1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 struct kvm_caps kvm_caps __read_mostly = { 96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 97 }; 98 EXPORT_SYMBOL_GPL(kvm_caps); 99 100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 101 102 #define emul_to_vcpu(ctxt) \ 103 ((struct kvm_vcpu *)(ctxt)->vcpu) 104 105 /* EFER defaults: 106 * - enable syscall per default because its emulated by KVM 107 * - enable LME and LMA per default on 64 bit KVM 108 */ 109 #ifdef CONFIG_X86_64 110 static 111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 112 #else 113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 114 #endif 115 116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 117 118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 119 120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 121 122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 124 125 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 126 static void process_nmi(struct kvm_vcpu *vcpu); 127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 128 static void store_regs(struct kvm_vcpu *vcpu); 129 static int sync_regs(struct kvm_vcpu *vcpu); 130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 131 132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 134 135 static DEFINE_MUTEX(vendor_module_lock); 136 struct kvm_x86_ops kvm_x86_ops __read_mostly; 137 138 #define KVM_X86_OP(func) \ 139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 140 *(((struct kvm_x86_ops *)0)->func)); 141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 143 #include <asm/kvm-x86-ops.h> 144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 146 147 static bool __read_mostly ignore_msrs = 0; 148 module_param(ignore_msrs, bool, 0644); 149 150 bool __read_mostly report_ignored_msrs = true; 151 module_param(report_ignored_msrs, bool, 0644); 152 EXPORT_SYMBOL_GPL(report_ignored_msrs); 153 154 unsigned int min_timer_period_us = 200; 155 module_param(min_timer_period_us, uint, 0644); 156 157 static bool __read_mostly kvmclock_periodic_sync = true; 158 module_param(kvmclock_periodic_sync, bool, 0444); 159 160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 161 static u32 __read_mostly tsc_tolerance_ppm = 250; 162 module_param(tsc_tolerance_ppm, uint, 0644); 163 164 /* 165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 166 * adaptive tuning starting from default advancement of 1000ns. '0' disables 167 * advancement entirely. Any other value is used as-is and disables adaptive 168 * tuning, i.e. allows privileged userspace to set an exact advancement time. 169 */ 170 static int __read_mostly lapic_timer_advance_ns = -1; 171 module_param(lapic_timer_advance_ns, int, 0644); 172 173 static bool __read_mostly vector_hashing = true; 174 module_param(vector_hashing, bool, 0444); 175 176 bool __read_mostly enable_vmware_backdoor = false; 177 module_param(enable_vmware_backdoor, bool, 0444); 178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 179 180 /* 181 * Flags to manipulate forced emulation behavior (any non-zero value will 182 * enable forced emulation). 183 */ 184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 185 static int __read_mostly force_emulation_prefix; 186 module_param(force_emulation_prefix, int, 0644); 187 188 int __read_mostly pi_inject_timer = -1; 189 module_param(pi_inject_timer, bint, 0644); 190 191 /* Enable/disable PMU virtualization */ 192 bool __read_mostly enable_pmu = true; 193 EXPORT_SYMBOL_GPL(enable_pmu); 194 module_param(enable_pmu, bool, 0444); 195 196 bool __read_mostly eager_page_split = true; 197 module_param(eager_page_split, bool, 0644); 198 199 /* Enable/disable SMT_RSB bug mitigation */ 200 static bool __read_mostly mitigate_smt_rsb; 201 module_param(mitigate_smt_rsb, bool, 0444); 202 203 /* 204 * Restoring the host value for MSRs that are only consumed when running in 205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 206 * returns to userspace, i.e. the kernel can run with the guest's value. 207 */ 208 #define KVM_MAX_NR_USER_RETURN_MSRS 16 209 210 struct kvm_user_return_msrs { 211 struct user_return_notifier urn; 212 bool registered; 213 struct kvm_user_return_msr_values { 214 u64 host; 215 u64 curr; 216 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 217 }; 218 219 u32 __read_mostly kvm_nr_uret_msrs; 220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 222 static struct kvm_user_return_msrs __percpu *user_return_msrs; 223 224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 228 229 u64 __read_mostly host_efer; 230 EXPORT_SYMBOL_GPL(host_efer); 231 232 bool __read_mostly allow_smaller_maxphyaddr = 0; 233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 234 235 bool __read_mostly enable_apicv = true; 236 EXPORT_SYMBOL_GPL(enable_apicv); 237 238 u64 __read_mostly host_xss; 239 EXPORT_SYMBOL_GPL(host_xss); 240 241 u64 __read_mostly host_arch_capabilities; 242 EXPORT_SYMBOL_GPL(host_arch_capabilities); 243 244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 245 KVM_GENERIC_VM_STATS(), 246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 247 STATS_DESC_COUNTER(VM, mmu_pte_write), 248 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 249 STATS_DESC_COUNTER(VM, mmu_flooded), 250 STATS_DESC_COUNTER(VM, mmu_recycled), 251 STATS_DESC_COUNTER(VM, mmu_cache_miss), 252 STATS_DESC_ICOUNTER(VM, mmu_unsync), 253 STATS_DESC_ICOUNTER(VM, pages_4k), 254 STATS_DESC_ICOUNTER(VM, pages_2m), 255 STATS_DESC_ICOUNTER(VM, pages_1g), 256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 259 }; 260 261 const struct kvm_stats_header kvm_vm_stats_header = { 262 .name_size = KVM_STATS_NAME_SIZE, 263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 264 .id_offset = sizeof(struct kvm_stats_header), 265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 267 sizeof(kvm_vm_stats_desc), 268 }; 269 270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 271 KVM_GENERIC_VCPU_STATS(), 272 STATS_DESC_COUNTER(VCPU, pf_taken), 273 STATS_DESC_COUNTER(VCPU, pf_fixed), 274 STATS_DESC_COUNTER(VCPU, pf_emulate), 275 STATS_DESC_COUNTER(VCPU, pf_spurious), 276 STATS_DESC_COUNTER(VCPU, pf_fast), 277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 278 STATS_DESC_COUNTER(VCPU, pf_guest), 279 STATS_DESC_COUNTER(VCPU, tlb_flush), 280 STATS_DESC_COUNTER(VCPU, invlpg), 281 STATS_DESC_COUNTER(VCPU, exits), 282 STATS_DESC_COUNTER(VCPU, io_exits), 283 STATS_DESC_COUNTER(VCPU, mmio_exits), 284 STATS_DESC_COUNTER(VCPU, signal_exits), 285 STATS_DESC_COUNTER(VCPU, irq_window_exits), 286 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 287 STATS_DESC_COUNTER(VCPU, l1d_flush), 288 STATS_DESC_COUNTER(VCPU, halt_exits), 289 STATS_DESC_COUNTER(VCPU, request_irq_exits), 290 STATS_DESC_COUNTER(VCPU, irq_exits), 291 STATS_DESC_COUNTER(VCPU, host_state_reload), 292 STATS_DESC_COUNTER(VCPU, fpu_reload), 293 STATS_DESC_COUNTER(VCPU, insn_emulation), 294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 295 STATS_DESC_COUNTER(VCPU, hypercalls), 296 STATS_DESC_COUNTER(VCPU, irq_injections), 297 STATS_DESC_COUNTER(VCPU, nmi_injections), 298 STATS_DESC_COUNTER(VCPU, req_event), 299 STATS_DESC_COUNTER(VCPU, nested_run), 300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 301 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 302 STATS_DESC_COUNTER(VCPU, preemption_reported), 303 STATS_DESC_COUNTER(VCPU, preemption_other), 304 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 305 STATS_DESC_COUNTER(VCPU, notify_window_exits), 306 }; 307 308 const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315 }; 316 317 u64 __read_mostly host_xcr0; 318 319 static struct kmem_cache *x86_emulator_cache; 320 321 /* 322 * When called, it means the previous get/set msr reached an invalid msr. 323 * Return true if we want to ignore/silent this failed msr access. 324 */ 325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 326 { 327 const char *op = write ? "wrmsr" : "rdmsr"; 328 329 if (ignore_msrs) { 330 if (report_ignored_msrs) 331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 332 op, msr, data); 333 /* Mask the error */ 334 return true; 335 } else { 336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 337 op, msr, data); 338 return false; 339 } 340 } 341 342 static struct kmem_cache *kvm_alloc_emulator_cache(void) 343 { 344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 345 unsigned int size = sizeof(struct x86_emulate_ctxt); 346 347 return kmem_cache_create_usercopy("x86_emulator", size, 348 __alignof__(struct x86_emulate_ctxt), 349 SLAB_ACCOUNT, useroffset, 350 size - useroffset, NULL); 351 } 352 353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 354 355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 356 { 357 int i; 358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 359 vcpu->arch.apf.gfns[i] = ~0; 360 } 361 362 static void kvm_on_user_return(struct user_return_notifier *urn) 363 { 364 unsigned slot; 365 struct kvm_user_return_msrs *msrs 366 = container_of(urn, struct kvm_user_return_msrs, urn); 367 struct kvm_user_return_msr_values *values; 368 unsigned long flags; 369 370 /* 371 * Disabling irqs at this point since the following code could be 372 * interrupted and executed through kvm_arch_hardware_disable() 373 */ 374 local_irq_save(flags); 375 if (msrs->registered) { 376 msrs->registered = false; 377 user_return_notifier_unregister(urn); 378 } 379 local_irq_restore(flags); 380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 381 values = &msrs->values[slot]; 382 if (values->host != values->curr) { 383 wrmsrl(kvm_uret_msrs_list[slot], values->host); 384 values->curr = values->host; 385 } 386 } 387 } 388 389 static int kvm_probe_user_return_msr(u32 msr) 390 { 391 u64 val; 392 int ret; 393 394 preempt_disable(); 395 ret = rdmsrl_safe(msr, &val); 396 if (ret) 397 goto out; 398 ret = wrmsrl_safe(msr, val); 399 out: 400 preempt_enable(); 401 return ret; 402 } 403 404 int kvm_add_user_return_msr(u32 msr) 405 { 406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 407 408 if (kvm_probe_user_return_msr(msr)) 409 return -1; 410 411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 412 return kvm_nr_uret_msrs++; 413 } 414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 415 416 int kvm_find_user_return_msr(u32 msr) 417 { 418 int i; 419 420 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 421 if (kvm_uret_msrs_list[i] == msr) 422 return i; 423 } 424 return -1; 425 } 426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 427 428 static void kvm_user_return_msr_cpu_online(void) 429 { 430 unsigned int cpu = smp_processor_id(); 431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 432 u64 value; 433 int i; 434 435 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 436 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 437 msrs->values[i].host = value; 438 msrs->values[i].curr = value; 439 } 440 } 441 442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 443 { 444 unsigned int cpu = smp_processor_id(); 445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 446 int err; 447 448 value = (value & mask) | (msrs->values[slot].host & ~mask); 449 if (value == msrs->values[slot].curr) 450 return 0; 451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 452 if (err) 453 return 1; 454 455 msrs->values[slot].curr = value; 456 if (!msrs->registered) { 457 msrs->urn.on_user_return = kvm_on_user_return; 458 user_return_notifier_register(&msrs->urn); 459 msrs->registered = true; 460 } 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 464 465 static void drop_user_return_notifiers(void) 466 { 467 unsigned int cpu = smp_processor_id(); 468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 469 470 if (msrs->registered) 471 kvm_on_user_return(&msrs->urn); 472 } 473 474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 475 { 476 return vcpu->arch.apic_base; 477 } 478 479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 480 { 481 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 482 } 483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 484 485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 486 { 487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 491 492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 493 return 1; 494 if (!msr_info->host_initiated) { 495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 496 return 1; 497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 498 return 1; 499 } 500 501 kvm_lapic_set_base(vcpu, msr_info->data); 502 kvm_recalculate_apic_map(vcpu->kvm); 503 return 0; 504 } 505 506 /* 507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 508 * 509 * Hardware virtualization extension instructions may fault if a reboot turns 510 * off virtualization while processes are running. Usually after catching the 511 * fault we just panic; during reboot instead the instruction is ignored. 512 */ 513 noinstr void kvm_spurious_fault(void) 514 { 515 /* Fault while not rebooting. We want the trace. */ 516 BUG_ON(!kvm_rebooting); 517 } 518 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 519 520 #define EXCPT_BENIGN 0 521 #define EXCPT_CONTRIBUTORY 1 522 #define EXCPT_PF 2 523 524 static int exception_class(int vector) 525 { 526 switch (vector) { 527 case PF_VECTOR: 528 return EXCPT_PF; 529 case DE_VECTOR: 530 case TS_VECTOR: 531 case NP_VECTOR: 532 case SS_VECTOR: 533 case GP_VECTOR: 534 return EXCPT_CONTRIBUTORY; 535 default: 536 break; 537 } 538 return EXCPT_BENIGN; 539 } 540 541 #define EXCPT_FAULT 0 542 #define EXCPT_TRAP 1 543 #define EXCPT_ABORT 2 544 #define EXCPT_INTERRUPT 3 545 #define EXCPT_DB 4 546 547 static int exception_type(int vector) 548 { 549 unsigned int mask; 550 551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 552 return EXCPT_INTERRUPT; 553 554 mask = 1 << vector; 555 556 /* 557 * #DBs can be trap-like or fault-like, the caller must check other CPU 558 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 559 */ 560 if (mask & (1 << DB_VECTOR)) 561 return EXCPT_DB; 562 563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 564 return EXCPT_TRAP; 565 566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 567 return EXCPT_ABORT; 568 569 /* Reserved exceptions will result in fault */ 570 return EXCPT_FAULT; 571 } 572 573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 574 struct kvm_queued_exception *ex) 575 { 576 if (!ex->has_payload) 577 return; 578 579 switch (ex->vector) { 580 case DB_VECTOR: 581 /* 582 * "Certain debug exceptions may clear bit 0-3. The 583 * remaining contents of the DR6 register are never 584 * cleared by the processor". 585 */ 586 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 587 /* 588 * In order to reflect the #DB exception payload in guest 589 * dr6, three components need to be considered: active low 590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 591 * DR6_BS and DR6_BT) 592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 593 * In the target guest dr6: 594 * FIXED_1 bits should always be set. 595 * Active low bits should be cleared if 1-setting in payload. 596 * Active high bits should be set if 1-setting in payload. 597 * 598 * Note, the payload is compatible with the pending debug 599 * exceptions/exit qualification under VMX, that active_low bits 600 * are active high in payload. 601 * So they need to be flipped for DR6. 602 */ 603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 604 vcpu->arch.dr6 |= ex->payload; 605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 606 607 /* 608 * The #DB payload is defined as compatible with the 'pending 609 * debug exceptions' field under VMX, not DR6. While bit 12 is 610 * defined in the 'pending debug exceptions' field (enabled 611 * breakpoint), it is reserved and must be zero in DR6. 612 */ 613 vcpu->arch.dr6 &= ~BIT(12); 614 break; 615 case PF_VECTOR: 616 vcpu->arch.cr2 = ex->payload; 617 break; 618 } 619 620 ex->has_payload = false; 621 ex->payload = 0; 622 } 623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 624 625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 626 bool has_error_code, u32 error_code, 627 bool has_payload, unsigned long payload) 628 { 629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 630 631 ex->vector = vector; 632 ex->injected = false; 633 ex->pending = true; 634 ex->has_error_code = has_error_code; 635 ex->error_code = error_code; 636 ex->has_payload = has_payload; 637 ex->payload = payload; 638 } 639 640 /* Forcibly leave the nested mode in cases like a vCPU reset */ 641 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 642 { 643 kvm_x86_ops.nested_ops->leave_nested(vcpu); 644 } 645 646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 647 unsigned nr, bool has_error, u32 error_code, 648 bool has_payload, unsigned long payload, bool reinject) 649 { 650 u32 prev_nr; 651 int class1, class2; 652 653 kvm_make_request(KVM_REQ_EVENT, vcpu); 654 655 /* 656 * If the exception is destined for L2 and isn't being reinjected, 657 * morph it to a VM-Exit if L1 wants to intercept the exception. A 658 * previously injected exception is not checked because it was checked 659 * when it was original queued, and re-checking is incorrect if _L1_ 660 * injected the exception, in which case it's exempt from interception. 661 */ 662 if (!reinject && is_guest_mode(vcpu) && 663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 665 has_payload, payload); 666 return; 667 } 668 669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 670 queue: 671 if (reinject) { 672 /* 673 * On VM-Entry, an exception can be pending if and only 674 * if event injection was blocked by nested_run_pending. 675 * In that case, however, vcpu_enter_guest() requests an 676 * immediate exit, and the guest shouldn't proceed far 677 * enough to need reinjection. 678 */ 679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 680 vcpu->arch.exception.injected = true; 681 if (WARN_ON_ONCE(has_payload)) { 682 /* 683 * A reinjected event has already 684 * delivered its payload. 685 */ 686 has_payload = false; 687 payload = 0; 688 } 689 } else { 690 vcpu->arch.exception.pending = true; 691 vcpu->arch.exception.injected = false; 692 } 693 vcpu->arch.exception.has_error_code = has_error; 694 vcpu->arch.exception.vector = nr; 695 vcpu->arch.exception.error_code = error_code; 696 vcpu->arch.exception.has_payload = has_payload; 697 vcpu->arch.exception.payload = payload; 698 if (!is_guest_mode(vcpu)) 699 kvm_deliver_exception_payload(vcpu, 700 &vcpu->arch.exception); 701 return; 702 } 703 704 /* to check exception */ 705 prev_nr = vcpu->arch.exception.vector; 706 if (prev_nr == DF_VECTOR) { 707 /* triple fault -> shutdown */ 708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 709 return; 710 } 711 class1 = exception_class(prev_nr); 712 class2 = exception_class(nr); 713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 715 /* 716 * Synthesize #DF. Clear the previously injected or pending 717 * exception so as not to incorrectly trigger shutdown. 718 */ 719 vcpu->arch.exception.injected = false; 720 vcpu->arch.exception.pending = false; 721 722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 723 } else { 724 /* replace previous exception with a new one in a hope 725 that instruction re-execution will regenerate lost 726 exception */ 727 goto queue; 728 } 729 } 730 731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 734 } 735 EXPORT_SYMBOL_GPL(kvm_queue_exception); 736 737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 738 { 739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 740 } 741 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 742 743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 744 unsigned long payload) 745 { 746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 747 } 748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 749 750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 751 u32 error_code, unsigned long payload) 752 { 753 kvm_multiple_exception(vcpu, nr, true, error_code, 754 true, payload, false); 755 } 756 757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 758 { 759 if (err) 760 kvm_inject_gp(vcpu, 0); 761 else 762 return kvm_skip_emulated_instruction(vcpu); 763 764 return 1; 765 } 766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 767 768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 769 { 770 if (err) { 771 kvm_inject_gp(vcpu, 0); 772 return 1; 773 } 774 775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 776 EMULTYPE_COMPLETE_USER_EXIT); 777 } 778 779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 780 { 781 ++vcpu->stat.pf_guest; 782 783 /* 784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 785 * whether or not L1 wants to intercept "regular" #PF. 786 */ 787 if (is_guest_mode(vcpu) && fault->async_page_fault) 788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 789 true, fault->error_code, 790 true, fault->address); 791 else 792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 793 fault->address); 794 } 795 796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 797 struct x86_exception *fault) 798 { 799 struct kvm_mmu *fault_mmu; 800 WARN_ON_ONCE(fault->vector != PF_VECTOR); 801 802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 803 vcpu->arch.walk_mmu; 804 805 /* 806 * Invalidate the TLB entry for the faulting address, if it exists, 807 * else the access will fault indefinitely (and to emulate hardware). 808 */ 809 if ((fault->error_code & PFERR_PRESENT_MASK) && 810 !(fault->error_code & PFERR_RSVD_MASK)) 811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 812 KVM_MMU_ROOT_CURRENT); 813 814 fault_mmu->inject_page_fault(vcpu, fault); 815 } 816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 817 818 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 819 { 820 atomic_inc(&vcpu->arch.nmi_queued); 821 kvm_make_request(KVM_REQ_NMI, vcpu); 822 } 823 824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 827 } 828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 829 830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 831 { 832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 833 } 834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 835 836 /* 837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 838 * a #GP and return false. 839 */ 840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 841 { 842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 843 return true; 844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 845 return false; 846 } 847 848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 849 { 850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 851 return true; 852 853 kvm_queue_exception(vcpu, UD_VECTOR); 854 return false; 855 } 856 EXPORT_SYMBOL_GPL(kvm_require_dr); 857 858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 859 { 860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 861 } 862 863 /* 864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 865 */ 866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 867 { 868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 870 gpa_t real_gpa; 871 int i; 872 int ret; 873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 874 875 /* 876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 877 * to an L1 GPA. 878 */ 879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 881 if (real_gpa == INVALID_GPA) 882 return 0; 883 884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 886 cr3 & GENMASK(11, 5), sizeof(pdpte)); 887 if (ret < 0) 888 return 0; 889 890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 891 if ((pdpte[i] & PT_PRESENT_MASK) && 892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 893 return 0; 894 } 895 } 896 897 /* 898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 899 * Shadow page roots need to be reconstructed instead. 900 */ 901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 903 904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 907 vcpu->arch.pdptrs_from_userspace = false; 908 909 return 1; 910 } 911 EXPORT_SYMBOL_GPL(load_pdptrs); 912 913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 914 { 915 #ifdef CONFIG_X86_64 916 if (cr0 & 0xffffffff00000000UL) 917 return false; 918 #endif 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return false; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return false; 925 926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 927 } 928 929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 930 { 931 /* 932 * CR0.WP is incorporated into the MMU role, but only for non-nested, 933 * indirect shadow MMUs. If paging is disabled, no updates are needed 934 * as there are no permission bits to emulate. If TDP is enabled, the 935 * MMU's metadata needs to be updated, e.g. so that emulating guest 936 * translations does the right thing, but there's no need to unload the 937 * root as CR0.WP doesn't affect SPTEs. 938 */ 939 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 940 if (!(cr0 & X86_CR0_PG)) 941 return; 942 943 if (tdp_enabled) { 944 kvm_init_mmu(vcpu); 945 return; 946 } 947 } 948 949 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 950 kvm_clear_async_pf_completion_queue(vcpu); 951 kvm_async_pf_hash_reset(vcpu); 952 953 /* 954 * Clearing CR0.PG is defined to flush the TLB from the guest's 955 * perspective. 956 */ 957 if (!(cr0 & X86_CR0_PG)) 958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 959 } 960 961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 962 kvm_mmu_reset_context(vcpu); 963 964 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 965 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) && 966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 968 } 969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 970 971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 972 { 973 unsigned long old_cr0 = kvm_read_cr0(vcpu); 974 975 if (!kvm_is_valid_cr0(vcpu, cr0)) 976 return 1; 977 978 cr0 |= X86_CR0_ET; 979 980 /* Write to CR0 reserved bits are ignored, even on Intel. */ 981 cr0 &= ~CR0_RESERVED_BITS; 982 983 #ifdef CONFIG_X86_64 984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 985 (cr0 & X86_CR0_PG)) { 986 int cs_db, cs_l; 987 988 if (!is_pae(vcpu)) 989 return 1; 990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 991 if (cs_l) 992 return 1; 993 } 994 #endif 995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if (!(cr0 & X86_CR0_PG) && 1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1002 return 1; 1003 1004 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1005 1006 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1007 1008 return 0; 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1011 1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1013 { 1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1015 } 1016 EXPORT_SYMBOL_GPL(kvm_lmsw); 1017 1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1019 { 1020 if (vcpu->arch.guest_state_protected) 1021 return; 1022 1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1027 1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1031 } 1032 1033 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1034 vcpu->arch.pkru != vcpu->arch.host_pkru && 1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1037 write_pkru(vcpu->arch.pkru); 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1040 1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1042 { 1043 if (vcpu->arch.guest_state_protected) 1044 return; 1045 1046 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1049 vcpu->arch.pkru = rdpkru(); 1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1051 write_pkru(vcpu->arch.host_pkru); 1052 } 1053 1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1055 1056 if (vcpu->arch.xcr0 != host_xcr0) 1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1058 1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1060 vcpu->arch.ia32_xss != host_xss) 1061 wrmsrl(MSR_IA32_XSS, host_xss); 1062 } 1063 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1066 1067 #ifdef CONFIG_X86_64 1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1069 { 1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1071 } 1072 #endif 1073 1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1075 { 1076 u64 xcr0 = xcr; 1077 u64 old_xcr0 = vcpu->arch.xcr0; 1078 u64 valid_bits; 1079 1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1081 if (index != XCR_XFEATURE_ENABLED_MASK) 1082 return 1; 1083 if (!(xcr0 & XFEATURE_MASK_FP)) 1084 return 1; 1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1086 return 1; 1087 1088 /* 1089 * Do not allow the guest to set bits that we do not support 1090 * saving. However, xcr0 bit 0 is always set, even if the 1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1092 */ 1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1094 if (xcr0 & ~valid_bits) 1095 return 1; 1096 1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1098 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1099 return 1; 1100 1101 if (xcr0 & XFEATURE_MASK_AVX512) { 1102 if (!(xcr0 & XFEATURE_MASK_YMM)) 1103 return 1; 1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1105 return 1; 1106 } 1107 1108 if ((xcr0 & XFEATURE_MASK_XTILE) && 1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1110 return 1; 1111 1112 vcpu->arch.xcr0 = xcr0; 1113 1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1115 kvm_update_cpuid_runtime(vcpu); 1116 return 0; 1117 } 1118 1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1120 { 1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 1128 return kvm_skip_emulated_instruction(vcpu); 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1131 1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1133 { 1134 if (cr4 & cr4_reserved_bits) 1135 return false; 1136 1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1138 return false; 1139 1140 return true; 1141 } 1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1143 1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1145 { 1146 return __kvm_is_valid_cr4(vcpu, cr4) && 1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1148 } 1149 1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1151 { 1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1153 kvm_mmu_reset_context(vcpu); 1154 1155 /* 1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1157 * according to the SDM; however, stale prev_roots could be reused 1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1161 * so fall through. 1162 */ 1163 if (!tdp_enabled && 1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1165 kvm_mmu_unload(vcpu); 1166 1167 /* 1168 * The TLB has to be flushed for all PCIDs if any of the following 1169 * (architecturally required) changes happen: 1170 * - CR4.PCIDE is changed from 1 to 0 1171 * - CR4.PGE is toggled 1172 * 1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1174 */ 1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1178 1179 /* 1180 * The TLB has to be flushed for the current PCID if any of the 1181 * following (architecturally required) changes happen: 1182 * - CR4.SMEP is changed from 0 to 1 1183 * - CR4.PAE is toggled 1184 */ 1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1188 1189 } 1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1191 1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1193 { 1194 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1195 1196 if (!kvm_is_valid_cr4(vcpu, cr4)) 1197 return 1; 1198 1199 if (is_long_mode(vcpu)) { 1200 if (!(cr4 & X86_CR4_PAE)) 1201 return 1; 1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1203 return 1; 1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1207 return 1; 1208 1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1212 return 1; 1213 } 1214 1215 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1216 1217 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1222 1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1224 { 1225 struct kvm_mmu *mmu = vcpu->arch.mmu; 1226 unsigned long roots_to_free = 0; 1227 int i; 1228 1229 /* 1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1232 * also via the emulator. KVM's TDP page tables are not in the scope of 1233 * the invalidation, but the guest's TLB entries need to be flushed as 1234 * the CPU may have cached entries in its TLB for the target PCID. 1235 */ 1236 if (unlikely(tdp_enabled)) { 1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1238 return; 1239 } 1240 1241 /* 1242 * If neither the current CR3 nor any of the prev_roots use the given 1243 * PCID, then nothing needs to be done here because a resync will 1244 * happen anyway before switching to any other CR3. 1245 */ 1246 if (kvm_get_active_pcid(vcpu) == pcid) { 1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1249 } 1250 1251 /* 1252 * If PCID is disabled, there is no need to free prev_roots even if the 1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1254 * with PCIDE=0. 1255 */ 1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1257 return; 1258 1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1262 1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1264 } 1265 1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1267 { 1268 bool skip_tlb_flush = false; 1269 unsigned long pcid = 0; 1270 #ifdef CONFIG_X86_64 1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1273 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1274 pcid = cr3 & X86_CR3_PCID_MASK; 1275 } 1276 #endif 1277 1278 /* PDPTRs are always reloaded for PAE paging. */ 1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1280 goto handle_tlb_flush; 1281 1282 /* 1283 * Do not condition the GPA check on long mode, this helper is used to 1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1285 * the current vCPU mode is accurate. 1286 */ 1287 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1288 return 1; 1289 1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1291 return 1; 1292 1293 if (cr3 != kvm_read_cr3(vcpu)) 1294 kvm_mmu_new_pgd(vcpu, cr3); 1295 1296 vcpu->arch.cr3 = cr3; 1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1299 1300 handle_tlb_flush: 1301 /* 1302 * A load of CR3 that flushes the TLB flushes only the current PCID, 1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1304 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1305 * and it's impossible to use a non-zero PCID when PCID is disabled, 1306 * i.e. only PCID=0 can be relevant. 1307 */ 1308 if (!skip_tlb_flush) 1309 kvm_invalidate_pcid(vcpu, pcid); 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1314 1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1316 { 1317 if (cr8 & CR8_RESERVED_BITS) 1318 return 1; 1319 if (lapic_in_kernel(vcpu)) 1320 kvm_lapic_set_tpr(vcpu, cr8); 1321 else 1322 vcpu->arch.cr8 = cr8; 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1326 1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1328 { 1329 if (lapic_in_kernel(vcpu)) 1330 return kvm_lapic_get_cr8(vcpu); 1331 else 1332 return vcpu->arch.cr8; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1335 1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1337 { 1338 int i; 1339 1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1341 for (i = 0; i < KVM_NR_DB_REGS; i++) 1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1343 } 1344 } 1345 1346 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1347 { 1348 unsigned long dr7; 1349 1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1351 dr7 = vcpu->arch.guest_debug_dr7; 1352 else 1353 dr7 = vcpu->arch.dr7; 1354 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1356 if (dr7 & DR7_BP_EN_MASK) 1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1358 } 1359 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1360 1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1362 { 1363 u64 fixed = DR6_FIXED_1; 1364 1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1366 fixed |= DR6_RTM; 1367 1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1369 fixed |= DR6_BUS_LOCK; 1370 return fixed; 1371 } 1372 1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1374 { 1375 size_t size = ARRAY_SIZE(vcpu->arch.db); 1376 1377 switch (dr) { 1378 case 0 ... 3: 1379 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1381 vcpu->arch.eff_db[dr] = val; 1382 break; 1383 case 4: 1384 case 6: 1385 if (!kvm_dr6_valid(val)) 1386 return 1; /* #GP */ 1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1388 break; 1389 case 5: 1390 default: /* 7 */ 1391 if (!kvm_dr7_valid(val)) 1392 return 1; /* #GP */ 1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1394 kvm_update_dr7(vcpu); 1395 break; 1396 } 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_set_dr); 1401 1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1403 { 1404 size_t size = ARRAY_SIZE(vcpu->arch.db); 1405 1406 switch (dr) { 1407 case 0 ... 3: 1408 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1409 break; 1410 case 4: 1411 case 6: 1412 *val = vcpu->arch.dr6; 1413 break; 1414 case 5: 1415 default: /* 7 */ 1416 *val = vcpu->arch.dr7; 1417 break; 1418 } 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_get_dr); 1421 1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1423 { 1424 u32 ecx = kvm_rcx_read(vcpu); 1425 u64 data; 1426 1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1428 kvm_inject_gp(vcpu, 0); 1429 return 1; 1430 } 1431 1432 kvm_rax_write(vcpu, (u32)data); 1433 kvm_rdx_write(vcpu, data >> 32); 1434 return kvm_skip_emulated_instruction(vcpu); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1437 1438 /* 1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1443 * MSRs that KVM emulates without strictly requiring host support. 1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1446 * msrs_to_save and emulated_msrs. 1447 */ 1448 1449 static const u32 msrs_to_save_base[] = { 1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1451 MSR_STAR, 1452 #ifdef CONFIG_X86_64 1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1454 #endif 1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1464 MSR_IA32_UMWAIT_CONTROL, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static const u32 msrs_to_save_pmu[] = { 1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1475 1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1485 1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1488 1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1494 1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1498 }; 1499 1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1501 ARRAY_SIZE(msrs_to_save_pmu)]; 1502 static unsigned num_msrs_to_save; 1503 1504 static const u32 emulated_msrs_all[] = { 1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1507 1508 #ifdef CONFIG_KVM_HYPERV 1509 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1510 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1511 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1512 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1513 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1514 HV_X64_MSR_RESET, 1515 HV_X64_MSR_VP_INDEX, 1516 HV_X64_MSR_VP_RUNTIME, 1517 HV_X64_MSR_SCONTROL, 1518 HV_X64_MSR_STIMER0_CONFIG, 1519 HV_X64_MSR_VP_ASSIST_PAGE, 1520 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1521 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1522 HV_X64_MSR_SYNDBG_OPTIONS, 1523 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1524 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1525 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1526 #endif 1527 1528 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1529 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1530 1531 MSR_IA32_TSC_ADJUST, 1532 MSR_IA32_TSC_DEADLINE, 1533 MSR_IA32_ARCH_CAPABILITIES, 1534 MSR_IA32_PERF_CAPABILITIES, 1535 MSR_IA32_MISC_ENABLE, 1536 MSR_IA32_MCG_STATUS, 1537 MSR_IA32_MCG_CTL, 1538 MSR_IA32_MCG_EXT_CTL, 1539 MSR_IA32_SMBASE, 1540 MSR_SMI_COUNT, 1541 MSR_PLATFORM_INFO, 1542 MSR_MISC_FEATURES_ENABLES, 1543 MSR_AMD64_VIRT_SPEC_CTRL, 1544 MSR_AMD64_TSC_RATIO, 1545 MSR_IA32_POWER_CTL, 1546 MSR_IA32_UCODE_REV, 1547 1548 /* 1549 * KVM always supports the "true" VMX control MSRs, even if the host 1550 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1551 * doesn't strictly require them to exist in the host (ignoring that 1552 * KVM would refuse to load in the first place if the core set of MSRs 1553 * aren't supported). 1554 */ 1555 MSR_IA32_VMX_BASIC, 1556 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1557 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1558 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1559 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1560 MSR_IA32_VMX_MISC, 1561 MSR_IA32_VMX_CR0_FIXED0, 1562 MSR_IA32_VMX_CR4_FIXED0, 1563 MSR_IA32_VMX_VMCS_ENUM, 1564 MSR_IA32_VMX_PROCBASED_CTLS2, 1565 MSR_IA32_VMX_EPT_VPID_CAP, 1566 MSR_IA32_VMX_VMFUNC, 1567 1568 MSR_K7_HWCR, 1569 MSR_KVM_POLL_CONTROL, 1570 }; 1571 1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1573 static unsigned num_emulated_msrs; 1574 1575 /* 1576 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1577 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1578 * feature MSRs, but are handled separately to allow expedited lookups. 1579 */ 1580 static const u32 msr_based_features_all_except_vmx[] = { 1581 MSR_AMD64_DE_CFG, 1582 MSR_IA32_UCODE_REV, 1583 MSR_IA32_ARCH_CAPABILITIES, 1584 MSR_IA32_PERF_CAPABILITIES, 1585 }; 1586 1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1588 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1589 static unsigned int num_msr_based_features; 1590 1591 /* 1592 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1593 * patch, are immutable once the vCPU model is defined. 1594 */ 1595 static bool kvm_is_immutable_feature_msr(u32 msr) 1596 { 1597 int i; 1598 1599 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1600 return true; 1601 1602 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1603 if (msr == msr_based_features_all_except_vmx[i]) 1604 return msr != MSR_IA32_UCODE_REV; 1605 } 1606 1607 return false; 1608 } 1609 1610 /* 1611 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1612 * does not yet virtualize. These include: 1613 * 10 - MISC_PACKAGE_CTRLS 1614 * 11 - ENERGY_FILTERING_CTL 1615 * 12 - DOITM 1616 * 18 - FB_CLEAR_CTRL 1617 * 21 - XAPIC_DISABLE_STATUS 1618 * 23 - OVERCLOCKING_STATUS 1619 */ 1620 1621 #define KVM_SUPPORTED_ARCH_CAP \ 1622 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1623 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1624 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1625 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1626 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO) 1627 1628 static u64 kvm_get_arch_capabilities(void) 1629 { 1630 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1631 1632 /* 1633 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1634 * the nested hypervisor runs with NX huge pages. If it is not, 1635 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1636 * L1 guests, so it need not worry about its own (L2) guests. 1637 */ 1638 data |= ARCH_CAP_PSCHANGE_MC_NO; 1639 1640 /* 1641 * If we're doing cache flushes (either "always" or "cond") 1642 * we will do one whenever the guest does a vmlaunch/vmresume. 1643 * If an outer hypervisor is doing the cache flush for us 1644 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1645 * capability to the guest too, and if EPT is disabled we're not 1646 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1647 * require a nested hypervisor to do a flush of its own. 1648 */ 1649 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1650 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1651 1652 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1653 data |= ARCH_CAP_RDCL_NO; 1654 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1655 data |= ARCH_CAP_SSB_NO; 1656 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1657 data |= ARCH_CAP_MDS_NO; 1658 1659 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1660 /* 1661 * If RTM=0 because the kernel has disabled TSX, the host might 1662 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1663 * and therefore knows that there cannot be TAA) but keep 1664 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1665 * and we want to allow migrating those guests to tsx=off hosts. 1666 */ 1667 data &= ~ARCH_CAP_TAA_NO; 1668 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1669 data |= ARCH_CAP_TAA_NO; 1670 } else { 1671 /* 1672 * Nothing to do here; we emulate TSX_CTRL if present on the 1673 * host so the guest can choose between disabling TSX or 1674 * using VERW to clear CPU buffers. 1675 */ 1676 } 1677 1678 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1679 data |= ARCH_CAP_GDS_NO; 1680 1681 return data; 1682 } 1683 1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1685 { 1686 switch (msr->index) { 1687 case MSR_IA32_ARCH_CAPABILITIES: 1688 msr->data = kvm_get_arch_capabilities(); 1689 break; 1690 case MSR_IA32_PERF_CAPABILITIES: 1691 msr->data = kvm_caps.supported_perf_cap; 1692 break; 1693 case MSR_IA32_UCODE_REV: 1694 rdmsrl_safe(msr->index, &msr->data); 1695 break; 1696 default: 1697 return static_call(kvm_x86_get_msr_feature)(msr); 1698 } 1699 return 0; 1700 } 1701 1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1703 { 1704 struct kvm_msr_entry msr; 1705 int r; 1706 1707 /* Unconditionally clear the output for simplicity */ 1708 msr.data = 0; 1709 msr.index = index; 1710 r = kvm_get_msr_feature(&msr); 1711 1712 if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false)) 1713 r = 0; 1714 1715 *data = msr.data; 1716 1717 return r; 1718 } 1719 1720 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1721 { 1722 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1723 return false; 1724 1725 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1726 return false; 1727 1728 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1729 return false; 1730 1731 if (efer & (EFER_LME | EFER_LMA) && 1732 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1733 return false; 1734 1735 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1736 return false; 1737 1738 return true; 1739 1740 } 1741 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1742 { 1743 if (efer & efer_reserved_bits) 1744 return false; 1745 1746 return __kvm_valid_efer(vcpu, efer); 1747 } 1748 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1749 1750 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1751 { 1752 u64 old_efer = vcpu->arch.efer; 1753 u64 efer = msr_info->data; 1754 int r; 1755 1756 if (efer & efer_reserved_bits) 1757 return 1; 1758 1759 if (!msr_info->host_initiated) { 1760 if (!__kvm_valid_efer(vcpu, efer)) 1761 return 1; 1762 1763 if (is_paging(vcpu) && 1764 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1765 return 1; 1766 } 1767 1768 efer &= ~EFER_LMA; 1769 efer |= vcpu->arch.efer & EFER_LMA; 1770 1771 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1772 if (r) { 1773 WARN_ON(r > 0); 1774 return r; 1775 } 1776 1777 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1778 kvm_mmu_reset_context(vcpu); 1779 1780 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1781 (efer & EFER_SVME)) 1782 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1783 1784 return 0; 1785 } 1786 1787 void kvm_enable_efer_bits(u64 mask) 1788 { 1789 efer_reserved_bits &= ~mask; 1790 } 1791 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1792 1793 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1794 { 1795 struct kvm_x86_msr_filter *msr_filter; 1796 struct msr_bitmap_range *ranges; 1797 struct kvm *kvm = vcpu->kvm; 1798 bool allowed; 1799 int idx; 1800 u32 i; 1801 1802 /* x2APIC MSRs do not support filtering. */ 1803 if (index >= 0x800 && index <= 0x8ff) 1804 return true; 1805 1806 idx = srcu_read_lock(&kvm->srcu); 1807 1808 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1809 if (!msr_filter) { 1810 allowed = true; 1811 goto out; 1812 } 1813 1814 allowed = msr_filter->default_allow; 1815 ranges = msr_filter->ranges; 1816 1817 for (i = 0; i < msr_filter->count; i++) { 1818 u32 start = ranges[i].base; 1819 u32 end = start + ranges[i].nmsrs; 1820 u32 flags = ranges[i].flags; 1821 unsigned long *bitmap = ranges[i].bitmap; 1822 1823 if ((index >= start) && (index < end) && (flags & type)) { 1824 allowed = test_bit(index - start, bitmap); 1825 break; 1826 } 1827 } 1828 1829 out: 1830 srcu_read_unlock(&kvm->srcu, idx); 1831 1832 return allowed; 1833 } 1834 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1835 1836 /* 1837 * Write @data into the MSR specified by @index. Select MSR specific fault 1838 * checks are bypassed if @host_initiated is %true. 1839 * Returns 0 on success, non-0 otherwise. 1840 * Assumes vcpu_load() was already called. 1841 */ 1842 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1843 bool host_initiated) 1844 { 1845 struct msr_data msr; 1846 1847 switch (index) { 1848 case MSR_FS_BASE: 1849 case MSR_GS_BASE: 1850 case MSR_KERNEL_GS_BASE: 1851 case MSR_CSTAR: 1852 case MSR_LSTAR: 1853 if (is_noncanonical_address(data, vcpu)) 1854 return 1; 1855 break; 1856 case MSR_IA32_SYSENTER_EIP: 1857 case MSR_IA32_SYSENTER_ESP: 1858 /* 1859 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1860 * non-canonical address is written on Intel but not on 1861 * AMD (which ignores the top 32-bits, because it does 1862 * not implement 64-bit SYSENTER). 1863 * 1864 * 64-bit code should hence be able to write a non-canonical 1865 * value on AMD. Making the address canonical ensures that 1866 * vmentry does not fail on Intel after writing a non-canonical 1867 * value, and that something deterministic happens if the guest 1868 * invokes 64-bit SYSENTER. 1869 */ 1870 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1871 break; 1872 case MSR_TSC_AUX: 1873 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1874 return 1; 1875 1876 if (!host_initiated && 1877 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1878 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1879 return 1; 1880 1881 /* 1882 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1883 * incomplete and conflicting architectural behavior. Current 1884 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1885 * reserved and always read as zeros. Enforce Intel's reserved 1886 * bits check if and only if the guest CPU is Intel, and clear 1887 * the bits in all other cases. This ensures cross-vendor 1888 * migration will provide consistent behavior for the guest. 1889 */ 1890 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1891 return 1; 1892 1893 data = (u32)data; 1894 break; 1895 } 1896 1897 msr.data = data; 1898 msr.index = index; 1899 msr.host_initiated = host_initiated; 1900 1901 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1902 } 1903 1904 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1905 u32 index, u64 data, bool host_initiated) 1906 { 1907 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1908 1909 if (ret == KVM_MSR_RET_INVALID) 1910 if (kvm_msr_ignored_check(index, data, true)) 1911 ret = 0; 1912 1913 return ret; 1914 } 1915 1916 /* 1917 * Read the MSR specified by @index into @data. Select MSR specific fault 1918 * checks are bypassed if @host_initiated is %true. 1919 * Returns 0 on success, non-0 otherwise. 1920 * Assumes vcpu_load() was already called. 