2536 		int i, level_type;
2537 
2538 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2539 		/* read more entries until level_type is zero */
2540 		for (i = 1; *nent < maxnent; ++i) {
2541 			level_type = entry[i - 1].ecx & 0xff00;
2542 			if (!level_type)
2543 				break;
2544 			do_cpuid_1_ent(&entry[i], function, i);
2545 			entry[i].flags |=
2546 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2547 			++*nent;
2548 		}
2549 		break;
2550 	}
2551 	case 0xd: {
2552 		int idx, i;
2553 
2554 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2555 		for (idx = 1, i = 1; *nent < maxnent && idx < 64; ++idx) {
2556 			do_cpuid_1_ent(&entry[i], function, idx);
2557 			if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
2558 				continue;
2559 			entry[i].flags |=
2560 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2561 			++*nent;
2562 			++i;
2563 		}
2564 		break;
2565 	}
2566 	case KVM_CPUID_SIGNATURE: {
2567 		char signature[12] = "KVMKVMKVM\0\0";
2568 		u32 *sigptr = (u32 *)signature;
2569 		entry->eax = 0;
2570 		entry->ebx = sigptr[0];
2571 		entry->ecx = sigptr[1];
2572 		entry->edx = sigptr[2];
2573 		break;
2574 	}
2575 	case KVM_CPUID_FEATURES:
2576 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2577 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
2578 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
2579 			     (1 << KVM_FEATURE_ASYNC_PF) |
2580 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2581 
2582 		if (sched_info_on())
2583 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
2584 
2585 		entry->ebx = 0;
2586 		entry->ecx = 0;
2587 		entry->edx = 0;
2588 		break;
2589 	case 0x80000000:
2590 		entry->eax = min(entry->eax, 0x8000001a);
2591 		break;
2592 	case 0x80000001:
2593 		entry->edx &= kvm_supported_word1_x86_features;
2594 		cpuid_mask(&entry->edx, 1);
2595 		entry->ecx &= kvm_supported_word6_x86_features;
2596 		cpuid_mask(&entry->ecx, 6);
2597 		break;
2598 	case 0x80000008: {
2599 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
2600 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
2601 		unsigned phys_as = entry->eax & 0xff;
2602 
2603 		if (!g_phys_as)
2604 			g_phys_as = phys_as;
2605 		entry->eax = g_phys_as | (virt_as << 8);
2606 		entry->ebx = entry->edx = 0;
2607 		break;
2608 	}
2609 	case 0x80000019:
2610 		entry->ecx = entry->edx = 0;
2611 		break;
2612 	case 0x8000001a:
2613 		break;
2614 	case 0x8000001d:
2615 		break;
2616 	/*Add support for Centaur's CPUID instruction*/
2617 	case 0xC0000000:
2618 		/*Just support up to 0xC0000004 now*/
2619 		entry->eax = min(entry->eax, 0xC0000004);
2620 		break;
2621 	case 0xC0000001:
2622 		entry->edx &= kvm_supported_word5_x86_features;
2623 		cpuid_mask(&entry->edx, 5);
2624 		break;
2625 	case 3: /* Processor serial number */
2626 	case 5: /* MONITOR/MWAIT */
2627 	case 6: /* Thermal management */
2628 	case 0xA: /* Architectural Performance Monitoring */
2629 	case 0x80000007: /* Advanced power management */
2630 	case 0xC0000002:
2631 	case 0xC0000003:
2632 	case 0xC0000004:
2633 	default:
2634 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
2635 		break;
2636 	}
2637 
2638 	kvm_x86_ops->set_supported_cpuid(function, entry);
2639 
2640 	put_cpu();
2641 }
2642 
2643 #undef F
2644 
2645 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2646 				     struct kvm_cpuid_entry2 __user *entries)
2647 {
2648 	struct kvm_cpuid_entry2 *cpuid_entries;
2649 	int limit, nent = 0, r = -E2BIG;
2650 	u32 func;
2651 
2652 	if (cpuid->nent < 1)
2653 		goto out;
2654 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2655 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2656 	r = -ENOMEM;
2657 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2658 	if (!cpuid_entries)
2659 		goto out;
2660 
2661 	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2662 	limit = cpuid_entries[0].eax;
2663 	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2664 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
2665 			     &nent, cpuid->nent);
2666 	r = -E2BIG;
2667 	if (nent >= cpuid->nent)
2668 		goto out_free;
2669 
2670 	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2671 	limit = cpuid_entries[nent - 1].eax;
2672 	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2673 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
2674 			     &nent, cpuid->nent);
2675 
2676 
2677 
2678 	r = -E2BIG;
2679 	if (nent >= cpuid->nent)
2680 		goto out_free;
2681 
2682 	/* Add support for Centaur's CPUID instruction. */
2683 	if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR) {
2684 		do_cpuid_ent(&cpuid_entries[nent], 0xC0000000, 0,
2685 				&nent, cpuid->nent);
2686 
2687 		r = -E2BIG;
2688 		if (nent >= cpuid->nent)
2689 			goto out_free;
2690 
2691 		limit = cpuid_entries[nent - 1].eax;
2692 		for (func = 0xC0000001;
2693 			func <= limit && nent < cpuid->nent; ++func)
2694 			do_cpuid_ent(&cpuid_entries[nent], func, 0,
2695 					&nent, cpuid->nent);
2696 
2697 		r = -E2BIG;
2698 		if (nent >= cpuid->nent)
2699 			goto out_free;
2700 	}
2701 
2702 	do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2703 		     cpuid->nent);
2704 
2705 	r = -E2BIG;
2706 	if (nent >= cpuid->nent)
2707 		goto out_free;
2708 
2709 	do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2710 		     cpuid->nent);
2711 
2712 	r = -E2BIG;
2713 	if (nent >= cpuid->nent)
2714 		goto out_free;
2715 
2716 	r = -EFAULT;
2717 	if (copy_to_user(entries, cpuid_entries,
2718 			 nent * sizeof(struct kvm_cpuid_entry2)))
2719 		goto out_free;
2720 	cpuid->nent = nent;
2721 	r = 0;
2722 
2723 out_free:
2724 	vfree(cpuid_entries);
2725 out:
2726 	return r;
2727 }
2728 
2729 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2730 				    struct kvm_lapic_state *s)
2731 {
2732 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2733 
2734 	return 0;
2735 }
2736 
2737 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2738 				    struct kvm_lapic_state *s)
2739 {
2740 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2741 	kvm_apic_post_state_restore(vcpu);
2742 	update_cr8_intercept(vcpu);
2743 
2744 	return 0;
2745 }
2746 
2747 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2748 				    struct kvm_interrupt *irq)
2749 {
2750 	if (irq->irq < 0 || irq->irq >= 256)
2751 		return -EINVAL;
2752 	if (irqchip_in_kernel(vcpu->kvm))
2753 		return -ENXIO;
2754 
2755 	kvm_queue_interrupt(vcpu, irq->irq, false);
2756 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2757 
2758 	return 0;
2759 }
2760 
2761 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2762 {
2763 	kvm_inject_nmi(vcpu);
2764 
2765 	return 0;
2766 }
2767 
2768 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2769 					   struct kvm_tpr_access_ctl *tac)
2770 {
2771 	if (tac->flags)
2772 		return -EINVAL;
2773 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2774 	return 0;
2775 }
2776 
2777 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2778 					u64 mcg_cap)
2779 {
2780 	int r;
2781 	unsigned bank_num = mcg_cap & 0xff, bank;
2782 
2783 	r = -EINVAL;
2784 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2785 		goto out;
2786 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2787 		goto out;
2788 	r = 0;
2789 	vcpu->arch.mcg_cap = mcg_cap;
2790 	/* Init IA32_MCG_CTL to all 1s */
2791 	if (mcg_cap & MCG_CTL_P)
2792 		vcpu->arch.mcg_ctl = ~(u64)0;
2793 	/* Init IA32_MCi_CTL to all 1s */
2794 	for (bank = 0; bank < bank_num; bank++)
2795 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2796 out:
2797 	return r;
2798 }
2799 
2800 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2801 				      struct kvm_x86_mce *mce)
2802 {
2803 	u64 mcg_cap = vcpu->arch.mcg_cap;
2804 	unsigned bank_num = mcg_cap & 0xff;
2805 	u64 *banks = vcpu->arch.mce_banks;
2806 
2807 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2808 		return -EINVAL;
2809 	/*
2810 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2811 	 * reporting is disabled
2812 	 */
2813 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2814 	    vcpu->arch.mcg_ctl != ~(u64)0)
2815 		return 0;
2816 	banks += 4 * mce->bank;
2817 	/*
2818 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2819 	 * reporting is disabled for the bank
2820 	 */
2821 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2822 		return 0;
2823 	if (mce->status & MCI_STATUS_UC) {
2824 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2825 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2826 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2827 			return 0;
2828 		}
2829 		if (banks[1] & MCI_STATUS_VAL)
2830 			mce->status |= MCI_STATUS_OVER;
2831 		banks[2] = mce->addr;
2832 		banks[3] = mce->misc;
2833 		vcpu->arch.mcg_status = mce->mcg_status;
2834 		banks[1] = mce->status;
2835 		kvm_queue_exception(vcpu, MC_VECTOR);
2836 	} else if (!(banks[1] & MCI_STATUS_VAL)
2837 		   || !(banks[1] & MCI_STATUS_UC)) {
2838 		if (banks[1] & MCI_STATUS_VAL)
2839 			mce->status |= MCI_STATUS_OVER;
2840 		banks[2] = mce->addr;
2841 		banks[3] = mce->misc;
2842 		banks[1] = mce->status;
2843 	} else
2844 		banks[1] |= MCI_STATUS_OVER;
2845 	return 0;
2846 }
2847 
2848 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2849 					       struct kvm_vcpu_events *events)
2850 {
2851 	process_nmi(vcpu);
2852 	events->exception.injected =
2853 		vcpu->arch.exception.pending &&
2854 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2855 	events->exception.nr = vcpu->arch.exception.nr;
2856 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2857 	events->exception.pad = 0;
2858 	events->exception.error_code = vcpu->arch.exception.error_code;
2859 
2860 	events->interrupt.injected =
2861 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2862 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2863 	events->interrupt.soft = 0;
2864 	events->interrupt.shadow =
2865 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2866 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2867 
2868 	events->nmi.injected = vcpu->arch.nmi_injected;
2869 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2870 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2871 	events->nmi.pad = 0;
2872 
2873 	events->sipi_vector = vcpu->arch.sipi_vector;
2874 
2875 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2876 			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2877 			 | KVM_VCPUEVENT_VALID_SHADOW);
2878 	memset(&events->reserved, 0, sizeof(events->reserved));
2879 }
2880 
2881 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2882 					      struct kvm_vcpu_events *events)
2883 {
2884 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2885 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2886 			      | KVM_VCPUEVENT_VALID_SHADOW))
2887 		return -EINVAL;
2888 
2889 	process_nmi(vcpu);
2890 	vcpu->arch.exception.pending = events->exception.injected;
2891 	vcpu->arch.exception.nr = events->exception.nr;
2892 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2893 	vcpu->arch.exception.error_code = events->exception.error_code;
2894 
2895 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2896 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2897 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2898 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2899 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2900 						  events->interrupt.shadow);
2901 
2902 	vcpu->arch.nmi_injected = events->nmi.injected;
2903 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2904 		vcpu->arch.nmi_pending = events->nmi.pending;
2905 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2906 
2907 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2908 		vcpu->arch.sipi_vector = events->sipi_vector;
2909 
2910 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2911 
2912 	return 0;
2913 }
2914 
2915 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2916 					     struct kvm_debugregs *dbgregs)
2917 {
2918 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2919 	dbgregs->dr6 = vcpu->arch.dr6;
2920 	dbgregs->dr7 = vcpu->arch.dr7;
2921 	dbgregs->flags = 0;
2922 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2923 }
2924 
2925 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2926 					    struct kvm_debugregs *dbgregs)
2927 {
2928 	if (dbgregs->flags)
2929 		return -EINVAL;
2930 
2931 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2932 	vcpu->arch.dr6 = dbgregs->dr6;
2933 	vcpu->arch.dr7 = dbgregs->dr7;
2934 
2935 	return 0;
2936 }
2937 
2938 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2939 					 struct kvm_xsave *guest_xsave)
2940 {
2941 	if (cpu_has_xsave)
2942 		memcpy(guest_xsave->region,
2943 			&vcpu->arch.guest_fpu.state->xsave,
2944 			xstate_size);
2945 	else {
2946 		memcpy(guest_xsave->region,
2947 			&vcpu->arch.guest_fpu.state->fxsave,
2948 			sizeof(struct i387_fxsave_struct));
2949 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2950 			XSTATE_FPSSE;
2951 	}
2952 }
2953 
2954 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2955 					struct kvm_xsave *guest_xsave)
2956 {
2957 	u64 xstate_bv =
2958 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2959 
2960 	if (cpu_has_xsave)
2961 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2962 			guest_xsave->region, xstate_size);
2963 	else {
2964 		if (xstate_bv & ~XSTATE_FPSSE)
2965 			return -EINVAL;
2966 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2967 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
2968 	}
2969 	return 0;
2970 }
2971 
2972 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2973 					struct kvm_xcrs *guest_xcrs)
2974 {
2975 	if (!cpu_has_xsave) {
2976 		guest_xcrs->nr_xcrs = 0;
2977 		return;
2978 	}
2979 
2980 	guest_xcrs->nr_xcrs = 1;
2981 	guest_xcrs->flags = 0;
2982 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2983 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2984 }
2985 
2986 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2987 				       struct kvm_xcrs *guest_xcrs)
2988 {
2989 	int i, r = 0;
2990 
2991 	if (!cpu_has_xsave)
2992 		return -EINVAL;
2993 
2994 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2995 		return -EINVAL;
2996 
2997 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2998 		/* Only support XCR0 currently */
2999 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
3000 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3001 				guest_xcrs->xcrs[0].value);
