1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 58 #include <trace/events/kvm.h> 59 60 #include <asm/debugreg.h> 61 #include <asm/msr.h> 62 #include <asm/desc.h> 63 #include <asm/mce.h> 64 #include <linux/kernel_stat.h> 65 #include <asm/fpu/internal.h> /* Ugh! */ 66 #include <asm/pvclock.h> 67 #include <asm/div64.h> 68 #include <asm/irq_remapping.h> 69 70 #define CREATE_TRACE_POINTS 71 #include "trace.h" 72 73 #define MAX_IO_MSRS 256 74 #define KVM_MAX_MCE_BANKS 32 75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 77 78 #define emul_to_vcpu(ctxt) \ 79 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 80 81 /* EFER defaults: 82 * - enable syscall per default because its emulated by KVM 83 * - enable LME and LMA per default on 64 bit KVM 84 */ 85 #ifdef CONFIG_X86_64 86 static 87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 88 #else 89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 90 #endif 91 92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 94 95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 96 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 97 98 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 99 static void process_nmi(struct kvm_vcpu *vcpu); 100 static void enter_smm(struct kvm_vcpu *vcpu); 101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 102 103 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 104 EXPORT_SYMBOL_GPL(kvm_x86_ops); 105 106 static bool __read_mostly ignore_msrs = 0; 107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 108 109 unsigned int min_timer_period_us = 500; 110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 111 112 static bool __read_mostly kvmclock_periodic_sync = true; 113 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 114 115 bool __read_mostly kvm_has_tsc_control; 116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 117 u32 __read_mostly kvm_max_guest_tsc_khz; 118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 119 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 121 u64 __read_mostly kvm_max_tsc_scaling_ratio; 122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 123 u64 __read_mostly kvm_default_tsc_scaling_ratio; 124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 125 126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 127 static u32 __read_mostly tsc_tolerance_ppm = 250; 128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 129 130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */ 131 unsigned int __read_mostly lapic_timer_advance_ns = 0; 132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); 133 134 static bool __read_mostly vector_hashing = true; 135 module_param(vector_hashing, bool, S_IRUGO); 136 137 static bool __read_mostly backwards_tsc_observed = false; 138 139 #define KVM_NR_SHARED_MSRS 16 140 141 struct kvm_shared_msrs_global { 142 int nr; 143 u32 msrs[KVM_NR_SHARED_MSRS]; 144 }; 145 146 struct kvm_shared_msrs { 147 struct user_return_notifier urn; 148 bool registered; 149 struct kvm_shared_msr_values { 150 u64 host; 151 u64 curr; 152 } values[KVM_NR_SHARED_MSRS]; 153 }; 154 155 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 156 static struct kvm_shared_msrs __percpu *shared_msrs; 157 158 struct kvm_stats_debugfs_item debugfs_entries[] = { 159 { "pf_fixed", VCPU_STAT(pf_fixed) }, 160 { "pf_guest", VCPU_STAT(pf_guest) }, 161 { "tlb_flush", VCPU_STAT(tlb_flush) }, 162 { "invlpg", VCPU_STAT(invlpg) }, 163 { "exits", VCPU_STAT(exits) }, 164 { "io_exits", VCPU_STAT(io_exits) }, 165 { "mmio_exits", VCPU_STAT(mmio_exits) }, 166 { "signal_exits", VCPU_STAT(signal_exits) }, 167 { "irq_window", VCPU_STAT(irq_window_exits) }, 168 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 169 { "halt_exits", VCPU_STAT(halt_exits) }, 170 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 171 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 172 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 173 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 174 { "hypercalls", VCPU_STAT(hypercalls) }, 175 { "request_irq", VCPU_STAT(request_irq_exits) }, 176 { "irq_exits", VCPU_STAT(irq_exits) }, 177 { "host_state_reload", VCPU_STAT(host_state_reload) }, 178 { "efer_reload", VCPU_STAT(efer_reload) }, 179 { "fpu_reload", VCPU_STAT(fpu_reload) }, 180 { "insn_emulation", VCPU_STAT(insn_emulation) }, 181 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 182 { "irq_injections", VCPU_STAT(irq_injections) }, 183 { "nmi_injections", VCPU_STAT(nmi_injections) }, 184 { "req_event", VCPU_STAT(req_event) }, 185 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 186 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 187 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 188 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 189 { "mmu_flooded", VM_STAT(mmu_flooded) }, 190 { "mmu_recycled", VM_STAT(mmu_recycled) }, 191 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 192 { "mmu_unsync", VM_STAT(mmu_unsync) }, 193 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 194 { "largepages", VM_STAT(lpages) }, 195 { "max_mmu_page_hash_collisions", 196 VM_STAT(max_mmu_page_hash_collisions) }, 197 { NULL } 198 }; 199 200 u64 __read_mostly host_xcr0; 201 202 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 203 204 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 205 { 206 int i; 207 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 208 vcpu->arch.apf.gfns[i] = ~0; 209 } 210 211 static void kvm_on_user_return(struct user_return_notifier *urn) 212 { 213 unsigned slot; 214 struct kvm_shared_msrs *locals 215 = container_of(urn, struct kvm_shared_msrs, urn); 216 struct kvm_shared_msr_values *values; 217 unsigned long flags; 218 219 /* 220 * Disabling irqs at this point since the following code could be 221 * interrupted and executed through kvm_arch_hardware_disable() 222 */ 223 local_irq_save(flags); 224 if (locals->registered) { 225 locals->registered = false; 226 user_return_notifier_unregister(urn); 227 } 228 local_irq_restore(flags); 229 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 230 values = &locals->values[slot]; 231 if (values->host != values->curr) { 232 wrmsrl(shared_msrs_global.msrs[slot], values->host); 233 values->curr = values->host; 234 } 235 } 236 } 237 238 static void shared_msr_update(unsigned slot, u32 msr) 239 { 240 u64 value; 241 unsigned int cpu = smp_processor_id(); 242 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 243 244 /* only read, and nobody should modify it at this time, 245 * so don't need lock */ 246 if (slot >= shared_msrs_global.nr) { 247 printk(KERN_ERR "kvm: invalid MSR slot!"); 248 return; 249 } 250 rdmsrl_safe(msr, &value); 251 smsr->values[slot].host = value; 252 smsr->values[slot].curr = value; 253 } 254 255 void kvm_define_shared_msr(unsigned slot, u32 msr) 256 { 257 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 258 shared_msrs_global.msrs[slot] = msr; 259 if (slot >= shared_msrs_global.nr) 260 shared_msrs_global.nr = slot + 1; 261 } 262 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 263 264 static void kvm_shared_msr_cpu_online(void) 265 { 266 unsigned i; 267 268 for (i = 0; i < shared_msrs_global.nr; ++i) 269 shared_msr_update(i, shared_msrs_global.msrs[i]); 270 } 271 272 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 273 { 274 unsigned int cpu = smp_processor_id(); 275 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 276 int err; 277 278 if (((value ^ smsr->values[slot].curr) & mask) == 0) 279 return 0; 280 smsr->values[slot].curr = value; 281 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 282 if (err) 283 return 1; 284 285 if (!smsr->registered) { 286 smsr->urn.on_user_return = kvm_on_user_return; 287 user_return_notifier_register(&smsr->urn); 288 smsr->registered = true; 289 } 290 return 0; 291 } 292 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 293 294 static void drop_user_return_notifiers(void) 295 { 296 unsigned int cpu = smp_processor_id(); 297 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 298 299 if (smsr->registered) 300 kvm_on_user_return(&smsr->urn); 301 } 302 303 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 304 { 305 return vcpu->arch.apic_base; 306 } 307 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 308 309 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 310 { 311 u64 old_state = vcpu->arch.apic_base & 312 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 313 u64 new_state = msr_info->data & 314 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 315 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 316 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); 317 318 if (!msr_info->host_initiated && 319 ((msr_info->data & reserved_bits) != 0 || 320 new_state == X2APIC_ENABLE || 321 (new_state == MSR_IA32_APICBASE_ENABLE && 322 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 323 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 324 old_state == 0))) 325 return 1; 326 327 kvm_lapic_set_base(vcpu, msr_info->data); 328 return 0; 329 } 330 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 331 332 asmlinkage __visible void kvm_spurious_fault(void) 333 { 334 /* Fault while not rebooting. We want the trace. */ 335 BUG(); 336 } 337 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 338 339 #define EXCPT_BENIGN 0 340 #define EXCPT_CONTRIBUTORY 1 341 #define EXCPT_PF 2 342 343 static int exception_class(int vector) 344 { 345 switch (vector) { 346 case PF_VECTOR: 347 return EXCPT_PF; 348 case DE_VECTOR: 349 case TS_VECTOR: 350 case NP_VECTOR: 351 case SS_VECTOR: 352 case GP_VECTOR: 353 return EXCPT_CONTRIBUTORY; 354 default: 355 break; 356 } 357 return EXCPT_BENIGN; 358 } 359 360 #define EXCPT_FAULT 0 361 #define EXCPT_TRAP 1 362 #define EXCPT_ABORT 2 363 #define EXCPT_INTERRUPT 3 364 365 static int exception_type(int vector) 366 { 367 unsigned int mask; 368 369 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 370 return EXCPT_INTERRUPT; 371 372 mask = 1 << vector; 373 374 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 375 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 376 return EXCPT_TRAP; 377 378 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 379 return EXCPT_ABORT; 380 381 /* Reserved exceptions will result in fault */ 382 return EXCPT_FAULT; 383 } 384 385 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 386 unsigned nr, bool has_error, u32 error_code, 387 bool reinject) 388 { 389 u32 prev_nr; 390 int class1, class2; 391 392 kvm_make_request(KVM_REQ_EVENT, vcpu); 393 394 if (!vcpu->arch.exception.pending) { 395 queue: 396 if (has_error && !is_protmode(vcpu)) 397 has_error = false; 398 vcpu->arch.exception.pending = true; 399 vcpu->arch.exception.has_error_code = has_error; 400 vcpu->arch.exception.nr = nr; 401 vcpu->arch.exception.error_code = error_code; 402 vcpu->arch.exception.reinject = reinject; 403 return; 404 } 405 406 /* to check exception */ 407 prev_nr = vcpu->arch.exception.nr; 408 if (prev_nr == DF_VECTOR) { 409 /* triple fault -> shutdown */ 410 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 411 return; 412 } 413 class1 = exception_class(prev_nr); 414 class2 = exception_class(nr); 415 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 416 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 417 /* generate double fault per SDM Table 5-5 */ 418 vcpu->arch.exception.pending = true; 419 vcpu->arch.exception.has_error_code = true; 420 vcpu->arch.exception.nr = DF_VECTOR; 421 vcpu->arch.exception.error_code = 0; 422 } else 423 /* replace previous exception with a new one in a hope 424 that instruction re-execution will regenerate lost 425 exception */ 426 goto queue; 427 } 428 429 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 430 { 431 kvm_multiple_exception(vcpu, nr, false, 0, false); 432 } 433 EXPORT_SYMBOL_GPL(kvm_queue_exception); 434 435 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 436 { 437 kvm_multiple_exception(vcpu, nr, false, 0, true); 438 } 439 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 440 441 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 442 { 443 if (err) 444 kvm_inject_gp(vcpu, 0); 445 else 446 return kvm_skip_emulated_instruction(vcpu); 447 448 return 1; 449 } 450 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 451 452 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 453 { 454 ++vcpu->stat.pf_guest; 455 vcpu->arch.cr2 = fault->address; 456 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 457 } 458 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 459 460 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 461 { 462 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 463 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 464 else 465 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 466 467 return fault->nested_page_fault; 468 } 469 470 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 471 { 472 atomic_inc(&vcpu->arch.nmi_queued); 473 kvm_make_request(KVM_REQ_NMI, vcpu); 474 } 475 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 476 477 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 478 { 479 kvm_multiple_exception(vcpu, nr, true, error_code, false); 480 } 481 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 482 483 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 484 { 485 kvm_multiple_exception(vcpu, nr, true, error_code, true); 486 } 487 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 488 489 /* 490 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 491 * a #GP and return false. 492 */ 493 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 494 { 495 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 496 return true; 497 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 498 return false; 499 } 500 EXPORT_SYMBOL_GPL(kvm_require_cpl); 501 502 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 503 { 504 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 505 return true; 506 507 kvm_queue_exception(vcpu, UD_VECTOR); 508 return false; 509 } 510 EXPORT_SYMBOL_GPL(kvm_require_dr); 511 512 /* 513 * This function will be used to read from the physical memory of the currently 514 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 515 * can read from guest physical or from the guest's guest physical memory. 516 */ 517 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 518 gfn_t ngfn, void *data, int offset, int len, 519 u32 access) 520 { 521 struct x86_exception exception; 522 gfn_t real_gfn; 523 gpa_t ngpa; 524 525 ngpa = gfn_to_gpa(ngfn); 526 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 527 if (real_gfn == UNMAPPED_GVA) 528 return -EFAULT; 529 530 real_gfn = gpa_to_gfn(real_gfn); 531 532 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 533 } 534 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 535 536 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 537 void *data, int offset, int len, u32 access) 538 { 539 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 540 data, offset, len, access); 541 } 542 543 /* 544 * Load the pae pdptrs. Return true is they are all valid. 545 */ 546 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 547 { 548 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 549 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 550 int i; 551 int ret; 552 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 553 554 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 555 offset * sizeof(u64), sizeof(pdpte), 556 PFERR_USER_MASK|PFERR_WRITE_MASK); 557 if (ret < 0) { 558 ret = 0; 559 goto out; 560 } 561 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 562 if ((pdpte[i] & PT_PRESENT_MASK) && 563 (pdpte[i] & 564 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { 565 ret = 0; 566 goto out; 567 } 568 } 569 ret = 1; 570 571 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 572 __set_bit(VCPU_EXREG_PDPTR, 573 (unsigned long *)&vcpu->arch.regs_avail); 574 __set_bit(VCPU_EXREG_PDPTR, 575 (unsigned long *)&vcpu->arch.regs_dirty); 576 out: 577 578 return ret; 579 } 580 EXPORT_SYMBOL_GPL(load_pdptrs); 581 582 bool pdptrs_changed(struct kvm_vcpu *vcpu) 583 { 584 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 585 bool changed = true; 586 int offset; 587 gfn_t gfn; 588 int r; 589 590 if (is_long_mode(vcpu) || !is_pae(vcpu)) 591 return false; 592 593 if (!test_bit(VCPU_EXREG_PDPTR, 594 (unsigned long *)&vcpu->arch.regs_avail)) 595 return true; 596 597 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 598 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 599 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 600 PFERR_USER_MASK | PFERR_WRITE_MASK); 601 if (r < 0) 602 goto out; 603 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 604 out: 605 606 return changed; 607 } 608 EXPORT_SYMBOL_GPL(pdptrs_changed); 609 610 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 611 { 612 unsigned long old_cr0 = kvm_read_cr0(vcpu); 613 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 614 615 cr0 |= X86_CR0_ET; 616 617 #ifdef CONFIG_X86_64 618 if (cr0 & 0xffffffff00000000UL) 619 return 1; 620 #endif 621 622 cr0 &= ~CR0_RESERVED_BITS; 623 624 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 625 return 1; 626 627 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 628 return 1; 629 630 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 631 #ifdef CONFIG_X86_64 632 if ((vcpu->arch.efer & EFER_LME)) { 633 int cs_db, cs_l; 634 635 if (!is_pae(vcpu)) 636 return 1; 637 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 638 if (cs_l) 639 return 1; 640 } else 641 #endif 642 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 643 kvm_read_cr3(vcpu))) 644 return 1; 645 } 646 647 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 648 return 1; 649 650 kvm_x86_ops->set_cr0(vcpu, cr0); 651 652 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 653 kvm_clear_async_pf_completion_queue(vcpu); 654 kvm_async_pf_hash_reset(vcpu); 655 } 656 657 if ((cr0 ^ old_cr0) & update_bits) 658 kvm_mmu_reset_context(vcpu); 659 660 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 661 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 662 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 663 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 664 665 return 0; 666 } 667 EXPORT_SYMBOL_GPL(kvm_set_cr0); 668 669 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 670 { 671 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 672 } 673 EXPORT_SYMBOL_GPL(kvm_lmsw); 674 675 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 676 { 677 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 678 !vcpu->guest_xcr0_loaded) { 679 /* kvm_set_xcr() also depends on this */ 680 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 681 vcpu->guest_xcr0_loaded = 1; 682 } 683 } 684 685 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 686 { 687 if (vcpu->guest_xcr0_loaded) { 688 if (vcpu->arch.xcr0 != host_xcr0) 689 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 690 vcpu->guest_xcr0_loaded = 0; 691 } 692 } 693 694 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 695 { 696 u64 xcr0 = xcr; 697 u64 old_xcr0 = vcpu->arch.xcr0; 698 u64 valid_bits; 699 700 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 701 if (index != XCR_XFEATURE_ENABLED_MASK) 702 return 1; 703 if (!(xcr0 & XFEATURE_MASK_FP)) 704 return 1; 705 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 706 return 1; 707 708 /* 709 * Do not allow the guest to set bits that we do not support 710 * saving. However, xcr0 bit 0 is always set, even if the 711 * emulated CPU does not support XSAVE (see fx_init). 712 */ 713 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 714 if (xcr0 & ~valid_bits) 715 return 1; 716 717 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 718 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 719 return 1; 720 721 if (xcr0 & XFEATURE_MASK_AVX512) { 722 if (!(xcr0 & XFEATURE_MASK_YMM)) 723 return 1; 724 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 725 return 1; 726 } 727 vcpu->arch.xcr0 = xcr0; 728 729 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 730 kvm_update_cpuid(vcpu); 731 return 0; 732 } 733 734 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 735 { 736 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 737 __kvm_set_xcr(vcpu, index, xcr)) { 738 kvm_inject_gp(vcpu, 0); 739 return 1; 740 } 741 return 0; 742 } 743 EXPORT_SYMBOL_GPL(kvm_set_xcr); 744 745 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 746 { 747 unsigned long old_cr4 = kvm_read_cr4(vcpu); 748 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 749 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 750 751 if (cr4 & CR4_RESERVED_BITS) 752 return 1; 753 754 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 755 return 1; 756 757 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 758 return 1; 759 760 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP)) 761 return 1; 762 763 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 764 return 1; 765 766 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE)) 767 return 1; 768 769 if (is_long_mode(vcpu)) { 770 if (!(cr4 & X86_CR4_PAE)) 771 return 1; 772 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 773 && ((cr4 ^ old_cr4) & pdptr_bits) 774 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 775 kvm_read_cr3(vcpu))) 776 return 1; 777 778 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 779 if (!guest_cpuid_has_pcid(vcpu)) 780 return 1; 781 782 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 783 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 784 return 1; 785 } 786 787 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 788 return 1; 789 790 if (((cr4 ^ old_cr4) & pdptr_bits) || 791 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 792 kvm_mmu_reset_context(vcpu); 793 794 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 795 kvm_update_cpuid(vcpu); 796 797 return 0; 798 } 799 EXPORT_SYMBOL_GPL(kvm_set_cr4); 800 801 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 802 { 803 #ifdef CONFIG_X86_64 804 cr3 &= ~CR3_PCID_INVD; 805 #endif 806 807 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 808 kvm_mmu_sync_roots(vcpu); 809 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 810 return 0; 811 } 812 813 if (is_long_mode(vcpu)) { 814 if (cr3 & CR3_L_MODE_RESERVED_BITS) 815 return 1; 816 } else if (is_pae(vcpu) && is_paging(vcpu) && 817 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 818 return 1; 819 820 vcpu->arch.cr3 = cr3; 821 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 822 kvm_mmu_new_cr3(vcpu); 823 return 0; 824 } 825 EXPORT_SYMBOL_GPL(kvm_set_cr3); 826 827 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 828 { 829 if (cr8 & CR8_RESERVED_BITS) 830 return 1; 831 if (lapic_in_kernel(vcpu)) 832 kvm_lapic_set_tpr(vcpu, cr8); 833 else 834 vcpu->arch.cr8 = cr8; 835 return 0; 836 } 837 EXPORT_SYMBOL_GPL(kvm_set_cr8); 838 839 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 840 { 841 if (lapic_in_kernel(vcpu)) 842 return kvm_lapic_get_cr8(vcpu); 843 else 844 return vcpu->arch.cr8; 845 } 846 EXPORT_SYMBOL_GPL(kvm_get_cr8); 847 848 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 849 { 850 int i; 851 852 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 853 for (i = 0; i < KVM_NR_DB_REGS; i++) 854 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 855 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 856 } 857 } 858 859 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 860 { 861 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 862 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 863 } 864 865 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 866 { 867 unsigned long dr7; 868 869 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 870 dr7 = vcpu->arch.guest_debug_dr7; 871 else 872 dr7 = vcpu->arch.dr7; 873 kvm_x86_ops->set_dr7(vcpu, dr7); 874 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 875 if (dr7 & DR7_BP_EN_MASK) 876 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 877 } 878 879 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 880 { 881 u64 fixed = DR6_FIXED_1; 882 883 if (!guest_cpuid_has_rtm(vcpu)) 884 fixed |= DR6_RTM; 885 return fixed; 886 } 887 888 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 889 { 890 switch (dr) { 891 case 0 ... 3: 892 vcpu->arch.db[dr] = val; 893 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 894 vcpu->arch.eff_db[dr] = val; 895 break; 896 case 4: 897 /* fall through */ 898 case 6: 899 if (val & 0xffffffff00000000ULL) 900 return -1; /* #GP */ 901 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 902 kvm_update_dr6(vcpu); 903 break; 904 case 5: 905 /* fall through */ 906 default: /* 7 */ 907 if (val & 0xffffffff00000000ULL) 908 return -1; /* #GP */ 909 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 910 kvm_update_dr7(vcpu); 911 break; 912 } 913 914 return 0; 915 } 916 917 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 918 { 919 if (__kvm_set_dr(vcpu, dr, val)) { 920 kvm_inject_gp(vcpu, 0); 921 return 1; 922 } 923 return 0; 924 } 925 EXPORT_SYMBOL_GPL(kvm_set_dr); 926 927 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 928 { 929 switch (dr) { 930 case 0 ... 3: 931 *val = vcpu->arch.db[dr]; 932 break; 933 case 4: 934 /* fall through */ 935 case 6: 936 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 937 *val = vcpu->arch.dr6; 938 else 939 *val = kvm_x86_ops->get_dr6(vcpu); 940 break; 941 case 5: 942 /* fall through */ 943 default: /* 7 */ 944 *val = vcpu->arch.dr7; 945 break; 946 } 947 return 0; 948 } 949 EXPORT_SYMBOL_GPL(kvm_get_dr); 950 951 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 952 { 953 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 954 u64 data; 955 int err; 956 957 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 958 if (err) 959 return err; 960 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 961 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 962 return err; 963 } 964 EXPORT_SYMBOL_GPL(kvm_rdpmc); 965 966 /* 967 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 968 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 969 * 970 * This list is modified at module load time to reflect the 971 * capabilities of the host cpu. This capabilities test skips MSRs that are 972 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs 973 * may depend on host virtualization features rather than host cpu features. 974 */ 975 976 static u32 msrs_to_save[] = { 977 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 978 MSR_STAR, 979 #ifdef CONFIG_X86_64 980 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 981 #endif 982 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 983 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 984 }; 985 986 static unsigned num_msrs_to_save; 987 988 static u32 emulated_msrs[] = { 989 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 990 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 991 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 992 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 993 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 994 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 995 HV_X64_MSR_RESET, 996 HV_X64_MSR_VP_INDEX, 997 HV_X64_MSR_VP_RUNTIME, 998 HV_X64_MSR_SCONTROL, 999 HV_X64_MSR_STIMER0_CONFIG, 1000 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1001 MSR_KVM_PV_EOI_EN, 1002 1003 MSR_IA32_TSC_ADJUST, 1004 MSR_IA32_TSCDEADLINE, 1005 MSR_IA32_MISC_ENABLE, 1006 MSR_IA32_MCG_STATUS, 1007 MSR_IA32_MCG_CTL, 1008 MSR_IA32_MCG_EXT_CTL, 1009 MSR_IA32_SMBASE, 1010 MSR_PLATFORM_INFO, 1011 MSR_MISC_FEATURES_ENABLES, 1012 }; 1013 1014 static unsigned num_emulated_msrs; 1015 1016 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1017 { 1018 if (efer & efer_reserved_bits) 1019 return false; 1020 1021 if (efer & EFER_FFXSR) { 1022 struct kvm_cpuid_entry2 *feat; 1023 1024 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 1025 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 1026 return false; 1027 } 1028 1029 if (efer & EFER_SVME) { 1030 struct kvm_cpuid_entry2 *feat; 1031 1032 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 1033 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 1034 return false; 1035 } 1036 1037 return true; 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1040 1041 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 1042 { 1043 u64 old_efer = vcpu->arch.efer; 1044 1045 if (!kvm_valid_efer(vcpu, efer)) 1046 return 1; 1047 1048 if (is_paging(vcpu) 1049 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1050 return 1; 1051 1052 efer &= ~EFER_LMA; 1053 efer |= vcpu->arch.efer & EFER_LMA; 1054 1055 kvm_x86_ops->set_efer(vcpu, efer); 1056 1057 /* Update reserved bits */ 1058 if ((efer ^ old_efer) & EFER_NX) 1059 kvm_mmu_reset_context(vcpu); 1060 1061 return 0; 1062 } 1063 1064 void kvm_enable_efer_bits(u64 mask) 1065 { 1066 efer_reserved_bits &= ~mask; 1067 } 1068 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1069 1070 /* 1071 * Writes msr value into into the appropriate "register". 1072 * Returns 0 on success, non-0 otherwise. 1073 * Assumes vcpu_load() was already called. 1074 */ 1075 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 1076 { 1077 switch (msr->index) { 1078 case MSR_FS_BASE: 1079 case MSR_GS_BASE: 1080 case MSR_KERNEL_GS_BASE: 1081 case MSR_CSTAR: 1082 case MSR_LSTAR: 1083 if (is_noncanonical_address(msr->data)) 1084 return 1; 1085 break; 1086 case MSR_IA32_SYSENTER_EIP: 1087 case MSR_IA32_SYSENTER_ESP: 1088 /* 1089 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1090 * non-canonical address is written on Intel but not on 1091 * AMD (which ignores the top 32-bits, because it does 1092 * not implement 64-bit SYSENTER). 1093 * 1094 * 64-bit code should hence be able to write a non-canonical 1095 * value on AMD. Making the address canonical ensures that 1096 * vmentry does not fail on Intel after writing a non-canonical 1097 * value, and that something deterministic happens if the guest 1098 * invokes 64-bit SYSENTER. 