1921 */ 1922 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1923 bool host_initiated) 1924 { 1925 struct msr_data msr; 1926 int ret; 1927 1928 switch (index) { 1929 case MSR_TSC_AUX: 1930 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1931 return 1; 1932 1933 if (!host_initiated && 1934 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1935 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1936 return 1; 1937 break; 1938 } 1939 1940 msr.index = index; 1941 msr.host_initiated = host_initiated; 1942 1943 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1944 if (!ret) 1945 *data = msr.data; 1946 return ret; 1947 } 1948 1949 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1950 u32 index, u64 *data, bool host_initiated) 1951 { 1952 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1953 1954 if (ret == KVM_MSR_RET_INVALID) { 1955 /* Unconditionally clear *data for simplicity */ 1956 *data = 0; 1957 if (kvm_msr_ignored_check(index, 0, false)) 1958 ret = 0; 1959 } 1960 1961 return ret; 1962 } 1963 1964 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1965 { 1966 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1967 return KVM_MSR_RET_FILTERED; 1968 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1969 } 1970 1971 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1972 { 1973 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1974 return KVM_MSR_RET_FILTERED; 1975 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1976 } 1977 1978 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1979 { 1980 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1981 } 1982 EXPORT_SYMBOL_GPL(kvm_get_msr); 1983 1984 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1985 { 1986 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1987 } 1988 EXPORT_SYMBOL_GPL(kvm_set_msr); 1989 1990 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1991 { 1992 if (!vcpu->run->msr.error) { 1993 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1994 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1995 } 1996 } 1997 1998 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1999 { 2000 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2001 } 2002 2003 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2004 { 2005 complete_userspace_rdmsr(vcpu); 2006 return complete_emulated_msr_access(vcpu); 2007 } 2008 2009 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2010 { 2011 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2012 } 2013 2014 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2015 { 2016 complete_userspace_rdmsr(vcpu); 2017 return complete_fast_msr_access(vcpu); 2018 } 2019 2020 static u64 kvm_msr_reason(int r) 2021 { 2022 switch (r) { 2023 case KVM_MSR_RET_INVALID: 2024 return KVM_MSR_EXIT_REASON_UNKNOWN; 2025 case KVM_MSR_RET_FILTERED: 2026 return KVM_MSR_EXIT_REASON_FILTER; 2027 default: 2028 return KVM_MSR_EXIT_REASON_INVAL; 2029 } 2030 } 2031 2032 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2033 u32 exit_reason, u64 data, 2034 int (*completion)(struct kvm_vcpu *vcpu), 2035 int r) 2036 { 2037 u64 msr_reason = kvm_msr_reason(r); 2038 2039 /* Check if the user wanted to know about this MSR fault */ 2040 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2041 return 0; 2042 2043 vcpu->run->exit_reason = exit_reason; 2044 vcpu->run->msr.error = 0; 2045 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2046 vcpu->run->msr.reason = msr_reason; 2047 vcpu->run->msr.index = index; 2048 vcpu->run->msr.data = data; 2049 vcpu->arch.complete_userspace_io = completion; 2050 2051 return 1; 2052 } 2053 2054 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2055 { 2056 u32 ecx = kvm_rcx_read(vcpu); 2057 u64 data; 2058 int r; 2059 2060 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2061 2062 if (!r) { 2063 trace_kvm_msr_read(ecx, data); 2064 2065 kvm_rax_write(vcpu, data & -1u); 2066 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2067 } else { 2068 /* MSR read failed? See if we should ask user space */ 2069 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2070 complete_fast_rdmsr, r)) 2071 return 0; 2072 trace_kvm_msr_read_ex(ecx); 2073 } 2074 2075 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2076 } 2077 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2078 2079 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2080 { 2081 u32 ecx = kvm_rcx_read(vcpu); 2082 u64 data = kvm_read_edx_eax(vcpu); 2083 int r; 2084 2085 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2086 2087 if (!r) { 2088 trace_kvm_msr_write(ecx, data); 2089 } else { 2090 /* MSR write failed? See if we should ask user space */ 2091 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2092 complete_fast_msr_access, r)) 2093 return 0; 2094 /* Signal all other negative errors to userspace */ 2095 if (r < 0) 2096 return r; 2097 trace_kvm_msr_write_ex(ecx, data); 2098 } 2099 2100 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2101 } 2102 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2103 2104 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2105 { 2106 return kvm_skip_emulated_instruction(vcpu); 2107 } 2108 2109 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2110 { 2111 /* Treat an INVD instruction as a NOP and just skip it. */ 2112 return kvm_emulate_as_nop(vcpu); 2113 } 2114 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2115 2116 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2117 { 2118 kvm_queue_exception(vcpu, UD_VECTOR); 2119 return 1; 2120 } 2121 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2122 2123 2124 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2125 { 2126 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2127 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2128 return kvm_handle_invalid_op(vcpu); 2129 2130 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2131 return kvm_emulate_as_nop(vcpu); 2132 } 2133 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2134 { 2135 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2136 } 2137 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2138 2139 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2140 { 2141 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2142 } 2143 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2144 2145 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2146 { 2147 xfer_to_guest_mode_prepare(); 2148 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2149 xfer_to_guest_mode_work_pending(); 2150 } 2151 2152 /* 2153 * The fast path for frequent and performance sensitive wrmsr emulation, 2154 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2155 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2156 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2157 * other cases which must be called after interrupts are enabled on the host. 2158 */ 2159 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2160 { 2161 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2162 return 1; 2163 2164 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2165 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2166 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2167 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2168 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2169 2170 return 1; 2171 } 2172 2173 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2174 { 2175 if (!kvm_can_use_hv_timer(vcpu)) 2176 return 1; 2177 2178 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2179 return 0; 2180 } 2181 2182 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2183 { 2184 u32 msr = kvm_rcx_read(vcpu); 2185 u64 data; 2186 fastpath_t ret = EXIT_FASTPATH_NONE; 2187 2188 kvm_vcpu_srcu_read_lock(vcpu); 2189 2190 switch (msr) { 2191 case APIC_BASE_MSR + (APIC_ICR >> 4): 2192 data = kvm_read_edx_eax(vcpu); 2193 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2194 kvm_skip_emulated_instruction(vcpu); 2195 ret = EXIT_FASTPATH_EXIT_HANDLED; 2196 } 2197 break; 2198 case MSR_IA32_TSC_DEADLINE: 2199 data = kvm_read_edx_eax(vcpu); 2200 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2201 kvm_skip_emulated_instruction(vcpu); 2202 ret = EXIT_FASTPATH_REENTER_GUEST; 2203 } 2204 break; 2205 default: 2206 break; 2207 } 2208 2209 if (ret != EXIT_FASTPATH_NONE) 2210 trace_kvm_msr_write(msr, data); 2211 2212 kvm_vcpu_srcu_read_unlock(vcpu); 2213 2214 return ret; 2215 } 2216 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2217 2218 /* 2219 * Adapt set_msr() to msr_io()'s calling convention 2220 */ 2221 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2222 { 2223 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2224 } 2225 2226 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2227 { 2228 u64 val; 2229 2230 /* 2231 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2232 * not support modifying the guest vCPU model on the fly, e.g. changing 2233 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2234 * writes of the same value, e.g. to allow userspace to blindly stuff 2235 * all MSRs when emulating RESET. 2236 */ 2237 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2238 if (do_get_msr(vcpu, index, &val) || *data != val) 2239 return -EINVAL; 2240 2241 return 0; 2242 } 2243 2244 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2245 } 2246 2247 #ifdef CONFIG_X86_64 2248 struct pvclock_clock { 2249 int vclock_mode; 2250 u64 cycle_last; 2251 u64 mask; 2252 u32 mult; 2253 u32 shift; 2254 u64 base_cycles; 2255 u64 offset; 2256 }; 2257 2258 struct pvclock_gtod_data { 2259 seqcount_t seq; 2260 2261 struct pvclock_clock clock; /* extract of a clocksource struct */ 2262 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2263 2264 ktime_t offs_boot; 2265 u64 wall_time_sec; 2266 }; 2267 2268 static struct pvclock_gtod_data pvclock_gtod_data; 2269 2270 static void update_pvclock_gtod(struct timekeeper *tk) 2271 { 2272 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2273 2274 write_seqcount_begin(&vdata->seq); 2275 2276 /* copy pvclock gtod data */ 2277 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2278 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2279 vdata->clock.mask = tk->tkr_mono.mask; 2280 vdata->clock.mult = tk->tkr_mono.mult; 2281 vdata->clock.shift = tk->tkr_mono.shift; 2282 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2283 vdata->clock.offset = tk->tkr_mono.base; 2284 2285 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2286 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2287 vdata->raw_clock.mask = tk->tkr_raw.mask; 2288 vdata->raw_clock.mult = tk->tkr_raw.mult; 2289 vdata->raw_clock.shift = tk->tkr_raw.shift; 2290 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2291 vdata->raw_clock.offset = tk->tkr_raw.base; 2292 2293 vdata->wall_time_sec = tk->xtime_sec; 2294 2295 vdata->offs_boot = tk->offs_boot; 2296 2297 write_seqcount_end(&vdata->seq); 2298 } 2299 2300 static s64 get_kvmclock_base_ns(void) 2301 { 2302 /* Count up from boot time, but with the frequency of the raw clock. */ 2303 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2304 } 2305 #else 2306 static s64 get_kvmclock_base_ns(void) 2307 { 2308 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2309 return ktime_get_boottime_ns(); 2310 } 2311 #endif 2312 2313 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2314 { 2315 int version; 2316 int r; 2317 struct pvclock_wall_clock wc; 2318 u32 wc_sec_hi; 2319 u64 wall_nsec; 2320 2321 if (!wall_clock) 2322 return; 2323 2324 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2325 if (r) 2326 return; 2327 2328 if (version & 1) 2329 ++version; /* first time write, random junk */ 2330 2331 ++version; 2332 2333 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2334 return; 2335 2336 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2337 2338 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2339 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2340 wc.version = version; 2341 2342 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2343 2344 if (sec_hi_ofs) { 2345 wc_sec_hi = wall_nsec >> 32; 2346 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2347 &wc_sec_hi, sizeof(wc_sec_hi)); 2348 } 2349 2350 version++; 2351 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2352 } 2353 2354 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2355 bool old_msr, bool host_initiated) 2356 { 2357 struct kvm_arch *ka = &vcpu->kvm->arch; 2358 2359 if (vcpu->vcpu_id == 0 && !host_initiated) { 2360 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2361 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2362 2363 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2364 } 2365 2366 vcpu->arch.time = system_time; 2367 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2368 2369 /* we verify if the enable bit is set... */ 2370 if (system_time & 1) 2371 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2372 sizeof(struct pvclock_vcpu_time_info)); 2373 else 2374 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2375 2376 return; 2377 } 2378 2379 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2380 { 2381 do_shl32_div32(dividend, divisor); 2382 return dividend; 2383 } 2384 2385 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2386 s8 *pshift, u32 *pmultiplier) 2387 { 2388 uint64_t scaled64; 2389 int32_t shift = 0; 2390 uint64_t tps64; 2391 uint32_t tps32; 2392 2393 tps64 = base_hz; 2394 scaled64 = scaled_hz; 2395 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2396 tps64 >>= 1; 2397 shift--; 2398 } 2399 2400 tps32 = (uint32_t)tps64; 2401 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2402 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2403 scaled64 >>= 1; 2404 else 2405 tps32 <<= 1; 2406 shift++; 2407 } 2408 2409 *pshift = shift; 2410 *pmultiplier = div_frac(scaled64, tps32); 2411 } 2412 2413 #ifdef CONFIG_X86_64 2414 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2415 #endif 2416 2417 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2418 static unsigned long max_tsc_khz; 2419 2420 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2421 { 2422 u64 v = (u64)khz * (1000000 + ppm); 2423 do_div(v, 1000000); 2424 return v; 2425 } 2426 2427 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2428 2429 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2430 { 2431 u64 ratio; 2432 2433 /* Guest TSC same frequency as host TSC? */ 2434 if (!scale) { 2435 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2436 return 0; 2437 } 2438 2439 /* TSC scaling supported? */ 2440 if (!kvm_caps.has_tsc_control) { 2441 if (user_tsc_khz > tsc_khz) { 2442 vcpu->arch.tsc_catchup = 1; 2443 vcpu->arch.tsc_always_catchup = 1; 2444 return 0; 2445 } else { 2446 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2447 return -1; 2448 } 2449 } 2450 2451 /* TSC scaling required - calculate ratio */ 2452 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2453 user_tsc_khz, tsc_khz); 2454 2455 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2456 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2457 user_tsc_khz); 2458 return -1; 2459 } 2460 2461 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2462 return 0; 2463 } 2464 2465 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2466 { 2467 u32 thresh_lo, thresh_hi; 2468 int use_scaling = 0; 2469 2470 /* tsc_khz can be zero if TSC calibration fails */ 2471 if (user_tsc_khz == 0) { 2472 /* set tsc_scaling_ratio to a safe value */ 2473 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2474 return -1; 2475 } 2476 2477 /* Compute a scale to convert nanoseconds in TSC cycles */ 2478 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2479 &vcpu->arch.virtual_tsc_shift, 2480 &vcpu->arch.virtual_tsc_mult); 2481 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2482 2483 /* 2484 * Compute the variation in TSC rate which is acceptable 2485 * within the range of tolerance and decide if the 2486 * rate being applied is within that bounds of the hardware 2487 * rate. If so, no scaling or compensation need be done. 2488 */ 2489 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2490 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2491 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2492 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2493 user_tsc_khz, thresh_lo, thresh_hi); 2494 use_scaling = 1; 2495 } 2496 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2497 } 2498 2499 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2500 { 2501 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2502 vcpu->arch.virtual_tsc_mult, 2503 vcpu->arch.virtual_tsc_shift); 2504 tsc += vcpu->arch.this_tsc_write; 2505 return tsc; 2506 } 2507 2508 #ifdef CONFIG_X86_64 2509 static inline bool gtod_is_based_on_tsc(int mode) 2510 { 2511 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2512 } 2513 #endif 2514 2515 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2516 { 2517 #ifdef CONFIG_X86_64 2518 struct kvm_arch *ka = &vcpu->kvm->arch; 2519 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2520 2521 /* 2522 * To use the masterclock, the host clocksource must be based on TSC 2523 * and all vCPUs must have matching TSCs. Note, the count for matching 2524 * vCPUs doesn't include the reference vCPU, hence "+1". 2525 */ 2526 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2527 atomic_read(&vcpu->kvm->online_vcpus)) && 2528 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2529 2530 /* 2531 * Request a masterclock update if the masterclock needs to be toggled 2532 * on/off, or when starting a new generation and the masterclock is 2533 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2534 * taken _after_ the new generation is created). 2535 */ 2536 if ((ka->use_master_clock && new_generation) || 2537 (ka->use_master_clock != use_master_clock)) 2538 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2539 2540 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2541 atomic_read(&vcpu->kvm->online_vcpus), 2542 ka->use_master_clock, gtod->clock.vclock_mode); 2543 #endif 2544 } 2545 2546 /* 2547 * Multiply tsc by a fixed point number represented by ratio. 2548 * 2549 * The most significant 64-N bits (mult) of ratio represent the 2550 * integral part of the fixed point number; the remaining N bits 2551 * (frac) represent the fractional part, ie. ratio represents a fixed 2552 * point number (mult + frac * 2^(-N)). 2553 * 2554 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2555 */ 2556 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2557 { 2558 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2559 } 2560 2561 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2562 { 2563 u64 _tsc = tsc; 2564 2565 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2566 _tsc = __scale_tsc(ratio, tsc); 2567 2568 return _tsc; 2569 } 2570 2571 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2572 { 2573 u64 tsc; 2574 2575 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2576 2577 return target_tsc - tsc; 2578 } 2579 2580 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2581 { 2582 return vcpu->arch.l1_tsc_offset + 2583 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2584 } 2585 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2586 2587 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2588 { 2589 u64 nested_offset; 2590 2591 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2592 nested_offset = l1_offset; 2593 else 2594 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2595 kvm_caps.tsc_scaling_ratio_frac_bits); 2596 2597 nested_offset += l2_offset; 2598 return nested_offset; 2599 } 2600 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2601 2602 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2603 { 2604 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2605 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2606 kvm_caps.tsc_scaling_ratio_frac_bits); 2607 2608 return l1_multiplier; 2609 } 2610 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2611 2612 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2613 { 2614 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2615 vcpu->arch.l1_tsc_offset, 2616 l1_offset); 2617 2618 vcpu->arch.l1_tsc_offset = l1_offset; 2619 2620 /* 2621 * If we are here because L1 chose not to trap WRMSR to TSC then 2622 * according to the spec this should set L1's TSC (as opposed to 2623 * setting L1's offset for L2). 2624 */ 2625 if (is_guest_mode(vcpu)) 2626 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2627 l1_offset, 2628 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2629 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2630 else 2631 vcpu->arch.tsc_offset = l1_offset; 2632 2633 static_call(kvm_x86_write_tsc_offset)(vcpu); 2634 } 2635 2636 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2637 { 2638 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2639 2640 /* Userspace is changing the multiplier while L2 is active */ 2641 if (is_guest_mode(vcpu)) 2642 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2643 l1_multiplier, 2644 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2645 else 2646 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2647 2648 if (kvm_caps.has_tsc_control) 2649 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2650 } 2651 2652 static inline bool kvm_check_tsc_unstable(void) 2653 { 2654 #ifdef CONFIG_X86_64 2655 /* 2656 * TSC is marked unstable when we're running on Hyper-V, 2657 * 'TSC page' clocksource is good. 2658 */ 2659 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2660 return false; 2661 #endif 2662 return check_tsc_unstable(); 2663 } 2664 2665 /* 2666 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2667 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2668 * participates in. 2669 */ 2670 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2671 u64 ns, bool matched) 2672 { 2673 struct kvm *kvm = vcpu->kvm; 2674 2675 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2676 2677 /* 2678 * We also track th most recent recorded KHZ, write and time to 2679 * allow the matching interval to be extended at each write. 2680 */ 2681 kvm->arch.last_tsc_nsec = ns; 2682 kvm->arch.last_tsc_write = tsc; 2683 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2684 kvm->arch.last_tsc_offset = offset; 2685 2686 vcpu->arch.last_guest_tsc = tsc; 2687 2688 kvm_vcpu_write_tsc_offset(vcpu, offset); 2689 2690 if (!matched) { 2691 /* 2692 * We split periods of matched TSC writes into generations. 2693 * For each generation, we track the original measured 2694 * nanosecond time, offset, and write, so if TSCs are in 2695 * sync, we can match exact offset, and if not, we can match 2696 * exact software computation in compute_guest_tsc() 2697 * 2698 * These values are tracked in kvm->arch.cur_xxx variables. 2699 */ 2700 kvm->arch.cur_tsc_generation++; 2701 kvm->arch.cur_tsc_nsec = ns; 2702 kvm->arch.cur_tsc_write = tsc; 2703 kvm->arch.cur_tsc_offset = offset; 2704 kvm->arch.nr_vcpus_matched_tsc = 0; 2705 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2706 kvm->arch.nr_vcpus_matched_tsc++; 2707 } 2708 2709 /* Keep track of which generation this VCPU has synchronized to */ 2710 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2711 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2712 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2713 2714 kvm_track_tsc_matching(vcpu, !matched); 2715 } 2716 2717 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2718 { 2719 u64 data = user_value ? *user_value : 0; 2720 struct kvm *kvm = vcpu->kvm; 2721 u64 offset, ns, elapsed; 2722 unsigned long flags; 2723 bool matched = false; 2724 bool synchronizing = false; 2725 2726 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2727 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2728 ns = get_kvmclock_base_ns(); 2729 elapsed = ns - kvm->arch.last_tsc_nsec; 2730 2731 if (vcpu->arch.virtual_tsc_khz) { 2732 if (data == 0) { 2733 /* 2734 * Force synchronization when creating a vCPU, or when 2735 * userspace explicitly writes a zero value. 2736 */ 2737 synchronizing = true; 2738 } else if (kvm->arch.user_set_tsc) { 2739 u64 tsc_exp = kvm->arch.last_tsc_write + 2740 nsec_to_cycles(vcpu, elapsed); 2741 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2742 /* 2743 * Here lies UAPI baggage: when a user-initiated TSC write has 2744 * a small delta (1 second) of virtual cycle time against the 2745 * previously set vCPU, we assume that they were intended to be 2746 * in sync and the delta was only due to the racy nature of the 2747 * legacy API. 2748 * 2749 * This trick falls down when restoring a guest which genuinely 2750 * has been running for less time than the 1 second of imprecision 2751 * which we allow for in the legacy API. In this case, the first 2752 * value written by userspace (on any vCPU) should not be subject 2753 * to this 'correction' to make it sync up with values that only 2754 * come from the kernel's default vCPU creation. Make the 1-second 2755 * slop hack only trigger if the user_set_tsc flag is already set. 2756 */ 2757 synchronizing = data < tsc_exp + tsc_hz && 2758 data + tsc_hz > tsc_exp; 2759 } 2760 } 2761 2762 if (user_value) 2763 kvm->arch.user_set_tsc = true; 2764 2765 /* 2766 * For a reliable TSC, we can match TSC offsets, and for an unstable 2767 * TSC, we add elapsed time in this computation. We could let the 2768 * compensation code attempt to catch up if we fall behind, but 2769 * it's better to try to match offsets from the beginning. 2770 */ 2771 if (synchronizing && 2772 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2773 if (!kvm_check_tsc_unstable()) { 2774 offset = kvm->arch.cur_tsc_offset; 2775 } else { 2776 u64 delta = nsec_to_cycles(vcpu, elapsed); 2777 data += delta; 2778 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2779 } 2780 matched = true; 2781 } 2782 2783 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2784 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2785 } 2786 2787 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2788 s64 adjustment) 2789 { 2790 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2791 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2792 } 2793 2794 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2795 { 2796 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2797 WARN_ON(adjustment < 0); 2798 adjustment = kvm_scale_tsc((u64) adjustment, 2799 vcpu->arch.l1_tsc_scaling_ratio); 2800 adjust_tsc_offset_guest(vcpu, adjustment); 2801 } 2802 2803 #ifdef CONFIG_X86_64 2804 2805 static u64 read_tsc(void) 2806 { 2807 u64 ret = (u64)rdtsc_ordered(); 2808 u64 last = pvclock_gtod_data.clock.cycle_last; 2809 2810 if (likely(ret >= last)) 2811 return ret; 2812 2813 /* 2814 * GCC likes to generate cmov here, but this branch is extremely 2815 * predictable (it's just a function of time and the likely is 2816 * very likely) and there's a data dependence, so force GCC 2817 * to generate a branch instead. I don't barrier() because 2818 * we don't actually need a barrier, and if this function 2819 * ever gets inlined it will generate worse code. 2820 */ 2821 asm volatile (""); 2822 return last; 2823 } 2824 2825 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2826 int *mode) 2827 { 2828 u64 tsc_pg_val; 2829 long v; 2830 2831 switch (clock->vclock_mode) { 2832 case VDSO_CLOCKMODE_HVCLOCK: 2833 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2834 tsc_timestamp, &tsc_pg_val)) { 2835 /* TSC page valid */ 2836 *mode = VDSO_CLOCKMODE_HVCLOCK; 2837 v = (tsc_pg_val - clock->cycle_last) & 2838 clock->mask; 2839 } else { 2840 /* TSC page invalid */ 2841 *mode = VDSO_CLOCKMODE_NONE; 2842 } 2843 break; 2844 case VDSO_CLOCKMODE_TSC: 2845 *mode = VDSO_CLOCKMODE_TSC; 2846 *tsc_timestamp = read_tsc(); 2847 v = (*tsc_timestamp - clock->cycle_last) & 2848 clock->mask; 2849 break; 2850 default: 2851 *mode = VDSO_CLOCKMODE_NONE; 2852 } 2853 2854 if (*mode == VDSO_CLOCKMODE_NONE) 2855 *tsc_timestamp = v = 0; 2856 2857 return v * clock->mult; 2858 } 2859 2860 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2861 { 2862 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2863 unsigned long seq; 2864 int mode; 2865 u64 ns; 2866 2867 do { 2868 seq = read_seqcount_begin(>od->seq); 2869 ns = gtod->raw_clock.base_cycles; 2870 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2871 ns >>= gtod->raw_clock.shift; 2872 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2873 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2874 *t = ns; 2875 2876 return mode; 2877 } 2878 2879 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2880 { 2881 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2882 unsigned long seq; 2883 int mode; 2884 u64 ns; 2885 2886 do { 2887 seq = read_seqcount_begin(>od->seq); 2888 ts->tv_sec = gtod->wall_time_sec; 2889 ns = gtod->clock.base_cycles; 2890 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2891 ns >>= gtod->clock.shift; 2892 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2893 2894 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2895 ts->tv_nsec = ns; 2896 2897 return mode; 2898 } 2899 2900 /* returns true if host is using TSC based clocksource */ 2901 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2902 { 2903 /* checked again under seqlock below */ 2904 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2905 return false; 2906 2907 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2908 tsc_timestamp)); 2909 } 2910 2911 /* returns true if host is using TSC based clocksource */ 2912 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2913 u64 *tsc_timestamp) 2914 { 2915 /* checked again under seqlock below */ 2916 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2917 return false; 2918 2919 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2920 } 2921 #endif 2922 2923 /* 2924 * 2925 * Assuming a stable TSC across physical CPUS, and a stable TSC 2926 * across virtual CPUs, the following condition is possible. 2927 * Each numbered line represents an event visible to both 2928 * CPUs at the next numbered event. 2929 * 2930 * "timespecX" represents host monotonic time. "tscX" represents 2931 * RDTSC value. 2932 * 2933 * VCPU0 on CPU0 | VCPU1 on CPU1 2934 * 2935 * 1. read timespec0,tsc0 2936 * 2. | timespec1 = timespec0 + N 2937 * | tsc1 = tsc0 + M 2938 * 3. transition to guest | transition to guest 2939 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2940 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2941 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2942 * 2943 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2944 * 2945 * - ret0 < ret1 2946 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2947 * ... 2948 * - 0 < N - M => M < N 2949 * 2950 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2951 * always the case (the difference between two distinct xtime instances 2952 * might be smaller then the difference between corresponding TSC reads, 2953 * when updating guest vcpus pvclock areas). 2954 * 2955 * To avoid that problem, do not allow visibility of distinct 2956 * system_timestamp/tsc_timestamp values simultaneously: use a master 2957 * copy of host monotonic time values. Update that master copy 2958 * in lockstep. 2959 * 2960 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2961 * 2962 */ 2963 2964 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2965 { 2966 #ifdef CONFIG_X86_64 2967 struct kvm_arch *ka = &kvm->arch; 2968 int vclock_mode; 2969 bool host_tsc_clocksource, vcpus_matched; 2970 2971 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2972 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2973 atomic_read(&kvm->online_vcpus)); 2974 2975 /* 2976 * If the host uses TSC clock, then passthrough TSC as stable 2977 * to the guest. 2978 */ 2979 host_tsc_clocksource = kvm_get_time_and_clockread( 2980 &ka->master_kernel_ns, 2981 &ka->master_cycle_now); 2982 2983 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2984 && !ka->backwards_tsc_observed 2985 && !ka->boot_vcpu_runs_old_kvmclock; 2986 2987 if (ka->use_master_clock) 2988 atomic_set(&kvm_guest_has_master_clock, 1); 2989 2990 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2991 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2992 vcpus_matched); 2993 #endif 2994 } 2995 2996 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2997 { 2998 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2999 } 3000 3001 static void __kvm_start_pvclock_update(struct kvm *kvm) 3002 { 3003 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3004 write_seqcount_begin(&kvm->arch.pvclock_sc); 3005 } 3006 3007 static void kvm_start_pvclock_update(struct kvm *kvm) 3008 { 3009 kvm_make_mclock_inprogress_request(kvm); 3010 3011 /* no guest entries from this point */ 3012 __kvm_start_pvclock_update(kvm); 3013 } 3014 3015 static void kvm_end_pvclock_update(struct kvm *kvm) 3016 { 3017 struct kvm_arch *ka = &kvm->arch; 3018 struct kvm_vcpu *vcpu; 3019 unsigned long i; 3020 3021 write_seqcount_end(&ka->pvclock_sc); 3022 raw_spin_unlock_irq(&ka->tsc_write_lock); 3023 kvm_for_each_vcpu(i, vcpu, kvm) 3024 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3025 3026 /* guest entries allowed */ 3027 kvm_for_each_vcpu(i, vcpu, kvm) 3028 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3029 } 3030 3031 static void kvm_update_masterclock(struct kvm *kvm) 3032 { 3033 kvm_hv_request_tsc_page_update(kvm); 3034 kvm_start_pvclock_update(kvm); 3035 pvclock_update_vm_gtod_copy(kvm); 3036 kvm_end_pvclock_update(kvm); 3037 } 3038 3039 /* 3040 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3041 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3042 * can change during boot even if the TSC is constant, as it's possible for KVM 3043 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3044 * notification when calibration completes, but practically speaking calibration 3045 * will complete before userspace is alive enough to create VMs. 3046 */ 3047 static unsigned long get_cpu_tsc_khz(void) 3048 { 3049 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3050 return tsc_khz; 3051 else 3052 return __this_cpu_read(cpu_tsc_khz); 3053 } 3054 3055 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3056 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3057 { 3058 struct kvm_arch *ka = &kvm->arch; 3059 struct pvclock_vcpu_time_info hv_clock; 3060 3061 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3062 get_cpu(); 3063 3064 data->flags = 0; 3065 if (ka->use_master_clock && 3066 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3067 #ifdef CONFIG_X86_64 3068 struct timespec64 ts; 3069 3070 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3071 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3072 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3073 } else 3074 #endif 3075 data->host_tsc = rdtsc(); 3076 3077 data->flags |= KVM_CLOCK_TSC_STABLE; 3078 hv_clock.tsc_timestamp = ka->master_cycle_now; 3079 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3080 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3081 &hv_clock.tsc_shift, 3082 &hv_clock.tsc_to_system_mul); 3083 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3084 } else { 3085 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3086 } 3087 3088 put_cpu(); 3089 } 3090 3091 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3092 { 3093 struct kvm_arch *ka = &kvm->arch; 3094 unsigned seq; 3095 3096 do { 3097 seq = read_seqcount_begin(&ka->pvclock_sc); 3098 __get_kvmclock(kvm, data); 3099 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3100 } 3101 3102 u64 get_kvmclock_ns(struct kvm *kvm) 3103 { 3104 struct kvm_clock_data data; 3105 3106 get_kvmclock(kvm, &data); 3107 return data.clock; 3108 } 3109 3110 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3111 struct gfn_to_pfn_cache *gpc, 3112 unsigned int offset, 3113 bool force_tsc_unstable) 3114 { 3115 struct kvm_vcpu_arch *vcpu = &v->arch; 3116 struct pvclock_vcpu_time_info *guest_hv_clock; 3117 unsigned long flags; 3118 3119 read_lock_irqsave(&gpc->lock, flags); 3120 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3121 read_unlock_irqrestore(&gpc->lock, flags); 3122 3123 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3124 return; 3125 3126 read_lock_irqsave(&gpc->lock, flags); 3127 } 3128 3129 guest_hv_clock = (void *)(gpc->khva + offset); 3130 3131 /* 3132 * This VCPU is paused, but it's legal for a guest to read another 3133 * VCPU's kvmclock, so we really have to follow the specification where 3134 * it says that version is odd if data is being modified, and even after 3135 * it is consistent. 3136 */ 3137 3138 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3139 smp_wmb(); 3140 3141 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3142 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3143 3144 if (vcpu->pvclock_set_guest_stopped_request) { 3145 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3146 vcpu->pvclock_set_guest_stopped_request = false; 3147 } 3148 3149 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3150 3151 if (force_tsc_unstable) 3152 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT; 3153 3154 smp_wmb(); 3155 3156 guest_hv_clock->version = ++vcpu->hv_clock.version; 3157 3158 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3159 read_unlock_irqrestore(&gpc->lock, flags); 3160 3161 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3162 } 3163 3164 static int kvm_guest_time_update(struct kvm_vcpu *v) 3165 { 3166 unsigned long flags, tgt_tsc_khz; 3167 unsigned seq; 3168 struct kvm_vcpu_arch *vcpu = &v->arch; 3169 struct kvm_arch *ka = &v->kvm->arch; 3170 s64 kernel_ns; 3171 u64 tsc_timestamp, host_tsc; 3172 u8 pvclock_flags; 3173 bool use_master_clock; 3174 #ifdef CONFIG_KVM_XEN 3175 /* 3176 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3177 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3178 * This default behaviour led to bugs in some guest kernels which cause 3179 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3180 */ 3181 bool xen_pvclock_tsc_unstable = 3182 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 3183 #endif 3184 3185 kernel_ns = 0; 3186 host_tsc = 0; 3187 3188 /* 3189 * If the host uses TSC clock, then passthrough TSC as stable 3190 * to the guest. 3191 */ 3192 do { 3193 seq = read_seqcount_begin(&ka->pvclock_sc); 3194 use_master_clock = ka->use_master_clock; 3195 if (use_master_clock) { 3196 host_tsc = ka->master_cycle_now; 3197 kernel_ns = ka->master_kernel_ns; 3198 } 3199 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3200 3201 /* Keep irq disabled to prevent changes to the clock */ 3202 local_irq_save(flags); 3203 tgt_tsc_khz = get_cpu_tsc_khz(); 3204 if (unlikely(tgt_tsc_khz == 0)) { 3205 local_irq_restore(flags); 3206 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3207 return 1; 3208 } 3209 if (!use_master_clock) { 3210 host_tsc = rdtsc(); 3211 kernel_ns = get_kvmclock_base_ns(); 3212 } 3213 3214 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3215 3216 /* 3217 * We may have to catch up the TSC to match elapsed wall clock 3218 * time for two reasons, even if kvmclock is used. 3219 * 1) CPU could have been running below the maximum TSC rate 3220 * 2) Broken TSC compensation resets the base at each VCPU 3221 * entry to avoid unknown leaps of TSC even when running 3222 * again on the same CPU. This may cause apparent elapsed 3223 * time to disappear, and the guest to stand still or run 3224 * very slowly. 3225 */ 3226 if (vcpu->tsc_catchup) { 3227 u64 tsc = compute_guest_tsc(v, kernel_ns); 3228 if (tsc > tsc_timestamp) { 3229 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3230 tsc_timestamp = tsc; 3231 } 3232 } 3233 3234 local_irq_restore(flags); 3235 3236 /* With all the info we got, fill in the values */ 3237 3238 if (kvm_caps.has_tsc_control) 3239 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3240 v->arch.l1_tsc_scaling_ratio); 3241 3242 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3243 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3244 &vcpu->hv_clock.tsc_shift, 3245 &vcpu->hv_clock.tsc_to_system_mul); 3246 vcpu->hw_tsc_khz = tgt_tsc_khz; 3247 kvm_xen_update_tsc_info(v); 3248 } 3249 3250 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3251 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3252 vcpu->last_guest_tsc = tsc_timestamp; 3253 3254 /* If the host uses TSC clocksource, then it is stable */ 3255 pvclock_flags = 0; 3256 if (use_master_clock) 3257 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3258 3259 vcpu->hv_clock.flags = pvclock_flags; 3260 3261 if (vcpu->pv_time.active) 3262 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false); 3263 #ifdef CONFIG_KVM_XEN 3264 if (vcpu->xen.vcpu_info_cache.active) 3265 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3266 offsetof(struct compat_vcpu_info, time), 3267 xen_pvclock_tsc_unstable); 3268 if (vcpu->xen.vcpu_time_info_cache.active) 3269 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0, 3270 xen_pvclock_tsc_unstable); 3271 #endif 3272 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3273 return 0; 3274 } 3275 3276 /* 3277 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3278 * which it started (i.e. its epoch, when its kvmclock was zero). 3279 * 3280 * In fact those clocks are subtly different; wall clock frequency is 3281 * adjusted by NTP and has leap seconds, while the kvmclock is a 3282 * simple function of the TSC without any such adjustment. 3283 * 3284 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3285 * that and kvmclock, but even that would be subject to change over 3286 * time. 3287 * 3288 * Attempt to calculate the epoch at a given moment using the *same* 3289 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3290 * wallclock and kvmclock times, and subtracting one from the other. 3291 * 3292 * Fall back to using their values at slightly different moments by 3293 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3294 */ 3295 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3296 { 3297 #ifdef CONFIG_X86_64 3298 struct pvclock_vcpu_time_info hv_clock; 3299 struct kvm_arch *ka = &kvm->arch; 3300 unsigned long seq, local_tsc_khz; 3301 struct timespec64 ts; 3302 uint64_t host_tsc; 3303 3304 do { 3305 seq = read_seqcount_begin(&ka->pvclock_sc); 3306 3307 local_tsc_khz = 0; 3308 if (!ka->use_master_clock) 3309 break; 3310 3311 /* 3312 * The TSC read and the call to get_cpu_tsc_khz() must happen 3313 * on the same CPU. 3314 */ 3315 get_cpu(); 3316 3317 local_tsc_khz = get_cpu_tsc_khz(); 3318 3319 if (local_tsc_khz && 3320 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3321 local_tsc_khz = 0; /* Fall back to old method */ 3322 3323 put_cpu(); 3324 3325 /* 3326 * These values must be snapshotted within the seqcount loop. 3327 * After that, it's just mathematics which can happen on any 3328 * CPU at any time. 3329 */ 3330 hv_clock.tsc_timestamp = ka->master_cycle_now; 3331 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3332 3333 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3334 3335 /* 3336 * If the conditions were right, and obtaining the wallclock+TSC was 3337 * successful, calculate the KVM clock at the corresponding time and 3338 * subtract one from the other to get the guest's epoch in nanoseconds 3339 * since 1970-01-01. 3340 */ 3341 if (local_tsc_khz) { 3342 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3343 &hv_clock.tsc_shift, 3344 &hv_clock.tsc_to_system_mul); 3345 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3346 __pvclock_read_cycles(&hv_clock, host_tsc); 3347 } 3348 #endif 3349 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3350 } 3351 3352 /* 3353 * kvmclock updates which are isolated to a given vcpu, such as 3354 * vcpu->cpu migration, should not allow system_timestamp from 3355 * the rest of the vcpus to remain static. Otherwise ntp frequency 3356 * correction applies to one vcpu's system_timestamp but not 3357 * the others. 3358 * 3359 * So in those cases, request a kvmclock update for all vcpus. 3360 * We need to rate-limit these requests though, as they can 3361 * considerably slow guests that have a large number of vcpus. 3362 * The time for a remote vcpu to update its kvmclock is bound 3363 * by the delay we use to rate-limit the updates. 3364 */ 3365 3366 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3367 3368 static void kvmclock_update_fn(struct work_struct *work) 3369 { 3370 unsigned long i; 3371 struct delayed_work *dwork = to_delayed_work(work); 3372 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3373 kvmclock_update_work); 3374 struct kvm *kvm = container_of(ka, struct kvm, arch); 3375 struct kvm_vcpu *vcpu; 3376 3377 kvm_for_each_vcpu(i, vcpu, kvm) { 3378 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3379 kvm_vcpu_kick(vcpu); 3380 } 3381 } 3382 3383 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3384 { 3385 struct kvm *kvm = v->kvm; 3386 3387 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3388 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3389 KVMCLOCK_UPDATE_DELAY); 3390 } 3391 3392 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3393 3394 static void kvmclock_sync_fn(struct work_struct *work) 3395 { 3396 struct delayed_work *dwork = to_delayed_work(work); 3397 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3398 kvmclock_sync_work); 3399 struct kvm *kvm = container_of(ka, struct kvm, arch); 3400 3401 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3402 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3403 KVMCLOCK_SYNC_PERIOD); 3404 } 3405 3406 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3407 static bool is_mci_control_msr(u32 msr) 3408 { 3409 return (msr & 3) == 0; 3410 } 3411 static bool is_mci_status_msr(u32 msr) 3412 { 3413 return (msr & 3) == 1; 3414 } 3415 3416 /* 3417 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3418 */ 3419 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3420 { 3421 /* McStatusWrEn enabled? */ 3422 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3423 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3424 3425 return false; 3426 } 3427 3428 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3429 { 3430 u64 mcg_cap = vcpu->arch.mcg_cap; 3431 unsigned bank_num = mcg_cap & 0xff; 3432 u32 msr = msr_info->index; 3433 u64 data = msr_info->data; 3434 u32 offset, last_msr; 3435 3436 switch (msr) { 3437 case MSR_IA32_MCG_STATUS: 3438 vcpu->arch.mcg_status = data; 3439 break; 3440 case MSR_IA32_MCG_CTL: 3441 if (!(mcg_cap & MCG_CTL_P) && 3442 (data || !msr_info->host_initiated)) 3443 return 1; 3444 if (data != 0 && data != ~(u64)0) 3445 return 1; 3446 vcpu->arch.mcg_ctl = data; 3447 break; 3448 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3449 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3450 if (msr > last_msr) 3451 return 1; 3452 3453 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3454 return 1; 3455 /* An attempt to write a 1 to a reserved bit raises #GP */ 3456 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3457 return 1; 3458 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3459 last_msr + 1 - MSR_IA32_MC0_CTL2); 3460 vcpu->arch.mci_ctl2_banks[offset] = data; 3461 break; 3462 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3463 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3464 if (msr > last_msr) 3465 return 1; 3466 3467 /* 3468 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3469 * values are architecturally undefined. But, some Linux 3470 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3471 * issue on AMD K8s, allow bit 10 to be clear when setting all 3472 * other bits in order to avoid an uncaught #GP in the guest. 3473 * 3474 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3475 * single-bit ECC data errors. 3476 */ 3477 if (is_mci_control_msr(msr) && 3478 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3479 return 1; 3480 3481 /* 3482 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3483 * AMD-based CPUs allow non-zero values, but if and only if 3484 * HWCR[McStatusWrEn] is set. 3485 */ 3486 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3487 data != 0 && !can_set_mci_status(vcpu)) 3488 return 1; 3489 3490 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3491 last_msr + 1 - MSR_IA32_MC0_CTL); 3492 vcpu->arch.mce_banks[offset] = data; 3493 break; 3494 default: 3495 return 1; 3496 } 3497 return 0; 3498 } 3499 3500 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3501 { 3502 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3503 3504 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3505 } 3506 3507 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3508 { 3509 gpa_t gpa = data & ~0x3f; 3510 3511 /* Bits 4:5 are reserved, Should be zero */ 3512 if (data & 0x30) 3513 return 1; 3514 3515 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3516 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3517 return 1; 3518 3519 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3520 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3521 return 1; 3522 3523 if (!lapic_in_kernel(vcpu)) 3524 return data ? 1 : 0; 3525 3526 vcpu->arch.apf.msr_en_val = data; 3527 3528 if (!kvm_pv_async_pf_enabled(vcpu)) { 3529 kvm_clear_async_pf_completion_queue(vcpu); 3530 kvm_async_pf_hash_reset(vcpu); 3531 return 0; 3532 } 3533 3534 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3535 sizeof(u64))) 3536 return 1; 3537 3538 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3539 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3540 3541 kvm_async_pf_wakeup_all(vcpu); 3542 3543 return 0; 3544 } 3545 3546 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3547 { 3548 /* Bits 8-63 are reserved */ 3549 if (data >> 8) 3550 return 1; 3551 3552 if (!lapic_in_kernel(vcpu)) 3553 return 1; 3554 3555 vcpu->arch.apf.msr_int_val = data; 3556 3557 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3558 3559 return 0; 3560 } 3561 3562 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3563 { 3564 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3565 vcpu->arch.time = 0; 3566 } 3567 3568 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3569 { 3570 ++vcpu->stat.tlb_flush; 3571 static_call(kvm_x86_flush_tlb_all)(vcpu); 3572 3573 /* Flushing all ASIDs flushes the current ASID... */ 3574 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3575 } 3576 3577 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3578 { 3579 ++vcpu->stat.tlb_flush; 3580 3581 if (!tdp_enabled) { 3582 /* 3583 * A TLB flush on behalf of the guest is equivalent to 3584 * INVPCID(all), toggling CR4.PGE, etc., which requires 3585 * a forced sync of the shadow page tables. Ensure all the 3586 * roots are synced and the guest TLB in hardware is clean. 3587 */ 3588 kvm_mmu_sync_roots(vcpu); 3589 kvm_mmu_sync_prev_roots(vcpu); 3590 } 3591 3592 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3593 3594 /* 3595 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3596 * grained flushing. 