1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 struct kvm_caps kvm_caps __read_mostly = { 96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 97 }; 98 EXPORT_SYMBOL_GPL(kvm_caps); 99 100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 101 102 #define emul_to_vcpu(ctxt) \ 103 ((struct kvm_vcpu *)(ctxt)->vcpu) 104 105 /* EFER defaults: 106 * - enable syscall per default because its emulated by KVM 107 * - enable LME and LMA per default on 64 bit KVM 108 */ 109 #ifdef CONFIG_X86_64 110 static 111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 112 #else 113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 114 #endif 115 116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 117 118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 119 120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 121 122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 124 125 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 126 static void process_nmi(struct kvm_vcpu *vcpu); 127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 128 static void store_regs(struct kvm_vcpu *vcpu); 129 static int sync_regs(struct kvm_vcpu *vcpu); 130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 131 132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 134 135 static DEFINE_MUTEX(vendor_module_lock); 136 struct kvm_x86_ops kvm_x86_ops __read_mostly; 137 138 #define KVM_X86_OP(func) \ 139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 140 *(((struct kvm_x86_ops *)0)->func)); 141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 143 #include <asm/kvm-x86-ops.h> 144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 146 147 static bool __read_mostly ignore_msrs = 0; 148 module_param(ignore_msrs, bool, 0644); 149 150 bool __read_mostly report_ignored_msrs = true; 151 module_param(report_ignored_msrs, bool, 0644); 152 EXPORT_SYMBOL_GPL(report_ignored_msrs); 153 154 unsigned int min_timer_period_us = 200; 155 module_param(min_timer_period_us, uint, 0644); 156 157 static bool __read_mostly kvmclock_periodic_sync = true; 158 module_param(kvmclock_periodic_sync, bool, 0444); 159 160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 161 static u32 __read_mostly tsc_tolerance_ppm = 250; 162 module_param(tsc_tolerance_ppm, uint, 0644); 163 164 /* 165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 166 * adaptive tuning starting from default advancement of 1000ns. '0' disables 167 * advancement entirely. Any other value is used as-is and disables adaptive 168 * tuning, i.e. allows privileged userspace to set an exact advancement time. 169 */ 170 static int __read_mostly lapic_timer_advance_ns = -1; 171 module_param(lapic_timer_advance_ns, int, 0644); 172 173 static bool __read_mostly vector_hashing = true; 174 module_param(vector_hashing, bool, 0444); 175 176 bool __read_mostly enable_vmware_backdoor = false; 177 module_param(enable_vmware_backdoor, bool, 0444); 178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 179 180 /* 181 * Flags to manipulate forced emulation behavior (any non-zero value will 182 * enable forced emulation). 183 */ 184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 185 static int __read_mostly force_emulation_prefix; 186 module_param(force_emulation_prefix, int, 0644); 187 188 int __read_mostly pi_inject_timer = -1; 189 module_param(pi_inject_timer, bint, 0644); 190 191 /* Enable/disable PMU virtualization */ 192 bool __read_mostly enable_pmu = true; 193 EXPORT_SYMBOL_GPL(enable_pmu); 194 module_param(enable_pmu, bool, 0444); 195 196 bool __read_mostly eager_page_split = true; 197 module_param(eager_page_split, bool, 0644); 198 199 /* Enable/disable SMT_RSB bug mitigation */ 200 static bool __read_mostly mitigate_smt_rsb; 201 module_param(mitigate_smt_rsb, bool, 0444); 202 203 /* 204 * Restoring the host value for MSRs that are only consumed when running in 205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 206 * returns to userspace, i.e. the kernel can run with the guest's value. 207 */ 208 #define KVM_MAX_NR_USER_RETURN_MSRS 16 209 210 struct kvm_user_return_msrs { 211 struct user_return_notifier urn; 212 bool registered; 213 struct kvm_user_return_msr_values { 214 u64 host; 215 u64 curr; 216 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 217 }; 218 219 u32 __read_mostly kvm_nr_uret_msrs; 220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 222 static struct kvm_user_return_msrs __percpu *user_return_msrs; 223 224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 228 229 u64 __read_mostly host_efer; 230 EXPORT_SYMBOL_GPL(host_efer); 231 232 bool __read_mostly allow_smaller_maxphyaddr = 0; 233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 234 235 bool __read_mostly enable_apicv = true; 236 EXPORT_SYMBOL_GPL(enable_apicv); 237 238 u64 __read_mostly host_xss; 239 EXPORT_SYMBOL_GPL(host_xss); 240 241 u64 __read_mostly host_arch_capabilities; 242 EXPORT_SYMBOL_GPL(host_arch_capabilities); 243 244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 245 KVM_GENERIC_VM_STATS(), 246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 247 STATS_DESC_COUNTER(VM, mmu_pte_write), 248 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 249 STATS_DESC_COUNTER(VM, mmu_flooded), 250 STATS_DESC_COUNTER(VM, mmu_recycled), 251 STATS_DESC_COUNTER(VM, mmu_cache_miss), 252 STATS_DESC_ICOUNTER(VM, mmu_unsync), 253 STATS_DESC_ICOUNTER(VM, pages_4k), 254 STATS_DESC_ICOUNTER(VM, pages_2m), 255 STATS_DESC_ICOUNTER(VM, pages_1g), 256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 259 }; 260 261 const struct kvm_stats_header kvm_vm_stats_header = { 262 .name_size = KVM_STATS_NAME_SIZE, 263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 264 .id_offset = sizeof(struct kvm_stats_header), 265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 267 sizeof(kvm_vm_stats_desc), 268 }; 269 270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 271 KVM_GENERIC_VCPU_STATS(), 272 STATS_DESC_COUNTER(VCPU, pf_taken), 273 STATS_DESC_COUNTER(VCPU, pf_fixed), 274 STATS_DESC_COUNTER(VCPU, pf_emulate), 275 STATS_DESC_COUNTER(VCPU, pf_spurious), 276 STATS_DESC_COUNTER(VCPU, pf_fast), 277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 278 STATS_DESC_COUNTER(VCPU, pf_guest), 279 STATS_DESC_COUNTER(VCPU, tlb_flush), 280 STATS_DESC_COUNTER(VCPU, invlpg), 281 STATS_DESC_COUNTER(VCPU, exits), 282 STATS_DESC_COUNTER(VCPU, io_exits), 283 STATS_DESC_COUNTER(VCPU, mmio_exits), 284 STATS_DESC_COUNTER(VCPU, signal_exits), 285 STATS_DESC_COUNTER(VCPU, irq_window_exits), 286 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 287 STATS_DESC_COUNTER(VCPU, l1d_flush), 288 STATS_DESC_COUNTER(VCPU, halt_exits), 289 STATS_DESC_COUNTER(VCPU, request_irq_exits), 290 STATS_DESC_COUNTER(VCPU, irq_exits), 291 STATS_DESC_COUNTER(VCPU, host_state_reload), 292 STATS_DESC_COUNTER(VCPU, fpu_reload), 293 STATS_DESC_COUNTER(VCPU, insn_emulation), 294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 295 STATS_DESC_COUNTER(VCPU, hypercalls), 296 STATS_DESC_COUNTER(VCPU, irq_injections), 297 STATS_DESC_COUNTER(VCPU, nmi_injections), 298 STATS_DESC_COUNTER(VCPU, req_event), 299 STATS_DESC_COUNTER(VCPU, nested_run), 300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 301 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 302 STATS_DESC_COUNTER(VCPU, preemption_reported), 303 STATS_DESC_COUNTER(VCPU, preemption_other), 304 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 305 STATS_DESC_COUNTER(VCPU, notify_window_exits), 306 }; 307 308 const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315 }; 316 317 u64 __read_mostly host_xcr0; 318 319 static struct kmem_cache *x86_emulator_cache; 320 321 /* 322 * When called, it means the previous get/set msr reached an invalid msr. 323 * Return true if we want to ignore/silent this failed msr access. 324 */ 325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 326 { 327 const char *op = write ? "wrmsr" : "rdmsr"; 328 329 if (ignore_msrs) { 330 if (report_ignored_msrs) 331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 332 op, msr, data); 333 /* Mask the error */ 334 return true; 335 } else { 336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 337 op, msr, data); 338 return false; 339 } 340 } 341 342 static struct kmem_cache *kvm_alloc_emulator_cache(void) 343 { 344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 345 unsigned int size = sizeof(struct x86_emulate_ctxt); 346 347 return kmem_cache_create_usercopy("x86_emulator", size, 348 __alignof__(struct x86_emulate_ctxt), 349 SLAB_ACCOUNT, useroffset, 350 size - useroffset, NULL); 351 } 352 353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 354 355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 356 { 357 int i; 358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 359 vcpu->arch.apf.gfns[i] = ~0; 360 } 361 362 static void kvm_on_user_return(struct user_return_notifier *urn) 363 { 364 unsigned slot; 365 struct kvm_user_return_msrs *msrs 366 = container_of(urn, struct kvm_user_return_msrs, urn); 367 struct kvm_user_return_msr_values *values; 368 unsigned long flags; 369 370 /* 371 * Disabling irqs at this point since the following code could be 372 * interrupted and executed through kvm_arch_hardware_disable() 373 */ 374 local_irq_save(flags); 375 if (msrs->registered) { 376 msrs->registered = false; 377 user_return_notifier_unregister(urn); 378 } 379 local_irq_restore(flags); 380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 381 values = &msrs->values[slot]; 382 if (values->host != values->curr) { 383 wrmsrl(kvm_uret_msrs_list[slot], values->host); 384 values->curr = values->host; 385 } 386 } 387 } 388 389 static int kvm_probe_user_return_msr(u32 msr) 390 { 391 u64 val; 392 int ret; 393 394 preempt_disable(); 395 ret = rdmsrl_safe(msr, &val); 396 if (ret) 397 goto out; 398 ret = wrmsrl_safe(msr, val); 399 out: 400 preempt_enable(); 401 return ret; 402 } 403 404 int kvm_add_user_return_msr(u32 msr) 405 { 406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 407 408 if (kvm_probe_user_return_msr(msr)) 409 return -1; 410 411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 412 return kvm_nr_uret_msrs++; 413 } 414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 415 416 int kvm_find_user_return_msr(u32 msr) 417 { 418 int i; 419 420 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 421 if (kvm_uret_msrs_list[i] == msr) 422 return i; 423 } 424 return -1; 425 } 426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 427 428 static void kvm_user_return_msr_cpu_online(void) 429 { 430 unsigned int cpu = smp_processor_id(); 431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 432 u64 value; 433 int i; 434 435 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 436 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 437 msrs->values[i].host = value; 438 msrs->values[i].curr = value; 439 } 440 } 441 442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 443 { 444 unsigned int cpu = smp_processor_id(); 445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 446 int err; 447 448 value = (value & mask) | (msrs->values[slot].host & ~mask); 449 if (value == msrs->values[slot].curr) 450 return 0; 451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 452 if (err) 453 return 1; 454 455 msrs->values[slot].curr = value; 456 if (!msrs->registered) { 457 msrs->urn.on_user_return = kvm_on_user_return; 458 user_return_notifier_register(&msrs->urn); 459 msrs->registered = true; 460 } 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 464 465 static void drop_user_return_notifiers(void) 466 { 467 unsigned int cpu = smp_processor_id(); 468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 469 470 if (msrs->registered) 471 kvm_on_user_return(&msrs->urn); 472 } 473 474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 475 { 476 return vcpu->arch.apic_base; 477 } 478 479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 480 { 481 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 482 } 483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 484 485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 486 { 487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 491 492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 493 return 1; 494 if (!msr_info->host_initiated) { 495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 496 return 1; 497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 498 return 1; 499 } 500 501 kvm_lapic_set_base(vcpu, msr_info->data); 502 kvm_recalculate_apic_map(vcpu->kvm); 503 return 0; 504 } 505 506 /* 507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 508 * 509 * Hardware virtualization extension instructions may fault if a reboot turns 510 * off virtualization while processes are running. Usually after catching the 511 * fault we just panic; during reboot instead the instruction is ignored. 512 */ 513 noinstr void kvm_spurious_fault(void) 514 { 515 /* Fault while not rebooting. We want the trace. */ 516 BUG_ON(!kvm_rebooting); 517 } 518 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 519 520 #define EXCPT_BENIGN 0 521 #define EXCPT_CONTRIBUTORY 1 522 #define EXCPT_PF 2 523 524 static int exception_class(int vector) 525 { 526 switch (vector) { 527 case PF_VECTOR: 528 return EXCPT_PF; 529 case DE_VECTOR: 530 case TS_VECTOR: 531 case NP_VECTOR: 532 case SS_VECTOR: 533 case GP_VECTOR: 534 return EXCPT_CONTRIBUTORY; 535 default: 536 break; 537 } 538 return EXCPT_BENIGN; 539 } 540 541 #define EXCPT_FAULT 0 542 #define EXCPT_TRAP 1 543 #define EXCPT_ABORT 2 544 #define EXCPT_INTERRUPT 3 545 #define EXCPT_DB 4 546 547 static int exception_type(int vector) 548 { 549 unsigned int mask; 550 551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 552 return EXCPT_INTERRUPT; 553 554 mask = 1 << vector; 555 556 /* 557 * #DBs can be trap-like or fault-like, the caller must check other CPU 558 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 559 */ 560 if (mask & (1 << DB_VECTOR)) 561 return EXCPT_DB; 562 563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 564 return EXCPT_TRAP; 565 566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 567 return EXCPT_ABORT; 568 569 /* Reserved exceptions will result in fault */ 570 return EXCPT_FAULT; 571 } 572 573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 574 struct kvm_queued_exception *ex) 575 { 576 if (!ex->has_payload) 577 return; 578 579 switch (ex->vector) { 580 case DB_VECTOR: 581 /* 582 * "Certain debug exceptions may clear bit 0-3. The 583 * remaining contents of the DR6 register are never 584 * cleared by the processor". 585 */ 586 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 587 /* 588 * In order to reflect the #DB exception payload in guest 589 * dr6, three components need to be considered: active low 590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 591 * DR6_BS and DR6_BT) 592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 593 * In the target guest dr6: 594 * FIXED_1 bits should always be set. 595 * Active low bits should be cleared if 1-setting in payload. 596 * Active high bits should be set if 1-setting in payload. 597 * 598 * Note, the payload is compatible with the pending debug 599 * exceptions/exit qualification under VMX, that active_low bits 600 * are active high in payload. 601 * So they need to be flipped for DR6. 602 */ 603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 604 vcpu->arch.dr6 |= ex->payload; 605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 606 607 /* 608 * The #DB payload is defined as compatible with the 'pending 609 * debug exceptions' field under VMX, not DR6. While bit 12 is 610 * defined in the 'pending debug exceptions' field (enabled 611 * breakpoint), it is reserved and must be zero in DR6. 612 */ 613 vcpu->arch.dr6 &= ~BIT(12); 614 break; 615 case PF_VECTOR: 616 vcpu->arch.cr2 = ex->payload; 617 break; 618 } 619 620 ex->has_payload = false; 621 ex->payload = 0; 622 } 623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 624 625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 626 bool has_error_code, u32 error_code, 627 bool has_payload, unsigned long payload) 628 { 629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 630 631 ex->vector = vector; 632 ex->injected = false; 633 ex->pending = true; 634 ex->has_error_code = has_error_code; 635 ex->error_code = error_code; 636 ex->has_payload = has_payload; 637 ex->payload = payload; 638 } 639 640 /* Forcibly leave the nested mode in cases like a vCPU reset */ 641 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 642 { 643 kvm_x86_ops.nested_ops->leave_nested(vcpu); 644 } 645 646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 647 unsigned nr, bool has_error, u32 error_code, 648 bool has_payload, unsigned long payload, bool reinject) 649 { 650 u32 prev_nr; 651 int class1, class2; 652 653 kvm_make_request(KVM_REQ_EVENT, vcpu); 654 655 /* 656 * If the exception is destined for L2 and isn't being reinjected, 657 * morph it to a VM-Exit if L1 wants to intercept the exception. A 658 * previously injected exception is not checked because it was checked 659 * when it was original queued, and re-checking is incorrect if _L1_ 660 * injected the exception, in which case it's exempt from interception. 661 */ 662 if (!reinject && is_guest_mode(vcpu) && 663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 665 has_payload, payload); 666 return; 667 } 668 669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 670 queue: 671 if (reinject) { 672 /* 673 * On VM-Entry, an exception can be pending if and only 674 * if event injection was blocked by nested_run_pending. 675 * In that case, however, vcpu_enter_guest() requests an 676 * immediate exit, and the guest shouldn't proceed far 677 * enough to need reinjection. 678 */ 679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 680 vcpu->arch.exception.injected = true; 681 if (WARN_ON_ONCE(has_payload)) { 682 /* 683 * A reinjected event has already 684 * delivered its payload. 685 */ 686 has_payload = false; 687 payload = 0; 688 } 689 } else { 690 vcpu->arch.exception.pending = true; 691 vcpu->arch.exception.injected = false; 692 } 693 vcpu->arch.exception.has_error_code = has_error; 694 vcpu->arch.exception.vector = nr; 695 vcpu->arch.exception.error_code = error_code; 696 vcpu->arch.exception.has_payload = has_payload; 697 vcpu->arch.exception.payload = payload; 698 if (!is_guest_mode(vcpu)) 699 kvm_deliver_exception_payload(vcpu, 700 &vcpu->arch.exception); 701 return; 702 } 703 704 /* to check exception */ 705 prev_nr = vcpu->arch.exception.vector; 706 if (prev_nr == DF_VECTOR) { 707 /* triple fault -> shutdown */ 708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 709 return; 710 } 711 class1 = exception_class(prev_nr); 712 class2 = exception_class(nr); 713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 715 /* 716 * Synthesize #DF. Clear the previously injected or pending 717 * exception so as not to incorrectly trigger shutdown. 718 */ 719 vcpu->arch.exception.injected = false; 720 vcpu->arch.exception.pending = false; 721 722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 723 } else { 724 /* replace previous exception with a new one in a hope 725 that instruction re-execution will regenerate lost 726 exception */ 727 goto queue; 728 } 729 } 730 731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 734 } 735 EXPORT_SYMBOL_GPL(kvm_queue_exception); 736 737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 738 { 739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 740 } 741 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 742 743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 744 unsigned long payload) 745 { 746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 747 } 748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 749 750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 751 u32 error_code, unsigned long payload) 752 { 753 kvm_multiple_exception(vcpu, nr, true, error_code, 754 true, payload, false); 755 } 756 757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 758 { 759 if (err) 760 kvm_inject_gp(vcpu, 0); 761 else 762 return kvm_skip_emulated_instruction(vcpu); 763 764 return 1; 765 } 766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 767 768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 769 { 770 if (err) { 771 kvm_inject_gp(vcpu, 0); 772 return 1; 773 } 774 775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 776 EMULTYPE_COMPLETE_USER_EXIT); 777 } 778 779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 780 { 781 ++vcpu->stat.pf_guest; 782 783 /* 784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 785 * whether or not L1 wants to intercept "regular" #PF. 786 */ 787 if (is_guest_mode(vcpu) && fault->async_page_fault) 788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 789 true, fault->error_code, 790 true, fault->address); 791 else 792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 793 fault->address); 794 } 795 796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 797 struct x86_exception *fault) 798 { 799 struct kvm_mmu *fault_mmu; 800 WARN_ON_ONCE(fault->vector != PF_VECTOR); 801 802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 803 vcpu->arch.walk_mmu; 804 805 /* 806 * Invalidate the TLB entry for the faulting address, if it exists, 807 * else the access will fault indefinitely (and to emulate hardware). 808 */ 809 if ((fault->error_code & PFERR_PRESENT_MASK) && 810 !(fault->error_code & PFERR_RSVD_MASK)) 811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 812 KVM_MMU_ROOT_CURRENT); 813 814 fault_mmu->inject_page_fault(vcpu, fault); 815 } 816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 817 818 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 819 { 820 atomic_inc(&vcpu->arch.nmi_queued); 821 kvm_make_request(KVM_REQ_NMI, vcpu); 822 } 823 824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 827 } 828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 829 830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 831 { 832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 833 } 834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 835 836 /* 837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 838 * a #GP and return false. 839 */ 840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 841 { 842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 843 return true; 844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 845 return false; 846 } 847 848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 849 { 850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 851 return true; 852 853 kvm_queue_exception(vcpu, UD_VECTOR); 854 return false; 855 } 856 EXPORT_SYMBOL_GPL(kvm_require_dr); 857 858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 859 { 860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 861 } 862 863 /* 864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 865 */ 866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 867 { 868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 870 gpa_t real_gpa; 871 int i; 872 int ret; 873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 874 875 /* 876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 877 * to an L1 GPA. 878 */ 879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 881 if (real_gpa == INVALID_GPA) 882 return 0; 883 884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 886 cr3 & GENMASK(11, 5), sizeof(pdpte)); 887 if (ret < 0) 888 return 0; 889 890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 891 if ((pdpte[i] & PT_PRESENT_MASK) && 892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 893 return 0; 894 } 895 } 896 897 /* 898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 899 * Shadow page roots need to be reconstructed instead. 900 */ 901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 903 904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 907 vcpu->arch.pdptrs_from_userspace = false; 908 909 return 1; 910 } 911 EXPORT_SYMBOL_GPL(load_pdptrs); 912 913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 914 { 915 #ifdef CONFIG_X86_64 916 if (cr0 & 0xffffffff00000000UL) 917 return false; 918 #endif 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return false; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return false; 925 926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 927 } 928 929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 930 { 931 /* 932 * CR0.WP is incorporated into the MMU role, but only for non-nested, 933 * indirect shadow MMUs. If paging is disabled, no updates are needed 934 * as there are no permission bits to emulate. If TDP is enabled, the 935 * MMU's metadata needs to be updated, e.g. so that emulating guest 936 * translations does the right thing, but there's no need to unload the 937 * root as CR0.WP doesn't affect SPTEs. 938 */ 939 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 940 if (!(cr0 & X86_CR0_PG)) 941 return; 942 943 if (tdp_enabled) { 944 kvm_init_mmu(vcpu); 945 return; 946 } 947 } 948 949 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 950 kvm_clear_async_pf_completion_queue(vcpu); 951 kvm_async_pf_hash_reset(vcpu); 952 953 /* 954 * Clearing CR0.PG is defined to flush the TLB from the guest's 955 * perspective. 956 */ 957 if (!(cr0 & X86_CR0_PG)) 958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 959 } 960 961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 962 kvm_mmu_reset_context(vcpu); 963 964 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 965 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) && 966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 968 } 969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 970 971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 972 { 973 unsigned long old_cr0 = kvm_read_cr0(vcpu); 974 975 if (!kvm_is_valid_cr0(vcpu, cr0)) 976 return 1; 977 978 cr0 |= X86_CR0_ET; 979 980 /* Write to CR0 reserved bits are ignored, even on Intel. */ 981 cr0 &= ~CR0_RESERVED_BITS; 982 983 #ifdef CONFIG_X86_64 984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 985 (cr0 & X86_CR0_PG)) { 986 int cs_db, cs_l; 987 988 if (!is_pae(vcpu)) 989 return 1; 990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 991 if (cs_l) 992 return 1; 993 } 994 #endif 995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if (!(cr0 & X86_CR0_PG) && 1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1002 return 1; 1003 1004 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1005 1006 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1007 1008 return 0; 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1011 1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1013 { 1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1015 } 1016 EXPORT_SYMBOL_GPL(kvm_lmsw); 1017 1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1019 { 1020 if (vcpu->arch.guest_state_protected) 1021 return; 1022 1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1027 1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1031 } 1032 1033 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1034 vcpu->arch.pkru != vcpu->arch.host_pkru && 1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1037 write_pkru(vcpu->arch.pkru); 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1040 1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1042 { 1043 if (vcpu->arch.guest_state_protected) 1044 return; 1045 1046 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1049 vcpu->arch.pkru = rdpkru(); 1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1051 write_pkru(vcpu->arch.host_pkru); 1052 } 1053 1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1055 1056 if (vcpu->arch.xcr0 != host_xcr0) 1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1058 1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1060 vcpu->arch.ia32_xss != host_xss) 1061 wrmsrl(MSR_IA32_XSS, host_xss); 1062 } 1063 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1066 1067 #ifdef CONFIG_X86_64 1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1069 { 1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1071 } 1072 #endif 1073 1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1075 { 1076 u64 xcr0 = xcr; 1077 u64 old_xcr0 = vcpu->arch.xcr0; 1078 u64 valid_bits; 1079 1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1081 if (index != XCR_XFEATURE_ENABLED_MASK) 1082 return 1; 1083 if (!(xcr0 & XFEATURE_MASK_FP)) 1084 return 1; 1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1086 return 1; 1087 1088 /* 1089 * Do not allow the guest to set bits that we do not support 1090 * saving. However, xcr0 bit 0 is always set, even if the 1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1092 */ 1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1094 if (xcr0 & ~valid_bits) 1095 return 1; 1096 1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1098 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1099 return 1; 1100 1101 if (xcr0 & XFEATURE_MASK_AVX512) { 1102 if (!(xcr0 & XFEATURE_MASK_YMM)) 1103 return 1; 1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1105 return 1; 1106 } 1107 1108 if ((xcr0 & XFEATURE_MASK_XTILE) && 1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1110 return 1; 1111 1112 vcpu->arch.xcr0 = xcr0; 1113 1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1115 kvm_update_cpuid_runtime(vcpu); 1116 return 0; 1117 } 1118 1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1120 { 1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 1128 return kvm_skip_emulated_instruction(vcpu); 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1131 1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1133 { 1134 if (cr4 & cr4_reserved_bits) 1135 return false; 1136 1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1138 return false; 1139 1140 return true; 1141 } 1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1143 1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1145 { 1146 return __kvm_is_valid_cr4(vcpu, cr4) && 1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1148 } 1149 1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1151 { 1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1153 kvm_mmu_reset_context(vcpu); 1154 1155 /* 1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1157 * according to the SDM; however, stale prev_roots could be reused 1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1161 * so fall through. 1162 */ 1163 if (!tdp_enabled && 1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1165 kvm_mmu_unload(vcpu); 1166 1167 /* 1168 * The TLB has to be flushed for all PCIDs if any of the following 1169 * (architecturally required) changes happen: 1170 * - CR4.PCIDE is changed from 1 to 0 1171 * - CR4.PGE is toggled 1172 * 1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1174 */ 1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1178 1179 /* 1180 * The TLB has to be flushed for the current PCID if any of the 1181 * following (architecturally required) changes happen: 1182 * - CR4.SMEP is changed from 0 to 1 1183 * - CR4.PAE is toggled 1184 */ 1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1188 1189 } 1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1191 1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1193 { 1194 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1195 1196 if (!kvm_is_valid_cr4(vcpu, cr4)) 1197 return 1; 1198 1199 if (is_long_mode(vcpu)) { 1200 if (!(cr4 & X86_CR4_PAE)) 1201 return 1; 1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1203 return 1; 1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1207 return 1; 1208 1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1212 return 1; 1213 } 1214 1215 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1216 1217 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1222 1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1224 { 1225 struct kvm_mmu *mmu = vcpu->arch.mmu; 1226 unsigned long roots_to_free = 0; 1227 int i; 1228 1229 /* 1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1232 * also via the emulator. KVM's TDP page tables are not in the scope of 1233 * the invalidation, but the guest's TLB entries need to be flushed as 1234 * the CPU may have cached entries in its TLB for the target PCID. 1235 */ 1236 if (unlikely(tdp_enabled)) { 1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1238 return; 1239 } 1240 1241 /* 1242 * If neither the current CR3 nor any of the prev_roots use the given 1243 * PCID, then nothing needs to be done here because a resync will 1244 * happen anyway before switching to any other CR3. 1245 */ 1246 if (kvm_get_active_pcid(vcpu) == pcid) { 1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1249 } 1250 1251 /* 1252 * If PCID is disabled, there is no need to free prev_roots even if the 1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1254 * with PCIDE=0. 1255 */ 1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1257 return; 1258 1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1262 1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1264 } 1265 1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1267 { 1268 bool skip_tlb_flush = false; 1269 unsigned long pcid = 0; 1270 #ifdef CONFIG_X86_64 1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1273 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1274 pcid = cr3 & X86_CR3_PCID_MASK; 1275 } 1276 #endif 1277 1278 /* PDPTRs are always reloaded for PAE paging. */ 1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1280 goto handle_tlb_flush; 1281 1282 /* 1283 * Do not condition the GPA check on long mode, this helper is used to 1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1285 * the current vCPU mode is accurate. 1286 */ 1287 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1288 return 1; 1289 1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1291 return 1; 1292 1293 if (cr3 != kvm_read_cr3(vcpu)) 1294 kvm_mmu_new_pgd(vcpu, cr3); 1295 1296 vcpu->arch.cr3 = cr3; 1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1299 1300 handle_tlb_flush: 1301 /* 1302 * A load of CR3 that flushes the TLB flushes only the current PCID, 1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1304 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1305 * and it's impossible to use a non-zero PCID when PCID is disabled, 1306 * i.e. only PCID=0 can be relevant. 1307 */ 1308 if (!skip_tlb_flush) 1309 kvm_invalidate_pcid(vcpu, pcid); 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1314 1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1316 { 1317 if (cr8 & CR8_RESERVED_BITS) 1318 return 1; 1319 if (lapic_in_kernel(vcpu)) 1320 kvm_lapic_set_tpr(vcpu, cr8); 1321 else 1322 vcpu->arch.cr8 = cr8; 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1326 1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1328 { 1329 if (lapic_in_kernel(vcpu)) 1330 return kvm_lapic_get_cr8(vcpu); 1331 else 1332 return vcpu->arch.cr8; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1335 1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1337 { 1338 int i; 1339 1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1341 for (i = 0; i < KVM_NR_DB_REGS; i++) 1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1343 } 1344 } 1345 1346 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1347 { 1348 unsigned long dr7; 1349 1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1351 dr7 = vcpu->arch.guest_debug_dr7; 1352 else 1353 dr7 = vcpu->arch.dr7; 1354 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1356 if (dr7 & DR7_BP_EN_MASK) 1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1358 } 1359 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1360 1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1362 { 1363 u64 fixed = DR6_FIXED_1; 1364 1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1366 fixed |= DR6_RTM; 1367 1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1369 fixed |= DR6_BUS_LOCK; 1370 return fixed; 1371 } 1372 1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1374 { 1375 size_t size = ARRAY_SIZE(vcpu->arch.db); 1376 1377 switch (dr) { 1378 case 0 ... 3: 1379 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1381 vcpu->arch.eff_db[dr] = val; 1382 break; 1383 case 4: 1384 case 6: 1385 if (!kvm_dr6_valid(val)) 1386 return 1; /* #GP */ 1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1388 break; 1389 case 5: 1390 default: /* 7 */ 1391 if (!kvm_dr7_valid(val)) 1392 return 1; /* #GP */ 1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1394 kvm_update_dr7(vcpu); 1395 break; 1396 } 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_set_dr); 1401 1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1403 { 1404 size_t size = ARRAY_SIZE(vcpu->arch.db); 1405 1406 switch (dr) { 1407 case 0 ... 3: 1408 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1409 break; 1410 case 4: 1411 case 6: 1412 *val = vcpu->arch.dr6; 1413 break; 1414 case 5: 1415 default: /* 7 */ 1416 *val = vcpu->arch.dr7; 1417 break; 1418 } 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_get_dr); 1421 1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1423 { 1424 u32 ecx = kvm_rcx_read(vcpu); 1425 u64 data; 1426 1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1428 kvm_inject_gp(vcpu, 0); 1429 return 1; 1430 } 1431 1432 kvm_rax_write(vcpu, (u32)data); 1433 kvm_rdx_write(vcpu, data >> 32); 1434 return kvm_skip_emulated_instruction(vcpu); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1437 1438 /* 1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1443 * MSRs that KVM emulates without strictly requiring host support. 1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1446 * msrs_to_save and emulated_msrs. 1447 */ 1448 1449 static const u32 msrs_to_save_base[] = { 1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1451 MSR_STAR, 1452 #ifdef CONFIG_X86_64 1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1454 #endif 1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1464 MSR_IA32_UMWAIT_CONTROL, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static const u32 msrs_to_save_pmu[] = { 1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1475 1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1485 1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1488 1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1494 1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1498 }; 1499 1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1501 ARRAY_SIZE(msrs_to_save_pmu)]; 1502 static unsigned num_msrs_to_save; 1503 1504 static const u32 emulated_msrs_all[] = { 1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1507 1508 #ifdef CONFIG_KVM_HYPERV 1509 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1510 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1511 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1512 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1513 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1514 HV_X64_MSR_RESET, 1515 HV_X64_MSR_VP_INDEX, 1516 HV_X64_MSR_VP_RUNTIME, 1517 HV_X64_MSR_SCONTROL, 1518 HV_X64_MSR_STIMER0_CONFIG, 1519 HV_X64_MSR_VP_ASSIST_PAGE, 1520 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1521 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1522 HV_X64_MSR_SYNDBG_OPTIONS, 1523 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1524 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1525 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1526 #endif 1527 1528 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1529 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1530 1531 MSR_IA32_TSC_ADJUST, 1532 MSR_IA32_TSC_DEADLINE, 1533 MSR_IA32_ARCH_CAPABILITIES, 1534 MSR_IA32_PERF_CAPABILITIES, 1535 MSR_IA32_MISC_ENABLE, 1536 MSR_IA32_MCG_STATUS, 1537 MSR_IA32_MCG_CTL, 1538 MSR_IA32_MCG_EXT_CTL, 1539 MSR_IA32_SMBASE, 1540 MSR_SMI_COUNT, 1541 MSR_PLATFORM_INFO, 1542 MSR_MISC_FEATURES_ENABLES, 1543 MSR_AMD64_VIRT_SPEC_CTRL, 1544 MSR_AMD64_TSC_RATIO, 1545 MSR_IA32_POWER_CTL, 1546 MSR_IA32_UCODE_REV, 1547 1548 /* 1549 * KVM always supports the "true" VMX control MSRs, even if the host 1550 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1551 * doesn't strictly require them to exist in the host (ignoring that 1552 * KVM would refuse to load in the first place if the core set of MSRs 1553 * aren't supported). 1554 */ 1555 MSR_IA32_VMX_BASIC, 1556 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1557 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1558 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1559 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1560 MSR_IA32_VMX_MISC, 1561 MSR_IA32_VMX_CR0_FIXED0, 1562 MSR_IA32_VMX_CR4_FIXED0, 1563 MSR_IA32_VMX_VMCS_ENUM, 1564 MSR_IA32_VMX_PROCBASED_CTLS2, 1565 MSR_IA32_VMX_EPT_VPID_CAP, 1566 MSR_IA32_VMX_VMFUNC, 1567 1568 MSR_K7_HWCR, 1569 MSR_KVM_POLL_CONTROL, 1570 }; 1571 1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1573 static unsigned num_emulated_msrs; 1574 1575 /* 1576 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1577 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1578 * feature MSRs, but are handled separately to allow expedited lookups. 1579 */ 1580 static const u32 msr_based_features_all_except_vmx[] = { 1581 MSR_AMD64_DE_CFG, 1582 MSR_IA32_UCODE_REV, 1583 MSR_IA32_ARCH_CAPABILITIES, 1584 MSR_IA32_PERF_CAPABILITIES, 1585 }; 1586 1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1588 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1589 static unsigned int num_msr_based_features; 1590 1591 /* 1592 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1593 * patch, are immutable once the vCPU model is defined. 1594 */ 1595 static bool kvm_is_immutable_feature_msr(u32 msr) 1596 { 1597 int i; 1598 1599 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1600 return true; 1601 1602 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1603 if (msr == msr_based_features_all_except_vmx[i]) 1604 return msr != MSR_IA32_UCODE_REV; 1605 } 1606 1607 return false; 1608 } 1609 1610 /* 1611 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1612 * does not yet virtualize. These include: 1613 * 10 - MISC_PACKAGE_CTRLS 1614 * 11 - ENERGY_FILTERING_CTL 1615 * 12 - DOITM 1616 * 18 - FB_CLEAR_CTRL 1617 * 21 - XAPIC_DISABLE_STATUS 1618 * 23 - OVERCLOCKING_STATUS 1619 */ 1620 1621 #define KVM_SUPPORTED_ARCH_CAP \ 1622 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1623 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1624 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1625 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1626 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO) 1627 1628 static u64 kvm_get_arch_capabilities(void) 1629 { 1630 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1631 1632 /* 1633 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1634 * the nested hypervisor runs with NX huge pages. If it is not, 1635 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1636 * L1 guests, so it need not worry about its own (L2) guests. 1637 */ 1638 data |= ARCH_CAP_PSCHANGE_MC_NO; 1639 1640 /* 1641 * If we're doing cache flushes (either "always" or "cond") 1642 * we will do one whenever the guest does a vmlaunch/vmresume. 1643 * If an outer hypervisor is doing the cache flush for us 1644 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1645 * capability to the guest too, and if EPT is disabled we're not 1646 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1647 * require a nested hypervisor to do a flush of its own. 1648 */ 1649 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1650 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1651 1652 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1653 data |= ARCH_CAP_RDCL_NO; 1654 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1655 data |= ARCH_CAP_SSB_NO; 1656 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1657 data |= ARCH_CAP_MDS_NO; 1658 1659 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1660 /* 1661 * If RTM=0 because the kernel has disabled TSX, the host might 1662 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1663 * and therefore knows that there cannot be TAA) but keep 1664 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1665 * and we want to allow migrating those guests to tsx=off hosts. 1666 */ 1667 data &= ~ARCH_CAP_TAA_NO; 1668 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1669 data |= ARCH_CAP_TAA_NO; 1670 } else { 1671 /* 1672 * Nothing to do here; we emulate TSX_CTRL if present on the 1673 * host so the guest can choose between disabling TSX or 1674 * using VERW to clear CPU buffers. 1675 */ 1676 } 1677 1678 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1679 data |= ARCH_CAP_GDS_NO; 1680 1681 return data; 1682 } 1683 1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1685 { 1686 switch (msr->index) { 1687 case MSR_IA32_ARCH_CAPABILITIES: 1688 msr->data = kvm_get_arch_capabilities(); 1689 break; 1690 case MSR_IA32_PERF_CAPABILITIES: 1691 msr->data = kvm_caps.supported_perf_cap; 1692 break; 1693 case MSR_IA32_UCODE_REV: 1694 rdmsrl_safe(msr->index, &msr->data); 1695 break; 1696 default: 1697 return static_call(kvm_x86_get_msr_feature)(msr); 1698 } 1699 return 0; 1700 } 1701 1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1703 { 1704 struct kvm_msr_entry msr; 1705 int r; 1706 1707 msr.index = index; 1708 r = kvm_get_msr_feature(&msr); 1709 1710 if (r == KVM_MSR_RET_INVALID) { 1711 /* Unconditionally clear the output for simplicity */ 1712 *data = 0; 1713 if (kvm_msr_ignored_check(index, 0, false)) 1714 r = 0; 1715 } 1716 1717 if (r) 1718 return r; 1719 1720 *data = msr.data; 1721 1722 return 0; 1723 } 1724 1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1726 { 1727 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1728 return false; 1729 1730 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1731 return false; 1732 1733 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1734 return false; 1735 1736 if (efer & (EFER_LME | EFER_LMA) && 1737 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1738 return false; 1739 1740 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1741 return false; 1742 1743 return true; 1744 1745 } 1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1747 { 1748 if (efer & efer_reserved_bits) 1749 return false; 1750 1751 return __kvm_valid_efer(vcpu, efer); 1752 } 1753 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1754 1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1756 { 1757 u64 old_efer = vcpu->arch.efer; 1758 u64 efer = msr_info->data; 1759 int r; 1760 1761 if (efer & efer_reserved_bits) 1762 return 1; 1763 1764 if (!msr_info->host_initiated) { 1765 if (!__kvm_valid_efer(vcpu, efer)) 1766 return 1; 1767 1768 if (is_paging(vcpu) && 1769 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1770 return 1; 1771 } 1772 1773 efer &= ~EFER_LMA; 1774 efer |= vcpu->arch.efer & EFER_LMA; 1775 1776 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1777 if (r) { 1778 WARN_ON(r > 0); 1779 return r; 1780 } 1781 1782 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1783 kvm_mmu_reset_context(vcpu); 1784 1785 return 0; 1786 } 1787 1788 void kvm_enable_efer_bits(u64 mask) 1789 { 1790 efer_reserved_bits &= ~mask; 1791 } 1792 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1793 1794 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1795 { 1796 struct kvm_x86_msr_filter *msr_filter; 1797 struct msr_bitmap_range *ranges; 1798 struct kvm *kvm = vcpu->kvm; 1799 bool allowed; 1800 int idx; 1801 u32 i; 1802 1803 /* x2APIC MSRs do not support filtering. */ 1804 if (index >= 0x800 && index <= 0x8ff) 1805 return true; 1806 1807 idx = srcu_read_lock(&kvm->srcu); 1808 1809 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1810 if (!msr_filter) { 1811 allowed = true; 1812 goto out; 1813 } 1814 1815 allowed = msr_filter->default_allow; 1816 ranges = msr_filter->ranges; 1817 1818 for (i = 0; i < msr_filter->count; i++) { 1819 u32 start = ranges[i].base; 1820 u32 end = start + ranges[i].nmsrs; 1821 u32 flags = ranges[i].flags; 1822 unsigned long *bitmap = ranges[i].bitmap; 1823 1824 if ((index >= start) && (index < end) && (flags & type)) { 1825 allowed = test_bit(index - start, bitmap); 1826 break; 1827 } 1828 } 1829 1830 out: 1831 srcu_read_unlock(&kvm->srcu, idx); 1832 1833 return allowed; 1834 } 1835 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1836 1837 /* 1838 * Write @data into the MSR specified by @index. Select MSR specific fault 1839 * checks are bypassed if @host_initiated is %true. 1840 * Returns 0 on success, non-0 otherwise. 1841 * Assumes vcpu_load() was already called. 1842 */ 1843 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1844 bool host_initiated) 1845 { 1846 struct msr_data msr; 1847 1848 switch (index) { 1849 case MSR_FS_BASE: 1850 case MSR_GS_BASE: 1851 case MSR_KERNEL_GS_BASE: 1852 case MSR_CSTAR: 1853 case MSR_LSTAR: 1854 if (is_noncanonical_address(data, vcpu)) 1855 return 1; 1856 break; 1857 case MSR_IA32_SYSENTER_EIP: 1858 case MSR_IA32_SYSENTER_ESP: 1859 /* 1860 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1861 * non-canonical address is written on Intel but not on 1862 * AMD (which ignores the top 32-bits, because it does 1863 * not implement 64-bit SYSENTER). 1864 * 1865 * 64-bit code should hence be able to write a non-canonical 1866 * value on AMD. Making the address canonical ensures that 1867 * vmentry does not fail on Intel after writing a non-canonical 1868 * value, and that something deterministic happens if the guest 1869 * invokes 64-bit SYSENTER. 1870 */ 1871 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1872 break; 1873 case MSR_TSC_AUX: 1874 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1875 return 1; 1876 1877 if (!host_initiated && 1878 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1879 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1880 return 1; 1881 1882 /* 1883 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1884 * incomplete and conflicting architectural behavior. Current 1885 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1886 * reserved and always read as zeros. Enforce Intel's reserved 1887 * bits check if and only if the guest CPU is Intel, and clear 1888 * the bits in all other cases. This ensures cross-vendor 1889 * migration will provide consistent behavior for the guest. 1890 */ 1891 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1892 return 1; 1893 1894 data = (u32)data; 1895 break; 1896 } 1897 1898 msr.data = data; 1899 msr.index = index; 1900 msr.host_initiated = host_initiated; 1901 1902 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1903 } 1904 1905 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1906 u32 index, u64 data, bool host_initiated) 1907 { 1908 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1909 1910 if (ret == KVM_MSR_RET_INVALID) 1911 if (kvm_msr_ignored_check(index, data, true)) 1912 ret = 0; 1913 1914 return ret; 1915 } 1916 1917 /* 1918 * Read the MSR specified by @index into @data. Select MSR specific fault 1919 * checks are bypassed if @host_initiated is %true. 1920 * Returns 0 on success, non-0 otherwise. 1921 * Assumes vcpu_load() was already called. 