1099 */ 1100 msr->data = get_canonical(msr->data); 1101 } 1102 return kvm_x86_ops->set_msr(vcpu, msr); 1103 } 1104 EXPORT_SYMBOL_GPL(kvm_set_msr); 1105 1106 /* 1107 * Adapt set_msr() to msr_io()'s calling convention 1108 */ 1109 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1110 { 1111 struct msr_data msr; 1112 int r; 1113 1114 msr.index = index; 1115 msr.host_initiated = true; 1116 r = kvm_get_msr(vcpu, &msr); 1117 if (r) 1118 return r; 1119 1120 *data = msr.data; 1121 return 0; 1122 } 1123 1124 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1125 { 1126 struct msr_data msr; 1127 1128 msr.data = *data; 1129 msr.index = index; 1130 msr.host_initiated = true; 1131 return kvm_set_msr(vcpu, &msr); 1132 } 1133 1134 #ifdef CONFIG_X86_64 1135 struct pvclock_gtod_data { 1136 seqcount_t seq; 1137 1138 struct { /* extract of a clocksource struct */ 1139 int vclock_mode; 1140 u64 cycle_last; 1141 u64 mask; 1142 u32 mult; 1143 u32 shift; 1144 } clock; 1145 1146 u64 boot_ns; 1147 u64 nsec_base; 1148 u64 wall_time_sec; 1149 }; 1150 1151 static struct pvclock_gtod_data pvclock_gtod_data; 1152 1153 static void update_pvclock_gtod(struct timekeeper *tk) 1154 { 1155 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1156 u64 boot_ns; 1157 1158 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); 1159 1160 write_seqcount_begin(&vdata->seq); 1161 1162 /* copy pvclock gtod data */ 1163 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; 1164 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1165 vdata->clock.mask = tk->tkr_mono.mask; 1166 vdata->clock.mult = tk->tkr_mono.mult; 1167 vdata->clock.shift = tk->tkr_mono.shift; 1168 1169 vdata->boot_ns = boot_ns; 1170 vdata->nsec_base = tk->tkr_mono.xtime_nsec; 1171 1172 vdata->wall_time_sec = tk->xtime_sec; 1173 1174 write_seqcount_end(&vdata->seq); 1175 } 1176 #endif 1177 1178 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1179 { 1180 /* 1181 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in 1182 * vcpu_enter_guest. This function is only called from 1183 * the physical CPU that is running vcpu. 1184 */ 1185 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1186 } 1187 1188 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1189 { 1190 int version; 1191 int r; 1192 struct pvclock_wall_clock wc; 1193 struct timespec64 boot; 1194 1195 if (!wall_clock) 1196 return; 1197 1198 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1199 if (r) 1200 return; 1201 1202 if (version & 1) 1203 ++version; /* first time write, random junk */ 1204 1205 ++version; 1206 1207 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1208 return; 1209 1210 /* 1211 * The guest calculates current wall clock time by adding 1212 * system time (updated by kvm_guest_time_update below) to the 1213 * wall clock specified here. guest system time equals host 1214 * system time for us, thus we must fill in host boot time here. 1215 */ 1216 getboottime64(&boot); 1217 1218 if (kvm->arch.kvmclock_offset) { 1219 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); 1220 boot = timespec64_sub(boot, ts); 1221 } 1222 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ 1223 wc.nsec = boot.tv_nsec; 1224 wc.version = version; 1225 1226 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1227 1228 version++; 1229 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1230 } 1231 1232 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1233 { 1234 do_shl32_div32(dividend, divisor); 1235 return dividend; 1236 } 1237 1238 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1239 s8 *pshift, u32 *pmultiplier) 1240 { 1241 uint64_t scaled64; 1242 int32_t shift = 0; 1243 uint64_t tps64; 1244 uint32_t tps32; 1245 1246 tps64 = base_hz; 1247 scaled64 = scaled_hz; 1248 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1249 tps64 >>= 1; 1250 shift--; 1251 } 1252 1253 tps32 = (uint32_t)tps64; 1254 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1255 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1256 scaled64 >>= 1; 1257 else 1258 tps32 <<= 1; 1259 shift++; 1260 } 1261 1262 *pshift = shift; 1263 *pmultiplier = div_frac(scaled64, tps32); 1264 1265 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", 1266 __func__, base_hz, scaled_hz, shift, *pmultiplier); 1267 } 1268 1269 #ifdef CONFIG_X86_64 1270 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1271 #endif 1272 1273 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1274 static unsigned long max_tsc_khz; 1275 1276 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1277 { 1278 u64 v = (u64)khz * (1000000 + ppm); 1279 do_div(v, 1000000); 1280 return v; 1281 } 1282 1283 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1284 { 1285 u64 ratio; 1286 1287 /* Guest TSC same frequency as host TSC? */ 1288 if (!scale) { 1289 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1290 return 0; 1291 } 1292 1293 /* TSC scaling supported? */ 1294 if (!kvm_has_tsc_control) { 1295 if (user_tsc_khz > tsc_khz) { 1296 vcpu->arch.tsc_catchup = 1; 1297 vcpu->arch.tsc_always_catchup = 1; 1298 return 0; 1299 } else { 1300 WARN(1, "user requested TSC rate below hardware speed\n"); 1301 return -1; 1302 } 1303 } 1304 1305 /* TSC scaling required - calculate ratio */ 1306 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1307 user_tsc_khz, tsc_khz); 1308 1309 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1310 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1311 user_tsc_khz); 1312 return -1; 1313 } 1314 1315 vcpu->arch.tsc_scaling_ratio = ratio; 1316 return 0; 1317 } 1318 1319 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1320 { 1321 u32 thresh_lo, thresh_hi; 1322 int use_scaling = 0; 1323 1324 /* tsc_khz can be zero if TSC calibration fails */ 1325 if (user_tsc_khz == 0) { 1326 /* set tsc_scaling_ratio to a safe value */ 1327 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1328 return -1; 1329 } 1330 1331 /* Compute a scale to convert nanoseconds in TSC cycles */ 1332 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1333 &vcpu->arch.virtual_tsc_shift, 1334 &vcpu->arch.virtual_tsc_mult); 1335 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1336 1337 /* 1338 * Compute the variation in TSC rate which is acceptable 1339 * within the range of tolerance and decide if the 1340 * rate being applied is within that bounds of the hardware 1341 * rate. If so, no scaling or compensation need be done. 1342 */ 1343 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1344 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1345 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1346 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1347 use_scaling = 1; 1348 } 1349 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1350 } 1351 1352 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1353 { 1354 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1355 vcpu->arch.virtual_tsc_mult, 1356 vcpu->arch.virtual_tsc_shift); 1357 tsc += vcpu->arch.this_tsc_write; 1358 return tsc; 1359 } 1360 1361 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1362 { 1363 #ifdef CONFIG_X86_64 1364 bool vcpus_matched; 1365 struct kvm_arch *ka = &vcpu->kvm->arch; 1366 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1367 1368 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1369 atomic_read(&vcpu->kvm->online_vcpus)); 1370 1371 /* 1372 * Once the masterclock is enabled, always perform request in 1373 * order to update it. 1374 * 1375 * In order to enable masterclock, the host clocksource must be TSC 1376 * and the vcpus need to have matched TSCs. When that happens, 1377 * perform request to enable masterclock. 1378 */ 1379 if (ka->use_master_clock || 1380 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched)) 1381 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1382 1383 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1384 atomic_read(&vcpu->kvm->online_vcpus), 1385 ka->use_master_clock, gtod->clock.vclock_mode); 1386 #endif 1387 } 1388 1389 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1390 { 1391 u64 curr_offset = vcpu->arch.tsc_offset; 1392 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1393 } 1394 1395 /* 1396 * Multiply tsc by a fixed point number represented by ratio. 1397 * 1398 * The most significant 64-N bits (mult) of ratio represent the 1399 * integral part of the fixed point number; the remaining N bits 1400 * (frac) represent the fractional part, ie. ratio represents a fixed 1401 * point number (mult + frac * 2^(-N)). 1402 * 1403 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1404 */ 1405 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1406 { 1407 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1408 } 1409 1410 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1411 { 1412 u64 _tsc = tsc; 1413 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1414 1415 if (ratio != kvm_default_tsc_scaling_ratio) 1416 _tsc = __scale_tsc(ratio, tsc); 1417 1418 return _tsc; 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1421 1422 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1423 { 1424 u64 tsc; 1425 1426 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1427 1428 return target_tsc - tsc; 1429 } 1430 1431 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1432 { 1433 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1434 } 1435 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1436 1437 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1438 { 1439 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1440 vcpu->arch.tsc_offset = offset; 1441 } 1442 1443 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1444 { 1445 struct kvm *kvm = vcpu->kvm; 1446 u64 offset, ns, elapsed; 1447 unsigned long flags; 1448 bool matched; 1449 bool already_matched; 1450 u64 data = msr->data; 1451 bool synchronizing = false; 1452 1453 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1454 offset = kvm_compute_tsc_offset(vcpu, data); 1455 ns = ktime_get_boot_ns(); 1456 elapsed = ns - kvm->arch.last_tsc_nsec; 1457 1458 if (vcpu->arch.virtual_tsc_khz) { 1459 if (data == 0 && msr->host_initiated) { 1460 /* 1461 * detection of vcpu initialization -- need to sync 1462 * with other vCPUs. This particularly helps to keep 1463 * kvm_clock stable after CPU hotplug 1464 */ 1465 synchronizing = true; 1466 } else { 1467 u64 tsc_exp = kvm->arch.last_tsc_write + 1468 nsec_to_cycles(vcpu, elapsed); 1469 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 1470 /* 1471 * Special case: TSC write with a small delta (1 second) 1472 * of virtual cycle time against real time is 1473 * interpreted as an attempt to synchronize the CPU. 1474 */ 1475 synchronizing = data < tsc_exp + tsc_hz && 1476 data + tsc_hz > tsc_exp; 1477 } 1478 } 1479 1480 /* 1481 * For a reliable TSC, we can match TSC offsets, and for an unstable 1482 * TSC, we add elapsed time in this computation. We could let the 1483 * compensation code attempt to catch up if we fall behind, but 1484 * it's better to try to match offsets from the beginning. 1485 */ 1486 if (synchronizing && 1487 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1488 if (!check_tsc_unstable()) { 1489 offset = kvm->arch.cur_tsc_offset; 1490 pr_debug("kvm: matched tsc offset for %llu\n", data); 1491 } else { 1492 u64 delta = nsec_to_cycles(vcpu, elapsed); 1493 data += delta; 1494 offset = kvm_compute_tsc_offset(vcpu, data); 1495 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1496 } 1497 matched = true; 1498 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1499 } else { 1500 /* 1501 * We split periods of matched TSC writes into generations. 1502 * For each generation, we track the original measured 1503 * nanosecond time, offset, and write, so if TSCs are in 1504 * sync, we can match exact offset, and if not, we can match 1505 * exact software computation in compute_guest_tsc() 1506 * 1507 * These values are tracked in kvm->arch.cur_xxx variables. 1508 */ 1509 kvm->arch.cur_tsc_generation++; 1510 kvm->arch.cur_tsc_nsec = ns; 1511 kvm->arch.cur_tsc_write = data; 1512 kvm->arch.cur_tsc_offset = offset; 1513 matched = false; 1514 pr_debug("kvm: new tsc generation %llu, clock %llu\n", 1515 kvm->arch.cur_tsc_generation, data); 1516 } 1517 1518 /* 1519 * We also track th most recent recorded KHZ, write and time to 1520 * allow the matching interval to be extended at each write. 1521 */ 1522 kvm->arch.last_tsc_nsec = ns; 1523 kvm->arch.last_tsc_write = data; 1524 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1525 1526 vcpu->arch.last_guest_tsc = data; 1527 1528 /* Keep track of which generation this VCPU has synchronized to */ 1529 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1530 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1531 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1532 1533 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1534 update_ia32_tsc_adjust_msr(vcpu, offset); 1535 kvm_vcpu_write_tsc_offset(vcpu, offset); 1536 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1537 1538 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1539 if (!matched) { 1540 kvm->arch.nr_vcpus_matched_tsc = 0; 1541 } else if (!already_matched) { 1542 kvm->arch.nr_vcpus_matched_tsc++; 1543 } 1544 1545 kvm_track_tsc_matching(vcpu); 1546 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1547 } 1548 1549 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1550 1551 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 1552 s64 adjustment) 1553 { 1554 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment); 1555 } 1556 1557 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 1558 { 1559 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 1560 WARN_ON(adjustment < 0); 1561 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 1562 adjust_tsc_offset_guest(vcpu, adjustment); 1563 } 1564 1565 #ifdef CONFIG_X86_64 1566 1567 static u64 read_tsc(void) 1568 { 1569 u64 ret = (u64)rdtsc_ordered(); 1570 u64 last = pvclock_gtod_data.clock.cycle_last; 1571 1572 if (likely(ret >= last)) 1573 return ret; 1574 1575 /* 1576 * GCC likes to generate cmov here, but this branch is extremely 1577 * predictable (it's just a function of time and the likely is 1578 * very likely) and there's a data dependence, so force GCC 1579 * to generate a branch instead. I don't barrier() because 1580 * we don't actually need a barrier, and if this function 1581 * ever gets inlined it will generate worse code. 1582 */ 1583 asm volatile (""); 1584 return last; 1585 } 1586 1587 static inline u64 vgettsc(u64 *cycle_now) 1588 { 1589 long v; 1590 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1591 1592 *cycle_now = read_tsc(); 1593 1594 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1595 return v * gtod->clock.mult; 1596 } 1597 1598 static int do_monotonic_boot(s64 *t, u64 *cycle_now) 1599 { 1600 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1601 unsigned long seq; 1602 int mode; 1603 u64 ns; 1604 1605 do { 1606 seq = read_seqcount_begin(>od->seq); 1607 mode = gtod->clock.vclock_mode; 1608 ns = gtod->nsec_base; 1609 ns += vgettsc(cycle_now); 1610 ns >>= gtod->clock.shift; 1611 ns += gtod->boot_ns; 1612 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1613 *t = ns; 1614 1615 return mode; 1616 } 1617 1618 static int do_realtime(struct timespec *ts, u64 *cycle_now) 1619 { 1620 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1621 unsigned long seq; 1622 int mode; 1623 u64 ns; 1624 1625 do { 1626 seq = read_seqcount_begin(>od->seq); 1627 mode = gtod->clock.vclock_mode; 1628 ts->tv_sec = gtod->wall_time_sec; 1629 ns = gtod->nsec_base; 1630 ns += vgettsc(cycle_now); 1631 ns >>= gtod->clock.shift; 1632 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1633 1634 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 1635 ts->tv_nsec = ns; 1636 1637 return mode; 1638 } 1639 1640 /* returns true if host is using tsc clocksource */ 1641 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now) 1642 { 1643 /* checked again under seqlock below */ 1644 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1645 return false; 1646 1647 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC; 1648 } 1649 1650 /* returns true if host is using tsc clocksource */ 1651 static bool kvm_get_walltime_and_clockread(struct timespec *ts, 1652 u64 *cycle_now) 1653 { 1654 /* checked again under seqlock below */ 1655 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1656 return false; 1657 1658 return do_realtime(ts, cycle_now) == VCLOCK_TSC; 1659 } 1660 #endif 1661 1662 /* 1663 * 1664 * Assuming a stable TSC across physical CPUS, and a stable TSC 1665 * across virtual CPUs, the following condition is possible. 1666 * Each numbered line represents an event visible to both 1667 * CPUs at the next numbered event. 1668 * 1669 * "timespecX" represents host monotonic time. "tscX" represents 1670 * RDTSC value. 1671 * 1672 * VCPU0 on CPU0 | VCPU1 on CPU1 1673 * 1674 * 1. read timespec0,tsc0 1675 * 2. | timespec1 = timespec0 + N 1676 * | tsc1 = tsc0 + M 1677 * 3. transition to guest | transition to guest 1678 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1679 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1680 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1681 * 1682 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1683 * 1684 * - ret0 < ret1 1685 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1686 * ... 1687 * - 0 < N - M => M < N 1688 * 1689 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1690 * always the case (the difference between two distinct xtime instances 1691 * might be smaller then the difference between corresponding TSC reads, 1692 * when updating guest vcpus pvclock areas). 1693 * 1694 * To avoid that problem, do not allow visibility of distinct 1695 * system_timestamp/tsc_timestamp values simultaneously: use a master 1696 * copy of host monotonic time values. Update that master copy 1697 * in lockstep. 1698 * 1699 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1700 * 1701 */ 1702 1703 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1704 { 1705 #ifdef CONFIG_X86_64 1706 struct kvm_arch *ka = &kvm->arch; 1707 int vclock_mode; 1708 bool host_tsc_clocksource, vcpus_matched; 1709 1710 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1711 atomic_read(&kvm->online_vcpus)); 1712 1713 /* 1714 * If the host uses TSC clock, then passthrough TSC as stable 1715 * to the guest. 1716 */ 1717 host_tsc_clocksource = kvm_get_time_and_clockread( 1718 &ka->master_kernel_ns, 1719 &ka->master_cycle_now); 1720 1721 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 1722 && !backwards_tsc_observed 1723 && !ka->boot_vcpu_runs_old_kvmclock; 1724 1725 if (ka->use_master_clock) 1726 atomic_set(&kvm_guest_has_master_clock, 1); 1727 1728 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1729 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1730 vcpus_matched); 1731 #endif 1732 } 1733 1734 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 1735 { 1736 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 1737 } 1738 1739 static void kvm_gen_update_masterclock(struct kvm *kvm) 1740 { 1741 #ifdef CONFIG_X86_64 1742 int i; 1743 struct kvm_vcpu *vcpu; 1744 struct kvm_arch *ka = &kvm->arch; 1745 1746 spin_lock(&ka->pvclock_gtod_sync_lock); 1747 kvm_make_mclock_inprogress_request(kvm); 1748 /* no guest entries from this point */ 1749 pvclock_update_vm_gtod_copy(kvm); 1750 1751 kvm_for_each_vcpu(i, vcpu, kvm) 1752 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1753 1754 /* guest entries allowed */ 1755 kvm_for_each_vcpu(i, vcpu, kvm) 1756 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 1757 1758 spin_unlock(&ka->pvclock_gtod_sync_lock); 1759 #endif 1760 } 1761 1762 u64 get_kvmclock_ns(struct kvm *kvm) 1763 { 1764 struct kvm_arch *ka = &kvm->arch; 1765 struct pvclock_vcpu_time_info hv_clock; 1766 u64 ret; 1767 1768 spin_lock(&ka->pvclock_gtod_sync_lock); 1769 if (!ka->use_master_clock) { 1770 spin_unlock(&ka->pvclock_gtod_sync_lock); 1771 return ktime_get_boot_ns() + ka->kvmclock_offset; 1772 } 1773 1774 hv_clock.tsc_timestamp = ka->master_cycle_now; 1775 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 1776 spin_unlock(&ka->pvclock_gtod_sync_lock); 1777 1778 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 1779 get_cpu(); 1780 1781 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 1782 &hv_clock.tsc_shift, 1783 &hv_clock.tsc_to_system_mul); 1784 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 1785 1786 put_cpu(); 1787 1788 return ret; 1789 } 1790 1791 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 1792 { 1793 struct kvm_vcpu_arch *vcpu = &v->arch; 1794 struct pvclock_vcpu_time_info guest_hv_clock; 1795 1796 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1797 &guest_hv_clock, sizeof(guest_hv_clock)))) 1798 return; 1799 1800 /* This VCPU is paused, but it's legal for a guest to read another 1801 * VCPU's kvmclock, so we really have to follow the specification where 1802 * it says that version is odd if data is being modified, and even after 1803 * it is consistent. 1804 * 1805 * Version field updates must be kept separate. This is because 1806 * kvm_write_guest_cached might use a "rep movs" instruction, and 1807 * writes within a string instruction are weakly ordered. So there 1808 * are three writes overall. 1809 * 1810 * As a small optimization, only write the version field in the first 1811 * and third write. The vcpu->pv_time cache is still valid, because the 1812 * version field is the first in the struct. 1813 */ 1814 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 1815 1816 vcpu->hv_clock.version = guest_hv_clock.version + 1; 1817 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1818 &vcpu->hv_clock, 1819 sizeof(vcpu->hv_clock.version)); 1820 1821 smp_wmb(); 1822 1823 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1824 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1825 1826 if (vcpu->pvclock_set_guest_stopped_request) { 1827 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 1828 vcpu->pvclock_set_guest_stopped_request = false; 1829 } 1830 1831 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 1832 1833 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1834 &vcpu->hv_clock, 1835 sizeof(vcpu->hv_clock)); 1836 1837 smp_wmb(); 1838 1839 vcpu->hv_clock.version++; 1840 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1841 &vcpu->hv_clock, 1842 sizeof(vcpu->hv_clock.version)); 1843 } 1844 1845 static int kvm_guest_time_update(struct kvm_vcpu *v) 1846 { 1847 unsigned long flags, tgt_tsc_khz; 1848 struct kvm_vcpu_arch *vcpu = &v->arch; 1849 struct kvm_arch *ka = &v->kvm->arch; 1850 s64 kernel_ns; 1851 u64 tsc_timestamp, host_tsc; 1852 u8 pvclock_flags; 1853 bool use_master_clock; 1854 1855 kernel_ns = 0; 1856 host_tsc = 0; 1857 1858 /* 1859 * If the host uses TSC clock, then passthrough TSC as stable 1860 * to the guest. 1861 */ 1862 spin_lock(&ka->pvclock_gtod_sync_lock); 1863 use_master_clock = ka->use_master_clock; 1864 if (use_master_clock) { 1865 host_tsc = ka->master_cycle_now; 1866 kernel_ns = ka->master_kernel_ns; 1867 } 1868 spin_unlock(&ka->pvclock_gtod_sync_lock); 1869 1870 /* Keep irq disabled to prevent changes to the clock */ 1871 local_irq_save(flags); 1872 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 1873 if (unlikely(tgt_tsc_khz == 0)) { 1874 local_irq_restore(flags); 1875 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1876 return 1; 1877 } 1878 if (!use_master_clock) { 1879 host_tsc = rdtsc(); 1880 kernel_ns = ktime_get_boot_ns(); 1881 } 1882 1883 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 1884 1885 /* 1886 * We may have to catch up the TSC to match elapsed wall clock 1887 * time for two reasons, even if kvmclock is used. 1888 * 1) CPU could have been running below the maximum TSC rate 1889 * 2) Broken TSC compensation resets the base at each VCPU 1890 * entry to avoid unknown leaps of TSC even when running 1891 * again on the same CPU. This may cause apparent elapsed 1892 * time to disappear, and the guest to stand still or run 1893 * very slowly. 1894 */ 1895 if (vcpu->tsc_catchup) { 1896 u64 tsc = compute_guest_tsc(v, kernel_ns); 1897 if (tsc > tsc_timestamp) { 1898 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1899 tsc_timestamp = tsc; 1900 } 1901 } 1902 1903 local_irq_restore(flags); 1904 1905 /* With all the info we got, fill in the values */ 1906 1907 if (kvm_has_tsc_control) 1908 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 1909 1910 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 1911 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 1912 &vcpu->hv_clock.tsc_shift, 1913 &vcpu->hv_clock.tsc_to_system_mul); 1914 vcpu->hw_tsc_khz = tgt_tsc_khz; 1915 } 1916 1917 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1918 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1919 vcpu->last_guest_tsc = tsc_timestamp; 1920 1921 /* If the host uses TSC clocksource, then it is stable */ 1922 pvclock_flags = 0; 1923 if (use_master_clock) 1924 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1925 1926 vcpu->hv_clock.flags = pvclock_flags; 1927 1928 if (vcpu->pv_time_enabled) 1929 kvm_setup_pvclock_page(v); 1930 if (v == kvm_get_vcpu(v->kvm, 0)) 1931 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 1932 return 0; 1933 } 1934 1935 /* 1936 * kvmclock updates which are isolated to a given vcpu, such as 1937 * vcpu->cpu migration, should not allow system_timestamp from 1938 * the rest of the vcpus to remain static. Otherwise ntp frequency 1939 * correction applies to one vcpu's system_timestamp but not 1940 * the others. 1941 * 1942 * So in those cases, request a kvmclock update for all vcpus. 1943 * We need to rate-limit these requests though, as they can 1944 * considerably slow guests that have a large number of vcpus. 1945 * The time for a remote vcpu to update its kvmclock is bound 1946 * by the delay we use to rate-limit the updates. 1947 */ 1948 1949 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 1950 1951 static void kvmclock_update_fn(struct work_struct *work) 1952 { 1953 int i; 1954 struct delayed_work *dwork = to_delayed_work(work); 1955 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1956 kvmclock_update_work); 1957 struct kvm *kvm = container_of(ka, struct kvm, arch); 1958 struct kvm_vcpu *vcpu; 1959 1960 kvm_for_each_vcpu(i, vcpu, kvm) { 1961 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1962 kvm_vcpu_kick(vcpu); 1963 } 1964 } 1965 1966 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1967 { 1968 struct kvm *kvm = v->kvm; 1969 1970 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1971 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 1972 KVMCLOCK_UPDATE_DELAY); 1973 } 1974 1975 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 1976 1977 static void kvmclock_sync_fn(struct work_struct *work) 1978 { 1979 struct delayed_work *dwork = to_delayed_work(work); 1980 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1981 kvmclock_sync_work); 1982 struct kvm *kvm = container_of(ka, struct kvm, arch); 1983 1984 if (!kvmclock_periodic_sync) 1985 return; 1986 1987 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 1988 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 1989 KVMCLOCK_SYNC_PERIOD); 1990 } 1991 1992 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1993 { 1994 u64 mcg_cap = vcpu->arch.mcg_cap; 1995 unsigned bank_num = mcg_cap & 0xff; 1996 1997 switch (msr) { 1998 case MSR_IA32_MCG_STATUS: 1999 vcpu->arch.mcg_status = data; 2000 break; 2001 case MSR_IA32_MCG_CTL: 2002 if (!(mcg_cap & MCG_CTL_P)) 2003 return 1; 2004 if (data != 0 && data != ~(u64)0) 2005 return -1; 2006 vcpu->arch.mcg_ctl = data; 2007 break; 2008 default: 2009 if (msr >= MSR_IA32_MC0_CTL && 2010 msr < MSR_IA32_MCx_CTL(bank_num)) { 2011 u32 offset = msr - MSR_IA32_MC0_CTL; 2012 /* only 0 or all 1s can be written to IA32_MCi_CTL 2013 * some Linux kernels though clear bit 10 in bank 4 to 2014 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2015 * this to avoid an uncatched #GP in the guest 2016 */ 2017 if ((offset & 0x3) == 0 && 2018 data != 0 && (data | (1 << 10)) != ~(u64)0) 2019 return -1; 2020 vcpu->arch.mce_banks[offset] = data; 2021 break; 2022 } 2023 return 1; 2024 } 2025 return 0; 2026 } 2027 2028 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2029 { 2030 struct kvm *kvm = vcpu->kvm; 2031 int lm = is_long_mode(vcpu); 2032 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2033 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2034 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2035 : kvm->arch.xen_hvm_config.blob_size_32; 2036 u32 page_num = data & ~PAGE_MASK; 2037 u64 page_addr = data & PAGE_MASK; 2038 u8 *page; 2039 int r; 2040 2041 r = -E2BIG; 2042 if (page_num >= blob_size) 2043 goto out; 2044 r = -ENOMEM; 2045 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2046 if (IS_ERR(page)) { 2047 r = PTR_ERR(page); 2048 goto out; 2049 } 2050 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2051 goto out_free; 2052 r = 0; 2053 out_free: 2054 kfree(page); 2055 out: 2056 return r; 2057 } 2058 2059 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2060 { 2061 gpa_t gpa = data & ~0x3f; 2062 2063 /* Bits 2:5 are reserved, Should be zero */ 2064 if (data & 0x3c) 2065 return 1; 2066 2067 vcpu->arch.apf.msr_val = data; 2068 2069 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2070 kvm_clear_async_pf_completion_queue(vcpu); 2071 kvm_async_pf_hash_reset(vcpu); 2072 return 0; 2073 } 2074 2075 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2076 sizeof(u32))) 2077 return 1; 2078 2079 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2080 kvm_async_pf_wakeup_all(vcpu); 2081 return 0; 2082 } 2083 2084 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2085 { 2086 vcpu->arch.pv_time_enabled = false; 2087 } 2088 2089 static void record_steal_time(struct kvm_vcpu *vcpu) 2090 { 2091 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2092 return; 2093 2094 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2095 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2096 return; 2097 2098 vcpu->arch.st.steal.preempted = 0; 2099 2100 if (vcpu->arch.st.steal.version & 1) 2101 vcpu->arch.st.steal.version += 1; /* first time write, random junk */ 2102 2103 vcpu->arch.st.steal.version += 1; 2104 2105 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2106 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2107 2108 smp_wmb(); 2109 2110 vcpu->arch.st.steal.steal += current->sched_info.run_delay - 2111 vcpu->arch.st.last_steal; 2112 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2113 2114 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2115 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2116 2117 smp_wmb(); 2118 2119 vcpu->arch.st.steal.version += 1; 2120 2121 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2122 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2123 } 2124 2125 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2126 { 2127 bool pr = false; 2128 u32 msr = msr_info->index; 2129 u64 data = msr_info->data; 2130 2131 switch (msr) { 2132 case MSR_AMD64_NB_CFG: 2133 case MSR_IA32_UCODE_REV: 2134 case MSR_IA32_UCODE_WRITE: 2135 case MSR_VM_HSAVE_PA: 2136 case MSR_AMD64_PATCH_LOADER: 2137 case MSR_AMD64_BU_CFG2: 2138 case MSR_AMD64_DC_CFG: 2139 break; 2140 2141 case MSR_EFER: 2142 return set_efer(vcpu, data); 2143 case MSR_K7_HWCR: 2144 data &= ~(u64)0x40; /* ignore flush filter disable */ 2145 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2146 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2147 data &= ~(u64)0x40000; /* ignore Mc status write enable */ 2148 if (data != 0) { 2149 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2150 data); 2151 return 1; 2152 } 2153 break; 2154 case MSR_FAM10H_MMIO_CONF_BASE: 2155 if (data != 0) { 2156 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2157 "0x%llx\n", data); 2158 return 1; 2159 } 2160 break; 2161 case MSR_IA32_DEBUGCTLMSR: 2162 if (!data) { 2163 /* We support the non-activated case already */ 2164 break; 2165 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2166 /* Values other than LBR and BTF are vendor-specific, 2167 thus reserved and should throw a #GP */ 2168 return 1; 2169 } 2170 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2171 __func__, data); 2172 break; 2173 case 0x200 ... 