3002 			break;
3003 		}
3004 	if (r)
3005 		r = -EINVAL;
3006 	return r;
3007 }
3008 
3009 long kvm_arch_vcpu_ioctl(struct file *filp,
3010 			 unsigned int ioctl, unsigned long arg)
3011 {
3012 	struct kvm_vcpu *vcpu = filp->private_data;
3013 	void __user *argp = (void __user *)arg;
3014 	int r;
3015 	union {
3016 		struct kvm_lapic_state *lapic;
3017 		struct kvm_xsave *xsave;
3018 		struct kvm_xcrs *xcrs;
3019 		void *buffer;
3020 	} u;
3021 
3022 	u.buffer = NULL;
3023 	switch (ioctl) {
3024 	case KVM_GET_LAPIC: {
3025 		r = -EINVAL;
3026 		if (!vcpu->arch.apic)
3027 			goto out;
3028 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3029 
3030 		r = -ENOMEM;
3031 		if (!u.lapic)
3032 			goto out;
3033 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3034 		if (r)
3035 			goto out;
3036 		r = -EFAULT;
3037 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3038 			goto out;
3039 		r = 0;
3040 		break;
3041 	}
3042 	case KVM_SET_LAPIC: {
3043 		r = -EINVAL;
3044 		if (!vcpu->arch.apic)
3045 			goto out;
3046 		u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3047 		r = -ENOMEM;
3048 		if (!u.lapic)
3049 			goto out;
3050 		r = -EFAULT;
3051 		if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
3052 			goto out;
3053 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3054 		if (r)
3055 			goto out;
3056 		r = 0;
3057 		break;
3058 	}
3059 	case KVM_INTERRUPT: {
3060 		struct kvm_interrupt irq;
3061 
3062 		r = -EFAULT;
3063 		if (copy_from_user(&irq, argp, sizeof irq))
3064 			goto out;
3065 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3066 		if (r)
3067 			goto out;
3068 		r = 0;
3069 		break;
3070 	}
3071 	case KVM_NMI: {
3072 		r = kvm_vcpu_ioctl_nmi(vcpu);
3073 		if (r)
3074 			goto out;
3075 		r = 0;
3076 		break;
3077 	}
3078 	case KVM_SET_CPUID: {
3079 		struct kvm_cpuid __user *cpuid_arg = argp;
3080 		struct kvm_cpuid cpuid;
3081 
3082 		r = -EFAULT;
3083 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3084 			goto out;
3085 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3086 		if (r)
3087 			goto out;
3088 		break;
3089 	}
3090 	case KVM_SET_CPUID2: {
3091 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3092 		struct kvm_cpuid2 cpuid;
3093 
3094 		r = -EFAULT;
3095 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3096 			goto out;
3097 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3098 					      cpuid_arg->entries);
3099 		if (r)
3100 			goto out;
3101 		break;
3102 	}
3103 	case KVM_GET_CPUID2: {
3104 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3105 		struct kvm_cpuid2 cpuid;
3106 
3107 		r = -EFAULT;
3108 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3109 			goto out;
3110 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3111 					      cpuid_arg->entries);
3112 		if (r)
3113 			goto out;
3114 		r = -EFAULT;
3115 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3116 			goto out;
3117 		r = 0;
3118 		break;
3119 	}
3120 	case KVM_GET_MSRS:
3121 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3122 		break;
3123 	case KVM_SET_MSRS:
3124 		r = msr_io(vcpu, argp, do_set_msr, 0);
3125 		break;
3126 	case KVM_TPR_ACCESS_REPORTING: {
3127 		struct kvm_tpr_access_ctl tac;
3128 
3129 		r = -EFAULT;
3130 		if (copy_from_user(&tac, argp, sizeof tac))
3131 			goto out;
3132 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3133 		if (r)
3134 			goto out;
3135 		r = -EFAULT;
3136 		if (copy_to_user(argp, &tac, sizeof tac))
3137 			goto out;
3138 		r = 0;
3139 		break;
3140 	};
3141 	case KVM_SET_VAPIC_ADDR: {
3142 		struct kvm_vapic_addr va;
3143 
3144 		r = -EINVAL;
3145 		if (!irqchip_in_kernel(vcpu->kvm))
3146 			goto out;
3147 		r = -EFAULT;
3148 		if (copy_from_user(&va, argp, sizeof va))
3149 			goto out;
3150 		r = 0;
3151 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3152 		break;
3153 	}
3154 	case KVM_X86_SETUP_MCE: {
3155 		u64 mcg_cap;
3156 
3157 		r = -EFAULT;
3158 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3159 			goto out;
3160 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3161 		break;
3162 	}
3163 	case KVM_X86_SET_MCE: {
3164 		struct kvm_x86_mce mce;
3165 
3166 		r = -EFAULT;
3167 		if (copy_from_user(&mce, argp, sizeof mce))
3168 			goto out;
3169 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3170 		break;
3171 	}
3172 	case KVM_GET_VCPU_EVENTS: {
3173 		struct kvm_vcpu_events events;
3174 
3175 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3176 
3177 		r = -EFAULT;
3178 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3179 			break;
3180 		r = 0;
3181 		break;
3182 	}
3183 	case KVM_SET_VCPU_EVENTS: {
3184 		struct kvm_vcpu_events events;
3185 
3186 		r = -EFAULT;
3187 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3188 			break;
3189 
3190 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3191 		break;
3192 	}
3193 	case KVM_GET_DEBUGREGS: {
3194 		struct kvm_debugregs dbgregs;
3195 
3196 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3197 
3198 		r = -EFAULT;
3199 		if (copy_to_user(argp, &dbgregs,
3200 				 sizeof(struct kvm_debugregs)))
3201 			break;
3202 		r = 0;
3203 		break;
3204 	}
3205 	case KVM_SET_DEBUGREGS: {
3206 		struct kvm_debugregs dbgregs;
3207 
3208 		r = -EFAULT;
3209 		if (copy_from_user(&dbgregs, argp,
3210 				   sizeof(struct kvm_debugregs)))
3211 			break;
3212 
3213 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3214 		break;
3215 	}
3216 	case KVM_GET_XSAVE: {
3217 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3218 		r = -ENOMEM;
3219 		if (!u.xsave)
3220 			break;
3221 
3222 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3223 
3224 		r = -EFAULT;
3225 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3226 			break;
3227 		r = 0;
3228 		break;
3229 	}
3230 	case KVM_SET_XSAVE: {
3231 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3232 		r = -ENOMEM;
3233 		if (!u.xsave)
3234 			break;
3235 
3236 		r = -EFAULT;
3237 		if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3238 			break;
3239 
3240 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3241 		break;
3242 	}
3243 	case KVM_GET_XCRS: {
3244 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3245 		r = -ENOMEM;
3246 		if (!u.xcrs)
3247 			break;
3248 
3249 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3250 
3251 		r = -EFAULT;
3252 		if (copy_to_user(argp, u.xcrs,
3253 				 sizeof(struct kvm_xcrs)))
3254 			break;
3255 		r = 0;
3256 		break;
3257 	}
3258 	case KVM_SET_XCRS: {
3259 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3260 		r = -ENOMEM;
3261 		if (!u.xcrs)
3262 			break;
3263 
3264 		r = -EFAULT;
3265 		if (copy_from_user(u.xcrs, argp,
3266 				   sizeof(struct kvm_xcrs)))
3267 			break;
3268 
3269 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3270 		break;
3271 	}
3272 	case KVM_SET_TSC_KHZ: {
3273 		u32 user_tsc_khz;
3274 
3275 		r = -EINVAL;
3276 		if (!kvm_has_tsc_control)
3277 			break;
3278 
3279 		user_tsc_khz = (u32)arg;
3280 
3281 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3282 			goto out;
3283 
3284 		kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
3285 
3286 		r = 0;
3287 		goto out;
3288 	}
3289 	case KVM_GET_TSC_KHZ: {
3290 		r = -EIO;
3291 		if (check_tsc_unstable())
3292 			goto out;
3293 
3294 		r = vcpu_tsc_khz(vcpu);
3295 
3296 		goto out;
3297 	}
3298 	default:
3299 		r = -EINVAL;
3300 	}
3301 out:
3302 	kfree(u.buffer);
3303 	return r;
3304 }
3305 
3306 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3307 {
3308 	int ret;
3309 
3310 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3311 		return -1;
3312 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3313 	return ret;
3314 }
3315 
3316 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3317 					      u64 ident_addr)
3318 {
3319 	kvm->arch.ept_identity_map_addr = ident_addr;
3320 	return 0;
3321 }
3322 
3323 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3324 					  u32 kvm_nr_mmu_pages)
3325 {
3326 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3327 		return -EINVAL;
3328 
3329 	mutex_lock(&kvm->slots_lock);
3330 	spin_lock(&kvm->mmu_lock);
3331 
3332 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3333 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3334 
3335 	spin_unlock(&kvm->mmu_lock);
3336 	mutex_unlock(&kvm->slots_lock);
3337 	return 0;
3338 }
3339 
3340 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3341 {
3342 	return kvm->arch.n_max_mmu_pages;
3343 }
3344 
3345 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3346 {
3347 	int r;
3348 
3349 	r = 0;
3350 	switch (chip->chip_id) {
3351 	case KVM_IRQCHIP_PIC_MASTER:
3352 		memcpy(&chip->chip.pic,
3353 			&pic_irqchip(kvm)->pics[0],
3354 			sizeof(struct kvm_pic_state));
3355 		break;
3356 	case KVM_IRQCHIP_PIC_SLAVE:
3357 		memcpy(&chip->chip.pic,
3358 			&pic_irqchip(kvm)->pics[1],
3359 			sizeof(struct kvm_pic_state));
3360 		break;
3361 	case KVM_IRQCHIP_IOAPIC:
3362 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3363 		break;
3364 	default:
3365 		r = -EINVAL;
3366 		break;
3367 	}
3368 	return r;
3369 }
3370 
3371 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3372 {
3373 	int r;
3374 
3375 	r = 0;
3376 	switch (chip->chip_id) {
3377 	case KVM_IRQCHIP_PIC_MASTER:
3378 		spin_lock(&pic_irqchip(kvm)->lock);
3379 		memcpy(&pic_irqchip(kvm)->pics[0],
3380 			&chip->chip.pic,
3381 			sizeof(struct kvm_pic_state));
3382 		spin_unlock(&pic_irqchip(kvm)->lock);
3383 		break;
3384 	case KVM_IRQCHIP_PIC_SLAVE:
3385 		spin_lock(&pic_irqchip(kvm)->lock);
3386 		memcpy(&pic_irqchip(kvm)->pics[1],
3387 			&chip->chip.pic,
3388 			sizeof(struct kvm_pic_state));
3389 		spin_unlock(&pic_irqchip(kvm)->lock);
3390 		break;
3391 	case KVM_IRQCHIP_IOAPIC:
3392 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3393 		break;
3394 	default:
3395 		r = -EINVAL;
3396 		break;
3397 	}
3398 	kvm_pic_update_irq(pic_irqchip(kvm));
3399 	return r;
3400 }
3401 
3402 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3403 {
3404 	int r = 0;
3405 
3406 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3407 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3408 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3409 	return r;
3410 }
3411 
3412 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3413 {
3414 	int r = 0;
3415 
3416 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3417 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3418 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3419 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3420 	return r;
3421 }
3422 
3423 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3424 {
3425 	int r = 0;
3426 
3427 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3428 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3429 		sizeof(ps->channels));
3430 	ps->flags = kvm->arch.vpit->pit_state.flags;
3431 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3432 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3433 	return r;
3434 }
3435 
3436 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3437 {
3438 	int r = 0, start = 0;
3439 	u32 prev_legacy, cur_legacy;
3440 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3441 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3442 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3443 	if (!prev_legacy && cur_legacy)
3444 		start = 1;
3445 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3446 	       sizeof(kvm->arch.vpit->pit_state.channels));
3447 	kvm->arch.vpit->pit_state.flags = ps->flags;
3448 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3449 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3450 	return r;
3451 }
3452 
3453 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3454 				 struct kvm_reinject_control *control)
3455 {
3456 	if (!kvm->arch.vpit)
3457 		return -ENXIO;
3458 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3459 	kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3460 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3461 	return 0;
3462 }
3463 
3464 /*
3465  * Get (and clear) the dirty memory log for a memory slot.
3466  */
3467 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3468 				      struct kvm_dirty_log *log)
3469 {
3470 	int r, i;
3471 	struct kvm_memory_slot *memslot;
3472 	unsigned long n;
3473 	unsigned long is_dirty = 0;
3474 
3475 	mutex_lock(&kvm->slots_lock);
3476 
3477 	r = -EINVAL;
3478 	if (log->slot >= KVM_MEMORY_SLOTS)
3479 		goto out;
3480 
3481 	memslot = &kvm->memslots->memslots[log->slot];
3482 	r = -ENOENT;
3483 	if (!memslot->dirty_bitmap)
3484 		goto out;
3485 
3486 	n = kvm_dirty_bitmap_bytes(memslot);
3487 
3488 	for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3489 		is_dirty = memslot->dirty_bitmap[i];
3490 
3491 	/* If nothing is dirty, don't bother messing with page tables. */
3492 	if (is_dirty) {
3493 		struct kvm_memslots *slots, *old_slots;
3494 		unsigned long *dirty_bitmap;
3495 
3496 		dirty_bitmap = memslot->dirty_bitmap_head;
3497 		if (memslot->dirty_bitmap == dirty_bitmap)
3498 			dirty_bitmap += n / sizeof(long);
3499 		memset(dirty_bitmap, 0, n);
3500 
3501 		r = -ENOMEM;
3502 		slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3503 		if (!slots)
3504 			goto out;
3505 		memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3506 		slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3507 		slots->generation++;
3508 
3509 		old_slots = kvm->memslots;
3510 		rcu_assign_pointer(kvm->memslots, slots);
3511 		synchronize_srcu_expedited(&kvm->srcu);
3512 		dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3513 		kfree(old_slots);
3514 
3515 		spin_lock(&kvm->mmu_lock);
3516 		kvm_mmu_slot_remove_write_access(kvm, log->slot);
3517 		spin_unlock(&kvm->mmu_lock);
3518 
3519 		r = -EFAULT;
3520 		if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3521 			goto out;
3522 	} else {
3523 		r = -EFAULT;
3524 		if (clear_user(log->dirty_bitmap, n))
3525 			goto out;
3526 	}
3527 
3528 	r = 0;
3529 out:
3530 	mutex_unlock(&kvm->slots_lock);
3531 	return r;
3532 }
3533 
3534 long kvm_arch_vm_ioctl(struct file *filp,
3535 		       unsigned int ioctl, unsigned long arg)
3536 {
3537 	struct kvm *kvm = filp->private_data;
3538 	void __user *argp = (void __user *)arg;
3539 	int r = -ENOTTY;
3540 	/*
3541 	 * This union makes it completely explicit to gcc-3.x
3542 	 * that these two variables' stack usage should be
3543 	 * combined, not added together.