1922 */ 1923 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1924 bool host_initiated) 1925 { 1926 struct msr_data msr; 1927 int ret; 1928 1929 switch (index) { 1930 case MSR_TSC_AUX: 1931 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1932 return 1; 1933 1934 if (!host_initiated && 1935 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1936 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1937 return 1; 1938 break; 1939 } 1940 1941 msr.index = index; 1942 msr.host_initiated = host_initiated; 1943 1944 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1945 if (!ret) 1946 *data = msr.data; 1947 return ret; 1948 } 1949 1950 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1951 u32 index, u64 *data, bool host_initiated) 1952 { 1953 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1954 1955 if (ret == KVM_MSR_RET_INVALID) { 1956 /* Unconditionally clear *data for simplicity */ 1957 *data = 0; 1958 if (kvm_msr_ignored_check(index, 0, false)) 1959 ret = 0; 1960 } 1961 1962 return ret; 1963 } 1964 1965 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1966 { 1967 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1968 return KVM_MSR_RET_FILTERED; 1969 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1970 } 1971 1972 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1973 { 1974 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1975 return KVM_MSR_RET_FILTERED; 1976 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1977 } 1978 1979 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1980 { 1981 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1982 } 1983 EXPORT_SYMBOL_GPL(kvm_get_msr); 1984 1985 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1986 { 1987 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1988 } 1989 EXPORT_SYMBOL_GPL(kvm_set_msr); 1990 1991 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1992 { 1993 if (!vcpu->run->msr.error) { 1994 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1995 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1996 } 1997 } 1998 1999 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 2000 { 2001 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2002 } 2003 2004 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2005 { 2006 complete_userspace_rdmsr(vcpu); 2007 return complete_emulated_msr_access(vcpu); 2008 } 2009 2010 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2011 { 2012 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2013 } 2014 2015 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2016 { 2017 complete_userspace_rdmsr(vcpu); 2018 return complete_fast_msr_access(vcpu); 2019 } 2020 2021 static u64 kvm_msr_reason(int r) 2022 { 2023 switch (r) { 2024 case KVM_MSR_RET_INVALID: 2025 return KVM_MSR_EXIT_REASON_UNKNOWN; 2026 case KVM_MSR_RET_FILTERED: 2027 return KVM_MSR_EXIT_REASON_FILTER; 2028 default: 2029 return KVM_MSR_EXIT_REASON_INVAL; 2030 } 2031 } 2032 2033 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2034 u32 exit_reason, u64 data, 2035 int (*completion)(struct kvm_vcpu *vcpu), 2036 int r) 2037 { 2038 u64 msr_reason = kvm_msr_reason(r); 2039 2040 /* Check if the user wanted to know about this MSR fault */ 2041 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2042 return 0; 2043 2044 vcpu->run->exit_reason = exit_reason; 2045 vcpu->run->msr.error = 0; 2046 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2047 vcpu->run->msr.reason = msr_reason; 2048 vcpu->run->msr.index = index; 2049 vcpu->run->msr.data = data; 2050 vcpu->arch.complete_userspace_io = completion; 2051 2052 return 1; 2053 } 2054 2055 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2056 { 2057 u32 ecx = kvm_rcx_read(vcpu); 2058 u64 data; 2059 int r; 2060 2061 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2062 2063 if (!r) { 2064 trace_kvm_msr_read(ecx, data); 2065 2066 kvm_rax_write(vcpu, data & -1u); 2067 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2068 } else { 2069 /* MSR read failed? See if we should ask user space */ 2070 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2071 complete_fast_rdmsr, r)) 2072 return 0; 2073 trace_kvm_msr_read_ex(ecx); 2074 } 2075 2076 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2077 } 2078 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2079 2080 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2081 { 2082 u32 ecx = kvm_rcx_read(vcpu); 2083 u64 data = kvm_read_edx_eax(vcpu); 2084 int r; 2085 2086 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2087 2088 if (!r) { 2089 trace_kvm_msr_write(ecx, data); 2090 } else { 2091 /* MSR write failed? See if we should ask user space */ 2092 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2093 complete_fast_msr_access, r)) 2094 return 0; 2095 /* Signal all other negative errors to userspace */ 2096 if (r < 0) 2097 return r; 2098 trace_kvm_msr_write_ex(ecx, data); 2099 } 2100 2101 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2102 } 2103 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2104 2105 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2106 { 2107 return kvm_skip_emulated_instruction(vcpu); 2108 } 2109 2110 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2111 { 2112 /* Treat an INVD instruction as a NOP and just skip it. */ 2113 return kvm_emulate_as_nop(vcpu); 2114 } 2115 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2116 2117 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2118 { 2119 kvm_queue_exception(vcpu, UD_VECTOR); 2120 return 1; 2121 } 2122 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2123 2124 2125 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2126 { 2127 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2128 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2129 return kvm_handle_invalid_op(vcpu); 2130 2131 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2132 return kvm_emulate_as_nop(vcpu); 2133 } 2134 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2135 { 2136 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2137 } 2138 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2139 2140 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2141 { 2142 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2143 } 2144 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2145 2146 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2147 { 2148 xfer_to_guest_mode_prepare(); 2149 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2150 xfer_to_guest_mode_work_pending(); 2151 } 2152 2153 /* 2154 * The fast path for frequent and performance sensitive wrmsr emulation, 2155 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2156 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2157 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2158 * other cases which must be called after interrupts are enabled on the host. 2159 */ 2160 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2161 { 2162 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2163 return 1; 2164 2165 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2166 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2167 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2168 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2169 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2170 2171 return 1; 2172 } 2173 2174 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2175 { 2176 if (!kvm_can_use_hv_timer(vcpu)) 2177 return 1; 2178 2179 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2180 return 0; 2181 } 2182 2183 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2184 { 2185 u32 msr = kvm_rcx_read(vcpu); 2186 u64 data; 2187 fastpath_t ret = EXIT_FASTPATH_NONE; 2188 2189 kvm_vcpu_srcu_read_lock(vcpu); 2190 2191 switch (msr) { 2192 case APIC_BASE_MSR + (APIC_ICR >> 4): 2193 data = kvm_read_edx_eax(vcpu); 2194 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2195 kvm_skip_emulated_instruction(vcpu); 2196 ret = EXIT_FASTPATH_EXIT_HANDLED; 2197 } 2198 break; 2199 case MSR_IA32_TSC_DEADLINE: 2200 data = kvm_read_edx_eax(vcpu); 2201 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2202 kvm_skip_emulated_instruction(vcpu); 2203 ret = EXIT_FASTPATH_REENTER_GUEST; 2204 } 2205 break; 2206 default: 2207 break; 2208 } 2209 2210 if (ret != EXIT_FASTPATH_NONE) 2211 trace_kvm_msr_write(msr, data); 2212 2213 kvm_vcpu_srcu_read_unlock(vcpu); 2214 2215 return ret; 2216 } 2217 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2218 2219 /* 2220 * Adapt set_msr() to msr_io()'s calling convention 2221 */ 2222 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2223 { 2224 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2225 } 2226 2227 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2228 { 2229 u64 val; 2230 2231 /* 2232 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2233 * not support modifying the guest vCPU model on the fly, e.g. changing 2234 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2235 * writes of the same value, e.g. to allow userspace to blindly stuff 2236 * all MSRs when emulating RESET. 2237 */ 2238 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2239 if (do_get_msr(vcpu, index, &val) || *data != val) 2240 return -EINVAL; 2241 2242 return 0; 2243 } 2244 2245 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2246 } 2247 2248 #ifdef CONFIG_X86_64 2249 struct pvclock_clock { 2250 int vclock_mode; 2251 u64 cycle_last; 2252 u64 mask; 2253 u32 mult; 2254 u32 shift; 2255 u64 base_cycles; 2256 u64 offset; 2257 }; 2258 2259 struct pvclock_gtod_data { 2260 seqcount_t seq; 2261 2262 struct pvclock_clock clock; /* extract of a clocksource struct */ 2263 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2264 2265 ktime_t offs_boot; 2266 u64 wall_time_sec; 2267 }; 2268 2269 static struct pvclock_gtod_data pvclock_gtod_data; 2270 2271 static void update_pvclock_gtod(struct timekeeper *tk) 2272 { 2273 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2274 2275 write_seqcount_begin(&vdata->seq); 2276 2277 /* copy pvclock gtod data */ 2278 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2279 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2280 vdata->clock.mask = tk->tkr_mono.mask; 2281 vdata->clock.mult = tk->tkr_mono.mult; 2282 vdata->clock.shift = tk->tkr_mono.shift; 2283 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2284 vdata->clock.offset = tk->tkr_mono.base; 2285 2286 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2287 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2288 vdata->raw_clock.mask = tk->tkr_raw.mask; 2289 vdata->raw_clock.mult = tk->tkr_raw.mult; 2290 vdata->raw_clock.shift = tk->tkr_raw.shift; 2291 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2292 vdata->raw_clock.offset = tk->tkr_raw.base; 2293 2294 vdata->wall_time_sec = tk->xtime_sec; 2295 2296 vdata->offs_boot = tk->offs_boot; 2297 2298 write_seqcount_end(&vdata->seq); 2299 } 2300 2301 static s64 get_kvmclock_base_ns(void) 2302 { 2303 /* Count up from boot time, but with the frequency of the raw clock. */ 2304 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2305 } 2306 #else 2307 static s64 get_kvmclock_base_ns(void) 2308 { 2309 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2310 return ktime_get_boottime_ns(); 2311 } 2312 #endif 2313 2314 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2315 { 2316 int version; 2317 int r; 2318 struct pvclock_wall_clock wc; 2319 u32 wc_sec_hi; 2320 u64 wall_nsec; 2321 2322 if (!wall_clock) 2323 return; 2324 2325 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2326 if (r) 2327 return; 2328 2329 if (version & 1) 2330 ++version; /* first time write, random junk */ 2331 2332 ++version; 2333 2334 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2335 return; 2336 2337 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2338 2339 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2340 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2341 wc.version = version; 2342 2343 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2344 2345 if (sec_hi_ofs) { 2346 wc_sec_hi = wall_nsec >> 32; 2347 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2348 &wc_sec_hi, sizeof(wc_sec_hi)); 2349 } 2350 2351 version++; 2352 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2353 } 2354 2355 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2356 bool old_msr, bool host_initiated) 2357 { 2358 struct kvm_arch *ka = &vcpu->kvm->arch; 2359 2360 if (vcpu->vcpu_id == 0 && !host_initiated) { 2361 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2362 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2363 2364 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2365 } 2366 2367 vcpu->arch.time = system_time; 2368 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2369 2370 /* we verify if the enable bit is set... */ 2371 if (system_time & 1) 2372 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2373 sizeof(struct pvclock_vcpu_time_info)); 2374 else 2375 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2376 2377 return; 2378 } 2379 2380 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2381 { 2382 do_shl32_div32(dividend, divisor); 2383 return dividend; 2384 } 2385 2386 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2387 s8 *pshift, u32 *pmultiplier) 2388 { 2389 uint64_t scaled64; 2390 int32_t shift = 0; 2391 uint64_t tps64; 2392 uint32_t tps32; 2393 2394 tps64 = base_hz; 2395 scaled64 = scaled_hz; 2396 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2397 tps64 >>= 1; 2398 shift--; 2399 } 2400 2401 tps32 = (uint32_t)tps64; 2402 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2403 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2404 scaled64 >>= 1; 2405 else 2406 tps32 <<= 1; 2407 shift++; 2408 } 2409 2410 *pshift = shift; 2411 *pmultiplier = div_frac(scaled64, tps32); 2412 } 2413 2414 #ifdef CONFIG_X86_64 2415 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2416 #endif 2417 2418 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2419 static unsigned long max_tsc_khz; 2420 2421 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2422 { 2423 u64 v = (u64)khz * (1000000 + ppm); 2424 do_div(v, 1000000); 2425 return v; 2426 } 2427 2428 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2429 2430 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2431 { 2432 u64 ratio; 2433 2434 /* Guest TSC same frequency as host TSC? */ 2435 if (!scale) { 2436 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2437 return 0; 2438 } 2439 2440 /* TSC scaling supported? */ 2441 if (!kvm_caps.has_tsc_control) { 2442 if (user_tsc_khz > tsc_khz) { 2443 vcpu->arch.tsc_catchup = 1; 2444 vcpu->arch.tsc_always_catchup = 1; 2445 return 0; 2446 } else { 2447 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2448 return -1; 2449 } 2450 } 2451 2452 /* TSC scaling required - calculate ratio */ 2453 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2454 user_tsc_khz, tsc_khz); 2455 2456 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2457 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2458 user_tsc_khz); 2459 return -1; 2460 } 2461 2462 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2463 return 0; 2464 } 2465 2466 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2467 { 2468 u32 thresh_lo, thresh_hi; 2469 int use_scaling = 0; 2470 2471 /* tsc_khz can be zero if TSC calibration fails */ 2472 if (user_tsc_khz == 0) { 2473 /* set tsc_scaling_ratio to a safe value */ 2474 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2475 return -1; 2476 } 2477 2478 /* Compute a scale to convert nanoseconds in TSC cycles */ 2479 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2480 &vcpu->arch.virtual_tsc_shift, 2481 &vcpu->arch.virtual_tsc_mult); 2482 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2483 2484 /* 2485 * Compute the variation in TSC rate which is acceptable 2486 * within the range of tolerance and decide if the 2487 * rate being applied is within that bounds of the hardware 2488 * rate. If so, no scaling or compensation need be done. 2489 */ 2490 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2491 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2492 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2493 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2494 user_tsc_khz, thresh_lo, thresh_hi); 2495 use_scaling = 1; 2496 } 2497 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2498 } 2499 2500 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2501 { 2502 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2503 vcpu->arch.virtual_tsc_mult, 2504 vcpu->arch.virtual_tsc_shift); 2505 tsc += vcpu->arch.this_tsc_write; 2506 return tsc; 2507 } 2508 2509 #ifdef CONFIG_X86_64 2510 static inline int gtod_is_based_on_tsc(int mode) 2511 { 2512 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2513 } 2514 #endif 2515 2516 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2517 { 2518 #ifdef CONFIG_X86_64 2519 struct kvm_arch *ka = &vcpu->kvm->arch; 2520 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2521 2522 /* 2523 * To use the masterclock, the host clocksource must be based on TSC 2524 * and all vCPUs must have matching TSCs. Note, the count for matching 2525 * vCPUs doesn't include the reference vCPU, hence "+1". 2526 */ 2527 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2528 atomic_read(&vcpu->kvm->online_vcpus)) && 2529 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2530 2531 /* 2532 * Request a masterclock update if the masterclock needs to be toggled 2533 * on/off, or when starting a new generation and the masterclock is 2534 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2535 * taken _after_ the new generation is created). 2536 */ 2537 if ((ka->use_master_clock && new_generation) || 2538 (ka->use_master_clock != use_master_clock)) 2539 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2540 2541 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2542 atomic_read(&vcpu->kvm->online_vcpus), 2543 ka->use_master_clock, gtod->clock.vclock_mode); 2544 #endif 2545 } 2546 2547 /* 2548 * Multiply tsc by a fixed point number represented by ratio. 2549 * 2550 * The most significant 64-N bits (mult) of ratio represent the 2551 * integral part of the fixed point number; the remaining N bits 2552 * (frac) represent the fractional part, ie. ratio represents a fixed 2553 * point number (mult + frac * 2^(-N)). 2554 * 2555 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2556 */ 2557 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2558 { 2559 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2560 } 2561 2562 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2563 { 2564 u64 _tsc = tsc; 2565 2566 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2567 _tsc = __scale_tsc(ratio, tsc); 2568 2569 return _tsc; 2570 } 2571 2572 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2573 { 2574 u64 tsc; 2575 2576 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2577 2578 return target_tsc - tsc; 2579 } 2580 2581 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2582 { 2583 return vcpu->arch.l1_tsc_offset + 2584 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2585 } 2586 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2587 2588 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2589 { 2590 u64 nested_offset; 2591 2592 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2593 nested_offset = l1_offset; 2594 else 2595 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2596 kvm_caps.tsc_scaling_ratio_frac_bits); 2597 2598 nested_offset += l2_offset; 2599 return nested_offset; 2600 } 2601 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2602 2603 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2604 { 2605 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2606 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2607 kvm_caps.tsc_scaling_ratio_frac_bits); 2608 2609 return l1_multiplier; 2610 } 2611 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2612 2613 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2614 { 2615 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2616 vcpu->arch.l1_tsc_offset, 2617 l1_offset); 2618 2619 vcpu->arch.l1_tsc_offset = l1_offset; 2620 2621 /* 2622 * If we are here because L1 chose not to trap WRMSR to TSC then 2623 * according to the spec this should set L1's TSC (as opposed to 2624 * setting L1's offset for L2). 2625 */ 2626 if (is_guest_mode(vcpu)) 2627 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2628 l1_offset, 2629 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2630 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2631 else 2632 vcpu->arch.tsc_offset = l1_offset; 2633 2634 static_call(kvm_x86_write_tsc_offset)(vcpu); 2635 } 2636 2637 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2638 { 2639 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2640 2641 /* Userspace is changing the multiplier while L2 is active */ 2642 if (is_guest_mode(vcpu)) 2643 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2644 l1_multiplier, 2645 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2646 else 2647 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2648 2649 if (kvm_caps.has_tsc_control) 2650 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2651 } 2652 2653 static inline bool kvm_check_tsc_unstable(void) 2654 { 2655 #ifdef CONFIG_X86_64 2656 /* 2657 * TSC is marked unstable when we're running on Hyper-V, 2658 * 'TSC page' clocksource is good. 2659 */ 2660 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2661 return false; 2662 #endif 2663 return check_tsc_unstable(); 2664 } 2665 2666 /* 2667 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2668 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2669 * participates in. 2670 */ 2671 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2672 u64 ns, bool matched) 2673 { 2674 struct kvm *kvm = vcpu->kvm; 2675 2676 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2677 2678 /* 2679 * We also track th most recent recorded KHZ, write and time to 2680 * allow the matching interval to be extended at each write. 2681 */ 2682 kvm->arch.last_tsc_nsec = ns; 2683 kvm->arch.last_tsc_write = tsc; 2684 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2685 kvm->arch.last_tsc_offset = offset; 2686 2687 vcpu->arch.last_guest_tsc = tsc; 2688 2689 kvm_vcpu_write_tsc_offset(vcpu, offset); 2690 2691 if (!matched) { 2692 /* 2693 * We split periods of matched TSC writes into generations. 2694 * For each generation, we track the original measured 2695 * nanosecond time, offset, and write, so if TSCs are in 2696 * sync, we can match exact offset, and if not, we can match 2697 * exact software computation in compute_guest_tsc() 2698 * 2699 * These values are tracked in kvm->arch.cur_xxx variables. 2700 */ 2701 kvm->arch.cur_tsc_generation++; 2702 kvm->arch.cur_tsc_nsec = ns; 2703 kvm->arch.cur_tsc_write = tsc; 2704 kvm->arch.cur_tsc_offset = offset; 2705 kvm->arch.nr_vcpus_matched_tsc = 0; 2706 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2707 kvm->arch.nr_vcpus_matched_tsc++; 2708 } 2709 2710 /* Keep track of which generation this VCPU has synchronized to */ 2711 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2712 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2713 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2714 2715 kvm_track_tsc_matching(vcpu, !matched); 2716 } 2717 2718 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2719 { 2720 u64 data = user_value ? *user_value : 0; 2721 struct kvm *kvm = vcpu->kvm; 2722 u64 offset, ns, elapsed; 2723 unsigned long flags; 2724 bool matched = false; 2725 bool synchronizing = false; 2726 2727 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2728 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2729 ns = get_kvmclock_base_ns(); 2730 elapsed = ns - kvm->arch.last_tsc_nsec; 2731 2732 if (vcpu->arch.virtual_tsc_khz) { 2733 if (data == 0) { 2734 /* 2735 * Force synchronization when creating a vCPU, or when 2736 * userspace explicitly writes a zero value. 2737 */ 2738 synchronizing = true; 2739 } else if (kvm->arch.user_set_tsc) { 2740 u64 tsc_exp = kvm->arch.last_tsc_write + 2741 nsec_to_cycles(vcpu, elapsed); 2742 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2743 /* 2744 * Here lies UAPI baggage: when a user-initiated TSC write has 2745 * a small delta (1 second) of virtual cycle time against the 2746 * previously set vCPU, we assume that they were intended to be 2747 * in sync and the delta was only due to the racy nature of the 2748 * legacy API. 2749 * 2750 * This trick falls down when restoring a guest which genuinely 2751 * has been running for less time than the 1 second of imprecision 2752 * which we allow for in the legacy API. In this case, the first 2753 * value written by userspace (on any vCPU) should not be subject 2754 * to this 'correction' to make it sync up with values that only 2755 * come from the kernel's default vCPU creation. Make the 1-second 2756 * slop hack only trigger if the user_set_tsc flag is already set. 2757 */ 2758 synchronizing = data < tsc_exp + tsc_hz && 2759 data + tsc_hz > tsc_exp; 2760 } 2761 } 2762 2763 if (user_value) 2764 kvm->arch.user_set_tsc = true; 2765 2766 /* 2767 * For a reliable TSC, we can match TSC offsets, and for an unstable 2768 * TSC, we add elapsed time in this computation. We could let the 2769 * compensation code attempt to catch up if we fall behind, but 2770 * it's better to try to match offsets from the beginning. 2771 */ 2772 if (synchronizing && 2773 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2774 if (!kvm_check_tsc_unstable()) { 2775 offset = kvm->arch.cur_tsc_offset; 2776 } else { 2777 u64 delta = nsec_to_cycles(vcpu, elapsed); 2778 data += delta; 2779 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2780 } 2781 matched = true; 2782 } 2783 2784 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2785 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2786 } 2787 2788 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2789 s64 adjustment) 2790 { 2791 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2792 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2793 } 2794 2795 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2796 { 2797 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2798 WARN_ON(adjustment < 0); 2799 adjustment = kvm_scale_tsc((u64) adjustment, 2800 vcpu->arch.l1_tsc_scaling_ratio); 2801 adjust_tsc_offset_guest(vcpu, adjustment); 2802 } 2803 2804 #ifdef CONFIG_X86_64 2805 2806 static u64 read_tsc(void) 2807 { 2808 u64 ret = (u64)rdtsc_ordered(); 2809 u64 last = pvclock_gtod_data.clock.cycle_last; 2810 2811 if (likely(ret >= last)) 2812 return ret; 2813 2814 /* 2815 * GCC likes to generate cmov here, but this branch is extremely 2816 * predictable (it's just a function of time and the likely is 2817 * very likely) and there's a data dependence, so force GCC 2818 * to generate a branch instead. I don't barrier() because 2819 * we don't actually need a barrier, and if this function 2820 * ever gets inlined it will generate worse code. 2821 */ 2822 asm volatile (""); 2823 return last; 2824 } 2825 2826 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2827 int *mode) 2828 { 2829 u64 tsc_pg_val; 2830 long v; 2831 2832 switch (clock->vclock_mode) { 2833 case VDSO_CLOCKMODE_HVCLOCK: 2834 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2835 tsc_timestamp, &tsc_pg_val)) { 2836 /* TSC page valid */ 2837 *mode = VDSO_CLOCKMODE_HVCLOCK; 2838 v = (tsc_pg_val - clock->cycle_last) & 2839 clock->mask; 2840 } else { 2841 /* TSC page invalid */ 2842 *mode = VDSO_CLOCKMODE_NONE; 2843 } 2844 break; 2845 case VDSO_CLOCKMODE_TSC: 2846 *mode = VDSO_CLOCKMODE_TSC; 2847 *tsc_timestamp = read_tsc(); 2848 v = (*tsc_timestamp - clock->cycle_last) & 2849 clock->mask; 2850 break; 2851 default: 2852 *mode = VDSO_CLOCKMODE_NONE; 2853 } 2854 2855 if (*mode == VDSO_CLOCKMODE_NONE) 2856 *tsc_timestamp = v = 0; 2857 2858 return v * clock->mult; 2859 } 2860 2861 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2862 { 2863 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2864 unsigned long seq; 2865 int mode; 2866 u64 ns; 2867 2868 do { 2869 seq = read_seqcount_begin(>od->seq); 2870 ns = gtod->raw_clock.base_cycles; 2871 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2872 ns >>= gtod->raw_clock.shift; 2873 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2874 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2875 *t = ns; 2876 2877 return mode; 2878 } 2879 2880 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2881 { 2882 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2883 unsigned long seq; 2884 int mode; 2885 u64 ns; 2886 2887 do { 2888 seq = read_seqcount_begin(>od->seq); 2889 ts->tv_sec = gtod->wall_time_sec; 2890 ns = gtod->clock.base_cycles; 2891 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2892 ns >>= gtod->clock.shift; 2893 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2894 2895 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2896 ts->tv_nsec = ns; 2897 2898 return mode; 2899 } 2900 2901 /* returns true if host is using TSC based clocksource */ 2902 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2903 { 2904 /* checked again under seqlock below */ 2905 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2906 return false; 2907 2908 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2909 tsc_timestamp)); 2910 } 2911 2912 /* returns true if host is using TSC based clocksource */ 2913 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2914 u64 *tsc_timestamp) 2915 { 2916 /* checked again under seqlock below */ 2917 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2918 return false; 2919 2920 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2921 } 2922 #endif 2923 2924 /* 2925 * 2926 * Assuming a stable TSC across physical CPUS, and a stable TSC 2927 * across virtual CPUs, the following condition is possible. 2928 * Each numbered line represents an event visible to both 2929 * CPUs at the next numbered event. 2930 * 2931 * "timespecX" represents host monotonic time. "tscX" represents 2932 * RDTSC value. 2933 * 2934 * VCPU0 on CPU0 | VCPU1 on CPU1 2935 * 2936 * 1. read timespec0,tsc0 2937 * 2. | timespec1 = timespec0 + N 2938 * | tsc1 = tsc0 + M 2939 * 3. transition to guest | transition to guest 2940 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2941 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2942 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2943 * 2944 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2945 * 2946 * - ret0 < ret1 2947 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2948 * ... 2949 * - 0 < N - M => M < N 2950 * 2951 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2952 * always the case (the difference between two distinct xtime instances 2953 * might be smaller then the difference between corresponding TSC reads, 2954 * when updating guest vcpus pvclock areas). 2955 * 2956 * To avoid that problem, do not allow visibility of distinct 2957 * system_timestamp/tsc_timestamp values simultaneously: use a master 2958 * copy of host monotonic time values. Update that master copy 2959 * in lockstep. 2960 * 2961 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2962 * 2963 */ 2964 2965 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2966 { 2967 #ifdef CONFIG_X86_64 2968 struct kvm_arch *ka = &kvm->arch; 2969 int vclock_mode; 2970 bool host_tsc_clocksource, vcpus_matched; 2971 2972 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2973 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2974 atomic_read(&kvm->online_vcpus)); 2975 2976 /* 2977 * If the host uses TSC clock, then passthrough TSC as stable 2978 * to the guest. 2979 */ 2980 host_tsc_clocksource = kvm_get_time_and_clockread( 2981 &ka->master_kernel_ns, 2982 &ka->master_cycle_now); 2983 2984 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2985 && !ka->backwards_tsc_observed 2986 && !ka->boot_vcpu_runs_old_kvmclock; 2987 2988 if (ka->use_master_clock) 2989 atomic_set(&kvm_guest_has_master_clock, 1); 2990 2991 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2992 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2993 vcpus_matched); 2994 #endif 2995 } 2996 2997 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2998 { 2999 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3000 } 3001 3002 static void __kvm_start_pvclock_update(struct kvm *kvm) 3003 { 3004 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3005 write_seqcount_begin(&kvm->arch.pvclock_sc); 3006 } 3007 3008 static void kvm_start_pvclock_update(struct kvm *kvm) 3009 { 3010 kvm_make_mclock_inprogress_request(kvm); 3011 3012 /* no guest entries from this point */ 3013 __kvm_start_pvclock_update(kvm); 3014 } 3015 3016 static void kvm_end_pvclock_update(struct kvm *kvm) 3017 { 3018 struct kvm_arch *ka = &kvm->arch; 3019 struct kvm_vcpu *vcpu; 3020 unsigned long i; 3021 3022 write_seqcount_end(&ka->pvclock_sc); 3023 raw_spin_unlock_irq(&ka->tsc_write_lock); 3024 kvm_for_each_vcpu(i, vcpu, kvm) 3025 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3026 3027 /* guest entries allowed */ 3028 kvm_for_each_vcpu(i, vcpu, kvm) 3029 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3030 } 3031 3032 static void kvm_update_masterclock(struct kvm *kvm) 3033 { 3034 kvm_hv_request_tsc_page_update(kvm); 3035 kvm_start_pvclock_update(kvm); 3036 pvclock_update_vm_gtod_copy(kvm); 3037 kvm_end_pvclock_update(kvm); 3038 } 3039 3040 /* 3041 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3042 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3043 * can change during boot even if the TSC is constant, as it's possible for KVM 3044 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3045 * notification when calibration completes, but practically speaking calibration 3046 * will complete before userspace is alive enough to create VMs. 3047 */ 3048 static unsigned long get_cpu_tsc_khz(void) 3049 { 3050 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3051 return tsc_khz; 3052 else 3053 return __this_cpu_read(cpu_tsc_khz); 3054 } 3055 3056 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3057 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3058 { 3059 struct kvm_arch *ka = &kvm->arch; 3060 struct pvclock_vcpu_time_info hv_clock; 3061 3062 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3063 get_cpu(); 3064 3065 data->flags = 0; 3066 if (ka->use_master_clock && 3067 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3068 #ifdef CONFIG_X86_64 3069 struct timespec64 ts; 3070 3071 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3072 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3073 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3074 } else 3075 #endif 3076 data->host_tsc = rdtsc(); 3077 3078 data->flags |= KVM_CLOCK_TSC_STABLE; 3079 hv_clock.tsc_timestamp = ka->master_cycle_now; 3080 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3081 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3082 &hv_clock.tsc_shift, 3083 &hv_clock.tsc_to_system_mul); 3084 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3085 } else { 3086 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3087 } 3088 3089 put_cpu(); 3090 } 3091 3092 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3093 { 3094 struct kvm_arch *ka = &kvm->arch; 3095 unsigned seq; 3096 3097 do { 3098 seq = read_seqcount_begin(&ka->pvclock_sc); 3099 __get_kvmclock(kvm, data); 3100 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3101 } 3102 3103 u64 get_kvmclock_ns(struct kvm *kvm) 3104 { 3105 struct kvm_clock_data data; 3106 3107 get_kvmclock(kvm, &data); 3108 return data.clock; 3109 } 3110 3111 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3112 struct gfn_to_pfn_cache *gpc, 3113 unsigned int offset, 3114 bool force_tsc_unstable) 3115 { 3116 struct kvm_vcpu_arch *vcpu = &v->arch; 3117 struct pvclock_vcpu_time_info *guest_hv_clock; 3118 unsigned long flags; 3119 3120 read_lock_irqsave(&gpc->lock, flags); 3121 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3122 read_unlock_irqrestore(&gpc->lock, flags); 3123 3124 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3125 return; 3126 3127 read_lock_irqsave(&gpc->lock, flags); 3128 } 3129 3130 guest_hv_clock = (void *)(gpc->khva + offset); 3131 3132 /* 3133 * This VCPU is paused, but it's legal for a guest to read another 3134 * VCPU's kvmclock, so we really have to follow the specification where 3135 * it says that version is odd if data is being modified, and even after 3136 * it is consistent. 3137 */ 3138 3139 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3140 smp_wmb(); 3141 3142 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3143 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3144 3145 if (vcpu->pvclock_set_guest_stopped_request) { 3146 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3147 vcpu->pvclock_set_guest_stopped_request = false; 3148 } 3149 3150 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3151 3152 if (force_tsc_unstable) 3153 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT; 3154 3155 smp_wmb(); 3156 3157 guest_hv_clock->version = ++vcpu->hv_clock.version; 3158 3159 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3160 read_unlock_irqrestore(&gpc->lock, flags); 3161 3162 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3163 } 3164 3165 static int kvm_guest_time_update(struct kvm_vcpu *v) 3166 { 3167 unsigned long flags, tgt_tsc_khz; 3168 unsigned seq; 3169 struct kvm_vcpu_arch *vcpu = &v->arch; 3170 struct kvm_arch *ka = &v->kvm->arch; 3171 s64 kernel_ns; 3172 u64 tsc_timestamp, host_tsc; 3173 u8 pvclock_flags; 3174 bool use_master_clock; 3175 #ifdef CONFIG_KVM_XEN 3176 /* 3177 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3178 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3179 * This default behaviour led to bugs in some guest kernels which cause 3180 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3181 */ 3182 bool xen_pvclock_tsc_unstable = 3183 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 3184 #endif 3185 3186 kernel_ns = 0; 3187 host_tsc = 0; 3188 3189 /* 3190 * If the host uses TSC clock, then passthrough TSC as stable 3191 * to the guest. 3192 */ 3193 do { 3194 seq = read_seqcount_begin(&ka->pvclock_sc); 3195 use_master_clock = ka->use_master_clock; 3196 if (use_master_clock) { 3197 host_tsc = ka->master_cycle_now; 3198 kernel_ns = ka->master_kernel_ns; 3199 } 3200 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3201 3202 /* Keep irq disabled to prevent changes to the clock */ 3203 local_irq_save(flags); 3204 tgt_tsc_khz = get_cpu_tsc_khz(); 3205 if (unlikely(tgt_tsc_khz == 0)) { 3206 local_irq_restore(flags); 3207 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3208 return 1; 3209 } 3210 if (!use_master_clock) { 3211 host_tsc = rdtsc(); 3212 kernel_ns = get_kvmclock_base_ns(); 3213 } 3214 3215 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3216 3217 /* 3218 * We may have to catch up the TSC to match elapsed wall clock 3219 * time for two reasons, even if kvmclock is used. 3220 * 1) CPU could have been running below the maximum TSC rate 3221 * 2) Broken TSC compensation resets the base at each VCPU 3222 * entry to avoid unknown leaps of TSC even when running 3223 * again on the same CPU. This may cause apparent elapsed 3224 * time to disappear, and the guest to stand still or run 3225 * very slowly. 3226 */ 3227 if (vcpu->tsc_catchup) { 3228 u64 tsc = compute_guest_tsc(v, kernel_ns); 3229 if (tsc > tsc_timestamp) { 3230 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3231 tsc_timestamp = tsc; 3232 } 3233 } 3234 3235 local_irq_restore(flags); 3236 3237 /* With all the info we got, fill in the values */ 3238 3239 if (kvm_caps.has_tsc_control) 3240 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3241 v->arch.l1_tsc_scaling_ratio); 3242 3243 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3244 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3245 &vcpu->hv_clock.tsc_shift, 3246 &vcpu->hv_clock.tsc_to_system_mul); 3247 vcpu->hw_tsc_khz = tgt_tsc_khz; 3248 kvm_xen_update_tsc_info(v); 3249 } 3250 3251 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3252 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3253 vcpu->last_guest_tsc = tsc_timestamp; 3254 3255 /* If the host uses TSC clocksource, then it is stable */ 3256 pvclock_flags = 0; 3257 if (use_master_clock) 3258 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3259 3260 vcpu->hv_clock.flags = pvclock_flags; 3261 3262 if (vcpu->pv_time.active) 3263 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false); 3264 #ifdef CONFIG_KVM_XEN 3265 if (vcpu->xen.vcpu_info_cache.active) 3266 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3267 offsetof(struct compat_vcpu_info, time), 3268 xen_pvclock_tsc_unstable); 3269 if (vcpu->xen.vcpu_time_info_cache.active) 3270 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0, 3271 xen_pvclock_tsc_unstable); 3272 #endif 3273 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3274 return 0; 3275 } 3276 3277 /* 3278 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3279 * which it started (i.e. its epoch, when its kvmclock was zero). 3280 * 3281 * In fact those clocks are subtly different; wall clock frequency is 3282 * adjusted by NTP and has leap seconds, while the kvmclock is a 3283 * simple function of the TSC without any such adjustment. 3284 * 3285 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3286 * that and kvmclock, but even that would be subject to change over 3287 * time. 3288 * 3289 * Attempt to calculate the epoch at a given moment using the *same* 3290 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3291 * wallclock and kvmclock times, and subtracting one from the other. 3292 * 3293 * Fall back to using their values at slightly different moments by 3294 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3295 */ 3296 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3297 { 3298 #ifdef CONFIG_X86_64 3299 struct pvclock_vcpu_time_info hv_clock; 3300 struct kvm_arch *ka = &kvm->arch; 3301 unsigned long seq, local_tsc_khz; 3302 struct timespec64 ts; 3303 uint64_t host_tsc; 3304 3305 do { 3306 seq = read_seqcount_begin(&ka->pvclock_sc); 3307 3308 local_tsc_khz = 0; 3309 if (!ka->use_master_clock) 3310 break; 3311 3312 /* 3313 * The TSC read and the call to get_cpu_tsc_khz() must happen 3314 * on the same CPU. 3315 */ 3316 get_cpu(); 3317 3318 local_tsc_khz = get_cpu_tsc_khz(); 3319 3320 if (local_tsc_khz && 3321 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3322 local_tsc_khz = 0; /* Fall back to old method */ 3323 3324 put_cpu(); 3325 3326 /* 3327 * These values must be snapshotted within the seqcount loop. 3328 * After that, it's just mathematics which can happen on any 3329 * CPU at any time. 3330 */ 3331 hv_clock.tsc_timestamp = ka->master_cycle_now; 3332 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3333 3334 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3335 3336 /* 3337 * If the conditions were right, and obtaining the wallclock+TSC was 3338 * successful, calculate the KVM clock at the corresponding time and 3339 * subtract one from the other to get the guest's epoch in nanoseconds 3340 * since 1970-01-01. 3341 */ 3342 if (local_tsc_khz) { 3343 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3344 &hv_clock.tsc_shift, 3345 &hv_clock.tsc_to_system_mul); 3346 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3347 __pvclock_read_cycles(&hv_clock, host_tsc); 3348 } 3349 #endif 3350 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3351 } 3352 3353 /* 3354 * kvmclock updates which are isolated to a given vcpu, such as 3355 * vcpu->cpu migration, should not allow system_timestamp from 3356 * the rest of the vcpus to remain static. Otherwise ntp frequency 3357 * correction applies to one vcpu's system_timestamp but not 3358 * the others. 3359 * 3360 * So in those cases, request a kvmclock update for all vcpus. 3361 * We need to rate-limit these requests though, as they can 3362 * considerably slow guests that have a large number of vcpus. 3363 * The time for a remote vcpu to update its kvmclock is bound 3364 * by the delay we use to rate-limit the updates. 3365 */ 3366 3367 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3368 3369 static void kvmclock_update_fn(struct work_struct *work) 3370 { 3371 unsigned long i; 3372 struct delayed_work *dwork = to_delayed_work(work); 3373 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3374 kvmclock_update_work); 3375 struct kvm *kvm = container_of(ka, struct kvm, arch); 3376 struct kvm_vcpu *vcpu; 3377 3378 kvm_for_each_vcpu(i, vcpu, kvm) { 3379 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3380 kvm_vcpu_kick(vcpu); 3381 } 3382 } 3383 3384 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3385 { 3386 struct kvm *kvm = v->kvm; 3387 3388 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3389 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3390 KVMCLOCK_UPDATE_DELAY); 3391 } 3392 3393 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3394 3395 static void kvmclock_sync_fn(struct work_struct *work) 3396 { 3397 struct delayed_work *dwork = to_delayed_work(work); 3398 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3399 kvmclock_sync_work); 3400 struct kvm *kvm = container_of(ka, struct kvm, arch); 3401 3402 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3403 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3404 KVMCLOCK_SYNC_PERIOD); 3405 } 3406 3407 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3408 static bool is_mci_control_msr(u32 msr) 3409 { 3410 return (msr & 3) == 0; 3411 } 3412 static bool is_mci_status_msr(u32 msr) 3413 { 3414 return (msr & 3) == 1; 3415 } 3416 3417 /* 3418 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3419 */ 3420 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3421 { 3422 /* McStatusWrEn enabled? */ 3423 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3424 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3425 3426 return false; 3427 } 3428 3429 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3430 { 3431 u64 mcg_cap = vcpu->arch.mcg_cap; 3432 unsigned bank_num = mcg_cap & 0xff; 3433 u32 msr = msr_info->index; 3434 u64 data = msr_info->data; 3435 u32 offset, last_msr; 3436 3437 switch (msr) { 3438 case MSR_IA32_MCG_STATUS: 3439 vcpu->arch.mcg_status = data; 3440 break; 3441 case MSR_IA32_MCG_CTL: 3442 if (!(mcg_cap & MCG_CTL_P) && 3443 (data || !msr_info->host_initiated)) 3444 return 1; 3445 if (data != 0 && data != ~(u64)0) 3446 return 1; 3447 vcpu->arch.mcg_ctl = data; 3448 break; 3449 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3450 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3451 if (msr > last_msr) 3452 return 1; 3453 3454 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3455 return 1; 3456 /* An attempt to write a 1 to a reserved bit raises #GP */ 3457 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3458 return 1; 3459 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3460 last_msr + 1 - MSR_IA32_MC0_CTL2); 3461 vcpu->arch.mci_ctl2_banks[offset] = data; 3462 break; 3463 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3464 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3465 if (msr > last_msr) 3466 return 1; 3467 3468 /* 3469 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3470 * values are architecturally undefined. But, some Linux 3471 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3472 * issue on AMD K8s, allow bit 10 to be clear when setting all 3473 * other bits in order to avoid an uncaught #GP in the guest. 3474 * 3475 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3476 * single-bit ECC data errors. 3477 */ 3478 if (is_mci_control_msr(msr) && 3479 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3480 return 1; 3481 3482 /* 3483 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3484 * AMD-based CPUs allow non-zero values, but if and only if 3485 * HWCR[McStatusWrEn] is set. 3486 */ 3487 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3488 data != 0 && !can_set_mci_status(vcpu)) 3489 return 1; 3490 3491 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3492 last_msr + 1 - MSR_IA32_MC0_CTL); 3493 vcpu->arch.mce_banks[offset] = data; 3494 break; 3495 default: 3496 return 1; 3497 } 3498 return 0; 3499 } 3500 3501 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3502 { 3503 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3504 3505 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3506 } 3507 3508 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3509 { 3510 gpa_t gpa = data & ~0x3f; 3511 3512 /* Bits 4:5 are reserved, Should be zero */ 3513 if (data & 0x30) 3514 return 1; 3515 3516 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3517 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3518 return 1; 3519 3520 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3521 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3522 return 1; 3523 3524 if (!lapic_in_kernel(vcpu)) 3525 return data ? 1 : 0; 3526 3527 vcpu->arch.apf.msr_en_val = data; 3528 3529 if (!kvm_pv_async_pf_enabled(vcpu)) { 3530 kvm_clear_async_pf_completion_queue(vcpu); 3531 kvm_async_pf_hash_reset(vcpu); 3532 return 0; 3533 } 3534 3535 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3536 sizeof(u64))) 3537 return 1; 3538 3539 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3540 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3541 3542 kvm_async_pf_wakeup_all(vcpu); 3543 3544 return 0; 3545 } 3546 3547 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3548 { 3549 /* Bits 8-63 are reserved */ 3550 if (data >> 8) 3551 return 1; 3552 3553 if (!lapic_in_kernel(vcpu)) 3554 return 1; 3555 3556 vcpu->arch.apf.msr_int_val = data; 3557 3558 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3559 3560 return 0; 3561 } 3562 3563 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3564 { 3565 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3566 vcpu->arch.time = 0; 3567 } 3568 3569 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3570 { 3571 ++vcpu->stat.tlb_flush; 3572 static_call(kvm_x86_flush_tlb_all)(vcpu); 3573 3574 /* Flushing all ASIDs flushes the current ASID... */ 3575 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3576 } 3577 3578 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3579 { 3580 ++vcpu->stat.tlb_flush; 3581 3582 if (!tdp_enabled) { 3583 /* 3584 * A TLB flush on behalf of the guest is equivalent to 3585 * INVPCID(all), toggling CR4.PGE, etc., which requires 3586 * a forced sync of the shadow page tables. Ensure all the 3587 * roots are synced and the guest TLB in hardware is clean. 3588 */ 3589 kvm_mmu_sync_roots(vcpu); 3590 kvm_mmu_sync_prev_roots(vcpu); 3591 } 3592 3593 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3594 3595 /* 3596 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3597 * grained flushing. 