0x2ff: 2174 return kvm_mtrr_set_msr(vcpu, msr, data); 2175 case MSR_IA32_APICBASE: 2176 return kvm_set_apic_base(vcpu, msr_info); 2177 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2178 return kvm_x2apic_msr_write(vcpu, msr, data); 2179 case MSR_IA32_TSCDEADLINE: 2180 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2181 break; 2182 case MSR_IA32_TSC_ADJUST: 2183 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2184 if (!msr_info->host_initiated) { 2185 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2186 adjust_tsc_offset_guest(vcpu, adj); 2187 } 2188 vcpu->arch.ia32_tsc_adjust_msr = data; 2189 } 2190 break; 2191 case MSR_IA32_MISC_ENABLE: 2192 vcpu->arch.ia32_misc_enable_msr = data; 2193 break; 2194 case MSR_IA32_SMBASE: 2195 if (!msr_info->host_initiated) 2196 return 1; 2197 vcpu->arch.smbase = data; 2198 break; 2199 case MSR_KVM_WALL_CLOCK_NEW: 2200 case MSR_KVM_WALL_CLOCK: 2201 vcpu->kvm->arch.wall_clock = data; 2202 kvm_write_wall_clock(vcpu->kvm, data); 2203 break; 2204 case MSR_KVM_SYSTEM_TIME_NEW: 2205 case MSR_KVM_SYSTEM_TIME: { 2206 struct kvm_arch *ka = &vcpu->kvm->arch; 2207 2208 kvmclock_reset(vcpu); 2209 2210 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2211 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2212 2213 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2214 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2215 2216 ka->boot_vcpu_runs_old_kvmclock = tmp; 2217 } 2218 2219 vcpu->arch.time = data; 2220 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2221 2222 /* we verify if the enable bit is set... */ 2223 if (!(data & 1)) 2224 break; 2225 2226 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2227 &vcpu->arch.pv_time, data & ~1ULL, 2228 sizeof(struct pvclock_vcpu_time_info))) 2229 vcpu->arch.pv_time_enabled = false; 2230 else 2231 vcpu->arch.pv_time_enabled = true; 2232 2233 break; 2234 } 2235 case MSR_KVM_ASYNC_PF_EN: 2236 if (kvm_pv_enable_async_pf(vcpu, data)) 2237 return 1; 2238 break; 2239 case MSR_KVM_STEAL_TIME: 2240 2241 if (unlikely(!sched_info_on())) 2242 return 1; 2243 2244 if (data & KVM_STEAL_RESERVED_MASK) 2245 return 1; 2246 2247 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2248 data & KVM_STEAL_VALID_BITS, 2249 sizeof(struct kvm_steal_time))) 2250 return 1; 2251 2252 vcpu->arch.st.msr_val = data; 2253 2254 if (!(data & KVM_MSR_ENABLED)) 2255 break; 2256 2257 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2258 2259 break; 2260 case MSR_KVM_PV_EOI_EN: 2261 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2262 return 1; 2263 break; 2264 2265 case MSR_IA32_MCG_CTL: 2266 case MSR_IA32_MCG_STATUS: 2267 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2268 return set_msr_mce(vcpu, msr, data); 2269 2270 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2271 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2272 pr = true; /* fall through */ 2273 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2274 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2275 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2276 return kvm_pmu_set_msr(vcpu, msr_info); 2277 2278 if (pr || data != 0) 2279 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2280 "0x%x data 0x%llx\n", msr, data); 2281 break; 2282 case MSR_K7_CLK_CTL: 2283 /* 2284 * Ignore all writes to this no longer documented MSR. 2285 * Writes are only relevant for old K7 processors, 2286 * all pre-dating SVM, but a recommended workaround from 2287 * AMD for these chips. It is possible to specify the 2288 * affected processor models on the command line, hence 2289 * the need to ignore the workaround. 2290 */ 2291 break; 2292 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2293 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2294 case HV_X64_MSR_CRASH_CTL: 2295 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2296 return kvm_hv_set_msr_common(vcpu, msr, data, 2297 msr_info->host_initiated); 2298 case MSR_IA32_BBL_CR_CTL3: 2299 /* Drop writes to this legacy MSR -- see rdmsr 2300 * counterpart for further detail. 2301 */ 2302 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data); 2303 break; 2304 case MSR_AMD64_OSVW_ID_LENGTH: 2305 if (!guest_cpuid_has_osvw(vcpu)) 2306 return 1; 2307 vcpu->arch.osvw.length = data; 2308 break; 2309 case MSR_AMD64_OSVW_STATUS: 2310 if (!guest_cpuid_has_osvw(vcpu)) 2311 return 1; 2312 vcpu->arch.osvw.status = data; 2313 break; 2314 case MSR_PLATFORM_INFO: 2315 if (!msr_info->host_initiated || 2316 data & ~MSR_PLATFORM_INFO_CPUID_FAULT || 2317 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 2318 cpuid_fault_enabled(vcpu))) 2319 return 1; 2320 vcpu->arch.msr_platform_info = data; 2321 break; 2322 case MSR_MISC_FEATURES_ENABLES: 2323 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 2324 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 2325 !supports_cpuid_fault(vcpu))) 2326 return 1; 2327 vcpu->arch.msr_misc_features_enables = data; 2328 break; 2329 default: 2330 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2331 return xen_hvm_config(vcpu, data); 2332 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2333 return kvm_pmu_set_msr(vcpu, msr_info); 2334 if (!ignore_msrs) { 2335 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2336 msr, data); 2337 return 1; 2338 } else { 2339 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2340 msr, data); 2341 break; 2342 } 2343 } 2344 return 0; 2345 } 2346 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2347 2348 2349 /* 2350 * Reads an msr value (of 'msr_index') into 'pdata'. 2351 * Returns 0 on success, non-0 otherwise. 2352 * Assumes vcpu_load() was already called. 2353 */ 2354 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2355 { 2356 return kvm_x86_ops->get_msr(vcpu, msr); 2357 } 2358 EXPORT_SYMBOL_GPL(kvm_get_msr); 2359 2360 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2361 { 2362 u64 data; 2363 u64 mcg_cap = vcpu->arch.mcg_cap; 2364 unsigned bank_num = mcg_cap & 0xff; 2365 2366 switch (msr) { 2367 case MSR_IA32_P5_MC_ADDR: 2368 case MSR_IA32_P5_MC_TYPE: 2369 data = 0; 2370 break; 2371 case MSR_IA32_MCG_CAP: 2372 data = vcpu->arch.mcg_cap; 2373 break; 2374 case MSR_IA32_MCG_CTL: 2375 if (!(mcg_cap & MCG_CTL_P)) 2376 return 1; 2377 data = vcpu->arch.mcg_ctl; 2378 break; 2379 case MSR_IA32_MCG_STATUS: 2380 data = vcpu->arch.mcg_status; 2381 break; 2382 default: 2383 if (msr >= MSR_IA32_MC0_CTL && 2384 msr < MSR_IA32_MCx_CTL(bank_num)) { 2385 u32 offset = msr - MSR_IA32_MC0_CTL; 2386 data = vcpu->arch.mce_banks[offset]; 2387 break; 2388 } 2389 return 1; 2390 } 2391 *pdata = data; 2392 return 0; 2393 } 2394 2395 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2396 { 2397 switch (msr_info->index) { 2398 case MSR_IA32_PLATFORM_ID: 2399 case MSR_IA32_EBL_CR_POWERON: 2400 case MSR_IA32_DEBUGCTLMSR: 2401 case MSR_IA32_LASTBRANCHFROMIP: 2402 case MSR_IA32_LASTBRANCHTOIP: 2403 case MSR_IA32_LASTINTFROMIP: 2404 case MSR_IA32_LASTINTTOIP: 2405 case MSR_K8_SYSCFG: 2406 case MSR_K8_TSEG_ADDR: 2407 case MSR_K8_TSEG_MASK: 2408 case MSR_K7_HWCR: 2409 case MSR_VM_HSAVE_PA: 2410 case MSR_K8_INT_PENDING_MSG: 2411 case MSR_AMD64_NB_CFG: 2412 case MSR_FAM10H_MMIO_CONF_BASE: 2413 case MSR_AMD64_BU_CFG2: 2414 case MSR_IA32_PERF_CTL: 2415 case MSR_AMD64_DC_CFG: 2416 msr_info->data = 0; 2417 break; 2418 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2419 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2420 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2421 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2422 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2423 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2424 msr_info->data = 0; 2425 break; 2426 case MSR_IA32_UCODE_REV: 2427 msr_info->data = 0x100000000ULL; 2428 break; 2429 case MSR_MTRRcap: 2430 case 0x200 ... 0x2ff: 2431 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 2432 case 0xcd: /* fsb frequency */ 2433 msr_info->data = 3; 2434 break; 2435 /* 2436 * MSR_EBC_FREQUENCY_ID 2437 * Conservative value valid for even the basic CPU models. 2438 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2439 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2440 * and 266MHz for model 3, or 4. Set Core Clock 2441 * Frequency to System Bus Frequency Ratio to 1 (bits 2442 * 31:24) even though these are only valid for CPU 2443 * models > 2, however guests may end up dividing or 2444 * multiplying by zero otherwise. 2445 */ 2446 case MSR_EBC_FREQUENCY_ID: 2447 msr_info->data = 1 << 24; 2448 break; 2449 case MSR_IA32_APICBASE: 2450 msr_info->data = kvm_get_apic_base(vcpu); 2451 break; 2452 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2453 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 2454 break; 2455 case MSR_IA32_TSCDEADLINE: 2456 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 2457 break; 2458 case MSR_IA32_TSC_ADJUST: 2459 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2460 break; 2461 case MSR_IA32_MISC_ENABLE: 2462 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 2463 break; 2464 case MSR_IA32_SMBASE: 2465 if (!msr_info->host_initiated) 2466 return 1; 2467 msr_info->data = vcpu->arch.smbase; 2468 break; 2469 case MSR_IA32_PERF_STATUS: 2470 /* TSC increment by tick */ 2471 msr_info->data = 1000ULL; 2472 /* CPU multiplier */ 2473 msr_info->data |= (((uint64_t)4ULL) << 40); 2474 break; 2475 case MSR_EFER: 2476 msr_info->data = vcpu->arch.efer; 2477 break; 2478 case MSR_KVM_WALL_CLOCK: 2479 case MSR_KVM_WALL_CLOCK_NEW: 2480 msr_info->data = vcpu->kvm->arch.wall_clock; 2481 break; 2482 case MSR_KVM_SYSTEM_TIME: 2483 case MSR_KVM_SYSTEM_TIME_NEW: 2484 msr_info->data = vcpu->arch.time; 2485 break; 2486 case MSR_KVM_ASYNC_PF_EN: 2487 msr_info->data = vcpu->arch.apf.msr_val; 2488 break; 2489 case MSR_KVM_STEAL_TIME: 2490 msr_info->data = vcpu->arch.st.msr_val; 2491 break; 2492 case MSR_KVM_PV_EOI_EN: 2493 msr_info->data = vcpu->arch.pv_eoi.msr_val; 2494 break; 2495 case MSR_IA32_P5_MC_ADDR: 2496 case MSR_IA32_P5_MC_TYPE: 2497 case MSR_IA32_MCG_CAP: 2498 case MSR_IA32_MCG_CTL: 2499 case MSR_IA32_MCG_STATUS: 2500 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2501 return get_msr_mce(vcpu, msr_info->index, &msr_info->data); 2502 case MSR_K7_CLK_CTL: 2503 /* 2504 * Provide expected ramp-up count for K7. All other 2505 * are set to zero, indicating minimum divisors for 2506 * every field. 2507 * 2508 * This prevents guest kernels on AMD host with CPU 2509 * type 6, model 8 and higher from exploding due to 2510 * the rdmsr failing. 2511 */ 2512 msr_info->data = 0x20000000; 2513 break; 2514 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2515 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2516 case HV_X64_MSR_CRASH_CTL: 2517 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2518 return kvm_hv_get_msr_common(vcpu, 2519 msr_info->index, &msr_info->data); 2520 break; 2521 case MSR_IA32_BBL_CR_CTL3: 2522 /* This legacy MSR exists but isn't fully documented in current 2523 * silicon. It is however accessed by winxp in very narrow 2524 * scenarios where it sets bit #19, itself documented as 2525 * a "reserved" bit. Best effort attempt to source coherent 2526 * read data here should the balance of the register be 2527 * interpreted by the guest: 2528 * 2529 * L2 cache control register 3: 64GB range, 256KB size, 2530 * enabled, latency 0x1, configured 2531 */ 2532 msr_info->data = 0xbe702111; 2533 break; 2534 case MSR_AMD64_OSVW_ID_LENGTH: 2535 if (!guest_cpuid_has_osvw(vcpu)) 2536 return 1; 2537 msr_info->data = vcpu->arch.osvw.length; 2538 break; 2539 case MSR_AMD64_OSVW_STATUS: 2540 if (!guest_cpuid_has_osvw(vcpu)) 2541 return 1; 2542 msr_info->data = vcpu->arch.osvw.status; 2543 break; 2544 case MSR_PLATFORM_INFO: 2545 msr_info->data = vcpu->arch.msr_platform_info; 2546 break; 2547 case MSR_MISC_FEATURES_ENABLES: 2548 msr_info->data = vcpu->arch.msr_misc_features_enables; 2549 break; 2550 default: 2551 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2552 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2553 if (!ignore_msrs) { 2554 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 2555 msr_info->index); 2556 return 1; 2557 } else { 2558 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index); 2559 msr_info->data = 0; 2560 } 2561 break; 2562 } 2563 return 0; 2564 } 2565 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2566 2567 /* 2568 * Read or write a bunch of msrs. All parameters are kernel addresses. 2569 * 2570 * @return number of msrs set successfully. 2571 */ 2572 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2573 struct kvm_msr_entry *entries, 2574 int (*do_msr)(struct kvm_vcpu *vcpu, 2575 unsigned index, u64 *data)) 2576 { 2577 int i, idx; 2578 2579 idx = srcu_read_lock(&vcpu->kvm->srcu); 2580 for (i = 0; i < msrs->nmsrs; ++i) 2581 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2582 break; 2583 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2584 2585 return i; 2586 } 2587 2588 /* 2589 * Read or write a bunch of msrs. Parameters are user addresses. 2590 * 2591 * @return number of msrs set successfully. 2592 */ 2593 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2594 int (*do_msr)(struct kvm_vcpu *vcpu, 2595 unsigned index, u64 *data), 2596 int writeback) 2597 { 2598 struct kvm_msrs msrs; 2599 struct kvm_msr_entry *entries; 2600 int r, n; 2601 unsigned size; 2602 2603 r = -EFAULT; 2604 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2605 goto out; 2606 2607 r = -E2BIG; 2608 if (msrs.nmsrs >= MAX_IO_MSRS) 2609 goto out; 2610 2611 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2612 entries = memdup_user(user_msrs->entries, size); 2613 if (IS_ERR(entries)) { 2614 r = PTR_ERR(entries); 2615 goto out; 2616 } 2617 2618 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2619 if (r < 0) 2620 goto out_free; 2621 2622 r = -EFAULT; 2623 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2624 goto out_free; 2625 2626 r = n; 2627 2628 out_free: 2629 kfree(entries); 2630 out: 2631 return r; 2632 } 2633 2634 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 2635 { 2636 int r; 2637 2638 switch (ext) { 2639 case KVM_CAP_IRQCHIP: 2640 case KVM_CAP_HLT: 2641 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2642 case KVM_CAP_SET_TSS_ADDR: 2643 case KVM_CAP_EXT_CPUID: 2644 case KVM_CAP_EXT_EMUL_CPUID: 2645 case KVM_CAP_CLOCKSOURCE: 2646 case KVM_CAP_PIT: 2647 case KVM_CAP_NOP_IO_DELAY: 2648 case KVM_CAP_MP_STATE: 2649 case KVM_CAP_SYNC_MMU: 2650 case KVM_CAP_USER_NMI: 2651 case KVM_CAP_REINJECT_CONTROL: 2652 case KVM_CAP_IRQ_INJECT_STATUS: 2653 case KVM_CAP_IOEVENTFD: 2654 case KVM_CAP_IOEVENTFD_NO_LENGTH: 2655 case KVM_CAP_PIT2: 2656 case KVM_CAP_PIT_STATE2: 2657 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2658 case KVM_CAP_XEN_HVM: 2659 case KVM_CAP_VCPU_EVENTS: 2660 case KVM_CAP_HYPERV: 2661 case KVM_CAP_HYPERV_VAPIC: 2662 case KVM_CAP_HYPERV_SPIN: 2663 case KVM_CAP_HYPERV_SYNIC: 2664 case KVM_CAP_PCI_SEGMENT: 2665 case KVM_CAP_DEBUGREGS: 2666 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2667 case KVM_CAP_XSAVE: 2668 case KVM_CAP_ASYNC_PF: 2669 case KVM_CAP_GET_TSC_KHZ: 2670 case KVM_CAP_KVMCLOCK_CTRL: 2671 case KVM_CAP_READONLY_MEM: 2672 case KVM_CAP_HYPERV_TIME: 2673 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2674 case KVM_CAP_TSC_DEADLINE_TIMER: 2675 case KVM_CAP_ENABLE_CAP_VM: 2676 case KVM_CAP_DISABLE_QUIRKS: 2677 case KVM_CAP_SET_BOOT_CPU_ID: 2678 case KVM_CAP_SPLIT_IRQCHIP: 2679 case KVM_CAP_IMMEDIATE_EXIT: 2680 r = 1; 2681 break; 2682 case KVM_CAP_ADJUST_CLOCK: 2683 r = KVM_CLOCK_TSC_STABLE; 2684 break; 2685 case KVM_CAP_X86_GUEST_MWAIT: 2686 r = kvm_mwait_in_guest(); 2687 break; 2688 case KVM_CAP_X86_SMM: 2689 /* SMBASE is usually relocated above 1M on modern chipsets, 2690 * and SMM handlers might indeed rely on 4G segment limits, 2691 * so do not report SMM to be available if real mode is 2692 * emulated via vm86 mode. Still, do not go to great lengths 2693 * to avoid userspace's usage of the feature, because it is a 2694 * fringe case that is not enabled except via specific settings 2695 * of the module parameters. 2696 */ 2697 r = kvm_x86_ops->cpu_has_high_real_mode_segbase(); 2698 break; 2699 case KVM_CAP_VAPIC: 2700 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2701 break; 2702 case KVM_CAP_NR_VCPUS: 2703 r = KVM_SOFT_MAX_VCPUS; 2704 break; 2705 case KVM_CAP_MAX_VCPUS: 2706 r = KVM_MAX_VCPUS; 2707 break; 2708 case KVM_CAP_NR_MEMSLOTS: 2709 r = KVM_USER_MEM_SLOTS; 2710 break; 2711 case KVM_CAP_PV_MMU: /* obsolete */ 2712 r = 0; 2713 break; 2714 case KVM_CAP_MCE: 2715 r = KVM_MAX_MCE_BANKS; 2716 break; 2717 case KVM_CAP_XCRS: 2718 r = boot_cpu_has(X86_FEATURE_XSAVE); 2719 break; 2720 case KVM_CAP_TSC_CONTROL: 2721 r = kvm_has_tsc_control; 2722 break; 2723 case KVM_CAP_X2APIC_API: 2724 r = KVM_X2APIC_API_VALID_FLAGS; 2725 break; 2726 default: 2727 r = 0; 2728 break; 2729 } 2730 return r; 2731 2732 } 2733 2734 long kvm_arch_dev_ioctl(struct file *filp, 2735 unsigned int ioctl, unsigned long arg) 2736 { 2737 void __user *argp = (void __user *)arg; 2738 long r; 2739 2740 switch (ioctl) { 2741 case KVM_GET_MSR_INDEX_LIST: { 2742 struct kvm_msr_list __user *user_msr_list = argp; 2743 struct kvm_msr_list msr_list; 2744 unsigned n; 2745 2746 r = -EFAULT; 2747 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2748 goto out; 2749 n = msr_list.nmsrs; 2750 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 2751 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2752 goto out; 2753 r = -E2BIG; 2754 if (n < msr_list.nmsrs) 2755 goto out; 2756 r = -EFAULT; 2757 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2758 num_msrs_to_save * sizeof(u32))) 2759 goto out; 2760 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2761 &emulated_msrs, 2762 num_emulated_msrs * sizeof(u32))) 2763 goto out; 2764 r = 0; 2765 break; 2766 } 2767 case KVM_GET_SUPPORTED_CPUID: 2768 case KVM_GET_EMULATED_CPUID: { 2769 struct kvm_cpuid2 __user *cpuid_arg = argp; 2770 struct kvm_cpuid2 cpuid; 2771 2772 r = -EFAULT; 2773 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2774 goto out; 2775 2776 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2777 ioctl); 2778 if (r) 2779 goto out; 2780 2781 r = -EFAULT; 2782 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2783 goto out; 2784 r = 0; 2785 break; 2786 } 2787 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2788 r = -EFAULT; 2789 if (copy_to_user(argp, &kvm_mce_cap_supported, 2790 sizeof(kvm_mce_cap_supported))) 2791 goto out; 2792 r = 0; 2793 break; 2794 } 2795 default: 2796 r = -EINVAL; 2797 } 2798 out: 2799 return r; 2800 } 2801 2802 static void wbinvd_ipi(void *garbage) 2803 { 2804 wbinvd(); 2805 } 2806 2807 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2808 { 2809 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2810 } 2811 2812 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2813 { 2814 /* Address WBINVD may be executed by guest */ 2815 if (need_emulate_wbinvd(vcpu)) { 2816 if (kvm_x86_ops->has_wbinvd_exit()) 2817 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2818 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2819 smp_call_function_single(vcpu->cpu, 2820 wbinvd_ipi, NULL, 1); 2821 } 2822 2823 kvm_x86_ops->vcpu_load(vcpu, cpu); 2824 2825 /* Apply any externally detected TSC adjustments (due to suspend) */ 2826 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2827 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2828 vcpu->arch.tsc_offset_adjustment = 0; 2829 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2830 } 2831 2832 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2833 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2834 rdtsc() - vcpu->arch.last_host_tsc; 2835 if (tsc_delta < 0) 2836 mark_tsc_unstable("KVM discovered backwards TSC"); 2837 2838 if (check_tsc_unstable()) { 2839 u64 offset = kvm_compute_tsc_offset(vcpu, 2840 vcpu->arch.last_guest_tsc); 2841 kvm_vcpu_write_tsc_offset(vcpu, offset); 2842 vcpu->arch.tsc_catchup = 1; 2843 } 2844 if (kvm_lapic_hv_timer_in_use(vcpu) && 2845 kvm_x86_ops->set_hv_timer(vcpu, 2846 kvm_get_lapic_target_expiration_tsc(vcpu))) 2847 kvm_lapic_switch_to_sw_timer(vcpu); 2848 /* 2849 * On a host with synchronized TSC, there is no need to update 2850 * kvmclock on vcpu->cpu migration 2851 */ 2852 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2853 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2854 if (vcpu->cpu != cpu) 2855 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 2856 vcpu->cpu = cpu; 2857 } 2858 2859 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2860 } 2861 2862 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 2863 { 2864 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2865 return; 2866 2867 vcpu->arch.st.steal.preempted = 1; 2868 2869 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, 2870 &vcpu->arch.st.steal.preempted, 2871 offsetof(struct kvm_steal_time, preempted), 2872 sizeof(vcpu->arch.st.steal.preempted)); 2873 } 2874 2875 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2876 { 2877 int idx; 2878 /* 2879 * Disable page faults because we're in atomic context here. 2880 * kvm_write_guest_offset_cached() would call might_fault() 2881 * that relies on pagefault_disable() to tell if there's a 2882 * bug. NOTE: the write to guest memory may not go through if 2883 * during postcopy live migration or if there's heavy guest 2884 * paging. 2885 */ 2886 pagefault_disable(); 2887 /* 2888 * kvm_memslots() will be called by 2889 * kvm_write_guest_offset_cached() so take the srcu lock. 2890 */ 2891 idx = srcu_read_lock(&vcpu->kvm->srcu); 2892 kvm_steal_time_set_preempted(vcpu); 2893 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2894 pagefault_enable(); 2895 kvm_x86_ops->vcpu_put(vcpu); 2896 kvm_put_guest_fpu(vcpu); 2897 vcpu->arch.last_host_tsc = rdtsc(); 2898 } 2899 2900 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2901 struct kvm_lapic_state *s) 2902 { 2903 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 2904 kvm_x86_ops->sync_pir_to_irr(vcpu); 2905 2906 return kvm_apic_get_state(vcpu, s); 2907 } 2908 2909 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2910 struct kvm_lapic_state *s) 2911 { 2912 int r; 2913 2914 r = kvm_apic_set_state(vcpu, s); 2915 if (r) 2916 return r; 2917 update_cr8_intercept(vcpu); 2918 2919 return 0; 2920 } 2921 2922 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 2923 { 2924 return (!lapic_in_kernel(vcpu) || 2925 kvm_apic_accept_pic_intr(vcpu)); 2926 } 2927 2928 /* 2929 * if userspace requested an interrupt window, check that the 2930 * interrupt window is open. 2931 * 2932 * No need to exit to userspace if we already have an interrupt queued. 2933 */ 2934 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 2935 { 2936 return kvm_arch_interrupt_allowed(vcpu) && 2937 !kvm_cpu_has_interrupt(vcpu) && 2938 !kvm_event_needs_reinjection(vcpu) && 2939 kvm_cpu_accept_dm_intr(vcpu); 2940 } 2941 2942 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2943 struct kvm_interrupt *irq) 2944 { 2945 if (irq->irq >= KVM_NR_INTERRUPTS) 2946 return -EINVAL; 2947 2948 if (!irqchip_in_kernel(vcpu->kvm)) { 2949 kvm_queue_interrupt(vcpu, irq->irq, false); 2950 kvm_make_request(KVM_REQ_EVENT, vcpu); 2951 return 0; 2952 } 2953 2954 /* 2955 * With in-kernel LAPIC, we only use this to inject EXTINT, so 2956 * fail for in-kernel 8259. 2957 */ 2958 if (pic_in_kernel(vcpu->kvm)) 2959 return -ENXIO; 2960 2961 if (vcpu->arch.pending_external_vector != -1) 2962 return -EEXIST; 2963 2964 vcpu->arch.pending_external_vector = irq->irq; 2965 kvm_make_request(KVM_REQ_EVENT, vcpu); 2966 return 0; 2967 } 2968 2969 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2970 { 2971 kvm_inject_nmi(vcpu); 2972 2973 return 0; 2974 } 2975 2976 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 2977 { 2978 kvm_make_request(KVM_REQ_SMI, vcpu); 2979 2980 return 0; 2981 } 2982 2983 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2984 struct kvm_tpr_access_ctl *tac) 2985 { 2986 if (tac->flags) 2987 return -EINVAL; 2988 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2989 return 0; 2990 } 2991 2992 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2993 u64 mcg_cap) 2994 { 2995 int r; 2996 unsigned bank_num = mcg_cap & 0xff, bank; 2997 2998 r = -EINVAL; 2999 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3000 goto out; 3001 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3002 goto out; 3003 r = 0; 3004 vcpu->arch.mcg_cap = mcg_cap; 3005 /* Init IA32_MCG_CTL to all 1s */ 3006 if (mcg_cap & MCG_CTL_P) 3007 vcpu->arch.mcg_ctl = ~(u64)0; 3008 /* Init IA32_MCi_CTL to all 1s */ 3009 for (bank = 0; bank < bank_num; bank++) 3010 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3011 3012 if (kvm_x86_ops->setup_mce) 3013 kvm_x86_ops->setup_mce(vcpu); 3014 out: 3015 return r; 3016 } 3017 3018 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3019 struct kvm_x86_mce *mce) 3020 { 3021 u64 mcg_cap = vcpu->arch.mcg_cap; 3022 unsigned bank_num = mcg_cap & 0xff; 3023 u64 *banks = vcpu->arch.mce_banks; 3024 3025 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3026 return -EINVAL; 3027 /* 3028 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3029 * reporting is disabled 3030 */ 3031 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3032 vcpu->arch.mcg_ctl != ~(u64)0) 3033 return 0; 3034 banks += 4 * mce->bank; 3035 /* 3036 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3037 * reporting is disabled for the bank 3038 */ 3039 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3040 return 0; 3041 if (mce->status & MCI_STATUS_UC) { 3042 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3043 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3044 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3045 return 0; 3046 } 3047 if (banks[1] & MCI_STATUS_VAL) 3048 mce->status |= MCI_STATUS_OVER; 3049 banks[2] = mce->addr; 3050 banks[3] = mce->misc; 3051 vcpu->arch.mcg_status = mce->mcg_status; 3052 banks[1] = mce->status; 3053 kvm_queue_exception(vcpu, MC_VECTOR); 3054 } else if (!(banks[1] & MCI_STATUS_VAL) 3055 || !(banks[1] & MCI_STATUS_UC)) { 3056 if (banks[1] & MCI_STATUS_VAL) 3057 mce->status |= MCI_STATUS_OVER; 3058 banks[2] = mce->addr; 3059 banks[3] = mce->misc; 3060 banks[1] = mce->status; 3061 } else 3062 banks[1] |= MCI_STATUS_OVER; 3063 return 0; 3064 } 3065 3066 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3067 struct kvm_vcpu_events *events) 3068 { 3069 process_nmi(vcpu); 3070 events->exception.injected = 3071 vcpu->arch.exception.pending && 3072 !kvm_exception_is_soft(vcpu->arch.exception.nr); 3073 events->exception.nr = vcpu->arch.exception.nr; 3074 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3075 events->exception.pad = 0; 3076 events->exception.error_code = vcpu->arch.exception.error_code; 3077 3078 events->interrupt.injected = 3079 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 3080 events->interrupt.nr = vcpu->arch.interrupt.nr; 3081 events->interrupt.soft = 0; 3082 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3083 3084 events->nmi.injected = vcpu->arch.nmi_injected; 3085 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3086 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3087 events->nmi.pad = 0; 3088 3089 events->sipi_vector = 0; /* never valid when reporting to user space */ 3090 3091 events->smi.smm = is_smm(vcpu); 3092 events->smi.pending = vcpu->arch.smi_pending; 3093 events->smi.smm_inside_nmi = 3094 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3095 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3096 3097 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3098 | KVM_VCPUEVENT_VALID_SHADOW 3099 | KVM_VCPUEVENT_VALID_SMM); 3100 memset(&events->reserved, 0, sizeof(events->reserved)); 3101 } 3102 3103 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags); 3104 3105 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3106 struct kvm_vcpu_events *events) 3107 { 3108 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3109 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3110 | KVM_VCPUEVENT_VALID_SHADOW 3111 | KVM_VCPUEVENT_VALID_SMM)) 3112 return -EINVAL; 3113 3114 if (events->exception.injected && 3115 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR || 3116 is_guest_mode(vcpu))) 3117 return -EINVAL; 3118 3119 /* INITs are latched while in SMM */ 3120 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 3121 (events->smi.smm || events->smi.pending) && 3122 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 3123 return -EINVAL; 3124 3125 process_nmi(vcpu); 3126 vcpu->arch.exception.pending = events->exception.injected; 3127 vcpu->arch.exception.nr = events->exception.nr; 3128 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3129 vcpu->arch.exception.error_code = events->exception.error_code; 3130 3131 vcpu->arch.interrupt.pending = events->interrupt.injected; 3132 vcpu->arch.interrupt.nr = events->interrupt.nr; 3133 vcpu->arch.interrupt.soft = events->interrupt.soft; 3134 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3135 kvm_x86_ops->set_interrupt_shadow(vcpu, 3136 events->interrupt.shadow); 3137 3138 vcpu->arch.nmi_injected = events->nmi.injected; 3139 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3140 vcpu->arch.nmi_pending = events->nmi.pending; 3141 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3142 3143 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3144 lapic_in_kernel(vcpu)) 3145 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3146 3147 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3148 u32 hflags = vcpu->arch.hflags; 3149 if (events->smi.smm) 3150 hflags |= HF_SMM_MASK; 3151 else 3152 hflags &= ~HF_SMM_MASK; 3153 kvm_set_hflags(vcpu, hflags); 3154 3155 vcpu->arch.smi_pending = events->smi.pending; 3156 if (events->smi.smm_inside_nmi) 3157 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3158 else 3159 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3160 if (lapic_in_kernel(vcpu)) { 3161 if (events->smi.latched_init) 3162 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3163 else 3164 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3165 } 3166 } 3167 3168 kvm_make_request(KVM_REQ_EVENT, vcpu); 3169 3170 return 0; 3171 } 3172 3173 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3174 struct kvm_debugregs *dbgregs) 3175 { 3176 unsigned long val; 3177 3178 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3179 kvm_get_dr(vcpu, 6, &val); 3180 dbgregs->dr6 = val; 3181 dbgregs->dr7 = vcpu->arch.dr7; 3182 dbgregs->flags = 0; 3183 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3184 } 3185 3186 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3187 struct kvm_debugregs *dbgregs) 3188 { 3189 if (dbgregs->flags) 3190 return -EINVAL; 3191 3192 if (dbgregs->dr6 & ~0xffffffffull) 3193 return -EINVAL; 3194 if (dbgregs->dr7 & ~0xffffffffull) 3195 return -EINVAL; 3196 3197 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3198 kvm_update_dr0123(vcpu); 3199 vcpu->arch.dr6 = dbgregs->dr6; 3200 kvm_update_dr6(vcpu); 3201 vcpu->arch.dr7 = dbgregs->dr7; 3202 kvm_update_dr7(vcpu); 3203 3204 return 0; 3205 } 3206 3207 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3208 3209 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3210 { 3211 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3212 u64 xstate_bv = xsave->header.xfeatures; 3213 u64 valid; 3214 3215 /* 3216 * Copy legacy XSAVE area, to avoid complications with CPUID 3217 * leaves 0 and 1 in the loop below. 3218 */ 3219 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 3220 3221 /* Set XSTATE_BV */ 3222 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 3223 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 3224 3225 /* 3226 * Copy each region from the possibly compacted offset to the 3227 * non-compacted offset. 3228 */ 3229 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3230 while (valid) { 3231 u64 feature = valid & -valid; 3232 int index = fls64(feature) - 1; 3233 void *src = get_xsave_addr(xsave, feature); 3234 3235 if (src) { 3236 u32 size, offset, ecx, edx; 3237 cpuid_count(XSTATE_CPUID, index, 3238 &size, &offset, &ecx, &edx); 3239 memcpy(dest + offset, src, size); 3240 } 3241 3242 valid -= feature; 3243 } 3244 } 3245 3246 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 3247 { 3248 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3249 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 3250 u64 valid; 3251 3252 /* 3253 * Copy legacy XSAVE area, to avoid complications with CPUID 3254 * leaves 0 and 1 in the loop below. 