3544 	 */
3545 	union {
3546 		struct kvm_pit_state ps;
3547 		struct kvm_pit_state2 ps2;
3548 		struct kvm_pit_config pit_config;
3549 	} u;
3550 
3551 	switch (ioctl) {
3552 	case KVM_SET_TSS_ADDR:
3553 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3554 		if (r < 0)
3555 			goto out;
3556 		break;
3557 	case KVM_SET_IDENTITY_MAP_ADDR: {
3558 		u64 ident_addr;
3559 
3560 		r = -EFAULT;
3561 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3562 			goto out;
3563 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3564 		if (r < 0)
3565 			goto out;
3566 		break;
3567 	}
3568 	case KVM_SET_NR_MMU_PAGES:
3569 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3570 		if (r)
3571 			goto out;
3572 		break;
3573 	case KVM_GET_NR_MMU_PAGES:
3574 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3575 		break;
3576 	case KVM_CREATE_IRQCHIP: {
3577 		struct kvm_pic *vpic;
3578 
3579 		mutex_lock(&kvm->lock);
3580 		r = -EEXIST;
3581 		if (kvm->arch.vpic)
3582 			goto create_irqchip_unlock;
3583 		r = -ENOMEM;
3584 		vpic = kvm_create_pic(kvm);
3585 		if (vpic) {
3586 			r = kvm_ioapic_init(kvm);
3587 			if (r) {
3588 				mutex_lock(&kvm->slots_lock);
3589 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3590 							  &vpic->dev_master);
3591 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3592 							  &vpic->dev_slave);
3593 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3594 							  &vpic->dev_eclr);
3595 				mutex_unlock(&kvm->slots_lock);
3596 				kfree(vpic);
3597 				goto create_irqchip_unlock;
3598 			}
3599 		} else
3600 			goto create_irqchip_unlock;
3601 		smp_wmb();
3602 		kvm->arch.vpic = vpic;
3603 		smp_wmb();
3604 		r = kvm_setup_default_irq_routing(kvm);
3605 		if (r) {
3606 			mutex_lock(&kvm->slots_lock);
3607 			mutex_lock(&kvm->irq_lock);
3608 			kvm_ioapic_destroy(kvm);
3609 			kvm_destroy_pic(kvm);
3610 			mutex_unlock(&kvm->irq_lock);
3611 			mutex_unlock(&kvm->slots_lock);
3612 		}
3613 	create_irqchip_unlock:
3614 		mutex_unlock(&kvm->lock);
3615 		break;
3616 	}
3617 	case KVM_CREATE_PIT:
3618 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3619 		goto create_pit;
3620 	case KVM_CREATE_PIT2:
3621 		r = -EFAULT;
3622 		if (copy_from_user(&u.pit_config, argp,
3623 				   sizeof(struct kvm_pit_config)))
3624 			goto out;
3625 	create_pit:
3626 		mutex_lock(&kvm->slots_lock);
3627 		r = -EEXIST;
3628 		if (kvm->arch.vpit)
3629 			goto create_pit_unlock;
3630 		r = -ENOMEM;
3631 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3632 		if (kvm->arch.vpit)
3633 			r = 0;
3634 	create_pit_unlock:
3635 		mutex_unlock(&kvm->slots_lock);
3636 		break;
3637 	case KVM_IRQ_LINE_STATUS:
3638 	case KVM_IRQ_LINE: {
3639 		struct kvm_irq_level irq_event;
3640 
3641 		r = -EFAULT;
3642 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
3643 			goto out;
3644 		r = -ENXIO;
3645 		if (irqchip_in_kernel(kvm)) {
3646 			__s32 status;
3647 			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3648 					irq_event.irq, irq_event.level);
3649 			if (ioctl == KVM_IRQ_LINE_STATUS) {
3650 				r = -EFAULT;
3651 				irq_event.status = status;
3652 				if (copy_to_user(argp, &irq_event,
3653 							sizeof irq_event))
3654 					goto out;
3655 			}
3656 			r = 0;
3657 		}
3658 		break;
3659 	}
3660 	case KVM_GET_IRQCHIP: {
3661 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3662 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3663 
3664 		r = -ENOMEM;
3665 		if (!chip)
3666 			goto out;
3667 		r = -EFAULT;
3668 		if (copy_from_user(chip, argp, sizeof *chip))
3669 			goto get_irqchip_out;
3670 		r = -ENXIO;
3671 		if (!irqchip_in_kernel(kvm))
3672 			goto get_irqchip_out;
3673 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3674 		if (r)
3675 			goto get_irqchip_out;
3676 		r = -EFAULT;
3677 		if (copy_to_user(argp, chip, sizeof *chip))
3678 			goto get_irqchip_out;
3679 		r = 0;
3680 	get_irqchip_out:
3681 		kfree(chip);
3682 		if (r)
3683 			goto out;
3684 		break;
3685 	}
3686 	case KVM_SET_IRQCHIP: {
3687 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3688 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3689 
3690 		r = -ENOMEM;
3691 		if (!chip)
3692 			goto out;
3693 		r = -EFAULT;
3694 		if (copy_from_user(chip, argp, sizeof *chip))
3695 			goto set_irqchip_out;
3696 		r = -ENXIO;
3697 		if (!irqchip_in_kernel(kvm))
3698 			goto set_irqchip_out;
3699 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3700 		if (r)
3701 			goto set_irqchip_out;
3702 		r = 0;
3703 	set_irqchip_out:
3704 		kfree(chip);
3705 		if (r)
3706 			goto out;
3707 		break;
3708 	}
3709 	case KVM_GET_PIT: {
3710 		r = -EFAULT;
3711 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3712 			goto out;
3713 		r = -ENXIO;
3714 		if (!kvm->arch.vpit)
3715 			goto out;
3716 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3717 		if (r)
3718 			goto out;
3719 		r = -EFAULT;
3720 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3721 			goto out;
3722 		r = 0;
3723 		break;
3724 	}
3725 	case KVM_SET_PIT: {
3726 		r = -EFAULT;
3727 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3728 			goto out;
3729 		r = -ENXIO;
3730 		if (!kvm->arch.vpit)
3731 			goto out;
3732 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3733 		if (r)
3734 			goto out;
3735 		r = 0;
3736 		break;
3737 	}
3738 	case KVM_GET_PIT2: {
3739 		r = -ENXIO;
3740 		if (!kvm->arch.vpit)
3741 			goto out;
3742 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3743 		if (r)
3744 			goto out;
3745 		r = -EFAULT;
3746 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3747 			goto out;
3748 		r = 0;
3749 		break;
3750 	}
3751 	case KVM_SET_PIT2: {
3752 		r = -EFAULT;
3753 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3754 			goto out;
3755 		r = -ENXIO;
3756 		if (!kvm->arch.vpit)
3757 			goto out;
3758 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3759 		if (r)
3760 			goto out;
3761 		r = 0;
3762 		break;
3763 	}
3764 	case KVM_REINJECT_CONTROL: {
3765 		struct kvm_reinject_control control;
3766 		r =  -EFAULT;
3767 		if (copy_from_user(&control, argp, sizeof(control)))
3768 			goto out;
3769 		r = kvm_vm_ioctl_reinject(kvm, &control);
3770 		if (r)
3771 			goto out;
3772 		r = 0;
3773 		break;
3774 	}
3775 	case KVM_XEN_HVM_CONFIG: {
3776 		r = -EFAULT;
3777 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3778 				   sizeof(struct kvm_xen_hvm_config)))
3779 			goto out;
3780 		r = -EINVAL;
3781 		if (kvm->arch.xen_hvm_config.flags)
3782 			goto out;
3783 		r = 0;
3784 		break;
3785 	}
3786 	case KVM_SET_CLOCK: {
3787 		struct kvm_clock_data user_ns;
3788 		u64 now_ns;
3789 		s64 delta;
3790 
3791 		r = -EFAULT;
3792 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3793 			goto out;
3794 
3795 		r = -EINVAL;
3796 		if (user_ns.flags)
3797 			goto out;
3798 
3799 		r = 0;
3800 		local_irq_disable();
3801 		now_ns = get_kernel_ns();
3802 		delta = user_ns.clock - now_ns;
3803 		local_irq_enable();
3804 		kvm->arch.kvmclock_offset = delta;
3805 		break;
3806 	}
3807 	case KVM_GET_CLOCK: {
3808 		struct kvm_clock_data user_ns;
3809 		u64 now_ns;
3810 
3811 		local_irq_disable();
3812 		now_ns = get_kernel_ns();
3813 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3814 		local_irq_enable();
3815 		user_ns.flags = 0;
3816 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3817 
3818 		r = -EFAULT;
3819 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3820 			goto out;
3821 		r = 0;
3822 		break;
3823 	}
3824 
3825 	default:
3826 		;
3827 	}
3828 out:
3829 	return r;
3830 }
3831 
3832 static void kvm_init_msr_list(void)
3833 {
3834 	u32 dummy[2];
3835 	unsigned i, j;
3836 
3837 	/* skip the first msrs in the list. KVM-specific */
3838 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3839 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3840 			continue;
3841 		if (j < i)
3842 			msrs_to_save[j] = msrs_to_save[i];
3843 		j++;
3844 	}
3845 	num_msrs_to_save = j;
3846 }
3847 
3848 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3849 			   const void *v)
3850 {
3851 	int handled = 0;
3852 	int n;
3853 
3854 	do {
3855 		n = min(len, 8);
3856 		if (!(vcpu->arch.apic &&
3857 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3858 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3859 			break;
3860 		handled += n;
3861 		addr += n;
3862 		len -= n;
3863 		v += n;
3864 	} while (len);
3865 
3866 	return handled;
3867 }
3868 
3869 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3870 {
3871 	int handled = 0;
3872 	int n;
3873 
3874 	do {
3875 		n = min(len, 8);
3876 		if (!(vcpu->arch.apic &&
3877 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3878 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3879 			break;
3880 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3881 		handled += n;
3882 		addr += n;
3883 		len -= n;
3884 		v += n;
3885 	} while (len);
3886 
3887 	return handled;
3888 }
3889 
3890 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3891 			struct kvm_segment *var, int seg)
3892 {
3893 	kvm_x86_ops->set_segment(vcpu, var, seg);
3894 }
3895 
3896 void kvm_get_segment(struct kvm_vcpu *vcpu,
3897 		     struct kvm_segment *var, int seg)
3898 {
3899 	kvm_x86_ops->get_segment(vcpu, var, seg);
3900 }
3901 
3902 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3903 {
3904 	return gpa;
3905 }
3906 
3907 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3908 {
3909 	gpa_t t_gpa;
3910 	struct x86_exception exception;
3911 
3912 	BUG_ON(!mmu_is_nested(vcpu));
3913 
3914 	/* NPT walks are always user-walks */
3915 	access |= PFERR_USER_MASK;
3916 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3917 
3918 	return t_gpa;
3919 }
3920 
3921 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3922 			      struct x86_exception *exception)
3923 {
3924 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3925 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3926 }
3927 
3928  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3929 				struct x86_exception *exception)
3930 {
3931 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3932 	access |= PFERR_FETCH_MASK;
3933 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3934 }
3935 
3936 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3937 			       struct x86_exception *exception)
3938 {
3939 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3940 	access |= PFERR_WRITE_MASK;
3941 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3942 }
3943 
3944 /* uses this to access any guest's mapped memory without checking CPL */
3945 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3946 				struct x86_exception *exception)
3947 {
3948 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3949 }
3950 
3951 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3952 				      struct kvm_vcpu *vcpu, u32 access,
3953 				      struct x86_exception *exception)
3954 {
3955 	void *data = val;
3956 	int r = X86EMUL_CONTINUE;
3957 
3958 	while (bytes) {
3959 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3960 							    exception);
3961 		unsigned offset = addr & (PAGE_SIZE-1);
3962 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3963 		int ret;
3964 
3965 		if (gpa == UNMAPPED_GVA)
3966 			return X86EMUL_PROPAGATE_FAULT;
3967 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3968 		if (ret < 0) {
3969 			r = X86EMUL_IO_NEEDED;
3970 			goto out;
3971 		}
3972 
3973 		bytes -= toread;
3974 		data += toread;
3975 		addr += toread;
3976 	}
3977 out:
3978 	return r;
3979 }
3980 
3981 /* used for instruction fetching */
3982 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3983 				gva_t addr, void *val, unsigned int bytes,
3984 				struct x86_exception *exception)
3985 {
3986 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3987 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3988 
3989 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3990 					  access | PFERR_FETCH_MASK,
3991 					  exception);
3992 }
3993 
3994 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3995 			       gva_t addr, void *val, unsigned int bytes,
3996 			       struct x86_exception *exception)
3997 {
3998 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3999 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4000 
4001 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4002 					  exception);
4003 }
4004 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4005 
4006 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4007 				      gva_t addr, void *val, unsigned int bytes,
4008 				      struct x86_exception *exception)
4009 {
4010 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4011 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4012 }
4013 
4014 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4015 				       gva_t addr, void *val,
4016 				       unsigned int bytes,
4017 				       struct x86_exception *exception)
4018 {
4019 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4020 	void *data = val;
4021 	int r = X86EMUL_CONTINUE;
4022 
4023 	while (bytes) {
4024 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4025 							     PFERR_WRITE_MASK,
4026 							     exception);
4027 		unsigned offset = addr & (PAGE_SIZE-1);
4028 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4029 		int ret;
4030 
4031 		if (gpa == UNMAPPED_GVA)
4032 			return X86EMUL_PROPAGATE_FAULT;
4033 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4034 		if (ret < 0) {
4035 			r = X86EMUL_IO_NEEDED;
4036 			goto out;
4037 		}
4038 
4039 		bytes -= towrite;
4040 		data += towrite;
4041 		addr += towrite;
4042 	}
4043 out:
4044 	return r;
4045 }
4046 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4047 
4048 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4049 				gpa_t *gpa, struct x86_exception *exception,
4050 				bool write)
4051 {
4052 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4053 
4054 	if (vcpu_match_mmio_gva(vcpu, gva) &&
4055 		  check_write_user_access(vcpu, write, access,
4056 		  vcpu->arch.access)) {
4057 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4058 					(gva & (PAGE_SIZE - 1));
4059 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4060 		return 1;
4061 	}
4062 
4063 	if (write)
4064 		access |= PFERR_WRITE_MASK;
4065 
4066 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4067 
4068 	if (*gpa == UNMAPPED_GVA)
4069 		return -1;
4070 
4071 	/* For APIC access vmexit */
4072 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4073 		return 1;
4074 
4075 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4076 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4077 		return 1;
4078 	}
4079 
4080 	return 0;
4081 }
4082 
4083 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4084 			const void *val, int bytes)
4085 {
4086 	int ret;
4087 
4088 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4089 	if (ret < 0)
4090 		return 0;
4091 	kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
4092 	return 1;
4093 }
4094 
4095 struct read_write_emulator_ops {
4096 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4097 				  int bytes);
4098 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4099 				  void *val, int bytes);
4100 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4101 			       int bytes, void *val);
4102 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4103 				    void *val, int bytes);
4104 	bool write;
4105 };
4106 
4107 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4108 {
4109 	if (vcpu->mmio_read_completed) {
4110 		memcpy(val, vcpu->mmio_data, bytes);
4111 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4112 			       vcpu->mmio_phys_addr, *(u64 *)val);
4113 		vcpu->mmio_read_completed = 0;
4114 		return 1;
4115 	}
4116 
4117 	return 0;
4118 }
4119 
4120 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4121 			void *val, int bytes)
4122 {
4123 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4124 }
4125 
4126 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4127 			 void *val, int bytes)
4128 {
4129 	return emulator_write_phys(vcpu, gpa, val, bytes);
4130 }
4131 
4132 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4133 {
4134 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4135 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4136 }
4137 
4138 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4139 			  void *val, int bytes)
4140 {
4141 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4142 	return X86EMUL_IO_NEEDED;
4143 }
4144 
4145 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4146 			   void *val, int bytes)
4147 {
4148 	memcpy(vcpu->mmio_data, val, bytes);
4149 	memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
4150 	return X86EMUL_CONTINUE;
4151 }
4152 
4153 static struct read_write_emulator_ops read_emultor = {
4154 	.read_write_prepare = read_prepare,
4155 	.read_write_emulate = read_emulate,
4156 	.read_write_mmio = vcpu_mmio_read,
4157 	.read_write_exit_mmio = read_exit_mmio,
4158 };
4159 
4160 static struct read_write_emulator_ops write_emultor = {
4161 	.read_write_emulate = write_emulate,
4162 	.read_write_mmio = write_mmio,
4163 	.read_write_exit_mmio = write_exit_mmio,
4164 	.write = true,
4165 };
4166 
4167 static int emulator_read_write_onepage(unsigned long addr, void *val,
4168 				       unsigned int bytes,
4169 				       struct x86_exception *exception,
4170 				       struct kvm_vcpu *vcpu,
4171 				       struct read_write_emulator_ops *ops)
4172 {
4173 	gpa_t gpa;
4174 	int handled, ret;
4175 	bool write = ops->write;
4176 
4177 	if (ops->read_write_prepare &&
4178 		  ops->read_write_prepare(vcpu, val, bytes))
4179 		return X86EMUL_CONTINUE;
4180 
4181 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4182 
4183 	if (ret < 0)
4184 		return X86EMUL_PROPAGATE_FAULT;
4185 
4186 	/* For APIC access vmexit */
4187 	if (ret)
4188 		goto mmio;
4189 
4190 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4191 		return X86EMUL_CONTINUE;
4192 
4193 mmio:
4194 	/*
4195 	 * Is this MMIO handled locally?