3598 */ 3599 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3600 } 3601 3602 3603 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3604 { 3605 ++vcpu->stat.tlb_flush; 3606 static_call(kvm_x86_flush_tlb_current)(vcpu); 3607 } 3608 3609 /* 3610 * Service "local" TLB flush requests, which are specific to the current MMU 3611 * context. In addition to the generic event handling in vcpu_enter_guest(), 3612 * TLB flushes that are targeted at an MMU context also need to be serviced 3613 * prior before nested VM-Enter/VM-Exit. 3614 */ 3615 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3616 { 3617 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3618 kvm_vcpu_flush_tlb_current(vcpu); 3619 3620 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3621 kvm_vcpu_flush_tlb_guest(vcpu); 3622 } 3623 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3624 3625 static void record_steal_time(struct kvm_vcpu *vcpu) 3626 { 3627 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3628 struct kvm_steal_time __user *st; 3629 struct kvm_memslots *slots; 3630 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3631 u64 steal; 3632 u32 version; 3633 3634 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3635 kvm_xen_runstate_set_running(vcpu); 3636 return; 3637 } 3638 3639 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3640 return; 3641 3642 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3643 return; 3644 3645 slots = kvm_memslots(vcpu->kvm); 3646 3647 if (unlikely(slots->generation != ghc->generation || 3648 gpa != ghc->gpa || 3649 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3650 /* We rely on the fact that it fits in a single page. */ 3651 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3652 3653 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3654 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3655 return; 3656 } 3657 3658 st = (struct kvm_steal_time __user *)ghc->hva; 3659 /* 3660 * Doing a TLB flush here, on the guest's behalf, can avoid 3661 * expensive IPIs. 3662 */ 3663 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3664 u8 st_preempted = 0; 3665 int err = -EFAULT; 3666 3667 if (!user_access_begin(st, sizeof(*st))) 3668 return; 3669 3670 asm volatile("1: xchgb %0, %2\n" 3671 "xor %1, %1\n" 3672 "2:\n" 3673 _ASM_EXTABLE_UA(1b, 2b) 3674 : "+q" (st_preempted), 3675 "+&r" (err), 3676 "+m" (st->preempted)); 3677 if (err) 3678 goto out; 3679 3680 user_access_end(); 3681 3682 vcpu->arch.st.preempted = 0; 3683 3684 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3685 st_preempted & KVM_VCPU_FLUSH_TLB); 3686 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3687 kvm_vcpu_flush_tlb_guest(vcpu); 3688 3689 if (!user_access_begin(st, sizeof(*st))) 3690 goto dirty; 3691 } else { 3692 if (!user_access_begin(st, sizeof(*st))) 3693 return; 3694 3695 unsafe_put_user(0, &st->preempted, out); 3696 vcpu->arch.st.preempted = 0; 3697 } 3698 3699 unsafe_get_user(version, &st->version, out); 3700 if (version & 1) 3701 version += 1; /* first time write, random junk */ 3702 3703 version += 1; 3704 unsafe_put_user(version, &st->version, out); 3705 3706 smp_wmb(); 3707 3708 unsafe_get_user(steal, &st->steal, out); 3709 steal += current->sched_info.run_delay - 3710 vcpu->arch.st.last_steal; 3711 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3712 unsafe_put_user(steal, &st->steal, out); 3713 3714 version += 1; 3715 unsafe_put_user(version, &st->version, out); 3716 3717 out: 3718 user_access_end(); 3719 dirty: 3720 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3721 } 3722 3723 static bool kvm_is_msr_to_save(u32 msr_index) 3724 { 3725 unsigned int i; 3726 3727 for (i = 0; i < num_msrs_to_save; i++) { 3728 if (msrs_to_save[i] == msr_index) 3729 return true; 3730 } 3731 3732 return false; 3733 } 3734 3735 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3736 { 3737 u32 msr = msr_info->index; 3738 u64 data = msr_info->data; 3739 3740 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3741 return kvm_xen_write_hypercall_page(vcpu, data); 3742 3743 switch (msr) { 3744 case MSR_AMD64_NB_CFG: 3745 case MSR_IA32_UCODE_WRITE: 3746 case MSR_VM_HSAVE_PA: 3747 case MSR_AMD64_PATCH_LOADER: 3748 case MSR_AMD64_BU_CFG2: 3749 case MSR_AMD64_DC_CFG: 3750 case MSR_AMD64_TW_CFG: 3751 case MSR_F15H_EX_CFG: 3752 break; 3753 3754 case MSR_IA32_UCODE_REV: 3755 if (msr_info->host_initiated) 3756 vcpu->arch.microcode_version = data; 3757 break; 3758 case MSR_IA32_ARCH_CAPABILITIES: 3759 if (!msr_info->host_initiated) 3760 return 1; 3761 vcpu->arch.arch_capabilities = data; 3762 break; 3763 case MSR_IA32_PERF_CAPABILITIES: 3764 if (!msr_info->host_initiated) 3765 return 1; 3766 if (data & ~kvm_caps.supported_perf_cap) 3767 return 1; 3768 3769 /* 3770 * Note, this is not just a performance optimization! KVM 3771 * disallows changing feature MSRs after the vCPU has run; PMU 3772 * refresh will bug the VM if called after the vCPU has run. 3773 */ 3774 if (vcpu->arch.perf_capabilities == data) 3775 break; 3776 3777 vcpu->arch.perf_capabilities = data; 3778 kvm_pmu_refresh(vcpu); 3779 break; 3780 case MSR_IA32_PRED_CMD: { 3781 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3782 3783 if (!msr_info->host_initiated) { 3784 if ((!guest_has_pred_cmd_msr(vcpu))) 3785 return 1; 3786 3787 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3788 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3789 reserved_bits |= PRED_CMD_IBPB; 3790 3791 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3792 reserved_bits |= PRED_CMD_SBPB; 3793 } 3794 3795 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3796 reserved_bits |= PRED_CMD_IBPB; 3797 3798 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3799 reserved_bits |= PRED_CMD_SBPB; 3800 3801 if (data & reserved_bits) 3802 return 1; 3803 3804 if (!data) 3805 break; 3806 3807 wrmsrl(MSR_IA32_PRED_CMD, data); 3808 break; 3809 } 3810 case MSR_IA32_FLUSH_CMD: 3811 if (!msr_info->host_initiated && 3812 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3813 return 1; 3814 3815 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3816 return 1; 3817 if (!data) 3818 break; 3819 3820 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3821 break; 3822 case MSR_EFER: 3823 return set_efer(vcpu, msr_info); 3824 case MSR_K7_HWCR: 3825 data &= ~(u64)0x40; /* ignore flush filter disable */ 3826 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3827 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3828 3829 /* 3830 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3831 * through at least v6.6 whine if TscFreqSel is clear, 3832 * depending on F/M/S. 3833 */ 3834 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3835 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3836 return 1; 3837 } 3838 vcpu->arch.msr_hwcr = data; 3839 break; 3840 case MSR_FAM10H_MMIO_CONF_BASE: 3841 if (data != 0) { 3842 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3843 return 1; 3844 } 3845 break; 3846 case MSR_IA32_CR_PAT: 3847 if (!kvm_pat_valid(data)) 3848 return 1; 3849 3850 vcpu->arch.pat = data; 3851 break; 3852 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3853 case MSR_MTRRdefType: 3854 return kvm_mtrr_set_msr(vcpu, msr, data); 3855 case MSR_IA32_APICBASE: 3856 return kvm_set_apic_base(vcpu, msr_info); 3857 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3858 return kvm_x2apic_msr_write(vcpu, msr, data); 3859 case MSR_IA32_TSC_DEADLINE: 3860 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3861 break; 3862 case MSR_IA32_TSC_ADJUST: 3863 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3864 if (!msr_info->host_initiated) { 3865 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3866 adjust_tsc_offset_guest(vcpu, adj); 3867 /* Before back to guest, tsc_timestamp must be adjusted 3868 * as well, otherwise guest's percpu pvclock time could jump. 3869 */ 3870 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3871 } 3872 vcpu->arch.ia32_tsc_adjust_msr = data; 3873 } 3874 break; 3875 case MSR_IA32_MISC_ENABLE: { 3876 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3877 3878 if (!msr_info->host_initiated) { 3879 /* RO bits */ 3880 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3881 return 1; 3882 3883 /* R bits, i.e. writes are ignored, but don't fault. */ 3884 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3885 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3886 } 3887 3888 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3889 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3890 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3891 return 1; 3892 vcpu->arch.ia32_misc_enable_msr = data; 3893 kvm_update_cpuid_runtime(vcpu); 3894 } else { 3895 vcpu->arch.ia32_misc_enable_msr = data; 3896 } 3897 break; 3898 } 3899 case MSR_IA32_SMBASE: 3900 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3901 return 1; 3902 vcpu->arch.smbase = data; 3903 break; 3904 case MSR_IA32_POWER_CTL: 3905 vcpu->arch.msr_ia32_power_ctl = data; 3906 break; 3907 case MSR_IA32_TSC: 3908 if (msr_info->host_initiated) { 3909 kvm_synchronize_tsc(vcpu, &data); 3910 } else { 3911 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3912 adjust_tsc_offset_guest(vcpu, adj); 3913 vcpu->arch.ia32_tsc_adjust_msr += adj; 3914 } 3915 break; 3916 case MSR_IA32_XSS: 3917 if (!msr_info->host_initiated && 3918 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3919 return 1; 3920 /* 3921 * KVM supports exposing PT to the guest, but does not support 3922 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3923 * XSAVES/XRSTORS to save/restore PT MSRs. 3924 */ 3925 if (data & ~kvm_caps.supported_xss) 3926 return 1; 3927 vcpu->arch.ia32_xss = data; 3928 kvm_update_cpuid_runtime(vcpu); 3929 break; 3930 case MSR_SMI_COUNT: 3931 if (!msr_info->host_initiated) 3932 return 1; 3933 vcpu->arch.smi_count = data; 3934 break; 3935 case MSR_KVM_WALL_CLOCK_NEW: 3936 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3937 return 1; 3938 3939 vcpu->kvm->arch.wall_clock = data; 3940 kvm_write_wall_clock(vcpu->kvm, data, 0); 3941 break; 3942 case MSR_KVM_WALL_CLOCK: 3943 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3944 return 1; 3945 3946 vcpu->kvm->arch.wall_clock = data; 3947 kvm_write_wall_clock(vcpu->kvm, data, 0); 3948 break; 3949 case MSR_KVM_SYSTEM_TIME_NEW: 3950 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3951 return 1; 3952 3953 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3954 break; 3955 case MSR_KVM_SYSTEM_TIME: 3956 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3957 return 1; 3958 3959 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3960 break; 3961 case MSR_KVM_ASYNC_PF_EN: 3962 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3963 return 1; 3964 3965 if (kvm_pv_enable_async_pf(vcpu, data)) 3966 return 1; 3967 break; 3968 case MSR_KVM_ASYNC_PF_INT: 3969 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3970 return 1; 3971 3972 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3973 return 1; 3974 break; 3975 case MSR_KVM_ASYNC_PF_ACK: 3976 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3977 return 1; 3978 if (data & 0x1) { 3979 vcpu->arch.apf.pageready_pending = false; 3980 kvm_check_async_pf_completion(vcpu); 3981 } 3982 break; 3983 case MSR_KVM_STEAL_TIME: 3984 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3985 return 1; 3986 3987 if (unlikely(!sched_info_on())) 3988 return 1; 3989 3990 if (data & KVM_STEAL_RESERVED_MASK) 3991 return 1; 3992 3993 vcpu->arch.st.msr_val = data; 3994 3995 if (!(data & KVM_MSR_ENABLED)) 3996 break; 3997 3998 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3999 4000 break; 4001 case MSR_KVM_PV_EOI_EN: 4002 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4003 return 1; 4004 4005 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4006 return 1; 4007 break; 4008 4009 case MSR_KVM_POLL_CONTROL: 4010 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4011 return 1; 4012 4013 /* only enable bit supported */ 4014 if (data & (-1ULL << 1)) 4015 return 1; 4016 4017 vcpu->arch.msr_kvm_poll_control = data; 4018 break; 4019 4020 case MSR_IA32_MCG_CTL: 4021 case MSR_IA32_MCG_STATUS: 4022 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4023 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4024 return set_msr_mce(vcpu, msr_info); 4025 4026 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4027 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4028 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4029 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4030 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4031 return kvm_pmu_set_msr(vcpu, msr_info); 4032 4033 if (data) 4034 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4035 break; 4036 case MSR_K7_CLK_CTL: 4037 /* 4038 * Ignore all writes to this no longer documented MSR. 4039 * Writes are only relevant for old K7 processors, 4040 * all pre-dating SVM, but a recommended workaround from 4041 * AMD for these chips. It is possible to specify the 4042 * affected processor models on the command line, hence 4043 * the need to ignore the workaround. 4044 */ 4045 break; 4046 #ifdef CONFIG_KVM_HYPERV 4047 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4048 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4049 case HV_X64_MSR_SYNDBG_OPTIONS: 4050 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4051 case HV_X64_MSR_CRASH_CTL: 4052 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4053 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4054 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4055 case HV_X64_MSR_TSC_EMULATION_STATUS: 4056 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4057 return kvm_hv_set_msr_common(vcpu, msr, data, 4058 msr_info->host_initiated); 4059 #endif 4060 case MSR_IA32_BBL_CR_CTL3: 4061 /* Drop writes to this legacy MSR -- see rdmsr 4062 * counterpart for further detail. 4063 */ 4064 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4065 break; 4066 case MSR_AMD64_OSVW_ID_LENGTH: 4067 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4068 return 1; 4069 vcpu->arch.osvw.length = data; 4070 break; 4071 case MSR_AMD64_OSVW_STATUS: 4072 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4073 return 1; 4074 vcpu->arch.osvw.status = data; 4075 break; 4076 case MSR_PLATFORM_INFO: 4077 if (!msr_info->host_initiated || 4078 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 4079 cpuid_fault_enabled(vcpu))) 4080 return 1; 4081 vcpu->arch.msr_platform_info = data; 4082 break; 4083 case MSR_MISC_FEATURES_ENABLES: 4084 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4085 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4086 !supports_cpuid_fault(vcpu))) 4087 return 1; 4088 vcpu->arch.msr_misc_features_enables = data; 4089 break; 4090 #ifdef CONFIG_X86_64 4091 case MSR_IA32_XFD: 4092 if (!msr_info->host_initiated && 4093 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4094 return 1; 4095 4096 if (data & ~kvm_guest_supported_xfd(vcpu)) 4097 return 1; 4098 4099 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4100 break; 4101 case MSR_IA32_XFD_ERR: 4102 if (!msr_info->host_initiated && 4103 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4104 return 1; 4105 4106 if (data & ~kvm_guest_supported_xfd(vcpu)) 4107 return 1; 4108 4109 vcpu->arch.guest_fpu.xfd_err = data; 4110 break; 4111 #endif 4112 default: 4113 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4114 return kvm_pmu_set_msr(vcpu, msr_info); 4115 4116 /* 4117 * Userspace is allowed to write '0' to MSRs that KVM reports 4118 * as to-be-saved, even if an MSRs isn't fully supported. 4119 */ 4120 if (msr_info->host_initiated && !data && 4121 kvm_is_msr_to_save(msr)) 4122 break; 4123 4124 return KVM_MSR_RET_INVALID; 4125 } 4126 return 0; 4127 } 4128 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4129 4130 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4131 { 4132 u64 data; 4133 u64 mcg_cap = vcpu->arch.mcg_cap; 4134 unsigned bank_num = mcg_cap & 0xff; 4135 u32 offset, last_msr; 4136 4137 switch (msr) { 4138 case MSR_IA32_P5_MC_ADDR: 4139 case MSR_IA32_P5_MC_TYPE: 4140 data = 0; 4141 break; 4142 case MSR_IA32_MCG_CAP: 4143 data = vcpu->arch.mcg_cap; 4144 break; 4145 case MSR_IA32_MCG_CTL: 4146 if (!(mcg_cap & MCG_CTL_P) && !host) 4147 return 1; 4148 data = vcpu->arch.mcg_ctl; 4149 break; 4150 case MSR_IA32_MCG_STATUS: 4151 data = vcpu->arch.mcg_status; 4152 break; 4153 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4154 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4155 if (msr > last_msr) 4156 return 1; 4157 4158 if (!(mcg_cap & MCG_CMCI_P) && !host) 4159 return 1; 4160 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4161 last_msr + 1 - MSR_IA32_MC0_CTL2); 4162 data = vcpu->arch.mci_ctl2_banks[offset]; 4163 break; 4164 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4165 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4166 if (msr > last_msr) 4167 return 1; 4168 4169 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4170 last_msr + 1 - MSR_IA32_MC0_CTL); 4171 data = vcpu->arch.mce_banks[offset]; 4172 break; 4173 default: 4174 return 1; 4175 } 4176 *pdata = data; 4177 return 0; 4178 } 4179 4180 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4181 { 4182 switch (msr_info->index) { 4183 case MSR_IA32_PLATFORM_ID: 4184 case MSR_IA32_EBL_CR_POWERON: 4185 case MSR_IA32_LASTBRANCHFROMIP: 4186 case MSR_IA32_LASTBRANCHTOIP: 4187 case MSR_IA32_LASTINTFROMIP: 4188 case MSR_IA32_LASTINTTOIP: 4189 case MSR_AMD64_SYSCFG: 4190 case MSR_K8_TSEG_ADDR: 4191 case MSR_K8_TSEG_MASK: 4192 case MSR_VM_HSAVE_PA: 4193 case MSR_K8_INT_PENDING_MSG: 4194 case MSR_AMD64_NB_CFG: 4195 case MSR_FAM10H_MMIO_CONF_BASE: 4196 case MSR_AMD64_BU_CFG2: 4197 case MSR_IA32_PERF_CTL: 4198 case MSR_AMD64_DC_CFG: 4199 case MSR_AMD64_TW_CFG: 4200 case MSR_F15H_EX_CFG: 4201 /* 4202 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4203 * limit) MSRs. Just return 0, as we do not want to expose the host 4204 * data here. Do not conditionalize this on CPUID, as KVM does not do 4205 * so for existing CPU-specific MSRs. 4206 */ 4207 case MSR_RAPL_POWER_UNIT: 4208 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4209 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4210 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4211 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4212 msr_info->data = 0; 4213 break; 4214 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4215 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4216 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4217 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4218 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4219 return kvm_pmu_get_msr(vcpu, msr_info); 4220 msr_info->data = 0; 4221 break; 4222 case MSR_IA32_UCODE_REV: 4223 msr_info->data = vcpu->arch.microcode_version; 4224 break; 4225 case MSR_IA32_ARCH_CAPABILITIES: 4226 if (!msr_info->host_initiated && 4227 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4228 return 1; 4229 msr_info->data = vcpu->arch.arch_capabilities; 4230 break; 4231 case MSR_IA32_PERF_CAPABILITIES: 4232 if (!msr_info->host_initiated && 4233 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4234 return 1; 4235 msr_info->data = vcpu->arch.perf_capabilities; 4236 break; 4237 case MSR_IA32_POWER_CTL: 4238 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4239 break; 4240 case MSR_IA32_TSC: { 4241 /* 4242 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4243 * even when not intercepted. AMD manual doesn't explicitly 4244 * state this but appears to behave the same. 4245 * 4246 * On userspace reads and writes, however, we unconditionally 4247 * return L1's TSC value to ensure backwards-compatible 4248 * behavior for migration. 4249 */ 4250 u64 offset, ratio; 4251 4252 if (msr_info->host_initiated) { 4253 offset = vcpu->arch.l1_tsc_offset; 4254 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4255 } else { 4256 offset = vcpu->arch.tsc_offset; 4257 ratio = vcpu->arch.tsc_scaling_ratio; 4258 } 4259 4260 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4261 break; 4262 } 4263 case MSR_IA32_CR_PAT: 4264 msr_info->data = vcpu->arch.pat; 4265 break; 4266 case MSR_MTRRcap: 4267 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4268 case MSR_MTRRdefType: 4269 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4270 case 0xcd: /* fsb frequency */ 4271 msr_info->data = 3; 4272 break; 4273 /* 4274 * MSR_EBC_FREQUENCY_ID 4275 * Conservative value valid for even the basic CPU models. 4276 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4277 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4278 * and 266MHz for model 3, or 4. Set Core Clock 4279 * Frequency to System Bus Frequency Ratio to 1 (bits 4280 * 31:24) even though these are only valid for CPU 4281 * models > 2, however guests may end up dividing or 4282 * multiplying by zero otherwise. 4283 */ 4284 case MSR_EBC_FREQUENCY_ID: 4285 msr_info->data = 1 << 24; 4286 break; 4287 case MSR_IA32_APICBASE: 4288 msr_info->data = kvm_get_apic_base(vcpu); 4289 break; 4290 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4291 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4292 case MSR_IA32_TSC_DEADLINE: 4293 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4294 break; 4295 case MSR_IA32_TSC_ADJUST: 4296 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4297 break; 4298 case MSR_IA32_MISC_ENABLE: 4299 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4300 break; 4301 case MSR_IA32_SMBASE: 4302 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4303 return 1; 4304 msr_info->data = vcpu->arch.smbase; 4305 break; 4306 case MSR_SMI_COUNT: 4307 msr_info->data = vcpu->arch.smi_count; 4308 break; 4309 case MSR_IA32_PERF_STATUS: 4310 /* TSC increment by tick */ 4311 msr_info->data = 1000ULL; 4312 /* CPU multiplier */ 4313 msr_info->data |= (((uint64_t)4ULL) << 40); 4314 break; 4315 case MSR_EFER: 4316 msr_info->data = vcpu->arch.efer; 4317 break; 4318 case MSR_KVM_WALL_CLOCK: 4319 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4320 return 1; 4321 4322 msr_info->data = vcpu->kvm->arch.wall_clock; 4323 break; 4324 case MSR_KVM_WALL_CLOCK_NEW: 4325 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4326 return 1; 4327 4328 msr_info->data = vcpu->kvm->arch.wall_clock; 4329 break; 4330 case MSR_KVM_SYSTEM_TIME: 4331 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4332 return 1; 4333 4334 msr_info->data = vcpu->arch.time; 4335 break; 4336 case MSR_KVM_SYSTEM_TIME_NEW: 4337 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4338 return 1; 4339 4340 msr_info->data = vcpu->arch.time; 4341 break; 4342 case MSR_KVM_ASYNC_PF_EN: 4343 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4344 return 1; 4345 4346 msr_info->data = vcpu->arch.apf.msr_en_val; 4347 break; 4348 case MSR_KVM_ASYNC_PF_INT: 4349 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4350 return 1; 4351 4352 msr_info->data = vcpu->arch.apf.msr_int_val; 4353 break; 4354 case MSR_KVM_ASYNC_PF_ACK: 4355 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4356 return 1; 4357 4358 msr_info->data = 0; 4359 break; 4360 case MSR_KVM_STEAL_TIME: 4361 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4362 return 1; 4363 4364 msr_info->data = vcpu->arch.st.msr_val; 4365 break; 4366 case MSR_KVM_PV_EOI_EN: 4367 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4368 return 1; 4369 4370 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4371 break; 4372 case MSR_KVM_POLL_CONTROL: 4373 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4374 return 1; 4375 4376 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4377 break; 4378 case MSR_IA32_P5_MC_ADDR: 4379 case MSR_IA32_P5_MC_TYPE: 4380 case MSR_IA32_MCG_CAP: 4381 case MSR_IA32_MCG_CTL: 4382 case MSR_IA32_MCG_STATUS: 4383 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4384 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4385 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4386 msr_info->host_initiated); 4387 case MSR_IA32_XSS: 4388 if (!msr_info->host_initiated && 4389 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4390 return 1; 4391 msr_info->data = vcpu->arch.ia32_xss; 4392 break; 4393 case MSR_K7_CLK_CTL: 4394 /* 4395 * Provide expected ramp-up count for K7. All other 4396 * are set to zero, indicating minimum divisors for 4397 * every field. 4398 * 4399 * This prevents guest kernels on AMD host with CPU 4400 * type 6, model 8 and higher from exploding due to 4401 * the rdmsr failing. 4402 */ 4403 msr_info->data = 0x20000000; 4404 break; 4405 #ifdef CONFIG_KVM_HYPERV 4406 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4407 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4408 case HV_X64_MSR_SYNDBG_OPTIONS: 4409 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4410 case HV_X64_MSR_CRASH_CTL: 4411 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4412 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4413 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4414 case HV_X64_MSR_TSC_EMULATION_STATUS: 4415 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4416 return kvm_hv_get_msr_common(vcpu, 4417 msr_info->index, &msr_info->data, 4418 msr_info->host_initiated); 4419 #endif 4420 case MSR_IA32_BBL_CR_CTL3: 4421 /* This legacy MSR exists but isn't fully documented in current 4422 * silicon. It is however accessed by winxp in very narrow 4423 * scenarios where it sets bit #19, itself documented as 4424 * a "reserved" bit. Best effort attempt to source coherent 4425 * read data here should the balance of the register be 4426 * interpreted by the guest: 4427 * 4428 * L2 cache control register 3: 64GB range, 256KB size, 4429 * enabled, latency 0x1, configured 4430 */ 4431 msr_info->data = 0xbe702111; 4432 break; 4433 case MSR_AMD64_OSVW_ID_LENGTH: 4434 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4435 return 1; 4436 msr_info->data = vcpu->arch.osvw.length; 4437 break; 4438 case MSR_AMD64_OSVW_STATUS: 4439 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4440 return 1; 4441 msr_info->data = vcpu->arch.osvw.status; 4442 break; 4443 case MSR_PLATFORM_INFO: 4444 if (!msr_info->host_initiated && 4445 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4446 return 1; 4447 msr_info->data = vcpu->arch.msr_platform_info; 4448 break; 4449 case MSR_MISC_FEATURES_ENABLES: 4450 msr_info->data = vcpu->arch.msr_misc_features_enables; 4451 break; 4452 case MSR_K7_HWCR: 4453 msr_info->data = vcpu->arch.msr_hwcr; 4454 break; 4455 #ifdef CONFIG_X86_64 4456 case MSR_IA32_XFD: 4457 if (!msr_info->host_initiated && 4458 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4459 return 1; 4460 4461 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4462 break; 4463 case MSR_IA32_XFD_ERR: 4464 if (!msr_info->host_initiated && 4465 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4466 return 1; 4467 4468 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4469 break; 4470 #endif 4471 default: 4472 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4473 return kvm_pmu_get_msr(vcpu, msr_info); 4474 4475 /* 4476 * Userspace is allowed to read MSRs that KVM reports as 4477 * to-be-saved, even if an MSR isn't fully supported. 4478 */ 4479 if (msr_info->host_initiated && 4480 kvm_is_msr_to_save(msr_info->index)) { 4481 msr_info->data = 0; 4482 break; 4483 } 4484 4485 return KVM_MSR_RET_INVALID; 4486 } 4487 return 0; 4488 } 4489 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4490 4491 /* 4492 * Read or write a bunch of msrs. All parameters are kernel addresses. 4493 * 4494 * @return number of msrs set successfully. 4495 */ 4496 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4497 struct kvm_msr_entry *entries, 4498 int (*do_msr)(struct kvm_vcpu *vcpu, 4499 unsigned index, u64 *data)) 4500 { 4501 int i; 4502 4503 for (i = 0; i < msrs->nmsrs; ++i) 4504 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4505 break; 4506 4507 return i; 4508 } 4509 4510 /* 4511 * Read or write a bunch of msrs. Parameters are user addresses. 4512 * 4513 * @return number of msrs set successfully. 4514 */ 4515 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4516 int (*do_msr)(struct kvm_vcpu *vcpu, 4517 unsigned index, u64 *data), 4518 int writeback) 4519 { 4520 struct kvm_msrs msrs; 4521 struct kvm_msr_entry *entries; 4522 unsigned size; 4523 int r; 4524 4525 r = -EFAULT; 4526 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4527 goto out; 4528 4529 r = -E2BIG; 4530 if (msrs.nmsrs >= MAX_IO_MSRS) 4531 goto out; 4532 4533 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4534 entries = memdup_user(user_msrs->entries, size); 4535 if (IS_ERR(entries)) { 4536 r = PTR_ERR(entries); 4537 goto out; 4538 } 4539 4540 r = __msr_io(vcpu, &msrs, entries, do_msr); 4541 4542 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4543 r = -EFAULT; 4544 4545 kfree(entries); 4546 out: 4547 return r; 4548 } 4549 4550 static inline bool kvm_can_mwait_in_guest(void) 4551 { 4552 return boot_cpu_has(X86_FEATURE_MWAIT) && 4553 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4554 boot_cpu_has(X86_FEATURE_ARAT); 4555 } 4556 4557 #ifdef CONFIG_KVM_HYPERV 4558 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4559 struct kvm_cpuid2 __user *cpuid_arg) 4560 { 4561 struct kvm_cpuid2 cpuid; 4562 int r; 4563 4564 r = -EFAULT; 4565 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4566 return r; 4567 4568 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4569 if (r) 4570 return r; 4571 4572 r = -EFAULT; 4573 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4574 return r; 4575 4576 return 0; 4577 } 4578 #endif 4579 4580 static bool kvm_is_vm_type_supported(unsigned long type) 4581 { 4582 return type == KVM_X86_DEFAULT_VM || 4583 (type == KVM_X86_SW_PROTECTED_VM && 4584 IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_enabled); 4585 } 4586 4587 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4588 { 4589 int r = 0; 4590 4591 switch (ext) { 4592 case KVM_CAP_IRQCHIP: 4593 case KVM_CAP_HLT: 4594 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4595 case KVM_CAP_SET_TSS_ADDR: 4596 case KVM_CAP_EXT_CPUID: 4597 case KVM_CAP_EXT_EMUL_CPUID: 4598 case KVM_CAP_CLOCKSOURCE: 4599 case KVM_CAP_PIT: 4600 case KVM_CAP_NOP_IO_DELAY: 4601 case KVM_CAP_MP_STATE: 4602 case KVM_CAP_SYNC_MMU: 4603 case KVM_CAP_USER_NMI: 4604 case KVM_CAP_REINJECT_CONTROL: 4605 case KVM_CAP_IRQ_INJECT_STATUS: 4606 case KVM_CAP_IOEVENTFD: 4607 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4608 case KVM_CAP_PIT2: 4609 case KVM_CAP_PIT_STATE2: 4610 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4611 case KVM_CAP_VCPU_EVENTS: 4612 #ifdef CONFIG_KVM_HYPERV 4613 case KVM_CAP_HYPERV: 4614 case KVM_CAP_HYPERV_VAPIC: 4615 case KVM_CAP_HYPERV_SPIN: 4616 case KVM_CAP_HYPERV_TIME: 4617 case KVM_CAP_HYPERV_SYNIC: 4618 case KVM_CAP_HYPERV_SYNIC2: 4619 case KVM_CAP_HYPERV_VP_INDEX: 4620 case KVM_CAP_HYPERV_EVENTFD: 4621 case KVM_CAP_HYPERV_TLBFLUSH: 4622 case KVM_CAP_HYPERV_SEND_IPI: 4623 case KVM_CAP_HYPERV_CPUID: 4624 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4625 case KVM_CAP_SYS_HYPERV_CPUID: 4626 #endif 4627 case KVM_CAP_PCI_SEGMENT: 4628 case KVM_CAP_DEBUGREGS: 4629 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4630 case KVM_CAP_XSAVE: 4631 case KVM_CAP_ASYNC_PF: 4632 case KVM_CAP_ASYNC_PF_INT: 4633 case KVM_CAP_GET_TSC_KHZ: 4634 case KVM_CAP_KVMCLOCK_CTRL: 4635 case KVM_CAP_READONLY_MEM: 4636 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4637 case KVM_CAP_TSC_DEADLINE_TIMER: 4638 case KVM_CAP_DISABLE_QUIRKS: 4639 case KVM_CAP_SET_BOOT_CPU_ID: 4640 case KVM_CAP_SPLIT_IRQCHIP: 4641 case KVM_CAP_IMMEDIATE_EXIT: 4642 case KVM_CAP_PMU_EVENT_FILTER: 4643 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4644 case KVM_CAP_GET_MSR_FEATURES: 4645 case KVM_CAP_MSR_PLATFORM_INFO: 4646 case KVM_CAP_EXCEPTION_PAYLOAD: 4647 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4648 case KVM_CAP_SET_GUEST_DEBUG: 4649 case KVM_CAP_LAST_CPU: 4650 case KVM_CAP_X86_USER_SPACE_MSR: 4651 case KVM_CAP_X86_MSR_FILTER: 4652 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4653 #ifdef CONFIG_X86_SGX_KVM 4654 case KVM_CAP_SGX_ATTRIBUTE: 4655 #endif 4656 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4657 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4658 case KVM_CAP_SREGS2: 4659 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4660 case KVM_CAP_VCPU_ATTRIBUTES: 4661 case KVM_CAP_SYS_ATTRIBUTES: 4662 case KVM_CAP_VAPIC: 4663 case KVM_CAP_ENABLE_CAP: 4664 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4665 case KVM_CAP_IRQFD_RESAMPLE: 4666 case KVM_CAP_MEMORY_FAULT_INFO: 4667 r = 1; 4668 break; 4669 case KVM_CAP_EXIT_HYPERCALL: 4670 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4671 break; 4672 case KVM_CAP_SET_GUEST_DEBUG2: 4673 return KVM_GUESTDBG_VALID_MASK; 4674 #ifdef CONFIG_KVM_XEN 4675 case KVM_CAP_XEN_HVM: 4676 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4677 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4678 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4679 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4680 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4681 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 4682 if (sched_info_on()) 4683 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4684 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4685 break; 4686 #endif 4687 case KVM_CAP_SYNC_REGS: 4688 r = KVM_SYNC_X86_VALID_FIELDS; 4689 break; 4690 case KVM_CAP_ADJUST_CLOCK: 4691 r = KVM_CLOCK_VALID_FLAGS; 4692 break; 4693 case KVM_CAP_X86_DISABLE_EXITS: 4694 r = KVM_X86_DISABLE_EXITS_PAUSE; 4695 4696 if (!mitigate_smt_rsb) { 4697 r |= KVM_X86_DISABLE_EXITS_HLT | 4698 KVM_X86_DISABLE_EXITS_CSTATE; 4699 4700 if (kvm_can_mwait_in_guest()) 4701 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4702 } 4703 break; 4704 case KVM_CAP_X86_SMM: 4705 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4706 break; 4707 4708 /* SMBASE is usually relocated above 1M on modern chipsets, 4709 * and SMM handlers might indeed rely on 4G segment limits, 4710 * so do not report SMM to be available if real mode is 4711 * emulated via vm86 mode. Still, do not go to great lengths 4712 * to avoid userspace's usage of the feature, because it is a 4713 * fringe case that is not enabled except via specific settings 4714 * of the module parameters. 4715 */ 4716 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4717 break; 4718 case KVM_CAP_NR_VCPUS: 4719 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4720 break; 4721 case KVM_CAP_MAX_VCPUS: 4722 r = KVM_MAX_VCPUS; 4723 break; 4724 case KVM_CAP_MAX_VCPU_ID: 4725 r = KVM_MAX_VCPU_IDS; 4726 break; 4727 case KVM_CAP_PV_MMU: /* obsolete */ 4728 r = 0; 4729 break; 4730 case KVM_CAP_MCE: 4731 r = KVM_MAX_MCE_BANKS; 4732 break; 4733 case KVM_CAP_XCRS: 4734 r = boot_cpu_has(X86_FEATURE_XSAVE); 4735 break; 4736 case KVM_CAP_TSC_CONTROL: 4737 case KVM_CAP_VM_TSC_CONTROL: 4738 r = kvm_caps.has_tsc_control; 4739 break; 4740 case KVM_CAP_X2APIC_API: 4741 r = KVM_X2APIC_API_VALID_FLAGS; 4742 break; 4743 case KVM_CAP_NESTED_STATE: 4744 r = kvm_x86_ops.nested_ops->get_state ? 4745 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4746 break; 4747 #ifdef CONFIG_KVM_HYPERV 4748 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4749 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4750 break; 4751 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4752 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4753 break; 4754 #endif 4755 case KVM_CAP_SMALLER_MAXPHYADDR: 4756 r = (int) allow_smaller_maxphyaddr; 4757 break; 4758 case KVM_CAP_STEAL_TIME: 4759 r = sched_info_on(); 4760 break; 4761 case KVM_CAP_X86_BUS_LOCK_EXIT: 4762 if (kvm_caps.has_bus_lock_exit) 4763 r = KVM_BUS_LOCK_DETECTION_OFF | 4764 KVM_BUS_LOCK_DETECTION_EXIT; 4765 else 4766 r = 0; 4767 break; 4768 case KVM_CAP_XSAVE2: { 4769 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4770 if (r < sizeof(struct kvm_xsave)) 4771 r = sizeof(struct kvm_xsave); 4772 break; 4773 } 4774 case KVM_CAP_PMU_CAPABILITY: 4775 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4776 break; 4777 case KVM_CAP_DISABLE_QUIRKS2: 4778 r = KVM_X86_VALID_QUIRKS; 4779 break; 4780 case KVM_CAP_X86_NOTIFY_VMEXIT: 4781 r = kvm_caps.has_notify_vmexit; 4782 break; 4783 case KVM_CAP_VM_TYPES: 4784 r = BIT(KVM_X86_DEFAULT_VM); 4785 if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM)) 4786 r |= BIT(KVM_X86_SW_PROTECTED_VM); 4787 break; 4788 default: 4789 break; 4790 } 4791 return r; 4792 } 4793 4794 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4795 { 4796 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4797 4798 if ((u64)(unsigned long)uaddr != attr->addr) 4799 return ERR_PTR_USR(-EFAULT); 4800 return uaddr; 4801 } 4802 4803 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4804 { 4805 u64 __user *uaddr = kvm_get_attr_addr(attr); 4806 4807 if (attr->group) 4808 return -ENXIO; 4809 4810 if (IS_ERR(uaddr)) 4811 return PTR_ERR(uaddr); 4812 4813 switch (attr->attr) { 4814 case KVM_X86_XCOMP_GUEST_SUPP: 4815 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4816 return -EFAULT; 4817 return 0; 4818 default: 4819 return -ENXIO; 4820 } 4821 } 4822 4823 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4824 { 4825 if (attr->group) 4826 return -ENXIO; 4827 4828 switch (attr->attr) { 4829 case KVM_X86_XCOMP_GUEST_SUPP: 4830 return 0; 4831 default: 4832 return -ENXIO; 4833 } 4834 } 4835 4836 long kvm_arch_dev_ioctl(struct file *filp, 4837 unsigned int ioctl, unsigned long arg) 4838 { 4839 void __user *argp = (void __user *)arg; 4840 long r; 4841 4842 switch (ioctl) { 4843 case KVM_GET_MSR_INDEX_LIST: { 4844 struct kvm_msr_list __user *user_msr_list = argp; 4845 struct kvm_msr_list msr_list; 4846 unsigned n; 4847 4848 r = -EFAULT; 4849 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4850 goto out; 4851 n = msr_list.nmsrs; 4852 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4853 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4854 goto out; 4855 r = -E2BIG; 4856 if (n < msr_list.nmsrs) 4857 goto out; 4858 r = -EFAULT; 4859 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4860 num_msrs_to_save * sizeof(u32))) 4861 goto out; 4862 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4863 &emulated_msrs, 4864 num_emulated_msrs * sizeof(u32))) 4865 goto out; 4866 r = 0; 4867 break; 4868 } 4869 case KVM_GET_SUPPORTED_CPUID: 4870 case KVM_GET_EMULATED_CPUID: { 4871 struct kvm_cpuid2 __user *cpuid_arg = argp; 4872 struct kvm_cpuid2 cpuid; 4873 4874 r = -EFAULT; 4875 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4876 goto out; 4877 4878 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4879 ioctl); 4880 if (r) 4881 goto out; 4882 4883 r = -EFAULT; 4884 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4885 goto out; 4886 r = 0; 4887 break; 4888 } 4889 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4890 r = -EFAULT; 4891 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4892 sizeof(kvm_caps.supported_mce_cap))) 4893 goto out; 4894 r = 0; 4895 break; 4896 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4897 struct kvm_msr_list __user *user_msr_list = argp; 4898 struct kvm_msr_list msr_list; 4899 unsigned int n; 4900 4901 r = -EFAULT; 4902 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4903 goto out; 4904 n = msr_list.nmsrs; 4905 msr_list.nmsrs = num_msr_based_features; 4906 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4907 goto out; 4908 r = -E2BIG; 4909 if (n < msr_list.nmsrs) 4910 goto out; 4911 r = -EFAULT; 4912 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4913 num_msr_based_features * sizeof(u32))) 4914 goto out; 4915 r = 0; 4916 break; 4917 } 4918 case KVM_GET_MSRS: 4919 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4920 break; 4921 #ifdef CONFIG_KVM_HYPERV 4922 case KVM_GET_SUPPORTED_HV_CPUID: 4923 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4924 break; 4925 #endif 4926 case KVM_GET_DEVICE_ATTR: { 4927 struct kvm_device_attr attr; 4928 r = -EFAULT; 4929 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4930 break; 4931 r = kvm_x86_dev_get_attr(&attr); 4932 break; 4933 } 4934 case KVM_HAS_DEVICE_ATTR: { 4935 struct kvm_device_attr attr; 4936 r = -EFAULT; 4937 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4938 break; 4939 r = kvm_x86_dev_has_attr(&attr); 4940 break; 4941 } 4942 default: 4943 r = -EINVAL; 4944 break; 4945 } 4946 out: 4947 return r; 4948 } 4949 4950 static void wbinvd_ipi(void *garbage) 4951 { 4952 wbinvd(); 4953 } 4954 4955 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4956 { 4957 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4958 } 4959 4960 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4961 { 4962 /* Address WBINVD may be executed by guest */ 4963 if (need_emulate_wbinvd(vcpu)) { 4964 if (static_call(kvm_x86_has_wbinvd_exit)()) 4965 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4966 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4967 smp_call_function_single(vcpu->cpu, 4968 wbinvd_ipi, NULL, 1); 4969 } 4970 4971 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4972 4973 /* Save host pkru register if supported */ 4974 vcpu->arch.host_pkru = read_pkru(); 4975 4976 /* Apply any externally detected TSC adjustments (due to suspend) */ 4977 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4978 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4979 vcpu->arch.tsc_offset_adjustment = 0; 4980 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4981 } 4982 4983 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4984 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4985 rdtsc() - vcpu->arch.last_host_tsc; 4986 if (tsc_delta < 0) 4987 mark_tsc_unstable("KVM discovered backwards TSC"); 4988 4989 if (kvm_check_tsc_unstable()) { 4990 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4991 vcpu->arch.last_guest_tsc); 4992 kvm_vcpu_write_tsc_offset(vcpu, offset); 4993 vcpu->arch.tsc_catchup = 1; 4994 } 4995 4996 if (kvm_lapic_hv_timer_in_use(vcpu)) 4997 kvm_lapic_restart_hv_timer(vcpu); 4998 4999 /* 5000 * On a host with synchronized TSC, there is no need to update 5001 * kvmclock on vcpu->cpu migration 5002 */ 5003 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5004 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5005 if (vcpu->cpu != cpu) 5006 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5007 vcpu->cpu = cpu; 5008 } 5009 5010 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5011 } 5012 5013 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5014 { 5015 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5016 struct kvm_steal_time __user *st; 5017 struct kvm_memslots *slots; 5018 static const u8 preempted = KVM_VCPU_PREEMPTED; 5019 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5020 5021 /* 5022 * The vCPU can be marked preempted if and only if the VM-Exit was on 5023 * an instruction boundary and will not trigger guest emulation of any 5024 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5025 * when this is true, for example allowing the vCPU to be marked 5026 * preempted if and only if the VM-Exit was due to a host interrupt. 5027 */ 5028 if (!vcpu->arch.at_instruction_boundary) { 5029 vcpu->stat.preemption_other++; 5030 return; 5031 } 5032 5033 vcpu->stat.preemption_reported++; 5034 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5035 return; 5036 5037 if (vcpu->arch.st.preempted) 5038 return; 5039 5040 /* This happens on process exit */ 5041 if (unlikely(current->mm != vcpu->kvm->mm)) 5042 return; 5043 5044 slots = kvm_memslots(vcpu->kvm); 5045 5046 if (unlikely(slots->generation != ghc->generation || 5047 gpa != ghc->gpa || 5048 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5049 return; 5050 5051 st = (struct kvm_steal_time __user *)ghc->hva; 5052 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5053 5054 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5055 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5056 5057 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5058 } 5059 5060 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5061 { 5062 int idx; 5063 5064 if (vcpu->preempted) { 5065 if (!vcpu->arch.guest_state_protected) 5066 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 5067 5068 /* 5069 * Take the srcu lock as memslots will be accessed to check the gfn 5070 * cache generation against the memslots generation. 5071 */ 5072 idx = srcu_read_lock(&vcpu->kvm->srcu); 5073 if (kvm_xen_msr_enabled(vcpu->kvm)) 5074 kvm_xen_runstate_set_preempted(vcpu); 5075 else 5076 kvm_steal_time_set_preempted(vcpu); 5077 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5078 } 5079 5080 static_call(kvm_x86_vcpu_put)(vcpu); 5081 vcpu->arch.last_host_tsc = rdtsc(); 5082 } 5083 5084 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5085 struct kvm_lapic_state *s) 5086 { 5087 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 5088 5089 return kvm_apic_get_state(vcpu, s); 5090 } 5091 5092 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5093 struct kvm_lapic_state *s) 5094 { 5095 int r; 5096 5097 r = kvm_apic_set_state(vcpu, s); 5098 if (r) 5099 return r; 5100 update_cr8_intercept(vcpu); 5101 5102 return 0; 5103 } 5104 5105 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5106 { 5107 /* 5108 * We can accept userspace's request for interrupt injection 5109 * as long as we have a place to store the interrupt number. 5110 * The actual injection will happen when the CPU is able to 5111 * deliver the interrupt. 5112 */ 5113 if (kvm_cpu_has_extint(vcpu)) 5114 return false; 5115 5116 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5117 return (!lapic_in_kernel(vcpu) || 5118 kvm_apic_accept_pic_intr(vcpu)); 5119 } 5120 5121 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5122 { 5123 /* 5124 * Do not cause an interrupt window exit if an exception 5125 * is pending or an event needs reinjection; userspace 5126 * might want to inject the interrupt manually using KVM_SET_REGS 5127 * or KVM_SET_SREGS. For that to work, we must be at an 5128 * instruction boundary and with no events half-injected. 5129 */ 5130 return (kvm_arch_interrupt_allowed(vcpu) && 5131 kvm_cpu_accept_dm_intr(vcpu) && 5132 !kvm_event_needs_reinjection(vcpu) && 5133 !kvm_is_exception_pending(vcpu)); 5134 } 5135 5136 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5137 struct kvm_interrupt *irq) 5138 { 5139 if (irq->irq >= KVM_NR_INTERRUPTS) 5140 return -EINVAL; 5141 5142 if (!irqchip_in_kernel(vcpu->kvm)) { 5143 kvm_queue_interrupt(vcpu, irq->irq, false); 5144 kvm_make_request(KVM_REQ_EVENT, vcpu); 5145 return 0; 5146 } 5147 5148 /* 5149 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5150 * fail for in-kernel 8259. 5151 */ 5152 if (pic_in_kernel(vcpu->kvm)) 5153 return -ENXIO; 5154 5155 if (vcpu->arch.pending_external_vector != -1) 5156 return -EEXIST; 5157 5158 vcpu->arch.pending_external_vector = irq->irq; 5159 kvm_make_request(KVM_REQ_EVENT, vcpu); 5160 return 0; 5161 } 5162 5163 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5164 { 5165 kvm_inject_nmi(vcpu); 5166 5167 return 0; 5168 } 5169 5170 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5171 struct kvm_tpr_access_ctl *tac) 5172 { 5173 if (tac->flags) 5174 return -EINVAL; 5175 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5176 return 0; 5177 } 5178 5179 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5180 u64 mcg_cap) 5181 { 5182 int r; 5183 unsigned bank_num = mcg_cap & 0xff, bank; 5184 5185 r = -EINVAL; 5186 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5187 goto out; 5188 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5189 goto out; 5190 r = 0; 5191 vcpu->arch.mcg_cap = mcg_cap; 5192 /* Init IA32_MCG_CTL to all 1s */ 5193 if (mcg_cap & MCG_CTL_P) 5194 vcpu->arch.mcg_ctl = ~(u64)0; 5195 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5196 for (bank = 0; bank < bank_num; bank++) { 5197 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5198 if (mcg_cap & MCG_CMCI_P) 5199 vcpu->arch.mci_ctl2_banks[bank] = 0; 5200 } 5201 5202 kvm_apic_after_set_mcg_cap(vcpu); 5203 5204 static_call(kvm_x86_setup_mce)(vcpu); 5205 out: 5206 return r; 5207 } 5208 5209 /* 5210 * Validate this is an UCNA (uncorrectable no action) error by checking the 5211 * MCG_STATUS and MCi_STATUS registers: 5212 * - none of the bits for Machine Check Exceptions are set 5213 * - both the VAL (valid) and UC (uncorrectable) bits are set 5214 * MCI_STATUS_PCC - Processor Context Corrupted 5215 * MCI_STATUS_S - Signaled as a Machine Check Exception 5216 * MCI_STATUS_AR - Software recoverable Action Required 5217 */ 5218 static bool is_ucna(struct kvm_x86_mce *mce) 5219 { 5220 return !mce->mcg_status && 5221 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5222 (mce->status & MCI_STATUS_VAL) && 5223 (mce->status & MCI_STATUS_UC); 5224 } 5225 5226 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5227 { 5228 u64 mcg_cap = vcpu->arch.mcg_cap; 5229 5230 banks[1] = mce->status; 5231 banks[2] = mce->addr; 5232 banks[3] = mce->misc; 5233 vcpu->arch.mcg_status = mce->mcg_status; 5234 5235 if (!(mcg_cap & MCG_CMCI_P) || 5236 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5237 return 0; 5238 5239 if (lapic_in_kernel(vcpu)) 5240 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5241 5242 return 0; 5243 } 5244 5245 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5246 struct kvm_x86_mce *mce) 5247 { 5248 u64 mcg_cap = vcpu->arch.mcg_cap; 5249 unsigned bank_num = mcg_cap & 0xff; 5250 u64 *banks = vcpu->arch.mce_banks; 5251 5252 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5253 return -EINVAL; 5254 5255 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5256 5257 if (is_ucna(mce)) 5258 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5259 5260 /* 5261 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5262 * reporting is disabled 5263 */ 5264 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5265 vcpu->arch.mcg_ctl != ~(u64)0) 5266 return 0; 5267 /* 5268 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5269 * reporting is disabled for the bank 5270 */ 5271 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5272 return 0; 5273 if (mce->status & MCI_STATUS_UC) { 5274 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5275 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5276 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5277 return 0; 5278 } 5279 if (banks[1] & MCI_STATUS_VAL) 5280 mce->status |= MCI_STATUS_OVER; 5281 banks[2] = mce->addr; 5282 banks[3] = mce->misc; 5283 vcpu->arch.mcg_status = mce->mcg_status; 5284 banks[1] = mce->status; 5285 kvm_queue_exception(vcpu, MC_VECTOR); 5286 } else if (!(banks[1] & MCI_STATUS_VAL) 5287 || !(banks[1] & MCI_STATUS_UC)) { 5288 if (banks[1] & MCI_STATUS_VAL) 5289 mce->status |= MCI_STATUS_OVER; 5290 banks[2] = mce->addr; 5291 banks[3] = mce->misc; 5292 banks[1] = mce->status; 5293 } else 5294 banks[1] |= MCI_STATUS_OVER; 5295 return 0; 5296 } 5297 5298 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5299 struct kvm_vcpu_events *events) 5300 { 5301 struct kvm_queued_exception *ex; 5302 5303 process_nmi(vcpu); 5304 5305 #ifdef CONFIG_KVM_SMM 5306 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5307 process_smi(vcpu); 5308 #endif 5309 5310 /* 5311 * KVM's ABI only allows for one exception to be migrated. Luckily, 5312 * the only time there can be two queued exceptions is if there's a 5313 * non-exiting _injected_ exception, and a pending exiting exception. 5314 * In that case, ignore the VM-Exiting exception as it's an extension 5315 * of the injected exception. 5316 */ 5317 if (vcpu->arch.exception_vmexit.pending && 5318 !vcpu->arch.exception.pending && 5319 !vcpu->arch.exception.injected) 5320 ex = &vcpu->arch.exception_vmexit; 5321 else 5322 ex = &vcpu->arch.exception; 5323 5324 /* 5325 * In guest mode, payload delivery should be deferred if the exception 5326 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5327 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5328 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5329 * propagate the payload and so it cannot be safely deferred. Deliver 5330 * the payload if the capability hasn't been requested. 