3255 */ 3256 memcpy(xsave, src, XSAVE_HDR_OFFSET); 3257 3258 /* Set XSTATE_BV and possibly XCOMP_BV. */ 3259 xsave->header.xfeatures = xstate_bv; 3260 if (boot_cpu_has(X86_FEATURE_XSAVES)) 3261 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 3262 3263 /* 3264 * Copy each region from the non-compacted offset to the 3265 * possibly compacted offset. 3266 */ 3267 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3268 while (valid) { 3269 u64 feature = valid & -valid; 3270 int index = fls64(feature) - 1; 3271 void *dest = get_xsave_addr(xsave, feature); 3272 3273 if (dest) { 3274 u32 size, offset, ecx, edx; 3275 cpuid_count(XSTATE_CPUID, index, 3276 &size, &offset, &ecx, &edx); 3277 memcpy(dest, src + offset, size); 3278 } 3279 3280 valid -= feature; 3281 } 3282 } 3283 3284 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3285 struct kvm_xsave *guest_xsave) 3286 { 3287 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3288 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 3289 fill_xsave((u8 *) guest_xsave->region, vcpu); 3290 } else { 3291 memcpy(guest_xsave->region, 3292 &vcpu->arch.guest_fpu.state.fxsave, 3293 sizeof(struct fxregs_state)); 3294 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3295 XFEATURE_MASK_FPSSE; 3296 } 3297 } 3298 3299 #define XSAVE_MXCSR_OFFSET 24 3300 3301 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3302 struct kvm_xsave *guest_xsave) 3303 { 3304 u64 xstate_bv = 3305 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3306 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 3307 3308 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3309 /* 3310 * Here we allow setting states that are not present in 3311 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3312 * with old userspace. 3313 */ 3314 if (xstate_bv & ~kvm_supported_xcr0() || 3315 mxcsr & ~mxcsr_feature_mask) 3316 return -EINVAL; 3317 load_xsave(vcpu, (u8 *)guest_xsave->region); 3318 } else { 3319 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 3320 mxcsr & ~mxcsr_feature_mask) 3321 return -EINVAL; 3322 memcpy(&vcpu->arch.guest_fpu.state.fxsave, 3323 guest_xsave->region, sizeof(struct fxregs_state)); 3324 } 3325 return 0; 3326 } 3327 3328 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3329 struct kvm_xcrs *guest_xcrs) 3330 { 3331 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 3332 guest_xcrs->nr_xcrs = 0; 3333 return; 3334 } 3335 3336 guest_xcrs->nr_xcrs = 1; 3337 guest_xcrs->flags = 0; 3338 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3339 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3340 } 3341 3342 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3343 struct kvm_xcrs *guest_xcrs) 3344 { 3345 int i, r = 0; 3346 3347 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 3348 return -EINVAL; 3349 3350 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3351 return -EINVAL; 3352 3353 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3354 /* Only support XCR0 currently */ 3355 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3356 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3357 guest_xcrs->xcrs[i].value); 3358 break; 3359 } 3360 if (r) 3361 r = -EINVAL; 3362 return r; 3363 } 3364 3365 /* 3366 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3367 * stopped by the hypervisor. This function will be called from the host only. 3368 * EINVAL is returned when the host attempts to set the flag for a guest that 3369 * does not support pv clocks. 3370 */ 3371 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3372 { 3373 if (!vcpu->arch.pv_time_enabled) 3374 return -EINVAL; 3375 vcpu->arch.pvclock_set_guest_stopped_request = true; 3376 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3377 return 0; 3378 } 3379 3380 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3381 struct kvm_enable_cap *cap) 3382 { 3383 if (cap->flags) 3384 return -EINVAL; 3385 3386 switch (cap->cap) { 3387 case KVM_CAP_HYPERV_SYNIC: 3388 if (!irqchip_in_kernel(vcpu->kvm)) 3389 return -EINVAL; 3390 return kvm_hv_activate_synic(vcpu); 3391 default: 3392 return -EINVAL; 3393 } 3394 } 3395 3396 long kvm_arch_vcpu_ioctl(struct file *filp, 3397 unsigned int ioctl, unsigned long arg) 3398 { 3399 struct kvm_vcpu *vcpu = filp->private_data; 3400 void __user *argp = (void __user *)arg; 3401 int r; 3402 union { 3403 struct kvm_lapic_state *lapic; 3404 struct kvm_xsave *xsave; 3405 struct kvm_xcrs *xcrs; 3406 void *buffer; 3407 } u; 3408 3409 u.buffer = NULL; 3410 switch (ioctl) { 3411 case KVM_GET_LAPIC: { 3412 r = -EINVAL; 3413 if (!lapic_in_kernel(vcpu)) 3414 goto out; 3415 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3416 3417 r = -ENOMEM; 3418 if (!u.lapic) 3419 goto out; 3420 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3421 if (r) 3422 goto out; 3423 r = -EFAULT; 3424 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3425 goto out; 3426 r = 0; 3427 break; 3428 } 3429 case KVM_SET_LAPIC: { 3430 r = -EINVAL; 3431 if (!lapic_in_kernel(vcpu)) 3432 goto out; 3433 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3434 if (IS_ERR(u.lapic)) 3435 return PTR_ERR(u.lapic); 3436 3437 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3438 break; 3439 } 3440 case KVM_INTERRUPT: { 3441 struct kvm_interrupt irq; 3442 3443 r = -EFAULT; 3444 if (copy_from_user(&irq, argp, sizeof irq)) 3445 goto out; 3446 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3447 break; 3448 } 3449 case KVM_NMI: { 3450 r = kvm_vcpu_ioctl_nmi(vcpu); 3451 break; 3452 } 3453 case KVM_SMI: { 3454 r = kvm_vcpu_ioctl_smi(vcpu); 3455 break; 3456 } 3457 case KVM_SET_CPUID: { 3458 struct kvm_cpuid __user *cpuid_arg = argp; 3459 struct kvm_cpuid cpuid; 3460 3461 r = -EFAULT; 3462 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3463 goto out; 3464 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3465 break; 3466 } 3467 case KVM_SET_CPUID2: { 3468 struct kvm_cpuid2 __user *cpuid_arg = argp; 3469 struct kvm_cpuid2 cpuid; 3470 3471 r = -EFAULT; 3472 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3473 goto out; 3474 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3475 cpuid_arg->entries); 3476 break; 3477 } 3478 case KVM_GET_CPUID2: { 3479 struct kvm_cpuid2 __user *cpuid_arg = argp; 3480 struct kvm_cpuid2 cpuid; 3481 3482 r = -EFAULT; 3483 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3484 goto out; 3485 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3486 cpuid_arg->entries); 3487 if (r) 3488 goto out; 3489 r = -EFAULT; 3490 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3491 goto out; 3492 r = 0; 3493 break; 3494 } 3495 case KVM_GET_MSRS: 3496 r = msr_io(vcpu, argp, do_get_msr, 1); 3497 break; 3498 case KVM_SET_MSRS: 3499 r = msr_io(vcpu, argp, do_set_msr, 0); 3500 break; 3501 case KVM_TPR_ACCESS_REPORTING: { 3502 struct kvm_tpr_access_ctl tac; 3503 3504 r = -EFAULT; 3505 if (copy_from_user(&tac, argp, sizeof tac)) 3506 goto out; 3507 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3508 if (r) 3509 goto out; 3510 r = -EFAULT; 3511 if (copy_to_user(argp, &tac, sizeof tac)) 3512 goto out; 3513 r = 0; 3514 break; 3515 }; 3516 case KVM_SET_VAPIC_ADDR: { 3517 struct kvm_vapic_addr va; 3518 int idx; 3519 3520 r = -EINVAL; 3521 if (!lapic_in_kernel(vcpu)) 3522 goto out; 3523 r = -EFAULT; 3524 if (copy_from_user(&va, argp, sizeof va)) 3525 goto out; 3526 idx = srcu_read_lock(&vcpu->kvm->srcu); 3527 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3528 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3529 break; 3530 } 3531 case KVM_X86_SETUP_MCE: { 3532 u64 mcg_cap; 3533 3534 r = -EFAULT; 3535 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3536 goto out; 3537 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3538 break; 3539 } 3540 case KVM_X86_SET_MCE: { 3541 struct kvm_x86_mce mce; 3542 3543 r = -EFAULT; 3544 if (copy_from_user(&mce, argp, sizeof mce)) 3545 goto out; 3546 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3547 break; 3548 } 3549 case KVM_GET_VCPU_EVENTS: { 3550 struct kvm_vcpu_events events; 3551 3552 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3553 3554 r = -EFAULT; 3555 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3556 break; 3557 r = 0; 3558 break; 3559 } 3560 case KVM_SET_VCPU_EVENTS: { 3561 struct kvm_vcpu_events events; 3562 3563 r = -EFAULT; 3564 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3565 break; 3566 3567 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3568 break; 3569 } 3570 case KVM_GET_DEBUGREGS: { 3571 struct kvm_debugregs dbgregs; 3572 3573 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3574 3575 r = -EFAULT; 3576 if (copy_to_user(argp, &dbgregs, 3577 sizeof(struct kvm_debugregs))) 3578 break; 3579 r = 0; 3580 break; 3581 } 3582 case KVM_SET_DEBUGREGS: { 3583 struct kvm_debugregs dbgregs; 3584 3585 r = -EFAULT; 3586 if (copy_from_user(&dbgregs, argp, 3587 sizeof(struct kvm_debugregs))) 3588 break; 3589 3590 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3591 break; 3592 } 3593 case KVM_GET_XSAVE: { 3594 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3595 r = -ENOMEM; 3596 if (!u.xsave) 3597 break; 3598 3599 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3600 3601 r = -EFAULT; 3602 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3603 break; 3604 r = 0; 3605 break; 3606 } 3607 case KVM_SET_XSAVE: { 3608 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3609 if (IS_ERR(u.xsave)) 3610 return PTR_ERR(u.xsave); 3611 3612 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3613 break; 3614 } 3615 case KVM_GET_XCRS: { 3616 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3617 r = -ENOMEM; 3618 if (!u.xcrs) 3619 break; 3620 3621 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3622 3623 r = -EFAULT; 3624 if (copy_to_user(argp, u.xcrs, 3625 sizeof(struct kvm_xcrs))) 3626 break; 3627 r = 0; 3628 break; 3629 } 3630 case KVM_SET_XCRS: { 3631 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3632 if (IS_ERR(u.xcrs)) 3633 return PTR_ERR(u.xcrs); 3634 3635 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3636 break; 3637 } 3638 case KVM_SET_TSC_KHZ: { 3639 u32 user_tsc_khz; 3640 3641 r = -EINVAL; 3642 user_tsc_khz = (u32)arg; 3643 3644 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3645 goto out; 3646 3647 if (user_tsc_khz == 0) 3648 user_tsc_khz = tsc_khz; 3649 3650 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 3651 r = 0; 3652 3653 goto out; 3654 } 3655 case KVM_GET_TSC_KHZ: { 3656 r = vcpu->arch.virtual_tsc_khz; 3657 goto out; 3658 } 3659 case KVM_KVMCLOCK_CTRL: { 3660 r = kvm_set_guest_paused(vcpu); 3661 goto out; 3662 } 3663 case KVM_ENABLE_CAP: { 3664 struct kvm_enable_cap cap; 3665 3666 r = -EFAULT; 3667 if (copy_from_user(&cap, argp, sizeof(cap))) 3668 goto out; 3669 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3670 break; 3671 } 3672 default: 3673 r = -EINVAL; 3674 } 3675 out: 3676 kfree(u.buffer); 3677 return r; 3678 } 3679 3680 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3681 { 3682 return VM_FAULT_SIGBUS; 3683 } 3684 3685 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3686 { 3687 int ret; 3688 3689 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3690 return -EINVAL; 3691 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3692 return ret; 3693 } 3694 3695 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3696 u64 ident_addr) 3697 { 3698 kvm->arch.ept_identity_map_addr = ident_addr; 3699 return 0; 3700 } 3701 3702 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3703 u32 kvm_nr_mmu_pages) 3704 { 3705 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3706 return -EINVAL; 3707 3708 mutex_lock(&kvm->slots_lock); 3709 3710 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3711 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3712 3713 mutex_unlock(&kvm->slots_lock); 3714 return 0; 3715 } 3716 3717 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3718 { 3719 return kvm->arch.n_max_mmu_pages; 3720 } 3721 3722 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3723 { 3724 struct kvm_pic *pic = kvm->arch.vpic; 3725 int r; 3726 3727 r = 0; 3728 switch (chip->chip_id) { 3729 case KVM_IRQCHIP_PIC_MASTER: 3730 memcpy(&chip->chip.pic, &pic->pics[0], 3731 sizeof(struct kvm_pic_state)); 3732 break; 3733 case KVM_IRQCHIP_PIC_SLAVE: 3734 memcpy(&chip->chip.pic, &pic->pics[1], 3735 sizeof(struct kvm_pic_state)); 3736 break; 3737 case KVM_IRQCHIP_IOAPIC: 3738 kvm_get_ioapic(kvm, &chip->chip.ioapic); 3739 break; 3740 default: 3741 r = -EINVAL; 3742 break; 3743 } 3744 return r; 3745 } 3746 3747 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3748 { 3749 struct kvm_pic *pic = kvm->arch.vpic; 3750 int r; 3751 3752 r = 0; 3753 switch (chip->chip_id) { 3754 case KVM_IRQCHIP_PIC_MASTER: 3755 spin_lock(&pic->lock); 3756 memcpy(&pic->pics[0], &chip->chip.pic, 3757 sizeof(struct kvm_pic_state)); 3758 spin_unlock(&pic->lock); 3759 break; 3760 case KVM_IRQCHIP_PIC_SLAVE: 3761 spin_lock(&pic->lock); 3762 memcpy(&pic->pics[1], &chip->chip.pic, 3763 sizeof(struct kvm_pic_state)); 3764 spin_unlock(&pic->lock); 3765 break; 3766 case KVM_IRQCHIP_IOAPIC: 3767 kvm_set_ioapic(kvm, &chip->chip.ioapic); 3768 break; 3769 default: 3770 r = -EINVAL; 3771 break; 3772 } 3773 kvm_pic_update_irq(pic); 3774 return r; 3775 } 3776 3777 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3778 { 3779 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 3780 3781 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 3782 3783 mutex_lock(&kps->lock); 3784 memcpy(ps, &kps->channels, sizeof(*ps)); 3785 mutex_unlock(&kps->lock); 3786 return 0; 3787 } 3788 3789 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3790 { 3791 int i; 3792 struct kvm_pit *pit = kvm->arch.vpit; 3793 3794 mutex_lock(&pit->pit_state.lock); 3795 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 3796 for (i = 0; i < 3; i++) 3797 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 3798 mutex_unlock(&pit->pit_state.lock); 3799 return 0; 3800 } 3801 3802 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3803 { 3804 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3805 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3806 sizeof(ps->channels)); 3807 ps->flags = kvm->arch.vpit->pit_state.flags; 3808 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3809 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3810 return 0; 3811 } 3812 3813 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3814 { 3815 int start = 0; 3816 int i; 3817 u32 prev_legacy, cur_legacy; 3818 struct kvm_pit *pit = kvm->arch.vpit; 3819 3820 mutex_lock(&pit->pit_state.lock); 3821 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3822 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3823 if (!prev_legacy && cur_legacy) 3824 start = 1; 3825 memcpy(&pit->pit_state.channels, &ps->channels, 3826 sizeof(pit->pit_state.channels)); 3827 pit->pit_state.flags = ps->flags; 3828 for (i = 0; i < 3; i++) 3829 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 3830 start && i == 0); 3831 mutex_unlock(&pit->pit_state.lock); 3832 return 0; 3833 } 3834 3835 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3836 struct kvm_reinject_control *control) 3837 { 3838 struct kvm_pit *pit = kvm->arch.vpit; 3839 3840 if (!pit) 3841 return -ENXIO; 3842 3843 /* pit->pit_state.lock was overloaded to prevent userspace from getting 3844 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 3845 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 3846 */ 3847 mutex_lock(&pit->pit_state.lock); 3848 kvm_pit_set_reinject(pit, control->pit_reinject); 3849 mutex_unlock(&pit->pit_state.lock); 3850 3851 return 0; 3852 } 3853 3854 /** 3855 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3856 * @kvm: kvm instance 3857 * @log: slot id and address to which we copy the log 3858 * 3859 * Steps 1-4 below provide general overview of dirty page logging. See 3860 * kvm_get_dirty_log_protect() function description for additional details. 3861 * 3862 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 3863 * always flush the TLB (step 4) even if previous step failed and the dirty 3864 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 3865 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 3866 * writes will be marked dirty for next log read. 3867 * 3868 * 1. Take a snapshot of the bit and clear it if needed. 3869 * 2. Write protect the corresponding page. 3870 * 3. Copy the snapshot to the userspace. 3871 * 4. Flush TLB's if needed. 3872 */ 3873 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3874 { 3875 bool is_dirty = false; 3876 int r; 3877 3878 mutex_lock(&kvm->slots_lock); 3879 3880 /* 3881 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 3882 */ 3883 if (kvm_x86_ops->flush_log_dirty) 3884 kvm_x86_ops->flush_log_dirty(kvm); 3885 3886 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 3887 3888 /* 3889 * All the TLBs can be flushed out of mmu lock, see the comments in 3890 * kvm_mmu_slot_remove_write_access(). 3891 */ 3892 lockdep_assert_held(&kvm->slots_lock); 3893 if (is_dirty) 3894 kvm_flush_remote_tlbs(kvm); 3895 3896 mutex_unlock(&kvm->slots_lock); 3897 return r; 3898 } 3899 3900 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3901 bool line_status) 3902 { 3903 if (!irqchip_in_kernel(kvm)) 3904 return -ENXIO; 3905 3906 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3907 irq_event->irq, irq_event->level, 3908 line_status); 3909 return 0; 3910 } 3911 3912 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3913 struct kvm_enable_cap *cap) 3914 { 3915 int r; 3916 3917 if (cap->flags) 3918 return -EINVAL; 3919 3920 switch (cap->cap) { 3921 case KVM_CAP_DISABLE_QUIRKS: 3922 kvm->arch.disabled_quirks = cap->args[0]; 3923 r = 0; 3924 break; 3925 case KVM_CAP_SPLIT_IRQCHIP: { 3926 mutex_lock(&kvm->lock); 3927 r = -EINVAL; 3928 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 3929 goto split_irqchip_unlock; 3930 r = -EEXIST; 3931 if (irqchip_in_kernel(kvm)) 3932 goto split_irqchip_unlock; 3933 if (kvm->created_vcpus) 3934 goto split_irqchip_unlock; 3935 r = kvm_setup_empty_irq_routing(kvm); 3936 if (r) 3937 goto split_irqchip_unlock; 3938 /* Pairs with irqchip_in_kernel. */ 3939 smp_wmb(); 3940 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 3941 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 3942 r = 0; 3943 split_irqchip_unlock: 3944 mutex_unlock(&kvm->lock); 3945 break; 3946 } 3947 case KVM_CAP_X2APIC_API: 3948 r = -EINVAL; 3949 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 3950 break; 3951 3952 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 3953 kvm->arch.x2apic_format = true; 3954 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 3955 kvm->arch.x2apic_broadcast_quirk_disabled = true; 3956 3957 r = 0; 3958 break; 3959 default: 3960 r = -EINVAL; 3961 break; 3962 } 3963 return r; 3964 } 3965 3966 long kvm_arch_vm_ioctl(struct file *filp, 3967 unsigned int ioctl, unsigned long arg) 3968 { 3969 struct kvm *kvm = filp->private_data; 3970 void __user *argp = (void __user *)arg; 3971 int r = -ENOTTY; 3972 /* 3973 * This union makes it completely explicit to gcc-3.x 3974 * that these two variables' stack usage should be 3975 * combined, not added together. 3976 */ 3977 union { 3978 struct kvm_pit_state ps; 3979 struct kvm_pit_state2 ps2; 3980 struct kvm_pit_config pit_config; 3981 } u; 3982 3983 switch (ioctl) { 3984 case KVM_SET_TSS_ADDR: 3985 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3986 break; 3987 case KVM_SET_IDENTITY_MAP_ADDR: { 3988 u64 ident_addr; 3989 3990 r = -EFAULT; 3991 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3992 goto out; 3993 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3994 break; 3995 } 3996 case KVM_SET_NR_MMU_PAGES: 3997 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3998 break; 3999 case KVM_GET_NR_MMU_PAGES: 4000 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4001 break; 4002 case KVM_CREATE_IRQCHIP: { 4003 mutex_lock(&kvm->lock); 4004 4005 r = -EEXIST; 4006 if (irqchip_in_kernel(kvm)) 4007 goto create_irqchip_unlock; 4008 4009 r = -EINVAL; 4010 if (kvm->created_vcpus) 4011 goto create_irqchip_unlock; 4012 4013 r = kvm_pic_init(kvm); 4014 if (r) 4015 goto create_irqchip_unlock; 4016 4017 r = kvm_ioapic_init(kvm); 4018 if (r) { 4019 kvm_pic_destroy(kvm); 4020 goto create_irqchip_unlock; 4021 } 4022 4023 r = kvm_setup_default_irq_routing(kvm); 4024 if (r) { 4025 kvm_ioapic_destroy(kvm); 4026 kvm_pic_destroy(kvm); 4027 goto create_irqchip_unlock; 4028 } 4029 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4030 smp_wmb(); 4031 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4032 create_irqchip_unlock: 4033 mutex_unlock(&kvm->lock); 4034 break; 4035 } 4036 case KVM_CREATE_PIT: 4037 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 4038 goto create_pit; 4039 case KVM_CREATE_PIT2: 4040 r = -EFAULT; 4041 if (copy_from_user(&u.pit_config, argp, 4042 sizeof(struct kvm_pit_config))) 4043 goto out; 4044 create_pit: 4045 mutex_lock(&kvm->lock); 4046 r = -EEXIST; 4047 if (kvm->arch.vpit) 4048 goto create_pit_unlock; 4049 r = -ENOMEM; 4050 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 4051 if (kvm->arch.vpit) 4052 r = 0; 4053 create_pit_unlock: 4054 mutex_unlock(&kvm->lock); 4055 break; 4056 case KVM_GET_IRQCHIP: { 4057 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4058 struct kvm_irqchip *chip; 4059 4060 chip = memdup_user(argp, sizeof(*chip)); 4061 if (IS_ERR(chip)) { 4062 r = PTR_ERR(chip); 4063 goto out; 4064 } 4065 4066 r = -ENXIO; 4067 if (!irqchip_kernel(kvm)) 4068 goto get_irqchip_out; 4069 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 4070 if (r) 4071 goto get_irqchip_out; 4072 r = -EFAULT; 4073 if (copy_to_user(argp, chip, sizeof *chip)) 4074 goto get_irqchip_out; 4075 r = 0; 4076 get_irqchip_out: 4077 kfree(chip); 4078 break; 4079 } 4080 case KVM_SET_IRQCHIP: { 4081 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4082 struct kvm_irqchip *chip; 4083 4084 chip = memdup_user(argp, sizeof(*chip)); 4085 if (IS_ERR(chip)) { 4086 r = PTR_ERR(chip); 4087 goto out; 4088 } 4089 4090 r = -ENXIO; 4091 if (!irqchip_kernel(kvm)) 4092 goto set_irqchip_out; 4093 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 4094 if (r) 4095 goto set_irqchip_out; 4096 r = 0; 4097 set_irqchip_out: 4098 kfree(chip); 4099 break; 4100 } 4101 case KVM_GET_PIT: { 4102 r = -EFAULT; 4103 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 4104 goto out; 4105 r = -ENXIO; 4106 if (!kvm->arch.vpit) 4107 goto out; 4108 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 4109 if (r) 4110 goto out; 4111 r = -EFAULT; 4112 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 4113 goto out; 4114 r = 0; 4115 break; 4116 } 4117 case KVM_SET_PIT: { 4118 r = -EFAULT; 4119 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 4120 goto out; 4121 r = -ENXIO; 4122 if (!kvm->arch.vpit) 4123 goto out; 4124 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 4125 break; 4126 } 4127 case KVM_GET_PIT2: { 4128 r = -ENXIO; 4129 if (!kvm->arch.vpit) 4130 goto out; 4131 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 4132 if (r) 4133 goto out; 4134 r = -EFAULT; 4135 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 4136 goto out; 4137 r = 0; 4138 break; 4139 } 4140 case KVM_SET_PIT2: { 4141 r = -EFAULT; 4142 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 4143 goto out; 4144 r = -ENXIO; 4145 if (!kvm->arch.vpit) 4146 goto out; 4147 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 4148 break; 4149 } 4150 case KVM_REINJECT_CONTROL: { 4151 struct kvm_reinject_control control; 4152 r = -EFAULT; 4153 if (copy_from_user(&control, argp, sizeof(control))) 4154 goto out; 4155 r = kvm_vm_ioctl_reinject(kvm, &control); 4156 break; 4157 } 4158 case KVM_SET_BOOT_CPU_ID: 4159 r = 0; 4160 mutex_lock(&kvm->lock); 4161 if (kvm->created_vcpus) 4162 r = -EBUSY; 4163 else 4164 kvm->arch.bsp_vcpu_id = arg; 4165 mutex_unlock(&kvm->lock); 4166 break; 4167 case KVM_XEN_HVM_CONFIG: { 4168 r = -EFAULT; 4169 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 4170 sizeof(struct kvm_xen_hvm_config))) 4171 goto out; 4172 r = -EINVAL; 4173 if (kvm->arch.xen_hvm_config.flags) 4174 goto out; 4175 r = 0; 4176 break; 4177 } 4178 case KVM_SET_CLOCK: { 4179 struct kvm_clock_data user_ns; 4180 u64 now_ns; 4181 4182 r = -EFAULT; 4183 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 4184 goto out; 4185 4186 r = -EINVAL; 4187 if (user_ns.flags) 4188 goto out; 4189 4190 r = 0; 4191 now_ns = get_kvmclock_ns(kvm); 4192 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 4193 kvm_gen_update_masterclock(kvm); 4194 break; 4195 } 4196 case KVM_GET_CLOCK: { 4197 struct kvm_clock_data user_ns; 4198 u64 now_ns; 4199 4200 now_ns = get_kvmclock_ns(kvm); 4201 user_ns.clock = now_ns; 4202 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 4203 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 4204 4205 r = -EFAULT; 4206 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 4207 goto out; 4208 r = 0; 4209 break; 4210 } 4211 case KVM_ENABLE_CAP: { 4212 struct kvm_enable_cap cap; 4213 4214 r = -EFAULT; 4215 if (copy_from_user(&cap, argp, sizeof(cap))) 4216 goto out; 4217 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 4218 break; 4219 } 4220 default: 4221 r = -ENOTTY; 4222 } 4223 out: 4224 return r; 4225 } 4226 4227 static void kvm_init_msr_list(void) 4228 { 4229 u32 dummy[2]; 4230 unsigned i, j; 4231 4232 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { 4233 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 4234 continue; 4235 4236 /* 4237 * Even MSRs that are valid in the host may not be exposed 4238 * to the guests in some cases. 4239 */ 4240 switch (msrs_to_save[i]) { 4241 case MSR_IA32_BNDCFGS: 4242 if (!kvm_x86_ops->mpx_supported()) 4243 continue; 4244 break; 4245 case MSR_TSC_AUX: 4246 if (!kvm_x86_ops->rdtscp_supported()) 4247 continue; 4248 break; 4249 default: 4250 break; 4251 } 4252 4253 if (j < i) 4254 msrs_to_save[j] = msrs_to_save[i]; 4255 j++; 4256 } 4257 num_msrs_to_save = j; 4258 4259 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { 4260 switch (emulated_msrs[i]) { 4261 case MSR_IA32_SMBASE: 4262 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase()) 4263 continue; 4264 break; 4265 default: 4266 break; 4267 } 4268 4269 if (j < i) 4270 emulated_msrs[j] = emulated_msrs[i]; 4271 j++; 4272 } 4273 num_emulated_msrs = j; 4274 } 4275 4276 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 4277 const void *v) 4278 { 4279 int handled = 0; 4280 int n; 4281 4282 do { 4283 n = min(len, 8); 4284 if (!(lapic_in_kernel(vcpu) && 4285 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 4286 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 4287 break; 4288 handled += n; 4289 addr += n; 4290 len -= n; 4291 v += n; 4292 } while (len); 4293 4294 return handled; 4295 } 4296 4297 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 4298 { 4299 int handled = 0; 4300 int n; 4301 4302 do { 4303 n = min(len, 8); 4304 if (!(lapic_in_kernel(vcpu) && 4305 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 4306 addr, n, v)) 4307 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 4308 break; 4309 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 4310 handled += n; 4311 addr += n; 4312 len -= n; 4313 v += n; 4314 } while (len); 4315 4316 return handled; 4317 } 4318 4319 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4320 struct kvm_segment *var, int seg) 4321 { 4322 kvm_x86_ops->set_segment(vcpu, var, seg); 4323 } 4324 4325 void kvm_get_segment(struct kvm_vcpu *vcpu, 4326 struct kvm_segment *var, int seg) 4327 { 4328 kvm_x86_ops->get_segment(vcpu, var, seg); 4329 } 4330 4331 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 4332 struct x86_exception *exception) 4333 { 4334 gpa_t t_gpa; 4335 4336 BUG_ON(!mmu_is_nested(vcpu)); 4337 4338 /* NPT walks are always user-walks */ 4339 access |= PFERR_USER_MASK; 4340 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); 4341 4342 return t_gpa; 4343 } 4344 4345 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4346 struct x86_exception *exception) 4347 { 4348 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4349 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4350 } 4351 4352 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4353 struct x86_exception *exception) 4354 { 4355 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4356 access |= PFERR_FETCH_MASK; 4357 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4358 } 4359 4360 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4361 struct x86_exception *exception) 4362 { 4363 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4364 access |= PFERR_WRITE_MASK; 4365 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4366 } 4367 4368 /* uses this to access any guest's mapped memory without checking CPL */ 4369 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4370 struct x86_exception *exception) 4371 { 4372 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4373 } 4374 4375 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4376 struct kvm_vcpu *vcpu, u32 access, 4377 struct x86_exception *exception) 4378 { 4379 void *data = val; 4380 int r = X86EMUL_CONTINUE; 4381 4382 while (bytes) { 4383 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4384 exception); 4385 unsigned offset = addr & (PAGE_SIZE-1); 4386 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4387 int ret; 4388 4389 if (gpa == UNMAPPED_GVA) 4390 return X86EMUL_PROPAGATE_FAULT; 4391 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 4392 offset, toread); 4393 if (ret < 0) { 4394 r = X86EMUL_IO_NEEDED; 4395 goto out; 4396 } 4397 4398 bytes -= toread; 4399 data += toread; 4400 addr += toread; 4401 } 4402 out: 4403 return r; 4404 } 4405 4406 /* used for instruction fetching */ 4407 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4408 gva_t addr, void *val, unsigned int bytes, 4409 struct x86_exception *exception) 4410 { 4411 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4412 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4413 unsigned offset; 4414 int ret; 4415 4416 /* Inline kvm_read_guest_virt_helper for speed. */ 4417 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 4418 exception); 4419 if (unlikely(gpa == UNMAPPED_GVA)) 4420 return X86EMUL_PROPAGATE_FAULT; 4421 4422 offset = addr & (PAGE_SIZE-1); 4423 if (WARN_ON(offset + bytes > PAGE_SIZE)) 4424 bytes = (unsigned)PAGE_SIZE - offset; 4425 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 4426 offset, bytes); 4427 if (unlikely(ret < 0)) 4428 return X86EMUL_IO_NEEDED; 4429 4430 return X86EMUL_CONTINUE; 4431 } 4432 4433 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4434 gva_t addr, void *val, unsigned int bytes, 4435 struct x86_exception *exception) 4436 { 4437 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4438 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4439 4440 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4441 exception); 4442 } 4443 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4444 4445 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4446 gva_t addr, void *val, unsigned int bytes, 4447 struct x86_exception *exception) 4448 { 4449 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4450 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4451 } 4452 4453 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 4454 unsigned long addr, void *val, unsigned int bytes) 4455 { 4456 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4457 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 4458 4459 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 4460 } 4461 4462 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4463 gva_t addr, void *val, 4464 unsigned int bytes, 4465 struct x86_exception *exception) 4466 { 4467 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4468 void *data = val; 4469 int r = X86EMUL_CONTINUE; 4470 4471 while (bytes) { 4472 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4473 PFERR_WRITE_MASK, 4474 exception); 4475 unsigned offset = addr & (PAGE_SIZE-1); 4476 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4477 int ret; 4478 4479 if (gpa == UNMAPPED_GVA) 4480 return X86EMUL_PROPAGATE_FAULT; 4481 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 4482 if (ret < 0) { 4483 r = X86EMUL_IO_NEEDED; 4484 goto out; 4485 } 4486 4487 bytes -= towrite; 4488 data += towrite; 4489 addr += towrite; 4490 } 4491 out: 4492 return r; 4493 } 4494 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4495 4496 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4497 gpa_t gpa, bool write) 4498 { 4499 /* For APIC access vmexit */ 4500 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4501 return 1; 4502 4503 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 4504 trace_vcpu_match_mmio(gva, gpa, write, true); 4505 return 1; 4506 } 4507 4508 return 0; 4509 } 4510 4511 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4512 gpa_t *gpa, struct x86_exception *exception, 4513 bool write) 4514 { 4515 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4516 | (write ? PFERR_WRITE_MASK : 0); 4517 4518 /* 4519 * currently PKRU is only applied to ept enabled guest so 4520 * there is no pkey in EPT page table for L1 guest or EPT 4521 * shadow page table for L2 guest. 