4196 	 */
4197 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4198 	if (handled == bytes)
4199 		return X86EMUL_CONTINUE;
4200 
4201 	gpa += handled;
4202 	bytes -= handled;
4203 	val += handled;
4204 
4205 	vcpu->mmio_needed = 1;
4206 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4207 	vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
4208 	vcpu->mmio_size = bytes;
4209 	vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
4210 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
4211 	vcpu->mmio_index = 0;
4212 
4213 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4214 }
4215 
4216 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4217 			void *val, unsigned int bytes,
4218 			struct x86_exception *exception,
4219 			struct read_write_emulator_ops *ops)
4220 {
4221 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4222 
4223 	/* Crossing a page boundary? */
4224 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4225 		int rc, now;
4226 
4227 		now = -addr & ~PAGE_MASK;
4228 		rc = emulator_read_write_onepage(addr, val, now, exception,
4229 						 vcpu, ops);
4230 
4231 		if (rc != X86EMUL_CONTINUE)
4232 			return rc;
4233 		addr += now;
4234 		val += now;
4235 		bytes -= now;
4236 	}
4237 
4238 	return emulator_read_write_onepage(addr, val, bytes, exception,
4239 					   vcpu, ops);
4240 }
4241 
4242 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4243 				  unsigned long addr,
4244 				  void *val,
4245 				  unsigned int bytes,
4246 				  struct x86_exception *exception)
4247 {
4248 	return emulator_read_write(ctxt, addr, val, bytes,
4249 				   exception, &read_emultor);
4250 }
4251 
4252 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4253 			    unsigned long addr,
4254 			    const void *val,
4255 			    unsigned int bytes,
4256 			    struct x86_exception *exception)
4257 {
4258 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4259 				   exception, &write_emultor);
4260 }
4261 
4262 #define CMPXCHG_TYPE(t, ptr, old, new) \
4263 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4264 
4265 #ifdef CONFIG_X86_64
4266 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4267 #else
4268 #  define CMPXCHG64(ptr, old, new) \
4269 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4270 #endif
4271 
4272 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4273 				     unsigned long addr,
4274 				     const void *old,
4275 				     const void *new,
4276 				     unsigned int bytes,
4277 				     struct x86_exception *exception)
4278 {
4279 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4280 	gpa_t gpa;
4281 	struct page *page;
4282 	char *kaddr;
4283 	bool exchanged;
4284 
4285 	/* guests cmpxchg8b have to be emulated atomically */
4286 	if (bytes > 8 || (bytes & (bytes - 1)))
4287 		goto emul_write;
4288 
4289 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4290 
4291 	if (gpa == UNMAPPED_GVA ||
4292 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4293 		goto emul_write;
4294 
4295 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4296 		goto emul_write;
4297 
4298 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4299 	if (is_error_page(page)) {
4300 		kvm_release_page_clean(page);
4301 		goto emul_write;
4302 	}
4303 
4304 	kaddr = kmap_atomic(page, KM_USER0);
4305 	kaddr += offset_in_page(gpa);
4306 	switch (bytes) {
4307 	case 1:
4308 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4309 		break;
4310 	case 2:
4311 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4312 		break;
4313 	case 4:
4314 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4315 		break;
4316 	case 8:
4317 		exchanged = CMPXCHG64(kaddr, old, new);
4318 		break;
4319 	default:
4320 		BUG();
4321 	}
4322 	kunmap_atomic(kaddr, KM_USER0);
4323 	kvm_release_page_dirty(page);
4324 
4325 	if (!exchanged)
4326 		return X86EMUL_CMPXCHG_FAILED;
4327 
4328 	kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
4329 
4330 	return X86EMUL_CONTINUE;
4331 
4332 emul_write:
4333 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4334 
4335 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4336 }
4337 
4338 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4339 {
4340 	/* TODO: String I/O for in kernel device */
4341 	int r;
4342 
4343 	if (vcpu->arch.pio.in)
4344 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4345 				    vcpu->arch.pio.size, pd);
4346 	else
4347 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4348 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4349 				     pd);
4350 	return r;
4351 }
4352 
4353 
4354 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4355 				    int size, unsigned short port, void *val,
4356 				    unsigned int count)
4357 {
4358 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4359 
4360 	if (vcpu->arch.pio.count)
4361 		goto data_avail;
4362 
4363 	trace_kvm_pio(0, port, size, count);
4364 
4365 	vcpu->arch.pio.port = port;
4366 	vcpu->arch.pio.in = 1;
4367 	vcpu->arch.pio.count  = count;
4368 	vcpu->arch.pio.size = size;
4369 
4370 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4371 	data_avail:
4372 		memcpy(val, vcpu->arch.pio_data, size * count);
4373 		vcpu->arch.pio.count = 0;
4374 		return 1;
4375 	}
4376 
4377 	vcpu->run->exit_reason = KVM_EXIT_IO;
4378 	vcpu->run->io.direction = KVM_EXIT_IO_IN;
4379 	vcpu->run->io.size = size;
4380 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4381 	vcpu->run->io.count = count;
4382 	vcpu->run->io.port = port;
4383 
4384 	return 0;
4385 }
4386 
4387 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4388 				     int size, unsigned short port,
4389 				     const void *val, unsigned int count)
4390 {
4391 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4392 
4393 	trace_kvm_pio(1, port, size, count);
4394 
4395 	vcpu->arch.pio.port = port;
4396 	vcpu->arch.pio.in = 0;
4397 	vcpu->arch.pio.count = count;
4398 	vcpu->arch.pio.size = size;
4399 
4400 	memcpy(vcpu->arch.pio_data, val, size * count);
4401 
4402 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4403 		vcpu->arch.pio.count = 0;
4404 		return 1;
4405 	}
4406 
4407 	vcpu->run->exit_reason = KVM_EXIT_IO;
4408 	vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4409 	vcpu->run->io.size = size;
4410 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4411 	vcpu->run->io.count = count;
4412 	vcpu->run->io.port = port;
4413 
4414 	return 0;
4415 }
4416 
4417 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4418 {
4419 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4420 }
4421 
4422 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4423 {
4424 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4425 }
4426 
4427 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4428 {
4429 	if (!need_emulate_wbinvd(vcpu))
4430 		return X86EMUL_CONTINUE;
4431 
4432 	if (kvm_x86_ops->has_wbinvd_exit()) {
4433 		int cpu = get_cpu();
4434 
4435 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4436 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4437 				wbinvd_ipi, NULL, 1);
4438 		put_cpu();
4439 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4440 	} else
4441 		wbinvd();
4442 	return X86EMUL_CONTINUE;
4443 }
4444 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4445 
4446 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4447 {
4448 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4449 }
4450 
4451 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4452 {
4453 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4454 }
4455 
4456 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4457 {
4458 
4459 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4460 }
4461 
4462 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4463 {
4464 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4465 }
4466 
4467 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4468 {
4469 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4470 	unsigned long value;
4471 
4472 	switch (cr) {
4473 	case 0:
4474 		value = kvm_read_cr0(vcpu);
4475 		break;
4476 	case 2:
4477 		value = vcpu->arch.cr2;
4478 		break;
4479 	case 3:
4480 		value = kvm_read_cr3(vcpu);
4481 		break;
4482 	case 4:
4483 		value = kvm_read_cr4(vcpu);
4484 		break;
4485 	case 8:
4486 		value = kvm_get_cr8(vcpu);
4487 		break;
4488 	default:
4489 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4490 		return 0;
4491 	}
4492 
4493 	return value;
4494 }
4495 
4496 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4497 {
4498 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4499 	int res = 0;
4500 
4501 	switch (cr) {
4502 	case 0:
4503 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4504 		break;
4505 	case 2:
4506 		vcpu->arch.cr2 = val;
4507 		break;
4508 	case 3:
4509 		res = kvm_set_cr3(vcpu, val);
4510 		break;
4511 	case 4:
4512 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4513 		break;
4514 	case 8:
4515 		res = kvm_set_cr8(vcpu, val);
4516 		break;
4517 	default:
4518 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4519 		res = -1;
4520 	}
4521 
4522 	return res;
4523 }
4524 
4525 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4526 {
4527 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4528 }
4529 
4530 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4531 {
4532 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4533 }
4534 
4535 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4536 {
4537 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4538 }
4539 
4540 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4541 {
4542 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4543 }
4544 
4545 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4546 {
4547 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4548 }
4549 
4550 static unsigned long emulator_get_cached_segment_base(
4551 	struct x86_emulate_ctxt *ctxt, int seg)
4552 {
4553 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4554 }
4555 
4556 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4557 				 struct desc_struct *desc, u32 *base3,
4558 				 int seg)
4559 {
4560 	struct kvm_segment var;
4561 
4562 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4563 	*selector = var.selector;
4564 
4565 	if (var.unusable)
4566 		return false;
4567 
4568 	if (var.g)
4569 		var.limit >>= 12;
4570 	set_desc_limit(desc, var.limit);
4571 	set_desc_base(desc, (unsigned long)var.base);
4572 #ifdef CONFIG_X86_64
4573 	if (base3)
4574 		*base3 = var.base >> 32;
4575 #endif
4576 	desc->type = var.type;
4577 	desc->s = var.s;
4578 	desc->dpl = var.dpl;
4579 	desc->p = var.present;
4580 	desc->avl = var.avl;
4581 	desc->l = var.l;
4582 	desc->d = var.db;
4583 	desc->g = var.g;
4584 
4585 	return true;
4586 }
4587 
4588 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4589 				 struct desc_struct *desc, u32 base3,
4590 				 int seg)
4591 {
4592 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4593 	struct kvm_segment var;
4594 
4595 	var.selector = selector;
4596 	var.base = get_desc_base(desc);
4597 #ifdef CONFIG_X86_64
4598 	var.base |= ((u64)base3) << 32;
4599 #endif
4600 	var.limit = get_desc_limit(desc);
4601 	if (desc->g)
4602 		var.limit = (var.limit << 12) | 0xfff;
4603 	var.type = desc->type;
4604 	var.present = desc->p;
4605 	var.dpl = desc->dpl;
4606 	var.db = desc->d;
4607 	var.s = desc->s;
4608 	var.l = desc->l;
4609 	var.g = desc->g;
4610 	var.avl = desc->avl;
4611 	var.present = desc->p;
4612 	var.unusable = !var.present;
4613 	var.padding = 0;
4614 
4615 	kvm_set_segment(vcpu, &var, seg);
4616 	return;
4617 }
4618 
4619 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4620 			    u32 msr_index, u64 *pdata)
4621 {
4622 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4623 }
4624 
4625 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4626 			    u32 msr_index, u64 data)
4627 {
4628 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4629 }
4630 
4631 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4632 {
4633 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4634 }
4635 
4636 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4637 {
4638 	preempt_disable();
4639 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4640 	/*
4641 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4642 	 * so it may be clear at this point.
4643 	 */
4644 	clts();
4645 }
4646 
4647 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4648 {
4649 	preempt_enable();
4650 }
4651 
4652 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4653 			      struct x86_instruction_info *info,
4654 			      enum x86_intercept_stage stage)
4655 {
4656 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4657 }
4658 
4659 static struct x86_emulate_ops emulate_ops = {
4660 	.read_std            = kvm_read_guest_virt_system,
4661 	.write_std           = kvm_write_guest_virt_system,
4662 	.fetch               = kvm_fetch_guest_virt,
4663 	.read_emulated       = emulator_read_emulated,
4664 	.write_emulated      = emulator_write_emulated,
4665 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4666 	.invlpg              = emulator_invlpg,
4667 	.pio_in_emulated     = emulator_pio_in_emulated,
4668 	.pio_out_emulated    = emulator_pio_out_emulated,
4669 	.get_segment         = emulator_get_segment,
4670 	.set_segment         = emulator_set_segment,
4671 	.get_cached_segment_base = emulator_get_cached_segment_base,
4672 	.get_gdt             = emulator_get_gdt,
4673 	.get_idt	     = emulator_get_idt,
4674 	.set_gdt             = emulator_set_gdt,
4675 	.set_idt	     = emulator_set_idt,
4676 	.get_cr              = emulator_get_cr,
4677 	.set_cr              = emulator_set_cr,
4678 	.cpl                 = emulator_get_cpl,
4679 	.get_dr              = emulator_get_dr,
4680 	.set_dr              = emulator_set_dr,
4681 	.set_msr             = emulator_set_msr,
4682 	.get_msr             = emulator_get_msr,
4683 	.halt                = emulator_halt,
4684 	.wbinvd              = emulator_wbinvd,
4685 	.fix_hypercall       = emulator_fix_hypercall,
4686 	.get_fpu             = emulator_get_fpu,
4687 	.put_fpu             = emulator_put_fpu,
4688 	.intercept           = emulator_intercept,
4689 };
4690 
4691 static void cache_all_regs(struct kvm_vcpu *vcpu)
4692 {
4693 	kvm_register_read(vcpu, VCPU_REGS_RAX);
4694 	kvm_register_read(vcpu, VCPU_REGS_RSP);
4695 	kvm_register_read(vcpu, VCPU_REGS_RIP);
4696 	vcpu->arch.regs_dirty = ~0;
4697 }
4698 
4699 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4700 {
4701 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4702 	/*
4703 	 * an sti; sti; sequence only disable interrupts for the first
4704 	 * instruction. So, if the last instruction, be it emulated or
4705 	 * not, left the system with the INT_STI flag enabled, it
4706 	 * means that the last instruction is an sti. We should not
4707 	 * leave the flag on in this case. The same goes for mov ss
4708 	 */
4709 	if (!(int_shadow & mask))
4710 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4711 }
4712 
4713 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4714 {
4715 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4716 	if (ctxt->exception.vector == PF_VECTOR)
4717 		kvm_propagate_fault(vcpu, &ctxt->exception);
4718 	else if (ctxt->exception.error_code_valid)
4719 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4720 				      ctxt->exception.error_code);
4721 	else
4722 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4723 }
4724 
4725 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4726 			      const unsigned long *regs)
4727 {
4728 	memset(&ctxt->twobyte, 0,
4729 	       (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4730 	memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4731 
4732 	ctxt->fetch.start = 0;
4733 	ctxt->fetch.end = 0;
4734 	ctxt->io_read.pos = 0;
4735 	ctxt->io_read.end = 0;
4736 	ctxt->mem_read.pos = 0;
4737 	ctxt->mem_read.end = 0;
4738 }
4739 
4740 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4741 {
4742 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4743 	int cs_db, cs_l;
4744 
4745 	/*
4746 	 * TODO: fix emulate.c to use guest_read/write_register
4747 	 * instead of direct ->regs accesses, can save hundred cycles
4748 	 * on Intel for instructions that don't read/change RSP, for
4749 	 * for example.