3597 */ 3598 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3599 } 3600 3601 3602 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3603 { 3604 ++vcpu->stat.tlb_flush; 3605 static_call(kvm_x86_flush_tlb_current)(vcpu); 3606 } 3607 3608 /* 3609 * Service "local" TLB flush requests, which are specific to the current MMU 3610 * context. In addition to the generic event handling in vcpu_enter_guest(), 3611 * TLB flushes that are targeted at an MMU context also need to be serviced 3612 * prior before nested VM-Enter/VM-Exit. 3613 */ 3614 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3615 { 3616 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3617 kvm_vcpu_flush_tlb_current(vcpu); 3618 3619 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3620 kvm_vcpu_flush_tlb_guest(vcpu); 3621 } 3622 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3623 3624 static void record_steal_time(struct kvm_vcpu *vcpu) 3625 { 3626 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3627 struct kvm_steal_time __user *st; 3628 struct kvm_memslots *slots; 3629 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3630 u64 steal; 3631 u32 version; 3632 3633 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3634 kvm_xen_runstate_set_running(vcpu); 3635 return; 3636 } 3637 3638 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3639 return; 3640 3641 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3642 return; 3643 3644 slots = kvm_memslots(vcpu->kvm); 3645 3646 if (unlikely(slots->generation != ghc->generation || 3647 gpa != ghc->gpa || 3648 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3649 /* We rely on the fact that it fits in a single page. */ 3650 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3651 3652 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3653 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3654 return; 3655 } 3656 3657 st = (struct kvm_steal_time __user *)ghc->hva; 3658 /* 3659 * Doing a TLB flush here, on the guest's behalf, can avoid 3660 * expensive IPIs. 3661 */ 3662 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3663 u8 st_preempted = 0; 3664 int err = -EFAULT; 3665 3666 if (!user_access_begin(st, sizeof(*st))) 3667 return; 3668 3669 asm volatile("1: xchgb %0, %2\n" 3670 "xor %1, %1\n" 3671 "2:\n" 3672 _ASM_EXTABLE_UA(1b, 2b) 3673 : "+q" (st_preempted), 3674 "+&r" (err), 3675 "+m" (st->preempted)); 3676 if (err) 3677 goto out; 3678 3679 user_access_end(); 3680 3681 vcpu->arch.st.preempted = 0; 3682 3683 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3684 st_preempted & KVM_VCPU_FLUSH_TLB); 3685 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3686 kvm_vcpu_flush_tlb_guest(vcpu); 3687 3688 if (!user_access_begin(st, sizeof(*st))) 3689 goto dirty; 3690 } else { 3691 if (!user_access_begin(st, sizeof(*st))) 3692 return; 3693 3694 unsafe_put_user(0, &st->preempted, out); 3695 vcpu->arch.st.preempted = 0; 3696 } 3697 3698 unsafe_get_user(version, &st->version, out); 3699 if (version & 1) 3700 version += 1; /* first time write, random junk */ 3701 3702 version += 1; 3703 unsafe_put_user(version, &st->version, out); 3704 3705 smp_wmb(); 3706 3707 unsafe_get_user(steal, &st->steal, out); 3708 steal += current->sched_info.run_delay - 3709 vcpu->arch.st.last_steal; 3710 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3711 unsafe_put_user(steal, &st->steal, out); 3712 3713 version += 1; 3714 unsafe_put_user(version, &st->version, out); 3715 3716 out: 3717 user_access_end(); 3718 dirty: 3719 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3720 } 3721 3722 static bool kvm_is_msr_to_save(u32 msr_index) 3723 { 3724 unsigned int i; 3725 3726 for (i = 0; i < num_msrs_to_save; i++) { 3727 if (msrs_to_save[i] == msr_index) 3728 return true; 3729 } 3730 3731 return false; 3732 } 3733 3734 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3735 { 3736 u32 msr = msr_info->index; 3737 u64 data = msr_info->data; 3738 3739 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3740 return kvm_xen_write_hypercall_page(vcpu, data); 3741 3742 switch (msr) { 3743 case MSR_AMD64_NB_CFG: 3744 case MSR_IA32_UCODE_WRITE: 3745 case MSR_VM_HSAVE_PA: 3746 case MSR_AMD64_PATCH_LOADER: 3747 case MSR_AMD64_BU_CFG2: 3748 case MSR_AMD64_DC_CFG: 3749 case MSR_AMD64_TW_CFG: 3750 case MSR_F15H_EX_CFG: 3751 break; 3752 3753 case MSR_IA32_UCODE_REV: 3754 if (msr_info->host_initiated) 3755 vcpu->arch.microcode_version = data; 3756 break; 3757 case MSR_IA32_ARCH_CAPABILITIES: 3758 if (!msr_info->host_initiated) 3759 return 1; 3760 vcpu->arch.arch_capabilities = data; 3761 break; 3762 case MSR_IA32_PERF_CAPABILITIES: 3763 if (!msr_info->host_initiated) 3764 return 1; 3765 if (data & ~kvm_caps.supported_perf_cap) 3766 return 1; 3767 3768 /* 3769 * Note, this is not just a performance optimization! KVM 3770 * disallows changing feature MSRs after the vCPU has run; PMU 3771 * refresh will bug the VM if called after the vCPU has run. 3772 */ 3773 if (vcpu->arch.perf_capabilities == data) 3774 break; 3775 3776 vcpu->arch.perf_capabilities = data; 3777 kvm_pmu_refresh(vcpu); 3778 break; 3779 case MSR_IA32_PRED_CMD: { 3780 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3781 3782 if (!msr_info->host_initiated) { 3783 if ((!guest_has_pred_cmd_msr(vcpu))) 3784 return 1; 3785 3786 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3787 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3788 reserved_bits |= PRED_CMD_IBPB; 3789 3790 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3791 reserved_bits |= PRED_CMD_SBPB; 3792 } 3793 3794 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3795 reserved_bits |= PRED_CMD_IBPB; 3796 3797 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3798 reserved_bits |= PRED_CMD_SBPB; 3799 3800 if (data & reserved_bits) 3801 return 1; 3802 3803 if (!data) 3804 break; 3805 3806 wrmsrl(MSR_IA32_PRED_CMD, data); 3807 break; 3808 } 3809 case MSR_IA32_FLUSH_CMD: 3810 if (!msr_info->host_initiated && 3811 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3812 return 1; 3813 3814 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3815 return 1; 3816 if (!data) 3817 break; 3818 3819 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3820 break; 3821 case MSR_EFER: 3822 return set_efer(vcpu, msr_info); 3823 case MSR_K7_HWCR: 3824 data &= ~(u64)0x40; /* ignore flush filter disable */ 3825 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3826 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3827 3828 /* 3829 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3830 * through at least v6.6 whine if TscFreqSel is clear, 3831 * depending on F/M/S. 3832 */ 3833 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3834 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3835 return 1; 3836 } 3837 vcpu->arch.msr_hwcr = data; 3838 break; 3839 case MSR_FAM10H_MMIO_CONF_BASE: 3840 if (data != 0) { 3841 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3842 return 1; 3843 } 3844 break; 3845 case MSR_IA32_CR_PAT: 3846 if (!kvm_pat_valid(data)) 3847 return 1; 3848 3849 vcpu->arch.pat = data; 3850 break; 3851 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3852 case MSR_MTRRdefType: 3853 return kvm_mtrr_set_msr(vcpu, msr, data); 3854 case MSR_IA32_APICBASE: 3855 return kvm_set_apic_base(vcpu, msr_info); 3856 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3857 return kvm_x2apic_msr_write(vcpu, msr, data); 3858 case MSR_IA32_TSC_DEADLINE: 3859 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3860 break; 3861 case MSR_IA32_TSC_ADJUST: 3862 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3863 if (!msr_info->host_initiated) { 3864 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3865 adjust_tsc_offset_guest(vcpu, adj); 3866 /* Before back to guest, tsc_timestamp must be adjusted 3867 * as well, otherwise guest's percpu pvclock time could jump. 3868 */ 3869 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3870 } 3871 vcpu->arch.ia32_tsc_adjust_msr = data; 3872 } 3873 break; 3874 case MSR_IA32_MISC_ENABLE: { 3875 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3876 3877 if (!msr_info->host_initiated) { 3878 /* RO bits */ 3879 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3880 return 1; 3881 3882 /* R bits, i.e. writes are ignored, but don't fault. */ 3883 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3884 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3885 } 3886 3887 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3888 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3889 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3890 return 1; 3891 vcpu->arch.ia32_misc_enable_msr = data; 3892 kvm_update_cpuid_runtime(vcpu); 3893 } else { 3894 vcpu->arch.ia32_misc_enable_msr = data; 3895 } 3896 break; 3897 } 3898 case MSR_IA32_SMBASE: 3899 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3900 return 1; 3901 vcpu->arch.smbase = data; 3902 break; 3903 case MSR_IA32_POWER_CTL: 3904 vcpu->arch.msr_ia32_power_ctl = data; 3905 break; 3906 case MSR_IA32_TSC: 3907 if (msr_info->host_initiated) { 3908 kvm_synchronize_tsc(vcpu, &data); 3909 } else { 3910 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3911 adjust_tsc_offset_guest(vcpu, adj); 3912 vcpu->arch.ia32_tsc_adjust_msr += adj; 3913 } 3914 break; 3915 case MSR_IA32_XSS: 3916 if (!msr_info->host_initiated && 3917 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3918 return 1; 3919 /* 3920 * KVM supports exposing PT to the guest, but does not support 3921 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3922 * XSAVES/XRSTORS to save/restore PT MSRs. 3923 */ 3924 if (data & ~kvm_caps.supported_xss) 3925 return 1; 3926 vcpu->arch.ia32_xss = data; 3927 kvm_update_cpuid_runtime(vcpu); 3928 break; 3929 case MSR_SMI_COUNT: 3930 if (!msr_info->host_initiated) 3931 return 1; 3932 vcpu->arch.smi_count = data; 3933 break; 3934 case MSR_KVM_WALL_CLOCK_NEW: 3935 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3936 return 1; 3937 3938 vcpu->kvm->arch.wall_clock = data; 3939 kvm_write_wall_clock(vcpu->kvm, data, 0); 3940 break; 3941 case MSR_KVM_WALL_CLOCK: 3942 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3943 return 1; 3944 3945 vcpu->kvm->arch.wall_clock = data; 3946 kvm_write_wall_clock(vcpu->kvm, data, 0); 3947 break; 3948 case MSR_KVM_SYSTEM_TIME_NEW: 3949 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3950 return 1; 3951 3952 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3953 break; 3954 case MSR_KVM_SYSTEM_TIME: 3955 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3956 return 1; 3957 3958 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3959 break; 3960 case MSR_KVM_ASYNC_PF_EN: 3961 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3962 return 1; 3963 3964 if (kvm_pv_enable_async_pf(vcpu, data)) 3965 return 1; 3966 break; 3967 case MSR_KVM_ASYNC_PF_INT: 3968 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3969 return 1; 3970 3971 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3972 return 1; 3973 break; 3974 case MSR_KVM_ASYNC_PF_ACK: 3975 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3976 return 1; 3977 if (data & 0x1) { 3978 vcpu->arch.apf.pageready_pending = false; 3979 kvm_check_async_pf_completion(vcpu); 3980 } 3981 break; 3982 case MSR_KVM_STEAL_TIME: 3983 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3984 return 1; 3985 3986 if (unlikely(!sched_info_on())) 3987 return 1; 3988 3989 if (data & KVM_STEAL_RESERVED_MASK) 3990 return 1; 3991 3992 vcpu->arch.st.msr_val = data; 3993 3994 if (!(data & KVM_MSR_ENABLED)) 3995 break; 3996 3997 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3998 3999 break; 4000 case MSR_KVM_PV_EOI_EN: 4001 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4002 return 1; 4003 4004 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4005 return 1; 4006 break; 4007 4008 case MSR_KVM_POLL_CONTROL: 4009 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4010 return 1; 4011 4012 /* only enable bit supported */ 4013 if (data & (-1ULL << 1)) 4014 return 1; 4015 4016 vcpu->arch.msr_kvm_poll_control = data; 4017 break; 4018 4019 case MSR_IA32_MCG_CTL: 4020 case MSR_IA32_MCG_STATUS: 4021 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4022 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4023 return set_msr_mce(vcpu, msr_info); 4024 4025 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4026 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4027 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4028 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4029 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4030 return kvm_pmu_set_msr(vcpu, msr_info); 4031 4032 if (data) 4033 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4034 break; 4035 case MSR_K7_CLK_CTL: 4036 /* 4037 * Ignore all writes to this no longer documented MSR. 4038 * Writes are only relevant for old K7 processors, 4039 * all pre-dating SVM, but a recommended workaround from 4040 * AMD for these chips. It is possible to specify the 4041 * affected processor models on the command line, hence 4042 * the need to ignore the workaround. 4043 */ 4044 break; 4045 #ifdef CONFIG_KVM_HYPERV 4046 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4047 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4048 case HV_X64_MSR_SYNDBG_OPTIONS: 4049 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4050 case HV_X64_MSR_CRASH_CTL: 4051 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4052 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4053 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4054 case HV_X64_MSR_TSC_EMULATION_STATUS: 4055 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4056 return kvm_hv_set_msr_common(vcpu, msr, data, 4057 msr_info->host_initiated); 4058 #endif 4059 case MSR_IA32_BBL_CR_CTL3: 4060 /* Drop writes to this legacy MSR -- see rdmsr 4061 * counterpart for further detail. 4062 */ 4063 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4064 break; 4065 case MSR_AMD64_OSVW_ID_LENGTH: 4066 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4067 return 1; 4068 vcpu->arch.osvw.length = data; 4069 break; 4070 case MSR_AMD64_OSVW_STATUS: 4071 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4072 return 1; 4073 vcpu->arch.osvw.status = data; 4074 break; 4075 case MSR_PLATFORM_INFO: 4076 if (!msr_info->host_initiated || 4077 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 4078 cpuid_fault_enabled(vcpu))) 4079 return 1; 4080 vcpu->arch.msr_platform_info = data; 4081 break; 4082 case MSR_MISC_FEATURES_ENABLES: 4083 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4084 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4085 !supports_cpuid_fault(vcpu))) 4086 return 1; 4087 vcpu->arch.msr_misc_features_enables = data; 4088 break; 4089 #ifdef CONFIG_X86_64 4090 case MSR_IA32_XFD: 4091 if (!msr_info->host_initiated && 4092 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4093 return 1; 4094 4095 if (data & ~kvm_guest_supported_xfd(vcpu)) 4096 return 1; 4097 4098 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4099 break; 4100 case MSR_IA32_XFD_ERR: 4101 if (!msr_info->host_initiated && 4102 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4103 return 1; 4104 4105 if (data & ~kvm_guest_supported_xfd(vcpu)) 4106 return 1; 4107 4108 vcpu->arch.guest_fpu.xfd_err = data; 4109 break; 4110 #endif 4111 default: 4112 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4113 return kvm_pmu_set_msr(vcpu, msr_info); 4114 4115 /* 4116 * Userspace is allowed to write '0' to MSRs that KVM reports 4117 * as to-be-saved, even if an MSRs isn't fully supported. 4118 */ 4119 if (msr_info->host_initiated && !data && 4120 kvm_is_msr_to_save(msr)) 4121 break; 4122 4123 return KVM_MSR_RET_INVALID; 4124 } 4125 return 0; 4126 } 4127 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4128 4129 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4130 { 4131 u64 data; 4132 u64 mcg_cap = vcpu->arch.mcg_cap; 4133 unsigned bank_num = mcg_cap & 0xff; 4134 u32 offset, last_msr; 4135 4136 switch (msr) { 4137 case MSR_IA32_P5_MC_ADDR: 4138 case MSR_IA32_P5_MC_TYPE: 4139 data = 0; 4140 break; 4141 case MSR_IA32_MCG_CAP: 4142 data = vcpu->arch.mcg_cap; 4143 break; 4144 case MSR_IA32_MCG_CTL: 4145 if (!(mcg_cap & MCG_CTL_P) && !host) 4146 return 1; 4147 data = vcpu->arch.mcg_ctl; 4148 break; 4149 case MSR_IA32_MCG_STATUS: 4150 data = vcpu->arch.mcg_status; 4151 break; 4152 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4153 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4154 if (msr > last_msr) 4155 return 1; 4156 4157 if (!(mcg_cap & MCG_CMCI_P) && !host) 4158 return 1; 4159 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4160 last_msr + 1 - MSR_IA32_MC0_CTL2); 4161 data = vcpu->arch.mci_ctl2_banks[offset]; 4162 break; 4163 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4164 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4165 if (msr > last_msr) 4166 return 1; 4167 4168 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4169 last_msr + 1 - MSR_IA32_MC0_CTL); 4170 data = vcpu->arch.mce_banks[offset]; 4171 break; 4172 default: 4173 return 1; 4174 } 4175 *pdata = data; 4176 return 0; 4177 } 4178 4179 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4180 { 4181 switch (msr_info->index) { 4182 case MSR_IA32_PLATFORM_ID: 4183 case MSR_IA32_EBL_CR_POWERON: 4184 case MSR_IA32_LASTBRANCHFROMIP: 4185 case MSR_IA32_LASTBRANCHTOIP: 4186 case MSR_IA32_LASTINTFROMIP: 4187 case MSR_IA32_LASTINTTOIP: 4188 case MSR_AMD64_SYSCFG: 4189 case MSR_K8_TSEG_ADDR: 4190 case MSR_K8_TSEG_MASK: 4191 case MSR_VM_HSAVE_PA: 4192 case MSR_K8_INT_PENDING_MSG: 4193 case MSR_AMD64_NB_CFG: 4194 case MSR_FAM10H_MMIO_CONF_BASE: 4195 case MSR_AMD64_BU_CFG2: 4196 case MSR_IA32_PERF_CTL: 4197 case MSR_AMD64_DC_CFG: 4198 case MSR_AMD64_TW_CFG: 4199 case MSR_F15H_EX_CFG: 4200 /* 4201 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4202 * limit) MSRs. Just return 0, as we do not want to expose the host 4203 * data here. Do not conditionalize this on CPUID, as KVM does not do 4204 * so for existing CPU-specific MSRs. 4205 */ 4206 case MSR_RAPL_POWER_UNIT: 4207 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4208 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4209 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4210 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4211 msr_info->data = 0; 4212 break; 4213 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4214 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4215 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4216 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4217 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4218 return kvm_pmu_get_msr(vcpu, msr_info); 4219 msr_info->data = 0; 4220 break; 4221 case MSR_IA32_UCODE_REV: 4222 msr_info->data = vcpu->arch.microcode_version; 4223 break; 4224 case MSR_IA32_ARCH_CAPABILITIES: 4225 if (!msr_info->host_initiated && 4226 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4227 return 1; 4228 msr_info->data = vcpu->arch.arch_capabilities; 4229 break; 4230 case MSR_IA32_PERF_CAPABILITIES: 4231 if (!msr_info->host_initiated && 4232 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4233 return 1; 4234 msr_info->data = vcpu->arch.perf_capabilities; 4235 break; 4236 case MSR_IA32_POWER_CTL: 4237 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4238 break; 4239 case MSR_IA32_TSC: { 4240 /* 4241 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4242 * even when not intercepted. AMD manual doesn't explicitly 4243 * state this but appears to behave the same. 4244 * 4245 * On userspace reads and writes, however, we unconditionally 4246 * return L1's TSC value to ensure backwards-compatible 4247 * behavior for migration. 4248 */ 4249 u64 offset, ratio; 4250 4251 if (msr_info->host_initiated) { 4252 offset = vcpu->arch.l1_tsc_offset; 4253 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4254 } else { 4255 offset = vcpu->arch.tsc_offset; 4256 ratio = vcpu->arch.tsc_scaling_ratio; 4257 } 4258 4259 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4260 break; 4261 } 4262 case MSR_IA32_CR_PAT: 4263 msr_info->data = vcpu->arch.pat; 4264 break; 4265 case MSR_MTRRcap: 4266 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4267 case MSR_MTRRdefType: 4268 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4269 case 0xcd: /* fsb frequency */ 4270 msr_info->data = 3; 4271 break; 4272 /* 4273 * MSR_EBC_FREQUENCY_ID 4274 * Conservative value valid for even the basic CPU models. 4275 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4276 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4277 * and 266MHz for model 3, or 4. Set Core Clock 4278 * Frequency to System Bus Frequency Ratio to 1 (bits 4279 * 31:24) even though these are only valid for CPU 4280 * models > 2, however guests may end up dividing or 4281 * multiplying by zero otherwise. 4282 */ 4283 case MSR_EBC_FREQUENCY_ID: 4284 msr_info->data = 1 << 24; 4285 break; 4286 case MSR_IA32_APICBASE: 4287 msr_info->data = kvm_get_apic_base(vcpu); 4288 break; 4289 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4290 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4291 case MSR_IA32_TSC_DEADLINE: 4292 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4293 break; 4294 case MSR_IA32_TSC_ADJUST: 4295 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4296 break; 4297 case MSR_IA32_MISC_ENABLE: 4298 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4299 break; 4300 case MSR_IA32_SMBASE: 4301 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4302 return 1; 4303 msr_info->data = vcpu->arch.smbase; 4304 break; 4305 case MSR_SMI_COUNT: 4306 msr_info->data = vcpu->arch.smi_count; 4307 break; 4308 case MSR_IA32_PERF_STATUS: 4309 /* TSC increment by tick */ 4310 msr_info->data = 1000ULL; 4311 /* CPU multiplier */ 4312 msr_info->data |= (((uint64_t)4ULL) << 40); 4313 break; 4314 case MSR_EFER: 4315 msr_info->data = vcpu->arch.efer; 4316 break; 4317 case MSR_KVM_WALL_CLOCK: 4318 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4319 return 1; 4320 4321 msr_info->data = vcpu->kvm->arch.wall_clock; 4322 break; 4323 case MSR_KVM_WALL_CLOCK_NEW: 4324 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4325 return 1; 4326 4327 msr_info->data = vcpu->kvm->arch.wall_clock; 4328 break; 4329 case MSR_KVM_SYSTEM_TIME: 4330 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4331 return 1; 4332 4333 msr_info->data = vcpu->arch.time; 4334 break; 4335 case MSR_KVM_SYSTEM_TIME_NEW: 4336 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4337 return 1; 4338 4339 msr_info->data = vcpu->arch.time; 4340 break; 4341 case MSR_KVM_ASYNC_PF_EN: 4342 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4343 return 1; 4344 4345 msr_info->data = vcpu->arch.apf.msr_en_val; 4346 break; 4347 case MSR_KVM_ASYNC_PF_INT: 4348 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4349 return 1; 4350 4351 msr_info->data = vcpu->arch.apf.msr_int_val; 4352 break; 4353 case MSR_KVM_ASYNC_PF_ACK: 4354 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4355 return 1; 4356 4357 msr_info->data = 0; 4358 break; 4359 case MSR_KVM_STEAL_TIME: 4360 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4361 return 1; 4362 4363 msr_info->data = vcpu->arch.st.msr_val; 4364 break; 4365 case MSR_KVM_PV_EOI_EN: 4366 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4367 return 1; 4368 4369 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4370 break; 4371 case MSR_KVM_POLL_CONTROL: 4372 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4373 return 1; 4374 4375 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4376 break; 4377 case MSR_IA32_P5_MC_ADDR: 4378 case MSR_IA32_P5_MC_TYPE: 4379 case MSR_IA32_MCG_CAP: 4380 case MSR_IA32_MCG_CTL: 4381 case MSR_IA32_MCG_STATUS: 4382 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4383 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4384 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4385 msr_info->host_initiated); 4386 case MSR_IA32_XSS: 4387 if (!msr_info->host_initiated && 4388 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4389 return 1; 4390 msr_info->data = vcpu->arch.ia32_xss; 4391 break; 4392 case MSR_K7_CLK_CTL: 4393 /* 4394 * Provide expected ramp-up count for K7. All other 4395 * are set to zero, indicating minimum divisors for 4396 * every field. 4397 * 4398 * This prevents guest kernels on AMD host with CPU 4399 * type 6, model 8 and higher from exploding due to 4400 * the rdmsr failing. 4401 */ 4402 msr_info->data = 0x20000000; 4403 break; 4404 #ifdef CONFIG_KVM_HYPERV 4405 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4406 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4407 case HV_X64_MSR_SYNDBG_OPTIONS: 4408 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4409 case HV_X64_MSR_CRASH_CTL: 4410 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4411 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4412 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4413 case HV_X64_MSR_TSC_EMULATION_STATUS: 4414 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4415 return kvm_hv_get_msr_common(vcpu, 4416 msr_info->index, &msr_info->data, 4417 msr_info->host_initiated); 4418 #endif 4419 case MSR_IA32_BBL_CR_CTL3: 4420 /* This legacy MSR exists but isn't fully documented in current 4421 * silicon. It is however accessed by winxp in very narrow 4422 * scenarios where it sets bit #19, itself documented as 4423 * a "reserved" bit. Best effort attempt to source coherent 4424 * read data here should the balance of the register be 4425 * interpreted by the guest: 4426 * 4427 * L2 cache control register 3: 64GB range, 256KB size, 4428 * enabled, latency 0x1, configured 4429 */ 4430 msr_info->data = 0xbe702111; 4431 break; 4432 case MSR_AMD64_OSVW_ID_LENGTH: 4433 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4434 return 1; 4435 msr_info->data = vcpu->arch.osvw.length; 4436 break; 4437 case MSR_AMD64_OSVW_STATUS: 4438 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4439 return 1; 4440 msr_info->data = vcpu->arch.osvw.status; 4441 break; 4442 case MSR_PLATFORM_INFO: 4443 if (!msr_info->host_initiated && 4444 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4445 return 1; 4446 msr_info->data = vcpu->arch.msr_platform_info; 4447 break; 4448 case MSR_MISC_FEATURES_ENABLES: 4449 msr_info->data = vcpu->arch.msr_misc_features_enables; 4450 break; 4451 case MSR_K7_HWCR: 4452 msr_info->data = vcpu->arch.msr_hwcr; 4453 break; 4454 #ifdef CONFIG_X86_64 4455 case MSR_IA32_XFD: 4456 if (!msr_info->host_initiated && 4457 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4458 return 1; 4459 4460 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4461 break; 4462 case MSR_IA32_XFD_ERR: 4463 if (!msr_info->host_initiated && 4464 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4465 return 1; 4466 4467 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4468 break; 4469 #endif 4470 default: 4471 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4472 return kvm_pmu_get_msr(vcpu, msr_info); 4473 4474 /* 4475 * Userspace is allowed to read MSRs that KVM reports as 4476 * to-be-saved, even if an MSR isn't fully supported. 4477 */ 4478 if (msr_info->host_initiated && 4479 kvm_is_msr_to_save(msr_info->index)) { 4480 msr_info->data = 0; 4481 break; 4482 } 4483 4484 return KVM_MSR_RET_INVALID; 4485 } 4486 return 0; 4487 } 4488 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4489 4490 /* 4491 * Read or write a bunch of msrs. All parameters are kernel addresses. 4492 * 4493 * @return number of msrs set successfully. 4494 */ 4495 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4496 struct kvm_msr_entry *entries, 4497 int (*do_msr)(struct kvm_vcpu *vcpu, 4498 unsigned index, u64 *data)) 4499 { 4500 int i; 4501 4502 for (i = 0; i < msrs->nmsrs; ++i) 4503 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4504 break; 4505 4506 return i; 4507 } 4508 4509 /* 4510 * Read or write a bunch of msrs. Parameters are user addresses. 4511 * 4512 * @return number of msrs set successfully. 4513 */ 4514 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4515 int (*do_msr)(struct kvm_vcpu *vcpu, 4516 unsigned index, u64 *data), 4517 int writeback) 4518 { 4519 struct kvm_msrs msrs; 4520 struct kvm_msr_entry *entries; 4521 unsigned size; 4522 int r; 4523 4524 r = -EFAULT; 4525 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4526 goto out; 4527 4528 r = -E2BIG; 4529 if (msrs.nmsrs >= MAX_IO_MSRS) 4530 goto out; 4531 4532 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4533 entries = memdup_user(user_msrs->entries, size); 4534 if (IS_ERR(entries)) { 4535 r = PTR_ERR(entries); 4536 goto out; 4537 } 4538 4539 r = __msr_io(vcpu, &msrs, entries, do_msr); 4540 4541 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4542 r = -EFAULT; 4543 4544 kfree(entries); 4545 out: 4546 return r; 4547 } 4548 4549 static inline bool kvm_can_mwait_in_guest(void) 4550 { 4551 return boot_cpu_has(X86_FEATURE_MWAIT) && 4552 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4553 boot_cpu_has(X86_FEATURE_ARAT); 4554 } 4555 4556 #ifdef CONFIG_KVM_HYPERV 4557 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4558 struct kvm_cpuid2 __user *cpuid_arg) 4559 { 4560 struct kvm_cpuid2 cpuid; 4561 int r; 4562 4563 r = -EFAULT; 4564 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4565 return r; 4566 4567 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4568 if (r) 4569 return r; 4570 4571 r = -EFAULT; 4572 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4573 return r; 4574 4575 return 0; 4576 } 4577 #endif 4578 4579 static bool kvm_is_vm_type_supported(unsigned long type) 4580 { 4581 return type == KVM_X86_DEFAULT_VM || 4582 (type == KVM_X86_SW_PROTECTED_VM && 4583 IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_enabled); 4584 } 4585 4586 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4587 { 4588 int r = 0; 4589 4590 switch (ext) { 4591 case KVM_CAP_IRQCHIP: 4592 case KVM_CAP_HLT: 4593 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4594 case KVM_CAP_SET_TSS_ADDR: 4595 case KVM_CAP_EXT_CPUID: 4596 case KVM_CAP_EXT_EMUL_CPUID: 4597 case KVM_CAP_CLOCKSOURCE: 4598 case KVM_CAP_PIT: 4599 case KVM_CAP_NOP_IO_DELAY: 4600 case KVM_CAP_MP_STATE: 4601 case KVM_CAP_SYNC_MMU: 4602 case KVM_CAP_USER_NMI: 4603 case KVM_CAP_REINJECT_CONTROL: 4604 case KVM_CAP_IRQ_INJECT_STATUS: 4605 case KVM_CAP_IOEVENTFD: 4606 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4607 case KVM_CAP_PIT2: 4608 case KVM_CAP_PIT_STATE2: 4609 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4610 case KVM_CAP_VCPU_EVENTS: 4611 #ifdef CONFIG_KVM_HYPERV 4612 case KVM_CAP_HYPERV: 4613 case KVM_CAP_HYPERV_VAPIC: 4614 case KVM_CAP_HYPERV_SPIN: 4615 case KVM_CAP_HYPERV_TIME: 4616 case KVM_CAP_HYPERV_SYNIC: 4617 case KVM_CAP_HYPERV_SYNIC2: 4618 case KVM_CAP_HYPERV_VP_INDEX: 4619 case KVM_CAP_HYPERV_EVENTFD: 4620 case KVM_CAP_HYPERV_TLBFLUSH: 4621 case KVM_CAP_HYPERV_SEND_IPI: 4622 case KVM_CAP_HYPERV_CPUID: 4623 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4624 case KVM_CAP_SYS_HYPERV_CPUID: 4625 #endif 4626 case KVM_CAP_PCI_SEGMENT: 4627 case KVM_CAP_DEBUGREGS: 4628 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4629 case KVM_CAP_XSAVE: 4630 case KVM_CAP_ASYNC_PF: 4631 case KVM_CAP_ASYNC_PF_INT: 4632 case KVM_CAP_GET_TSC_KHZ: 4633 case KVM_CAP_KVMCLOCK_CTRL: 4634 case KVM_CAP_READONLY_MEM: 4635 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4636 case KVM_CAP_TSC_DEADLINE_TIMER: 4637 case KVM_CAP_DISABLE_QUIRKS: 4638 case KVM_CAP_SET_BOOT_CPU_ID: 4639 case KVM_CAP_SPLIT_IRQCHIP: 4640 case KVM_CAP_IMMEDIATE_EXIT: 4641 case KVM_CAP_PMU_EVENT_FILTER: 4642 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4643 case KVM_CAP_GET_MSR_FEATURES: 4644 case KVM_CAP_MSR_PLATFORM_INFO: 4645 case KVM_CAP_EXCEPTION_PAYLOAD: 4646 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4647 case KVM_CAP_SET_GUEST_DEBUG: 4648 case KVM_CAP_LAST_CPU: 4649 case KVM_CAP_X86_USER_SPACE_MSR: 4650 case KVM_CAP_X86_MSR_FILTER: 4651 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4652 #ifdef CONFIG_X86_SGX_KVM 4653 case KVM_CAP_SGX_ATTRIBUTE: 4654 #endif 4655 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4656 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4657 case KVM_CAP_SREGS2: 4658 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4659 case KVM_CAP_VCPU_ATTRIBUTES: 4660 case KVM_CAP_SYS_ATTRIBUTES: 4661 case KVM_CAP_VAPIC: 4662 case KVM_CAP_ENABLE_CAP: 4663 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4664 case KVM_CAP_IRQFD_RESAMPLE: 4665 case KVM_CAP_MEMORY_FAULT_INFO: 4666 r = 1; 4667 break; 4668 case KVM_CAP_EXIT_HYPERCALL: 4669 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4670 break; 4671 case KVM_CAP_SET_GUEST_DEBUG2: 4672 return KVM_GUESTDBG_VALID_MASK; 4673 #ifdef CONFIG_KVM_XEN 4674 case KVM_CAP_XEN_HVM: 4675 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4676 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4677 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4678 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4679 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4680 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 4681 if (sched_info_on()) 4682 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4683 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4684 break; 4685 #endif 4686 case KVM_CAP_SYNC_REGS: 4687 r = KVM_SYNC_X86_VALID_FIELDS; 4688 break; 4689 case KVM_CAP_ADJUST_CLOCK: 4690 r = KVM_CLOCK_VALID_FLAGS; 4691 break; 4692 case KVM_CAP_X86_DISABLE_EXITS: 4693 r = KVM_X86_DISABLE_EXITS_PAUSE; 4694 4695 if (!mitigate_smt_rsb) { 4696 r |= KVM_X86_DISABLE_EXITS_HLT | 4697 KVM_X86_DISABLE_EXITS_CSTATE; 4698 4699 if (kvm_can_mwait_in_guest()) 4700 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4701 } 4702 break; 4703 case KVM_CAP_X86_SMM: 4704 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4705 break; 4706 4707 /* SMBASE is usually relocated above 1M on modern chipsets, 4708 * and SMM handlers might indeed rely on 4G segment limits, 4709 * so do not report SMM to be available if real mode is 4710 * emulated via vm86 mode. Still, do not go to great lengths 4711 * to avoid userspace's usage of the feature, because it is a 4712 * fringe case that is not enabled except via specific settings 4713 * of the module parameters. 4714 */ 4715 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4716 break; 4717 case KVM_CAP_NR_VCPUS: 4718 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4719 break; 4720 case KVM_CAP_MAX_VCPUS: 4721 r = KVM_MAX_VCPUS; 4722 break; 4723 case KVM_CAP_MAX_VCPU_ID: 4724 r = KVM_MAX_VCPU_IDS; 4725 break; 4726 case KVM_CAP_PV_MMU: /* obsolete */ 4727 r = 0; 4728 break; 4729 case KVM_CAP_MCE: 4730 r = KVM_MAX_MCE_BANKS; 4731 break; 4732 case KVM_CAP_XCRS: 4733 r = boot_cpu_has(X86_FEATURE_XSAVE); 4734 break; 4735 case KVM_CAP_TSC_CONTROL: 4736 case KVM_CAP_VM_TSC_CONTROL: 4737 r = kvm_caps.has_tsc_control; 4738 break; 4739 case KVM_CAP_X2APIC_API: 4740 r = KVM_X2APIC_API_VALID_FLAGS; 4741 break; 4742 case KVM_CAP_NESTED_STATE: 4743 r = kvm_x86_ops.nested_ops->get_state ? 4744 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4745 break; 4746 #ifdef CONFIG_KVM_HYPERV 4747 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4748 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4749 break; 4750 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4751 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4752 break; 4753 #endif 4754 case KVM_CAP_SMALLER_MAXPHYADDR: 4755 r = (int) allow_smaller_maxphyaddr; 4756 break; 4757 case KVM_CAP_STEAL_TIME: 4758 r = sched_info_on(); 4759 break; 4760 case KVM_CAP_X86_BUS_LOCK_EXIT: 4761 if (kvm_caps.has_bus_lock_exit) 4762 r = KVM_BUS_LOCK_DETECTION_OFF | 4763 KVM_BUS_LOCK_DETECTION_EXIT; 4764 else 4765 r = 0; 4766 break; 4767 case KVM_CAP_XSAVE2: { 4768 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4769 if (r < sizeof(struct kvm_xsave)) 4770 r = sizeof(struct kvm_xsave); 4771 break; 4772 } 4773 case KVM_CAP_PMU_CAPABILITY: 4774 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4775 break; 4776 case KVM_CAP_DISABLE_QUIRKS2: 4777 r = KVM_X86_VALID_QUIRKS; 4778 break; 4779 case KVM_CAP_X86_NOTIFY_VMEXIT: 4780 r = kvm_caps.has_notify_vmexit; 4781 break; 4782 case KVM_CAP_VM_TYPES: 4783 r = BIT(KVM_X86_DEFAULT_VM); 4784 if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM)) 4785 r |= BIT(KVM_X86_SW_PROTECTED_VM); 4786 break; 4787 default: 4788 break; 4789 } 4790 return r; 4791 } 4792 4793 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4794 { 4795 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4796 4797 if ((u64)(unsigned long)uaddr != attr->addr) 4798 return ERR_PTR_USR(-EFAULT); 4799 return uaddr; 4800 } 4801 4802 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4803 { 4804 u64 __user *uaddr = kvm_get_attr_addr(attr); 4805 4806 if (attr->group) 4807 return -ENXIO; 4808 4809 if (IS_ERR(uaddr)) 4810 return PTR_ERR(uaddr); 4811 4812 switch (attr->attr) { 4813 case KVM_X86_XCOMP_GUEST_SUPP: 4814 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4815 return -EFAULT; 4816 return 0; 4817 default: 4818 return -ENXIO; 4819 } 4820 } 4821 4822 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4823 { 4824 if (attr->group) 4825 return -ENXIO; 4826 4827 switch (attr->attr) { 4828 case KVM_X86_XCOMP_GUEST_SUPP: 4829 return 0; 4830 default: 4831 return -ENXIO; 4832 } 4833 } 4834 4835 long kvm_arch_dev_ioctl(struct file *filp, 4836 unsigned int ioctl, unsigned long arg) 4837 { 4838 void __user *argp = (void __user *)arg; 4839 long r; 4840 4841 switch (ioctl) { 4842 case KVM_GET_MSR_INDEX_LIST: { 4843 struct kvm_msr_list __user *user_msr_list = argp; 4844 struct kvm_msr_list msr_list; 4845 unsigned n; 4846 4847 r = -EFAULT; 4848 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4849 goto out; 4850 n = msr_list.nmsrs; 4851 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4852 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4853 goto out; 4854 r = -E2BIG; 4855 if (n < msr_list.nmsrs) 4856 goto out; 4857 r = -EFAULT; 4858 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4859 num_msrs_to_save * sizeof(u32))) 4860 goto out; 4861 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4862 &emulated_msrs, 4863 num_emulated_msrs * sizeof(u32))) 4864 goto out; 4865 r = 0; 4866 break; 4867 } 4868 case KVM_GET_SUPPORTED_CPUID: 4869 case KVM_GET_EMULATED_CPUID: { 4870 struct kvm_cpuid2 __user *cpuid_arg = argp; 4871 struct kvm_cpuid2 cpuid; 4872 4873 r = -EFAULT; 4874 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4875 goto out; 4876 4877 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4878 ioctl); 4879 if (r) 4880 goto out; 4881 4882 r = -EFAULT; 4883 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4884 goto out; 4885 r = 0; 4886 break; 4887 } 4888 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4889 r = -EFAULT; 4890 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4891 sizeof(kvm_caps.supported_mce_cap))) 4892 goto out; 4893 r = 0; 4894 break; 4895 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4896 struct kvm_msr_list __user *user_msr_list = argp; 4897 struct kvm_msr_list msr_list; 4898 unsigned int n; 4899 4900 r = -EFAULT; 4901 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4902 goto out; 4903 n = msr_list.nmsrs; 4904 msr_list.nmsrs = num_msr_based_features; 4905 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4906 goto out; 4907 r = -E2BIG; 4908 if (n < msr_list.nmsrs) 4909 goto out; 4910 r = -EFAULT; 4911 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4912 num_msr_based_features * sizeof(u32))) 4913 goto out; 4914 r = 0; 4915 break; 4916 } 4917 case KVM_GET_MSRS: 4918 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4919 break; 4920 #ifdef CONFIG_KVM_HYPERV 4921 case KVM_GET_SUPPORTED_HV_CPUID: 4922 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4923 break; 4924 #endif 4925 case KVM_GET_DEVICE_ATTR: { 4926 struct kvm_device_attr attr; 4927 r = -EFAULT; 4928 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4929 break; 4930 r = kvm_x86_dev_get_attr(&attr); 4931 break; 4932 } 4933 case KVM_HAS_DEVICE_ATTR: { 4934 struct kvm_device_attr attr; 4935 r = -EFAULT; 4936 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4937 break; 4938 r = kvm_x86_dev_has_attr(&attr); 4939 break; 4940 } 4941 default: 4942 r = -EINVAL; 4943 break; 4944 } 4945 out: 4946 return r; 4947 } 4948 4949 static void wbinvd_ipi(void *garbage) 4950 { 4951 wbinvd(); 4952 } 4953 4954 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4955 { 4956 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4957 } 4958 4959 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4960 { 4961 /* Address WBINVD may be executed by guest */ 4962 if (need_emulate_wbinvd(vcpu)) { 4963 if (static_call(kvm_x86_has_wbinvd_exit)()) 4964 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4965 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4966 smp_call_function_single(vcpu->cpu, 4967 wbinvd_ipi, NULL, 1); 4968 } 4969 4970 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4971 4972 /* Save host pkru register if supported */ 4973 vcpu->arch.host_pkru = read_pkru(); 4974 4975 /* Apply any externally detected TSC adjustments (due to suspend) */ 4976 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4977 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4978 vcpu->arch.tsc_offset_adjustment = 0; 4979 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4980 } 4981 4982 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4983 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4984 rdtsc() - vcpu->arch.last_host_tsc; 4985 if (tsc_delta < 0) 4986 mark_tsc_unstable("KVM discovered backwards TSC"); 4987 4988 if (kvm_check_tsc_unstable()) { 4989 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4990 vcpu->arch.last_guest_tsc); 4991 kvm_vcpu_write_tsc_offset(vcpu, offset); 4992 vcpu->arch.tsc_catchup = 1; 4993 } 4994 4995 if (kvm_lapic_hv_timer_in_use(vcpu)) 4996 kvm_lapic_restart_hv_timer(vcpu); 4997 4998 /* 4999 * On a host with synchronized TSC, there is no need to update 5000 * kvmclock on vcpu->cpu migration 5001 */ 5002 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5003 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5004 if (vcpu->cpu != cpu) 5005 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5006 vcpu->cpu = cpu; 5007 } 5008 5009 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5010 } 5011 5012 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5013 { 5014 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5015 struct kvm_steal_time __user *st; 5016 struct kvm_memslots *slots; 5017 static const u8 preempted = KVM_VCPU_PREEMPTED; 5018 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5019 5020 /* 5021 * The vCPU can be marked preempted if and only if the VM-Exit was on 5022 * an instruction boundary and will not trigger guest emulation of any 5023 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5024 * when this is true, for example allowing the vCPU to be marked 5025 * preempted if and only if the VM-Exit was due to a host interrupt. 5026 */ 5027 if (!vcpu->arch.at_instruction_boundary) { 5028 vcpu->stat.preemption_other++; 5029 return; 5030 } 5031 5032 vcpu->stat.preemption_reported++; 5033 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5034 return; 5035 5036 if (vcpu->arch.st.preempted) 5037 return; 5038 5039 /* This happens on process exit */ 5040 if (unlikely(current->mm != vcpu->kvm->mm)) 5041 return; 5042 5043 slots = kvm_memslots(vcpu->kvm); 5044 5045 if (unlikely(slots->generation != ghc->generation || 5046 gpa != ghc->gpa || 5047 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5048 return; 5049 5050 st = (struct kvm_steal_time __user *)ghc->hva; 5051 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5052 5053 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5054 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5055 5056 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5057 } 5058 5059 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5060 { 5061 int idx; 5062 5063 if (vcpu->preempted) { 5064 if (!vcpu->arch.guest_state_protected) 5065 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 5066 5067 /* 5068 * Take the srcu lock as memslots will be accessed to check the gfn 5069 * cache generation against the memslots generation. 5070 */ 5071 idx = srcu_read_lock(&vcpu->kvm->srcu); 5072 if (kvm_xen_msr_enabled(vcpu->kvm)) 5073 kvm_xen_runstate_set_preempted(vcpu); 5074 else 5075 kvm_steal_time_set_preempted(vcpu); 5076 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5077 } 5078 5079 static_call(kvm_x86_vcpu_put)(vcpu); 5080 vcpu->arch.last_host_tsc = rdtsc(); 5081 } 5082 5083 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5084 struct kvm_lapic_state *s) 5085 { 5086 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 5087 5088 return kvm_apic_get_state(vcpu, s); 5089 } 5090 5091 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5092 struct kvm_lapic_state *s) 5093 { 5094 int r; 5095 5096 r = kvm_apic_set_state(vcpu, s); 5097 if (r) 5098 return r; 5099 update_cr8_intercept(vcpu); 5100 5101 return 0; 5102 } 5103 5104 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5105 { 5106 /* 5107 * We can accept userspace's request for interrupt injection 5108 * as long as we have a place to store the interrupt number. 5109 * The actual injection will happen when the CPU is able to 5110 * deliver the interrupt. 5111 */ 5112 if (kvm_cpu_has_extint(vcpu)) 5113 return false; 5114 5115 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5116 return (!lapic_in_kernel(vcpu) || 5117 kvm_apic_accept_pic_intr(vcpu)); 5118 } 5119 5120 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5121 { 5122 /* 5123 * Do not cause an interrupt window exit if an exception 5124 * is pending or an event needs reinjection; userspace 5125 * might want to inject the interrupt manually using KVM_SET_REGS 5126 * or KVM_SET_SREGS. For that to work, we must be at an 5127 * instruction boundary and with no events half-injected. 5128 */ 5129 return (kvm_arch_interrupt_allowed(vcpu) && 5130 kvm_cpu_accept_dm_intr(vcpu) && 5131 !kvm_event_needs_reinjection(vcpu) && 5132 !kvm_is_exception_pending(vcpu)); 5133 } 5134 5135 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5136 struct kvm_interrupt *irq) 5137 { 5138 if (irq->irq >= KVM_NR_INTERRUPTS) 5139 return -EINVAL; 5140 5141 if (!irqchip_in_kernel(vcpu->kvm)) { 5142 kvm_queue_interrupt(vcpu, irq->irq, false); 5143 kvm_make_request(KVM_REQ_EVENT, vcpu); 5144 return 0; 5145 } 5146 5147 /* 5148 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5149 * fail for in-kernel 8259. 5150 */ 5151 if (pic_in_kernel(vcpu->kvm)) 5152 return -ENXIO; 5153 5154 if (vcpu->arch.pending_external_vector != -1) 5155 return -EEXIST; 5156 5157 vcpu->arch.pending_external_vector = irq->irq; 5158 kvm_make_request(KVM_REQ_EVENT, vcpu); 5159 return 0; 5160 } 5161 5162 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5163 { 5164 kvm_inject_nmi(vcpu); 5165 5166 return 0; 5167 } 5168 5169 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5170 struct kvm_tpr_access_ctl *tac) 5171 { 5172 if (tac->flags) 5173 return -EINVAL; 5174 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5175 return 0; 5176 } 5177 5178 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5179 u64 mcg_cap) 5180 { 5181 int r; 5182 unsigned bank_num = mcg_cap & 0xff, bank; 5183 5184 r = -EINVAL; 5185 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5186 goto out; 5187 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5188 goto out; 5189 r = 0; 5190 vcpu->arch.mcg_cap = mcg_cap; 5191 /* Init IA32_MCG_CTL to all 1s */ 5192 if (mcg_cap & MCG_CTL_P) 5193 vcpu->arch.mcg_ctl = ~(u64)0; 5194 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5195 for (bank = 0; bank < bank_num; bank++) { 5196 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5197 if (mcg_cap & MCG_CMCI_P) 5198 vcpu->arch.mci_ctl2_banks[bank] = 0; 5199 } 5200 5201 kvm_apic_after_set_mcg_cap(vcpu); 5202 5203 static_call(kvm_x86_setup_mce)(vcpu); 5204 out: 5205 return r; 5206 } 5207 5208 /* 5209 * Validate this is an UCNA (uncorrectable no action) error by checking the 5210 * MCG_STATUS and MCi_STATUS registers: 5211 * - none of the bits for Machine Check Exceptions are set 5212 * - both the VAL (valid) and UC (uncorrectable) bits are set 5213 * MCI_STATUS_PCC - Processor Context Corrupted 5214 * MCI_STATUS_S - Signaled as a Machine Check Exception 5215 * MCI_STATUS_AR - Software recoverable Action Required 5216 */ 5217 static bool is_ucna(struct kvm_x86_mce *mce) 5218 { 5219 return !mce->mcg_status && 5220 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5221 (mce->status & MCI_STATUS_VAL) && 5222 (mce->status & MCI_STATUS_UC); 5223 } 5224 5225 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5226 { 5227 u64 mcg_cap = vcpu->arch.mcg_cap; 5228 5229 banks[1] = mce->status; 5230 banks[2] = mce->addr; 5231 banks[3] = mce->misc; 5232 vcpu->arch.mcg_status = mce->mcg_status; 5233 5234 if (!(mcg_cap & MCG_CMCI_P) || 5235 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5236 return 0; 5237 5238 if (lapic_in_kernel(vcpu)) 5239 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5240 5241 return 0; 5242 } 5243 5244 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5245 struct kvm_x86_mce *mce) 5246 { 5247 u64 mcg_cap = vcpu->arch.mcg_cap; 5248 unsigned bank_num = mcg_cap & 0xff; 5249 u64 *banks = vcpu->arch.mce_banks; 5250 5251 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5252 return -EINVAL; 5253 5254 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5255 5256 if (is_ucna(mce)) 5257 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5258 5259 /* 5260 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5261 * reporting is disabled 5262 */ 5263 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5264 vcpu->arch.mcg_ctl != ~(u64)0) 5265 return 0; 5266 /* 5267 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5268 * reporting is disabled for the bank 5269 */ 5270 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5271 return 0; 5272 if (mce->status & MCI_STATUS_UC) { 5273 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5274 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5275 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5276 return 0; 5277 } 5278 if (banks[1] & MCI_STATUS_VAL) 5279 mce->status |= MCI_STATUS_OVER; 5280 banks[2] = mce->addr; 5281 banks[3] = mce->misc; 5282 vcpu->arch.mcg_status = mce->mcg_status; 5283 banks[1] = mce->status; 5284 kvm_queue_exception(vcpu, MC_VECTOR); 5285 } else if (!(banks[1] & MCI_STATUS_VAL) 5286 || !(banks[1] & MCI_STATUS_UC)) { 5287 if (banks[1] & MCI_STATUS_VAL) 5288 mce->status |= MCI_STATUS_OVER; 5289 banks[2] = mce->addr; 5290 banks[3] = mce->misc; 5291 banks[1] = mce->status; 5292 } else 5293 banks[1] |= MCI_STATUS_OVER; 5294 return 0; 5295 } 5296 5297 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5298 struct kvm_vcpu_events *events) 5299 { 5300 struct kvm_queued_exception *ex; 5301 5302 process_nmi(vcpu); 5303 5304 #ifdef CONFIG_KVM_SMM 5305 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5306 process_smi(vcpu); 5307 #endif 5308 5309 /* 5310 * KVM's ABI only allows for one exception to be migrated. Luckily, 5311 * the only time there can be two queued exceptions is if there's a 5312 * non-exiting _injected_ exception, and a pending exiting exception. 5313 * In that case, ignore the VM-Exiting exception as it's an extension 5314 * of the injected exception. 5315 */ 5316 if (vcpu->arch.exception_vmexit.pending && 5317 !vcpu->arch.exception.pending && 5318 !vcpu->arch.exception.injected) 5319 ex = &vcpu->arch.exception_vmexit; 5320 else 5321 ex = &vcpu->arch.exception; 5322 5323 /* 5324 * In guest mode, payload delivery should be deferred if the exception 5325 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5326 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5327 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5328 * propagate the payload and so it cannot be safely deferred. Deliver 5329 * the payload if the capability hasn't been requested. 