4522 */ 4523 if (vcpu_match_mmio_gva(vcpu, gva) 4524 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 4525 vcpu->arch.access, 0, access)) { 4526 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4527 (gva & (PAGE_SIZE - 1)); 4528 trace_vcpu_match_mmio(gva, *gpa, write, false); 4529 return 1; 4530 } 4531 4532 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4533 4534 if (*gpa == UNMAPPED_GVA) 4535 return -1; 4536 4537 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 4538 } 4539 4540 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4541 const void *val, int bytes) 4542 { 4543 int ret; 4544 4545 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 4546 if (ret < 0) 4547 return 0; 4548 kvm_page_track_write(vcpu, gpa, val, bytes); 4549 return 1; 4550 } 4551 4552 struct read_write_emulator_ops { 4553 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4554 int bytes); 4555 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4556 void *val, int bytes); 4557 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4558 int bytes, void *val); 4559 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4560 void *val, int bytes); 4561 bool write; 4562 }; 4563 4564 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4565 { 4566 if (vcpu->mmio_read_completed) { 4567 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4568 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4569 vcpu->mmio_read_completed = 0; 4570 return 1; 4571 } 4572 4573 return 0; 4574 } 4575 4576 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4577 void *val, int bytes) 4578 { 4579 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 4580 } 4581 4582 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4583 void *val, int bytes) 4584 { 4585 return emulator_write_phys(vcpu, gpa, val, bytes); 4586 } 4587 4588 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4589 { 4590 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4591 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4592 } 4593 4594 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4595 void *val, int bytes) 4596 { 4597 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4598 return X86EMUL_IO_NEEDED; 4599 } 4600 4601 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4602 void *val, int bytes) 4603 { 4604 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4605 4606 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4607 return X86EMUL_CONTINUE; 4608 } 4609 4610 static const struct read_write_emulator_ops read_emultor = { 4611 .read_write_prepare = read_prepare, 4612 .read_write_emulate = read_emulate, 4613 .read_write_mmio = vcpu_mmio_read, 4614 .read_write_exit_mmio = read_exit_mmio, 4615 }; 4616 4617 static const struct read_write_emulator_ops write_emultor = { 4618 .read_write_emulate = write_emulate, 4619 .read_write_mmio = write_mmio, 4620 .read_write_exit_mmio = write_exit_mmio, 4621 .write = true, 4622 }; 4623 4624 static int emulator_read_write_onepage(unsigned long addr, void *val, 4625 unsigned int bytes, 4626 struct x86_exception *exception, 4627 struct kvm_vcpu *vcpu, 4628 const struct read_write_emulator_ops *ops) 4629 { 4630 gpa_t gpa; 4631 int handled, ret; 4632 bool write = ops->write; 4633 struct kvm_mmio_fragment *frag; 4634 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4635 4636 /* 4637 * If the exit was due to a NPF we may already have a GPA. 4638 * If the GPA is present, use it to avoid the GVA to GPA table walk. 4639 * Note, this cannot be used on string operations since string 4640 * operation using rep will only have the initial GPA from the NPF 4641 * occurred. 4642 */ 4643 if (vcpu->arch.gpa_available && 4644 emulator_can_use_gpa(ctxt) && 4645 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) && 4646 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) { 4647 gpa = exception->address; 4648 goto mmio; 4649 } 4650 4651 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4652 4653 if (ret < 0) 4654 return X86EMUL_PROPAGATE_FAULT; 4655 4656 /* For APIC access vmexit */ 4657 if (ret) 4658 goto mmio; 4659 4660 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4661 return X86EMUL_CONTINUE; 4662 4663 mmio: 4664 /* 4665 * Is this MMIO handled locally? 4666 */ 4667 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4668 if (handled == bytes) 4669 return X86EMUL_CONTINUE; 4670 4671 gpa += handled; 4672 bytes -= handled; 4673 val += handled; 4674 4675 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4676 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4677 frag->gpa = gpa; 4678 frag->data = val; 4679 frag->len = bytes; 4680 return X86EMUL_CONTINUE; 4681 } 4682 4683 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 4684 unsigned long addr, 4685 void *val, unsigned int bytes, 4686 struct x86_exception *exception, 4687 const struct read_write_emulator_ops *ops) 4688 { 4689 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4690 gpa_t gpa; 4691 int rc; 4692 4693 if (ops->read_write_prepare && 4694 ops->read_write_prepare(vcpu, val, bytes)) 4695 return X86EMUL_CONTINUE; 4696 4697 vcpu->mmio_nr_fragments = 0; 4698 4699 /* Crossing a page boundary? */ 4700 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4701 int now; 4702 4703 now = -addr & ~PAGE_MASK; 4704 rc = emulator_read_write_onepage(addr, val, now, exception, 4705 vcpu, ops); 4706 4707 if (rc != X86EMUL_CONTINUE) 4708 return rc; 4709 addr += now; 4710 if (ctxt->mode != X86EMUL_MODE_PROT64) 4711 addr = (u32)addr; 4712 val += now; 4713 bytes -= now; 4714 } 4715 4716 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4717 vcpu, ops); 4718 if (rc != X86EMUL_CONTINUE) 4719 return rc; 4720 4721 if (!vcpu->mmio_nr_fragments) 4722 return rc; 4723 4724 gpa = vcpu->mmio_fragments[0].gpa; 4725 4726 vcpu->mmio_needed = 1; 4727 vcpu->mmio_cur_fragment = 0; 4728 4729 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4730 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4731 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4732 vcpu->run->mmio.phys_addr = gpa; 4733 4734 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4735 } 4736 4737 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4738 unsigned long addr, 4739 void *val, 4740 unsigned int bytes, 4741 struct x86_exception *exception) 4742 { 4743 return emulator_read_write(ctxt, addr, val, bytes, 4744 exception, &read_emultor); 4745 } 4746 4747 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4748 unsigned long addr, 4749 const void *val, 4750 unsigned int bytes, 4751 struct x86_exception *exception) 4752 { 4753 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4754 exception, &write_emultor); 4755 } 4756 4757 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4758 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4759 4760 #ifdef CONFIG_X86_64 4761 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4762 #else 4763 # define CMPXCHG64(ptr, old, new) \ 4764 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4765 #endif 4766 4767 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4768 unsigned long addr, 4769 const void *old, 4770 const void *new, 4771 unsigned int bytes, 4772 struct x86_exception *exception) 4773 { 4774 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4775 gpa_t gpa; 4776 struct page *page; 4777 char *kaddr; 4778 bool exchanged; 4779 4780 /* guests cmpxchg8b have to be emulated atomically */ 4781 if (bytes > 8 || (bytes & (bytes - 1))) 4782 goto emul_write; 4783 4784 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4785 4786 if (gpa == UNMAPPED_GVA || 4787 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4788 goto emul_write; 4789 4790 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4791 goto emul_write; 4792 4793 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); 4794 if (is_error_page(page)) 4795 goto emul_write; 4796 4797 kaddr = kmap_atomic(page); 4798 kaddr += offset_in_page(gpa); 4799 switch (bytes) { 4800 case 1: 4801 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4802 break; 4803 case 2: 4804 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4805 break; 4806 case 4: 4807 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4808 break; 4809 case 8: 4810 exchanged = CMPXCHG64(kaddr, old, new); 4811 break; 4812 default: 4813 BUG(); 4814 } 4815 kunmap_atomic(kaddr); 4816 kvm_release_page_dirty(page); 4817 4818 if (!exchanged) 4819 return X86EMUL_CMPXCHG_FAILED; 4820 4821 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 4822 kvm_page_track_write(vcpu, gpa, new, bytes); 4823 4824 return X86EMUL_CONTINUE; 4825 4826 emul_write: 4827 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4828 4829 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4830 } 4831 4832 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4833 { 4834 int r = 0, i; 4835 4836 for (i = 0; i < vcpu->arch.pio.count; i++) { 4837 if (vcpu->arch.pio.in) 4838 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 4839 vcpu->arch.pio.size, pd); 4840 else 4841 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 4842 vcpu->arch.pio.port, vcpu->arch.pio.size, 4843 pd); 4844 if (r) 4845 break; 4846 pd += vcpu->arch.pio.size; 4847 } 4848 return r; 4849 } 4850 4851 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4852 unsigned short port, void *val, 4853 unsigned int count, bool in) 4854 { 4855 vcpu->arch.pio.port = port; 4856 vcpu->arch.pio.in = in; 4857 vcpu->arch.pio.count = count; 4858 vcpu->arch.pio.size = size; 4859 4860 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4861 vcpu->arch.pio.count = 0; 4862 return 1; 4863 } 4864 4865 vcpu->run->exit_reason = KVM_EXIT_IO; 4866 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4867 vcpu->run->io.size = size; 4868 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4869 vcpu->run->io.count = count; 4870 vcpu->run->io.port = port; 4871 4872 return 0; 4873 } 4874 4875 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4876 int size, unsigned short port, void *val, 4877 unsigned int count) 4878 { 4879 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4880 int ret; 4881 4882 if (vcpu->arch.pio.count) 4883 goto data_avail; 4884 4885 memset(vcpu->arch.pio_data, 0, size * count); 4886 4887 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4888 if (ret) { 4889 data_avail: 4890 memcpy(val, vcpu->arch.pio_data, size * count); 4891 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 4892 vcpu->arch.pio.count = 0; 4893 return 1; 4894 } 4895 4896 return 0; 4897 } 4898 4899 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4900 int size, unsigned short port, 4901 const void *val, unsigned int count) 4902 { 4903 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4904 4905 memcpy(vcpu->arch.pio_data, val, size * count); 4906 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 4907 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4908 } 4909 4910 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4911 { 4912 return kvm_x86_ops->get_segment_base(vcpu, seg); 4913 } 4914 4915 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4916 { 4917 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4918 } 4919 4920 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 4921 { 4922 if (!need_emulate_wbinvd(vcpu)) 4923 return X86EMUL_CONTINUE; 4924 4925 if (kvm_x86_ops->has_wbinvd_exit()) { 4926 int cpu = get_cpu(); 4927 4928 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4929 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4930 wbinvd_ipi, NULL, 1); 4931 put_cpu(); 4932 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4933 } else 4934 wbinvd(); 4935 return X86EMUL_CONTINUE; 4936 } 4937 4938 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4939 { 4940 kvm_emulate_wbinvd_noskip(vcpu); 4941 return kvm_skip_emulated_instruction(vcpu); 4942 } 4943 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4944 4945 4946 4947 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4948 { 4949 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 4950 } 4951 4952 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 4953 unsigned long *dest) 4954 { 4955 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4956 } 4957 4958 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 4959 unsigned long value) 4960 { 4961 4962 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4963 } 4964 4965 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4966 { 4967 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4968 } 4969 4970 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4971 { 4972 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4973 unsigned long value; 4974 4975 switch (cr) { 4976 case 0: 4977 value = kvm_read_cr0(vcpu); 4978 break; 4979 case 2: 4980 value = vcpu->arch.cr2; 4981 break; 4982 case 3: 4983 value = kvm_read_cr3(vcpu); 4984 break; 4985 case 4: 4986 value = kvm_read_cr4(vcpu); 4987 break; 4988 case 8: 4989 value = kvm_get_cr8(vcpu); 4990 break; 4991 default: 4992 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4993 return 0; 4994 } 4995 4996 return value; 4997 } 4998 4999 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 5000 { 5001 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5002 int res = 0; 5003 5004 switch (cr) { 5005 case 0: 5006 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 5007 break; 5008 case 2: 5009 vcpu->arch.cr2 = val; 5010 break; 5011 case 3: 5012 res = kvm_set_cr3(vcpu, val); 5013 break; 5014 case 4: 5015 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 5016 break; 5017 case 8: 5018 res = kvm_set_cr8(vcpu, val); 5019 break; 5020 default: 5021 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5022 res = -1; 5023 } 5024 5025 return res; 5026 } 5027 5028 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 5029 { 5030 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 5031 } 5032 5033 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5034 { 5035 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 5036 } 5037 5038 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5039 { 5040 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 5041 } 5042 5043 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5044 { 5045 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 5046 } 5047 5048 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5049 { 5050 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 5051 } 5052 5053 static unsigned long emulator_get_cached_segment_base( 5054 struct x86_emulate_ctxt *ctxt, int seg) 5055 { 5056 return get_segment_base(emul_to_vcpu(ctxt), seg); 5057 } 5058 5059 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 5060 struct desc_struct *desc, u32 *base3, 5061 int seg) 5062 { 5063 struct kvm_segment var; 5064 5065 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 5066 *selector = var.selector; 5067 5068 if (var.unusable) { 5069 memset(desc, 0, sizeof(*desc)); 5070 if (base3) 5071 *base3 = 0; 5072 return false; 5073 } 5074 5075 if (var.g) 5076 var.limit >>= 12; 5077 set_desc_limit(desc, var.limit); 5078 set_desc_base(desc, (unsigned long)var.base); 5079 #ifdef CONFIG_X86_64 5080 if (base3) 5081 *base3 = var.base >> 32; 5082 #endif 5083 desc->type = var.type; 5084 desc->s = var.s; 5085 desc->dpl = var.dpl; 5086 desc->p = var.present; 5087 desc->avl = var.avl; 5088 desc->l = var.l; 5089 desc->d = var.db; 5090 desc->g = var.g; 5091 5092 return true; 5093 } 5094 5095 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 5096 struct desc_struct *desc, u32 base3, 5097 int seg) 5098 { 5099 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5100 struct kvm_segment var; 5101 5102 var.selector = selector; 5103 var.base = get_desc_base(desc); 5104 #ifdef CONFIG_X86_64 5105 var.base |= ((u64)base3) << 32; 5106 #endif 5107 var.limit = get_desc_limit(desc); 5108 if (desc->g) 5109 var.limit = (var.limit << 12) | 0xfff; 5110 var.type = desc->type; 5111 var.dpl = desc->dpl; 5112 var.db = desc->d; 5113 var.s = desc->s; 5114 var.l = desc->l; 5115 var.g = desc->g; 5116 var.avl = desc->avl; 5117 var.present = desc->p; 5118 var.unusable = !var.present; 5119 var.padding = 0; 5120 5121 kvm_set_segment(vcpu, &var, seg); 5122 return; 5123 } 5124 5125 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 5126 u32 msr_index, u64 *pdata) 5127 { 5128 struct msr_data msr; 5129 int r; 5130 5131 msr.index = msr_index; 5132 msr.host_initiated = false; 5133 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); 5134 if (r) 5135 return r; 5136 5137 *pdata = msr.data; 5138 return 0; 5139 } 5140 5141 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 5142 u32 msr_index, u64 data) 5143 { 5144 struct msr_data msr; 5145 5146 msr.data = data; 5147 msr.index = msr_index; 5148 msr.host_initiated = false; 5149 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 5150 } 5151 5152 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 5153 { 5154 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5155 5156 return vcpu->arch.smbase; 5157 } 5158 5159 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 5160 { 5161 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5162 5163 vcpu->arch.smbase = smbase; 5164 } 5165 5166 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 5167 u32 pmc) 5168 { 5169 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); 5170 } 5171 5172 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 5173 u32 pmc, u64 *pdata) 5174 { 5175 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 5176 } 5177 5178 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 5179 { 5180 emul_to_vcpu(ctxt)->arch.halt_request = 1; 5181 } 5182 5183 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 5184 { 5185 preempt_disable(); 5186 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 5187 } 5188 5189 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 5190 { 5191 preempt_enable(); 5192 } 5193 5194 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 5195 struct x86_instruction_info *info, 5196 enum x86_intercept_stage stage) 5197 { 5198 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 5199 } 5200 5201 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 5202 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 5203 { 5204 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 5205 } 5206 5207 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 5208 { 5209 return kvm_register_read(emul_to_vcpu(ctxt), reg); 5210 } 5211 5212 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 5213 { 5214 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 5215 } 5216 5217 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 5218 { 5219 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 5220 } 5221 5222 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 5223 { 5224 return emul_to_vcpu(ctxt)->arch.hflags; 5225 } 5226 5227 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 5228 { 5229 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags); 5230 } 5231 5232 static const struct x86_emulate_ops emulate_ops = { 5233 .read_gpr = emulator_read_gpr, 5234 .write_gpr = emulator_write_gpr, 5235 .read_std = kvm_read_guest_virt_system, 5236 .write_std = kvm_write_guest_virt_system, 5237 .read_phys = kvm_read_guest_phys_system, 5238 .fetch = kvm_fetch_guest_virt, 5239 .read_emulated = emulator_read_emulated, 5240 .write_emulated = emulator_write_emulated, 5241 .cmpxchg_emulated = emulator_cmpxchg_emulated, 5242 .invlpg = emulator_invlpg, 5243 .pio_in_emulated = emulator_pio_in_emulated, 5244 .pio_out_emulated = emulator_pio_out_emulated, 5245 .get_segment = emulator_get_segment, 5246 .set_segment = emulator_set_segment, 5247 .get_cached_segment_base = emulator_get_cached_segment_base, 5248 .get_gdt = emulator_get_gdt, 5249 .get_idt = emulator_get_idt, 5250 .set_gdt = emulator_set_gdt, 5251 .set_idt = emulator_set_idt, 5252 .get_cr = emulator_get_cr, 5253 .set_cr = emulator_set_cr, 5254 .cpl = emulator_get_cpl, 5255 .get_dr = emulator_get_dr, 5256 .set_dr = emulator_set_dr, 5257 .get_smbase = emulator_get_smbase, 5258 .set_smbase = emulator_set_smbase, 5259 .set_msr = emulator_set_msr, 5260 .get_msr = emulator_get_msr, 5261 .check_pmc = emulator_check_pmc, 5262 .read_pmc = emulator_read_pmc, 5263 .halt = emulator_halt, 5264 .wbinvd = emulator_wbinvd, 5265 .fix_hypercall = emulator_fix_hypercall, 5266 .get_fpu = emulator_get_fpu, 5267 .put_fpu = emulator_put_fpu, 5268 .intercept = emulator_intercept, 5269 .get_cpuid = emulator_get_cpuid, 5270 .set_nmi_mask = emulator_set_nmi_mask, 5271 .get_hflags = emulator_get_hflags, 5272 .set_hflags = emulator_set_hflags, 5273 }; 5274 5275 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 5276 { 5277 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 5278 /* 5279 * an sti; sti; sequence only disable interrupts for the first 5280 * instruction. So, if the last instruction, be it emulated or 5281 * not, left the system with the INT_STI flag enabled, it 5282 * means that the last instruction is an sti. We should not 5283 * leave the flag on in this case. The same goes for mov ss 5284 */ 5285 if (int_shadow & mask) 5286 mask = 0; 5287 if (unlikely(int_shadow || mask)) { 5288 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 5289 if (!mask) 5290 kvm_make_request(KVM_REQ_EVENT, vcpu); 5291 } 5292 } 5293 5294 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 5295 { 5296 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5297 if (ctxt->exception.vector == PF_VECTOR) 5298 return kvm_propagate_fault(vcpu, &ctxt->exception); 5299 5300 if (ctxt->exception.error_code_valid) 5301 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 5302 ctxt->exception.error_code); 5303 else 5304 kvm_queue_exception(vcpu, ctxt->exception.vector); 5305 return false; 5306 } 5307 5308 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 5309 { 5310 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5311 int cs_db, cs_l; 5312 5313 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5314 5315 ctxt->eflags = kvm_get_rflags(vcpu); 5316 ctxt->eip = kvm_rip_read(vcpu); 5317 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 5318 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 5319 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 5320 cs_db ? X86EMUL_MODE_PROT32 : 5321 X86EMUL_MODE_PROT16; 5322 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 5323 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 5324 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 5325 5326 init_decode_cache(ctxt); 5327 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5328 } 5329 5330 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 5331 { 5332 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5333 int ret; 5334 5335 init_emulate_ctxt(vcpu); 5336 5337 ctxt->op_bytes = 2; 5338 ctxt->ad_bytes = 2; 5339 ctxt->_eip = ctxt->eip + inc_eip; 5340 ret = emulate_int_real(ctxt, irq); 5341 5342 if (ret != X86EMUL_CONTINUE) 5343 return EMULATE_FAIL; 5344 5345 ctxt->eip = ctxt->_eip; 5346 kvm_rip_write(vcpu, ctxt->eip); 5347 kvm_set_rflags(vcpu, ctxt->eflags); 5348 5349 if (irq == NMI_VECTOR) 5350 vcpu->arch.nmi_pending = 0; 5351 else 5352 vcpu->arch.interrupt.pending = false; 5353 5354 return EMULATE_DONE; 5355 } 5356 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 5357 5358 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 5359 { 5360 int r = EMULATE_DONE; 5361 5362 ++vcpu->stat.insn_emulation_fail; 5363 trace_kvm_emulate_insn_failed(vcpu); 5364 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 5365 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5366 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5367 vcpu->run->internal.ndata = 0; 5368 r = EMULATE_FAIL; 5369 } 5370 kvm_queue_exception(vcpu, UD_VECTOR); 5371 5372 return r; 5373 } 5374 5375 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 5376 bool write_fault_to_shadow_pgtable, 5377 int emulation_type) 5378 { 5379 gpa_t gpa = cr2; 5380 kvm_pfn_t pfn; 5381 5382 if (emulation_type & EMULTYPE_NO_REEXECUTE) 5383 return false; 5384 5385 if (!vcpu->arch.mmu.direct_map) { 5386 /* 5387 * Write permission should be allowed since only 5388 * write access need to be emulated. 5389 */ 5390 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5391 5392 /* 5393 * If the mapping is invalid in guest, let cpu retry 5394 * it to generate fault. 5395 */ 5396 if (gpa == UNMAPPED_GVA) 5397 return true; 5398 } 5399 5400 /* 5401 * Do not retry the unhandleable instruction if it faults on the 5402 * readonly host memory, otherwise it will goto a infinite loop: 5403 * retry instruction -> write #PF -> emulation fail -> retry 5404 * instruction -> ... 5405 */ 5406 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 5407 5408 /* 5409 * If the instruction failed on the error pfn, it can not be fixed, 5410 * report the error to userspace. 5411 */ 5412 if (is_error_noslot_pfn(pfn)) 5413 return false; 5414 5415 kvm_release_pfn_clean(pfn); 5416 5417 /* The instructions are well-emulated on direct mmu. */ 5418 if (vcpu->arch.mmu.direct_map) { 5419 unsigned int indirect_shadow_pages; 5420 5421 spin_lock(&vcpu->kvm->mmu_lock); 5422 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5423 spin_unlock(&vcpu->kvm->mmu_lock); 5424 5425 if (indirect_shadow_pages) 5426 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5427 5428 return true; 5429 } 5430 5431 /* 5432 * if emulation was due to access to shadowed page table 5433 * and it failed try to unshadow page and re-enter the 5434 * guest to let CPU execute the instruction. 5435 */ 5436 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5437 5438 /* 5439 * If the access faults on its page table, it can not 5440 * be fixed by unprotecting shadow page and it should 5441 * be reported to userspace. 5442 */ 5443 return !write_fault_to_shadow_pgtable; 5444 } 5445 5446 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5447 unsigned long cr2, int emulation_type) 5448 { 5449 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5450 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5451 5452 last_retry_eip = vcpu->arch.last_retry_eip; 5453 last_retry_addr = vcpu->arch.last_retry_addr; 5454 5455 /* 5456 * If the emulation is caused by #PF and it is non-page_table 5457 * writing instruction, it means the VM-EXIT is caused by shadow 5458 * page protected, we can zap the shadow page and retry this 5459 * instruction directly. 5460 * 5461 * Note: if the guest uses a non-page-table modifying instruction 5462 * on the PDE that points to the instruction, then we will unmap 5463 * the instruction and go to an infinite loop. So, we cache the 5464 * last retried eip and the last fault address, if we meet the eip 5465 * and the address again, we can break out of the potential infinite 5466 * loop. 5467 */ 5468 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5469 5470 if (!(emulation_type & EMULTYPE_RETRY)) 5471 return false; 5472 5473 if (x86_page_table_writing_insn(ctxt)) 5474 return false; 5475 5476 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5477 return false; 5478 5479 vcpu->arch.last_retry_eip = ctxt->eip; 5480 vcpu->arch.last_retry_addr = cr2; 5481 5482 if (!vcpu->arch.mmu.direct_map) 5483 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5484 5485 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5486 5487 return true; 5488 } 5489 5490 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5491 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5492 5493 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 5494 { 5495 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 5496 /* This is a good place to trace that we are exiting SMM. */ 5497 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 5498 5499 /* Process a latched INIT or SMI, if any. */ 5500 kvm_make_request(KVM_REQ_EVENT, vcpu); 5501 } 5502 5503 kvm_mmu_reset_context(vcpu); 5504 } 5505 5506 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) 5507 { 5508 unsigned changed = vcpu->arch.hflags ^ emul_flags; 5509 5510 vcpu->arch.hflags = emul_flags; 5511 5512 if (changed & HF_SMM_MASK) 5513 kvm_smm_changed(vcpu); 5514 } 5515 5516 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5517 unsigned long *db) 5518 { 5519 u32 dr6 = 0; 5520 int i; 5521 u32 enable, rwlen; 5522 5523 enable = dr7; 5524 rwlen = dr7 >> 16; 5525 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5526 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5527 dr6 |= (1 << i); 5528 return dr6; 5529 } 5530 5531 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r) 5532 { 5533 struct kvm_run *kvm_run = vcpu->run; 5534 5535 /* 5536 * rflags is the old, "raw" value of the flags. The new value has 5537 * not been saved yet. 5538 * 5539 * This is correct even for TF set by the guest, because "the 5540 * processor will not generate this exception after the instruction 5541 * that sets the TF flag". 5542 */ 5543 if (unlikely(rflags & X86_EFLAGS_TF)) { 5544 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5545 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | 5546 DR6_RTM; 5547 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5548 kvm_run->debug.arch.exception = DB_VECTOR; 5549 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5550 *r = EMULATE_USER_EXIT; 5551 } else { 5552 /* 5553 * "Certain debug exceptions may clear bit 0-3. The 5554 * remaining contents of the DR6 register are never 5555 * cleared by the processor". 