4750 	 */
4751 	cache_all_regs(vcpu);
4752 
4753 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4754 
4755 	ctxt->eflags = kvm_get_rflags(vcpu);
4756 	ctxt->eip = kvm_rip_read(vcpu);
4757 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4758 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4759 		     cs_l				? X86EMUL_MODE_PROT64 :
4760 		     cs_db				? X86EMUL_MODE_PROT32 :
4761 							  X86EMUL_MODE_PROT16;
4762 	ctxt->guest_mode = is_guest_mode(vcpu);
4763 
4764 	init_decode_cache(ctxt, vcpu->arch.regs);
4765 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4766 }
4767 
4768 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4769 {
4770 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4771 	int ret;
4772 
4773 	init_emulate_ctxt(vcpu);
4774 
4775 	ctxt->op_bytes = 2;
4776 	ctxt->ad_bytes = 2;
4777 	ctxt->_eip = ctxt->eip + inc_eip;
4778 	ret = emulate_int_real(ctxt, irq);
4779 
4780 	if (ret != X86EMUL_CONTINUE)
4781 		return EMULATE_FAIL;
4782 
4783 	ctxt->eip = ctxt->_eip;
4784 	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4785 	kvm_rip_write(vcpu, ctxt->eip);
4786 	kvm_set_rflags(vcpu, ctxt->eflags);
4787 
4788 	if (irq == NMI_VECTOR)
4789 		vcpu->arch.nmi_pending = 0;
4790 	else
4791 		vcpu->arch.interrupt.pending = false;
4792 
4793 	return EMULATE_DONE;
4794 }
4795 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4796 
4797 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4798 {
4799 	int r = EMULATE_DONE;
4800 
4801 	++vcpu->stat.insn_emulation_fail;
4802 	trace_kvm_emulate_insn_failed(vcpu);
4803 	if (!is_guest_mode(vcpu)) {
4804 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4805 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4806 		vcpu->run->internal.ndata = 0;
4807 		r = EMULATE_FAIL;
4808 	}
4809 	kvm_queue_exception(vcpu, UD_VECTOR);
4810 
4811 	return r;
4812 }
4813 
4814 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4815 {
4816 	gpa_t gpa;
4817 
4818 	if (tdp_enabled)
4819 		return false;
4820 
4821 	/*
4822 	 * if emulation was due to access to shadowed page table
4823 	 * and it failed try to unshadow page and re-entetr the
4824 	 * guest to let CPU execute the instruction.
4825 	 */
4826 	if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4827 		return true;
4828 
4829 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4830 
4831 	if (gpa == UNMAPPED_GVA)
4832 		return true; /* let cpu generate fault */
4833 
4834 	if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4835 		return true;
4836 
4837 	return false;
4838 }
4839 
4840 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4841 			    unsigned long cr2,
4842 			    int emulation_type,
4843 			    void *insn,
4844 			    int insn_len)
4845 {
4846 	int r;
4847 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4848 	bool writeback = true;
4849 
4850 	kvm_clear_exception_queue(vcpu);
4851 
4852 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4853 		init_emulate_ctxt(vcpu);
4854 		ctxt->interruptibility = 0;
4855 		ctxt->have_exception = false;
4856 		ctxt->perm_ok = false;
4857 
4858 		ctxt->only_vendor_specific_insn
4859 			= emulation_type & EMULTYPE_TRAP_UD;
4860 
4861 		r = x86_decode_insn(ctxt, insn, insn_len);
4862 
4863 		trace_kvm_emulate_insn_start(vcpu);
4864 		++vcpu->stat.insn_emulation;
4865 		if (r != EMULATION_OK)  {
4866 			if (emulation_type & EMULTYPE_TRAP_UD)
4867 				return EMULATE_FAIL;
4868 			if (reexecute_instruction(vcpu, cr2))
4869 				return EMULATE_DONE;
4870 			if (emulation_type & EMULTYPE_SKIP)
4871 				return EMULATE_FAIL;
4872 			return handle_emulation_failure(vcpu);
4873 		}
4874 	}
4875 
4876 	if (emulation_type & EMULTYPE_SKIP) {
4877 		kvm_rip_write(vcpu, ctxt->_eip);
4878 		return EMULATE_DONE;
4879 	}
4880 
4881 	/* this is needed for vmware backdoor interface to work since it
4882 	   changes registers values  during IO operation */
4883 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4884 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4885 		memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4886 	}
4887 
4888 restart:
4889 	r = x86_emulate_insn(ctxt);
4890 
4891 	if (r == EMULATION_INTERCEPTED)
4892 		return EMULATE_DONE;
4893 
4894 	if (r == EMULATION_FAILED) {
4895 		if (reexecute_instruction(vcpu, cr2))
4896 			return EMULATE_DONE;
4897 
4898 		return handle_emulation_failure(vcpu);
4899 	}
4900 
4901 	if (ctxt->have_exception) {
4902 		inject_emulated_exception(vcpu);
4903 		r = EMULATE_DONE;
4904 	} else if (vcpu->arch.pio.count) {
4905 		if (!vcpu->arch.pio.in)
4906 			vcpu->arch.pio.count = 0;
4907 		else
4908 			writeback = false;
4909 		r = EMULATE_DO_MMIO;
4910 	} else if (vcpu->mmio_needed) {
4911 		if (!vcpu->mmio_is_write)
4912 			writeback = false;
4913 		r = EMULATE_DO_MMIO;
4914 	} else if (r == EMULATION_RESTART)
4915 		goto restart;
4916 	else
4917 		r = EMULATE_DONE;
4918 
4919 	if (writeback) {
4920 		toggle_interruptibility(vcpu, ctxt->interruptibility);
4921 		kvm_set_rflags(vcpu, ctxt->eflags);
4922 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4923 		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4924 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4925 		kvm_rip_write(vcpu, ctxt->eip);
4926 	} else
4927 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4928 
4929 	return r;
4930 }
4931 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4932 
4933 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4934 {
4935 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4936 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4937 					    size, port, &val, 1);
4938 	/* do not return to emulator after return from userspace */
4939 	vcpu->arch.pio.count = 0;
4940 	return ret;
4941 }
4942 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4943 
4944 static void tsc_bad(void *info)
4945 {
4946 	__this_cpu_write(cpu_tsc_khz, 0);
4947 }
4948 
4949 static void tsc_khz_changed(void *data)
4950 {
4951 	struct cpufreq_freqs *freq = data;
4952 	unsigned long khz = 0;
4953 
4954 	if (data)
4955 		khz = freq->new;
4956 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4957 		khz = cpufreq_quick_get(raw_smp_processor_id());
4958 	if (!khz)
4959 		khz = tsc_khz;
4960 	__this_cpu_write(cpu_tsc_khz, khz);
4961 }
4962 
4963 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4964 				     void *data)
4965 {
4966 	struct cpufreq_freqs *freq = data;
4967 	struct kvm *kvm;
4968 	struct kvm_vcpu *vcpu;
4969 	int i, send_ipi = 0;
4970 
4971 	/*
4972 	 * We allow guests to temporarily run on slowing clocks,
4973 	 * provided we notify them after, or to run on accelerating
4974 	 * clocks, provided we notify them before.  Thus time never
4975 	 * goes backwards.
4976 	 *
4977 	 * However, we have a problem.  We can't atomically update
4978 	 * the frequency of a given CPU from this function; it is
4979 	 * merely a notifier, which can be called from any CPU.
4980 	 * Changing the TSC frequency at arbitrary points in time
4981 	 * requires a recomputation of local variables related to
4982 	 * the TSC for each VCPU.  We must flag these local variables
4983 	 * to be updated and be sure the update takes place with the
4984 	 * new frequency before any guests proceed.
4985 	 *
4986 	 * Unfortunately, the combination of hotplug CPU and frequency
4987 	 * change creates an intractable locking scenario; the order
4988 	 * of when these callouts happen is undefined with respect to
4989 	 * CPU hotplug, and they can race with each other.  As such,
4990 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4991 	 * undefined; you can actually have a CPU frequency change take
4992 	 * place in between the computation of X and the setting of the
4993 	 * variable.  To protect against this problem, all updates of
4994 	 * the per_cpu tsc_khz variable are done in an interrupt
4995 	 * protected IPI, and all callers wishing to update the value
4996 	 * must wait for a synchronous IPI to complete (which is trivial
4997 	 * if the caller is on the CPU already).  This establishes the
4998 	 * necessary total order on variable updates.
4999 	 *
5000 	 * Note that because a guest time update may take place
5001 	 * anytime after the setting of the VCPU's request bit, the
5002 	 * correct TSC value must be set before the request.  However,
5003 	 * to ensure the update actually makes it to any guest which
5004 	 * starts running in hardware virtualization between the set
5005 	 * and the acquisition of the spinlock, we must also ping the
5006 	 * CPU after setting the request bit.
5007 	 *
5008 	 */
5009 
5010 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5011 		return 0;
5012 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5013 		return 0;
5014 
5015 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5016 
5017 	raw_spin_lock(&kvm_lock);
5018 	list_for_each_entry(kvm, &vm_list, vm_list) {
5019 		kvm_for_each_vcpu(i, vcpu, kvm) {
5020 			if (vcpu->cpu != freq->cpu)
5021 				continue;
5022 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5023 			if (vcpu->cpu != smp_processor_id())
5024 				send_ipi = 1;
5025 		}
5026 	}
5027 	raw_spin_unlock(&kvm_lock);
5028 
5029 	if (freq->old < freq->new && send_ipi) {
5030 		/*
5031 		 * We upscale the frequency.  Must make the guest
5032 		 * doesn't see old kvmclock values while running with
5033 		 * the new frequency, otherwise we risk the guest sees
5034 		 * time go backwards.
5035 		 *
5036 		 * In case we update the frequency for another cpu
5037 		 * (which might be in guest context) send an interrupt
5038 		 * to kick the cpu out of guest context.  Next time
5039 		 * guest context is entered kvmclock will be updated,
5040 		 * so the guest will not see stale values.
5041 		 */
5042 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5043 	}
5044 	return 0;
5045 }
5046 
5047 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5048 	.notifier_call  = kvmclock_cpufreq_notifier
5049 };
5050 
5051 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5052 					unsigned long action, void *hcpu)
5053 {
5054 	unsigned int cpu = (unsigned long)hcpu;
5055 
5056 	switch (action) {
5057 		case CPU_ONLINE:
5058 		case CPU_DOWN_FAILED:
5059 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5060 			break;
5061 		case CPU_DOWN_PREPARE:
5062 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5063 			break;
5064 	}
5065 	return NOTIFY_OK;
5066 }
5067 
5068 static struct notifier_block kvmclock_cpu_notifier_block = {
5069 	.notifier_call  = kvmclock_cpu_notifier,
5070 	.priority = -INT_MAX
5071 };
5072 
5073 static void kvm_timer_init(void)
5074 {
5075 	int cpu;
5076 
5077 	max_tsc_khz = tsc_khz;
5078 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5079 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5080 #ifdef CONFIG_CPU_FREQ
5081 		struct cpufreq_policy policy;
5082 		memset(&policy, 0, sizeof(policy));
5083 		cpu = get_cpu();
5084 		cpufreq_get_policy(&policy, cpu);
5085 		if (policy.cpuinfo.max_freq)
5086 			max_tsc_khz = policy.cpuinfo.max_freq;
5087 		put_cpu();
5088 #endif
5089 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5090 					  CPUFREQ_TRANSITION_NOTIFIER);
5091 	}
5092 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5093 	for_each_online_cpu(cpu)
5094 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5095 }
5096 
5097 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5098 
5099 static int kvm_is_in_guest(void)
5100 {
5101 	return percpu_read(current_vcpu) != NULL;
5102 }
5103 
5104 static int kvm_is_user_mode(void)
5105 {
5106 	int user_mode = 3;
5107 
5108 	if (percpu_read(current_vcpu))
5109 		user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
5110 
5111 	return user_mode != 0;
5112 }
5113 
5114 static unsigned long kvm_get_guest_ip(void)
5115 {
5116 	unsigned long ip = 0;
5117 
5118 	if (percpu_read(current_vcpu))
5119 		ip = kvm_rip_read(percpu_read(current_vcpu));
5120 
5121 	return ip;
5122 }
5123 
5124 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5125 	.is_in_guest		= kvm_is_in_guest,
5126 	.is_user_mode		= kvm_is_user_mode,
5127 	.get_guest_ip		= kvm_get_guest_ip,
5128 };
5129 
5130 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5131 {
5132 	percpu_write(current_vcpu, vcpu);
5133 }
5134 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5135 
5136 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5137 {
5138 	percpu_write(current_vcpu, NULL);
5139 }
5140 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5141 
5142 static void kvm_set_mmio_spte_mask(void)
5143 {
5144 	u64 mask;
5145 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5146 
5147 	/*
5148 	 * Set the reserved bits and the present bit of an paging-structure
5149 	 * entry to generate page fault with PFER.RSV = 1.
5150 	 */
5151 	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5152 	mask |= 1ull;
5153 
5154 #ifdef CONFIG_X86_64
5155 	/*
5156 	 * If reserved bit is not supported, clear the present bit to disable
5157 	 * mmio page fault.