5330 */ 5331 if (!vcpu->kvm->arch.exception_payload_enabled && 5332 ex->pending && ex->has_payload) 5333 kvm_deliver_exception_payload(vcpu, ex); 5334 5335 memset(events, 0, sizeof(*events)); 5336 5337 /* 5338 * The API doesn't provide the instruction length for software 5339 * exceptions, so don't report them. As long as the guest RIP 5340 * isn't advanced, we should expect to encounter the exception 5341 * again. 5342 */ 5343 if (!kvm_exception_is_soft(ex->vector)) { 5344 events->exception.injected = ex->injected; 5345 events->exception.pending = ex->pending; 5346 /* 5347 * For ABI compatibility, deliberately conflate 5348 * pending and injected exceptions when 5349 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5350 */ 5351 if (!vcpu->kvm->arch.exception_payload_enabled) 5352 events->exception.injected |= ex->pending; 5353 } 5354 events->exception.nr = ex->vector; 5355 events->exception.has_error_code = ex->has_error_code; 5356 events->exception.error_code = ex->error_code; 5357 events->exception_has_payload = ex->has_payload; 5358 events->exception_payload = ex->payload; 5359 5360 events->interrupt.injected = 5361 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5362 events->interrupt.nr = vcpu->arch.interrupt.nr; 5363 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5364 5365 events->nmi.injected = vcpu->arch.nmi_injected; 5366 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5367 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5368 5369 /* events->sipi_vector is never valid when reporting to user space */ 5370 5371 #ifdef CONFIG_KVM_SMM 5372 events->smi.smm = is_smm(vcpu); 5373 events->smi.pending = vcpu->arch.smi_pending; 5374 events->smi.smm_inside_nmi = 5375 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5376 #endif 5377 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5378 5379 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5380 | KVM_VCPUEVENT_VALID_SHADOW 5381 | KVM_VCPUEVENT_VALID_SMM); 5382 if (vcpu->kvm->arch.exception_payload_enabled) 5383 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5384 if (vcpu->kvm->arch.triple_fault_event) { 5385 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5386 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5387 } 5388 } 5389 5390 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5391 struct kvm_vcpu_events *events) 5392 { 5393 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5394 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5395 | KVM_VCPUEVENT_VALID_SHADOW 5396 | KVM_VCPUEVENT_VALID_SMM 5397 | KVM_VCPUEVENT_VALID_PAYLOAD 5398 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5399 return -EINVAL; 5400 5401 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5402 if (!vcpu->kvm->arch.exception_payload_enabled) 5403 return -EINVAL; 5404 if (events->exception.pending) 5405 events->exception.injected = 0; 5406 else 5407 events->exception_has_payload = 0; 5408 } else { 5409 events->exception.pending = 0; 5410 events->exception_has_payload = 0; 5411 } 5412 5413 if ((events->exception.injected || events->exception.pending) && 5414 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5415 return -EINVAL; 5416 5417 /* INITs are latched while in SMM */ 5418 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5419 (events->smi.smm || events->smi.pending) && 5420 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5421 return -EINVAL; 5422 5423 process_nmi(vcpu); 5424 5425 /* 5426 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5427 * morph the exception to a VM-Exit if appropriate. Do this only for 5428 * pending exceptions, already-injected exceptions are not subject to 5429 * intercpetion. Note, userspace that conflates pending and injected 5430 * is hosed, and will incorrectly convert an injected exception into a 5431 * pending exception, which in turn may cause a spurious VM-Exit. 5432 */ 5433 vcpu->arch.exception_from_userspace = events->exception.pending; 5434 5435 vcpu->arch.exception_vmexit.pending = false; 5436 5437 vcpu->arch.exception.injected = events->exception.injected; 5438 vcpu->arch.exception.pending = events->exception.pending; 5439 vcpu->arch.exception.vector = events->exception.nr; 5440 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5441 vcpu->arch.exception.error_code = events->exception.error_code; 5442 vcpu->arch.exception.has_payload = events->exception_has_payload; 5443 vcpu->arch.exception.payload = events->exception_payload; 5444 5445 vcpu->arch.interrupt.injected = events->interrupt.injected; 5446 vcpu->arch.interrupt.nr = events->interrupt.nr; 5447 vcpu->arch.interrupt.soft = events->interrupt.soft; 5448 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5449 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5450 events->interrupt.shadow); 5451 5452 vcpu->arch.nmi_injected = events->nmi.injected; 5453 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5454 vcpu->arch.nmi_pending = 0; 5455 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5456 if (events->nmi.pending) 5457 kvm_make_request(KVM_REQ_NMI, vcpu); 5458 } 5459 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5460 5461 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5462 lapic_in_kernel(vcpu)) 5463 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5464 5465 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5466 #ifdef CONFIG_KVM_SMM 5467 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5468 kvm_leave_nested(vcpu); 5469 kvm_smm_changed(vcpu, events->smi.smm); 5470 } 5471 5472 vcpu->arch.smi_pending = events->smi.pending; 5473 5474 if (events->smi.smm) { 5475 if (events->smi.smm_inside_nmi) 5476 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5477 else 5478 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5479 } 5480 5481 #else 5482 if (events->smi.smm || events->smi.pending || 5483 events->smi.smm_inside_nmi) 5484 return -EINVAL; 5485 #endif 5486 5487 if (lapic_in_kernel(vcpu)) { 5488 if (events->smi.latched_init) 5489 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5490 else 5491 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5492 } 5493 } 5494 5495 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5496 if (!vcpu->kvm->arch.triple_fault_event) 5497 return -EINVAL; 5498 if (events->triple_fault.pending) 5499 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5500 else 5501 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5502 } 5503 5504 kvm_make_request(KVM_REQ_EVENT, vcpu); 5505 5506 return 0; 5507 } 5508 5509 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5510 struct kvm_debugregs *dbgregs) 5511 { 5512 unsigned long val; 5513 5514 memset(dbgregs, 0, sizeof(*dbgregs)); 5515 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5516 kvm_get_dr(vcpu, 6, &val); 5517 dbgregs->dr6 = val; 5518 dbgregs->dr7 = vcpu->arch.dr7; 5519 } 5520 5521 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5522 struct kvm_debugregs *dbgregs) 5523 { 5524 if (dbgregs->flags) 5525 return -EINVAL; 5526 5527 if (!kvm_dr6_valid(dbgregs->dr6)) 5528 return -EINVAL; 5529 if (!kvm_dr7_valid(dbgregs->dr7)) 5530 return -EINVAL; 5531 5532 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5533 kvm_update_dr0123(vcpu); 5534 vcpu->arch.dr6 = dbgregs->dr6; 5535 vcpu->arch.dr7 = dbgregs->dr7; 5536 kvm_update_dr7(vcpu); 5537 5538 return 0; 5539 } 5540 5541 5542 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5543 u8 *state, unsigned int size) 5544 { 5545 /* 5546 * Only copy state for features that are enabled for the guest. The 5547 * state itself isn't problematic, but setting bits in the header for 5548 * features that are supported in *this* host but not exposed to the 5549 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5550 * compatible host without the features that are NOT exposed to the 5551 * guest. 5552 * 5553 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5554 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5555 * supported by the host. 5556 */ 5557 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5558 XFEATURE_MASK_FPSSE; 5559 5560 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5561 return; 5562 5563 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5564 supported_xcr0, vcpu->arch.pkru); 5565 } 5566 5567 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5568 struct kvm_xsave *guest_xsave) 5569 { 5570 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5571 sizeof(guest_xsave->region)); 5572 } 5573 5574 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5575 struct kvm_xsave *guest_xsave) 5576 { 5577 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5578 return 0; 5579 5580 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5581 guest_xsave->region, 5582 kvm_caps.supported_xcr0, 5583 &vcpu->arch.pkru); 5584 } 5585 5586 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5587 struct kvm_xcrs *guest_xcrs) 5588 { 5589 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5590 guest_xcrs->nr_xcrs = 0; 5591 return; 5592 } 5593 5594 guest_xcrs->nr_xcrs = 1; 5595 guest_xcrs->flags = 0; 5596 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5597 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5598 } 5599 5600 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5601 struct kvm_xcrs *guest_xcrs) 5602 { 5603 int i, r = 0; 5604 5605 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5606 return -EINVAL; 5607 5608 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5609 return -EINVAL; 5610 5611 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5612 /* Only support XCR0 currently */ 5613 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5614 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5615 guest_xcrs->xcrs[i].value); 5616 break; 5617 } 5618 if (r) 5619 r = -EINVAL; 5620 return r; 5621 } 5622 5623 /* 5624 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5625 * stopped by the hypervisor. This function will be called from the host only. 5626 * EINVAL is returned when the host attempts to set the flag for a guest that 5627 * does not support pv clocks. 5628 */ 5629 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5630 { 5631 if (!vcpu->arch.pv_time.active) 5632 return -EINVAL; 5633 vcpu->arch.pvclock_set_guest_stopped_request = true; 5634 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5635 return 0; 5636 } 5637 5638 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5639 struct kvm_device_attr *attr) 5640 { 5641 int r; 5642 5643 switch (attr->attr) { 5644 case KVM_VCPU_TSC_OFFSET: 5645 r = 0; 5646 break; 5647 default: 5648 r = -ENXIO; 5649 } 5650 5651 return r; 5652 } 5653 5654 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5655 struct kvm_device_attr *attr) 5656 { 5657 u64 __user *uaddr = kvm_get_attr_addr(attr); 5658 int r; 5659 5660 if (IS_ERR(uaddr)) 5661 return PTR_ERR(uaddr); 5662 5663 switch (attr->attr) { 5664 case KVM_VCPU_TSC_OFFSET: 5665 r = -EFAULT; 5666 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5667 break; 5668 r = 0; 5669 break; 5670 default: 5671 r = -ENXIO; 5672 } 5673 5674 return r; 5675 } 5676 5677 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5678 struct kvm_device_attr *attr) 5679 { 5680 u64 __user *uaddr = kvm_get_attr_addr(attr); 5681 struct kvm *kvm = vcpu->kvm; 5682 int r; 5683 5684 if (IS_ERR(uaddr)) 5685 return PTR_ERR(uaddr); 5686 5687 switch (attr->attr) { 5688 case KVM_VCPU_TSC_OFFSET: { 5689 u64 offset, tsc, ns; 5690 unsigned long flags; 5691 bool matched; 5692 5693 r = -EFAULT; 5694 if (get_user(offset, uaddr)) 5695 break; 5696 5697 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5698 5699 matched = (vcpu->arch.virtual_tsc_khz && 5700 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5701 kvm->arch.last_tsc_offset == offset); 5702 5703 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5704 ns = get_kvmclock_base_ns(); 5705 5706 kvm->arch.user_set_tsc = true; 5707 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5708 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5709 5710 r = 0; 5711 break; 5712 } 5713 default: 5714 r = -ENXIO; 5715 } 5716 5717 return r; 5718 } 5719 5720 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5721 unsigned int ioctl, 5722 void __user *argp) 5723 { 5724 struct kvm_device_attr attr; 5725 int r; 5726 5727 if (copy_from_user(&attr, argp, sizeof(attr))) 5728 return -EFAULT; 5729 5730 if (attr.group != KVM_VCPU_TSC_CTRL) 5731 return -ENXIO; 5732 5733 switch (ioctl) { 5734 case KVM_HAS_DEVICE_ATTR: 5735 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5736 break; 5737 case KVM_GET_DEVICE_ATTR: 5738 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5739 break; 5740 case KVM_SET_DEVICE_ATTR: 5741 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5742 break; 5743 } 5744 5745 return r; 5746 } 5747 5748 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5749 struct kvm_enable_cap *cap) 5750 { 5751 if (cap->flags) 5752 return -EINVAL; 5753 5754 switch (cap->cap) { 5755 #ifdef CONFIG_KVM_HYPERV 5756 case KVM_CAP_HYPERV_SYNIC2: 5757 if (cap->args[0]) 5758 return -EINVAL; 5759 fallthrough; 5760 5761 case KVM_CAP_HYPERV_SYNIC: 5762 if (!irqchip_in_kernel(vcpu->kvm)) 5763 return -EINVAL; 5764 return kvm_hv_activate_synic(vcpu, cap->cap == 5765 KVM_CAP_HYPERV_SYNIC2); 5766 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5767 { 5768 int r; 5769 uint16_t vmcs_version; 5770 void __user *user_ptr; 5771 5772 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5773 return -ENOTTY; 5774 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5775 if (!r) { 5776 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5777 if (copy_to_user(user_ptr, &vmcs_version, 5778 sizeof(vmcs_version))) 5779 r = -EFAULT; 5780 } 5781 return r; 5782 } 5783 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5784 if (!kvm_x86_ops.enable_l2_tlb_flush) 5785 return -ENOTTY; 5786 5787 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5788 5789 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5790 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5791 #endif 5792 5793 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5794 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5795 if (vcpu->arch.pv_cpuid.enforce) 5796 kvm_update_pv_runtime(vcpu); 5797 5798 return 0; 5799 default: 5800 return -EINVAL; 5801 } 5802 } 5803 5804 long kvm_arch_vcpu_ioctl(struct file *filp, 5805 unsigned int ioctl, unsigned long arg) 5806 { 5807 struct kvm_vcpu *vcpu = filp->private_data; 5808 void __user *argp = (void __user *)arg; 5809 int r; 5810 union { 5811 struct kvm_sregs2 *sregs2; 5812 struct kvm_lapic_state *lapic; 5813 struct kvm_xsave *xsave; 5814 struct kvm_xcrs *xcrs; 5815 void *buffer; 5816 } u; 5817 5818 vcpu_load(vcpu); 5819 5820 u.buffer = NULL; 5821 switch (ioctl) { 5822 case KVM_GET_LAPIC: { 5823 r = -EINVAL; 5824 if (!lapic_in_kernel(vcpu)) 5825 goto out; 5826 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5827 GFP_KERNEL_ACCOUNT); 5828 5829 r = -ENOMEM; 5830 if (!u.lapic) 5831 goto out; 5832 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5833 if (r) 5834 goto out; 5835 r = -EFAULT; 5836 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5837 goto out; 5838 r = 0; 5839 break; 5840 } 5841 case KVM_SET_LAPIC: { 5842 r = -EINVAL; 5843 if (!lapic_in_kernel(vcpu)) 5844 goto out; 5845 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5846 if (IS_ERR(u.lapic)) { 5847 r = PTR_ERR(u.lapic); 5848 goto out_nofree; 5849 } 5850 5851 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5852 break; 5853 } 5854 case KVM_INTERRUPT: { 5855 struct kvm_interrupt irq; 5856 5857 r = -EFAULT; 5858 if (copy_from_user(&irq, argp, sizeof(irq))) 5859 goto out; 5860 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5861 break; 5862 } 5863 case KVM_NMI: { 5864 r = kvm_vcpu_ioctl_nmi(vcpu); 5865 break; 5866 } 5867 case KVM_SMI: { 5868 r = kvm_inject_smi(vcpu); 5869 break; 5870 } 5871 case KVM_SET_CPUID: { 5872 struct kvm_cpuid __user *cpuid_arg = argp; 5873 struct kvm_cpuid cpuid; 5874 5875 r = -EFAULT; 5876 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5877 goto out; 5878 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5879 break; 5880 } 5881 case KVM_SET_CPUID2: { 5882 struct kvm_cpuid2 __user *cpuid_arg = argp; 5883 struct kvm_cpuid2 cpuid; 5884 5885 r = -EFAULT; 5886 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5887 goto out; 5888 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5889 cpuid_arg->entries); 5890 break; 5891 } 5892 case KVM_GET_CPUID2: { 5893 struct kvm_cpuid2 __user *cpuid_arg = argp; 5894 struct kvm_cpuid2 cpuid; 5895 5896 r = -EFAULT; 5897 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5898 goto out; 5899 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5900 cpuid_arg->entries); 5901 if (r) 5902 goto out; 5903 r = -EFAULT; 5904 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5905 goto out; 5906 r = 0; 5907 break; 5908 } 5909 case KVM_GET_MSRS: { 5910 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5911 r = msr_io(vcpu, argp, do_get_msr, 1); 5912 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5913 break; 5914 } 5915 case KVM_SET_MSRS: { 5916 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5917 r = msr_io(vcpu, argp, do_set_msr, 0); 5918 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5919 break; 5920 } 5921 case KVM_TPR_ACCESS_REPORTING: { 5922 struct kvm_tpr_access_ctl tac; 5923 5924 r = -EFAULT; 5925 if (copy_from_user(&tac, argp, sizeof(tac))) 5926 goto out; 5927 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5928 if (r) 5929 goto out; 5930 r = -EFAULT; 5931 if (copy_to_user(argp, &tac, sizeof(tac))) 5932 goto out; 5933 r = 0; 5934 break; 5935 }; 5936 case KVM_SET_VAPIC_ADDR: { 5937 struct kvm_vapic_addr va; 5938 int idx; 5939 5940 r = -EINVAL; 5941 if (!lapic_in_kernel(vcpu)) 5942 goto out; 5943 r = -EFAULT; 5944 if (copy_from_user(&va, argp, sizeof(va))) 5945 goto out; 5946 idx = srcu_read_lock(&vcpu->kvm->srcu); 5947 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5948 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5949 break; 5950 } 5951 case KVM_X86_SETUP_MCE: { 5952 u64 mcg_cap; 5953 5954 r = -EFAULT; 5955 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5956 goto out; 5957 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5958 break; 5959 } 5960 case KVM_X86_SET_MCE: { 5961 struct kvm_x86_mce mce; 5962 5963 r = -EFAULT; 5964 if (copy_from_user(&mce, argp, sizeof(mce))) 5965 goto out; 5966 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5967 break; 5968 } 5969 case KVM_GET_VCPU_EVENTS: { 5970 struct kvm_vcpu_events events; 5971 5972 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5973 5974 r = -EFAULT; 5975 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5976 break; 5977 r = 0; 5978 break; 5979 } 5980 case KVM_SET_VCPU_EVENTS: { 5981 struct kvm_vcpu_events events; 5982 5983 r = -EFAULT; 5984 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5985 break; 5986 5987 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5988 break; 5989 } 5990 case KVM_GET_DEBUGREGS: { 5991 struct kvm_debugregs dbgregs; 5992 5993 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5994 5995 r = -EFAULT; 5996 if (copy_to_user(argp, &dbgregs, 5997 sizeof(struct kvm_debugregs))) 5998 break; 5999 r = 0; 6000 break; 6001 } 6002 case KVM_SET_DEBUGREGS: { 6003 struct kvm_debugregs dbgregs; 6004 6005 r = -EFAULT; 6006 if (copy_from_user(&dbgregs, argp, 6007 sizeof(struct kvm_debugregs))) 6008 break; 6009 6010 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6011 break; 6012 } 6013 case KVM_GET_XSAVE: { 6014 r = -EINVAL; 6015 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6016 break; 6017 6018 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 6019 r = -ENOMEM; 6020 if (!u.xsave) 6021 break; 6022 6023 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6024 6025 r = -EFAULT; 6026 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6027 break; 6028 r = 0; 6029 break; 6030 } 6031 case KVM_SET_XSAVE: { 6032 int size = vcpu->arch.guest_fpu.uabi_size; 6033 6034 u.xsave = memdup_user(argp, size); 6035 if (IS_ERR(u.xsave)) { 6036 r = PTR_ERR(u.xsave); 6037 goto out_nofree; 6038 } 6039 6040 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6041 break; 6042 } 6043 6044 case KVM_GET_XSAVE2: { 6045 int size = vcpu->arch.guest_fpu.uabi_size; 6046 6047 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 6048 r = -ENOMEM; 6049 if (!u.xsave) 6050 break; 6051 6052 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6053 6054 r = -EFAULT; 6055 if (copy_to_user(argp, u.xsave, size)) 6056 break; 6057 6058 r = 0; 6059 break; 6060 } 6061 6062 case KVM_GET_XCRS: { 6063 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 6064 r = -ENOMEM; 6065 if (!u.xcrs) 6066 break; 6067 6068 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6069 6070 r = -EFAULT; 6071 if (copy_to_user(argp, u.xcrs, 6072 sizeof(struct kvm_xcrs))) 6073 break; 6074 r = 0; 6075 break; 6076 } 6077 case KVM_SET_XCRS: { 6078 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6079 if (IS_ERR(u.xcrs)) { 6080 r = PTR_ERR(u.xcrs); 6081 goto out_nofree; 6082 } 6083 6084 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6085 break; 6086 } 6087 case KVM_SET_TSC_KHZ: { 6088 u32 user_tsc_khz; 6089 6090 r = -EINVAL; 6091 user_tsc_khz = (u32)arg; 6092 6093 if (kvm_caps.has_tsc_control && 6094 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6095 goto out; 6096 6097 if (user_tsc_khz == 0) 6098 user_tsc_khz = tsc_khz; 6099 6100 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6101 r = 0; 6102 6103 goto out; 6104 } 6105 case KVM_GET_TSC_KHZ: { 6106 r = vcpu->arch.virtual_tsc_khz; 6107 goto out; 6108 } 6109 case KVM_KVMCLOCK_CTRL: { 6110 r = kvm_set_guest_paused(vcpu); 6111 goto out; 6112 } 6113 case KVM_ENABLE_CAP: { 6114 struct kvm_enable_cap cap; 6115 6116 r = -EFAULT; 6117 if (copy_from_user(&cap, argp, sizeof(cap))) 6118 goto out; 6119 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6120 break; 6121 } 6122 case KVM_GET_NESTED_STATE: { 6123 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6124 u32 user_data_size; 6125 6126 r = -EINVAL; 6127 if (!kvm_x86_ops.nested_ops->get_state) 6128 break; 6129 6130 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6131 r = -EFAULT; 6132 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6133 break; 6134 6135 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6136 user_data_size); 6137 if (r < 0) 6138 break; 6139 6140 if (r > user_data_size) { 6141 if (put_user(r, &user_kvm_nested_state->size)) 6142 r = -EFAULT; 6143 else 6144 r = -E2BIG; 6145 break; 6146 } 6147 6148 r = 0; 6149 break; 6150 } 6151 case KVM_SET_NESTED_STATE: { 6152 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6153 struct kvm_nested_state kvm_state; 6154 int idx; 6155 6156 r = -EINVAL; 6157 if (!kvm_x86_ops.nested_ops->set_state) 6158 break; 6159 6160 r = -EFAULT; 6161 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6162 break; 6163 6164 r = -EINVAL; 6165 if (kvm_state.size < sizeof(kvm_state)) 6166 break; 6167 6168 if (kvm_state.flags & 6169 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6170 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6171 | KVM_STATE_NESTED_GIF_SET)) 6172 break; 6173 6174 /* nested_run_pending implies guest_mode. */ 6175 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6176 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6177 break; 6178 6179 idx = srcu_read_lock(&vcpu->kvm->srcu); 6180 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6181 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6182 break; 6183 } 6184 #ifdef CONFIG_KVM_HYPERV 6185 case KVM_GET_SUPPORTED_HV_CPUID: 6186 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6187 break; 6188 #endif 6189 #ifdef CONFIG_KVM_XEN 6190 case KVM_XEN_VCPU_GET_ATTR: { 6191 struct kvm_xen_vcpu_attr xva; 6192 6193 r = -EFAULT; 6194 if (copy_from_user(&xva, argp, sizeof(xva))) 6195 goto out; 6196 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6197 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6198 r = -EFAULT; 6199 break; 6200 } 6201 case KVM_XEN_VCPU_SET_ATTR: { 6202 struct kvm_xen_vcpu_attr xva; 6203 6204 r = -EFAULT; 6205 if (copy_from_user(&xva, argp, sizeof(xva))) 6206 goto out; 6207 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6208 break; 6209 } 6210 #endif 6211 case KVM_GET_SREGS2: { 6212 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6213 r = -ENOMEM; 6214 if (!u.sregs2) 6215 goto out; 6216 __get_sregs2(vcpu, u.sregs2); 6217 r = -EFAULT; 6218 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6219 goto out; 6220 r = 0; 6221 break; 6222 } 6223 case KVM_SET_SREGS2: { 6224 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6225 if (IS_ERR(u.sregs2)) { 6226 r = PTR_ERR(u.sregs2); 6227 u.sregs2 = NULL; 6228 goto out; 6229 } 6230 r = __set_sregs2(vcpu, u.sregs2); 6231 break; 6232 } 6233 case KVM_HAS_DEVICE_ATTR: 6234 case KVM_GET_DEVICE_ATTR: 6235 case KVM_SET_DEVICE_ATTR: 6236 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6237 break; 6238 default: 6239 r = -EINVAL; 6240 } 6241 out: 6242 kfree(u.buffer); 6243 out_nofree: 6244 vcpu_put(vcpu); 6245 return r; 6246 } 6247 6248 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6249 { 6250 return VM_FAULT_SIGBUS; 6251 } 6252 6253 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6254 { 6255 int ret; 6256 6257 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6258 return -EINVAL; 6259 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6260 return ret; 6261 } 6262 6263 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6264 u64 ident_addr) 6265 { 6266 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6267 } 6268 6269 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6270 unsigned long kvm_nr_mmu_pages) 6271 { 6272 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6273 return -EINVAL; 6274 6275 mutex_lock(&kvm->slots_lock); 6276 6277 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6278 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6279 6280 mutex_unlock(&kvm->slots_lock); 6281 return 0; 6282 } 6283 6284 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6285 { 6286 struct kvm_pic *pic = kvm->arch.vpic; 6287 int r; 6288 6289 r = 0; 6290 switch (chip->chip_id) { 6291 case KVM_IRQCHIP_PIC_MASTER: 6292 memcpy(&chip->chip.pic, &pic->pics[0], 6293 sizeof(struct kvm_pic_state)); 6294 break; 6295 case KVM_IRQCHIP_PIC_SLAVE: 6296 memcpy(&chip->chip.pic, &pic->pics[1], 6297 sizeof(struct kvm_pic_state)); 6298 break; 6299 case KVM_IRQCHIP_IOAPIC: 6300 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6301 break; 6302 default: 6303 r = -EINVAL; 6304 break; 6305 } 6306 return r; 6307 } 6308 6309 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6310 { 6311 struct kvm_pic *pic = kvm->arch.vpic; 6312 int r; 6313 6314 r = 0; 6315 switch (chip->chip_id) { 6316 case KVM_IRQCHIP_PIC_MASTER: 6317 spin_lock(&pic->lock); 6318 memcpy(&pic->pics[0], &chip->chip.pic, 6319 sizeof(struct kvm_pic_state)); 6320 spin_unlock(&pic->lock); 6321 break; 6322 case KVM_IRQCHIP_PIC_SLAVE: 6323 spin_lock(&pic->lock); 6324 memcpy(&pic->pics[1], &chip->chip.pic, 6325 sizeof(struct kvm_pic_state)); 6326 spin_unlock(&pic->lock); 6327 break; 6328 case KVM_IRQCHIP_IOAPIC: 6329 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6330 break; 6331 default: 6332 r = -EINVAL; 6333 break; 6334 } 6335 kvm_pic_update_irq(pic); 6336 return r; 6337 } 6338 6339 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6340 { 6341 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6342 6343 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6344 6345 mutex_lock(&kps->lock); 6346 memcpy(ps, &kps->channels, sizeof(*ps)); 6347 mutex_unlock(&kps->lock); 6348 return 0; 6349 } 6350 6351 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6352 { 6353 int i; 6354 struct kvm_pit *pit = kvm->arch.vpit; 6355 6356 mutex_lock(&pit->pit_state.lock); 6357 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6358 for (i = 0; i < 3; i++) 6359 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6360 mutex_unlock(&pit->pit_state.lock); 6361 return 0; 6362 } 6363 6364 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6365 { 6366 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6367 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6368 sizeof(ps->channels)); 6369 ps->flags = kvm->arch.vpit->pit_state.flags; 6370 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6371 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6372 return 0; 6373 } 6374 6375 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6376 { 6377 int start = 0; 6378 int i; 6379 u32 prev_legacy, cur_legacy; 6380 struct kvm_pit *pit = kvm->arch.vpit; 6381 6382 mutex_lock(&pit->pit_state.lock); 6383 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6384 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6385 if (!prev_legacy && cur_legacy) 6386 start = 1; 6387 memcpy(&pit->pit_state.channels, &ps->channels, 6388 sizeof(pit->pit_state.channels)); 6389 pit->pit_state.flags = ps->flags; 6390 for (i = 0; i < 3; i++) 6391 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6392 start && i == 0); 6393 mutex_unlock(&pit->pit_state.lock); 6394 return 0; 6395 } 6396 6397 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6398 struct kvm_reinject_control *control) 6399 { 6400 struct kvm_pit *pit = kvm->arch.vpit; 6401 6402 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6403 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6404 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6405 */ 6406 mutex_lock(&pit->pit_state.lock); 6407 kvm_pit_set_reinject(pit, control->pit_reinject); 6408 mutex_unlock(&pit->pit_state.lock); 6409 6410 return 0; 6411 } 6412 6413 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6414 { 6415 6416 /* 6417 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6418 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6419 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6420 * VM-Exit. 6421 */ 6422 struct kvm_vcpu *vcpu; 6423 unsigned long i; 6424 6425 if (!kvm_x86_ops.cpu_dirty_log_size) 6426 return; 6427 6428 kvm_for_each_vcpu(i, vcpu, kvm) 6429 kvm_vcpu_kick(vcpu); 6430 } 6431 6432 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6433 bool line_status) 6434 { 6435 if (!irqchip_in_kernel(kvm)) 6436 return -ENXIO; 6437 6438 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6439 irq_event->irq, irq_event->level, 6440 line_status); 6441 return 0; 6442 } 6443 6444 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6445 struct kvm_enable_cap *cap) 6446 { 6447 int r; 6448 6449 if (cap->flags) 6450 return -EINVAL; 6451 6452 switch (cap->cap) { 6453 case KVM_CAP_DISABLE_QUIRKS2: 6454 r = -EINVAL; 6455 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6456 break; 6457 fallthrough; 6458 case KVM_CAP_DISABLE_QUIRKS: 6459 kvm->arch.disabled_quirks = cap->args[0]; 6460 r = 0; 6461 break; 6462 case KVM_CAP_SPLIT_IRQCHIP: { 6463 mutex_lock(&kvm->lock); 6464 r = -EINVAL; 6465 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6466 goto split_irqchip_unlock; 6467 r = -EEXIST; 6468 if (irqchip_in_kernel(kvm)) 6469 goto split_irqchip_unlock; 6470 if (kvm->created_vcpus) 6471 goto split_irqchip_unlock; 6472 r = kvm_setup_empty_irq_routing(kvm); 6473 if (r) 6474 goto split_irqchip_unlock; 6475 /* Pairs with irqchip_in_kernel. */ 6476 smp_wmb(); 6477 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6478 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6479 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6480 r = 0; 6481 split_irqchip_unlock: 6482 mutex_unlock(&kvm->lock); 6483 break; 6484 } 6485 case KVM_CAP_X2APIC_API: 6486 r = -EINVAL; 6487 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6488 break; 6489 6490 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6491 kvm->arch.x2apic_format = true; 6492 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6493 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6494 6495 r = 0; 6496 break; 6497 case KVM_CAP_X86_DISABLE_EXITS: 6498 r = -EINVAL; 6499 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6500 break; 6501 6502 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6503 kvm->arch.pause_in_guest = true; 6504 6505 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6506 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6507 6508 if (!mitigate_smt_rsb) { 6509 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6510 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6511 pr_warn_once(SMT_RSB_MSG); 6512 6513 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6514 kvm_can_mwait_in_guest()) 6515 kvm->arch.mwait_in_guest = true; 6516 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6517 kvm->arch.hlt_in_guest = true; 6518 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6519 kvm->arch.cstate_in_guest = true; 6520 } 6521 6522 r = 0; 6523 break; 6524 case KVM_CAP_MSR_PLATFORM_INFO: 6525 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6526 r = 0; 6527 break; 6528 case KVM_CAP_EXCEPTION_PAYLOAD: 6529 kvm->arch.exception_payload_enabled = cap->args[0]; 6530 r = 0; 6531 break; 6532 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6533 kvm->arch.triple_fault_event = cap->args[0]; 6534 r = 0; 6535 break; 6536 case KVM_CAP_X86_USER_SPACE_MSR: 6537 r = -EINVAL; 6538 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6539 break; 6540 kvm->arch.user_space_msr_mask = cap->args[0]; 6541 r = 0; 6542 break; 6543 case KVM_CAP_X86_BUS_LOCK_EXIT: 6544 r = -EINVAL; 6545 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6546 break; 6547 6548 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6549 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6550 break; 6551 6552 if (kvm_caps.has_bus_lock_exit && 6553 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6554 kvm->arch.bus_lock_detection_enabled = true; 6555 r = 0; 6556 break; 6557 #ifdef CONFIG_X86_SGX_KVM 6558 case KVM_CAP_SGX_ATTRIBUTE: { 6559 unsigned long allowed_attributes = 0; 6560 6561 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6562 if (r) 6563 break; 6564 6565 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6566 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6567 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6568 kvm->arch.sgx_provisioning_allowed = true; 6569 else 6570 r = -EINVAL; 6571 break; 6572 } 6573 #endif 6574 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6575 r = -EINVAL; 6576 if (!kvm_x86_ops.vm_copy_enc_context_from) 6577 break; 6578 6579 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6580 break; 6581 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6582 r = -EINVAL; 6583 if (!kvm_x86_ops.vm_move_enc_context_from) 6584 break; 6585 6586 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6587 break; 6588 case KVM_CAP_EXIT_HYPERCALL: 6589 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6590 r = -EINVAL; 6591 break; 6592 } 6593 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6594 r = 0; 6595 break; 6596 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6597 r = -EINVAL; 6598 if (cap->args[0] & ~1) 6599 break; 6600 kvm->arch.exit_on_emulation_error = cap->args[0]; 6601 r = 0; 6602 break; 6603 case KVM_CAP_PMU_CAPABILITY: 6604 r = -EINVAL; 6605 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6606 break; 6607 6608 mutex_lock(&kvm->lock); 6609 if (!kvm->created_vcpus) { 6610 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6611 r = 0; 6612 } 6613 mutex_unlock(&kvm->lock); 6614 break; 6615 case KVM_CAP_MAX_VCPU_ID: 6616 r = -EINVAL; 6617 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6618 break; 6619 6620 mutex_lock(&kvm->lock); 6621 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6622 r = 0; 6623 } else if (!kvm->arch.max_vcpu_ids) { 6624 kvm->arch.max_vcpu_ids = cap->args[0]; 6625 r = 0; 6626 } 6627 mutex_unlock(&kvm->lock); 6628 break; 6629 case KVM_CAP_X86_NOTIFY_VMEXIT: 6630 r = -EINVAL; 6631 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6632 break; 6633 if (!kvm_caps.has_notify_vmexit) 6634 break; 6635 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6636 break; 6637 mutex_lock(&kvm->lock); 6638 if (!kvm->created_vcpus) { 6639 kvm->arch.notify_window = cap->args[0] >> 32; 6640 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6641 r = 0; 6642 } 6643 mutex_unlock(&kvm->lock); 6644 break; 6645 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6646 r = -EINVAL; 6647 6648 /* 6649 * Since the risk of disabling NX hugepages is a guest crashing 6650 * the system, ensure the userspace process has permission to 6651 * reboot the system. 6652 * 6653 * Note that unlike the reboot() syscall, the process must have 6654 * this capability in the root namespace because exposing 6655 * /dev/kvm into a container does not limit the scope of the 6656 * iTLB multihit bug to that container. In other words, 6657 * this must use capable(), not ns_capable(). 6658 */ 6659 if (!capable(CAP_SYS_BOOT)) { 6660 r = -EPERM; 6661 break; 6662 } 6663 6664 if (cap->args[0]) 6665 break; 6666 6667 mutex_lock(&kvm->lock); 6668 if (!kvm->created_vcpus) { 6669 kvm->arch.disable_nx_huge_pages = true; 6670 r = 0; 6671 } 6672 mutex_unlock(&kvm->lock); 6673 break; 6674 default: 6675 r = -EINVAL; 6676 break; 6677 } 6678 return r; 6679 } 6680 6681 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6682 { 6683 struct kvm_x86_msr_filter *msr_filter; 6684 6685 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6686 if (!msr_filter) 6687 return NULL; 6688 6689 msr_filter->default_allow = default_allow; 6690 return msr_filter; 6691 } 6692 6693 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6694 { 6695 u32 i; 6696 6697 if (!msr_filter) 6698 return; 6699 6700 for (i = 0; i < msr_filter->count; i++) 6701 kfree(msr_filter->ranges[i].bitmap); 6702 6703 kfree(msr_filter); 6704 } 6705 6706 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6707 struct kvm_msr_filter_range *user_range) 6708 { 6709 unsigned long *bitmap; 6710 size_t bitmap_size; 6711 6712 if (!user_range->nmsrs) 6713 return 0; 6714 6715 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6716 return -EINVAL; 6717 6718 if (!user_range->flags) 6719 return -EINVAL; 6720 6721 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6722 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6723 return -EINVAL; 6724 6725 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6726 if (IS_ERR(bitmap)) 6727 return PTR_ERR(bitmap); 6728 6729 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6730 .flags = user_range->flags, 6731 .base = user_range->base, 6732 .nmsrs = user_range->nmsrs, 6733 .bitmap = bitmap, 6734 }; 6735 6736 msr_filter->count++; 6737 return 0; 6738 } 6739 6740 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6741 struct kvm_msr_filter *filter) 6742 { 6743 struct kvm_x86_msr_filter *new_filter, *old_filter; 6744 bool default_allow; 6745 bool empty = true; 6746 int r; 6747 u32 i; 6748 6749 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6750 return -EINVAL; 6751 6752 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6753 empty &= !filter->ranges[i].nmsrs; 6754 6755 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6756 if (empty && !default_allow) 6757 return -EINVAL; 6758 6759 new_filter = kvm_alloc_msr_filter(default_allow); 6760 if (!new_filter) 6761 return -ENOMEM; 6762 6763 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6764 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6765 if (r) { 6766 kvm_free_msr_filter(new_filter); 6767 return r; 6768 } 6769 } 6770 6771 mutex_lock(&kvm->lock); 6772 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6773 mutex_is_locked(&kvm->lock)); 6774 mutex_unlock(&kvm->lock); 6775 synchronize_srcu(&kvm->srcu); 6776 6777 kvm_free_msr_filter(old_filter); 6778 6779 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6780 6781 return 0; 6782 } 6783 6784 #ifdef CONFIG_KVM_COMPAT 6785 /* for KVM_X86_SET_MSR_FILTER */ 6786 struct kvm_msr_filter_range_compat { 6787 __u32 flags; 6788 __u32 nmsrs; 6789 __u32 base; 6790 __u32 bitmap; 6791 }; 6792 6793 struct kvm_msr_filter_compat { 6794 __u32 flags; 6795 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6796 }; 6797 6798 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6799 6800 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6801 unsigned long arg) 6802 { 6803 void __user *argp = (void __user *)arg; 6804 struct kvm *kvm = filp->private_data; 6805 long r = -ENOTTY; 6806 6807 switch (ioctl) { 6808 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6809 struct kvm_msr_filter __user *user_msr_filter = argp; 6810 struct kvm_msr_filter_compat filter_compat; 6811 struct kvm_msr_filter filter; 6812 int i; 6813 6814 if (copy_from_user(&filter_compat, user_msr_filter, 6815 sizeof(filter_compat))) 6816 return -EFAULT; 6817 6818 filter.flags = filter_compat.flags; 6819 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6820 struct kvm_msr_filter_range_compat *cr; 6821 6822 cr = &filter_compat.ranges[i]; 6823 filter.ranges[i] = (struct kvm_msr_filter_range) { 6824 .flags = cr->flags, 6825 .nmsrs = cr->nmsrs, 6826 .base = cr->base, 6827 .bitmap = (__u8 *)(ulong)cr->bitmap, 6828 }; 6829 } 6830 6831 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6832 break; 6833 } 6834 } 6835 6836 return r; 6837 } 6838 #endif 6839 6840 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6841 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6842 { 6843 struct kvm_vcpu *vcpu; 6844 unsigned long i; 6845 int ret = 0; 6846 6847 mutex_lock(&kvm->lock); 6848 kvm_for_each_vcpu(i, vcpu, kvm) { 6849 if (!vcpu->arch.pv_time.active) 6850 continue; 6851 6852 ret = kvm_set_guest_paused(vcpu); 6853 if (ret) { 6854 kvm_err("Failed to pause guest VCPU%d: %d\n", 6855 vcpu->vcpu_id, ret); 6856 break; 6857 } 6858 } 6859 mutex_unlock(&kvm->lock); 6860 6861 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6862 } 6863 6864 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6865 { 6866 switch (state) { 6867 case PM_HIBERNATION_PREPARE: 6868 case PM_SUSPEND_PREPARE: 6869 return kvm_arch_suspend_notifier(kvm); 6870 } 6871 6872 return NOTIFY_DONE; 6873 } 6874 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6875 6876 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6877 { 6878 struct kvm_clock_data data = { 0 }; 6879 6880 get_kvmclock(kvm, &data); 6881 if (copy_to_user(argp, &data, sizeof(data))) 6882 return -EFAULT; 6883 6884 return 0; 6885 } 6886 6887 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6888 { 6889 struct kvm_arch *ka = &kvm->arch; 6890 struct kvm_clock_data data; 6891 u64 now_raw_ns; 6892 6893 if (copy_from_user(&data, argp, sizeof(data))) 6894 return -EFAULT; 6895 6896 /* 6897 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6898 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6899 */ 6900 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6901 return -EINVAL; 6902 6903 kvm_hv_request_tsc_page_update(kvm); 6904 kvm_start_pvclock_update(kvm); 6905 pvclock_update_vm_gtod_copy(kvm); 6906 6907 /* 6908 * This pairs with kvm_guest_time_update(): when masterclock is 6909 * in use, we use master_kernel_ns + kvmclock_offset to set 6910 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6911 * is slightly ahead) here we risk going negative on unsigned 6912 * 'system_time' when 'data.clock' is very small. 6913 */ 6914 if (data.flags & KVM_CLOCK_REALTIME) { 6915 u64 now_real_ns = ktime_get_real_ns(); 6916 6917 /* 6918 * Avoid stepping the kvmclock backwards. 6919 */ 6920 if (now_real_ns > data.realtime) 6921 data.clock += now_real_ns - data.realtime; 6922 } 6923 6924 if (ka->use_master_clock) 6925 now_raw_ns = ka->master_kernel_ns; 6926 else 6927 now_raw_ns = get_kvmclock_base_ns(); 6928 ka->kvmclock_offset = data.clock - now_raw_ns; 6929 kvm_end_pvclock_update(kvm); 6930 return 0; 6931 } 6932 6933 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6934 { 6935 struct kvm *kvm = filp->private_data; 6936 void __user *argp = (void __user *)arg; 6937 int r = -ENOTTY; 6938 /* 6939 * This union makes it completely explicit to gcc-3.x 6940 * that these two variables' stack usage should be 6941 * combined, not added together. 6942 */ 6943 union { 6944 struct kvm_pit_state ps; 6945 struct kvm_pit_state2 ps2; 6946 struct kvm_pit_config pit_config; 6947 } u; 6948 6949 switch (ioctl) { 6950 case KVM_SET_TSS_ADDR: 6951 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6952 break; 6953 case KVM_SET_IDENTITY_MAP_ADDR: { 6954 u64 ident_addr; 6955 6956 mutex_lock(&kvm->lock); 6957 r = -EINVAL; 6958 if (kvm->created_vcpus) 6959 goto set_identity_unlock; 6960 r = -EFAULT; 6961 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6962 goto set_identity_unlock; 6963 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6964 set_identity_unlock: 6965 mutex_unlock(&kvm->lock); 6966 break; 6967 } 6968 case KVM_SET_NR_MMU_PAGES: 6969 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6970 break; 6971 case KVM_CREATE_IRQCHIP: { 6972 mutex_lock(&kvm->lock); 6973 6974 r = -EEXIST; 6975 if (irqchip_in_kernel(kvm)) 6976 goto create_irqchip_unlock; 6977 6978 r = -EINVAL; 6979 if (kvm->created_vcpus) 6980 goto create_irqchip_unlock; 6981 6982 r = kvm_pic_init(kvm); 6983 if (r) 6984 goto create_irqchip_unlock; 6985 6986 r = kvm_ioapic_init(kvm); 6987 if (r) { 6988 kvm_pic_destroy(kvm); 6989 goto create_irqchip_unlock; 6990 } 6991 6992 r = kvm_setup_default_irq_routing(kvm); 6993 if (r) { 6994 kvm_ioapic_destroy(kvm); 6995 kvm_pic_destroy(kvm); 6996 goto create_irqchip_unlock; 6997 } 6998 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6999 smp_wmb(); 7000 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7001 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7002 create_irqchip_unlock: 7003 mutex_unlock(&kvm->lock); 7004 break; 7005 } 7006 case KVM_CREATE_PIT: 7007 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7008 goto create_pit; 7009 case KVM_CREATE_PIT2: 7010 r = -EFAULT; 7011 if (copy_from_user(&u.pit_config, argp, 7012 sizeof(struct kvm_pit_config))) 7013 goto out; 7014 create_pit: 7015 mutex_lock(&kvm->lock); 7016 r = -EEXIST; 7017 if (kvm->arch.vpit) 7018 goto create_pit_unlock; 7019 r = -ENOENT; 7020 if (!pic_in_kernel(kvm)) 7021 goto create_pit_unlock; 7022 r = -ENOMEM; 7023 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7024 if (kvm->arch.vpit) 7025 r = 0; 7026 create_pit_unlock: 7027 mutex_unlock(&kvm->lock); 7028 break; 7029 case KVM_GET_IRQCHIP: { 7030 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7031 struct kvm_irqchip *chip; 7032 7033 chip = memdup_user(argp, sizeof(*chip)); 7034 if (IS_ERR(chip)) { 7035 r = PTR_ERR(chip); 7036 goto out; 7037 } 7038 7039 r = -ENXIO; 7040 if (!irqchip_kernel(kvm)) 7041 goto get_irqchip_out; 7042 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7043 if (r) 7044 goto get_irqchip_out; 7045 r = -EFAULT; 7046 if (copy_to_user(argp, chip, sizeof(*chip))) 7047 goto get_irqchip_out; 7048 r = 0; 7049 get_irqchip_out: 7050 kfree(chip); 7051 break; 7052 } 7053 case KVM_SET_IRQCHIP: { 7054 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7055 struct kvm_irqchip *chip; 7056 7057 chip = memdup_user(argp, sizeof(*chip)); 7058 if (IS_ERR(chip)) { 7059 r = PTR_ERR(chip); 7060 goto out; 7061 } 7062 7063 r = -ENXIO; 7064 if (!irqchip_kernel(kvm)) 7065 goto set_irqchip_out; 7066 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7067 set_irqchip_out: 7068 kfree(chip); 7069 break; 7070 } 7071 case KVM_GET_PIT: { 7072 r = -EFAULT; 7073 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7074 goto out; 7075 r = -ENXIO; 7076 if (!kvm->arch.vpit) 7077 goto out; 7078 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7079 if (r) 7080 goto out; 7081 r = -EFAULT; 7082 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7083 goto out; 7084 r = 0; 7085 break; 7086 } 7087 case KVM_SET_PIT: { 7088 r = -EFAULT; 7089 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7090 goto out; 7091 mutex_lock(&kvm->lock); 7092 r = -ENXIO; 7093 if (!kvm->arch.vpit) 7094 goto set_pit_out; 7095 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7096 set_pit_out: 7097 mutex_unlock(&kvm->lock); 7098 break; 7099 } 7100 case KVM_GET_PIT2: { 7101 r = -ENXIO; 7102 if (!kvm->arch.vpit) 7103 goto out; 7104 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7105 if (r) 7106 goto out; 7107 r = -EFAULT; 7108 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7109 goto out; 7110 r = 0; 7111 break; 7112 } 7113 case KVM_SET_PIT2: { 7114 r = -EFAULT; 7115 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7116 goto out; 7117 mutex_lock(&kvm->lock); 7118 r = -ENXIO; 7119 if (!kvm->arch.vpit) 7120 goto set_pit2_out; 7121 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7122 set_pit2_out: 7123 mutex_unlock(&kvm->lock); 7124 break; 7125 } 7126 case KVM_REINJECT_CONTROL: { 7127 struct kvm_reinject_control control; 7128 r = -EFAULT; 7129 if (copy_from_user(&control, argp, sizeof(control))) 7130 goto out; 7131 r = -ENXIO; 7132 if (!kvm->arch.vpit) 7133 goto out; 7134 r = kvm_vm_ioctl_reinject(kvm, &control); 7135 break; 7136 } 7137 case KVM_SET_BOOT_CPU_ID: 7138 r = 0; 7139 mutex_lock(&kvm->lock); 7140 if (kvm->created_vcpus) 7141 r = -EBUSY; 7142 else 7143 kvm->arch.bsp_vcpu_id = arg; 7144 mutex_unlock(&kvm->lock); 7145 break; 7146 #ifdef CONFIG_KVM_XEN 7147 case KVM_XEN_HVM_CONFIG: { 7148 struct kvm_xen_hvm_config xhc; 7149 r = -EFAULT; 7150 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7151 goto out; 7152 r = kvm_xen_hvm_config(kvm, &xhc); 7153 break; 7154 } 7155 case KVM_XEN_HVM_GET_ATTR: { 7156 struct kvm_xen_hvm_attr xha; 7157 7158 r = -EFAULT; 7159 if (copy_from_user(&xha, argp, sizeof(xha))) 7160 goto out; 7161 r = kvm_xen_hvm_get_attr(kvm, &xha); 7162 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7163 r = -EFAULT; 7164 break; 7165 } 7166 case KVM_XEN_HVM_SET_ATTR: { 7167 struct kvm_xen_hvm_attr xha; 7168 7169 r = -EFAULT; 7170 if (copy_from_user(&xha, argp, sizeof(xha))) 7171 goto out; 7172 r = kvm_xen_hvm_set_attr(kvm, &xha); 7173 break; 7174 } 7175 case KVM_XEN_HVM_EVTCHN_SEND: { 7176 struct kvm_irq_routing_xen_evtchn uxe; 7177 7178 r = -EFAULT; 7179 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7180 goto out; 7181 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7182 break; 7183 } 7184 #endif 7185 case KVM_SET_CLOCK: 7186 r = kvm_vm_ioctl_set_clock(kvm, argp); 7187 break; 7188 case KVM_GET_CLOCK: 7189 r = kvm_vm_ioctl_get_clock(kvm, argp); 7190 break; 7191 case KVM_SET_TSC_KHZ: { 7192 u32 user_tsc_khz; 7193 7194 r = -EINVAL; 7195 user_tsc_khz = (u32)arg; 7196 7197 if (kvm_caps.has_tsc_control && 7198 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7199 goto out; 7200 7201 if (user_tsc_khz == 0) 7202 user_tsc_khz = tsc_khz; 7203 7204 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7205 r = 0; 7206 7207 goto out; 7208 } 7209 case KVM_GET_TSC_KHZ: { 7210 r = READ_ONCE(kvm->arch.default_tsc_khz); 7211 goto out; 7212 } 7213 case KVM_MEMORY_ENCRYPT_OP: { 7214 r = -ENOTTY; 7215 if (!kvm_x86_ops.mem_enc_ioctl) 7216 goto out; 7217 7218 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7219 break; 7220 } 7221 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7222 struct kvm_enc_region region; 7223 7224 r = -EFAULT; 7225 if (copy_from_user(®ion, argp, sizeof(region))) 7226 goto out; 7227 7228 r = -ENOTTY; 7229 if (!kvm_x86_ops.mem_enc_register_region) 7230 goto out; 7231 7232 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7233 break; 7234 } 7235 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7236 struct kvm_enc_region region; 7237 7238 r = -EFAULT; 7239 if (copy_from_user(®ion, argp, sizeof(region))) 7240 goto out; 7241 7242 r = -ENOTTY; 7243 if (!kvm_x86_ops.mem_enc_unregister_region) 7244 goto out; 7245 7246 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7247 break; 7248 } 7249 #ifdef CONFIG_KVM_HYPERV 7250 case KVM_HYPERV_EVENTFD: { 7251 struct kvm_hyperv_eventfd hvevfd; 7252 7253 r = -EFAULT; 7254 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7255 goto out; 7256 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7257 break; 7258 } 7259 #endif 7260 case KVM_SET_PMU_EVENT_FILTER: 7261 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7262 break; 7263 case KVM_X86_SET_MSR_FILTER: { 7264 struct kvm_msr_filter __user *user_msr_filter = argp; 7265 struct kvm_msr_filter filter; 7266 7267 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7268 return -EFAULT; 7269 7270 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7271 break; 7272 } 7273 default: 7274 r = -ENOTTY; 7275 } 7276 out: 7277 return r; 7278 } 7279 7280 static void kvm_probe_feature_msr(u32 msr_index) 7281 { 7282 struct kvm_msr_entry msr = { 7283 .index = msr_index, 7284 }; 7285 7286 if (kvm_get_msr_feature(&msr)) 7287 return; 7288 7289 msr_based_features[num_msr_based_features++] = msr_index; 7290 } 7291 7292 static void kvm_probe_msr_to_save(u32 msr_index) 7293 { 7294 u32 dummy[2]; 7295 7296 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7297 return; 7298 7299 /* 7300 * Even MSRs that are valid in the host may not be exposed to guests in 7301 * some cases. 