5331 */ 5332 if (!vcpu->kvm->arch.exception_payload_enabled && 5333 ex->pending && ex->has_payload) 5334 kvm_deliver_exception_payload(vcpu, ex); 5335 5336 memset(events, 0, sizeof(*events)); 5337 5338 /* 5339 * The API doesn't provide the instruction length for software 5340 * exceptions, so don't report them. As long as the guest RIP 5341 * isn't advanced, we should expect to encounter the exception 5342 * again. 5343 */ 5344 if (!kvm_exception_is_soft(ex->vector)) { 5345 events->exception.injected = ex->injected; 5346 events->exception.pending = ex->pending; 5347 /* 5348 * For ABI compatibility, deliberately conflate 5349 * pending and injected exceptions when 5350 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5351 */ 5352 if (!vcpu->kvm->arch.exception_payload_enabled) 5353 events->exception.injected |= ex->pending; 5354 } 5355 events->exception.nr = ex->vector; 5356 events->exception.has_error_code = ex->has_error_code; 5357 events->exception.error_code = ex->error_code; 5358 events->exception_has_payload = ex->has_payload; 5359 events->exception_payload = ex->payload; 5360 5361 events->interrupt.injected = 5362 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5363 events->interrupt.nr = vcpu->arch.interrupt.nr; 5364 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5365 5366 events->nmi.injected = vcpu->arch.nmi_injected; 5367 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5368 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5369 5370 /* events->sipi_vector is never valid when reporting to user space */ 5371 5372 #ifdef CONFIG_KVM_SMM 5373 events->smi.smm = is_smm(vcpu); 5374 events->smi.pending = vcpu->arch.smi_pending; 5375 events->smi.smm_inside_nmi = 5376 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5377 #endif 5378 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5379 5380 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5381 | KVM_VCPUEVENT_VALID_SHADOW 5382 | KVM_VCPUEVENT_VALID_SMM); 5383 if (vcpu->kvm->arch.exception_payload_enabled) 5384 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5385 if (vcpu->kvm->arch.triple_fault_event) { 5386 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5387 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5388 } 5389 } 5390 5391 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5392 struct kvm_vcpu_events *events) 5393 { 5394 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5395 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5396 | KVM_VCPUEVENT_VALID_SHADOW 5397 | KVM_VCPUEVENT_VALID_SMM 5398 | KVM_VCPUEVENT_VALID_PAYLOAD 5399 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5400 return -EINVAL; 5401 5402 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5403 if (!vcpu->kvm->arch.exception_payload_enabled) 5404 return -EINVAL; 5405 if (events->exception.pending) 5406 events->exception.injected = 0; 5407 else 5408 events->exception_has_payload = 0; 5409 } else { 5410 events->exception.pending = 0; 5411 events->exception_has_payload = 0; 5412 } 5413 5414 if ((events->exception.injected || events->exception.pending) && 5415 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5416 return -EINVAL; 5417 5418 /* INITs are latched while in SMM */ 5419 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5420 (events->smi.smm || events->smi.pending) && 5421 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5422 return -EINVAL; 5423 5424 process_nmi(vcpu); 5425 5426 /* 5427 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5428 * morph the exception to a VM-Exit if appropriate. Do this only for 5429 * pending exceptions, already-injected exceptions are not subject to 5430 * intercpetion. Note, userspace that conflates pending and injected 5431 * is hosed, and will incorrectly convert an injected exception into a 5432 * pending exception, which in turn may cause a spurious VM-Exit. 5433 */ 5434 vcpu->arch.exception_from_userspace = events->exception.pending; 5435 5436 vcpu->arch.exception_vmexit.pending = false; 5437 5438 vcpu->arch.exception.injected = events->exception.injected; 5439 vcpu->arch.exception.pending = events->exception.pending; 5440 vcpu->arch.exception.vector = events->exception.nr; 5441 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5442 vcpu->arch.exception.error_code = events->exception.error_code; 5443 vcpu->arch.exception.has_payload = events->exception_has_payload; 5444 vcpu->arch.exception.payload = events->exception_payload; 5445 5446 vcpu->arch.interrupt.injected = events->interrupt.injected; 5447 vcpu->arch.interrupt.nr = events->interrupt.nr; 5448 vcpu->arch.interrupt.soft = events->interrupt.soft; 5449 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5450 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5451 events->interrupt.shadow); 5452 5453 vcpu->arch.nmi_injected = events->nmi.injected; 5454 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5455 vcpu->arch.nmi_pending = 0; 5456 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5457 kvm_make_request(KVM_REQ_NMI, vcpu); 5458 } 5459 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5460 5461 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5462 lapic_in_kernel(vcpu)) 5463 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5464 5465 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5466 #ifdef CONFIG_KVM_SMM 5467 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5468 kvm_leave_nested(vcpu); 5469 kvm_smm_changed(vcpu, events->smi.smm); 5470 } 5471 5472 vcpu->arch.smi_pending = events->smi.pending; 5473 5474 if (events->smi.smm) { 5475 if (events->smi.smm_inside_nmi) 5476 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5477 else 5478 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5479 } 5480 5481 #else 5482 if (events->smi.smm || events->smi.pending || 5483 events->smi.smm_inside_nmi) 5484 return -EINVAL; 5485 #endif 5486 5487 if (lapic_in_kernel(vcpu)) { 5488 if (events->smi.latched_init) 5489 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5490 else 5491 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5492 } 5493 } 5494 5495 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5496 if (!vcpu->kvm->arch.triple_fault_event) 5497 return -EINVAL; 5498 if (events->triple_fault.pending) 5499 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5500 else 5501 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5502 } 5503 5504 kvm_make_request(KVM_REQ_EVENT, vcpu); 5505 5506 return 0; 5507 } 5508 5509 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5510 struct kvm_debugregs *dbgregs) 5511 { 5512 unsigned long val; 5513 5514 memset(dbgregs, 0, sizeof(*dbgregs)); 5515 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5516 kvm_get_dr(vcpu, 6, &val); 5517 dbgregs->dr6 = val; 5518 dbgregs->dr7 = vcpu->arch.dr7; 5519 } 5520 5521 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5522 struct kvm_debugregs *dbgregs) 5523 { 5524 if (dbgregs->flags) 5525 return -EINVAL; 5526 5527 if (!kvm_dr6_valid(dbgregs->dr6)) 5528 return -EINVAL; 5529 if (!kvm_dr7_valid(dbgregs->dr7)) 5530 return -EINVAL; 5531 5532 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5533 kvm_update_dr0123(vcpu); 5534 vcpu->arch.dr6 = dbgregs->dr6; 5535 vcpu->arch.dr7 = dbgregs->dr7; 5536 kvm_update_dr7(vcpu); 5537 5538 return 0; 5539 } 5540 5541 5542 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5543 u8 *state, unsigned int size) 5544 { 5545 /* 5546 * Only copy state for features that are enabled for the guest. The 5547 * state itself isn't problematic, but setting bits in the header for 5548 * features that are supported in *this* host but not exposed to the 5549 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5550 * compatible host without the features that are NOT exposed to the 5551 * guest. 5552 * 5553 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5554 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5555 * supported by the host. 5556 */ 5557 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5558 XFEATURE_MASK_FPSSE; 5559 5560 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5561 return; 5562 5563 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5564 supported_xcr0, vcpu->arch.pkru); 5565 } 5566 5567 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5568 struct kvm_xsave *guest_xsave) 5569 { 5570 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5571 sizeof(guest_xsave->region)); 5572 } 5573 5574 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5575 struct kvm_xsave *guest_xsave) 5576 { 5577 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5578 return 0; 5579 5580 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5581 guest_xsave->region, 5582 kvm_caps.supported_xcr0, 5583 &vcpu->arch.pkru); 5584 } 5585 5586 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5587 struct kvm_xcrs *guest_xcrs) 5588 { 5589 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5590 guest_xcrs->nr_xcrs = 0; 5591 return; 5592 } 5593 5594 guest_xcrs->nr_xcrs = 1; 5595 guest_xcrs->flags = 0; 5596 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5597 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5598 } 5599 5600 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5601 struct kvm_xcrs *guest_xcrs) 5602 { 5603 int i, r = 0; 5604 5605 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5606 return -EINVAL; 5607 5608 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5609 return -EINVAL; 5610 5611 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5612 /* Only support XCR0 currently */ 5613 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5614 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5615 guest_xcrs->xcrs[i].value); 5616 break; 5617 } 5618 if (r) 5619 r = -EINVAL; 5620 return r; 5621 } 5622 5623 /* 5624 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5625 * stopped by the hypervisor. This function will be called from the host only. 5626 * EINVAL is returned when the host attempts to set the flag for a guest that 5627 * does not support pv clocks. 5628 */ 5629 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5630 { 5631 if (!vcpu->arch.pv_time.active) 5632 return -EINVAL; 5633 vcpu->arch.pvclock_set_guest_stopped_request = true; 5634 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5635 return 0; 5636 } 5637 5638 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5639 struct kvm_device_attr *attr) 5640 { 5641 int r; 5642 5643 switch (attr->attr) { 5644 case KVM_VCPU_TSC_OFFSET: 5645 r = 0; 5646 break; 5647 default: 5648 r = -ENXIO; 5649 } 5650 5651 return r; 5652 } 5653 5654 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5655 struct kvm_device_attr *attr) 5656 { 5657 u64 __user *uaddr = kvm_get_attr_addr(attr); 5658 int r; 5659 5660 if (IS_ERR(uaddr)) 5661 return PTR_ERR(uaddr); 5662 5663 switch (attr->attr) { 5664 case KVM_VCPU_TSC_OFFSET: 5665 r = -EFAULT; 5666 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5667 break; 5668 r = 0; 5669 break; 5670 default: 5671 r = -ENXIO; 5672 } 5673 5674 return r; 5675 } 5676 5677 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5678 struct kvm_device_attr *attr) 5679 { 5680 u64 __user *uaddr = kvm_get_attr_addr(attr); 5681 struct kvm *kvm = vcpu->kvm; 5682 int r; 5683 5684 if (IS_ERR(uaddr)) 5685 return PTR_ERR(uaddr); 5686 5687 switch (attr->attr) { 5688 case KVM_VCPU_TSC_OFFSET: { 5689 u64 offset, tsc, ns; 5690 unsigned long flags; 5691 bool matched; 5692 5693 r = -EFAULT; 5694 if (get_user(offset, uaddr)) 5695 break; 5696 5697 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5698 5699 matched = (vcpu->arch.virtual_tsc_khz && 5700 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5701 kvm->arch.last_tsc_offset == offset); 5702 5703 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5704 ns = get_kvmclock_base_ns(); 5705 5706 kvm->arch.user_set_tsc = true; 5707 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5708 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5709 5710 r = 0; 5711 break; 5712 } 5713 default: 5714 r = -ENXIO; 5715 } 5716 5717 return r; 5718 } 5719 5720 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5721 unsigned int ioctl, 5722 void __user *argp) 5723 { 5724 struct kvm_device_attr attr; 5725 int r; 5726 5727 if (copy_from_user(&attr, argp, sizeof(attr))) 5728 return -EFAULT; 5729 5730 if (attr.group != KVM_VCPU_TSC_CTRL) 5731 return -ENXIO; 5732 5733 switch (ioctl) { 5734 case KVM_HAS_DEVICE_ATTR: 5735 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5736 break; 5737 case KVM_GET_DEVICE_ATTR: 5738 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5739 break; 5740 case KVM_SET_DEVICE_ATTR: 5741 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5742 break; 5743 } 5744 5745 return r; 5746 } 5747 5748 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5749 struct kvm_enable_cap *cap) 5750 { 5751 if (cap->flags) 5752 return -EINVAL; 5753 5754 switch (cap->cap) { 5755 #ifdef CONFIG_KVM_HYPERV 5756 case KVM_CAP_HYPERV_SYNIC2: 5757 if (cap->args[0]) 5758 return -EINVAL; 5759 fallthrough; 5760 5761 case KVM_CAP_HYPERV_SYNIC: 5762 if (!irqchip_in_kernel(vcpu->kvm)) 5763 return -EINVAL; 5764 return kvm_hv_activate_synic(vcpu, cap->cap == 5765 KVM_CAP_HYPERV_SYNIC2); 5766 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5767 { 5768 int r; 5769 uint16_t vmcs_version; 5770 void __user *user_ptr; 5771 5772 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5773 return -ENOTTY; 5774 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5775 if (!r) { 5776 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5777 if (copy_to_user(user_ptr, &vmcs_version, 5778 sizeof(vmcs_version))) 5779 r = -EFAULT; 5780 } 5781 return r; 5782 } 5783 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5784 if (!kvm_x86_ops.enable_l2_tlb_flush) 5785 return -ENOTTY; 5786 5787 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5788 5789 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5790 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5791 #endif 5792 5793 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5794 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5795 if (vcpu->arch.pv_cpuid.enforce) 5796 kvm_update_pv_runtime(vcpu); 5797 5798 return 0; 5799 default: 5800 return -EINVAL; 5801 } 5802 } 5803 5804 long kvm_arch_vcpu_ioctl(struct file *filp, 5805 unsigned int ioctl, unsigned long arg) 5806 { 5807 struct kvm_vcpu *vcpu = filp->private_data; 5808 void __user *argp = (void __user *)arg; 5809 int r; 5810 union { 5811 struct kvm_sregs2 *sregs2; 5812 struct kvm_lapic_state *lapic; 5813 struct kvm_xsave *xsave; 5814 struct kvm_xcrs *xcrs; 5815 void *buffer; 5816 } u; 5817 5818 vcpu_load(vcpu); 5819 5820 u.buffer = NULL; 5821 switch (ioctl) { 5822 case KVM_GET_LAPIC: { 5823 r = -EINVAL; 5824 if (!lapic_in_kernel(vcpu)) 5825 goto out; 5826 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5827 GFP_KERNEL_ACCOUNT); 5828 5829 r = -ENOMEM; 5830 if (!u.lapic) 5831 goto out; 5832 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5833 if (r) 5834 goto out; 5835 r = -EFAULT; 5836 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5837 goto out; 5838 r = 0; 5839 break; 5840 } 5841 case KVM_SET_LAPIC: { 5842 r = -EINVAL; 5843 if (!lapic_in_kernel(vcpu)) 5844 goto out; 5845 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5846 if (IS_ERR(u.lapic)) { 5847 r = PTR_ERR(u.lapic); 5848 goto out_nofree; 5849 } 5850 5851 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5852 break; 5853 } 5854 case KVM_INTERRUPT: { 5855 struct kvm_interrupt irq; 5856 5857 r = -EFAULT; 5858 if (copy_from_user(&irq, argp, sizeof(irq))) 5859 goto out; 5860 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5861 break; 5862 } 5863 case KVM_NMI: { 5864 r = kvm_vcpu_ioctl_nmi(vcpu); 5865 break; 5866 } 5867 case KVM_SMI: { 5868 r = kvm_inject_smi(vcpu); 5869 break; 5870 } 5871 case KVM_SET_CPUID: { 5872 struct kvm_cpuid __user *cpuid_arg = argp; 5873 struct kvm_cpuid cpuid; 5874 5875 r = -EFAULT; 5876 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5877 goto out; 5878 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5879 break; 5880 } 5881 case KVM_SET_CPUID2: { 5882 struct kvm_cpuid2 __user *cpuid_arg = argp; 5883 struct kvm_cpuid2 cpuid; 5884 5885 r = -EFAULT; 5886 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5887 goto out; 5888 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5889 cpuid_arg->entries); 5890 break; 5891 } 5892 case KVM_GET_CPUID2: { 5893 struct kvm_cpuid2 __user *cpuid_arg = argp; 5894 struct kvm_cpuid2 cpuid; 5895 5896 r = -EFAULT; 5897 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5898 goto out; 5899 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5900 cpuid_arg->entries); 5901 if (r) 5902 goto out; 5903 r = -EFAULT; 5904 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5905 goto out; 5906 r = 0; 5907 break; 5908 } 5909 case KVM_GET_MSRS: { 5910 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5911 r = msr_io(vcpu, argp, do_get_msr, 1); 5912 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5913 break; 5914 } 5915 case KVM_SET_MSRS: { 5916 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5917 r = msr_io(vcpu, argp, do_set_msr, 0); 5918 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5919 break; 5920 } 5921 case KVM_TPR_ACCESS_REPORTING: { 5922 struct kvm_tpr_access_ctl tac; 5923 5924 r = -EFAULT; 5925 if (copy_from_user(&tac, argp, sizeof(tac))) 5926 goto out; 5927 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5928 if (r) 5929 goto out; 5930 r = -EFAULT; 5931 if (copy_to_user(argp, &tac, sizeof(tac))) 5932 goto out; 5933 r = 0; 5934 break; 5935 }; 5936 case KVM_SET_VAPIC_ADDR: { 5937 struct kvm_vapic_addr va; 5938 int idx; 5939 5940 r = -EINVAL; 5941 if (!lapic_in_kernel(vcpu)) 5942 goto out; 5943 r = -EFAULT; 5944 if (copy_from_user(&va, argp, sizeof(va))) 5945 goto out; 5946 idx = srcu_read_lock(&vcpu->kvm->srcu); 5947 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5948 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5949 break; 5950 } 5951 case KVM_X86_SETUP_MCE: { 5952 u64 mcg_cap; 5953 5954 r = -EFAULT; 5955 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5956 goto out; 5957 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5958 break; 5959 } 5960 case KVM_X86_SET_MCE: { 5961 struct kvm_x86_mce mce; 5962 5963 r = -EFAULT; 5964 if (copy_from_user(&mce, argp, sizeof(mce))) 5965 goto out; 5966 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5967 break; 5968 } 5969 case KVM_GET_VCPU_EVENTS: { 5970 struct kvm_vcpu_events events; 5971 5972 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5973 5974 r = -EFAULT; 5975 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5976 break; 5977 r = 0; 5978 break; 5979 } 5980 case KVM_SET_VCPU_EVENTS: { 5981 struct kvm_vcpu_events events; 5982 5983 r = -EFAULT; 5984 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5985 break; 5986 5987 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5988 break; 5989 } 5990 case KVM_GET_DEBUGREGS: { 5991 struct kvm_debugregs dbgregs; 5992 5993 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5994 5995 r = -EFAULT; 5996 if (copy_to_user(argp, &dbgregs, 5997 sizeof(struct kvm_debugregs))) 5998 break; 5999 r = 0; 6000 break; 6001 } 6002 case KVM_SET_DEBUGREGS: { 6003 struct kvm_debugregs dbgregs; 6004 6005 r = -EFAULT; 6006 if (copy_from_user(&dbgregs, argp, 6007 sizeof(struct kvm_debugregs))) 6008 break; 6009 6010 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6011 break; 6012 } 6013 case KVM_GET_XSAVE: { 6014 r = -EINVAL; 6015 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6016 break; 6017 6018 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 6019 r = -ENOMEM; 6020 if (!u.xsave) 6021 break; 6022 6023 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6024 6025 r = -EFAULT; 6026 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6027 break; 6028 r = 0; 6029 break; 6030 } 6031 case KVM_SET_XSAVE: { 6032 int size = vcpu->arch.guest_fpu.uabi_size; 6033 6034 u.xsave = memdup_user(argp, size); 6035 if (IS_ERR(u.xsave)) { 6036 r = PTR_ERR(u.xsave); 6037 goto out_nofree; 6038 } 6039 6040 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6041 break; 6042 } 6043 6044 case KVM_GET_XSAVE2: { 6045 int size = vcpu->arch.guest_fpu.uabi_size; 6046 6047 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 6048 r = -ENOMEM; 6049 if (!u.xsave) 6050 break; 6051 6052 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6053 6054 r = -EFAULT; 6055 if (copy_to_user(argp, u.xsave, size)) 6056 break; 6057 6058 r = 0; 6059 break; 6060 } 6061 6062 case KVM_GET_XCRS: { 6063 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 6064 r = -ENOMEM; 6065 if (!u.xcrs) 6066 break; 6067 6068 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6069 6070 r = -EFAULT; 6071 if (copy_to_user(argp, u.xcrs, 6072 sizeof(struct kvm_xcrs))) 6073 break; 6074 r = 0; 6075 break; 6076 } 6077 case KVM_SET_XCRS: { 6078 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6079 if (IS_ERR(u.xcrs)) { 6080 r = PTR_ERR(u.xcrs); 6081 goto out_nofree; 6082 } 6083 6084 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6085 break; 6086 } 6087 case KVM_SET_TSC_KHZ: { 6088 u32 user_tsc_khz; 6089 6090 r = -EINVAL; 6091 user_tsc_khz = (u32)arg; 6092 6093 if (kvm_caps.has_tsc_control && 6094 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6095 goto out; 6096 6097 if (user_tsc_khz == 0) 6098 user_tsc_khz = tsc_khz; 6099 6100 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6101 r = 0; 6102 6103 goto out; 6104 } 6105 case KVM_GET_TSC_KHZ: { 6106 r = vcpu->arch.virtual_tsc_khz; 6107 goto out; 6108 } 6109 case KVM_KVMCLOCK_CTRL: { 6110 r = kvm_set_guest_paused(vcpu); 6111 goto out; 6112 } 6113 case KVM_ENABLE_CAP: { 6114 struct kvm_enable_cap cap; 6115 6116 r = -EFAULT; 6117 if (copy_from_user(&cap, argp, sizeof(cap))) 6118 goto out; 6119 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6120 break; 6121 } 6122 case KVM_GET_NESTED_STATE: { 6123 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6124 u32 user_data_size; 6125 6126 r = -EINVAL; 6127 if (!kvm_x86_ops.nested_ops->get_state) 6128 break; 6129 6130 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6131 r = -EFAULT; 6132 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6133 break; 6134 6135 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6136 user_data_size); 6137 if (r < 0) 6138 break; 6139 6140 if (r > user_data_size) { 6141 if (put_user(r, &user_kvm_nested_state->size)) 6142 r = -EFAULT; 6143 else 6144 r = -E2BIG; 6145 break; 6146 } 6147 6148 r = 0; 6149 break; 6150 } 6151 case KVM_SET_NESTED_STATE: { 6152 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6153 struct kvm_nested_state kvm_state; 6154 int idx; 6155 6156 r = -EINVAL; 6157 if (!kvm_x86_ops.nested_ops->set_state) 6158 break; 6159 6160 r = -EFAULT; 6161 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6162 break; 6163 6164 r = -EINVAL; 6165 if (kvm_state.size < sizeof(kvm_state)) 6166 break; 6167 6168 if (kvm_state.flags & 6169 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6170 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6171 | KVM_STATE_NESTED_GIF_SET)) 6172 break; 6173 6174 /* nested_run_pending implies guest_mode. */ 6175 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6176 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6177 break; 6178 6179 idx = srcu_read_lock(&vcpu->kvm->srcu); 6180 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6181 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6182 break; 6183 } 6184 #ifdef CONFIG_KVM_HYPERV 6185 case KVM_GET_SUPPORTED_HV_CPUID: 6186 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6187 break; 6188 #endif 6189 #ifdef CONFIG_KVM_XEN 6190 case KVM_XEN_VCPU_GET_ATTR: { 6191 struct kvm_xen_vcpu_attr xva; 6192 6193 r = -EFAULT; 6194 if (copy_from_user(&xva, argp, sizeof(xva))) 6195 goto out; 6196 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6197 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6198 r = -EFAULT; 6199 break; 6200 } 6201 case KVM_XEN_VCPU_SET_ATTR: { 6202 struct kvm_xen_vcpu_attr xva; 6203 6204 r = -EFAULT; 6205 if (copy_from_user(&xva, argp, sizeof(xva))) 6206 goto out; 6207 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6208 break; 6209 } 6210 #endif 6211 case KVM_GET_SREGS2: { 6212 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6213 r = -ENOMEM; 6214 if (!u.sregs2) 6215 goto out; 6216 __get_sregs2(vcpu, u.sregs2); 6217 r = -EFAULT; 6218 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6219 goto out; 6220 r = 0; 6221 break; 6222 } 6223 case KVM_SET_SREGS2: { 6224 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6225 if (IS_ERR(u.sregs2)) { 6226 r = PTR_ERR(u.sregs2); 6227 u.sregs2 = NULL; 6228 goto out; 6229 } 6230 r = __set_sregs2(vcpu, u.sregs2); 6231 break; 6232 } 6233 case KVM_HAS_DEVICE_ATTR: 6234 case KVM_GET_DEVICE_ATTR: 6235 case KVM_SET_DEVICE_ATTR: 6236 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6237 break; 6238 default: 6239 r = -EINVAL; 6240 } 6241 out: 6242 kfree(u.buffer); 6243 out_nofree: 6244 vcpu_put(vcpu); 6245 return r; 6246 } 6247 6248 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6249 { 6250 return VM_FAULT_SIGBUS; 6251 } 6252 6253 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6254 { 6255 int ret; 6256 6257 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6258 return -EINVAL; 6259 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6260 return ret; 6261 } 6262 6263 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6264 u64 ident_addr) 6265 { 6266 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6267 } 6268 6269 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6270 unsigned long kvm_nr_mmu_pages) 6271 { 6272 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6273 return -EINVAL; 6274 6275 mutex_lock(&kvm->slots_lock); 6276 6277 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6278 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6279 6280 mutex_unlock(&kvm->slots_lock); 6281 return 0; 6282 } 6283 6284 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6285 { 6286 struct kvm_pic *pic = kvm->arch.vpic; 6287 int r; 6288 6289 r = 0; 6290 switch (chip->chip_id) { 6291 case KVM_IRQCHIP_PIC_MASTER: 6292 memcpy(&chip->chip.pic, &pic->pics[0], 6293 sizeof(struct kvm_pic_state)); 6294 break; 6295 case KVM_IRQCHIP_PIC_SLAVE: 6296 memcpy(&chip->chip.pic, &pic->pics[1], 6297 sizeof(struct kvm_pic_state)); 6298 break; 6299 case KVM_IRQCHIP_IOAPIC: 6300 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6301 break; 6302 default: 6303 r = -EINVAL; 6304 break; 6305 } 6306 return r; 6307 } 6308 6309 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6310 { 6311 struct kvm_pic *pic = kvm->arch.vpic; 6312 int r; 6313 6314 r = 0; 6315 switch (chip->chip_id) { 6316 case KVM_IRQCHIP_PIC_MASTER: 6317 spin_lock(&pic->lock); 6318 memcpy(&pic->pics[0], &chip->chip.pic, 6319 sizeof(struct kvm_pic_state)); 6320 spin_unlock(&pic->lock); 6321 break; 6322 case KVM_IRQCHIP_PIC_SLAVE: 6323 spin_lock(&pic->lock); 6324 memcpy(&pic->pics[1], &chip->chip.pic, 6325 sizeof(struct kvm_pic_state)); 6326 spin_unlock(&pic->lock); 6327 break; 6328 case KVM_IRQCHIP_IOAPIC: 6329 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6330 break; 6331 default: 6332 r = -EINVAL; 6333 break; 6334 } 6335 kvm_pic_update_irq(pic); 6336 return r; 6337 } 6338 6339 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6340 { 6341 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6342 6343 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6344 6345 mutex_lock(&kps->lock); 6346 memcpy(ps, &kps->channels, sizeof(*ps)); 6347 mutex_unlock(&kps->lock); 6348 return 0; 6349 } 6350 6351 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6352 { 6353 int i; 6354 struct kvm_pit *pit = kvm->arch.vpit; 6355 6356 mutex_lock(&pit->pit_state.lock); 6357 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6358 for (i = 0; i < 3; i++) 6359 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6360 mutex_unlock(&pit->pit_state.lock); 6361 return 0; 6362 } 6363 6364 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6365 { 6366 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6367 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6368 sizeof(ps->channels)); 6369 ps->flags = kvm->arch.vpit->pit_state.flags; 6370 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6371 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6372 return 0; 6373 } 6374 6375 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6376 { 6377 int start = 0; 6378 int i; 6379 u32 prev_legacy, cur_legacy; 6380 struct kvm_pit *pit = kvm->arch.vpit; 6381 6382 mutex_lock(&pit->pit_state.lock); 6383 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6384 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6385 if (!prev_legacy && cur_legacy) 6386 start = 1; 6387 memcpy(&pit->pit_state.channels, &ps->channels, 6388 sizeof(pit->pit_state.channels)); 6389 pit->pit_state.flags = ps->flags; 6390 for (i = 0; i < 3; i++) 6391 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6392 start && i == 0); 6393 mutex_unlock(&pit->pit_state.lock); 6394 return 0; 6395 } 6396 6397 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6398 struct kvm_reinject_control *control) 6399 { 6400 struct kvm_pit *pit = kvm->arch.vpit; 6401 6402 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6403 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6404 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6405 */ 6406 mutex_lock(&pit->pit_state.lock); 6407 kvm_pit_set_reinject(pit, control->pit_reinject); 6408 mutex_unlock(&pit->pit_state.lock); 6409 6410 return 0; 6411 } 6412 6413 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6414 { 6415 6416 /* 6417 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6418 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6419 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6420 * VM-Exit. 6421 */ 6422 struct kvm_vcpu *vcpu; 6423 unsigned long i; 6424 6425 if (!kvm_x86_ops.cpu_dirty_log_size) 6426 return; 6427 6428 kvm_for_each_vcpu(i, vcpu, kvm) 6429 kvm_vcpu_kick(vcpu); 6430 } 6431 6432 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6433 bool line_status) 6434 { 6435 if (!irqchip_in_kernel(kvm)) 6436 return -ENXIO; 6437 6438 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6439 irq_event->irq, irq_event->level, 6440 line_status); 6441 return 0; 6442 } 6443 6444 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6445 struct kvm_enable_cap *cap) 6446 { 6447 int r; 6448 6449 if (cap->flags) 6450 return -EINVAL; 6451 6452 switch (cap->cap) { 6453 case KVM_CAP_DISABLE_QUIRKS2: 6454 r = -EINVAL; 6455 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6456 break; 6457 fallthrough; 6458 case KVM_CAP_DISABLE_QUIRKS: 6459 kvm->arch.disabled_quirks = cap->args[0]; 6460 r = 0; 6461 break; 6462 case KVM_CAP_SPLIT_IRQCHIP: { 6463 mutex_lock(&kvm->lock); 6464 r = -EINVAL; 6465 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6466 goto split_irqchip_unlock; 6467 r = -EEXIST; 6468 if (irqchip_in_kernel(kvm)) 6469 goto split_irqchip_unlock; 6470 if (kvm->created_vcpus) 6471 goto split_irqchip_unlock; 6472 r = kvm_setup_empty_irq_routing(kvm); 6473 if (r) 6474 goto split_irqchip_unlock; 6475 /* Pairs with irqchip_in_kernel. */ 6476 smp_wmb(); 6477 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6478 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6479 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6480 r = 0; 6481 split_irqchip_unlock: 6482 mutex_unlock(&kvm->lock); 6483 break; 6484 } 6485 case KVM_CAP_X2APIC_API: 6486 r = -EINVAL; 6487 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6488 break; 6489 6490 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6491 kvm->arch.x2apic_format = true; 6492 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6493 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6494 6495 r = 0; 6496 break; 6497 case KVM_CAP_X86_DISABLE_EXITS: 6498 r = -EINVAL; 6499 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6500 break; 6501 6502 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6503 kvm->arch.pause_in_guest = true; 6504 6505 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6506 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6507 6508 if (!mitigate_smt_rsb) { 6509 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6510 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6511 pr_warn_once(SMT_RSB_MSG); 6512 6513 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6514 kvm_can_mwait_in_guest()) 6515 kvm->arch.mwait_in_guest = true; 6516 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6517 kvm->arch.hlt_in_guest = true; 6518 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6519 kvm->arch.cstate_in_guest = true; 6520 } 6521 6522 r = 0; 6523 break; 6524 case KVM_CAP_MSR_PLATFORM_INFO: 6525 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6526 r = 0; 6527 break; 6528 case KVM_CAP_EXCEPTION_PAYLOAD: 6529 kvm->arch.exception_payload_enabled = cap->args[0]; 6530 r = 0; 6531 break; 6532 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6533 kvm->arch.triple_fault_event = cap->args[0]; 6534 r = 0; 6535 break; 6536 case KVM_CAP_X86_USER_SPACE_MSR: 6537 r = -EINVAL; 6538 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6539 break; 6540 kvm->arch.user_space_msr_mask = cap->args[0]; 6541 r = 0; 6542 break; 6543 case KVM_CAP_X86_BUS_LOCK_EXIT: 6544 r = -EINVAL; 6545 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6546 break; 6547 6548 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6549 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6550 break; 6551 6552 if (kvm_caps.has_bus_lock_exit && 6553 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6554 kvm->arch.bus_lock_detection_enabled = true; 6555 r = 0; 6556 break; 6557 #ifdef CONFIG_X86_SGX_KVM 6558 case KVM_CAP_SGX_ATTRIBUTE: { 6559 unsigned long allowed_attributes = 0; 6560 6561 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6562 if (r) 6563 break; 6564 6565 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6566 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6567 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6568 kvm->arch.sgx_provisioning_allowed = true; 6569 else 6570 r = -EINVAL; 6571 break; 6572 } 6573 #endif 6574 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6575 r = -EINVAL; 6576 if (!kvm_x86_ops.vm_copy_enc_context_from) 6577 break; 6578 6579 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6580 break; 6581 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6582 r = -EINVAL; 6583 if (!kvm_x86_ops.vm_move_enc_context_from) 6584 break; 6585 6586 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6587 break; 6588 case KVM_CAP_EXIT_HYPERCALL: 6589 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6590 r = -EINVAL; 6591 break; 6592 } 6593 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6594 r = 0; 6595 break; 6596 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6597 r = -EINVAL; 6598 if (cap->args[0] & ~1) 6599 break; 6600 kvm->arch.exit_on_emulation_error = cap->args[0]; 6601 r = 0; 6602 break; 6603 case KVM_CAP_PMU_CAPABILITY: 6604 r = -EINVAL; 6605 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6606 break; 6607 6608 mutex_lock(&kvm->lock); 6609 if (!kvm->created_vcpus) { 6610 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6611 r = 0; 6612 } 6613 mutex_unlock(&kvm->lock); 6614 break; 6615 case KVM_CAP_MAX_VCPU_ID: 6616 r = -EINVAL; 6617 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6618 break; 6619 6620 mutex_lock(&kvm->lock); 6621 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6622 r = 0; 6623 } else if (!kvm->arch.max_vcpu_ids) { 6624 kvm->arch.max_vcpu_ids = cap->args[0]; 6625 r = 0; 6626 } 6627 mutex_unlock(&kvm->lock); 6628 break; 6629 case KVM_CAP_X86_NOTIFY_VMEXIT: 6630 r = -EINVAL; 6631 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6632 break; 6633 if (!kvm_caps.has_notify_vmexit) 6634 break; 6635 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6636 break; 6637 mutex_lock(&kvm->lock); 6638 if (!kvm->created_vcpus) { 6639 kvm->arch.notify_window = cap->args[0] >> 32; 6640 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6641 r = 0; 6642 } 6643 mutex_unlock(&kvm->lock); 6644 break; 6645 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6646 r = -EINVAL; 6647 6648 /* 6649 * Since the risk of disabling NX hugepages is a guest crashing 6650 * the system, ensure the userspace process has permission to 6651 * reboot the system. 6652 * 6653 * Note that unlike the reboot() syscall, the process must have 6654 * this capability in the root namespace because exposing 6655 * /dev/kvm into a container does not limit the scope of the 6656 * iTLB multihit bug to that container. In other words, 6657 * this must use capable(), not ns_capable(). 6658 */ 6659 if (!capable(CAP_SYS_BOOT)) { 6660 r = -EPERM; 6661 break; 6662 } 6663 6664 if (cap->args[0]) 6665 break; 6666 6667 mutex_lock(&kvm->lock); 6668 if (!kvm->created_vcpus) { 6669 kvm->arch.disable_nx_huge_pages = true; 6670 r = 0; 6671 } 6672 mutex_unlock(&kvm->lock); 6673 break; 6674 default: 6675 r = -EINVAL; 6676 break; 6677 } 6678 return r; 6679 } 6680 6681 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6682 { 6683 struct kvm_x86_msr_filter *msr_filter; 6684 6685 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6686 if (!msr_filter) 6687 return NULL; 6688 6689 msr_filter->default_allow = default_allow; 6690 return msr_filter; 6691 } 6692 6693 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6694 { 6695 u32 i; 6696 6697 if (!msr_filter) 6698 return; 6699 6700 for (i = 0; i < msr_filter->count; i++) 6701 kfree(msr_filter->ranges[i].bitmap); 6702 6703 kfree(msr_filter); 6704 } 6705 6706 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6707 struct kvm_msr_filter_range *user_range) 6708 { 6709 unsigned long *bitmap; 6710 size_t bitmap_size; 6711 6712 if (!user_range->nmsrs) 6713 return 0; 6714 6715 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6716 return -EINVAL; 6717 6718 if (!user_range->flags) 6719 return -EINVAL; 6720 6721 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6722 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6723 return -EINVAL; 6724 6725 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6726 if (IS_ERR(bitmap)) 6727 return PTR_ERR(bitmap); 6728 6729 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6730 .flags = user_range->flags, 6731 .base = user_range->base, 6732 .nmsrs = user_range->nmsrs, 6733 .bitmap = bitmap, 6734 }; 6735 6736 msr_filter->count++; 6737 return 0; 6738 } 6739 6740 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6741 struct kvm_msr_filter *filter) 6742 { 6743 struct kvm_x86_msr_filter *new_filter, *old_filter; 6744 bool default_allow; 6745 bool empty = true; 6746 int r; 6747 u32 i; 6748 6749 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6750 return -EINVAL; 6751 6752 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6753 empty &= !filter->ranges[i].nmsrs; 6754 6755 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6756 if (empty && !default_allow) 6757 return -EINVAL; 6758 6759 new_filter = kvm_alloc_msr_filter(default_allow); 6760 if (!new_filter) 6761 return -ENOMEM; 6762 6763 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6764 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6765 if (r) { 6766 kvm_free_msr_filter(new_filter); 6767 return r; 6768 } 6769 } 6770 6771 mutex_lock(&kvm->lock); 6772 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6773 mutex_is_locked(&kvm->lock)); 6774 mutex_unlock(&kvm->lock); 6775 synchronize_srcu(&kvm->srcu); 6776 6777 kvm_free_msr_filter(old_filter); 6778 6779 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6780 6781 return 0; 6782 } 6783 6784 #ifdef CONFIG_KVM_COMPAT 6785 /* for KVM_X86_SET_MSR_FILTER */ 6786 struct kvm_msr_filter_range_compat { 6787 __u32 flags; 6788 __u32 nmsrs; 6789 __u32 base; 6790 __u32 bitmap; 6791 }; 6792 6793 struct kvm_msr_filter_compat { 6794 __u32 flags; 6795 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6796 }; 6797 6798 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6799 6800 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6801 unsigned long arg) 6802 { 6803 void __user *argp = (void __user *)arg; 6804 struct kvm *kvm = filp->private_data; 6805 long r = -ENOTTY; 6806 6807 switch (ioctl) { 6808 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6809 struct kvm_msr_filter __user *user_msr_filter = argp; 6810 struct kvm_msr_filter_compat filter_compat; 6811 struct kvm_msr_filter filter; 6812 int i; 6813 6814 if (copy_from_user(&filter_compat, user_msr_filter, 6815 sizeof(filter_compat))) 6816 return -EFAULT; 6817 6818 filter.flags = filter_compat.flags; 6819 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6820 struct kvm_msr_filter_range_compat *cr; 6821 6822 cr = &filter_compat.ranges[i]; 6823 filter.ranges[i] = (struct kvm_msr_filter_range) { 6824 .flags = cr->flags, 6825 .nmsrs = cr->nmsrs, 6826 .base = cr->base, 6827 .bitmap = (__u8 *)(ulong)cr->bitmap, 6828 }; 6829 } 6830 6831 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6832 break; 6833 } 6834 } 6835 6836 return r; 6837 } 6838 #endif 6839 6840 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6841 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6842 { 6843 struct kvm_vcpu *vcpu; 6844 unsigned long i; 6845 int ret = 0; 6846 6847 mutex_lock(&kvm->lock); 6848 kvm_for_each_vcpu(i, vcpu, kvm) { 6849 if (!vcpu->arch.pv_time.active) 6850 continue; 6851 6852 ret = kvm_set_guest_paused(vcpu); 6853 if (ret) { 6854 kvm_err("Failed to pause guest VCPU%d: %d\n", 6855 vcpu->vcpu_id, ret); 6856 break; 6857 } 6858 } 6859 mutex_unlock(&kvm->lock); 6860 6861 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6862 } 6863 6864 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6865 { 6866 switch (state) { 6867 case PM_HIBERNATION_PREPARE: 6868 case PM_SUSPEND_PREPARE: 6869 return kvm_arch_suspend_notifier(kvm); 6870 } 6871 6872 return NOTIFY_DONE; 6873 } 6874 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6875 6876 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6877 { 6878 struct kvm_clock_data data = { 0 }; 6879 6880 get_kvmclock(kvm, &data); 6881 if (copy_to_user(argp, &data, sizeof(data))) 6882 return -EFAULT; 6883 6884 return 0; 6885 } 6886 6887 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6888 { 6889 struct kvm_arch *ka = &kvm->arch; 6890 struct kvm_clock_data data; 6891 u64 now_raw_ns; 6892 6893 if (copy_from_user(&data, argp, sizeof(data))) 6894 return -EFAULT; 6895 6896 /* 6897 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6898 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6899 */ 6900 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6901 return -EINVAL; 6902 6903 kvm_hv_request_tsc_page_update(kvm); 6904 kvm_start_pvclock_update(kvm); 6905 pvclock_update_vm_gtod_copy(kvm); 6906 6907 /* 6908 * This pairs with kvm_guest_time_update(): when masterclock is 6909 * in use, we use master_kernel_ns + kvmclock_offset to set 6910 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6911 * is slightly ahead) here we risk going negative on unsigned 6912 * 'system_time' when 'data.clock' is very small. 6913 */ 6914 if (data.flags & KVM_CLOCK_REALTIME) { 6915 u64 now_real_ns = ktime_get_real_ns(); 6916 6917 /* 6918 * Avoid stepping the kvmclock backwards. 6919 */ 6920 if (now_real_ns > data.realtime) 6921 data.clock += now_real_ns - data.realtime; 6922 } 6923 6924 if (ka->use_master_clock) 6925 now_raw_ns = ka->master_kernel_ns; 6926 else 6927 now_raw_ns = get_kvmclock_base_ns(); 6928 ka->kvmclock_offset = data.clock - now_raw_ns; 6929 kvm_end_pvclock_update(kvm); 6930 return 0; 6931 } 6932 6933 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6934 { 6935 struct kvm *kvm = filp->private_data; 6936 void __user *argp = (void __user *)arg; 6937 int r = -ENOTTY; 6938 /* 6939 * This union makes it completely explicit to gcc-3.x 6940 * that these two variables' stack usage should be 6941 * combined, not added together. 6942 */ 6943 union { 6944 struct kvm_pit_state ps; 6945 struct kvm_pit_state2 ps2; 6946 struct kvm_pit_config pit_config; 6947 } u; 6948 6949 switch (ioctl) { 6950 case KVM_SET_TSS_ADDR: 6951 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6952 break; 6953 case KVM_SET_IDENTITY_MAP_ADDR: { 6954 u64 ident_addr; 6955 6956 mutex_lock(&kvm->lock); 6957 r = -EINVAL; 6958 if (kvm->created_vcpus) 6959 goto set_identity_unlock; 6960 r = -EFAULT; 6961 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6962 goto set_identity_unlock; 6963 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6964 set_identity_unlock: 6965 mutex_unlock(&kvm->lock); 6966 break; 6967 } 6968 case KVM_SET_NR_MMU_PAGES: 6969 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6970 break; 6971 case KVM_CREATE_IRQCHIP: { 6972 mutex_lock(&kvm->lock); 6973 6974 r = -EEXIST; 6975 if (irqchip_in_kernel(kvm)) 6976 goto create_irqchip_unlock; 6977 6978 r = -EINVAL; 6979 if (kvm->created_vcpus) 6980 goto create_irqchip_unlock; 6981 6982 r = kvm_pic_init(kvm); 6983 if (r) 6984 goto create_irqchip_unlock; 6985 6986 r = kvm_ioapic_init(kvm); 6987 if (r) { 6988 kvm_pic_destroy(kvm); 6989 goto create_irqchip_unlock; 6990 } 6991 6992 r = kvm_setup_default_irq_routing(kvm); 6993 if (r) { 6994 kvm_ioapic_destroy(kvm); 6995 kvm_pic_destroy(kvm); 6996 goto create_irqchip_unlock; 6997 } 6998 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6999 smp_wmb(); 7000 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7001 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7002 create_irqchip_unlock: 7003 mutex_unlock(&kvm->lock); 7004 break; 7005 } 7006 case KVM_CREATE_PIT: 7007 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7008 goto create_pit; 7009 case KVM_CREATE_PIT2: 7010 r = -EFAULT; 7011 if (copy_from_user(&u.pit_config, argp, 7012 sizeof(struct kvm_pit_config))) 7013 goto out; 7014 create_pit: 7015 mutex_lock(&kvm->lock); 7016 r = -EEXIST; 7017 if (kvm->arch.vpit) 7018 goto create_pit_unlock; 7019 r = -ENOMEM; 7020 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7021 if (kvm->arch.vpit) 7022 r = 0; 7023 create_pit_unlock: 7024 mutex_unlock(&kvm->lock); 7025 break; 7026 case KVM_GET_IRQCHIP: { 7027 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7028 struct kvm_irqchip *chip; 7029 7030 chip = memdup_user(argp, sizeof(*chip)); 7031 if (IS_ERR(chip)) { 7032 r = PTR_ERR(chip); 7033 goto out; 7034 } 7035 7036 r = -ENXIO; 7037 if (!irqchip_kernel(kvm)) 7038 goto get_irqchip_out; 7039 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7040 if (r) 7041 goto get_irqchip_out; 7042 r = -EFAULT; 7043 if (copy_to_user(argp, chip, sizeof(*chip))) 7044 goto get_irqchip_out; 7045 r = 0; 7046 get_irqchip_out: 7047 kfree(chip); 7048 break; 7049 } 7050 case KVM_SET_IRQCHIP: { 7051 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7052 struct kvm_irqchip *chip; 7053 7054 chip = memdup_user(argp, sizeof(*chip)); 7055 if (IS_ERR(chip)) { 7056 r = PTR_ERR(chip); 7057 goto out; 7058 } 7059 7060 r = -ENXIO; 7061 if (!irqchip_kernel(kvm)) 7062 goto set_irqchip_out; 7063 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7064 set_irqchip_out: 7065 kfree(chip); 7066 break; 7067 } 7068 case KVM_GET_PIT: { 7069 r = -EFAULT; 7070 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7071 goto out; 7072 r = -ENXIO; 7073 if (!kvm->arch.vpit) 7074 goto out; 7075 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7076 if (r) 7077 goto out; 7078 r = -EFAULT; 7079 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7080 goto out; 7081 r = 0; 7082 break; 7083 } 7084 case KVM_SET_PIT: { 7085 r = -EFAULT; 7086 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7087 goto out; 7088 mutex_lock(&kvm->lock); 7089 r = -ENXIO; 7090 if (!kvm->arch.vpit) 7091 goto set_pit_out; 7092 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7093 set_pit_out: 7094 mutex_unlock(&kvm->lock); 7095 break; 7096 } 7097 case KVM_GET_PIT2: { 7098 r = -ENXIO; 7099 if (!kvm->arch.vpit) 7100 goto out; 7101 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7102 if (r) 7103 goto out; 7104 r = -EFAULT; 7105 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7106 goto out; 7107 r = 0; 7108 break; 7109 } 7110 case KVM_SET_PIT2: { 7111 r = -EFAULT; 7112 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7113 goto out; 7114 mutex_lock(&kvm->lock); 7115 r = -ENXIO; 7116 if (!kvm->arch.vpit) 7117 goto set_pit2_out; 7118 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7119 set_pit2_out: 7120 mutex_unlock(&kvm->lock); 7121 break; 7122 } 7123 case KVM_REINJECT_CONTROL: { 7124 struct kvm_reinject_control control; 7125 r = -EFAULT; 7126 if (copy_from_user(&control, argp, sizeof(control))) 7127 goto out; 7128 r = -ENXIO; 7129 if (!kvm->arch.vpit) 7130 goto out; 7131 r = kvm_vm_ioctl_reinject(kvm, &control); 7132 break; 7133 } 7134 case KVM_SET_BOOT_CPU_ID: 7135 r = 0; 7136 mutex_lock(&kvm->lock); 7137 if (kvm->created_vcpus) 7138 r = -EBUSY; 7139 else 7140 kvm->arch.bsp_vcpu_id = arg; 7141 mutex_unlock(&kvm->lock); 7142 break; 7143 #ifdef CONFIG_KVM_XEN 7144 case KVM_XEN_HVM_CONFIG: { 7145 struct kvm_xen_hvm_config xhc; 7146 r = -EFAULT; 7147 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7148 goto out; 7149 r = kvm_xen_hvm_config(kvm, &xhc); 7150 break; 7151 } 7152 case KVM_XEN_HVM_GET_ATTR: { 7153 struct kvm_xen_hvm_attr xha; 7154 7155 r = -EFAULT; 7156 if (copy_from_user(&xha, argp, sizeof(xha))) 7157 goto out; 7158 r = kvm_xen_hvm_get_attr(kvm, &xha); 7159 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7160 r = -EFAULT; 7161 break; 7162 } 7163 case KVM_XEN_HVM_SET_ATTR: { 7164 struct kvm_xen_hvm_attr xha; 7165 7166 r = -EFAULT; 7167 if (copy_from_user(&xha, argp, sizeof(xha))) 7168 goto out; 7169 r = kvm_xen_hvm_set_attr(kvm, &xha); 7170 break; 7171 } 7172 case KVM_XEN_HVM_EVTCHN_SEND: { 7173 struct kvm_irq_routing_xen_evtchn uxe; 7174 7175 r = -EFAULT; 7176 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7177 goto out; 7178 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7179 break; 7180 } 7181 #endif 7182 case KVM_SET_CLOCK: 7183 r = kvm_vm_ioctl_set_clock(kvm, argp); 7184 break; 7185 case KVM_GET_CLOCK: 7186 r = kvm_vm_ioctl_get_clock(kvm, argp); 7187 break; 7188 case KVM_SET_TSC_KHZ: { 7189 u32 user_tsc_khz; 7190 7191 r = -EINVAL; 7192 user_tsc_khz = (u32)arg; 7193 7194 if (kvm_caps.has_tsc_control && 7195 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7196 goto out; 7197 7198 if (user_tsc_khz == 0) 7199 user_tsc_khz = tsc_khz; 7200 7201 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7202 r = 0; 7203 7204 goto out; 7205 } 7206 case KVM_GET_TSC_KHZ: { 7207 r = READ_ONCE(kvm->arch.default_tsc_khz); 7208 goto out; 7209 } 7210 case KVM_MEMORY_ENCRYPT_OP: { 7211 r = -ENOTTY; 7212 if (!kvm_x86_ops.mem_enc_ioctl) 7213 goto out; 7214 7215 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7216 break; 7217 } 7218 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7219 struct kvm_enc_region region; 7220 7221 r = -EFAULT; 7222 if (copy_from_user(®ion, argp, sizeof(region))) 7223 goto out; 7224 7225 r = -ENOTTY; 7226 if (!kvm_x86_ops.mem_enc_register_region) 7227 goto out; 7228 7229 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7230 break; 7231 } 7232 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7233 struct kvm_enc_region region; 7234 7235 r = -EFAULT; 7236 if (copy_from_user(®ion, argp, sizeof(region))) 7237 goto out; 7238 7239 r = -ENOTTY; 7240 if (!kvm_x86_ops.mem_enc_unregister_region) 7241 goto out; 7242 7243 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7244 break; 7245 } 7246 #ifdef CONFIG_KVM_HYPERV 7247 case KVM_HYPERV_EVENTFD: { 7248 struct kvm_hyperv_eventfd hvevfd; 7249 7250 r = -EFAULT; 7251 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7252 goto out; 7253 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7254 break; 7255 } 7256 #endif 7257 case KVM_SET_PMU_EVENT_FILTER: 7258 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7259 break; 7260 case KVM_X86_SET_MSR_FILTER: { 7261 struct kvm_msr_filter __user *user_msr_filter = argp; 7262 struct kvm_msr_filter filter; 7263 7264 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7265 return -EFAULT; 7266 7267 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7268 break; 7269 } 7270 default: 7271 r = -ENOTTY; 7272 } 7273 out: 7274 return r; 7275 } 7276 7277 static void kvm_probe_feature_msr(u32 msr_index) 7278 { 7279 struct kvm_msr_entry msr = { 7280 .index = msr_index, 7281 }; 7282 7283 if (kvm_get_msr_feature(&msr)) 7284 return; 7285 7286 msr_based_features[num_msr_based_features++] = msr_index; 7287 } 7288 7289 static void kvm_probe_msr_to_save(u32 msr_index) 7290 { 7291 u32 dummy[2]; 7292 7293 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7294 return; 7295 7296 /* 7297 * Even MSRs that are valid in the host may not be exposed to guests in 7298 * some cases. 