1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 /* 96 * Note, kvm_caps fields should *never* have default values, all fields must be 97 * recomputed from scratch during vendor module load, e.g. to account for a 98 * vendor module being reloaded with different module parameters. 99 */ 100 struct kvm_caps kvm_caps __read_mostly; 101 EXPORT_SYMBOL_GPL(kvm_caps); 102 103 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 104 105 #define emul_to_vcpu(ctxt) \ 106 ((struct kvm_vcpu *)(ctxt)->vcpu) 107 108 /* EFER defaults: 109 * - enable syscall per default because its emulated by KVM 110 * - enable LME and LMA per default on 64 bit KVM 111 */ 112 #ifdef CONFIG_X86_64 113 static 114 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 115 #else 116 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 117 #endif 118 119 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 120 121 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 122 123 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 124 125 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 126 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 127 128 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 129 static void process_nmi(struct kvm_vcpu *vcpu); 130 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 131 static void store_regs(struct kvm_vcpu *vcpu); 132 static int sync_regs(struct kvm_vcpu *vcpu); 133 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 134 135 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 136 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 137 138 static DEFINE_MUTEX(vendor_module_lock); 139 struct kvm_x86_ops kvm_x86_ops __read_mostly; 140 141 #define KVM_X86_OP(func) \ 142 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 143 *(((struct kvm_x86_ops *)0)->func)); 144 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 145 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 146 #include <asm/kvm-x86-ops.h> 147 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 148 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 149 150 static bool __read_mostly ignore_msrs = 0; 151 module_param(ignore_msrs, bool, 0644); 152 153 bool __read_mostly report_ignored_msrs = true; 154 module_param(report_ignored_msrs, bool, 0644); 155 EXPORT_SYMBOL_GPL(report_ignored_msrs); 156 157 unsigned int min_timer_period_us = 200; 158 module_param(min_timer_period_us, uint, 0644); 159 160 static bool __read_mostly kvmclock_periodic_sync = true; 161 module_param(kvmclock_periodic_sync, bool, 0444); 162 163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 164 static u32 __read_mostly tsc_tolerance_ppm = 250; 165 module_param(tsc_tolerance_ppm, uint, 0644); 166 167 static bool __read_mostly vector_hashing = true; 168 module_param(vector_hashing, bool, 0444); 169 170 bool __read_mostly enable_vmware_backdoor = false; 171 module_param(enable_vmware_backdoor, bool, 0444); 172 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 173 174 /* 175 * Flags to manipulate forced emulation behavior (any non-zero value will 176 * enable forced emulation). 177 */ 178 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 179 static int __read_mostly force_emulation_prefix; 180 module_param(force_emulation_prefix, int, 0644); 181 182 int __read_mostly pi_inject_timer = -1; 183 module_param(pi_inject_timer, bint, 0644); 184 185 /* Enable/disable PMU virtualization */ 186 bool __read_mostly enable_pmu = true; 187 EXPORT_SYMBOL_GPL(enable_pmu); 188 module_param(enable_pmu, bool, 0444); 189 190 bool __read_mostly eager_page_split = true; 191 module_param(eager_page_split, bool, 0644); 192 193 /* Enable/disable SMT_RSB bug mitigation */ 194 static bool __read_mostly mitigate_smt_rsb; 195 module_param(mitigate_smt_rsb, bool, 0444); 196 197 /* 198 * Restoring the host value for MSRs that are only consumed when running in 199 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 200 * returns to userspace, i.e. the kernel can run with the guest's value. 201 */ 202 #define KVM_MAX_NR_USER_RETURN_MSRS 16 203 204 struct kvm_user_return_msrs { 205 struct user_return_notifier urn; 206 bool registered; 207 struct kvm_user_return_msr_values { 208 u64 host; 209 u64 curr; 210 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 211 }; 212 213 u32 __read_mostly kvm_nr_uret_msrs; 214 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 216 static struct kvm_user_return_msrs __percpu *user_return_msrs; 217 218 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 219 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 220 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 221 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 222 223 u64 __read_mostly host_efer; 224 EXPORT_SYMBOL_GPL(host_efer); 225 226 bool __read_mostly allow_smaller_maxphyaddr = 0; 227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 228 229 bool __read_mostly enable_apicv = true; 230 EXPORT_SYMBOL_GPL(enable_apicv); 231 232 u64 __read_mostly host_xss; 233 EXPORT_SYMBOL_GPL(host_xss); 234 235 u64 __read_mostly host_arch_capabilities; 236 EXPORT_SYMBOL_GPL(host_arch_capabilities); 237 238 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 239 KVM_GENERIC_VM_STATS(), 240 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 241 STATS_DESC_COUNTER(VM, mmu_pte_write), 242 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 243 STATS_DESC_COUNTER(VM, mmu_flooded), 244 STATS_DESC_COUNTER(VM, mmu_recycled), 245 STATS_DESC_COUNTER(VM, mmu_cache_miss), 246 STATS_DESC_ICOUNTER(VM, mmu_unsync), 247 STATS_DESC_ICOUNTER(VM, pages_4k), 248 STATS_DESC_ICOUNTER(VM, pages_2m), 249 STATS_DESC_ICOUNTER(VM, pages_1g), 250 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 251 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 252 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 253 }; 254 255 const struct kvm_stats_header kvm_vm_stats_header = { 256 .name_size = KVM_STATS_NAME_SIZE, 257 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 258 .id_offset = sizeof(struct kvm_stats_header), 259 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 260 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 261 sizeof(kvm_vm_stats_desc), 262 }; 263 264 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 265 KVM_GENERIC_VCPU_STATS(), 266 STATS_DESC_COUNTER(VCPU, pf_taken), 267 STATS_DESC_COUNTER(VCPU, pf_fixed), 268 STATS_DESC_COUNTER(VCPU, pf_emulate), 269 STATS_DESC_COUNTER(VCPU, pf_spurious), 270 STATS_DESC_COUNTER(VCPU, pf_fast), 271 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 272 STATS_DESC_COUNTER(VCPU, pf_guest), 273 STATS_DESC_COUNTER(VCPU, tlb_flush), 274 STATS_DESC_COUNTER(VCPU, invlpg), 275 STATS_DESC_COUNTER(VCPU, exits), 276 STATS_DESC_COUNTER(VCPU, io_exits), 277 STATS_DESC_COUNTER(VCPU, mmio_exits), 278 STATS_DESC_COUNTER(VCPU, signal_exits), 279 STATS_DESC_COUNTER(VCPU, irq_window_exits), 280 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 281 STATS_DESC_COUNTER(VCPU, l1d_flush), 282 STATS_DESC_COUNTER(VCPU, halt_exits), 283 STATS_DESC_COUNTER(VCPU, request_irq_exits), 284 STATS_DESC_COUNTER(VCPU, irq_exits), 285 STATS_DESC_COUNTER(VCPU, host_state_reload), 286 STATS_DESC_COUNTER(VCPU, fpu_reload), 287 STATS_DESC_COUNTER(VCPU, insn_emulation), 288 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 289 STATS_DESC_COUNTER(VCPU, hypercalls), 290 STATS_DESC_COUNTER(VCPU, irq_injections), 291 STATS_DESC_COUNTER(VCPU, nmi_injections), 292 STATS_DESC_COUNTER(VCPU, req_event), 293 STATS_DESC_COUNTER(VCPU, nested_run), 294 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 295 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 296 STATS_DESC_COUNTER(VCPU, preemption_reported), 297 STATS_DESC_COUNTER(VCPU, preemption_other), 298 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 299 STATS_DESC_COUNTER(VCPU, notify_window_exits), 300 }; 301 302 const struct kvm_stats_header kvm_vcpu_stats_header = { 303 .name_size = KVM_STATS_NAME_SIZE, 304 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 305 .id_offset = sizeof(struct kvm_stats_header), 306 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 307 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 308 sizeof(kvm_vcpu_stats_desc), 309 }; 310 311 u64 __read_mostly host_xcr0; 312 313 static struct kmem_cache *x86_emulator_cache; 314 315 /* 316 * When called, it means the previous get/set msr reached an invalid msr. 317 * Return true if we want to ignore/silent this failed msr access. 318 */ 319 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 320 { 321 const char *op = write ? "wrmsr" : "rdmsr"; 322 323 if (ignore_msrs) { 324 if (report_ignored_msrs) 325 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 326 op, msr, data); 327 /* Mask the error */ 328 return true; 329 } else { 330 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 331 op, msr, data); 332 return false; 333 } 334 } 335 336 static struct kmem_cache *kvm_alloc_emulator_cache(void) 337 { 338 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 339 unsigned int size = sizeof(struct x86_emulate_ctxt); 340 341 return kmem_cache_create_usercopy("x86_emulator", size, 342 __alignof__(struct x86_emulate_ctxt), 343 SLAB_ACCOUNT, useroffset, 344 size - useroffset, NULL); 345 } 346 347 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 348 349 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 350 { 351 int i; 352 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 353 vcpu->arch.apf.gfns[i] = ~0; 354 } 355 356 static void kvm_on_user_return(struct user_return_notifier *urn) 357 { 358 unsigned slot; 359 struct kvm_user_return_msrs *msrs 360 = container_of(urn, struct kvm_user_return_msrs, urn); 361 struct kvm_user_return_msr_values *values; 362 unsigned long flags; 363 364 /* 365 * Disabling irqs at this point since the following code could be 366 * interrupted and executed through kvm_arch_hardware_disable() 367 */ 368 local_irq_save(flags); 369 if (msrs->registered) { 370 msrs->registered = false; 371 user_return_notifier_unregister(urn); 372 } 373 local_irq_restore(flags); 374 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 375 values = &msrs->values[slot]; 376 if (values->host != values->curr) { 377 wrmsrl(kvm_uret_msrs_list[slot], values->host); 378 values->curr = values->host; 379 } 380 } 381 } 382 383 static int kvm_probe_user_return_msr(u32 msr) 384 { 385 u64 val; 386 int ret; 387 388 preempt_disable(); 389 ret = rdmsrl_safe(msr, &val); 390 if (ret) 391 goto out; 392 ret = wrmsrl_safe(msr, val); 393 out: 394 preempt_enable(); 395 return ret; 396 } 397 398 int kvm_add_user_return_msr(u32 msr) 399 { 400 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 401 402 if (kvm_probe_user_return_msr(msr)) 403 return -1; 404 405 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 406 return kvm_nr_uret_msrs++; 407 } 408 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 409 410 int kvm_find_user_return_msr(u32 msr) 411 { 412 int i; 413 414 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 415 if (kvm_uret_msrs_list[i] == msr) 416 return i; 417 } 418 return -1; 419 } 420 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 421 422 static void kvm_user_return_msr_cpu_online(void) 423 { 424 unsigned int cpu = smp_processor_id(); 425 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 426 u64 value; 427 int i; 428 429 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 430 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 431 msrs->values[i].host = value; 432 msrs->values[i].curr = value; 433 } 434 } 435 436 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 437 { 438 unsigned int cpu = smp_processor_id(); 439 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 440 int err; 441 442 value = (value & mask) | (msrs->values[slot].host & ~mask); 443 if (value == msrs->values[slot].curr) 444 return 0; 445 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 446 if (err) 447 return 1; 448 449 msrs->values[slot].curr = value; 450 if (!msrs->registered) { 451 msrs->urn.on_user_return = kvm_on_user_return; 452 user_return_notifier_register(&msrs->urn); 453 msrs->registered = true; 454 } 455 return 0; 456 } 457 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 458 459 static void drop_user_return_notifiers(void) 460 { 461 unsigned int cpu = smp_processor_id(); 462 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 463 464 if (msrs->registered) 465 kvm_on_user_return(&msrs->urn); 466 } 467 468 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 469 { 470 return vcpu->arch.apic_base; 471 } 472 473 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 474 { 475 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 476 } 477 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 478 479 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 480 { 481 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 482 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 483 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 484 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 485 486 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 487 return 1; 488 if (!msr_info->host_initiated) { 489 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 490 return 1; 491 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 492 return 1; 493 } 494 495 kvm_lapic_set_base(vcpu, msr_info->data); 496 kvm_recalculate_apic_map(vcpu->kvm); 497 return 0; 498 } 499 500 /* 501 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 502 * 503 * Hardware virtualization extension instructions may fault if a reboot turns 504 * off virtualization while processes are running. Usually after catching the 505 * fault we just panic; during reboot instead the instruction is ignored. 506 */ 507 noinstr void kvm_spurious_fault(void) 508 { 509 /* Fault while not rebooting. We want the trace. */ 510 BUG_ON(!kvm_rebooting); 511 } 512 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 513 514 #define EXCPT_BENIGN 0 515 #define EXCPT_CONTRIBUTORY 1 516 #define EXCPT_PF 2 517 518 static int exception_class(int vector) 519 { 520 switch (vector) { 521 case PF_VECTOR: 522 return EXCPT_PF; 523 case DE_VECTOR: 524 case TS_VECTOR: 525 case NP_VECTOR: 526 case SS_VECTOR: 527 case GP_VECTOR: 528 return EXCPT_CONTRIBUTORY; 529 default: 530 break; 531 } 532 return EXCPT_BENIGN; 533 } 534 535 #define EXCPT_FAULT 0 536 #define EXCPT_TRAP 1 537 #define EXCPT_ABORT 2 538 #define EXCPT_INTERRUPT 3 539 #define EXCPT_DB 4 540 541 static int exception_type(int vector) 542 { 543 unsigned int mask; 544 545 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 546 return EXCPT_INTERRUPT; 547 548 mask = 1 << vector; 549 550 /* 551 * #DBs can be trap-like or fault-like, the caller must check other CPU 552 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 553 */ 554 if (mask & (1 << DB_VECTOR)) 555 return EXCPT_DB; 556 557 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 558 return EXCPT_TRAP; 559 560 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 561 return EXCPT_ABORT; 562 563 /* Reserved exceptions will result in fault */ 564 return EXCPT_FAULT; 565 } 566 567 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 568 struct kvm_queued_exception *ex) 569 { 570 if (!ex->has_payload) 571 return; 572 573 switch (ex->vector) { 574 case DB_VECTOR: 575 /* 576 * "Certain debug exceptions may clear bit 0-3. The 577 * remaining contents of the DR6 register are never 578 * cleared by the processor". 579 */ 580 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 581 /* 582 * In order to reflect the #DB exception payload in guest 583 * dr6, three components need to be considered: active low 584 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 585 * DR6_BS and DR6_BT) 586 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 587 * In the target guest dr6: 588 * FIXED_1 bits should always be set. 589 * Active low bits should be cleared if 1-setting in payload. 590 * Active high bits should be set if 1-setting in payload. 591 * 592 * Note, the payload is compatible with the pending debug 593 * exceptions/exit qualification under VMX, that active_low bits 594 * are active high in payload. 595 * So they need to be flipped for DR6. 596 */ 597 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 598 vcpu->arch.dr6 |= ex->payload; 599 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 600 601 /* 602 * The #DB payload is defined as compatible with the 'pending 603 * debug exceptions' field under VMX, not DR6. While bit 12 is 604 * defined in the 'pending debug exceptions' field (enabled 605 * breakpoint), it is reserved and must be zero in DR6. 606 */ 607 vcpu->arch.dr6 &= ~BIT(12); 608 break; 609 case PF_VECTOR: 610 vcpu->arch.cr2 = ex->payload; 611 break; 612 } 613 614 ex->has_payload = false; 615 ex->payload = 0; 616 } 617 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 618 619 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 620 bool has_error_code, u32 error_code, 621 bool has_payload, unsigned long payload) 622 { 623 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 624 625 ex->vector = vector; 626 ex->injected = false; 627 ex->pending = true; 628 ex->has_error_code = has_error_code; 629 ex->error_code = error_code; 630 ex->has_payload = has_payload; 631 ex->payload = payload; 632 } 633 634 /* Forcibly leave the nested mode in cases like a vCPU reset */ 635 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 636 { 637 kvm_x86_ops.nested_ops->leave_nested(vcpu); 638 } 639 640 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 641 unsigned nr, bool has_error, u32 error_code, 642 bool has_payload, unsigned long payload, bool reinject) 643 { 644 u32 prev_nr; 645 int class1, class2; 646 647 kvm_make_request(KVM_REQ_EVENT, vcpu); 648 649 /* 650 * If the exception is destined for L2 and isn't being reinjected, 651 * morph it to a VM-Exit if L1 wants to intercept the exception. A 652 * previously injected exception is not checked because it was checked 653 * when it was original queued, and re-checking is incorrect if _L1_ 654 * injected the exception, in which case it's exempt from interception. 655 */ 656 if (!reinject && is_guest_mode(vcpu) && 657 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 658 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 659 has_payload, payload); 660 return; 661 } 662 663 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 664 queue: 665 if (reinject) { 666 /* 667 * On VM-Entry, an exception can be pending if and only 668 * if event injection was blocked by nested_run_pending. 669 * In that case, however, vcpu_enter_guest() requests an 670 * immediate exit, and the guest shouldn't proceed far 671 * enough to need reinjection. 672 */ 673 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 674 vcpu->arch.exception.injected = true; 675 if (WARN_ON_ONCE(has_payload)) { 676 /* 677 * A reinjected event has already 678 * delivered its payload. 679 */ 680 has_payload = false; 681 payload = 0; 682 } 683 } else { 684 vcpu->arch.exception.pending = true; 685 vcpu->arch.exception.injected = false; 686 } 687 vcpu->arch.exception.has_error_code = has_error; 688 vcpu->arch.exception.vector = nr; 689 vcpu->arch.exception.error_code = error_code; 690 vcpu->arch.exception.has_payload = has_payload; 691 vcpu->arch.exception.payload = payload; 692 if (!is_guest_mode(vcpu)) 693 kvm_deliver_exception_payload(vcpu, 694 &vcpu->arch.exception); 695 return; 696 } 697 698 /* to check exception */ 699 prev_nr = vcpu->arch.exception.vector; 700 if (prev_nr == DF_VECTOR) { 701 /* triple fault -> shutdown */ 702 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 703 return; 704 } 705 class1 = exception_class(prev_nr); 706 class2 = exception_class(nr); 707 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 708 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 709 /* 710 * Synthesize #DF. Clear the previously injected or pending 711 * exception so as not to incorrectly trigger shutdown. 712 */ 713 vcpu->arch.exception.injected = false; 714 vcpu->arch.exception.pending = false; 715 716 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 717 } else { 718 /* replace previous exception with a new one in a hope 719 that instruction re-execution will regenerate lost 720 exception */ 721 goto queue; 722 } 723 } 724 725 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 726 { 727 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 728 } 729 EXPORT_SYMBOL_GPL(kvm_queue_exception); 730 731 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 734 } 735 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 736 737 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 738 unsigned long payload) 739 { 740 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 741 } 742 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 743 744 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 745 u32 error_code, unsigned long payload) 746 { 747 kvm_multiple_exception(vcpu, nr, true, error_code, 748 true, payload, false); 749 } 750 751 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 752 { 753 if (err) 754 kvm_inject_gp(vcpu, 0); 755 else 756 return kvm_skip_emulated_instruction(vcpu); 757 758 return 1; 759 } 760 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 761 762 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 763 { 764 if (err) { 765 kvm_inject_gp(vcpu, 0); 766 return 1; 767 } 768 769 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 770 EMULTYPE_COMPLETE_USER_EXIT); 771 } 772 773 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 774 { 775 ++vcpu->stat.pf_guest; 776 777 /* 778 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 779 * whether or not L1 wants to intercept "regular" #PF. 780 */ 781 if (is_guest_mode(vcpu) && fault->async_page_fault) 782 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 783 true, fault->error_code, 784 true, fault->address); 785 else 786 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 787 fault->address); 788 } 789 790 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 791 struct x86_exception *fault) 792 { 793 struct kvm_mmu *fault_mmu; 794 WARN_ON_ONCE(fault->vector != PF_VECTOR); 795 796 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 797 vcpu->arch.walk_mmu; 798 799 /* 800 * Invalidate the TLB entry for the faulting address, if it exists, 801 * else the access will fault indefinitely (and to emulate hardware). 802 */ 803 if ((fault->error_code & PFERR_PRESENT_MASK) && 804 !(fault->error_code & PFERR_RSVD_MASK)) 805 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 806 KVM_MMU_ROOT_CURRENT); 807 808 fault_mmu->inject_page_fault(vcpu, fault); 809 } 810 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 811 812 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 813 { 814 atomic_inc(&vcpu->arch.nmi_queued); 815 kvm_make_request(KVM_REQ_NMI, vcpu); 816 } 817 818 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 819 { 820 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 821 } 822 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 823 824 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 827 } 828 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 829 830 /* 831 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 832 * a #GP and return false. 833 */ 834 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 835 { 836 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 837 return true; 838 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 839 return false; 840 } 841 842 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 843 { 844 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 845 return true; 846 847 kvm_queue_exception(vcpu, UD_VECTOR); 848 return false; 849 } 850 EXPORT_SYMBOL_GPL(kvm_require_dr); 851 852 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 853 { 854 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 855 } 856 857 /* 858 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 859 */ 860 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 861 { 862 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 863 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 864 gpa_t real_gpa; 865 int i; 866 int ret; 867 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 868 869 /* 870 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 871 * to an L1 GPA. 872 */ 873 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 874 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 875 if (real_gpa == INVALID_GPA) 876 return 0; 877 878 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 879 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 880 cr3 & GENMASK(11, 5), sizeof(pdpte)); 881 if (ret < 0) 882 return 0; 883 884 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 885 if ((pdpte[i] & PT_PRESENT_MASK) && 886 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 887 return 0; 888 } 889 } 890 891 /* 892 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 893 * Shadow page roots need to be reconstructed instead. 894 */ 895 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 896 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 897 898 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 899 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 900 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 901 vcpu->arch.pdptrs_from_userspace = false; 902 903 return 1; 904 } 905 EXPORT_SYMBOL_GPL(load_pdptrs); 906 907 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 908 { 909 #ifdef CONFIG_X86_64 910 if (cr0 & 0xffffffff00000000UL) 911 return false; 912 #endif 913 914 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 915 return false; 916 917 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 918 return false; 919 920 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 921 } 922 923 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 924 { 925 /* 926 * CR0.WP is incorporated into the MMU role, but only for non-nested, 927 * indirect shadow MMUs. If paging is disabled, no updates are needed 928 * as there are no permission bits to emulate. If TDP is enabled, the 929 * MMU's metadata needs to be updated, e.g. so that emulating guest 930 * translations does the right thing, but there's no need to unload the 931 * root as CR0.WP doesn't affect SPTEs. 932 */ 933 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 934 if (!(cr0 & X86_CR0_PG)) 935 return; 936 937 if (tdp_enabled) { 938 kvm_init_mmu(vcpu); 939 return; 940 } 941 } 942 943 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 944 kvm_clear_async_pf_completion_queue(vcpu); 945 kvm_async_pf_hash_reset(vcpu); 946 947 /* 948 * Clearing CR0.PG is defined to flush the TLB from the guest's 949 * perspective. 950 */ 951 if (!(cr0 & X86_CR0_PG)) 952 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 953 } 954 955 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 956 kvm_mmu_reset_context(vcpu); 957 958 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 959 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) && 960 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 961 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 962 } 963 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 964 965 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 966 { 967 unsigned long old_cr0 = kvm_read_cr0(vcpu); 968 969 if (!kvm_is_valid_cr0(vcpu, cr0)) 970 return 1; 971 972 cr0 |= X86_CR0_ET; 973 974 /* Write to CR0 reserved bits are ignored, even on Intel. */ 975 cr0 &= ~CR0_RESERVED_BITS; 976 977 #ifdef CONFIG_X86_64 978 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 979 (cr0 & X86_CR0_PG)) { 980 int cs_db, cs_l; 981 982 if (!is_pae(vcpu)) 983 return 1; 984 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 985 if (cs_l) 986 return 1; 987 } 988 #endif 989 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 990 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 991 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 992 return 1; 993 994 if (!(cr0 & X86_CR0_PG) && 995 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 996 return 1; 997 998 static_call(kvm_x86_set_cr0)(vcpu, cr0); 999 1000 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1001 1002 return 0; 1003 } 1004 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1005 1006 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1007 { 1008 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_lmsw); 1011 1012 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1013 { 1014 if (vcpu->arch.guest_state_protected) 1015 return; 1016 1017 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1018 1019 if (vcpu->arch.xcr0 != host_xcr0) 1020 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1021 1022 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1023 vcpu->arch.ia32_xss != host_xss) 1024 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1025 } 1026 1027 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1028 vcpu->arch.pkru != vcpu->arch.host_pkru && 1029 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1030 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1031 write_pkru(vcpu->arch.pkru); 1032 } 1033 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1034 1035 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1036 { 1037 if (vcpu->arch.guest_state_protected) 1038 return; 1039 1040 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1041 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1042 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1043 vcpu->arch.pkru = rdpkru(); 1044 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1045 write_pkru(vcpu->arch.host_pkru); 1046 } 1047 1048 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1049 1050 if (vcpu->arch.xcr0 != host_xcr0) 1051 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1052 1053 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1054 vcpu->arch.ia32_xss != host_xss) 1055 wrmsrl(MSR_IA32_XSS, host_xss); 1056 } 1057 1058 } 1059 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1060 1061 #ifdef CONFIG_X86_64 1062 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1063 { 1064 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1065 } 1066 #endif 1067 1068 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1069 { 1070 u64 xcr0 = xcr; 1071 u64 old_xcr0 = vcpu->arch.xcr0; 1072 u64 valid_bits; 1073 1074 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1075 if (index != XCR_XFEATURE_ENABLED_MASK) 1076 return 1; 1077 if (!(xcr0 & XFEATURE_MASK_FP)) 1078 return 1; 1079 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1080 return 1; 1081 1082 /* 1083 * Do not allow the guest to set bits that we do not support 1084 * saving. However, xcr0 bit 0 is always set, even if the 1085 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1086 */ 1087 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1088 if (xcr0 & ~valid_bits) 1089 return 1; 1090 1091 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1092 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1093 return 1; 1094 1095 if (xcr0 & XFEATURE_MASK_AVX512) { 1096 if (!(xcr0 & XFEATURE_MASK_YMM)) 1097 return 1; 1098 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1099 return 1; 1100 } 1101 1102 if ((xcr0 & XFEATURE_MASK_XTILE) && 1103 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1104 return 1; 1105 1106 vcpu->arch.xcr0 = xcr0; 1107 1108 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1109 kvm_update_cpuid_runtime(vcpu); 1110 return 0; 1111 } 1112 1113 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1114 { 1115 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1116 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1117 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1118 kvm_inject_gp(vcpu, 0); 1119 return 1; 1120 } 1121 1122 return kvm_skip_emulated_instruction(vcpu); 1123 } 1124 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1125 1126 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1127 { 1128 if (cr4 & cr4_reserved_bits) 1129 return false; 1130 1131 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1132 return false; 1133 1134 return true; 1135 } 1136 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1137 1138 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1139 { 1140 return __kvm_is_valid_cr4(vcpu, cr4) && 1141 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1142 } 1143 1144 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1145 { 1146 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1147 kvm_mmu_reset_context(vcpu); 1148 1149 /* 1150 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1151 * according to the SDM; however, stale prev_roots could be reused 1152 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1153 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1154 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1155 * so fall through. 1156 */ 1157 if (!tdp_enabled && 1158 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1159 kvm_mmu_unload(vcpu); 1160 1161 /* 1162 * The TLB has to be flushed for all PCIDs if any of the following 1163 * (architecturally required) changes happen: 1164 * - CR4.PCIDE is changed from 1 to 0 1165 * - CR4.PGE is toggled 1166 * 1167 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1168 */ 1169 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1170 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1171 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1172 1173 /* 1174 * The TLB has to be flushed for the current PCID if any of the 1175 * following (architecturally required) changes happen: 1176 * - CR4.SMEP is changed from 0 to 1 1177 * - CR4.PAE is toggled 1178 */ 1179 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1180 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1181 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1182 1183 } 1184 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1185 1186 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1187 { 1188 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1189 1190 if (!kvm_is_valid_cr4(vcpu, cr4)) 1191 return 1; 1192 1193 if (is_long_mode(vcpu)) { 1194 if (!(cr4 & X86_CR4_PAE)) 1195 return 1; 1196 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1197 return 1; 1198 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1199 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1200 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1201 return 1; 1202 1203 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1204 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1205 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1206 return 1; 1207 } 1208 1209 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1210 1211 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1212 1213 return 0; 1214 } 1215 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1216 1217 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1218 { 1219 struct kvm_mmu *mmu = vcpu->arch.mmu; 1220 unsigned long roots_to_free = 0; 1221 int i; 1222 1223 /* 1224 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1225 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1226 * also via the emulator. KVM's TDP page tables are not in the scope of 1227 * the invalidation, but the guest's TLB entries need to be flushed as 1228 * the CPU may have cached entries in its TLB for the target PCID. 1229 */ 1230 if (unlikely(tdp_enabled)) { 1231 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1232 return; 1233 } 1234 1235 /* 1236 * If neither the current CR3 nor any of the prev_roots use the given 1237 * PCID, then nothing needs to be done here because a resync will 1238 * happen anyway before switching to any other CR3. 1239 */ 1240 if (kvm_get_active_pcid(vcpu) == pcid) { 1241 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1242 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1243 } 1244 1245 /* 1246 * If PCID is disabled, there is no need to free prev_roots even if the 1247 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1248 * with PCIDE=0. 1249 */ 1250 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1251 return; 1252 1253 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1254 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1255 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1256 1257 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1258 } 1259 1260 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1261 { 1262 bool skip_tlb_flush = false; 1263 unsigned long pcid = 0; 1264 #ifdef CONFIG_X86_64 1265 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1266 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1267 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1268 pcid = cr3 & X86_CR3_PCID_MASK; 1269 } 1270 #endif 1271 1272 /* PDPTRs are always reloaded for PAE paging. */ 1273 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1274 goto handle_tlb_flush; 1275 1276 /* 1277 * Do not condition the GPA check on long mode, this helper is used to 1278 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1279 * the current vCPU mode is accurate. 1280 */ 1281 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1282 return 1; 1283 1284 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1285 return 1; 1286 1287 if (cr3 != kvm_read_cr3(vcpu)) 1288 kvm_mmu_new_pgd(vcpu, cr3); 1289 1290 vcpu->arch.cr3 = cr3; 1291 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1292 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1293 1294 handle_tlb_flush: 1295 /* 1296 * A load of CR3 that flushes the TLB flushes only the current PCID, 1297 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1298 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1299 * and it's impossible to use a non-zero PCID when PCID is disabled, 1300 * i.e. only PCID=0 can be relevant. 1301 */ 1302 if (!skip_tlb_flush) 1303 kvm_invalidate_pcid(vcpu, pcid); 1304 1305 return 0; 1306 } 1307 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1308 1309 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1310 { 1311 if (cr8 & CR8_RESERVED_BITS) 1312 return 1; 1313 if (lapic_in_kernel(vcpu)) 1314 kvm_lapic_set_tpr(vcpu, cr8); 1315 else 1316 vcpu->arch.cr8 = cr8; 1317 return 0; 1318 } 1319 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1320 1321 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1322 { 1323 if (lapic_in_kernel(vcpu)) 1324 return kvm_lapic_get_cr8(vcpu); 1325 else 1326 return vcpu->arch.cr8; 1327 } 1328 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1329 1330 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1331 { 1332 int i; 1333 1334 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1335 for (i = 0; i < KVM_NR_DB_REGS; i++) 1336 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1337 } 1338 } 1339 1340 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1341 { 1342 unsigned long dr7; 1343 1344 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1345 dr7 = vcpu->arch.guest_debug_dr7; 1346 else 1347 dr7 = vcpu->arch.dr7; 1348 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1349 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1350 if (dr7 & DR7_BP_EN_MASK) 1351 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1352 } 1353 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1354 1355 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1356 { 1357 u64 fixed = DR6_FIXED_1; 1358 1359 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1360 fixed |= DR6_RTM; 1361 1362 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1363 fixed |= DR6_BUS_LOCK; 1364 return fixed; 1365 } 1366 1367 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1368 { 1369 size_t size = ARRAY_SIZE(vcpu->arch.db); 1370 1371 switch (dr) { 1372 case 0 ... 3: 1373 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1374 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1375 vcpu->arch.eff_db[dr] = val; 1376 break; 1377 case 4: 1378 case 6: 1379 if (!kvm_dr6_valid(val)) 1380 return 1; /* #GP */ 1381 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1382 break; 1383 case 5: 1384 default: /* 7 */ 1385 if (!kvm_dr7_valid(val)) 1386 return 1; /* #GP */ 1387 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1388 kvm_update_dr7(vcpu); 1389 break; 1390 } 1391 1392 return 0; 1393 } 1394 EXPORT_SYMBOL_GPL(kvm_set_dr); 1395 1396 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) 1397 { 1398 size_t size = ARRAY_SIZE(vcpu->arch.db); 1399 1400 switch (dr) { 1401 case 0 ... 3: 1402 return vcpu->arch.db[array_index_nospec(dr, size)]; 1403 case 4: 1404 case 6: 1405 return vcpu->arch.dr6; 1406 case 5: 1407 default: /* 7 */ 1408 return vcpu->arch.dr7; 1409 } 1410 } 1411 EXPORT_SYMBOL_GPL(kvm_get_dr); 1412 1413 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1414 { 1415 u32 ecx = kvm_rcx_read(vcpu); 1416 u64 data; 1417 1418 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1419 kvm_inject_gp(vcpu, 0); 1420 return 1; 1421 } 1422 1423 kvm_rax_write(vcpu, (u32)data); 1424 kvm_rdx_write(vcpu, data >> 32); 1425 return kvm_skip_emulated_instruction(vcpu); 1426 } 1427 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1428 1429 /* 1430 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1431 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1432 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1433 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1434 * MSRs that KVM emulates without strictly requiring host support. 1435 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1436 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1437 * msrs_to_save and emulated_msrs. 1438 */ 1439 1440 static const u32 msrs_to_save_base[] = { 1441 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1442 MSR_STAR, 1443 #ifdef CONFIG_X86_64 1444 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1445 #endif 1446 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1447 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1448 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1449 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1450 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1451 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1452 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1453 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1454 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1455 MSR_IA32_UMWAIT_CONTROL, 1456 1457 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1458 }; 1459 1460 static const u32 msrs_to_save_pmu[] = { 1461 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1462 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1463 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1464 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1465 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1466 1467 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1468 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1469 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1470 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1471 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1472 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1473 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1474 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1475 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1476 1477 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1478 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1479 1480 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1481 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1482 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1483 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1484 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1485 1486 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1487 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1488 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1489 }; 1490 1491 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1492 ARRAY_SIZE(msrs_to_save_pmu)]; 1493 static unsigned num_msrs_to_save; 1494 1495 static const u32 emulated_msrs_all[] = { 1496 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1497 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1498 1499 #ifdef CONFIG_KVM_HYPERV 1500 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1501 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1502 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1503 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1504 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1505 HV_X64_MSR_RESET, 1506 HV_X64_MSR_VP_INDEX, 1507 HV_X64_MSR_VP_RUNTIME, 1508 HV_X64_MSR_SCONTROL, 1509 HV_X64_MSR_STIMER0_CONFIG, 1510 HV_X64_MSR_VP_ASSIST_PAGE, 1511 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1512 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1513 HV_X64_MSR_SYNDBG_OPTIONS, 1514 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1515 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1516 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1517 #endif 1518 1519 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1520 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1521 1522 MSR_IA32_TSC_ADJUST, 1523 MSR_IA32_TSC_DEADLINE, 1524 MSR_IA32_ARCH_CAPABILITIES, 1525 MSR_IA32_PERF_CAPABILITIES, 1526 MSR_IA32_MISC_ENABLE, 1527 MSR_IA32_MCG_STATUS, 1528 MSR_IA32_MCG_CTL, 1529 MSR_IA32_MCG_EXT_CTL, 1530 MSR_IA32_SMBASE, 1531 MSR_SMI_COUNT, 1532 MSR_PLATFORM_INFO, 1533 MSR_MISC_FEATURES_ENABLES, 1534 MSR_AMD64_VIRT_SPEC_CTRL, 1535 MSR_AMD64_TSC_RATIO, 1536 MSR_IA32_POWER_CTL, 1537 MSR_IA32_UCODE_REV, 1538 1539 /* 1540 * KVM always supports the "true" VMX control MSRs, even if the host 1541 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1542 * doesn't strictly require them to exist in the host (ignoring that 1543 * KVM would refuse to load in the first place if the core set of MSRs 1544 * aren't supported). 1545 */ 1546 MSR_IA32_VMX_BASIC, 1547 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1548 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1549 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1550 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1551 MSR_IA32_VMX_MISC, 1552 MSR_IA32_VMX_CR0_FIXED0, 1553 MSR_IA32_VMX_CR4_FIXED0, 1554 MSR_IA32_VMX_VMCS_ENUM, 1555 MSR_IA32_VMX_PROCBASED_CTLS2, 1556 MSR_IA32_VMX_EPT_VPID_CAP, 1557 MSR_IA32_VMX_VMFUNC, 1558 1559 MSR_K7_HWCR, 1560 MSR_KVM_POLL_CONTROL, 1561 }; 1562 1563 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1564 static unsigned num_emulated_msrs; 1565 1566 /* 1567 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1568 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1569 * feature MSRs, but are handled separately to allow expedited lookups. 1570 */ 1571 static const u32 msr_based_features_all_except_vmx[] = { 1572 MSR_AMD64_DE_CFG, 1573 MSR_IA32_UCODE_REV, 1574 MSR_IA32_ARCH_CAPABILITIES, 1575 MSR_IA32_PERF_CAPABILITIES, 1576 }; 1577 1578 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1579 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1580 static unsigned int num_msr_based_features; 1581 1582 /* 1583 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1584 * patch, are immutable once the vCPU model is defined. 1585 */ 1586 static bool kvm_is_immutable_feature_msr(u32 msr) 1587 { 1588 int i; 1589 1590 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1591 return true; 1592 1593 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1594 if (msr == msr_based_features_all_except_vmx[i]) 1595 return msr != MSR_IA32_UCODE_REV; 1596 } 1597 1598 return false; 1599 } 1600 1601 /* 1602 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1603 * does not yet virtualize. These include: 1604 * 10 - MISC_PACKAGE_CTRLS 1605 * 11 - ENERGY_FILTERING_CTL 1606 * 12 - DOITM 1607 * 18 - FB_CLEAR_CTRL 1608 * 21 - XAPIC_DISABLE_STATUS 1609 * 23 - OVERCLOCKING_STATUS 1610 */ 1611 1612 #define KVM_SUPPORTED_ARCH_CAP \ 1613 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1614 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1615 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1616 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1617 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1618 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO) 1619 1620 static u64 kvm_get_arch_capabilities(void) 1621 { 1622 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1623 1624 /* 1625 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1626 * the nested hypervisor runs with NX huge pages. If it is not, 1627 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1628 * L1 guests, so it need not worry about its own (L2) guests. 1629 */ 1630 data |= ARCH_CAP_PSCHANGE_MC_NO; 1631 1632 /* 1633 * If we're doing cache flushes (either "always" or "cond") 1634 * we will do one whenever the guest does a vmlaunch/vmresume. 1635 * If an outer hypervisor is doing the cache flush for us 1636 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1637 * capability to the guest too, and if EPT is disabled we're not 1638 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1639 * require a nested hypervisor to do a flush of its own. 1640 */ 1641 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1642 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1643 1644 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1645 data |= ARCH_CAP_RDCL_NO; 1646 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1647 data |= ARCH_CAP_SSB_NO; 1648 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1649 data |= ARCH_CAP_MDS_NO; 1650 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1651 data |= ARCH_CAP_RFDS_NO; 1652 1653 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1654 /* 1655 * If RTM=0 because the kernel has disabled TSX, the host might 1656 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1657 * and therefore knows that there cannot be TAA) but keep 1658 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1659 * and we want to allow migrating those guests to tsx=off hosts. 1660 */ 1661 data &= ~ARCH_CAP_TAA_NO; 1662 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1663 data |= ARCH_CAP_TAA_NO; 1664 } else { 1665 /* 1666 * Nothing to do here; we emulate TSX_CTRL if present on the 1667 * host so the guest can choose between disabling TSX or 1668 * using VERW to clear CPU buffers. 1669 */ 1670 } 1671 1672 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1673 data |= ARCH_CAP_GDS_NO; 1674 1675 return data; 1676 } 1677 1678 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1679 { 1680 switch (msr->index) { 1681 case MSR_IA32_ARCH_CAPABILITIES: 1682 msr->data = kvm_get_arch_capabilities(); 1683 break; 1684 case MSR_IA32_PERF_CAPABILITIES: 1685 msr->data = kvm_caps.supported_perf_cap; 1686 break; 1687 case MSR_IA32_UCODE_REV: 1688 rdmsrl_safe(msr->index, &msr->data); 1689 break; 1690 default: 1691 return static_call(kvm_x86_get_msr_feature)(msr); 1692 } 1693 return 0; 1694 } 1695 1696 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1697 { 1698 struct kvm_msr_entry msr; 1699 int r; 1700 1701 /* Unconditionally clear the output for simplicity */ 1702 msr.data = 0; 1703 msr.index = index; 1704 r = kvm_get_msr_feature(&msr); 1705 1706 if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false)) 1707 r = 0; 1708 1709 *data = msr.data; 1710 1711 return r; 1712 } 1713 1714 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1715 { 1716 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1717 return false; 1718 1719 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1720 return false; 1721 1722 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1723 return false; 1724 1725 if (efer & (EFER_LME | EFER_LMA) && 1726 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1727 return false; 1728 1729 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1730 return false; 1731 1732 return true; 1733 1734 } 1735 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1736 { 1737 if (efer & efer_reserved_bits) 1738 return false; 1739 1740 return __kvm_valid_efer(vcpu, efer); 1741 } 1742 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1743 1744 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1745 { 1746 u64 old_efer = vcpu->arch.efer; 1747 u64 efer = msr_info->data; 1748 int r; 1749 1750 if (efer & efer_reserved_bits) 1751 return 1; 1752 1753 if (!msr_info->host_initiated) { 1754 if (!