5556 */ 5557 vcpu->arch.dr6 &= ~15; 5558 vcpu->arch.dr6 |= DR6_BS | DR6_RTM; 5559 kvm_queue_exception(vcpu, DB_VECTOR); 5560 } 5561 } 5562 } 5563 5564 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 5565 { 5566 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5567 int r = EMULATE_DONE; 5568 5569 kvm_x86_ops->skip_emulated_instruction(vcpu); 5570 kvm_vcpu_check_singlestep(vcpu, rflags, &r); 5571 return r == EMULATE_DONE; 5572 } 5573 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 5574 5575 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5576 { 5577 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5578 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5579 struct kvm_run *kvm_run = vcpu->run; 5580 unsigned long eip = kvm_get_linear_rip(vcpu); 5581 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5582 vcpu->arch.guest_debug_dr7, 5583 vcpu->arch.eff_db); 5584 5585 if (dr6 != 0) { 5586 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 5587 kvm_run->debug.arch.pc = eip; 5588 kvm_run->debug.arch.exception = DB_VECTOR; 5589 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5590 *r = EMULATE_USER_EXIT; 5591 return true; 5592 } 5593 } 5594 5595 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 5596 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 5597 unsigned long eip = kvm_get_linear_rip(vcpu); 5598 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5599 vcpu->arch.dr7, 5600 vcpu->arch.db); 5601 5602 if (dr6 != 0) { 5603 vcpu->arch.dr6 &= ~15; 5604 vcpu->arch.dr6 |= dr6 | DR6_RTM; 5605 kvm_queue_exception(vcpu, DB_VECTOR); 5606 *r = EMULATE_DONE; 5607 return true; 5608 } 5609 } 5610 5611 return false; 5612 } 5613 5614 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5615 unsigned long cr2, 5616 int emulation_type, 5617 void *insn, 5618 int insn_len) 5619 { 5620 int r; 5621 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5622 bool writeback = true; 5623 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5624 5625 /* 5626 * Clear write_fault_to_shadow_pgtable here to ensure it is 5627 * never reused. 5628 */ 5629 vcpu->arch.write_fault_to_shadow_pgtable = false; 5630 kvm_clear_exception_queue(vcpu); 5631 5632 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5633 init_emulate_ctxt(vcpu); 5634 5635 /* 5636 * We will reenter on the same instruction since 5637 * we do not set complete_userspace_io. This does not 5638 * handle watchpoints yet, those would be handled in 5639 * the emulate_ops. 5640 */ 5641 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5642 return r; 5643 5644 ctxt->interruptibility = 0; 5645 ctxt->have_exception = false; 5646 ctxt->exception.vector = -1; 5647 ctxt->perm_ok = false; 5648 5649 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5650 5651 r = x86_decode_insn(ctxt, insn, insn_len); 5652 5653 trace_kvm_emulate_insn_start(vcpu); 5654 ++vcpu->stat.insn_emulation; 5655 if (r != EMULATION_OK) { 5656 if (emulation_type & EMULTYPE_TRAP_UD) 5657 return EMULATE_FAIL; 5658 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5659 emulation_type)) 5660 return EMULATE_DONE; 5661 if (emulation_type & EMULTYPE_SKIP) 5662 return EMULATE_FAIL; 5663 return handle_emulation_failure(vcpu); 5664 } 5665 } 5666 5667 if (emulation_type & EMULTYPE_SKIP) { 5668 kvm_rip_write(vcpu, ctxt->_eip); 5669 if (ctxt->eflags & X86_EFLAGS_RF) 5670 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 5671 return EMULATE_DONE; 5672 } 5673 5674 if (retry_instruction(ctxt, cr2, emulation_type)) 5675 return EMULATE_DONE; 5676 5677 /* this is needed for vmware backdoor interface to work since it 5678 changes registers values during IO operation */ 5679 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5680 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5681 emulator_invalidate_register_cache(ctxt); 5682 } 5683 5684 restart: 5685 /* Save the faulting GPA (cr2) in the address field */ 5686 ctxt->exception.address = cr2; 5687 5688 r = x86_emulate_insn(ctxt); 5689 5690 if (r == EMULATION_INTERCEPTED) 5691 return EMULATE_DONE; 5692 5693 if (r == EMULATION_FAILED) { 5694 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5695 emulation_type)) 5696 return EMULATE_DONE; 5697 5698 return handle_emulation_failure(vcpu); 5699 } 5700 5701 if (ctxt->have_exception) { 5702 r = EMULATE_DONE; 5703 if (inject_emulated_exception(vcpu)) 5704 return r; 5705 } else if (vcpu->arch.pio.count) { 5706 if (!vcpu->arch.pio.in) { 5707 /* FIXME: return into emulator if single-stepping. */ 5708 vcpu->arch.pio.count = 0; 5709 } else { 5710 writeback = false; 5711 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5712 } 5713 r = EMULATE_USER_EXIT; 5714 } else if (vcpu->mmio_needed) { 5715 if (!vcpu->mmio_is_write) 5716 writeback = false; 5717 r = EMULATE_USER_EXIT; 5718 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5719 } else if (r == EMULATION_RESTART) 5720 goto restart; 5721 else 5722 r = EMULATE_DONE; 5723 5724 if (writeback) { 5725 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5726 toggle_interruptibility(vcpu, ctxt->interruptibility); 5727 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5728 kvm_rip_write(vcpu, ctxt->eip); 5729 if (r == EMULATE_DONE) 5730 kvm_vcpu_check_singlestep(vcpu, rflags, &r); 5731 if (!ctxt->have_exception || 5732 exception_type(ctxt->exception.vector) == EXCPT_TRAP) 5733 __kvm_set_rflags(vcpu, ctxt->eflags); 5734 5735 /* 5736 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 5737 * do nothing, and it will be requested again as soon as 5738 * the shadow expires. But we still need to check here, 5739 * because POPF has no interrupt shadow. 5740 */ 5741 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 5742 kvm_make_request(KVM_REQ_EVENT, vcpu); 5743 } else 5744 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5745 5746 return r; 5747 } 5748 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5749 5750 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5751 { 5752 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5753 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5754 size, port, &val, 1); 5755 /* do not return to emulator after return from userspace */ 5756 vcpu->arch.pio.count = 0; 5757 return ret; 5758 } 5759 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5760 5761 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 5762 { 5763 unsigned long val; 5764 5765 /* We should only ever be called with arch.pio.count equal to 1 */ 5766 BUG_ON(vcpu->arch.pio.count != 1); 5767 5768 /* For size less than 4 we merge, else we zero extend */ 5769 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) 5770 : 0; 5771 5772 /* 5773 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform 5774 * the copy and tracing 5775 */ 5776 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, 5777 vcpu->arch.pio.port, &val, 1); 5778 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 5779 5780 return 1; 5781 } 5782 5783 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port) 5784 { 5785 unsigned long val; 5786 int ret; 5787 5788 /* For size less than 4 we merge, else we zero extend */ 5789 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; 5790 5791 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, 5792 &val, 1); 5793 if (ret) { 5794 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 5795 return ret; 5796 } 5797 5798 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 5799 5800 return 0; 5801 } 5802 EXPORT_SYMBOL_GPL(kvm_fast_pio_in); 5803 5804 static int kvmclock_cpu_down_prep(unsigned int cpu) 5805 { 5806 __this_cpu_write(cpu_tsc_khz, 0); 5807 return 0; 5808 } 5809 5810 static void tsc_khz_changed(void *data) 5811 { 5812 struct cpufreq_freqs *freq = data; 5813 unsigned long khz = 0; 5814 5815 if (data) 5816 khz = freq->new; 5817 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5818 khz = cpufreq_quick_get(raw_smp_processor_id()); 5819 if (!khz) 5820 khz = tsc_khz; 5821 __this_cpu_write(cpu_tsc_khz, khz); 5822 } 5823 5824 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5825 void *data) 5826 { 5827 struct cpufreq_freqs *freq = data; 5828 struct kvm *kvm; 5829 struct kvm_vcpu *vcpu; 5830 int i, send_ipi = 0; 5831 5832 /* 5833 * We allow guests to temporarily run on slowing clocks, 5834 * provided we notify them after, or to run on accelerating 5835 * clocks, provided we notify them before. Thus time never 5836 * goes backwards. 5837 * 5838 * However, we have a problem. We can't atomically update 5839 * the frequency of a given CPU from this function; it is 5840 * merely a notifier, which can be called from any CPU. 5841 * Changing the TSC frequency at arbitrary points in time 5842 * requires a recomputation of local variables related to 5843 * the TSC for each VCPU. We must flag these local variables 5844 * to be updated and be sure the update takes place with the 5845 * new frequency before any guests proceed. 5846 * 5847 * Unfortunately, the combination of hotplug CPU and frequency 5848 * change creates an intractable locking scenario; the order 5849 * of when these callouts happen is undefined with respect to 5850 * CPU hotplug, and they can race with each other. As such, 5851 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5852 * undefined; you can actually have a CPU frequency change take 5853 * place in between the computation of X and the setting of the 5854 * variable. To protect against this problem, all updates of 5855 * the per_cpu tsc_khz variable are done in an interrupt 5856 * protected IPI, and all callers wishing to update the value 5857 * must wait for a synchronous IPI to complete (which is trivial 5858 * if the caller is on the CPU already). This establishes the 5859 * necessary total order on variable updates. 5860 * 5861 * Note that because a guest time update may take place 5862 * anytime after the setting of the VCPU's request bit, the 5863 * correct TSC value must be set before the request. However, 5864 * to ensure the update actually makes it to any guest which 5865 * starts running in hardware virtualization between the set 5866 * and the acquisition of the spinlock, we must also ping the 5867 * CPU after setting the request bit. 5868 * 5869 */ 5870 5871 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5872 return 0; 5873 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5874 return 0; 5875 5876 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5877 5878 spin_lock(&kvm_lock); 5879 list_for_each_entry(kvm, &vm_list, vm_list) { 5880 kvm_for_each_vcpu(i, vcpu, kvm) { 5881 if (vcpu->cpu != freq->cpu) 5882 continue; 5883 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5884 if (vcpu->cpu != smp_processor_id()) 5885 send_ipi = 1; 5886 } 5887 } 5888 spin_unlock(&kvm_lock); 5889 5890 if (freq->old < freq->new && send_ipi) { 5891 /* 5892 * We upscale the frequency. Must make the guest 5893 * doesn't see old kvmclock values while running with 5894 * the new frequency, otherwise we risk the guest sees 5895 * time go backwards. 5896 * 5897 * In case we update the frequency for another cpu 5898 * (which might be in guest context) send an interrupt 5899 * to kick the cpu out of guest context. Next time 5900 * guest context is entered kvmclock will be updated, 5901 * so the guest will not see stale values. 5902 */ 5903 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5904 } 5905 return 0; 5906 } 5907 5908 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5909 .notifier_call = kvmclock_cpufreq_notifier 5910 }; 5911 5912 static int kvmclock_cpu_online(unsigned int cpu) 5913 { 5914 tsc_khz_changed(NULL); 5915 return 0; 5916 } 5917 5918 static void kvm_timer_init(void) 5919 { 5920 max_tsc_khz = tsc_khz; 5921 5922 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5923 #ifdef CONFIG_CPU_FREQ 5924 struct cpufreq_policy policy; 5925 int cpu; 5926 5927 memset(&policy, 0, sizeof(policy)); 5928 cpu = get_cpu(); 5929 cpufreq_get_policy(&policy, cpu); 5930 if (policy.cpuinfo.max_freq) 5931 max_tsc_khz = policy.cpuinfo.max_freq; 5932 put_cpu(); 5933 #endif 5934 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5935 CPUFREQ_TRANSITION_NOTIFIER); 5936 } 5937 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5938 5939 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 5940 kvmclock_cpu_online, kvmclock_cpu_down_prep); 5941 } 5942 5943 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5944 5945 int kvm_is_in_guest(void) 5946 { 5947 return __this_cpu_read(current_vcpu) != NULL; 5948 } 5949 5950 static int kvm_is_user_mode(void) 5951 { 5952 int user_mode = 3; 5953 5954 if (__this_cpu_read(current_vcpu)) 5955 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5956 5957 return user_mode != 0; 5958 } 5959 5960 static unsigned long kvm_get_guest_ip(void) 5961 { 5962 unsigned long ip = 0; 5963 5964 if (__this_cpu_read(current_vcpu)) 5965 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5966 5967 return ip; 5968 } 5969 5970 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5971 .is_in_guest = kvm_is_in_guest, 5972 .is_user_mode = kvm_is_user_mode, 5973 .get_guest_ip = kvm_get_guest_ip, 5974 }; 5975 5976 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5977 { 5978 __this_cpu_write(current_vcpu, vcpu); 5979 } 5980 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5981 5982 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5983 { 5984 __this_cpu_write(current_vcpu, NULL); 5985 } 5986 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5987 5988 static void kvm_set_mmio_spte_mask(void) 5989 { 5990 u64 mask; 5991 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5992 5993 /* 5994 * Set the reserved bits and the present bit of an paging-structure 5995 * entry to generate page fault with PFER.RSV = 1. 5996 */ 5997 /* Mask the reserved physical address bits. */ 5998 mask = rsvd_bits(maxphyaddr, 51); 5999 6000 /* Set the present bit. */ 6001 mask |= 1ull; 6002 6003 #ifdef CONFIG_X86_64 6004 /* 6005 * If reserved bit is not supported, clear the present bit to disable 6006 * mmio page fault. 6007 */ 6008 if (maxphyaddr == 52) 6009 mask &= ~1ull; 6010 #endif 6011 6012 kvm_mmu_set_mmio_spte_mask(mask); 6013 } 6014 6015 #ifdef CONFIG_X86_64 6016 static void pvclock_gtod_update_fn(struct work_struct *work) 6017 { 6018 struct kvm *kvm; 6019 6020 struct kvm_vcpu *vcpu; 6021 int i; 6022 6023 spin_lock(&kvm_lock); 6024 list_for_each_entry(kvm, &vm_list, vm_list) 6025 kvm_for_each_vcpu(i, vcpu, kvm) 6026 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 6027 atomic_set(&kvm_guest_has_master_clock, 0); 6028 spin_unlock(&kvm_lock); 6029 } 6030 6031 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 6032 6033 /* 6034 * Notification about pvclock gtod data update. 6035 */ 6036 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 6037 void *priv) 6038 { 6039 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 6040 struct timekeeper *tk = priv; 6041 6042 update_pvclock_gtod(tk); 6043 6044 /* disable master clock if host does not trust, or does not 6045 * use, TSC clocksource 6046 */ 6047 if (gtod->clock.vclock_mode != VCLOCK_TSC && 6048 atomic_read(&kvm_guest_has_master_clock) != 0) 6049 queue_work(system_long_wq, &pvclock_gtod_work); 6050 6051 return 0; 6052 } 6053 6054 static struct notifier_block pvclock_gtod_notifier = { 6055 .notifier_call = pvclock_gtod_notify, 6056 }; 6057 #endif 6058 6059 int kvm_arch_init(void *opaque) 6060 { 6061 int r; 6062 struct kvm_x86_ops *ops = opaque; 6063 6064 if (kvm_x86_ops) { 6065 printk(KERN_ERR "kvm: already loaded the other module\n"); 6066 r = -EEXIST; 6067 goto out; 6068 } 6069 6070 if (!ops->cpu_has_kvm_support()) { 6071 printk(KERN_ERR "kvm: no hardware support\n"); 6072 r = -EOPNOTSUPP; 6073 goto out; 6074 } 6075 if (ops->disabled_by_bios()) { 6076 printk(KERN_ERR "kvm: disabled by bios\n"); 6077 r = -EOPNOTSUPP; 6078 goto out; 6079 } 6080 6081 r = -ENOMEM; 6082 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 6083 if (!shared_msrs) { 6084 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 6085 goto out; 6086 } 6087 6088 r = kvm_mmu_module_init(); 6089 if (r) 6090 goto out_free_percpu; 6091 6092 kvm_set_mmio_spte_mask(); 6093 6094 kvm_x86_ops = ops; 6095 6096 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 6097 PT_DIRTY_MASK, PT64_NX_MASK, 0, 6098 PT_PRESENT_MASK, 0); 6099 kvm_timer_init(); 6100 6101 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6102 6103 if (boot_cpu_has(X86_FEATURE_XSAVE)) 6104 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 6105 6106 kvm_lapic_init(); 6107 #ifdef CONFIG_X86_64 6108 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 6109 #endif 6110 6111 return 0; 6112 6113 out_free_percpu: 6114 free_percpu(shared_msrs); 6115 out: 6116 return r; 6117 } 6118 6119 void kvm_arch_exit(void) 6120 { 6121 kvm_lapic_exit(); 6122 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6123 6124 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 6125 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 6126 CPUFREQ_TRANSITION_NOTIFIER); 6127 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 6128 #ifdef CONFIG_X86_64 6129 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 6130 #endif 6131 kvm_x86_ops = NULL; 6132 kvm_mmu_module_exit(); 6133 free_percpu(shared_msrs); 6134 } 6135 6136 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 6137 { 6138 ++vcpu->stat.halt_exits; 6139 if (lapic_in_kernel(vcpu)) { 6140 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 6141 return 1; 6142 } else { 6143 vcpu->run->exit_reason = KVM_EXIT_HLT; 6144 return 0; 6145 } 6146 } 6147 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 6148 6149 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 6150 { 6151 int ret = kvm_skip_emulated_instruction(vcpu); 6152 /* 6153 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 6154 * KVM_EXIT_DEBUG here. 6155 */ 6156 return kvm_vcpu_halt(vcpu) && ret; 6157 } 6158 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 6159 6160 #ifdef CONFIG_X86_64 6161 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 6162 unsigned long clock_type) 6163 { 6164 struct kvm_clock_pairing clock_pairing; 6165 struct timespec ts; 6166 u64 cycle; 6167 int ret; 6168 6169 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 6170 return -KVM_EOPNOTSUPP; 6171 6172 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 6173 return -KVM_EOPNOTSUPP; 6174 6175 clock_pairing.sec = ts.tv_sec; 6176 clock_pairing.nsec = ts.tv_nsec; 6177 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 6178 clock_pairing.flags = 0; 6179 6180 ret = 0; 6181 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 6182 sizeof(struct kvm_clock_pairing))) 6183 ret = -KVM_EFAULT; 6184 6185 return ret; 6186 } 6187 #endif 6188 6189 /* 6190 * kvm_pv_kick_cpu_op: Kick a vcpu. 6191 * 6192 * @apicid - apicid of vcpu to be kicked. 6193 */ 6194 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 6195 { 6196 struct kvm_lapic_irq lapic_irq; 6197 6198 lapic_irq.shorthand = 0; 6199 lapic_irq.dest_mode = 0; 6200 lapic_irq.dest_id = apicid; 6201 lapic_irq.msi_redir_hint = false; 6202 6203 lapic_irq.delivery_mode = APIC_DM_REMRD; 6204 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 6205 } 6206 6207 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) 6208 { 6209 vcpu->arch.apicv_active = false; 6210 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); 6211 } 6212 6213 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 6214 { 6215 unsigned long nr, a0, a1, a2, a3, ret; 6216 int op_64_bit, r; 6217 6218 r = kvm_skip_emulated_instruction(vcpu); 6219 6220 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 6221 return kvm_hv_hypercall(vcpu); 6222 6223 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 6224 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 6225 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 6226 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 6227 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 6228 6229 trace_kvm_hypercall(nr, a0, a1, a2, a3); 6230 6231 op_64_bit = is_64_bit_mode(vcpu); 6232 if (!op_64_bit) { 6233 nr &= 0xFFFFFFFF; 6234 a0 &= 0xFFFFFFFF; 6235 a1 &= 0xFFFFFFFF; 6236 a2 &= 0xFFFFFFFF; 6237 a3 &= 0xFFFFFFFF; 6238 } 6239 6240 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 6241 ret = -KVM_EPERM; 6242 goto out; 6243 } 6244 6245 switch (nr) { 6246 case KVM_HC_VAPIC_POLL_IRQ: 6247 ret = 0; 6248 break; 6249 case KVM_HC_KICK_CPU: 6250 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 6251 ret = 0; 6252 break; 6253 #ifdef CONFIG_X86_64 6254 case KVM_HC_CLOCK_PAIRING: 6255 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 6256 break; 6257 #endif 6258 default: 6259 ret = -KVM_ENOSYS; 6260 break; 6261 } 6262 out: 6263 if (!op_64_bit) 6264 ret = (u32)ret; 6265 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 6266 ++vcpu->stat.hypercalls; 6267 return r; 6268 } 6269 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 6270 6271 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 6272 { 6273 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6274 char instruction[3]; 6275 unsigned long rip = kvm_rip_read(vcpu); 6276 6277 kvm_x86_ops->patch_hypercall(vcpu, instruction); 6278 6279 return emulator_write_emulated(ctxt, rip, instruction, 3, 6280 &ctxt->exception); 6281 } 6282 6283 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 6284 { 6285 return vcpu->run->request_interrupt_window && 6286 likely(!pic_in_kernel(vcpu->kvm)); 6287 } 6288 6289 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 6290 { 6291 struct kvm_run *kvm_run = vcpu->run; 6292 6293 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 6294 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 6295 kvm_run->cr8 = kvm_get_cr8(vcpu); 6296 kvm_run->apic_base = kvm_get_apic_base(vcpu); 6297 kvm_run->ready_for_interrupt_injection = 6298 pic_in_kernel(vcpu->kvm) || 6299 kvm_vcpu_ready_for_interrupt_injection(vcpu); 6300 } 6301 6302 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 6303 { 6304 int max_irr, tpr; 6305 6306 if (!kvm_x86_ops->update_cr8_intercept) 6307 return; 6308 6309 if (!lapic_in_kernel(vcpu)) 6310 return; 6311 6312 if (vcpu->arch.apicv_active) 6313 return; 6314 6315 if (!vcpu->arch.apic->vapic_addr) 6316 max_irr = kvm_lapic_find_highest_irr(vcpu); 6317 else 6318 max_irr = -1; 6319 6320 if (max_irr != -1) 6321 max_irr >>= 4; 6322 6323 tpr = kvm_lapic_get_cr8(vcpu); 6324 6325 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 6326 } 6327 6328 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 6329 { 6330 int r; 6331 6332 /* try to reinject previous events if any */ 6333 if (vcpu->arch.exception.pending) { 6334 trace_kvm_inj_exception(vcpu->arch.exception.nr, 6335 vcpu->arch.exception.has_error_code, 6336 vcpu->arch.exception.error_code); 6337 6338 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 6339 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 6340 X86_EFLAGS_RF); 6341 6342 if (vcpu->arch.exception.nr == DB_VECTOR && 6343 (vcpu->arch.dr7 & DR7_GD)) { 6344 vcpu->arch.dr7 &= ~DR7_GD; 6345 kvm_update_dr7(vcpu); 6346 } 6347 6348 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 6349 vcpu->arch.exception.has_error_code, 6350 vcpu->arch.exception.error_code, 6351 vcpu->arch.exception.reinject); 6352 return 0; 6353 } 6354 6355 if (vcpu->arch.nmi_injected) { 6356 kvm_x86_ops->set_nmi(vcpu); 6357 return 0; 6358 } 6359 6360 if (vcpu->arch.interrupt.pending) { 6361 kvm_x86_ops->set_irq(vcpu); 6362 return 0; 6363 } 6364 6365 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6366 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6367 if (r != 0) 6368 return r; 6369 } 6370 6371 /* try to inject new event if pending */ 6372 if (vcpu->arch.smi_pending && !is_smm(vcpu)) { 6373 vcpu->arch.smi_pending = false; 6374 enter_smm(vcpu); 6375 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { 6376 --vcpu->arch.nmi_pending; 6377 vcpu->arch.nmi_injected = true; 6378 kvm_x86_ops->set_nmi(vcpu); 6379 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 6380 /* 6381 * Because interrupts can be injected asynchronously, we are 6382 * calling check_nested_events again here to avoid a race condition. 6383 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 6384 * proposal and current concerns. Perhaps we should be setting 6385 * KVM_REQ_EVENT only on certain events and not unconditionally? 6386 */ 6387 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6388 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6389 if (r != 0) 6390 return r; 6391 } 6392 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 6393 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 6394 false); 6395 kvm_x86_ops->set_irq(vcpu); 6396 } 6397 } 6398 6399 return 0; 6400 } 6401 6402 static void process_nmi(struct kvm_vcpu *vcpu) 6403 { 6404 unsigned limit = 2; 6405 6406 /* 6407 * x86 is limited to one NMI running, and one NMI pending after it. 6408 * If an NMI is already in progress, limit further NMIs to just one. 6409 * Otherwise, allow two (and we'll inject the first one immediately). 6410 */ 6411 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 6412 limit = 1; 6413 6414 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 6415 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 6416 kvm_make_request(KVM_REQ_EVENT, vcpu); 6417 } 6418 6419 #define put_smstate(type, buf, offset, val) \ 6420 *(type *)((buf) + (offset) - 0x7e00) = val 6421 6422 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 6423 { 6424 u32 flags = 0; 6425 flags |= seg->g << 23; 6426 flags |= seg->db << 22; 6427 flags |= seg->l << 21; 6428 flags |= seg->avl << 20; 6429 flags |= seg->present << 15; 6430 flags |= seg->dpl << 13; 6431 flags |= seg->s << 12; 6432 flags |= seg->type << 8; 6433 return flags; 6434 } 6435 6436 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 6437 { 6438 struct kvm_segment seg; 6439 int offset; 6440 6441 kvm_get_segment(vcpu, &seg, n); 6442 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 6443 6444 if (n < 3) 6445 offset = 0x7f84 + n * 12; 6446 else 6447 offset = 0x7f2c + (n - 3) * 12; 6448 6449 put_smstate(u32, buf, offset + 8, seg.base); 6450 put_smstate(u32, buf, offset + 4, seg.limit); 6451 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 6452 } 6453 6454 #ifdef CONFIG_X86_64 6455 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 6456 { 6457 struct kvm_segment seg; 6458 int offset; 6459 u16 flags; 6460 6461 kvm_get_segment(vcpu, &seg, n); 6462 offset = 0x7e00 + n * 16; 6463 6464 flags = enter_smm_get_segment_flags(&seg) >> 8; 6465 put_smstate(u16, buf, offset, seg.selector); 6466 put_smstate(u16, buf, offset + 2, flags); 6467 put_smstate(u32, buf, offset + 4, seg.limit); 6468 put_smstate(u64, buf, offset + 8, seg.base); 6469 } 6470 #endif 6471 6472 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 6473 { 6474 struct desc_ptr dt; 6475 struct kvm_segment seg; 6476 unsigned long val; 6477 int i; 6478 6479 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 6480 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 6481 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 6482 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 6483 6484 for (i = 0; i < 8; i++) 6485 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 6486 6487 kvm_get_dr(vcpu, 6, &val); 6488 put_smstate(u32, buf, 0x7fcc, (u32)val); 6489 kvm_get_dr(vcpu, 7, &val); 6490 put_smstate(u32, buf, 0x7fc8, (u32)val); 6491 6492 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6493 put_smstate(u32, buf, 0x7fc4, seg.selector); 6494 put_smstate(u32, buf, 0x7f64, seg.base); 6495 put_smstate(u32, buf, 0x7f60, seg.limit); 6496 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 6497 6498 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6499 put_smstate(u32, buf, 0x7fc0, seg.selector); 6500 put_smstate(u32, buf, 0x7f80, seg.base); 6501 put_smstate(u32, buf, 0x7f7c, seg.limit); 6502 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 6503 6504 kvm_x86_ops->get_gdt(vcpu, &dt); 6505 put_smstate(u32, buf, 0x7f74, dt.address); 6506 put_smstate(u32, buf, 0x7f70, dt.size); 6507 6508 kvm_x86_ops->get_idt(vcpu, &dt); 6509 put_smstate(u32, buf, 0x7f58, dt.address); 6510 put_smstate(u32, buf, 0x7f54, dt.size); 6511 6512 for (i = 0; i < 6; i++) 6513 enter_smm_save_seg_32(vcpu, buf, i); 6514 6515 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 6516 6517 /* revision id */ 6518 put_smstate(u32, buf, 0x7efc, 0x00020000); 6519 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 6520 } 6521 6522 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 6523 { 6524 #ifdef CONFIG_X86_64 6525 struct desc_ptr dt; 6526 struct kvm_segment seg; 6527 unsigned long val; 6528 int i; 6529 6530 for (i = 0; i < 16; i++) 6531 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 6532 6533 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 6534 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 6535 6536 kvm_get_dr(vcpu, 6, &val); 6537 put_smstate(u64, buf, 0x7f68, val); 6538 kvm_get_dr(vcpu, 7, &val); 6539 put_smstate(u64, buf, 0x7f60, val); 6540 6541 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 6542 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 6543 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 6544 6545 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 6546 6547 /* revision id */ 6548 put_smstate(u32, buf, 0x7efc, 0x00020064); 6549 6550 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 6551 6552 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6553 put_smstate(u16, buf, 0x7e90, seg.selector); 6554 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 6555 put_smstate(u32, buf, 0x7e94, seg.limit); 6556 put_smstate(u64, buf, 0x7e98, seg.base); 6557 6558 kvm_x86_ops->get_idt(vcpu, &dt); 6559 put_smstate(u32, buf, 0x7e84, dt.size); 6560 put_smstate(u64, buf, 0x7e88, dt.address); 6561 6562 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6563 put_smstate(u16, buf, 0x7e70, seg.selector); 6564 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 6565 put_smstate(u32, buf, 0x7e74, seg.limit); 6566 put_smstate(u64, buf, 0x7e78, seg.base); 6567 6568 kvm_x86_ops->get_gdt(vcpu, &dt); 6569 put_smstate(u32, buf, 0x7e64, dt.size); 6570 put_smstate(u64, buf, 0x7e68, dt.address); 6571 6572 for (i = 0; i < 6; i++) 6573 enter_smm_save_seg_64(vcpu, buf, i); 6574 #else 6575 WARN_ON_ONCE(1); 6576 #endif 6577 } 6578 6579 static void enter_smm(struct kvm_vcpu *vcpu) 6580 { 6581 struct kvm_segment cs, ds; 6582 struct desc_ptr dt; 6583 char buf[512]; 6584 u32 cr0; 6585 6586 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 6587 vcpu->arch.hflags |= HF_SMM_MASK; 6588 memset(buf, 0, 512); 6589 if (guest_cpuid_has_longmode(vcpu)) 6590 enter_smm_save_state_64(vcpu, buf); 6591 else 6592 enter_smm_save_state_32(vcpu, buf); 6593 6594 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 6595 6596 if (kvm_x86_ops->get_nmi_mask(vcpu)) 6597 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 6598 else 6599 kvm_x86_ops->set_nmi_mask(vcpu, true); 6600 6601 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 6602 kvm_rip_write(vcpu, 0x8000); 6603 6604 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 6605 kvm_x86_ops->set_cr0(vcpu, cr0); 6606 vcpu->arch.cr0 = cr0; 6607 6608 kvm_x86_ops->set_cr4(vcpu, 0); 6609 6610 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 6611 dt.address = dt.size = 0; 6612 kvm_x86_ops->set_idt(vcpu, &dt); 6613 6614 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 6615 6616 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 6617 cs.base = vcpu->arch.smbase; 6618 6619 ds.selector = 0; 6620 ds.base = 0; 6621 6622 cs.limit = ds.limit = 0xffffffff; 6623 cs.type = ds.type = 0x3; 6624 cs.dpl = ds.dpl = 0; 6625 cs.db = ds.db = 0; 6626 cs.s = ds.s = 1; 6627 cs.l = ds.l = 0; 6628 cs.g = ds.g = 1; 6629 cs.avl = ds.avl = 0; 6630 cs.present = ds.present = 1; 6631 cs.unusable = ds.unusable = 0; 6632 cs.padding = ds.padding = 0; 6633 6634 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6635 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 6636 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 6637 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 6638 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 6639 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 6640 6641 if (guest_cpuid_has_longmode(vcpu)) 6642 kvm_x86_ops->set_efer(vcpu, 0); 6643 6644 kvm_update_cpuid(vcpu); 6645 kvm_mmu_reset_context(vcpu); 6646 } 6647 6648 static void process_smi(struct kvm_vcpu *vcpu) 6649 { 6650 vcpu->arch.smi_pending = true; 6651 kvm_make_request(KVM_REQ_EVENT, vcpu); 6652 } 6653 6654 void kvm_make_scan_ioapic_request(struct kvm *kvm) 6655 { 6656 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 6657 } 6658 6659 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 6660 { 6661 u64 eoi_exit_bitmap[4]; 6662 6663 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 6664 return; 6665 6666 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 6667 6668 if (irqchip_split(vcpu->kvm)) 6669 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 6670 else { 6671 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 6672 kvm_x86_ops->sync_pir_to_irr(vcpu); 6673 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 6674 } 6675 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 6676 vcpu_to_synic(vcpu)->vec_bitmap, 256); 6677 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 6678 } 6679 6680 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu) 6681 { 6682 ++vcpu->stat.tlb_flush; 6683 kvm_x86_ops->tlb_flush(vcpu); 6684 } 6685 6686 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 6687 { 6688 struct page *page = NULL; 6689 6690 if (!lapic_in_kernel(vcpu)) 6691 return; 6692 6693 if (!kvm_x86_ops->set_apic_access_page_addr) 6694 return; 6695 6696 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6697 if (is_error_page(page)) 6698 return; 6699 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 6700 6701 /* 6702 * Do not pin apic access page in memory, the MMU notifier 6703 * will call us again if it is migrated or swapped out. 6704 */ 6705 put_page(page); 6706 } 6707 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); 6708 6709 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm, 6710 unsigned long address) 6711 { 6712 /* 6713 * The physical address of apic access page is stored in the VMCS. 6714 * Update it when it becomes invalid. 