7302 */ 7303 switch (msr_index) { 7304 case MSR_IA32_BNDCFGS: 7305 if (!kvm_mpx_supported()) 7306 return; 7307 break; 7308 case MSR_TSC_AUX: 7309 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7310 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7311 return; 7312 break; 7313 case MSR_IA32_UMWAIT_CONTROL: 7314 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7315 return; 7316 break; 7317 case MSR_IA32_RTIT_CTL: 7318 case MSR_IA32_RTIT_STATUS: 7319 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7320 return; 7321 break; 7322 case MSR_IA32_RTIT_CR3_MATCH: 7323 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7324 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7325 return; 7326 break; 7327 case MSR_IA32_RTIT_OUTPUT_BASE: 7328 case MSR_IA32_RTIT_OUTPUT_MASK: 7329 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7330 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7331 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7332 return; 7333 break; 7334 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7335 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7336 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7337 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7338 return; 7339 break; 7340 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7341 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7342 kvm_pmu_cap.num_counters_gp) 7343 return; 7344 break; 7345 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7346 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7347 kvm_pmu_cap.num_counters_gp) 7348 return; 7349 break; 7350 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7351 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7352 kvm_pmu_cap.num_counters_fixed) 7353 return; 7354 break; 7355 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7356 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7357 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7358 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7359 return; 7360 break; 7361 case MSR_IA32_XFD: 7362 case MSR_IA32_XFD_ERR: 7363 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7364 return; 7365 break; 7366 case MSR_IA32_TSX_CTRL: 7367 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7368 return; 7369 break; 7370 default: 7371 break; 7372 } 7373 7374 msrs_to_save[num_msrs_to_save++] = msr_index; 7375 } 7376 7377 static void kvm_init_msr_lists(void) 7378 { 7379 unsigned i; 7380 7381 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7382 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7383 7384 num_msrs_to_save = 0; 7385 num_emulated_msrs = 0; 7386 num_msr_based_features = 0; 7387 7388 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7389 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7390 7391 if (enable_pmu) { 7392 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7393 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7394 } 7395 7396 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7397 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7398 continue; 7399 7400 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7401 } 7402 7403 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7404 kvm_probe_feature_msr(i); 7405 7406 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7407 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7408 } 7409 7410 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7411 const void *v) 7412 { 7413 int handled = 0; 7414 int n; 7415 7416 do { 7417 n = min(len, 8); 7418 if (!(lapic_in_kernel(vcpu) && 7419 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7420 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7421 break; 7422 handled += n; 7423 addr += n; 7424 len -= n; 7425 v += n; 7426 } while (len); 7427 7428 return handled; 7429 } 7430 7431 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7432 { 7433 int handled = 0; 7434 int n; 7435 7436 do { 7437 n = min(len, 8); 7438 if (!(lapic_in_kernel(vcpu) && 7439 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7440 addr, n, v)) 7441 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7442 break; 7443 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7444 handled += n; 7445 addr += n; 7446 len -= n; 7447 v += n; 7448 } while (len); 7449 7450 return handled; 7451 } 7452 7453 void kvm_set_segment(struct kvm_vcpu *vcpu, 7454 struct kvm_segment *var, int seg) 7455 { 7456 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7457 } 7458 7459 void kvm_get_segment(struct kvm_vcpu *vcpu, 7460 struct kvm_segment *var, int seg) 7461 { 7462 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7463 } 7464 7465 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7466 struct x86_exception *exception) 7467 { 7468 struct kvm_mmu *mmu = vcpu->arch.mmu; 7469 gpa_t t_gpa; 7470 7471 BUG_ON(!mmu_is_nested(vcpu)); 7472 7473 /* NPT walks are always user-walks */ 7474 access |= PFERR_USER_MASK; 7475 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7476 7477 return t_gpa; 7478 } 7479 7480 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7481 struct x86_exception *exception) 7482 { 7483 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7484 7485 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7486 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7487 } 7488 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7489 7490 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7491 struct x86_exception *exception) 7492 { 7493 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7494 7495 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7496 access |= PFERR_WRITE_MASK; 7497 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7498 } 7499 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7500 7501 /* uses this to access any guest's mapped memory without checking CPL */ 7502 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7503 struct x86_exception *exception) 7504 { 7505 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7506 7507 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7508 } 7509 7510 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7511 struct kvm_vcpu *vcpu, u64 access, 7512 struct x86_exception *exception) 7513 { 7514 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7515 void *data = val; 7516 int r = X86EMUL_CONTINUE; 7517 7518 while (bytes) { 7519 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7520 unsigned offset = addr & (PAGE_SIZE-1); 7521 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7522 int ret; 7523 7524 if (gpa == INVALID_GPA) 7525 return X86EMUL_PROPAGATE_FAULT; 7526 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7527 offset, toread); 7528 if (ret < 0) { 7529 r = X86EMUL_IO_NEEDED; 7530 goto out; 7531 } 7532 7533 bytes -= toread; 7534 data += toread; 7535 addr += toread; 7536 } 7537 out: 7538 return r; 7539 } 7540 7541 /* used for instruction fetching */ 7542 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7543 gva_t addr, void *val, unsigned int bytes, 7544 struct x86_exception *exception) 7545 { 7546 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7547 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7548 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7549 unsigned offset; 7550 int ret; 7551 7552 /* Inline kvm_read_guest_virt_helper for speed. */ 7553 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7554 exception); 7555 if (unlikely(gpa == INVALID_GPA)) 7556 return X86EMUL_PROPAGATE_FAULT; 7557 7558 offset = addr & (PAGE_SIZE-1); 7559 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7560 bytes = (unsigned)PAGE_SIZE - offset; 7561 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7562 offset, bytes); 7563 if (unlikely(ret < 0)) 7564 return X86EMUL_IO_NEEDED; 7565 7566 return X86EMUL_CONTINUE; 7567 } 7568 7569 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7570 gva_t addr, void *val, unsigned int bytes, 7571 struct x86_exception *exception) 7572 { 7573 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7574 7575 /* 7576 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7577 * is returned, but our callers are not ready for that and they blindly 7578 * call kvm_inject_page_fault. Ensure that they at least do not leak 7579 * uninitialized kernel stack memory into cr2 and error code. 7580 */ 7581 memset(exception, 0, sizeof(*exception)); 7582 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7583 exception); 7584 } 7585 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7586 7587 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7588 gva_t addr, void *val, unsigned int bytes, 7589 struct x86_exception *exception, bool system) 7590 { 7591 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7592 u64 access = 0; 7593 7594 if (system) 7595 access |= PFERR_IMPLICIT_ACCESS; 7596 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7597 access |= PFERR_USER_MASK; 7598 7599 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7600 } 7601 7602 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7603 struct kvm_vcpu *vcpu, u64 access, 7604 struct x86_exception *exception) 7605 { 7606 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7607 void *data = val; 7608 int r = X86EMUL_CONTINUE; 7609 7610 while (bytes) { 7611 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7612 unsigned offset = addr & (PAGE_SIZE-1); 7613 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7614 int ret; 7615 7616 if (gpa == INVALID_GPA) 7617 return X86EMUL_PROPAGATE_FAULT; 7618 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7619 if (ret < 0) { 7620 r = X86EMUL_IO_NEEDED; 7621 goto out; 7622 } 7623 7624 bytes -= towrite; 7625 data += towrite; 7626 addr += towrite; 7627 } 7628 out: 7629 return r; 7630 } 7631 7632 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7633 unsigned int bytes, struct x86_exception *exception, 7634 bool system) 7635 { 7636 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7637 u64 access = PFERR_WRITE_MASK; 7638 7639 if (system) 7640 access |= PFERR_IMPLICIT_ACCESS; 7641 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7642 access |= PFERR_USER_MASK; 7643 7644 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7645 access, exception); 7646 } 7647 7648 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7649 unsigned int bytes, struct x86_exception *exception) 7650 { 7651 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7652 vcpu->arch.l1tf_flush_l1d = true; 7653 7654 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7655 PFERR_WRITE_MASK, exception); 7656 } 7657 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7658 7659 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7660 void *insn, int insn_len) 7661 { 7662 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type, 7663 insn, insn_len); 7664 } 7665 7666 int handle_ud(struct kvm_vcpu *vcpu) 7667 { 7668 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7669 int fep_flags = READ_ONCE(force_emulation_prefix); 7670 int emul_type = EMULTYPE_TRAP_UD; 7671 char sig[5]; /* ud2; .ascii "kvm" */ 7672 struct x86_exception e; 7673 int r; 7674 7675 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7676 if (r != X86EMUL_CONTINUE) 7677 return 1; 7678 7679 if (fep_flags && 7680 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7681 sig, sizeof(sig), &e) == 0 && 7682 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7683 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7684 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7685 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7686 emul_type = EMULTYPE_TRAP_UD_FORCED; 7687 } 7688 7689 return kvm_emulate_instruction(vcpu, emul_type); 7690 } 7691 EXPORT_SYMBOL_GPL(handle_ud); 7692 7693 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7694 gpa_t gpa, bool write) 7695 { 7696 /* For APIC access vmexit */ 7697 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7698 return 1; 7699 7700 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7701 trace_vcpu_match_mmio(gva, gpa, write, true); 7702 return 1; 7703 } 7704 7705 return 0; 7706 } 7707 7708 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7709 gpa_t *gpa, struct x86_exception *exception, 7710 bool write) 7711 { 7712 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7713 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7714 | (write ? PFERR_WRITE_MASK : 0); 7715 7716 /* 7717 * currently PKRU is only applied to ept enabled guest so 7718 * there is no pkey in EPT page table for L1 guest or EPT 7719 * shadow page table for L2 guest. 7720 */ 7721 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7722 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7723 vcpu->arch.mmio_access, 0, access))) { 7724 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7725 (gva & (PAGE_SIZE - 1)); 7726 trace_vcpu_match_mmio(gva, *gpa, write, false); 7727 return 1; 7728 } 7729 7730 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7731 7732 if (*gpa == INVALID_GPA) 7733 return -1; 7734 7735 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7736 } 7737 7738 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7739 const void *val, int bytes) 7740 { 7741 int ret; 7742 7743 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7744 if (ret < 0) 7745 return 0; 7746 kvm_page_track_write(vcpu, gpa, val, bytes); 7747 return 1; 7748 } 7749 7750 struct read_write_emulator_ops { 7751 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7752 int bytes); 7753 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7754 void *val, int bytes); 7755 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7756 int bytes, void *val); 7757 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7758 void *val, int bytes); 7759 bool write; 7760 }; 7761 7762 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7763 { 7764 if (vcpu->mmio_read_completed) { 7765 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7766 vcpu->mmio_fragments[0].gpa, val); 7767 vcpu->mmio_read_completed = 0; 7768 return 1; 7769 } 7770 7771 return 0; 7772 } 7773 7774 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7775 void *val, int bytes) 7776 { 7777 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7778 } 7779 7780 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7781 void *val, int bytes) 7782 { 7783 return emulator_write_phys(vcpu, gpa, val, bytes); 7784 } 7785 7786 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7787 { 7788 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7789 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7790 } 7791 7792 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7793 void *val, int bytes) 7794 { 7795 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7796 return X86EMUL_IO_NEEDED; 7797 } 7798 7799 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7800 void *val, int bytes) 7801 { 7802 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7803 7804 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7805 return X86EMUL_CONTINUE; 7806 } 7807 7808 static const struct read_write_emulator_ops read_emultor = { 7809 .read_write_prepare = read_prepare, 7810 .read_write_emulate = read_emulate, 7811 .read_write_mmio = vcpu_mmio_read, 7812 .read_write_exit_mmio = read_exit_mmio, 7813 }; 7814 7815 static const struct read_write_emulator_ops write_emultor = { 7816 .read_write_emulate = write_emulate, 7817 .read_write_mmio = write_mmio, 7818 .read_write_exit_mmio = write_exit_mmio, 7819 .write = true, 7820 }; 7821 7822 static int emulator_read_write_onepage(unsigned long addr, void *val, 7823 unsigned int bytes, 7824 struct x86_exception *exception, 7825 struct kvm_vcpu *vcpu, 7826 const struct read_write_emulator_ops *ops) 7827 { 7828 gpa_t gpa; 7829 int handled, ret; 7830 bool write = ops->write; 7831 struct kvm_mmio_fragment *frag; 7832 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7833 7834 /* 7835 * If the exit was due to a NPF we may already have a GPA. 7836 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7837 * Note, this cannot be used on string operations since string 7838 * operation using rep will only have the initial GPA from the NPF 7839 * occurred. 7840 */ 7841 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7842 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7843 gpa = ctxt->gpa_val; 7844 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7845 } else { 7846 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7847 if (ret < 0) 7848 return X86EMUL_PROPAGATE_FAULT; 7849 } 7850 7851 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7852 return X86EMUL_CONTINUE; 7853 7854 /* 7855 * Is this MMIO handled locally? 7856 */ 7857 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7858 if (handled == bytes) 7859 return X86EMUL_CONTINUE; 7860 7861 gpa += handled; 7862 bytes -= handled; 7863 val += handled; 7864 7865 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7866 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7867 frag->gpa = gpa; 7868 frag->data = val; 7869 frag->len = bytes; 7870 return X86EMUL_CONTINUE; 7871 } 7872 7873 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7874 unsigned long addr, 7875 void *val, unsigned int bytes, 7876 struct x86_exception *exception, 7877 const struct read_write_emulator_ops *ops) 7878 { 7879 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7880 gpa_t gpa; 7881 int rc; 7882 7883 if (ops->read_write_prepare && 7884 ops->read_write_prepare(vcpu, val, bytes)) 7885 return X86EMUL_CONTINUE; 7886 7887 vcpu->mmio_nr_fragments = 0; 7888 7889 /* Crossing a page boundary? */ 7890 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7891 int now; 7892 7893 now = -addr & ~PAGE_MASK; 7894 rc = emulator_read_write_onepage(addr, val, now, exception, 7895 vcpu, ops); 7896 7897 if (rc != X86EMUL_CONTINUE) 7898 return rc; 7899 addr += now; 7900 if (ctxt->mode != X86EMUL_MODE_PROT64) 7901 addr = (u32)addr; 7902 val += now; 7903 bytes -= now; 7904 } 7905 7906 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7907 vcpu, ops); 7908 if (rc != X86EMUL_CONTINUE) 7909 return rc; 7910 7911 if (!vcpu->mmio_nr_fragments) 7912 return rc; 7913 7914 gpa = vcpu->mmio_fragments[0].gpa; 7915 7916 vcpu->mmio_needed = 1; 7917 vcpu->mmio_cur_fragment = 0; 7918 7919 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7920 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7921 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7922 vcpu->run->mmio.phys_addr = gpa; 7923 7924 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7925 } 7926 7927 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7928 unsigned long addr, 7929 void *val, 7930 unsigned int bytes, 7931 struct x86_exception *exception) 7932 { 7933 return emulator_read_write(ctxt, addr, val, bytes, 7934 exception, &read_emultor); 7935 } 7936 7937 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7938 unsigned long addr, 7939 const void *val, 7940 unsigned int bytes, 7941 struct x86_exception *exception) 7942 { 7943 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7944 exception, &write_emultor); 7945 } 7946 7947 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7948 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7949 7950 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7951 unsigned long addr, 7952 const void *old, 7953 const void *new, 7954 unsigned int bytes, 7955 struct x86_exception *exception) 7956 { 7957 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7958 u64 page_line_mask; 7959 unsigned long hva; 7960 gpa_t gpa; 7961 int r; 7962 7963 /* guests cmpxchg8b have to be emulated atomically */ 7964 if (bytes > 8 || (bytes & (bytes - 1))) 7965 goto emul_write; 7966 7967 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7968 7969 if (gpa == INVALID_GPA || 7970 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7971 goto emul_write; 7972 7973 /* 7974 * Emulate the atomic as a straight write to avoid #AC if SLD is 7975 * enabled in the host and the access splits a cache line. 7976 */ 7977 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7978 page_line_mask = ~(cache_line_size() - 1); 7979 else 7980 page_line_mask = PAGE_MASK; 7981 7982 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7983 goto emul_write; 7984 7985 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7986 if (kvm_is_error_hva(hva)) 7987 goto emul_write; 7988 7989 hva += offset_in_page(gpa); 7990 7991 switch (bytes) { 7992 case 1: 7993 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7994 break; 7995 case 2: 7996 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7997 break; 7998 case 4: 7999 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8000 break; 8001 case 8: 8002 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8003 break; 8004 default: 8005 BUG(); 8006 } 8007 8008 if (r < 0) 8009 return X86EMUL_UNHANDLEABLE; 8010 if (r) 8011 return X86EMUL_CMPXCHG_FAILED; 8012 8013 kvm_page_track_write(vcpu, gpa, new, bytes); 8014 8015 return X86EMUL_CONTINUE; 8016 8017 emul_write: 8018 pr_warn_once("emulating exchange as write\n"); 8019 8020 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8021 } 8022 8023 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8024 unsigned short port, void *data, 8025 unsigned int count, bool in) 8026 { 8027 unsigned i; 8028 int r; 8029 8030 WARN_ON_ONCE(vcpu->arch.pio.count); 8031 for (i = 0; i < count; i++) { 8032 if (in) 8033 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8034 else 8035 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8036 8037 if (r) { 8038 if (i == 0) 8039 goto userspace_io; 8040 8041 /* 8042 * Userspace must have unregistered the device while PIO 8043 * was running. Drop writes / read as 0. 8044 */ 8045 if (in) 8046 memset(data, 0, size * (count - i)); 8047 break; 8048 } 8049 8050 data += size; 8051 } 8052 return 1; 8053 8054 userspace_io: 8055 vcpu->arch.pio.port = port; 8056 vcpu->arch.pio.in = in; 8057 vcpu->arch.pio.count = count; 8058 vcpu->arch.pio.size = size; 8059 8060 if (in) 8061 memset(vcpu->arch.pio_data, 0, size * count); 8062 else 8063 memcpy(vcpu->arch.pio_data, data, size * count); 8064 8065 vcpu->run->exit_reason = KVM_EXIT_IO; 8066 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8067 vcpu->run->io.size = size; 8068 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8069 vcpu->run->io.count = count; 8070 vcpu->run->io.port = port; 8071 return 0; 8072 } 8073 8074 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8075 unsigned short port, void *val, unsigned int count) 8076 { 8077 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8078 if (r) 8079 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8080 8081 return r; 8082 } 8083 8084 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8085 { 8086 int size = vcpu->arch.pio.size; 8087 unsigned int count = vcpu->arch.pio.count; 8088 memcpy(val, vcpu->arch.pio_data, size * count); 8089 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8090 vcpu->arch.pio.count = 0; 8091 } 8092 8093 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8094 int size, unsigned short port, void *val, 8095 unsigned int count) 8096 { 8097 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8098 if (vcpu->arch.pio.count) { 8099 /* 8100 * Complete a previous iteration that required userspace I/O. 8101 * Note, @count isn't guaranteed to match pio.count as userspace 8102 * can modify ECX before rerunning the vCPU. Ignore any such 8103 * shenanigans as KVM doesn't support modifying the rep count, 8104 * and the emulator ensures @count doesn't overflow the buffer. 8105 */ 8106 complete_emulator_pio_in(vcpu, val); 8107 return 1; 8108 } 8109 8110 return emulator_pio_in(vcpu, size, port, val, count); 8111 } 8112 8113 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8114 unsigned short port, const void *val, 8115 unsigned int count) 8116 { 8117 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8118 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8119 } 8120 8121 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8122 int size, unsigned short port, 8123 const void *val, unsigned int count) 8124 { 8125 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8126 } 8127 8128 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8129 { 8130 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 8131 } 8132 8133 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8134 { 8135 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8136 } 8137 8138 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8139 { 8140 if (!need_emulate_wbinvd(vcpu)) 8141 return X86EMUL_CONTINUE; 8142 8143 if (static_call(kvm_x86_has_wbinvd_exit)()) { 8144 int cpu = get_cpu(); 8145 8146 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8147 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8148 wbinvd_ipi, NULL, 1); 8149 put_cpu(); 8150 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8151 } else 8152 wbinvd(); 8153 return X86EMUL_CONTINUE; 8154 } 8155 8156 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8157 { 8158 kvm_emulate_wbinvd_noskip(vcpu); 8159 return kvm_skip_emulated_instruction(vcpu); 8160 } 8161 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8162 8163 8164 8165 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8166 { 8167 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8168 } 8169 8170 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 8171 unsigned long *dest) 8172 { 8173 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 8174 } 8175 8176 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8177 unsigned long value) 8178 { 8179 8180 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8181 } 8182 8183 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8184 { 8185 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8186 } 8187 8188 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8189 { 8190 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8191 unsigned long value; 8192 8193 switch (cr) { 8194 case 0: 8195 value = kvm_read_cr0(vcpu); 8196 break; 8197 case 2: 8198 value = vcpu->arch.cr2; 8199 break; 8200 case 3: 8201 value = kvm_read_cr3(vcpu); 8202 break; 8203 case 4: 8204 value = kvm_read_cr4(vcpu); 8205 break; 8206 case 8: 8207 value = kvm_get_cr8(vcpu); 8208 break; 8209 default: 8210 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8211 return 0; 8212 } 8213 8214 return value; 8215 } 8216 8217 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8218 { 8219 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8220 int res = 0; 8221 8222 switch (cr) { 8223 case 0: 8224 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8225 break; 8226 case 2: 8227 vcpu->arch.cr2 = val; 8228 break; 8229 case 3: 8230 res = kvm_set_cr3(vcpu, val); 8231 break; 8232 case 4: 8233 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8234 break; 8235 case 8: 8236 res = kvm_set_cr8(vcpu, val); 8237 break; 8238 default: 8239 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8240 res = -1; 8241 } 8242 8243 return res; 8244 } 8245 8246 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8247 { 8248 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8249 } 8250 8251 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8252 { 8253 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8254 } 8255 8256 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8257 { 8258 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8259 } 8260 8261 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8262 { 8263 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8264 } 8265 8266 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8267 { 8268 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8269 } 8270 8271 static unsigned long emulator_get_cached_segment_base( 8272 struct x86_emulate_ctxt *ctxt, int seg) 8273 { 8274 return get_segment_base(emul_to_vcpu(ctxt), seg); 8275 } 8276 8277 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8278 struct desc_struct *desc, u32 *base3, 8279 int seg) 8280 { 8281 struct kvm_segment var; 8282 8283 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8284 *selector = var.selector; 8285 8286 if (var.unusable) { 8287 memset(desc, 0, sizeof(*desc)); 8288 if (base3) 8289 *base3 = 0; 8290 return false; 8291 } 8292 8293 if (var.g) 8294 var.limit >>= 12; 8295 set_desc_limit(desc, var.limit); 8296 set_desc_base(desc, (unsigned long)var.base); 8297 #ifdef CONFIG_X86_64 8298 if (base3) 8299 *base3 = var.base >> 32; 8300 #endif 8301 desc->type = var.type; 8302 desc->s = var.s; 8303 desc->dpl = var.dpl; 8304 desc->p = var.present; 8305 desc->avl = var.avl; 8306 desc->l = var.l; 8307 desc->d = var.db; 8308 desc->g = var.g; 8309 8310 return true; 8311 } 8312 8313 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8314 struct desc_struct *desc, u32 base3, 8315 int seg) 8316 { 8317 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8318 struct kvm_segment var; 8319 8320 var.selector = selector; 8321 var.base = get_desc_base(desc); 8322 #ifdef CONFIG_X86_64 8323 var.base |= ((u64)base3) << 32; 8324 #endif 8325 var.limit = get_desc_limit(desc); 8326 if (desc->g) 8327 var.limit = (var.limit << 12) | 0xfff; 8328 var.type = desc->type; 8329 var.dpl = desc->dpl; 8330 var.db = desc->d; 8331 var.s = desc->s; 8332 var.l = desc->l; 8333 var.g = desc->g; 8334 var.avl = desc->avl; 8335 var.present = desc->p; 8336 var.unusable = !var.present; 8337 var.padding = 0; 8338 8339 kvm_set_segment(vcpu, &var, seg); 8340 return; 8341 } 8342 8343 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8344 u32 msr_index, u64 *pdata) 8345 { 8346 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8347 int r; 8348 8349 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8350 if (r < 0) 8351 return X86EMUL_UNHANDLEABLE; 8352 8353 if (r) { 8354 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8355 complete_emulated_rdmsr, r)) 8356 return X86EMUL_IO_NEEDED; 8357 8358 trace_kvm_msr_read_ex(msr_index); 8359 return X86EMUL_PROPAGATE_FAULT; 8360 } 8361 8362 trace_kvm_msr_read(msr_index, *pdata); 8363 return X86EMUL_CONTINUE; 8364 } 8365 8366 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8367 u32 msr_index, u64 data) 8368 { 8369 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8370 int r; 8371 8372 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8373 if (r < 0) 8374 return X86EMUL_UNHANDLEABLE; 8375 8376 if (r) { 8377 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8378 complete_emulated_msr_access, r)) 8379 return X86EMUL_IO_NEEDED; 8380 8381 trace_kvm_msr_write_ex(msr_index, data); 8382 return X86EMUL_PROPAGATE_FAULT; 8383 } 8384 8385 trace_kvm_msr_write(msr_index, data); 8386 return X86EMUL_CONTINUE; 8387 } 8388 8389 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8390 u32 msr_index, u64 *pdata) 8391 { 8392 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8393 } 8394 8395 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8396 u32 pmc) 8397 { 8398 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8399 return 0; 8400 return -EINVAL; 8401 } 8402 8403 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8404 u32 pmc, u64 *pdata) 8405 { 8406 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8407 } 8408 8409 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8410 { 8411 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8412 } 8413 8414 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8415 struct x86_instruction_info *info, 8416 enum x86_intercept_stage stage) 8417 { 8418 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8419 &ctxt->exception); 8420 } 8421 8422 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8423 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8424 bool exact_only) 8425 { 8426 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8427 } 8428 8429 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8430 { 8431 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8432 } 8433 8434 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8435 { 8436 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8437 } 8438 8439 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8440 { 8441 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8442 } 8443 8444 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8445 { 8446 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8447 } 8448 8449 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8450 { 8451 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8452 } 8453 8454 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8455 { 8456 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8457 } 8458 8459 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8460 { 8461 return is_smm(emul_to_vcpu(ctxt)); 8462 } 8463 8464 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8465 { 8466 return is_guest_mode(emul_to_vcpu(ctxt)); 8467 } 8468 8469 #ifndef CONFIG_KVM_SMM 8470 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8471 { 8472 WARN_ON_ONCE(1); 8473 return X86EMUL_UNHANDLEABLE; 8474 } 8475 #endif 8476 8477 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8478 { 8479 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8480 } 8481 8482 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8483 { 8484 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8485 } 8486 8487 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8488 { 8489 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8490 8491 if (!kvm->vm_bugged) 8492 kvm_vm_bugged(kvm); 8493 } 8494 8495 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8496 gva_t addr, unsigned int flags) 8497 { 8498 if (!kvm_x86_ops.get_untagged_addr) 8499 return addr; 8500 8501 return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags); 8502 } 8503 8504 static const struct x86_emulate_ops emulate_ops = { 8505 .vm_bugged = emulator_vm_bugged, 8506 .read_gpr = emulator_read_gpr, 8507 .write_gpr = emulator_write_gpr, 8508 .read_std = emulator_read_std, 8509 .write_std = emulator_write_std, 8510 .fetch = kvm_fetch_guest_virt, 8511 .read_emulated = emulator_read_emulated, 8512 .write_emulated = emulator_write_emulated, 8513 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8514 .invlpg = emulator_invlpg, 8515 .pio_in_emulated = emulator_pio_in_emulated, 8516 .pio_out_emulated = emulator_pio_out_emulated, 8517 .get_segment = emulator_get_segment, 8518 .set_segment = emulator_set_segment, 8519 .get_cached_segment_base = emulator_get_cached_segment_base, 8520 .get_gdt = emulator_get_gdt, 8521 .get_idt = emulator_get_idt, 8522 .set_gdt = emulator_set_gdt, 8523 .set_idt = emulator_set_idt, 8524 .get_cr = emulator_get_cr, 8525 .set_cr = emulator_set_cr, 8526 .cpl = emulator_get_cpl, 8527 .get_dr = emulator_get_dr, 8528 .set_dr = emulator_set_dr, 8529 .set_msr_with_filter = emulator_set_msr_with_filter, 8530 .get_msr_with_filter = emulator_get_msr_with_filter, 8531 .get_msr = emulator_get_msr, 8532 .check_pmc = emulator_check_pmc, 8533 .read_pmc = emulator_read_pmc, 8534 .halt = emulator_halt, 8535 .wbinvd = emulator_wbinvd, 8536 .fix_hypercall = emulator_fix_hypercall, 8537 .intercept = emulator_intercept, 8538 .get_cpuid = emulator_get_cpuid, 8539 .guest_has_movbe = emulator_guest_has_movbe, 8540 .guest_has_fxsr = emulator_guest_has_fxsr, 8541 .guest_has_rdpid = emulator_guest_has_rdpid, 8542 .set_nmi_mask = emulator_set_nmi_mask, 8543 .is_smm = emulator_is_smm, 8544 .is_guest_mode = emulator_is_guest_mode, 8545 .leave_smm = emulator_leave_smm, 8546 .triple_fault = emulator_triple_fault, 8547 .set_xcr = emulator_set_xcr, 8548 .get_untagged_addr = emulator_get_untagged_addr, 8549 }; 8550 8551 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8552 { 8553 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8554 /* 8555 * an sti; sti; sequence only disable interrupts for the first 8556 * instruction. So, if the last instruction, be it emulated or 8557 * not, left the system with the INT_STI flag enabled, it 8558 * means that the last instruction is an sti. We should not 8559 * leave the flag on in this case. The same goes for mov ss 8560 */ 8561 if (int_shadow & mask) 8562 mask = 0; 8563 if (unlikely(int_shadow || mask)) { 8564 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8565 if (!mask) 8566 kvm_make_request(KVM_REQ_EVENT, vcpu); 8567 } 8568 } 8569 8570 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8571 { 8572 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8573 8574 if (ctxt->exception.vector == PF_VECTOR) 8575 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8576 else if (ctxt->exception.error_code_valid) 8577 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8578 ctxt->exception.error_code); 8579 else 8580 kvm_queue_exception(vcpu, ctxt->exception.vector); 8581 } 8582 8583 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8584 { 8585 struct x86_emulate_ctxt *ctxt; 8586 8587 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8588 if (!ctxt) { 8589 pr_err("failed to allocate vcpu's emulator\n"); 8590 return NULL; 8591 } 8592 8593 ctxt->vcpu = vcpu; 8594 ctxt->ops = &emulate_ops; 8595 vcpu->arch.emulate_ctxt = ctxt; 8596 8597 return ctxt; 8598 } 8599 8600 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8601 { 8602 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8603 int cs_db, cs_l; 8604 8605 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8606 8607 ctxt->gpa_available = false; 8608 ctxt->eflags = kvm_get_rflags(vcpu); 8609 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8610 8611 ctxt->eip = kvm_rip_read(vcpu); 8612 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8613 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8614 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8615 cs_db ? X86EMUL_MODE_PROT32 : 8616 X86EMUL_MODE_PROT16; 8617 ctxt->interruptibility = 0; 8618 ctxt->have_exception = false; 8619 ctxt->exception.vector = -1; 8620 ctxt->perm_ok = false; 8621 8622 init_decode_cache(ctxt); 8623 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8624 } 8625 8626 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8627 { 8628 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8629 int ret; 8630 8631 init_emulate_ctxt(vcpu); 8632 8633 ctxt->op_bytes = 2; 8634 ctxt->ad_bytes = 2; 8635 ctxt->_eip = ctxt->eip + inc_eip; 8636 ret = emulate_int_real(ctxt, irq); 8637 8638 if (ret != X86EMUL_CONTINUE) { 8639 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8640 } else { 8641 ctxt->eip = ctxt->_eip; 8642 kvm_rip_write(vcpu, ctxt->eip); 8643 kvm_set_rflags(vcpu, ctxt->eflags); 8644 } 8645 } 8646 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8647 8648 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8649 u8 ndata, u8 *insn_bytes, u8 insn_size) 8650 { 8651 struct kvm_run *run = vcpu->run; 8652 u64 info[5]; 8653 u8 info_start; 8654 8655 /* 8656 * Zero the whole array used to retrieve the exit info, as casting to 8657 * u32 for select entries will leave some chunks uninitialized. 8658 */ 8659 memset(&info, 0, sizeof(info)); 8660 8661 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8662 &info[2], (u32 *)&info[3], 8663 (u32 *)&info[4]); 8664 8665 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8666 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8667 8668 /* 8669 * There's currently space for 13 entries, but 5 are used for the exit 8670 * reason and info. Restrict to 4 to reduce the maintenance burden 8671 * when expanding kvm_run.emulation_failure in the future. 8672 */ 8673 if (WARN_ON_ONCE(ndata > 4)) 8674 ndata = 4; 8675 8676 /* Always include the flags as a 'data' entry. */ 8677 info_start = 1; 8678 run->emulation_failure.flags = 0; 8679 8680 if (insn_size) { 8681 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8682 sizeof(run->emulation_failure.insn_bytes) != 16)); 8683 info_start += 2; 8684 run->emulation_failure.flags |= 8685 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8686 run->emulation_failure.insn_size = insn_size; 8687 memset(run->emulation_failure.insn_bytes, 0x90, 8688 sizeof(run->emulation_failure.insn_bytes)); 8689 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8690 } 8691 8692 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8693 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8694 ndata * sizeof(data[0])); 8695 8696 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8697 } 8698 8699 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8700 { 8701 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8702 8703 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8704 ctxt->fetch.end - ctxt->fetch.data); 8705 } 8706 8707 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8708 u8 ndata) 8709 { 8710 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8711 } 8712 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8713 8714 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8715 { 8716 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8717 } 8718 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8719 8720 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8721 { 8722 struct kvm *kvm = vcpu->kvm; 8723 8724 ++vcpu->stat.insn_emulation_fail; 8725 trace_kvm_emulate_insn_failed(vcpu); 8726 8727 if (emulation_type & EMULTYPE_VMWARE_GP) { 8728 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8729 return 1; 8730 } 8731 8732 if (kvm->arch.exit_on_emulation_error || 8733 (emulation_type & EMULTYPE_SKIP)) { 8734 prepare_emulation_ctxt_failure_exit(vcpu); 8735 return 0; 8736 } 8737 8738 kvm_queue_exception(vcpu, UD_VECTOR); 8739 8740 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8741 prepare_emulation_ctxt_failure_exit(vcpu); 8742 return 0; 8743 } 8744 8745 return 1; 8746 } 8747 8748 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8749 int emulation_type) 8750 { 8751 gpa_t gpa = cr2_or_gpa; 8752 kvm_pfn_t pfn; 8753 8754 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8755 return false; 8756 8757 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8758 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8759 return false; 8760 8761 if (!vcpu->arch.mmu->root_role.direct) { 8762 /* 8763 * Write permission should be allowed since only 8764 * write access need to be emulated. 8765 */ 8766 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8767 8768 /* 8769 * If the mapping is invalid in guest, let cpu retry 8770 * it to generate fault. 8771 */ 8772 if (gpa == INVALID_GPA) 8773 return true; 8774 } 8775 8776 /* 8777 * Do not retry the unhandleable instruction if it faults on the 8778 * readonly host memory, otherwise it will goto a infinite loop: 8779 * retry instruction -> write #PF -> emulation fail -> retry 8780 * instruction -> ... 8781 */ 8782 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8783 8784 /* 8785 * If the instruction failed on the error pfn, it can not be fixed, 8786 * report the error to userspace. 8787 */ 8788 if (is_error_noslot_pfn(pfn)) 8789 return false; 8790 8791 kvm_release_pfn_clean(pfn); 8792 8793 /* The instructions are well-emulated on direct mmu. */ 8794 if (vcpu->arch.mmu->root_role.direct) { 8795 unsigned int indirect_shadow_pages; 8796 8797 write_lock(&vcpu->kvm->mmu_lock); 8798 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8799 write_unlock(&vcpu->kvm->mmu_lock); 8800 8801 if (indirect_shadow_pages) 8802 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8803 8804 return true; 8805 } 8806 8807 /* 8808 * if emulation was due to access to shadowed page table 8809 * and it failed try to unshadow page and re-enter the 8810 * guest to let CPU execute the instruction. 8811 */ 8812 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8813 8814 /* 8815 * If the access faults on its page table, it can not 8816 * be fixed by unprotecting shadow page and it should 8817 * be reported to userspace. 8818 */ 8819 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8820 } 8821 8822 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8823 gpa_t cr2_or_gpa, int emulation_type) 8824 { 8825 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8826 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8827 8828 last_retry_eip = vcpu->arch.last_retry_eip; 8829 last_retry_addr = vcpu->arch.last_retry_addr; 8830 8831 /* 8832 * If the emulation is caused by #PF and it is non-page_table 8833 * writing instruction, it means the VM-EXIT is caused by shadow 8834 * page protected, we can zap the shadow page and retry this 8835 * instruction directly. 8836 * 8837 * Note: if the guest uses a non-page-table modifying instruction 8838 * on the PDE that points to the instruction, then we will unmap 8839 * the instruction and go to an infinite loop. So, we cache the 8840 * last retried eip and the last fault address, if we meet the eip 8841 * and the address again, we can break out of the potential infinite 8842 * loop. 8843 */ 8844 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8845 8846 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8847 return false; 8848 8849 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8850 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8851 return false; 8852 8853 if (x86_page_table_writing_insn(ctxt)) 8854 return false; 8855 8856 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8857 return false; 8858 8859 vcpu->arch.last_retry_eip = ctxt->eip; 8860 vcpu->arch.last_retry_addr = cr2_or_gpa; 8861 8862 if (!vcpu->arch.mmu->root_role.direct) 8863 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8864 8865 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8866 8867 return true; 8868 } 8869 8870 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8871 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8872 8873 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8874 unsigned long *db) 8875 { 8876 u32 dr6 = 0; 8877 int i; 8878 u32 enable, rwlen; 8879 8880 enable = dr7; 8881 rwlen = dr7 >> 16; 8882 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8883 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8884 dr6 |= (1 << i); 8885 return dr6; 8886 } 8887 8888 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8889 { 8890 struct kvm_run *kvm_run = vcpu->run; 8891 8892 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8893 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8894 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8895 kvm_run->debug.arch.exception = DB_VECTOR; 8896 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8897 return 0; 8898 } 8899 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8900 return 1; 8901 } 8902 8903 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8904 { 8905 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8906 int r; 8907 8908 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8909 if (unlikely(!r)) 8910 return 0; 8911 8912 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8913 8914 /* 8915 * rflags is the old, "raw" value of the flags. The new value has 8916 * not been saved yet. 8917 * 8918 * This is correct even for TF set by the guest, because "the 8919 * processor will not generate this exception after the instruction 8920 * that sets the TF flag". 8921 */ 8922 if (unlikely(rflags & X86_EFLAGS_TF)) 8923 r = kvm_vcpu_do_singlestep(vcpu); 8924 return r; 8925 } 8926 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8927 8928 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8929 { 8930 u32 shadow; 8931 8932 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8933 return true; 8934 8935 /* 8936 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8937 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8938 * to avoid the relatively expensive CPUID lookup. 8939 */ 8940 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8941 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8942 guest_cpuid_is_intel(vcpu); 8943 } 8944 8945 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8946 int emulation_type, int *r) 8947 { 8948 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8949 8950 /* 8951 * Do not check for code breakpoints if hardware has already done the 8952 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8953 * the instruction has passed all exception checks, and all intercepted 8954 * exceptions that trigger emulation have lower priority than code 8955 * breakpoints, i.e. the fact that the intercepted exception occurred 8956 * means any code breakpoints have already been serviced. 8957 * 8958 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8959 * hardware has checked the RIP of the magic prefix, but not the RIP of 8960 * the instruction being emulated. The intent of forced emulation is 8961 * to behave as if KVM intercepted the instruction without an exception 8962 * and without a prefix. 8963 */ 8964 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8965 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8966 return false; 8967 8968 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8969 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8970 struct kvm_run *kvm_run = vcpu->run; 8971 unsigned long eip = kvm_get_linear_rip(vcpu); 8972 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8973 vcpu->arch.guest_debug_dr7, 8974 vcpu->arch.eff_db); 8975 8976 if (dr6 != 0) { 8977 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8978 kvm_run->debug.arch.pc = eip; 8979 kvm_run->debug.arch.exception = DB_VECTOR; 8980 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8981 *r = 0; 8982 return true; 8983 } 8984 } 8985 8986 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8987 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8988 unsigned long eip = kvm_get_linear_rip(vcpu); 8989 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8990 vcpu->arch.dr7, 8991 vcpu->arch.db); 8992 8993 if (dr6 != 0) { 8994 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8995 *r = 1; 8996 return true; 8997 } 8998 } 8999 9000 return false; 9001 } 9002 9003 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9004 { 9005 switch (ctxt->opcode_len) { 9006 case 1: 9007 switch (ctxt->b) { 9008 case 0xe4: /* IN */ 9009 case 0xe5: 9010 case 0xec: 9011 case 0xed: 9012 case 0xe6: /* OUT */ 9013 case 0xe7: 9014 case 0xee: 9015 case 0xef: 9016 case 0x6c: /* INS */ 9017 case 0x6d: 9018 case 0x6e: /* OUTS */ 9019 case 0x6f: 9020 return true; 9021 } 9022 break; 9023 case 2: 9024 switch (ctxt->b) { 9025 case 0x33: /* RDPMC */ 9026 return true; 9027 } 9028 break; 9029 } 9030 9031 return false; 9032 } 9033 9034 /* 9035 * Decode an instruction for emulation. The caller is responsible for handling 9036 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9037 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9038 * code breakpoints have higher priority and thus have already been done by 9039 * hardware. 