__kvm_valid_efer(vcpu, efer)) 1755 return 1; 1756 1757 if (is_paging(vcpu) && 1758 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1759 return 1; 1760 } 1761 1762 efer &= ~EFER_LMA; 1763 efer |= vcpu->arch.efer & EFER_LMA; 1764 1765 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1766 if (r) { 1767 WARN_ON(r > 0); 1768 return r; 1769 } 1770 1771 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1772 kvm_mmu_reset_context(vcpu); 1773 1774 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1775 (efer & EFER_SVME)) 1776 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1777 1778 return 0; 1779 } 1780 1781 void kvm_enable_efer_bits(u64 mask) 1782 { 1783 efer_reserved_bits &= ~mask; 1784 } 1785 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1786 1787 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1788 { 1789 struct kvm_x86_msr_filter *msr_filter; 1790 struct msr_bitmap_range *ranges; 1791 struct kvm *kvm = vcpu->kvm; 1792 bool allowed; 1793 int idx; 1794 u32 i; 1795 1796 /* x2APIC MSRs do not support filtering. */ 1797 if (index >= 0x800 && index <= 0x8ff) 1798 return true; 1799 1800 idx = srcu_read_lock(&kvm->srcu); 1801 1802 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1803 if (!msr_filter) { 1804 allowed = true; 1805 goto out; 1806 } 1807 1808 allowed = msr_filter->default_allow; 1809 ranges = msr_filter->ranges; 1810 1811 for (i = 0; i < msr_filter->count; i++) { 1812 u32 start = ranges[i].base; 1813 u32 end = start + ranges[i].nmsrs; 1814 u32 flags = ranges[i].flags; 1815 unsigned long *bitmap = ranges[i].bitmap; 1816 1817 if ((index >= start) && (index < end) && (flags & type)) { 1818 allowed = test_bit(index - start, bitmap); 1819 break; 1820 } 1821 } 1822 1823 out: 1824 srcu_read_unlock(&kvm->srcu, idx); 1825 1826 return allowed; 1827 } 1828 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1829 1830 /* 1831 * Write @data into the MSR specified by @index. Select MSR specific fault 1832 * checks are bypassed if @host_initiated is %true. 1833 * Returns 0 on success, non-0 otherwise. 1834 * Assumes vcpu_load() was already called. 1835 */ 1836 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1837 bool host_initiated) 1838 { 1839 struct msr_data msr; 1840 1841 switch (index) { 1842 case MSR_FS_BASE: 1843 case MSR_GS_BASE: 1844 case MSR_KERNEL_GS_BASE: 1845 case MSR_CSTAR: 1846 case MSR_LSTAR: 1847 if (is_noncanonical_address(data, vcpu)) 1848 return 1; 1849 break; 1850 case MSR_IA32_SYSENTER_EIP: 1851 case MSR_IA32_SYSENTER_ESP: 1852 /* 1853 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1854 * non-canonical address is written on Intel but not on 1855 * AMD (which ignores the top 32-bits, because it does 1856 * not implement 64-bit SYSENTER). 1857 * 1858 * 64-bit code should hence be able to write a non-canonical 1859 * value on AMD. Making the address canonical ensures that 1860 * vmentry does not fail on Intel after writing a non-canonical 1861 * value, and that something deterministic happens if the guest 1862 * invokes 64-bit SYSENTER. 1863 */ 1864 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1865 break; 1866 case MSR_TSC_AUX: 1867 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1868 return 1; 1869 1870 if (!host_initiated && 1871 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1872 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1873 return 1; 1874 1875 /* 1876 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1877 * incomplete and conflicting architectural behavior. Current 1878 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1879 * reserved and always read as zeros. Enforce Intel's reserved 1880 * bits check if and only if the guest CPU is Intel, and clear 1881 * the bits in all other cases. This ensures cross-vendor 1882 * migration will provide consistent behavior for the guest. 1883 */ 1884 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1885 return 1; 1886 1887 data = (u32)data; 1888 break; 1889 } 1890 1891 msr.data = data; 1892 msr.index = index; 1893 msr.host_initiated = host_initiated; 1894 1895 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1896 } 1897 1898 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1899 u32 index, u64 data, bool host_initiated) 1900 { 1901 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1902 1903 if (ret == KVM_MSR_RET_INVALID) 1904 if (kvm_msr_ignored_check(index, data, true)) 1905 ret = 0; 1906 1907 return ret; 1908 } 1909 1910 /* 1911 * Read the MSR specified by @index into @data. Select MSR specific fault 1912 * checks are bypassed if @host_initiated is %true. 1913 * Returns 0 on success, non-0 otherwise. 1914 * Assumes vcpu_load() was already called. 1915 */ 1916 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1917 bool host_initiated) 1918 { 1919 struct msr_data msr; 1920 int ret; 1921 1922 switch (index) { 1923 case MSR_TSC_AUX: 1924 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1925 return 1; 1926 1927 if (!host_initiated && 1928 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1929 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1930 return 1; 1931 break; 1932 } 1933 1934 msr.index = index; 1935 msr.host_initiated = host_initiated; 1936 1937 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1938 if (!ret) 1939 *data = msr.data; 1940 return ret; 1941 } 1942 1943 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1944 u32 index, u64 *data, bool host_initiated) 1945 { 1946 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1947 1948 if (ret == KVM_MSR_RET_INVALID) { 1949 /* Unconditionally clear *data for simplicity */ 1950 *data = 0; 1951 if (kvm_msr_ignored_check(index, 0, false)) 1952 ret = 0; 1953 } 1954 1955 return ret; 1956 } 1957 1958 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1959 { 1960 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1961 return KVM_MSR_RET_FILTERED; 1962 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1963 } 1964 1965 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1966 { 1967 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1968 return KVM_MSR_RET_FILTERED; 1969 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1970 } 1971 1972 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1973 { 1974 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1975 } 1976 EXPORT_SYMBOL_GPL(kvm_get_msr); 1977 1978 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1979 { 1980 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1981 } 1982 EXPORT_SYMBOL_GPL(kvm_set_msr); 1983 1984 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1985 { 1986 if (!vcpu->run->msr.error) { 1987 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1988 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1989 } 1990 } 1991 1992 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1993 { 1994 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1995 } 1996 1997 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1998 { 1999 complete_userspace_rdmsr(vcpu); 2000 return complete_emulated_msr_access(vcpu); 2001 } 2002 2003 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2004 { 2005 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2006 } 2007 2008 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2009 { 2010 complete_userspace_rdmsr(vcpu); 2011 return complete_fast_msr_access(vcpu); 2012 } 2013 2014 static u64 kvm_msr_reason(int r) 2015 { 2016 switch (r) { 2017 case KVM_MSR_RET_INVALID: 2018 return KVM_MSR_EXIT_REASON_UNKNOWN; 2019 case KVM_MSR_RET_FILTERED: 2020 return KVM_MSR_EXIT_REASON_FILTER; 2021 default: 2022 return KVM_MSR_EXIT_REASON_INVAL; 2023 } 2024 } 2025 2026 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2027 u32 exit_reason, u64 data, 2028 int (*completion)(struct kvm_vcpu *vcpu), 2029 int r) 2030 { 2031 u64 msr_reason = kvm_msr_reason(r); 2032 2033 /* Check if the user wanted to know about this MSR fault */ 2034 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2035 return 0; 2036 2037 vcpu->run->exit_reason = exit_reason; 2038 vcpu->run->msr.error = 0; 2039 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2040 vcpu->run->msr.reason = msr_reason; 2041 vcpu->run->msr.index = index; 2042 vcpu->run->msr.data = data; 2043 vcpu->arch.complete_userspace_io = completion; 2044 2045 return 1; 2046 } 2047 2048 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2049 { 2050 u32 ecx = kvm_rcx_read(vcpu); 2051 u64 data; 2052 int r; 2053 2054 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2055 2056 if (!r) { 2057 trace_kvm_msr_read(ecx, data); 2058 2059 kvm_rax_write(vcpu, data & -1u); 2060 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2061 } else { 2062 /* MSR read failed? See if we should ask user space */ 2063 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2064 complete_fast_rdmsr, r)) 2065 return 0; 2066 trace_kvm_msr_read_ex(ecx); 2067 } 2068 2069 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2070 } 2071 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2072 2073 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2074 { 2075 u32 ecx = kvm_rcx_read(vcpu); 2076 u64 data = kvm_read_edx_eax(vcpu); 2077 int r; 2078 2079 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2080 2081 if (!r) { 2082 trace_kvm_msr_write(ecx, data); 2083 } else { 2084 /* MSR write failed? See if we should ask user space */ 2085 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2086 complete_fast_msr_access, r)) 2087 return 0; 2088 /* Signal all other negative errors to userspace */ 2089 if (r < 0) 2090 return r; 2091 trace_kvm_msr_write_ex(ecx, data); 2092 } 2093 2094 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2095 } 2096 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2097 2098 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2099 { 2100 return kvm_skip_emulated_instruction(vcpu); 2101 } 2102 2103 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2104 { 2105 /* Treat an INVD instruction as a NOP and just skip it. */ 2106 return kvm_emulate_as_nop(vcpu); 2107 } 2108 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2109 2110 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2111 { 2112 kvm_queue_exception(vcpu, UD_VECTOR); 2113 return 1; 2114 } 2115 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2116 2117 2118 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2119 { 2120 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2121 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2122 return kvm_handle_invalid_op(vcpu); 2123 2124 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2125 return kvm_emulate_as_nop(vcpu); 2126 } 2127 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2128 { 2129 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2130 } 2131 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2132 2133 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2134 { 2135 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2136 } 2137 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2138 2139 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2140 { 2141 xfer_to_guest_mode_prepare(); 2142 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2143 xfer_to_guest_mode_work_pending(); 2144 } 2145 2146 /* 2147 * The fast path for frequent and performance sensitive wrmsr emulation, 2148 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2149 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2150 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2151 * other cases which must be called after interrupts are enabled on the host. 2152 */ 2153 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2154 { 2155 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2156 return 1; 2157 2158 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2159 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2160 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2161 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2162 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2163 2164 return 1; 2165 } 2166 2167 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2168 { 2169 if (!kvm_can_use_hv_timer(vcpu)) 2170 return 1; 2171 2172 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2173 return 0; 2174 } 2175 2176 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2177 { 2178 u32 msr = kvm_rcx_read(vcpu); 2179 u64 data; 2180 fastpath_t ret = EXIT_FASTPATH_NONE; 2181 2182 kvm_vcpu_srcu_read_lock(vcpu); 2183 2184 switch (msr) { 2185 case APIC_BASE_MSR + (APIC_ICR >> 4): 2186 data = kvm_read_edx_eax(vcpu); 2187 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2188 kvm_skip_emulated_instruction(vcpu); 2189 ret = EXIT_FASTPATH_EXIT_HANDLED; 2190 } 2191 break; 2192 case MSR_IA32_TSC_DEADLINE: 2193 data = kvm_read_edx_eax(vcpu); 2194 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2195 kvm_skip_emulated_instruction(vcpu); 2196 ret = EXIT_FASTPATH_REENTER_GUEST; 2197 } 2198 break; 2199 default: 2200 break; 2201 } 2202 2203 if (ret != EXIT_FASTPATH_NONE) 2204 trace_kvm_msr_write(msr, data); 2205 2206 kvm_vcpu_srcu_read_unlock(vcpu); 2207 2208 return ret; 2209 } 2210 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2211 2212 /* 2213 * Adapt set_msr() to msr_io()'s calling convention 2214 */ 2215 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2216 { 2217 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2218 } 2219 2220 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2221 { 2222 u64 val; 2223 2224 /* 2225 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2226 * not support modifying the guest vCPU model on the fly, e.g. changing 2227 * the nVMX capabilities while L2 is running is nonsensical. Allow 2228 * writes of the same value, e.g. to allow userspace to blindly stuff 2229 * all MSRs when emulating RESET. 2230 */ 2231 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && 2232 (do_get_msr(vcpu, index, &val) || *data != val)) 2233 return -EINVAL; 2234 2235 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2236 } 2237 2238 #ifdef CONFIG_X86_64 2239 struct pvclock_clock { 2240 int vclock_mode; 2241 u64 cycle_last; 2242 u64 mask; 2243 u32 mult; 2244 u32 shift; 2245 u64 base_cycles; 2246 u64 offset; 2247 }; 2248 2249 struct pvclock_gtod_data { 2250 seqcount_t seq; 2251 2252 struct pvclock_clock clock; /* extract of a clocksource struct */ 2253 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2254 2255 ktime_t offs_boot; 2256 u64 wall_time_sec; 2257 }; 2258 2259 static struct pvclock_gtod_data pvclock_gtod_data; 2260 2261 static void update_pvclock_gtod(struct timekeeper *tk) 2262 { 2263 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2264 2265 write_seqcount_begin(&vdata->seq); 2266 2267 /* copy pvclock gtod data */ 2268 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2269 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2270 vdata->clock.mask = tk->tkr_mono.mask; 2271 vdata->clock.mult = tk->tkr_mono.mult; 2272 vdata->clock.shift = tk->tkr_mono.shift; 2273 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2274 vdata->clock.offset = tk->tkr_mono.base; 2275 2276 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2277 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2278 vdata->raw_clock.mask = tk->tkr_raw.mask; 2279 vdata->raw_clock.mult = tk->tkr_raw.mult; 2280 vdata->raw_clock.shift = tk->tkr_raw.shift; 2281 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2282 vdata->raw_clock.offset = tk->tkr_raw.base; 2283 2284 vdata->wall_time_sec = tk->xtime_sec; 2285 2286 vdata->offs_boot = tk->offs_boot; 2287 2288 write_seqcount_end(&vdata->seq); 2289 } 2290 2291 static s64 get_kvmclock_base_ns(void) 2292 { 2293 /* Count up from boot time, but with the frequency of the raw clock. */ 2294 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2295 } 2296 #else 2297 static s64 get_kvmclock_base_ns(void) 2298 { 2299 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2300 return ktime_get_boottime_ns(); 2301 } 2302 #endif 2303 2304 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2305 { 2306 int version; 2307 int r; 2308 struct pvclock_wall_clock wc; 2309 u32 wc_sec_hi; 2310 u64 wall_nsec; 2311 2312 if (!wall_clock) 2313 return; 2314 2315 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2316 if (r) 2317 return; 2318 2319 if (version & 1) 2320 ++version; /* first time write, random junk */ 2321 2322 ++version; 2323 2324 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2325 return; 2326 2327 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2328 2329 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2330 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2331 wc.version = version; 2332 2333 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2334 2335 if (sec_hi_ofs) { 2336 wc_sec_hi = wall_nsec >> 32; 2337 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2338 &wc_sec_hi, sizeof(wc_sec_hi)); 2339 } 2340 2341 version++; 2342 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2343 } 2344 2345 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2346 bool old_msr, bool host_initiated) 2347 { 2348 struct kvm_arch *ka = &vcpu->kvm->arch; 2349 2350 if (vcpu->vcpu_id == 0 && !host_initiated) { 2351 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2352 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2353 2354 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2355 } 2356 2357 vcpu->arch.time = system_time; 2358 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2359 2360 /* we verify if the enable bit is set... */ 2361 if (system_time & 1) 2362 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2363 sizeof(struct pvclock_vcpu_time_info)); 2364 else 2365 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2366 2367 return; 2368 } 2369 2370 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2371 { 2372 do_shl32_div32(dividend, divisor); 2373 return dividend; 2374 } 2375 2376 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2377 s8 *pshift, u32 *pmultiplier) 2378 { 2379 uint64_t scaled64; 2380 int32_t shift = 0; 2381 uint64_t tps64; 2382 uint32_t tps32; 2383 2384 tps64 = base_hz; 2385 scaled64 = scaled_hz; 2386 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2387 tps64 >>= 1; 2388 shift--; 2389 } 2390 2391 tps32 = (uint32_t)tps64; 2392 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2393 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2394 scaled64 >>= 1; 2395 else 2396 tps32 <<= 1; 2397 shift++; 2398 } 2399 2400 *pshift = shift; 2401 *pmultiplier = div_frac(scaled64, tps32); 2402 } 2403 2404 #ifdef CONFIG_X86_64 2405 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2406 #endif 2407 2408 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2409 static unsigned long max_tsc_khz; 2410 2411 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2412 { 2413 u64 v = (u64)khz * (1000000 + ppm); 2414 do_div(v, 1000000); 2415 return v; 2416 } 2417 2418 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2419 2420 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2421 { 2422 u64 ratio; 2423 2424 /* Guest TSC same frequency as host TSC? */ 2425 if (!scale) { 2426 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2427 return 0; 2428 } 2429 2430 /* TSC scaling supported? */ 2431 if (!kvm_caps.has_tsc_control) { 2432 if (user_tsc_khz > tsc_khz) { 2433 vcpu->arch.tsc_catchup = 1; 2434 vcpu->arch.tsc_always_catchup = 1; 2435 return 0; 2436 } else { 2437 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2438 return -1; 2439 } 2440 } 2441 2442 /* TSC scaling required - calculate ratio */ 2443 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2444 user_tsc_khz, tsc_khz); 2445 2446 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2447 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2448 user_tsc_khz); 2449 return -1; 2450 } 2451 2452 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2453 return 0; 2454 } 2455 2456 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2457 { 2458 u32 thresh_lo, thresh_hi; 2459 int use_scaling = 0; 2460 2461 /* tsc_khz can be zero if TSC calibration fails */ 2462 if (user_tsc_khz == 0) { 2463 /* set tsc_scaling_ratio to a safe value */ 2464 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2465 return -1; 2466 } 2467 2468 /* Compute a scale to convert nanoseconds in TSC cycles */ 2469 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2470 &vcpu->arch.virtual_tsc_shift, 2471 &vcpu->arch.virtual_tsc_mult); 2472 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2473 2474 /* 2475 * Compute the variation in TSC rate which is acceptable 2476 * within the range of tolerance and decide if the 2477 * rate being applied is within that bounds of the hardware 2478 * rate. If so, no scaling or compensation need be done. 2479 */ 2480 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2481 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2482 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2483 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2484 user_tsc_khz, thresh_lo, thresh_hi); 2485 use_scaling = 1; 2486 } 2487 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2488 } 2489 2490 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2491 { 2492 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2493 vcpu->arch.virtual_tsc_mult, 2494 vcpu->arch.virtual_tsc_shift); 2495 tsc += vcpu->arch.this_tsc_write; 2496 return tsc; 2497 } 2498 2499 #ifdef CONFIG_X86_64 2500 static inline bool gtod_is_based_on_tsc(int mode) 2501 { 2502 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2503 } 2504 #endif 2505 2506 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2507 { 2508 #ifdef CONFIG_X86_64 2509 struct kvm_arch *ka = &vcpu->kvm->arch; 2510 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2511 2512 /* 2513 * To use the masterclock, the host clocksource must be based on TSC 2514 * and all vCPUs must have matching TSCs. Note, the count for matching 2515 * vCPUs doesn't include the reference vCPU, hence "+1". 2516 */ 2517 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2518 atomic_read(&vcpu->kvm->online_vcpus)) && 2519 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2520 2521 /* 2522 * Request a masterclock update if the masterclock needs to be toggled 2523 * on/off, or when starting a new generation and the masterclock is 2524 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2525 * taken _after_ the new generation is created). 2526 */ 2527 if ((ka->use_master_clock && new_generation) || 2528 (ka->use_master_clock != use_master_clock)) 2529 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2530 2531 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2532 atomic_read(&vcpu->kvm->online_vcpus), 2533 ka->use_master_clock, gtod->clock.vclock_mode); 2534 #endif 2535 } 2536 2537 /* 2538 * Multiply tsc by a fixed point number represented by ratio. 2539 * 2540 * The most significant 64-N bits (mult) of ratio represent the 2541 * integral part of the fixed point number; the remaining N bits 2542 * (frac) represent the fractional part, ie. ratio represents a fixed 2543 * point number (mult + frac * 2^(-N)). 2544 * 2545 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2546 */ 2547 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2548 { 2549 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2550 } 2551 2552 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2553 { 2554 u64 _tsc = tsc; 2555 2556 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2557 _tsc = __scale_tsc(ratio, tsc); 2558 2559 return _tsc; 2560 } 2561 2562 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2563 { 2564 u64 tsc; 2565 2566 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2567 2568 return target_tsc - tsc; 2569 } 2570 2571 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2572 { 2573 return vcpu->arch.l1_tsc_offset + 2574 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2575 } 2576 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2577 2578 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2579 { 2580 u64 nested_offset; 2581 2582 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2583 nested_offset = l1_offset; 2584 else 2585 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2586 kvm_caps.tsc_scaling_ratio_frac_bits); 2587 2588 nested_offset += l2_offset; 2589 return nested_offset; 2590 } 2591 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2592 2593 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2594 { 2595 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2596 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2597 kvm_caps.tsc_scaling_ratio_frac_bits); 2598 2599 return l1_multiplier; 2600 } 2601 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2602 2603 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2604 { 2605 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2606 vcpu->arch.l1_tsc_offset, 2607 l1_offset); 2608 2609 vcpu->arch.l1_tsc_offset = l1_offset; 2610 2611 /* 2612 * If we are here because L1 chose not to trap WRMSR to TSC then 2613 * according to the spec this should set L1's TSC (as opposed to 2614 * setting L1's offset for L2). 2615 */ 2616 if (is_guest_mode(vcpu)) 2617 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2618 l1_offset, 2619 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2620 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2621 else 2622 vcpu->arch.tsc_offset = l1_offset; 2623 2624 static_call(kvm_x86_write_tsc_offset)(vcpu); 2625 } 2626 2627 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2628 { 2629 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2630 2631 /* Userspace is changing the multiplier while L2 is active */ 2632 if (is_guest_mode(vcpu)) 2633 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2634 l1_multiplier, 2635 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2636 else 2637 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2638 2639 if (kvm_caps.has_tsc_control) 2640 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2641 } 2642 2643 static inline bool kvm_check_tsc_unstable(void) 2644 { 2645 #ifdef CONFIG_X86_64 2646 /* 2647 * TSC is marked unstable when we're running on Hyper-V, 2648 * 'TSC page' clocksource is good. 2649 */ 2650 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2651 return false; 2652 #endif 2653 return check_tsc_unstable(); 2654 } 2655 2656 /* 2657 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2658 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2659 * participates in. 2660 */ 2661 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2662 u64 ns, bool matched) 2663 { 2664 struct kvm *kvm = vcpu->kvm; 2665 2666 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2667 2668 /* 2669 * We also track th most recent recorded KHZ, write and time to 2670 * allow the matching interval to be extended at each write. 2671 */ 2672 kvm->arch.last_tsc_nsec = ns; 2673 kvm->arch.last_tsc_write = tsc; 2674 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2675 kvm->arch.last_tsc_offset = offset; 2676 2677 vcpu->arch.last_guest_tsc = tsc; 2678 2679 kvm_vcpu_write_tsc_offset(vcpu, offset); 2680 2681 if (!matched) { 2682 /* 2683 * We split periods of matched TSC writes into generations. 2684 * For each generation, we track the original measured 2685 * nanosecond time, offset, and write, so if TSCs are in 2686 * sync, we can match exact offset, and if not, we can match 2687 * exact software computation in compute_guest_tsc() 2688 * 2689 * These values are tracked in kvm->arch.cur_xxx variables. 2690 */ 2691 kvm->arch.cur_tsc_generation++; 2692 kvm->arch.cur_tsc_nsec = ns; 2693 kvm->arch.cur_tsc_write = tsc; 2694 kvm->arch.cur_tsc_offset = offset; 2695 kvm->arch.nr_vcpus_matched_tsc = 0; 2696 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2697 kvm->arch.nr_vcpus_matched_tsc++; 2698 } 2699 2700 /* Keep track of which generation this VCPU has synchronized to */ 2701 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2702 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2703 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2704 2705 kvm_track_tsc_matching(vcpu, !matched); 2706 } 2707 2708 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2709 { 2710 u64 data = user_value ? *user_value : 0; 2711 struct kvm *kvm = vcpu->kvm; 2712 u64 offset, ns, elapsed; 2713 unsigned long flags; 2714 bool matched = false; 2715 bool synchronizing = false; 2716 2717 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2718 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2719 ns = get_kvmclock_base_ns(); 2720 elapsed = ns - kvm->arch.last_tsc_nsec; 2721 2722 if (vcpu->arch.virtual_tsc_khz) { 2723 if (data == 0) { 2724 /* 2725 * Force synchronization when creating a vCPU, or when 2726 * userspace explicitly writes a zero value. 2727 */ 2728 synchronizing = true; 2729 } else if (kvm->arch.user_set_tsc) { 2730 u64 tsc_exp = kvm->arch.last_tsc_write + 2731 nsec_to_cycles(vcpu, elapsed); 2732 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2733 /* 2734 * Here lies UAPI baggage: when a user-initiated TSC write has 2735 * a small delta (1 second) of virtual cycle time against the 2736 * previously set vCPU, we assume that they were intended to be 2737 * in sync and the delta was only due to the racy nature of the 2738 * legacy API. 2739 * 2740 * This trick falls down when restoring a guest which genuinely 2741 * has been running for less time than the 1 second of imprecision 2742 * which we allow for in the legacy API. In this case, the first 2743 * value written by userspace (on any vCPU) should not be subject 2744 * to this 'correction' to make it sync up with values that only 2745 * come from the kernel's default vCPU creation. Make the 1-second 2746 * slop hack only trigger if the user_set_tsc flag is already set. 2747 */ 2748 synchronizing = data < tsc_exp + tsc_hz && 2749 data + tsc_hz > tsc_exp; 2750 } 2751 } 2752 2753 if (user_value) 2754 kvm->arch.user_set_tsc = true; 2755 2756 /* 2757 * For a reliable TSC, we can match TSC offsets, and for an unstable 2758 * TSC, we add elapsed time in this computation. We could let the 2759 * compensation code attempt to catch up if we fall behind, but 2760 * it's better to try to match offsets from the beginning. 2761 */ 2762 if (synchronizing && 2763 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2764 if (!kvm_check_tsc_unstable()) { 2765 offset = kvm->arch.cur_tsc_offset; 2766 } else { 2767 u64 delta = nsec_to_cycles(vcpu, elapsed); 2768 data += delta; 2769 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2770 } 2771 matched = true; 2772 } 2773 2774 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2775 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2776 } 2777 2778 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2779 s64 adjustment) 2780 { 2781 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2782 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2783 } 2784 2785 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2786 { 2787 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2788 WARN_ON(adjustment < 0); 2789 adjustment = kvm_scale_tsc((u64) adjustment, 2790 vcpu->arch.l1_tsc_scaling_ratio); 2791 adjust_tsc_offset_guest(vcpu, adjustment); 2792 } 2793 2794 #ifdef CONFIG_X86_64 2795 2796 static u64 read_tsc(void) 2797 { 2798 u64 ret = (u64)rdtsc_ordered(); 2799 u64 last = pvclock_gtod_data.clock.cycle_last; 2800 2801 if (likely(ret >= last)) 2802 return ret; 2803 2804 /* 2805 * GCC likes to generate cmov here, but this branch is extremely 2806 * predictable (it's just a function of time and the likely is 2807 * very likely) and there's a data dependence, so force GCC 2808 * to generate a branch instead. I don't barrier() because 2809 * we don't actually need a barrier, and if this function 2810 * ever gets inlined it will generate worse code. 2811 */ 2812 asm volatile (""); 2813 return last; 2814 } 2815 2816 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2817 int *mode) 2818 { 2819 u64 tsc_pg_val; 2820 long v; 2821 2822 switch (clock->vclock_mode) { 2823 case VDSO_CLOCKMODE_HVCLOCK: 2824 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2825 tsc_timestamp, &tsc_pg_val)) { 2826 /* TSC page valid */ 2827 *mode = VDSO_CLOCKMODE_HVCLOCK; 2828 v = (tsc_pg_val - clock->cycle_last) & 2829 clock->mask; 2830 } else { 2831 /* TSC page invalid */ 2832 *mode = VDSO_CLOCKMODE_NONE; 2833 } 2834 break; 2835 case VDSO_CLOCKMODE_TSC: 2836 *mode = VDSO_CLOCKMODE_TSC; 2837 *tsc_timestamp = read_tsc(); 2838 v = (*tsc_timestamp - clock->cycle_last) & 2839 clock->mask; 2840 break; 2841 default: 2842 *mode = VDSO_CLOCKMODE_NONE; 2843 } 2844 2845 if (*mode == VDSO_CLOCKMODE_NONE) 2846 *tsc_timestamp = v = 0; 2847 2848 return v * clock->mult; 2849 } 2850 2851 /* 2852 * As with get_kvmclock_base_ns(), this counts from boot time, at the 2853 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). 2854 */ 2855 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) 2856 { 2857 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2858 unsigned long seq; 2859 int mode; 2860 u64 ns; 2861 2862 do { 2863 seq = read_seqcount_begin(>od->seq); 2864 ns = gtod->raw_clock.base_cycles; 2865 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2866 ns >>= gtod->raw_clock.shift; 2867 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2868 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2869 *t = ns; 2870 2871 return mode; 2872 } 2873 2874 /* 2875 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with 2876 * no boot time offset. 2877 */ 2878 static int do_monotonic(s64 *t, u64 *tsc_timestamp) 2879 { 2880 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2881 unsigned long seq; 2882 int mode; 2883 u64 ns; 2884 2885 do { 2886 seq = read_seqcount_begin(>od->seq); 2887 ns = gtod->clock.base_cycles; 2888 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2889 ns >>= gtod->clock.shift; 2890 ns += ktime_to_ns(gtod->clock.offset); 2891 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2892 *t = ns; 2893 2894 return mode; 2895 } 2896 2897 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2898 { 2899 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2900 unsigned long seq; 2901 int mode; 2902 u64 ns; 2903 2904 do { 2905 seq = read_seqcount_begin(>od->seq); 2906 ts->tv_sec = gtod->wall_time_sec; 2907 ns = gtod->clock.base_cycles; 2908 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2909 ns >>= gtod->clock.shift; 2910 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2911 2912 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2913 ts->tv_nsec = ns; 2914 2915 return mode; 2916 } 2917 2918 /* 2919 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and 2920 * reports the TSC value from which it do so. Returns true if host is 2921 * using TSC based clocksource. 2922 */ 2923 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2924 { 2925 /* checked again under seqlock below */ 2926 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2927 return false; 2928 2929 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, 2930 tsc_timestamp)); 2931 } 2932 2933 /* 2934 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did 2935 * so. Returns true if host is using TSC based clocksource. 2936 */ 2937 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2938 { 2939 /* checked again under seqlock below */ 2940 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2941 return false; 2942 2943 return gtod_is_based_on_tsc(do_monotonic(kernel_ns, 2944 tsc_timestamp)); 2945 } 2946 2947 /* 2948 * Calculates CLOCK_REALTIME and reports the TSC value from which it did 2949 * so. Returns true if host is using TSC based clocksource. 2950 * 2951 * DO NOT USE this for anything related to migration. You want CLOCK_TAI 2952 * for that. 2953 */ 2954 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2955 u64 *tsc_timestamp) 2956 { 2957 /* checked again under seqlock below */ 2958 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2959 return false; 2960 2961 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2962 } 2963 #endif 2964 2965 /* 2966 * 2967 * Assuming a stable TSC across physical CPUS, and a stable TSC 2968 * across virtual CPUs, the following condition is possible. 2969 * Each numbered line represents an event visible to both 2970 * CPUs at the next numbered event. 2971 * 2972 * "timespecX" represents host monotonic time. "tscX" represents 2973 * RDTSC value. 2974 * 2975 * VCPU0 on CPU0 | VCPU1 on CPU1 2976 * 2977 * 1. read timespec0,tsc0 2978 * 2. | timespec1 = timespec0 + N 2979 * | tsc1 = tsc0 + M 2980 * 3. transition to guest | transition to guest 2981 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2982 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2983 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2984 * 2985 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2986 * 2987 * - ret0 < ret1 2988 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2989 * ... 2990 * - 0 < N - M => M < N 2991 * 2992 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2993 * always the case (the difference between two distinct xtime instances 2994 * might be smaller then the difference between corresponding TSC reads, 2995 * when updating guest vcpus pvclock areas). 2996 * 2997 * To avoid that problem, do not allow visibility of distinct 2998 * system_timestamp/tsc_timestamp values simultaneously: use a master 2999 * copy of host monotonic time values. Update that master copy 3000 * in lockstep. 3001 * 3002 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 3003 * 3004 */ 3005 3006 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 3007 { 3008 #ifdef CONFIG_X86_64 3009 struct kvm_arch *ka = &kvm->arch; 3010 int vclock_mode; 3011 bool host_tsc_clocksource, vcpus_matched; 3012 3013 lockdep_assert_held(&kvm->arch.tsc_write_lock); 3014 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 3015 atomic_read(&kvm->online_vcpus)); 3016 3017 /* 3018 * If the host uses TSC clock, then passthrough TSC as stable 3019 * to the guest. 3020 */ 3021 host_tsc_clocksource = kvm_get_time_and_clockread( 3022 &ka->master_kernel_ns, 3023 &ka->master_cycle_now); 3024 3025 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 3026 && !ka->backwards_tsc_observed 3027 && !ka->boot_vcpu_runs_old_kvmclock; 3028 3029 if (ka->use_master_clock) 3030 atomic_set(&kvm_guest_has_master_clock, 1); 3031 3032 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 3033 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 3034 vcpus_matched); 3035 #endif 3036 } 3037 3038 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3039 { 3040 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3041 } 3042 3043 static void __kvm_start_pvclock_update(struct kvm *kvm) 3044 { 3045 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3046 write_seqcount_begin(&kvm->arch.pvclock_sc); 3047 } 3048 3049 static void kvm_start_pvclock_update(struct kvm *kvm) 3050 { 3051 kvm_make_mclock_inprogress_request(kvm); 3052 3053 /* no guest entries from this point */ 3054 __kvm_start_pvclock_update(kvm); 3055 } 3056 3057 static void kvm_end_pvclock_update(struct kvm *kvm) 3058 { 3059 struct kvm_arch *ka = &kvm->arch; 3060 struct kvm_vcpu *vcpu; 3061 unsigned long i; 3062 3063 write_seqcount_end(&ka->pvclock_sc); 3064 raw_spin_unlock_irq(&ka->tsc_write_lock); 3065 kvm_for_each_vcpu(i, vcpu, kvm) 3066 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3067 3068 /* guest entries allowed */ 3069 kvm_for_each_vcpu(i, vcpu, kvm) 3070 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3071 } 3072 3073 static void kvm_update_masterclock(struct kvm *kvm) 3074 { 3075 kvm_hv_request_tsc_page_update(kvm); 3076 kvm_start_pvclock_update(kvm); 3077 pvclock_update_vm_gtod_copy(kvm); 3078 kvm_end_pvclock_update(kvm); 3079 } 3080 3081 /* 3082 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3083 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3084 * can change during boot even if the TSC is constant, as it's possible for KVM 3085 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3086 * notification when calibration completes, but practically speaking calibration 3087 * will complete before userspace is alive enough to create VMs. 3088 */ 3089 static unsigned long get_cpu_tsc_khz(void) 3090 { 3091 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3092 return tsc_khz; 3093 else 3094 return __this_cpu_read(cpu_tsc_khz); 3095 } 3096 3097 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3098 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3099 { 3100 struct kvm_arch *ka = &kvm->arch; 3101 struct pvclock_vcpu_time_info hv_clock; 3102 3103 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3104 get_cpu(); 3105 3106 data->flags = 0; 3107 if (ka->use_master_clock && 3108 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3109 #ifdef CONFIG_X86_64 3110 struct timespec64 ts; 3111 3112 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3113 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3114 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3115 } else 3116 #endif 3117 data->host_tsc = rdtsc(); 3118 3119 data->flags |= KVM_CLOCK_TSC_STABLE; 3120 hv_clock.tsc_timestamp = ka->master_cycle_now; 3121 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3122 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3123 &hv_clock.tsc_shift, 3124 &hv_clock.tsc_to_system_mul); 3125 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3126 } else { 3127 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3128 } 3129 3130 put_cpu(); 3131 } 3132 3133 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3134 { 3135 struct kvm_arch *ka = &kvm->arch; 3136 unsigned seq; 3137 3138 do { 3139 seq = read_seqcount_begin(&ka->pvclock_sc); 3140 __get_kvmclock(kvm, data); 3141 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3142 } 3143 3144 u64 get_kvmclock_ns(struct kvm *kvm) 3145 { 3146 struct kvm_clock_data data; 3147 3148 get_kvmclock(kvm, &data); 3149 return data.clock; 3150 } 3151 3152 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3153 struct gfn_to_pfn_cache *gpc, 3154 unsigned int offset, 3155 bool force_tsc_unstable) 3156 { 3157 struct kvm_vcpu_arch *vcpu = &v->arch; 3158 struct pvclock_vcpu_time_info *guest_hv_clock; 3159 unsigned long flags; 3160 3161 read_lock_irqsave(&gpc->lock, flags); 3162 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3163 read_unlock_irqrestore(&gpc->lock, flags); 3164 3165 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3166 return; 3167 3168 read_lock_irqsave(&gpc->lock, flags); 3169 } 3170 3171 guest_hv_clock = (void *)(gpc->khva + offset); 3172 3173 /* 3174 * This VCPU is paused, but it's legal for a guest to read another 3175 * VCPU's kvmclock, so we really have to follow the specification where 3176 * it says that version is odd if data is being modified, and even after 3177 * it is consistent. 3178 */ 3179 3180 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3181 smp_wmb(); 3182 3183 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3184 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3185 3186 if (vcpu->pvclock_set_guest_stopped_request) { 3187 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3188 vcpu->pvclock_set_guest_stopped_request = false; 3189 } 3190 3191 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3192 3193 if (force_tsc_unstable) 3194 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT; 3195 3196 smp_wmb(); 3197 3198 guest_hv_clock->version = ++vcpu->hv_clock.version; 3199 3200 kvm_gpc_mark_dirty_in_slot(gpc); 3201 read_unlock_irqrestore(&gpc->lock, flags); 3202 3203 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3204 } 3205 3206 static int kvm_guest_time_update(struct kvm_vcpu *v) 3207 { 3208 unsigned long flags, tgt_tsc_khz; 3209 unsigned seq; 3210 struct kvm_vcpu_arch *vcpu = &v->arch; 3211 struct kvm_arch *ka = &v->kvm->arch; 3212 s64 kernel_ns; 3213 u64 tsc_timestamp, host_tsc; 3214 u8 pvclock_flags; 3215 bool use_master_clock; 3216 #ifdef CONFIG_KVM_XEN 3217 /* 3218 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3219 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3220 * This default behaviour led to bugs in some guest kernels which cause 3221 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3222 */ 3223 bool xen_pvclock_tsc_unstable = 3224 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 3225 #endif 3226 3227 kernel_ns = 0; 3228 host_tsc = 0; 3229 3230 /* 3231 * If the host uses TSC clock, then passthrough TSC as stable 3232 * to the guest. 3233 */ 3234 do { 3235 seq = read_seqcount_begin(&ka->pvclock_sc); 3236 use_master_clock = ka->use_master_clock; 3237 if (use_master_clock) { 3238 host_tsc = ka->master_cycle_now; 3239 kernel_ns = ka->master_kernel_ns; 3240 } 3241 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3242 3243 /* Keep irq disabled to prevent changes to the clock */ 3244 local_irq_save(flags); 3245 tgt_tsc_khz = get_cpu_tsc_khz(); 3246 if (unlikely(tgt_tsc_khz == 0)) { 3247 local_irq_restore(flags); 3248 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3249 return 1; 3250 } 3251 if (!use_master_clock) { 3252 host_tsc = rdtsc(); 3253 kernel_ns = get_kvmclock_base_ns(); 3254 } 3255 3256 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3257 3258 /* 3259 * We may have to catch up the TSC to match elapsed wall clock 3260 * time for two reasons, even if kvmclock is used. 3261 * 1) CPU could have been running below the maximum TSC rate 3262 * 2) Broken TSC compensation resets the base at each VCPU 3263 * entry to avoid unknown leaps of TSC even when running 3264 * again on the same CPU. This may cause apparent elapsed 3265 * time to disappear, and the guest to stand still or run 3266 * very slowly. 3267 */ 3268 if (vcpu->tsc_catchup) { 3269 u64 tsc = compute_guest_tsc(v, kernel_ns); 3270 if (tsc > tsc_timestamp) { 3271 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3272 tsc_timestamp = tsc; 3273 } 3274 } 3275 3276 local_irq_restore(flags); 3277 3278 /* With all the info we got, fill in the values */ 3279 3280 if (kvm_caps.has_tsc_control) 3281 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3282 v->arch.l1_tsc_scaling_ratio); 3283 3284 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3285 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3286 &vcpu->hv_clock.tsc_shift, 3287 &vcpu->hv_clock.tsc_to_system_mul); 3288 vcpu->hw_tsc_khz = tgt_tsc_khz; 3289 kvm_xen_update_tsc_info(v); 3290 } 3291 3292 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3293 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3294 vcpu->last_guest_tsc = tsc_timestamp; 3295 3296 /* If the host uses TSC clocksource, then it is stable */ 3297 pvclock_flags = 0; 3298 if (use_master_clock) 3299 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3300 3301 vcpu->hv_clock.flags = pvclock_flags; 3302 3303 if (vcpu->pv_time.active) 3304 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false); 3305 #ifdef CONFIG_KVM_XEN 3306 if (vcpu->xen.vcpu_info_cache.active) 3307 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3308 offsetof(struct compat_vcpu_info, time), 3309 xen_pvclock_tsc_unstable); 3310 if (vcpu->xen.vcpu_time_info_cache.active) 3311 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0, 3312 xen_pvclock_tsc_unstable); 3313 #endif 3314 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3315 return 0; 3316 } 3317 3318 /* 3319 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3320 * which it started (i.e. its epoch, when its kvmclock was zero). 3321 * 3322 * In fact those clocks are subtly different; wall clock frequency is 3323 * adjusted by NTP and has leap seconds, while the kvmclock is a 3324 * simple function of the TSC without any such adjustment. 3325 * 3326 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3327 * that and kvmclock, but even that would be subject to change over 3328 * time. 3329 * 3330 * Attempt to calculate the epoch at a given moment using the *same* 3331 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3332 * wallclock and kvmclock times, and subtracting one from the other. 3333 * 3334 * Fall back to using their values at slightly different moments by 3335 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3336 */ 3337 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3338 { 3339 #ifdef CONFIG_X86_64 3340 struct pvclock_vcpu_time_info hv_clock; 3341 struct kvm_arch *ka = &kvm->arch; 3342 unsigned long seq, local_tsc_khz; 3343 struct timespec64 ts; 3344 uint64_t host_tsc; 3345 3346 do { 3347 seq = read_seqcount_begin(&ka->pvclock_sc); 3348 3349 local_tsc_khz = 0; 3350 if (!ka->use_master_clock) 3351 break; 3352 3353 /* 3354 * The TSC read and the call to get_cpu_tsc_khz() must happen 3355 * on the same CPU. 3356 */ 3357 get_cpu(); 3358 3359 local_tsc_khz = get_cpu_tsc_khz(); 3360 3361 if (local_tsc_khz && 3362 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3363 local_tsc_khz = 0; /* Fall back to old method */ 3364 3365 put_cpu(); 3366 3367 /* 3368 * These values must be snapshotted within the seqcount loop. 3369 * After that, it's just mathematics which can happen on any 3370 * CPU at any time. 3371 */ 3372 hv_clock.tsc_timestamp = ka->master_cycle_now; 3373 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3374 3375 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3376 3377 /* 3378 * If the conditions were right, and obtaining the wallclock+TSC was 3379 * successful, calculate the KVM clock at the corresponding time and 3380 * subtract one from the other to get the guest's epoch in nanoseconds 3381 * since 1970-01-01. 3382 */ 3383 if (local_tsc_khz) { 3384 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3385 &hv_clock.tsc_shift, 3386 &hv_clock.tsc_to_system_mul); 3387 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3388 __pvclock_read_cycles(&hv_clock, host_tsc); 3389 } 3390 #endif 3391 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3392 } 3393 3394 /* 3395 * kvmclock updates which are isolated to a given vcpu, such as 3396 * vcpu->cpu migration, should not allow system_timestamp from 3397 * the rest of the vcpus to remain static. Otherwise ntp frequency 3398 * correction applies to one vcpu's system_timestamp but not 3399 * the others. 3400 * 3401 * So in those cases, request a kvmclock update for all vcpus. 3402 * We need to rate-limit these requests though, as they can 3403 * considerably slow guests that have a large number of vcpus. 3404 * The time for a remote vcpu to update its kvmclock is bound 3405 * by the delay we use to rate-limit the updates. 3406 */ 3407 3408 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3409 3410 static void kvmclock_update_fn(struct work_struct *work) 3411 { 3412 unsigned long i; 3413 struct delayed_work *dwork = to_delayed_work(work); 3414 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3415 kvmclock_update_work); 3416 struct kvm *kvm = container_of(ka, struct kvm, arch); 3417 struct kvm_vcpu *vcpu; 3418 3419 kvm_for_each_vcpu(i, vcpu, kvm) { 3420 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3421 kvm_vcpu_kick(vcpu); 3422 } 3423 } 3424 3425 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3426 { 3427 struct kvm *kvm = v->kvm; 3428 3429 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3430 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3431 KVMCLOCK_UPDATE_DELAY); 3432 } 3433 3434 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3435 3436 static void kvmclock_sync_fn(struct work_struct *work) 3437 { 3438 struct delayed_work *dwork = to_delayed_work(work); 3439 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3440 kvmclock_sync_work); 3441 struct kvm *kvm = container_of(ka, struct kvm, arch); 3442 3443 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3444 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3445 KVMCLOCK_SYNC_PERIOD); 3446 } 3447 3448 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3449 static bool is_mci_control_msr(u32 msr) 3450 { 3451 return (msr & 3) == 0; 3452 } 3453 static bool is_mci_status_msr(u32 msr) 3454 { 3455 return (msr & 3) == 1; 3456 } 3457 3458 /* 3459 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3460 */ 3461 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3462 { 3463 /* McStatusWrEn enabled? */ 3464 if (guest_cpuid_is_amd_compatible(vcpu)) 3465 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3466 3467 return false; 3468 } 3469 3470 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3471 { 3472 u64 mcg_cap = vcpu->arch.mcg_cap; 3473 unsigned bank_num = mcg_cap & 0xff; 3474 u32 msr = msr_info->index; 3475 u64 data = msr_info->data; 3476 u32 offset, last_msr; 3477 3478 switch (msr) { 3479 case MSR_IA32_MCG_STATUS: 3480 vcpu->arch.mcg_status = data; 3481 break; 3482 case MSR_IA32_MCG_CTL: 3483 if (!