6715 */ 6716 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT)) 6717 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 6718 } 6719 6720 /* 6721 * Returns 1 to let vcpu_run() continue the guest execution loop without 6722 * exiting to the userspace. Otherwise, the value will be returned to the 6723 * userspace. 6724 */ 6725 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 6726 { 6727 int r; 6728 bool req_int_win = 6729 dm_request_for_irq_injection(vcpu) && 6730 kvm_cpu_accept_dm_intr(vcpu); 6731 6732 bool req_immediate_exit = false; 6733 6734 if (vcpu->requests) { 6735 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 6736 kvm_mmu_unload(vcpu); 6737 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 6738 __kvm_migrate_timers(vcpu); 6739 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 6740 kvm_gen_update_masterclock(vcpu->kvm); 6741 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 6742 kvm_gen_kvmclock_update(vcpu); 6743 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 6744 r = kvm_guest_time_update(vcpu); 6745 if (unlikely(r)) 6746 goto out; 6747 } 6748 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 6749 kvm_mmu_sync_roots(vcpu); 6750 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 6751 kvm_vcpu_flush_tlb(vcpu); 6752 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 6753 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 6754 r = 0; 6755 goto out; 6756 } 6757 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 6758 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 6759 r = 0; 6760 goto out; 6761 } 6762 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 6763 /* Page is swapped out. Do synthetic halt */ 6764 vcpu->arch.apf.halted = true; 6765 r = 1; 6766 goto out; 6767 } 6768 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 6769 record_steal_time(vcpu); 6770 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 6771 process_smi(vcpu); 6772 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 6773 process_nmi(vcpu); 6774 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 6775 kvm_pmu_handle_event(vcpu); 6776 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 6777 kvm_pmu_deliver_pmi(vcpu); 6778 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 6779 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 6780 if (test_bit(vcpu->arch.pending_ioapic_eoi, 6781 vcpu->arch.ioapic_handled_vectors)) { 6782 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 6783 vcpu->run->eoi.vector = 6784 vcpu->arch.pending_ioapic_eoi; 6785 r = 0; 6786 goto out; 6787 } 6788 } 6789 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 6790 vcpu_scan_ioapic(vcpu); 6791 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 6792 kvm_vcpu_reload_apic_access_page(vcpu); 6793 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 6794 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 6795 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 6796 r = 0; 6797 goto out; 6798 } 6799 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 6800 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 6801 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 6802 r = 0; 6803 goto out; 6804 } 6805 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 6806 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 6807 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 6808 r = 0; 6809 goto out; 6810 } 6811 6812 /* 6813 * KVM_REQ_HV_STIMER has to be processed after 6814 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 6815 * depend on the guest clock being up-to-date 6816 */ 6817 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 6818 kvm_hv_process_stimers(vcpu); 6819 } 6820 6821 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 6822 ++vcpu->stat.req_event; 6823 kvm_apic_accept_events(vcpu); 6824 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 6825 r = 1; 6826 goto out; 6827 } 6828 6829 if (inject_pending_event(vcpu, req_int_win) != 0) 6830 req_immediate_exit = true; 6831 else { 6832 /* Enable NMI/IRQ window open exits if needed. 6833 * 6834 * SMIs have two cases: 1) they can be nested, and 6835 * then there is nothing to do here because RSM will 6836 * cause a vmexit anyway; 2) or the SMI can be pending 6837 * because inject_pending_event has completed the 6838 * injection of an IRQ or NMI from the previous vmexit, 6839 * and then we request an immediate exit to inject the SMI. 6840 */ 6841 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 6842 req_immediate_exit = true; 6843 if (vcpu->arch.nmi_pending) 6844 kvm_x86_ops->enable_nmi_window(vcpu); 6845 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 6846 kvm_x86_ops->enable_irq_window(vcpu); 6847 } 6848 6849 if (kvm_lapic_enabled(vcpu)) { 6850 update_cr8_intercept(vcpu); 6851 kvm_lapic_sync_to_vapic(vcpu); 6852 } 6853 } 6854 6855 r = kvm_mmu_reload(vcpu); 6856 if (unlikely(r)) { 6857 goto cancel_injection; 6858 } 6859 6860 preempt_disable(); 6861 6862 kvm_x86_ops->prepare_guest_switch(vcpu); 6863 kvm_load_guest_fpu(vcpu); 6864 6865 /* 6866 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 6867 * IPI are then delayed after guest entry, which ensures that they 6868 * result in virtual interrupt delivery. 6869 */ 6870 local_irq_disable(); 6871 vcpu->mode = IN_GUEST_MODE; 6872 6873 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6874 6875 /* 6876 * 1) We should set ->mode before checking ->requests. Please see 6877 * the comment in kvm_vcpu_exiting_guest_mode(). 6878 * 6879 * 2) For APICv, we should set ->mode before checking PIR.ON. This 6880 * pairs with the memory barrier implicit in pi_test_and_set_on 6881 * (see vmx_deliver_posted_interrupt). 6882 * 6883 * 3) This also orders the write to mode from any reads to the page 6884 * tables done while the VCPU is running. Please see the comment 6885 * in kvm_flush_remote_tlbs. 6886 */ 6887 smp_mb__after_srcu_read_unlock(); 6888 6889 /* 6890 * This handles the case where a posted interrupt was 6891 * notified with kvm_vcpu_kick. 6892 */ 6893 if (kvm_lapic_enabled(vcpu)) { 6894 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 6895 kvm_x86_ops->sync_pir_to_irr(vcpu); 6896 } 6897 6898 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 6899 || need_resched() || signal_pending(current)) { 6900 vcpu->mode = OUTSIDE_GUEST_MODE; 6901 smp_wmb(); 6902 local_irq_enable(); 6903 preempt_enable(); 6904 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6905 r = 1; 6906 goto cancel_injection; 6907 } 6908 6909 kvm_load_guest_xcr0(vcpu); 6910 6911 if (req_immediate_exit) { 6912 kvm_make_request(KVM_REQ_EVENT, vcpu); 6913 smp_send_reschedule(vcpu->cpu); 6914 } 6915 6916 trace_kvm_entry(vcpu->vcpu_id); 6917 wait_lapic_expire(vcpu); 6918 guest_enter_irqoff(); 6919 6920 if (unlikely(vcpu->arch.switch_db_regs)) { 6921 set_debugreg(0, 7); 6922 set_debugreg(vcpu->arch.eff_db[0], 0); 6923 set_debugreg(vcpu->arch.eff_db[1], 1); 6924 set_debugreg(vcpu->arch.eff_db[2], 2); 6925 set_debugreg(vcpu->arch.eff_db[3], 3); 6926 set_debugreg(vcpu->arch.dr6, 6); 6927 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 6928 } 6929 6930 kvm_x86_ops->run(vcpu); 6931 6932 /* 6933 * Do this here before restoring debug registers on the host. And 6934 * since we do this before handling the vmexit, a DR access vmexit 6935 * can (a) read the correct value of the debug registers, (b) set 6936 * KVM_DEBUGREG_WONT_EXIT again. 6937 */ 6938 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 6939 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 6940 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 6941 kvm_update_dr0123(vcpu); 6942 kvm_update_dr6(vcpu); 6943 kvm_update_dr7(vcpu); 6944 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 6945 } 6946 6947 /* 6948 * If the guest has used debug registers, at least dr7 6949 * will be disabled while returning to the host. 6950 * If we don't have active breakpoints in the host, we don't 6951 * care about the messed up debug address registers. But if 6952 * we have some of them active, restore the old state. 6953 */ 6954 if (hw_breakpoint_active()) 6955 hw_breakpoint_restore(); 6956 6957 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 6958 6959 vcpu->mode = OUTSIDE_GUEST_MODE; 6960 smp_wmb(); 6961 6962 kvm_put_guest_xcr0(vcpu); 6963 6964 kvm_x86_ops->handle_external_intr(vcpu); 6965 6966 ++vcpu->stat.exits; 6967 6968 guest_exit_irqoff(); 6969 6970 local_irq_enable(); 6971 preempt_enable(); 6972 6973 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6974 6975 /* 6976 * Profile KVM exit RIPs: 6977 */ 6978 if (unlikely(prof_on == KVM_PROFILING)) { 6979 unsigned long rip = kvm_rip_read(vcpu); 6980 profile_hit(KVM_PROFILING, (void *)rip); 6981 } 6982 6983 if (unlikely(vcpu->arch.tsc_always_catchup)) 6984 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6985 6986 if (vcpu->arch.apic_attention) 6987 kvm_lapic_sync_from_vapic(vcpu); 6988 6989 r = kvm_x86_ops->handle_exit(vcpu); 6990 return r; 6991 6992 cancel_injection: 6993 kvm_x86_ops->cancel_injection(vcpu); 6994 if (unlikely(vcpu->arch.apic_attention)) 6995 kvm_lapic_sync_from_vapic(vcpu); 6996 out: 6997 return r; 6998 } 6999 7000 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 7001 { 7002 if (!kvm_arch_vcpu_runnable(vcpu) && 7003 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { 7004 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7005 kvm_vcpu_block(vcpu); 7006 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7007 7008 if (kvm_x86_ops->post_block) 7009 kvm_x86_ops->post_block(vcpu); 7010 7011 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 7012 return 1; 7013 } 7014 7015 kvm_apic_accept_events(vcpu); 7016 switch(vcpu->arch.mp_state) { 7017 case KVM_MP_STATE_HALTED: 7018 vcpu->arch.pv.pv_unhalted = false; 7019 vcpu->arch.mp_state = 7020 KVM_MP_STATE_RUNNABLE; 7021 case KVM_MP_STATE_RUNNABLE: 7022 vcpu->arch.apf.halted = false; 7023 break; 7024 case KVM_MP_STATE_INIT_RECEIVED: 7025 break; 7026 default: 7027 return -EINTR; 7028 break; 7029 } 7030 return 1; 7031 } 7032 7033 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 7034 { 7035 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 7036 kvm_x86_ops->check_nested_events(vcpu, false); 7037 7038 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7039 !vcpu->arch.apf.halted); 7040 } 7041 7042 static int vcpu_run(struct kvm_vcpu *vcpu) 7043 { 7044 int r; 7045 struct kvm *kvm = vcpu->kvm; 7046 7047 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7048 7049 for (;;) { 7050 if (kvm_vcpu_running(vcpu)) { 7051 r = vcpu_enter_guest(vcpu); 7052 } else { 7053 r = vcpu_block(kvm, vcpu); 7054 } 7055 7056 if (r <= 0) 7057 break; 7058 7059 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 7060 if (kvm_cpu_has_pending_timer(vcpu)) 7061 kvm_inject_pending_timer_irqs(vcpu); 7062 7063 if (dm_request_for_irq_injection(vcpu) && 7064 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 7065 r = 0; 7066 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 7067 ++vcpu->stat.request_irq_exits; 7068 break; 7069 } 7070 7071 kvm_check_async_pf_completion(vcpu); 7072 7073 if (signal_pending(current)) { 7074 r = -EINTR; 7075 vcpu->run->exit_reason = KVM_EXIT_INTR; 7076 ++vcpu->stat.signal_exits; 7077 break; 7078 } 7079 if (need_resched()) { 7080 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7081 cond_resched(); 7082 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7083 } 7084 } 7085 7086 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7087 7088 return r; 7089 } 7090 7091 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 7092 { 7093 int r; 7094 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 7095 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 7096 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 7097 if (r != EMULATE_DONE) 7098 return 0; 7099 return 1; 7100 } 7101 7102 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 7103 { 7104 BUG_ON(!vcpu->arch.pio.count); 7105 7106 return complete_emulated_io(vcpu); 7107 } 7108 7109 /* 7110 * Implements the following, as a state machine: 7111 * 7112 * read: 7113 * for each fragment 7114 * for each mmio piece in the fragment 7115 * write gpa, len 7116 * exit 7117 * copy data 7118 * execute insn 7119 * 7120 * write: 7121 * for each fragment 7122 * for each mmio piece in the fragment 7123 * write gpa, len 7124 * copy data 7125 * exit 7126 */ 7127 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 7128 { 7129 struct kvm_run *run = vcpu->run; 7130 struct kvm_mmio_fragment *frag; 7131 unsigned len; 7132 7133 BUG_ON(!vcpu->mmio_needed); 7134 7135 /* Complete previous fragment */ 7136 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 7137 len = min(8u, frag->len); 7138 if (!vcpu->mmio_is_write) 7139 memcpy(frag->data, run->mmio.data, len); 7140 7141 if (frag->len <= 8) { 7142 /* Switch to the next fragment. */ 7143 frag++; 7144 vcpu->mmio_cur_fragment++; 7145 } else { 7146 /* Go forward to the next mmio piece. */ 7147 frag->data += len; 7148 frag->gpa += len; 7149 frag->len -= len; 7150 } 7151 7152 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 7153 vcpu->mmio_needed = 0; 7154 7155 /* FIXME: return into emulator if single-stepping. */ 7156 if (vcpu->mmio_is_write) 7157 return 1; 7158 vcpu->mmio_read_completed = 1; 7159 return complete_emulated_io(vcpu); 7160 } 7161 7162 run->exit_reason = KVM_EXIT_MMIO; 7163 run->mmio.phys_addr = frag->gpa; 7164 if (vcpu->mmio_is_write) 7165 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 7166 run->mmio.len = min(8u, frag->len); 7167 run->mmio.is_write = vcpu->mmio_is_write; 7168 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7169 return 0; 7170 } 7171 7172 7173 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 7174 { 7175 struct fpu *fpu = ¤t->thread.fpu; 7176 int r; 7177 sigset_t sigsaved; 7178 7179 fpu__activate_curr(fpu); 7180 7181 if (vcpu->sigset_active) 7182 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 7183 7184 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 7185 kvm_vcpu_block(vcpu); 7186 kvm_apic_accept_events(vcpu); 7187 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 7188 r = -EAGAIN; 7189 goto out; 7190 } 7191 7192 /* re-sync apic's tpr */ 7193 if (!lapic_in_kernel(vcpu)) { 7194 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 7195 r = -EINVAL; 7196 goto out; 7197 } 7198 } 7199 7200 if (unlikely(vcpu->arch.complete_userspace_io)) { 7201 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 7202 vcpu->arch.complete_userspace_io = NULL; 7203 r = cui(vcpu); 7204 if (r <= 0) 7205 goto out; 7206 } else 7207 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 7208 7209 if (kvm_run->immediate_exit) 7210 r = -EINTR; 7211 else 7212 r = vcpu_run(vcpu); 7213 7214 out: 7215 post_kvm_run_save(vcpu); 7216 if (vcpu->sigset_active) 7217 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 7218 7219 return r; 7220 } 7221 7222 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7223 { 7224 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 7225 /* 7226 * We are here if userspace calls get_regs() in the middle of 7227 * instruction emulation. Registers state needs to be copied 7228 * back from emulation context to vcpu. Userspace shouldn't do 7229 * that usually, but some bad designed PV devices (vmware 7230 * backdoor interface) need this to work 7231 */ 7232 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 7233 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7234 } 7235 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 7236 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 7237 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 7238 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 7239 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 7240 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 7241 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 7242 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 7243 #ifdef CONFIG_X86_64 7244 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 7245 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 7246 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 7247 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 7248 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 7249 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 7250 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 7251 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 7252 #endif 7253 7254 regs->rip = kvm_rip_read(vcpu); 7255 regs->rflags = kvm_get_rflags(vcpu); 7256 7257 return 0; 7258 } 7259 7260 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7261 { 7262 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 7263 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7264 7265 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 7266 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 7267 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 7268 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 7269 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 7270 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 7271 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 7272 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 7273 #ifdef CONFIG_X86_64 7274 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 7275 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 7276 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 7277 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 7278 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 7279 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 7280 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 7281 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 7282 #endif 7283 7284 kvm_rip_write(vcpu, regs->rip); 7285 kvm_set_rflags(vcpu, regs->rflags); 7286 7287 vcpu->arch.exception.pending = false; 7288 7289 kvm_make_request(KVM_REQ_EVENT, vcpu); 7290 7291 return 0; 7292 } 7293 7294 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 7295 { 7296 struct kvm_segment cs; 7297 7298 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7299 *db = cs.db; 7300 *l = cs.l; 7301 } 7302 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 7303 7304 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 7305 struct kvm_sregs *sregs) 7306 { 7307 struct desc_ptr dt; 7308 7309 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7310 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7311 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7312 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7313 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7314 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7315 7316 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7317 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7318 7319 kvm_x86_ops->get_idt(vcpu, &dt); 7320 sregs->idt.limit = dt.size; 7321 sregs->idt.base = dt.address; 7322 kvm_x86_ops->get_gdt(vcpu, &dt); 7323 sregs->gdt.limit = dt.size; 7324 sregs->gdt.base = dt.address; 7325 7326 sregs->cr0 = kvm_read_cr0(vcpu); 7327 sregs->cr2 = vcpu->arch.cr2; 7328 sregs->cr3 = kvm_read_cr3(vcpu); 7329 sregs->cr4 = kvm_read_cr4(vcpu); 7330 sregs->cr8 = kvm_get_cr8(vcpu); 7331 sregs->efer = vcpu->arch.efer; 7332 sregs->apic_base = kvm_get_apic_base(vcpu); 7333 7334 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 7335 7336 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 7337 set_bit(vcpu->arch.interrupt.nr, 7338 (unsigned long *)sregs->interrupt_bitmap); 7339 7340 return 0; 7341 } 7342 7343 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 7344 struct kvm_mp_state *mp_state) 7345 { 7346 kvm_apic_accept_events(vcpu); 7347 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 7348 vcpu->arch.pv.pv_unhalted) 7349 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 7350 else 7351 mp_state->mp_state = vcpu->arch.mp_state; 7352 7353 return 0; 7354 } 7355 7356 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 7357 struct kvm_mp_state *mp_state) 7358 { 7359 if (!lapic_in_kernel(vcpu) && 7360 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 7361 return -EINVAL; 7362 7363 /* INITs are latched while in SMM */ 7364 if ((is_smm(vcpu) || vcpu->arch.smi_pending) && 7365 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 7366 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 7367 return -EINVAL; 7368 7369 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 7370 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 7371 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 7372 } else 7373 vcpu->arch.mp_state = mp_state->mp_state; 7374 kvm_make_request(KVM_REQ_EVENT, vcpu); 7375 return 0; 7376 } 7377 7378 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 7379 int reason, bool has_error_code, u32 error_code) 7380 { 7381 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 7382 int ret; 7383 7384 init_emulate_ctxt(vcpu); 7385 7386 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 7387 has_error_code, error_code); 7388 7389 if (ret) 7390 return EMULATE_FAIL; 7391 7392 kvm_rip_write(vcpu, ctxt->eip); 7393 kvm_set_rflags(vcpu, ctxt->eflags); 7394 kvm_make_request(KVM_REQ_EVENT, vcpu); 7395 return EMULATE_DONE; 7396 } 7397 EXPORT_SYMBOL_GPL(kvm_task_switch); 7398 7399 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 7400 struct kvm_sregs *sregs) 7401 { 7402 struct msr_data apic_base_msr; 7403 int mmu_reset_needed = 0; 7404 int pending_vec, max_bits, idx; 7405 struct desc_ptr dt; 7406 7407 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 7408 return -EINVAL; 7409 7410 dt.size = sregs->idt.limit; 7411 dt.address = sregs->idt.base; 7412 kvm_x86_ops->set_idt(vcpu, &dt); 7413 dt.size = sregs->gdt.limit; 7414 dt.address = sregs->gdt.base; 7415 kvm_x86_ops->set_gdt(vcpu, &dt); 7416 7417 vcpu->arch.cr2 = sregs->cr2; 7418 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 7419 vcpu->arch.cr3 = sregs->cr3; 7420 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 7421 7422 kvm_set_cr8(vcpu, sregs->cr8); 7423 7424 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 7425 kvm_x86_ops->set_efer(vcpu, sregs->efer); 7426 apic_base_msr.data = sregs->apic_base; 7427 apic_base_msr.host_initiated = true; 7428 kvm_set_apic_base(vcpu, &apic_base_msr); 7429 7430 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 7431 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 7432 vcpu->arch.cr0 = sregs->cr0; 7433 7434 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 7435 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 7436 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 7437 kvm_update_cpuid(vcpu); 7438 7439 idx = srcu_read_lock(&vcpu->kvm->srcu); 7440 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 7441 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 7442 mmu_reset_needed = 1; 7443 } 7444 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7445 7446 if (mmu_reset_needed) 7447 kvm_mmu_reset_context(vcpu); 7448 7449 max_bits = KVM_NR_INTERRUPTS; 7450 pending_vec = find_first_bit( 7451 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 7452 if (pending_vec < max_bits) { 7453 kvm_queue_interrupt(vcpu, pending_vec, false); 7454 pr_debug("Set back pending irq %d\n", pending_vec); 7455 } 7456 7457 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7458 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7459 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7460 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7461 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7462 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7463 7464 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7465 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7466 7467 update_cr8_intercept(vcpu); 7468 7469 /* Older userspace won't unhalt the vcpu on reset. */ 7470 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 7471 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 7472 !is_protmode(vcpu)) 7473 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7474 7475 kvm_make_request(KVM_REQ_EVENT, vcpu); 7476 7477 return 0; 7478 } 7479 7480 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 7481 struct kvm_guest_debug *dbg) 7482 { 7483 unsigned long rflags; 7484 int i, r; 7485 7486 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 7487 r = -EBUSY; 7488 if (vcpu->arch.exception.pending) 7489 goto out; 7490 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 7491 kvm_queue_exception(vcpu, DB_VECTOR); 7492 else 7493 kvm_queue_exception(vcpu, BP_VECTOR); 7494 } 7495 7496 /* 7497 * Read rflags as long as potentially injected trace flags are still 7498 * filtered out. 7499 */ 7500 rflags = kvm_get_rflags(vcpu); 7501 7502 vcpu->guest_debug = dbg->control; 7503 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 7504 vcpu->guest_debug = 0; 7505 7506 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 7507 for (i = 0; i < KVM_NR_DB_REGS; ++i) 7508 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 7509 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 7510 } else { 7511 for (i = 0; i < KVM_NR_DB_REGS; i++) 7512 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 7513 } 7514 kvm_update_dr7(vcpu); 7515 7516 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7517 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 7518 get_segment_base(vcpu, VCPU_SREG_CS); 7519 7520 /* 7521 * Trigger an rflags update that will inject or remove the trace 7522 * flags. 7523 */ 7524 kvm_set_rflags(vcpu, rflags); 7525 7526 kvm_x86_ops->update_bp_intercept(vcpu); 7527 7528 r = 0; 7529 7530 out: 7531 7532 return r; 7533 } 7534 7535 /* 7536 * Translate a guest virtual address to a guest physical address. 7537 */ 7538 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 7539 struct kvm_translation *tr) 7540 { 7541 unsigned long vaddr = tr->linear_address; 7542 gpa_t gpa; 7543 int idx; 7544 7545 idx = srcu_read_lock(&vcpu->kvm->srcu); 7546 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 7547 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7548 tr->physical_address = gpa; 7549 tr->valid = gpa != UNMAPPED_GVA; 7550 tr->writeable = 1; 7551 tr->usermode = 0; 7552 7553 return 0; 7554 } 7555 7556 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7557 { 7558 struct fxregs_state *fxsave = 7559 &vcpu->arch.guest_fpu.state.fxsave; 7560 7561 memcpy(fpu->fpr, fxsave->st_space, 128); 7562 fpu->fcw = fxsave->cwd; 7563 fpu->fsw = fxsave->swd; 7564 fpu->ftwx = fxsave->twd; 7565 fpu->last_opcode = fxsave->fop; 7566 fpu->last_ip = fxsave->rip; 7567 fpu->last_dp = fxsave->rdp; 7568 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 7569 7570 return 0; 7571 } 7572 7573 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7574 { 7575 struct fxregs_state *fxsave = 7576 &vcpu->arch.guest_fpu.state.fxsave; 7577 7578 memcpy(fxsave->st_space, fpu->fpr, 128); 7579 fxsave->cwd = fpu->fcw; 7580 fxsave->swd = fpu->fsw; 7581 fxsave->twd = fpu->ftwx; 7582 fxsave->fop = fpu->last_opcode; 7583 fxsave->rip = fpu->last_ip; 7584 fxsave->rdp = fpu->last_dp; 7585 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 7586 7587 return 0; 7588 } 7589 7590 static void fx_init(struct kvm_vcpu *vcpu) 7591 { 7592 fpstate_init(&vcpu->arch.guest_fpu.state); 7593 if (boot_cpu_has(X86_FEATURE_XSAVES)) 7594 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = 7595 host_xcr0 | XSTATE_COMPACTION_ENABLED; 7596 7597 /* 7598 * Ensure guest xcr0 is valid for loading 7599 */ 7600 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 7601 7602 vcpu->arch.cr0 |= X86_CR0_ET; 7603 } 7604 7605 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 7606 { 7607 if (vcpu->guest_fpu_loaded) 7608 return; 7609 7610 /* 7611 * Restore all possible states in the guest, 7612 * and assume host would use all available bits. 7613 * Guest xcr0 would be loaded later. 