7299 */ 7300 switch (msr_index) { 7301 case MSR_IA32_BNDCFGS: 7302 if (!kvm_mpx_supported()) 7303 return; 7304 break; 7305 case MSR_TSC_AUX: 7306 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7307 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7308 return; 7309 break; 7310 case MSR_IA32_UMWAIT_CONTROL: 7311 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7312 return; 7313 break; 7314 case MSR_IA32_RTIT_CTL: 7315 case MSR_IA32_RTIT_STATUS: 7316 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7317 return; 7318 break; 7319 case MSR_IA32_RTIT_CR3_MATCH: 7320 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7321 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7322 return; 7323 break; 7324 case MSR_IA32_RTIT_OUTPUT_BASE: 7325 case MSR_IA32_RTIT_OUTPUT_MASK: 7326 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7327 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7328 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7329 return; 7330 break; 7331 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7332 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7333 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7334 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7335 return; 7336 break; 7337 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7338 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7339 kvm_pmu_cap.num_counters_gp) 7340 return; 7341 break; 7342 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7343 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7344 kvm_pmu_cap.num_counters_gp) 7345 return; 7346 break; 7347 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7348 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7349 kvm_pmu_cap.num_counters_fixed) 7350 return; 7351 break; 7352 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7353 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7354 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7355 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7356 return; 7357 break; 7358 case MSR_IA32_XFD: 7359 case MSR_IA32_XFD_ERR: 7360 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7361 return; 7362 break; 7363 case MSR_IA32_TSX_CTRL: 7364 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7365 return; 7366 break; 7367 default: 7368 break; 7369 } 7370 7371 msrs_to_save[num_msrs_to_save++] = msr_index; 7372 } 7373 7374 static void kvm_init_msr_lists(void) 7375 { 7376 unsigned i; 7377 7378 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7379 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7380 7381 num_msrs_to_save = 0; 7382 num_emulated_msrs = 0; 7383 num_msr_based_features = 0; 7384 7385 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7386 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7387 7388 if (enable_pmu) { 7389 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7390 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7391 } 7392 7393 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7394 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7395 continue; 7396 7397 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7398 } 7399 7400 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7401 kvm_probe_feature_msr(i); 7402 7403 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7404 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7405 } 7406 7407 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7408 const void *v) 7409 { 7410 int handled = 0; 7411 int n; 7412 7413 do { 7414 n = min(len, 8); 7415 if (!(lapic_in_kernel(vcpu) && 7416 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7417 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7418 break; 7419 handled += n; 7420 addr += n; 7421 len -= n; 7422 v += n; 7423 } while (len); 7424 7425 return handled; 7426 } 7427 7428 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7429 { 7430 int handled = 0; 7431 int n; 7432 7433 do { 7434 n = min(len, 8); 7435 if (!(lapic_in_kernel(vcpu) && 7436 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7437 addr, n, v)) 7438 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7439 break; 7440 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7441 handled += n; 7442 addr += n; 7443 len -= n; 7444 v += n; 7445 } while (len); 7446 7447 return handled; 7448 } 7449 7450 void kvm_set_segment(struct kvm_vcpu *vcpu, 7451 struct kvm_segment *var, int seg) 7452 { 7453 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7454 } 7455 7456 void kvm_get_segment(struct kvm_vcpu *vcpu, 7457 struct kvm_segment *var, int seg) 7458 { 7459 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7460 } 7461 7462 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7463 struct x86_exception *exception) 7464 { 7465 struct kvm_mmu *mmu = vcpu->arch.mmu; 7466 gpa_t t_gpa; 7467 7468 BUG_ON(!mmu_is_nested(vcpu)); 7469 7470 /* NPT walks are always user-walks */ 7471 access |= PFERR_USER_MASK; 7472 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7473 7474 return t_gpa; 7475 } 7476 7477 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7478 struct x86_exception *exception) 7479 { 7480 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7481 7482 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7483 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7484 } 7485 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7486 7487 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7488 struct x86_exception *exception) 7489 { 7490 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7491 7492 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7493 access |= PFERR_WRITE_MASK; 7494 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7495 } 7496 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7497 7498 /* uses this to access any guest's mapped memory without checking CPL */ 7499 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7500 struct x86_exception *exception) 7501 { 7502 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7503 7504 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7505 } 7506 7507 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7508 struct kvm_vcpu *vcpu, u64 access, 7509 struct x86_exception *exception) 7510 { 7511 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7512 void *data = val; 7513 int r = X86EMUL_CONTINUE; 7514 7515 while (bytes) { 7516 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7517 unsigned offset = addr & (PAGE_SIZE-1); 7518 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7519 int ret; 7520 7521 if (gpa == INVALID_GPA) 7522 return X86EMUL_PROPAGATE_FAULT; 7523 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7524 offset, toread); 7525 if (ret < 0) { 7526 r = X86EMUL_IO_NEEDED; 7527 goto out; 7528 } 7529 7530 bytes -= toread; 7531 data += toread; 7532 addr += toread; 7533 } 7534 out: 7535 return r; 7536 } 7537 7538 /* used for instruction fetching */ 7539 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7540 gva_t addr, void *val, unsigned int bytes, 7541 struct x86_exception *exception) 7542 { 7543 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7544 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7545 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7546 unsigned offset; 7547 int ret; 7548 7549 /* Inline kvm_read_guest_virt_helper for speed. */ 7550 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7551 exception); 7552 if (unlikely(gpa == INVALID_GPA)) 7553 return X86EMUL_PROPAGATE_FAULT; 7554 7555 offset = addr & (PAGE_SIZE-1); 7556 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7557 bytes = (unsigned)PAGE_SIZE - offset; 7558 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7559 offset, bytes); 7560 if (unlikely(ret < 0)) 7561 return X86EMUL_IO_NEEDED; 7562 7563 return X86EMUL_CONTINUE; 7564 } 7565 7566 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7567 gva_t addr, void *val, unsigned int bytes, 7568 struct x86_exception *exception) 7569 { 7570 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7571 7572 /* 7573 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7574 * is returned, but our callers are not ready for that and they blindly 7575 * call kvm_inject_page_fault. Ensure that they at least do not leak 7576 * uninitialized kernel stack memory into cr2 and error code. 7577 */ 7578 memset(exception, 0, sizeof(*exception)); 7579 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7580 exception); 7581 } 7582 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7583 7584 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7585 gva_t addr, void *val, unsigned int bytes, 7586 struct x86_exception *exception, bool system) 7587 { 7588 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7589 u64 access = 0; 7590 7591 if (system) 7592 access |= PFERR_IMPLICIT_ACCESS; 7593 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7594 access |= PFERR_USER_MASK; 7595 7596 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7597 } 7598 7599 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7600 struct kvm_vcpu *vcpu, u64 access, 7601 struct x86_exception *exception) 7602 { 7603 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7604 void *data = val; 7605 int r = X86EMUL_CONTINUE; 7606 7607 while (bytes) { 7608 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7609 unsigned offset = addr & (PAGE_SIZE-1); 7610 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7611 int ret; 7612 7613 if (gpa == INVALID_GPA) 7614 return X86EMUL_PROPAGATE_FAULT; 7615 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7616 if (ret < 0) { 7617 r = X86EMUL_IO_NEEDED; 7618 goto out; 7619 } 7620 7621 bytes -= towrite; 7622 data += towrite; 7623 addr += towrite; 7624 } 7625 out: 7626 return r; 7627 } 7628 7629 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7630 unsigned int bytes, struct x86_exception *exception, 7631 bool system) 7632 { 7633 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7634 u64 access = PFERR_WRITE_MASK; 7635 7636 if (system) 7637 access |= PFERR_IMPLICIT_ACCESS; 7638 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7639 access |= PFERR_USER_MASK; 7640 7641 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7642 access, exception); 7643 } 7644 7645 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7646 unsigned int bytes, struct x86_exception *exception) 7647 { 7648 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7649 vcpu->arch.l1tf_flush_l1d = true; 7650 7651 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7652 PFERR_WRITE_MASK, exception); 7653 } 7654 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7655 7656 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7657 void *insn, int insn_len) 7658 { 7659 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type, 7660 insn, insn_len); 7661 } 7662 7663 int handle_ud(struct kvm_vcpu *vcpu) 7664 { 7665 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7666 int fep_flags = READ_ONCE(force_emulation_prefix); 7667 int emul_type = EMULTYPE_TRAP_UD; 7668 char sig[5]; /* ud2; .ascii "kvm" */ 7669 struct x86_exception e; 7670 int r; 7671 7672 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7673 if (r != X86EMUL_CONTINUE) 7674 return 1; 7675 7676 if (fep_flags && 7677 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7678 sig, sizeof(sig), &e) == 0 && 7679 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7680 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7681 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7682 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7683 emul_type = EMULTYPE_TRAP_UD_FORCED; 7684 } 7685 7686 return kvm_emulate_instruction(vcpu, emul_type); 7687 } 7688 EXPORT_SYMBOL_GPL(handle_ud); 7689 7690 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7691 gpa_t gpa, bool write) 7692 { 7693 /* For APIC access vmexit */ 7694 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7695 return 1; 7696 7697 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7698 trace_vcpu_match_mmio(gva, gpa, write, true); 7699 return 1; 7700 } 7701 7702 return 0; 7703 } 7704 7705 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7706 gpa_t *gpa, struct x86_exception *exception, 7707 bool write) 7708 { 7709 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7710 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7711 | (write ? PFERR_WRITE_MASK : 0); 7712 7713 /* 7714 * currently PKRU is only applied to ept enabled guest so 7715 * there is no pkey in EPT page table for L1 guest or EPT 7716 * shadow page table for L2 guest. 7717 */ 7718 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7719 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7720 vcpu->arch.mmio_access, 0, access))) { 7721 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7722 (gva & (PAGE_SIZE - 1)); 7723 trace_vcpu_match_mmio(gva, *gpa, write, false); 7724 return 1; 7725 } 7726 7727 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7728 7729 if (*gpa == INVALID_GPA) 7730 return -1; 7731 7732 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7733 } 7734 7735 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7736 const void *val, int bytes) 7737 { 7738 int ret; 7739 7740 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7741 if (ret < 0) 7742 return 0; 7743 kvm_page_track_write(vcpu, gpa, val, bytes); 7744 return 1; 7745 } 7746 7747 struct read_write_emulator_ops { 7748 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7749 int bytes); 7750 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7751 void *val, int bytes); 7752 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7753 int bytes, void *val); 7754 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7755 void *val, int bytes); 7756 bool write; 7757 }; 7758 7759 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7760 { 7761 if (vcpu->mmio_read_completed) { 7762 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7763 vcpu->mmio_fragments[0].gpa, val); 7764 vcpu->mmio_read_completed = 0; 7765 return 1; 7766 } 7767 7768 return 0; 7769 } 7770 7771 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7772 void *val, int bytes) 7773 { 7774 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7775 } 7776 7777 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7778 void *val, int bytes) 7779 { 7780 return emulator_write_phys(vcpu, gpa, val, bytes); 7781 } 7782 7783 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7784 { 7785 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7786 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7787 } 7788 7789 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7790 void *val, int bytes) 7791 { 7792 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7793 return X86EMUL_IO_NEEDED; 7794 } 7795 7796 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7797 void *val, int bytes) 7798 { 7799 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7800 7801 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7802 return X86EMUL_CONTINUE; 7803 } 7804 7805 static const struct read_write_emulator_ops read_emultor = { 7806 .read_write_prepare = read_prepare, 7807 .read_write_emulate = read_emulate, 7808 .read_write_mmio = vcpu_mmio_read, 7809 .read_write_exit_mmio = read_exit_mmio, 7810 }; 7811 7812 static const struct read_write_emulator_ops write_emultor = { 7813 .read_write_emulate = write_emulate, 7814 .read_write_mmio = write_mmio, 7815 .read_write_exit_mmio = write_exit_mmio, 7816 .write = true, 7817 }; 7818 7819 static int emulator_read_write_onepage(unsigned long addr, void *val, 7820 unsigned int bytes, 7821 struct x86_exception *exception, 7822 struct kvm_vcpu *vcpu, 7823 const struct read_write_emulator_ops *ops) 7824 { 7825 gpa_t gpa; 7826 int handled, ret; 7827 bool write = ops->write; 7828 struct kvm_mmio_fragment *frag; 7829 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7830 7831 /* 7832 * If the exit was due to a NPF we may already have a GPA. 7833 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7834 * Note, this cannot be used on string operations since string 7835 * operation using rep will only have the initial GPA from the NPF 7836 * occurred. 7837 */ 7838 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7839 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7840 gpa = ctxt->gpa_val; 7841 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7842 } else { 7843 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7844 if (ret < 0) 7845 return X86EMUL_PROPAGATE_FAULT; 7846 } 7847 7848 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7849 return X86EMUL_CONTINUE; 7850 7851 /* 7852 * Is this MMIO handled locally? 7853 */ 7854 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7855 if (handled == bytes) 7856 return X86EMUL_CONTINUE; 7857 7858 gpa += handled; 7859 bytes -= handled; 7860 val += handled; 7861 7862 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7863 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7864 frag->gpa = gpa; 7865 frag->data = val; 7866 frag->len = bytes; 7867 return X86EMUL_CONTINUE; 7868 } 7869 7870 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7871 unsigned long addr, 7872 void *val, unsigned int bytes, 7873 struct x86_exception *exception, 7874 const struct read_write_emulator_ops *ops) 7875 { 7876 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7877 gpa_t gpa; 7878 int rc; 7879 7880 if (ops->read_write_prepare && 7881 ops->read_write_prepare(vcpu, val, bytes)) 7882 return X86EMUL_CONTINUE; 7883 7884 vcpu->mmio_nr_fragments = 0; 7885 7886 /* Crossing a page boundary? */ 7887 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7888 int now; 7889 7890 now = -addr & ~PAGE_MASK; 7891 rc = emulator_read_write_onepage(addr, val, now, exception, 7892 vcpu, ops); 7893 7894 if (rc != X86EMUL_CONTINUE) 7895 return rc; 7896 addr += now; 7897 if (ctxt->mode != X86EMUL_MODE_PROT64) 7898 addr = (u32)addr; 7899 val += now; 7900 bytes -= now; 7901 } 7902 7903 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7904 vcpu, ops); 7905 if (rc != X86EMUL_CONTINUE) 7906 return rc; 7907 7908 if (!vcpu->mmio_nr_fragments) 7909 return rc; 7910 7911 gpa = vcpu->mmio_fragments[0].gpa; 7912 7913 vcpu->mmio_needed = 1; 7914 vcpu->mmio_cur_fragment = 0; 7915 7916 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7917 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7918 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7919 vcpu->run->mmio.phys_addr = gpa; 7920 7921 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7922 } 7923 7924 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7925 unsigned long addr, 7926 void *val, 7927 unsigned int bytes, 7928 struct x86_exception *exception) 7929 { 7930 return emulator_read_write(ctxt, addr, val, bytes, 7931 exception, &read_emultor); 7932 } 7933 7934 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7935 unsigned long addr, 7936 const void *val, 7937 unsigned int bytes, 7938 struct x86_exception *exception) 7939 { 7940 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7941 exception, &write_emultor); 7942 } 7943 7944 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7945 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7946 7947 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7948 unsigned long addr, 7949 const void *old, 7950 const void *new, 7951 unsigned int bytes, 7952 struct x86_exception *exception) 7953 { 7954 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7955 u64 page_line_mask; 7956 unsigned long hva; 7957 gpa_t gpa; 7958 int r; 7959 7960 /* guests cmpxchg8b have to be emulated atomically */ 7961 if (bytes > 8 || (bytes & (bytes - 1))) 7962 goto emul_write; 7963 7964 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7965 7966 if (gpa == INVALID_GPA || 7967 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7968 goto emul_write; 7969 7970 /* 7971 * Emulate the atomic as a straight write to avoid #AC if SLD is 7972 * enabled in the host and the access splits a cache line. 7973 */ 7974 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7975 page_line_mask = ~(cache_line_size() - 1); 7976 else 7977 page_line_mask = PAGE_MASK; 7978 7979 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7980 goto emul_write; 7981 7982 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7983 if (kvm_is_error_hva(hva)) 7984 goto emul_write; 7985 7986 hva += offset_in_page(gpa); 7987 7988 switch (bytes) { 7989 case 1: 7990 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7991 break; 7992 case 2: 7993 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7994 break; 7995 case 4: 7996 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7997 break; 7998 case 8: 7999 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8000 break; 8001 default: 8002 BUG(); 8003 } 8004 8005 if (r < 0) 8006 return X86EMUL_UNHANDLEABLE; 8007 if (r) 8008 return X86EMUL_CMPXCHG_FAILED; 8009 8010 kvm_page_track_write(vcpu, gpa, new, bytes); 8011 8012 return X86EMUL_CONTINUE; 8013 8014 emul_write: 8015 pr_warn_once("emulating exchange as write\n"); 8016 8017 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8018 } 8019 8020 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8021 unsigned short port, void *data, 8022 unsigned int count, bool in) 8023 { 8024 unsigned i; 8025 int r; 8026 8027 WARN_ON_ONCE(vcpu->arch.pio.count); 8028 for (i = 0; i < count; i++) { 8029 if (in) 8030 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8031 else 8032 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8033 8034 if (r) { 8035 if (i == 0) 8036 goto userspace_io; 8037 8038 /* 8039 * Userspace must have unregistered the device while PIO 8040 * was running. Drop writes / read as 0. 8041 */ 8042 if (in) 8043 memset(data, 0, size * (count - i)); 8044 break; 8045 } 8046 8047 data += size; 8048 } 8049 return 1; 8050 8051 userspace_io: 8052 vcpu->arch.pio.port = port; 8053 vcpu->arch.pio.in = in; 8054 vcpu->arch.pio.count = count; 8055 vcpu->arch.pio.size = size; 8056 8057 if (in) 8058 memset(vcpu->arch.pio_data, 0, size * count); 8059 else 8060 memcpy(vcpu->arch.pio_data, data, size * count); 8061 8062 vcpu->run->exit_reason = KVM_EXIT_IO; 8063 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8064 vcpu->run->io.size = size; 8065 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8066 vcpu->run->io.count = count; 8067 vcpu->run->io.port = port; 8068 return 0; 8069 } 8070 8071 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8072 unsigned short port, void *val, unsigned int count) 8073 { 8074 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8075 if (r) 8076 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8077 8078 return r; 8079 } 8080 8081 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8082 { 8083 int size = vcpu->arch.pio.size; 8084 unsigned int count = vcpu->arch.pio.count; 8085 memcpy(val, vcpu->arch.pio_data, size * count); 8086 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8087 vcpu->arch.pio.count = 0; 8088 } 8089 8090 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8091 int size, unsigned short port, void *val, 8092 unsigned int count) 8093 { 8094 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8095 if (vcpu->arch.pio.count) { 8096 /* 8097 * Complete a previous iteration that required userspace I/O. 8098 * Note, @count isn't guaranteed to match pio.count as userspace 8099 * can modify ECX before rerunning the vCPU. Ignore any such 8100 * shenanigans as KVM doesn't support modifying the rep count, 8101 * and the emulator ensures @count doesn't overflow the buffer. 8102 */ 8103 complete_emulator_pio_in(vcpu, val); 8104 return 1; 8105 } 8106 8107 return emulator_pio_in(vcpu, size, port, val, count); 8108 } 8109 8110 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8111 unsigned short port, const void *val, 8112 unsigned int count) 8113 { 8114 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8115 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8116 } 8117 8118 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8119 int size, unsigned short port, 8120 const void *val, unsigned int count) 8121 { 8122 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8123 } 8124 8125 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8126 { 8127 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 8128 } 8129 8130 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8131 { 8132 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8133 } 8134 8135 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8136 { 8137 if (!need_emulate_wbinvd(vcpu)) 8138 return X86EMUL_CONTINUE; 8139 8140 if (static_call(kvm_x86_has_wbinvd_exit)()) { 8141 int cpu = get_cpu(); 8142 8143 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8144 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8145 wbinvd_ipi, NULL, 1); 8146 put_cpu(); 8147 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8148 } else 8149 wbinvd(); 8150 return X86EMUL_CONTINUE; 8151 } 8152 8153 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8154 { 8155 kvm_emulate_wbinvd_noskip(vcpu); 8156 return kvm_skip_emulated_instruction(vcpu); 8157 } 8158 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8159 8160 8161 8162 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8163 { 8164 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8165 } 8166 8167 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 8168 unsigned long *dest) 8169 { 8170 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 8171 } 8172 8173 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8174 unsigned long value) 8175 { 8176 8177 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8178 } 8179 8180 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8181 { 8182 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8183 } 8184 8185 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8186 { 8187 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8188 unsigned long value; 8189 8190 switch (cr) { 8191 case 0: 8192 value = kvm_read_cr0(vcpu); 8193 break; 8194 case 2: 8195 value = vcpu->arch.cr2; 8196 break; 8197 case 3: 8198 value = kvm_read_cr3(vcpu); 8199 break; 8200 case 4: 8201 value = kvm_read_cr4(vcpu); 8202 break; 8203 case 8: 8204 value = kvm_get_cr8(vcpu); 8205 break; 8206 default: 8207 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8208 return 0; 8209 } 8210 8211 return value; 8212 } 8213 8214 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8215 { 8216 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8217 int res = 0; 8218 8219 switch (cr) { 8220 case 0: 8221 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8222 break; 8223 case 2: 8224 vcpu->arch.cr2 = val; 8225 break; 8226 case 3: 8227 res = kvm_set_cr3(vcpu, val); 8228 break; 8229 case 4: 8230 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8231 break; 8232 case 8: 8233 res = kvm_set_cr8(vcpu, val); 8234 break; 8235 default: 8236 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8237 res = -1; 8238 } 8239 8240 return res; 8241 } 8242 8243 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8244 { 8245 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8246 } 8247 8248 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8249 { 8250 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8251 } 8252 8253 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8254 { 8255 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8256 } 8257 8258 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8259 { 8260 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8261 } 8262 8263 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8264 { 8265 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8266 } 8267 8268 static unsigned long emulator_get_cached_segment_base( 8269 struct x86_emulate_ctxt *ctxt, int seg) 8270 { 8271 return get_segment_base(emul_to_vcpu(ctxt), seg); 8272 } 8273 8274 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8275 struct desc_struct *desc, u32 *base3, 8276 int seg) 8277 { 8278 struct kvm_segment var; 8279 8280 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8281 *selector = var.selector; 8282 8283 if (var.unusable) { 8284 memset(desc, 0, sizeof(*desc)); 8285 if (base3) 8286 *base3 = 0; 8287 return false; 8288 } 8289 8290 if (var.g) 8291 var.limit >>= 12; 8292 set_desc_limit(desc, var.limit); 8293 set_desc_base(desc, (unsigned long)var.base); 8294 #ifdef CONFIG_X86_64 8295 if (base3) 8296 *base3 = var.base >> 32; 8297 #endif 8298 desc->type = var.type; 8299 desc->s = var.s; 8300 desc->dpl = var.dpl; 8301 desc->p = var.present; 8302 desc->avl = var.avl; 8303 desc->l = var.l; 8304 desc->d = var.db; 8305 desc->g = var.g; 8306 8307 return true; 8308 } 8309 8310 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8311 struct desc_struct *desc, u32 base3, 8312 int seg) 8313 { 8314 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8315 struct kvm_segment var; 8316 8317 var.selector = selector; 8318 var.base = get_desc_base(desc); 8319 #ifdef CONFIG_X86_64 8320 var.base |= ((u64)base3) << 32; 8321 #endif 8322 var.limit = get_desc_limit(desc); 8323 if (desc->g) 8324 var.limit = (var.limit << 12) | 0xfff; 8325 var.type = desc->type; 8326 var.dpl = desc->dpl; 8327 var.db = desc->d; 8328 var.s = desc->s; 8329 var.l = desc->l; 8330 var.g = desc->g; 8331 var.avl = desc->avl; 8332 var.present = desc->p; 8333 var.unusable = !var.present; 8334 var.padding = 0; 8335 8336 kvm_set_segment(vcpu, &var, seg); 8337 return; 8338 } 8339 8340 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8341 u32 msr_index, u64 *pdata) 8342 { 8343 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8344 int r; 8345 8346 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8347 if (r < 0) 8348 return X86EMUL_UNHANDLEABLE; 8349 8350 if (r) { 8351 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8352 complete_emulated_rdmsr, r)) 8353 return X86EMUL_IO_NEEDED; 8354 8355 trace_kvm_msr_read_ex(msr_index); 8356 return X86EMUL_PROPAGATE_FAULT; 8357 } 8358 8359 trace_kvm_msr_read(msr_index, *pdata); 8360 return X86EMUL_CONTINUE; 8361 } 8362 8363 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8364 u32 msr_index, u64 data) 8365 { 8366 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8367 int r; 8368 8369 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8370 if (r < 0) 8371 return X86EMUL_UNHANDLEABLE; 8372 8373 if (r) { 8374 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8375 complete_emulated_msr_access, r)) 8376 return X86EMUL_IO_NEEDED; 8377 8378 trace_kvm_msr_write_ex(msr_index, data); 8379 return X86EMUL_PROPAGATE_FAULT; 8380 } 8381 8382 trace_kvm_msr_write(msr_index, data); 8383 return X86EMUL_CONTINUE; 8384 } 8385 8386 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8387 u32 msr_index, u64 *pdata) 8388 { 8389 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8390 } 8391 8392 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8393 u32 pmc) 8394 { 8395 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8396 return 0; 8397 return -EINVAL; 8398 } 8399 8400 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8401 u32 pmc, u64 *pdata) 8402 { 8403 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8404 } 8405 8406 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8407 { 8408 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8409 } 8410 8411 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8412 struct x86_instruction_info *info, 8413 enum x86_intercept_stage stage) 8414 { 8415 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8416 &ctxt->exception); 8417 } 8418 8419 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8420 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8421 bool exact_only) 8422 { 8423 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8424 } 8425 8426 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8427 { 8428 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8429 } 8430 8431 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8432 { 8433 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8434 } 8435 8436 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8437 { 8438 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8439 } 8440 8441 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8442 { 8443 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8444 } 8445 8446 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8447 { 8448 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8449 } 8450 8451 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8452 { 8453 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8454 } 8455 8456 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8457 { 8458 return is_smm(emul_to_vcpu(ctxt)); 8459 } 8460 8461 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8462 { 8463 return is_guest_mode(emul_to_vcpu(ctxt)); 8464 } 8465 8466 #ifndef CONFIG_KVM_SMM 8467 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8468 { 8469 WARN_ON_ONCE(1); 8470 return X86EMUL_UNHANDLEABLE; 8471 } 8472 #endif 8473 8474 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8475 { 8476 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8477 } 8478 8479 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8480 { 8481 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8482 } 8483 8484 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8485 { 8486 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8487 8488 if (!kvm->vm_bugged) 8489 kvm_vm_bugged(kvm); 8490 } 8491 8492 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8493 gva_t addr, unsigned int flags) 8494 { 8495 if (!kvm_x86_ops.get_untagged_addr) 8496 return addr; 8497 8498 return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags); 8499 } 8500 8501 static const struct x86_emulate_ops emulate_ops = { 8502 .vm_bugged = emulator_vm_bugged, 8503 .read_gpr = emulator_read_gpr, 8504 .write_gpr = emulator_write_gpr, 8505 .read_std = emulator_read_std, 8506 .write_std = emulator_write_std, 8507 .fetch = kvm_fetch_guest_virt, 8508 .read_emulated = emulator_read_emulated, 8509 .write_emulated = emulator_write_emulated, 8510 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8511 .invlpg = emulator_invlpg, 8512 .pio_in_emulated = emulator_pio_in_emulated, 8513 .pio_out_emulated = emulator_pio_out_emulated, 8514 .get_segment = emulator_get_segment, 8515 .set_segment = emulator_set_segment, 8516 .get_cached_segment_base = emulator_get_cached_segment_base, 8517 .get_gdt = emulator_get_gdt, 8518 .get_idt = emulator_get_idt, 8519 .set_gdt = emulator_set_gdt, 8520 .set_idt = emulator_set_idt, 8521 .get_cr = emulator_get_cr, 8522 .set_cr = emulator_set_cr, 8523 .cpl = emulator_get_cpl, 8524 .get_dr = emulator_get_dr, 8525 .set_dr = emulator_set_dr, 8526 .set_msr_with_filter = emulator_set_msr_with_filter, 8527 .get_msr_with_filter = emulator_get_msr_with_filter, 8528 .get_msr = emulator_get_msr, 8529 .check_pmc = emulator_check_pmc, 8530 .read_pmc = emulator_read_pmc, 8531 .halt = emulator_halt, 8532 .wbinvd = emulator_wbinvd, 8533 .fix_hypercall = emulator_fix_hypercall, 8534 .intercept = emulator_intercept, 8535 .get_cpuid = emulator_get_cpuid, 8536 .guest_has_movbe = emulator_guest_has_movbe, 8537 .guest_has_fxsr = emulator_guest_has_fxsr, 8538 .guest_has_rdpid = emulator_guest_has_rdpid, 8539 .set_nmi_mask = emulator_set_nmi_mask, 8540 .is_smm = emulator_is_smm, 8541 .is_guest_mode = emulator_is_guest_mode, 8542 .leave_smm = emulator_leave_smm, 8543 .triple_fault = emulator_triple_fault, 8544 .set_xcr = emulator_set_xcr, 8545 .get_untagged_addr = emulator_get_untagged_addr, 8546 }; 8547 8548 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8549 { 8550 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8551 /* 8552 * an sti; sti; sequence only disable interrupts for the first 8553 * instruction. So, if the last instruction, be it emulated or 8554 * not, left the system with the INT_STI flag enabled, it 8555 * means that the last instruction is an sti. We should not 8556 * leave the flag on in this case. The same goes for mov ss 8557 */ 8558 if (int_shadow & mask) 8559 mask = 0; 8560 if (unlikely(int_shadow || mask)) { 8561 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8562 if (!mask) 8563 kvm_make_request(KVM_REQ_EVENT, vcpu); 8564 } 8565 } 8566 8567 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8568 { 8569 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8570 8571 if (ctxt->exception.vector == PF_VECTOR) 8572 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8573 else if (ctxt->exception.error_code_valid) 8574 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8575 ctxt->exception.error_code); 8576 else 8577 kvm_queue_exception(vcpu, ctxt->exception.vector); 8578 } 8579 8580 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8581 { 8582 struct x86_emulate_ctxt *ctxt; 8583 8584 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8585 if (!ctxt) { 8586 pr_err("failed to allocate vcpu's emulator\n"); 8587 return NULL; 8588 } 8589 8590 ctxt->vcpu = vcpu; 8591 ctxt->ops = &emulate_ops; 8592 vcpu->arch.emulate_ctxt = ctxt; 8593 8594 return ctxt; 8595 } 8596 8597 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8598 { 8599 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8600 int cs_db, cs_l; 8601 8602 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8603 8604 ctxt->gpa_available = false; 8605 ctxt->eflags = kvm_get_rflags(vcpu); 8606 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8607 8608 ctxt->eip = kvm_rip_read(vcpu); 8609 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8610 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8611 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8612 cs_db ? X86EMUL_MODE_PROT32 : 8613 X86EMUL_MODE_PROT16; 8614 ctxt->interruptibility = 0; 8615 ctxt->have_exception = false; 8616 ctxt->exception.vector = -1; 8617 ctxt->perm_ok = false; 8618 8619 init_decode_cache(ctxt); 8620 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8621 } 8622 8623 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8624 { 8625 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8626 int ret; 8627 8628 init_emulate_ctxt(vcpu); 8629 8630 ctxt->op_bytes = 2; 8631 ctxt->ad_bytes = 2; 8632 ctxt->_eip = ctxt->eip + inc_eip; 8633 ret = emulate_int_real(ctxt, irq); 8634 8635 if (ret != X86EMUL_CONTINUE) { 8636 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8637 } else { 8638 ctxt->eip = ctxt->_eip; 8639 kvm_rip_write(vcpu, ctxt->eip); 8640 kvm_set_rflags(vcpu, ctxt->eflags); 8641 } 8642 } 8643 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8644 8645 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8646 u8 ndata, u8 *insn_bytes, u8 insn_size) 8647 { 8648 struct kvm_run *run = vcpu->run; 8649 u64 info[5]; 8650 u8 info_start; 8651 8652 /* 8653 * Zero the whole array used to retrieve the exit info, as casting to 8654 * u32 for select entries will leave some chunks uninitialized. 8655 */ 8656 memset(&info, 0, sizeof(info)); 8657 8658 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8659 &info[2], (u32 *)&info[3], 8660 (u32 *)&info[4]); 8661 8662 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8663 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8664 8665 /* 8666 * There's currently space for 13 entries, but 5 are used for the exit 8667 * reason and info. Restrict to 4 to reduce the maintenance burden 8668 * when expanding kvm_run.emulation_failure in the future. 8669 */ 8670 if (WARN_ON_ONCE(ndata > 4)) 8671 ndata = 4; 8672 8673 /* Always include the flags as a 'data' entry. */ 8674 info_start = 1; 8675 run->emulation_failure.flags = 0; 8676 8677 if (insn_size) { 8678 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8679 sizeof(run->emulation_failure.insn_bytes) != 16)); 8680 info_start += 2; 8681 run->emulation_failure.flags |= 8682 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8683 run->emulation_failure.insn_size = insn_size; 8684 memset(run->emulation_failure.insn_bytes, 0x90, 8685 sizeof(run->emulation_failure.insn_bytes)); 8686 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8687 } 8688 8689 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8690 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8691 ndata * sizeof(data[0])); 8692 8693 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8694 } 8695 8696 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8697 { 8698 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8699 8700 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8701 ctxt->fetch.end - ctxt->fetch.data); 8702 } 8703 8704 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8705 u8 ndata) 8706 { 8707 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8708 } 8709 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8710 8711 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8712 { 8713 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8714 } 8715 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8716 8717 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8718 { 8719 struct kvm *kvm = vcpu->kvm; 8720 8721 ++vcpu->stat.insn_emulation_fail; 8722 trace_kvm_emulate_insn_failed(vcpu); 8723 8724 if (emulation_type & EMULTYPE_VMWARE_GP) { 8725 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8726 return 1; 8727 } 8728 8729 if (kvm->arch.exit_on_emulation_error || 8730 (emulation_type & EMULTYPE_SKIP)) { 8731 prepare_emulation_ctxt_failure_exit(vcpu); 8732 return 0; 8733 } 8734 8735 kvm_queue_exception(vcpu, UD_VECTOR); 8736 8737 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8738 prepare_emulation_ctxt_failure_exit(vcpu); 8739 return 0; 8740 } 8741 8742 return 1; 8743 } 8744 8745 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8746 int emulation_type) 8747 { 8748 gpa_t gpa = cr2_or_gpa; 8749 kvm_pfn_t pfn; 8750 8751 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8752 return false; 8753 8754 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8755 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8756 return false; 8757 8758 if (!vcpu->arch.mmu->root_role.direct) { 8759 /* 8760 * Write permission should be allowed since only 8761 * write access need to be emulated. 8762 */ 8763 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8764 8765 /* 8766 * If the mapping is invalid in guest, let cpu retry 8767 * it to generate fault. 8768 */ 8769 if (gpa == INVALID_GPA) 8770 return true; 8771 } 8772 8773 /* 8774 * Do not retry the unhandleable instruction if it faults on the 8775 * readonly host memory, otherwise it will goto a infinite loop: 8776 * retry instruction -> write #PF -> emulation fail -> retry 8777 * instruction -> ... 8778 */ 8779 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8780 8781 /* 8782 * If the instruction failed on the error pfn, it can not be fixed, 8783 * report the error to userspace. 8784 */ 8785 if (is_error_noslot_pfn(pfn)) 8786 return false; 8787 8788 kvm_release_pfn_clean(pfn); 8789 8790 /* The instructions are well-emulated on direct mmu. */ 8791 if (vcpu->arch.mmu->root_role.direct) { 8792 unsigned int indirect_shadow_pages; 8793 8794 write_lock(&vcpu->kvm->mmu_lock); 8795 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8796 write_unlock(&vcpu->kvm->mmu_lock); 8797 8798 if (indirect_shadow_pages) 8799 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8800 8801 return true; 8802 } 8803 8804 /* 8805 * if emulation was due to access to shadowed page table 8806 * and it failed try to unshadow page and re-enter the 8807 * guest to let CPU execute the instruction. 8808 */ 8809 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8810 8811 /* 8812 * If the access faults on its page table, it can not 8813 * be fixed by unprotecting shadow page and it should 8814 * be reported to userspace. 8815 */ 8816 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8817 } 8818 8819 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8820 gpa_t cr2_or_gpa, int emulation_type) 8821 { 8822 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8823 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8824 8825 last_retry_eip = vcpu->arch.last_retry_eip; 8826 last_retry_addr = vcpu->arch.last_retry_addr; 8827 8828 /* 8829 * If the emulation is caused by #PF and it is non-page_table 8830 * writing instruction, it means the VM-EXIT is caused by shadow 8831 * page protected, we can zap the shadow page and retry this 8832 * instruction directly. 8833 * 8834 * Note: if the guest uses a non-page-table modifying instruction 8835 * on the PDE that points to the instruction, then we will unmap 8836 * the instruction and go to an infinite loop. So, we cache the 8837 * last retried eip and the last fault address, if we meet the eip 8838 * and the address again, we can break out of the potential infinite 8839 * loop. 8840 */ 8841 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8842 8843 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8844 return false; 8845 8846 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8847 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8848 return false; 8849 8850 if (x86_page_table_writing_insn(ctxt)) 8851 return false; 8852 8853 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8854 return false; 8855 8856 vcpu->arch.last_retry_eip = ctxt->eip; 8857 vcpu->arch.last_retry_addr = cr2_or_gpa; 8858 8859 if (!vcpu->arch.mmu->root_role.direct) 8860 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8861 8862 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8863 8864 return true; 8865 } 8866 8867 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8868 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8869 8870 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8871 unsigned long *db) 8872 { 8873 u32 dr6 = 0; 8874 int i; 8875 u32 enable, rwlen; 8876 8877 enable = dr7; 8878 rwlen = dr7 >> 16; 8879 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8880 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8881 dr6 |= (1 << i); 8882 return dr6; 8883 } 8884 8885 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8886 { 8887 struct kvm_run *kvm_run = vcpu->run; 8888 8889 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8890 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8891 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8892 kvm_run->debug.arch.exception = DB_VECTOR; 8893 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8894 return 0; 8895 } 8896 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8897 return 1; 8898 } 8899 8900 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8901 { 8902 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8903 int r; 8904 8905 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8906 if (unlikely(!r)) 8907 return 0; 8908 8909 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8910 8911 /* 8912 * rflags is the old, "raw" value of the flags. The new value has 8913 * not been saved yet. 8914 * 8915 * This is correct even for TF set by the guest, because "the 8916 * processor will not generate this exception after the instruction 8917 * that sets the TF flag". 8918 */ 8919 if (unlikely(rflags & X86_EFLAGS_TF)) 8920 r = kvm_vcpu_do_singlestep(vcpu); 8921 return r; 8922 } 8923 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8924 8925 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8926 { 8927 u32 shadow; 8928 8929 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8930 return true; 8931 8932 /* 8933 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8934 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8935 * to avoid the relatively expensive CPUID lookup. 8936 */ 8937 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8938 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8939 guest_cpuid_is_intel(vcpu); 8940 } 8941 8942 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8943 int emulation_type, int *r) 8944 { 8945 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8946 8947 /* 8948 * Do not check for code breakpoints if hardware has already done the 8949 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8950 * the instruction has passed all exception checks, and all intercepted 8951 * exceptions that trigger emulation have lower priority than code 8952 * breakpoints, i.e. the fact that the intercepted exception occurred 8953 * means any code breakpoints have already been serviced. 8954 * 8955 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8956 * hardware has checked the RIP of the magic prefix, but not the RIP of 8957 * the instruction being emulated. The intent of forced emulation is 8958 * to behave as if KVM intercepted the instruction without an exception 8959 * and without a prefix. 8960 */ 8961 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8962 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8963 return false; 8964 8965 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8966 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8967 struct kvm_run *kvm_run = vcpu->run; 8968 unsigned long eip = kvm_get_linear_rip(vcpu); 8969 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8970 vcpu->arch.guest_debug_dr7, 8971 vcpu->arch.eff_db); 8972 8973 if (dr6 != 0) { 8974 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8975 kvm_run->debug.arch.pc = eip; 8976 kvm_run->debug.arch.exception = DB_VECTOR; 8977 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8978 *r = 0; 8979 return true; 8980 } 8981 } 8982 8983 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8984 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8985 unsigned long eip = kvm_get_linear_rip(vcpu); 8986 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8987 vcpu->arch.dr7, 8988 vcpu->arch.db); 8989 8990 if (dr6 != 0) { 8991 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8992 *r = 1; 8993 return true; 8994 } 8995 } 8996 8997 return false; 8998 } 8999 9000 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9001 { 9002 switch (ctxt->opcode_len) { 9003 case 1: 9004 switch (ctxt->b) { 9005 case 0xe4: /* IN */ 9006 case 0xe5: 9007 case 0xec: 9008 case 0xed: 9009 case 0xe6: /* OUT */ 9010 case 0xe7: 9011 case 0xee: 9012 case 0xef: 9013 case 0x6c: /* INS */ 9014 case 0x6d: 9015 case 0x6e: /* OUTS */ 9016 case 0x6f: 9017 return true; 9018 } 9019 break; 9020 case 2: 9021 switch (ctxt->b) { 9022 case 0x33: /* RDPMC */ 9023 return true; 9024 } 9025 break; 9026 } 9027 9028 return false; 9029 } 9030 9031 /* 9032 * Decode an instruction for emulation. The caller is responsible for handling 9033 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9034 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9035 * code breakpoints have higher priority and thus have already been done by 9036 * hardware. 