9040 * 9041 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9042 * response to a machine check. 9043 */ 9044 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9045 void *insn, int insn_len) 9046 { 9047 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9048 int r; 9049 9050 init_emulate_ctxt(vcpu); 9051 9052 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9053 9054 trace_kvm_emulate_insn_start(vcpu); 9055 ++vcpu->stat.insn_emulation; 9056 9057 return r; 9058 } 9059 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9060 9061 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9062 int emulation_type, void *insn, int insn_len) 9063 { 9064 int r; 9065 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9066 bool writeback = true; 9067 9068 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9069 if (r != X86EMUL_CONTINUE) { 9070 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9071 return 1; 9072 9073 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9074 return handle_emulation_failure(vcpu, emulation_type); 9075 } 9076 9077 vcpu->arch.l1tf_flush_l1d = true; 9078 9079 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9080 kvm_clear_exception_queue(vcpu); 9081 9082 /* 9083 * Return immediately if RIP hits a code breakpoint, such #DBs 9084 * are fault-like and are higher priority than any faults on 9085 * the code fetch itself. 9086 */ 9087 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9088 return r; 9089 9090 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9091 insn, insn_len); 9092 if (r != EMULATION_OK) { 9093 if ((emulation_type & EMULTYPE_TRAP_UD) || 9094 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9095 kvm_queue_exception(vcpu, UD_VECTOR); 9096 return 1; 9097 } 9098 if (reexecute_instruction(vcpu, cr2_or_gpa, 9099 emulation_type)) 9100 return 1; 9101 9102 if (ctxt->have_exception && 9103 !(emulation_type & EMULTYPE_SKIP)) { 9104 /* 9105 * #UD should result in just EMULATION_FAILED, and trap-like 9106 * exception should not be encountered during decode. 9107 */ 9108 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9109 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9110 inject_emulated_exception(vcpu); 9111 return 1; 9112 } 9113 return handle_emulation_failure(vcpu, emulation_type); 9114 } 9115 } 9116 9117 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9118 !is_vmware_backdoor_opcode(ctxt)) { 9119 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9120 return 1; 9121 } 9122 9123 /* 9124 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9125 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9126 * The caller is responsible for updating interruptibility state and 9127 * injecting single-step #DBs. 9128 */ 9129 if (emulation_type & EMULTYPE_SKIP) { 9130 if (ctxt->mode != X86EMUL_MODE_PROT64) 9131 ctxt->eip = (u32)ctxt->_eip; 9132 else 9133 ctxt->eip = ctxt->_eip; 9134 9135 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9136 r = 1; 9137 goto writeback; 9138 } 9139 9140 kvm_rip_write(vcpu, ctxt->eip); 9141 if (ctxt->eflags & X86_EFLAGS_RF) 9142 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9143 return 1; 9144 } 9145 9146 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 9147 return 1; 9148 9149 /* this is needed for vmware backdoor interface to work since it 9150 changes registers values during IO operation */ 9151 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9152 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9153 emulator_invalidate_register_cache(ctxt); 9154 } 9155 9156 restart: 9157 if (emulation_type & EMULTYPE_PF) { 9158 /* Save the faulting GPA (cr2) in the address field */ 9159 ctxt->exception.address = cr2_or_gpa; 9160 9161 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9162 if (vcpu->arch.mmu->root_role.direct) { 9163 ctxt->gpa_available = true; 9164 ctxt->gpa_val = cr2_or_gpa; 9165 } 9166 } else { 9167 /* Sanitize the address out of an abundance of paranoia. */ 9168 ctxt->exception.address = 0; 9169 } 9170 9171 r = x86_emulate_insn(ctxt); 9172 9173 if (r == EMULATION_INTERCEPTED) 9174 return 1; 9175 9176 if (r == EMULATION_FAILED) { 9177 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 9178 return 1; 9179 9180 return handle_emulation_failure(vcpu, emulation_type); 9181 } 9182 9183 if (ctxt->have_exception) { 9184 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9185 vcpu->mmio_needed = false; 9186 r = 1; 9187 inject_emulated_exception(vcpu); 9188 } else if (vcpu->arch.pio.count) { 9189 if (!vcpu->arch.pio.in) { 9190 /* FIXME: return into emulator if single-stepping. */ 9191 vcpu->arch.pio.count = 0; 9192 } else { 9193 writeback = false; 9194 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9195 } 9196 r = 0; 9197 } else if (vcpu->mmio_needed) { 9198 ++vcpu->stat.mmio_exits; 9199 9200 if (!vcpu->mmio_is_write) 9201 writeback = false; 9202 r = 0; 9203 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9204 } else if (vcpu->arch.complete_userspace_io) { 9205 writeback = false; 9206 r = 0; 9207 } else if (r == EMULATION_RESTART) 9208 goto restart; 9209 else 9210 r = 1; 9211 9212 writeback: 9213 if (writeback) { 9214 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9215 toggle_interruptibility(vcpu, ctxt->interruptibility); 9216 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9217 9218 /* 9219 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9220 * only supports code breakpoints and general detect #DB, both 9221 * of which are fault-like. 9222 */ 9223 if (!ctxt->have_exception || 9224 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9225 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9226 if (ctxt->is_branch) 9227 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9228 kvm_rip_write(vcpu, ctxt->eip); 9229 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9230 r = kvm_vcpu_do_singlestep(vcpu); 9231 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9232 __kvm_set_rflags(vcpu, ctxt->eflags); 9233 } 9234 9235 /* 9236 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9237 * do nothing, and it will be requested again as soon as 9238 * the shadow expires. But we still need to check here, 9239 * because POPF has no interrupt shadow. 9240 */ 9241 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9242 kvm_make_request(KVM_REQ_EVENT, vcpu); 9243 } else 9244 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9245 9246 return r; 9247 } 9248 9249 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9250 { 9251 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9252 } 9253 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9254 9255 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9256 void *insn, int insn_len) 9257 { 9258 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9259 } 9260 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9261 9262 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9263 { 9264 vcpu->arch.pio.count = 0; 9265 return 1; 9266 } 9267 9268 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9269 { 9270 vcpu->arch.pio.count = 0; 9271 9272 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9273 return 1; 9274 9275 return kvm_skip_emulated_instruction(vcpu); 9276 } 9277 9278 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9279 unsigned short port) 9280 { 9281 unsigned long val = kvm_rax_read(vcpu); 9282 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9283 9284 if (ret) 9285 return ret; 9286 9287 /* 9288 * Workaround userspace that relies on old KVM behavior of %rip being 9289 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9290 */ 9291 if (port == 0x7e && 9292 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9293 vcpu->arch.complete_userspace_io = 9294 complete_fast_pio_out_port_0x7e; 9295 kvm_skip_emulated_instruction(vcpu); 9296 } else { 9297 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9298 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9299 } 9300 return 0; 9301 } 9302 9303 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9304 { 9305 unsigned long val; 9306 9307 /* We should only ever be called with arch.pio.count equal to 1 */ 9308 BUG_ON(vcpu->arch.pio.count != 1); 9309 9310 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9311 vcpu->arch.pio.count = 0; 9312 return 1; 9313 } 9314 9315 /* For size less than 4 we merge, else we zero extend */ 9316 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9317 9318 complete_emulator_pio_in(vcpu, &val); 9319 kvm_rax_write(vcpu, val); 9320 9321 return kvm_skip_emulated_instruction(vcpu); 9322 } 9323 9324 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9325 unsigned short port) 9326 { 9327 unsigned long val; 9328 int ret; 9329 9330 /* For size less than 4 we merge, else we zero extend */ 9331 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9332 9333 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9334 if (ret) { 9335 kvm_rax_write(vcpu, val); 9336 return ret; 9337 } 9338 9339 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9340 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9341 9342 return 0; 9343 } 9344 9345 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9346 { 9347 int ret; 9348 9349 if (in) 9350 ret = kvm_fast_pio_in(vcpu, size, port); 9351 else 9352 ret = kvm_fast_pio_out(vcpu, size, port); 9353 return ret && kvm_skip_emulated_instruction(vcpu); 9354 } 9355 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9356 9357 static int kvmclock_cpu_down_prep(unsigned int cpu) 9358 { 9359 __this_cpu_write(cpu_tsc_khz, 0); 9360 return 0; 9361 } 9362 9363 static void tsc_khz_changed(void *data) 9364 { 9365 struct cpufreq_freqs *freq = data; 9366 unsigned long khz; 9367 9368 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9369 9370 if (data) 9371 khz = freq->new; 9372 else 9373 khz = cpufreq_quick_get(raw_smp_processor_id()); 9374 if (!khz) 9375 khz = tsc_khz; 9376 __this_cpu_write(cpu_tsc_khz, khz); 9377 } 9378 9379 #ifdef CONFIG_X86_64 9380 static void kvm_hyperv_tsc_notifier(void) 9381 { 9382 struct kvm *kvm; 9383 int cpu; 9384 9385 mutex_lock(&kvm_lock); 9386 list_for_each_entry(kvm, &vm_list, vm_list) 9387 kvm_make_mclock_inprogress_request(kvm); 9388 9389 /* no guest entries from this point */ 9390 hyperv_stop_tsc_emulation(); 9391 9392 /* TSC frequency always matches when on Hyper-V */ 9393 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9394 for_each_present_cpu(cpu) 9395 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9396 } 9397 kvm_caps.max_guest_tsc_khz = tsc_khz; 9398 9399 list_for_each_entry(kvm, &vm_list, vm_list) { 9400 __kvm_start_pvclock_update(kvm); 9401 pvclock_update_vm_gtod_copy(kvm); 9402 kvm_end_pvclock_update(kvm); 9403 } 9404 9405 mutex_unlock(&kvm_lock); 9406 } 9407 #endif 9408 9409 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9410 { 9411 struct kvm *kvm; 9412 struct kvm_vcpu *vcpu; 9413 int send_ipi = 0; 9414 unsigned long i; 9415 9416 /* 9417 * We allow guests to temporarily run on slowing clocks, 9418 * provided we notify them after, or to run on accelerating 9419 * clocks, provided we notify them before. Thus time never 9420 * goes backwards. 9421 * 9422 * However, we have a problem. We can't atomically update 9423 * the frequency of a given CPU from this function; it is 9424 * merely a notifier, which can be called from any CPU. 9425 * Changing the TSC frequency at arbitrary points in time 9426 * requires a recomputation of local variables related to 9427 * the TSC for each VCPU. We must flag these local variables 9428 * to be updated and be sure the update takes place with the 9429 * new frequency before any guests proceed. 9430 * 9431 * Unfortunately, the combination of hotplug CPU and frequency 9432 * change creates an intractable locking scenario; the order 9433 * of when these callouts happen is undefined with respect to 9434 * CPU hotplug, and they can race with each other. As such, 9435 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9436 * undefined; you can actually have a CPU frequency change take 9437 * place in between the computation of X and the setting of the 9438 * variable. To protect against this problem, all updates of 9439 * the per_cpu tsc_khz variable are done in an interrupt 9440 * protected IPI, and all callers wishing to update the value 9441 * must wait for a synchronous IPI to complete (which is trivial 9442 * if the caller is on the CPU already). This establishes the 9443 * necessary total order on variable updates. 9444 * 9445 * Note that because a guest time update may take place 9446 * anytime after the setting of the VCPU's request bit, the 9447 * correct TSC value must be set before the request. However, 9448 * to ensure the update actually makes it to any guest which 9449 * starts running in hardware virtualization between the set 9450 * and the acquisition of the spinlock, we must also ping the 9451 * CPU after setting the request bit. 9452 * 9453 */ 9454 9455 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9456 9457 mutex_lock(&kvm_lock); 9458 list_for_each_entry(kvm, &vm_list, vm_list) { 9459 kvm_for_each_vcpu(i, vcpu, kvm) { 9460 if (vcpu->cpu != cpu) 9461 continue; 9462 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9463 if (vcpu->cpu != raw_smp_processor_id()) 9464 send_ipi = 1; 9465 } 9466 } 9467 mutex_unlock(&kvm_lock); 9468 9469 if (freq->old < freq->new && send_ipi) { 9470 /* 9471 * We upscale the frequency. Must make the guest 9472 * doesn't see old kvmclock values while running with 9473 * the new frequency, otherwise we risk the guest sees 9474 * time go backwards. 9475 * 9476 * In case we update the frequency for another cpu 9477 * (which might be in guest context) send an interrupt 9478 * to kick the cpu out of guest context. Next time 9479 * guest context is entered kvmclock will be updated, 9480 * so the guest will not see stale values. 9481 */ 9482 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9483 } 9484 } 9485 9486 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9487 void *data) 9488 { 9489 struct cpufreq_freqs *freq = data; 9490 int cpu; 9491 9492 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9493 return 0; 9494 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9495 return 0; 9496 9497 for_each_cpu(cpu, freq->policy->cpus) 9498 __kvmclock_cpufreq_notifier(freq, cpu); 9499 9500 return 0; 9501 } 9502 9503 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9504 .notifier_call = kvmclock_cpufreq_notifier 9505 }; 9506 9507 static int kvmclock_cpu_online(unsigned int cpu) 9508 { 9509 tsc_khz_changed(NULL); 9510 return 0; 9511 } 9512 9513 static void kvm_timer_init(void) 9514 { 9515 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9516 max_tsc_khz = tsc_khz; 9517 9518 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9519 struct cpufreq_policy *policy; 9520 int cpu; 9521 9522 cpu = get_cpu(); 9523 policy = cpufreq_cpu_get(cpu); 9524 if (policy) { 9525 if (policy->cpuinfo.max_freq) 9526 max_tsc_khz = policy->cpuinfo.max_freq; 9527 cpufreq_cpu_put(policy); 9528 } 9529 put_cpu(); 9530 } 9531 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9532 CPUFREQ_TRANSITION_NOTIFIER); 9533 9534 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9535 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9536 } 9537 } 9538 9539 #ifdef CONFIG_X86_64 9540 static void pvclock_gtod_update_fn(struct work_struct *work) 9541 { 9542 struct kvm *kvm; 9543 struct kvm_vcpu *vcpu; 9544 unsigned long i; 9545 9546 mutex_lock(&kvm_lock); 9547 list_for_each_entry(kvm, &vm_list, vm_list) 9548 kvm_for_each_vcpu(i, vcpu, kvm) 9549 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9550 atomic_set(&kvm_guest_has_master_clock, 0); 9551 mutex_unlock(&kvm_lock); 9552 } 9553 9554 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9555 9556 /* 9557 * Indirection to move queue_work() out of the tk_core.seq write held 9558 * region to prevent possible deadlocks against time accessors which 9559 * are invoked with work related locks held. 9560 */ 9561 static void pvclock_irq_work_fn(struct irq_work *w) 9562 { 9563 queue_work(system_long_wq, &pvclock_gtod_work); 9564 } 9565 9566 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9567 9568 /* 9569 * Notification about pvclock gtod data update. 9570 */ 9571 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9572 void *priv) 9573 { 9574 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9575 struct timekeeper *tk = priv; 9576 9577 update_pvclock_gtod(tk); 9578 9579 /* 9580 * Disable master clock if host does not trust, or does not use, 9581 * TSC based clocksource. Delegate queue_work() to irq_work as 9582 * this is invoked with tk_core.seq write held. 9583 */ 9584 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9585 atomic_read(&kvm_guest_has_master_clock) != 0) 9586 irq_work_queue(&pvclock_irq_work); 9587 return 0; 9588 } 9589 9590 static struct notifier_block pvclock_gtod_notifier = { 9591 .notifier_call = pvclock_gtod_notify, 9592 }; 9593 #endif 9594 9595 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9596 { 9597 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9598 9599 #define __KVM_X86_OP(func) \ 9600 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9601 #define KVM_X86_OP(func) \ 9602 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9603 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9604 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9605 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9606 (void *)__static_call_return0); 9607 #include <asm/kvm-x86-ops.h> 9608 #undef __KVM_X86_OP 9609 9610 kvm_pmu_ops_update(ops->pmu_ops); 9611 } 9612 9613 static int kvm_x86_check_processor_compatibility(void) 9614 { 9615 int cpu = smp_processor_id(); 9616 struct cpuinfo_x86 *c = &cpu_data(cpu); 9617 9618 /* 9619 * Compatibility checks are done when loading KVM and when enabling 9620 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9621 * compatible, i.e. KVM should never perform a compatibility check on 9622 * an offline CPU. 9623 */ 9624 WARN_ON(!cpu_online(cpu)); 9625 9626 if (__cr4_reserved_bits(cpu_has, c) != 9627 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9628 return -EIO; 9629 9630 return static_call(kvm_x86_check_processor_compatibility)(); 9631 } 9632 9633 static void kvm_x86_check_cpu_compat(void *ret) 9634 { 9635 *(int *)ret = kvm_x86_check_processor_compatibility(); 9636 } 9637 9638 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9639 { 9640 u64 host_pat; 9641 int r, cpu; 9642 9643 if (kvm_x86_ops.hardware_enable) { 9644 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9645 return -EEXIST; 9646 } 9647 9648 /* 9649 * KVM explicitly assumes that the guest has an FPU and 9650 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9651 * vCPU's FPU state as a fxregs_state struct. 9652 */ 9653 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9654 pr_err("inadequate fpu\n"); 9655 return -EOPNOTSUPP; 9656 } 9657 9658 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9659 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9660 return -EOPNOTSUPP; 9661 } 9662 9663 /* 9664 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9665 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9666 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9667 * with an exception. PAT[0] is set to WB on RESET and also by the 9668 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9669 */ 9670 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9671 (host_pat & GENMASK(2, 0)) != 6) { 9672 pr_err("host PAT[0] is not WB\n"); 9673 return -EIO; 9674 } 9675 9676 x86_emulator_cache = kvm_alloc_emulator_cache(); 9677 if (!x86_emulator_cache) { 9678 pr_err("failed to allocate cache for x86 emulator\n"); 9679 return -ENOMEM; 9680 } 9681 9682 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9683 if (!user_return_msrs) { 9684 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9685 r = -ENOMEM; 9686 goto out_free_x86_emulator_cache; 9687 } 9688 kvm_nr_uret_msrs = 0; 9689 9690 r = kvm_mmu_vendor_module_init(); 9691 if (r) 9692 goto out_free_percpu; 9693 9694 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9695 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9696 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9697 } 9698 9699 rdmsrl_safe(MSR_EFER, &host_efer); 9700 9701 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9702 rdmsrl(MSR_IA32_XSS, host_xss); 9703 9704 kvm_init_pmu_capability(ops->pmu_ops); 9705 9706 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9707 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9708 9709 r = ops->hardware_setup(); 9710 if (r != 0) 9711 goto out_mmu_exit; 9712 9713 kvm_ops_update(ops); 9714 9715 for_each_online_cpu(cpu) { 9716 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9717 if (r < 0) 9718 goto out_unwind_ops; 9719 } 9720 9721 /* 9722 * Point of no return! DO NOT add error paths below this point unless 9723 * absolutely necessary, as most operations from this point forward 9724 * require unwinding. 9725 */ 9726 kvm_timer_init(); 9727 9728 if (pi_inject_timer == -1) 9729 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9730 #ifdef CONFIG_X86_64 9731 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9732 9733 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9734 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9735 #endif 9736 9737 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9738 9739 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9740 kvm_caps.supported_xss = 0; 9741 9742 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9743 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9744 #undef __kvm_cpu_cap_has 9745 9746 if (kvm_caps.has_tsc_control) { 9747 /* 9748 * Make sure the user can only configure tsc_khz values that 9749 * fit into a signed integer. 9750 * A min value is not calculated because it will always 9751 * be 1 on all machines. 9752 */ 9753 u64 max = min(0x7fffffffULL, 9754 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9755 kvm_caps.max_guest_tsc_khz = max; 9756 } 9757 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9758 kvm_init_msr_lists(); 9759 return 0; 9760 9761 out_unwind_ops: 9762 kvm_x86_ops.hardware_enable = NULL; 9763 static_call(kvm_x86_hardware_unsetup)(); 9764 out_mmu_exit: 9765 kvm_mmu_vendor_module_exit(); 9766 out_free_percpu: 9767 free_percpu(user_return_msrs); 9768 out_free_x86_emulator_cache: 9769 kmem_cache_destroy(x86_emulator_cache); 9770 return r; 9771 } 9772 9773 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9774 { 9775 int r; 9776 9777 mutex_lock(&vendor_module_lock); 9778 r = __kvm_x86_vendor_init(ops); 9779 mutex_unlock(&vendor_module_lock); 9780 9781 return r; 9782 } 9783 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9784 9785 void kvm_x86_vendor_exit(void) 9786 { 9787 kvm_unregister_perf_callbacks(); 9788 9789 #ifdef CONFIG_X86_64 9790 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9791 clear_hv_tscchange_cb(); 9792 #endif 9793 kvm_lapic_exit(); 9794 9795 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9796 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9797 CPUFREQ_TRANSITION_NOTIFIER); 9798 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9799 } 9800 #ifdef CONFIG_X86_64 9801 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9802 irq_work_sync(&pvclock_irq_work); 9803 cancel_work_sync(&pvclock_gtod_work); 9804 #endif 9805 static_call(kvm_x86_hardware_unsetup)(); 9806 kvm_mmu_vendor_module_exit(); 9807 free_percpu(user_return_msrs); 9808 kmem_cache_destroy(x86_emulator_cache); 9809 #ifdef CONFIG_KVM_XEN 9810 static_key_deferred_flush(&kvm_xen_enabled); 9811 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9812 #endif 9813 mutex_lock(&vendor_module_lock); 9814 kvm_x86_ops.hardware_enable = NULL; 9815 mutex_unlock(&vendor_module_lock); 9816 } 9817 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9818 9819 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9820 { 9821 /* 9822 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9823 * local APIC is in-kernel, the run loop will detect the non-runnable 9824 * state and halt the vCPU. Exit to userspace if the local APIC is 9825 * managed by userspace, in which case userspace is responsible for 9826 * handling wake events. 9827 */ 9828 ++vcpu->stat.halt_exits; 9829 if (lapic_in_kernel(vcpu)) { 9830 vcpu->arch.mp_state = state; 9831 return 1; 9832 } else { 9833 vcpu->run->exit_reason = reason; 9834 return 0; 9835 } 9836 } 9837 9838 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9839 { 9840 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9841 } 9842 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9843 9844 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9845 { 9846 int ret = kvm_skip_emulated_instruction(vcpu); 9847 /* 9848 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9849 * KVM_EXIT_DEBUG here. 9850 */ 9851 return kvm_emulate_halt_noskip(vcpu) && ret; 9852 } 9853 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9854 9855 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9856 { 9857 int ret = kvm_skip_emulated_instruction(vcpu); 9858 9859 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9860 KVM_EXIT_AP_RESET_HOLD) && ret; 9861 } 9862 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9863 9864 #ifdef CONFIG_X86_64 9865 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9866 unsigned long clock_type) 9867 { 9868 struct kvm_clock_pairing clock_pairing; 9869 struct timespec64 ts; 9870 u64 cycle; 9871 int ret; 9872 9873 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9874 return -KVM_EOPNOTSUPP; 9875 9876 /* 9877 * When tsc is in permanent catchup mode guests won't be able to use 9878 * pvclock_read_retry loop to get consistent view of pvclock 9879 */ 9880 if (vcpu->arch.tsc_always_catchup) 9881 return -KVM_EOPNOTSUPP; 9882 9883 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9884 return -KVM_EOPNOTSUPP; 9885 9886 clock_pairing.sec = ts.tv_sec; 9887 clock_pairing.nsec = ts.tv_nsec; 9888 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9889 clock_pairing.flags = 0; 9890 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9891 9892 ret = 0; 9893 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9894 sizeof(struct kvm_clock_pairing))) 9895 ret = -KVM_EFAULT; 9896 9897 return ret; 9898 } 9899 #endif 9900 9901 /* 9902 * kvm_pv_kick_cpu_op: Kick a vcpu. 9903 * 9904 * @apicid - apicid of vcpu to be kicked. 9905 */ 9906 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9907 { 9908 /* 9909 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9910 * common code, e.g. for tracing. Defer initialization to the compiler. 9911 */ 9912 struct kvm_lapic_irq lapic_irq = { 9913 .delivery_mode = APIC_DM_REMRD, 9914 .dest_mode = APIC_DEST_PHYSICAL, 9915 .shorthand = APIC_DEST_NOSHORT, 9916 .dest_id = apicid, 9917 }; 9918 9919 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9920 } 9921 9922 bool kvm_apicv_activated(struct kvm *kvm) 9923 { 9924 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9925 } 9926 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9927 9928 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9929 { 9930 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9931 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9932 9933 return (vm_reasons | vcpu_reasons) == 0; 9934 } 9935 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9936 9937 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9938 enum kvm_apicv_inhibit reason, bool set) 9939 { 9940 if (set) 9941 __set_bit(reason, inhibits); 9942 else 9943 __clear_bit(reason, inhibits); 9944 9945 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9946 } 9947 9948 static void kvm_apicv_init(struct kvm *kvm) 9949 { 9950 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9951 9952 init_rwsem(&kvm->arch.apicv_update_lock); 9953 9954 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9955 9956 if (!enable_apicv) 9957 set_or_clear_apicv_inhibit(inhibits, 9958 APICV_INHIBIT_REASON_DISABLE, true); 9959 } 9960 9961 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9962 { 9963 struct kvm_vcpu *target = NULL; 9964 struct kvm_apic_map *map; 9965 9966 vcpu->stat.directed_yield_attempted++; 9967 9968 if (single_task_running()) 9969 goto no_yield; 9970 9971 rcu_read_lock(); 9972 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9973 9974 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9975 target = map->phys_map[dest_id]->vcpu; 9976 9977 rcu_read_unlock(); 9978 9979 if (!target || !READ_ONCE(target->ready)) 9980 goto no_yield; 9981 9982 /* Ignore requests to yield to self */ 9983 if (vcpu == target) 9984 goto no_yield; 9985 9986 if (kvm_vcpu_yield_to(target) <= 0) 9987 goto no_yield; 9988 9989 vcpu->stat.directed_yield_successful++; 9990 9991 no_yield: 9992 return; 9993 } 9994 9995 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9996 { 9997 u64 ret = vcpu->run->hypercall.ret; 9998 9999 if (!is_64_bit_mode(vcpu)) 10000 ret = (u32)ret; 10001 kvm_rax_write(vcpu, ret); 10002 ++vcpu->stat.hypercalls; 10003 return kvm_skip_emulated_instruction(vcpu); 10004 } 10005 10006 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10007 { 10008 unsigned long nr, a0, a1, a2, a3, ret; 10009 int op_64_bit; 10010 10011 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10012 return kvm_xen_hypercall(vcpu); 10013 10014 if (kvm_hv_hypercall_enabled(vcpu)) 10015 return kvm_hv_hypercall(vcpu); 10016 10017 nr = kvm_rax_read(vcpu); 10018 a0 = kvm_rbx_read(vcpu); 10019 a1 = kvm_rcx_read(vcpu); 10020 a2 = kvm_rdx_read(vcpu); 10021 a3 = kvm_rsi_read(vcpu); 10022 10023 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10024 10025 op_64_bit = is_64_bit_hypercall(vcpu); 10026 if (!op_64_bit) { 10027 nr &= 0xFFFFFFFF; 10028 a0 &= 0xFFFFFFFF; 10029 a1 &= 0xFFFFFFFF; 10030 a2 &= 0xFFFFFFFF; 10031 a3 &= 0xFFFFFFFF; 10032 } 10033 10034 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 10035 ret = -KVM_EPERM; 10036 goto out; 10037 } 10038 10039 ret = -KVM_ENOSYS; 10040 10041 switch (nr) { 10042 case KVM_HC_VAPIC_POLL_IRQ: 10043 ret = 0; 10044 break; 10045 case KVM_HC_KICK_CPU: 10046 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10047 break; 10048 10049 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10050 kvm_sched_yield(vcpu, a1); 10051 ret = 0; 10052 break; 10053 #ifdef CONFIG_X86_64 10054 case KVM_HC_CLOCK_PAIRING: 10055 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10056 break; 10057 #endif 10058 case KVM_HC_SEND_IPI: 10059 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10060 break; 10061 10062 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10063 break; 10064 case KVM_HC_SCHED_YIELD: 10065 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10066 break; 10067 10068 kvm_sched_yield(vcpu, a0); 10069 ret = 0; 10070 break; 10071 case KVM_HC_MAP_GPA_RANGE: { 10072 u64 gpa = a0, npages = a1, attrs = a2; 10073 10074 ret = -KVM_ENOSYS; 10075 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10076 break; 10077 10078 if (!PAGE_ALIGNED(gpa) || !npages || 10079 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10080 ret = -KVM_EINVAL; 10081 break; 10082 } 10083 10084 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10085 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10086 vcpu->run->hypercall.args[0] = gpa; 10087 vcpu->run->hypercall.args[1] = npages; 10088 vcpu->run->hypercall.args[2] = attrs; 10089 vcpu->run->hypercall.flags = 0; 10090 if (op_64_bit) 10091 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10092 10093 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10094 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10095 return 0; 10096 } 10097 default: 10098 ret = -KVM_ENOSYS; 10099 break; 10100 } 10101 out: 10102 if (!op_64_bit) 10103 ret = (u32)ret; 10104 kvm_rax_write(vcpu, ret); 10105 10106 ++vcpu->stat.hypercalls; 10107 return kvm_skip_emulated_instruction(vcpu); 10108 } 10109 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10110 10111 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10112 { 10113 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10114 char instruction[3]; 10115 unsigned long rip = kvm_rip_read(vcpu); 10116 10117 /* 10118 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10119 * the pieces. 10120 */ 10121 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10122 ctxt->exception.error_code_valid = false; 10123 ctxt->exception.vector = UD_VECTOR; 10124 ctxt->have_exception = true; 10125 return X86EMUL_PROPAGATE_FAULT; 10126 } 10127 10128 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 10129 10130 return emulator_write_emulated(ctxt, rip, instruction, 3, 10131 &ctxt->exception); 10132 } 10133 10134 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10135 { 10136 return vcpu->run->request_interrupt_window && 10137 likely(!pic_in_kernel(vcpu->kvm)); 10138 } 10139 10140 /* Called within kvm->srcu read side. */ 10141 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10142 { 10143 struct kvm_run *kvm_run = vcpu->run; 10144 10145 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 10146 kvm_run->cr8 = kvm_get_cr8(vcpu); 10147 kvm_run->apic_base = kvm_get_apic_base(vcpu); 10148 10149 kvm_run->ready_for_interrupt_injection = 10150 pic_in_kernel(vcpu->kvm) || 10151 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10152 10153 if (is_smm(vcpu)) 10154 kvm_run->flags |= KVM_RUN_X86_SMM; 10155 } 10156 10157 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10158 { 10159 int max_irr, tpr; 10160 10161 if (!kvm_x86_ops.update_cr8_intercept) 10162 return; 10163 10164 if (!lapic_in_kernel(vcpu)) 10165 return; 10166 10167 if (vcpu->arch.apic->apicv_active) 10168 return; 10169 10170 if (!vcpu->arch.apic->vapic_addr) 10171 max_irr = kvm_lapic_find_highest_irr(vcpu); 10172 else 10173 max_irr = -1; 10174 10175 if (max_irr != -1) 10176 max_irr >>= 4; 10177 10178 tpr = kvm_lapic_get_cr8(vcpu); 10179 10180 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 10181 } 10182 10183 10184 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10185 { 10186 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10187 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10188 return 1; 10189 } 10190 10191 return kvm_x86_ops.nested_ops->check_events(vcpu); 10192 } 10193 10194 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10195 { 10196 /* 10197 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10198 * exceptions don't report error codes. The presence of an error code 10199 * is carried with the exception and only stripped when the exception 10200 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10201 * report an error code despite the CPU being in Real Mode. 10202 */ 10203 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10204 10205 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10206 vcpu->arch.exception.has_error_code, 10207 vcpu->arch.exception.error_code, 10208 vcpu->arch.exception.injected); 10209 10210 static_call(kvm_x86_inject_exception)(vcpu); 10211 } 10212 10213 /* 10214 * Check for any event (interrupt or exception) that is ready to be injected, 10215 * and if there is at least one event, inject the event with the highest 10216 * priority. This handles both "pending" events, i.e. events that have never 10217 * been injected into the guest, and "injected" events, i.e. events that were 10218 * injected as part of a previous VM-Enter, but weren't successfully delivered 10219 * and need to be re-injected. 10220 * 10221 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10222 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10223 * be able to inject exceptions in the "middle" of an instruction, and so must 10224 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10225 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10226 * boundaries is necessary and correct. 10227 * 10228 * For simplicity, KVM uses a single path to inject all events (except events 10229 * that are injected directly from L1 to L2) and doesn't explicitly track 10230 * instruction boundaries for asynchronous events. However, because VM-Exits 10231 * that can occur during instruction execution typically result in KVM skipping 10232 * the instruction or injecting an exception, e.g. instruction and exception 10233 * intercepts, and because pending exceptions have higher priority than pending 10234 * interrupts, KVM still honors instruction boundaries in most scenarios. 10235 * 10236 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10237 * the instruction or inject an exception, then KVM can incorrecty inject a new 10238 * asynchronous event if the event became pending after the CPU fetched the 10239 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10240 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10241 * injected on the restarted instruction instead of being deferred until the 10242 * instruction completes. 10243 * 10244 * In practice, this virtualization hole is unlikely to be observed by the 10245 * guest, and even less likely to cause functional problems. To detect the 10246 * hole, the guest would have to trigger an event on a side effect of an early 10247 * phase of instruction execution, e.g. on the instruction fetch from memory. 10248 * And for it to be a functional problem, the guest would need to depend on the 10249 * ordering between that side effect, the instruction completing, _and_ the 10250 * delivery of the asynchronous event. 10251 */ 10252 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10253 bool *req_immediate_exit) 10254 { 10255 bool can_inject; 10256 int r; 10257 10258 /* 10259 * Process nested events first, as nested VM-Exit supersedes event 10260 * re-injection. If there's an event queued for re-injection, it will 10261 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10262 */ 10263 if (is_guest_mode(vcpu)) 10264 r = kvm_check_nested_events(vcpu); 10265 else 10266 r = 0; 10267 10268 /* 10269 * Re-inject exceptions and events *especially* if immediate entry+exit 10270 * to/from L2 is needed, as any event that has already been injected 10271 * into L2 needs to complete its lifecycle before injecting a new event. 10272 * 10273 * Don't re-inject an NMI or interrupt if there is a pending exception. 10274 * This collision arises if an exception occurred while vectoring the 10275 * injected event, KVM intercepted said exception, and KVM ultimately 10276 * determined the fault belongs to the guest and queues the exception 10277 * for injection back into the guest. 10278 * 10279 * "Injected" interrupts can also collide with pending exceptions if 10280 * userspace ignores the "ready for injection" flag and blindly queues 10281 * an interrupt. In that case, prioritizing the exception is correct, 10282 * as the exception "occurred" before the exit to userspace. Trap-like 10283 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10284 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10285 * priority, they're only generated (pended) during instruction 10286 * execution, and interrupts are recognized at instruction boundaries. 10287 * Thus a pending fault-like exception means the fault occurred on the 10288 * *previous* instruction and must be serviced prior to recognizing any 10289 * new events in order to fully complete the previous instruction. 10290 */ 10291 if (vcpu->arch.exception.injected) 10292 kvm_inject_exception(vcpu); 10293 else if (kvm_is_exception_pending(vcpu)) 10294 ; /* see above */ 10295 else if (vcpu->arch.nmi_injected) 10296 static_call(kvm_x86_inject_nmi)(vcpu); 10297 else if (vcpu->arch.interrupt.injected) 10298 static_call(kvm_x86_inject_irq)(vcpu, true); 10299 10300 /* 10301 * Exceptions that morph to VM-Exits are handled above, and pending 10302 * exceptions on top of injected exceptions that do not VM-Exit should 10303 * either morph to #DF or, sadly, override the injected exception. 10304 */ 10305 WARN_ON_ONCE(vcpu->arch.exception.injected && 10306 vcpu->arch.exception.pending); 10307 10308 /* 10309 * Bail if immediate entry+exit to/from the guest is needed to complete 10310 * nested VM-Enter or event re-injection so that a different pending 10311 * event can be serviced (or if KVM needs to exit to userspace). 10312 * 10313 * Otherwise, continue processing events even if VM-Exit occurred. The 10314 * VM-Exit will have cleared exceptions that were meant for L2, but 10315 * there may now be events that can be injected into L1. 10316 */ 10317 if (r < 0) 10318 goto out; 10319 10320 /* 10321 * A pending exception VM-Exit should either result in nested VM-Exit 10322 * or force an immediate re-entry and exit to/from L2, and exception 10323 * VM-Exits cannot be injected (flag should _never_ be set). 10324 */ 10325 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10326 vcpu->arch.exception_vmexit.pending); 10327 10328 /* 10329 * New events, other than exceptions, cannot be injected if KVM needs 10330 * to re-inject a previous event. See above comments on re-injecting 10331 * for why pending exceptions get priority. 10332 */ 10333 can_inject = !kvm_event_needs_reinjection(vcpu); 10334 10335 if (vcpu->arch.exception.pending) { 10336 /* 10337 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10338 * value pushed on the stack. Trap-like exception and all #DBs 10339 * leave RF as-is (KVM follows Intel's behavior in this regard; 10340 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10341 * 10342 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10343 * describe the behavior of General Detect #DBs, which are 10344 * fault-like. They do _not_ set RF, a la code breakpoints. 10345 */ 10346 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10347 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10348 X86_EFLAGS_RF); 10349 10350 if (vcpu->arch.exception.vector == DB_VECTOR) { 10351 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10352 if (vcpu->arch.dr7 & DR7_GD) { 10353 vcpu->arch.dr7 &= ~DR7_GD; 10354 kvm_update_dr7(vcpu); 10355 } 10356 } 10357 10358 kvm_inject_exception(vcpu); 10359 10360 vcpu->arch.exception.pending = false; 10361 vcpu->arch.exception.injected = true; 10362 10363 can_inject = false; 10364 } 10365 10366 /* Don't inject interrupts if the user asked to avoid doing so */ 10367 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10368 return 0; 10369 10370 /* 10371 * Finally, inject interrupt events. If an event cannot be injected 10372 * due to architectural conditions (e.g. IF=0) a window-open exit 10373 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10374 * and can architecturally be injected, but we cannot do it right now: 10375 * an interrupt could have arrived just now and we have to inject it 10376 * as a vmexit, or there could already an event in the queue, which is 10377 * indicated by can_inject. In that case we request an immediate exit 10378 * in order to make progress and get back here for another iteration. 10379 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10380 */ 10381 #ifdef CONFIG_KVM_SMM 10382 if (vcpu->arch.smi_pending) { 10383 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10384 if (r < 0) 10385 goto out; 10386 if (r) { 10387 vcpu->arch.smi_pending = false; 10388 ++vcpu->arch.smi_count; 10389 enter_smm(vcpu); 10390 can_inject = false; 10391 } else 10392 static_call(kvm_x86_enable_smi_window)(vcpu); 10393 } 10394 #endif 10395 10396 if (vcpu->arch.nmi_pending) { 10397 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10398 if (r < 0) 10399 goto out; 10400 if (r) { 10401 --vcpu->arch.nmi_pending; 10402 vcpu->arch.nmi_injected = true; 10403 static_call(kvm_x86_inject_nmi)(vcpu); 10404 can_inject = false; 10405 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10406 } 10407 if (vcpu->arch.nmi_pending) 10408 static_call(kvm_x86_enable_nmi_window)(vcpu); 10409 } 10410 10411 if (kvm_cpu_has_injectable_intr(vcpu)) { 10412 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10413 if (r < 0) 10414 goto out; 10415 if (r) { 10416 int irq = kvm_cpu_get_interrupt(vcpu); 10417 10418 if (!WARN_ON_ONCE(irq == -1)) { 10419 kvm_queue_interrupt(vcpu, irq, false); 10420 static_call(kvm_x86_inject_irq)(vcpu, false); 10421 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10422 } 10423 } 10424 if (kvm_cpu_has_injectable_intr(vcpu)) 10425 static_call(kvm_x86_enable_irq_window)(vcpu); 10426 } 10427 10428 if (is_guest_mode(vcpu) && 10429 kvm_x86_ops.nested_ops->has_events && 10430 kvm_x86_ops.nested_ops->has_events(vcpu)) 10431 *req_immediate_exit = true; 10432 10433 /* 10434 * KVM must never queue a new exception while injecting an event; KVM 10435 * is done emulating and should only propagate the to-be-injected event 10436 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10437 * infinite loop as KVM will bail from VM-Enter to inject the pending 10438 * exception and start the cycle all over. 10439 * 10440 * Exempt triple faults as they have special handling and won't put the 10441 * vCPU into an infinite loop. Triple fault can be queued when running 10442 * VMX without unrestricted guest, as that requires KVM to emulate Real 10443 * Mode events (see kvm_inject_realmode_interrupt()). 10444 */ 10445 WARN_ON_ONCE(vcpu->arch.exception.pending || 10446 vcpu->arch.exception_vmexit.pending); 10447 return 0; 10448 10449 out: 10450 if (r == -EBUSY) { 10451 *req_immediate_exit = true; 10452 r = 0; 10453 } 10454 return r; 10455 } 10456 10457 static void process_nmi(struct kvm_vcpu *vcpu) 10458 { 10459 unsigned int limit; 10460 10461 /* 10462 * x86 is limited to one NMI pending, but because KVM can't react to 10463 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10464 * scheduled out, KVM needs to play nice with two queued NMIs showing 10465 * up at the same time. To handle this scenario, allow two NMIs to be 10466 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10467 * waiting for a previous NMI injection to complete (which effectively 10468 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10469 * will request an NMI window to handle the second NMI. 10470 */ 10471 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10472 limit = 1; 10473 else 10474 limit = 2; 10475 10476 /* 10477 * Adjust the limit to account for pending virtual NMIs, which aren't 10478 * tracked in vcpu->arch.nmi_pending. 10479 */ 10480 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10481 limit--; 10482 10483 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10484 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10485 10486 if (vcpu->arch.nmi_pending && 10487 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10488 vcpu->arch.nmi_pending--; 10489 10490 if (vcpu->arch.nmi_pending) 10491 kvm_make_request(KVM_REQ_EVENT, vcpu); 10492 } 10493 10494 /* Return total number of NMIs pending injection to the VM */ 10495 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10496 { 10497 return vcpu->arch.nmi_pending + 10498 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10499 } 10500 10501 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10502 unsigned long *vcpu_bitmap) 10503 { 10504 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10505 } 10506 10507 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10508 { 10509 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10510 } 10511 10512 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10513 { 10514 struct kvm_lapic *apic = vcpu->arch.apic; 10515 bool activate; 10516 10517 if (!lapic_in_kernel(vcpu)) 10518 return; 10519 10520 down_read(&vcpu->kvm->arch.apicv_update_lock); 10521 preempt_disable(); 10522 10523 /* Do not activate APICV when APIC is disabled */ 10524 activate = kvm_vcpu_apicv_activated(vcpu) && 10525 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10526 10527 if (apic->apicv_active == activate) 10528 goto out; 10529 10530 apic->apicv_active = activate; 10531 kvm_apic_update_apicv(vcpu); 10532 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10533 10534 /* 10535 * When APICv gets disabled, we may still have injected interrupts 10536 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10537 * still active when the interrupt got accepted. Make sure 10538 * kvm_check_and_inject_events() is called to check for that. 10539 */ 10540 if (!apic->apicv_active) 10541 kvm_make_request(KVM_REQ_EVENT, vcpu); 10542 10543 out: 10544 preempt_enable(); 10545 up_read(&vcpu->kvm->arch.apicv_update_lock); 10546 } 10547 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10548 10549 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10550 { 10551 if (!lapic_in_kernel(vcpu)) 10552 return; 10553 10554 /* 10555 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10556 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10557 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10558 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10559 * this case so that KVM can the AVIC doorbell to inject interrupts to 10560 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10561 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10562 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10563 * access page is sticky. 10564 */ 10565 if (apic_x2apic_mode(vcpu->arch.apic) && 10566 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10567 kvm_inhibit_apic_access_page(vcpu); 10568 10569 __kvm_vcpu_update_apicv(vcpu); 10570 } 10571 10572 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10573 enum kvm_apicv_inhibit reason, bool set) 10574 { 10575 unsigned long old, new; 10576 10577 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10578 10579 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10580 return; 10581 10582 old = new = kvm->arch.apicv_inhibit_reasons; 10583 10584 set_or_clear_apicv_inhibit(&new, reason, set); 10585 10586 if (!!old != !!new) { 10587 /* 10588 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10589 * false positives in the sanity check WARN in svm_vcpu_run(). 10590 * This task will wait for all vCPUs to ack the kick IRQ before 10591 * updating apicv_inhibit_reasons, and all other vCPUs will 10592 * block on acquiring apicv_update_lock so that vCPUs can't 10593 * redo svm_vcpu_run() without seeing the new inhibit state. 10594 * 10595 * Note, holding apicv_update_lock and taking it in the read 10596 * side (handling the request) also prevents other vCPUs from 10597 * servicing the request with a stale apicv_inhibit_reasons. 