(mcg_cap & MCG_CTL_P) && 3484 (data || !msr_info->host_initiated)) 3485 return 1; 3486 if (data != 0 && data != ~(u64)0) 3487 return 1; 3488 vcpu->arch.mcg_ctl = data; 3489 break; 3490 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3491 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3492 if (msr > last_msr) 3493 return 1; 3494 3495 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3496 return 1; 3497 /* An attempt to write a 1 to a reserved bit raises #GP */ 3498 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3499 return 1; 3500 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3501 last_msr + 1 - MSR_IA32_MC0_CTL2); 3502 vcpu->arch.mci_ctl2_banks[offset] = data; 3503 break; 3504 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3505 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3506 if (msr > last_msr) 3507 return 1; 3508 3509 /* 3510 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3511 * values are architecturally undefined. But, some Linux 3512 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3513 * issue on AMD K8s, allow bit 10 to be clear when setting all 3514 * other bits in order to avoid an uncaught #GP in the guest. 3515 * 3516 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3517 * single-bit ECC data errors. 3518 */ 3519 if (is_mci_control_msr(msr) && 3520 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3521 return 1; 3522 3523 /* 3524 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3525 * AMD-based CPUs allow non-zero values, but if and only if 3526 * HWCR[McStatusWrEn] is set. 3527 */ 3528 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3529 data != 0 && !can_set_mci_status(vcpu)) 3530 return 1; 3531 3532 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3533 last_msr + 1 - MSR_IA32_MC0_CTL); 3534 vcpu->arch.mce_banks[offset] = data; 3535 break; 3536 default: 3537 return 1; 3538 } 3539 return 0; 3540 } 3541 3542 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3543 { 3544 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3545 3546 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3547 } 3548 3549 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3550 { 3551 gpa_t gpa = data & ~0x3f; 3552 3553 /* Bits 4:5 are reserved, Should be zero */ 3554 if (data & 0x30) 3555 return 1; 3556 3557 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3558 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3559 return 1; 3560 3561 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3562 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3563 return 1; 3564 3565 if (!lapic_in_kernel(vcpu)) 3566 return data ? 1 : 0; 3567 3568 vcpu->arch.apf.msr_en_val = data; 3569 3570 if (!kvm_pv_async_pf_enabled(vcpu)) { 3571 kvm_clear_async_pf_completion_queue(vcpu); 3572 kvm_async_pf_hash_reset(vcpu); 3573 return 0; 3574 } 3575 3576 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3577 sizeof(u64))) 3578 return 1; 3579 3580 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3581 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3582 3583 kvm_async_pf_wakeup_all(vcpu); 3584 3585 return 0; 3586 } 3587 3588 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3589 { 3590 /* Bits 8-63 are reserved */ 3591 if (data >> 8) 3592 return 1; 3593 3594 if (!lapic_in_kernel(vcpu)) 3595 return 1; 3596 3597 vcpu->arch.apf.msr_int_val = data; 3598 3599 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3600 3601 return 0; 3602 } 3603 3604 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3605 { 3606 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3607 vcpu->arch.time = 0; 3608 } 3609 3610 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3611 { 3612 ++vcpu->stat.tlb_flush; 3613 static_call(kvm_x86_flush_tlb_all)(vcpu); 3614 3615 /* Flushing all ASIDs flushes the current ASID... */ 3616 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3617 } 3618 3619 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3620 { 3621 ++vcpu->stat.tlb_flush; 3622 3623 if (!tdp_enabled) { 3624 /* 3625 * A TLB flush on behalf of the guest is equivalent to 3626 * INVPCID(all), toggling CR4.PGE, etc., which requires 3627 * a forced sync of the shadow page tables. Ensure all the 3628 * roots are synced and the guest TLB in hardware is clean. 3629 */ 3630 kvm_mmu_sync_roots(vcpu); 3631 kvm_mmu_sync_prev_roots(vcpu); 3632 } 3633 3634 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3635 3636 /* 3637 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3638 * grained flushing. 3639 */ 3640 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3641 } 3642 3643 3644 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3645 { 3646 ++vcpu->stat.tlb_flush; 3647 static_call(kvm_x86_flush_tlb_current)(vcpu); 3648 } 3649 3650 /* 3651 * Service "local" TLB flush requests, which are specific to the current MMU 3652 * context. In addition to the generic event handling in vcpu_enter_guest(), 3653 * TLB flushes that are targeted at an MMU context also need to be serviced 3654 * prior before nested VM-Enter/VM-Exit. 3655 */ 3656 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3657 { 3658 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3659 kvm_vcpu_flush_tlb_current(vcpu); 3660 3661 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3662 kvm_vcpu_flush_tlb_guest(vcpu); 3663 } 3664 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3665 3666 static void record_steal_time(struct kvm_vcpu *vcpu) 3667 { 3668 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3669 struct kvm_steal_time __user *st; 3670 struct kvm_memslots *slots; 3671 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3672 u64 steal; 3673 u32 version; 3674 3675 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3676 kvm_xen_runstate_set_running(vcpu); 3677 return; 3678 } 3679 3680 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3681 return; 3682 3683 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3684 return; 3685 3686 slots = kvm_memslots(vcpu->kvm); 3687 3688 if (unlikely(slots->generation != ghc->generation || 3689 gpa != ghc->gpa || 3690 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3691 /* We rely on the fact that it fits in a single page. */ 3692 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3693 3694 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3695 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3696 return; 3697 } 3698 3699 st = (struct kvm_steal_time __user *)ghc->hva; 3700 /* 3701 * Doing a TLB flush here, on the guest's behalf, can avoid 3702 * expensive IPIs. 3703 */ 3704 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3705 u8 st_preempted = 0; 3706 int err = -EFAULT; 3707 3708 if (!user_access_begin(st, sizeof(*st))) 3709 return; 3710 3711 asm volatile("1: xchgb %0, %2\n" 3712 "xor %1, %1\n" 3713 "2:\n" 3714 _ASM_EXTABLE_UA(1b, 2b) 3715 : "+q" (st_preempted), 3716 "+&r" (err), 3717 "+m" (st->preempted)); 3718 if (err) 3719 goto out; 3720 3721 user_access_end(); 3722 3723 vcpu->arch.st.preempted = 0; 3724 3725 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3726 st_preempted & KVM_VCPU_FLUSH_TLB); 3727 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3728 kvm_vcpu_flush_tlb_guest(vcpu); 3729 3730 if (!user_access_begin(st, sizeof(*st))) 3731 goto dirty; 3732 } else { 3733 if (!user_access_begin(st, sizeof(*st))) 3734 return; 3735 3736 unsafe_put_user(0, &st->preempted, out); 3737 vcpu->arch.st.preempted = 0; 3738 } 3739 3740 unsafe_get_user(version, &st->version, out); 3741 if (version & 1) 3742 version += 1; /* first time write, random junk */ 3743 3744 version += 1; 3745 unsafe_put_user(version, &st->version, out); 3746 3747 smp_wmb(); 3748 3749 unsafe_get_user(steal, &st->steal, out); 3750 steal += current->sched_info.run_delay - 3751 vcpu->arch.st.last_steal; 3752 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3753 unsafe_put_user(steal, &st->steal, out); 3754 3755 version += 1; 3756 unsafe_put_user(version, &st->version, out); 3757 3758 out: 3759 user_access_end(); 3760 dirty: 3761 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3762 } 3763 3764 static bool kvm_is_msr_to_save(u32 msr_index) 3765 { 3766 unsigned int i; 3767 3768 for (i = 0; i < num_msrs_to_save; i++) { 3769 if (msrs_to_save[i] == msr_index) 3770 return true; 3771 } 3772 3773 return false; 3774 } 3775 3776 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3777 { 3778 u32 msr = msr_info->index; 3779 u64 data = msr_info->data; 3780 3781 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3782 return kvm_xen_write_hypercall_page(vcpu, data); 3783 3784 switch (msr) { 3785 case MSR_AMD64_NB_CFG: 3786 case MSR_IA32_UCODE_WRITE: 3787 case MSR_VM_HSAVE_PA: 3788 case MSR_AMD64_PATCH_LOADER: 3789 case MSR_AMD64_BU_CFG2: 3790 case MSR_AMD64_DC_CFG: 3791 case MSR_AMD64_TW_CFG: 3792 case MSR_F15H_EX_CFG: 3793 break; 3794 3795 case MSR_IA32_UCODE_REV: 3796 if (msr_info->host_initiated) 3797 vcpu->arch.microcode_version = data; 3798 break; 3799 case MSR_IA32_ARCH_CAPABILITIES: 3800 if (!msr_info->host_initiated) 3801 return 1; 3802 vcpu->arch.arch_capabilities = data; 3803 break; 3804 case MSR_IA32_PERF_CAPABILITIES: 3805 if (!msr_info->host_initiated) 3806 return 1; 3807 if (data & ~kvm_caps.supported_perf_cap) 3808 return 1; 3809 3810 /* 3811 * Note, this is not just a performance optimization! KVM 3812 * disallows changing feature MSRs after the vCPU has run; PMU 3813 * refresh will bug the VM if called after the vCPU has run. 3814 */ 3815 if (vcpu->arch.perf_capabilities == data) 3816 break; 3817 3818 vcpu->arch.perf_capabilities = data; 3819 kvm_pmu_refresh(vcpu); 3820 break; 3821 case MSR_IA32_PRED_CMD: { 3822 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3823 3824 if (!msr_info->host_initiated) { 3825 if ((!guest_has_pred_cmd_msr(vcpu))) 3826 return 1; 3827 3828 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3829 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3830 reserved_bits |= PRED_CMD_IBPB; 3831 3832 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3833 reserved_bits |= PRED_CMD_SBPB; 3834 } 3835 3836 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3837 reserved_bits |= PRED_CMD_IBPB; 3838 3839 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3840 reserved_bits |= PRED_CMD_SBPB; 3841 3842 if (data & reserved_bits) 3843 return 1; 3844 3845 if (!data) 3846 break; 3847 3848 wrmsrl(MSR_IA32_PRED_CMD, data); 3849 break; 3850 } 3851 case MSR_IA32_FLUSH_CMD: 3852 if (!msr_info->host_initiated && 3853 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3854 return 1; 3855 3856 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3857 return 1; 3858 if (!data) 3859 break; 3860 3861 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3862 break; 3863 case MSR_EFER: 3864 return set_efer(vcpu, msr_info); 3865 case MSR_K7_HWCR: 3866 data &= ~(u64)0x40; /* ignore flush filter disable */ 3867 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3868 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3869 3870 /* 3871 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3872 * through at least v6.6 whine if TscFreqSel is clear, 3873 * depending on F/M/S. 3874 */ 3875 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3876 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3877 return 1; 3878 } 3879 vcpu->arch.msr_hwcr = data; 3880 break; 3881 case MSR_FAM10H_MMIO_CONF_BASE: 3882 if (data != 0) { 3883 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3884 return 1; 3885 } 3886 break; 3887 case MSR_IA32_CR_PAT: 3888 if (!kvm_pat_valid(data)) 3889 return 1; 3890 3891 vcpu->arch.pat = data; 3892 break; 3893 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3894 case MSR_MTRRdefType: 3895 return kvm_mtrr_set_msr(vcpu, msr, data); 3896 case MSR_IA32_APICBASE: 3897 return kvm_set_apic_base(vcpu, msr_info); 3898 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3899 return kvm_x2apic_msr_write(vcpu, msr, data); 3900 case MSR_IA32_TSC_DEADLINE: 3901 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3902 break; 3903 case MSR_IA32_TSC_ADJUST: 3904 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3905 if (!msr_info->host_initiated) { 3906 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3907 adjust_tsc_offset_guest(vcpu, adj); 3908 /* Before back to guest, tsc_timestamp must be adjusted 3909 * as well, otherwise guest's percpu pvclock time could jump. 3910 */ 3911 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3912 } 3913 vcpu->arch.ia32_tsc_adjust_msr = data; 3914 } 3915 break; 3916 case MSR_IA32_MISC_ENABLE: { 3917 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3918 3919 if (!msr_info->host_initiated) { 3920 /* RO bits */ 3921 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3922 return 1; 3923 3924 /* R bits, i.e. writes are ignored, but don't fault. */ 3925 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3926 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3927 } 3928 3929 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3930 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3931 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3932 return 1; 3933 vcpu->arch.ia32_misc_enable_msr = data; 3934 kvm_update_cpuid_runtime(vcpu); 3935 } else { 3936 vcpu->arch.ia32_misc_enable_msr = data; 3937 } 3938 break; 3939 } 3940 case MSR_IA32_SMBASE: 3941 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3942 return 1; 3943 vcpu->arch.smbase = data; 3944 break; 3945 case MSR_IA32_POWER_CTL: 3946 vcpu->arch.msr_ia32_power_ctl = data; 3947 break; 3948 case MSR_IA32_TSC: 3949 if (msr_info->host_initiated) { 3950 kvm_synchronize_tsc(vcpu, &data); 3951 } else { 3952 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3953 adjust_tsc_offset_guest(vcpu, adj); 3954 vcpu->arch.ia32_tsc_adjust_msr += adj; 3955 } 3956 break; 3957 case MSR_IA32_XSS: 3958 if (!msr_info->host_initiated && 3959 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3960 return 1; 3961 /* 3962 * KVM supports exposing PT to the guest, but does not support 3963 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3964 * XSAVES/XRSTORS to save/restore PT MSRs. 3965 */ 3966 if (data & ~kvm_caps.supported_xss) 3967 return 1; 3968 vcpu->arch.ia32_xss = data; 3969 kvm_update_cpuid_runtime(vcpu); 3970 break; 3971 case MSR_SMI_COUNT: 3972 if (!msr_info->host_initiated) 3973 return 1; 3974 vcpu->arch.smi_count = data; 3975 break; 3976 case MSR_KVM_WALL_CLOCK_NEW: 3977 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3978 return 1; 3979 3980 vcpu->kvm->arch.wall_clock = data; 3981 kvm_write_wall_clock(vcpu->kvm, data, 0); 3982 break; 3983 case MSR_KVM_WALL_CLOCK: 3984 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3985 return 1; 3986 3987 vcpu->kvm->arch.wall_clock = data; 3988 kvm_write_wall_clock(vcpu->kvm, data, 0); 3989 break; 3990 case MSR_KVM_SYSTEM_TIME_NEW: 3991 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3992 return 1; 3993 3994 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3995 break; 3996 case MSR_KVM_SYSTEM_TIME: 3997 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3998 return 1; 3999 4000 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 4001 break; 4002 case MSR_KVM_ASYNC_PF_EN: 4003 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4004 return 1; 4005 4006 if (kvm_pv_enable_async_pf(vcpu, data)) 4007 return 1; 4008 break; 4009 case MSR_KVM_ASYNC_PF_INT: 4010 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4011 return 1; 4012 4013 if (kvm_pv_enable_async_pf_int(vcpu, data)) 4014 return 1; 4015 break; 4016 case MSR_KVM_ASYNC_PF_ACK: 4017 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4018 return 1; 4019 if (data & 0x1) { 4020 vcpu->arch.apf.pageready_pending = false; 4021 kvm_check_async_pf_completion(vcpu); 4022 } 4023 break; 4024 case MSR_KVM_STEAL_TIME: 4025 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4026 return 1; 4027 4028 if (unlikely(!sched_info_on())) 4029 return 1; 4030 4031 if (data & KVM_STEAL_RESERVED_MASK) 4032 return 1; 4033 4034 vcpu->arch.st.msr_val = data; 4035 4036 if (!(data & KVM_MSR_ENABLED)) 4037 break; 4038 4039 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4040 4041 break; 4042 case MSR_KVM_PV_EOI_EN: 4043 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4044 return 1; 4045 4046 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4047 return 1; 4048 break; 4049 4050 case MSR_KVM_POLL_CONTROL: 4051 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4052 return 1; 4053 4054 /* only enable bit supported */ 4055 if (data & (-1ULL << 1)) 4056 return 1; 4057 4058 vcpu->arch.msr_kvm_poll_control = data; 4059 break; 4060 4061 case MSR_IA32_MCG_CTL: 4062 case MSR_IA32_MCG_STATUS: 4063 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4064 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4065 return set_msr_mce(vcpu, msr_info); 4066 4067 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4068 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4069 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4070 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4071 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4072 return kvm_pmu_set_msr(vcpu, msr_info); 4073 4074 if (data) 4075 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4076 break; 4077 case MSR_K7_CLK_CTL: 4078 /* 4079 * Ignore all writes to this no longer documented MSR. 4080 * Writes are only relevant for old K7 processors, 4081 * all pre-dating SVM, but a recommended workaround from 4082 * AMD for these chips. It is possible to specify the 4083 * affected processor models on the command line, hence 4084 * the need to ignore the workaround. 4085 */ 4086 break; 4087 #ifdef CONFIG_KVM_HYPERV 4088 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4089 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4090 case HV_X64_MSR_SYNDBG_OPTIONS: 4091 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4092 case HV_X64_MSR_CRASH_CTL: 4093 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4094 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4095 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4096 case HV_X64_MSR_TSC_EMULATION_STATUS: 4097 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4098 return kvm_hv_set_msr_common(vcpu, msr, data, 4099 msr_info->host_initiated); 4100 #endif 4101 case MSR_IA32_BBL_CR_CTL3: 4102 /* Drop writes to this legacy MSR -- see rdmsr 4103 * counterpart for further detail. 4104 */ 4105 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4106 break; 4107 case MSR_AMD64_OSVW_ID_LENGTH: 4108 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4109 return 1; 4110 vcpu->arch.osvw.length = data; 4111 break; 4112 case MSR_AMD64_OSVW_STATUS: 4113 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4114 return 1; 4115 vcpu->arch.osvw.status = data; 4116 break; 4117 case MSR_PLATFORM_INFO: 4118 if (!msr_info->host_initiated || 4119 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 4120 cpuid_fault_enabled(vcpu))) 4121 return 1; 4122 vcpu->arch.msr_platform_info = data; 4123 break; 4124 case MSR_MISC_FEATURES_ENABLES: 4125 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4126 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4127 !supports_cpuid_fault(vcpu))) 4128 return 1; 4129 vcpu->arch.msr_misc_features_enables = data; 4130 break; 4131 #ifdef CONFIG_X86_64 4132 case MSR_IA32_XFD: 4133 if (!msr_info->host_initiated && 4134 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4135 return 1; 4136 4137 if (data & ~kvm_guest_supported_xfd(vcpu)) 4138 return 1; 4139 4140 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4141 break; 4142 case MSR_IA32_XFD_ERR: 4143 if (!msr_info->host_initiated && 4144 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4145 return 1; 4146 4147 if (data & ~kvm_guest_supported_xfd(vcpu)) 4148 return 1; 4149 4150 vcpu->arch.guest_fpu.xfd_err = data; 4151 break; 4152 #endif 4153 default: 4154 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4155 return kvm_pmu_set_msr(vcpu, msr_info); 4156 4157 /* 4158 * Userspace is allowed to write '0' to MSRs that KVM reports 4159 * as to-be-saved, even if an MSRs isn't fully supported. 4160 */ 4161 if (msr_info->host_initiated && !data && 4162 kvm_is_msr_to_save(msr)) 4163 break; 4164 4165 return KVM_MSR_RET_INVALID; 4166 } 4167 return 0; 4168 } 4169 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4170 4171 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4172 { 4173 u64 data; 4174 u64 mcg_cap = vcpu->arch.mcg_cap; 4175 unsigned bank_num = mcg_cap & 0xff; 4176 u32 offset, last_msr; 4177 4178 switch (msr) { 4179 case MSR_IA32_P5_MC_ADDR: 4180 case MSR_IA32_P5_MC_TYPE: 4181 data = 0; 4182 break; 4183 case MSR_IA32_MCG_CAP: 4184 data = vcpu->arch.mcg_cap; 4185 break; 4186 case MSR_IA32_MCG_CTL: 4187 if (!(mcg_cap & MCG_CTL_P) && !host) 4188 return 1; 4189 data = vcpu->arch.mcg_ctl; 4190 break; 4191 case MSR_IA32_MCG_STATUS: 4192 data = vcpu->arch.mcg_status; 4193 break; 4194 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4195 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4196 if (msr > last_msr) 4197 return 1; 4198 4199 if (!(mcg_cap & MCG_CMCI_P) && !host) 4200 return 1; 4201 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4202 last_msr + 1 - MSR_IA32_MC0_CTL2); 4203 data = vcpu->arch.mci_ctl2_banks[offset]; 4204 break; 4205 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4206 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4207 if (msr > last_msr) 4208 return 1; 4209 4210 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4211 last_msr + 1 - MSR_IA32_MC0_CTL); 4212 data = vcpu->arch.mce_banks[offset]; 4213 break; 4214 default: 4215 return 1; 4216 } 4217 *pdata = data; 4218 return 0; 4219 } 4220 4221 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4222 { 4223 switch (msr_info->index) { 4224 case MSR_IA32_PLATFORM_ID: 4225 case MSR_IA32_EBL_CR_POWERON: 4226 case MSR_IA32_LASTBRANCHFROMIP: 4227 case MSR_IA32_LASTBRANCHTOIP: 4228 case MSR_IA32_LASTINTFROMIP: 4229 case MSR_IA32_LASTINTTOIP: 4230 case MSR_AMD64_SYSCFG: 4231 case MSR_K8_TSEG_ADDR: 4232 case MSR_K8_TSEG_MASK: 4233 case MSR_VM_HSAVE_PA: 4234 case MSR_K8_INT_PENDING_MSG: 4235 case MSR_AMD64_NB_CFG: 4236 case MSR_FAM10H_MMIO_CONF_BASE: 4237 case MSR_AMD64_BU_CFG2: 4238 case MSR_IA32_PERF_CTL: 4239 case MSR_AMD64_DC_CFG: 4240 case MSR_AMD64_TW_CFG: 4241 case MSR_F15H_EX_CFG: 4242 /* 4243 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4244 * limit) MSRs. Just return 0, as we do not want to expose the host 4245 * data here. Do not conditionalize this on CPUID, as KVM does not do 4246 * so for existing CPU-specific MSRs. 4247 */ 4248 case MSR_RAPL_POWER_UNIT: 4249 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4250 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4251 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4252 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4253 msr_info->data = 0; 4254 break; 4255 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4256 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4257 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4258 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4259 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4260 return kvm_pmu_get_msr(vcpu, msr_info); 4261 msr_info->data = 0; 4262 break; 4263 case MSR_IA32_UCODE_REV: 4264 msr_info->data = vcpu->arch.microcode_version; 4265 break; 4266 case MSR_IA32_ARCH_CAPABILITIES: 4267 if (!msr_info->host_initiated && 4268 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4269 return 1; 4270 msr_info->data = vcpu->arch.arch_capabilities; 4271 break; 4272 case MSR_IA32_PERF_CAPABILITIES: 4273 if (!msr_info->host_initiated && 4274 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4275 return 1; 4276 msr_info->data = vcpu->arch.perf_capabilities; 4277 break; 4278 case MSR_IA32_POWER_CTL: 4279 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4280 break; 4281 case MSR_IA32_TSC: { 4282 /* 4283 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4284 * even when not intercepted. AMD manual doesn't explicitly 4285 * state this but appears to behave the same. 4286 * 4287 * On userspace reads and writes, however, we unconditionally 4288 * return L1's TSC value to ensure backwards-compatible 4289 * behavior for migration. 4290 */ 4291 u64 offset, ratio; 4292 4293 if (msr_info->host_initiated) { 4294 offset = vcpu->arch.l1_tsc_offset; 4295 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4296 } else { 4297 offset = vcpu->arch.tsc_offset; 4298 ratio = vcpu->arch.tsc_scaling_ratio; 4299 } 4300 4301 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4302 break; 4303 } 4304 case MSR_IA32_CR_PAT: 4305 msr_info->data = vcpu->arch.pat; 4306 break; 4307 case MSR_MTRRcap: 4308 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4309 case MSR_MTRRdefType: 4310 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4311 case 0xcd: /* fsb frequency */ 4312 msr_info->data = 3; 4313 break; 4314 /* 4315 * MSR_EBC_FREQUENCY_ID 4316 * Conservative value valid for even the basic CPU models. 4317 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4318 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4319 * and 266MHz for model 3, or 4. Set Core Clock 4320 * Frequency to System Bus Frequency Ratio to 1 (bits 4321 * 31:24) even though these are only valid for CPU 4322 * models > 2, however guests may end up dividing or 4323 * multiplying by zero otherwise. 4324 */ 4325 case MSR_EBC_FREQUENCY_ID: 4326 msr_info->data = 1 << 24; 4327 break; 4328 case MSR_IA32_APICBASE: 4329 msr_info->data = kvm_get_apic_base(vcpu); 4330 break; 4331 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4332 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4333 case MSR_IA32_TSC_DEADLINE: 4334 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4335 break; 4336 case MSR_IA32_TSC_ADJUST: 4337 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4338 break; 4339 case MSR_IA32_MISC_ENABLE: 4340 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4341 break; 4342 case MSR_IA32_SMBASE: 4343 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4344 return 1; 4345 msr_info->data = vcpu->arch.smbase; 4346 break; 4347 case MSR_SMI_COUNT: 4348 msr_info->data = vcpu->arch.smi_count; 4349 break; 4350 case MSR_IA32_PERF_STATUS: 4351 /* TSC increment by tick */ 4352 msr_info->data = 1000ULL; 4353 /* CPU multiplier */ 4354 msr_info->data |= (((uint64_t)4ULL) << 40); 4355 break; 4356 case MSR_EFER: 4357 msr_info->data = vcpu->arch.efer; 4358 break; 4359 case MSR_KVM_WALL_CLOCK: 4360 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4361 return 1; 4362 4363 msr_info->data = vcpu->kvm->arch.wall_clock; 4364 break; 4365 case MSR_KVM_WALL_CLOCK_NEW: 4366 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4367 return 1; 4368 4369 msr_info->data = vcpu->kvm->arch.wall_clock; 4370 break; 4371 case MSR_KVM_SYSTEM_TIME: 4372 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4373 return 1; 4374 4375 msr_info->data = vcpu->arch.time; 4376 break; 4377 case MSR_KVM_SYSTEM_TIME_NEW: 4378 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4379 return 1; 4380 4381 msr_info->data = vcpu->arch.time; 4382 break; 4383 case MSR_KVM_ASYNC_PF_EN: 4384 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4385 return 1; 4386 4387 msr_info->data = vcpu->arch.apf.msr_en_val; 4388 break; 4389 case MSR_KVM_ASYNC_PF_INT: 4390 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4391 return 1; 4392 4393 msr_info->data = vcpu->arch.apf.msr_int_val; 4394 break; 4395 case MSR_KVM_ASYNC_PF_ACK: 4396 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4397 return 1; 4398 4399 msr_info->data = 0; 4400 break; 4401 case MSR_KVM_STEAL_TIME: 4402 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4403 return 1; 4404 4405 msr_info->data = vcpu->arch.st.msr_val; 4406 break; 4407 case MSR_KVM_PV_EOI_EN: 4408 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4409 return 1; 4410 4411 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4412 break; 4413 case MSR_KVM_POLL_CONTROL: 4414 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4415 return 1; 4416 4417 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4418 break; 4419 case MSR_IA32_P5_MC_ADDR: 4420 case MSR_IA32_P5_MC_TYPE: 4421 case MSR_IA32_MCG_CAP: 4422 case MSR_IA32_MCG_CTL: 4423 case MSR_IA32_MCG_STATUS: 4424 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4425 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4426 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4427 msr_info->host_initiated); 4428 case MSR_IA32_XSS: 4429 if (!msr_info->host_initiated && 4430 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4431 return 1; 4432 msr_info->data = vcpu->arch.ia32_xss; 4433 break; 4434 case MSR_K7_CLK_CTL: 4435 /* 4436 * Provide expected ramp-up count for K7. All other 4437 * are set to zero, indicating minimum divisors for 4438 * every field. 4439 * 4440 * This prevents guest kernels on AMD host with CPU 4441 * type 6, model 8 and higher from exploding due to 4442 * the rdmsr failing. 4443 */ 4444 msr_info->data = 0x20000000; 4445 break; 4446 #ifdef CONFIG_KVM_HYPERV 4447 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4448 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4449 case HV_X64_MSR_SYNDBG_OPTIONS: 4450 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4451 case HV_X64_MSR_CRASH_CTL: 4452 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4453 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4454 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4455 case HV_X64_MSR_TSC_EMULATION_STATUS: 4456 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4457 return kvm_hv_get_msr_common(vcpu, 4458 msr_info->index, &msr_info->data, 4459 msr_info->host_initiated); 4460 #endif 4461 case MSR_IA32_BBL_CR_CTL3: 4462 /* This legacy MSR exists but isn't fully documented in current 4463 * silicon. It is however accessed by winxp in very narrow 4464 * scenarios where it sets bit #19, itself documented as 4465 * a "reserved" bit. Best effort attempt to source coherent 4466 * read data here should the balance of the register be 4467 * interpreted by the guest: 4468 * 4469 * L2 cache control register 3: 64GB range, 256KB size, 4470 * enabled, latency 0x1, configured 4471 */ 4472 msr_info->data = 0xbe702111; 4473 break; 4474 case MSR_AMD64_OSVW_ID_LENGTH: 4475 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4476 return 1; 4477 msr_info->data = vcpu->arch.osvw.length; 4478 break; 4479 case MSR_AMD64_OSVW_STATUS: 4480 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4481 return 1; 4482 msr_info->data = vcpu->arch.osvw.status; 4483 break; 4484 case MSR_PLATFORM_INFO: 4485 if (!msr_info->host_initiated && 4486 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4487 return 1; 4488 msr_info->data = vcpu->arch.msr_platform_info; 4489 break; 4490 case MSR_MISC_FEATURES_ENABLES: 4491 msr_info->data = vcpu->arch.msr_misc_features_enables; 4492 break; 4493 case MSR_K7_HWCR: 4494 msr_info->data = vcpu->arch.msr_hwcr; 4495 break; 4496 #ifdef CONFIG_X86_64 4497 case MSR_IA32_XFD: 4498 if (!msr_info->host_initiated && 4499 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4500 return 1; 4501 4502 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4503 break; 4504 case MSR_IA32_XFD_ERR: 4505 if (!msr_info->host_initiated && 4506 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4507 return 1; 4508 4509 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4510 break; 4511 #endif 4512 default: 4513 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4514 return kvm_pmu_get_msr(vcpu, msr_info); 4515 4516 /* 4517 * Userspace is allowed to read MSRs that KVM reports as 4518 * to-be-saved, even if an MSR isn't fully supported. 4519 */ 4520 if (msr_info->host_initiated && 4521 kvm_is_msr_to_save(msr_info->index)) { 4522 msr_info->data = 0; 4523 break; 4524 } 4525 4526 return KVM_MSR_RET_INVALID; 4527 } 4528 return 0; 4529 } 4530 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4531 4532 /* 4533 * Read or write a bunch of msrs. All parameters are kernel addresses. 4534 * 4535 * @return number of msrs set successfully. 4536 */ 4537 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4538 struct kvm_msr_entry *entries, 4539 int (*do_msr)(struct kvm_vcpu *vcpu, 4540 unsigned index, u64 *data)) 4541 { 4542 int i; 4543 4544 for (i = 0; i < msrs->nmsrs; ++i) 4545 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4546 break; 4547 4548 return i; 4549 } 4550 4551 /* 4552 * Read or write a bunch of msrs. Parameters are user addresses. 4553 * 4554 * @return number of msrs set successfully. 4555 */ 4556 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4557 int (*do_msr)(struct kvm_vcpu *vcpu, 4558 unsigned index, u64 *data), 4559 int writeback) 4560 { 4561 struct kvm_msrs msrs; 4562 struct kvm_msr_entry *entries; 4563 unsigned size; 4564 int r; 4565 4566 r = -EFAULT; 4567 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4568 goto out; 4569 4570 r = -E2BIG; 4571 if (msrs.nmsrs >= MAX_IO_MSRS) 4572 goto out; 4573 4574 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4575 entries = memdup_user(user_msrs->entries, size); 4576 if (IS_ERR(entries)) { 4577 r = PTR_ERR(entries); 4578 goto out; 4579 } 4580 4581 r = __msr_io(vcpu, &msrs, entries, do_msr); 4582 4583 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4584 r = -EFAULT; 4585 4586 kfree(entries); 4587 out: 4588 return r; 4589 } 4590 4591 static inline bool kvm_can_mwait_in_guest(void) 4592 { 4593 return boot_cpu_has(X86_FEATURE_MWAIT) && 4594 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4595 boot_cpu_has(X86_FEATURE_ARAT); 4596 } 4597 4598 #ifdef CONFIG_KVM_HYPERV 4599 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4600 struct kvm_cpuid2 __user *cpuid_arg) 4601 { 4602 struct kvm_cpuid2 cpuid; 4603 int r; 4604 4605 r = -EFAULT; 4606 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4607 return r; 4608 4609 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4610 if (r) 4611 return r; 4612 4613 r = -EFAULT; 4614 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4615 return r; 4616 4617 return 0; 4618 } 4619 #endif 4620 4621 static bool kvm_is_vm_type_supported(unsigned long type) 4622 { 4623 return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); 4624 } 4625 4626 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4627 { 4628 int r = 0; 4629 4630 switch (ext) { 4631 case KVM_CAP_IRQCHIP: 4632 case KVM_CAP_HLT: 4633 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4634 case KVM_CAP_SET_TSS_ADDR: 4635 case KVM_CAP_EXT_CPUID: 4636 case KVM_CAP_EXT_EMUL_CPUID: 4637 case KVM_CAP_CLOCKSOURCE: 4638 case KVM_CAP_PIT: 4639 case KVM_CAP_NOP_IO_DELAY: 4640 case KVM_CAP_MP_STATE: 4641 case KVM_CAP_SYNC_MMU: 4642 case KVM_CAP_USER_NMI: 4643 case KVM_CAP_REINJECT_CONTROL: 4644 case KVM_CAP_IRQ_INJECT_STATUS: 4645 case KVM_CAP_IOEVENTFD: 4646 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4647 case KVM_CAP_PIT2: 4648 case KVM_CAP_PIT_STATE2: 4649 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4650 case KVM_CAP_VCPU_EVENTS: 4651 #ifdef CONFIG_KVM_HYPERV 4652 case KVM_CAP_HYPERV: 4653 case KVM_CAP_HYPERV_VAPIC: 4654 case KVM_CAP_HYPERV_SPIN: 4655 case KVM_CAP_HYPERV_TIME: 4656 case KVM_CAP_HYPERV_SYNIC: 4657 case KVM_CAP_HYPERV_SYNIC2: 4658 case KVM_CAP_HYPERV_VP_INDEX: 4659 case KVM_CAP_HYPERV_EVENTFD: 4660 case KVM_CAP_HYPERV_TLBFLUSH: 4661 case KVM_CAP_HYPERV_SEND_IPI: 4662 case KVM_CAP_HYPERV_CPUID: 4663 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4664 case KVM_CAP_SYS_HYPERV_CPUID: 4665 #endif 4666 case KVM_CAP_PCI_SEGMENT: 4667 case KVM_CAP_DEBUGREGS: 4668 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4669 case KVM_CAP_XSAVE: 4670 case KVM_CAP_ASYNC_PF: 4671 case KVM_CAP_ASYNC_PF_INT: 4672 case KVM_CAP_GET_TSC_KHZ: 4673 case KVM_CAP_KVMCLOCK_CTRL: 4674 case KVM_CAP_READONLY_MEM: 4675 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4676 case KVM_CAP_TSC_DEADLINE_TIMER: 4677 case KVM_CAP_DISABLE_QUIRKS: 4678 case KVM_CAP_SET_BOOT_CPU_ID: 4679 case KVM_CAP_SPLIT_IRQCHIP: 4680 case KVM_CAP_IMMEDIATE_EXIT: 4681 case KVM_CAP_PMU_EVENT_FILTER: 4682 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4683 case KVM_CAP_GET_MSR_FEATURES: 4684 case KVM_CAP_MSR_PLATFORM_INFO: 4685 case KVM_CAP_EXCEPTION_PAYLOAD: 4686 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4687 case KVM_CAP_SET_GUEST_DEBUG: 4688 case KVM_CAP_LAST_CPU: 4689 case KVM_CAP_X86_USER_SPACE_MSR: 4690 case KVM_CAP_X86_MSR_FILTER: 4691 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4692 #ifdef CONFIG_X86_SGX_KVM 4693 case KVM_CAP_SGX_ATTRIBUTE: 4694 #endif 4695 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4696 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4697 case KVM_CAP_SREGS2: 4698 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4699 case KVM_CAP_VCPU_ATTRIBUTES: 4700 case KVM_CAP_SYS_ATTRIBUTES: 4701 case KVM_CAP_VAPIC: 4702 case KVM_CAP_ENABLE_CAP: 4703 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4704 case KVM_CAP_IRQFD_RESAMPLE: 4705 case KVM_CAP_MEMORY_FAULT_INFO: 4706 r = 1; 4707 break; 4708 case KVM_CAP_EXIT_HYPERCALL: 4709 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4710 break; 4711 case KVM_CAP_SET_GUEST_DEBUG2: 4712 return KVM_GUESTDBG_VALID_MASK; 4713 #ifdef CONFIG_KVM_XEN 4714 case KVM_CAP_XEN_HVM: 4715 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4716 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4717 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4718 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4719 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4720 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | 4721 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; 4722 if (sched_info_on()) 4723 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4724 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4725 break; 4726 #endif 4727 case KVM_CAP_SYNC_REGS: 4728 r = KVM_SYNC_X86_VALID_FIELDS; 4729 break; 4730 case KVM_CAP_ADJUST_CLOCK: 4731 r = KVM_CLOCK_VALID_FLAGS; 4732 break; 4733 case KVM_CAP_X86_DISABLE_EXITS: 4734 r = KVM_X86_DISABLE_EXITS_PAUSE; 4735 4736 if (!mitigate_smt_rsb) { 4737 r |= KVM_X86_DISABLE_EXITS_HLT | 4738 KVM_X86_DISABLE_EXITS_CSTATE; 4739 4740 if (kvm_can_mwait_in_guest()) 4741 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4742 } 4743 break; 4744 case KVM_CAP_X86_SMM: 4745 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4746 break; 4747 4748 /* SMBASE is usually relocated above 1M on modern chipsets, 4749 * and SMM handlers might indeed rely on 4G segment limits, 4750 * so do not report SMM to be available if real mode is 4751 * emulated via vm86 mode. Still, do not go to great lengths 4752 * to avoid userspace's usage of the feature, because it is a 4753 * fringe case that is not enabled except via specific settings 4754 * of the module parameters. 4755 */ 4756 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4757 break; 4758 case KVM_CAP_NR_VCPUS: 4759 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4760 break; 4761 case KVM_CAP_MAX_VCPUS: 4762 r = KVM_MAX_VCPUS; 4763 break; 4764 case KVM_CAP_MAX_VCPU_ID: 4765 r = KVM_MAX_VCPU_IDS; 4766 break; 4767 case KVM_CAP_PV_MMU: /* obsolete */ 4768 r = 0; 4769 break; 4770 case KVM_CAP_MCE: 4771 r = KVM_MAX_MCE_BANKS; 4772 break; 4773 case KVM_CAP_XCRS: 4774 r = boot_cpu_has(X86_FEATURE_XSAVE); 4775 break; 4776 case KVM_CAP_TSC_CONTROL: 4777 case KVM_CAP_VM_TSC_CONTROL: 4778 r = kvm_caps.has_tsc_control; 4779 break; 4780 case KVM_CAP_X2APIC_API: 4781 r = KVM_X2APIC_API_VALID_FLAGS; 4782 break; 4783 case KVM_CAP_NESTED_STATE: 4784 r = kvm_x86_ops.nested_ops->get_state ? 4785 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4786 break; 4787 #ifdef CONFIG_KVM_HYPERV 4788 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4789 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4790 break; 4791 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4792 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4793 break; 4794 #endif 4795 case KVM_CAP_SMALLER_MAXPHYADDR: 4796 r = (int) allow_smaller_maxphyaddr; 4797 break; 4798 case KVM_CAP_STEAL_TIME: 4799 r = sched_info_on(); 4800 break; 4801 case KVM_CAP_X86_BUS_LOCK_EXIT: 4802 if (kvm_caps.has_bus_lock_exit) 4803 r = KVM_BUS_LOCK_DETECTION_OFF | 4804 KVM_BUS_LOCK_DETECTION_EXIT; 4805 else 4806 r = 0; 4807 break; 4808 case KVM_CAP_XSAVE2: { 4809 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4810 if (r < sizeof(struct kvm_xsave)) 4811 r = sizeof(struct kvm_xsave); 4812 break; 4813 } 4814 case KVM_CAP_PMU_CAPABILITY: 4815 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4816 break; 4817 case KVM_CAP_DISABLE_QUIRKS2: 4818 r = KVM_X86_VALID_QUIRKS; 4819 break; 4820 case KVM_CAP_X86_NOTIFY_VMEXIT: 4821 r = kvm_caps.has_notify_vmexit; 4822 break; 4823 case KVM_CAP_VM_TYPES: 4824 r = kvm_caps.supported_vm_types; 4825 break; 4826 default: 4827 break; 4828 } 4829 return r; 4830 } 4831 4832 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) 4833 { 4834 if (attr->group) { 4835 if (kvm_x86_ops.dev_get_attr) 4836 return static_call(kvm_x86_dev_get_attr)(attr->group, attr->attr, val); 4837 return -ENXIO; 4838 } 4839 4840 switch (attr->attr) { 4841 case KVM_X86_XCOMP_GUEST_SUPP: 4842 *val = kvm_caps.supported_xcr0; 4843 return 0; 4844 default: 4845 return -ENXIO; 4846 } 4847 } 4848 4849 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4850 { 4851 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 4852 int r; 4853 u64 val; 4854 4855 r = __kvm_x86_dev_get_attr(attr, &val); 4856 if (r < 0) 4857 return r; 4858 4859 if (put_user(val, uaddr)) 4860 return -EFAULT; 4861 4862 return 0; 4863 } 4864 4865 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4866 { 4867 u64 val; 4868 4869 return __kvm_x86_dev_get_attr(attr, &val); 4870 } 4871 4872 long kvm_arch_dev_ioctl(struct file *filp, 4873 unsigned int ioctl, unsigned long arg) 4874 { 4875 void __user *argp = (void __user *)arg; 4876 long r; 4877 4878 switch (ioctl) { 4879 case KVM_GET_MSR_INDEX_LIST: { 4880 struct kvm_msr_list __user *user_msr_list = argp; 4881 struct kvm_msr_list msr_list; 4882 unsigned n; 4883 4884 r = -EFAULT; 4885 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4886 goto out; 4887 n = msr_list.nmsrs; 4888 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4889 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4890 goto out; 4891 r = -E2BIG; 4892 if (n < msr_list.nmsrs) 4893 goto out; 4894 r = -EFAULT; 4895 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4896 num_msrs_to_save * sizeof(u32))) 4897 goto out; 4898 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4899 &emulated_msrs, 4900 num_emulated_msrs * sizeof(u32))) 4901 goto out; 4902 r = 0; 4903 break; 4904 } 4905 case KVM_GET_SUPPORTED_CPUID: 4906 case KVM_GET_EMULATED_CPUID: { 4907 struct kvm_cpuid2 __user *cpuid_arg = argp; 4908 struct kvm_cpuid2 cpuid; 4909 4910 r = -EFAULT; 4911 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4912 goto out; 4913 4914 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4915 ioctl); 4916 if (r) 4917 goto out; 4918 4919 r = -EFAULT; 4920 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4921 goto out; 4922 r = 0; 4923 break; 4924 } 4925 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4926 r = -EFAULT; 4927 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4928 sizeof(kvm_caps.supported_mce_cap))) 4929 goto out; 4930 r = 0; 4931 break; 4932 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4933 struct kvm_msr_list __user *user_msr_list = argp; 4934 struct kvm_msr_list msr_list; 4935 unsigned int n; 4936 4937 r = -EFAULT; 4938 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4939 goto out; 4940 n = msr_list.nmsrs; 4941 msr_list.nmsrs = num_msr_based_features; 4942 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4943 goto out; 4944 r = -E2BIG; 4945 if (n < msr_list.nmsrs) 4946 goto out; 4947 r = -EFAULT; 4948 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4949 num_msr_based_features * sizeof(u32))) 4950 goto out; 4951 r = 0; 4952 break; 4953 } 4954 case KVM_GET_MSRS: 4955 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4956 break; 4957 #ifdef CONFIG_KVM_HYPERV 4958 case KVM_GET_SUPPORTED_HV_CPUID: 4959 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4960 break; 4961 #endif 4962 case KVM_GET_DEVICE_ATTR: { 4963 struct kvm_device_attr attr; 4964 r = -EFAULT; 4965 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4966 break; 4967 r = kvm_x86_dev_get_attr(&attr); 4968 break; 4969 } 4970 case KVM_HAS_DEVICE_ATTR: { 4971 struct kvm_device_attr attr; 4972 r = -EFAULT; 4973 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4974 break; 4975 r = kvm_x86_dev_has_attr(&attr); 4976 break; 4977 } 4978 default: 4979 r = -EINVAL; 4980 break; 4981 } 4982 out: 4983 return r; 4984 } 4985 4986 static void wbinvd_ipi(void *garbage) 4987 { 4988 wbinvd(); 4989 } 4990 4991 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4992 { 4993 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4994 } 4995 4996 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4997 { 4998 /* Address WBINVD may be executed by guest */ 4999 if (need_emulate_wbinvd(vcpu)) { 5000 if (static_call(kvm_x86_has_wbinvd_exit)()) 5001 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5002 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 5003 smp_call_function_single(vcpu->cpu, 5004 wbinvd_ipi, NULL, 1); 5005 } 5006 5007 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 5008 5009 /* Save host pkru register if supported */ 5010 vcpu->arch.host_pkru = read_pkru(); 5011 5012 /* Apply any externally detected TSC adjustments (due to suspend) */ 5013 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 5014 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 5015 vcpu->arch.tsc_offset_adjustment = 0; 5016 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5017 } 5018 5019 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 5020 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 5021 rdtsc() - vcpu->arch.last_host_tsc; 5022 if (tsc_delta < 0) 5023 mark_tsc_unstable("KVM discovered backwards TSC"); 5024 5025 if (kvm_check_tsc_unstable()) { 5026 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 5027 vcpu->arch.last_guest_tsc); 5028 kvm_vcpu_write_tsc_offset(vcpu, offset); 5029 vcpu->arch.tsc_catchup = 1; 5030 } 5031 5032 if (kvm_lapic_hv_timer_in_use(vcpu)) 5033 kvm_lapic_restart_hv_timer(vcpu); 5034 5035 /* 5036 * On a host with synchronized TSC, there is no need to update 5037 * kvmclock on vcpu->cpu migration 5038 */ 5039 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5040 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5041 if (vcpu->cpu != cpu) 5042 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5043 vcpu->cpu = cpu; 5044 } 5045 5046 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5047 } 5048 5049 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5050 { 5051 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5052 struct kvm_steal_time __user *st; 5053 struct kvm_memslots *slots; 5054 static const u8 preempted = KVM_VCPU_PREEMPTED; 5055 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5056 5057 /* 5058 * The vCPU can be marked preempted if and only if the VM-Exit was on 5059 * an instruction boundary and will not trigger guest emulation of any 5060 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5061 * when this is true, for example allowing the vCPU to be marked 5062 * preempted if and only if the VM-Exit was due to a host interrupt. 5063 */ 5064 if (!vcpu->arch.at_instruction_boundary) { 5065 vcpu->stat.preemption_other++; 5066 return; 5067 } 5068 5069 vcpu->stat.preemption_reported++; 5070 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5071 return; 5072 5073 if (vcpu->arch.st.preempted) 5074 return; 5075 5076 /* This happens on process exit */ 5077 if (unlikely(current->mm != vcpu->kvm->mm)) 5078 return; 5079 5080 slots = kvm_memslots(vcpu->kvm); 5081 5082 if (unlikely(slots->generation != ghc->generation || 5083 gpa != ghc->gpa || 5084 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5085 return; 5086 5087 st = (struct kvm_steal_time __user *)ghc->hva; 5088 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5089 5090 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5091 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5092 5093 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5094 } 5095 5096 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5097 { 5098 int idx; 5099 5100 if (vcpu->preempted) { 5101 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu); 5102 5103 /* 5104 * Take the srcu lock as memslots will be accessed to check the gfn 5105 * cache generation against the memslots generation. 5106 */ 5107 idx = srcu_read_lock(&vcpu->kvm->srcu); 5108 if (kvm_xen_msr_enabled(vcpu->kvm)) 5109 kvm_xen_runstate_set_preempted(vcpu); 5110 else 5111 kvm_steal_time_set_preempted(vcpu); 5112 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5113 } 5114 5115 static_call(kvm_x86_vcpu_put)(vcpu); 5116 vcpu->arch.last_host_tsc = rdtsc(); 5117 } 5118 5119 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5120 struct kvm_lapic_state *s) 5121 { 5122 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 5123 5124 return kvm_apic_get_state(vcpu, s); 5125 } 5126 5127 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5128 struct kvm_lapic_state *s) 5129 { 5130 int r; 5131 5132 r = kvm_apic_set_state(vcpu, s); 5133 if (r) 5134 return r; 5135 update_cr8_intercept(vcpu); 5136 5137 return 0; 5138 } 5139 5140 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5141 { 5142 /* 5143 * We can accept userspace's request for interrupt injection 5144 * as long as we have a place to store the interrupt number. 5145 * The actual injection will happen when the CPU is able to 5146 * deliver the interrupt. 5147 */ 5148 if (kvm_cpu_has_extint(vcpu)) 5149 return false; 5150 5151 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5152 return (!lapic_in_kernel(vcpu) || 5153 kvm_apic_accept_pic_intr(vcpu)); 5154 } 5155 5156 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5157 { 5158 /* 5159 * Do not cause an interrupt window exit if an exception 5160 * is pending or an event needs reinjection; userspace 5161 * might want to inject the interrupt manually using KVM_SET_REGS 5162 * or KVM_SET_SREGS. For that to work, we must be at an 5163 * instruction boundary and with no events half-injected. 5164 */ 5165 return (kvm_arch_interrupt_allowed(vcpu) && 5166 kvm_cpu_accept_dm_intr(vcpu) && 5167 !kvm_event_needs_reinjection(vcpu) && 5168 !kvm_is_exception_pending(vcpu)); 5169 } 5170 5171 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5172 struct kvm_interrupt *irq) 5173 { 5174 if (irq->irq >= KVM_NR_INTERRUPTS) 5175 return -EINVAL; 5176 5177 if (!irqchip_in_kernel(vcpu->kvm)) { 5178 kvm_queue_interrupt(vcpu, irq->irq, false); 5179 kvm_make_request(KVM_REQ_EVENT, vcpu); 5180 return 0; 5181 } 5182 5183 /* 5184 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5185 * fail for in-kernel 8259. 5186 */ 5187 if (pic_in_kernel(vcpu->kvm)) 5188 return -ENXIO; 5189 5190 if (vcpu->arch.pending_external_vector != -1) 5191 return -EEXIST; 5192 5193 vcpu->arch.pending_external_vector = irq->irq; 5194 kvm_make_request(KVM_REQ_EVENT, vcpu); 5195 return 0; 5196 } 5197 5198 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5199 { 5200 kvm_inject_nmi(vcpu); 5201 5202 return 0; 5203 } 5204 5205 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5206 struct kvm_tpr_access_ctl *tac) 5207 { 5208 if (tac->flags) 5209 return -EINVAL; 5210 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5211 return 0; 5212 } 5213 5214 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5215 u64 mcg_cap) 5216 { 5217 int r; 5218 unsigned bank_num = mcg_cap & 0xff, bank; 5219 5220 r = -EINVAL; 5221 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5222 goto out; 5223 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5224 goto out; 5225 r = 0; 5226 vcpu->arch.mcg_cap = mcg_cap; 5227 /* Init IA32_MCG_CTL to all 1s */ 5228 if (mcg_cap & MCG_CTL_P) 5229 vcpu->arch.mcg_ctl = ~(u64)0; 5230 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5231 for (bank = 0; bank < bank_num; bank++) { 5232 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5233 if (mcg_cap & MCG_CMCI_P) 5234 vcpu->arch.mci_ctl2_banks[bank] = 0; 5235 } 5236 5237 kvm_apic_after_set_mcg_cap(vcpu); 5238 5239 static_call(kvm_x86_setup_mce)(vcpu); 5240 out: 5241 return r; 5242 } 5243 5244 /* 5245 * Validate this is an UCNA (uncorrectable no action) error by checking the 5246 * MCG_STATUS and MCi_STATUS registers: 5247 * - none of the bits for Machine Check Exceptions are set 5248 * - both the VAL (valid) and UC (uncorrectable) bits are set 5249 * MCI_STATUS_PCC - Processor Context Corrupted 5250 * MCI_STATUS_S - Signaled as a Machine Check Exception 5251 * MCI_STATUS_AR - Software recoverable Action Required 5252 */ 5253 static bool is_ucna(struct kvm_x86_mce *mce) 5254 { 5255 return !mce->mcg_status && 5256 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5257 (mce->status & MCI_STATUS_VAL) && 5258 (mce->status & MCI_STATUS_UC); 5259 } 5260 5261 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5262 { 5263 u64 mcg_cap = vcpu->arch.mcg_cap; 5264 5265 banks[1] = mce->status; 5266 banks[2] = mce->addr; 5267 banks[3] = mce->misc; 5268 vcpu->arch.mcg_status = mce->mcg_status; 5269 5270 if (!