9037 * 9038 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9039 * response to a machine check. 9040 */ 9041 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9042 void *insn, int insn_len) 9043 { 9044 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9045 int r; 9046 9047 init_emulate_ctxt(vcpu); 9048 9049 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9050 9051 trace_kvm_emulate_insn_start(vcpu); 9052 ++vcpu->stat.insn_emulation; 9053 9054 return r; 9055 } 9056 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9057 9058 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9059 int emulation_type, void *insn, int insn_len) 9060 { 9061 int r; 9062 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9063 bool writeback = true; 9064 9065 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9066 if (r != X86EMUL_CONTINUE) { 9067 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9068 return 1; 9069 9070 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9071 return handle_emulation_failure(vcpu, emulation_type); 9072 } 9073 9074 vcpu->arch.l1tf_flush_l1d = true; 9075 9076 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9077 kvm_clear_exception_queue(vcpu); 9078 9079 /* 9080 * Return immediately if RIP hits a code breakpoint, such #DBs 9081 * are fault-like and are higher priority than any faults on 9082 * the code fetch itself. 9083 */ 9084 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9085 return r; 9086 9087 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9088 insn, insn_len); 9089 if (r != EMULATION_OK) { 9090 if ((emulation_type & EMULTYPE_TRAP_UD) || 9091 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9092 kvm_queue_exception(vcpu, UD_VECTOR); 9093 return 1; 9094 } 9095 if (reexecute_instruction(vcpu, cr2_or_gpa, 9096 emulation_type)) 9097 return 1; 9098 9099 if (ctxt->have_exception && 9100 !(emulation_type & EMULTYPE_SKIP)) { 9101 /* 9102 * #UD should result in just EMULATION_FAILED, and trap-like 9103 * exception should not be encountered during decode. 9104 */ 9105 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9106 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9107 inject_emulated_exception(vcpu); 9108 return 1; 9109 } 9110 return handle_emulation_failure(vcpu, emulation_type); 9111 } 9112 } 9113 9114 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9115 !is_vmware_backdoor_opcode(ctxt)) { 9116 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9117 return 1; 9118 } 9119 9120 /* 9121 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9122 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9123 * The caller is responsible for updating interruptibility state and 9124 * injecting single-step #DBs. 9125 */ 9126 if (emulation_type & EMULTYPE_SKIP) { 9127 if (ctxt->mode != X86EMUL_MODE_PROT64) 9128 ctxt->eip = (u32)ctxt->_eip; 9129 else 9130 ctxt->eip = ctxt->_eip; 9131 9132 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9133 r = 1; 9134 goto writeback; 9135 } 9136 9137 kvm_rip_write(vcpu, ctxt->eip); 9138 if (ctxt->eflags & X86_EFLAGS_RF) 9139 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9140 return 1; 9141 } 9142 9143 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 9144 return 1; 9145 9146 /* this is needed for vmware backdoor interface to work since it 9147 changes registers values during IO operation */ 9148 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9149 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9150 emulator_invalidate_register_cache(ctxt); 9151 } 9152 9153 restart: 9154 if (emulation_type & EMULTYPE_PF) { 9155 /* Save the faulting GPA (cr2) in the address field */ 9156 ctxt->exception.address = cr2_or_gpa; 9157 9158 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9159 if (vcpu->arch.mmu->root_role.direct) { 9160 ctxt->gpa_available = true; 9161 ctxt->gpa_val = cr2_or_gpa; 9162 } 9163 } else { 9164 /* Sanitize the address out of an abundance of paranoia. */ 9165 ctxt->exception.address = 0; 9166 } 9167 9168 r = x86_emulate_insn(ctxt); 9169 9170 if (r == EMULATION_INTERCEPTED) 9171 return 1; 9172 9173 if (r == EMULATION_FAILED) { 9174 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 9175 return 1; 9176 9177 return handle_emulation_failure(vcpu, emulation_type); 9178 } 9179 9180 if (ctxt->have_exception) { 9181 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9182 vcpu->mmio_needed = false; 9183 r = 1; 9184 inject_emulated_exception(vcpu); 9185 } else if (vcpu->arch.pio.count) { 9186 if (!vcpu->arch.pio.in) { 9187 /* FIXME: return into emulator if single-stepping. */ 9188 vcpu->arch.pio.count = 0; 9189 } else { 9190 writeback = false; 9191 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9192 } 9193 r = 0; 9194 } else if (vcpu->mmio_needed) { 9195 ++vcpu->stat.mmio_exits; 9196 9197 if (!vcpu->mmio_is_write) 9198 writeback = false; 9199 r = 0; 9200 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9201 } else if (vcpu->arch.complete_userspace_io) { 9202 writeback = false; 9203 r = 0; 9204 } else if (r == EMULATION_RESTART) 9205 goto restart; 9206 else 9207 r = 1; 9208 9209 writeback: 9210 if (writeback) { 9211 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9212 toggle_interruptibility(vcpu, ctxt->interruptibility); 9213 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9214 9215 /* 9216 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9217 * only supports code breakpoints and general detect #DB, both 9218 * of which are fault-like. 9219 */ 9220 if (!ctxt->have_exception || 9221 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9222 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9223 if (ctxt->is_branch) 9224 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9225 kvm_rip_write(vcpu, ctxt->eip); 9226 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9227 r = kvm_vcpu_do_singlestep(vcpu); 9228 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9229 __kvm_set_rflags(vcpu, ctxt->eflags); 9230 } 9231 9232 /* 9233 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9234 * do nothing, and it will be requested again as soon as 9235 * the shadow expires. But we still need to check here, 9236 * because POPF has no interrupt shadow. 9237 */ 9238 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9239 kvm_make_request(KVM_REQ_EVENT, vcpu); 9240 } else 9241 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9242 9243 return r; 9244 } 9245 9246 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9247 { 9248 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9249 } 9250 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9251 9252 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9253 void *insn, int insn_len) 9254 { 9255 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9256 } 9257 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9258 9259 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9260 { 9261 vcpu->arch.pio.count = 0; 9262 return 1; 9263 } 9264 9265 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9266 { 9267 vcpu->arch.pio.count = 0; 9268 9269 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9270 return 1; 9271 9272 return kvm_skip_emulated_instruction(vcpu); 9273 } 9274 9275 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9276 unsigned short port) 9277 { 9278 unsigned long val = kvm_rax_read(vcpu); 9279 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9280 9281 if (ret) 9282 return ret; 9283 9284 /* 9285 * Workaround userspace that relies on old KVM behavior of %rip being 9286 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9287 */ 9288 if (port == 0x7e && 9289 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9290 vcpu->arch.complete_userspace_io = 9291 complete_fast_pio_out_port_0x7e; 9292 kvm_skip_emulated_instruction(vcpu); 9293 } else { 9294 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9295 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9296 } 9297 return 0; 9298 } 9299 9300 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9301 { 9302 unsigned long val; 9303 9304 /* We should only ever be called with arch.pio.count equal to 1 */ 9305 BUG_ON(vcpu->arch.pio.count != 1); 9306 9307 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9308 vcpu->arch.pio.count = 0; 9309 return 1; 9310 } 9311 9312 /* For size less than 4 we merge, else we zero extend */ 9313 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9314 9315 complete_emulator_pio_in(vcpu, &val); 9316 kvm_rax_write(vcpu, val); 9317 9318 return kvm_skip_emulated_instruction(vcpu); 9319 } 9320 9321 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9322 unsigned short port) 9323 { 9324 unsigned long val; 9325 int ret; 9326 9327 /* For size less than 4 we merge, else we zero extend */ 9328 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9329 9330 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9331 if (ret) { 9332 kvm_rax_write(vcpu, val); 9333 return ret; 9334 } 9335 9336 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9337 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9338 9339 return 0; 9340 } 9341 9342 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9343 { 9344 int ret; 9345 9346 if (in) 9347 ret = kvm_fast_pio_in(vcpu, size, port); 9348 else 9349 ret = kvm_fast_pio_out(vcpu, size, port); 9350 return ret && kvm_skip_emulated_instruction(vcpu); 9351 } 9352 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9353 9354 static int kvmclock_cpu_down_prep(unsigned int cpu) 9355 { 9356 __this_cpu_write(cpu_tsc_khz, 0); 9357 return 0; 9358 } 9359 9360 static void tsc_khz_changed(void *data) 9361 { 9362 struct cpufreq_freqs *freq = data; 9363 unsigned long khz; 9364 9365 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9366 9367 if (data) 9368 khz = freq->new; 9369 else 9370 khz = cpufreq_quick_get(raw_smp_processor_id()); 9371 if (!khz) 9372 khz = tsc_khz; 9373 __this_cpu_write(cpu_tsc_khz, khz); 9374 } 9375 9376 #ifdef CONFIG_X86_64 9377 static void kvm_hyperv_tsc_notifier(void) 9378 { 9379 struct kvm *kvm; 9380 int cpu; 9381 9382 mutex_lock(&kvm_lock); 9383 list_for_each_entry(kvm, &vm_list, vm_list) 9384 kvm_make_mclock_inprogress_request(kvm); 9385 9386 /* no guest entries from this point */ 9387 hyperv_stop_tsc_emulation(); 9388 9389 /* TSC frequency always matches when on Hyper-V */ 9390 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9391 for_each_present_cpu(cpu) 9392 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9393 } 9394 kvm_caps.max_guest_tsc_khz = tsc_khz; 9395 9396 list_for_each_entry(kvm, &vm_list, vm_list) { 9397 __kvm_start_pvclock_update(kvm); 9398 pvclock_update_vm_gtod_copy(kvm); 9399 kvm_end_pvclock_update(kvm); 9400 } 9401 9402 mutex_unlock(&kvm_lock); 9403 } 9404 #endif 9405 9406 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9407 { 9408 struct kvm *kvm; 9409 struct kvm_vcpu *vcpu; 9410 int send_ipi = 0; 9411 unsigned long i; 9412 9413 /* 9414 * We allow guests to temporarily run on slowing clocks, 9415 * provided we notify them after, or to run on accelerating 9416 * clocks, provided we notify them before. Thus time never 9417 * goes backwards. 9418 * 9419 * However, we have a problem. We can't atomically update 9420 * the frequency of a given CPU from this function; it is 9421 * merely a notifier, which can be called from any CPU. 9422 * Changing the TSC frequency at arbitrary points in time 9423 * requires a recomputation of local variables related to 9424 * the TSC for each VCPU. We must flag these local variables 9425 * to be updated and be sure the update takes place with the 9426 * new frequency before any guests proceed. 9427 * 9428 * Unfortunately, the combination of hotplug CPU and frequency 9429 * change creates an intractable locking scenario; the order 9430 * of when these callouts happen is undefined with respect to 9431 * CPU hotplug, and they can race with each other. As such, 9432 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9433 * undefined; you can actually have a CPU frequency change take 9434 * place in between the computation of X and the setting of the 9435 * variable. To protect against this problem, all updates of 9436 * the per_cpu tsc_khz variable are done in an interrupt 9437 * protected IPI, and all callers wishing to update the value 9438 * must wait for a synchronous IPI to complete (which is trivial 9439 * if the caller is on the CPU already). This establishes the 9440 * necessary total order on variable updates. 9441 * 9442 * Note that because a guest time update may take place 9443 * anytime after the setting of the VCPU's request bit, the 9444 * correct TSC value must be set before the request. However, 9445 * to ensure the update actually makes it to any guest which 9446 * starts running in hardware virtualization between the set 9447 * and the acquisition of the spinlock, we must also ping the 9448 * CPU after setting the request bit. 9449 * 9450 */ 9451 9452 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9453 9454 mutex_lock(&kvm_lock); 9455 list_for_each_entry(kvm, &vm_list, vm_list) { 9456 kvm_for_each_vcpu(i, vcpu, kvm) { 9457 if (vcpu->cpu != cpu) 9458 continue; 9459 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9460 if (vcpu->cpu != raw_smp_processor_id()) 9461 send_ipi = 1; 9462 } 9463 } 9464 mutex_unlock(&kvm_lock); 9465 9466 if (freq->old < freq->new && send_ipi) { 9467 /* 9468 * We upscale the frequency. Must make the guest 9469 * doesn't see old kvmclock values while running with 9470 * the new frequency, otherwise we risk the guest sees 9471 * time go backwards. 9472 * 9473 * In case we update the frequency for another cpu 9474 * (which might be in guest context) send an interrupt 9475 * to kick the cpu out of guest context. Next time 9476 * guest context is entered kvmclock will be updated, 9477 * so the guest will not see stale values. 9478 */ 9479 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9480 } 9481 } 9482 9483 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9484 void *data) 9485 { 9486 struct cpufreq_freqs *freq = data; 9487 int cpu; 9488 9489 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9490 return 0; 9491 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9492 return 0; 9493 9494 for_each_cpu(cpu, freq->policy->cpus) 9495 __kvmclock_cpufreq_notifier(freq, cpu); 9496 9497 return 0; 9498 } 9499 9500 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9501 .notifier_call = kvmclock_cpufreq_notifier 9502 }; 9503 9504 static int kvmclock_cpu_online(unsigned int cpu) 9505 { 9506 tsc_khz_changed(NULL); 9507 return 0; 9508 } 9509 9510 static void kvm_timer_init(void) 9511 { 9512 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9513 max_tsc_khz = tsc_khz; 9514 9515 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9516 struct cpufreq_policy *policy; 9517 int cpu; 9518 9519 cpu = get_cpu(); 9520 policy = cpufreq_cpu_get(cpu); 9521 if (policy) { 9522 if (policy->cpuinfo.max_freq) 9523 max_tsc_khz = policy->cpuinfo.max_freq; 9524 cpufreq_cpu_put(policy); 9525 } 9526 put_cpu(); 9527 } 9528 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9529 CPUFREQ_TRANSITION_NOTIFIER); 9530 9531 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9532 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9533 } 9534 } 9535 9536 #ifdef CONFIG_X86_64 9537 static void pvclock_gtod_update_fn(struct work_struct *work) 9538 { 9539 struct kvm *kvm; 9540 struct kvm_vcpu *vcpu; 9541 unsigned long i; 9542 9543 mutex_lock(&kvm_lock); 9544 list_for_each_entry(kvm, &vm_list, vm_list) 9545 kvm_for_each_vcpu(i, vcpu, kvm) 9546 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9547 atomic_set(&kvm_guest_has_master_clock, 0); 9548 mutex_unlock(&kvm_lock); 9549 } 9550 9551 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9552 9553 /* 9554 * Indirection to move queue_work() out of the tk_core.seq write held 9555 * region to prevent possible deadlocks against time accessors which 9556 * are invoked with work related locks held. 9557 */ 9558 static void pvclock_irq_work_fn(struct irq_work *w) 9559 { 9560 queue_work(system_long_wq, &pvclock_gtod_work); 9561 } 9562 9563 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9564 9565 /* 9566 * Notification about pvclock gtod data update. 9567 */ 9568 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9569 void *priv) 9570 { 9571 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9572 struct timekeeper *tk = priv; 9573 9574 update_pvclock_gtod(tk); 9575 9576 /* 9577 * Disable master clock if host does not trust, or does not use, 9578 * TSC based clocksource. Delegate queue_work() to irq_work as 9579 * this is invoked with tk_core.seq write held. 9580 */ 9581 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9582 atomic_read(&kvm_guest_has_master_clock) != 0) 9583 irq_work_queue(&pvclock_irq_work); 9584 return 0; 9585 } 9586 9587 static struct notifier_block pvclock_gtod_notifier = { 9588 .notifier_call = pvclock_gtod_notify, 9589 }; 9590 #endif 9591 9592 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9593 { 9594 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9595 9596 #define __KVM_X86_OP(func) \ 9597 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9598 #define KVM_X86_OP(func) \ 9599 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9600 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9601 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9602 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9603 (void *)__static_call_return0); 9604 #include <asm/kvm-x86-ops.h> 9605 #undef __KVM_X86_OP 9606 9607 kvm_pmu_ops_update(ops->pmu_ops); 9608 } 9609 9610 static int kvm_x86_check_processor_compatibility(void) 9611 { 9612 int cpu = smp_processor_id(); 9613 struct cpuinfo_x86 *c = &cpu_data(cpu); 9614 9615 /* 9616 * Compatibility checks are done when loading KVM and when enabling 9617 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9618 * compatible, i.e. KVM should never perform a compatibility check on 9619 * an offline CPU. 9620 */ 9621 WARN_ON(!cpu_online(cpu)); 9622 9623 if (__cr4_reserved_bits(cpu_has, c) != 9624 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9625 return -EIO; 9626 9627 return static_call(kvm_x86_check_processor_compatibility)(); 9628 } 9629 9630 static void kvm_x86_check_cpu_compat(void *ret) 9631 { 9632 *(int *)ret = kvm_x86_check_processor_compatibility(); 9633 } 9634 9635 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9636 { 9637 u64 host_pat; 9638 int r, cpu; 9639 9640 if (kvm_x86_ops.hardware_enable) { 9641 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9642 return -EEXIST; 9643 } 9644 9645 /* 9646 * KVM explicitly assumes that the guest has an FPU and 9647 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9648 * vCPU's FPU state as a fxregs_state struct. 9649 */ 9650 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9651 pr_err("inadequate fpu\n"); 9652 return -EOPNOTSUPP; 9653 } 9654 9655 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9656 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9657 return -EOPNOTSUPP; 9658 } 9659 9660 /* 9661 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9662 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9663 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9664 * with an exception. PAT[0] is set to WB on RESET and also by the 9665 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9666 */ 9667 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9668 (host_pat & GENMASK(2, 0)) != 6) { 9669 pr_err("host PAT[0] is not WB\n"); 9670 return -EIO; 9671 } 9672 9673 x86_emulator_cache = kvm_alloc_emulator_cache(); 9674 if (!x86_emulator_cache) { 9675 pr_err("failed to allocate cache for x86 emulator\n"); 9676 return -ENOMEM; 9677 } 9678 9679 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9680 if (!user_return_msrs) { 9681 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9682 r = -ENOMEM; 9683 goto out_free_x86_emulator_cache; 9684 } 9685 kvm_nr_uret_msrs = 0; 9686 9687 r = kvm_mmu_vendor_module_init(); 9688 if (r) 9689 goto out_free_percpu; 9690 9691 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9692 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9693 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9694 } 9695 9696 rdmsrl_safe(MSR_EFER, &host_efer); 9697 9698 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9699 rdmsrl(MSR_IA32_XSS, host_xss); 9700 9701 kvm_init_pmu_capability(ops->pmu_ops); 9702 9703 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9704 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9705 9706 r = ops->hardware_setup(); 9707 if (r != 0) 9708 goto out_mmu_exit; 9709 9710 kvm_ops_update(ops); 9711 9712 for_each_online_cpu(cpu) { 9713 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9714 if (r < 0) 9715 goto out_unwind_ops; 9716 } 9717 9718 /* 9719 * Point of no return! DO NOT add error paths below this point unless 9720 * absolutely necessary, as most operations from this point forward 9721 * require unwinding. 9722 */ 9723 kvm_timer_init(); 9724 9725 if (pi_inject_timer == -1) 9726 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9727 #ifdef CONFIG_X86_64 9728 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9729 9730 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9731 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9732 #endif 9733 9734 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9735 9736 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9737 kvm_caps.supported_xss = 0; 9738 9739 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9740 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9741 #undef __kvm_cpu_cap_has 9742 9743 if (kvm_caps.has_tsc_control) { 9744 /* 9745 * Make sure the user can only configure tsc_khz values that 9746 * fit into a signed integer. 9747 * A min value is not calculated because it will always 9748 * be 1 on all machines. 9749 */ 9750 u64 max = min(0x7fffffffULL, 9751 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9752 kvm_caps.max_guest_tsc_khz = max; 9753 } 9754 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9755 kvm_init_msr_lists(); 9756 return 0; 9757 9758 out_unwind_ops: 9759 kvm_x86_ops.hardware_enable = NULL; 9760 static_call(kvm_x86_hardware_unsetup)(); 9761 out_mmu_exit: 9762 kvm_mmu_vendor_module_exit(); 9763 out_free_percpu: 9764 free_percpu(user_return_msrs); 9765 out_free_x86_emulator_cache: 9766 kmem_cache_destroy(x86_emulator_cache); 9767 return r; 9768 } 9769 9770 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9771 { 9772 int r; 9773 9774 mutex_lock(&vendor_module_lock); 9775 r = __kvm_x86_vendor_init(ops); 9776 mutex_unlock(&vendor_module_lock); 9777 9778 return r; 9779 } 9780 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9781 9782 void kvm_x86_vendor_exit(void) 9783 { 9784 kvm_unregister_perf_callbacks(); 9785 9786 #ifdef CONFIG_X86_64 9787 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9788 clear_hv_tscchange_cb(); 9789 #endif 9790 kvm_lapic_exit(); 9791 9792 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9793 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9794 CPUFREQ_TRANSITION_NOTIFIER); 9795 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9796 } 9797 #ifdef CONFIG_X86_64 9798 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9799 irq_work_sync(&pvclock_irq_work); 9800 cancel_work_sync(&pvclock_gtod_work); 9801 #endif 9802 static_call(kvm_x86_hardware_unsetup)(); 9803 kvm_mmu_vendor_module_exit(); 9804 free_percpu(user_return_msrs); 9805 kmem_cache_destroy(x86_emulator_cache); 9806 #ifdef CONFIG_KVM_XEN 9807 static_key_deferred_flush(&kvm_xen_enabled); 9808 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9809 #endif 9810 mutex_lock(&vendor_module_lock); 9811 kvm_x86_ops.hardware_enable = NULL; 9812 mutex_unlock(&vendor_module_lock); 9813 } 9814 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9815 9816 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9817 { 9818 /* 9819 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9820 * local APIC is in-kernel, the run loop will detect the non-runnable 9821 * state and halt the vCPU. Exit to userspace if the local APIC is 9822 * managed by userspace, in which case userspace is responsible for 9823 * handling wake events. 9824 */ 9825 ++vcpu->stat.halt_exits; 9826 if (lapic_in_kernel(vcpu)) { 9827 vcpu->arch.mp_state = state; 9828 return 1; 9829 } else { 9830 vcpu->run->exit_reason = reason; 9831 return 0; 9832 } 9833 } 9834 9835 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9836 { 9837 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9838 } 9839 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9840 9841 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9842 { 9843 int ret = kvm_skip_emulated_instruction(vcpu); 9844 /* 9845 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9846 * KVM_EXIT_DEBUG here. 9847 */ 9848 return kvm_emulate_halt_noskip(vcpu) && ret; 9849 } 9850 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9851 9852 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9853 { 9854 int ret = kvm_skip_emulated_instruction(vcpu); 9855 9856 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9857 KVM_EXIT_AP_RESET_HOLD) && ret; 9858 } 9859 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9860 9861 #ifdef CONFIG_X86_64 9862 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9863 unsigned long clock_type) 9864 { 9865 struct kvm_clock_pairing clock_pairing; 9866 struct timespec64 ts; 9867 u64 cycle; 9868 int ret; 9869 9870 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9871 return -KVM_EOPNOTSUPP; 9872 9873 /* 9874 * When tsc is in permanent catchup mode guests won't be able to use 9875 * pvclock_read_retry loop to get consistent view of pvclock 9876 */ 9877 if (vcpu->arch.tsc_always_catchup) 9878 return -KVM_EOPNOTSUPP; 9879 9880 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9881 return -KVM_EOPNOTSUPP; 9882 9883 clock_pairing.sec = ts.tv_sec; 9884 clock_pairing.nsec = ts.tv_nsec; 9885 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9886 clock_pairing.flags = 0; 9887 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9888 9889 ret = 0; 9890 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9891 sizeof(struct kvm_clock_pairing))) 9892 ret = -KVM_EFAULT; 9893 9894 return ret; 9895 } 9896 #endif 9897 9898 /* 9899 * kvm_pv_kick_cpu_op: Kick a vcpu. 9900 * 9901 * @apicid - apicid of vcpu to be kicked. 9902 */ 9903 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9904 { 9905 /* 9906 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9907 * common code, e.g. for tracing. Defer initialization to the compiler. 9908 */ 9909 struct kvm_lapic_irq lapic_irq = { 9910 .delivery_mode = APIC_DM_REMRD, 9911 .dest_mode = APIC_DEST_PHYSICAL, 9912 .shorthand = APIC_DEST_NOSHORT, 9913 .dest_id = apicid, 9914 }; 9915 9916 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9917 } 9918 9919 bool kvm_apicv_activated(struct kvm *kvm) 9920 { 9921 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9922 } 9923 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9924 9925 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9926 { 9927 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9928 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9929 9930 return (vm_reasons | vcpu_reasons) == 0; 9931 } 9932 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9933 9934 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9935 enum kvm_apicv_inhibit reason, bool set) 9936 { 9937 if (set) 9938 __set_bit(reason, inhibits); 9939 else 9940 __clear_bit(reason, inhibits); 9941 9942 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9943 } 9944 9945 static void kvm_apicv_init(struct kvm *kvm) 9946 { 9947 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9948 9949 init_rwsem(&kvm->arch.apicv_update_lock); 9950 9951 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9952 9953 if (!enable_apicv) 9954 set_or_clear_apicv_inhibit(inhibits, 9955 APICV_INHIBIT_REASON_DISABLE, true); 9956 } 9957 9958 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9959 { 9960 struct kvm_vcpu *target = NULL; 9961 struct kvm_apic_map *map; 9962 9963 vcpu->stat.directed_yield_attempted++; 9964 9965 if (single_task_running()) 9966 goto no_yield; 9967 9968 rcu_read_lock(); 9969 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9970 9971 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9972 target = map->phys_map[dest_id]->vcpu; 9973 9974 rcu_read_unlock(); 9975 9976 if (!target || !READ_ONCE(target->ready)) 9977 goto no_yield; 9978 9979 /* Ignore requests to yield to self */ 9980 if (vcpu == target) 9981 goto no_yield; 9982 9983 if (kvm_vcpu_yield_to(target) <= 0) 9984 goto no_yield; 9985 9986 vcpu->stat.directed_yield_successful++; 9987 9988 no_yield: 9989 return; 9990 } 9991 9992 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9993 { 9994 u64 ret = vcpu->run->hypercall.ret; 9995 9996 if (!is_64_bit_mode(vcpu)) 9997 ret = (u32)ret; 9998 kvm_rax_write(vcpu, ret); 9999 ++vcpu->stat.hypercalls; 10000 return kvm_skip_emulated_instruction(vcpu); 10001 } 10002 10003 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10004 { 10005 unsigned long nr, a0, a1, a2, a3, ret; 10006 int op_64_bit; 10007 10008 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10009 return kvm_xen_hypercall(vcpu); 10010 10011 if (kvm_hv_hypercall_enabled(vcpu)) 10012 return kvm_hv_hypercall(vcpu); 10013 10014 nr = kvm_rax_read(vcpu); 10015 a0 = kvm_rbx_read(vcpu); 10016 a1 = kvm_rcx_read(vcpu); 10017 a2 = kvm_rdx_read(vcpu); 10018 a3 = kvm_rsi_read(vcpu); 10019 10020 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10021 10022 op_64_bit = is_64_bit_hypercall(vcpu); 10023 if (!op_64_bit) { 10024 nr &= 0xFFFFFFFF; 10025 a0 &= 0xFFFFFFFF; 10026 a1 &= 0xFFFFFFFF; 10027 a2 &= 0xFFFFFFFF; 10028 a3 &= 0xFFFFFFFF; 10029 } 10030 10031 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 10032 ret = -KVM_EPERM; 10033 goto out; 10034 } 10035 10036 ret = -KVM_ENOSYS; 10037 10038 switch (nr) { 10039 case KVM_HC_VAPIC_POLL_IRQ: 10040 ret = 0; 10041 break; 10042 case KVM_HC_KICK_CPU: 10043 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10044 break; 10045 10046 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10047 kvm_sched_yield(vcpu, a1); 10048 ret = 0; 10049 break; 10050 #ifdef CONFIG_X86_64 10051 case KVM_HC_CLOCK_PAIRING: 10052 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10053 break; 10054 #endif 10055 case KVM_HC_SEND_IPI: 10056 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10057 break; 10058 10059 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10060 break; 10061 case KVM_HC_SCHED_YIELD: 10062 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10063 break; 10064 10065 kvm_sched_yield(vcpu, a0); 10066 ret = 0; 10067 break; 10068 case KVM_HC_MAP_GPA_RANGE: { 10069 u64 gpa = a0, npages = a1, attrs = a2; 10070 10071 ret = -KVM_ENOSYS; 10072 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10073 break; 10074 10075 if (!PAGE_ALIGNED(gpa) || !npages || 10076 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10077 ret = -KVM_EINVAL; 10078 break; 10079 } 10080 10081 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10082 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10083 vcpu->run->hypercall.args[0] = gpa; 10084 vcpu->run->hypercall.args[1] = npages; 10085 vcpu->run->hypercall.args[2] = attrs; 10086 vcpu->run->hypercall.flags = 0; 10087 if (op_64_bit) 10088 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10089 10090 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10091 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10092 return 0; 10093 } 10094 default: 10095 ret = -KVM_ENOSYS; 10096 break; 10097 } 10098 out: 10099 if (!op_64_bit) 10100 ret = (u32)ret; 10101 kvm_rax_write(vcpu, ret); 10102 10103 ++vcpu->stat.hypercalls; 10104 return kvm_skip_emulated_instruction(vcpu); 10105 } 10106 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10107 10108 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10109 { 10110 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10111 char instruction[3]; 10112 unsigned long rip = kvm_rip_read(vcpu); 10113 10114 /* 10115 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10116 * the pieces. 10117 */ 10118 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10119 ctxt->exception.error_code_valid = false; 10120 ctxt->exception.vector = UD_VECTOR; 10121 ctxt->have_exception = true; 10122 return X86EMUL_PROPAGATE_FAULT; 10123 } 10124 10125 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 10126 10127 return emulator_write_emulated(ctxt, rip, instruction, 3, 10128 &ctxt->exception); 10129 } 10130 10131 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10132 { 10133 return vcpu->run->request_interrupt_window && 10134 likely(!pic_in_kernel(vcpu->kvm)); 10135 } 10136 10137 /* Called within kvm->srcu read side. */ 10138 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10139 { 10140 struct kvm_run *kvm_run = vcpu->run; 10141 10142 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 10143 kvm_run->cr8 = kvm_get_cr8(vcpu); 10144 kvm_run->apic_base = kvm_get_apic_base(vcpu); 10145 10146 kvm_run->ready_for_interrupt_injection = 10147 pic_in_kernel(vcpu->kvm) || 10148 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10149 10150 if (is_smm(vcpu)) 10151 kvm_run->flags |= KVM_RUN_X86_SMM; 10152 } 10153 10154 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10155 { 10156 int max_irr, tpr; 10157 10158 if (!kvm_x86_ops.update_cr8_intercept) 10159 return; 10160 10161 if (!lapic_in_kernel(vcpu)) 10162 return; 10163 10164 if (vcpu->arch.apic->apicv_active) 10165 return; 10166 10167 if (!vcpu->arch.apic->vapic_addr) 10168 max_irr = kvm_lapic_find_highest_irr(vcpu); 10169 else 10170 max_irr = -1; 10171 10172 if (max_irr != -1) 10173 max_irr >>= 4; 10174 10175 tpr = kvm_lapic_get_cr8(vcpu); 10176 10177 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 10178 } 10179 10180 10181 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10182 { 10183 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10184 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10185 return 1; 10186 } 10187 10188 return kvm_x86_ops.nested_ops->check_events(vcpu); 10189 } 10190 10191 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10192 { 10193 /* 10194 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10195 * exceptions don't report error codes. The presence of an error code 10196 * is carried with the exception and only stripped when the exception 10197 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10198 * report an error code despite the CPU being in Real Mode. 10199 */ 10200 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10201 10202 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10203 vcpu->arch.exception.has_error_code, 10204 vcpu->arch.exception.error_code, 10205 vcpu->arch.exception.injected); 10206 10207 static_call(kvm_x86_inject_exception)(vcpu); 10208 } 10209 10210 /* 10211 * Check for any event (interrupt or exception) that is ready to be injected, 10212 * and if there is at least one event, inject the event with the highest 10213 * priority. This handles both "pending" events, i.e. events that have never 10214 * been injected into the guest, and "injected" events, i.e. events that were 10215 * injected as part of a previous VM-Enter, but weren't successfully delivered 10216 * and need to be re-injected. 10217 * 10218 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10219 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10220 * be able to inject exceptions in the "middle" of an instruction, and so must 10221 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10222 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10223 * boundaries is necessary and correct. 10224 * 10225 * For simplicity, KVM uses a single path to inject all events (except events 10226 * that are injected directly from L1 to L2) and doesn't explicitly track 10227 * instruction boundaries for asynchronous events. However, because VM-Exits 10228 * that can occur during instruction execution typically result in KVM skipping 10229 * the instruction or injecting an exception, e.g. instruction and exception 10230 * intercepts, and because pending exceptions have higher priority than pending 10231 * interrupts, KVM still honors instruction boundaries in most scenarios. 10232 * 10233 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10234 * the instruction or inject an exception, then KVM can incorrecty inject a new 10235 * asynchronous event if the event became pending after the CPU fetched the 10236 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10237 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10238 * injected on the restarted instruction instead of being deferred until the 10239 * instruction completes. 10240 * 10241 * In practice, this virtualization hole is unlikely to be observed by the 10242 * guest, and even less likely to cause functional problems. To detect the 10243 * hole, the guest would have to trigger an event on a side effect of an early 10244 * phase of instruction execution, e.g. on the instruction fetch from memory. 10245 * And for it to be a functional problem, the guest would need to depend on the 10246 * ordering between that side effect, the instruction completing, _and_ the 10247 * delivery of the asynchronous event. 10248 */ 10249 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10250 bool *req_immediate_exit) 10251 { 10252 bool can_inject; 10253 int r; 10254 10255 /* 10256 * Process nested events first, as nested VM-Exit supersedes event 10257 * re-injection. If there's an event queued for re-injection, it will 10258 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10259 */ 10260 if (is_guest_mode(vcpu)) 10261 r = kvm_check_nested_events(vcpu); 10262 else 10263 r = 0; 10264 10265 /* 10266 * Re-inject exceptions and events *especially* if immediate entry+exit 10267 * to/from L2 is needed, as any event that has already been injected 10268 * into L2 needs to complete its lifecycle before injecting a new event. 10269 * 10270 * Don't re-inject an NMI or interrupt if there is a pending exception. 10271 * This collision arises if an exception occurred while vectoring the 10272 * injected event, KVM intercepted said exception, and KVM ultimately 10273 * determined the fault belongs to the guest and queues the exception 10274 * for injection back into the guest. 10275 * 10276 * "Injected" interrupts can also collide with pending exceptions if 10277 * userspace ignores the "ready for injection" flag and blindly queues 10278 * an interrupt. In that case, prioritizing the exception is correct, 10279 * as the exception "occurred" before the exit to userspace. Trap-like 10280 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10281 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10282 * priority, they're only generated (pended) during instruction 10283 * execution, and interrupts are recognized at instruction boundaries. 10284 * Thus a pending fault-like exception means the fault occurred on the 10285 * *previous* instruction and must be serviced prior to recognizing any 10286 * new events in order to fully complete the previous instruction. 10287 */ 10288 if (vcpu->arch.exception.injected) 10289 kvm_inject_exception(vcpu); 10290 else if (kvm_is_exception_pending(vcpu)) 10291 ; /* see above */ 10292 else if (vcpu->arch.nmi_injected) 10293 static_call(kvm_x86_inject_nmi)(vcpu); 10294 else if (vcpu->arch.interrupt.injected) 10295 static_call(kvm_x86_inject_irq)(vcpu, true); 10296 10297 /* 10298 * Exceptions that morph to VM-Exits are handled above, and pending 10299 * exceptions on top of injected exceptions that do not VM-Exit should 10300 * either morph to #DF or, sadly, override the injected exception. 10301 */ 10302 WARN_ON_ONCE(vcpu->arch.exception.injected && 10303 vcpu->arch.exception.pending); 10304 10305 /* 10306 * Bail if immediate entry+exit to/from the guest is needed to complete 10307 * nested VM-Enter or event re-injection so that a different pending 10308 * event can be serviced (or if KVM needs to exit to userspace). 10309 * 10310 * Otherwise, continue processing events even if VM-Exit occurred. The 10311 * VM-Exit will have cleared exceptions that were meant for L2, but 10312 * there may now be events that can be injected into L1. 10313 */ 10314 if (r < 0) 10315 goto out; 10316 10317 /* 10318 * A pending exception VM-Exit should either result in nested VM-Exit 10319 * or force an immediate re-entry and exit to/from L2, and exception 10320 * VM-Exits cannot be injected (flag should _never_ be set). 10321 */ 10322 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10323 vcpu->arch.exception_vmexit.pending); 10324 10325 /* 10326 * New events, other than exceptions, cannot be injected if KVM needs 10327 * to re-inject a previous event. See above comments on re-injecting 10328 * for why pending exceptions get priority. 10329 */ 10330 can_inject = !kvm_event_needs_reinjection(vcpu); 10331 10332 if (vcpu->arch.exception.pending) { 10333 /* 10334 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10335 * value pushed on the stack. Trap-like exception and all #DBs 10336 * leave RF as-is (KVM follows Intel's behavior in this regard; 10337 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10338 * 10339 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10340 * describe the behavior of General Detect #DBs, which are 10341 * fault-like. They do _not_ set RF, a la code breakpoints. 10342 */ 10343 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10344 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10345 X86_EFLAGS_RF); 10346 10347 if (vcpu->arch.exception.vector == DB_VECTOR) { 10348 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10349 if (vcpu->arch.dr7 & DR7_GD) { 10350 vcpu->arch.dr7 &= ~DR7_GD; 10351 kvm_update_dr7(vcpu); 10352 } 10353 } 10354 10355 kvm_inject_exception(vcpu); 10356 10357 vcpu->arch.exception.pending = false; 10358 vcpu->arch.exception.injected = true; 10359 10360 can_inject = false; 10361 } 10362 10363 /* Don't inject interrupts if the user asked to avoid doing so */ 10364 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10365 return 0; 10366 10367 /* 10368 * Finally, inject interrupt events. If an event cannot be injected 10369 * due to architectural conditions (e.g. IF=0) a window-open exit 10370 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10371 * and can architecturally be injected, but we cannot do it right now: 10372 * an interrupt could have arrived just now and we have to inject it 10373 * as a vmexit, or there could already an event in the queue, which is 10374 * indicated by can_inject. In that case we request an immediate exit 10375 * in order to make progress and get back here for another iteration. 10376 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10377 */ 10378 #ifdef CONFIG_KVM_SMM 10379 if (vcpu->arch.smi_pending) { 10380 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10381 if (r < 0) 10382 goto out; 10383 if (r) { 10384 vcpu->arch.smi_pending = false; 10385 ++vcpu->arch.smi_count; 10386 enter_smm(vcpu); 10387 can_inject = false; 10388 } else 10389 static_call(kvm_x86_enable_smi_window)(vcpu); 10390 } 10391 #endif 10392 10393 if (vcpu->arch.nmi_pending) { 10394 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10395 if (r < 0) 10396 goto out; 10397 if (r) { 10398 --vcpu->arch.nmi_pending; 10399 vcpu->arch.nmi_injected = true; 10400 static_call(kvm_x86_inject_nmi)(vcpu); 10401 can_inject = false; 10402 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10403 } 10404 if (vcpu->arch.nmi_pending) 10405 static_call(kvm_x86_enable_nmi_window)(vcpu); 10406 } 10407 10408 if (kvm_cpu_has_injectable_intr(vcpu)) { 10409 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10410 if (r < 0) 10411 goto out; 10412 if (r) { 10413 int irq = kvm_cpu_get_interrupt(vcpu); 10414 10415 if (!WARN_ON_ONCE(irq == -1)) { 10416 kvm_queue_interrupt(vcpu, irq, false); 10417 static_call(kvm_x86_inject_irq)(vcpu, false); 10418 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10419 } 10420 } 10421 if (kvm_cpu_has_injectable_intr(vcpu)) 10422 static_call(kvm_x86_enable_irq_window)(vcpu); 10423 } 10424 10425 if (is_guest_mode(vcpu) && 10426 kvm_x86_ops.nested_ops->has_events && 10427 kvm_x86_ops.nested_ops->has_events(vcpu)) 10428 *req_immediate_exit = true; 10429 10430 /* 10431 * KVM must never queue a new exception while injecting an event; KVM 10432 * is done emulating and should only propagate the to-be-injected event 10433 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10434 * infinite loop as KVM will bail from VM-Enter to inject the pending 10435 * exception and start the cycle all over. 10436 * 10437 * Exempt triple faults as they have special handling and won't put the 10438 * vCPU into an infinite loop. Triple fault can be queued when running 10439 * VMX without unrestricted guest, as that requires KVM to emulate Real 10440 * Mode events (see kvm_inject_realmode_interrupt()). 10441 */ 10442 WARN_ON_ONCE(vcpu->arch.exception.pending || 10443 vcpu->arch.exception_vmexit.pending); 10444 return 0; 10445 10446 out: 10447 if (r == -EBUSY) { 10448 *req_immediate_exit = true; 10449 r = 0; 10450 } 10451 return r; 10452 } 10453 10454 static void process_nmi(struct kvm_vcpu *vcpu) 10455 { 10456 unsigned int limit; 10457 10458 /* 10459 * x86 is limited to one NMI pending, but because KVM can't react to 10460 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10461 * scheduled out, KVM needs to play nice with two queued NMIs showing 10462 * up at the same time. To handle this scenario, allow two NMIs to be 10463 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10464 * waiting for a previous NMI injection to complete (which effectively 10465 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10466 * will request an NMI window to handle the second NMI. 10467 */ 10468 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10469 limit = 1; 10470 else 10471 limit = 2; 10472 10473 /* 10474 * Adjust the limit to account for pending virtual NMIs, which aren't 10475 * tracked in vcpu->arch.nmi_pending. 10476 */ 10477 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10478 limit--; 10479 10480 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10481 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10482 10483 if (vcpu->arch.nmi_pending && 10484 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10485 vcpu->arch.nmi_pending--; 10486 10487 if (vcpu->arch.nmi_pending) 10488 kvm_make_request(KVM_REQ_EVENT, vcpu); 10489 } 10490 10491 /* Return total number of NMIs pending injection to the VM */ 10492 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10493 { 10494 return vcpu->arch.nmi_pending + 10495 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10496 } 10497 10498 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10499 unsigned long *vcpu_bitmap) 10500 { 10501 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10502 } 10503 10504 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10505 { 10506 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10507 } 10508 10509 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10510 { 10511 struct kvm_lapic *apic = vcpu->arch.apic; 10512 bool activate; 10513 10514 if (!lapic_in_kernel(vcpu)) 10515 return; 10516 10517 down_read(&vcpu->kvm->arch.apicv_update_lock); 10518 preempt_disable(); 10519 10520 /* Do not activate APICV when APIC is disabled */ 10521 activate = kvm_vcpu_apicv_activated(vcpu) && 10522 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10523 10524 if (apic->apicv_active == activate) 10525 goto out; 10526 10527 apic->apicv_active = activate; 10528 kvm_apic_update_apicv(vcpu); 10529 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10530 10531 /* 10532 * When APICv gets disabled, we may still have injected interrupts 10533 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10534 * still active when the interrupt got accepted. Make sure 10535 * kvm_check_and_inject_events() is called to check for that. 10536 */ 10537 if (!apic->apicv_active) 10538 kvm_make_request(KVM_REQ_EVENT, vcpu); 10539 10540 out: 10541 preempt_enable(); 10542 up_read(&vcpu->kvm->arch.apicv_update_lock); 10543 } 10544 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10545 10546 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10547 { 10548 if (!lapic_in_kernel(vcpu)) 10549 return; 10550 10551 /* 10552 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10553 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10554 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10555 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10556 * this case so that KVM can the AVIC doorbell to inject interrupts to 10557 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10558 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10559 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10560 * access page is sticky. 10561 */ 10562 if (apic_x2apic_mode(vcpu->arch.apic) && 10563 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10564 kvm_inhibit_apic_access_page(vcpu); 10565 10566 __kvm_vcpu_update_apicv(vcpu); 10567 } 10568 10569 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10570 enum kvm_apicv_inhibit reason, bool set) 10571 { 10572 unsigned long old, new; 10573 10574 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10575 10576 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10577 return; 10578 10579 old = new = kvm->arch.apicv_inhibit_reasons; 10580 10581 set_or_clear_apicv_inhibit(&new, reason, set); 10582 10583 if (!!old != !!new) { 10584 /* 10585 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10586 * false positives in the sanity check WARN in svm_vcpu_run(). 10587 * This task will wait for all vCPUs to ack the kick IRQ before 10588 * updating apicv_inhibit_reasons, and all other vCPUs will 10589 * block on acquiring apicv_update_lock so that vCPUs can't 10590 * redo svm_vcpu_run() without seeing the new inhibit state. 10591 * 10592 * Note, holding apicv_update_lock and taking it in the read 10593 * side (handling the request) also prevents other vCPUs from 10594 * servicing the request with a stale apicv_inhibit_reasons. 