10598 */ 10599 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10600 kvm->arch.apicv_inhibit_reasons = new; 10601 if (new) { 10602 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10603 int idx = srcu_read_lock(&kvm->srcu); 10604 10605 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10606 srcu_read_unlock(&kvm->srcu, idx); 10607 } 10608 } else { 10609 kvm->arch.apicv_inhibit_reasons = new; 10610 } 10611 } 10612 10613 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10614 enum kvm_apicv_inhibit reason, bool set) 10615 { 10616 if (!enable_apicv) 10617 return; 10618 10619 down_write(&kvm->arch.apicv_update_lock); 10620 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10621 up_write(&kvm->arch.apicv_update_lock); 10622 } 10623 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10624 10625 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10626 { 10627 if (!kvm_apic_present(vcpu)) 10628 return; 10629 10630 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10631 10632 if (irqchip_split(vcpu->kvm)) 10633 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10634 else { 10635 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10636 if (ioapic_in_kernel(vcpu->kvm)) 10637 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10638 } 10639 10640 if (is_guest_mode(vcpu)) 10641 vcpu->arch.load_eoi_exitmap_pending = true; 10642 else 10643 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10644 } 10645 10646 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10647 { 10648 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10649 return; 10650 10651 #ifdef CONFIG_KVM_HYPERV 10652 if (to_hv_vcpu(vcpu)) { 10653 u64 eoi_exit_bitmap[4]; 10654 10655 bitmap_or((ulong *)eoi_exit_bitmap, 10656 vcpu->arch.ioapic_handled_vectors, 10657 to_hv_synic(vcpu)->vec_bitmap, 256); 10658 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10659 return; 10660 } 10661 #endif 10662 static_call_cond(kvm_x86_load_eoi_exitmap)( 10663 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10664 } 10665 10666 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10667 { 10668 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10669 } 10670 10671 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10672 { 10673 if (!lapic_in_kernel(vcpu)) 10674 return; 10675 10676 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10677 } 10678 10679 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10680 { 10681 smp_send_reschedule(vcpu->cpu); 10682 } 10683 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10684 10685 /* 10686 * Called within kvm->srcu read side. 10687 * Returns 1 to let vcpu_run() continue the guest execution loop without 10688 * exiting to the userspace. Otherwise, the value will be returned to the 10689 * userspace. 10690 */ 10691 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10692 { 10693 int r; 10694 bool req_int_win = 10695 dm_request_for_irq_injection(vcpu) && 10696 kvm_cpu_accept_dm_intr(vcpu); 10697 fastpath_t exit_fastpath; 10698 10699 bool req_immediate_exit = false; 10700 10701 if (kvm_request_pending(vcpu)) { 10702 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10703 r = -EIO; 10704 goto out; 10705 } 10706 10707 if (kvm_dirty_ring_check_request(vcpu)) { 10708 r = 0; 10709 goto out; 10710 } 10711 10712 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10713 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10714 r = 0; 10715 goto out; 10716 } 10717 } 10718 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10719 kvm_mmu_free_obsolete_roots(vcpu); 10720 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10721 __kvm_migrate_timers(vcpu); 10722 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10723 kvm_update_masterclock(vcpu->kvm); 10724 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10725 kvm_gen_kvmclock_update(vcpu); 10726 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10727 r = kvm_guest_time_update(vcpu); 10728 if (unlikely(r)) 10729 goto out; 10730 } 10731 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10732 kvm_mmu_sync_roots(vcpu); 10733 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10734 kvm_mmu_load_pgd(vcpu); 10735 10736 /* 10737 * Note, the order matters here, as flushing "all" TLB entries 10738 * also flushes the "current" TLB entries, i.e. servicing the 10739 * flush "all" will clear any request to flush "current". 10740 */ 10741 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10742 kvm_vcpu_flush_tlb_all(vcpu); 10743 10744 kvm_service_local_tlb_flush_requests(vcpu); 10745 10746 /* 10747 * Fall back to a "full" guest flush if Hyper-V's precise 10748 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10749 * the flushes are considered "remote" and not "local" because 10750 * the requests can be initiated from other vCPUs. 10751 */ 10752 #ifdef CONFIG_KVM_HYPERV 10753 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10754 kvm_hv_vcpu_flush_tlb(vcpu)) 10755 kvm_vcpu_flush_tlb_guest(vcpu); 10756 #endif 10757 10758 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10759 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10760 r = 0; 10761 goto out; 10762 } 10763 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10764 if (is_guest_mode(vcpu)) 10765 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10766 10767 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10768 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10769 vcpu->mmio_needed = 0; 10770 r = 0; 10771 goto out; 10772 } 10773 } 10774 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10775 /* Page is swapped out. Do synthetic halt */ 10776 vcpu->arch.apf.halted = true; 10777 r = 1; 10778 goto out; 10779 } 10780 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10781 record_steal_time(vcpu); 10782 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10783 kvm_pmu_handle_event(vcpu); 10784 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10785 kvm_pmu_deliver_pmi(vcpu); 10786 #ifdef CONFIG_KVM_SMM 10787 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10788 process_smi(vcpu); 10789 #endif 10790 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10791 process_nmi(vcpu); 10792 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10793 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10794 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10795 vcpu->arch.ioapic_handled_vectors)) { 10796 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10797 vcpu->run->eoi.vector = 10798 vcpu->arch.pending_ioapic_eoi; 10799 r = 0; 10800 goto out; 10801 } 10802 } 10803 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10804 vcpu_scan_ioapic(vcpu); 10805 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10806 vcpu_load_eoi_exitmap(vcpu); 10807 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10808 kvm_vcpu_reload_apic_access_page(vcpu); 10809 #ifdef CONFIG_KVM_HYPERV 10810 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10811 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10812 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10813 vcpu->run->system_event.ndata = 0; 10814 r = 0; 10815 goto out; 10816 } 10817 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10818 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10819 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10820 vcpu->run->system_event.ndata = 0; 10821 r = 0; 10822 goto out; 10823 } 10824 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10825 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10826 10827 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10828 vcpu->run->hyperv = hv_vcpu->exit; 10829 r = 0; 10830 goto out; 10831 } 10832 10833 /* 10834 * KVM_REQ_HV_STIMER has to be processed after 10835 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10836 * depend on the guest clock being up-to-date 10837 */ 10838 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10839 kvm_hv_process_stimers(vcpu); 10840 #endif 10841 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10842 kvm_vcpu_update_apicv(vcpu); 10843 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10844 kvm_check_async_pf_completion(vcpu); 10845 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10846 static_call(kvm_x86_msr_filter_changed)(vcpu); 10847 10848 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10849 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10850 } 10851 10852 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10853 kvm_xen_has_interrupt(vcpu)) { 10854 ++vcpu->stat.req_event; 10855 r = kvm_apic_accept_events(vcpu); 10856 if (r < 0) { 10857 r = 0; 10858 goto out; 10859 } 10860 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10861 r = 1; 10862 goto out; 10863 } 10864 10865 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10866 if (r < 0) { 10867 r = 0; 10868 goto out; 10869 } 10870 if (req_int_win) 10871 static_call(kvm_x86_enable_irq_window)(vcpu); 10872 10873 if (kvm_lapic_enabled(vcpu)) { 10874 update_cr8_intercept(vcpu); 10875 kvm_lapic_sync_to_vapic(vcpu); 10876 } 10877 } 10878 10879 r = kvm_mmu_reload(vcpu); 10880 if (unlikely(r)) { 10881 goto cancel_injection; 10882 } 10883 10884 preempt_disable(); 10885 10886 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10887 10888 /* 10889 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10890 * IPI are then delayed after guest entry, which ensures that they 10891 * result in virtual interrupt delivery. 10892 */ 10893 local_irq_disable(); 10894 10895 /* Store vcpu->apicv_active before vcpu->mode. */ 10896 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10897 10898 kvm_vcpu_srcu_read_unlock(vcpu); 10899 10900 /* 10901 * 1) We should set ->mode before checking ->requests. Please see 10902 * the comment in kvm_vcpu_exiting_guest_mode(). 10903 * 10904 * 2) For APICv, we should set ->mode before checking PID.ON. This 10905 * pairs with the memory barrier implicit in pi_test_and_set_on 10906 * (see vmx_deliver_posted_interrupt). 10907 * 10908 * 3) This also orders the write to mode from any reads to the page 10909 * tables done while the VCPU is running. Please see the comment 10910 * in kvm_flush_remote_tlbs. 10911 */ 10912 smp_mb__after_srcu_read_unlock(); 10913 10914 /* 10915 * Process pending posted interrupts to handle the case where the 10916 * notification IRQ arrived in the host, or was never sent (because the 10917 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10918 * status, KVM doesn't update assigned devices when APICv is inhibited, 10919 * i.e. they can post interrupts even if APICv is temporarily disabled. 10920 */ 10921 if (kvm_lapic_enabled(vcpu)) 10922 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10923 10924 if (kvm_vcpu_exit_request(vcpu)) { 10925 vcpu->mode = OUTSIDE_GUEST_MODE; 10926 smp_wmb(); 10927 local_irq_enable(); 10928 preempt_enable(); 10929 kvm_vcpu_srcu_read_lock(vcpu); 10930 r = 1; 10931 goto cancel_injection; 10932 } 10933 10934 if (req_immediate_exit) { 10935 kvm_make_request(KVM_REQ_EVENT, vcpu); 10936 static_call(kvm_x86_request_immediate_exit)(vcpu); 10937 } 10938 10939 fpregs_assert_state_consistent(); 10940 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10941 switch_fpu_return(); 10942 10943 if (vcpu->arch.guest_fpu.xfd_err) 10944 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10945 10946 if (unlikely(vcpu->arch.switch_db_regs)) { 10947 set_debugreg(0, 7); 10948 set_debugreg(vcpu->arch.eff_db[0], 0); 10949 set_debugreg(vcpu->arch.eff_db[1], 1); 10950 set_debugreg(vcpu->arch.eff_db[2], 2); 10951 set_debugreg(vcpu->arch.eff_db[3], 3); 10952 } else if (unlikely(hw_breakpoint_active())) { 10953 set_debugreg(0, 7); 10954 } 10955 10956 guest_timing_enter_irqoff(); 10957 10958 for (;;) { 10959 /* 10960 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10961 * update must kick and wait for all vCPUs before toggling the 10962 * per-VM state, and responding vCPUs must wait for the update 10963 * to complete before servicing KVM_REQ_APICV_UPDATE. 10964 */ 10965 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10966 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10967 10968 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10969 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10970 break; 10971 10972 if (kvm_lapic_enabled(vcpu)) 10973 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10974 10975 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10976 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10977 break; 10978 } 10979 10980 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10981 ++vcpu->stat.exits; 10982 } 10983 10984 /* 10985 * Do this here before restoring debug registers on the host. And 10986 * since we do this before handling the vmexit, a DR access vmexit 10987 * can (a) read the correct value of the debug registers, (b) set 10988 * KVM_DEBUGREG_WONT_EXIT again. 10989 */ 10990 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10991 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10992 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10993 kvm_update_dr0123(vcpu); 10994 kvm_update_dr7(vcpu); 10995 } 10996 10997 /* 10998 * If the guest has used debug registers, at least dr7 10999 * will be disabled while returning to the host. 11000 * If we don't have active breakpoints in the host, we don't 11001 * care about the messed up debug address registers. But if 11002 * we have some of them active, restore the old state. 11003 */ 11004 if (hw_breakpoint_active()) 11005 hw_breakpoint_restore(); 11006 11007 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11008 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11009 11010 vcpu->mode = OUTSIDE_GUEST_MODE; 11011 smp_wmb(); 11012 11013 /* 11014 * Sync xfd before calling handle_exit_irqoff() which may 11015 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11016 * in #NM irqoff handler). 11017 */ 11018 if (vcpu->arch.xfd_no_write_intercept) 11019 fpu_sync_guest_vmexit_xfd_state(); 11020 11021 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 11022 11023 if (vcpu->arch.guest_fpu.xfd_err) 11024 wrmsrl(MSR_IA32_XFD_ERR, 0); 11025 11026 /* 11027 * Consume any pending interrupts, including the possible source of 11028 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11029 * An instruction is required after local_irq_enable() to fully unblock 11030 * interrupts on processors that implement an interrupt shadow, the 11031 * stat.exits increment will do nicely. 11032 */ 11033 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11034 local_irq_enable(); 11035 ++vcpu->stat.exits; 11036 local_irq_disable(); 11037 kvm_after_interrupt(vcpu); 11038 11039 /* 11040 * Wait until after servicing IRQs to account guest time so that any 11041 * ticks that occurred while running the guest are properly accounted 11042 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11043 * of accounting via context tracking, but the loss of accuracy is 11044 * acceptable for all known use cases. 11045 */ 11046 guest_timing_exit_irqoff(); 11047 11048 local_irq_enable(); 11049 preempt_enable(); 11050 11051 kvm_vcpu_srcu_read_lock(vcpu); 11052 11053 /* 11054 * Profile KVM exit RIPs: 11055 */ 11056 if (unlikely(prof_on == KVM_PROFILING)) { 11057 unsigned long rip = kvm_rip_read(vcpu); 11058 profile_hit(KVM_PROFILING, (void *)rip); 11059 } 11060 11061 if (unlikely(vcpu->arch.tsc_always_catchup)) 11062 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11063 11064 if (vcpu->arch.apic_attention) 11065 kvm_lapic_sync_from_vapic(vcpu); 11066 11067 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 11068 return r; 11069 11070 cancel_injection: 11071 if (req_immediate_exit) 11072 kvm_make_request(KVM_REQ_EVENT, vcpu); 11073 static_call(kvm_x86_cancel_injection)(vcpu); 11074 if (unlikely(vcpu->arch.apic_attention)) 11075 kvm_lapic_sync_from_vapic(vcpu); 11076 out: 11077 return r; 11078 } 11079 11080 /* Called within kvm->srcu read side. */ 11081 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11082 { 11083 bool hv_timer; 11084 11085 if (!kvm_arch_vcpu_runnable(vcpu)) { 11086 /* 11087 * Switch to the software timer before halt-polling/blocking as 11088 * the guest's timer may be a break event for the vCPU, and the 11089 * hypervisor timer runs only when the CPU is in guest mode. 11090 * Switch before halt-polling so that KVM recognizes an expired 11091 * timer before blocking. 11092 */ 11093 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11094 if (hv_timer) 11095 kvm_lapic_switch_to_sw_timer(vcpu); 11096 11097 kvm_vcpu_srcu_read_unlock(vcpu); 11098 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11099 kvm_vcpu_halt(vcpu); 11100 else 11101 kvm_vcpu_block(vcpu); 11102 kvm_vcpu_srcu_read_lock(vcpu); 11103 11104 if (hv_timer) 11105 kvm_lapic_switch_to_hv_timer(vcpu); 11106 11107 /* 11108 * If the vCPU is not runnable, a signal or another host event 11109 * of some kind is pending; service it without changing the 11110 * vCPU's activity state. 11111 */ 11112 if (!kvm_arch_vcpu_runnable(vcpu)) 11113 return 1; 11114 } 11115 11116 /* 11117 * Evaluate nested events before exiting the halted state. This allows 11118 * the halt state to be recorded properly in the VMCS12's activity 11119 * state field (AMD does not have a similar field and a VM-Exit always 11120 * causes a spurious wakeup from HLT). 11121 */ 11122 if (is_guest_mode(vcpu)) { 11123 if (kvm_check_nested_events(vcpu) < 0) 11124 return 0; 11125 } 11126 11127 if (kvm_apic_accept_events(vcpu) < 0) 11128 return 0; 11129 switch(vcpu->arch.mp_state) { 11130 case KVM_MP_STATE_HALTED: 11131 case KVM_MP_STATE_AP_RESET_HOLD: 11132 vcpu->arch.pv.pv_unhalted = false; 11133 vcpu->arch.mp_state = 11134 KVM_MP_STATE_RUNNABLE; 11135 fallthrough; 11136 case KVM_MP_STATE_RUNNABLE: 11137 vcpu->arch.apf.halted = false; 11138 break; 11139 case KVM_MP_STATE_INIT_RECEIVED: 11140 break; 11141 default: 11142 WARN_ON_ONCE(1); 11143 break; 11144 } 11145 return 1; 11146 } 11147 11148 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11149 { 11150 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11151 !vcpu->arch.apf.halted); 11152 } 11153 11154 /* Called within kvm->srcu read side. */ 11155 static int vcpu_run(struct kvm_vcpu *vcpu) 11156 { 11157 int r; 11158 11159 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11160 vcpu->arch.l1tf_flush_l1d = true; 11161 11162 for (;;) { 11163 /* 11164 * If another guest vCPU requests a PV TLB flush in the middle 11165 * of instruction emulation, the rest of the emulation could 11166 * use a stale page translation. Assume that any code after 11167 * this point can start executing an instruction. 11168 */ 11169 vcpu->arch.at_instruction_boundary = false; 11170 if (kvm_vcpu_running(vcpu)) { 11171 r = vcpu_enter_guest(vcpu); 11172 } else { 11173 r = vcpu_block(vcpu); 11174 } 11175 11176 if (r <= 0) 11177 break; 11178 11179 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11180 if (kvm_xen_has_pending_events(vcpu)) 11181 kvm_xen_inject_pending_events(vcpu); 11182 11183 if (kvm_cpu_has_pending_timer(vcpu)) 11184 kvm_inject_pending_timer_irqs(vcpu); 11185 11186 if (dm_request_for_irq_injection(vcpu) && 11187 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11188 r = 0; 11189 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11190 ++vcpu->stat.request_irq_exits; 11191 break; 11192 } 11193 11194 if (__xfer_to_guest_mode_work_pending()) { 11195 kvm_vcpu_srcu_read_unlock(vcpu); 11196 r = xfer_to_guest_mode_handle_work(vcpu); 11197 kvm_vcpu_srcu_read_lock(vcpu); 11198 if (r) 11199 return r; 11200 } 11201 } 11202 11203 return r; 11204 } 11205 11206 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11207 { 11208 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11209 } 11210 11211 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11212 { 11213 BUG_ON(!vcpu->arch.pio.count); 11214 11215 return complete_emulated_io(vcpu); 11216 } 11217 11218 /* 11219 * Implements the following, as a state machine: 11220 * 11221 * read: 11222 * for each fragment 11223 * for each mmio piece in the fragment 11224 * write gpa, len 11225 * exit 11226 * copy data 11227 * execute insn 11228 * 11229 * write: 11230 * for each fragment 11231 * for each mmio piece in the fragment 11232 * write gpa, len 11233 * copy data 11234 * exit 11235 */ 11236 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11237 { 11238 struct kvm_run *run = vcpu->run; 11239 struct kvm_mmio_fragment *frag; 11240 unsigned len; 11241 11242 BUG_ON(!vcpu->mmio_needed); 11243 11244 /* Complete previous fragment */ 11245 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11246 len = min(8u, frag->len); 11247 if (!vcpu->mmio_is_write) 11248 memcpy(frag->data, run->mmio.data, len); 11249 11250 if (frag->len <= 8) { 11251 /* Switch to the next fragment. */ 11252 frag++; 11253 vcpu->mmio_cur_fragment++; 11254 } else { 11255 /* Go forward to the next mmio piece. */ 11256 frag->data += len; 11257 frag->gpa += len; 11258 frag->len -= len; 11259 } 11260 11261 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11262 vcpu->mmio_needed = 0; 11263 11264 /* FIXME: return into emulator if single-stepping. */ 11265 if (vcpu->mmio_is_write) 11266 return 1; 11267 vcpu->mmio_read_completed = 1; 11268 return complete_emulated_io(vcpu); 11269 } 11270 11271 run->exit_reason = KVM_EXIT_MMIO; 11272 run->mmio.phys_addr = frag->gpa; 11273 if (vcpu->mmio_is_write) 11274 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11275 run->mmio.len = min(8u, frag->len); 11276 run->mmio.is_write = vcpu->mmio_is_write; 11277 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11278 return 0; 11279 } 11280 11281 /* Swap (qemu) user FPU context for the guest FPU context. */ 11282 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11283 { 11284 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11285 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11286 trace_kvm_fpu(1); 11287 } 11288 11289 /* When vcpu_run ends, restore user space FPU context. */ 11290 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11291 { 11292 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11293 ++vcpu->stat.fpu_reload; 11294 trace_kvm_fpu(0); 11295 } 11296 11297 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11298 { 11299 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11300 struct kvm_run *kvm_run = vcpu->run; 11301 int r; 11302 11303 vcpu_load(vcpu); 11304 kvm_sigset_activate(vcpu); 11305 kvm_run->flags = 0; 11306 kvm_load_guest_fpu(vcpu); 11307 11308 kvm_vcpu_srcu_read_lock(vcpu); 11309 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11310 if (kvm_run->immediate_exit) { 11311 r = -EINTR; 11312 goto out; 11313 } 11314 11315 /* 11316 * Don't bother switching APIC timer emulation from the 11317 * hypervisor timer to the software timer, the only way for the 11318 * APIC timer to be active is if userspace stuffed vCPU state, 11319 * i.e. put the vCPU into a nonsensical state. Only an INIT 11320 * will transition the vCPU out of UNINITIALIZED (without more 11321 * state stuffing from userspace), which will reset the local 11322 * APIC and thus cancel the timer or drop the IRQ (if the timer 11323 * already expired). 11324 */ 11325 kvm_vcpu_srcu_read_unlock(vcpu); 11326 kvm_vcpu_block(vcpu); 11327 kvm_vcpu_srcu_read_lock(vcpu); 11328 11329 if (kvm_apic_accept_events(vcpu) < 0) { 11330 r = 0; 11331 goto out; 11332 } 11333 r = -EAGAIN; 11334 if (signal_pending(current)) { 11335 r = -EINTR; 11336 kvm_run->exit_reason = KVM_EXIT_INTR; 11337 ++vcpu->stat.signal_exits; 11338 } 11339 goto out; 11340 } 11341 11342 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11343 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11344 r = -EINVAL; 11345 goto out; 11346 } 11347 11348 if (kvm_run->kvm_dirty_regs) { 11349 r = sync_regs(vcpu); 11350 if (r != 0) 11351 goto out; 11352 } 11353 11354 /* re-sync apic's tpr */ 11355 if (!lapic_in_kernel(vcpu)) { 11356 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11357 r = -EINVAL; 11358 goto out; 11359 } 11360 } 11361 11362 /* 11363 * If userspace set a pending exception and L2 is active, convert it to 11364 * a pending VM-Exit if L1 wants to intercept the exception. 11365 */ 11366 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11367 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11368 ex->error_code)) { 11369 kvm_queue_exception_vmexit(vcpu, ex->vector, 11370 ex->has_error_code, ex->error_code, 11371 ex->has_payload, ex->payload); 11372 ex->injected = false; 11373 ex->pending = false; 11374 } 11375 vcpu->arch.exception_from_userspace = false; 11376 11377 if (unlikely(vcpu->arch.complete_userspace_io)) { 11378 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11379 vcpu->arch.complete_userspace_io = NULL; 11380 r = cui(vcpu); 11381 if (r <= 0) 11382 goto out; 11383 } else { 11384 WARN_ON_ONCE(vcpu->arch.pio.count); 11385 WARN_ON_ONCE(vcpu->mmio_needed); 11386 } 11387 11388 if (kvm_run->immediate_exit) { 11389 r = -EINTR; 11390 goto out; 11391 } 11392 11393 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11394 if (r <= 0) 11395 goto out; 11396 11397 r = vcpu_run(vcpu); 11398 11399 out: 11400 kvm_put_guest_fpu(vcpu); 11401 if (kvm_run->kvm_valid_regs) 11402 store_regs(vcpu); 11403 post_kvm_run_save(vcpu); 11404 kvm_vcpu_srcu_read_unlock(vcpu); 11405 11406 kvm_sigset_deactivate(vcpu); 11407 vcpu_put(vcpu); 11408 return r; 11409 } 11410 11411 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11412 { 11413 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11414 /* 11415 * We are here if userspace calls get_regs() in the middle of 11416 * instruction emulation. Registers state needs to be copied 11417 * back from emulation context to vcpu. Userspace shouldn't do 11418 * that usually, but some bad designed PV devices (vmware 11419 * backdoor interface) need this to work 11420 */ 11421 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11422 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11423 } 11424 regs->rax = kvm_rax_read(vcpu); 11425 regs->rbx = kvm_rbx_read(vcpu); 11426 regs->rcx = kvm_rcx_read(vcpu); 11427 regs->rdx = kvm_rdx_read(vcpu); 11428 regs->rsi = kvm_rsi_read(vcpu); 11429 regs->rdi = kvm_rdi_read(vcpu); 11430 regs->rsp = kvm_rsp_read(vcpu); 11431 regs->rbp = kvm_rbp_read(vcpu); 11432 #ifdef CONFIG_X86_64 11433 regs->r8 = kvm_r8_read(vcpu); 11434 regs->r9 = kvm_r9_read(vcpu); 11435 regs->r10 = kvm_r10_read(vcpu); 11436 regs->r11 = kvm_r11_read(vcpu); 11437 regs->r12 = kvm_r12_read(vcpu); 11438 regs->r13 = kvm_r13_read(vcpu); 11439 regs->r14 = kvm_r14_read(vcpu); 11440 regs->r15 = kvm_r15_read(vcpu); 11441 #endif 11442 11443 regs->rip = kvm_rip_read(vcpu); 11444 regs->rflags = kvm_get_rflags(vcpu); 11445 } 11446 11447 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11448 { 11449 vcpu_load(vcpu); 11450 __get_regs(vcpu, regs); 11451 vcpu_put(vcpu); 11452 return 0; 11453 } 11454 11455 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11456 { 11457 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11458 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11459 11460 kvm_rax_write(vcpu, regs->rax); 11461 kvm_rbx_write(vcpu, regs->rbx); 11462 kvm_rcx_write(vcpu, regs->rcx); 11463 kvm_rdx_write(vcpu, regs->rdx); 11464 kvm_rsi_write(vcpu, regs->rsi); 11465 kvm_rdi_write(vcpu, regs->rdi); 11466 kvm_rsp_write(vcpu, regs->rsp); 11467 kvm_rbp_write(vcpu, regs->rbp); 11468 #ifdef CONFIG_X86_64 11469 kvm_r8_write(vcpu, regs->r8); 11470 kvm_r9_write(vcpu, regs->r9); 11471 kvm_r10_write(vcpu, regs->r10); 11472 kvm_r11_write(vcpu, regs->r11); 11473 kvm_r12_write(vcpu, regs->r12); 11474 kvm_r13_write(vcpu, regs->r13); 11475 kvm_r14_write(vcpu, regs->r14); 11476 kvm_r15_write(vcpu, regs->r15); 11477 #endif 11478 11479 kvm_rip_write(vcpu, regs->rip); 11480 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11481 11482 vcpu->arch.exception.pending = false; 11483 vcpu->arch.exception_vmexit.pending = false; 11484 11485 kvm_make_request(KVM_REQ_EVENT, vcpu); 11486 } 11487 11488 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11489 { 11490 vcpu_load(vcpu); 11491 __set_regs(vcpu, regs); 11492 vcpu_put(vcpu); 11493 return 0; 11494 } 11495 11496 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11497 { 11498 struct desc_ptr dt; 11499 11500 if (vcpu->arch.guest_state_protected) 11501 goto skip_protected_regs; 11502 11503 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11504 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11505 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11506 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11507 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11508 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11509 11510 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11511 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11512 11513 static_call(kvm_x86_get_idt)(vcpu, &dt); 11514 sregs->idt.limit = dt.size; 11515 sregs->idt.base = dt.address; 11516 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11517 sregs->gdt.limit = dt.size; 11518 sregs->gdt.base = dt.address; 11519 11520 sregs->cr2 = vcpu->arch.cr2; 11521 sregs->cr3 = kvm_read_cr3(vcpu); 11522 11523 skip_protected_regs: 11524 sregs->cr0 = kvm_read_cr0(vcpu); 11525 sregs->cr4 = kvm_read_cr4(vcpu); 11526 sregs->cr8 = kvm_get_cr8(vcpu); 11527 sregs->efer = vcpu->arch.efer; 11528 sregs->apic_base = kvm_get_apic_base(vcpu); 11529 } 11530 11531 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11532 { 11533 __get_sregs_common(vcpu, sregs); 11534 11535 if (vcpu->arch.guest_state_protected) 11536 return; 11537 11538 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11539 set_bit(vcpu->arch.interrupt.nr, 11540 (unsigned long *)sregs->interrupt_bitmap); 11541 } 11542 11543 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11544 { 11545 int i; 11546 11547 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11548 11549 if (vcpu->arch.guest_state_protected) 11550 return; 11551 11552 if (is_pae_paging(vcpu)) { 11553 for (i = 0 ; i < 4 ; i++) 11554 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11555 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11556 } 11557 } 11558 11559 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11560 struct kvm_sregs *sregs) 11561 { 11562 vcpu_load(vcpu); 11563 __get_sregs(vcpu, sregs); 11564 vcpu_put(vcpu); 11565 return 0; 11566 } 11567 11568 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11569 struct kvm_mp_state *mp_state) 11570 { 11571 int r; 11572 11573 vcpu_load(vcpu); 11574 if (kvm_mpx_supported()) 11575 kvm_load_guest_fpu(vcpu); 11576 11577 r = kvm_apic_accept_events(vcpu); 11578 if (r < 0) 11579 goto out; 11580 r = 0; 11581 11582 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11583 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11584 vcpu->arch.pv.pv_unhalted) 11585 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11586 else 11587 mp_state->mp_state = vcpu->arch.mp_state; 11588 11589 out: 11590 if (kvm_mpx_supported()) 11591 kvm_put_guest_fpu(vcpu); 11592 vcpu_put(vcpu); 11593 return r; 11594 } 11595 11596 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11597 struct kvm_mp_state *mp_state) 11598 { 11599 int ret = -EINVAL; 11600 11601 vcpu_load(vcpu); 11602 11603 switch (mp_state->mp_state) { 11604 case KVM_MP_STATE_UNINITIALIZED: 11605 case KVM_MP_STATE_HALTED: 11606 case KVM_MP_STATE_AP_RESET_HOLD: 11607 case KVM_MP_STATE_INIT_RECEIVED: 11608 case KVM_MP_STATE_SIPI_RECEIVED: 11609 if (!lapic_in_kernel(vcpu)) 11610 goto out; 11611 break; 11612 11613 case KVM_MP_STATE_RUNNABLE: 11614 break; 11615 11616 default: 11617 goto out; 11618 } 11619 11620 /* 11621 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11622 * forcing the guest into INIT/SIPI if those events are supposed to be 11623 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11624 * if an SMI is pending as well. 11625 */ 11626 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11627 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11628 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11629 goto out; 11630 11631 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11632 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11633 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11634 } else 11635 vcpu->arch.mp_state = mp_state->mp_state; 11636 kvm_make_request(KVM_REQ_EVENT, vcpu); 11637 11638 ret = 0; 11639 out: 11640 vcpu_put(vcpu); 11641 return ret; 11642 } 11643 11644 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11645 int reason, bool has_error_code, u32 error_code) 11646 { 11647 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11648 int ret; 11649 11650 init_emulate_ctxt(vcpu); 11651 11652 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11653 has_error_code, error_code); 11654 if (ret) { 11655 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11656 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11657 vcpu->run->internal.ndata = 0; 11658 return 0; 11659 } 11660 11661 kvm_rip_write(vcpu, ctxt->eip); 11662 kvm_set_rflags(vcpu, ctxt->eflags); 11663 return 1; 11664 } 11665 EXPORT_SYMBOL_GPL(kvm_task_switch); 11666 11667 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11668 { 11669 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11670 /* 11671 * When EFER.LME and CR0.PG are set, the processor is in 11672 * 64-bit mode (though maybe in a 32-bit code segment). 11673 * CR4.PAE and EFER.LMA must be set. 11674 */ 11675 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11676 return false; 11677 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11678 return false; 11679 } else { 11680 /* 11681 * Not in 64-bit mode: EFER.LMA is clear and the code 11682 * segment cannot be 64-bit. 11683 */ 11684 if (sregs->efer & EFER_LMA || sregs->cs.l) 11685 return false; 11686 } 11687 11688 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11689 kvm_is_valid_cr0(vcpu, sregs->cr0); 11690 } 11691 11692 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11693 int *mmu_reset_needed, bool update_pdptrs) 11694 { 11695 struct msr_data apic_base_msr; 11696 int idx; 11697 struct desc_ptr dt; 11698 11699 if (!kvm_is_valid_sregs(vcpu, sregs)) 11700 return -EINVAL; 11701 11702 apic_base_msr.data = sregs->apic_base; 11703 apic_base_msr.host_initiated = true; 11704 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11705 return -EINVAL; 11706 11707 if (vcpu->arch.guest_state_protected) 11708 return 0; 11709 11710 dt.size = sregs->idt.limit; 11711 dt.address = sregs->idt.base; 11712 static_call(kvm_x86_set_idt)(vcpu, &dt); 11713 dt.size = sregs->gdt.limit; 11714 dt.address = sregs->gdt.base; 11715 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11716 11717 vcpu->arch.cr2 = sregs->cr2; 11718 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11719 vcpu->arch.cr3 = sregs->cr3; 11720 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11721 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11722 11723 kvm_set_cr8(vcpu, sregs->cr8); 11724 11725 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11726 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11727 11728 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11729 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11730 11731 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11732 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11733 11734 if (update_pdptrs) { 11735 idx = srcu_read_lock(&vcpu->kvm->srcu); 11736 if (is_pae_paging(vcpu)) { 11737 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11738 *mmu_reset_needed = 1; 11739 } 11740 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11741 } 11742 11743 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11744 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11745 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11746 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11747 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11748 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11749 11750 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11751 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11752 11753 update_cr8_intercept(vcpu); 11754 11755 /* Older userspace won't unhalt the vcpu on reset. */ 11756 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11757 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11758 !is_protmode(vcpu)) 11759 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11760 11761 return 0; 11762 } 11763 11764 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11765 { 11766 int pending_vec, max_bits; 11767 int mmu_reset_needed = 0; 11768 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11769 11770 if (ret) 11771 return ret; 11772 11773 if (mmu_reset_needed) { 11774 kvm_mmu_reset_context(vcpu); 11775 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11776 } 11777 11778 max_bits = KVM_NR_INTERRUPTS; 11779 pending_vec = find_first_bit( 11780 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11781 11782 if (pending_vec < max_bits) { 11783 kvm_queue_interrupt(vcpu, pending_vec, false); 11784 pr_debug("Set back pending irq %d\n", pending_vec); 11785 kvm_make_request(KVM_REQ_EVENT, vcpu); 11786 } 11787 return 0; 11788 } 11789 11790 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11791 { 11792 int mmu_reset_needed = 0; 11793 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11794 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11795 !(sregs2->efer & EFER_LMA); 11796 int i, ret; 11797 11798 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11799 return -EINVAL; 11800 11801 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11802 return -EINVAL; 11803 11804 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11805 &mmu_reset_needed, !valid_pdptrs); 11806 if (ret) 11807 return ret; 11808 11809 if (valid_pdptrs) { 11810 for (i = 0; i < 4 ; i++) 11811 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11812 11813 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11814 mmu_reset_needed = 1; 11815 vcpu->arch.pdptrs_from_userspace = true; 11816 } 11817 if (mmu_reset_needed) { 11818 kvm_mmu_reset_context(vcpu); 11819 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11820 } 11821 return 0; 11822 } 11823 11824 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11825 struct kvm_sregs *sregs) 11826 { 11827 int ret; 11828 11829 vcpu_load(vcpu); 11830 ret = __set_sregs(vcpu, sregs); 11831 vcpu_put(vcpu); 11832 return ret; 11833 } 11834 11835 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11836 { 11837 bool set = false; 11838 struct kvm_vcpu *vcpu; 11839 unsigned long i; 11840 11841 if (!enable_apicv) 11842 return; 11843 11844 down_write(&kvm->arch.apicv_update_lock); 11845 11846 kvm_for_each_vcpu(i, vcpu, kvm) { 11847 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11848 set = true; 11849 break; 11850 } 11851 } 11852 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11853 up_write(&kvm->arch.apicv_update_lock); 11854 } 11855 11856 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11857 struct kvm_guest_debug *dbg) 11858 { 11859 unsigned long rflags; 11860 int i, r; 11861 11862 if (vcpu->arch.guest_state_protected) 11863 return -EINVAL; 11864 11865 vcpu_load(vcpu); 11866 11867 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11868 r = -EBUSY; 11869 if (kvm_is_exception_pending(vcpu)) 11870 goto out; 11871 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11872 kvm_queue_exception(vcpu, DB_VECTOR); 11873 else 11874 kvm_queue_exception(vcpu, BP_VECTOR); 11875 } 11876 11877 /* 11878 * Read rflags as long as potentially injected trace flags are still 11879 * filtered out. 11880 */ 11881 rflags = kvm_get_rflags(vcpu); 11882 11883 vcpu->guest_debug = dbg->control; 11884 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11885 vcpu->guest_debug = 0; 11886 11887 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11888 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11889 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11890 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11891 } else { 11892 for (i = 0; i < KVM_NR_DB_REGS; i++) 11893 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11894 } 11895 kvm_update_dr7(vcpu); 11896 11897 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11898 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11899 11900 /* 11901 * Trigger an rflags update that will inject or remove the trace 11902 * flags. 11903 */ 11904 kvm_set_rflags(vcpu, rflags); 11905 11906 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11907 11908 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11909 11910 r = 0; 11911 11912 out: 11913 vcpu_put(vcpu); 11914 return r; 11915 } 11916 11917 /* 11918 * Translate a guest virtual address to a guest physical address. 11919 */ 11920 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11921 struct kvm_translation *tr) 11922 { 11923 unsigned long vaddr = tr->linear_address; 11924 gpa_t gpa; 11925 int idx; 11926 11927 vcpu_load(vcpu); 11928 11929 idx = srcu_read_lock(&vcpu->kvm->srcu); 11930 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11931 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11932 tr->physical_address = gpa; 11933 tr->valid = gpa != INVALID_GPA; 11934 tr->writeable = 1; 11935 tr->usermode = 0; 11936 11937 vcpu_put(vcpu); 11938 return 0; 11939 } 11940 11941 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11942 { 11943 struct fxregs_state *fxsave; 11944 11945 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11946 return 0; 11947 11948 vcpu_load(vcpu); 11949 11950 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11951 memcpy(fpu->fpr, fxsave->st_space, 128); 11952 fpu->fcw = fxsave->cwd; 11953 fpu->fsw = fxsave->swd; 11954 fpu->ftwx = fxsave->twd; 11955 fpu->last_opcode = fxsave->fop; 11956 fpu->last_ip = fxsave->rip; 11957 fpu->last_dp = fxsave->rdp; 11958 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11959 11960 vcpu_put(vcpu); 11961 return 0; 11962 } 11963 11964 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11965 { 11966 struct fxregs_state *fxsave; 11967 11968 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11969 return 0; 11970 11971 vcpu_load(vcpu); 11972 11973 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11974 11975 memcpy(fxsave->st_space, fpu->fpr, 128); 11976 fxsave->cwd = fpu->fcw; 11977 fxsave->swd = fpu->fsw; 11978 fxsave->twd = fpu->ftwx; 11979 fxsave->fop = fpu->last_opcode; 11980 fxsave->rip = fpu->last_ip; 11981 fxsave->rdp = fpu->last_dp; 11982 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11983 11984 vcpu_put(vcpu); 11985 return 0; 11986 } 11987 11988 static void store_regs(struct kvm_vcpu *vcpu) 11989 { 11990 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11991 11992 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11993 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11994 11995 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11996 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11997 11998 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11999 kvm_vcpu_ioctl_x86_get_vcpu_events( 12000 vcpu, &vcpu->run->s.regs.events); 12001 } 12002 12003 static int sync_regs(struct kvm_vcpu *vcpu) 12004 { 12005 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12006 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12007 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12008 } 12009 12010 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12011 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12012 12013 if (__set_sregs(vcpu, &sregs)) 12014 return -EINVAL; 12015 12016 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12017 } 12018 12019 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12020 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12021 12022 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12023 return -EINVAL; 12024 12025 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12026 } 12027 12028 return 0; 12029 } 12030 12031 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12032 { 12033 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12034 pr_warn_once("SMP vm created on host with unstable TSC; " 12035 "guest TSC will not be reliable\n"); 12036 12037 if (!kvm->arch.max_vcpu_ids) 12038 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12039 12040 if (id >= kvm->arch.max_vcpu_ids) 12041 return -EINVAL; 12042 12043 return static_call(kvm_x86_vcpu_precreate)(kvm); 12044 } 12045 12046 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12047 { 12048 struct page *page; 12049 int r; 12050 12051 vcpu->arch.last_vmentry_cpu = -1; 12052 vcpu->arch.regs_avail = ~0; 12053 vcpu->arch.regs_dirty = ~0; 12054 12055 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 12056 12057 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12058 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12059 else 12060 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 12061 12062 r = kvm_mmu_create(vcpu); 12063 if (r < 0) 12064 return r; 12065 12066 if (irqchip_in_kernel(vcpu->kvm)) { 12067 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 12068 if (r < 0) 12069 goto fail_mmu_destroy; 12070 12071 /* 12072 * Defer evaluating inhibits until the vCPU is first run, as 12073 * this vCPU will not get notified of any changes until this 12074 * vCPU is visible to other vCPUs (marked online and added to 12075 * the set of vCPUs). Opportunistically mark APICv active as 12076 * VMX in particularly is highly unlikely to have inhibits. 12077 * Ignore the current per-VM APICv state so that vCPU creation 12078 * is guaranteed to run with a deterministic value, the request 12079 * will ensure the vCPU gets the correct state before VM-Entry. 12080 */ 12081 if (enable_apicv) { 12082 vcpu->arch.apic->apicv_active = true; 12083 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 12084 } 12085 } else 12086 static_branch_inc(&kvm_has_noapic_vcpu); 12087 12088 r = -ENOMEM; 12089 12090 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12091 if (!page) 12092 goto fail_free_lapic; 12093 vcpu->arch.pio_data = page_address(page); 12094 12095 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12096 GFP_KERNEL_ACCOUNT); 12097 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12098 GFP_KERNEL_ACCOUNT); 12099 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12100 goto fail_free_mce_banks; 12101 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12102 12103 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12104 GFP_KERNEL_ACCOUNT)) 12105 goto fail_free_mce_banks; 12106 12107 if (!alloc_emulate_ctxt(vcpu)) 12108 goto free_wbinvd_dirty_mask; 12109 12110 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12111 pr_err("failed to allocate vcpu's fpu\n"); 12112 goto free_emulate_ctxt; 12113 } 12114 12115 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12116 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12117 12118 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12119 12120 kvm_async_pf_hash_reset(vcpu); 12121 12122 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12123 kvm_pmu_init(vcpu); 12124 12125 vcpu->arch.pending_external_vector = -1; 12126 vcpu->arch.preempted_in_kernel = false; 12127 12128 #if IS_ENABLED(CONFIG_HYPERV) 12129 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12130 #endif 12131 12132 r = static_call(kvm_x86_vcpu_create)(vcpu); 12133 if (r) 12134 goto free_guest_fpu; 12135 12136 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12137 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12138 kvm_xen_init_vcpu(vcpu); 12139 kvm_vcpu_mtrr_init(vcpu); 12140 vcpu_load(vcpu); 12141 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12142 kvm_vcpu_reset(vcpu, false); 12143 kvm_init_mmu(vcpu); 12144 vcpu_put(vcpu); 12145 return 0; 12146 12147 free_guest_fpu: 12148 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12149 free_emulate_ctxt: 12150 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12151 free_wbinvd_dirty_mask: 12152 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12153 fail_free_mce_banks: 12154 kfree(vcpu->arch.mce_banks); 12155 kfree(vcpu->arch.mci_ctl2_banks); 12156 free_page((unsigned long)vcpu->arch.pio_data); 12157 fail_free_lapic: 12158 kvm_free_lapic(vcpu); 12159 fail_mmu_destroy: 12160 kvm_mmu_destroy(vcpu); 12161 return r; 12162 } 12163 12164 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12165 { 12166 struct kvm *kvm = vcpu->kvm; 12167 12168 if (mutex_lock_killable(&vcpu->mutex)) 12169 return; 12170 vcpu_load(vcpu); 12171 kvm_synchronize_tsc(vcpu, NULL); 12172 vcpu_put(vcpu); 12173 12174 /* poll control enabled by default */ 12175 vcpu->arch.msr_kvm_poll_control = 1; 12176 12177 mutex_unlock(&vcpu->mutex); 12178 12179 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12180 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12181 KVMCLOCK_SYNC_PERIOD); 12182 } 12183 12184 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12185 { 12186 int idx; 12187 12188 kvmclock_reset(vcpu); 12189 12190 static_call(kvm_x86_vcpu_free)(vcpu); 12191 12192 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12193 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12194 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12195 12196 kvm_xen_destroy_vcpu(vcpu); 12197 kvm_hv_vcpu_uninit(vcpu); 12198 kvm_pmu_destroy(vcpu); 12199 kfree(vcpu->arch.mce_banks); 12200 kfree(vcpu->arch.mci_ctl2_banks); 12201 kvm_free_lapic(vcpu); 12202 idx = srcu_read_lock(&vcpu->kvm->srcu); 12203 kvm_mmu_destroy(vcpu); 12204 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12205 free_page((unsigned long)vcpu->arch.pio_data); 12206 kvfree(vcpu->arch.cpuid_entries); 12207 if (!lapic_in_kernel(vcpu)) 12208 static_branch_dec(&kvm_has_noapic_vcpu); 12209 } 12210 12211 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12212 { 12213 struct kvm_cpuid_entry2 *cpuid_0x1; 12214 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12215 unsigned long new_cr0; 12216 12217 /* 12218 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12219 * to handle side effects. RESET emulation hits those flows and relies 12220 * on emulated/virtualized registers, including those that are loaded 12221 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12222 * to detect improper or missing initialization. 12223 */ 12224 WARN_ON_ONCE(!init_event && 12225 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12226 12227 /* 12228 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12229 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12230 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12231 * bits), i.e. virtualization is disabled. 12232 */ 12233 if (is_guest_mode(vcpu)) 12234 kvm_leave_nested(vcpu); 12235 12236 kvm_lapic_reset(vcpu, init_event); 12237 12238 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12239 vcpu->arch.hflags = 0; 12240 12241 vcpu->arch.smi_pending = 0; 12242 vcpu->arch.smi_count = 0; 12243 atomic_set(&vcpu->arch.nmi_queued, 0); 12244 vcpu->arch.nmi_pending = 0; 12245 vcpu->arch.nmi_injected = false; 12246 kvm_clear_interrupt_queue(vcpu); 12247 kvm_clear_exception_queue(vcpu); 12248 12249 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12250 kvm_update_dr0123(vcpu); 12251 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12252 vcpu->arch.dr7 = DR7_FIXED_1; 12253 kvm_update_dr7(vcpu); 12254 12255 vcpu->arch.cr2 = 0; 12256 12257 kvm_make_request(KVM_REQ_EVENT, vcpu); 12258 vcpu->arch.apf.msr_en_val = 0; 12259 vcpu->arch.apf.msr_int_val = 0; 12260 vcpu->arch.st.msr_val = 0; 12261 12262 kvmclock_reset(vcpu); 12263 12264 kvm_clear_async_pf_completion_queue(vcpu); 12265 kvm_async_pf_hash_reset(vcpu); 12266 vcpu->arch.apf.halted = false; 12267 12268 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12269 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12270 12271 /* 12272 * All paths that lead to INIT are required to load the guest's 12273 * FPU state (because most paths are buried in KVM_RUN). 