(mcg_cap & MCG_CMCI_P) || 5271 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5272 return 0; 5273 5274 if (lapic_in_kernel(vcpu)) 5275 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5276 5277 return 0; 5278 } 5279 5280 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5281 struct kvm_x86_mce *mce) 5282 { 5283 u64 mcg_cap = vcpu->arch.mcg_cap; 5284 unsigned bank_num = mcg_cap & 0xff; 5285 u64 *banks = vcpu->arch.mce_banks; 5286 5287 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5288 return -EINVAL; 5289 5290 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5291 5292 if (is_ucna(mce)) 5293 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5294 5295 /* 5296 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5297 * reporting is disabled 5298 */ 5299 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5300 vcpu->arch.mcg_ctl != ~(u64)0) 5301 return 0; 5302 /* 5303 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5304 * reporting is disabled for the bank 5305 */ 5306 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5307 return 0; 5308 if (mce->status & MCI_STATUS_UC) { 5309 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5310 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5311 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5312 return 0; 5313 } 5314 if (banks[1] & MCI_STATUS_VAL) 5315 mce->status |= MCI_STATUS_OVER; 5316 banks[2] = mce->addr; 5317 banks[3] = mce->misc; 5318 vcpu->arch.mcg_status = mce->mcg_status; 5319 banks[1] = mce->status; 5320 kvm_queue_exception(vcpu, MC_VECTOR); 5321 } else if (!(banks[1] & MCI_STATUS_VAL) 5322 || !(banks[1] & MCI_STATUS_UC)) { 5323 if (banks[1] & MCI_STATUS_VAL) 5324 mce->status |= MCI_STATUS_OVER; 5325 banks[2] = mce->addr; 5326 banks[3] = mce->misc; 5327 banks[1] = mce->status; 5328 } else 5329 banks[1] |= MCI_STATUS_OVER; 5330 return 0; 5331 } 5332 5333 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5334 struct kvm_vcpu_events *events) 5335 { 5336 struct kvm_queued_exception *ex; 5337 5338 process_nmi(vcpu); 5339 5340 #ifdef CONFIG_KVM_SMM 5341 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5342 process_smi(vcpu); 5343 #endif 5344 5345 /* 5346 * KVM's ABI only allows for one exception to be migrated. Luckily, 5347 * the only time there can be two queued exceptions is if there's a 5348 * non-exiting _injected_ exception, and a pending exiting exception. 5349 * In that case, ignore the VM-Exiting exception as it's an extension 5350 * of the injected exception. 5351 */ 5352 if (vcpu->arch.exception_vmexit.pending && 5353 !vcpu->arch.exception.pending && 5354 !vcpu->arch.exception.injected) 5355 ex = &vcpu->arch.exception_vmexit; 5356 else 5357 ex = &vcpu->arch.exception; 5358 5359 /* 5360 * In guest mode, payload delivery should be deferred if the exception 5361 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5362 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5363 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5364 * propagate the payload and so it cannot be safely deferred. Deliver 5365 * the payload if the capability hasn't been requested. 5366 */ 5367 if (!vcpu->kvm->arch.exception_payload_enabled && 5368 ex->pending && ex->has_payload) 5369 kvm_deliver_exception_payload(vcpu, ex); 5370 5371 memset(events, 0, sizeof(*events)); 5372 5373 /* 5374 * The API doesn't provide the instruction length for software 5375 * exceptions, so don't report them. As long as the guest RIP 5376 * isn't advanced, we should expect to encounter the exception 5377 * again. 5378 */ 5379 if (!kvm_exception_is_soft(ex->vector)) { 5380 events->exception.injected = ex->injected; 5381 events->exception.pending = ex->pending; 5382 /* 5383 * For ABI compatibility, deliberately conflate 5384 * pending and injected exceptions when 5385 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5386 */ 5387 if (!vcpu->kvm->arch.exception_payload_enabled) 5388 events->exception.injected |= ex->pending; 5389 } 5390 events->exception.nr = ex->vector; 5391 events->exception.has_error_code = ex->has_error_code; 5392 events->exception.error_code = ex->error_code; 5393 events->exception_has_payload = ex->has_payload; 5394 events->exception_payload = ex->payload; 5395 5396 events->interrupt.injected = 5397 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5398 events->interrupt.nr = vcpu->arch.interrupt.nr; 5399 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5400 5401 events->nmi.injected = vcpu->arch.nmi_injected; 5402 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5403 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5404 5405 /* events->sipi_vector is never valid when reporting to user space */ 5406 5407 #ifdef CONFIG_KVM_SMM 5408 events->smi.smm = is_smm(vcpu); 5409 events->smi.pending = vcpu->arch.smi_pending; 5410 events->smi.smm_inside_nmi = 5411 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5412 #endif 5413 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5414 5415 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5416 | KVM_VCPUEVENT_VALID_SHADOW 5417 | KVM_VCPUEVENT_VALID_SMM); 5418 if (vcpu->kvm->arch.exception_payload_enabled) 5419 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5420 if (vcpu->kvm->arch.triple_fault_event) { 5421 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5422 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5423 } 5424 } 5425 5426 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5427 struct kvm_vcpu_events *events) 5428 { 5429 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5430 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5431 | KVM_VCPUEVENT_VALID_SHADOW 5432 | KVM_VCPUEVENT_VALID_SMM 5433 | KVM_VCPUEVENT_VALID_PAYLOAD 5434 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5435 return -EINVAL; 5436 5437 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5438 if (!vcpu->kvm->arch.exception_payload_enabled) 5439 return -EINVAL; 5440 if (events->exception.pending) 5441 events->exception.injected = 0; 5442 else 5443 events->exception_has_payload = 0; 5444 } else { 5445 events->exception.pending = 0; 5446 events->exception_has_payload = 0; 5447 } 5448 5449 if ((events->exception.injected || events->exception.pending) && 5450 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5451 return -EINVAL; 5452 5453 /* INITs are latched while in SMM */ 5454 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5455 (events->smi.smm || events->smi.pending) && 5456 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5457 return -EINVAL; 5458 5459 process_nmi(vcpu); 5460 5461 /* 5462 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5463 * morph the exception to a VM-Exit if appropriate. Do this only for 5464 * pending exceptions, already-injected exceptions are not subject to 5465 * intercpetion. Note, userspace that conflates pending and injected 5466 * is hosed, and will incorrectly convert an injected exception into a 5467 * pending exception, which in turn may cause a spurious VM-Exit. 5468 */ 5469 vcpu->arch.exception_from_userspace = events->exception.pending; 5470 5471 vcpu->arch.exception_vmexit.pending = false; 5472 5473 vcpu->arch.exception.injected = events->exception.injected; 5474 vcpu->arch.exception.pending = events->exception.pending; 5475 vcpu->arch.exception.vector = events->exception.nr; 5476 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5477 vcpu->arch.exception.error_code = events->exception.error_code; 5478 vcpu->arch.exception.has_payload = events->exception_has_payload; 5479 vcpu->arch.exception.payload = events->exception_payload; 5480 5481 vcpu->arch.interrupt.injected = events->interrupt.injected; 5482 vcpu->arch.interrupt.nr = events->interrupt.nr; 5483 vcpu->arch.interrupt.soft = events->interrupt.soft; 5484 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5485 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5486 events->interrupt.shadow); 5487 5488 vcpu->arch.nmi_injected = events->nmi.injected; 5489 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5490 vcpu->arch.nmi_pending = 0; 5491 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5492 if (events->nmi.pending) 5493 kvm_make_request(KVM_REQ_NMI, vcpu); 5494 } 5495 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5496 5497 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5498 lapic_in_kernel(vcpu)) 5499 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5500 5501 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5502 #ifdef CONFIG_KVM_SMM 5503 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5504 kvm_leave_nested(vcpu); 5505 kvm_smm_changed(vcpu, events->smi.smm); 5506 } 5507 5508 vcpu->arch.smi_pending = events->smi.pending; 5509 5510 if (events->smi.smm) { 5511 if (events->smi.smm_inside_nmi) 5512 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5513 else 5514 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5515 } 5516 5517 #else 5518 if (events->smi.smm || events->smi.pending || 5519 events->smi.smm_inside_nmi) 5520 return -EINVAL; 5521 #endif 5522 5523 if (lapic_in_kernel(vcpu)) { 5524 if (events->smi.latched_init) 5525 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5526 else 5527 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5528 } 5529 } 5530 5531 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5532 if (!vcpu->kvm->arch.triple_fault_event) 5533 return -EINVAL; 5534 if (events->triple_fault.pending) 5535 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5536 else 5537 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5538 } 5539 5540 kvm_make_request(KVM_REQ_EVENT, vcpu); 5541 5542 return 0; 5543 } 5544 5545 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5546 struct kvm_debugregs *dbgregs) 5547 { 5548 unsigned int i; 5549 5550 if (vcpu->kvm->arch.has_protected_state && 5551 vcpu->arch.guest_state_protected) 5552 return -EINVAL; 5553 5554 memset(dbgregs, 0, sizeof(*dbgregs)); 5555 5556 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); 5557 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5558 dbgregs->db[i] = vcpu->arch.db[i]; 5559 5560 dbgregs->dr6 = vcpu->arch.dr6; 5561 dbgregs->dr7 = vcpu->arch.dr7; 5562 return 0; 5563 } 5564 5565 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5566 struct kvm_debugregs *dbgregs) 5567 { 5568 unsigned int i; 5569 5570 if (vcpu->kvm->arch.has_protected_state && 5571 vcpu->arch.guest_state_protected) 5572 return -EINVAL; 5573 5574 if (dbgregs->flags) 5575 return -EINVAL; 5576 5577 if (!kvm_dr6_valid(dbgregs->dr6)) 5578 return -EINVAL; 5579 if (!kvm_dr7_valid(dbgregs->dr7)) 5580 return -EINVAL; 5581 5582 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5583 vcpu->arch.db[i] = dbgregs->db[i]; 5584 5585 kvm_update_dr0123(vcpu); 5586 vcpu->arch.dr6 = dbgregs->dr6; 5587 vcpu->arch.dr7 = dbgregs->dr7; 5588 kvm_update_dr7(vcpu); 5589 5590 return 0; 5591 } 5592 5593 5594 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5595 u8 *state, unsigned int size) 5596 { 5597 /* 5598 * Only copy state for features that are enabled for the guest. The 5599 * state itself isn't problematic, but setting bits in the header for 5600 * features that are supported in *this* host but not exposed to the 5601 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5602 * compatible host without the features that are NOT exposed to the 5603 * guest. 5604 * 5605 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5606 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5607 * supported by the host. 5608 */ 5609 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5610 XFEATURE_MASK_FPSSE; 5611 5612 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5613 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5614 5615 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5616 supported_xcr0, vcpu->arch.pkru); 5617 return 0; 5618 } 5619 5620 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5621 struct kvm_xsave *guest_xsave) 5622 { 5623 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5624 sizeof(guest_xsave->region)); 5625 } 5626 5627 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5628 struct kvm_xsave *guest_xsave) 5629 { 5630 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5631 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5632 5633 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5634 guest_xsave->region, 5635 kvm_caps.supported_xcr0, 5636 &vcpu->arch.pkru); 5637 } 5638 5639 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5640 struct kvm_xcrs *guest_xcrs) 5641 { 5642 if (vcpu->kvm->arch.has_protected_state && 5643 vcpu->arch.guest_state_protected) 5644 return -EINVAL; 5645 5646 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5647 guest_xcrs->nr_xcrs = 0; 5648 return 0; 5649 } 5650 5651 guest_xcrs->nr_xcrs = 1; 5652 guest_xcrs->flags = 0; 5653 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5654 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5655 return 0; 5656 } 5657 5658 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5659 struct kvm_xcrs *guest_xcrs) 5660 { 5661 int i, r = 0; 5662 5663 if (vcpu->kvm->arch.has_protected_state && 5664 vcpu->arch.guest_state_protected) 5665 return -EINVAL; 5666 5667 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5668 return -EINVAL; 5669 5670 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5671 return -EINVAL; 5672 5673 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5674 /* Only support XCR0 currently */ 5675 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5676 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5677 guest_xcrs->xcrs[i].value); 5678 break; 5679 } 5680 if (r) 5681 r = -EINVAL; 5682 return r; 5683 } 5684 5685 /* 5686 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5687 * stopped by the hypervisor. This function will be called from the host only. 5688 * EINVAL is returned when the host attempts to set the flag for a guest that 5689 * does not support pv clocks. 5690 */ 5691 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5692 { 5693 if (!vcpu->arch.pv_time.active) 5694 return -EINVAL; 5695 vcpu->arch.pvclock_set_guest_stopped_request = true; 5696 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5697 return 0; 5698 } 5699 5700 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5701 struct kvm_device_attr *attr) 5702 { 5703 int r; 5704 5705 switch (attr->attr) { 5706 case KVM_VCPU_TSC_OFFSET: 5707 r = 0; 5708 break; 5709 default: 5710 r = -ENXIO; 5711 } 5712 5713 return r; 5714 } 5715 5716 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5717 struct kvm_device_attr *attr) 5718 { 5719 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5720 int r; 5721 5722 switch (attr->attr) { 5723 case KVM_VCPU_TSC_OFFSET: 5724 r = -EFAULT; 5725 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5726 break; 5727 r = 0; 5728 break; 5729 default: 5730 r = -ENXIO; 5731 } 5732 5733 return r; 5734 } 5735 5736 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5737 struct kvm_device_attr *attr) 5738 { 5739 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5740 struct kvm *kvm = vcpu->kvm; 5741 int r; 5742 5743 switch (attr->attr) { 5744 case KVM_VCPU_TSC_OFFSET: { 5745 u64 offset, tsc, ns; 5746 unsigned long flags; 5747 bool matched; 5748 5749 r = -EFAULT; 5750 if (get_user(offset, uaddr)) 5751 break; 5752 5753 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5754 5755 matched = (vcpu->arch.virtual_tsc_khz && 5756 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5757 kvm->arch.last_tsc_offset == offset); 5758 5759 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5760 ns = get_kvmclock_base_ns(); 5761 5762 kvm->arch.user_set_tsc = true; 5763 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5764 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5765 5766 r = 0; 5767 break; 5768 } 5769 default: 5770 r = -ENXIO; 5771 } 5772 5773 return r; 5774 } 5775 5776 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5777 unsigned int ioctl, 5778 void __user *argp) 5779 { 5780 struct kvm_device_attr attr; 5781 int r; 5782 5783 if (copy_from_user(&attr, argp, sizeof(attr))) 5784 return -EFAULT; 5785 5786 if (attr.group != KVM_VCPU_TSC_CTRL) 5787 return -ENXIO; 5788 5789 switch (ioctl) { 5790 case KVM_HAS_DEVICE_ATTR: 5791 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5792 break; 5793 case KVM_GET_DEVICE_ATTR: 5794 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5795 break; 5796 case KVM_SET_DEVICE_ATTR: 5797 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5798 break; 5799 } 5800 5801 return r; 5802 } 5803 5804 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5805 struct kvm_enable_cap *cap) 5806 { 5807 if (cap->flags) 5808 return -EINVAL; 5809 5810 switch (cap->cap) { 5811 #ifdef CONFIG_KVM_HYPERV 5812 case KVM_CAP_HYPERV_SYNIC2: 5813 if (cap->args[0]) 5814 return -EINVAL; 5815 fallthrough; 5816 5817 case KVM_CAP_HYPERV_SYNIC: 5818 if (!irqchip_in_kernel(vcpu->kvm)) 5819 return -EINVAL; 5820 return kvm_hv_activate_synic(vcpu, cap->cap == 5821 KVM_CAP_HYPERV_SYNIC2); 5822 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5823 { 5824 int r; 5825 uint16_t vmcs_version; 5826 void __user *user_ptr; 5827 5828 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5829 return -ENOTTY; 5830 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5831 if (!r) { 5832 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5833 if (copy_to_user(user_ptr, &vmcs_version, 5834 sizeof(vmcs_version))) 5835 r = -EFAULT; 5836 } 5837 return r; 5838 } 5839 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5840 if (!kvm_x86_ops.enable_l2_tlb_flush) 5841 return -ENOTTY; 5842 5843 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5844 5845 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5846 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5847 #endif 5848 5849 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5850 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5851 if (vcpu->arch.pv_cpuid.enforce) 5852 kvm_update_pv_runtime(vcpu); 5853 5854 return 0; 5855 default: 5856 return -EINVAL; 5857 } 5858 } 5859 5860 long kvm_arch_vcpu_ioctl(struct file *filp, 5861 unsigned int ioctl, unsigned long arg) 5862 { 5863 struct kvm_vcpu *vcpu = filp->private_data; 5864 void __user *argp = (void __user *)arg; 5865 int r; 5866 union { 5867 struct kvm_sregs2 *sregs2; 5868 struct kvm_lapic_state *lapic; 5869 struct kvm_xsave *xsave; 5870 struct kvm_xcrs *xcrs; 5871 void *buffer; 5872 } u; 5873 5874 vcpu_load(vcpu); 5875 5876 u.buffer = NULL; 5877 switch (ioctl) { 5878 case KVM_GET_LAPIC: { 5879 r = -EINVAL; 5880 if (!lapic_in_kernel(vcpu)) 5881 goto out; 5882 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5883 GFP_KERNEL_ACCOUNT); 5884 5885 r = -ENOMEM; 5886 if (!u.lapic) 5887 goto out; 5888 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5889 if (r) 5890 goto out; 5891 r = -EFAULT; 5892 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5893 goto out; 5894 r = 0; 5895 break; 5896 } 5897 case KVM_SET_LAPIC: { 5898 r = -EINVAL; 5899 if (!lapic_in_kernel(vcpu)) 5900 goto out; 5901 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5902 if (IS_ERR(u.lapic)) { 5903 r = PTR_ERR(u.lapic); 5904 goto out_nofree; 5905 } 5906 5907 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5908 break; 5909 } 5910 case KVM_INTERRUPT: { 5911 struct kvm_interrupt irq; 5912 5913 r = -EFAULT; 5914 if (copy_from_user(&irq, argp, sizeof(irq))) 5915 goto out; 5916 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5917 break; 5918 } 5919 case KVM_NMI: { 5920 r = kvm_vcpu_ioctl_nmi(vcpu); 5921 break; 5922 } 5923 case KVM_SMI: { 5924 r = kvm_inject_smi(vcpu); 5925 break; 5926 } 5927 case KVM_SET_CPUID: { 5928 struct kvm_cpuid __user *cpuid_arg = argp; 5929 struct kvm_cpuid cpuid; 5930 5931 r = -EFAULT; 5932 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5933 goto out; 5934 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5935 break; 5936 } 5937 case KVM_SET_CPUID2: { 5938 struct kvm_cpuid2 __user *cpuid_arg = argp; 5939 struct kvm_cpuid2 cpuid; 5940 5941 r = -EFAULT; 5942 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5943 goto out; 5944 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5945 cpuid_arg->entries); 5946 break; 5947 } 5948 case KVM_GET_CPUID2: { 5949 struct kvm_cpuid2 __user *cpuid_arg = argp; 5950 struct kvm_cpuid2 cpuid; 5951 5952 r = -EFAULT; 5953 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5954 goto out; 5955 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5956 cpuid_arg->entries); 5957 if (r) 5958 goto out; 5959 r = -EFAULT; 5960 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5961 goto out; 5962 r = 0; 5963 break; 5964 } 5965 case KVM_GET_MSRS: { 5966 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5967 r = msr_io(vcpu, argp, do_get_msr, 1); 5968 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5969 break; 5970 } 5971 case KVM_SET_MSRS: { 5972 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5973 r = msr_io(vcpu, argp, do_set_msr, 0); 5974 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5975 break; 5976 } 5977 case KVM_TPR_ACCESS_REPORTING: { 5978 struct kvm_tpr_access_ctl tac; 5979 5980 r = -EFAULT; 5981 if (copy_from_user(&tac, argp, sizeof(tac))) 5982 goto out; 5983 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5984 if (r) 5985 goto out; 5986 r = -EFAULT; 5987 if (copy_to_user(argp, &tac, sizeof(tac))) 5988 goto out; 5989 r = 0; 5990 break; 5991 }; 5992 case KVM_SET_VAPIC_ADDR: { 5993 struct kvm_vapic_addr va; 5994 int idx; 5995 5996 r = -EINVAL; 5997 if (!lapic_in_kernel(vcpu)) 5998 goto out; 5999 r = -EFAULT; 6000 if (copy_from_user(&va, argp, sizeof(va))) 6001 goto out; 6002 idx = srcu_read_lock(&vcpu->kvm->srcu); 6003 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 6004 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6005 break; 6006 } 6007 case KVM_X86_SETUP_MCE: { 6008 u64 mcg_cap; 6009 6010 r = -EFAULT; 6011 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 6012 goto out; 6013 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 6014 break; 6015 } 6016 case KVM_X86_SET_MCE: { 6017 struct kvm_x86_mce mce; 6018 6019 r = -EFAULT; 6020 if (copy_from_user(&mce, argp, sizeof(mce))) 6021 goto out; 6022 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 6023 break; 6024 } 6025 case KVM_GET_VCPU_EVENTS: { 6026 struct kvm_vcpu_events events; 6027 6028 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 6029 6030 r = -EFAULT; 6031 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 6032 break; 6033 r = 0; 6034 break; 6035 } 6036 case KVM_SET_VCPU_EVENTS: { 6037 struct kvm_vcpu_events events; 6038 6039 r = -EFAULT; 6040 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 6041 break; 6042 6043 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 6044 break; 6045 } 6046 case KVM_GET_DEBUGREGS: { 6047 struct kvm_debugregs dbgregs; 6048 6049 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 6050 if (r < 0) 6051 break; 6052 6053 r = -EFAULT; 6054 if (copy_to_user(argp, &dbgregs, 6055 sizeof(struct kvm_debugregs))) 6056 break; 6057 r = 0; 6058 break; 6059 } 6060 case KVM_SET_DEBUGREGS: { 6061 struct kvm_debugregs dbgregs; 6062 6063 r = -EFAULT; 6064 if (copy_from_user(&dbgregs, argp, 6065 sizeof(struct kvm_debugregs))) 6066 break; 6067 6068 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6069 break; 6070 } 6071 case KVM_GET_XSAVE: { 6072 r = -EINVAL; 6073 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6074 break; 6075 6076 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 6077 r = -ENOMEM; 6078 if (!u.xsave) 6079 break; 6080 6081 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6082 if (r < 0) 6083 break; 6084 6085 r = -EFAULT; 6086 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6087 break; 6088 r = 0; 6089 break; 6090 } 6091 case KVM_SET_XSAVE: { 6092 int size = vcpu->arch.guest_fpu.uabi_size; 6093 6094 u.xsave = memdup_user(argp, size); 6095 if (IS_ERR(u.xsave)) { 6096 r = PTR_ERR(u.xsave); 6097 goto out_nofree; 6098 } 6099 6100 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6101 break; 6102 } 6103 6104 case KVM_GET_XSAVE2: { 6105 int size = vcpu->arch.guest_fpu.uabi_size; 6106 6107 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 6108 r = -ENOMEM; 6109 if (!u.xsave) 6110 break; 6111 6112 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6113 if (r < 0) 6114 break; 6115 6116 r = -EFAULT; 6117 if (copy_to_user(argp, u.xsave, size)) 6118 break; 6119 6120 r = 0; 6121 break; 6122 } 6123 6124 case KVM_GET_XCRS: { 6125 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 6126 r = -ENOMEM; 6127 if (!u.xcrs) 6128 break; 6129 6130 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6131 if (r < 0) 6132 break; 6133 6134 r = -EFAULT; 6135 if (copy_to_user(argp, u.xcrs, 6136 sizeof(struct kvm_xcrs))) 6137 break; 6138 r = 0; 6139 break; 6140 } 6141 case KVM_SET_XCRS: { 6142 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6143 if (IS_ERR(u.xcrs)) { 6144 r = PTR_ERR(u.xcrs); 6145 goto out_nofree; 6146 } 6147 6148 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6149 break; 6150 } 6151 case KVM_SET_TSC_KHZ: { 6152 u32 user_tsc_khz; 6153 6154 r = -EINVAL; 6155 user_tsc_khz = (u32)arg; 6156 6157 if (kvm_caps.has_tsc_control && 6158 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6159 goto out; 6160 6161 if (user_tsc_khz == 0) 6162 user_tsc_khz = tsc_khz; 6163 6164 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6165 r = 0; 6166 6167 goto out; 6168 } 6169 case KVM_GET_TSC_KHZ: { 6170 r = vcpu->arch.virtual_tsc_khz; 6171 goto out; 6172 } 6173 case KVM_KVMCLOCK_CTRL: { 6174 r = kvm_set_guest_paused(vcpu); 6175 goto out; 6176 } 6177 case KVM_ENABLE_CAP: { 6178 struct kvm_enable_cap cap; 6179 6180 r = -EFAULT; 6181 if (copy_from_user(&cap, argp, sizeof(cap))) 6182 goto out; 6183 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6184 break; 6185 } 6186 case KVM_GET_NESTED_STATE: { 6187 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6188 u32 user_data_size; 6189 6190 r = -EINVAL; 6191 if (!kvm_x86_ops.nested_ops->get_state) 6192 break; 6193 6194 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6195 r = -EFAULT; 6196 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6197 break; 6198 6199 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6200 user_data_size); 6201 if (r < 0) 6202 break; 6203 6204 if (r > user_data_size) { 6205 if (put_user(r, &user_kvm_nested_state->size)) 6206 r = -EFAULT; 6207 else 6208 r = -E2BIG; 6209 break; 6210 } 6211 6212 r = 0; 6213 break; 6214 } 6215 case KVM_SET_NESTED_STATE: { 6216 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6217 struct kvm_nested_state kvm_state; 6218 int idx; 6219 6220 r = -EINVAL; 6221 if (!kvm_x86_ops.nested_ops->set_state) 6222 break; 6223 6224 r = -EFAULT; 6225 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6226 break; 6227 6228 r = -EINVAL; 6229 if (kvm_state.size < sizeof(kvm_state)) 6230 break; 6231 6232 if (kvm_state.flags & 6233 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6234 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6235 | KVM_STATE_NESTED_GIF_SET)) 6236 break; 6237 6238 /* nested_run_pending implies guest_mode. */ 6239 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6240 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6241 break; 6242 6243 idx = srcu_read_lock(&vcpu->kvm->srcu); 6244 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6245 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6246 break; 6247 } 6248 #ifdef CONFIG_KVM_HYPERV 6249 case KVM_GET_SUPPORTED_HV_CPUID: 6250 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6251 break; 6252 #endif 6253 #ifdef CONFIG_KVM_XEN 6254 case KVM_XEN_VCPU_GET_ATTR: { 6255 struct kvm_xen_vcpu_attr xva; 6256 6257 r = -EFAULT; 6258 if (copy_from_user(&xva, argp, sizeof(xva))) 6259 goto out; 6260 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6261 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6262 r = -EFAULT; 6263 break; 6264 } 6265 case KVM_XEN_VCPU_SET_ATTR: { 6266 struct kvm_xen_vcpu_attr xva; 6267 6268 r = -EFAULT; 6269 if (copy_from_user(&xva, argp, sizeof(xva))) 6270 goto out; 6271 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6272 break; 6273 } 6274 #endif 6275 case KVM_GET_SREGS2: { 6276 r = -EINVAL; 6277 if (vcpu->kvm->arch.has_protected_state && 6278 vcpu->arch.guest_state_protected) 6279 goto out; 6280 6281 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6282 r = -ENOMEM; 6283 if (!u.sregs2) 6284 goto out; 6285 __get_sregs2(vcpu, u.sregs2); 6286 r = -EFAULT; 6287 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6288 goto out; 6289 r = 0; 6290 break; 6291 } 6292 case KVM_SET_SREGS2: { 6293 r = -EINVAL; 6294 if (vcpu->kvm->arch.has_protected_state && 6295 vcpu->arch.guest_state_protected) 6296 goto out; 6297 6298 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6299 if (IS_ERR(u.sregs2)) { 6300 r = PTR_ERR(u.sregs2); 6301 u.sregs2 = NULL; 6302 goto out; 6303 } 6304 r = __set_sregs2(vcpu, u.sregs2); 6305 break; 6306 } 6307 case KVM_HAS_DEVICE_ATTR: 6308 case KVM_GET_DEVICE_ATTR: 6309 case KVM_SET_DEVICE_ATTR: 6310 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6311 break; 6312 default: 6313 r = -EINVAL; 6314 } 6315 out: 6316 kfree(u.buffer); 6317 out_nofree: 6318 vcpu_put(vcpu); 6319 return r; 6320 } 6321 6322 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6323 { 6324 return VM_FAULT_SIGBUS; 6325 } 6326 6327 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6328 { 6329 int ret; 6330 6331 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6332 return -EINVAL; 6333 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6334 return ret; 6335 } 6336 6337 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6338 u64 ident_addr) 6339 { 6340 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6341 } 6342 6343 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6344 unsigned long kvm_nr_mmu_pages) 6345 { 6346 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6347 return -EINVAL; 6348 6349 mutex_lock(&kvm->slots_lock); 6350 6351 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6352 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6353 6354 mutex_unlock(&kvm->slots_lock); 6355 return 0; 6356 } 6357 6358 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6359 { 6360 struct kvm_pic *pic = kvm->arch.vpic; 6361 int r; 6362 6363 r = 0; 6364 switch (chip->chip_id) { 6365 case KVM_IRQCHIP_PIC_MASTER: 6366 memcpy(&chip->chip.pic, &pic->pics[0], 6367 sizeof(struct kvm_pic_state)); 6368 break; 6369 case KVM_IRQCHIP_PIC_SLAVE: 6370 memcpy(&chip->chip.pic, &pic->pics[1], 6371 sizeof(struct kvm_pic_state)); 6372 break; 6373 case KVM_IRQCHIP_IOAPIC: 6374 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6375 break; 6376 default: 6377 r = -EINVAL; 6378 break; 6379 } 6380 return r; 6381 } 6382 6383 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6384 { 6385 struct kvm_pic *pic = kvm->arch.vpic; 6386 int r; 6387 6388 r = 0; 6389 switch (chip->chip_id) { 6390 case KVM_IRQCHIP_PIC_MASTER: 6391 spin_lock(&pic->lock); 6392 memcpy(&pic->pics[0], &chip->chip.pic, 6393 sizeof(struct kvm_pic_state)); 6394 spin_unlock(&pic->lock); 6395 break; 6396 case KVM_IRQCHIP_PIC_SLAVE: 6397 spin_lock(&pic->lock); 6398 memcpy(&pic->pics[1], &chip->chip.pic, 6399 sizeof(struct kvm_pic_state)); 6400 spin_unlock(&pic->lock); 6401 break; 6402 case KVM_IRQCHIP_IOAPIC: 6403 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6404 break; 6405 default: 6406 r = -EINVAL; 6407 break; 6408 } 6409 kvm_pic_update_irq(pic); 6410 return r; 6411 } 6412 6413 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6414 { 6415 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6416 6417 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6418 6419 mutex_lock(&kps->lock); 6420 memcpy(ps, &kps->channels, sizeof(*ps)); 6421 mutex_unlock(&kps->lock); 6422 return 0; 6423 } 6424 6425 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6426 { 6427 int i; 6428 struct kvm_pit *pit = kvm->arch.vpit; 6429 6430 mutex_lock(&pit->pit_state.lock); 6431 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6432 for (i = 0; i < 3; i++) 6433 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6434 mutex_unlock(&pit->pit_state.lock); 6435 return 0; 6436 } 6437 6438 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6439 { 6440 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6441 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6442 sizeof(ps->channels)); 6443 ps->flags = kvm->arch.vpit->pit_state.flags; 6444 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6445 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6446 return 0; 6447 } 6448 6449 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6450 { 6451 int start = 0; 6452 int i; 6453 u32 prev_legacy, cur_legacy; 6454 struct kvm_pit *pit = kvm->arch.vpit; 6455 6456 mutex_lock(&pit->pit_state.lock); 6457 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6458 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6459 if (!prev_legacy && cur_legacy) 6460 start = 1; 6461 memcpy(&pit->pit_state.channels, &ps->channels, 6462 sizeof(pit->pit_state.channels)); 6463 pit->pit_state.flags = ps->flags; 6464 for (i = 0; i < 3; i++) 6465 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6466 start && i == 0); 6467 mutex_unlock(&pit->pit_state.lock); 6468 return 0; 6469 } 6470 6471 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6472 struct kvm_reinject_control *control) 6473 { 6474 struct kvm_pit *pit = kvm->arch.vpit; 6475 6476 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6477 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6478 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6479 */ 6480 mutex_lock(&pit->pit_state.lock); 6481 kvm_pit_set_reinject(pit, control->pit_reinject); 6482 mutex_unlock(&pit->pit_state.lock); 6483 6484 return 0; 6485 } 6486 6487 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6488 { 6489 6490 /* 6491 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6492 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6493 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6494 * VM-Exit. 6495 */ 6496 struct kvm_vcpu *vcpu; 6497 unsigned long i; 6498 6499 if (!kvm_x86_ops.cpu_dirty_log_size) 6500 return; 6501 6502 kvm_for_each_vcpu(i, vcpu, kvm) 6503 kvm_vcpu_kick(vcpu); 6504 } 6505 6506 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6507 bool line_status) 6508 { 6509 if (!irqchip_in_kernel(kvm)) 6510 return -ENXIO; 6511 6512 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6513 irq_event->irq, irq_event->level, 6514 line_status); 6515 return 0; 6516 } 6517 6518 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6519 struct kvm_enable_cap *cap) 6520 { 6521 int r; 6522 6523 if (cap->flags) 6524 return -EINVAL; 6525 6526 switch (cap->cap) { 6527 case KVM_CAP_DISABLE_QUIRKS2: 6528 r = -EINVAL; 6529 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6530 break; 6531 fallthrough; 6532 case KVM_CAP_DISABLE_QUIRKS: 6533 kvm->arch.disabled_quirks = cap->args[0]; 6534 r = 0; 6535 break; 6536 case KVM_CAP_SPLIT_IRQCHIP: { 6537 mutex_lock(&kvm->lock); 6538 r = -EINVAL; 6539 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6540 goto split_irqchip_unlock; 6541 r = -EEXIST; 6542 if (irqchip_in_kernel(kvm)) 6543 goto split_irqchip_unlock; 6544 if (kvm->created_vcpus) 6545 goto split_irqchip_unlock; 6546 r = kvm_setup_empty_irq_routing(kvm); 6547 if (r) 6548 goto split_irqchip_unlock; 6549 /* Pairs with irqchip_in_kernel. */ 6550 smp_wmb(); 6551 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6552 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6553 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6554 r = 0; 6555 split_irqchip_unlock: 6556 mutex_unlock(&kvm->lock); 6557 break; 6558 } 6559 case KVM_CAP_X2APIC_API: 6560 r = -EINVAL; 6561 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6562 break; 6563 6564 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6565 kvm->arch.x2apic_format = true; 6566 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6567 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6568 6569 r = 0; 6570 break; 6571 case KVM_CAP_X86_DISABLE_EXITS: 6572 r = -EINVAL; 6573 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6574 break; 6575 6576 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6577 kvm->arch.pause_in_guest = true; 6578 6579 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6580 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6581 6582 if (!mitigate_smt_rsb) { 6583 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6584 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6585 pr_warn_once(SMT_RSB_MSG); 6586 6587 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6588 kvm_can_mwait_in_guest()) 6589 kvm->arch.mwait_in_guest = true; 6590 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6591 kvm->arch.hlt_in_guest = true; 6592 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6593 kvm->arch.cstate_in_guest = true; 6594 } 6595 6596 r = 0; 6597 break; 6598 case KVM_CAP_MSR_PLATFORM_INFO: 6599 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6600 r = 0; 6601 break; 6602 case KVM_CAP_EXCEPTION_PAYLOAD: 6603 kvm->arch.exception_payload_enabled = cap->args[0]; 6604 r = 0; 6605 break; 6606 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6607 kvm->arch.triple_fault_event = cap->args[0]; 6608 r = 0; 6609 break; 6610 case KVM_CAP_X86_USER_SPACE_MSR: 6611 r = -EINVAL; 6612 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6613 break; 6614 kvm->arch.user_space_msr_mask = cap->args[0]; 6615 r = 0; 6616 break; 6617 case KVM_CAP_X86_BUS_LOCK_EXIT: 6618 r = -EINVAL; 6619 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6620 break; 6621 6622 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6623 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6624 break; 6625 6626 if (kvm_caps.has_bus_lock_exit && 6627 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6628 kvm->arch.bus_lock_detection_enabled = true; 6629 r = 0; 6630 break; 6631 #ifdef CONFIG_X86_SGX_KVM 6632 case KVM_CAP_SGX_ATTRIBUTE: { 6633 unsigned long allowed_attributes = 0; 6634 6635 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6636 if (r) 6637 break; 6638 6639 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6640 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6641 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6642 kvm->arch.sgx_provisioning_allowed = true; 6643 else 6644 r = -EINVAL; 6645 break; 6646 } 6647 #endif 6648 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6649 r = -EINVAL; 6650 if (!kvm_x86_ops.vm_copy_enc_context_from) 6651 break; 6652 6653 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6654 break; 6655 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6656 r = -EINVAL; 6657 if (!kvm_x86_ops.vm_move_enc_context_from) 6658 break; 6659 6660 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6661 break; 6662 case KVM_CAP_EXIT_HYPERCALL: 6663 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6664 r = -EINVAL; 6665 break; 6666 } 6667 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6668 r = 0; 6669 break; 6670 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6671 r = -EINVAL; 6672 if (cap->args[0] & ~1) 6673 break; 6674 kvm->arch.exit_on_emulation_error = cap->args[0]; 6675 r = 0; 6676 break; 6677 case KVM_CAP_PMU_CAPABILITY: 6678 r = -EINVAL; 6679 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6680 break; 6681 6682 mutex_lock(&kvm->lock); 6683 if (!kvm->created_vcpus) { 6684 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6685 r = 0; 6686 } 6687 mutex_unlock(&kvm->lock); 6688 break; 6689 case KVM_CAP_MAX_VCPU_ID: 6690 r = -EINVAL; 6691 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6692 break; 6693 6694 mutex_lock(&kvm->lock); 6695 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6696 r = 0; 6697 } else if (!kvm->arch.max_vcpu_ids) { 6698 kvm->arch.max_vcpu_ids = cap->args[0]; 6699 r = 0; 6700 } 6701 mutex_unlock(&kvm->lock); 6702 break; 6703 case KVM_CAP_X86_NOTIFY_VMEXIT: 6704 r = -EINVAL; 6705 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6706 break; 6707 if (!kvm_caps.has_notify_vmexit) 6708 break; 6709 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6710 break; 6711 mutex_lock(&kvm->lock); 6712 if (!kvm->created_vcpus) { 6713 kvm->arch.notify_window = cap->args[0] >> 32; 6714 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6715 r = 0; 6716 } 6717 mutex_unlock(&kvm->lock); 6718 break; 6719 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6720 r = -EINVAL; 6721 6722 /* 6723 * Since the risk of disabling NX hugepages is a guest crashing 6724 * the system, ensure the userspace process has permission to 6725 * reboot the system. 6726 * 6727 * Note that unlike the reboot() syscall, the process must have 6728 * this capability in the root namespace because exposing 6729 * /dev/kvm into a container does not limit the scope of the 6730 * iTLB multihit bug to that container. In other words, 6731 * this must use capable(), not ns_capable(). 6732 */ 6733 if (!capable(CAP_SYS_BOOT)) { 6734 r = -EPERM; 6735 break; 6736 } 6737 6738 if (cap->args[0]) 6739 break; 6740 6741 mutex_lock(&kvm->lock); 6742 if (!kvm->created_vcpus) { 6743 kvm->arch.disable_nx_huge_pages = true; 6744 r = 0; 6745 } 6746 mutex_unlock(&kvm->lock); 6747 break; 6748 default: 6749 r = -EINVAL; 6750 break; 6751 } 6752 return r; 6753 } 6754 6755 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6756 { 6757 struct kvm_x86_msr_filter *msr_filter; 6758 6759 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6760 if (!msr_filter) 6761 return NULL; 6762 6763 msr_filter->default_allow = default_allow; 6764 return msr_filter; 6765 } 6766 6767 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6768 { 6769 u32 i; 6770 6771 if (!msr_filter) 6772 return; 6773 6774 for (i = 0; i < msr_filter->count; i++) 6775 kfree(msr_filter->ranges[i].bitmap); 6776 6777 kfree(msr_filter); 6778 } 6779 6780 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6781 struct kvm_msr_filter_range *user_range) 6782 { 6783 unsigned long *bitmap; 6784 size_t bitmap_size; 6785 6786 if (!user_range->nmsrs) 6787 return 0; 6788 6789 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6790 return -EINVAL; 6791 6792 if (!user_range->flags) 6793 return -EINVAL; 6794 6795 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6796 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6797 return -EINVAL; 6798 6799 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6800 if (IS_ERR(bitmap)) 6801 return PTR_ERR(bitmap); 6802 6803 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6804 .flags = user_range->flags, 6805 .base = user_range->base, 6806 .nmsrs = user_range->nmsrs, 6807 .bitmap = bitmap, 6808 }; 6809 6810 msr_filter->count++; 6811 return 0; 6812 } 6813 6814 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6815 struct kvm_msr_filter *filter) 6816 { 6817 struct kvm_x86_msr_filter *new_filter, *old_filter; 6818 bool default_allow; 6819 bool empty = true; 6820 int r; 6821 u32 i; 6822 6823 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6824 return -EINVAL; 6825 6826 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6827 empty &= !filter->ranges[i].nmsrs; 6828 6829 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6830 if (empty && !default_allow) 6831 return -EINVAL; 6832 6833 new_filter = kvm_alloc_msr_filter(default_allow); 6834 if (!new_filter) 6835 return -ENOMEM; 6836 6837 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6838 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6839 if (r) { 6840 kvm_free_msr_filter(new_filter); 6841 return r; 6842 } 6843 } 6844 6845 mutex_lock(&kvm->lock); 6846 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6847 mutex_is_locked(&kvm->lock)); 6848 mutex_unlock(&kvm->lock); 6849 synchronize_srcu(&kvm->srcu); 6850 6851 kvm_free_msr_filter(old_filter); 6852 6853 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6854 6855 return 0; 6856 } 6857 6858 #ifdef CONFIG_KVM_COMPAT 6859 /* for KVM_X86_SET_MSR_FILTER */ 6860 struct kvm_msr_filter_range_compat { 6861 __u32 flags; 6862 __u32 nmsrs; 6863 __u32 base; 6864 __u32 bitmap; 6865 }; 6866 6867 struct kvm_msr_filter_compat { 6868 __u32 flags; 6869 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6870 }; 6871 6872 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6873 6874 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6875 unsigned long arg) 6876 { 6877 void __user *argp = (void __user *)arg; 6878 struct kvm *kvm = filp->private_data; 6879 long r = -ENOTTY; 6880 6881 switch (ioctl) { 6882 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6883 struct kvm_msr_filter __user *user_msr_filter = argp; 6884 struct kvm_msr_filter_compat filter_compat; 6885 struct kvm_msr_filter filter; 6886 int i; 6887 6888 if (copy_from_user(&filter_compat, user_msr_filter, 6889 sizeof(filter_compat))) 6890 return -EFAULT; 6891 6892 filter.flags = filter_compat.flags; 6893 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6894 struct kvm_msr_filter_range_compat *cr; 6895 6896 cr = &filter_compat.ranges[i]; 6897 filter.ranges[i] = (struct kvm_msr_filter_range) { 6898 .flags = cr->flags, 6899 .nmsrs = cr->nmsrs, 6900 .base = cr->base, 6901 .bitmap = (__u8 *)(ulong)cr->bitmap, 6902 }; 6903 } 6904 6905 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6906 break; 6907 } 6908 } 6909 6910 return r; 6911 } 6912 #endif 6913 6914 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6915 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6916 { 6917 struct kvm_vcpu *vcpu; 6918 unsigned long i; 6919 int ret = 0; 6920 6921 mutex_lock(&kvm->lock); 6922 kvm_for_each_vcpu(i, vcpu, kvm) { 6923 if (!vcpu->arch.pv_time.active) 6924 continue; 6925 6926 ret = kvm_set_guest_paused(vcpu); 6927 if (ret) { 6928 kvm_err("Failed to pause guest VCPU%d: %d\n", 6929 vcpu->vcpu_id, ret); 6930 break; 6931 } 6932 } 6933 mutex_unlock(&kvm->lock); 6934 6935 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6936 } 6937 6938 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6939 { 6940 switch (state) { 6941 case PM_HIBERNATION_PREPARE: 6942 case PM_SUSPEND_PREPARE: 6943 return kvm_arch_suspend_notifier(kvm); 6944 } 6945 6946 return NOTIFY_DONE; 6947 } 6948 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6949 6950 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6951 { 6952 struct kvm_clock_data data = { 0 }; 6953 6954 get_kvmclock(kvm, &data); 6955 if (copy_to_user(argp, &data, sizeof(data))) 6956 return -EFAULT; 6957 6958 return 0; 6959 } 6960 6961 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6962 { 6963 struct kvm_arch *ka = &kvm->arch; 6964 struct kvm_clock_data data; 6965 u64 now_raw_ns; 6966 6967 if (copy_from_user(&data, argp, sizeof(data))) 6968 return -EFAULT; 6969 6970 /* 6971 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6972 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6973 */ 6974 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6975 return -EINVAL; 6976 6977 kvm_hv_request_tsc_page_update(kvm); 6978 kvm_start_pvclock_update(kvm); 6979 pvclock_update_vm_gtod_copy(kvm); 6980 6981 /* 6982 * This pairs with kvm_guest_time_update(): when masterclock is 6983 * in use, we use master_kernel_ns + kvmclock_offset to set 6984 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6985 * is slightly ahead) here we risk going negative on unsigned 6986 * 'system_time' when 'data.clock' is very small. 6987 */ 6988 if (data.flags & KVM_CLOCK_REALTIME) { 6989 u64 now_real_ns = ktime_get_real_ns(); 6990 6991 /* 6992 * Avoid stepping the kvmclock backwards. 6993 */ 6994 if (now_real_ns > data.realtime) 6995 data.clock += now_real_ns - data.realtime; 6996 } 6997 6998 if (ka->use_master_clock) 6999 now_raw_ns = ka->master_kernel_ns; 7000 else 7001 now_raw_ns = get_kvmclock_base_ns(); 7002 ka->kvmclock_offset = data.clock - now_raw_ns; 7003 kvm_end_pvclock_update(kvm); 7004 return 0; 7005 } 7006 7007 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 7008 { 7009 struct kvm *kvm = filp->private_data; 7010 void __user *argp = (void __user *)arg; 7011 int r = -ENOTTY; 7012 /* 7013 * This union makes it completely explicit to gcc-3.x 7014 * that these two variables' stack usage should be 7015 * combined, not added together. 