10595 */ 10596 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10597 kvm->arch.apicv_inhibit_reasons = new; 10598 if (new) { 10599 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10600 int idx = srcu_read_lock(&kvm->srcu); 10601 10602 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10603 srcu_read_unlock(&kvm->srcu, idx); 10604 } 10605 } else { 10606 kvm->arch.apicv_inhibit_reasons = new; 10607 } 10608 } 10609 10610 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10611 enum kvm_apicv_inhibit reason, bool set) 10612 { 10613 if (!enable_apicv) 10614 return; 10615 10616 down_write(&kvm->arch.apicv_update_lock); 10617 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10618 up_write(&kvm->arch.apicv_update_lock); 10619 } 10620 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10621 10622 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10623 { 10624 if (!kvm_apic_present(vcpu)) 10625 return; 10626 10627 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10628 10629 if (irqchip_split(vcpu->kvm)) 10630 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10631 else { 10632 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10633 if (ioapic_in_kernel(vcpu->kvm)) 10634 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10635 } 10636 10637 if (is_guest_mode(vcpu)) 10638 vcpu->arch.load_eoi_exitmap_pending = true; 10639 else 10640 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10641 } 10642 10643 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10644 { 10645 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10646 return; 10647 10648 #ifdef CONFIG_KVM_HYPERV 10649 if (to_hv_vcpu(vcpu)) { 10650 u64 eoi_exit_bitmap[4]; 10651 10652 bitmap_or((ulong *)eoi_exit_bitmap, 10653 vcpu->arch.ioapic_handled_vectors, 10654 to_hv_synic(vcpu)->vec_bitmap, 256); 10655 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10656 return; 10657 } 10658 #endif 10659 static_call_cond(kvm_x86_load_eoi_exitmap)( 10660 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10661 } 10662 10663 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10664 { 10665 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10666 } 10667 10668 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10669 { 10670 if (!lapic_in_kernel(vcpu)) 10671 return; 10672 10673 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10674 } 10675 10676 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10677 { 10678 smp_send_reschedule(vcpu->cpu); 10679 } 10680 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10681 10682 /* 10683 * Called within kvm->srcu read side. 10684 * Returns 1 to let vcpu_run() continue the guest execution loop without 10685 * exiting to the userspace. Otherwise, the value will be returned to the 10686 * userspace. 10687 */ 10688 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10689 { 10690 int r; 10691 bool req_int_win = 10692 dm_request_for_irq_injection(vcpu) && 10693 kvm_cpu_accept_dm_intr(vcpu); 10694 fastpath_t exit_fastpath; 10695 10696 bool req_immediate_exit = false; 10697 10698 if (kvm_request_pending(vcpu)) { 10699 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10700 r = -EIO; 10701 goto out; 10702 } 10703 10704 if (kvm_dirty_ring_check_request(vcpu)) { 10705 r = 0; 10706 goto out; 10707 } 10708 10709 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10710 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10711 r = 0; 10712 goto out; 10713 } 10714 } 10715 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10716 kvm_mmu_free_obsolete_roots(vcpu); 10717 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10718 __kvm_migrate_timers(vcpu); 10719 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10720 kvm_update_masterclock(vcpu->kvm); 10721 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10722 kvm_gen_kvmclock_update(vcpu); 10723 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10724 r = kvm_guest_time_update(vcpu); 10725 if (unlikely(r)) 10726 goto out; 10727 } 10728 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10729 kvm_mmu_sync_roots(vcpu); 10730 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10731 kvm_mmu_load_pgd(vcpu); 10732 10733 /* 10734 * Note, the order matters here, as flushing "all" TLB entries 10735 * also flushes the "current" TLB entries, i.e. servicing the 10736 * flush "all" will clear any request to flush "current". 10737 */ 10738 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10739 kvm_vcpu_flush_tlb_all(vcpu); 10740 10741 kvm_service_local_tlb_flush_requests(vcpu); 10742 10743 /* 10744 * Fall back to a "full" guest flush if Hyper-V's precise 10745 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10746 * the flushes are considered "remote" and not "local" because 10747 * the requests can be initiated from other vCPUs. 10748 */ 10749 #ifdef CONFIG_KVM_HYPERV 10750 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10751 kvm_hv_vcpu_flush_tlb(vcpu)) 10752 kvm_vcpu_flush_tlb_guest(vcpu); 10753 #endif 10754 10755 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10756 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10757 r = 0; 10758 goto out; 10759 } 10760 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10761 if (is_guest_mode(vcpu)) 10762 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10763 10764 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10765 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10766 vcpu->mmio_needed = 0; 10767 r = 0; 10768 goto out; 10769 } 10770 } 10771 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10772 /* Page is swapped out. Do synthetic halt */ 10773 vcpu->arch.apf.halted = true; 10774 r = 1; 10775 goto out; 10776 } 10777 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10778 record_steal_time(vcpu); 10779 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10780 kvm_pmu_handle_event(vcpu); 10781 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10782 kvm_pmu_deliver_pmi(vcpu); 10783 #ifdef CONFIG_KVM_SMM 10784 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10785 process_smi(vcpu); 10786 #endif 10787 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10788 process_nmi(vcpu); 10789 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10790 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10791 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10792 vcpu->arch.ioapic_handled_vectors)) { 10793 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10794 vcpu->run->eoi.vector = 10795 vcpu->arch.pending_ioapic_eoi; 10796 r = 0; 10797 goto out; 10798 } 10799 } 10800 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10801 vcpu_scan_ioapic(vcpu); 10802 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10803 vcpu_load_eoi_exitmap(vcpu); 10804 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10805 kvm_vcpu_reload_apic_access_page(vcpu); 10806 #ifdef CONFIG_KVM_HYPERV 10807 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10808 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10809 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10810 vcpu->run->system_event.ndata = 0; 10811 r = 0; 10812 goto out; 10813 } 10814 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10815 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10816 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10817 vcpu->run->system_event.ndata = 0; 10818 r = 0; 10819 goto out; 10820 } 10821 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10822 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10823 10824 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10825 vcpu->run->hyperv = hv_vcpu->exit; 10826 r = 0; 10827 goto out; 10828 } 10829 10830 /* 10831 * KVM_REQ_HV_STIMER has to be processed after 10832 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10833 * depend on the guest clock being up-to-date 10834 */ 10835 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10836 kvm_hv_process_stimers(vcpu); 10837 #endif 10838 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10839 kvm_vcpu_update_apicv(vcpu); 10840 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10841 kvm_check_async_pf_completion(vcpu); 10842 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10843 static_call(kvm_x86_msr_filter_changed)(vcpu); 10844 10845 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10846 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10847 } 10848 10849 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10850 kvm_xen_has_interrupt(vcpu)) { 10851 ++vcpu->stat.req_event; 10852 r = kvm_apic_accept_events(vcpu); 10853 if (r < 0) { 10854 r = 0; 10855 goto out; 10856 } 10857 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10858 r = 1; 10859 goto out; 10860 } 10861 10862 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10863 if (r < 0) { 10864 r = 0; 10865 goto out; 10866 } 10867 if (req_int_win) 10868 static_call(kvm_x86_enable_irq_window)(vcpu); 10869 10870 if (kvm_lapic_enabled(vcpu)) { 10871 update_cr8_intercept(vcpu); 10872 kvm_lapic_sync_to_vapic(vcpu); 10873 } 10874 } 10875 10876 r = kvm_mmu_reload(vcpu); 10877 if (unlikely(r)) { 10878 goto cancel_injection; 10879 } 10880 10881 preempt_disable(); 10882 10883 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10884 10885 /* 10886 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10887 * IPI are then delayed after guest entry, which ensures that they 10888 * result in virtual interrupt delivery. 10889 */ 10890 local_irq_disable(); 10891 10892 /* Store vcpu->apicv_active before vcpu->mode. */ 10893 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10894 10895 kvm_vcpu_srcu_read_unlock(vcpu); 10896 10897 /* 10898 * 1) We should set ->mode before checking ->requests. Please see 10899 * the comment in kvm_vcpu_exiting_guest_mode(). 10900 * 10901 * 2) For APICv, we should set ->mode before checking PID.ON. This 10902 * pairs with the memory barrier implicit in pi_test_and_set_on 10903 * (see vmx_deliver_posted_interrupt). 10904 * 10905 * 3) This also orders the write to mode from any reads to the page 10906 * tables done while the VCPU is running. Please see the comment 10907 * in kvm_flush_remote_tlbs. 10908 */ 10909 smp_mb__after_srcu_read_unlock(); 10910 10911 /* 10912 * Process pending posted interrupts to handle the case where the 10913 * notification IRQ arrived in the host, or was never sent (because the 10914 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10915 * status, KVM doesn't update assigned devices when APICv is inhibited, 10916 * i.e. they can post interrupts even if APICv is temporarily disabled. 10917 */ 10918 if (kvm_lapic_enabled(vcpu)) 10919 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10920 10921 if (kvm_vcpu_exit_request(vcpu)) { 10922 vcpu->mode = OUTSIDE_GUEST_MODE; 10923 smp_wmb(); 10924 local_irq_enable(); 10925 preempt_enable(); 10926 kvm_vcpu_srcu_read_lock(vcpu); 10927 r = 1; 10928 goto cancel_injection; 10929 } 10930 10931 if (req_immediate_exit) { 10932 kvm_make_request(KVM_REQ_EVENT, vcpu); 10933 static_call(kvm_x86_request_immediate_exit)(vcpu); 10934 } 10935 10936 fpregs_assert_state_consistent(); 10937 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10938 switch_fpu_return(); 10939 10940 if (vcpu->arch.guest_fpu.xfd_err) 10941 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10942 10943 if (unlikely(vcpu->arch.switch_db_regs)) { 10944 set_debugreg(0, 7); 10945 set_debugreg(vcpu->arch.eff_db[0], 0); 10946 set_debugreg(vcpu->arch.eff_db[1], 1); 10947 set_debugreg(vcpu->arch.eff_db[2], 2); 10948 set_debugreg(vcpu->arch.eff_db[3], 3); 10949 } else if (unlikely(hw_breakpoint_active())) { 10950 set_debugreg(0, 7); 10951 } 10952 10953 guest_timing_enter_irqoff(); 10954 10955 for (;;) { 10956 /* 10957 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10958 * update must kick and wait for all vCPUs before toggling the 10959 * per-VM state, and responding vCPUs must wait for the update 10960 * to complete before servicing KVM_REQ_APICV_UPDATE. 10961 */ 10962 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10963 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10964 10965 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10966 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10967 break; 10968 10969 if (kvm_lapic_enabled(vcpu)) 10970 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10971 10972 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10973 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10974 break; 10975 } 10976 10977 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10978 ++vcpu->stat.exits; 10979 } 10980 10981 /* 10982 * Do this here before restoring debug registers on the host. And 10983 * since we do this before handling the vmexit, a DR access vmexit 10984 * can (a) read the correct value of the debug registers, (b) set 10985 * KVM_DEBUGREG_WONT_EXIT again. 10986 */ 10987 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10988 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10989 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10990 kvm_update_dr0123(vcpu); 10991 kvm_update_dr7(vcpu); 10992 } 10993 10994 /* 10995 * If the guest has used debug registers, at least dr7 10996 * will be disabled while returning to the host. 10997 * If we don't have active breakpoints in the host, we don't 10998 * care about the messed up debug address registers. But if 10999 * we have some of them active, restore the old state. 11000 */ 11001 if (hw_breakpoint_active()) 11002 hw_breakpoint_restore(); 11003 11004 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11005 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11006 11007 vcpu->mode = OUTSIDE_GUEST_MODE; 11008 smp_wmb(); 11009 11010 /* 11011 * Sync xfd before calling handle_exit_irqoff() which may 11012 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11013 * in #NM irqoff handler). 11014 */ 11015 if (vcpu->arch.xfd_no_write_intercept) 11016 fpu_sync_guest_vmexit_xfd_state(); 11017 11018 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 11019 11020 if (vcpu->arch.guest_fpu.xfd_err) 11021 wrmsrl(MSR_IA32_XFD_ERR, 0); 11022 11023 /* 11024 * Consume any pending interrupts, including the possible source of 11025 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11026 * An instruction is required after local_irq_enable() to fully unblock 11027 * interrupts on processors that implement an interrupt shadow, the 11028 * stat.exits increment will do nicely. 11029 */ 11030 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11031 local_irq_enable(); 11032 ++vcpu->stat.exits; 11033 local_irq_disable(); 11034 kvm_after_interrupt(vcpu); 11035 11036 /* 11037 * Wait until after servicing IRQs to account guest time so that any 11038 * ticks that occurred while running the guest are properly accounted 11039 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11040 * of accounting via context tracking, but the loss of accuracy is 11041 * acceptable for all known use cases. 11042 */ 11043 guest_timing_exit_irqoff(); 11044 11045 local_irq_enable(); 11046 preempt_enable(); 11047 11048 kvm_vcpu_srcu_read_lock(vcpu); 11049 11050 /* 11051 * Profile KVM exit RIPs: 11052 */ 11053 if (unlikely(prof_on == KVM_PROFILING)) { 11054 unsigned long rip = kvm_rip_read(vcpu); 11055 profile_hit(KVM_PROFILING, (void *)rip); 11056 } 11057 11058 if (unlikely(vcpu->arch.tsc_always_catchup)) 11059 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11060 11061 if (vcpu->arch.apic_attention) 11062 kvm_lapic_sync_from_vapic(vcpu); 11063 11064 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 11065 return r; 11066 11067 cancel_injection: 11068 if (req_immediate_exit) 11069 kvm_make_request(KVM_REQ_EVENT, vcpu); 11070 static_call(kvm_x86_cancel_injection)(vcpu); 11071 if (unlikely(vcpu->arch.apic_attention)) 11072 kvm_lapic_sync_from_vapic(vcpu); 11073 out: 11074 return r; 11075 } 11076 11077 /* Called within kvm->srcu read side. */ 11078 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11079 { 11080 bool hv_timer; 11081 11082 if (!kvm_arch_vcpu_runnable(vcpu)) { 11083 /* 11084 * Switch to the software timer before halt-polling/blocking as 11085 * the guest's timer may be a break event for the vCPU, and the 11086 * hypervisor timer runs only when the CPU is in guest mode. 11087 * Switch before halt-polling so that KVM recognizes an expired 11088 * timer before blocking. 11089 */ 11090 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11091 if (hv_timer) 11092 kvm_lapic_switch_to_sw_timer(vcpu); 11093 11094 kvm_vcpu_srcu_read_unlock(vcpu); 11095 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11096 kvm_vcpu_halt(vcpu); 11097 else 11098 kvm_vcpu_block(vcpu); 11099 kvm_vcpu_srcu_read_lock(vcpu); 11100 11101 if (hv_timer) 11102 kvm_lapic_switch_to_hv_timer(vcpu); 11103 11104 /* 11105 * If the vCPU is not runnable, a signal or another host event 11106 * of some kind is pending; service it without changing the 11107 * vCPU's activity state. 11108 */ 11109 if (!kvm_arch_vcpu_runnable(vcpu)) 11110 return 1; 11111 } 11112 11113 /* 11114 * Evaluate nested events before exiting the halted state. This allows 11115 * the halt state to be recorded properly in the VMCS12's activity 11116 * state field (AMD does not have a similar field and a VM-Exit always 11117 * causes a spurious wakeup from HLT). 11118 */ 11119 if (is_guest_mode(vcpu)) { 11120 if (kvm_check_nested_events(vcpu) < 0) 11121 return 0; 11122 } 11123 11124 if (kvm_apic_accept_events(vcpu) < 0) 11125 return 0; 11126 switch(vcpu->arch.mp_state) { 11127 case KVM_MP_STATE_HALTED: 11128 case KVM_MP_STATE_AP_RESET_HOLD: 11129 vcpu->arch.pv.pv_unhalted = false; 11130 vcpu->arch.mp_state = 11131 KVM_MP_STATE_RUNNABLE; 11132 fallthrough; 11133 case KVM_MP_STATE_RUNNABLE: 11134 vcpu->arch.apf.halted = false; 11135 break; 11136 case KVM_MP_STATE_INIT_RECEIVED: 11137 break; 11138 default: 11139 WARN_ON_ONCE(1); 11140 break; 11141 } 11142 return 1; 11143 } 11144 11145 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11146 { 11147 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11148 !vcpu->arch.apf.halted); 11149 } 11150 11151 /* Called within kvm->srcu read side. */ 11152 static int vcpu_run(struct kvm_vcpu *vcpu) 11153 { 11154 int r; 11155 11156 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11157 vcpu->arch.l1tf_flush_l1d = true; 11158 11159 for (;;) { 11160 /* 11161 * If another guest vCPU requests a PV TLB flush in the middle 11162 * of instruction emulation, the rest of the emulation could 11163 * use a stale page translation. Assume that any code after 11164 * this point can start executing an instruction. 11165 */ 11166 vcpu->arch.at_instruction_boundary = false; 11167 if (kvm_vcpu_running(vcpu)) { 11168 r = vcpu_enter_guest(vcpu); 11169 } else { 11170 r = vcpu_block(vcpu); 11171 } 11172 11173 if (r <= 0) 11174 break; 11175 11176 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11177 if (kvm_xen_has_pending_events(vcpu)) 11178 kvm_xen_inject_pending_events(vcpu); 11179 11180 if (kvm_cpu_has_pending_timer(vcpu)) 11181 kvm_inject_pending_timer_irqs(vcpu); 11182 11183 if (dm_request_for_irq_injection(vcpu) && 11184 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11185 r = 0; 11186 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11187 ++vcpu->stat.request_irq_exits; 11188 break; 11189 } 11190 11191 if (__xfer_to_guest_mode_work_pending()) { 11192 kvm_vcpu_srcu_read_unlock(vcpu); 11193 r = xfer_to_guest_mode_handle_work(vcpu); 11194 kvm_vcpu_srcu_read_lock(vcpu); 11195 if (r) 11196 return r; 11197 } 11198 } 11199 11200 return r; 11201 } 11202 11203 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11204 { 11205 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11206 } 11207 11208 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11209 { 11210 BUG_ON(!vcpu->arch.pio.count); 11211 11212 return complete_emulated_io(vcpu); 11213 } 11214 11215 /* 11216 * Implements the following, as a state machine: 11217 * 11218 * read: 11219 * for each fragment 11220 * for each mmio piece in the fragment 11221 * write gpa, len 11222 * exit 11223 * copy data 11224 * execute insn 11225 * 11226 * write: 11227 * for each fragment 11228 * for each mmio piece in the fragment 11229 * write gpa, len 11230 * copy data 11231 * exit 11232 */ 11233 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11234 { 11235 struct kvm_run *run = vcpu->run; 11236 struct kvm_mmio_fragment *frag; 11237 unsigned len; 11238 11239 BUG_ON(!vcpu->mmio_needed); 11240 11241 /* Complete previous fragment */ 11242 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11243 len = min(8u, frag->len); 11244 if (!vcpu->mmio_is_write) 11245 memcpy(frag->data, run->mmio.data, len); 11246 11247 if (frag->len <= 8) { 11248 /* Switch to the next fragment. */ 11249 frag++; 11250 vcpu->mmio_cur_fragment++; 11251 } else { 11252 /* Go forward to the next mmio piece. */ 11253 frag->data += len; 11254 frag->gpa += len; 11255 frag->len -= len; 11256 } 11257 11258 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11259 vcpu->mmio_needed = 0; 11260 11261 /* FIXME: return into emulator if single-stepping. */ 11262 if (vcpu->mmio_is_write) 11263 return 1; 11264 vcpu->mmio_read_completed = 1; 11265 return complete_emulated_io(vcpu); 11266 } 11267 11268 run->exit_reason = KVM_EXIT_MMIO; 11269 run->mmio.phys_addr = frag->gpa; 11270 if (vcpu->mmio_is_write) 11271 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11272 run->mmio.len = min(8u, frag->len); 11273 run->mmio.is_write = vcpu->mmio_is_write; 11274 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11275 return 0; 11276 } 11277 11278 /* Swap (qemu) user FPU context for the guest FPU context. */ 11279 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11280 { 11281 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11282 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11283 trace_kvm_fpu(1); 11284 } 11285 11286 /* When vcpu_run ends, restore user space FPU context. */ 11287 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11288 { 11289 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11290 ++vcpu->stat.fpu_reload; 11291 trace_kvm_fpu(0); 11292 } 11293 11294 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11295 { 11296 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11297 struct kvm_run *kvm_run = vcpu->run; 11298 int r; 11299 11300 vcpu_load(vcpu); 11301 kvm_sigset_activate(vcpu); 11302 kvm_run->flags = 0; 11303 kvm_load_guest_fpu(vcpu); 11304 11305 kvm_vcpu_srcu_read_lock(vcpu); 11306 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11307 if (kvm_run->immediate_exit) { 11308 r = -EINTR; 11309 goto out; 11310 } 11311 11312 /* 11313 * Don't bother switching APIC timer emulation from the 11314 * hypervisor timer to the software timer, the only way for the 11315 * APIC timer to be active is if userspace stuffed vCPU state, 11316 * i.e. put the vCPU into a nonsensical state. Only an INIT 11317 * will transition the vCPU out of UNINITIALIZED (without more 11318 * state stuffing from userspace), which will reset the local 11319 * APIC and thus cancel the timer or drop the IRQ (if the timer 11320 * already expired). 11321 */ 11322 kvm_vcpu_srcu_read_unlock(vcpu); 11323 kvm_vcpu_block(vcpu); 11324 kvm_vcpu_srcu_read_lock(vcpu); 11325 11326 if (kvm_apic_accept_events(vcpu) < 0) { 11327 r = 0; 11328 goto out; 11329 } 11330 r = -EAGAIN; 11331 if (signal_pending(current)) { 11332 r = -EINTR; 11333 kvm_run->exit_reason = KVM_EXIT_INTR; 11334 ++vcpu->stat.signal_exits; 11335 } 11336 goto out; 11337 } 11338 11339 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11340 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11341 r = -EINVAL; 11342 goto out; 11343 } 11344 11345 if (kvm_run->kvm_dirty_regs) { 11346 r = sync_regs(vcpu); 11347 if (r != 0) 11348 goto out; 11349 } 11350 11351 /* re-sync apic's tpr */ 11352 if (!lapic_in_kernel(vcpu)) { 11353 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11354 r = -EINVAL; 11355 goto out; 11356 } 11357 } 11358 11359 /* 11360 * If userspace set a pending exception and L2 is active, convert it to 11361 * a pending VM-Exit if L1 wants to intercept the exception. 11362 */ 11363 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11364 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11365 ex->error_code)) { 11366 kvm_queue_exception_vmexit(vcpu, ex->vector, 11367 ex->has_error_code, ex->error_code, 11368 ex->has_payload, ex->payload); 11369 ex->injected = false; 11370 ex->pending = false; 11371 } 11372 vcpu->arch.exception_from_userspace = false; 11373 11374 if (unlikely(vcpu->arch.complete_userspace_io)) { 11375 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11376 vcpu->arch.complete_userspace_io = NULL; 11377 r = cui(vcpu); 11378 if (r <= 0) 11379 goto out; 11380 } else { 11381 WARN_ON_ONCE(vcpu->arch.pio.count); 11382 WARN_ON_ONCE(vcpu->mmio_needed); 11383 } 11384 11385 if (kvm_run->immediate_exit) { 11386 r = -EINTR; 11387 goto out; 11388 } 11389 11390 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11391 if (r <= 0) 11392 goto out; 11393 11394 r = vcpu_run(vcpu); 11395 11396 out: 11397 kvm_put_guest_fpu(vcpu); 11398 if (kvm_run->kvm_valid_regs) 11399 store_regs(vcpu); 11400 post_kvm_run_save(vcpu); 11401 kvm_vcpu_srcu_read_unlock(vcpu); 11402 11403 kvm_sigset_deactivate(vcpu); 11404 vcpu_put(vcpu); 11405 return r; 11406 } 11407 11408 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11409 { 11410 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11411 /* 11412 * We are here if userspace calls get_regs() in the middle of 11413 * instruction emulation. Registers state needs to be copied 11414 * back from emulation context to vcpu. Userspace shouldn't do 11415 * that usually, but some bad designed PV devices (vmware 11416 * backdoor interface) need this to work 11417 */ 11418 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11419 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11420 } 11421 regs->rax = kvm_rax_read(vcpu); 11422 regs->rbx = kvm_rbx_read(vcpu); 11423 regs->rcx = kvm_rcx_read(vcpu); 11424 regs->rdx = kvm_rdx_read(vcpu); 11425 regs->rsi = kvm_rsi_read(vcpu); 11426 regs->rdi = kvm_rdi_read(vcpu); 11427 regs->rsp = kvm_rsp_read(vcpu); 11428 regs->rbp = kvm_rbp_read(vcpu); 11429 #ifdef CONFIG_X86_64 11430 regs->r8 = kvm_r8_read(vcpu); 11431 regs->r9 = kvm_r9_read(vcpu); 11432 regs->r10 = kvm_r10_read(vcpu); 11433 regs->r11 = kvm_r11_read(vcpu); 11434 regs->r12 = kvm_r12_read(vcpu); 11435 regs->r13 = kvm_r13_read(vcpu); 11436 regs->r14 = kvm_r14_read(vcpu); 11437 regs->r15 = kvm_r15_read(vcpu); 11438 #endif 11439 11440 regs->rip = kvm_rip_read(vcpu); 11441 regs->rflags = kvm_get_rflags(vcpu); 11442 } 11443 11444 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11445 { 11446 vcpu_load(vcpu); 11447 __get_regs(vcpu, regs); 11448 vcpu_put(vcpu); 11449 return 0; 11450 } 11451 11452 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11453 { 11454 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11455 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11456 11457 kvm_rax_write(vcpu, regs->rax); 11458 kvm_rbx_write(vcpu, regs->rbx); 11459 kvm_rcx_write(vcpu, regs->rcx); 11460 kvm_rdx_write(vcpu, regs->rdx); 11461 kvm_rsi_write(vcpu, regs->rsi); 11462 kvm_rdi_write(vcpu, regs->rdi); 11463 kvm_rsp_write(vcpu, regs->rsp); 11464 kvm_rbp_write(vcpu, regs->rbp); 11465 #ifdef CONFIG_X86_64 11466 kvm_r8_write(vcpu, regs->r8); 11467 kvm_r9_write(vcpu, regs->r9); 11468 kvm_r10_write(vcpu, regs->r10); 11469 kvm_r11_write(vcpu, regs->r11); 11470 kvm_r12_write(vcpu, regs->r12); 11471 kvm_r13_write(vcpu, regs->r13); 11472 kvm_r14_write(vcpu, regs->r14); 11473 kvm_r15_write(vcpu, regs->r15); 11474 #endif 11475 11476 kvm_rip_write(vcpu, regs->rip); 11477 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11478 11479 vcpu->arch.exception.pending = false; 11480 vcpu->arch.exception_vmexit.pending = false; 11481 11482 kvm_make_request(KVM_REQ_EVENT, vcpu); 11483 } 11484 11485 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11486 { 11487 vcpu_load(vcpu); 11488 __set_regs(vcpu, regs); 11489 vcpu_put(vcpu); 11490 return 0; 11491 } 11492 11493 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11494 { 11495 struct desc_ptr dt; 11496 11497 if (vcpu->arch.guest_state_protected) 11498 goto skip_protected_regs; 11499 11500 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11501 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11502 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11503 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11504 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11505 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11506 11507 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11508 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11509 11510 static_call(kvm_x86_get_idt)(vcpu, &dt); 11511 sregs->idt.limit = dt.size; 11512 sregs->idt.base = dt.address; 11513 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11514 sregs->gdt.limit = dt.size; 11515 sregs->gdt.base = dt.address; 11516 11517 sregs->cr2 = vcpu->arch.cr2; 11518 sregs->cr3 = kvm_read_cr3(vcpu); 11519 11520 skip_protected_regs: 11521 sregs->cr0 = kvm_read_cr0(vcpu); 11522 sregs->cr4 = kvm_read_cr4(vcpu); 11523 sregs->cr8 = kvm_get_cr8(vcpu); 11524 sregs->efer = vcpu->arch.efer; 11525 sregs->apic_base = kvm_get_apic_base(vcpu); 11526 } 11527 11528 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11529 { 11530 __get_sregs_common(vcpu, sregs); 11531 11532 if (vcpu->arch.guest_state_protected) 11533 return; 11534 11535 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11536 set_bit(vcpu->arch.interrupt.nr, 11537 (unsigned long *)sregs->interrupt_bitmap); 11538 } 11539 11540 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11541 { 11542 int i; 11543 11544 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11545 11546 if (vcpu->arch.guest_state_protected) 11547 return; 11548 11549 if (is_pae_paging(vcpu)) { 11550 for (i = 0 ; i < 4 ; i++) 11551 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11552 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11553 } 11554 } 11555 11556 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11557 struct kvm_sregs *sregs) 11558 { 11559 vcpu_load(vcpu); 11560 __get_sregs(vcpu, sregs); 11561 vcpu_put(vcpu); 11562 return 0; 11563 } 11564 11565 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11566 struct kvm_mp_state *mp_state) 11567 { 11568 int r; 11569 11570 vcpu_load(vcpu); 11571 if (kvm_mpx_supported()) 11572 kvm_load_guest_fpu(vcpu); 11573 11574 r = kvm_apic_accept_events(vcpu); 11575 if (r < 0) 11576 goto out; 11577 r = 0; 11578 11579 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11580 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11581 vcpu->arch.pv.pv_unhalted) 11582 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11583 else 11584 mp_state->mp_state = vcpu->arch.mp_state; 11585 11586 out: 11587 if (kvm_mpx_supported()) 11588 kvm_put_guest_fpu(vcpu); 11589 vcpu_put(vcpu); 11590 return r; 11591 } 11592 11593 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11594 struct kvm_mp_state *mp_state) 11595 { 11596 int ret = -EINVAL; 11597 11598 vcpu_load(vcpu); 11599 11600 switch (mp_state->mp_state) { 11601 case KVM_MP_STATE_UNINITIALIZED: 11602 case KVM_MP_STATE_HALTED: 11603 case KVM_MP_STATE_AP_RESET_HOLD: 11604 case KVM_MP_STATE_INIT_RECEIVED: 11605 case KVM_MP_STATE_SIPI_RECEIVED: 11606 if (!lapic_in_kernel(vcpu)) 11607 goto out; 11608 break; 11609 11610 case KVM_MP_STATE_RUNNABLE: 11611 break; 11612 11613 default: 11614 goto out; 11615 } 11616 11617 /* 11618 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11619 * forcing the guest into INIT/SIPI if those events are supposed to be 11620 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11621 * if an SMI is pending as well. 11622 */ 11623 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11624 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11625 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11626 goto out; 11627 11628 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11629 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11630 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11631 } else 11632 vcpu->arch.mp_state = mp_state->mp_state; 11633 kvm_make_request(KVM_REQ_EVENT, vcpu); 11634 11635 ret = 0; 11636 out: 11637 vcpu_put(vcpu); 11638 return ret; 11639 } 11640 11641 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11642 int reason, bool has_error_code, u32 error_code) 11643 { 11644 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11645 int ret; 11646 11647 init_emulate_ctxt(vcpu); 11648 11649 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11650 has_error_code, error_code); 11651 if (ret) { 11652 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11653 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11654 vcpu->run->internal.ndata = 0; 11655 return 0; 11656 } 11657 11658 kvm_rip_write(vcpu, ctxt->eip); 11659 kvm_set_rflags(vcpu, ctxt->eflags); 11660 return 1; 11661 } 11662 EXPORT_SYMBOL_GPL(kvm_task_switch); 11663 11664 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11665 { 11666 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11667 /* 11668 * When EFER.LME and CR0.PG are set, the processor is in 11669 * 64-bit mode (though maybe in a 32-bit code segment). 11670 * CR4.PAE and EFER.LMA must be set. 11671 */ 11672 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11673 return false; 11674 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11675 return false; 11676 } else { 11677 /* 11678 * Not in 64-bit mode: EFER.LMA is clear and the code 11679 * segment cannot be 64-bit. 11680 */ 11681 if (sregs->efer & EFER_LMA || sregs->cs.l) 11682 return false; 11683 } 11684 11685 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11686 kvm_is_valid_cr0(vcpu, sregs->cr0); 11687 } 11688 11689 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11690 int *mmu_reset_needed, bool update_pdptrs) 11691 { 11692 struct msr_data apic_base_msr; 11693 int idx; 11694 struct desc_ptr dt; 11695 11696 if (!kvm_is_valid_sregs(vcpu, sregs)) 11697 return -EINVAL; 11698 11699 apic_base_msr.data = sregs->apic_base; 11700 apic_base_msr.host_initiated = true; 11701 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11702 return -EINVAL; 11703 11704 if (vcpu->arch.guest_state_protected) 11705 return 0; 11706 11707 dt.size = sregs->idt.limit; 11708 dt.address = sregs->idt.base; 11709 static_call(kvm_x86_set_idt)(vcpu, &dt); 11710 dt.size = sregs->gdt.limit; 11711 dt.address = sregs->gdt.base; 11712 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11713 11714 vcpu->arch.cr2 = sregs->cr2; 11715 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11716 vcpu->arch.cr3 = sregs->cr3; 11717 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11718 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11719 11720 kvm_set_cr8(vcpu, sregs->cr8); 11721 11722 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11723 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11724 11725 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11726 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11727 11728 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11729 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11730 11731 if (update_pdptrs) { 11732 idx = srcu_read_lock(&vcpu->kvm->srcu); 11733 if (is_pae_paging(vcpu)) { 11734 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11735 *mmu_reset_needed = 1; 11736 } 11737 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11738 } 11739 11740 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11741 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11742 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11743 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11744 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11745 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11746 11747 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11748 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11749 11750 update_cr8_intercept(vcpu); 11751 11752 /* Older userspace won't unhalt the vcpu on reset. */ 11753 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11754 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11755 !is_protmode(vcpu)) 11756 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11757 11758 return 0; 11759 } 11760 11761 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11762 { 11763 int pending_vec, max_bits; 11764 int mmu_reset_needed = 0; 11765 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11766 11767 if (ret) 11768 return ret; 11769 11770 if (mmu_reset_needed) { 11771 kvm_mmu_reset_context(vcpu); 11772 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11773 } 11774 11775 max_bits = KVM_NR_INTERRUPTS; 11776 pending_vec = find_first_bit( 11777 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11778 11779 if (pending_vec < max_bits) { 11780 kvm_queue_interrupt(vcpu, pending_vec, false); 11781 pr_debug("Set back pending irq %d\n", pending_vec); 11782 kvm_make_request(KVM_REQ_EVENT, vcpu); 11783 } 11784 return 0; 11785 } 11786 11787 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11788 { 11789 int mmu_reset_needed = 0; 11790 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11791 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11792 !(sregs2->efer & EFER_LMA); 11793 int i, ret; 11794 11795 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11796 return -EINVAL; 11797 11798 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11799 return -EINVAL; 11800 11801 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11802 &mmu_reset_needed, !valid_pdptrs); 11803 if (ret) 11804 return ret; 11805 11806 if (valid_pdptrs) { 11807 for (i = 0; i < 4 ; i++) 11808 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11809 11810 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11811 mmu_reset_needed = 1; 11812 vcpu->arch.pdptrs_from_userspace = true; 11813 } 11814 if (mmu_reset_needed) { 11815 kvm_mmu_reset_context(vcpu); 11816 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11817 } 11818 return 0; 11819 } 11820 11821 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11822 struct kvm_sregs *sregs) 11823 { 11824 int ret; 11825 11826 vcpu_load(vcpu); 11827 ret = __set_sregs(vcpu, sregs); 11828 vcpu_put(vcpu); 11829 return ret; 11830 } 11831 11832 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11833 { 11834 bool set = false; 11835 struct kvm_vcpu *vcpu; 11836 unsigned long i; 11837 11838 if (!enable_apicv) 11839 return; 11840 11841 down_write(&kvm->arch.apicv_update_lock); 11842 11843 kvm_for_each_vcpu(i, vcpu, kvm) { 11844 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11845 set = true; 11846 break; 11847 } 11848 } 11849 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11850 up_write(&kvm->arch.apicv_update_lock); 11851 } 11852 11853 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11854 struct kvm_guest_debug *dbg) 11855 { 11856 unsigned long rflags; 11857 int i, r; 11858 11859 if (vcpu->arch.guest_state_protected) 11860 return -EINVAL; 11861 11862 vcpu_load(vcpu); 11863 11864 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11865 r = -EBUSY; 11866 if (kvm_is_exception_pending(vcpu)) 11867 goto out; 11868 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11869 kvm_queue_exception(vcpu, DB_VECTOR); 11870 else 11871 kvm_queue_exception(vcpu, BP_VECTOR); 11872 } 11873 11874 /* 11875 * Read rflags as long as potentially injected trace flags are still 11876 * filtered out. 11877 */ 11878 rflags = kvm_get_rflags(vcpu); 11879 11880 vcpu->guest_debug = dbg->control; 11881 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11882 vcpu->guest_debug = 0; 11883 11884 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11885 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11886 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11887 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11888 } else { 11889 for (i = 0; i < KVM_NR_DB_REGS; i++) 11890 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11891 } 11892 kvm_update_dr7(vcpu); 11893 11894 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11895 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11896 11897 /* 11898 * Trigger an rflags update that will inject or remove the trace 11899 * flags. 11900 */ 11901 kvm_set_rflags(vcpu, rflags); 11902 11903 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11904 11905 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11906 11907 r = 0; 11908 11909 out: 11910 vcpu_put(vcpu); 11911 return r; 11912 } 11913 11914 /* 11915 * Translate a guest virtual address to a guest physical address. 11916 */ 11917 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11918 struct kvm_translation *tr) 11919 { 11920 unsigned long vaddr = tr->linear_address; 11921 gpa_t gpa; 11922 int idx; 11923 11924 vcpu_load(vcpu); 11925 11926 idx = srcu_read_lock(&vcpu->kvm->srcu); 11927 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11928 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11929 tr->physical_address = gpa; 11930 tr->valid = gpa != INVALID_GPA; 11931 tr->writeable = 1; 11932 tr->usermode = 0; 11933 11934 vcpu_put(vcpu); 11935 return 0; 11936 } 11937 11938 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11939 { 11940 struct fxregs_state *fxsave; 11941 11942 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11943 return 0; 11944 11945 vcpu_load(vcpu); 11946 11947 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11948 memcpy(fpu->fpr, fxsave->st_space, 128); 11949 fpu->fcw = fxsave->cwd; 11950 fpu->fsw = fxsave->swd; 11951 fpu->ftwx = fxsave->twd; 11952 fpu->last_opcode = fxsave->fop; 11953 fpu->last_ip = fxsave->rip; 11954 fpu->last_dp = fxsave->rdp; 11955 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11956 11957 vcpu_put(vcpu); 11958 return 0; 11959 } 11960 11961 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11962 { 11963 struct fxregs_state *fxsave; 11964 11965 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11966 return 0; 11967 11968 vcpu_load(vcpu); 11969 11970 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11971 11972 memcpy(fxsave->st_space, fpu->fpr, 128); 11973 fxsave->cwd = fpu->fcw; 11974 fxsave->swd = fpu->fsw; 11975 fxsave->twd = fpu->ftwx; 11976 fxsave->fop = fpu->last_opcode; 11977 fxsave->rip = fpu->last_ip; 11978 fxsave->rdp = fpu->last_dp; 11979 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11980 11981 vcpu_put(vcpu); 11982 return 0; 11983 } 11984 11985 static void store_regs(struct kvm_vcpu *vcpu) 11986 { 11987 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11988 11989 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11990 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11991 11992 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11993 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11994 11995 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11996 kvm_vcpu_ioctl_x86_get_vcpu_events( 11997 vcpu, &vcpu->run->s.regs.events); 11998 } 11999 12000 static int sync_regs(struct kvm_vcpu *vcpu) 12001 { 12002 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12003 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12004 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12005 } 12006 12007 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12008 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12009 12010 if (__set_sregs(vcpu, &sregs)) 12011 return -EINVAL; 12012 12013 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12014 } 12015 12016 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12017 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12018 12019 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12020 return -EINVAL; 12021 12022 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12023 } 12024 12025 return 0; 12026 } 12027 12028 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12029 { 12030 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12031 pr_warn_once("SMP vm created on host with unstable TSC; " 12032 "guest TSC will not be reliable\n"); 12033 12034 if (!kvm->arch.max_vcpu_ids) 12035 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12036 12037 if (id >= kvm->arch.max_vcpu_ids) 12038 return -EINVAL; 12039 12040 return static_call(kvm_x86_vcpu_precreate)(kvm); 12041 } 12042 12043 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12044 { 12045 struct page *page; 12046 int r; 12047 12048 vcpu->arch.last_vmentry_cpu = -1; 12049 vcpu->arch.regs_avail = ~0; 12050 vcpu->arch.regs_dirty = ~0; 12051 12052 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 12053 12054 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12055 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12056 else 12057 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 12058 12059 r = kvm_mmu_create(vcpu); 12060 if (r < 0) 12061 return r; 12062 12063 if (irqchip_in_kernel(vcpu->kvm)) { 12064 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 12065 if (r < 0) 12066 goto fail_mmu_destroy; 12067 12068 /* 12069 * Defer evaluating inhibits until the vCPU is first run, as 12070 * this vCPU will not get notified of any changes until this 12071 * vCPU is visible to other vCPUs (marked online and added to 12072 * the set of vCPUs). Opportunistically mark APICv active as 12073 * VMX in particularly is highly unlikely to have inhibits. 12074 * Ignore the current per-VM APICv state so that vCPU creation 12075 * is guaranteed to run with a deterministic value, the request 12076 * will ensure the vCPU gets the correct state before VM-Entry. 12077 */ 12078 if (enable_apicv) { 12079 vcpu->arch.apic->apicv_active = true; 12080 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 12081 } 12082 } else 12083 static_branch_inc(&kvm_has_noapic_vcpu); 12084 12085 r = -ENOMEM; 12086 12087 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12088 if (!page) 12089 goto fail_free_lapic; 12090 vcpu->arch.pio_data = page_address(page); 12091 12092 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12093 GFP_KERNEL_ACCOUNT); 12094 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12095 GFP_KERNEL_ACCOUNT); 12096 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12097 goto fail_free_mce_banks; 12098 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12099 12100 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12101 GFP_KERNEL_ACCOUNT)) 12102 goto fail_free_mce_banks; 12103 12104 if (!alloc_emulate_ctxt(vcpu)) 12105 goto free_wbinvd_dirty_mask; 12106 12107 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12108 pr_err("failed to allocate vcpu's fpu\n"); 12109 goto free_emulate_ctxt; 12110 } 12111 12112 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12113 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12114 12115 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12116 12117 kvm_async_pf_hash_reset(vcpu); 12118 12119 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12120 kvm_pmu_init(vcpu); 12121 12122 vcpu->arch.pending_external_vector = -1; 12123 vcpu->arch.preempted_in_kernel = false; 12124 12125 #if IS_ENABLED(CONFIG_HYPERV) 12126 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12127 #endif 12128 12129 r = static_call(kvm_x86_vcpu_create)(vcpu); 12130 if (r) 12131 goto free_guest_fpu; 12132 12133 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12134 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12135 kvm_xen_init_vcpu(vcpu); 12136 kvm_vcpu_mtrr_init(vcpu); 12137 vcpu_load(vcpu); 12138 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12139 kvm_vcpu_reset(vcpu, false); 12140 kvm_init_mmu(vcpu); 12141 vcpu_put(vcpu); 12142 return 0; 12143 12144 free_guest_fpu: 12145 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12146 free_emulate_ctxt: 12147 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12148 free_wbinvd_dirty_mask: 12149 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12150 fail_free_mce_banks: 12151 kfree(vcpu->arch.mce_banks); 12152 kfree(vcpu->arch.mci_ctl2_banks); 12153 free_page((unsigned long)vcpu->arch.pio_data); 12154 fail_free_lapic: 12155 kvm_free_lapic(vcpu); 12156 fail_mmu_destroy: 12157 kvm_mmu_destroy(vcpu); 12158 return r; 12159 } 12160 12161 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12162 { 12163 struct kvm *kvm = vcpu->kvm; 12164 12165 if (mutex_lock_killable(&vcpu->mutex)) 12166 return; 12167 vcpu_load(vcpu); 12168 kvm_synchronize_tsc(vcpu, NULL); 12169 vcpu_put(vcpu); 12170 12171 /* poll control enabled by default */ 12172 vcpu->arch.msr_kvm_poll_control = 1; 12173 12174 mutex_unlock(&vcpu->mutex); 12175 12176 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12177 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12178 KVMCLOCK_SYNC_PERIOD); 12179 } 12180 12181 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12182 { 12183 int idx; 12184 12185 kvmclock_reset(vcpu); 12186 12187 static_call(kvm_x86_vcpu_free)(vcpu); 12188 12189 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12190 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12191 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12192 12193 kvm_xen_destroy_vcpu(vcpu); 12194 kvm_hv_vcpu_uninit(vcpu); 12195 kvm_pmu_destroy(vcpu); 12196 kfree(vcpu->arch.mce_banks); 12197 kfree(vcpu->arch.mci_ctl2_banks); 12198 kvm_free_lapic(vcpu); 12199 idx = srcu_read_lock(&vcpu->kvm->srcu); 12200 kvm_mmu_destroy(vcpu); 12201 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12202 free_page((unsigned long)vcpu->arch.pio_data); 12203 kvfree(vcpu->arch.cpuid_entries); 12204 if (!lapic_in_kernel(vcpu)) 12205 static_branch_dec(&kvm_has_noapic_vcpu); 12206 } 12207 12208 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12209 { 12210 struct kvm_cpuid_entry2 *cpuid_0x1; 12211 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12212 unsigned long new_cr0; 12213 12214 /* 12215 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12216 * to handle side effects. RESET emulation hits those flows and relies 12217 * on emulated/virtualized registers, including those that are loaded 12218 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12219 * to detect improper or missing initialization. 12220 */ 12221 WARN_ON_ONCE(!init_event && 12222 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12223 12224 /* 12225 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12226 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12227 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12228 * bits), i.e. virtualization is disabled. 12229 */ 12230 if (is_guest_mode(vcpu)) 12231 kvm_leave_nested(vcpu); 12232 12233 kvm_lapic_reset(vcpu, init_event); 12234 12235 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12236 vcpu->arch.hflags = 0; 12237 12238 vcpu->arch.smi_pending = 0; 12239 vcpu->arch.smi_count = 0; 12240 atomic_set(&vcpu->arch.nmi_queued, 0); 12241 vcpu->arch.nmi_pending = 0; 12242 vcpu->arch.nmi_injected = false; 12243 kvm_clear_interrupt_queue(vcpu); 12244 kvm_clear_exception_queue(vcpu); 12245 12246 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12247 kvm_update_dr0123(vcpu); 12248 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12249 vcpu->arch.dr7 = DR7_FIXED_1; 12250 kvm_update_dr7(vcpu); 12251 12252 vcpu->arch.cr2 = 0; 12253 12254 kvm_make_request(KVM_REQ_EVENT, vcpu); 12255 vcpu->arch.apf.msr_en_val = 0; 12256 vcpu->arch.apf.msr_int_val = 0; 12257 vcpu->arch.st.msr_val = 0; 12258 12259 kvmclock_reset(vcpu); 12260 12261 kvm_clear_async_pf_completion_queue(vcpu); 12262 kvm_async_pf_hash_reset(vcpu); 12263 vcpu->arch.apf.halted = false; 12264 12265 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12266 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12267 12268 /* 12269 * All paths that lead to INIT are required to load the guest's 12270 * FPU state (because most paths are buried in KVM_RUN). 