7614 */ 7615 vcpu->guest_fpu_loaded = 1; 7616 __kernel_fpu_begin(); 7617 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state); 7618 trace_kvm_fpu(1); 7619 } 7620 7621 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 7622 { 7623 if (!vcpu->guest_fpu_loaded) 7624 return; 7625 7626 vcpu->guest_fpu_loaded = 0; 7627 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); 7628 __kernel_fpu_end(); 7629 ++vcpu->stat.fpu_reload; 7630 trace_kvm_fpu(0); 7631 } 7632 7633 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 7634 { 7635 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; 7636 7637 kvmclock_reset(vcpu); 7638 7639 kvm_x86_ops->vcpu_free(vcpu); 7640 free_cpumask_var(wbinvd_dirty_mask); 7641 } 7642 7643 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 7644 unsigned int id) 7645 { 7646 struct kvm_vcpu *vcpu; 7647 7648 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 7649 printk_once(KERN_WARNING 7650 "kvm: SMP vm created on host with unstable TSC; " 7651 "guest TSC will not be reliable\n"); 7652 7653 vcpu = kvm_x86_ops->vcpu_create(kvm, id); 7654 7655 return vcpu; 7656 } 7657 7658 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 7659 { 7660 int r; 7661 7662 kvm_vcpu_mtrr_init(vcpu); 7663 r = vcpu_load(vcpu); 7664 if (r) 7665 return r; 7666 kvm_vcpu_reset(vcpu, false); 7667 kvm_mmu_setup(vcpu); 7668 vcpu_put(vcpu); 7669 return r; 7670 } 7671 7672 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 7673 { 7674 struct msr_data msr; 7675 struct kvm *kvm = vcpu->kvm; 7676 7677 if (vcpu_load(vcpu)) 7678 return; 7679 msr.data = 0x0; 7680 msr.index = MSR_IA32_TSC; 7681 msr.host_initiated = true; 7682 kvm_write_tsc(vcpu, &msr); 7683 vcpu_put(vcpu); 7684 7685 if (!kvmclock_periodic_sync) 7686 return; 7687 7688 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 7689 KVMCLOCK_SYNC_PERIOD); 7690 } 7691 7692 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 7693 { 7694 int r; 7695 vcpu->arch.apf.msr_val = 0; 7696 7697 r = vcpu_load(vcpu); 7698 BUG_ON(r); 7699 kvm_mmu_unload(vcpu); 7700 vcpu_put(vcpu); 7701 7702 kvm_x86_ops->vcpu_free(vcpu); 7703 } 7704 7705 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 7706 { 7707 vcpu->arch.hflags = 0; 7708 7709 vcpu->arch.smi_pending = 0; 7710 atomic_set(&vcpu->arch.nmi_queued, 0); 7711 vcpu->arch.nmi_pending = 0; 7712 vcpu->arch.nmi_injected = false; 7713 kvm_clear_interrupt_queue(vcpu); 7714 kvm_clear_exception_queue(vcpu); 7715 7716 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 7717 kvm_update_dr0123(vcpu); 7718 vcpu->arch.dr6 = DR6_INIT; 7719 kvm_update_dr6(vcpu); 7720 vcpu->arch.dr7 = DR7_FIXED_1; 7721 kvm_update_dr7(vcpu); 7722 7723 vcpu->arch.cr2 = 0; 7724 7725 kvm_make_request(KVM_REQ_EVENT, vcpu); 7726 vcpu->arch.apf.msr_val = 0; 7727 vcpu->arch.st.msr_val = 0; 7728 7729 kvmclock_reset(vcpu); 7730 7731 kvm_clear_async_pf_completion_queue(vcpu); 7732 kvm_async_pf_hash_reset(vcpu); 7733 vcpu->arch.apf.halted = false; 7734 7735 if (!init_event) { 7736 kvm_pmu_reset(vcpu); 7737 vcpu->arch.smbase = 0x30000; 7738 7739 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 7740 vcpu->arch.msr_misc_features_enables = 0; 7741 } 7742 7743 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 7744 vcpu->arch.regs_avail = ~0; 7745 vcpu->arch.regs_dirty = ~0; 7746 7747 kvm_x86_ops->vcpu_reset(vcpu, init_event); 7748 } 7749 7750 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 7751 { 7752 struct kvm_segment cs; 7753 7754 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7755 cs.selector = vector << 8; 7756 cs.base = vector << 12; 7757 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 7758 kvm_rip_write(vcpu, 0); 7759 } 7760 7761 int kvm_arch_hardware_enable(void) 7762 { 7763 struct kvm *kvm; 7764 struct kvm_vcpu *vcpu; 7765 int i; 7766 int ret; 7767 u64 local_tsc; 7768 u64 max_tsc = 0; 7769 bool stable, backwards_tsc = false; 7770 7771 kvm_shared_msr_cpu_online(); 7772 ret = kvm_x86_ops->hardware_enable(); 7773 if (ret != 0) 7774 return ret; 7775 7776 local_tsc = rdtsc(); 7777 stable = !check_tsc_unstable(); 7778 list_for_each_entry(kvm, &vm_list, vm_list) { 7779 kvm_for_each_vcpu(i, vcpu, kvm) { 7780 if (!stable && vcpu->cpu == smp_processor_id()) 7781 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7782 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 7783 backwards_tsc = true; 7784 if (vcpu->arch.last_host_tsc > max_tsc) 7785 max_tsc = vcpu->arch.last_host_tsc; 7786 } 7787 } 7788 } 7789 7790 /* 7791 * Sometimes, even reliable TSCs go backwards. This happens on 7792 * platforms that reset TSC during suspend or hibernate actions, but 7793 * maintain synchronization. We must compensate. Fortunately, we can 7794 * detect that condition here, which happens early in CPU bringup, 7795 * before any KVM threads can be running. Unfortunately, we can't 7796 * bring the TSCs fully up to date with real time, as we aren't yet far 7797 * enough into CPU bringup that we know how much real time has actually 7798 * elapsed; our helper function, ktime_get_boot_ns() will be using boot 7799 * variables that haven't been updated yet. 7800 * 7801 * So we simply find the maximum observed TSC above, then record the 7802 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 7803 * the adjustment will be applied. Note that we accumulate 7804 * adjustments, in case multiple suspend cycles happen before some VCPU 7805 * gets a chance to run again. In the event that no KVM threads get a 7806 * chance to run, we will miss the entire elapsed period, as we'll have 7807 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 7808 * loose cycle time. This isn't too big a deal, since the loss will be 7809 * uniform across all VCPUs (not to mention the scenario is extremely 7810 * unlikely). It is possible that a second hibernate recovery happens 7811 * much faster than a first, causing the observed TSC here to be 7812 * smaller; this would require additional padding adjustment, which is 7813 * why we set last_host_tsc to the local tsc observed here. 7814 * 7815 * N.B. - this code below runs only on platforms with reliable TSC, 7816 * as that is the only way backwards_tsc is set above. Also note 7817 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 7818 * have the same delta_cyc adjustment applied if backwards_tsc 7819 * is detected. Note further, this adjustment is only done once, 7820 * as we reset last_host_tsc on all VCPUs to stop this from being 7821 * called multiple times (one for each physical CPU bringup). 7822 * 7823 * Platforms with unreliable TSCs don't have to deal with this, they 7824 * will be compensated by the logic in vcpu_load, which sets the TSC to 7825 * catchup mode. This will catchup all VCPUs to real time, but cannot 7826 * guarantee that they stay in perfect synchronization. 7827 */ 7828 if (backwards_tsc) { 7829 u64 delta_cyc = max_tsc - local_tsc; 7830 backwards_tsc_observed = true; 7831 list_for_each_entry(kvm, &vm_list, vm_list) { 7832 kvm_for_each_vcpu(i, vcpu, kvm) { 7833 vcpu->arch.tsc_offset_adjustment += delta_cyc; 7834 vcpu->arch.last_host_tsc = local_tsc; 7835 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7836 } 7837 7838 /* 7839 * We have to disable TSC offset matching.. if you were 7840 * booting a VM while issuing an S4 host suspend.... 7841 * you may have some problem. Solving this issue is 7842 * left as an exercise to the reader. 7843 */ 7844 kvm->arch.last_tsc_nsec = 0; 7845 kvm->arch.last_tsc_write = 0; 7846 } 7847 7848 } 7849 return 0; 7850 } 7851 7852 void kvm_arch_hardware_disable(void) 7853 { 7854 kvm_x86_ops->hardware_disable(); 7855 drop_user_return_notifiers(); 7856 } 7857 7858 int kvm_arch_hardware_setup(void) 7859 { 7860 int r; 7861 7862 r = kvm_x86_ops->hardware_setup(); 7863 if (r != 0) 7864 return r; 7865 7866 if (kvm_has_tsc_control) { 7867 /* 7868 * Make sure the user can only configure tsc_khz values that 7869 * fit into a signed integer. 7870 * A min value is not calculated needed because it will always 7871 * be 1 on all machines. 7872 */ 7873 u64 max = min(0x7fffffffULL, 7874 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 7875 kvm_max_guest_tsc_khz = max; 7876 7877 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 7878 } 7879 7880 kvm_init_msr_list(); 7881 return 0; 7882 } 7883 7884 void kvm_arch_hardware_unsetup(void) 7885 { 7886 kvm_x86_ops->hardware_unsetup(); 7887 } 7888 7889 void kvm_arch_check_processor_compat(void *rtn) 7890 { 7891 kvm_x86_ops->check_processor_compatibility(rtn); 7892 } 7893 7894 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 7895 { 7896 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 7897 } 7898 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 7899 7900 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 7901 { 7902 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 7903 } 7904 7905 struct static_key kvm_no_apic_vcpu __read_mostly; 7906 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 7907 7908 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 7909 { 7910 struct page *page; 7911 struct kvm *kvm; 7912 int r; 7913 7914 BUG_ON(vcpu->kvm == NULL); 7915 kvm = vcpu->kvm; 7916 7917 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(); 7918 vcpu->arch.pv.pv_unhalted = false; 7919 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 7920 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 7921 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7922 else 7923 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 7924 7925 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 7926 if (!page) { 7927 r = -ENOMEM; 7928 goto fail; 7929 } 7930 vcpu->arch.pio_data = page_address(page); 7931 7932 kvm_set_tsc_khz(vcpu, max_tsc_khz); 7933 7934 r = kvm_mmu_create(vcpu); 7935 if (r < 0) 7936 goto fail_free_pio_data; 7937 7938 if (irqchip_in_kernel(kvm)) { 7939 r = kvm_create_lapic(vcpu); 7940 if (r < 0) 7941 goto fail_mmu_destroy; 7942 } else 7943 static_key_slow_inc(&kvm_no_apic_vcpu); 7944 7945 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 7946 GFP_KERNEL); 7947 if (!vcpu->arch.mce_banks) { 7948 r = -ENOMEM; 7949 goto fail_free_lapic; 7950 } 7951 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 7952 7953 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 7954 r = -ENOMEM; 7955 goto fail_free_mce_banks; 7956 } 7957 7958 fx_init(vcpu); 7959 7960 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 7961 vcpu->arch.pv_time_enabled = false; 7962 7963 vcpu->arch.guest_supported_xcr0 = 0; 7964 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 7965 7966 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 7967 7968 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 7969 7970 kvm_async_pf_hash_reset(vcpu); 7971 kvm_pmu_init(vcpu); 7972 7973 vcpu->arch.pending_external_vector = -1; 7974 7975 kvm_hv_vcpu_init(vcpu); 7976 7977 return 0; 7978 7979 fail_free_mce_banks: 7980 kfree(vcpu->arch.mce_banks); 7981 fail_free_lapic: 7982 kvm_free_lapic(vcpu); 7983 fail_mmu_destroy: 7984 kvm_mmu_destroy(vcpu); 7985 fail_free_pio_data: 7986 free_page((unsigned long)vcpu->arch.pio_data); 7987 fail: 7988 return r; 7989 } 7990 7991 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 7992 { 7993 int idx; 7994 7995 kvm_hv_vcpu_uninit(vcpu); 7996 kvm_pmu_destroy(vcpu); 7997 kfree(vcpu->arch.mce_banks); 7998 kvm_free_lapic(vcpu); 7999 idx = srcu_read_lock(&vcpu->kvm->srcu); 8000 kvm_mmu_destroy(vcpu); 8001 srcu_read_unlock(&vcpu->kvm->srcu, idx); 8002 free_page((unsigned long)vcpu->arch.pio_data); 8003 if (!lapic_in_kernel(vcpu)) 8004 static_key_slow_dec(&kvm_no_apic_vcpu); 8005 } 8006 8007 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 8008 { 8009 kvm_x86_ops->sched_in(vcpu, cpu); 8010 } 8011 8012 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 8013 { 8014 if (type) 8015 return -EINVAL; 8016 8017 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 8018 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 8019 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 8020 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 8021 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 8022 8023 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 8024 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 8025 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 8026 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 8027 &kvm->arch.irq_sources_bitmap); 8028 8029 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 8030 mutex_init(&kvm->arch.apic_map_lock); 8031 mutex_init(&kvm->arch.hyperv.hv_lock); 8032 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 8033 8034 kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); 8035 pvclock_update_vm_gtod_copy(kvm); 8036 8037 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 8038 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 8039 8040 kvm_page_track_init(kvm); 8041 kvm_mmu_init_vm(kvm); 8042 8043 if (kvm_x86_ops->vm_init) 8044 return kvm_x86_ops->vm_init(kvm); 8045 8046 return 0; 8047 } 8048 8049 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 8050 { 8051 int r; 8052 r = vcpu_load(vcpu); 8053 BUG_ON(r); 8054 kvm_mmu_unload(vcpu); 8055 vcpu_put(vcpu); 8056 } 8057 8058 static void kvm_free_vcpus(struct kvm *kvm) 8059 { 8060 unsigned int i; 8061 struct kvm_vcpu *vcpu; 8062 8063 /* 8064 * Unpin any mmu pages first. 8065 */ 8066 kvm_for_each_vcpu(i, vcpu, kvm) { 8067 kvm_clear_async_pf_completion_queue(vcpu); 8068 kvm_unload_vcpu_mmu(vcpu); 8069 } 8070 kvm_for_each_vcpu(i, vcpu, kvm) 8071 kvm_arch_vcpu_free(vcpu); 8072 8073 mutex_lock(&kvm->lock); 8074 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 8075 kvm->vcpus[i] = NULL; 8076 8077 atomic_set(&kvm->online_vcpus, 0); 8078 mutex_unlock(&kvm->lock); 8079 } 8080 8081 void kvm_arch_sync_events(struct kvm *kvm) 8082 { 8083 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 8084 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 8085 kvm_free_pit(kvm); 8086 } 8087 8088 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 8089 { 8090 int i, r; 8091 unsigned long hva; 8092 struct kvm_memslots *slots = kvm_memslots(kvm); 8093 struct kvm_memory_slot *slot, old; 8094 8095 /* Called with kvm->slots_lock held. */ 8096 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 8097 return -EINVAL; 8098 8099 slot = id_to_memslot(slots, id); 8100 if (size) { 8101 if (slot->npages) 8102 return -EEXIST; 8103 8104 /* 8105 * MAP_SHARED to prevent internal slot pages from being moved 8106 * by fork()/COW. 8107 */ 8108 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 8109 MAP_SHARED | MAP_ANONYMOUS, 0); 8110 if (IS_ERR((void *)hva)) 8111 return PTR_ERR((void *)hva); 8112 } else { 8113 if (!slot->npages) 8114 return 0; 8115 8116 hva = 0; 8117 } 8118 8119 old = *slot; 8120 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 8121 struct kvm_userspace_memory_region m; 8122 8123 m.slot = id | (i << 16); 8124 m.flags = 0; 8125 m.guest_phys_addr = gpa; 8126 m.userspace_addr = hva; 8127 m.memory_size = size; 8128 r = __kvm_set_memory_region(kvm, &m); 8129 if (r < 0) 8130 return r; 8131 } 8132 8133 if (!size) { 8134 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); 8135 WARN_ON(r < 0); 8136 } 8137 8138 return 0; 8139 } 8140 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 8141 8142 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 8143 { 8144 int r; 8145 8146 mutex_lock(&kvm->slots_lock); 8147 r = __x86_set_memory_region(kvm, id, gpa, size); 8148 mutex_unlock(&kvm->slots_lock); 8149 8150 return r; 8151 } 8152 EXPORT_SYMBOL_GPL(x86_set_memory_region); 8153 8154 void kvm_arch_destroy_vm(struct kvm *kvm) 8155 { 8156 if (current->mm == kvm->mm) { 8157 /* 8158 * Free memory regions allocated on behalf of userspace, 8159 * unless the the memory map has changed due to process exit 8160 * or fd copying. 8161 */ 8162 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 8163 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); 8164 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 8165 } 8166 if (kvm_x86_ops->vm_destroy) 8167 kvm_x86_ops->vm_destroy(kvm); 8168 kvm_pic_destroy(kvm); 8169 kvm_ioapic_destroy(kvm); 8170 kvm_free_vcpus(kvm); 8171 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 8172 kvm_mmu_uninit_vm(kvm); 8173 kvm_page_track_cleanup(kvm); 8174 } 8175 8176 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 8177 struct kvm_memory_slot *dont) 8178 { 8179 int i; 8180 8181 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8182 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 8183 kvfree(free->arch.rmap[i]); 8184 free->arch.rmap[i] = NULL; 8185 } 8186 if (i == 0) 8187 continue; 8188 8189 if (!dont || free->arch.lpage_info[i - 1] != 8190 dont->arch.lpage_info[i - 1]) { 8191 kvfree(free->arch.lpage_info[i - 1]); 8192 free->arch.lpage_info[i - 1] = NULL; 8193 } 8194 } 8195 8196 kvm_page_track_free_memslot(free, dont); 8197 } 8198 8199 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 8200 unsigned long npages) 8201 { 8202 int i; 8203 8204 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8205 struct kvm_lpage_info *linfo; 8206 unsigned long ugfn; 8207 int lpages; 8208 int level = i + 1; 8209 8210 lpages = gfn_to_index(slot->base_gfn + npages - 1, 8211 slot->base_gfn, level) + 1; 8212 8213 slot->arch.rmap[i] = 8214 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL); 8215 if (!slot->arch.rmap[i]) 8216 goto out_free; 8217 if (i == 0) 8218 continue; 8219 8220 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL); 8221 if (!linfo) 8222 goto out_free; 8223 8224 slot->arch.lpage_info[i - 1] = linfo; 8225 8226 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 8227 linfo[0].disallow_lpage = 1; 8228 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 8229 linfo[lpages - 1].disallow_lpage = 1; 8230 ugfn = slot->userspace_addr >> PAGE_SHIFT; 8231 /* 8232 * If the gfn and userspace address are not aligned wrt each 8233 * other, or if explicitly asked to, disable large page 8234 * support for this slot 8235 */ 8236 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 8237 !kvm_largepages_enabled()) { 8238 unsigned long j; 8239 8240 for (j = 0; j < lpages; ++j) 8241 linfo[j].disallow_lpage = 1; 8242 } 8243 } 8244 8245 if (kvm_page_track_create_memslot(slot, npages)) 8246 goto out_free; 8247 8248 return 0; 8249 8250 out_free: 8251 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8252 kvfree(slot->arch.rmap[i]); 8253 slot->arch.rmap[i] = NULL; 8254 if (i == 0) 8255 continue; 8256 8257 kvfree(slot->arch.lpage_info[i - 1]); 8258 slot->arch.lpage_info[i - 1] = NULL; 8259 } 8260 return -ENOMEM; 8261 } 8262 8263 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) 8264 { 8265 /* 8266 * memslots->generation has been incremented. 8267 * mmio generation may have reached its maximum value. 8268 */ 8269 kvm_mmu_invalidate_mmio_sptes(kvm, slots); 8270 } 8271 8272 int kvm_arch_prepare_memory_region(struct kvm *kvm, 8273 struct kvm_memory_slot *memslot, 8274 const struct kvm_userspace_memory_region *mem, 8275 enum kvm_mr_change change) 8276 { 8277 return 0; 8278 } 8279 8280 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 8281 struct kvm_memory_slot *new) 8282 { 8283 /* Still write protect RO slot */ 8284 if (new->flags & KVM_MEM_READONLY) { 8285 kvm_mmu_slot_remove_write_access(kvm, new); 8286 return; 8287 } 8288 8289 /* 8290 * Call kvm_x86_ops dirty logging hooks when they are valid. 8291 * 8292 * kvm_x86_ops->slot_disable_log_dirty is called when: 8293 * 8294 * - KVM_MR_CREATE with dirty logging is disabled 8295 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 8296 * 8297 * The reason is, in case of PML, we need to set D-bit for any slots 8298 * with dirty logging disabled in order to eliminate unnecessary GPA 8299 * logging in PML buffer (and potential PML buffer full VMEXT). This 8300 * guarantees leaving PML enabled during guest's lifetime won't have 8301 * any additonal overhead from PML when guest is running with dirty 8302 * logging disabled for memory slots. 8303 * 8304 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot 8305 * to dirty logging mode. 8306 * 8307 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 8308 * 8309 * In case of write protect: 8310 * 8311 * Write protect all pages for dirty logging. 8312 * 8313 * All the sptes including the large sptes which point to this 8314 * slot are set to readonly. We can not create any new large 8315 * spte on this slot until the end of the logging. 8316 * 8317 * See the comments in fast_page_fault(). 8318 */ 8319 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 8320 if (kvm_x86_ops->slot_enable_log_dirty) 8321 kvm_x86_ops->slot_enable_log_dirty(kvm, new); 8322 else 8323 kvm_mmu_slot_remove_write_access(kvm, new); 8324 } else { 8325 if (kvm_x86_ops->slot_disable_log_dirty) 8326 kvm_x86_ops->slot_disable_log_dirty(kvm, new); 8327 } 8328 } 8329 8330 void kvm_arch_commit_memory_region(struct kvm *kvm, 8331 const struct kvm_userspace_memory_region *mem, 8332 const struct kvm_memory_slot *old, 8333 const struct kvm_memory_slot *new, 8334 enum kvm_mr_change change) 8335 { 8336 int nr_mmu_pages = 0; 8337 8338 if (!kvm->arch.n_requested_mmu_pages) 8339 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 8340 8341 if (nr_mmu_pages) 8342 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 8343 8344 /* 8345 * Dirty logging tracks sptes in 4k granularity, meaning that large 8346 * sptes have to be split. If live migration is successful, the guest 8347 * in the source machine will be destroyed and large sptes will be 8348 * created in the destination. However, if the guest continues to run 8349 * in the source machine (for example if live migration fails), small 8350 * sptes will remain around and cause bad performance. 8351 * 8352 * Scan sptes if dirty logging has been stopped, dropping those 8353 * which can be collapsed into a single large-page spte. Later 8354 * page faults will create the large-page sptes. 8355 */ 8356 if ((change != KVM_MR_DELETE) && 8357 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 8358 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 8359 kvm_mmu_zap_collapsible_sptes(kvm, new); 8360 8361 /* 8362 * Set up write protection and/or dirty logging for the new slot. 8363 * 8364 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 8365 * been zapped so no dirty logging staff is needed for old slot. For 8366 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 8367 * new and it's also covered when dealing with the new slot. 8368 * 8369 * FIXME: const-ify all uses of struct kvm_memory_slot. 8370 */ 8371 if (change != KVM_MR_DELETE) 8372 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 8373 } 8374 8375 void kvm_arch_flush_shadow_all(struct kvm *kvm) 8376 { 8377 kvm_mmu_invalidate_zap_all_pages(kvm); 8378 } 8379 8380 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 8381 struct kvm_memory_slot *slot) 8382 { 8383 kvm_page_track_flush_slot(kvm, slot); 8384 } 8385 8386 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 8387 { 8388 if (!list_empty_careful(&vcpu->async_pf.done)) 8389 return true; 8390 8391 if (kvm_apic_has_events(vcpu)) 8392 return true; 8393 8394 if (vcpu->arch.pv.pv_unhalted) 8395 return true; 8396 8397 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 8398 (vcpu->arch.nmi_pending && 8399 kvm_x86_ops->nmi_allowed(vcpu))) 8400 return true; 8401 8402 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 8403 (vcpu->arch.smi_pending && !is_smm(vcpu))) 8404 return true; 8405 8406 if (kvm_arch_interrupt_allowed(vcpu) && 8407 kvm_cpu_has_interrupt(vcpu)) 8408 return true; 8409 8410 if (kvm_hv_has_stimer_pending(vcpu)) 8411 return true; 8412 8413 return false; 8414 } 8415 8416 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 8417 { 8418 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 8419 } 8420 8421 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 8422 { 8423 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 8424 } 8425 8426 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 8427 { 8428 return kvm_x86_ops->interrupt_allowed(vcpu); 8429 } 8430 8431 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 8432 { 8433 if (is_64_bit_mode(vcpu)) 8434 return kvm_rip_read(vcpu); 8435 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 8436 kvm_rip_read(vcpu)); 8437 } 8438 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 8439 8440 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 8441 { 8442 return kvm_get_linear_rip(vcpu) == linear_rip; 8443 } 8444 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 8445 8446 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 8447 { 8448 unsigned long rflags; 8449 8450 rflags = kvm_x86_ops->get_rflags(vcpu); 8451 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 8452 rflags &= ~X86_EFLAGS_TF; 8453 return rflags; 8454 } 8455 EXPORT_SYMBOL_GPL(kvm_get_rflags); 8456 8457 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8458 { 8459 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 8460 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 8461 rflags |= X86_EFLAGS_TF; 8462 kvm_x86_ops->set_rflags(vcpu, rflags); 8463 } 8464 8465 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8466 { 8467 __kvm_set_rflags(vcpu, rflags); 8468 kvm_make_request(KVM_REQ_EVENT, vcpu); 8469 } 8470 EXPORT_SYMBOL_GPL(kvm_set_rflags); 8471 8472 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 8473 { 8474 int r; 8475 8476 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 8477 work->wakeup_all) 8478 return; 8479 8480 r = kvm_mmu_reload(vcpu); 8481 if (unlikely(r)) 8482 return; 8483 8484 if (!vcpu->arch.mmu.direct_map && 8485 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 8486 return; 8487 8488 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 8489 } 8490 8491 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 8492 { 8493 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 8494 } 8495 8496 static inline u32 kvm_async_pf_next_probe(u32 key) 8497 { 8498 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 8499 } 8500 8501 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8502 { 8503 u32 key = kvm_async_pf_hash_fn(gfn); 8504 8505 while (vcpu->arch.apf.gfns[key] != ~0) 8506 key = kvm_async_pf_next_probe(key); 8507 8508 vcpu->arch.apf.gfns[key] = gfn; 8509 } 8510 8511 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 8512 { 8513 int i; 8514 u32 key = kvm_async_pf_hash_fn(gfn); 8515 8516 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 8517 (vcpu->arch.apf.gfns[key] != gfn && 8518 vcpu->arch.apf.gfns[key] != ~0); i++) 8519 key = kvm_async_pf_next_probe(key); 8520 8521 return key; 8522 } 8523 8524 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8525 { 8526 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 8527 } 8528 8529 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8530 { 8531 u32 i, j, k; 8532 8533 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 8534 while (true) { 8535 vcpu->arch.apf.gfns[i] = ~0; 8536 do { 8537 j = kvm_async_pf_next_probe(j); 8538 if (vcpu->arch.apf.gfns[j] == ~0) 8539 return; 8540 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 8541 /* 8542 * k lies cyclically in ]i,j] 8543 * | i.k.j | 8544 * |....j i.k.| or |.k..j i...| 8545 */ 8546 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 8547 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 8548 i = j; 8549 } 8550 } 8551 8552 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 8553 { 8554 8555 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 8556 sizeof(val)); 8557 } 8558 8559 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 8560 struct kvm_async_pf *work) 8561 { 8562 struct x86_exception fault; 8563 8564 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 8565 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 8566 8567 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 8568 (vcpu->arch.apf.send_user_only && 8569 kvm_x86_ops->get_cpl(vcpu) == 0)) 8570 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 8571 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 8572 fault.vector = PF_VECTOR; 8573 fault.error_code_valid = true; 8574 fault.error_code = 0; 8575 fault.nested_page_fault = false; 8576 fault.address = work->arch.token; 8577 kvm_inject_page_fault(vcpu, &fault); 8578 } 8579 } 8580 8581 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 8582 struct kvm_async_pf *work) 8583 { 8584 struct x86_exception fault; 8585 8586 if (work->wakeup_all) 8587 work->arch.token = ~0; /* broadcast wakeup */ 8588 else 8589 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 8590 trace_kvm_async_pf_ready(work->arch.token, work->gva); 8591 8592 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 8593 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 8594 fault.vector = PF_VECTOR; 8595 fault.error_code_valid = true; 8596 fault.error_code = 0; 8597 fault.nested_page_fault = false; 8598 fault.address = work->arch.token; 8599 kvm_inject_page_fault(vcpu, &fault); 8600 } 8601 vcpu->arch.apf.halted = false; 8602 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 8603 } 8604 8605 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 8606 { 8607 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 8608 return true; 8609 else 8610 return !kvm_event_needs_reinjection(vcpu) && 8611 kvm_x86_ops->interrupt_allowed(vcpu); 8612 } 8613 8614 void kvm_arch_start_assignment(struct kvm *kvm) 8615 { 8616 atomic_inc(&kvm->arch.assigned_device_count); 8617 } 8618 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 8619 8620 void kvm_arch_end_assignment(struct kvm *kvm) 8621 { 8622 atomic_dec(&kvm->arch.assigned_device_count); 8623 } 8624 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 8625 8626 bool kvm_arch_has_assigned_device(struct kvm *kvm) 8627 { 8628 return atomic_read(&kvm->arch.assigned_device_count); 8629 } 8630 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 8631 8632 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 8633 { 8634 atomic_inc(&kvm->arch.noncoherent_dma_count); 8635 } 8636 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 8637 8638 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 8639 { 8640 atomic_dec(&kvm->arch.noncoherent_dma_count); 8641 } 8642 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 8643 8644 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 8645 { 8646 return atomic_read(&kvm->arch.noncoherent_dma_count); 8647 } 8648 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 8649 8650 bool kvm_arch_has_irq_bypass(void) 8651 { 8652 return kvm_x86_ops->update_pi_irte != NULL; 8653 } 8654 8655 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 8656 struct irq_bypass_producer *prod) 8657 { 8658 struct kvm_kernel_irqfd *irqfd = 8659 container_of(cons, struct kvm_kernel_irqfd, consumer); 8660 8661 irqfd->producer = prod; 8662 8663 return kvm_x86_ops->update_pi_irte(irqfd->kvm, 8664 prod->irq, irqfd->gsi, 1); 8665 } 8666 8667 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 8668 struct irq_bypass_producer *prod) 8669 { 8670 int ret; 8671 struct kvm_kernel_irqfd *irqfd = 8672 container_of(cons, struct kvm_kernel_irqfd, consumer); 8673 8674 WARN_ON(irqfd->producer != prod); 8675 irqfd->producer = NULL; 8676 8677 /* 8678 * When producer of consumer is unregistered, we change back to 8679 * remapped mode, so we can re-use the current implementation 8680 * when the irq is masked/disabled or the consumer side (KVM 8681 * int this case doesn't want to receive the interrupts. 8682 */ 8683 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 8684 if (ret) 8685 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 8686 " fails: %d\n", irqfd->consumer.token, ret); 8687 } 8688 8689 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 8690 uint32_t guest_irq, bool set) 8691 { 8692 if (!kvm_x86_ops->update_pi_irte) 8693 return -EINVAL; 8694 8695 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); 8696 } 8697 8698 bool kvm_vector_hashing_enabled(void) 8699 { 8700 return vector_hashing; 8701 } 8702 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); 8703 8704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 8705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 8706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 8707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 8708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 8709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 8710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 8711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 8712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 8713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 8714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 8715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 8716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 8717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 8718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); 8719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 8720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 8721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 8722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 8723