5158 	 */
5159 	if (maxphyaddr == 52)
5160 		mask &= ~1ull;
5161 #endif
5162 
5163 	kvm_mmu_set_mmio_spte_mask(mask);
5164 }
5165 
5166 int kvm_arch_init(void *opaque)
5167 {
5168 	int r;
5169 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5170 
5171 	if (kvm_x86_ops) {
5172 		printk(KERN_ERR "kvm: already loaded the other module\n");
5173 		r = -EEXIST;
5174 		goto out;
5175 	}
5176 
5177 	if (!ops->cpu_has_kvm_support()) {
5178 		printk(KERN_ERR "kvm: no hardware support\n");
5179 		r = -EOPNOTSUPP;
5180 		goto out;
5181 	}
5182 	if (ops->disabled_by_bios()) {
5183 		printk(KERN_ERR "kvm: disabled by bios\n");
5184 		r = -EOPNOTSUPP;
5185 		goto out;
5186 	}
5187 
5188 	r = kvm_mmu_module_init();
5189 	if (r)
5190 		goto out;
5191 
5192 	kvm_set_mmio_spte_mask();
5193 	kvm_init_msr_list();
5194 
5195 	kvm_x86_ops = ops;
5196 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5197 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5198 
5199 	kvm_timer_init();
5200 
5201 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5202 
5203 	if (cpu_has_xsave)
5204 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5205 
5206 	return 0;
5207 
5208 out:
5209 	return r;
5210 }
5211 
5212 void kvm_arch_exit(void)
5213 {
5214 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5215 
5216 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5217 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5218 					    CPUFREQ_TRANSITION_NOTIFIER);
5219 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5220 	kvm_x86_ops = NULL;
5221 	kvm_mmu_module_exit();
5222 }
5223 
5224 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5225 {
5226 	++vcpu->stat.halt_exits;
5227 	if (irqchip_in_kernel(vcpu->kvm)) {
5228 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5229 		return 1;
5230 	} else {
5231 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5232 		return 0;
5233 	}
5234 }
5235 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5236 
5237 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
5238 			   unsigned long a1)
5239 {
5240 	if (is_long_mode(vcpu))
5241 		return a0;
5242 	else
5243 		return a0 | ((gpa_t)a1 << 32);
5244 }
5245 
5246 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5247 {
5248 	u64 param, ingpa, outgpa, ret;
5249 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5250 	bool fast, longmode;
5251 	int cs_db, cs_l;
5252 
5253 	/*
5254 	 * hypercall generates UD from non zero cpl and real mode
5255 	 * per HYPER-V spec
5256 	 */
5257 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5258 		kvm_queue_exception(vcpu, UD_VECTOR);
5259 		return 0;
5260 	}
5261 
5262 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5263 	longmode = is_long_mode(vcpu) && cs_l == 1;
5264 
5265 	if (!longmode) {
5266 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5267 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5268 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5269 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5270 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5271 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5272 	}
5273 #ifdef CONFIG_X86_64
5274 	else {
5275 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5276 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5277 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5278 	}
5279 #endif
5280 
5281 	code = param & 0xffff;
5282 	fast = (param >> 16) & 0x1;
5283 	rep_cnt = (param >> 32) & 0xfff;
5284 	rep_idx = (param >> 48) & 0xfff;
5285 
5286 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5287 
5288 	switch (code) {
5289 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5290 		kvm_vcpu_on_spin(vcpu);
5291 		break;
5292 	default:
5293 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5294 		break;
5295 	}
5296 
5297 	ret = res | (((u64)rep_done & 0xfff) << 32);
5298 	if (longmode) {
5299 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5300 	} else {
5301 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5302 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5303 	}
5304 
5305 	return 1;
5306 }
5307 
5308 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5309 {
5310 	unsigned long nr, a0, a1, a2, a3, ret;
5311 	int r = 1;
5312 
5313 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5314 		return kvm_hv_hypercall(vcpu);
5315 
5316 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5317 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5318 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5319 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5320 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5321 
5322 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5323 
5324 	if (!is_long_mode(vcpu)) {
5325 		nr &= 0xFFFFFFFF;
5326 		a0 &= 0xFFFFFFFF;
5327 		a1 &= 0xFFFFFFFF;
5328 		a2 &= 0xFFFFFFFF;
5329 		a3 &= 0xFFFFFFFF;
5330 	}
5331 
5332 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5333 		ret = -KVM_EPERM;
5334 		goto out;
5335 	}
5336 
5337 	switch (nr) {
5338 	case KVM_HC_VAPIC_POLL_IRQ:
5339 		ret = 0;
5340 		break;
5341 	case KVM_HC_MMU_OP:
5342 		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
5343 		break;
5344 	default:
5345 		ret = -KVM_ENOSYS;
5346 		break;
5347 	}
5348 out:
5349 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5350 	++vcpu->stat.hypercalls;
5351 	return r;
5352 }
5353 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5354 
5355 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5356 {
5357 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5358 	char instruction[3];
5359 	unsigned long rip = kvm_rip_read(vcpu);
5360 
5361 	/*
5362 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
5363 	 * to ensure that the updated hypercall appears atomically across all
5364 	 * VCPUs.
5365 	 */
5366 	kvm_mmu_zap_all(vcpu->kvm);
5367 
5368 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5369 
5370 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5371 }
5372 
5373 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
5374 {
5375 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
5376 	int j, nent = vcpu->arch.cpuid_nent;
5377 
5378 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
5379 	/* when no next entry is found, the current entry[i] is reselected */
5380 	for (j = i + 1; ; j = (j + 1) % nent) {
5381 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
5382 		if (ej->function == e->function) {
5383 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
5384 			return j;
5385 		}
5386 	}
5387 	return 0; /* silence gcc, even though control never reaches here */
5388 }
5389 
5390 /* find an entry with matching function, matching index (if needed), and that
5391  * should be read next (if it's stateful) */
5392 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
5393 	u32 function, u32 index)
5394 {
5395 	if (e->function != function)
5396 		return 0;
5397 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
5398 		return 0;
5399 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5400 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5401 		return 0;
5402 	return 1;
5403 }
5404 
5405 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5406 					      u32 function, u32 index)
5407 {
5408 	int i;
5409 	struct kvm_cpuid_entry2 *best = NULL;
5410 
5411 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5412 		struct kvm_cpuid_entry2 *e;
5413 
5414 		e = &vcpu->arch.cpuid_entries[i];
5415 		if (is_matching_cpuid_entry(e, function, index)) {
5416 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5417 				move_to_next_stateful_cpuid_entry(vcpu, i);
5418 			best = e;
5419 			break;
5420 		}
5421 	}
5422 	return best;
5423 }
5424 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5425 
5426 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5427 {
5428 	struct kvm_cpuid_entry2 *best;
5429 
5430 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5431 	if (!best || best->eax < 0x80000008)
5432 		goto not_found;
5433 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5434 	if (best)
5435 		return best->eax & 0xff;
5436 not_found:
5437 	return 36;
5438 }
5439 
5440 /*
5441  * If no match is found, check whether we exceed the vCPU's limit
5442  * and return the content of the highest valid _standard_ leaf instead.
5443  * This is to satisfy the CPUID specification.
5444  */
5445 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5446                                                   u32 function, u32 index)
5447 {
5448 	struct kvm_cpuid_entry2 *maxlevel;
5449 
5450 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5451 	if (!maxlevel || maxlevel->eax >= function)
5452 		return NULL;
5453 	if (function & 0x80000000) {
5454 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5455 		if (!maxlevel)
5456 			return NULL;
5457 	}
5458 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5459 }
5460 
5461 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5462 {
5463 	u32 function, index;
5464 	struct kvm_cpuid_entry2 *best;
5465 
5466 	function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5467 	index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5468 	kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5469 	kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5470 	kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5471 	kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5472 	best = kvm_find_cpuid_entry(vcpu, function, index);
5473 
5474 	if (!best)
5475 		best = check_cpuid_limit(vcpu, function, index);
5476 
5477 	if (best) {
5478 		kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5479 		kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5480 		kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5481 		kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5482 	}
5483 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5484 	trace_kvm_cpuid(function,
5485 			kvm_register_read(vcpu, VCPU_REGS_RAX),
5486 			kvm_register_read(vcpu, VCPU_REGS_RBX),
5487 			kvm_register_read(vcpu, VCPU_REGS_RCX),
5488 			kvm_register_read(vcpu, VCPU_REGS_RDX));
5489 }
5490 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5491 
5492 /*
5493  * Check if userspace requested an interrupt window, and that the
5494  * interrupt window is open.
5495  *
5496  * No need to exit to userspace if we already have an interrupt queued.
5497  */
5498 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5499 {
5500 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5501 		vcpu->run->request_interrupt_window &&
5502 		kvm_arch_interrupt_allowed(vcpu));
5503 }
5504 
5505 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5506 {
5507 	struct kvm_run *kvm_run = vcpu->run;
5508 
5509 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5510 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5511 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5512 	if (irqchip_in_kernel(vcpu->kvm))
5513 		kvm_run->ready_for_interrupt_injection = 1;
5514 	else
5515 		kvm_run->ready_for_interrupt_injection =
5516 			kvm_arch_interrupt_allowed(vcpu) &&
5517 			!kvm_cpu_has_interrupt(vcpu) &&
5518 			!kvm_event_needs_reinjection(vcpu);
5519 }
5520 
5521 static void vapic_enter(struct kvm_vcpu *vcpu)
5522 {
5523 	struct kvm_lapic *apic = vcpu->arch.apic;
5524 	struct page *page;
5525 
5526 	if (!apic || !apic->vapic_addr)
5527 		return;
5528 
5529 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5530 
5531 	vcpu->arch.apic->vapic_page = page;
5532 }
5533 
5534 static void vapic_exit(struct kvm_vcpu *vcpu)
5535 {
5536 	struct kvm_lapic *apic = vcpu->arch.apic;
5537 	int idx;
5538 
5539 	if (!apic || !apic->vapic_addr)
5540 		return;
5541 
5542 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5543 	kvm_release_page_dirty(apic->vapic_page);
5544 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5545 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5546 }
5547 
5548 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5549 {
5550 	int max_irr, tpr;
5551 
5552 	if (!kvm_x86_ops->update_cr8_intercept)
5553 		return;
5554 
5555 	if (!vcpu->arch.apic)
5556 		return;
5557 
5558 	if (!vcpu->arch.apic->vapic_addr)
5559 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5560 	else
5561 		max_irr = -1;
5562 
5563 	if (max_irr != -1)
5564 		max_irr >>= 4;
5565 
5566 	tpr = kvm_lapic_get_cr8(vcpu);
5567 
5568 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5569 }
5570 
5571 static void inject_pending_event(struct kvm_vcpu *vcpu)
5572 {
5573 	/* try to reinject previous events if any */
5574 	if (vcpu->arch.exception.pending) {
5575 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5576 					vcpu->arch.exception.has_error_code,
5577 					vcpu->arch.exception.error_code);
5578 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5579 					  vcpu->arch.exception.has_error_code,
5580 					  vcpu->arch.exception.error_code,
5581 					  vcpu->arch.exception.reinject);
5582 		return;
5583 	}
5584 
5585 	if (vcpu->arch.nmi_injected) {
5586 		kvm_x86_ops->set_nmi(vcpu);
5587 		return;
5588 	}
5589 
5590 	if (vcpu->arch.interrupt.pending) {
5591 		kvm_x86_ops->set_irq(vcpu);
5592 		return;
5593 	}
5594 
5595 	/* try to inject new event if pending */
5596 	if (vcpu->arch.nmi_pending) {
5597 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5598 			--vcpu->arch.nmi_pending;
5599 			vcpu->arch.nmi_injected = true;
5600 			kvm_x86_ops->set_nmi(vcpu);
5601 		}
5602 	} else if (kvm_cpu_has_interrupt(vcpu)) {
5603 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5604 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5605 					    false);
5606 			kvm_x86_ops->set_irq(vcpu);
5607 		}
5608 	}
5609 }
5610 
5611 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5612 {
5613 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5614 			!vcpu->guest_xcr0_loaded) {
5615 		/* kvm_set_xcr() also depends on this */
5616 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5617 		vcpu->guest_xcr0_loaded = 1;
5618 	}
5619 }
5620 
5621 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5622 {
5623 	if (vcpu->guest_xcr0_loaded) {
5624 		if (vcpu->arch.xcr0 != host_xcr0)
5625 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5626 		vcpu->guest_xcr0_loaded = 0;
5627 	}
5628 }
5629 
5630 static void process_nmi(struct kvm_vcpu *vcpu)
5631 {
5632 	unsigned limit = 2;
5633 
5634 	/*
5635 	 * x86 is limited to one NMI running, and one NMI pending after it.
5636 	 * If an NMI is already in progress, limit further NMIs to just one.
5637 	 * Otherwise, allow two (and we'll inject the first one immediately).
5638 	 */
5639 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5640 		limit = 1;
5641 
5642 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5643 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5644 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5645 }
5646 
5647 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5648 {
5649 	int r;
5650 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5651 		vcpu->run->request_interrupt_window;
5652 
5653 	if (vcpu->requests) {
5654 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5655 			kvm_mmu_unload(vcpu);
5656 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5657 			__kvm_migrate_timers(vcpu);
5658 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5659 			r = kvm_guest_time_update(vcpu);
5660 			if (unlikely(r))
5661 				goto out;
5662 		}
5663 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5664 			kvm_mmu_sync_roots(vcpu);
5665 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5666 			kvm_x86_ops->tlb_flush(vcpu);
5667 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5668 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5669 			r = 0;
5670 			goto out;
5671 		}
5672 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5673 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5674 			r = 0;
5675 			goto out;
5676 		}
5677 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5678 			vcpu->fpu_active = 0;
5679 			kvm_x86_ops->fpu_deactivate(vcpu);
5680 		}
5681 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5682 			/* Page is swapped out. Do synthetic halt */
5683 			vcpu->arch.apf.halted = true;
5684 			r = 1;
5685 			goto out;
5686 		}
5687 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5688 			record_steal_time(vcpu);
5689 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5690 			process_nmi(vcpu);
5691 
5692 	}
5693 
5694 	r = kvm_mmu_reload(vcpu);
5695 	if (unlikely(r))
5696 		goto out;
5697 
5698 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5699 		inject_pending_event(vcpu);
5700 
5701 		/* enable NMI/IRQ window open exits if needed */
5702 		if (vcpu->arch.nmi_pending)
5703 			kvm_x86_ops->enable_nmi_window(vcpu);
5704 		else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5705 			kvm_x86_ops->enable_irq_window(vcpu);
5706 
5707 		if (kvm_lapic_enabled(vcpu)) {
5708 			update_cr8_intercept(vcpu);
5709 			kvm_lapic_sync_to_vapic(vcpu);
5710 		}
5711 	}
5712 
5713 	preempt_disable();
5714 
5715 	kvm_x86_ops->prepare_guest_switch(vcpu);
5716 	if (vcpu->fpu_active)
5717 		kvm_load_guest_fpu(vcpu);
5718 	kvm_load_guest_xcr0(vcpu);
5719 
5720 	vcpu->mode = IN_GUEST_MODE;
5721 
5722 	/* We should set ->mode before check ->requests,
5723 	 * see the comment in make_all_cpus_request.
5724 	 */
5725 	smp_mb();
5726 
5727 	local_irq_disable();
5728 
5729 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5730 	    || need_resched() || signal_pending(current)) {
5731 		vcpu->mode = OUTSIDE_GUEST_MODE;
5732 		smp_wmb();
5733 		local_irq_enable();
5734 		preempt_enable();
5735 		kvm_x86_ops->cancel_injection(vcpu);
5736 		r = 1;
5737 		goto out;
5738 	}
5739 
5740 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5741 
5742 	kvm_guest_enter();
5743 
5744 	if (unlikely(vcpu->arch.switch_db_regs)) {
5745 		set_debugreg(0, 7);
5746 		set_debugreg(vcpu->arch.eff_db[0], 0);
5747 		set_debugreg(vcpu->arch.eff_db[1], 1);
5748 		set_debugreg(vcpu->arch.eff_db[2], 2);
5749 		set_debugreg(vcpu->arch.eff_db[3], 3);
5750 	}
5751 
5752 	trace_kvm_entry(vcpu->vcpu_id);
5753 	kvm_x86_ops->run(vcpu);
5754 
5755 	/*
5756 	 * If the guest has used debug registers, at least dr7
5757 	 * will be disabled while returning to the host.
5758 	 * If we don't have active breakpoints in the host, we don't
5759 	 * care about the messed up debug address registers. But if
5760 	 * we have some of them active, restore the old state.