7016 */ 7017 union { 7018 struct kvm_pit_state ps; 7019 struct kvm_pit_state2 ps2; 7020 struct kvm_pit_config pit_config; 7021 } u; 7022 7023 switch (ioctl) { 7024 case KVM_SET_TSS_ADDR: 7025 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 7026 break; 7027 case KVM_SET_IDENTITY_MAP_ADDR: { 7028 u64 ident_addr; 7029 7030 mutex_lock(&kvm->lock); 7031 r = -EINVAL; 7032 if (kvm->created_vcpus) 7033 goto set_identity_unlock; 7034 r = -EFAULT; 7035 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 7036 goto set_identity_unlock; 7037 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 7038 set_identity_unlock: 7039 mutex_unlock(&kvm->lock); 7040 break; 7041 } 7042 case KVM_SET_NR_MMU_PAGES: 7043 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 7044 break; 7045 case KVM_CREATE_IRQCHIP: { 7046 mutex_lock(&kvm->lock); 7047 7048 r = -EEXIST; 7049 if (irqchip_in_kernel(kvm)) 7050 goto create_irqchip_unlock; 7051 7052 r = -EINVAL; 7053 if (kvm->created_vcpus) 7054 goto create_irqchip_unlock; 7055 7056 r = kvm_pic_init(kvm); 7057 if (r) 7058 goto create_irqchip_unlock; 7059 7060 r = kvm_ioapic_init(kvm); 7061 if (r) { 7062 kvm_pic_destroy(kvm); 7063 goto create_irqchip_unlock; 7064 } 7065 7066 r = kvm_setup_default_irq_routing(kvm); 7067 if (r) { 7068 kvm_ioapic_destroy(kvm); 7069 kvm_pic_destroy(kvm); 7070 goto create_irqchip_unlock; 7071 } 7072 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 7073 smp_wmb(); 7074 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7075 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7076 create_irqchip_unlock: 7077 mutex_unlock(&kvm->lock); 7078 break; 7079 } 7080 case KVM_CREATE_PIT: 7081 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7082 goto create_pit; 7083 case KVM_CREATE_PIT2: 7084 r = -EFAULT; 7085 if (copy_from_user(&u.pit_config, argp, 7086 sizeof(struct kvm_pit_config))) 7087 goto out; 7088 create_pit: 7089 mutex_lock(&kvm->lock); 7090 r = -EEXIST; 7091 if (kvm->arch.vpit) 7092 goto create_pit_unlock; 7093 r = -ENOENT; 7094 if (!pic_in_kernel(kvm)) 7095 goto create_pit_unlock; 7096 r = -ENOMEM; 7097 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7098 if (kvm->arch.vpit) 7099 r = 0; 7100 create_pit_unlock: 7101 mutex_unlock(&kvm->lock); 7102 break; 7103 case KVM_GET_IRQCHIP: { 7104 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7105 struct kvm_irqchip *chip; 7106 7107 chip = memdup_user(argp, sizeof(*chip)); 7108 if (IS_ERR(chip)) { 7109 r = PTR_ERR(chip); 7110 goto out; 7111 } 7112 7113 r = -ENXIO; 7114 if (!irqchip_kernel(kvm)) 7115 goto get_irqchip_out; 7116 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7117 if (r) 7118 goto get_irqchip_out; 7119 r = -EFAULT; 7120 if (copy_to_user(argp, chip, sizeof(*chip))) 7121 goto get_irqchip_out; 7122 r = 0; 7123 get_irqchip_out: 7124 kfree(chip); 7125 break; 7126 } 7127 case KVM_SET_IRQCHIP: { 7128 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7129 struct kvm_irqchip *chip; 7130 7131 chip = memdup_user(argp, sizeof(*chip)); 7132 if (IS_ERR(chip)) { 7133 r = PTR_ERR(chip); 7134 goto out; 7135 } 7136 7137 r = -ENXIO; 7138 if (!irqchip_kernel(kvm)) 7139 goto set_irqchip_out; 7140 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7141 set_irqchip_out: 7142 kfree(chip); 7143 break; 7144 } 7145 case KVM_GET_PIT: { 7146 r = -EFAULT; 7147 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7148 goto out; 7149 r = -ENXIO; 7150 if (!kvm->arch.vpit) 7151 goto out; 7152 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7153 if (r) 7154 goto out; 7155 r = -EFAULT; 7156 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7157 goto out; 7158 r = 0; 7159 break; 7160 } 7161 case KVM_SET_PIT: { 7162 r = -EFAULT; 7163 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7164 goto out; 7165 mutex_lock(&kvm->lock); 7166 r = -ENXIO; 7167 if (!kvm->arch.vpit) 7168 goto set_pit_out; 7169 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7170 set_pit_out: 7171 mutex_unlock(&kvm->lock); 7172 break; 7173 } 7174 case KVM_GET_PIT2: { 7175 r = -ENXIO; 7176 if (!kvm->arch.vpit) 7177 goto out; 7178 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7179 if (r) 7180 goto out; 7181 r = -EFAULT; 7182 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7183 goto out; 7184 r = 0; 7185 break; 7186 } 7187 case KVM_SET_PIT2: { 7188 r = -EFAULT; 7189 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7190 goto out; 7191 mutex_lock(&kvm->lock); 7192 r = -ENXIO; 7193 if (!kvm->arch.vpit) 7194 goto set_pit2_out; 7195 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7196 set_pit2_out: 7197 mutex_unlock(&kvm->lock); 7198 break; 7199 } 7200 case KVM_REINJECT_CONTROL: { 7201 struct kvm_reinject_control control; 7202 r = -EFAULT; 7203 if (copy_from_user(&control, argp, sizeof(control))) 7204 goto out; 7205 r = -ENXIO; 7206 if (!kvm->arch.vpit) 7207 goto out; 7208 r = kvm_vm_ioctl_reinject(kvm, &control); 7209 break; 7210 } 7211 case KVM_SET_BOOT_CPU_ID: 7212 r = 0; 7213 mutex_lock(&kvm->lock); 7214 if (kvm->created_vcpus) 7215 r = -EBUSY; 7216 else 7217 kvm->arch.bsp_vcpu_id = arg; 7218 mutex_unlock(&kvm->lock); 7219 break; 7220 #ifdef CONFIG_KVM_XEN 7221 case KVM_XEN_HVM_CONFIG: { 7222 struct kvm_xen_hvm_config xhc; 7223 r = -EFAULT; 7224 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7225 goto out; 7226 r = kvm_xen_hvm_config(kvm, &xhc); 7227 break; 7228 } 7229 case KVM_XEN_HVM_GET_ATTR: { 7230 struct kvm_xen_hvm_attr xha; 7231 7232 r = -EFAULT; 7233 if (copy_from_user(&xha, argp, sizeof(xha))) 7234 goto out; 7235 r = kvm_xen_hvm_get_attr(kvm, &xha); 7236 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7237 r = -EFAULT; 7238 break; 7239 } 7240 case KVM_XEN_HVM_SET_ATTR: { 7241 struct kvm_xen_hvm_attr xha; 7242 7243 r = -EFAULT; 7244 if (copy_from_user(&xha, argp, sizeof(xha))) 7245 goto out; 7246 r = kvm_xen_hvm_set_attr(kvm, &xha); 7247 break; 7248 } 7249 case KVM_XEN_HVM_EVTCHN_SEND: { 7250 struct kvm_irq_routing_xen_evtchn uxe; 7251 7252 r = -EFAULT; 7253 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7254 goto out; 7255 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7256 break; 7257 } 7258 #endif 7259 case KVM_SET_CLOCK: 7260 r = kvm_vm_ioctl_set_clock(kvm, argp); 7261 break; 7262 case KVM_GET_CLOCK: 7263 r = kvm_vm_ioctl_get_clock(kvm, argp); 7264 break; 7265 case KVM_SET_TSC_KHZ: { 7266 u32 user_tsc_khz; 7267 7268 r = -EINVAL; 7269 user_tsc_khz = (u32)arg; 7270 7271 if (kvm_caps.has_tsc_control && 7272 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7273 goto out; 7274 7275 if (user_tsc_khz == 0) 7276 user_tsc_khz = tsc_khz; 7277 7278 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7279 r = 0; 7280 7281 goto out; 7282 } 7283 case KVM_GET_TSC_KHZ: { 7284 r = READ_ONCE(kvm->arch.default_tsc_khz); 7285 goto out; 7286 } 7287 case KVM_MEMORY_ENCRYPT_OP: { 7288 r = -ENOTTY; 7289 if (!kvm_x86_ops.mem_enc_ioctl) 7290 goto out; 7291 7292 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7293 break; 7294 } 7295 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7296 struct kvm_enc_region region; 7297 7298 r = -EFAULT; 7299 if (copy_from_user(®ion, argp, sizeof(region))) 7300 goto out; 7301 7302 r = -ENOTTY; 7303 if (!kvm_x86_ops.mem_enc_register_region) 7304 goto out; 7305 7306 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7307 break; 7308 } 7309 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7310 struct kvm_enc_region region; 7311 7312 r = -EFAULT; 7313 if (copy_from_user(®ion, argp, sizeof(region))) 7314 goto out; 7315 7316 r = -ENOTTY; 7317 if (!kvm_x86_ops.mem_enc_unregister_region) 7318 goto out; 7319 7320 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7321 break; 7322 } 7323 #ifdef CONFIG_KVM_HYPERV 7324 case KVM_HYPERV_EVENTFD: { 7325 struct kvm_hyperv_eventfd hvevfd; 7326 7327 r = -EFAULT; 7328 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7329 goto out; 7330 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7331 break; 7332 } 7333 #endif 7334 case KVM_SET_PMU_EVENT_FILTER: 7335 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7336 break; 7337 case KVM_X86_SET_MSR_FILTER: { 7338 struct kvm_msr_filter __user *user_msr_filter = argp; 7339 struct kvm_msr_filter filter; 7340 7341 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7342 return -EFAULT; 7343 7344 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7345 break; 7346 } 7347 default: 7348 r = -ENOTTY; 7349 } 7350 out: 7351 return r; 7352 } 7353 7354 static void kvm_probe_feature_msr(u32 msr_index) 7355 { 7356 struct kvm_msr_entry msr = { 7357 .index = msr_index, 7358 }; 7359 7360 if (kvm_get_msr_feature(&msr)) 7361 return; 7362 7363 msr_based_features[num_msr_based_features++] = msr_index; 7364 } 7365 7366 static void kvm_probe_msr_to_save(u32 msr_index) 7367 { 7368 u32 dummy[2]; 7369 7370 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7371 return; 7372 7373 /* 7374 * Even MSRs that are valid in the host may not be exposed to guests in 7375 * some cases. 7376 */ 7377 switch (msr_index) { 7378 case MSR_IA32_BNDCFGS: 7379 if (!kvm_mpx_supported()) 7380 return; 7381 break; 7382 case MSR_TSC_AUX: 7383 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7384 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7385 return; 7386 break; 7387 case MSR_IA32_UMWAIT_CONTROL: 7388 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7389 return; 7390 break; 7391 case MSR_IA32_RTIT_CTL: 7392 case MSR_IA32_RTIT_STATUS: 7393 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7394 return; 7395 break; 7396 case MSR_IA32_RTIT_CR3_MATCH: 7397 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7398 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7399 return; 7400 break; 7401 case MSR_IA32_RTIT_OUTPUT_BASE: 7402 case MSR_IA32_RTIT_OUTPUT_MASK: 7403 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7404 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7405 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7406 return; 7407 break; 7408 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7409 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7410 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7411 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7412 return; 7413 break; 7414 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7415 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7416 kvm_pmu_cap.num_counters_gp) 7417 return; 7418 break; 7419 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7420 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7421 kvm_pmu_cap.num_counters_gp) 7422 return; 7423 break; 7424 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7425 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7426 kvm_pmu_cap.num_counters_fixed) 7427 return; 7428 break; 7429 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7430 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7431 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7432 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7433 return; 7434 break; 7435 case MSR_IA32_XFD: 7436 case MSR_IA32_XFD_ERR: 7437 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7438 return; 7439 break; 7440 case MSR_IA32_TSX_CTRL: 7441 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7442 return; 7443 break; 7444 default: 7445 break; 7446 } 7447 7448 msrs_to_save[num_msrs_to_save++] = msr_index; 7449 } 7450 7451 static void kvm_init_msr_lists(void) 7452 { 7453 unsigned i; 7454 7455 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7456 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7457 7458 num_msrs_to_save = 0; 7459 num_emulated_msrs = 0; 7460 num_msr_based_features = 0; 7461 7462 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7463 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7464 7465 if (enable_pmu) { 7466 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7467 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7468 } 7469 7470 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7471 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7472 continue; 7473 7474 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7475 } 7476 7477 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7478 kvm_probe_feature_msr(i); 7479 7480 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7481 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7482 } 7483 7484 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7485 const void *v) 7486 { 7487 int handled = 0; 7488 int n; 7489 7490 do { 7491 n = min(len, 8); 7492 if (!(lapic_in_kernel(vcpu) && 7493 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7494 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7495 break; 7496 handled += n; 7497 addr += n; 7498 len -= n; 7499 v += n; 7500 } while (len); 7501 7502 return handled; 7503 } 7504 7505 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7506 { 7507 int handled = 0; 7508 int n; 7509 7510 do { 7511 n = min(len, 8); 7512 if (!(lapic_in_kernel(vcpu) && 7513 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7514 addr, n, v)) 7515 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7516 break; 7517 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7518 handled += n; 7519 addr += n; 7520 len -= n; 7521 v += n; 7522 } while (len); 7523 7524 return handled; 7525 } 7526 7527 void kvm_set_segment(struct kvm_vcpu *vcpu, 7528 struct kvm_segment *var, int seg) 7529 { 7530 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7531 } 7532 7533 void kvm_get_segment(struct kvm_vcpu *vcpu, 7534 struct kvm_segment *var, int seg) 7535 { 7536 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7537 } 7538 7539 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7540 struct x86_exception *exception) 7541 { 7542 struct kvm_mmu *mmu = vcpu->arch.mmu; 7543 gpa_t t_gpa; 7544 7545 BUG_ON(!mmu_is_nested(vcpu)); 7546 7547 /* NPT walks are always user-walks */ 7548 access |= PFERR_USER_MASK; 7549 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7550 7551 return t_gpa; 7552 } 7553 7554 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7555 struct x86_exception *exception) 7556 { 7557 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7558 7559 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7560 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7561 } 7562 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7563 7564 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7565 struct x86_exception *exception) 7566 { 7567 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7568 7569 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7570 access |= PFERR_WRITE_MASK; 7571 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7572 } 7573 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7574 7575 /* uses this to access any guest's mapped memory without checking CPL */ 7576 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7577 struct x86_exception *exception) 7578 { 7579 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7580 7581 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7582 } 7583 7584 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7585 struct kvm_vcpu *vcpu, u64 access, 7586 struct x86_exception *exception) 7587 { 7588 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7589 void *data = val; 7590 int r = X86EMUL_CONTINUE; 7591 7592 while (bytes) { 7593 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7594 unsigned offset = addr & (PAGE_SIZE-1); 7595 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7596 int ret; 7597 7598 if (gpa == INVALID_GPA) 7599 return X86EMUL_PROPAGATE_FAULT; 7600 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7601 offset, toread); 7602 if (ret < 0) { 7603 r = X86EMUL_IO_NEEDED; 7604 goto out; 7605 } 7606 7607 bytes -= toread; 7608 data += toread; 7609 addr += toread; 7610 } 7611 out: 7612 return r; 7613 } 7614 7615 /* used for instruction fetching */ 7616 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7617 gva_t addr, void *val, unsigned int bytes, 7618 struct x86_exception *exception) 7619 { 7620 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7621 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7622 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7623 unsigned offset; 7624 int ret; 7625 7626 /* Inline kvm_read_guest_virt_helper for speed. */ 7627 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7628 exception); 7629 if (unlikely(gpa == INVALID_GPA)) 7630 return X86EMUL_PROPAGATE_FAULT; 7631 7632 offset = addr & (PAGE_SIZE-1); 7633 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7634 bytes = (unsigned)PAGE_SIZE - offset; 7635 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7636 offset, bytes); 7637 if (unlikely(ret < 0)) 7638 return X86EMUL_IO_NEEDED; 7639 7640 return X86EMUL_CONTINUE; 7641 } 7642 7643 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7644 gva_t addr, void *val, unsigned int bytes, 7645 struct x86_exception *exception) 7646 { 7647 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7648 7649 /* 7650 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7651 * is returned, but our callers are not ready for that and they blindly 7652 * call kvm_inject_page_fault. Ensure that they at least do not leak 7653 * uninitialized kernel stack memory into cr2 and error code. 7654 */ 7655 memset(exception, 0, sizeof(*exception)); 7656 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7657 exception); 7658 } 7659 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7660 7661 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7662 gva_t addr, void *val, unsigned int bytes, 7663 struct x86_exception *exception, bool system) 7664 { 7665 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7666 u64 access = 0; 7667 7668 if (system) 7669 access |= PFERR_IMPLICIT_ACCESS; 7670 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7671 access |= PFERR_USER_MASK; 7672 7673 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7674 } 7675 7676 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7677 struct kvm_vcpu *vcpu, u64 access, 7678 struct x86_exception *exception) 7679 { 7680 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7681 void *data = val; 7682 int r = X86EMUL_CONTINUE; 7683 7684 while (bytes) { 7685 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7686 unsigned offset = addr & (PAGE_SIZE-1); 7687 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7688 int ret; 7689 7690 if (gpa == INVALID_GPA) 7691 return X86EMUL_PROPAGATE_FAULT; 7692 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7693 if (ret < 0) { 7694 r = X86EMUL_IO_NEEDED; 7695 goto out; 7696 } 7697 7698 bytes -= towrite; 7699 data += towrite; 7700 addr += towrite; 7701 } 7702 out: 7703 return r; 7704 } 7705 7706 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7707 unsigned int bytes, struct x86_exception *exception, 7708 bool system) 7709 { 7710 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7711 u64 access = PFERR_WRITE_MASK; 7712 7713 if (system) 7714 access |= PFERR_IMPLICIT_ACCESS; 7715 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7716 access |= PFERR_USER_MASK; 7717 7718 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7719 access, exception); 7720 } 7721 7722 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7723 unsigned int bytes, struct x86_exception *exception) 7724 { 7725 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7726 vcpu->arch.l1tf_flush_l1d = true; 7727 7728 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7729 PFERR_WRITE_MASK, exception); 7730 } 7731 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7732 7733 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7734 void *insn, int insn_len) 7735 { 7736 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type, 7737 insn, insn_len); 7738 } 7739 7740 int handle_ud(struct kvm_vcpu *vcpu) 7741 { 7742 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7743 int fep_flags = READ_ONCE(force_emulation_prefix); 7744 int emul_type = EMULTYPE_TRAP_UD; 7745 char sig[5]; /* ud2; .ascii "kvm" */ 7746 struct x86_exception e; 7747 int r; 7748 7749 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7750 if (r != X86EMUL_CONTINUE) 7751 return 1; 7752 7753 if (fep_flags && 7754 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7755 sig, sizeof(sig), &e) == 0 && 7756 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7757 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7758 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7759 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7760 emul_type = EMULTYPE_TRAP_UD_FORCED; 7761 } 7762 7763 return kvm_emulate_instruction(vcpu, emul_type); 7764 } 7765 EXPORT_SYMBOL_GPL(handle_ud); 7766 7767 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7768 gpa_t gpa, bool write) 7769 { 7770 /* For APIC access vmexit */ 7771 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7772 return 1; 7773 7774 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7775 trace_vcpu_match_mmio(gva, gpa, write, true); 7776 return 1; 7777 } 7778 7779 return 0; 7780 } 7781 7782 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7783 gpa_t *gpa, struct x86_exception *exception, 7784 bool write) 7785 { 7786 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7787 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7788 | (write ? PFERR_WRITE_MASK : 0); 7789 7790 /* 7791 * currently PKRU is only applied to ept enabled guest so 7792 * there is no pkey in EPT page table for L1 guest or EPT 7793 * shadow page table for L2 guest. 7794 */ 7795 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7796 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7797 vcpu->arch.mmio_access, 0, access))) { 7798 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7799 (gva & (PAGE_SIZE - 1)); 7800 trace_vcpu_match_mmio(gva, *gpa, write, false); 7801 return 1; 7802 } 7803 7804 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7805 7806 if (*gpa == INVALID_GPA) 7807 return -1; 7808 7809 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7810 } 7811 7812 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7813 const void *val, int bytes) 7814 { 7815 int ret; 7816 7817 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7818 if (ret < 0) 7819 return 0; 7820 kvm_page_track_write(vcpu, gpa, val, bytes); 7821 return 1; 7822 } 7823 7824 struct read_write_emulator_ops { 7825 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7826 int bytes); 7827 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7828 void *val, int bytes); 7829 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7830 int bytes, void *val); 7831 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7832 void *val, int bytes); 7833 bool write; 7834 }; 7835 7836 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7837 { 7838 if (vcpu->mmio_read_completed) { 7839 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7840 vcpu->mmio_fragments[0].gpa, val); 7841 vcpu->mmio_read_completed = 0; 7842 return 1; 7843 } 7844 7845 return 0; 7846 } 7847 7848 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7849 void *val, int bytes) 7850 { 7851 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7852 } 7853 7854 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7855 void *val, int bytes) 7856 { 7857 return emulator_write_phys(vcpu, gpa, val, bytes); 7858 } 7859 7860 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7861 { 7862 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7863 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7864 } 7865 7866 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7867 void *val, int bytes) 7868 { 7869 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7870 return X86EMUL_IO_NEEDED; 7871 } 7872 7873 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7874 void *val, int bytes) 7875 { 7876 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7877 7878 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7879 return X86EMUL_CONTINUE; 7880 } 7881 7882 static const struct read_write_emulator_ops read_emultor = { 7883 .read_write_prepare = read_prepare, 7884 .read_write_emulate = read_emulate, 7885 .read_write_mmio = vcpu_mmio_read, 7886 .read_write_exit_mmio = read_exit_mmio, 7887 }; 7888 7889 static const struct read_write_emulator_ops write_emultor = { 7890 .read_write_emulate = write_emulate, 7891 .read_write_mmio = write_mmio, 7892 .read_write_exit_mmio = write_exit_mmio, 7893 .write = true, 7894 }; 7895 7896 static int emulator_read_write_onepage(unsigned long addr, void *val, 7897 unsigned int bytes, 7898 struct x86_exception *exception, 7899 struct kvm_vcpu *vcpu, 7900 const struct read_write_emulator_ops *ops) 7901 { 7902 gpa_t gpa; 7903 int handled, ret; 7904 bool write = ops->write; 7905 struct kvm_mmio_fragment *frag; 7906 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7907 7908 /* 7909 * If the exit was due to a NPF we may already have a GPA. 7910 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7911 * Note, this cannot be used on string operations since string 7912 * operation using rep will only have the initial GPA from the NPF 7913 * occurred. 7914 */ 7915 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7916 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7917 gpa = ctxt->gpa_val; 7918 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7919 } else { 7920 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7921 if (ret < 0) 7922 return X86EMUL_PROPAGATE_FAULT; 7923 } 7924 7925 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7926 return X86EMUL_CONTINUE; 7927 7928 /* 7929 * Is this MMIO handled locally? 7930 */ 7931 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7932 if (handled == bytes) 7933 return X86EMUL_CONTINUE; 7934 7935 gpa += handled; 7936 bytes -= handled; 7937 val += handled; 7938 7939 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7940 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7941 frag->gpa = gpa; 7942 frag->data = val; 7943 frag->len = bytes; 7944 return X86EMUL_CONTINUE; 7945 } 7946 7947 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7948 unsigned long addr, 7949 void *val, unsigned int bytes, 7950 struct x86_exception *exception, 7951 const struct read_write_emulator_ops *ops) 7952 { 7953 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7954 gpa_t gpa; 7955 int rc; 7956 7957 if (ops->read_write_prepare && 7958 ops->read_write_prepare(vcpu, val, bytes)) 7959 return X86EMUL_CONTINUE; 7960 7961 vcpu->mmio_nr_fragments = 0; 7962 7963 /* Crossing a page boundary? */ 7964 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7965 int now; 7966 7967 now = -addr & ~PAGE_MASK; 7968 rc = emulator_read_write_onepage(addr, val, now, exception, 7969 vcpu, ops); 7970 7971 if (rc != X86EMUL_CONTINUE) 7972 return rc; 7973 addr += now; 7974 if (ctxt->mode != X86EMUL_MODE_PROT64) 7975 addr = (u32)addr; 7976 val += now; 7977 bytes -= now; 7978 } 7979 7980 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7981 vcpu, ops); 7982 if (rc != X86EMUL_CONTINUE) 7983 return rc; 7984 7985 if (!vcpu->mmio_nr_fragments) 7986 return rc; 7987 7988 gpa = vcpu->mmio_fragments[0].gpa; 7989 7990 vcpu->mmio_needed = 1; 7991 vcpu->mmio_cur_fragment = 0; 7992 7993 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7994 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7995 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7996 vcpu->run->mmio.phys_addr = gpa; 7997 7998 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7999 } 8000 8001 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 8002 unsigned long addr, 8003 void *val, 8004 unsigned int bytes, 8005 struct x86_exception *exception) 8006 { 8007 return emulator_read_write(ctxt, addr, val, bytes, 8008 exception, &read_emultor); 8009 } 8010 8011 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 8012 unsigned long addr, 8013 const void *val, 8014 unsigned int bytes, 8015 struct x86_exception *exception) 8016 { 8017 return emulator_read_write(ctxt, addr, (void *)val, bytes, 8018 exception, &write_emultor); 8019 } 8020 8021 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 8022 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 8023 8024 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 8025 unsigned long addr, 8026 const void *old, 8027 const void *new, 8028 unsigned int bytes, 8029 struct x86_exception *exception) 8030 { 8031 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8032 u64 page_line_mask; 8033 unsigned long hva; 8034 gpa_t gpa; 8035 int r; 8036 8037 /* guests cmpxchg8b have to be emulated atomically */ 8038 if (bytes > 8 || (bytes & (bytes - 1))) 8039 goto emul_write; 8040 8041 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 8042 8043 if (gpa == INVALID_GPA || 8044 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 8045 goto emul_write; 8046 8047 /* 8048 * Emulate the atomic as a straight write to avoid #AC if SLD is 8049 * enabled in the host and the access splits a cache line. 8050 */ 8051 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 8052 page_line_mask = ~(cache_line_size() - 1); 8053 else 8054 page_line_mask = PAGE_MASK; 8055 8056 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 8057 goto emul_write; 8058 8059 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 8060 if (kvm_is_error_hva(hva)) 8061 goto emul_write; 8062 8063 hva += offset_in_page(gpa); 8064 8065 switch (bytes) { 8066 case 1: 8067 r = emulator_try_cmpxchg_user(u8, hva, old, new); 8068 break; 8069 case 2: 8070 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8071 break; 8072 case 4: 8073 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8074 break; 8075 case 8: 8076 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8077 break; 8078 default: 8079 BUG(); 8080 } 8081 8082 if (r < 0) 8083 return X86EMUL_UNHANDLEABLE; 8084 8085 /* 8086 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8087 * successful, as the old value is written back on failure. Note, for 8088 * live migration, this is unnecessarily conservative as CMPXCHG writes 8089 * back the original value and the access is atomic, but KVM's ABI is 8090 * that all writes are dirty logged, regardless of the value written. 8091 */ 8092 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8093 8094 if (r) 8095 return X86EMUL_CMPXCHG_FAILED; 8096 8097 kvm_page_track_write(vcpu, gpa, new, bytes); 8098 8099 return X86EMUL_CONTINUE; 8100 8101 emul_write: 8102 pr_warn_once("emulating exchange as write\n"); 8103 8104 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8105 } 8106 8107 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8108 unsigned short port, void *data, 8109 unsigned int count, bool in) 8110 { 8111 unsigned i; 8112 int r; 8113 8114 WARN_ON_ONCE(vcpu->arch.pio.count); 8115 for (i = 0; i < count; i++) { 8116 if (in) 8117 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8118 else 8119 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8120 8121 if (r) { 8122 if (i == 0) 8123 goto userspace_io; 8124 8125 /* 8126 * Userspace must have unregistered the device while PIO 8127 * was running. Drop writes / read as 0. 8128 */ 8129 if (in) 8130 memset(data, 0, size * (count - i)); 8131 break; 8132 } 8133 8134 data += size; 8135 } 8136 return 1; 8137 8138 userspace_io: 8139 vcpu->arch.pio.port = port; 8140 vcpu->arch.pio.in = in; 8141 vcpu->arch.pio.count = count; 8142 vcpu->arch.pio.size = size; 8143 8144 if (in) 8145 memset(vcpu->arch.pio_data, 0, size * count); 8146 else 8147 memcpy(vcpu->arch.pio_data, data, size * count); 8148 8149 vcpu->run->exit_reason = KVM_EXIT_IO; 8150 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8151 vcpu->run->io.size = size; 8152 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8153 vcpu->run->io.count = count; 8154 vcpu->run->io.port = port; 8155 return 0; 8156 } 8157 8158 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8159 unsigned short port, void *val, unsigned int count) 8160 { 8161 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8162 if (r) 8163 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8164 8165 return r; 8166 } 8167 8168 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8169 { 8170 int size = vcpu->arch.pio.size; 8171 unsigned int count = vcpu->arch.pio.count; 8172 memcpy(val, vcpu->arch.pio_data, size * count); 8173 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8174 vcpu->arch.pio.count = 0; 8175 } 8176 8177 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8178 int size, unsigned short port, void *val, 8179 unsigned int count) 8180 { 8181 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8182 if (vcpu->arch.pio.count) { 8183 /* 8184 * Complete a previous iteration that required userspace I/O. 8185 * Note, @count isn't guaranteed to match pio.count as userspace 8186 * can modify ECX before rerunning the vCPU. Ignore any such 8187 * shenanigans as KVM doesn't support modifying the rep count, 8188 * and the emulator ensures @count doesn't overflow the buffer. 8189 */ 8190 complete_emulator_pio_in(vcpu, val); 8191 return 1; 8192 } 8193 8194 return emulator_pio_in(vcpu, size, port, val, count); 8195 } 8196 8197 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8198 unsigned short port, const void *val, 8199 unsigned int count) 8200 { 8201 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8202 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8203 } 8204 8205 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8206 int size, unsigned short port, 8207 const void *val, unsigned int count) 8208 { 8209 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8210 } 8211 8212 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8213 { 8214 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 8215 } 8216 8217 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8218 { 8219 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8220 } 8221 8222 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8223 { 8224 if (!need_emulate_wbinvd(vcpu)) 8225 return X86EMUL_CONTINUE; 8226 8227 if (static_call(kvm_x86_has_wbinvd_exit)()) { 8228 int cpu = get_cpu(); 8229 8230 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8231 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8232 wbinvd_ipi, NULL, 1); 8233 put_cpu(); 8234 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8235 } else 8236 wbinvd(); 8237 return X86EMUL_CONTINUE; 8238 } 8239 8240 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8241 { 8242 kvm_emulate_wbinvd_noskip(vcpu); 8243 return kvm_skip_emulated_instruction(vcpu); 8244 } 8245 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8246 8247 8248 8249 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8250 { 8251 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8252 } 8253 8254 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) 8255 { 8256 return kvm_get_dr(emul_to_vcpu(ctxt), dr); 8257 } 8258 8259 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8260 unsigned long value) 8261 { 8262 8263 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8264 } 8265 8266 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8267 { 8268 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8269 } 8270 8271 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8272 { 8273 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8274 unsigned long value; 8275 8276 switch (cr) { 8277 case 0: 8278 value = kvm_read_cr0(vcpu); 8279 break; 8280 case 2: 8281 value = vcpu->arch.cr2; 8282 break; 8283 case 3: 8284 value = kvm_read_cr3(vcpu); 8285 break; 8286 case 4: 8287 value = kvm_read_cr4(vcpu); 8288 break; 8289 case 8: 8290 value = kvm_get_cr8(vcpu); 8291 break; 8292 default: 8293 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8294 return 0; 8295 } 8296 8297 return value; 8298 } 8299 8300 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8301 { 8302 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8303 int res = 0; 8304 8305 switch (cr) { 8306 case 0: 8307 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8308 break; 8309 case 2: 8310 vcpu->arch.cr2 = val; 8311 break; 8312 case 3: 8313 res = kvm_set_cr3(vcpu, val); 8314 break; 8315 case 4: 8316 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8317 break; 8318 case 8: 8319 res = kvm_set_cr8(vcpu, val); 8320 break; 8321 default: 8322 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8323 res = -1; 8324 } 8325 8326 return res; 8327 } 8328 8329 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8330 { 8331 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8332 } 8333 8334 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8335 { 8336 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8337 } 8338 8339 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8340 { 8341 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8342 } 8343 8344 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8345 { 8346 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8347 } 8348 8349 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8350 { 8351 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8352 } 8353 8354 static unsigned long emulator_get_cached_segment_base( 8355 struct x86_emulate_ctxt *ctxt, int seg) 8356 { 8357 return get_segment_base(emul_to_vcpu(ctxt), seg); 8358 } 8359 8360 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8361 struct desc_struct *desc, u32 *base3, 8362 int seg) 8363 { 8364 struct kvm_segment var; 8365 8366 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8367 *selector = var.selector; 8368 8369 if (var.unusable) { 8370 memset(desc, 0, sizeof(*desc)); 8371 if (base3) 8372 *base3 = 0; 8373 return false; 8374 } 8375 8376 if (var.g) 8377 var.limit >>= 12; 8378 set_desc_limit(desc, var.limit); 8379 set_desc_base(desc, (unsigned long)var.base); 8380 #ifdef CONFIG_X86_64 8381 if (base3) 8382 *base3 = var.base >> 32; 8383 #endif 8384 desc->type = var.type; 8385 desc->s = var.s; 8386 desc->dpl = var.dpl; 8387 desc->p = var.present; 8388 desc->avl = var.avl; 8389 desc->l = var.l; 8390 desc->d = var.db; 8391 desc->g = var.g; 8392 8393 return true; 8394 } 8395 8396 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8397 struct desc_struct *desc, u32 base3, 8398 int seg) 8399 { 8400 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8401 struct kvm_segment var; 8402 8403 var.selector = selector; 8404 var.base = get_desc_base(desc); 8405 #ifdef CONFIG_X86_64 8406 var.base |= ((u64)base3) << 32; 8407 #endif 8408 var.limit = get_desc_limit(desc); 8409 if (desc->g) 8410 var.limit = (var.limit << 12) | 0xfff; 8411 var.type = desc->type; 8412 var.dpl = desc->dpl; 8413 var.db = desc->d; 8414 var.s = desc->s; 8415 var.l = desc->l; 8416 var.g = desc->g; 8417 var.avl = desc->avl; 8418 var.present = desc->p; 8419 var.unusable = !var.present; 8420 var.padding = 0; 8421 8422 kvm_set_segment(vcpu, &var, seg); 8423 return; 8424 } 8425 8426 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8427 u32 msr_index, u64 *pdata) 8428 { 8429 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8430 int r; 8431 8432 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8433 if (r < 0) 8434 return X86EMUL_UNHANDLEABLE; 8435 8436 if (r) { 8437 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8438 complete_emulated_rdmsr, r)) 8439 return X86EMUL_IO_NEEDED; 8440 8441 trace_kvm_msr_read_ex(msr_index); 8442 return X86EMUL_PROPAGATE_FAULT; 8443 } 8444 8445 trace_kvm_msr_read(msr_index, *pdata); 8446 return X86EMUL_CONTINUE; 8447 } 8448 8449 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8450 u32 msr_index, u64 data) 8451 { 8452 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8453 int r; 8454 8455 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8456 if (r < 0) 8457 return X86EMUL_UNHANDLEABLE; 8458 8459 if (r) { 8460 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8461 complete_emulated_msr_access, r)) 8462 return X86EMUL_IO_NEEDED; 8463 8464 trace_kvm_msr_write_ex(msr_index, data); 8465 return X86EMUL_PROPAGATE_FAULT; 8466 } 8467 8468 trace_kvm_msr_write(msr_index, data); 8469 return X86EMUL_CONTINUE; 8470 } 8471 8472 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8473 u32 msr_index, u64 *pdata) 8474 { 8475 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8476 } 8477 8478 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) 8479 { 8480 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); 8481 } 8482 8483 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8484 u32 pmc, u64 *pdata) 8485 { 8486 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8487 } 8488 8489 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8490 { 8491 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8492 } 8493 8494 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8495 struct x86_instruction_info *info, 8496 enum x86_intercept_stage stage) 8497 { 8498 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8499 &ctxt->exception); 8500 } 8501 8502 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8503 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8504 bool exact_only) 8505 { 8506 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8507 } 8508 8509 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8510 { 8511 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8512 } 8513 8514 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8515 { 8516 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8517 } 8518 8519 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8520 { 8521 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8522 } 8523 8524 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8525 { 8526 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8527 } 8528 8529 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8530 { 8531 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8532 } 8533 8534 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8535 { 8536 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8537 } 8538 8539 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8540 { 8541 return is_smm(emul_to_vcpu(ctxt)); 8542 } 8543 8544 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8545 { 8546 return is_guest_mode(emul_to_vcpu(ctxt)); 8547 } 8548 8549 #ifndef CONFIG_KVM_SMM 8550 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8551 { 8552 WARN_ON_ONCE(1); 8553 return X86EMUL_UNHANDLEABLE; 8554 } 8555 #endif 8556 8557 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8558 { 8559 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8560 } 8561 8562 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8563 { 8564 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8565 } 8566 8567 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8568 { 8569 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8570 8571 if (!kvm->vm_bugged) 8572 kvm_vm_bugged(kvm); 8573 } 8574 8575 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8576 gva_t addr, unsigned int flags) 8577 { 8578 if (!kvm_x86_ops.get_untagged_addr) 8579 return addr; 8580 8581 return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags); 8582 } 8583 8584 static const struct x86_emulate_ops emulate_ops = { 8585 .vm_bugged = emulator_vm_bugged, 8586 .read_gpr = emulator_read_gpr, 8587 .write_gpr = emulator_write_gpr, 8588 .read_std = emulator_read_std, 8589 .write_std = emulator_write_std, 8590 .fetch = kvm_fetch_guest_virt, 8591 .read_emulated = emulator_read_emulated, 8592 .write_emulated = emulator_write_emulated, 8593 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8594 .invlpg = emulator_invlpg, 8595 .pio_in_emulated = emulator_pio_in_emulated, 8596 .pio_out_emulated = emulator_pio_out_emulated, 8597 .get_segment = emulator_get_segment, 8598 .set_segment = emulator_set_segment, 8599 .get_cached_segment_base = emulator_get_cached_segment_base, 8600 .get_gdt = emulator_get_gdt, 8601 .get_idt = emulator_get_idt, 8602 .set_gdt = emulator_set_gdt, 8603 .set_idt = emulator_set_idt, 8604 .get_cr = emulator_get_cr, 8605 .set_cr = emulator_set_cr, 8606 .cpl = emulator_get_cpl, 8607 .get_dr = emulator_get_dr, 8608 .set_dr = emulator_set_dr, 8609 .set_msr_with_filter = emulator_set_msr_with_filter, 8610 .get_msr_with_filter = emulator_get_msr_with_filter, 8611 .get_msr = emulator_get_msr, 8612 .check_rdpmc_early = emulator_check_rdpmc_early, 8613 .read_pmc = emulator_read_pmc, 8614 .halt = emulator_halt, 8615 .wbinvd = emulator_wbinvd, 8616 .fix_hypercall = emulator_fix_hypercall, 8617 .intercept = emulator_intercept, 8618 .get_cpuid = emulator_get_cpuid, 8619 .guest_has_movbe = emulator_guest_has_movbe, 8620 .guest_has_fxsr = emulator_guest_has_fxsr, 8621 .guest_has_rdpid = emulator_guest_has_rdpid, 8622 .set_nmi_mask = emulator_set_nmi_mask, 8623 .is_smm = emulator_is_smm, 8624 .is_guest_mode = emulator_is_guest_mode, 8625 .leave_smm = emulator_leave_smm, 8626 .triple_fault = emulator_triple_fault, 8627 .set_xcr = emulator_set_xcr, 8628 .get_untagged_addr = emulator_get_untagged_addr, 8629 }; 8630 8631 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8632 { 8633 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8634 /* 8635 * an sti; sti; sequence only disable interrupts for the first 8636 * instruction. So, if the last instruction, be it emulated or 8637 * not, left the system with the INT_STI flag enabled, it 8638 * means that the last instruction is an sti. We should not 8639 * leave the flag on in this case. The same goes for mov ss 8640 */ 8641 if (int_shadow & mask) 8642 mask = 0; 8643 if (unlikely(int_shadow || mask)) { 8644 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8645 if (!mask) 8646 kvm_make_request(KVM_REQ_EVENT, vcpu); 8647 } 8648 } 8649 8650 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8651 { 8652 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8653 8654 if (ctxt->exception.vector == PF_VECTOR) 8655 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8656 else if (ctxt->exception.error_code_valid) 8657 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8658 ctxt->exception.error_code); 8659 else 8660 kvm_queue_exception(vcpu, ctxt->exception.vector); 8661 } 8662 8663 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8664 { 8665 struct x86_emulate_ctxt *ctxt; 8666 8667 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8668 if (!ctxt) { 8669 pr_err("failed to allocate vcpu's emulator\n"); 8670 return NULL; 8671 } 8672 8673 ctxt->vcpu = vcpu; 8674 ctxt->ops = &emulate_ops; 8675 vcpu->arch.emulate_ctxt = ctxt; 8676 8677 return ctxt; 8678 } 8679 8680 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8681 { 8682 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8683 int cs_db, cs_l; 8684 8685 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8686 8687 ctxt->gpa_available = false; 8688 ctxt->eflags = kvm_get_rflags(vcpu); 8689 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8690 8691 ctxt->eip = kvm_rip_read(vcpu); 8692 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8693 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8694 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8695 cs_db ? X86EMUL_MODE_PROT32 : 8696 X86EMUL_MODE_PROT16; 8697 ctxt->interruptibility = 0; 8698 ctxt->have_exception = false; 8699 ctxt->exception.vector = -1; 8700 ctxt->perm_ok = false; 8701 8702 init_decode_cache(ctxt); 8703 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8704 } 8705 8706 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8707 { 8708 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8709 int ret; 8710 8711 init_emulate_ctxt(vcpu); 8712 8713 ctxt->op_bytes = 2; 8714 ctxt->ad_bytes = 2; 8715 ctxt->_eip = ctxt->eip + inc_eip; 8716 ret = emulate_int_real(ctxt, irq); 8717 8718 if (ret != X86EMUL_CONTINUE) { 8719 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8720 } else { 8721 ctxt->eip = ctxt->_eip; 8722 kvm_rip_write(vcpu, ctxt->eip); 8723 kvm_set_rflags(vcpu, ctxt->eflags); 8724 } 8725 } 8726 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8727 8728 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8729 u8 ndata, u8 *insn_bytes, u8 insn_size) 8730 { 8731 struct kvm_run *run = vcpu->run; 8732 u64 info[5]; 8733 u8 info_start; 8734 8735 /* 8736 * Zero the whole array used to retrieve the exit info, as casting to 8737 * u32 for select entries will leave some chunks uninitialized. 8738 */ 8739 memset(&info, 0, sizeof(info)); 8740 8741 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8742 &info[2], (u32 *)&info[3], 8743 (u32 *)&info[4]); 8744 8745 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8746 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8747 8748 /* 8749 * There's currently space for 13 entries, but 5 are used for the exit 8750 * reason and info. Restrict to 4 to reduce the maintenance burden 8751 * when expanding kvm_run.emulation_failure in the future. 8752 */ 8753 if (WARN_ON_ONCE(ndata > 4)) 8754 ndata = 4; 8755 8756 /* Always include the flags as a 'data' entry. */ 8757 info_start = 1; 8758 run->emulation_failure.flags = 0; 8759 8760 if (insn_size) { 8761 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8762 sizeof(run->emulation_failure.insn_bytes) != 16)); 8763 info_start += 2; 8764 run->emulation_failure.flags |= 8765 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8766 run->emulation_failure.insn_size = insn_size; 8767 memset(run->emulation_failure.insn_bytes, 0x90, 8768 sizeof(run->emulation_failure.insn_bytes)); 8769 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8770 } 8771 8772 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8773 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8774 ndata * sizeof(data[0])); 8775 8776 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8777 } 8778 8779 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8780 { 8781 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8782 8783 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8784 ctxt->fetch.end - ctxt->fetch.data); 8785 } 8786 8787 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8788 u8 ndata) 8789 { 8790 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8791 } 8792 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8793 8794 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8795 { 8796 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8797 } 8798 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8799 8800 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8801 { 8802 struct kvm *kvm = vcpu->kvm; 8803 8804 ++vcpu->stat.insn_emulation_fail; 8805 trace_kvm_emulate_insn_failed(vcpu); 8806 8807 if (emulation_type & EMULTYPE_VMWARE_GP) { 8808 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8809 return 1; 8810 } 8811 8812 if (kvm->arch.exit_on_emulation_error || 8813 (emulation_type & EMULTYPE_SKIP)) { 8814 prepare_emulation_ctxt_failure_exit(vcpu); 8815 return 0; 8816 } 8817 8818 kvm_queue_exception(vcpu, UD_VECTOR); 8819 8820 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8821 prepare_emulation_ctxt_failure_exit(vcpu); 8822 return 0; 8823 } 8824 8825 return 1; 8826 } 8827 8828 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8829 int emulation_type) 8830 { 8831 gpa_t gpa = cr2_or_gpa; 8832 kvm_pfn_t pfn; 8833 8834 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8835 return false; 8836 8837 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8838 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8839 return false; 8840 8841 if (!vcpu->arch.mmu->root_role.direct) { 8842 /* 8843 * Write permission should be allowed since only 8844 * write access need to be emulated. 8845 */ 8846 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8847 8848 /* 8849 * If the mapping is invalid in guest, let cpu retry 8850 * it to generate fault. 8851 */ 8852 if (gpa == INVALID_GPA) 8853 return true; 8854 } 8855 8856 /* 8857 * Do not retry the unhandleable instruction if it faults on the 8858 * readonly host memory, otherwise it will goto a infinite loop: 8859 * retry instruction -> write #PF -> emulation fail -> retry 8860 * instruction -> ... 8861 */ 8862 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8863 8864 /* 8865 * If the instruction failed on the error pfn, it can not be fixed, 8866 * report the error to userspace. 8867 */ 8868 if (is_error_noslot_pfn(pfn)) 8869 return false; 8870 8871 kvm_release_pfn_clean(pfn); 8872 8873 /* 8874 * If emulation may have been triggered by a write to a shadowed page 8875 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the 8876 * guest to let the CPU re-execute the instruction in the hope that the 8877 * CPU can cleanly execute the instruction that KVM failed to emulate. 8878 */ 8879 if (vcpu->kvm->arch.indirect_shadow_pages) 8880 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8881 8882 /* 8883 * If the failed instruction faulted on an access to page tables that 8884 * are used to translate any part of the instruction, KVM can't resolve 8885 * the issue by unprotecting the gfn, as zapping the shadow page will 8886 * result in the instruction taking a !PRESENT page fault and thus put 8887 * the vCPU into an infinite loop of page faults. E.g. KVM will create 8888 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and 8889 * then zap the SPTE to unprotect the gfn, and then do it all over 8890 * again. Report the error to userspace. 8891 */ 8892 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8893 } 8894 8895 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8896 gpa_t cr2_or_gpa, int emulation_type) 8897 { 8898 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8899 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8900 8901 last_retry_eip = vcpu->arch.last_retry_eip; 8902 last_retry_addr = vcpu->arch.last_retry_addr; 8903 8904 /* 8905 * If the emulation is caused by #PF and it is non-page_table 8906 * writing instruction, it means the VM-EXIT is caused by shadow 8907 * page protected, we can zap the shadow page and retry this 8908 * instruction directly. 8909 * 8910 * Note: if the guest uses a non-page-table modifying instruction 8911 * on the PDE that points to the instruction, then we will unmap 8912 * the instruction and go to an infinite loop. So, we cache the 8913 * last retried eip and the last fault address, if we meet the eip 8914 * and the address again, we can break out of the potential infinite 8915 * loop. 8916 */ 8917 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8918 8919 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8920 return false; 8921 8922 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8923 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8924 return false; 8925 8926 if (x86_page_table_writing_insn(ctxt)) 8927 return false; 8928 8929 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8930 return false; 8931 8932 vcpu->arch.last_retry_eip = ctxt->eip; 8933 vcpu->arch.last_retry_addr = cr2_or_gpa; 8934 8935 if (!vcpu->arch.mmu->root_role.direct) 8936 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8937 8938 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8939 8940 return true; 8941 } 8942 8943 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8944 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8945 8946 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8947 unsigned long *db) 8948 { 8949 u32 dr6 = 0; 8950 int i; 8951 u32 enable, rwlen; 8952 8953 enable = dr7; 8954 rwlen = dr7 >> 16; 8955 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8956 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8957 dr6 |= (1 << i); 8958 return dr6; 8959 } 8960 8961 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8962 { 8963 struct kvm_run *kvm_run = vcpu->run; 8964 8965 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8966 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8967 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8968 kvm_run->debug.arch.exception = DB_VECTOR; 8969 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8970 return 0; 8971 } 8972 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8973 return 1; 8974 } 8975 8976 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8977 { 8978 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8979 int r; 8980 8981 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8982 if (unlikely(!r)) 8983 return 0; 8984 8985 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 8986 8987 /* 8988 * rflags is the old, "raw" value of the flags. The new value has 8989 * not been saved yet. 8990 * 8991 * This is correct even for TF set by the guest, because "the 8992 * processor will not generate this exception after the instruction 8993 * that sets the TF flag". 