12274 */ 12275 if (init_event) 12276 kvm_put_guest_fpu(vcpu); 12277 12278 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12279 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12280 12281 if (init_event) 12282 kvm_load_guest_fpu(vcpu); 12283 } 12284 12285 if (!init_event) { 12286 vcpu->arch.smbase = 0x30000; 12287 12288 vcpu->arch.msr_misc_features_enables = 0; 12289 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12290 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12291 12292 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12293 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12294 } 12295 12296 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12297 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12298 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12299 12300 /* 12301 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12302 * if no CPUID match is found. Note, it's impossible to get a match at 12303 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12304 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12305 * on RESET. But, go through the motions in case that's ever remedied. 12306 */ 12307 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12308 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12309 12310 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12311 12312 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12313 kvm_rip_write(vcpu, 0xfff0); 12314 12315 vcpu->arch.cr3 = 0; 12316 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12317 12318 /* 12319 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12320 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12321 * (or qualify) that with a footnote stating that CD/NW are preserved. 12322 */ 12323 new_cr0 = X86_CR0_ET; 12324 if (init_event) 12325 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12326 else 12327 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12328 12329 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12330 static_call(kvm_x86_set_cr4)(vcpu, 0); 12331 static_call(kvm_x86_set_efer)(vcpu, 0); 12332 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12333 12334 /* 12335 * On the standard CR0/CR4/EFER modification paths, there are several 12336 * complex conditions determining whether the MMU has to be reset and/or 12337 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12338 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12339 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12340 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12341 */ 12342 if (old_cr0 & X86_CR0_PG) { 12343 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12344 kvm_mmu_reset_context(vcpu); 12345 } 12346 12347 /* 12348 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12349 * APM states the TLBs are untouched by INIT, but it also states that 12350 * the TLBs are flushed on "External initialization of the processor." 12351 * Flush the guest TLB regardless of vendor, there is no meaningful 12352 * benefit in relying on the guest to flush the TLB immediately after 12353 * INIT. A spurious TLB flush is benign and likely negligible from a 12354 * performance perspective. 12355 */ 12356 if (init_event) 12357 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12358 } 12359 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12360 12361 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12362 { 12363 struct kvm_segment cs; 12364 12365 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12366 cs.selector = vector << 8; 12367 cs.base = vector << 12; 12368 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12369 kvm_rip_write(vcpu, 0); 12370 } 12371 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12372 12373 int kvm_arch_hardware_enable(void) 12374 { 12375 struct kvm *kvm; 12376 struct kvm_vcpu *vcpu; 12377 unsigned long i; 12378 int ret; 12379 u64 local_tsc; 12380 u64 max_tsc = 0; 12381 bool stable, backwards_tsc = false; 12382 12383 kvm_user_return_msr_cpu_online(); 12384 12385 ret = kvm_x86_check_processor_compatibility(); 12386 if (ret) 12387 return ret; 12388 12389 ret = static_call(kvm_x86_hardware_enable)(); 12390 if (ret != 0) 12391 return ret; 12392 12393 local_tsc = rdtsc(); 12394 stable = !kvm_check_tsc_unstable(); 12395 list_for_each_entry(kvm, &vm_list, vm_list) { 12396 kvm_for_each_vcpu(i, vcpu, kvm) { 12397 if (!stable && vcpu->cpu == smp_processor_id()) 12398 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12399 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12400 backwards_tsc = true; 12401 if (vcpu->arch.last_host_tsc > max_tsc) 12402 max_tsc = vcpu->arch.last_host_tsc; 12403 } 12404 } 12405 } 12406 12407 /* 12408 * Sometimes, even reliable TSCs go backwards. This happens on 12409 * platforms that reset TSC during suspend or hibernate actions, but 12410 * maintain synchronization. We must compensate. Fortunately, we can 12411 * detect that condition here, which happens early in CPU bringup, 12412 * before any KVM threads can be running. Unfortunately, we can't 12413 * bring the TSCs fully up to date with real time, as we aren't yet far 12414 * enough into CPU bringup that we know how much real time has actually 12415 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12416 * variables that haven't been updated yet. 12417 * 12418 * So we simply find the maximum observed TSC above, then record the 12419 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12420 * the adjustment will be applied. Note that we accumulate 12421 * adjustments, in case multiple suspend cycles happen before some VCPU 12422 * gets a chance to run again. In the event that no KVM threads get a 12423 * chance to run, we will miss the entire elapsed period, as we'll have 12424 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12425 * loose cycle time. This isn't too big a deal, since the loss will be 12426 * uniform across all VCPUs (not to mention the scenario is extremely 12427 * unlikely). It is possible that a second hibernate recovery happens 12428 * much faster than a first, causing the observed TSC here to be 12429 * smaller; this would require additional padding adjustment, which is 12430 * why we set last_host_tsc to the local tsc observed here. 12431 * 12432 * N.B. - this code below runs only on platforms with reliable TSC, 12433 * as that is the only way backwards_tsc is set above. Also note 12434 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12435 * have the same delta_cyc adjustment applied if backwards_tsc 12436 * is detected. Note further, this adjustment is only done once, 12437 * as we reset last_host_tsc on all VCPUs to stop this from being 12438 * called multiple times (one for each physical CPU bringup). 12439 * 12440 * Platforms with unreliable TSCs don't have to deal with this, they 12441 * will be compensated by the logic in vcpu_load, which sets the TSC to 12442 * catchup mode. This will catchup all VCPUs to real time, but cannot 12443 * guarantee that they stay in perfect synchronization. 12444 */ 12445 if (backwards_tsc) { 12446 u64 delta_cyc = max_tsc - local_tsc; 12447 list_for_each_entry(kvm, &vm_list, vm_list) { 12448 kvm->arch.backwards_tsc_observed = true; 12449 kvm_for_each_vcpu(i, vcpu, kvm) { 12450 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12451 vcpu->arch.last_host_tsc = local_tsc; 12452 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12453 } 12454 12455 /* 12456 * We have to disable TSC offset matching.. if you were 12457 * booting a VM while issuing an S4 host suspend.... 12458 * you may have some problem. Solving this issue is 12459 * left as an exercise to the reader. 12460 */ 12461 kvm->arch.last_tsc_nsec = 0; 12462 kvm->arch.last_tsc_write = 0; 12463 } 12464 12465 } 12466 return 0; 12467 } 12468 12469 void kvm_arch_hardware_disable(void) 12470 { 12471 static_call(kvm_x86_hardware_disable)(); 12472 drop_user_return_notifiers(); 12473 } 12474 12475 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12476 { 12477 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12478 } 12479 12480 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12481 { 12482 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12483 } 12484 12485 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12486 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12487 12488 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12489 { 12490 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12491 12492 vcpu->arch.l1tf_flush_l1d = true; 12493 if (pmu->version && unlikely(pmu->event_count)) { 12494 pmu->need_cleanup = true; 12495 kvm_make_request(KVM_REQ_PMU, vcpu); 12496 } 12497 static_call(kvm_x86_sched_in)(vcpu, cpu); 12498 } 12499 12500 void kvm_arch_free_vm(struct kvm *kvm) 12501 { 12502 #if IS_ENABLED(CONFIG_HYPERV) 12503 kfree(kvm->arch.hv_pa_pg); 12504 #endif 12505 __kvm_arch_free_vm(kvm); 12506 } 12507 12508 12509 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12510 { 12511 int ret; 12512 unsigned long flags; 12513 12514 if (!kvm_is_vm_type_supported(type)) 12515 return -EINVAL; 12516 12517 kvm->arch.vm_type = type; 12518 12519 ret = kvm_page_track_init(kvm); 12520 if (ret) 12521 goto out; 12522 12523 kvm_mmu_init_vm(kvm); 12524 12525 ret = static_call(kvm_x86_vm_init)(kvm); 12526 if (ret) 12527 goto out_uninit_mmu; 12528 12529 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12530 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12531 12532 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12533 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12534 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12535 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12536 &kvm->arch.irq_sources_bitmap); 12537 12538 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12539 mutex_init(&kvm->arch.apic_map_lock); 12540 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12541 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12542 12543 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12544 pvclock_update_vm_gtod_copy(kvm); 12545 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12546 12547 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12548 kvm->arch.guest_can_read_msr_platform_info = true; 12549 kvm->arch.enable_pmu = enable_pmu; 12550 12551 #if IS_ENABLED(CONFIG_HYPERV) 12552 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12553 kvm->arch.hv_root_tdp = INVALID_PAGE; 12554 #endif 12555 12556 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12557 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12558 12559 kvm_apicv_init(kvm); 12560 kvm_hv_init_vm(kvm); 12561 kvm_xen_init_vm(kvm); 12562 12563 return 0; 12564 12565 out_uninit_mmu: 12566 kvm_mmu_uninit_vm(kvm); 12567 kvm_page_track_cleanup(kvm); 12568 out: 12569 return ret; 12570 } 12571 12572 int kvm_arch_post_init_vm(struct kvm *kvm) 12573 { 12574 return kvm_mmu_post_init_vm(kvm); 12575 } 12576 12577 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12578 { 12579 vcpu_load(vcpu); 12580 kvm_mmu_unload(vcpu); 12581 vcpu_put(vcpu); 12582 } 12583 12584 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12585 { 12586 unsigned long i; 12587 struct kvm_vcpu *vcpu; 12588 12589 kvm_for_each_vcpu(i, vcpu, kvm) { 12590 kvm_clear_async_pf_completion_queue(vcpu); 12591 kvm_unload_vcpu_mmu(vcpu); 12592 } 12593 } 12594 12595 void kvm_arch_sync_events(struct kvm *kvm) 12596 { 12597 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12598 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12599 kvm_free_pit(kvm); 12600 } 12601 12602 /** 12603 * __x86_set_memory_region: Setup KVM internal memory slot 12604 * 12605 * @kvm: the kvm pointer to the VM. 12606 * @id: the slot ID to setup. 12607 * @gpa: the GPA to install the slot (unused when @size == 0). 12608 * @size: the size of the slot. Set to zero to uninstall a slot. 12609 * 12610 * This function helps to setup a KVM internal memory slot. Specify 12611 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12612 * slot. The return code can be one of the following: 12613 * 12614 * HVA: on success (uninstall will return a bogus HVA) 12615 * -errno: on error 12616 * 12617 * The caller should always use IS_ERR() to check the return value 12618 * before use. Note, the KVM internal memory slots are guaranteed to 12619 * remain valid and unchanged until the VM is destroyed, i.e., the 12620 * GPA->HVA translation will not change. However, the HVA is a user 12621 * address, i.e. its accessibility is not guaranteed, and must be 12622 * accessed via __copy_{to,from}_user(). 12623 */ 12624 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12625 u32 size) 12626 { 12627 int i, r; 12628 unsigned long hva, old_npages; 12629 struct kvm_memslots *slots = kvm_memslots(kvm); 12630 struct kvm_memory_slot *slot; 12631 12632 /* Called with kvm->slots_lock held. */ 12633 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12634 return ERR_PTR_USR(-EINVAL); 12635 12636 slot = id_to_memslot(slots, id); 12637 if (size) { 12638 if (slot && slot->npages) 12639 return ERR_PTR_USR(-EEXIST); 12640 12641 /* 12642 * MAP_SHARED to prevent internal slot pages from being moved 12643 * by fork()/COW. 12644 */ 12645 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12646 MAP_SHARED | MAP_ANONYMOUS, 0); 12647 if (IS_ERR_VALUE(hva)) 12648 return (void __user *)hva; 12649 } else { 12650 if (!slot || !slot->npages) 12651 return NULL; 12652 12653 old_npages = slot->npages; 12654 hva = slot->userspace_addr; 12655 } 12656 12657 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12658 struct kvm_userspace_memory_region2 m; 12659 12660 m.slot = id | (i << 16); 12661 m.flags = 0; 12662 m.guest_phys_addr = gpa; 12663 m.userspace_addr = hva; 12664 m.memory_size = size; 12665 r = __kvm_set_memory_region(kvm, &m); 12666 if (r < 0) 12667 return ERR_PTR_USR(r); 12668 } 12669 12670 if (!size) 12671 vm_munmap(hva, old_npages * PAGE_SIZE); 12672 12673 return (void __user *)hva; 12674 } 12675 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12676 12677 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12678 { 12679 kvm_mmu_pre_destroy_vm(kvm); 12680 } 12681 12682 void kvm_arch_destroy_vm(struct kvm *kvm) 12683 { 12684 if (current->mm == kvm->mm) { 12685 /* 12686 * Free memory regions allocated on behalf of userspace, 12687 * unless the memory map has changed due to process exit 12688 * or fd copying. 12689 */ 12690 mutex_lock(&kvm->slots_lock); 12691 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12692 0, 0); 12693 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12694 0, 0); 12695 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12696 mutex_unlock(&kvm->slots_lock); 12697 } 12698 kvm_unload_vcpu_mmus(kvm); 12699 static_call_cond(kvm_x86_vm_destroy)(kvm); 12700 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12701 kvm_pic_destroy(kvm); 12702 kvm_ioapic_destroy(kvm); 12703 kvm_destroy_vcpus(kvm); 12704 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12705 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12706 kvm_mmu_uninit_vm(kvm); 12707 kvm_page_track_cleanup(kvm); 12708 kvm_xen_destroy_vm(kvm); 12709 kvm_hv_destroy_vm(kvm); 12710 } 12711 12712 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12713 { 12714 int i; 12715 12716 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12717 kvfree(slot->arch.rmap[i]); 12718 slot->arch.rmap[i] = NULL; 12719 } 12720 } 12721 12722 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12723 { 12724 int i; 12725 12726 memslot_rmap_free(slot); 12727 12728 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12729 kvfree(slot->arch.lpage_info[i - 1]); 12730 slot->arch.lpage_info[i - 1] = NULL; 12731 } 12732 12733 kvm_page_track_free_memslot(slot); 12734 } 12735 12736 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12737 { 12738 const int sz = sizeof(*slot->arch.rmap[0]); 12739 int i; 12740 12741 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12742 int level = i + 1; 12743 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12744 12745 if (slot->arch.rmap[i]) 12746 continue; 12747 12748 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12749 if (!slot->arch.rmap[i]) { 12750 memslot_rmap_free(slot); 12751 return -ENOMEM; 12752 } 12753 } 12754 12755 return 0; 12756 } 12757 12758 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12759 struct kvm_memory_slot *slot) 12760 { 12761 unsigned long npages = slot->npages; 12762 int i, r; 12763 12764 /* 12765 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12766 * old arrays will be freed by __kvm_set_memory_region() if installing 12767 * the new memslot is successful. 12768 */ 12769 memset(&slot->arch, 0, sizeof(slot->arch)); 12770 12771 if (kvm_memslots_have_rmaps(kvm)) { 12772 r = memslot_rmap_alloc(slot, npages); 12773 if (r) 12774 return r; 12775 } 12776 12777 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12778 struct kvm_lpage_info *linfo; 12779 unsigned long ugfn; 12780 int lpages; 12781 int level = i + 1; 12782 12783 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12784 12785 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12786 if (!linfo) 12787 goto out_free; 12788 12789 slot->arch.lpage_info[i - 1] = linfo; 12790 12791 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12792 linfo[0].disallow_lpage = 1; 12793 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12794 linfo[lpages - 1].disallow_lpage = 1; 12795 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12796 /* 12797 * If the gfn and userspace address are not aligned wrt each 12798 * other, disable large page support for this slot. 12799 */ 12800 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12801 unsigned long j; 12802 12803 for (j = 0; j < lpages; ++j) 12804 linfo[j].disallow_lpage = 1; 12805 } 12806 } 12807 12808 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12809 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12810 #endif 12811 12812 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12813 goto out_free; 12814 12815 return 0; 12816 12817 out_free: 12818 memslot_rmap_free(slot); 12819 12820 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12821 kvfree(slot->arch.lpage_info[i - 1]); 12822 slot->arch.lpage_info[i - 1] = NULL; 12823 } 12824 return -ENOMEM; 12825 } 12826 12827 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12828 { 12829 struct kvm_vcpu *vcpu; 12830 unsigned long i; 12831 12832 /* 12833 * memslots->generation has been incremented. 12834 * mmio generation may have reached its maximum value. 12835 */ 12836 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12837 12838 /* Force re-initialization of steal_time cache */ 12839 kvm_for_each_vcpu(i, vcpu, kvm) 12840 kvm_vcpu_kick(vcpu); 12841 } 12842 12843 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12844 const struct kvm_memory_slot *old, 12845 struct kvm_memory_slot *new, 12846 enum kvm_mr_change change) 12847 { 12848 /* 12849 * KVM doesn't support moving memslots when there are external page 12850 * trackers attached to the VM, i.e. if KVMGT is in use. 12851 */ 12852 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12853 return -EINVAL; 12854 12855 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12856 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12857 return -EINVAL; 12858 12859 return kvm_alloc_memslot_metadata(kvm, new); 12860 } 12861 12862 if (change == KVM_MR_FLAGS_ONLY) 12863 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12864 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12865 return -EIO; 12866 12867 return 0; 12868 } 12869 12870 12871 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12872 { 12873 int nr_slots; 12874 12875 if (!kvm_x86_ops.cpu_dirty_log_size) 12876 return; 12877 12878 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12879 if ((enable && nr_slots == 1) || !nr_slots) 12880 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12881 } 12882 12883 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12884 struct kvm_memory_slot *old, 12885 const struct kvm_memory_slot *new, 12886 enum kvm_mr_change change) 12887 { 12888 u32 old_flags = old ? old->flags : 0; 12889 u32 new_flags = new ? new->flags : 0; 12890 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12891 12892 /* 12893 * Update CPU dirty logging if dirty logging is being toggled. This 12894 * applies to all operations. 12895 */ 12896 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12897 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12898 12899 /* 12900 * Nothing more to do for RO slots (which can't be dirtied and can't be 12901 * made writable) or CREATE/MOVE/DELETE of a slot. 12902 * 12903 * For a memslot with dirty logging disabled: 12904 * CREATE: No dirty mappings will already exist. 12905 * MOVE/DELETE: The old mappings will already have been cleaned up by 12906 * kvm_arch_flush_shadow_memslot() 12907 * 12908 * For a memslot with dirty logging enabled: 12909 * CREATE: No shadow pages exist, thus nothing to write-protect 12910 * and no dirty bits to clear. 12911 * MOVE/DELETE: The old mappings will already have been cleaned up by 12912 * kvm_arch_flush_shadow_memslot(). 12913 */ 12914 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12915 return; 12916 12917 /* 12918 * READONLY and non-flags changes were filtered out above, and the only 12919 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12920 * logging isn't being toggled on or off. 12921 */ 12922 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12923 return; 12924 12925 if (!log_dirty_pages) { 12926 /* 12927 * Dirty logging tracks sptes in 4k granularity, meaning that 12928 * large sptes have to be split. If live migration succeeds, 12929 * the guest in the source machine will be destroyed and large 12930 * sptes will be created in the destination. However, if the 12931 * guest continues to run in the source machine (for example if 12932 * live migration fails), small sptes will remain around and 12933 * cause bad performance. 12934 * 12935 * Scan sptes if dirty logging has been stopped, dropping those 12936 * which can be collapsed into a single large-page spte. Later 12937 * page faults will create the large-page sptes. 12938 */ 12939 kvm_mmu_zap_collapsible_sptes(kvm, new); 12940 } else { 12941 /* 12942 * Initially-all-set does not require write protecting any page, 12943 * because they're all assumed to be dirty. 12944 */ 12945 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12946 return; 12947 12948 if (READ_ONCE(eager_page_split)) 12949 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12950 12951 if (kvm_x86_ops.cpu_dirty_log_size) { 12952 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12953 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12954 } else { 12955 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12956 } 12957 12958 /* 12959 * Unconditionally flush the TLBs after enabling dirty logging. 12960 * A flush is almost always going to be necessary (see below), 12961 * and unconditionally flushing allows the helpers to omit 12962 * the subtly complex checks when removing write access. 12963 * 12964 * Do the flush outside of mmu_lock to reduce the amount of 12965 * time mmu_lock is held. Flushing after dropping mmu_lock is 12966 * safe as KVM only needs to guarantee the slot is fully 12967 * write-protected before returning to userspace, i.e. before 12968 * userspace can consume the dirty status. 12969 * 12970 * Flushing outside of mmu_lock requires KVM to be careful when 12971 * making decisions based on writable status of an SPTE, e.g. a 12972 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12973 * 12974 * Specifically, KVM also write-protects guest page tables to 12975 * monitor changes when using shadow paging, and must guarantee 12976 * no CPUs can write to those page before mmu_lock is dropped. 12977 * Because CPUs may have stale TLB entries at this point, a 12978 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12979 * 12980 * KVM also allows making SPTES writable outside of mmu_lock, 12981 * e.g. to allow dirty logging without taking mmu_lock. 12982 * 12983 * To handle these scenarios, KVM uses a separate software-only 12984 * bit (MMU-writable) to track if a SPTE is !writable due to 12985 * a guest page table being write-protected (KVM clears the 12986 * MMU-writable flag when write-protecting for shadow paging). 12987 * 12988 * The use of MMU-writable is also the primary motivation for 12989 * the unconditional flush. Because KVM must guarantee that a 12990 * CPU doesn't contain stale, writable TLB entries for a 12991 * !MMU-writable SPTE, KVM must flush if it encounters any 12992 * MMU-writable SPTE regardless of whether the actual hardware 12993 * writable bit was set. I.e. KVM is almost guaranteed to need 12994 * to flush, while unconditionally flushing allows the "remove 12995 * write access" helpers to ignore MMU-writable entirely. 12996 * 12997 * See is_writable_pte() for more details (the case involving 12998 * access-tracked SPTEs is particularly relevant). 12999 */ 13000 kvm_flush_remote_tlbs_memslot(kvm, new); 13001 } 13002 } 13003 13004 void kvm_arch_commit_memory_region(struct kvm *kvm, 13005 struct kvm_memory_slot *old, 13006 const struct kvm_memory_slot *new, 13007 enum kvm_mr_change change) 13008 { 13009 if (change == KVM_MR_DELETE) 13010 kvm_page_track_delete_slot(kvm, old); 13011 13012 if (!kvm->arch.n_requested_mmu_pages && 13013 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13014 unsigned long nr_mmu_pages; 13015 13016 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13017 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13018 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13019 } 13020 13021 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13022 13023 /* Free the arrays associated with the old memslot. */ 13024 if (change == KVM_MR_MOVE) 13025 kvm_arch_free_memslot(kvm, old); 13026 } 13027 13028 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 13029 { 13030 return (is_guest_mode(vcpu) && 13031 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 13032 } 13033 13034 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 13035 { 13036 if (!list_empty_careful(&vcpu->async_pf.done)) 13037 return true; 13038 13039 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 13040 kvm_apic_init_sipi_allowed(vcpu)) 13041 return true; 13042 13043 if (vcpu->arch.pv.pv_unhalted) 13044 return true; 13045 13046 if (kvm_is_exception_pending(vcpu)) 13047 return true; 13048 13049 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13050 (vcpu->arch.nmi_pending && 13051 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 13052 return true; 13053 13054 #ifdef CONFIG_KVM_SMM 13055 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 13056 (vcpu->arch.smi_pending && 13057 static_call(kvm_x86_smi_allowed)(vcpu, false))) 13058 return true; 13059 #endif 13060 13061 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 13062 return true; 13063 13064 if (kvm_arch_interrupt_allowed(vcpu) && 13065 (kvm_cpu_has_interrupt(vcpu) || 13066 kvm_guest_apic_has_interrupt(vcpu))) 13067 return true; 13068 13069 if (kvm_hv_has_stimer_pending(vcpu)) 13070 return true; 13071 13072 if (is_guest_mode(vcpu) && 13073 kvm_x86_ops.nested_ops->has_events && 13074 kvm_x86_ops.nested_ops->has_events(vcpu)) 13075 return true; 13076 13077 if (kvm_xen_has_pending_events(vcpu)) 13078 return true; 13079 13080 return false; 13081 } 13082 13083 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 13084 { 13085 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 13086 } 13087 13088 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 13089 { 13090 if (kvm_vcpu_apicv_active(vcpu) && 13091 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 13092 return true; 13093 13094 return false; 13095 } 13096 13097 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 13098 { 13099 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 13100 return true; 13101 13102 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13103 #ifdef CONFIG_KVM_SMM 13104 kvm_test_request(KVM_REQ_SMI, vcpu) || 13105 #endif 13106 kvm_test_request(KVM_REQ_EVENT, vcpu)) 13107 return true; 13108 13109 return kvm_arch_dy_has_pending_interrupt(vcpu); 13110 } 13111 13112 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13113 { 13114 if (vcpu->arch.guest_state_protected) 13115 return true; 13116 13117 if (vcpu != kvm_get_running_vcpu()) 13118 return vcpu->arch.preempted_in_kernel; 13119 13120 return static_call(kvm_x86_get_cpl)(vcpu) == 0; 13121 } 13122 13123 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13124 { 13125 return kvm_rip_read(vcpu); 13126 } 13127 13128 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13129 { 13130 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13131 } 13132 13133 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13134 { 13135 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 13136 } 13137 13138 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13139 { 13140 /* Can't read the RIP when guest state is protected, just return 0 */ 13141 if (vcpu->arch.guest_state_protected) 13142 return 0; 13143 13144 if (is_64_bit_mode(vcpu)) 13145 return kvm_rip_read(vcpu); 13146 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13147 kvm_rip_read(vcpu)); 13148 } 13149 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13150 13151 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13152 { 13153 return kvm_get_linear_rip(vcpu) == linear_rip; 13154 } 13155 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13156 13157 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13158 { 13159 unsigned long rflags; 13160 13161 rflags = static_call(kvm_x86_get_rflags)(vcpu); 13162 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13163 rflags &= ~X86_EFLAGS_TF; 13164 return rflags; 13165 } 13166 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13167 13168 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13169 { 13170 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13171 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13172 rflags |= X86_EFLAGS_TF; 13173 static_call(kvm_x86_set_rflags)(vcpu, rflags); 13174 } 13175 13176 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13177 { 13178 __kvm_set_rflags(vcpu, rflags); 13179 kvm_make_request(KVM_REQ_EVENT, vcpu); 13180 } 13181 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13182 13183 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13184 { 13185 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13186 13187 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13188 } 13189 13190 static inline u32 kvm_async_pf_next_probe(u32 key) 13191 { 13192 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13193 } 13194 13195 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13196 { 13197 u32 key = kvm_async_pf_hash_fn(gfn); 13198 13199 while (vcpu->arch.apf.gfns[key] != ~0) 13200 key = kvm_async_pf_next_probe(key); 13201 13202 vcpu->arch.apf.gfns[key] = gfn; 13203 } 13204 13205 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13206 { 13207 int i; 13208 u32 key = kvm_async_pf_hash_fn(gfn); 13209 13210 for (i = 0; i < ASYNC_PF_PER_VCPU && 13211 (vcpu->arch.apf.gfns[key] != gfn && 13212 vcpu->arch.apf.gfns[key] != ~0); i++) 13213 key = kvm_async_pf_next_probe(key); 13214 13215 return key; 13216 } 13217 13218 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13219 { 13220 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13221 } 13222 13223 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13224 { 13225 u32 i, j, k; 13226 13227 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13228 13229 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13230 return; 13231 13232 while (true) { 13233 vcpu->arch.apf.gfns[i] = ~0; 13234 do { 13235 j = kvm_async_pf_next_probe(j); 13236 if (vcpu->arch.apf.gfns[j] == ~0) 13237 return; 13238 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13239 /* 13240 * k lies cyclically in ]i,j] 13241 * | i.k.j | 13242 * |....j i.k.| or |.k..j i...| 13243 */ 13244 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13245 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13246 i = j; 13247 } 13248 } 13249 13250 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13251 { 13252 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13253 13254 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13255 sizeof(reason)); 13256 } 13257 13258 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13259 { 13260 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13261 13262 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13263 &token, offset, sizeof(token)); 13264 } 13265 13266 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13267 { 13268 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13269 u32 val; 13270 13271 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13272 &val, offset, sizeof(val))) 13273 return false; 13274 13275 return !val; 13276 } 13277 13278 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13279 { 13280 13281 if (!kvm_pv_async_pf_enabled(vcpu)) 13282 return false; 13283 13284 if (vcpu->arch.apf.send_user_only && 13285 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13286 return false; 13287 13288 if (is_guest_mode(vcpu)) { 13289 /* 13290 * L1 needs to opt into the special #PF vmexits that are 13291 * used to deliver async page faults. 13292 */ 13293 return vcpu->arch.apf.delivery_as_pf_vmexit; 13294 } else { 13295 /* 13296 * Play it safe in case the guest temporarily disables paging. 13297 * The real mode IDT in particular is unlikely to have a #PF 13298 * exception setup. 13299 */ 13300 return is_paging(vcpu); 13301 } 13302 } 13303 13304 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13305 { 13306 if (unlikely(!lapic_in_kernel(vcpu) || 13307 kvm_event_needs_reinjection(vcpu) || 13308 kvm_is_exception_pending(vcpu))) 13309 return false; 13310 13311 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13312 return false; 13313 13314 /* 13315 * If interrupts are off we cannot even use an artificial 13316 * halt state. 13317 */ 13318 return kvm_arch_interrupt_allowed(vcpu); 13319 } 13320 13321 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13322 struct kvm_async_pf *work) 13323 { 13324 struct x86_exception fault; 13325 13326 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13327 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13328 13329 if (kvm_can_deliver_async_pf(vcpu) && 13330 !apf_put_user_notpresent(vcpu)) { 13331 fault.vector = PF_VECTOR; 13332 fault.error_code_valid = true; 13333 fault.error_code = 0; 13334 fault.nested_page_fault = false; 13335 fault.address = work->arch.token; 13336 fault.async_page_fault = true; 13337 kvm_inject_page_fault(vcpu, &fault); 13338 return true; 13339 } else { 13340 /* 13341 * It is not possible to deliver a paravirtualized asynchronous 13342 * page fault, but putting the guest in an artificial halt state 13343 * can be beneficial nevertheless: if an interrupt arrives, we 13344 * can deliver it timely and perhaps the guest will schedule 13345 * another process. When the instruction that triggered a page 13346 * fault is retried, hopefully the page will be ready in the host. 13347 */ 13348 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13349 return false; 13350 } 13351 } 13352 13353 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13354 struct kvm_async_pf *work) 13355 { 13356 struct kvm_lapic_irq irq = { 13357 .delivery_mode = APIC_DM_FIXED, 13358 .vector = vcpu->arch.apf.vec 13359 }; 13360 13361 if (work->wakeup_all) 13362 work->arch.token = ~0; /* broadcast wakeup */ 13363 else 13364 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13365 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13366 13367 if ((work->wakeup_all || work->notpresent_injected) && 13368 kvm_pv_async_pf_enabled(vcpu) && 13369 !apf_put_user_ready(vcpu, work->arch.token)) { 13370 vcpu->arch.apf.pageready_pending = true; 13371 kvm_apic_set_irq(vcpu, &irq, NULL); 13372 } 13373 13374 vcpu->arch.apf.halted = false; 13375 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13376 } 13377 13378 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13379 { 13380 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13381 if (!vcpu->arch.apf.pageready_pending) 13382 kvm_vcpu_kick(vcpu); 13383 } 13384 13385 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13386 { 13387 if (!kvm_pv_async_pf_enabled(vcpu)) 13388 return true; 13389 else 13390 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13391 } 13392 13393 void kvm_arch_start_assignment(struct kvm *kvm) 13394 { 13395 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13396 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13397 } 13398 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13399 13400 void kvm_arch_end_assignment(struct kvm *kvm) 13401 { 13402 atomic_dec(&kvm->arch.assigned_device_count); 13403 } 13404 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13405 13406 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13407 { 13408 return raw_atomic_read(&kvm->arch.assigned_device_count); 13409 } 13410 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13411 13412 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13413 { 13414 /* 13415 * Non-coherent DMA assignment and de-assignment will affect 13416 * whether KVM honors guest MTRRs and cause changes in memtypes 13417 * in TDP. 13418 * So, pass %true unconditionally to indicate non-coherent DMA was, 13419 * or will be involved, and that zapping SPTEs might be necessary. 13420 */ 13421 if (__kvm_mmu_honors_guest_mtrrs(true)) 13422 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13423 } 13424 13425 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13426 { 13427 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13428 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13429 } 13430 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13431 13432 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13433 { 13434 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13435 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13436 } 13437 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13438 13439 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13440 { 13441 return atomic_read(&kvm->arch.noncoherent_dma_count); 13442 } 13443 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13444 13445 bool kvm_arch_has_irq_bypass(void) 13446 { 13447 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13448 } 13449 13450 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13451 struct irq_bypass_producer *prod) 13452 { 13453 struct kvm_kernel_irqfd *irqfd = 13454 container_of(cons, struct kvm_kernel_irqfd, consumer); 13455 int ret; 13456 13457 irqfd->producer = prod; 13458 kvm_arch_start_assignment(irqfd->kvm); 13459 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13460 prod->irq, irqfd->gsi, 1); 13461 13462 if (ret) 13463 kvm_arch_end_assignment(irqfd->kvm); 13464 13465 return ret; 13466 } 13467 13468 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13469 struct irq_bypass_producer *prod) 13470 { 13471 int ret; 13472 struct kvm_kernel_irqfd *irqfd = 13473 container_of(cons, struct kvm_kernel_irqfd, consumer); 13474 13475 WARN_ON(irqfd->producer != prod); 13476 irqfd->producer = NULL; 13477 13478 /* 13479 * When producer of consumer is unregistered, we change back to 13480 * remapped mode, so we can re-use the current implementation 13481 * when the irq is masked/disabled or the consumer side (KVM 13482 * int this case doesn't want to receive the interrupts. 13483 */ 13484 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13485 if (ret) 13486 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13487 " fails: %d\n", irqfd->consumer.token, ret); 13488 13489 kvm_arch_end_assignment(irqfd->kvm); 13490 } 13491 13492 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13493 uint32_t guest_irq, bool set) 13494 { 13495 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13496 } 13497 13498 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13499 struct kvm_kernel_irq_routing_entry *new) 13500 { 13501 if (new->type != KVM_IRQ_ROUTING_MSI) 13502 return true; 13503 13504 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13505 } 13506 13507 bool kvm_vector_hashing_enabled(void) 13508 { 13509 return vector_hashing; 13510 } 13511 13512 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13513 { 13514 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13515 } 13516 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13517 13518 13519 int kvm_spec_ctrl_test_value(u64 value) 13520 { 13521 /* 13522 * test that setting IA32_SPEC_CTRL to given value 13523 * is allowed by the host processor 13524 */ 13525 13526 u64 saved_value; 13527 unsigned long flags; 13528 int ret = 0; 13529 13530 local_irq_save(flags); 13531 13532 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13533 ret = 1; 13534 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13535 ret = 1; 13536 else 13537 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13538 13539 local_irq_restore(flags); 13540 13541 return ret; 13542 } 13543 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13544 13545 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13546 { 13547 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13548 struct x86_exception fault; 13549 u64 access = error_code & 13550 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13551 13552 if (!(error_code & PFERR_PRESENT_MASK) || 13553 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13554 /* 13555 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13556 * tables probably do not match the TLB. Just proceed 13557 * with the error code that the processor gave. 13558 */ 13559 fault.vector = PF_VECTOR; 13560 fault.error_code_valid = true; 13561 fault.error_code = error_code; 13562 fault.nested_page_fault = false; 13563 fault.address = gva; 13564 fault.async_page_fault = false; 13565 } 13566 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13567 } 13568 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13569 13570 /* 13571 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13572 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13573 * indicates whether exit to userspace is needed. 13574 */ 13575 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13576 struct x86_exception *e) 13577 { 13578 if (r == X86EMUL_PROPAGATE_FAULT) { 13579 if (KVM_BUG_ON(!e, vcpu->kvm)) 13580 return -EIO; 13581 13582 kvm_inject_emulated_page_fault(vcpu, e); 13583 return 1; 13584 } 13585 13586 /* 13587 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13588 * while handling a VMX instruction KVM could've handled the request 13589 * correctly by exiting to userspace and performing I/O but there 13590 * doesn't seem to be a real use-case behind such requests, just return 13591 * KVM_EXIT_INTERNAL_ERROR for now. 13592 */ 13593 kvm_prepare_emulation_failure_exit(vcpu); 13594 13595 return 0; 13596 } 13597 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13598 13599 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13600 { 13601 bool pcid_enabled; 13602 struct x86_exception e; 13603 struct { 13604 u64 pcid; 13605 u64 gla; 13606 } operand; 13607 int r; 13608 13609 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13610 if (r != X86EMUL_CONTINUE) 13611 return kvm_handle_memory_failure(vcpu, r, &e); 13612 13613 if (operand.pcid >> 12 != 0) { 13614 kvm_inject_gp(vcpu, 0); 13615 return 1; 13616 } 13617 13618 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13619 13620 switch (type) { 13621 case INVPCID_TYPE_INDIV_ADDR: 13622 /* 13623 * LAM doesn't apply to addresses that are inputs to TLB 13624 * invalidation. 13625 */ 13626 if ((!pcid_enabled && (operand.pcid != 0)) || 13627 is_noncanonical_address(operand.gla, vcpu)) { 13628 kvm_inject_gp(vcpu, 0); 13629 return 1; 13630 } 13631 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13632 return kvm_skip_emulated_instruction(vcpu); 13633 13634 case INVPCID_TYPE_SINGLE_CTXT: 13635 if (!pcid_enabled && (operand.pcid != 0)) { 13636 kvm_inject_gp(vcpu, 0); 13637 return 1; 13638 } 13639 13640 kvm_invalidate_pcid(vcpu, operand.pcid); 13641 return kvm_skip_emulated_instruction(vcpu); 13642 13643 case INVPCID_TYPE_ALL_NON_GLOBAL: 13644 /* 13645 * Currently, KVM doesn't mark global entries in the shadow 13646 * page tables, so a non-global flush just degenerates to a 13647 * global flush. If needed, we could optimize this later by 13648 * keeping track of global entries in shadow page tables. 13649 */ 13650 13651 fallthrough; 13652 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13653 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13654 return kvm_skip_emulated_instruction(vcpu); 13655 13656 default: 13657 kvm_inject_gp(vcpu, 0); 13658 return 1; 13659 } 13660 } 13661 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13662 13663 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13664 { 13665 struct kvm_run *run = vcpu->run; 13666 struct kvm_mmio_fragment *frag; 13667 unsigned int len; 13668 13669 BUG_ON(!vcpu->mmio_needed); 13670 13671 /* Complete previous fragment */ 13672 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13673 len = min(8u, frag->len); 13674 if (!vcpu->mmio_is_write) 13675 memcpy(frag->data, run->mmio.data, len); 13676 13677 if (frag->len <= 8) { 13678 /* Switch to the next fragment. */ 13679 frag++; 13680 vcpu->mmio_cur_fragment++; 13681 } else { 13682 /* Go forward to the next mmio piece. */ 13683 frag->data += len; 13684 frag->gpa += len; 13685 frag->len -= len; 13686 } 13687 13688 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13689 vcpu->mmio_needed = 0; 13690 13691 // VMG change, at this point, we're always done 13692 // RIP has already been advanced 13693 return 1; 13694 } 13695 13696 // More MMIO is needed 13697 run->mmio.phys_addr = frag->gpa; 13698 run->mmio.len = min(8u, frag->len); 13699 run->mmio.is_write = vcpu->mmio_is_write; 13700 if (run->mmio.is_write) 13701 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13702 run->exit_reason = KVM_EXIT_MMIO; 13703 13704 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13705 13706 return 0; 13707 } 13708 13709 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13710 void *data) 13711 { 13712 int handled; 13713 struct kvm_mmio_fragment *frag; 13714 13715 if (!data) 13716 return -EINVAL; 13717 13718 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13719 if (handled == bytes) 13720 return 1; 13721 13722 bytes -= handled; 13723 gpa += handled; 13724 data += handled; 13725 13726 /*TODO: Check if need to increment number of frags */ 13727 frag = vcpu->mmio_fragments; 13728 vcpu->mmio_nr_fragments = 1; 13729 frag->len = bytes; 13730 frag->gpa = gpa; 13731 frag->data = data; 13732 13733 vcpu->mmio_needed = 1; 13734 vcpu->mmio_cur_fragment = 0; 13735 13736 vcpu->run->mmio.phys_addr = gpa; 13737 vcpu->run->mmio.len = min(8u, frag->len); 13738 vcpu->run->mmio.is_write = 1; 13739 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13740 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13741 13742 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13743 13744 return 0; 13745 } 13746 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13747 13748 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13749 void *data) 13750 { 13751 int handled; 13752 struct kvm_mmio_fragment *frag; 13753 13754 if (!data) 13755 return -EINVAL; 13756 13757 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13758 if (handled == bytes) 13759 return 1; 13760 13761 bytes -= handled; 13762 gpa += handled; 13763 data += handled; 13764 13765 /*TODO: Check if need to increment number of frags */ 13766 frag = vcpu->mmio_fragments; 13767 vcpu->mmio_nr_fragments = 1; 13768 frag->len = bytes; 13769 frag->gpa = gpa; 13770 frag->data = data; 13771 13772 vcpu->mmio_needed = 1; 13773 vcpu->mmio_cur_fragment = 0; 13774 13775 vcpu->run->mmio.phys_addr = gpa; 13776 vcpu->run->mmio.len = min(8u, frag->len); 13777 vcpu->run->mmio.is_write = 0; 13778 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13779 13780 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13781 13782 return 0; 13783 } 13784 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13785 13786 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13787 { 13788 vcpu->arch.sev_pio_count -= count; 13789 vcpu->arch.sev_pio_data += count * size; 13790 } 13791 13792 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13793 unsigned int port); 13794 13795 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13796 { 13797 int size = vcpu->arch.pio.size; 13798 int port = vcpu->arch.pio.port; 13799 13800 vcpu->arch.pio.count = 0; 13801 if (vcpu->arch.sev_pio_count) 13802 return kvm_sev_es_outs(vcpu, size, port); 13803 return 1; 13804 } 13805 13806 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13807 unsigned int port) 13808 { 13809 for (;;) { 13810 unsigned int count = 13811 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13812 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13813 13814 /* memcpy done already by emulator_pio_out. */ 13815 advance_sev_es_emulated_pio(vcpu, count, size); 13816 if (!ret) 13817 break; 13818 13819 /* Emulation done by the kernel. */ 13820 if (!vcpu->arch.sev_pio_count) 13821 return 1; 13822 } 13823 13824 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13825 return 0; 13826 } 13827 13828 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13829 unsigned int port); 13830 13831 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13832 { 13833 unsigned count = vcpu->arch.pio.count; 13834 int size = vcpu->arch.pio.size; 13835 int port = vcpu->arch.pio.port; 13836 13837 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13838 advance_sev_es_emulated_pio(vcpu, count, size); 13839 if (vcpu->arch.sev_pio_count) 13840 return kvm_sev_es_ins(vcpu, size, port); 13841 return 1; 13842 } 13843 13844 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13845 unsigned int port) 13846 { 13847 for (;;) { 13848 unsigned int count = 13849 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13850 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13851 break; 13852 13853 /* Emulation done by the kernel. */ 13854 advance_sev_es_emulated_pio(vcpu, count, size); 13855 if (!vcpu->arch.sev_pio_count) 13856 return 1; 13857 } 13858 13859 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13860 return 0; 13861 } 13862 13863 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13864 unsigned int port, void *data, unsigned int count, 13865 int in) 13866 { 13867 vcpu->arch.sev_pio_data = data; 13868 vcpu->arch.sev_pio_count = count; 13869 return in ? kvm_sev_es_ins(vcpu, size, port) 13870 : kvm_sev_es_outs(vcpu, size, port); 13871 } 13872 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13873 13874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13903 13904 static int __init kvm_x86_init(void) 13905 { 13906 kvm_mmu_x86_module_init(); 13907 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13908 return 0; 13909 } 13910 module_init(kvm_x86_init); 13911 13912 static void __exit kvm_x86_exit(void) 13913 { 13914 /* 13915 * If module_init() is implemented, module_exit() must also be 13916 * implemented to allow module unload. 13917 */ 13918 } 13919 module_exit(kvm_x86_exit); 13920