5761 	 */
5762 	if (hw_breakpoint_active())
5763 		hw_breakpoint_restore();
5764 
5765 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5766 
5767 	vcpu->mode = OUTSIDE_GUEST_MODE;
5768 	smp_wmb();
5769 	local_irq_enable();
5770 
5771 	++vcpu->stat.exits;
5772 
5773 	/*
5774 	 * We must have an instruction between local_irq_enable() and
5775 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5776 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5777 	 * But we need to prevent reordering, hence this barrier():
5778 	 */
5779 	barrier();
5780 
5781 	kvm_guest_exit();
5782 
5783 	preempt_enable();
5784 
5785 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5786 
5787 	/*
5788 	 * Profile KVM exit RIPs:
5789 	 */
5790 	if (unlikely(prof_on == KVM_PROFILING)) {
5791 		unsigned long rip = kvm_rip_read(vcpu);
5792 		profile_hit(KVM_PROFILING, (void *)rip);
5793 	}
5794 
5795 
5796 	kvm_lapic_sync_from_vapic(vcpu);
5797 
5798 	r = kvm_x86_ops->handle_exit(vcpu);
5799 out:
5800 	return r;
5801 }
5802 
5803 
5804 static int __vcpu_run(struct kvm_vcpu *vcpu)
5805 {
5806 	int r;
5807 	struct kvm *kvm = vcpu->kvm;
5808 
5809 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5810 		pr_debug("vcpu %d received sipi with vector # %x\n",
5811 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5812 		kvm_lapic_reset(vcpu);
5813 		r = kvm_arch_vcpu_reset(vcpu);
5814 		if (r)
5815 			return r;
5816 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5817 	}
5818 
5819 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5820 	vapic_enter(vcpu);
5821 
5822 	r = 1;
5823 	while (r > 0) {
5824 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5825 		    !vcpu->arch.apf.halted)
5826 			r = vcpu_enter_guest(vcpu);
5827 		else {
5828 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5829 			kvm_vcpu_block(vcpu);
5830 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5831 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5832 			{
5833 				switch(vcpu->arch.mp_state) {
5834 				case KVM_MP_STATE_HALTED:
5835 					vcpu->arch.mp_state =
5836 						KVM_MP_STATE_RUNNABLE;
5837 				case KVM_MP_STATE_RUNNABLE:
5838 					vcpu->arch.apf.halted = false;
5839 					break;
5840 				case KVM_MP_STATE_SIPI_RECEIVED:
5841 				default:
5842 					r = -EINTR;
5843 					break;
5844 				}
5845 			}
5846 		}
5847 
5848 		if (r <= 0)
5849 			break;
5850 
5851 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5852 		if (kvm_cpu_has_pending_timer(vcpu))
5853 			kvm_inject_pending_timer_irqs(vcpu);
5854 
5855 		if (dm_request_for_irq_injection(vcpu)) {
5856 			r = -EINTR;
5857 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5858 			++vcpu->stat.request_irq_exits;
5859 		}
5860 
5861 		kvm_check_async_pf_completion(vcpu);
5862 
5863 		if (signal_pending(current)) {
5864 			r = -EINTR;
5865 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5866 			++vcpu->stat.signal_exits;
5867 		}
5868 		if (need_resched()) {
5869 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5870 			kvm_resched(vcpu);
5871 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5872 		}
5873 	}
5874 
5875 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5876 
5877 	vapic_exit(vcpu);
5878 
5879 	return r;
5880 }
5881 
5882 static int complete_mmio(struct kvm_vcpu *vcpu)
5883 {
5884 	struct kvm_run *run = vcpu->run;
5885 	int r;
5886 
5887 	if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5888 		return 1;
5889 
5890 	if (vcpu->mmio_needed) {
5891 		vcpu->mmio_needed = 0;
5892 		if (!vcpu->mmio_is_write)
5893 			memcpy(vcpu->mmio_data + vcpu->mmio_index,
5894 			       run->mmio.data, 8);
5895 		vcpu->mmio_index += 8;
5896 		if (vcpu->mmio_index < vcpu->mmio_size) {
5897 			run->exit_reason = KVM_EXIT_MMIO;
5898 			run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5899 			memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5900 			run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5901 			run->mmio.is_write = vcpu->mmio_is_write;
5902 			vcpu->mmio_needed = 1;
5903 			return 0;
5904 		}
5905 		if (vcpu->mmio_is_write)
5906 			return 1;
5907 		vcpu->mmio_read_completed = 1;
5908 	}
5909 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5910 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5911 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5912 	if (r != EMULATE_DONE)
5913 		return 0;
5914 	return 1;
5915 }
5916 
5917 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5918 {
5919 	int r;
5920 	sigset_t sigsaved;
5921 
5922 	if (!tsk_used_math(current) && init_fpu(current))
5923 		return -ENOMEM;
5924 
5925 	if (vcpu->sigset_active)
5926 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5927 
5928 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5929 		kvm_vcpu_block(vcpu);
5930 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5931 		r = -EAGAIN;
5932 		goto out;
5933 	}
5934 
5935 	/* re-sync apic's tpr */
5936 	if (!irqchip_in_kernel(vcpu->kvm)) {
5937 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5938 			r = -EINVAL;
5939 			goto out;
5940 		}
5941 	}
5942 
5943 	r = complete_mmio(vcpu);
5944 	if (r <= 0)
5945 		goto out;
5946 
5947 	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5948 		kvm_register_write(vcpu, VCPU_REGS_RAX,
5949 				     kvm_run->hypercall.ret);
5950 
5951 	r = __vcpu_run(vcpu);
5952 
5953 out:
5954 	post_kvm_run_save(vcpu);
5955 	if (vcpu->sigset_active)
5956 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5957 
5958 	return r;
5959 }
5960 
5961 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5962 {
5963 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5964 		/*
5965 		 * We are here if userspace calls get_regs() in the middle of
5966 		 * instruction emulation. Registers state needs to be copied
5967 		 * back from emulation context to vcpu. Usrapace shouldn't do
5968 		 * that usually, but some bad designed PV devices (vmware
5969 		 * backdoor interface) need this to work
5970 		 */
5971 		struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5972 		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5973 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5974 	}
5975 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5976 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5977 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5978 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5979 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5980 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5981 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5982 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5983 #ifdef CONFIG_X86_64
5984 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5985 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5986 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5987 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5988 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5989 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5990 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5991 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5992 #endif
5993 
5994 	regs->rip = kvm_rip_read(vcpu);
5995 	regs->rflags = kvm_get_rflags(vcpu);
5996 
5997 	return 0;
5998 }
5999 
6000 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6001 {
6002 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6003 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6004 
6005 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6006 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6007 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6008 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6009 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6010 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6011 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6012 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6013 #ifdef CONFIG_X86_64
6014 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6015 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6016 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6017 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6018 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6019 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6020 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6021 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6022 #endif
6023 
6024 	kvm_rip_write(vcpu, regs->rip);
6025 	kvm_set_rflags(vcpu, regs->rflags);
6026 
6027 	vcpu->arch.exception.pending = false;
6028 
6029 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6030 
6031 	return 0;
6032 }
6033 
6034 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6035 {
6036 	struct kvm_segment cs;
6037 
6038 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6039 	*db = cs.db;
6040 	*l = cs.l;
6041 }
6042 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6043 
6044 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6045 				  struct kvm_sregs *sregs)
6046 {
6047 	struct desc_ptr dt;
6048 
6049 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6050 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6051 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6052 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6053 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6054 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6055 
6056 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6057 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6058 
6059 	kvm_x86_ops->get_idt(vcpu, &dt);
6060 	sregs->idt.limit = dt.size;
6061 	sregs->idt.base = dt.address;
6062 	kvm_x86_ops->get_gdt(vcpu, &dt);
6063 	sregs->gdt.limit = dt.size;
6064 	sregs->gdt.base = dt.address;
6065 
6066 	sregs->cr0 = kvm_read_cr0(vcpu);
6067 	sregs->cr2 = vcpu->arch.cr2;
6068 	sregs->cr3 = kvm_read_cr3(vcpu);
6069 	sregs->cr4 = kvm_read_cr4(vcpu);
6070 	sregs->cr8 = kvm_get_cr8(vcpu);
6071 	sregs->efer = vcpu->arch.efer;
6072 	sregs->apic_base = kvm_get_apic_base(vcpu);
6073 
6074 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6075 
6076 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6077 		set_bit(vcpu->arch.interrupt.nr,
6078 			(unsigned long *)sregs->interrupt_bitmap);
6079 
6080 	return 0;
6081 }
6082 
6083 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6084 				    struct kvm_mp_state *mp_state)
6085 {
6086 	mp_state->mp_state = vcpu->arch.mp_state;
6087 	return 0;
6088 }
6089 
6090 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6091 				    struct kvm_mp_state *mp_state)
6092 {
6093 	vcpu->arch.mp_state = mp_state->mp_state;
6094 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6095 	return 0;
6096 }
6097 
6098 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
6099 		    bool has_error_code, u32 error_code)
6100 {
6101 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6102 	int ret;
6103 
6104 	init_emulate_ctxt(vcpu);
6105 
6106 	ret = emulator_task_switch(ctxt, tss_selector, reason,
6107 				   has_error_code, error_code);
6108 
6109 	if (ret)
6110 		return EMULATE_FAIL;
6111 
6112 	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
6113 	kvm_rip_write(vcpu, ctxt->eip);
6114 	kvm_set_rflags(vcpu, ctxt->eflags);
6115 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6116 	return EMULATE_DONE;
6117 }
6118 EXPORT_SYMBOL_GPL(kvm_task_switch);
6119 
6120 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6121 				  struct kvm_sregs *sregs)
6122 {
6123 	int mmu_reset_needed = 0;
6124 	int pending_vec, max_bits, idx;
6125 	struct desc_ptr dt;
6126 
6127 	dt.size = sregs->idt.limit;
6128 	dt.address = sregs->idt.base;
6129 	kvm_x86_ops->set_idt(vcpu, &dt);
6130 	dt.size = sregs->gdt.limit;
6131 	dt.address = sregs->gdt.base;
6132 	kvm_x86_ops->set_gdt(vcpu, &dt);
6133 
6134 	vcpu->arch.cr2 = sregs->cr2;
6135 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6136 	vcpu->arch.cr3 = sregs->cr3;
6137 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6138 
6139 	kvm_set_cr8(vcpu, sregs->cr8);
6140 
6141 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6142 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6143 	kvm_set_apic_base(vcpu, sregs->apic_base);
6144 
6145 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6146 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6147 	vcpu->arch.cr0 = sregs->cr0;
6148 
6149 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6150 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6151 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6152 		update_cpuid(vcpu);
6153 
6154 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6155 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6156 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6157 		mmu_reset_needed = 1;
6158 	}
6159 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6160 
6161 	if (mmu_reset_needed)
6162 		kvm_mmu_reset_context(vcpu);
6163 
6164 	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
6165 	pending_vec = find_first_bit(
6166 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6167 	if (pending_vec < max_bits) {
6168 		kvm_queue_interrupt(vcpu, pending_vec, false);
6169 		pr_debug("Set back pending irq %d\n", pending_vec);
6170 	}
6171 
6172 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6173 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6174 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6175 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6176 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6177 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6178 
6179 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6180 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6181 
6182 	update_cr8_intercept(vcpu);
6183 
6184 	/* Older userspace won't unhalt the vcpu on reset. */
6185 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6186 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6187 	    !is_protmode(vcpu))
6188 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6189 
6190 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6191 
6192 	return 0;
6193 }
6194 
6195 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6196 					struct kvm_guest_debug *dbg)
6197 {
6198 	unsigned long rflags;
6199 	int i, r;
6200 
6201 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6202 		r = -EBUSY;
6203 		if (vcpu->arch.exception.pending)
6204 			goto out;
6205 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6206 			kvm_queue_exception(vcpu, DB_VECTOR);
6207 		else
6208 			kvm_queue_exception(vcpu, BP_VECTOR);
6209 	}
6210 
6211 	/*
6212 	 * Read rflags as long as potentially injected trace flags are still
6213 	 * filtered out.
6214 	 */
6215 	rflags = kvm_get_rflags(vcpu);
6216 
6217 	vcpu->guest_debug = dbg->control;
6218 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6219 		vcpu->guest_debug = 0;
6220 
6221 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6222 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6223 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6224 		vcpu->arch.switch_db_regs =
6225 			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
6226 	} else {
6227 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6228 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6229 		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
6230 	}
6231 
6232 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6233 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6234 			get_segment_base(vcpu, VCPU_SREG_CS);
6235 
6236 	/*
6237 	 * Trigger an rflags update that will inject or remove the trace
6238 	 * flags.
6239 	 */
6240 	kvm_set_rflags(vcpu, rflags);
6241 
6242 	kvm_x86_ops->set_guest_debug(vcpu, dbg);
6243 
6244 	r = 0;
6245 
6246 out:
6247 
6248 	return r;
6249 }
6250 
6251 /*
6252  * Translate a guest virtual address to a guest physical address.
6253  */
6254 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6255 				    struct kvm_translation *tr)
6256 {
6257 	unsigned long vaddr = tr->linear_address;
6258 	gpa_t gpa;
6259 	int idx;
6260 
6261 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6262 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6263 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6264 	tr->physical_address = gpa;
6265 	tr->valid = gpa != UNMAPPED_GVA;
6266 	tr->writeable = 1;
6267 	tr->usermode = 0;
6268 
6269 	return 0;
6270 }
6271 
6272 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6273 {
6274 	struct i387_fxsave_struct *fxsave =
6275 			&vcpu->arch.guest_fpu.state->fxsave;
6276 
6277 	memcpy(fpu->fpr, fxsave->st_space, 128);
6278 	fpu->fcw = fxsave->cwd;
6279 	fpu->fsw = fxsave->swd;
6280 	fpu->ftwx = fxsave->twd;
6281 	fpu->last_opcode = fxsave->fop;
6282 	fpu->last_ip = fxsave->rip;
6283 	fpu->last_dp = fxsave->rdp;
6284 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6285 
6286 	return 0;
6287 }
6288 
6289 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6290 {
6291 	struct i387_fxsave_struct *fxsave =
6292 			&vcpu->arch.guest_fpu.state->fxsave;
6293 
6294 	memcpy(fxsave->st_space, fpu->fpr, 128);
6295 	fxsave->cwd = fpu->fcw;
6296 	fxsave->swd = fpu->fsw;
6297 	fxsave->twd = fpu->ftwx;
6298 	fxsave->fop = fpu->last_opcode;
6299 	fxsave->rip = fpu->last_ip;
6300 	fxsave->rdp = fpu->last_dp;
6301 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6302 
6303 	return 0;
6304 }
6305 
6306 int fx_init(struct kvm_vcpu *vcpu)
6307 {
6308 	int err;
6309 
6310 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6311 	if (err)
6312 		return err;
6313 
6314 	fpu_finit(&vcpu->arch.guest_fpu);
6315 
6316 	/*
6317 	 * Ensure guest xcr0 is valid for loading
6318 	 */
6319 	vcpu->arch.xcr0 = XSTATE_FP;
6320 
6321 	vcpu->arch.cr0 |= X86_CR0_ET;
6322 
6323 	return 0;
6324 }
6325 EXPORT_SYMBOL_GPL(fx_init);
6326 
6327 static void fx_free(struct kvm_vcpu *vcpu)
6328 {
6329 	fpu_free(&vcpu->arch.guest_fpu);
6330 }
6331 
6332 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6333 {
6334 	if (vcpu->guest_fpu_loaded)
6335 		return;
6336 
6337 	/*
6338 	 * Restore all possible states in the guest,
6339 	 * and assume host would use all available bits.
6340 	 * Guest xcr0 would be loaded later.