8994 */ 8995 if (unlikely(rflags & X86_EFLAGS_TF)) 8996 r = kvm_vcpu_do_singlestep(vcpu); 8997 return r; 8998 } 8999 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 9000 9001 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 9002 { 9003 u32 shadow; 9004 9005 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 9006 return true; 9007 9008 /* 9009 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 9010 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 9011 * to avoid the relatively expensive CPUID lookup. 9012 */ 9013 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 9014 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 9015 guest_cpuid_is_intel(vcpu); 9016 } 9017 9018 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 9019 int emulation_type, int *r) 9020 { 9021 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 9022 9023 /* 9024 * Do not check for code breakpoints if hardware has already done the 9025 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 9026 * the instruction has passed all exception checks, and all intercepted 9027 * exceptions that trigger emulation have lower priority than code 9028 * breakpoints, i.e. the fact that the intercepted exception occurred 9029 * means any code breakpoints have already been serviced. 9030 * 9031 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 9032 * hardware has checked the RIP of the magic prefix, but not the RIP of 9033 * the instruction being emulated. The intent of forced emulation is 9034 * to behave as if KVM intercepted the instruction without an exception 9035 * and without a prefix. 9036 */ 9037 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 9038 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 9039 return false; 9040 9041 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 9042 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 9043 struct kvm_run *kvm_run = vcpu->run; 9044 unsigned long eip = kvm_get_linear_rip(vcpu); 9045 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9046 vcpu->arch.guest_debug_dr7, 9047 vcpu->arch.eff_db); 9048 9049 if (dr6 != 0) { 9050 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 9051 kvm_run->debug.arch.pc = eip; 9052 kvm_run->debug.arch.exception = DB_VECTOR; 9053 kvm_run->exit_reason = KVM_EXIT_DEBUG; 9054 *r = 0; 9055 return true; 9056 } 9057 } 9058 9059 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 9060 !kvm_is_code_breakpoint_inhibited(vcpu)) { 9061 unsigned long eip = kvm_get_linear_rip(vcpu); 9062 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9063 vcpu->arch.dr7, 9064 vcpu->arch.db); 9065 9066 if (dr6 != 0) { 9067 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 9068 *r = 1; 9069 return true; 9070 } 9071 } 9072 9073 return false; 9074 } 9075 9076 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9077 { 9078 switch (ctxt->opcode_len) { 9079 case 1: 9080 switch (ctxt->b) { 9081 case 0xe4: /* IN */ 9082 case 0xe5: 9083 case 0xec: 9084 case 0xed: 9085 case 0xe6: /* OUT */ 9086 case 0xe7: 9087 case 0xee: 9088 case 0xef: 9089 case 0x6c: /* INS */ 9090 case 0x6d: 9091 case 0x6e: /* OUTS */ 9092 case 0x6f: 9093 return true; 9094 } 9095 break; 9096 case 2: 9097 switch (ctxt->b) { 9098 case 0x33: /* RDPMC */ 9099 return true; 9100 } 9101 break; 9102 } 9103 9104 return false; 9105 } 9106 9107 /* 9108 * Decode an instruction for emulation. The caller is responsible for handling 9109 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9110 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9111 * code breakpoints have higher priority and thus have already been done by 9112 * hardware. 9113 * 9114 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9115 * response to a machine check. 9116 */ 9117 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9118 void *insn, int insn_len) 9119 { 9120 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9121 int r; 9122 9123 init_emulate_ctxt(vcpu); 9124 9125 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9126 9127 trace_kvm_emulate_insn_start(vcpu); 9128 ++vcpu->stat.insn_emulation; 9129 9130 return r; 9131 } 9132 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9133 9134 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9135 int emulation_type, void *insn, int insn_len) 9136 { 9137 int r; 9138 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9139 bool writeback = true; 9140 9141 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9142 if (r != X86EMUL_CONTINUE) { 9143 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9144 return 1; 9145 9146 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9147 return handle_emulation_failure(vcpu, emulation_type); 9148 } 9149 9150 vcpu->arch.l1tf_flush_l1d = true; 9151 9152 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9153 kvm_clear_exception_queue(vcpu); 9154 9155 /* 9156 * Return immediately if RIP hits a code breakpoint, such #DBs 9157 * are fault-like and are higher priority than any faults on 9158 * the code fetch itself. 9159 */ 9160 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9161 return r; 9162 9163 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9164 insn, insn_len); 9165 if (r != EMULATION_OK) { 9166 if ((emulation_type & EMULTYPE_TRAP_UD) || 9167 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9168 kvm_queue_exception(vcpu, UD_VECTOR); 9169 return 1; 9170 } 9171 if (reexecute_instruction(vcpu, cr2_or_gpa, 9172 emulation_type)) 9173 return 1; 9174 9175 if (ctxt->have_exception && 9176 !(emulation_type & EMULTYPE_SKIP)) { 9177 /* 9178 * #UD should result in just EMULATION_FAILED, and trap-like 9179 * exception should not be encountered during decode. 9180 */ 9181 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9182 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9183 inject_emulated_exception(vcpu); 9184 return 1; 9185 } 9186 return handle_emulation_failure(vcpu, emulation_type); 9187 } 9188 } 9189 9190 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9191 !is_vmware_backdoor_opcode(ctxt)) { 9192 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9193 return 1; 9194 } 9195 9196 /* 9197 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9198 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9199 * The caller is responsible for updating interruptibility state and 9200 * injecting single-step #DBs. 9201 */ 9202 if (emulation_type & EMULTYPE_SKIP) { 9203 if (ctxt->mode != X86EMUL_MODE_PROT64) 9204 ctxt->eip = (u32)ctxt->_eip; 9205 else 9206 ctxt->eip = ctxt->_eip; 9207 9208 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9209 r = 1; 9210 goto writeback; 9211 } 9212 9213 kvm_rip_write(vcpu, ctxt->eip); 9214 if (ctxt->eflags & X86_EFLAGS_RF) 9215 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9216 return 1; 9217 } 9218 9219 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 9220 return 1; 9221 9222 /* this is needed for vmware backdoor interface to work since it 9223 changes registers values during IO operation */ 9224 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9225 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9226 emulator_invalidate_register_cache(ctxt); 9227 } 9228 9229 restart: 9230 if (emulation_type & EMULTYPE_PF) { 9231 /* Save the faulting GPA (cr2) in the address field */ 9232 ctxt->exception.address = cr2_or_gpa; 9233 9234 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9235 if (vcpu->arch.mmu->root_role.direct) { 9236 ctxt->gpa_available = true; 9237 ctxt->gpa_val = cr2_or_gpa; 9238 } 9239 } else { 9240 /* Sanitize the address out of an abundance of paranoia. */ 9241 ctxt->exception.address = 0; 9242 } 9243 9244 r = x86_emulate_insn(ctxt); 9245 9246 if (r == EMULATION_INTERCEPTED) 9247 return 1; 9248 9249 if (r == EMULATION_FAILED) { 9250 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 9251 return 1; 9252 9253 return handle_emulation_failure(vcpu, emulation_type); 9254 } 9255 9256 if (ctxt->have_exception) { 9257 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9258 vcpu->mmio_needed = false; 9259 r = 1; 9260 inject_emulated_exception(vcpu); 9261 } else if (vcpu->arch.pio.count) { 9262 if (!vcpu->arch.pio.in) { 9263 /* FIXME: return into emulator if single-stepping. */ 9264 vcpu->arch.pio.count = 0; 9265 } else { 9266 writeback = false; 9267 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9268 } 9269 r = 0; 9270 } else if (vcpu->mmio_needed) { 9271 ++vcpu->stat.mmio_exits; 9272 9273 if (!vcpu->mmio_is_write) 9274 writeback = false; 9275 r = 0; 9276 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9277 } else if (vcpu->arch.complete_userspace_io) { 9278 writeback = false; 9279 r = 0; 9280 } else if (r == EMULATION_RESTART) 9281 goto restart; 9282 else 9283 r = 1; 9284 9285 writeback: 9286 if (writeback) { 9287 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9288 toggle_interruptibility(vcpu, ctxt->interruptibility); 9289 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9290 9291 /* 9292 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9293 * only supports code breakpoints and general detect #DB, both 9294 * of which are fault-like. 9295 */ 9296 if (!ctxt->have_exception || 9297 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9298 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9299 if (ctxt->is_branch) 9300 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); 9301 kvm_rip_write(vcpu, ctxt->eip); 9302 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9303 r = kvm_vcpu_do_singlestep(vcpu); 9304 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9305 __kvm_set_rflags(vcpu, ctxt->eflags); 9306 } 9307 9308 /* 9309 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9310 * do nothing, and it will be requested again as soon as 9311 * the shadow expires. But we still need to check here, 9312 * because POPF has no interrupt shadow. 9313 */ 9314 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9315 kvm_make_request(KVM_REQ_EVENT, vcpu); 9316 } else 9317 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9318 9319 return r; 9320 } 9321 9322 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9323 { 9324 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9325 } 9326 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9327 9328 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9329 void *insn, int insn_len) 9330 { 9331 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9332 } 9333 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9334 9335 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9336 { 9337 vcpu->arch.pio.count = 0; 9338 return 1; 9339 } 9340 9341 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9342 { 9343 vcpu->arch.pio.count = 0; 9344 9345 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9346 return 1; 9347 9348 return kvm_skip_emulated_instruction(vcpu); 9349 } 9350 9351 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9352 unsigned short port) 9353 { 9354 unsigned long val = kvm_rax_read(vcpu); 9355 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9356 9357 if (ret) 9358 return ret; 9359 9360 /* 9361 * Workaround userspace that relies on old KVM behavior of %rip being 9362 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9363 */ 9364 if (port == 0x7e && 9365 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9366 vcpu->arch.complete_userspace_io = 9367 complete_fast_pio_out_port_0x7e; 9368 kvm_skip_emulated_instruction(vcpu); 9369 } else { 9370 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9371 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9372 } 9373 return 0; 9374 } 9375 9376 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9377 { 9378 unsigned long val; 9379 9380 /* We should only ever be called with arch.pio.count equal to 1 */ 9381 BUG_ON(vcpu->arch.pio.count != 1); 9382 9383 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9384 vcpu->arch.pio.count = 0; 9385 return 1; 9386 } 9387 9388 /* For size less than 4 we merge, else we zero extend */ 9389 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9390 9391 complete_emulator_pio_in(vcpu, &val); 9392 kvm_rax_write(vcpu, val); 9393 9394 return kvm_skip_emulated_instruction(vcpu); 9395 } 9396 9397 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9398 unsigned short port) 9399 { 9400 unsigned long val; 9401 int ret; 9402 9403 /* For size less than 4 we merge, else we zero extend */ 9404 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9405 9406 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9407 if (ret) { 9408 kvm_rax_write(vcpu, val); 9409 return ret; 9410 } 9411 9412 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9413 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9414 9415 return 0; 9416 } 9417 9418 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9419 { 9420 int ret; 9421 9422 if (in) 9423 ret = kvm_fast_pio_in(vcpu, size, port); 9424 else 9425 ret = kvm_fast_pio_out(vcpu, size, port); 9426 return ret && kvm_skip_emulated_instruction(vcpu); 9427 } 9428 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9429 9430 static int kvmclock_cpu_down_prep(unsigned int cpu) 9431 { 9432 __this_cpu_write(cpu_tsc_khz, 0); 9433 return 0; 9434 } 9435 9436 static void tsc_khz_changed(void *data) 9437 { 9438 struct cpufreq_freqs *freq = data; 9439 unsigned long khz; 9440 9441 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9442 9443 if (data) 9444 khz = freq->new; 9445 else 9446 khz = cpufreq_quick_get(raw_smp_processor_id()); 9447 if (!khz) 9448 khz = tsc_khz; 9449 __this_cpu_write(cpu_tsc_khz, khz); 9450 } 9451 9452 #ifdef CONFIG_X86_64 9453 static void kvm_hyperv_tsc_notifier(void) 9454 { 9455 struct kvm *kvm; 9456 int cpu; 9457 9458 mutex_lock(&kvm_lock); 9459 list_for_each_entry(kvm, &vm_list, vm_list) 9460 kvm_make_mclock_inprogress_request(kvm); 9461 9462 /* no guest entries from this point */ 9463 hyperv_stop_tsc_emulation(); 9464 9465 /* TSC frequency always matches when on Hyper-V */ 9466 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9467 for_each_present_cpu(cpu) 9468 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9469 } 9470 kvm_caps.max_guest_tsc_khz = tsc_khz; 9471 9472 list_for_each_entry(kvm, &vm_list, vm_list) { 9473 __kvm_start_pvclock_update(kvm); 9474 pvclock_update_vm_gtod_copy(kvm); 9475 kvm_end_pvclock_update(kvm); 9476 } 9477 9478 mutex_unlock(&kvm_lock); 9479 } 9480 #endif 9481 9482 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9483 { 9484 struct kvm *kvm; 9485 struct kvm_vcpu *vcpu; 9486 int send_ipi = 0; 9487 unsigned long i; 9488 9489 /* 9490 * We allow guests to temporarily run on slowing clocks, 9491 * provided we notify them after, or to run on accelerating 9492 * clocks, provided we notify them before. Thus time never 9493 * goes backwards. 9494 * 9495 * However, we have a problem. We can't atomically update 9496 * the frequency of a given CPU from this function; it is 9497 * merely a notifier, which can be called from any CPU. 9498 * Changing the TSC frequency at arbitrary points in time 9499 * requires a recomputation of local variables related to 9500 * the TSC for each VCPU. We must flag these local variables 9501 * to be updated and be sure the update takes place with the 9502 * new frequency before any guests proceed. 9503 * 9504 * Unfortunately, the combination of hotplug CPU and frequency 9505 * change creates an intractable locking scenario; the order 9506 * of when these callouts happen is undefined with respect to 9507 * CPU hotplug, and they can race with each other. As such, 9508 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9509 * undefined; you can actually have a CPU frequency change take 9510 * place in between the computation of X and the setting of the 9511 * variable. To protect against this problem, all updates of 9512 * the per_cpu tsc_khz variable are done in an interrupt 9513 * protected IPI, and all callers wishing to update the value 9514 * must wait for a synchronous IPI to complete (which is trivial 9515 * if the caller is on the CPU already). This establishes the 9516 * necessary total order on variable updates. 9517 * 9518 * Note that because a guest time update may take place 9519 * anytime after the setting of the VCPU's request bit, the 9520 * correct TSC value must be set before the request. However, 9521 * to ensure the update actually makes it to any guest which 9522 * starts running in hardware virtualization between the set 9523 * and the acquisition of the spinlock, we must also ping the 9524 * CPU after setting the request bit. 9525 * 9526 */ 9527 9528 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9529 9530 mutex_lock(&kvm_lock); 9531 list_for_each_entry(kvm, &vm_list, vm_list) { 9532 kvm_for_each_vcpu(i, vcpu, kvm) { 9533 if (vcpu->cpu != cpu) 9534 continue; 9535 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9536 if (vcpu->cpu != raw_smp_processor_id()) 9537 send_ipi = 1; 9538 } 9539 } 9540 mutex_unlock(&kvm_lock); 9541 9542 if (freq->old < freq->new && send_ipi) { 9543 /* 9544 * We upscale the frequency. Must make the guest 9545 * doesn't see old kvmclock values while running with 9546 * the new frequency, otherwise we risk the guest sees 9547 * time go backwards. 9548 * 9549 * In case we update the frequency for another cpu 9550 * (which might be in guest context) send an interrupt 9551 * to kick the cpu out of guest context. Next time 9552 * guest context is entered kvmclock will be updated, 9553 * so the guest will not see stale values. 9554 */ 9555 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9556 } 9557 } 9558 9559 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9560 void *data) 9561 { 9562 struct cpufreq_freqs *freq = data; 9563 int cpu; 9564 9565 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9566 return 0; 9567 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9568 return 0; 9569 9570 for_each_cpu(cpu, freq->policy->cpus) 9571 __kvmclock_cpufreq_notifier(freq, cpu); 9572 9573 return 0; 9574 } 9575 9576 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9577 .notifier_call = kvmclock_cpufreq_notifier 9578 }; 9579 9580 static int kvmclock_cpu_online(unsigned int cpu) 9581 { 9582 tsc_khz_changed(NULL); 9583 return 0; 9584 } 9585 9586 static void kvm_timer_init(void) 9587 { 9588 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9589 max_tsc_khz = tsc_khz; 9590 9591 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9592 struct cpufreq_policy *policy; 9593 int cpu; 9594 9595 cpu = get_cpu(); 9596 policy = cpufreq_cpu_get(cpu); 9597 if (policy) { 9598 if (policy->cpuinfo.max_freq) 9599 max_tsc_khz = policy->cpuinfo.max_freq; 9600 cpufreq_cpu_put(policy); 9601 } 9602 put_cpu(); 9603 } 9604 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9605 CPUFREQ_TRANSITION_NOTIFIER); 9606 9607 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9608 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9609 } 9610 } 9611 9612 #ifdef CONFIG_X86_64 9613 static void pvclock_gtod_update_fn(struct work_struct *work) 9614 { 9615 struct kvm *kvm; 9616 struct kvm_vcpu *vcpu; 9617 unsigned long i; 9618 9619 mutex_lock(&kvm_lock); 9620 list_for_each_entry(kvm, &vm_list, vm_list) 9621 kvm_for_each_vcpu(i, vcpu, kvm) 9622 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9623 atomic_set(&kvm_guest_has_master_clock, 0); 9624 mutex_unlock(&kvm_lock); 9625 } 9626 9627 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9628 9629 /* 9630 * Indirection to move queue_work() out of the tk_core.seq write held 9631 * region to prevent possible deadlocks against time accessors which 9632 * are invoked with work related locks held. 9633 */ 9634 static void pvclock_irq_work_fn(struct irq_work *w) 9635 { 9636 queue_work(system_long_wq, &pvclock_gtod_work); 9637 } 9638 9639 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9640 9641 /* 9642 * Notification about pvclock gtod data update. 9643 */ 9644 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9645 void *priv) 9646 { 9647 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9648 struct timekeeper *tk = priv; 9649 9650 update_pvclock_gtod(tk); 9651 9652 /* 9653 * Disable master clock if host does not trust, or does not use, 9654 * TSC based clocksource. Delegate queue_work() to irq_work as 9655 * this is invoked with tk_core.seq write held. 9656 */ 9657 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9658 atomic_read(&kvm_guest_has_master_clock) != 0) 9659 irq_work_queue(&pvclock_irq_work); 9660 return 0; 9661 } 9662 9663 static struct notifier_block pvclock_gtod_notifier = { 9664 .notifier_call = pvclock_gtod_notify, 9665 }; 9666 #endif 9667 9668 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9669 { 9670 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9671 9672 #define __KVM_X86_OP(func) \ 9673 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9674 #define KVM_X86_OP(func) \ 9675 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9676 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9677 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9678 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9679 (void *)__static_call_return0); 9680 #include <asm/kvm-x86-ops.h> 9681 #undef __KVM_X86_OP 9682 9683 kvm_pmu_ops_update(ops->pmu_ops); 9684 } 9685 9686 static int kvm_x86_check_processor_compatibility(void) 9687 { 9688 int cpu = smp_processor_id(); 9689 struct cpuinfo_x86 *c = &cpu_data(cpu); 9690 9691 /* 9692 * Compatibility checks are done when loading KVM and when enabling 9693 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9694 * compatible, i.e. KVM should never perform a compatibility check on 9695 * an offline CPU. 9696 */ 9697 WARN_ON(!cpu_online(cpu)); 9698 9699 if (__cr4_reserved_bits(cpu_has, c) != 9700 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9701 return -EIO; 9702 9703 return static_call(kvm_x86_check_processor_compatibility)(); 9704 } 9705 9706 static void kvm_x86_check_cpu_compat(void *ret) 9707 { 9708 *(int *)ret = kvm_x86_check_processor_compatibility(); 9709 } 9710 9711 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9712 { 9713 u64 host_pat; 9714 int r, cpu; 9715 9716 guard(mutex)(&vendor_module_lock); 9717 9718 if (kvm_x86_ops.hardware_enable) { 9719 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9720 return -EEXIST; 9721 } 9722 9723 /* 9724 * KVM explicitly assumes that the guest has an FPU and 9725 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9726 * vCPU's FPU state as a fxregs_state struct. 9727 */ 9728 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9729 pr_err("inadequate fpu\n"); 9730 return -EOPNOTSUPP; 9731 } 9732 9733 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9734 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9735 return -EOPNOTSUPP; 9736 } 9737 9738 /* 9739 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9740 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9741 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9742 * with an exception. PAT[0] is set to WB on RESET and also by the 9743 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9744 */ 9745 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9746 (host_pat & GENMASK(2, 0)) != 6) { 9747 pr_err("host PAT[0] is not WB\n"); 9748 return -EIO; 9749 } 9750 9751 memset(&kvm_caps, 0, sizeof(kvm_caps)); 9752 9753 x86_emulator_cache = kvm_alloc_emulator_cache(); 9754 if (!x86_emulator_cache) { 9755 pr_err("failed to allocate cache for x86 emulator\n"); 9756 return -ENOMEM; 9757 } 9758 9759 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9760 if (!user_return_msrs) { 9761 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9762 r = -ENOMEM; 9763 goto out_free_x86_emulator_cache; 9764 } 9765 kvm_nr_uret_msrs = 0; 9766 9767 r = kvm_mmu_vendor_module_init(); 9768 if (r) 9769 goto out_free_percpu; 9770 9771 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); 9772 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; 9773 9774 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9775 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9776 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9777 } 9778 9779 rdmsrl_safe(MSR_EFER, &host_efer); 9780 9781 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9782 rdmsrl(MSR_IA32_XSS, host_xss); 9783 9784 kvm_init_pmu_capability(ops->pmu_ops); 9785 9786 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9787 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9788 9789 r = ops->hardware_setup(); 9790 if (r != 0) 9791 goto out_mmu_exit; 9792 9793 kvm_ops_update(ops); 9794 9795 for_each_online_cpu(cpu) { 9796 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9797 if (r < 0) 9798 goto out_unwind_ops; 9799 } 9800 9801 /* 9802 * Point of no return! DO NOT add error paths below this point unless 9803 * absolutely necessary, as most operations from this point forward 9804 * require unwinding. 9805 */ 9806 kvm_timer_init(); 9807 9808 if (pi_inject_timer == -1) 9809 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9810 #ifdef CONFIG_X86_64 9811 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9812 9813 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9814 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9815 #endif 9816 9817 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9818 9819 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) 9820 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); 9821 9822 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9823 kvm_caps.supported_xss = 0; 9824 9825 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9826 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9827 #undef __kvm_cpu_cap_has 9828 9829 if (kvm_caps.has_tsc_control) { 9830 /* 9831 * Make sure the user can only configure tsc_khz values that 9832 * fit into a signed integer. 9833 * A min value is not calculated because it will always 9834 * be 1 on all machines. 9835 */ 9836 u64 max = min(0x7fffffffULL, 9837 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9838 kvm_caps.max_guest_tsc_khz = max; 9839 } 9840 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9841 kvm_init_msr_lists(); 9842 return 0; 9843 9844 out_unwind_ops: 9845 kvm_x86_ops.hardware_enable = NULL; 9846 static_call(kvm_x86_hardware_unsetup)(); 9847 out_mmu_exit: 9848 kvm_mmu_vendor_module_exit(); 9849 out_free_percpu: 9850 free_percpu(user_return_msrs); 9851 out_free_x86_emulator_cache: 9852 kmem_cache_destroy(x86_emulator_cache); 9853 return r; 9854 } 9855 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9856 9857 void kvm_x86_vendor_exit(void) 9858 { 9859 kvm_unregister_perf_callbacks(); 9860 9861 #ifdef CONFIG_X86_64 9862 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9863 clear_hv_tscchange_cb(); 9864 #endif 9865 kvm_lapic_exit(); 9866 9867 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9868 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9869 CPUFREQ_TRANSITION_NOTIFIER); 9870 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9871 } 9872 #ifdef CONFIG_X86_64 9873 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9874 irq_work_sync(&pvclock_irq_work); 9875 cancel_work_sync(&pvclock_gtod_work); 9876 #endif 9877 static_call(kvm_x86_hardware_unsetup)(); 9878 kvm_mmu_vendor_module_exit(); 9879 free_percpu(user_return_msrs); 9880 kmem_cache_destroy(x86_emulator_cache); 9881 #ifdef CONFIG_KVM_XEN 9882 static_key_deferred_flush(&kvm_xen_enabled); 9883 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9884 #endif 9885 mutex_lock(&vendor_module_lock); 9886 kvm_x86_ops.hardware_enable = NULL; 9887 mutex_unlock(&vendor_module_lock); 9888 } 9889 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9890 9891 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9892 { 9893 /* 9894 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9895 * local APIC is in-kernel, the run loop will detect the non-runnable 9896 * state and halt the vCPU. Exit to userspace if the local APIC is 9897 * managed by userspace, in which case userspace is responsible for 9898 * handling wake events. 9899 */ 9900 ++vcpu->stat.halt_exits; 9901 if (lapic_in_kernel(vcpu)) { 9902 vcpu->arch.mp_state = state; 9903 return 1; 9904 } else { 9905 vcpu->run->exit_reason = reason; 9906 return 0; 9907 } 9908 } 9909 9910 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9911 { 9912 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9913 } 9914 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9915 9916 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9917 { 9918 int ret = kvm_skip_emulated_instruction(vcpu); 9919 /* 9920 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9921 * KVM_EXIT_DEBUG here. 9922 */ 9923 return kvm_emulate_halt_noskip(vcpu) && ret; 9924 } 9925 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9926 9927 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9928 { 9929 int ret = kvm_skip_emulated_instruction(vcpu); 9930 9931 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9932 KVM_EXIT_AP_RESET_HOLD) && ret; 9933 } 9934 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9935 9936 #ifdef CONFIG_X86_64 9937 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9938 unsigned long clock_type) 9939 { 9940 struct kvm_clock_pairing clock_pairing; 9941 struct timespec64 ts; 9942 u64 cycle; 9943 int ret; 9944 9945 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9946 return -KVM_EOPNOTSUPP; 9947 9948 /* 9949 * When tsc is in permanent catchup mode guests won't be able to use 9950 * pvclock_read_retry loop to get consistent view of pvclock 9951 */ 9952 if (vcpu->arch.tsc_always_catchup) 9953 return -KVM_EOPNOTSUPP; 9954 9955 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9956 return -KVM_EOPNOTSUPP; 9957 9958 clock_pairing.sec = ts.tv_sec; 9959 clock_pairing.nsec = ts.tv_nsec; 9960 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9961 clock_pairing.flags = 0; 9962 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9963 9964 ret = 0; 9965 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9966 sizeof(struct kvm_clock_pairing))) 9967 ret = -KVM_EFAULT; 9968 9969 return ret; 9970 } 9971 #endif 9972 9973 /* 9974 * kvm_pv_kick_cpu_op: Kick a vcpu. 9975 * 9976 * @apicid - apicid of vcpu to be kicked. 9977 */ 9978 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9979 { 9980 /* 9981 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9982 * common code, e.g. for tracing. Defer initialization to the compiler. 9983 */ 9984 struct kvm_lapic_irq lapic_irq = { 9985 .delivery_mode = APIC_DM_REMRD, 9986 .dest_mode = APIC_DEST_PHYSICAL, 9987 .shorthand = APIC_DEST_NOSHORT, 9988 .dest_id = apicid, 9989 }; 9990 9991 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9992 } 9993 9994 bool kvm_apicv_activated(struct kvm *kvm) 9995 { 9996 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9997 } 9998 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9999 10000 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 10001 { 10002 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 10003 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 10004 10005 return (vm_reasons | vcpu_reasons) == 0; 10006 } 10007 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 10008 10009 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 10010 enum kvm_apicv_inhibit reason, bool set) 10011 { 10012 if (set) 10013 __set_bit(reason, inhibits); 10014 else 10015 __clear_bit(reason, inhibits); 10016 10017 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 10018 } 10019 10020 static void kvm_apicv_init(struct kvm *kvm) 10021 { 10022 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : 10023 APICV_INHIBIT_REASON_DISABLE; 10024 10025 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); 10026 10027 init_rwsem(&kvm->arch.apicv_update_lock); 10028 } 10029 10030 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 10031 { 10032 struct kvm_vcpu *target = NULL; 10033 struct kvm_apic_map *map; 10034 10035 vcpu->stat.directed_yield_attempted++; 10036 10037 if (single_task_running()) 10038 goto no_yield; 10039 10040 rcu_read_lock(); 10041 map = rcu_dereference(vcpu->kvm->arch.apic_map); 10042 10043 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 10044 target = map->phys_map[dest_id]->vcpu; 10045 10046 rcu_read_unlock(); 10047 10048 if (!target || !READ_ONCE(target->ready)) 10049 goto no_yield; 10050 10051 /* Ignore requests to yield to self */ 10052 if (vcpu == target) 10053 goto no_yield; 10054 10055 if (kvm_vcpu_yield_to(target) <= 0) 10056 goto no_yield; 10057 10058 vcpu->stat.directed_yield_successful++; 10059 10060 no_yield: 10061 return; 10062 } 10063 10064 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 10065 { 10066 u64 ret = vcpu->run->hypercall.ret; 10067 10068 if (!is_64_bit_mode(vcpu)) 10069 ret = (u32)ret; 10070 kvm_rax_write(vcpu, ret); 10071 ++vcpu->stat.hypercalls; 10072 return kvm_skip_emulated_instruction(vcpu); 10073 } 10074 10075 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr, 10076 unsigned long a0, unsigned long a1, 10077 unsigned long a2, unsigned long a3, 10078 int op_64_bit, int cpl) 10079 { 10080 unsigned long ret; 10081 10082 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10083 10084 if (!op_64_bit) { 10085 nr &= 0xFFFFFFFF; 10086 a0 &= 0xFFFFFFFF; 10087 a1 &= 0xFFFFFFFF; 10088 a2 &= 0xFFFFFFFF; 10089 a3 &= 0xFFFFFFFF; 10090 } 10091 10092 if (cpl) { 10093 ret = -KVM_EPERM; 10094 goto out; 10095 } 10096 10097 ret = -KVM_ENOSYS; 10098 10099 switch (nr) { 10100 case KVM_HC_VAPIC_POLL_IRQ: 10101 ret = 0; 10102 break; 10103 case KVM_HC_KICK_CPU: 10104 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10105 break; 10106 10107 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10108 kvm_sched_yield(vcpu, a1); 10109 ret = 0; 10110 break; 10111 #ifdef CONFIG_X86_64 10112 case KVM_HC_CLOCK_PAIRING: 10113 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10114 break; 10115 #endif 10116 case KVM_HC_SEND_IPI: 10117 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10118 break; 10119 10120 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10121 break; 10122 case KVM_HC_SCHED_YIELD: 10123 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10124 break; 10125 10126 kvm_sched_yield(vcpu, a0); 10127 ret = 0; 10128 break; 10129 case KVM_HC_MAP_GPA_RANGE: { 10130 u64 gpa = a0, npages = a1, attrs = a2; 10131 10132 ret = -KVM_ENOSYS; 10133 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10134 break; 10135 10136 if (!PAGE_ALIGNED(gpa) || !npages || 10137 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10138 ret = -KVM_EINVAL; 10139 break; 10140 } 10141 10142 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10143 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10144 vcpu->run->hypercall.args[0] = gpa; 10145 vcpu->run->hypercall.args[1] = npages; 10146 vcpu->run->hypercall.args[2] = attrs; 10147 vcpu->run->hypercall.flags = 0; 10148 if (op_64_bit) 10149 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10150 10151 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10152 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10153 /* stat is incremented on completion. */ 10154 return 0; 10155 } 10156 default: 10157 ret = -KVM_ENOSYS; 10158 break; 10159 } 10160 10161 out: 10162 ++vcpu->stat.hypercalls; 10163 return ret; 10164 } 10165 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall); 10166 10167 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10168 { 10169 unsigned long nr, a0, a1, a2, a3, ret; 10170 int op_64_bit; 10171 int cpl; 10172 10173 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10174 return kvm_xen_hypercall(vcpu); 10175 10176 if (kvm_hv_hypercall_enabled(vcpu)) 10177 return kvm_hv_hypercall(vcpu); 10178 10179 nr = kvm_rax_read(vcpu); 10180 a0 = kvm_rbx_read(vcpu); 10181 a1 = kvm_rcx_read(vcpu); 10182 a2 = kvm_rdx_read(vcpu); 10183 a3 = kvm_rsi_read(vcpu); 10184 op_64_bit = is_64_bit_hypercall(vcpu); 10185 cpl = static_call(kvm_x86_get_cpl)(vcpu); 10186 10187 ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl); 10188 if (nr == KVM_HC_MAP_GPA_RANGE && !ret) 10189 /* MAP_GPA tosses the request to the user space. */ 10190 return 0; 10191 10192 if (!op_64_bit) 10193 ret = (u32)ret; 10194 kvm_rax_write(vcpu, ret); 10195 10196 return kvm_skip_emulated_instruction(vcpu); 10197 } 10198 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10199 10200 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10201 { 10202 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10203 char instruction[3]; 10204 unsigned long rip = kvm_rip_read(vcpu); 10205 10206 /* 10207 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10208 * the pieces. 10209 */ 10210 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10211 ctxt->exception.error_code_valid = false; 10212 ctxt->exception.vector = UD_VECTOR; 10213 ctxt->have_exception = true; 10214 return X86EMUL_PROPAGATE_FAULT; 10215 } 10216 10217 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 10218 10219 return emulator_write_emulated(ctxt, rip, instruction, 3, 10220 &ctxt->exception); 10221 } 10222 10223 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10224 { 10225 return vcpu->run->request_interrupt_window && 10226 likely(!pic_in_kernel(vcpu->kvm)); 10227 } 10228 10229 /* Called within kvm->srcu read side. */ 10230 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10231 { 10232 struct kvm_run *kvm_run = vcpu->run; 10233 10234 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 10235 kvm_run->cr8 = kvm_get_cr8(vcpu); 10236 kvm_run->apic_base = kvm_get_apic_base(vcpu); 10237 10238 kvm_run->ready_for_interrupt_injection = 10239 pic_in_kernel(vcpu->kvm) || 10240 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10241 10242 if (is_smm(vcpu)) 10243 kvm_run->flags |= KVM_RUN_X86_SMM; 10244 } 10245 10246 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10247 { 10248 int max_irr, tpr; 10249 10250 if (!kvm_x86_ops.update_cr8_intercept) 10251 return; 10252 10253 if (!lapic_in_kernel(vcpu)) 10254 return; 10255 10256 if (vcpu->arch.apic->apicv_active) 10257 return; 10258 10259 if (!vcpu->arch.apic->vapic_addr) 10260 max_irr = kvm_lapic_find_highest_irr(vcpu); 10261 else 10262 max_irr = -1; 10263 10264 if (max_irr != -1) 10265 max_irr >>= 4; 10266 10267 tpr = kvm_lapic_get_cr8(vcpu); 10268 10269 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 10270 } 10271 10272 10273 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10274 { 10275 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10276 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10277 return 1; 10278 } 10279 10280 return kvm_x86_ops.nested_ops->check_events(vcpu); 10281 } 10282 10283 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10284 { 10285 /* 10286 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10287 * exceptions don't report error codes. The presence of an error code 10288 * is carried with the exception and only stripped when the exception 10289 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10290 * report an error code despite the CPU being in Real Mode. 10291 */ 10292 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10293 10294 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10295 vcpu->arch.exception.has_error_code, 10296 vcpu->arch.exception.error_code, 10297 vcpu->arch.exception.injected); 10298 10299 static_call(kvm_x86_inject_exception)(vcpu); 10300 } 10301 10302 /* 10303 * Check for any event (interrupt or exception) that is ready to be injected, 10304 * and if there is at least one event, inject the event with the highest 10305 * priority. This handles both "pending" events, i.e. events that have never 10306 * been injected into the guest, and "injected" events, i.e. events that were 10307 * injected as part of a previous VM-Enter, but weren't successfully delivered 10308 * and need to be re-injected. 10309 * 10310 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10311 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10312 * be able to inject exceptions in the "middle" of an instruction, and so must 10313 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10314 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10315 * boundaries is necessary and correct. 10316 * 10317 * For simplicity, KVM uses a single path to inject all events (except events 10318 * that are injected directly from L1 to L2) and doesn't explicitly track 10319 * instruction boundaries for asynchronous events. However, because VM-Exits 10320 * that can occur during instruction execution typically result in KVM skipping 10321 * the instruction or injecting an exception, e.g. instruction and exception 10322 * intercepts, and because pending exceptions have higher priority than pending 10323 * interrupts, KVM still honors instruction boundaries in most scenarios. 10324 * 10325 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10326 * the instruction or inject an exception, then KVM can incorrecty inject a new 10327 * asynchronous event if the event became pending after the CPU fetched the 10328 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10329 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10330 * injected on the restarted instruction instead of being deferred until the 10331 * instruction completes. 10332 * 10333 * In practice, this virtualization hole is unlikely to be observed by the 10334 * guest, and even less likely to cause functional problems. To detect the 10335 * hole, the guest would have to trigger an event on a side effect of an early 10336 * phase of instruction execution, e.g. on the instruction fetch from memory. 10337 * And for it to be a functional problem, the guest would need to depend on the 10338 * ordering between that side effect, the instruction completing, _and_ the 10339 * delivery of the asynchronous event. 10340 */ 10341 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10342 bool *req_immediate_exit) 10343 { 10344 bool can_inject; 10345 int r; 10346 10347 /* 10348 * Process nested events first, as nested VM-Exit supersedes event 10349 * re-injection. If there's an event queued for re-injection, it will 10350 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10351 */ 10352 if (is_guest_mode(vcpu)) 10353 r = kvm_check_nested_events(vcpu); 10354 else 10355 r = 0; 10356 10357 /* 10358 * Re-inject exceptions and events *especially* if immediate entry+exit 10359 * to/from L2 is needed, as any event that has already been injected 10360 * into L2 needs to complete its lifecycle before injecting a new event. 10361 * 10362 * Don't re-inject an NMI or interrupt if there is a pending exception. 10363 * This collision arises if an exception occurred while vectoring the 10364 * injected event, KVM intercepted said exception, and KVM ultimately 10365 * determined the fault belongs to the guest and queues the exception 10366 * for injection back into the guest. 10367 * 10368 * "Injected" interrupts can also collide with pending exceptions if 10369 * userspace ignores the "ready for injection" flag and blindly queues 10370 * an interrupt. In that case, prioritizing the exception is correct, 10371 * as the exception "occurred" before the exit to userspace. Trap-like 10372 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10373 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10374 * priority, they're only generated (pended) during instruction 10375 * execution, and interrupts are recognized at instruction boundaries. 10376 * Thus a pending fault-like exception means the fault occurred on the 10377 * *previous* instruction and must be serviced prior to recognizing any 10378 * new events in order to fully complete the previous instruction. 10379 */ 10380 if (vcpu->arch.exception.injected) 10381 kvm_inject_exception(vcpu); 10382 else if (kvm_is_exception_pending(vcpu)) 10383 ; /* see above */ 10384 else if (vcpu->arch.nmi_injected) 10385 static_call(kvm_x86_inject_nmi)(vcpu); 10386 else if (vcpu->arch.interrupt.injected) 10387 static_call(kvm_x86_inject_irq)(vcpu, true); 10388 10389 /* 10390 * Exceptions that morph to VM-Exits are handled above, and pending 10391 * exceptions on top of injected exceptions that do not VM-Exit should 10392 * either morph to #DF or, sadly, override the injected exception. 10393 */ 10394 WARN_ON_ONCE(vcpu->arch.exception.injected && 10395 vcpu->arch.exception.pending); 10396 10397 /* 10398 * Bail if immediate entry+exit to/from the guest is needed to complete 10399 * nested VM-Enter or event re-injection so that a different pending 10400 * event can be serviced (or if KVM needs to exit to userspace). 10401 * 10402 * Otherwise, continue processing events even if VM-Exit occurred. The 10403 * VM-Exit will have cleared exceptions that were meant for L2, but 10404 * there may now be events that can be injected into L1. 10405 */ 10406 if (r < 0) 10407 goto out; 10408 10409 /* 10410 * A pending exception VM-Exit should either result in nested VM-Exit 10411 * or force an immediate re-entry and exit to/from L2, and exception 10412 * VM-Exits cannot be injected (flag should _never_ be set). 10413 */ 10414 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10415 vcpu->arch.exception_vmexit.pending); 10416 10417 /* 10418 * New events, other than exceptions, cannot be injected if KVM needs 10419 * to re-inject a previous event. See above comments on re-injecting 10420 * for why pending exceptions get priority. 10421 */ 10422 can_inject = !kvm_event_needs_reinjection(vcpu); 10423 10424 if (vcpu->arch.exception.pending) { 10425 /* 10426 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10427 * value pushed on the stack. Trap-like exception and all #DBs 10428 * leave RF as-is (KVM follows Intel's behavior in this regard; 10429 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10430 * 10431 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10432 * describe the behavior of General Detect #DBs, which are 10433 * fault-like. They do _not_ set RF, a la code breakpoints. 10434 */ 10435 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10436 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10437 X86_EFLAGS_RF); 10438 10439 if (vcpu->arch.exception.vector == DB_VECTOR) { 10440 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10441 if (vcpu->arch.dr7 & DR7_GD) { 10442 vcpu->arch.dr7 &= ~DR7_GD; 10443 kvm_update_dr7(vcpu); 10444 } 10445 } 10446 10447 kvm_inject_exception(vcpu); 10448 10449 vcpu->arch.exception.pending = false; 10450 vcpu->arch.exception.injected = true; 10451 10452 can_inject = false; 10453 } 10454 10455 /* Don't inject interrupts if the user asked to avoid doing so */ 10456 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10457 return 0; 10458 10459 /* 10460 * Finally, inject interrupt events. If an event cannot be injected 10461 * due to architectural conditions (e.g. IF=0) a window-open exit 10462 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10463 * and can architecturally be injected, but we cannot do it right now: 10464 * an interrupt could have arrived just now and we have to inject it 10465 * as a vmexit, or there could already an event in the queue, which is 10466 * indicated by can_inject. In that case we request an immediate exit 10467 * in order to make progress and get back here for another iteration. 10468 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10469 */ 10470 #ifdef CONFIG_KVM_SMM 10471 if (vcpu->arch.smi_pending) { 10472 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10473 if (r < 0) 10474 goto out; 10475 if (r) { 10476 vcpu->arch.smi_pending = false; 10477 ++vcpu->arch.smi_count; 10478 enter_smm(vcpu); 10479 can_inject = false; 10480 } else 10481 static_call(kvm_x86_enable_smi_window)(vcpu); 10482 } 10483 #endif 10484 10485 if (vcpu->arch.nmi_pending) { 10486 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10487 if (r < 0) 10488 goto out; 10489 if (r) { 10490 --vcpu->arch.nmi_pending; 10491 vcpu->arch.nmi_injected = true; 10492 static_call(kvm_x86_inject_nmi)(vcpu); 10493 can_inject = false; 10494 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10495 } 10496 if (vcpu->arch.nmi_pending) 10497 static_call(kvm_x86_enable_nmi_window)(vcpu); 10498 } 10499 10500 if (kvm_cpu_has_injectable_intr(vcpu)) { 10501 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10502 if (r < 0) 10503 goto out; 10504 if (r) { 10505 int irq = kvm_cpu_get_interrupt(vcpu); 10506 10507 if (!WARN_ON_ONCE(irq == -1)) { 10508 kvm_queue_interrupt(vcpu, irq, false); 10509 static_call(kvm_x86_inject_irq)(vcpu, false); 10510 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10511 } 10512 } 10513 if (kvm_cpu_has_injectable_intr(vcpu)) 10514 static_call(kvm_x86_enable_irq_window)(vcpu); 10515 } 10516 10517 if (is_guest_mode(vcpu) && 10518 kvm_x86_ops.nested_ops->has_events && 10519 kvm_x86_ops.nested_ops->has_events(vcpu)) 10520 *req_immediate_exit = true; 10521 10522 /* 10523 * KVM must never queue a new exception while injecting an event; KVM 10524 * is done emulating and should only propagate the to-be-injected event 10525 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10526 * infinite loop as KVM will bail from VM-Enter to inject the pending 10527 * exception and start the cycle all over. 10528 * 10529 * Exempt triple faults as they have special handling and won't put the 10530 * vCPU into an infinite loop. Triple fault can be queued when running 10531 * VMX without unrestricted guest, as that requires KVM to emulate Real 10532 * Mode events (see kvm_inject_realmode_interrupt()). 10533 */ 10534 WARN_ON_ONCE(vcpu->arch.exception.pending || 10535 vcpu->arch.exception_vmexit.pending); 10536 return 0; 10537 10538 out: 10539 if (r == -EBUSY) { 10540 *req_immediate_exit = true; 10541 r = 0; 10542 } 10543 return r; 10544 } 10545 10546 static void process_nmi(struct kvm_vcpu *vcpu) 10547 { 10548 unsigned int limit; 10549 10550 /* 10551 * x86 is limited to one NMI pending, but because KVM can't react to 10552 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10553 * scheduled out, KVM needs to play nice with two queued NMIs showing 10554 * up at the same time. To handle this scenario, allow two NMIs to be 10555 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10556 * waiting for a previous NMI injection to complete (which effectively 10557 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10558 * will request an NMI window to handle the second NMI. 10559 */ 10560 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10561 limit = 1; 10562 else 10563 limit = 2; 10564 10565 /* 10566 * Adjust the limit to account for pending virtual NMIs, which aren't 10567 * tracked in vcpu->arch.nmi_pending. 10568 */ 10569 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10570 limit--; 10571 10572 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10573 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10574 10575 if (vcpu->arch.nmi_pending && 10576 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10577 vcpu->arch.nmi_pending--; 10578 10579 if (vcpu->arch.nmi_pending) 10580 kvm_make_request(KVM_REQ_EVENT, vcpu); 10581 } 10582 10583 /* Return total number of NMIs pending injection to the VM */ 10584 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10585 { 10586 return vcpu->arch.nmi_pending + 10587 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10588 } 10589 10590 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10591 unsigned long *vcpu_bitmap) 10592 { 10593 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10594 } 10595 10596 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10597 { 10598 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10599 } 10600 10601 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10602 { 10603 struct kvm_lapic *apic = vcpu->arch.apic; 10604 bool activate; 10605 10606 if (!lapic_in_kernel(vcpu)) 10607 return; 10608 10609 down_read(&vcpu->kvm->arch.apicv_update_lock); 10610 preempt_disable(); 10611 10612 /* Do not activate APICV when APIC is disabled */ 10613 activate = kvm_vcpu_apicv_activated(vcpu) && 10614 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10615 10616 if (apic->apicv_active == activate) 10617 goto out; 10618 10619 apic->apicv_active = activate; 10620 kvm_apic_update_apicv(vcpu); 10621 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10622 10623 /* 10624 * When APICv gets disabled, we may still have injected interrupts 10625 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10626 * still active when the interrupt got accepted. Make sure 10627 * kvm_check_and_inject_events() is called to check for that. 10628 */ 10629 if (!apic->apicv_active) 10630 kvm_make_request(KVM_REQ_EVENT, vcpu); 10631 10632 out: 10633 preempt_enable(); 10634 up_read(&vcpu->kvm->arch.apicv_update_lock); 10635 } 10636 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10637 10638 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10639 { 10640 if (!lapic_in_kernel(vcpu)) 10641 return; 10642 10643 /* 10644 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10645 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10646 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10647 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10648 * this case so that KVM can the AVIC doorbell to inject interrupts to 10649 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10650 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10651 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10652 * access page is sticky. 