12271 */ 12272 if (init_event) 12273 kvm_put_guest_fpu(vcpu); 12274 12275 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12276 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12277 12278 if (init_event) 12279 kvm_load_guest_fpu(vcpu); 12280 } 12281 12282 if (!init_event) { 12283 vcpu->arch.smbase = 0x30000; 12284 12285 vcpu->arch.msr_misc_features_enables = 0; 12286 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12287 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12288 12289 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12290 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12291 } 12292 12293 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12294 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12295 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12296 12297 /* 12298 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12299 * if no CPUID match is found. Note, it's impossible to get a match at 12300 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12301 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12302 * on RESET. But, go through the motions in case that's ever remedied. 12303 */ 12304 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12305 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12306 12307 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12308 12309 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12310 kvm_rip_write(vcpu, 0xfff0); 12311 12312 vcpu->arch.cr3 = 0; 12313 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12314 12315 /* 12316 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12317 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12318 * (or qualify) that with a footnote stating that CD/NW are preserved. 12319 */ 12320 new_cr0 = X86_CR0_ET; 12321 if (init_event) 12322 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12323 else 12324 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12325 12326 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12327 static_call(kvm_x86_set_cr4)(vcpu, 0); 12328 static_call(kvm_x86_set_efer)(vcpu, 0); 12329 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12330 12331 /* 12332 * On the standard CR0/CR4/EFER modification paths, there are several 12333 * complex conditions determining whether the MMU has to be reset and/or 12334 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12335 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12336 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12337 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12338 */ 12339 if (old_cr0 & X86_CR0_PG) { 12340 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12341 kvm_mmu_reset_context(vcpu); 12342 } 12343 12344 /* 12345 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12346 * APM states the TLBs are untouched by INIT, but it also states that 12347 * the TLBs are flushed on "External initialization of the processor." 12348 * Flush the guest TLB regardless of vendor, there is no meaningful 12349 * benefit in relying on the guest to flush the TLB immediately after 12350 * INIT. A spurious TLB flush is benign and likely negligible from a 12351 * performance perspective. 12352 */ 12353 if (init_event) 12354 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12355 } 12356 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12357 12358 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12359 { 12360 struct kvm_segment cs; 12361 12362 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12363 cs.selector = vector << 8; 12364 cs.base = vector << 12; 12365 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12366 kvm_rip_write(vcpu, 0); 12367 } 12368 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12369 12370 int kvm_arch_hardware_enable(void) 12371 { 12372 struct kvm *kvm; 12373 struct kvm_vcpu *vcpu; 12374 unsigned long i; 12375 int ret; 12376 u64 local_tsc; 12377 u64 max_tsc = 0; 12378 bool stable, backwards_tsc = false; 12379 12380 kvm_user_return_msr_cpu_online(); 12381 12382 ret = kvm_x86_check_processor_compatibility(); 12383 if (ret) 12384 return ret; 12385 12386 ret = static_call(kvm_x86_hardware_enable)(); 12387 if (ret != 0) 12388 return ret; 12389 12390 local_tsc = rdtsc(); 12391 stable = !kvm_check_tsc_unstable(); 12392 list_for_each_entry(kvm, &vm_list, vm_list) { 12393 kvm_for_each_vcpu(i, vcpu, kvm) { 12394 if (!stable && vcpu->cpu == smp_processor_id()) 12395 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12396 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12397 backwards_tsc = true; 12398 if (vcpu->arch.last_host_tsc > max_tsc) 12399 max_tsc = vcpu->arch.last_host_tsc; 12400 } 12401 } 12402 } 12403 12404 /* 12405 * Sometimes, even reliable TSCs go backwards. This happens on 12406 * platforms that reset TSC during suspend or hibernate actions, but 12407 * maintain synchronization. We must compensate. Fortunately, we can 12408 * detect that condition here, which happens early in CPU bringup, 12409 * before any KVM threads can be running. Unfortunately, we can't 12410 * bring the TSCs fully up to date with real time, as we aren't yet far 12411 * enough into CPU bringup that we know how much real time has actually 12412 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12413 * variables that haven't been updated yet. 12414 * 12415 * So we simply find the maximum observed TSC above, then record the 12416 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12417 * the adjustment will be applied. Note that we accumulate 12418 * adjustments, in case multiple suspend cycles happen before some VCPU 12419 * gets a chance to run again. In the event that no KVM threads get a 12420 * chance to run, we will miss the entire elapsed period, as we'll have 12421 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12422 * loose cycle time. This isn't too big a deal, since the loss will be 12423 * uniform across all VCPUs (not to mention the scenario is extremely 12424 * unlikely). It is possible that a second hibernate recovery happens 12425 * much faster than a first, causing the observed TSC here to be 12426 * smaller; this would require additional padding adjustment, which is 12427 * why we set last_host_tsc to the local tsc observed here. 12428 * 12429 * N.B. - this code below runs only on platforms with reliable TSC, 12430 * as that is the only way backwards_tsc is set above. Also note 12431 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12432 * have the same delta_cyc adjustment applied if backwards_tsc 12433 * is detected. Note further, this adjustment is only done once, 12434 * as we reset last_host_tsc on all VCPUs to stop this from being 12435 * called multiple times (one for each physical CPU bringup). 12436 * 12437 * Platforms with unreliable TSCs don't have to deal with this, they 12438 * will be compensated by the logic in vcpu_load, which sets the TSC to 12439 * catchup mode. This will catchup all VCPUs to real time, but cannot 12440 * guarantee that they stay in perfect synchronization. 12441 */ 12442 if (backwards_tsc) { 12443 u64 delta_cyc = max_tsc - local_tsc; 12444 list_for_each_entry(kvm, &vm_list, vm_list) { 12445 kvm->arch.backwards_tsc_observed = true; 12446 kvm_for_each_vcpu(i, vcpu, kvm) { 12447 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12448 vcpu->arch.last_host_tsc = local_tsc; 12449 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12450 } 12451 12452 /* 12453 * We have to disable TSC offset matching.. if you were 12454 * booting a VM while issuing an S4 host suspend.... 12455 * you may have some problem. Solving this issue is 12456 * left as an exercise to the reader. 12457 */ 12458 kvm->arch.last_tsc_nsec = 0; 12459 kvm->arch.last_tsc_write = 0; 12460 } 12461 12462 } 12463 return 0; 12464 } 12465 12466 void kvm_arch_hardware_disable(void) 12467 { 12468 static_call(kvm_x86_hardware_disable)(); 12469 drop_user_return_notifiers(); 12470 } 12471 12472 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12473 { 12474 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12475 } 12476 12477 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12478 { 12479 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12480 } 12481 12482 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12483 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12484 12485 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12486 { 12487 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12488 12489 vcpu->arch.l1tf_flush_l1d = true; 12490 if (pmu->version && unlikely(pmu->event_count)) { 12491 pmu->need_cleanup = true; 12492 kvm_make_request(KVM_REQ_PMU, vcpu); 12493 } 12494 static_call(kvm_x86_sched_in)(vcpu, cpu); 12495 } 12496 12497 void kvm_arch_free_vm(struct kvm *kvm) 12498 { 12499 #if IS_ENABLED(CONFIG_HYPERV) 12500 kfree(kvm->arch.hv_pa_pg); 12501 #endif 12502 __kvm_arch_free_vm(kvm); 12503 } 12504 12505 12506 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12507 { 12508 int ret; 12509 unsigned long flags; 12510 12511 if (!kvm_is_vm_type_supported(type)) 12512 return -EINVAL; 12513 12514 kvm->arch.vm_type = type; 12515 12516 ret = kvm_page_track_init(kvm); 12517 if (ret) 12518 goto out; 12519 12520 kvm_mmu_init_vm(kvm); 12521 12522 ret = static_call(kvm_x86_vm_init)(kvm); 12523 if (ret) 12524 goto out_uninit_mmu; 12525 12526 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12527 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12528 12529 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12530 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12531 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12532 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12533 &kvm->arch.irq_sources_bitmap); 12534 12535 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12536 mutex_init(&kvm->arch.apic_map_lock); 12537 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12538 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12539 12540 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12541 pvclock_update_vm_gtod_copy(kvm); 12542 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12543 12544 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12545 kvm->arch.guest_can_read_msr_platform_info = true; 12546 kvm->arch.enable_pmu = enable_pmu; 12547 12548 #if IS_ENABLED(CONFIG_HYPERV) 12549 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12550 kvm->arch.hv_root_tdp = INVALID_PAGE; 12551 #endif 12552 12553 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12554 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12555 12556 kvm_apicv_init(kvm); 12557 kvm_hv_init_vm(kvm); 12558 kvm_xen_init_vm(kvm); 12559 12560 return 0; 12561 12562 out_uninit_mmu: 12563 kvm_mmu_uninit_vm(kvm); 12564 kvm_page_track_cleanup(kvm); 12565 out: 12566 return ret; 12567 } 12568 12569 int kvm_arch_post_init_vm(struct kvm *kvm) 12570 { 12571 return kvm_mmu_post_init_vm(kvm); 12572 } 12573 12574 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12575 { 12576 vcpu_load(vcpu); 12577 kvm_mmu_unload(vcpu); 12578 vcpu_put(vcpu); 12579 } 12580 12581 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12582 { 12583 unsigned long i; 12584 struct kvm_vcpu *vcpu; 12585 12586 kvm_for_each_vcpu(i, vcpu, kvm) { 12587 kvm_clear_async_pf_completion_queue(vcpu); 12588 kvm_unload_vcpu_mmu(vcpu); 12589 } 12590 } 12591 12592 void kvm_arch_sync_events(struct kvm *kvm) 12593 { 12594 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12595 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12596 kvm_free_pit(kvm); 12597 } 12598 12599 /** 12600 * __x86_set_memory_region: Setup KVM internal memory slot 12601 * 12602 * @kvm: the kvm pointer to the VM. 12603 * @id: the slot ID to setup. 12604 * @gpa: the GPA to install the slot (unused when @size == 0). 12605 * @size: the size of the slot. Set to zero to uninstall a slot. 12606 * 12607 * This function helps to setup a KVM internal memory slot. Specify 12608 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12609 * slot. The return code can be one of the following: 12610 * 12611 * HVA: on success (uninstall will return a bogus HVA) 12612 * -errno: on error 12613 * 12614 * The caller should always use IS_ERR() to check the return value 12615 * before use. Note, the KVM internal memory slots are guaranteed to 12616 * remain valid and unchanged until the VM is destroyed, i.e., the 12617 * GPA->HVA translation will not change. However, the HVA is a user 12618 * address, i.e. its accessibility is not guaranteed, and must be 12619 * accessed via __copy_{to,from}_user(). 12620 */ 12621 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12622 u32 size) 12623 { 12624 int i, r; 12625 unsigned long hva, old_npages; 12626 struct kvm_memslots *slots = kvm_memslots(kvm); 12627 struct kvm_memory_slot *slot; 12628 12629 /* Called with kvm->slots_lock held. */ 12630 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12631 return ERR_PTR_USR(-EINVAL); 12632 12633 slot = id_to_memslot(slots, id); 12634 if (size) { 12635 if (slot && slot->npages) 12636 return ERR_PTR_USR(-EEXIST); 12637 12638 /* 12639 * MAP_SHARED to prevent internal slot pages from being moved 12640 * by fork()/COW. 12641 */ 12642 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12643 MAP_SHARED | MAP_ANONYMOUS, 0); 12644 if (IS_ERR_VALUE(hva)) 12645 return (void __user *)hva; 12646 } else { 12647 if (!slot || !slot->npages) 12648 return NULL; 12649 12650 old_npages = slot->npages; 12651 hva = slot->userspace_addr; 12652 } 12653 12654 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12655 struct kvm_userspace_memory_region2 m; 12656 12657 m.slot = id | (i << 16); 12658 m.flags = 0; 12659 m.guest_phys_addr = gpa; 12660 m.userspace_addr = hva; 12661 m.memory_size = size; 12662 r = __kvm_set_memory_region(kvm, &m); 12663 if (r < 0) 12664 return ERR_PTR_USR(r); 12665 } 12666 12667 if (!size) 12668 vm_munmap(hva, old_npages * PAGE_SIZE); 12669 12670 return (void __user *)hva; 12671 } 12672 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12673 12674 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12675 { 12676 kvm_mmu_pre_destroy_vm(kvm); 12677 } 12678 12679 void kvm_arch_destroy_vm(struct kvm *kvm) 12680 { 12681 if (current->mm == kvm->mm) { 12682 /* 12683 * Free memory regions allocated on behalf of userspace, 12684 * unless the memory map has changed due to process exit 12685 * or fd copying. 12686 */ 12687 mutex_lock(&kvm->slots_lock); 12688 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12689 0, 0); 12690 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12691 0, 0); 12692 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12693 mutex_unlock(&kvm->slots_lock); 12694 } 12695 kvm_unload_vcpu_mmus(kvm); 12696 static_call_cond(kvm_x86_vm_destroy)(kvm); 12697 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12698 kvm_pic_destroy(kvm); 12699 kvm_ioapic_destroy(kvm); 12700 kvm_destroy_vcpus(kvm); 12701 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12702 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12703 kvm_mmu_uninit_vm(kvm); 12704 kvm_page_track_cleanup(kvm); 12705 kvm_xen_destroy_vm(kvm); 12706 kvm_hv_destroy_vm(kvm); 12707 } 12708 12709 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12710 { 12711 int i; 12712 12713 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12714 kvfree(slot->arch.rmap[i]); 12715 slot->arch.rmap[i] = NULL; 12716 } 12717 } 12718 12719 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12720 { 12721 int i; 12722 12723 memslot_rmap_free(slot); 12724 12725 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12726 kvfree(slot->arch.lpage_info[i - 1]); 12727 slot->arch.lpage_info[i - 1] = NULL; 12728 } 12729 12730 kvm_page_track_free_memslot(slot); 12731 } 12732 12733 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12734 { 12735 const int sz = sizeof(*slot->arch.rmap[0]); 12736 int i; 12737 12738 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12739 int level = i + 1; 12740 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12741 12742 if (slot->arch.rmap[i]) 12743 continue; 12744 12745 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12746 if (!slot->arch.rmap[i]) { 12747 memslot_rmap_free(slot); 12748 return -ENOMEM; 12749 } 12750 } 12751 12752 return 0; 12753 } 12754 12755 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12756 struct kvm_memory_slot *slot) 12757 { 12758 unsigned long npages = slot->npages; 12759 int i, r; 12760 12761 /* 12762 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12763 * old arrays will be freed by __kvm_set_memory_region() if installing 12764 * the new memslot is successful. 12765 */ 12766 memset(&slot->arch, 0, sizeof(slot->arch)); 12767 12768 if (kvm_memslots_have_rmaps(kvm)) { 12769 r = memslot_rmap_alloc(slot, npages); 12770 if (r) 12771 return r; 12772 } 12773 12774 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12775 struct kvm_lpage_info *linfo; 12776 unsigned long ugfn; 12777 int lpages; 12778 int level = i + 1; 12779 12780 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12781 12782 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12783 if (!linfo) 12784 goto out_free; 12785 12786 slot->arch.lpage_info[i - 1] = linfo; 12787 12788 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12789 linfo[0].disallow_lpage = 1; 12790 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12791 linfo[lpages - 1].disallow_lpage = 1; 12792 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12793 /* 12794 * If the gfn and userspace address are not aligned wrt each 12795 * other, disable large page support for this slot. 12796 */ 12797 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12798 unsigned long j; 12799 12800 for (j = 0; j < lpages; ++j) 12801 linfo[j].disallow_lpage = 1; 12802 } 12803 } 12804 12805 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12806 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12807 #endif 12808 12809 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12810 goto out_free; 12811 12812 return 0; 12813 12814 out_free: 12815 memslot_rmap_free(slot); 12816 12817 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12818 kvfree(slot->arch.lpage_info[i - 1]); 12819 slot->arch.lpage_info[i - 1] = NULL; 12820 } 12821 return -ENOMEM; 12822 } 12823 12824 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12825 { 12826 struct kvm_vcpu *vcpu; 12827 unsigned long i; 12828 12829 /* 12830 * memslots->generation has been incremented. 12831 * mmio generation may have reached its maximum value. 12832 */ 12833 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12834 12835 /* Force re-initialization of steal_time cache */ 12836 kvm_for_each_vcpu(i, vcpu, kvm) 12837 kvm_vcpu_kick(vcpu); 12838 } 12839 12840 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12841 const struct kvm_memory_slot *old, 12842 struct kvm_memory_slot *new, 12843 enum kvm_mr_change change) 12844 { 12845 /* 12846 * KVM doesn't support moving memslots when there are external page 12847 * trackers attached to the VM, i.e. if KVMGT is in use. 12848 */ 12849 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12850 return -EINVAL; 12851 12852 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12853 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12854 return -EINVAL; 12855 12856 return kvm_alloc_memslot_metadata(kvm, new); 12857 } 12858 12859 if (change == KVM_MR_FLAGS_ONLY) 12860 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12861 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12862 return -EIO; 12863 12864 return 0; 12865 } 12866 12867 12868 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12869 { 12870 int nr_slots; 12871 12872 if (!kvm_x86_ops.cpu_dirty_log_size) 12873 return; 12874 12875 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12876 if ((enable && nr_slots == 1) || !nr_slots) 12877 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12878 } 12879 12880 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12881 struct kvm_memory_slot *old, 12882 const struct kvm_memory_slot *new, 12883 enum kvm_mr_change change) 12884 { 12885 u32 old_flags = old ? old->flags : 0; 12886 u32 new_flags = new ? new->flags : 0; 12887 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12888 12889 /* 12890 * Update CPU dirty logging if dirty logging is being toggled. This 12891 * applies to all operations. 12892 */ 12893 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12894 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12895 12896 /* 12897 * Nothing more to do for RO slots (which can't be dirtied and can't be 12898 * made writable) or CREATE/MOVE/DELETE of a slot. 12899 * 12900 * For a memslot with dirty logging disabled: 12901 * CREATE: No dirty mappings will already exist. 12902 * MOVE/DELETE: The old mappings will already have been cleaned up by 12903 * kvm_arch_flush_shadow_memslot() 12904 * 12905 * For a memslot with dirty logging enabled: 12906 * CREATE: No shadow pages exist, thus nothing to write-protect 12907 * and no dirty bits to clear. 12908 * MOVE/DELETE: The old mappings will already have been cleaned up by 12909 * kvm_arch_flush_shadow_memslot(). 12910 */ 12911 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12912 return; 12913 12914 /* 12915 * READONLY and non-flags changes were filtered out above, and the only 12916 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12917 * logging isn't being toggled on or off. 12918 */ 12919 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12920 return; 12921 12922 if (!log_dirty_pages) { 12923 /* 12924 * Dirty logging tracks sptes in 4k granularity, meaning that 12925 * large sptes have to be split. If live migration succeeds, 12926 * the guest in the source machine will be destroyed and large 12927 * sptes will be created in the destination. However, if the 12928 * guest continues to run in the source machine (for example if 12929 * live migration fails), small sptes will remain around and 12930 * cause bad performance. 12931 * 12932 * Scan sptes if dirty logging has been stopped, dropping those 12933 * which can be collapsed into a single large-page spte. Later 12934 * page faults will create the large-page sptes. 12935 */ 12936 kvm_mmu_zap_collapsible_sptes(kvm, new); 12937 } else { 12938 /* 12939 * Initially-all-set does not require write protecting any page, 12940 * because they're all assumed to be dirty. 12941 */ 12942 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12943 return; 12944 12945 if (READ_ONCE(eager_page_split)) 12946 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12947 12948 if (kvm_x86_ops.cpu_dirty_log_size) { 12949 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12950 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12951 } else { 12952 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12953 } 12954 12955 /* 12956 * Unconditionally flush the TLBs after enabling dirty logging. 12957 * A flush is almost always going to be necessary (see below), 12958 * and unconditionally flushing allows the helpers to omit 12959 * the subtly complex checks when removing write access. 12960 * 12961 * Do the flush outside of mmu_lock to reduce the amount of 12962 * time mmu_lock is held. Flushing after dropping mmu_lock is 12963 * safe as KVM only needs to guarantee the slot is fully 12964 * write-protected before returning to userspace, i.e. before 12965 * userspace can consume the dirty status. 12966 * 12967 * Flushing outside of mmu_lock requires KVM to be careful when 12968 * making decisions based on writable status of an SPTE, e.g. a 12969 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12970 * 12971 * Specifically, KVM also write-protects guest page tables to 12972 * monitor changes when using shadow paging, and must guarantee 12973 * no CPUs can write to those page before mmu_lock is dropped. 12974 * Because CPUs may have stale TLB entries at this point, a 12975 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12976 * 12977 * KVM also allows making SPTES writable outside of mmu_lock, 12978 * e.g. to allow dirty logging without taking mmu_lock. 12979 * 12980 * To handle these scenarios, KVM uses a separate software-only 12981 * bit (MMU-writable) to track if a SPTE is !writable due to 12982 * a guest page table being write-protected (KVM clears the 12983 * MMU-writable flag when write-protecting for shadow paging). 12984 * 12985 * The use of MMU-writable is also the primary motivation for 12986 * the unconditional flush. Because KVM must guarantee that a 12987 * CPU doesn't contain stale, writable TLB entries for a 12988 * !MMU-writable SPTE, KVM must flush if it encounters any 12989 * MMU-writable SPTE regardless of whether the actual hardware 12990 * writable bit was set. I.e. KVM is almost guaranteed to need 12991 * to flush, while unconditionally flushing allows the "remove 12992 * write access" helpers to ignore MMU-writable entirely. 12993 * 12994 * See is_writable_pte() for more details (the case involving 12995 * access-tracked SPTEs is particularly relevant). 12996 */ 12997 kvm_flush_remote_tlbs_memslot(kvm, new); 12998 } 12999 } 13000 13001 void kvm_arch_commit_memory_region(struct kvm *kvm, 13002 struct kvm_memory_slot *old, 13003 const struct kvm_memory_slot *new, 13004 enum kvm_mr_change change) 13005 { 13006 if (change == KVM_MR_DELETE) 13007 kvm_page_track_delete_slot(kvm, old); 13008 13009 if (!kvm->arch.n_requested_mmu_pages && 13010 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13011 unsigned long nr_mmu_pages; 13012 13013 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13014 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13015 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13016 } 13017 13018 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13019 13020 /* Free the arrays associated with the old memslot. */ 13021 if (change == KVM_MR_MOVE) 13022 kvm_arch_free_memslot(kvm, old); 13023 } 13024 13025 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 13026 { 13027 return (is_guest_mode(vcpu) && 13028 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 13029 } 13030 13031 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 13032 { 13033 if (!list_empty_careful(&vcpu->async_pf.done)) 13034 return true; 13035 13036 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 13037 kvm_apic_init_sipi_allowed(vcpu)) 13038 return true; 13039 13040 if (vcpu->arch.pv.pv_unhalted) 13041 return true; 13042 13043 if (kvm_is_exception_pending(vcpu)) 13044 return true; 13045 13046 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13047 (vcpu->arch.nmi_pending && 13048 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 13049 return true; 13050 13051 #ifdef CONFIG_KVM_SMM 13052 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 13053 (vcpu->arch.smi_pending && 13054 static_call(kvm_x86_smi_allowed)(vcpu, false))) 13055 return true; 13056 #endif 13057 13058 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 13059 return true; 13060 13061 if (kvm_arch_interrupt_allowed(vcpu) && 13062 (kvm_cpu_has_interrupt(vcpu) || 13063 kvm_guest_apic_has_interrupt(vcpu))) 13064 return true; 13065 13066 if (kvm_hv_has_stimer_pending(vcpu)) 13067 return true; 13068 13069 if (is_guest_mode(vcpu) && 13070 kvm_x86_ops.nested_ops->has_events && 13071 kvm_x86_ops.nested_ops->has_events(vcpu)) 13072 return true; 13073 13074 if (kvm_xen_has_pending_events(vcpu)) 13075 return true; 13076 13077 return false; 13078 } 13079 13080 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 13081 { 13082 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 13083 } 13084 13085 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 13086 { 13087 if (kvm_vcpu_apicv_active(vcpu) && 13088 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 13089 return true; 13090 13091 return false; 13092 } 13093 13094 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 13095 { 13096 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 13097 return true; 13098 13099 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13100 #ifdef CONFIG_KVM_SMM 13101 kvm_test_request(KVM_REQ_SMI, vcpu) || 13102 #endif 13103 kvm_test_request(KVM_REQ_EVENT, vcpu)) 13104 return true; 13105 13106 return kvm_arch_dy_has_pending_interrupt(vcpu); 13107 } 13108 13109 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13110 { 13111 if (vcpu->arch.guest_state_protected) 13112 return true; 13113 13114 if (vcpu != kvm_get_running_vcpu()) 13115 return vcpu->arch.preempted_in_kernel; 13116 13117 return static_call(kvm_x86_get_cpl)(vcpu) == 0; 13118 } 13119 13120 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13121 { 13122 return kvm_rip_read(vcpu); 13123 } 13124 13125 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13126 { 13127 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13128 } 13129 13130 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13131 { 13132 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 13133 } 13134 13135 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13136 { 13137 /* Can't read the RIP when guest state is protected, just return 0 */ 13138 if (vcpu->arch.guest_state_protected) 13139 return 0; 13140 13141 if (is_64_bit_mode(vcpu)) 13142 return kvm_rip_read(vcpu); 13143 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13144 kvm_rip_read(vcpu)); 13145 } 13146 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13147 13148 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13149 { 13150 return kvm_get_linear_rip(vcpu) == linear_rip; 13151 } 13152 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13153 13154 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13155 { 13156 unsigned long rflags; 13157 13158 rflags = static_call(kvm_x86_get_rflags)(vcpu); 13159 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13160 rflags &= ~X86_EFLAGS_TF; 13161 return rflags; 13162 } 13163 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13164 13165 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13166 { 13167 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13168 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13169 rflags |= X86_EFLAGS_TF; 13170 static_call(kvm_x86_set_rflags)(vcpu, rflags); 13171 } 13172 13173 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13174 { 13175 __kvm_set_rflags(vcpu, rflags); 13176 kvm_make_request(KVM_REQ_EVENT, vcpu); 13177 } 13178 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13179 13180 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13181 { 13182 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13183 13184 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13185 } 13186 13187 static inline u32 kvm_async_pf_next_probe(u32 key) 13188 { 13189 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13190 } 13191 13192 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13193 { 13194 u32 key = kvm_async_pf_hash_fn(gfn); 13195 13196 while (vcpu->arch.apf.gfns[key] != ~0) 13197 key = kvm_async_pf_next_probe(key); 13198 13199 vcpu->arch.apf.gfns[key] = gfn; 13200 } 13201 13202 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13203 { 13204 int i; 13205 u32 key = kvm_async_pf_hash_fn(gfn); 13206 13207 for (i = 0; i < ASYNC_PF_PER_VCPU && 13208 (vcpu->arch.apf.gfns[key] != gfn && 13209 vcpu->arch.apf.gfns[key] != ~0); i++) 13210 key = kvm_async_pf_next_probe(key); 13211 13212 return key; 13213 } 13214 13215 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13216 { 13217 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13218 } 13219 13220 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13221 { 13222 u32 i, j, k; 13223 13224 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13225 13226 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13227 return; 13228 13229 while (true) { 13230 vcpu->arch.apf.gfns[i] = ~0; 13231 do { 13232 j = kvm_async_pf_next_probe(j); 13233 if (vcpu->arch.apf.gfns[j] == ~0) 13234 return; 13235 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13236 /* 13237 * k lies cyclically in ]i,j] 13238 * | i.k.j | 13239 * |....j i.k.| or |.k..j i...| 13240 */ 13241 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13242 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13243 i = j; 13244 } 13245 } 13246 13247 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13248 { 13249 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13250 13251 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13252 sizeof(reason)); 13253 } 13254 13255 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13256 { 13257 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13258 13259 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13260 &token, offset, sizeof(token)); 13261 } 13262 13263 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13264 { 13265 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13266 u32 val; 13267 13268 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13269 &val, offset, sizeof(val))) 13270 return false; 13271 13272 return !val; 13273 } 13274 13275 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13276 { 13277 13278 if (!kvm_pv_async_pf_enabled(vcpu)) 13279 return false; 13280 13281 if (vcpu->arch.apf.send_user_only && 13282 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13283 return false; 13284 13285 if (is_guest_mode(vcpu)) { 13286 /* 13287 * L1 needs to opt into the special #PF vmexits that are 13288 * used to deliver async page faults. 13289 */ 13290 return vcpu->arch.apf.delivery_as_pf_vmexit; 13291 } else { 13292 /* 13293 * Play it safe in case the guest temporarily disables paging. 13294 * The real mode IDT in particular is unlikely to have a #PF 13295 * exception setup. 13296 */ 13297 return is_paging(vcpu); 13298 } 13299 } 13300 13301 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13302 { 13303 if (unlikely(!lapic_in_kernel(vcpu) || 13304 kvm_event_needs_reinjection(vcpu) || 13305 kvm_is_exception_pending(vcpu))) 13306 return false; 13307 13308 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13309 return false; 13310 13311 /* 13312 * If interrupts are off we cannot even use an artificial 13313 * halt state. 13314 */ 13315 return kvm_arch_interrupt_allowed(vcpu); 13316 } 13317 13318 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13319 struct kvm_async_pf *work) 13320 { 13321 struct x86_exception fault; 13322 13323 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13324 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13325 13326 if (kvm_can_deliver_async_pf(vcpu) && 13327 !apf_put_user_notpresent(vcpu)) { 13328 fault.vector = PF_VECTOR; 13329 fault.error_code_valid = true; 13330 fault.error_code = 0; 13331 fault.nested_page_fault = false; 13332 fault.address = work->arch.token; 13333 fault.async_page_fault = true; 13334 kvm_inject_page_fault(vcpu, &fault); 13335 return true; 13336 } else { 13337 /* 13338 * It is not possible to deliver a paravirtualized asynchronous 13339 * page fault, but putting the guest in an artificial halt state 13340 * can be beneficial nevertheless: if an interrupt arrives, we 13341 * can deliver it timely and perhaps the guest will schedule 13342 * another process. When the instruction that triggered a page 13343 * fault is retried, hopefully the page will be ready in the host. 13344 */ 13345 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13346 return false; 13347 } 13348 } 13349 13350 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13351 struct kvm_async_pf *work) 13352 { 13353 struct kvm_lapic_irq irq = { 13354 .delivery_mode = APIC_DM_FIXED, 13355 .vector = vcpu->arch.apf.vec 13356 }; 13357 13358 if (work->wakeup_all) 13359 work->arch.token = ~0; /* broadcast wakeup */ 13360 else 13361 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13362 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13363 13364 if ((work->wakeup_all || work->notpresent_injected) && 13365 kvm_pv_async_pf_enabled(vcpu) && 13366 !apf_put_user_ready(vcpu, work->arch.token)) { 13367 vcpu->arch.apf.pageready_pending = true; 13368 kvm_apic_set_irq(vcpu, &irq, NULL); 13369 } 13370 13371 vcpu->arch.apf.halted = false; 13372 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13373 } 13374 13375 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13376 { 13377 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13378 if (!vcpu->arch.apf.pageready_pending) 13379 kvm_vcpu_kick(vcpu); 13380 } 13381 13382 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13383 { 13384 if (!kvm_pv_async_pf_enabled(vcpu)) 13385 return true; 13386 else 13387 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13388 } 13389 13390 void kvm_arch_start_assignment(struct kvm *kvm) 13391 { 13392 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13393 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13394 } 13395 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13396 13397 void kvm_arch_end_assignment(struct kvm *kvm) 13398 { 13399 atomic_dec(&kvm->arch.assigned_device_count); 13400 } 13401 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13402 13403 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13404 { 13405 return raw_atomic_read(&kvm->arch.assigned_device_count); 13406 } 13407 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13408 13409 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13410 { 13411 /* 13412 * Non-coherent DMA assignment and de-assignment will affect 13413 * whether KVM honors guest MTRRs and cause changes in memtypes 13414 * in TDP. 13415 * So, pass %true unconditionally to indicate non-coherent DMA was, 13416 * or will be involved, and that zapping SPTEs might be necessary. 13417 */ 13418 if (__kvm_mmu_honors_guest_mtrrs(true)) 13419 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13420 } 13421 13422 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13423 { 13424 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13425 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13426 } 13427 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13428 13429 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13430 { 13431 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13432 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13433 } 13434 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13435 13436 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13437 { 13438 return atomic_read(&kvm->arch.noncoherent_dma_count); 13439 } 13440 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13441 13442 bool kvm_arch_has_irq_bypass(void) 13443 { 13444 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13445 } 13446 13447 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13448 struct irq_bypass_producer *prod) 13449 { 13450 struct kvm_kernel_irqfd *irqfd = 13451 container_of(cons, struct kvm_kernel_irqfd, consumer); 13452 int ret; 13453 13454 irqfd->producer = prod; 13455 kvm_arch_start_assignment(irqfd->kvm); 13456 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13457 prod->irq, irqfd->gsi, 1); 13458 13459 if (ret) 13460 kvm_arch_end_assignment(irqfd->kvm); 13461 13462 return ret; 13463 } 13464 13465 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13466 struct irq_bypass_producer *prod) 13467 { 13468 int ret; 13469 struct kvm_kernel_irqfd *irqfd = 13470 container_of(cons, struct kvm_kernel_irqfd, consumer); 13471 13472 WARN_ON(irqfd->producer != prod); 13473 irqfd->producer = NULL; 13474 13475 /* 13476 * When producer of consumer is unregistered, we change back to 13477 * remapped mode, so we can re-use the current implementation 13478 * when the irq is masked/disabled or the consumer side (KVM 13479 * int this case doesn't want to receive the interrupts. 13480 */ 13481 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13482 if (ret) 13483 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13484 " fails: %d\n", irqfd->consumer.token, ret); 13485 13486 kvm_arch_end_assignment(irqfd->kvm); 13487 } 13488 13489 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13490 uint32_t guest_irq, bool set) 13491 { 13492 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13493 } 13494 13495 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13496 struct kvm_kernel_irq_routing_entry *new) 13497 { 13498 if (new->type != KVM_IRQ_ROUTING_MSI) 13499 return true; 13500 13501 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13502 } 13503 13504 bool kvm_vector_hashing_enabled(void) 13505 { 13506 return vector_hashing; 13507 } 13508 13509 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13510 { 13511 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13512 } 13513 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13514 13515 13516 int kvm_spec_ctrl_test_value(u64 value) 13517 { 13518 /* 13519 * test that setting IA32_SPEC_CTRL to given value 13520 * is allowed by the host processor 13521 */ 13522 13523 u64 saved_value; 13524 unsigned long flags; 13525 int ret = 0; 13526 13527 local_irq_save(flags); 13528 13529 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13530 ret = 1; 13531 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13532 ret = 1; 13533 else 13534 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13535 13536 local_irq_restore(flags); 13537 13538 return ret; 13539 } 13540 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13541 13542 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13543 { 13544 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13545 struct x86_exception fault; 13546 u64 access = error_code & 13547 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13548 13549 if (!(error_code & PFERR_PRESENT_MASK) || 13550 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13551 /* 13552 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13553 * tables probably do not match the TLB. Just proceed 13554 * with the error code that the processor gave. 13555 */ 13556 fault.vector = PF_VECTOR; 13557 fault.error_code_valid = true; 13558 fault.error_code = error_code; 13559 fault.nested_page_fault = false; 13560 fault.address = gva; 13561 fault.async_page_fault = false; 13562 } 13563 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13564 } 13565 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13566 13567 /* 13568 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13569 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13570 * indicates whether exit to userspace is needed. 13571 */ 13572 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13573 struct x86_exception *e) 13574 { 13575 if (r == X86EMUL_PROPAGATE_FAULT) { 13576 if (KVM_BUG_ON(!e, vcpu->kvm)) 13577 return -EIO; 13578 13579 kvm_inject_emulated_page_fault(vcpu, e); 13580 return 1; 13581 } 13582 13583 /* 13584 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13585 * while handling a VMX instruction KVM could've handled the request 13586 * correctly by exiting to userspace and performing I/O but there 13587 * doesn't seem to be a real use-case behind such requests, just return 13588 * KVM_EXIT_INTERNAL_ERROR for now. 13589 */ 13590 kvm_prepare_emulation_failure_exit(vcpu); 13591 13592 return 0; 13593 } 13594 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13595 13596 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13597 { 13598 bool pcid_enabled; 13599 struct x86_exception e; 13600 struct { 13601 u64 pcid; 13602 u64 gla; 13603 } operand; 13604 int r; 13605 13606 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13607 if (r != X86EMUL_CONTINUE) 13608 return kvm_handle_memory_failure(vcpu, r, &e); 13609 13610 if (operand.pcid >> 12 != 0) { 13611 kvm_inject_gp(vcpu, 0); 13612 return 1; 13613 } 13614 13615 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13616 13617 switch (type) { 13618 case INVPCID_TYPE_INDIV_ADDR: 13619 /* 13620 * LAM doesn't apply to addresses that are inputs to TLB 13621 * invalidation. 13622 */ 13623 if ((!pcid_enabled && (operand.pcid != 0)) || 13624 is_noncanonical_address(operand.gla, vcpu)) { 13625 kvm_inject_gp(vcpu, 0); 13626 return 1; 13627 } 13628 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13629 return kvm_skip_emulated_instruction(vcpu); 13630 13631 case INVPCID_TYPE_SINGLE_CTXT: 13632 if (!pcid_enabled && (operand.pcid != 0)) { 13633 kvm_inject_gp(vcpu, 0); 13634 return 1; 13635 } 13636 13637 kvm_invalidate_pcid(vcpu, operand.pcid); 13638 return kvm_skip_emulated_instruction(vcpu); 13639 13640 case INVPCID_TYPE_ALL_NON_GLOBAL: 13641 /* 13642 * Currently, KVM doesn't mark global entries in the shadow 13643 * page tables, so a non-global flush just degenerates to a 13644 * global flush. If needed, we could optimize this later by 13645 * keeping track of global entries in shadow page tables. 13646 */ 13647 13648 fallthrough; 13649 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13650 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13651 return kvm_skip_emulated_instruction(vcpu); 13652 13653 default: 13654 kvm_inject_gp(vcpu, 0); 13655 return 1; 13656 } 13657 } 13658 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13659 13660 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13661 { 13662 struct kvm_run *run = vcpu->run; 13663 struct kvm_mmio_fragment *frag; 13664 unsigned int len; 13665 13666 BUG_ON(!vcpu->mmio_needed); 13667 13668 /* Complete previous fragment */ 13669 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13670 len = min(8u, frag->len); 13671 if (!vcpu->mmio_is_write) 13672 memcpy(frag->data, run->mmio.data, len); 13673 13674 if (frag->len <= 8) { 13675 /* Switch to the next fragment. */ 13676 frag++; 13677 vcpu->mmio_cur_fragment++; 13678 } else { 13679 /* Go forward to the next mmio piece. */ 13680 frag->data += len; 13681 frag->gpa += len; 13682 frag->len -= len; 13683 } 13684 13685 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13686 vcpu->mmio_needed = 0; 13687 13688 // VMG change, at this point, we're always done 13689 // RIP has already been advanced 13690 return 1; 13691 } 13692 13693 // More MMIO is needed 13694 run->mmio.phys_addr = frag->gpa; 13695 run->mmio.len = min(8u, frag->len); 13696 run->mmio.is_write = vcpu->mmio_is_write; 13697 if (run->mmio.is_write) 13698 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13699 run->exit_reason = KVM_EXIT_MMIO; 13700 13701 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13702 13703 return 0; 13704 } 13705 13706 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13707 void *data) 13708 { 13709 int handled; 13710 struct kvm_mmio_fragment *frag; 13711 13712 if (!data) 13713 return -EINVAL; 13714 13715 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13716 if (handled == bytes) 13717 return 1; 13718 13719 bytes -= handled; 13720 gpa += handled; 13721 data += handled; 13722 13723 /*TODO: Check if need to increment number of frags */ 13724 frag = vcpu->mmio_fragments; 13725 vcpu->mmio_nr_fragments = 1; 13726 frag->len = bytes; 13727 frag->gpa = gpa; 13728 frag->data = data; 13729 13730 vcpu->mmio_needed = 1; 13731 vcpu->mmio_cur_fragment = 0; 13732 13733 vcpu->run->mmio.phys_addr = gpa; 13734 vcpu->run->mmio.len = min(8u, frag->len); 13735 vcpu->run->mmio.is_write = 1; 13736 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13737 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13738 13739 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13740 13741 return 0; 13742 } 13743 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13744 13745 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13746 void *data) 13747 { 13748 int handled; 13749 struct kvm_mmio_fragment *frag; 13750 13751 if (!data) 13752 return -EINVAL; 13753 13754 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13755 if (handled == bytes) 13756 return 1; 13757 13758 bytes -= handled; 13759 gpa += handled; 13760 data += handled; 13761 13762 /*TODO: Check if need to increment number of frags */ 13763 frag = vcpu->mmio_fragments; 13764 vcpu->mmio_nr_fragments = 1; 13765 frag->len = bytes; 13766 frag->gpa = gpa; 13767 frag->data = data; 13768 13769 vcpu->mmio_needed = 1; 13770 vcpu->mmio_cur_fragment = 0; 13771 13772 vcpu->run->mmio.phys_addr = gpa; 13773 vcpu->run->mmio.len = min(8u, frag->len); 13774 vcpu->run->mmio.is_write = 0; 13775 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13776 13777 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13778 13779 return 0; 13780 } 13781 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13782 13783 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13784 { 13785 vcpu->arch.sev_pio_count -= count; 13786 vcpu->arch.sev_pio_data += count * size; 13787 } 13788 13789 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13790 unsigned int port); 13791 13792 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13793 { 13794 int size = vcpu->arch.pio.size; 13795 int port = vcpu->arch.pio.port; 13796 13797 vcpu->arch.pio.count = 0; 13798 if (vcpu->arch.sev_pio_count) 13799 return kvm_sev_es_outs(vcpu, size, port); 13800 return 1; 13801 } 13802 13803 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13804 unsigned int port) 13805 { 13806 for (;;) { 13807 unsigned int count = 13808 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13809 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13810 13811 /* memcpy done already by emulator_pio_out. */ 13812 advance_sev_es_emulated_pio(vcpu, count, size); 13813 if (!ret) 13814 break; 13815 13816 /* Emulation done by the kernel. */ 13817 if (!vcpu->arch.sev_pio_count) 13818 return 1; 13819 } 13820 13821 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13822 return 0; 13823 } 13824 13825 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13826 unsigned int port); 13827 13828 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13829 { 13830 unsigned count = vcpu->arch.pio.count; 13831 int size = vcpu->arch.pio.size; 13832 int port = vcpu->arch.pio.port; 13833 13834 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13835 advance_sev_es_emulated_pio(vcpu, count, size); 13836 if (vcpu->arch.sev_pio_count) 13837 return kvm_sev_es_ins(vcpu, size, port); 13838 return 1; 13839 } 13840 13841 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13842 unsigned int port) 13843 { 13844 for (;;) { 13845 unsigned int count = 13846 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13847 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13848 break; 13849 13850 /* Emulation done by the kernel. */ 13851 advance_sev_es_emulated_pio(vcpu, count, size); 13852 if (!vcpu->arch.sev_pio_count) 13853 return 1; 13854 } 13855 13856 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13857 return 0; 13858 } 13859 13860 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13861 unsigned int port, void *data, unsigned int count, 13862 int in) 13863 { 13864 vcpu->arch.sev_pio_data = data; 13865 vcpu->arch.sev_pio_count = count; 13866 return in ? kvm_sev_es_ins(vcpu, size, port) 13867 : kvm_sev_es_outs(vcpu, size, port); 13868 } 13869 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13870 13871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13900 13901 static int __init kvm_x86_init(void) 13902 { 13903 kvm_mmu_x86_module_init(); 13904 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13905 return 0; 13906 } 13907 module_init(kvm_x86_init); 13908 13909 static void __exit kvm_x86_exit(void) 13910 { 13911 /* 13912 * If module_init() is implemented, module_exit() must also be 13913 * implemented to allow module unload. 13914 */ 13915 } 13916 module_exit(kvm_x86_exit); 13917