6341 	 */
6342 	kvm_put_guest_xcr0(vcpu);
6343 	vcpu->guest_fpu_loaded = 1;
6344 	unlazy_fpu(current);
6345 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6346 	trace_kvm_fpu(1);
6347 }
6348 
6349 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6350 {
6351 	kvm_put_guest_xcr0(vcpu);
6352 
6353 	if (!vcpu->guest_fpu_loaded)
6354 		return;
6355 
6356 	vcpu->guest_fpu_loaded = 0;
6357 	fpu_save_init(&vcpu->arch.guest_fpu);
6358 	++vcpu->stat.fpu_reload;
6359 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6360 	trace_kvm_fpu(0);
6361 }
6362 
6363 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6364 {
6365 	kvmclock_reset(vcpu);
6366 
6367 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6368 	fx_free(vcpu);
6369 	kvm_x86_ops->vcpu_free(vcpu);
6370 }
6371 
6372 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6373 						unsigned int id)
6374 {
6375 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6376 		printk_once(KERN_WARNING
6377 		"kvm: SMP vm created on host with unstable TSC; "
6378 		"guest TSC will not be reliable\n");
6379 	return kvm_x86_ops->vcpu_create(kvm, id);
6380 }
6381 
6382 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6383 {
6384 	int r;
6385 
6386 	vcpu->arch.mtrr_state.have_fixed = 1;
6387 	vcpu_load(vcpu);
6388 	r = kvm_arch_vcpu_reset(vcpu);
6389 	if (r == 0)
6390 		r = kvm_mmu_setup(vcpu);
6391 	vcpu_put(vcpu);
6392 
6393 	return r;
6394 }
6395 
6396 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6397 {
6398 	vcpu->arch.apf.msr_val = 0;
6399 
6400 	vcpu_load(vcpu);
6401 	kvm_mmu_unload(vcpu);
6402 	vcpu_put(vcpu);
6403 
6404 	fx_free(vcpu);
6405 	kvm_x86_ops->vcpu_free(vcpu);
6406 }
6407 
6408 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6409 {
6410 	atomic_set(&vcpu->arch.nmi_queued, 0);
6411 	vcpu->arch.nmi_pending = 0;
6412 	vcpu->arch.nmi_injected = false;
6413 
6414 	vcpu->arch.switch_db_regs = 0;
6415 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6416 	vcpu->arch.dr6 = DR6_FIXED_1;
6417 	vcpu->arch.dr7 = DR7_FIXED_1;
6418 
6419 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6420 	vcpu->arch.apf.msr_val = 0;
6421 	vcpu->arch.st.msr_val = 0;
6422 
6423 	kvmclock_reset(vcpu);
6424 
6425 	kvm_clear_async_pf_completion_queue(vcpu);
6426 	kvm_async_pf_hash_reset(vcpu);
6427 	vcpu->arch.apf.halted = false;
6428 
6429 	return kvm_x86_ops->vcpu_reset(vcpu);
6430 }
6431 
6432 int kvm_arch_hardware_enable(void *garbage)
6433 {
6434 	struct kvm *kvm;
6435 	struct kvm_vcpu *vcpu;
6436 	int i;
6437 
6438 	kvm_shared_msr_cpu_online();
6439 	list_for_each_entry(kvm, &vm_list, vm_list)
6440 		kvm_for_each_vcpu(i, vcpu, kvm)
6441 			if (vcpu->cpu == smp_processor_id())
6442 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6443 	return kvm_x86_ops->hardware_enable(garbage);
6444 }
6445 
6446 void kvm_arch_hardware_disable(void *garbage)
6447 {
6448 	kvm_x86_ops->hardware_disable(garbage);
6449 	drop_user_return_notifiers(garbage);
6450 }
6451 
6452 int kvm_arch_hardware_setup(void)
6453 {
6454 	return kvm_x86_ops->hardware_setup();
6455 }
6456 
6457 void kvm_arch_hardware_unsetup(void)
6458 {
6459 	kvm_x86_ops->hardware_unsetup();
6460 }
6461 
6462 void kvm_arch_check_processor_compat(void *rtn)
6463 {
6464 	kvm_x86_ops->check_processor_compatibility(rtn);
6465 }
6466 
6467 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6468 {
6469 	struct page *page;
6470 	struct kvm *kvm;
6471 	int r;
6472 
6473 	BUG_ON(vcpu->kvm == NULL);
6474 	kvm = vcpu->kvm;
6475 
6476 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6477 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6478 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6479 	vcpu->arch.mmu.translate_gpa = translate_gpa;
6480 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6481 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6482 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6483 	else
6484 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6485 
6486 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6487 	if (!page) {
6488 		r = -ENOMEM;
6489 		goto fail;
6490 	}
6491 	vcpu->arch.pio_data = page_address(page);
6492 
6493 	kvm_init_tsc_catchup(vcpu, max_tsc_khz);
6494 
6495 	r = kvm_mmu_create(vcpu);
6496 	if (r < 0)
6497 		goto fail_free_pio_data;
6498 
6499 	if (irqchip_in_kernel(kvm)) {
6500 		r = kvm_create_lapic(vcpu);
6501 		if (r < 0)
6502 			goto fail_mmu_destroy;
6503 	}
6504 
6505 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6506 				       GFP_KERNEL);
6507 	if (!vcpu->arch.mce_banks) {
6508 		r = -ENOMEM;
6509 		goto fail_free_lapic;
6510 	}
6511 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6512 
6513 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6514 		goto fail_free_mce_banks;
6515 
6516 	kvm_async_pf_hash_reset(vcpu);
6517 
6518 	return 0;
6519 fail_free_mce_banks:
6520 	kfree(vcpu->arch.mce_banks);
6521 fail_free_lapic:
6522 	kvm_free_lapic(vcpu);
6523 fail_mmu_destroy:
6524 	kvm_mmu_destroy(vcpu);
6525 fail_free_pio_data:
6526 	free_page((unsigned long)vcpu->arch.pio_data);
6527 fail:
6528 	return r;
6529 }
6530 
6531 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6532 {
6533 	int idx;
6534 
6535 	kfree(vcpu->arch.mce_banks);
6536 	kvm_free_lapic(vcpu);
6537 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6538 	kvm_mmu_destroy(vcpu);
6539 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6540 	free_page((unsigned long)vcpu->arch.pio_data);
6541 }
6542 
6543 int kvm_arch_init_vm(struct kvm *kvm)
6544 {
6545 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6546 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6547 
6548 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6549 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6550 
6551 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6552 
6553 	return 0;
6554 }
6555 
6556 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6557 {
6558 	vcpu_load(vcpu);
6559 	kvm_mmu_unload(vcpu);
6560 	vcpu_put(vcpu);
6561 }
6562 
6563 static void kvm_free_vcpus(struct kvm *kvm)
6564 {
6565 	unsigned int i;
6566 	struct kvm_vcpu *vcpu;
6567 
6568 	/*
6569 	 * Unpin any mmu pages first.
6570 	 */
6571 	kvm_for_each_vcpu(i, vcpu, kvm) {
6572 		kvm_clear_async_pf_completion_queue(vcpu);
6573 		kvm_unload_vcpu_mmu(vcpu);
6574 	}
6575 	kvm_for_each_vcpu(i, vcpu, kvm)
6576 		kvm_arch_vcpu_free(vcpu);
6577 
6578 	mutex_lock(&kvm->lock);
6579 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6580 		kvm->vcpus[i] = NULL;
6581 
6582 	atomic_set(&kvm->online_vcpus, 0);
6583 	mutex_unlock(&kvm->lock);
6584 }
6585 
6586 void kvm_arch_sync_events(struct kvm *kvm)
6587 {
6588 	kvm_free_all_assigned_devices(kvm);
6589 	kvm_free_pit(kvm);
6590 }
6591 
6592 void kvm_arch_destroy_vm(struct kvm *kvm)
6593 {
6594 	kvm_iommu_unmap_guest(kvm);
6595 	kfree(kvm->arch.vpic);
6596 	kfree(kvm->arch.vioapic);
6597 	kvm_free_vcpus(kvm);
6598 	if (kvm->arch.apic_access_page)
6599 		put_page(kvm->arch.apic_access_page);
6600 	if (kvm->arch.ept_identity_pagetable)
6601 		put_page(kvm->arch.ept_identity_pagetable);
6602 }
6603 
6604 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6605 				struct kvm_memory_slot *memslot,
6606 				struct kvm_memory_slot old,
6607 				struct kvm_userspace_memory_region *mem,
6608 				int user_alloc)
6609 {
6610 	int npages = memslot->npages;
6611 	int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6612 
6613 	/* Prevent internal slot pages from being moved by fork()/COW. */
6614 	if (memslot->id >= KVM_MEMORY_SLOTS)
6615 		map_flags = MAP_SHARED | MAP_ANONYMOUS;
6616 
6617 	/*To keep backward compatibility with older userspace,
6618 	 *x86 needs to hanlde !user_alloc case.
6619 	 */
6620 	if (!user_alloc) {
6621 		if (npages && !old.rmap) {
6622 			unsigned long userspace_addr;
6623 
6624 			down_write(&current->mm->mmap_sem);
6625 			userspace_addr = do_mmap(NULL, 0,
6626 						 npages * PAGE_SIZE,
6627 						 PROT_READ | PROT_WRITE,
6628 						 map_flags,
6629 						 0);
6630 			up_write(&current->mm->mmap_sem);
6631 
6632 			if (IS_ERR((void *)userspace_addr))
6633 				return PTR_ERR((void *)userspace_addr);
6634 
6635 			memslot->userspace_addr = userspace_addr;
6636 		}
6637 	}
6638 
6639 
6640 	return 0;
6641 }
6642 
6643 void kvm_arch_commit_memory_region(struct kvm *kvm,
6644 				struct kvm_userspace_memory_region *mem,
6645 				struct kvm_memory_slot old,
6646 				int user_alloc)
6647 {
6648 
6649 	int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6650 
6651 	if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6652 		int ret;
6653 
6654 		down_write(&current->mm->mmap_sem);
6655 		ret = do_munmap(current->mm, old.userspace_addr,
6656 				old.npages * PAGE_SIZE);
6657 		up_write(&current->mm->mmap_sem);
6658 		if (ret < 0)
6659 			printk(KERN_WARNING
6660 			       "kvm_vm_ioctl_set_memory_region: "
6661 			       "failed to munmap memory\n");
6662 	}
6663 
6664 	if (!kvm->arch.n_requested_mmu_pages)
6665 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6666 
6667 	spin_lock(&kvm->mmu_lock);
6668 	if (nr_mmu_pages)
6669 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6670 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6671 	spin_unlock(&kvm->mmu_lock);
6672 }
6673 
6674 void kvm_arch_flush_shadow(struct kvm *kvm)
6675 {
6676 	kvm_mmu_zap_all(kvm);
6677 	kvm_reload_remote_mmus(kvm);
6678 }
6679 
6680 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6681 {
6682 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6683 		!vcpu->arch.apf.halted)
6684 		|| !list_empty_careful(&vcpu->async_pf.done)
6685 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6686 		|| atomic_read(&vcpu->arch.nmi_queued) ||
6687 		(kvm_arch_interrupt_allowed(vcpu) &&
6688 		 kvm_cpu_has_interrupt(vcpu));
6689 }
6690 
6691 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6692 {
6693 	int me;
6694 	int cpu = vcpu->cpu;
6695 
6696 	if (waitqueue_active(&vcpu->wq)) {
6697 		wake_up_interruptible(&vcpu->wq);
6698 		++vcpu->stat.halt_wakeup;
6699 	}
6700 
6701 	me = get_cpu();
6702 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6703 		if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6704 			smp_send_reschedule(cpu);
6705 	put_cpu();
6706 }
6707 
6708 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6709 {
6710 	return kvm_x86_ops->interrupt_allowed(vcpu);
6711 }
6712 
6713 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6714 {
6715 	unsigned long current_rip = kvm_rip_read(vcpu) +
6716 		get_segment_base(vcpu, VCPU_SREG_CS);
6717 
6718 	return current_rip == linear_rip;
6719 }
6720 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6721 
6722 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6723 {
6724 	unsigned long rflags;
6725 
6726 	rflags = kvm_x86_ops->get_rflags(vcpu);
6727 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6728 		rflags &= ~X86_EFLAGS_TF;
6729 	return rflags;
6730 }
6731 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6732 
6733 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6734 {
6735 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6736 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6737 		rflags |= X86_EFLAGS_TF;
6738 	kvm_x86_ops->set_rflags(vcpu, rflags);
6739 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6740 }
6741 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6742 
6743 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6744 {
6745 	int r;
6746 
6747 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6748 	      is_error_page(work->page))
6749 		return;
6750 
6751 	r = kvm_mmu_reload(vcpu);
6752 	if (unlikely(r))
6753 		return;
6754 
6755 	if (!vcpu->arch.mmu.direct_map &&
6756 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6757 		return;
6758 
6759 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6760 }
6761 
6762 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6763 {
6764 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6765 }
6766 
6767 static inline u32 kvm_async_pf_next_probe(u32 key)
6768 {
6769 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6770 }
6771 
6772 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6773 {
6774 	u32 key = kvm_async_pf_hash_fn(gfn);
6775 
6776 	while (vcpu->arch.apf.gfns[key] != ~0)
6777 		key = kvm_async_pf_next_probe(key);
6778 
6779 	vcpu->arch.apf.gfns[key] = gfn;
6780 }
6781 
6782 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6783 {
6784 	int i;
6785 	u32 key = kvm_async_pf_hash_fn(gfn);
6786 
6787 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6788 		     (vcpu->arch.apf.gfns[key] != gfn &&
6789 		      vcpu->arch.apf.gfns[key] != ~0); i++)
6790 		key = kvm_async_pf_next_probe(key);
6791 
6792 	return key;
6793 }
6794 
6795 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6796 {
6797 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6798 }
6799 
6800 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6801 {
6802 	u32 i, j, k;
6803 
6804 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6805 	while (true) {
6806 		vcpu->arch.apf.gfns[i] = ~0;
6807 		do {
6808 			j = kvm_async_pf_next_probe(j);
6809 			if (vcpu->arch.apf.gfns[j] == ~0)
6810 				return;
6811 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6812 			/*
6813 			 * k lies cyclically in ]i,j]
6814 			 * |    i.k.j |
6815 			 * |....j i.k.| or  |.k..j i...|
6816 			 */
6817 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6818 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6819 		i = j;
6820 	}
6821 }
6822 
6823 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6824 {
6825 
6826 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6827 				      sizeof(val));
6828 }
6829 
6830 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6831 				     struct kvm_async_pf *work)
6832 {
6833 	struct x86_exception fault;
6834 
6835 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6836 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6837 
6838 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6839 	    (vcpu->arch.apf.send_user_only &&
6840 	     kvm_x86_ops->get_cpl(vcpu) == 0))
6841 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6842 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6843 		fault.vector = PF_VECTOR;
6844 		fault.error_code_valid = true;
6845 		fault.error_code = 0;
6846 		fault.nested_page_fault = false;
6847 		fault.address = work->arch.token;
6848 		kvm_inject_page_fault(vcpu, &fault);
6849 	}
6850 }
6851 
6852 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6853 				 struct kvm_async_pf *work)
6854 {
6855 	struct x86_exception fault;
6856 
6857 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
6858 	if (is_error_page(work->page))
6859 		work->arch.token = ~0; /* broadcast wakeup */
6860 	else
6861 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6862 
6863 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6864 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6865 		fault.vector = PF_VECTOR;
6866 		fault.error_code_valid = true;
6867 		fault.error_code = 0;
6868 		fault.nested_page_fault = false;
6869 		fault.address = work->arch.token;
6870 		kvm_inject_page_fault(vcpu, &fault);
6871 	}
6872 	vcpu->arch.apf.halted = false;
6873 }
6874 
6875 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6876 {
6877 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6878 		return true;
6879 	else
6880 		return !kvm_event_needs_reinjection(vcpu) &&
6881 			kvm_x86_ops->interrupt_allowed(vcpu);
6882 }
6883 
6884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
6896