10653 */ 10654 if (apic_x2apic_mode(vcpu->arch.apic) && 10655 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10656 kvm_inhibit_apic_access_page(vcpu); 10657 10658 __kvm_vcpu_update_apicv(vcpu); 10659 } 10660 10661 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10662 enum kvm_apicv_inhibit reason, bool set) 10663 { 10664 unsigned long old, new; 10665 10666 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10667 10668 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10669 return; 10670 10671 old = new = kvm->arch.apicv_inhibit_reasons; 10672 10673 set_or_clear_apicv_inhibit(&new, reason, set); 10674 10675 if (!!old != !!new) { 10676 /* 10677 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10678 * false positives in the sanity check WARN in svm_vcpu_run(). 10679 * This task will wait for all vCPUs to ack the kick IRQ before 10680 * updating apicv_inhibit_reasons, and all other vCPUs will 10681 * block on acquiring apicv_update_lock so that vCPUs can't 10682 * redo svm_vcpu_run() without seeing the new inhibit state. 10683 * 10684 * Note, holding apicv_update_lock and taking it in the read 10685 * side (handling the request) also prevents other vCPUs from 10686 * servicing the request with a stale apicv_inhibit_reasons. 10687 */ 10688 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10689 kvm->arch.apicv_inhibit_reasons = new; 10690 if (new) { 10691 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10692 int idx = srcu_read_lock(&kvm->srcu); 10693 10694 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10695 srcu_read_unlock(&kvm->srcu, idx); 10696 } 10697 } else { 10698 kvm->arch.apicv_inhibit_reasons = new; 10699 } 10700 } 10701 10702 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10703 enum kvm_apicv_inhibit reason, bool set) 10704 { 10705 if (!enable_apicv) 10706 return; 10707 10708 down_write(&kvm->arch.apicv_update_lock); 10709 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10710 up_write(&kvm->arch.apicv_update_lock); 10711 } 10712 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10713 10714 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10715 { 10716 if (!kvm_apic_present(vcpu)) 10717 return; 10718 10719 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10720 10721 if (irqchip_split(vcpu->kvm)) 10722 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10723 else { 10724 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10725 if (ioapic_in_kernel(vcpu->kvm)) 10726 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10727 } 10728 10729 if (is_guest_mode(vcpu)) 10730 vcpu->arch.load_eoi_exitmap_pending = true; 10731 else 10732 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10733 } 10734 10735 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10736 { 10737 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10738 return; 10739 10740 #ifdef CONFIG_KVM_HYPERV 10741 if (to_hv_vcpu(vcpu)) { 10742 u64 eoi_exit_bitmap[4]; 10743 10744 bitmap_or((ulong *)eoi_exit_bitmap, 10745 vcpu->arch.ioapic_handled_vectors, 10746 to_hv_synic(vcpu)->vec_bitmap, 256); 10747 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10748 return; 10749 } 10750 #endif 10751 static_call_cond(kvm_x86_load_eoi_exitmap)( 10752 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10753 } 10754 10755 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10756 { 10757 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10758 } 10759 10760 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10761 { 10762 if (!lapic_in_kernel(vcpu)) 10763 return; 10764 10765 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10766 } 10767 10768 /* 10769 * Called within kvm->srcu read side. 10770 * Returns 1 to let vcpu_run() continue the guest execution loop without 10771 * exiting to the userspace. Otherwise, the value will be returned to the 10772 * userspace. 10773 */ 10774 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10775 { 10776 int r; 10777 bool req_int_win = 10778 dm_request_for_irq_injection(vcpu) && 10779 kvm_cpu_accept_dm_intr(vcpu); 10780 fastpath_t exit_fastpath; 10781 10782 bool req_immediate_exit = false; 10783 10784 if (kvm_request_pending(vcpu)) { 10785 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10786 r = -EIO; 10787 goto out; 10788 } 10789 10790 if (kvm_dirty_ring_check_request(vcpu)) { 10791 r = 0; 10792 goto out; 10793 } 10794 10795 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10796 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10797 r = 0; 10798 goto out; 10799 } 10800 } 10801 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10802 kvm_mmu_free_obsolete_roots(vcpu); 10803 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10804 __kvm_migrate_timers(vcpu); 10805 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10806 kvm_update_masterclock(vcpu->kvm); 10807 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10808 kvm_gen_kvmclock_update(vcpu); 10809 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10810 r = kvm_guest_time_update(vcpu); 10811 if (unlikely(r)) 10812 goto out; 10813 } 10814 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10815 kvm_mmu_sync_roots(vcpu); 10816 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10817 kvm_mmu_load_pgd(vcpu); 10818 10819 /* 10820 * Note, the order matters here, as flushing "all" TLB entries 10821 * also flushes the "current" TLB entries, i.e. servicing the 10822 * flush "all" will clear any request to flush "current". 10823 */ 10824 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10825 kvm_vcpu_flush_tlb_all(vcpu); 10826 10827 kvm_service_local_tlb_flush_requests(vcpu); 10828 10829 /* 10830 * Fall back to a "full" guest flush if Hyper-V's precise 10831 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10832 * the flushes are considered "remote" and not "local" because 10833 * the requests can be initiated from other vCPUs. 10834 */ 10835 #ifdef CONFIG_KVM_HYPERV 10836 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10837 kvm_hv_vcpu_flush_tlb(vcpu)) 10838 kvm_vcpu_flush_tlb_guest(vcpu); 10839 #endif 10840 10841 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10842 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10843 r = 0; 10844 goto out; 10845 } 10846 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10847 if (is_guest_mode(vcpu)) 10848 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10849 10850 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10851 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10852 vcpu->mmio_needed = 0; 10853 r = 0; 10854 goto out; 10855 } 10856 } 10857 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10858 /* Page is swapped out. Do synthetic halt */ 10859 vcpu->arch.apf.halted = true; 10860 r = 1; 10861 goto out; 10862 } 10863 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10864 record_steal_time(vcpu); 10865 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10866 kvm_pmu_handle_event(vcpu); 10867 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10868 kvm_pmu_deliver_pmi(vcpu); 10869 #ifdef CONFIG_KVM_SMM 10870 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10871 process_smi(vcpu); 10872 #endif 10873 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10874 process_nmi(vcpu); 10875 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10876 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10877 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10878 vcpu->arch.ioapic_handled_vectors)) { 10879 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10880 vcpu->run->eoi.vector = 10881 vcpu->arch.pending_ioapic_eoi; 10882 r = 0; 10883 goto out; 10884 } 10885 } 10886 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10887 vcpu_scan_ioapic(vcpu); 10888 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10889 vcpu_load_eoi_exitmap(vcpu); 10890 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10891 kvm_vcpu_reload_apic_access_page(vcpu); 10892 #ifdef CONFIG_KVM_HYPERV 10893 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10894 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10895 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10896 vcpu->run->system_event.ndata = 0; 10897 r = 0; 10898 goto out; 10899 } 10900 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10901 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10902 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10903 vcpu->run->system_event.ndata = 0; 10904 r = 0; 10905 goto out; 10906 } 10907 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10908 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10909 10910 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10911 vcpu->run->hyperv = hv_vcpu->exit; 10912 r = 0; 10913 goto out; 10914 } 10915 10916 /* 10917 * KVM_REQ_HV_STIMER has to be processed after 10918 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10919 * depend on the guest clock being up-to-date 10920 */ 10921 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10922 kvm_hv_process_stimers(vcpu); 10923 #endif 10924 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10925 kvm_vcpu_update_apicv(vcpu); 10926 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10927 kvm_check_async_pf_completion(vcpu); 10928 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10929 static_call(kvm_x86_msr_filter_changed)(vcpu); 10930 10931 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10932 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10933 } 10934 10935 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10936 kvm_xen_has_interrupt(vcpu)) { 10937 ++vcpu->stat.req_event; 10938 r = kvm_apic_accept_events(vcpu); 10939 if (r < 0) { 10940 r = 0; 10941 goto out; 10942 } 10943 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10944 r = 1; 10945 goto out; 10946 } 10947 10948 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10949 if (r < 0) { 10950 r = 0; 10951 goto out; 10952 } 10953 if (req_int_win) 10954 static_call(kvm_x86_enable_irq_window)(vcpu); 10955 10956 if (kvm_lapic_enabled(vcpu)) { 10957 update_cr8_intercept(vcpu); 10958 kvm_lapic_sync_to_vapic(vcpu); 10959 } 10960 } 10961 10962 r = kvm_mmu_reload(vcpu); 10963 if (unlikely(r)) { 10964 goto cancel_injection; 10965 } 10966 10967 preempt_disable(); 10968 10969 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10970 10971 /* 10972 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10973 * IPI are then delayed after guest entry, which ensures that they 10974 * result in virtual interrupt delivery. 10975 */ 10976 local_irq_disable(); 10977 10978 /* Store vcpu->apicv_active before vcpu->mode. */ 10979 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10980 10981 kvm_vcpu_srcu_read_unlock(vcpu); 10982 10983 /* 10984 * 1) We should set ->mode before checking ->requests. Please see 10985 * the comment in kvm_vcpu_exiting_guest_mode(). 10986 * 10987 * 2) For APICv, we should set ->mode before checking PID.ON. This 10988 * pairs with the memory barrier implicit in pi_test_and_set_on 10989 * (see vmx_deliver_posted_interrupt). 10990 * 10991 * 3) This also orders the write to mode from any reads to the page 10992 * tables done while the VCPU is running. Please see the comment 10993 * in kvm_flush_remote_tlbs. 10994 */ 10995 smp_mb__after_srcu_read_unlock(); 10996 10997 /* 10998 * Process pending posted interrupts to handle the case where the 10999 * notification IRQ arrived in the host, or was never sent (because the 11000 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 11001 * status, KVM doesn't update assigned devices when APICv is inhibited, 11002 * i.e. they can post interrupts even if APICv is temporarily disabled. 11003 */ 11004 if (kvm_lapic_enabled(vcpu)) 11005 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 11006 11007 if (kvm_vcpu_exit_request(vcpu)) { 11008 vcpu->mode = OUTSIDE_GUEST_MODE; 11009 smp_wmb(); 11010 local_irq_enable(); 11011 preempt_enable(); 11012 kvm_vcpu_srcu_read_lock(vcpu); 11013 r = 1; 11014 goto cancel_injection; 11015 } 11016 11017 if (req_immediate_exit) 11018 kvm_make_request(KVM_REQ_EVENT, vcpu); 11019 11020 fpregs_assert_state_consistent(); 11021 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 11022 switch_fpu_return(); 11023 11024 if (vcpu->arch.guest_fpu.xfd_err) 11025 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 11026 11027 if (unlikely(vcpu->arch.switch_db_regs)) { 11028 set_debugreg(0, 7); 11029 set_debugreg(vcpu->arch.eff_db[0], 0); 11030 set_debugreg(vcpu->arch.eff_db[1], 1); 11031 set_debugreg(vcpu->arch.eff_db[2], 2); 11032 set_debugreg(vcpu->arch.eff_db[3], 3); 11033 } else if (unlikely(hw_breakpoint_active())) { 11034 set_debugreg(0, 7); 11035 } 11036 11037 guest_timing_enter_irqoff(); 11038 11039 for (;;) { 11040 /* 11041 * Assert that vCPU vs. VM APICv state is consistent. An APICv 11042 * update must kick and wait for all vCPUs before toggling the 11043 * per-VM state, and responding vCPUs must wait for the update 11044 * to complete before servicing KVM_REQ_APICV_UPDATE. 11045 */ 11046 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 11047 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 11048 11049 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu, req_immediate_exit); 11050 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 11051 break; 11052 11053 if (kvm_lapic_enabled(vcpu)) 11054 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 11055 11056 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 11057 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 11058 break; 11059 } 11060 11061 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 11062 ++vcpu->stat.exits; 11063 } 11064 11065 /* 11066 * Do this here before restoring debug registers on the host. And 11067 * since we do this before handling the vmexit, a DR access vmexit 11068 * can (a) read the correct value of the debug registers, (b) set 11069 * KVM_DEBUGREG_WONT_EXIT again. 11070 */ 11071 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 11072 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 11073 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 11074 kvm_update_dr0123(vcpu); 11075 kvm_update_dr7(vcpu); 11076 } 11077 11078 /* 11079 * If the guest has used debug registers, at least dr7 11080 * will be disabled while returning to the host. 11081 * If we don't have active breakpoints in the host, we don't 11082 * care about the messed up debug address registers. But if 11083 * we have some of them active, restore the old state. 11084 */ 11085 if (hw_breakpoint_active()) 11086 hw_breakpoint_restore(); 11087 11088 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11089 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11090 11091 vcpu->mode = OUTSIDE_GUEST_MODE; 11092 smp_wmb(); 11093 11094 /* 11095 * Sync xfd before calling handle_exit_irqoff() which may 11096 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11097 * in #NM irqoff handler). 11098 */ 11099 if (vcpu->arch.xfd_no_write_intercept) 11100 fpu_sync_guest_vmexit_xfd_state(); 11101 11102 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 11103 11104 if (vcpu->arch.guest_fpu.xfd_err) 11105 wrmsrl(MSR_IA32_XFD_ERR, 0); 11106 11107 /* 11108 * Consume any pending interrupts, including the possible source of 11109 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11110 * An instruction is required after local_irq_enable() to fully unblock 11111 * interrupts on processors that implement an interrupt shadow, the 11112 * stat.exits increment will do nicely. 11113 */ 11114 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11115 local_irq_enable(); 11116 ++vcpu->stat.exits; 11117 local_irq_disable(); 11118 kvm_after_interrupt(vcpu); 11119 11120 /* 11121 * Wait until after servicing IRQs to account guest time so that any 11122 * ticks that occurred while running the guest are properly accounted 11123 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11124 * of accounting via context tracking, but the loss of accuracy is 11125 * acceptable for all known use cases. 11126 */ 11127 guest_timing_exit_irqoff(); 11128 11129 local_irq_enable(); 11130 preempt_enable(); 11131 11132 kvm_vcpu_srcu_read_lock(vcpu); 11133 11134 /* 11135 * Profile KVM exit RIPs: 11136 */ 11137 if (unlikely(prof_on == KVM_PROFILING)) { 11138 unsigned long rip = kvm_rip_read(vcpu); 11139 profile_hit(KVM_PROFILING, (void *)rip); 11140 } 11141 11142 if (unlikely(vcpu->arch.tsc_always_catchup)) 11143 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11144 11145 if (vcpu->arch.apic_attention) 11146 kvm_lapic_sync_from_vapic(vcpu); 11147 11148 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 11149 return r; 11150 11151 cancel_injection: 11152 if (req_immediate_exit) 11153 kvm_make_request(KVM_REQ_EVENT, vcpu); 11154 static_call(kvm_x86_cancel_injection)(vcpu); 11155 if (unlikely(vcpu->arch.apic_attention)) 11156 kvm_lapic_sync_from_vapic(vcpu); 11157 out: 11158 return r; 11159 } 11160 11161 /* Called within kvm->srcu read side. */ 11162 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11163 { 11164 bool hv_timer; 11165 11166 if (!kvm_arch_vcpu_runnable(vcpu)) { 11167 /* 11168 * Switch to the software timer before halt-polling/blocking as 11169 * the guest's timer may be a break event for the vCPU, and the 11170 * hypervisor timer runs only when the CPU is in guest mode. 11171 * Switch before halt-polling so that KVM recognizes an expired 11172 * timer before blocking. 11173 */ 11174 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11175 if (hv_timer) 11176 kvm_lapic_switch_to_sw_timer(vcpu); 11177 11178 kvm_vcpu_srcu_read_unlock(vcpu); 11179 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11180 kvm_vcpu_halt(vcpu); 11181 else 11182 kvm_vcpu_block(vcpu); 11183 kvm_vcpu_srcu_read_lock(vcpu); 11184 11185 if (hv_timer) 11186 kvm_lapic_switch_to_hv_timer(vcpu); 11187 11188 /* 11189 * If the vCPU is not runnable, a signal or another host event 11190 * of some kind is pending; service it without changing the 11191 * vCPU's activity state. 11192 */ 11193 if (!kvm_arch_vcpu_runnable(vcpu)) 11194 return 1; 11195 } 11196 11197 /* 11198 * Evaluate nested events before exiting the halted state. This allows 11199 * the halt state to be recorded properly in the VMCS12's activity 11200 * state field (AMD does not have a similar field and a VM-Exit always 11201 * causes a spurious wakeup from HLT). 11202 */ 11203 if (is_guest_mode(vcpu)) { 11204 if (kvm_check_nested_events(vcpu) < 0) 11205 return 0; 11206 } 11207 11208 if (kvm_apic_accept_events(vcpu) < 0) 11209 return 0; 11210 switch(vcpu->arch.mp_state) { 11211 case KVM_MP_STATE_HALTED: 11212 case KVM_MP_STATE_AP_RESET_HOLD: 11213 vcpu->arch.pv.pv_unhalted = false; 11214 vcpu->arch.mp_state = 11215 KVM_MP_STATE_RUNNABLE; 11216 fallthrough; 11217 case KVM_MP_STATE_RUNNABLE: 11218 vcpu->arch.apf.halted = false; 11219 break; 11220 case KVM_MP_STATE_INIT_RECEIVED: 11221 break; 11222 default: 11223 WARN_ON_ONCE(1); 11224 break; 11225 } 11226 return 1; 11227 } 11228 11229 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11230 { 11231 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11232 !vcpu->arch.apf.halted); 11233 } 11234 11235 /* Called within kvm->srcu read side. */ 11236 static int vcpu_run(struct kvm_vcpu *vcpu) 11237 { 11238 int r; 11239 11240 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11241 vcpu->arch.l1tf_flush_l1d = true; 11242 11243 for (;;) { 11244 /* 11245 * If another guest vCPU requests a PV TLB flush in the middle 11246 * of instruction emulation, the rest of the emulation could 11247 * use a stale page translation. Assume that any code after 11248 * this point can start executing an instruction. 11249 */ 11250 vcpu->arch.at_instruction_boundary = false; 11251 if (kvm_vcpu_running(vcpu)) { 11252 r = vcpu_enter_guest(vcpu); 11253 } else { 11254 r = vcpu_block(vcpu); 11255 } 11256 11257 if (r <= 0) 11258 break; 11259 11260 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11261 if (kvm_xen_has_pending_events(vcpu)) 11262 kvm_xen_inject_pending_events(vcpu); 11263 11264 if (kvm_cpu_has_pending_timer(vcpu)) 11265 kvm_inject_pending_timer_irqs(vcpu); 11266 11267 if (dm_request_for_irq_injection(vcpu) && 11268 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11269 r = 0; 11270 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11271 ++vcpu->stat.request_irq_exits; 11272 break; 11273 } 11274 11275 if (__xfer_to_guest_mode_work_pending()) { 11276 kvm_vcpu_srcu_read_unlock(vcpu); 11277 r = xfer_to_guest_mode_handle_work(vcpu); 11278 kvm_vcpu_srcu_read_lock(vcpu); 11279 if (r) 11280 return r; 11281 } 11282 } 11283 11284 return r; 11285 } 11286 11287 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11288 { 11289 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11290 } 11291 11292 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11293 { 11294 BUG_ON(!vcpu->arch.pio.count); 11295 11296 return complete_emulated_io(vcpu); 11297 } 11298 11299 /* 11300 * Implements the following, as a state machine: 11301 * 11302 * read: 11303 * for each fragment 11304 * for each mmio piece in the fragment 11305 * write gpa, len 11306 * exit 11307 * copy data 11308 * execute insn 11309 * 11310 * write: 11311 * for each fragment 11312 * for each mmio piece in the fragment 11313 * write gpa, len 11314 * copy data 11315 * exit 11316 */ 11317 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11318 { 11319 struct kvm_run *run = vcpu->run; 11320 struct kvm_mmio_fragment *frag; 11321 unsigned len; 11322 11323 BUG_ON(!vcpu->mmio_needed); 11324 11325 /* Complete previous fragment */ 11326 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11327 len = min(8u, frag->len); 11328 if (!vcpu->mmio_is_write) 11329 memcpy(frag->data, run->mmio.data, len); 11330 11331 if (frag->len <= 8) { 11332 /* Switch to the next fragment. */ 11333 frag++; 11334 vcpu->mmio_cur_fragment++; 11335 } else { 11336 /* Go forward to the next mmio piece. */ 11337 frag->data += len; 11338 frag->gpa += len; 11339 frag->len -= len; 11340 } 11341 11342 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11343 vcpu->mmio_needed = 0; 11344 11345 /* FIXME: return into emulator if single-stepping. */ 11346 if (vcpu->mmio_is_write) 11347 return 1; 11348 vcpu->mmio_read_completed = 1; 11349 return complete_emulated_io(vcpu); 11350 } 11351 11352 run->exit_reason = KVM_EXIT_MMIO; 11353 run->mmio.phys_addr = frag->gpa; 11354 if (vcpu->mmio_is_write) 11355 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11356 run->mmio.len = min(8u, frag->len); 11357 run->mmio.is_write = vcpu->mmio_is_write; 11358 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11359 return 0; 11360 } 11361 11362 /* Swap (qemu) user FPU context for the guest FPU context. */ 11363 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11364 { 11365 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11366 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11367 trace_kvm_fpu(1); 11368 } 11369 11370 /* When vcpu_run ends, restore user space FPU context. */ 11371 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11372 { 11373 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11374 ++vcpu->stat.fpu_reload; 11375 trace_kvm_fpu(0); 11376 } 11377 11378 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11379 { 11380 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11381 struct kvm_run *kvm_run = vcpu->run; 11382 int r; 11383 11384 vcpu_load(vcpu); 11385 kvm_sigset_activate(vcpu); 11386 kvm_run->flags = 0; 11387 kvm_load_guest_fpu(vcpu); 11388 11389 kvm_vcpu_srcu_read_lock(vcpu); 11390 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11391 if (kvm_run->immediate_exit) { 11392 r = -EINTR; 11393 goto out; 11394 } 11395 11396 /* 11397 * Don't bother switching APIC timer emulation from the 11398 * hypervisor timer to the software timer, the only way for the 11399 * APIC timer to be active is if userspace stuffed vCPU state, 11400 * i.e. put the vCPU into a nonsensical state. Only an INIT 11401 * will transition the vCPU out of UNINITIALIZED (without more 11402 * state stuffing from userspace), which will reset the local 11403 * APIC and thus cancel the timer or drop the IRQ (if the timer 11404 * already expired). 11405 */ 11406 kvm_vcpu_srcu_read_unlock(vcpu); 11407 kvm_vcpu_block(vcpu); 11408 kvm_vcpu_srcu_read_lock(vcpu); 11409 11410 if (kvm_apic_accept_events(vcpu) < 0) { 11411 r = 0; 11412 goto out; 11413 } 11414 r = -EAGAIN; 11415 if (signal_pending(current)) { 11416 r = -EINTR; 11417 kvm_run->exit_reason = KVM_EXIT_INTR; 11418 ++vcpu->stat.signal_exits; 11419 } 11420 goto out; 11421 } 11422 11423 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11424 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11425 r = -EINVAL; 11426 goto out; 11427 } 11428 11429 if (kvm_run->kvm_dirty_regs) { 11430 r = sync_regs(vcpu); 11431 if (r != 0) 11432 goto out; 11433 } 11434 11435 /* re-sync apic's tpr */ 11436 if (!lapic_in_kernel(vcpu)) { 11437 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11438 r = -EINVAL; 11439 goto out; 11440 } 11441 } 11442 11443 /* 11444 * If userspace set a pending exception and L2 is active, convert it to 11445 * a pending VM-Exit if L1 wants to intercept the exception. 11446 */ 11447 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11448 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11449 ex->error_code)) { 11450 kvm_queue_exception_vmexit(vcpu, ex->vector, 11451 ex->has_error_code, ex->error_code, 11452 ex->has_payload, ex->payload); 11453 ex->injected = false; 11454 ex->pending = false; 11455 } 11456 vcpu->arch.exception_from_userspace = false; 11457 11458 if (unlikely(vcpu->arch.complete_userspace_io)) { 11459 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11460 vcpu->arch.complete_userspace_io = NULL; 11461 r = cui(vcpu); 11462 if (r <= 0) 11463 goto out; 11464 } else { 11465 WARN_ON_ONCE(vcpu->arch.pio.count); 11466 WARN_ON_ONCE(vcpu->mmio_needed); 11467 } 11468 11469 if (kvm_run->immediate_exit) { 11470 r = -EINTR; 11471 goto out; 11472 } 11473 11474 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11475 if (r <= 0) 11476 goto out; 11477 11478 r = vcpu_run(vcpu); 11479 11480 out: 11481 kvm_put_guest_fpu(vcpu); 11482 if (kvm_run->kvm_valid_regs) 11483 store_regs(vcpu); 11484 post_kvm_run_save(vcpu); 11485 kvm_vcpu_srcu_read_unlock(vcpu); 11486 11487 kvm_sigset_deactivate(vcpu); 11488 vcpu_put(vcpu); 11489 return r; 11490 } 11491 11492 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11493 { 11494 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11495 /* 11496 * We are here if userspace calls get_regs() in the middle of 11497 * instruction emulation. Registers state needs to be copied 11498 * back from emulation context to vcpu. Userspace shouldn't do 11499 * that usually, but some bad designed PV devices (vmware 11500 * backdoor interface) need this to work 11501 */ 11502 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11503 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11504 } 11505 regs->rax = kvm_rax_read(vcpu); 11506 regs->rbx = kvm_rbx_read(vcpu); 11507 regs->rcx = kvm_rcx_read(vcpu); 11508 regs->rdx = kvm_rdx_read(vcpu); 11509 regs->rsi = kvm_rsi_read(vcpu); 11510 regs->rdi = kvm_rdi_read(vcpu); 11511 regs->rsp = kvm_rsp_read(vcpu); 11512 regs->rbp = kvm_rbp_read(vcpu); 11513 #ifdef CONFIG_X86_64 11514 regs->r8 = kvm_r8_read(vcpu); 11515 regs->r9 = kvm_r9_read(vcpu); 11516 regs->r10 = kvm_r10_read(vcpu); 11517 regs->r11 = kvm_r11_read(vcpu); 11518 regs->r12 = kvm_r12_read(vcpu); 11519 regs->r13 = kvm_r13_read(vcpu); 11520 regs->r14 = kvm_r14_read(vcpu); 11521 regs->r15 = kvm_r15_read(vcpu); 11522 #endif 11523 11524 regs->rip = kvm_rip_read(vcpu); 11525 regs->rflags = kvm_get_rflags(vcpu); 11526 } 11527 11528 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11529 { 11530 if (vcpu->kvm->arch.has_protected_state && 11531 vcpu->arch.guest_state_protected) 11532 return -EINVAL; 11533 11534 vcpu_load(vcpu); 11535 __get_regs(vcpu, regs); 11536 vcpu_put(vcpu); 11537 return 0; 11538 } 11539 11540 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11541 { 11542 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11543 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11544 11545 kvm_rax_write(vcpu, regs->rax); 11546 kvm_rbx_write(vcpu, regs->rbx); 11547 kvm_rcx_write(vcpu, regs->rcx); 11548 kvm_rdx_write(vcpu, regs->rdx); 11549 kvm_rsi_write(vcpu, regs->rsi); 11550 kvm_rdi_write(vcpu, regs->rdi); 11551 kvm_rsp_write(vcpu, regs->rsp); 11552 kvm_rbp_write(vcpu, regs->rbp); 11553 #ifdef CONFIG_X86_64 11554 kvm_r8_write(vcpu, regs->r8); 11555 kvm_r9_write(vcpu, regs->r9); 11556 kvm_r10_write(vcpu, regs->r10); 11557 kvm_r11_write(vcpu, regs->r11); 11558 kvm_r12_write(vcpu, regs->r12); 11559 kvm_r13_write(vcpu, regs->r13); 11560 kvm_r14_write(vcpu, regs->r14); 11561 kvm_r15_write(vcpu, regs->r15); 11562 #endif 11563 11564 kvm_rip_write(vcpu, regs->rip); 11565 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11566 11567 vcpu->arch.exception.pending = false; 11568 vcpu->arch.exception_vmexit.pending = false; 11569 11570 kvm_make_request(KVM_REQ_EVENT, vcpu); 11571 } 11572 11573 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11574 { 11575 if (vcpu->kvm->arch.has_protected_state && 11576 vcpu->arch.guest_state_protected) 11577 return -EINVAL; 11578 11579 vcpu_load(vcpu); 11580 __set_regs(vcpu, regs); 11581 vcpu_put(vcpu); 11582 return 0; 11583 } 11584 11585 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11586 { 11587 struct desc_ptr dt; 11588 11589 if (vcpu->arch.guest_state_protected) 11590 goto skip_protected_regs; 11591 11592 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11593 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11594 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11595 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11596 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11597 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11598 11599 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11600 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11601 11602 static_call(kvm_x86_get_idt)(vcpu, &dt); 11603 sregs->idt.limit = dt.size; 11604 sregs->idt.base = dt.address; 11605 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11606 sregs->gdt.limit = dt.size; 11607 sregs->gdt.base = dt.address; 11608 11609 sregs->cr2 = vcpu->arch.cr2; 11610 sregs->cr3 = kvm_read_cr3(vcpu); 11611 11612 skip_protected_regs: 11613 sregs->cr0 = kvm_read_cr0(vcpu); 11614 sregs->cr4 = kvm_read_cr4(vcpu); 11615 sregs->cr8 = kvm_get_cr8(vcpu); 11616 sregs->efer = vcpu->arch.efer; 11617 sregs->apic_base = kvm_get_apic_base(vcpu); 11618 } 11619 11620 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11621 { 11622 __get_sregs_common(vcpu, sregs); 11623 11624 if (vcpu->arch.guest_state_protected) 11625 return; 11626 11627 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11628 set_bit(vcpu->arch.interrupt.nr, 11629 (unsigned long *)sregs->interrupt_bitmap); 11630 } 11631 11632 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11633 { 11634 int i; 11635 11636 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11637 11638 if (vcpu->arch.guest_state_protected) 11639 return; 11640 11641 if (is_pae_paging(vcpu)) { 11642 for (i = 0 ; i < 4 ; i++) 11643 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11644 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11645 } 11646 } 11647 11648 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11649 struct kvm_sregs *sregs) 11650 { 11651 if (vcpu->kvm->arch.has_protected_state && 11652 vcpu->arch.guest_state_protected) 11653 return -EINVAL; 11654 11655 vcpu_load(vcpu); 11656 __get_sregs(vcpu, sregs); 11657 vcpu_put(vcpu); 11658 return 0; 11659 } 11660 11661 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11662 struct kvm_mp_state *mp_state) 11663 { 11664 int r; 11665 11666 vcpu_load(vcpu); 11667 if (kvm_mpx_supported()) 11668 kvm_load_guest_fpu(vcpu); 11669 11670 r = kvm_apic_accept_events(vcpu); 11671 if (r < 0) 11672 goto out; 11673 r = 0; 11674 11675 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11676 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11677 vcpu->arch.pv.pv_unhalted) 11678 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11679 else 11680 mp_state->mp_state = vcpu->arch.mp_state; 11681 11682 out: 11683 if (kvm_mpx_supported()) 11684 kvm_put_guest_fpu(vcpu); 11685 vcpu_put(vcpu); 11686 return r; 11687 } 11688 11689 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11690 struct kvm_mp_state *mp_state) 11691 { 11692 int ret = -EINVAL; 11693 11694 vcpu_load(vcpu); 11695 11696 switch (mp_state->mp_state) { 11697 case KVM_MP_STATE_UNINITIALIZED: 11698 case KVM_MP_STATE_HALTED: 11699 case KVM_MP_STATE_AP_RESET_HOLD: 11700 case KVM_MP_STATE_INIT_RECEIVED: 11701 case KVM_MP_STATE_SIPI_RECEIVED: 11702 if (!lapic_in_kernel(vcpu)) 11703 goto out; 11704 break; 11705 11706 case KVM_MP_STATE_RUNNABLE: 11707 break; 11708 11709 default: 11710 goto out; 11711 } 11712 11713 /* 11714 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11715 * forcing the guest into INIT/SIPI if those events are supposed to be 11716 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11717 * if an SMI is pending as well. 11718 */ 11719 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11720 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11721 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11722 goto out; 11723 11724 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11725 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11726 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11727 } else 11728 vcpu->arch.mp_state = mp_state->mp_state; 11729 kvm_make_request(KVM_REQ_EVENT, vcpu); 11730 11731 ret = 0; 11732 out: 11733 vcpu_put(vcpu); 11734 return ret; 11735 } 11736 11737 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11738 int reason, bool has_error_code, u32 error_code) 11739 { 11740 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11741 int ret; 11742 11743 init_emulate_ctxt(vcpu); 11744 11745 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11746 has_error_code, error_code); 11747 if (ret) { 11748 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11749 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11750 vcpu->run->internal.ndata = 0; 11751 return 0; 11752 } 11753 11754 kvm_rip_write(vcpu, ctxt->eip); 11755 kvm_set_rflags(vcpu, ctxt->eflags); 11756 return 1; 11757 } 11758 EXPORT_SYMBOL_GPL(kvm_task_switch); 11759 11760 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11761 { 11762 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11763 /* 11764 * When EFER.LME and CR0.PG are set, the processor is in 11765 * 64-bit mode (though maybe in a 32-bit code segment). 11766 * CR4.PAE and EFER.LMA must be set. 11767 */ 11768 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11769 return false; 11770 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11771 return false; 11772 } else { 11773 /* 11774 * Not in 64-bit mode: EFER.LMA is clear and the code 11775 * segment cannot be 64-bit. 11776 */ 11777 if (sregs->efer & EFER_LMA || sregs->cs.l) 11778 return false; 11779 } 11780 11781 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11782 kvm_is_valid_cr0(vcpu, sregs->cr0); 11783 } 11784 11785 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11786 int *mmu_reset_needed, bool update_pdptrs) 11787 { 11788 struct msr_data apic_base_msr; 11789 int idx; 11790 struct desc_ptr dt; 11791 11792 if (!kvm_is_valid_sregs(vcpu, sregs)) 11793 return -EINVAL; 11794 11795 apic_base_msr.data = sregs->apic_base; 11796 apic_base_msr.host_initiated = true; 11797 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11798 return -EINVAL; 11799 11800 if (vcpu->arch.guest_state_protected) 11801 return 0; 11802 11803 dt.size = sregs->idt.limit; 11804 dt.address = sregs->idt.base; 11805 static_call(kvm_x86_set_idt)(vcpu, &dt); 11806 dt.size = sregs->gdt.limit; 11807 dt.address = sregs->gdt.base; 11808 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11809 11810 vcpu->arch.cr2 = sregs->cr2; 11811 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11812 vcpu->arch.cr3 = sregs->cr3; 11813 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11814 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11815 11816 kvm_set_cr8(vcpu, sregs->cr8); 11817 11818 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11819 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11820 11821 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11822 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11823 11824 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11825 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11826 11827 if (update_pdptrs) { 11828 idx = srcu_read_lock(&vcpu->kvm->srcu); 11829 if (is_pae_paging(vcpu)) { 11830 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11831 *mmu_reset_needed = 1; 11832 } 11833 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11834 } 11835 11836 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11837 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11838 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11839 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11840 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11841 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11842 11843 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11844 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11845 11846 update_cr8_intercept(vcpu); 11847 11848 /* Older userspace won't unhalt the vcpu on reset. */ 11849 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11850 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11851 !is_protmode(vcpu)) 11852 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11853 11854 return 0; 11855 } 11856 11857 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11858 { 11859 int pending_vec, max_bits; 11860 int mmu_reset_needed = 0; 11861 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11862 11863 if (ret) 11864 return ret; 11865 11866 if (mmu_reset_needed) { 11867 kvm_mmu_reset_context(vcpu); 11868 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11869 } 11870 11871 max_bits = KVM_NR_INTERRUPTS; 11872 pending_vec = find_first_bit( 11873 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11874 11875 if (pending_vec < max_bits) { 11876 kvm_queue_interrupt(vcpu, pending_vec, false); 11877 pr_debug("Set back pending irq %d\n", pending_vec); 11878 kvm_make_request(KVM_REQ_EVENT, vcpu); 11879 } 11880 return 0; 11881 } 11882 11883 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11884 { 11885 int mmu_reset_needed = 0; 11886 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11887 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11888 !(sregs2->efer & EFER_LMA); 11889 int i, ret; 11890 11891 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11892 return -EINVAL; 11893 11894 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11895 return -EINVAL; 11896 11897 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11898 &mmu_reset_needed, !valid_pdptrs); 11899 if (ret) 11900 return ret; 11901 11902 if (valid_pdptrs) { 11903 for (i = 0; i < 4 ; i++) 11904 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11905 11906 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11907 mmu_reset_needed = 1; 11908 vcpu->arch.pdptrs_from_userspace = true; 11909 } 11910 if (mmu_reset_needed) { 11911 kvm_mmu_reset_context(vcpu); 11912 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11913 } 11914 return 0; 11915 } 11916 11917 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11918 struct kvm_sregs *sregs) 11919 { 11920 int ret; 11921 11922 if (vcpu->kvm->arch.has_protected_state && 11923 vcpu->arch.guest_state_protected) 11924 return -EINVAL; 11925 11926 vcpu_load(vcpu); 11927 ret = __set_sregs(vcpu, sregs); 11928 vcpu_put(vcpu); 11929 return ret; 11930 } 11931 11932 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11933 { 11934 bool set = false; 11935 struct kvm_vcpu *vcpu; 11936 unsigned long i; 11937 11938 if (!enable_apicv) 11939 return; 11940 11941 down_write(&kvm->arch.apicv_update_lock); 11942 11943 kvm_for_each_vcpu(i, vcpu, kvm) { 11944 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11945 set = true; 11946 break; 11947 } 11948 } 11949 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11950 up_write(&kvm->arch.apicv_update_lock); 11951 } 11952 11953 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11954 struct kvm_guest_debug *dbg) 11955 { 11956 unsigned long rflags; 11957 int i, r; 11958 11959 if (vcpu->arch.guest_state_protected) 11960 return -EINVAL; 11961 11962 vcpu_load(vcpu); 11963 11964 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11965 r = -EBUSY; 11966 if (kvm_is_exception_pending(vcpu)) 11967 goto out; 11968 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11969 kvm_queue_exception(vcpu, DB_VECTOR); 11970 else 11971 kvm_queue_exception(vcpu, BP_VECTOR); 11972 } 11973 11974 /* 11975 * Read rflags as long as potentially injected trace flags are still 11976 * filtered out. 11977 */ 11978 rflags = kvm_get_rflags(vcpu); 11979 11980 vcpu->guest_debug = dbg->control; 11981 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11982 vcpu->guest_debug = 0; 11983 11984 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11985 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11986 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11987 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11988 } else { 11989 for (i = 0; i < KVM_NR_DB_REGS; i++) 11990 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11991 } 11992 kvm_update_dr7(vcpu); 11993 11994 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11995 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11996 11997 /* 11998 * Trigger an rflags update that will inject or remove the trace 11999 * flags. 12000 */ 12001 kvm_set_rflags(vcpu, rflags); 12002 12003 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12004 12005 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 12006 12007 r = 0; 12008 12009 out: 12010 vcpu_put(vcpu); 12011 return r; 12012 } 12013 12014 /* 12015 * Translate a guest virtual address to a guest physical address. 12016 */ 12017 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 12018 struct kvm_translation *tr) 12019 { 12020 unsigned long vaddr = tr->linear_address; 12021 gpa_t gpa; 12022 int idx; 12023 12024 vcpu_load(vcpu); 12025 12026 idx = srcu_read_lock(&vcpu->kvm->srcu); 12027 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 12028 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12029 tr->physical_address = gpa; 12030 tr->valid = gpa != INVALID_GPA; 12031 tr->writeable = 1; 12032 tr->usermode = 0; 12033 12034 vcpu_put(vcpu); 12035 return 0; 12036 } 12037 12038 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12039 { 12040 struct fxregs_state *fxsave; 12041 12042 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12043 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12044 12045 vcpu_load(vcpu); 12046 12047 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12048 memcpy(fpu->fpr, fxsave->st_space, 128); 12049 fpu->fcw = fxsave->cwd; 12050 fpu->fsw = fxsave->swd; 12051 fpu->ftwx = fxsave->twd; 12052 fpu->last_opcode = fxsave->fop; 12053 fpu->last_ip = fxsave->rip; 12054 fpu->last_dp = fxsave->rdp; 12055 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 12056 12057 vcpu_put(vcpu); 12058 return 0; 12059 } 12060 12061 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12062 { 12063 struct fxregs_state *fxsave; 12064 12065 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12066 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12067 12068 vcpu_load(vcpu); 12069 12070 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12071 12072 memcpy(fxsave->st_space, fpu->fpr, 128); 12073 fxsave->cwd = fpu->fcw; 12074 fxsave->swd = fpu->fsw; 12075 fxsave->twd = fpu->ftwx; 12076 fxsave->fop = fpu->last_opcode; 12077 fxsave->rip = fpu->last_ip; 12078 fxsave->rdp = fpu->last_dp; 12079 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 12080 12081 vcpu_put(vcpu); 12082 return 0; 12083 } 12084 12085 static void store_regs(struct kvm_vcpu *vcpu) 12086 { 12087 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12088 12089 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12090 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12091 12092 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12093 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12094 12095 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12096 kvm_vcpu_ioctl_x86_get_vcpu_events( 12097 vcpu, &vcpu->run->s.regs.events); 12098 } 12099 12100 static int sync_regs(struct kvm_vcpu *vcpu) 12101 { 12102 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12103 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12104 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12105 } 12106 12107 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12108 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12109 12110 if (__set_sregs(vcpu, &sregs)) 12111 return -EINVAL; 12112 12113 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12114 } 12115 12116 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12117 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12118 12119 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12120 return -EINVAL; 12121 12122 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12123 } 12124 12125 return 0; 12126 } 12127 12128 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12129 { 12130 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12131 pr_warn_once("SMP vm created on host with unstable TSC; " 12132 "guest TSC will not be reliable\n"); 12133 12134 if (!kvm->arch.max_vcpu_ids) 12135 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12136 12137 if (id >= kvm->arch.max_vcpu_ids) 12138 return -EINVAL; 12139 12140 return static_call(kvm_x86_vcpu_precreate)(kvm); 12141 } 12142 12143 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12144 { 12145 struct page *page; 12146 int r; 12147 12148 vcpu->arch.last_vmentry_cpu = -1; 12149 vcpu->arch.regs_avail = ~0; 12150 vcpu->arch.regs_dirty = ~0; 12151 12152 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); 12153 12154 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12155 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12156 else 12157 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 12158 12159 r = kvm_mmu_create(vcpu); 12160 if (r < 0) 12161 return r; 12162 12163 r = kvm_create_lapic(vcpu); 12164 if (r < 0) 12165 goto fail_mmu_destroy; 12166 12167 r = -ENOMEM; 12168 12169 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12170 if (!page) 12171 goto fail_free_lapic; 12172 vcpu->arch.pio_data = page_address(page); 12173 12174 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12175 GFP_KERNEL_ACCOUNT); 12176 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12177 GFP_KERNEL_ACCOUNT); 12178 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12179 goto fail_free_mce_banks; 12180 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12181 12182 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12183 GFP_KERNEL_ACCOUNT)) 12184 goto fail_free_mce_banks; 12185 12186 if (!alloc_emulate_ctxt(vcpu)) 12187 goto free_wbinvd_dirty_mask; 12188 12189 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12190 pr_err("failed to allocate vcpu's fpu\n"); 12191 goto free_emulate_ctxt; 12192 } 12193 12194 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12195 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12196 12197 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12198 12199 kvm_async_pf_hash_reset(vcpu); 12200 12201 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12202 kvm_pmu_init(vcpu); 12203 12204 vcpu->arch.pending_external_vector = -1; 12205 vcpu->arch.preempted_in_kernel = false; 12206 12207 #if IS_ENABLED(CONFIG_HYPERV) 12208 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12209 #endif 12210 12211 r = static_call(kvm_x86_vcpu_create)(vcpu); 12212 if (r) 12213 goto free_guest_fpu; 12214 12215 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12216 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12217 kvm_xen_init_vcpu(vcpu); 12218 kvm_vcpu_mtrr_init(vcpu); 12219 vcpu_load(vcpu); 12220 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12221 kvm_vcpu_reset(vcpu, false); 12222 kvm_init_mmu(vcpu); 12223 vcpu_put(vcpu); 12224 return 0; 12225 12226 free_guest_fpu: 12227 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12228 free_emulate_ctxt: 12229 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12230 free_wbinvd_dirty_mask: 12231 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12232 fail_free_mce_banks: 12233 kfree(vcpu->arch.mce_banks); 12234 kfree(vcpu->arch.mci_ctl2_banks); 12235 free_page((unsigned long)vcpu->arch.pio_data); 12236 fail_free_lapic: 12237 kvm_free_lapic(vcpu); 12238 fail_mmu_destroy: 12239 kvm_mmu_destroy(vcpu); 12240 return r; 12241 } 12242 12243 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12244 { 12245 struct kvm *kvm = vcpu->kvm; 12246 12247 if (mutex_lock_killable(&vcpu->mutex)) 12248 return; 12249 vcpu_load(vcpu); 12250 kvm_synchronize_tsc(vcpu, NULL); 12251 vcpu_put(vcpu); 12252 12253 /* poll control enabled by default */ 12254 vcpu->arch.msr_kvm_poll_control = 1; 12255 12256 mutex_unlock(&vcpu->mutex); 12257 12258 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12259 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12260 KVMCLOCK_SYNC_PERIOD); 12261 } 12262 12263 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12264 { 12265 int idx; 12266 12267 kvmclock_reset(vcpu); 12268 12269 static_call(kvm_x86_vcpu_free)(vcpu); 12270 12271 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12272 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12273 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12274 12275 kvm_xen_destroy_vcpu(vcpu); 12276 kvm_hv_vcpu_uninit(vcpu); 12277 kvm_pmu_destroy(vcpu); 12278 kfree(vcpu->arch.mce_banks); 12279 kfree(vcpu->arch.mci_ctl2_banks); 12280 kvm_free_lapic(vcpu); 12281 idx = srcu_read_lock(&vcpu->kvm->srcu); 12282 kvm_mmu_destroy(vcpu); 12283 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12284 free_page((unsigned long)vcpu->arch.pio_data); 12285 kvfree(vcpu->arch.cpuid_entries); 12286 } 12287 12288 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12289 { 12290 struct kvm_cpuid_entry2 *cpuid_0x1; 12291 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12292 unsigned long new_cr0; 12293 12294 /* 12295 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12296 * to handle side effects. RESET emulation hits those flows and relies 12297 * on emulated/virtualized registers, including those that are loaded 12298 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12299 * to detect improper or missing initialization. 12300 */ 12301 WARN_ON_ONCE(!init_event && 12302 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12303 12304 /* 12305 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12306 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12307 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12308 * bits), i.e. virtualization is disabled. 12309 */ 12310 if (is_guest_mode(vcpu)) 12311 kvm_leave_nested(vcpu); 12312 12313 kvm_lapic_reset(vcpu, init_event); 12314 12315 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12316 vcpu->arch.hflags = 0; 12317 12318 vcpu->arch.smi_pending = 0; 12319 vcpu->arch.smi_count = 0; 12320 atomic_set(&vcpu->arch.nmi_queued, 0); 12321 vcpu->arch.nmi_pending = 0; 12322 vcpu->arch.nmi_injected = false; 12323 kvm_clear_interrupt_queue(vcpu); 12324 kvm_clear_exception_queue(vcpu); 12325 12326 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12327 kvm_update_dr0123(vcpu); 12328 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12329 vcpu->arch.dr7 = DR7_FIXED_1; 12330 kvm_update_dr7(vcpu); 12331 12332 vcpu->arch.cr2 = 0; 12333 12334 kvm_make_request(KVM_REQ_EVENT, vcpu); 12335 vcpu->arch.apf.msr_en_val = 0; 12336 vcpu->arch.apf.msr_int_val = 0; 12337 vcpu->arch.st.msr_val = 0; 12338 12339 kvmclock_reset(vcpu); 12340 12341 kvm_clear_async_pf_completion_queue(vcpu); 12342 kvm_async_pf_hash_reset(vcpu); 12343 vcpu->arch.apf.halted = false; 12344 12345 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12346 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12347 12348 /* 12349 * All paths that lead to INIT are required to load the guest's 12350 * FPU state (because most paths are buried in KVM_RUN). 12351 */ 12352 if (init_event) 12353 kvm_put_guest_fpu(vcpu); 12354 12355 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12356 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12357 12358 if (init_event) 12359 kvm_load_guest_fpu(vcpu); 12360 } 12361 12362 if (!init_event) { 12363 vcpu->arch.smbase = 0x30000; 12364 12365 vcpu->arch.msr_misc_features_enables = 0; 12366 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12367 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12368 12369 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12370 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12371 } 12372 12373 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12374 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12375 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12376 12377 /* 12378 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12379 * if no CPUID match is found. Note, it's impossible to get a match at 12380 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12381 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12382 * on RESET. But, go through the motions in case that's ever remedied. 12383 */ 12384 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12385 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12386 12387 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12388 12389 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12390 kvm_rip_write(vcpu, 0xfff0); 12391 12392 vcpu->arch.cr3 = 0; 12393 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12394 12395 /* 12396 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12397 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12398 * (or qualify) that with a footnote stating that CD/NW are preserved. 12399 */ 12400 new_cr0 = X86_CR0_ET; 12401 if (init_event) 12402 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12403 else 12404 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12405 12406 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12407 static_call(kvm_x86_set_cr4)(vcpu, 0); 12408 static_call(kvm_x86_set_efer)(vcpu, 0); 12409 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12410 12411 /* 12412 * On the standard CR0/CR4/EFER modification paths, there are several 12413 * complex conditions determining whether the MMU has to be reset and/or 12414 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12415 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12416 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12417 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12418 */ 12419 if (old_cr0 & X86_CR0_PG) { 12420 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12421 kvm_mmu_reset_context(vcpu); 12422 } 12423 12424 /* 12425 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12426 * APM states the TLBs are untouched by INIT, but it also states that 12427 * the TLBs are flushed on "External initialization of the processor." 12428 * Flush the guest TLB regardless of vendor, there is no meaningful 12429 * benefit in relying on the guest to flush the TLB immediately after 12430 * INIT. A spurious TLB flush is benign and likely negligible from a 12431 * performance perspective. 12432 */ 12433 if (init_event) 12434 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12435 } 12436 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12437 12438 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12439 { 12440 struct kvm_segment cs; 12441 12442 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12443 cs.selector = vector << 8; 12444 cs.base = vector << 12; 12445 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12446 kvm_rip_write(vcpu, 0); 12447 } 12448 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12449 12450 int kvm_arch_hardware_enable(void) 12451 { 12452 struct kvm *kvm; 12453 struct kvm_vcpu *vcpu; 12454 unsigned long i; 12455 int ret; 12456 u64 local_tsc; 12457 u64 max_tsc = 0; 12458 bool stable, backwards_tsc = false; 12459 12460 kvm_user_return_msr_cpu_online(); 12461 12462 ret = kvm_x86_check_processor_compatibility(); 12463 if (ret) 12464 return ret; 12465 12466 ret = static_call(kvm_x86_hardware_enable)(); 12467 if (ret != 0) 12468 return ret; 12469 12470 local_tsc = rdtsc(); 12471 stable = !kvm_check_tsc_unstable(); 12472 list_for_each_entry(kvm, &vm_list, vm_list) { 12473 kvm_for_each_vcpu(i, vcpu, kvm) { 12474 if (!stable && vcpu->cpu == smp_processor_id()) 12475 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12476 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12477 backwards_tsc = true; 12478 if (vcpu->arch.last_host_tsc > max_tsc) 12479 max_tsc = vcpu->arch.last_host_tsc; 12480 } 12481 } 12482 } 12483 12484 /* 12485 * Sometimes, even reliable TSCs go backwards. This happens on 12486 * platforms that reset TSC during suspend or hibernate actions, but 12487 * maintain synchronization. We must compensate. Fortunately, we can 12488 * detect that condition here, which happens early in CPU bringup, 12489 * before any KVM threads can be running. Unfortunately, we can't 12490 * bring the TSCs fully up to date with real time, as we aren't yet far 12491 * enough into CPU bringup that we know how much real time has actually 12492 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12493 * variables that haven't been updated yet. 12494 * 12495 * So we simply find the maximum observed TSC above, then record the 12496 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12497 * the adjustment will be applied. Note that we accumulate 12498 * adjustments, in case multiple suspend cycles happen before some VCPU 12499 * gets a chance to run again. In the event that no KVM threads get a 12500 * chance to run, we will miss the entire elapsed period, as we'll have 12501 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12502 * loose cycle time. This isn't too big a deal, since the loss will be 12503 * uniform across all VCPUs (not to mention the scenario is extremely 12504 * unlikely). It is possible that a second hibernate recovery happens 12505 * much faster than a first, causing the observed TSC here to be 12506 * smaller; this would require additional padding adjustment, which is 12507 * why we set last_host_tsc to the local tsc observed here. 12508 * 12509 * N.B. - this code below runs only on platforms with reliable TSC, 12510 * as that is the only way backwards_tsc is set above. Also note 12511 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12512 * have the same delta_cyc adjustment applied if backwards_tsc 12513 * is detected. Note further, this adjustment is only done once, 12514 * as we reset last_host_tsc on all VCPUs to stop this from being 12515 * called multiple times (one for each physical CPU bringup). 12516 * 12517 * Platforms with unreliable TSCs don't have to deal with this, they 12518 * will be compensated by the logic in vcpu_load, which sets the TSC to 12519 * catchup mode. This will catchup all VCPUs to real time, but cannot 12520 * guarantee that they stay in perfect synchronization. 12521 */ 12522 if (backwards_tsc) { 12523 u64 delta_cyc = max_tsc - local_tsc; 12524 list_for_each_entry(kvm, &vm_list, vm_list) { 12525 kvm->arch.backwards_tsc_observed = true; 12526 kvm_for_each_vcpu(i, vcpu, kvm) { 12527 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12528 vcpu->arch.last_host_tsc = local_tsc; 12529 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12530 } 12531 12532 /* 12533 * We have to disable TSC offset matching.. if you were 12534 * booting a VM while issuing an S4 host suspend.... 12535 * you may have some problem. Solving this issue is 12536 * left as an exercise to the reader. 12537 */ 12538 kvm->arch.last_tsc_nsec = 0; 12539 kvm->arch.last_tsc_write = 0; 12540 } 12541 12542 } 12543 return 0; 12544 } 12545 12546 void kvm_arch_hardware_disable(void) 12547 { 12548 static_call(kvm_x86_hardware_disable)(); 12549 drop_user_return_notifiers(); 12550 } 12551 12552 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12553 { 12554 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12555 } 12556 12557 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12558 { 12559 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12560 } 12561 12562 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12563 { 12564 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12565 12566 vcpu->arch.l1tf_flush_l1d = true; 12567 if (pmu->version && unlikely(pmu->event_count)) { 12568 pmu->need_cleanup = true; 12569 kvm_make_request(KVM_REQ_PMU, vcpu); 12570 } 12571 static_call(kvm_x86_sched_in)(vcpu, cpu); 12572 } 12573 12574 void kvm_arch_free_vm(struct kvm *kvm) 12575 { 12576 #if IS_ENABLED(CONFIG_HYPERV) 12577 kfree(kvm->arch.hv_pa_pg); 12578 #endif 12579 __kvm_arch_free_vm(kvm); 12580 } 12581 12582 12583 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12584 { 12585 int ret; 12586 unsigned long flags; 12587 12588 if (!kvm_is_vm_type_supported(type)) 12589 return -EINVAL; 12590 12591 kvm->arch.vm_type = type; 12592 kvm->arch.has_private_mem = 12593 (type == KVM_X86_SW_PROTECTED_VM); 12594 12595 ret = kvm_page_track_init(kvm); 12596 if (ret) 12597 goto out; 12598 12599 kvm_mmu_init_vm(kvm); 12600 12601 ret = static_call(kvm_x86_vm_init)(kvm); 12602 if (ret) 12603 goto out_uninit_mmu; 12604 12605 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12606 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12607 12608 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12609 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12610 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12611 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12612 &kvm->arch.irq_sources_bitmap); 12613 12614 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12615 mutex_init(&kvm->arch.apic_map_lock); 12616 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12617 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12618 12619 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12620 pvclock_update_vm_gtod_copy(kvm); 12621 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12622 12623 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12624 kvm->arch.guest_can_read_msr_platform_info = true; 12625 kvm->arch.enable_pmu = enable_pmu; 12626 12627 #if IS_ENABLED(CONFIG_HYPERV) 12628 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12629 kvm->arch.hv_root_tdp = INVALID_PAGE; 12630 #endif 12631 12632 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12633 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12634 12635 kvm_apicv_init(kvm); 12636 kvm_hv_init_vm(kvm); 12637 kvm_xen_init_vm(kvm); 12638 12639 return 0; 12640 12641 out_uninit_mmu: 12642 kvm_mmu_uninit_vm(kvm); 12643 kvm_page_track_cleanup(kvm); 12644 out: 12645 return ret; 12646 } 12647 12648 int kvm_arch_post_init_vm(struct kvm *kvm) 12649 { 12650 return kvm_mmu_post_init_vm(kvm); 12651 } 12652 12653 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12654 { 12655 vcpu_load(vcpu); 12656 kvm_mmu_unload(vcpu); 12657 vcpu_put(vcpu); 12658 } 12659 12660 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12661 { 12662 unsigned long i; 12663 struct kvm_vcpu *vcpu; 12664 12665 kvm_for_each_vcpu(i, vcpu, kvm) { 12666 kvm_clear_async_pf_completion_queue(vcpu); 12667 kvm_unload_vcpu_mmu(vcpu); 12668 } 12669 } 12670 12671 void kvm_arch_sync_events(struct kvm *kvm) 12672 { 12673 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12674 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12675 kvm_free_pit(kvm); 12676 } 12677 12678 /** 12679 * __x86_set_memory_region: Setup KVM internal memory slot 12680 * 12681 * @kvm: the kvm pointer to the VM. 12682 * @id: the slot ID to setup. 12683 * @gpa: the GPA to install the slot (unused when @size == 0). 12684 * @size: the size of the slot. Set to zero to uninstall a slot. 12685 * 12686 * This function helps to setup a KVM internal memory slot. Specify 12687 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12688 * slot. The return code can be one of the following: 12689 * 12690 * HVA: on success (uninstall will return a bogus HVA) 12691 * -errno: on error 12692 * 12693 * The caller should always use IS_ERR() to check the return value 12694 * before use. Note, the KVM internal memory slots are guaranteed to 12695 * remain valid and unchanged until the VM is destroyed, i.e., the 12696 * GPA->HVA translation will not change. However, the HVA is a user 12697 * address, i.e. its accessibility is not guaranteed, and must be 12698 * accessed via __copy_{to,from}_user(). 12699 */ 12700 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12701 u32 size) 12702 { 12703 int i, r; 12704 unsigned long hva, old_npages; 12705 struct kvm_memslots *slots = kvm_memslots(kvm); 12706 struct kvm_memory_slot *slot; 12707 12708 /* Called with kvm->slots_lock held. */ 12709 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12710 return ERR_PTR_USR(-EINVAL); 12711 12712 slot = id_to_memslot(slots, id); 12713 if (size) { 12714 if (slot && slot->npages) 12715 return ERR_PTR_USR(-EEXIST); 12716 12717 /* 12718 * MAP_SHARED to prevent internal slot pages from being moved 12719 * by fork()/COW. 12720 */ 12721 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12722 MAP_SHARED | MAP_ANONYMOUS, 0); 12723 if (IS_ERR_VALUE(hva)) 12724 return (void __user *)hva; 12725 } else { 12726 if (!slot || !slot->npages) 12727 return NULL; 12728 12729 old_npages = slot->npages; 12730 hva = slot->userspace_addr; 12731 } 12732 12733 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12734 struct kvm_userspace_memory_region2 m; 12735 12736 m.slot = id | (i << 16); 12737 m.flags = 0; 12738 m.guest_phys_addr = gpa; 12739 m.userspace_addr = hva; 12740 m.memory_size = size; 12741 r = __kvm_set_memory_region(kvm, &m); 12742 if (r < 0) 12743 return ERR_PTR_USR(r); 12744 } 12745 12746 if (!size) 12747 vm_munmap(hva, old_npages * PAGE_SIZE); 12748 12749 return (void __user *)hva; 12750 } 12751 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12752 12753 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12754 { 12755 kvm_mmu_pre_destroy_vm(kvm); 12756 } 12757 12758 void kvm_arch_destroy_vm(struct kvm *kvm) 12759 { 12760 if (current->mm == kvm->mm) { 12761 /* 12762 * Free memory regions allocated on behalf of userspace, 12763 * unless the memory map has changed due to process exit 12764 * or fd copying. 12765 */ 12766 mutex_lock(&kvm->slots_lock); 12767 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12768 0, 0); 12769 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12770 0, 0); 12771 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12772 mutex_unlock(&kvm->slots_lock); 12773 } 12774 kvm_unload_vcpu_mmus(kvm); 12775 static_call_cond(kvm_x86_vm_destroy)(kvm); 12776 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12777 kvm_pic_destroy(kvm); 12778 kvm_ioapic_destroy(kvm); 12779 kvm_destroy_vcpus(kvm); 12780 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12781 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12782 kvm_mmu_uninit_vm(kvm); 12783 kvm_page_track_cleanup(kvm); 12784 kvm_xen_destroy_vm(kvm); 12785 kvm_hv_destroy_vm(kvm); 12786 } 12787 12788 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12789 { 12790 int i; 12791 12792 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12793 vfree(slot->arch.rmap[i]); 12794 slot->arch.rmap[i] = NULL; 12795 } 12796 } 12797 12798 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12799 { 12800 int i; 12801 12802 memslot_rmap_free(slot); 12803 12804 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12805 vfree(slot->arch.lpage_info[i - 1]); 12806 slot->arch.lpage_info[i - 1] = NULL; 12807 } 12808 12809 kvm_page_track_free_memslot(slot); 12810 } 12811 12812 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12813 { 12814 const int sz = sizeof(*slot->arch.rmap[0]); 12815 int i; 12816 12817 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12818 int level = i + 1; 12819 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12820 12821 if (slot->arch.rmap[i]) 12822 continue; 12823 12824 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12825 if (!slot->arch.rmap[i]) { 12826 memslot_rmap_free(slot); 12827 return -ENOMEM; 12828 } 12829 } 12830 12831 return 0; 12832 } 12833 12834 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12835 struct kvm_memory_slot *slot) 12836 { 12837 unsigned long npages = slot->npages; 12838 int i, r; 12839 12840 /* 12841 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12842 * old arrays will be freed by __kvm_set_memory_region() if installing 12843 * the new memslot is successful. 12844 */ 12845 memset(&slot->arch, 0, sizeof(slot->arch)); 12846 12847 if (kvm_memslots_have_rmaps(kvm)) { 12848 r = memslot_rmap_alloc(slot, npages); 12849 if (r) 12850 return r; 12851 } 12852 12853 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12854 struct kvm_lpage_info *linfo; 12855 unsigned long ugfn; 12856 int lpages; 12857 int level = i + 1; 12858 12859 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12860 12861 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12862 if (!linfo) 12863 goto out_free; 12864 12865 slot->arch.lpage_info[i - 1] = linfo; 12866 12867 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12868 linfo[0].disallow_lpage = 1; 12869 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12870 linfo[lpages - 1].disallow_lpage = 1; 12871 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12872 /* 12873 * If the gfn and userspace address are not aligned wrt each 12874 * other, disable large page support for this slot. 12875 */ 12876 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12877 unsigned long j; 12878 12879 for (j = 0; j < lpages; ++j) 12880 linfo[j].disallow_lpage = 1; 12881 } 12882 } 12883 12884 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12885 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12886 #endif 12887 12888 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12889 goto out_free; 12890 12891 return 0; 12892 12893 out_free: 12894 memslot_rmap_free(slot); 12895 12896 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12897 vfree(slot->arch.lpage_info[i - 1]); 12898 slot->arch.lpage_info[i - 1] = NULL; 12899 } 12900 return -ENOMEM; 12901 } 12902 12903 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12904 { 12905 struct kvm_vcpu *vcpu; 12906 unsigned long i; 12907 12908 /* 12909 * memslots->generation has been incremented. 12910 * mmio generation may have reached its maximum value. 12911 */ 12912 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12913 12914 /* Force re-initialization of steal_time cache */ 12915 kvm_for_each_vcpu(i, vcpu, kvm) 12916 kvm_vcpu_kick(vcpu); 12917 } 12918 12919 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12920 const struct kvm_memory_slot *old, 12921 struct kvm_memory_slot *new, 12922 enum kvm_mr_change change) 12923 { 12924 /* 12925 * KVM doesn't support moving memslots when there are external page 12926 * trackers attached to the VM, i.e. if KVMGT is in use. 12927 */ 12928 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12929 return -EINVAL; 12930 12931 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12932 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12933 return -EINVAL; 12934 12935 return kvm_alloc_memslot_metadata(kvm, new); 12936 } 12937 12938 if (change == KVM_MR_FLAGS_ONLY) 12939 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12940 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12941 return -EIO; 12942 12943 return 0; 12944 } 12945 12946 12947 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12948 { 12949 int nr_slots; 12950 12951 if (!kvm_x86_ops.cpu_dirty_log_size) 12952 return; 12953 12954 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12955 if ((enable && nr_slots == 1) || !nr_slots) 12956 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12957 } 12958 12959 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12960 struct kvm_memory_slot *old, 12961 const struct kvm_memory_slot *new, 12962 enum kvm_mr_change change) 12963 { 12964 u32 old_flags = old ? old->flags : 0; 12965 u32 new_flags = new ? new->flags : 0; 12966 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12967 12968 /* 12969 * Update CPU dirty logging if dirty logging is being toggled. This 12970 * applies to all operations. 12971 */ 12972 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12973 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12974 12975 /* 12976 * Nothing more to do for RO slots (which can't be dirtied and can't be 12977 * made writable) or CREATE/MOVE/DELETE of a slot. 12978 * 12979 * For a memslot with dirty logging disabled: 12980 * CREATE: No dirty mappings will already exist. 12981 * MOVE/DELETE: The old mappings will already have been cleaned up by 12982 * kvm_arch_flush_shadow_memslot() 12983 * 12984 * For a memslot with dirty logging enabled: 12985 * CREATE: No shadow pages exist, thus nothing to write-protect 12986 * and no dirty bits to clear. 12987 * MOVE/DELETE: The old mappings will already have been cleaned up by 12988 * kvm_arch_flush_shadow_memslot(). 12989 */ 12990 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12991 return; 12992 12993 /* 12994 * READONLY and non-flags changes were filtered out above, and the only 12995 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12996 * logging isn't being toggled on or off. 12997 */ 12998 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12999 return; 13000 13001 if (!log_dirty_pages) { 13002 /* 13003 * Dirty logging tracks sptes in 4k granularity, meaning that 13004 * large sptes have to be split. If live migration succeeds, 13005 * the guest in the source machine will be destroyed and large 13006 * sptes will be created in the destination. However, if the 13007 * guest continues to run in the source machine (for example if 13008 * live migration fails), small sptes will remain around and 13009 * cause bad performance. 13010 * 13011 * Scan sptes if dirty logging has been stopped, dropping those 13012 * which can be collapsed into a single large-page spte. Later 13013 * page faults will create the large-page sptes. 13014 */ 13015 kvm_mmu_zap_collapsible_sptes(kvm, new); 13016 } else { 13017 /* 13018 * Initially-all-set does not require write protecting any page, 13019 * because they're all assumed to be dirty. 13020 */ 13021 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 13022 return; 13023 13024 if (READ_ONCE(eager_page_split)) 13025 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 13026 13027 if (kvm_x86_ops.cpu_dirty_log_size) { 13028 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 13029 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 13030 } else { 13031 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 13032 } 13033 13034 /* 13035 * Unconditionally flush the TLBs after enabling dirty logging. 13036 * A flush is almost always going to be necessary (see below), 13037 * and unconditionally flushing allows the helpers to omit 13038 * the subtly complex checks when removing write access. 13039 * 13040 * Do the flush outside of mmu_lock to reduce the amount of 13041 * time mmu_lock is held. Flushing after dropping mmu_lock is 13042 * safe as KVM only needs to guarantee the slot is fully 13043 * write-protected before returning to userspace, i.e. before 13044 * userspace can consume the dirty status. 13045 * 13046 * Flushing outside of mmu_lock requires KVM to be careful when 13047 * making decisions based on writable status of an SPTE, e.g. a 13048 * !writable SPTE doesn't guarantee a CPU can't perform writes. 13049 * 13050 * Specifically, KVM also write-protects guest page tables to 13051 * monitor changes when using shadow paging, and must guarantee 13052 * no CPUs can write to those page before mmu_lock is dropped. 13053 * Because CPUs may have stale TLB entries at this point, a 13054 * !writable SPTE doesn't guarantee CPUs can't perform writes. 13055 * 13056 * KVM also allows making SPTES writable outside of mmu_lock, 13057 * e.g. to allow dirty logging without taking mmu_lock. 13058 * 13059 * To handle these scenarios, KVM uses a separate software-only 13060 * bit (MMU-writable) to track if a SPTE is !writable due to 13061 * a guest page table being write-protected (KVM clears the 13062 * MMU-writable flag when write-protecting for shadow paging). 13063 * 13064 * The use of MMU-writable is also the primary motivation for 13065 * the unconditional flush. Because KVM must guarantee that a 13066 * CPU doesn't contain stale, writable TLB entries for a 13067 * !MMU-writable SPTE, KVM must flush if it encounters any 13068 * MMU-writable SPTE regardless of whether the actual hardware 13069 * writable bit was set. I.e. KVM is almost guaranteed to need 13070 * to flush, while unconditionally flushing allows the "remove 13071 * write access" helpers to ignore MMU-writable entirely. 13072 * 13073 * See is_writable_pte() for more details (the case involving 13074 * access-tracked SPTEs is particularly relevant). 13075 */ 13076 kvm_flush_remote_tlbs_memslot(kvm, new); 13077 } 13078 } 13079 13080 void kvm_arch_commit_memory_region(struct kvm *kvm, 13081 struct kvm_memory_slot *old, 13082 const struct kvm_memory_slot *new, 13083 enum kvm_mr_change change) 13084 { 13085 if (change == KVM_MR_DELETE) 13086 kvm_page_track_delete_slot(kvm, old); 13087 13088 if (!kvm->arch.n_requested_mmu_pages && 13089 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13090 unsigned long nr_mmu_pages; 13091 13092 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13093 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13094 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13095 } 13096 13097 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13098 13099 /* Free the arrays associated with the old memslot. */ 13100 if (change == KVM_MR_MOVE) 13101 kvm_arch_free_memslot(kvm, old); 13102 } 13103 13104 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 13105 { 13106 return (is_guest_mode(vcpu) && 13107 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 13108 } 13109 13110 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 13111 { 13112 if (!list_empty_careful(&vcpu->async_pf.done)) 13113 return true; 13114 13115 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 13116 kvm_apic_init_sipi_allowed(vcpu)) 13117 return true; 13118 13119 if (vcpu->arch.pv.pv_unhalted) 13120 return true; 13121 13122 if (kvm_is_exception_pending(vcpu)) 13123 return true; 13124 13125 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13126 (vcpu->arch.nmi_pending && 13127 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 13128 return true; 13129 13130 #ifdef CONFIG_KVM_SMM 13131 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 13132 (vcpu->arch.smi_pending && 13133 static_call(kvm_x86_smi_allowed)(vcpu, false))) 13134 return true; 13135 #endif 13136 13137 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 13138 return true; 13139 13140 if (kvm_arch_interrupt_allowed(vcpu) && 13141 (kvm_cpu_has_interrupt(vcpu) || 13142 kvm_guest_apic_has_interrupt(vcpu))) 13143 return true; 13144 13145 if (kvm_hv_has_stimer_pending(vcpu)) 13146 return true; 13147 13148 if (is_guest_mode(vcpu) && 13149 kvm_x86_ops.nested_ops->has_events && 13150 kvm_x86_ops.nested_ops->has_events(vcpu)) 13151 return true; 13152 13153 if (kvm_xen_has_pending_events(vcpu)) 13154 return true; 13155 13156 return false; 13157 } 13158 13159 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 13160 { 13161 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 13162 } 13163 13164 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 13165 { 13166 return kvm_vcpu_apicv_active(vcpu) && 13167 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu); 13168 } 13169 13170 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 13171 { 13172 return vcpu->arch.preempted_in_kernel; 13173 } 13174 13175 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 13176 { 13177 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 13178 return true; 13179 13180 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13181 #ifdef CONFIG_KVM_SMM 13182 kvm_test_request(KVM_REQ_SMI, vcpu) || 13183 #endif 13184 kvm_test_request(KVM_REQ_EVENT, vcpu)) 13185 return true; 13186 13187 return kvm_arch_dy_has_pending_interrupt(vcpu); 13188 } 13189 13190 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13191 { 13192 if (vcpu->arch.guest_state_protected) 13193 return true; 13194 13195 return static_call(kvm_x86_get_cpl)(vcpu) == 0; 13196 } 13197 13198 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13199 { 13200 return kvm_rip_read(vcpu); 13201 } 13202 13203 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13204 { 13205 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13206 } 13207 13208 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13209 { 13210 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 13211 } 13212 13213 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13214 { 13215 /* Can't read the RIP when guest state is protected, just return 0 */ 13216 if (vcpu->arch.guest_state_protected) 13217 return 0; 13218 13219 if (is_64_bit_mode(vcpu)) 13220 return kvm_rip_read(vcpu); 13221 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13222 kvm_rip_read(vcpu)); 13223 } 13224 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13225 13226 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13227 { 13228 return kvm_get_linear_rip(vcpu) == linear_rip; 13229 } 13230 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13231 13232 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13233 { 13234 unsigned long rflags; 13235 13236 rflags = static_call(kvm_x86_get_rflags)(vcpu); 13237 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13238 rflags &= ~X86_EFLAGS_TF; 13239 return rflags; 13240 } 13241 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13242 13243 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13244 { 13245 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13246 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13247 rflags |= X86_EFLAGS_TF; 13248 static_call(kvm_x86_set_rflags)(vcpu, rflags); 13249 } 13250 13251 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13252 { 13253 __kvm_set_rflags(vcpu, rflags); 13254 kvm_make_request(KVM_REQ_EVENT, vcpu); 13255 } 13256 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13257 13258 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13259 { 13260 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13261 13262 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13263 } 13264 13265 static inline u32 kvm_async_pf_next_probe(u32 key) 13266 { 13267 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13268 } 13269 13270 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13271 { 13272 u32 key = kvm_async_pf_hash_fn(gfn); 13273 13274 while (vcpu->arch.apf.gfns[key] != ~0) 13275 key = kvm_async_pf_next_probe(key); 13276 13277 vcpu->arch.apf.gfns[key] = gfn; 13278 } 13279 13280 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13281 { 13282 int i; 13283 u32 key = kvm_async_pf_hash_fn(gfn); 13284 13285 for (i = 0; i < ASYNC_PF_PER_VCPU && 13286 (vcpu->arch.apf.gfns[key] != gfn && 13287 vcpu->arch.apf.gfns[key] != ~0); i++) 13288 key = kvm_async_pf_next_probe(key); 13289 13290 return key; 13291 } 13292 13293 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13294 { 13295 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13296 } 13297 13298 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13299 { 13300 u32 i, j, k; 13301 13302 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13303 13304 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13305 return; 13306 13307 while (true) { 13308 vcpu->arch.apf.gfns[i] = ~0; 13309 do { 13310 j = kvm_async_pf_next_probe(j); 13311 if (vcpu->arch.apf.gfns[j] == ~0) 13312 return; 13313 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13314 /* 13315 * k lies cyclically in ]i,j] 13316 * | i.k.j | 13317 * |....j i.k.| or |.k..j i...| 13318 */ 13319 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13320 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13321 i = j; 13322 } 13323 } 13324 13325 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13326 { 13327 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13328 13329 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13330 sizeof(reason)); 13331 } 13332 13333 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13334 { 13335 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13336 13337 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13338 &token, offset, sizeof(token)); 13339 } 13340 13341 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13342 { 13343 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13344 u32 val; 13345 13346 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13347 &val, offset, sizeof(val))) 13348 return false; 13349 13350 return !val; 13351 } 13352 13353 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13354 { 13355 13356 if (!kvm_pv_async_pf_enabled(vcpu)) 13357 return false; 13358 13359 if (vcpu->arch.apf.send_user_only && 13360 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13361 return false; 13362 13363 if (is_guest_mode(vcpu)) { 13364 /* 13365 * L1 needs to opt into the special #PF vmexits that are 13366 * used to deliver async page faults. 13367 */ 13368 return vcpu->arch.apf.delivery_as_pf_vmexit; 13369 } else { 13370 /* 13371 * Play it safe in case the guest temporarily disables paging. 13372 * The real mode IDT in particular is unlikely to have a #PF 13373 * exception setup. 13374 */ 13375 return is_paging(vcpu); 13376 } 13377 } 13378 13379 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13380 { 13381 if (unlikely(!lapic_in_kernel(vcpu) || 13382 kvm_event_needs_reinjection(vcpu) || 13383 kvm_is_exception_pending(vcpu))) 13384 return false; 13385 13386 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13387 return false; 13388 13389 /* 13390 * If interrupts are off we cannot even use an artificial 13391 * halt state. 13392 */ 13393 return kvm_arch_interrupt_allowed(vcpu); 13394 } 13395 13396 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13397 struct kvm_async_pf *work) 13398 { 13399 struct x86_exception fault; 13400 13401 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13402 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13403 13404 if (kvm_can_deliver_async_pf(vcpu) && 13405 !apf_put_user_notpresent(vcpu)) { 13406 fault.vector = PF_VECTOR; 13407 fault.error_code_valid = true; 13408 fault.error_code = 0; 13409 fault.nested_page_fault = false; 13410 fault.address = work->arch.token; 13411 fault.async_page_fault = true; 13412 kvm_inject_page_fault(vcpu, &fault); 13413 return true; 13414 } else { 13415 /* 13416 * It is not possible to deliver a paravirtualized asynchronous 13417 * page fault, but putting the guest in an artificial halt state 13418 * can be beneficial nevertheless: if an interrupt arrives, we 13419 * can deliver it timely and perhaps the guest will schedule 13420 * another process. When the instruction that triggered a page 13421 * fault is retried, hopefully the page will be ready in the host. 13422 */ 13423 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13424 return false; 13425 } 13426 } 13427 13428 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13429 struct kvm_async_pf *work) 13430 { 13431 struct kvm_lapic_irq irq = { 13432 .delivery_mode = APIC_DM_FIXED, 13433 .vector = vcpu->arch.apf.vec 13434 }; 13435 13436 if (work->wakeup_all) 13437 work->arch.token = ~0; /* broadcast wakeup */ 13438 else 13439 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13440 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13441 13442 if ((work->wakeup_all || work->notpresent_injected) && 13443 kvm_pv_async_pf_enabled(vcpu) && 13444 !apf_put_user_ready(vcpu, work->arch.token)) { 13445 vcpu->arch.apf.pageready_pending = true; 13446 kvm_apic_set_irq(vcpu, &irq, NULL); 13447 } 13448 13449 vcpu->arch.apf.halted = false; 13450 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13451 } 13452 13453 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13454 { 13455 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13456 if (!vcpu->arch.apf.pageready_pending) 13457 kvm_vcpu_kick(vcpu); 13458 } 13459 13460 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13461 { 13462 if (!kvm_pv_async_pf_enabled(vcpu)) 13463 return true; 13464 else 13465 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13466 } 13467 13468 void kvm_arch_start_assignment(struct kvm *kvm) 13469 { 13470 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13471 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13472 } 13473 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13474 13475 void kvm_arch_end_assignment(struct kvm *kvm) 13476 { 13477 atomic_dec(&kvm->arch.assigned_device_count); 13478 } 13479 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13480 13481 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13482 { 13483 return raw_atomic_read(&kvm->arch.assigned_device_count); 13484 } 13485 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13486 13487 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13488 { 13489 /* 13490 * Non-coherent DMA assignment and de-assignment will affect 13491 * whether KVM honors guest MTRRs and cause changes in memtypes 13492 * in TDP. 13493 * So, pass %true unconditionally to indicate non-coherent DMA was, 13494 * or will be involved, and that zapping SPTEs might be necessary. 13495 */ 13496 if (__kvm_mmu_honors_guest_mtrrs(true)) 13497 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13498 } 13499 13500 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13501 { 13502 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13503 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13504 } 13505 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13506 13507 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13508 { 13509 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13510 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13511 } 13512 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13513 13514 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13515 { 13516 return atomic_read(&kvm->arch.noncoherent_dma_count); 13517 } 13518 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13519 13520 bool kvm_arch_has_irq_bypass(void) 13521 { 13522 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13523 } 13524 13525 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13526 struct irq_bypass_producer *prod) 13527 { 13528 struct kvm_kernel_irqfd *irqfd = 13529 container_of(cons, struct kvm_kernel_irqfd, consumer); 13530 int ret; 13531 13532 irqfd->producer = prod; 13533 kvm_arch_start_assignment(irqfd->kvm); 13534 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13535 prod->irq, irqfd->gsi, 1); 13536 13537 if (ret) 13538 kvm_arch_end_assignment(irqfd->kvm); 13539 13540 return ret; 13541 } 13542 13543 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13544 struct irq_bypass_producer *prod) 13545 { 13546 int ret; 13547 struct kvm_kernel_irqfd *irqfd = 13548 container_of(cons, struct kvm_kernel_irqfd, consumer); 13549 13550 WARN_ON(irqfd->producer != prod); 13551 irqfd->producer = NULL; 13552 13553 /* 13554 * When producer of consumer is unregistered, we change back to 13555 * remapped mode, so we can re-use the current implementation 13556 * when the irq is masked/disabled or the consumer side (KVM 13557 * int this case doesn't want to receive the interrupts. 13558 */ 13559 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13560 if (ret) 13561 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13562 " fails: %d\n", irqfd->consumer.token, ret); 13563 13564 kvm_arch_end_assignment(irqfd->kvm); 13565 } 13566 13567 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13568 uint32_t guest_irq, bool set) 13569 { 13570 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13571 } 13572 13573 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13574 struct kvm_kernel_irq_routing_entry *new) 13575 { 13576 if (new->type != KVM_IRQ_ROUTING_MSI) 13577 return true; 13578 13579 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13580 } 13581 13582 bool kvm_vector_hashing_enabled(void) 13583 { 13584 return vector_hashing; 13585 } 13586 13587 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13588 { 13589 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13590 } 13591 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13592 13593 13594 int kvm_spec_ctrl_test_value(u64 value) 13595 { 13596 /* 13597 * test that setting IA32_SPEC_CTRL to given value 13598 * is allowed by the host processor 13599 */ 13600 13601 u64 saved_value; 13602 unsigned long flags; 13603 int ret = 0; 13604 13605 local_irq_save(flags); 13606 13607 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13608 ret = 1; 13609 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13610 ret = 1; 13611 else 13612 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13613 13614 local_irq_restore(flags); 13615 13616 return ret; 13617 } 13618 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13619 13620 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13621 { 13622 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13623 struct x86_exception fault; 13624 u64 access = error_code & 13625 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13626 13627 if (!(error_code & PFERR_PRESENT_MASK) || 13628 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13629 /* 13630 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13631 * tables probably do not match the TLB. Just proceed 13632 * with the error code that the processor gave. 13633 */ 13634 fault.vector = PF_VECTOR; 13635 fault.error_code_valid = true; 13636 fault.error_code = error_code; 13637 fault.nested_page_fault = false; 13638 fault.address = gva; 13639 fault.async_page_fault = false; 13640 } 13641 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13642 } 13643 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13644 13645 /* 13646 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13647 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13648 * indicates whether exit to userspace is needed. 13649 */ 13650 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13651 struct x86_exception *e) 13652 { 13653 if (r == X86EMUL_PROPAGATE_FAULT) { 13654 if (KVM_BUG_ON(!e, vcpu->kvm)) 13655 return -EIO; 13656 13657 kvm_inject_emulated_page_fault(vcpu, e); 13658 return 1; 13659 } 13660 13661 /* 13662 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13663 * while handling a VMX instruction KVM could've handled the request 13664 * correctly by exiting to userspace and performing I/O but there 13665 * doesn't seem to be a real use-case behind such requests, just return 13666 * KVM_EXIT_INTERNAL_ERROR for now. 13667 */ 13668 kvm_prepare_emulation_failure_exit(vcpu); 13669 13670 return 0; 13671 } 13672 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13673 13674 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13675 { 13676 bool pcid_enabled; 13677 struct x86_exception e; 13678 struct { 13679 u64 pcid; 13680 u64 gla; 13681 } operand; 13682 int r; 13683 13684 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13685 if (r != X86EMUL_CONTINUE) 13686 return kvm_handle_memory_failure(vcpu, r, &e); 13687 13688 if (operand.pcid >> 12 != 0) { 13689 kvm_inject_gp(vcpu, 0); 13690 return 1; 13691 } 13692 13693 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13694 13695 switch (type) { 13696 case INVPCID_TYPE_INDIV_ADDR: 13697 /* 13698 * LAM doesn't apply to addresses that are inputs to TLB 13699 * invalidation. 13700 */ 13701 if ((!pcid_enabled && (operand.pcid != 0)) || 13702 is_noncanonical_address(operand.gla, vcpu)) { 13703 kvm_inject_gp(vcpu, 0); 13704 return 1; 13705 } 13706 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13707 return kvm_skip_emulated_instruction(vcpu); 13708 13709 case INVPCID_TYPE_SINGLE_CTXT: 13710 if (!pcid_enabled && (operand.pcid != 0)) { 13711 kvm_inject_gp(vcpu, 0); 13712 return 1; 13713 } 13714 13715 kvm_invalidate_pcid(vcpu, operand.pcid); 13716 return kvm_skip_emulated_instruction(vcpu); 13717 13718 case INVPCID_TYPE_ALL_NON_GLOBAL: 13719 /* 13720 * Currently, KVM doesn't mark global entries in the shadow 13721 * page tables, so a non-global flush just degenerates to a 13722 * global flush. If needed, we could optimize this later by 13723 * keeping track of global entries in shadow page tables. 13724 */ 13725 13726 fallthrough; 13727 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13728 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13729 return kvm_skip_emulated_instruction(vcpu); 13730 13731 default: 13732 kvm_inject_gp(vcpu, 0); 13733 return 1; 13734 } 13735 } 13736 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13737 13738 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13739 { 13740 struct kvm_run *run = vcpu->run; 13741 struct kvm_mmio_fragment *frag; 13742 unsigned int len; 13743 13744 BUG_ON(!vcpu->mmio_needed); 13745 13746 /* Complete previous fragment */ 13747 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13748 len = min(8u, frag->len); 13749 if (!vcpu->mmio_is_write) 13750 memcpy(frag->data, run->mmio.data, len); 13751 13752 if (frag->len <= 8) { 13753 /* Switch to the next fragment. */ 13754 frag++; 13755 vcpu->mmio_cur_fragment++; 13756 } else { 13757 /* Go forward to the next mmio piece. */ 13758 frag->data += len; 13759 frag->gpa += len; 13760 frag->len -= len; 13761 } 13762 13763 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13764 vcpu->mmio_needed = 0; 13765 13766 // VMG change, at this point, we're always done 13767 // RIP has already been advanced 13768 return 1; 13769 } 13770 13771 // More MMIO is needed 13772 run->mmio.phys_addr = frag->gpa; 13773 run->mmio.len = min(8u, frag->len); 13774 run->mmio.is_write = vcpu->mmio_is_write; 13775 if (run->mmio.is_write) 13776 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13777 run->exit_reason = KVM_EXIT_MMIO; 13778 13779 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13780 13781 return 0; 13782 } 13783 13784 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13785 void *data) 13786 { 13787 int handled; 13788 struct kvm_mmio_fragment *frag; 13789 13790 if (!data) 13791 return -EINVAL; 13792 13793 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13794 if (handled == bytes) 13795 return 1; 13796 13797 bytes -= handled; 13798 gpa += handled; 13799 data += handled; 13800 13801 /*TODO: Check if need to increment number of frags */ 13802 frag = vcpu->mmio_fragments; 13803 vcpu->mmio_nr_fragments = 1; 13804 frag->len = bytes; 13805 frag->gpa = gpa; 13806 frag->data = data; 13807 13808 vcpu->mmio_needed = 1; 13809 vcpu->mmio_cur_fragment = 0; 13810 13811 vcpu->run->mmio.phys_addr = gpa; 13812 vcpu->run->mmio.len = min(8u, frag->len); 13813 vcpu->run->mmio.is_write = 1; 13814 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13815 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13816 13817 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13818 13819 return 0; 13820 } 13821 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13822 13823 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13824 void *data) 13825 { 13826 int handled; 13827 struct kvm_mmio_fragment *frag; 13828 13829 if (!data) 13830 return -EINVAL; 13831 13832 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13833 if (handled == bytes) 13834 return 1; 13835 13836 bytes -= handled; 13837 gpa += handled; 13838 data += handled; 13839 13840 /*TODO: Check if need to increment number of frags */ 13841 frag = vcpu->mmio_fragments; 13842 vcpu->mmio_nr_fragments = 1; 13843 frag->len = bytes; 13844 frag->gpa = gpa; 13845 frag->data = data; 13846 13847 vcpu->mmio_needed = 1; 13848 vcpu->mmio_cur_fragment = 0; 13849 13850 vcpu->run->mmio.phys_addr = gpa; 13851 vcpu->run->mmio.len = min(8u, frag->len); 13852 vcpu->run->mmio.is_write = 0; 13853 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13854 13855 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13856 13857 return 0; 13858 } 13859 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13860 13861 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13862 { 13863 vcpu->arch.sev_pio_count -= count; 13864 vcpu->arch.sev_pio_data += count * size; 13865 } 13866 13867 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13868 unsigned int port); 13869 13870 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13871 { 13872 int size = vcpu->arch.pio.size; 13873 int port = vcpu->arch.pio.port; 13874 13875 vcpu->arch.pio.count = 0; 13876 if (vcpu->arch.sev_pio_count) 13877 return kvm_sev_es_outs(vcpu, size, port); 13878 return 1; 13879 } 13880 13881 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13882 unsigned int port) 13883 { 13884 for (;;) { 13885 unsigned int count = 13886 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13887 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13888 13889 /* memcpy done already by emulator_pio_out. */ 13890 advance_sev_es_emulated_pio(vcpu, count, size); 13891 if (!ret) 13892 break; 13893 13894 /* Emulation done by the kernel. */ 13895 if (!vcpu->arch.sev_pio_count) 13896 return 1; 13897 } 13898 13899 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13900 return 0; 13901 } 13902 13903 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13904 unsigned int port); 13905 13906 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13907 { 13908 unsigned count = vcpu->arch.pio.count; 13909 int size = vcpu->arch.pio.size; 13910 int port = vcpu->arch.pio.port; 13911 13912 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13913 advance_sev_es_emulated_pio(vcpu, count, size); 13914 if (vcpu->arch.sev_pio_count) 13915 return kvm_sev_es_ins(vcpu, size, port); 13916 return 1; 13917 } 13918 13919 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13920 unsigned int port) 13921 { 13922 for (;;) { 13923 unsigned int count = 13924 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13925 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13926 break; 13927 13928 /* Emulation done by the kernel. */ 13929 advance_sev_es_emulated_pio(vcpu, count, size); 13930 if (!vcpu->arch.sev_pio_count) 13931 return 1; 13932 } 13933 13934 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13935 return 0; 13936 } 13937 13938 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13939 unsigned int port, void *data, unsigned int count, 13940 int in) 13941 { 13942 vcpu->arch.sev_pio_data = data; 13943 vcpu->arch.sev_pio_count = count; 13944 return in ? kvm_sev_es_ins(vcpu, size, port) 13945 : kvm_sev_es_outs(vcpu, size, port); 13946 } 13947 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13948 13949 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13955 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13956 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13957 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13958 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13959 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13960 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13978 13979 static int __init kvm_x86_init(void) 13980 { 13981 kvm_mmu_x86_module_init(); 13982 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13983 return 0; 13984 } 13985 module_init(kvm_x86_init); 13986 13987 static void __exit kvm_x86_exit(void) 13988 { 13989 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); 13990 } 13991 module_exit(kvm_x86_exit); 13992