xref: /linux/arch/x86/kvm/x86.c (revision e0ad4d68548005adb54cc7c35fd9abf760a2a050)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29 #include "lapic.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/export.h>
37 #include <linux/moduleparam.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <linux/kvm_irqfd.h>
53 #include <linux/irqbypass.h>
54 #include <linux/sched/stat.h>
55 #include <linux/sched/isolation.h>
56 #include <linux/mem_encrypt.h>
57 
58 #include <trace/events/kvm.h>
59 
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69 #include <asm/mshyperv.h>
70 #include <asm/hypervisor.h>
71 #include <asm/intel_pt.h>
72 #include <asm/emulate_prefix.h>
73 #include <clocksource/hyperv_timer.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include "trace.h"
77 
78 #define MAX_IO_MSRS 256
79 #define KVM_MAX_MCE_BANKS 32
80 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
81 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
82 
83 #define emul_to_vcpu(ctxt) \
84 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
85 
86 /* EFER defaults:
87  * - enable syscall per default because its emulated by KVM
88  * - enable LME and LMA per default on 64 bit KVM
89  */
90 #ifdef CONFIG_X86_64
91 static
92 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
93 #else
94 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
95 #endif
96 
97 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
98 
99 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
100 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
101 
102 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
103                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
104 
105 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
106 static void process_nmi(struct kvm_vcpu *vcpu);
107 static void enter_smm(struct kvm_vcpu *vcpu);
108 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
109 static void store_regs(struct kvm_vcpu *vcpu);
110 static int sync_regs(struct kvm_vcpu *vcpu);
111 
112 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
113 EXPORT_SYMBOL_GPL(kvm_x86_ops);
114 
115 static bool __read_mostly ignore_msrs = 0;
116 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
117 
118 static bool __read_mostly report_ignored_msrs = true;
119 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
120 
121 unsigned int min_timer_period_us = 200;
122 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
123 
124 static bool __read_mostly kvmclock_periodic_sync = true;
125 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
126 
127 bool __read_mostly kvm_has_tsc_control;
128 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
129 u32  __read_mostly kvm_max_guest_tsc_khz;
130 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
131 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
132 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
133 u64  __read_mostly kvm_max_tsc_scaling_ratio;
134 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
135 u64 __read_mostly kvm_default_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
137 
138 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
139 static u32 __read_mostly tsc_tolerance_ppm = 250;
140 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
141 
142 /*
143  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
144  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
145  * advancement entirely.  Any other value is used as-is and disables adaptive
146  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
147  */
148 static int __read_mostly lapic_timer_advance_ns = -1;
149 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
150 
151 static bool __read_mostly vector_hashing = true;
152 module_param(vector_hashing, bool, S_IRUGO);
153 
154 bool __read_mostly enable_vmware_backdoor = false;
155 module_param(enable_vmware_backdoor, bool, S_IRUGO);
156 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
157 
158 static bool __read_mostly force_emulation_prefix = false;
159 module_param(force_emulation_prefix, bool, S_IRUGO);
160 
161 int __read_mostly pi_inject_timer = -1;
162 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
163 
164 #define KVM_NR_SHARED_MSRS 16
165 
166 struct kvm_shared_msrs_global {
167 	int nr;
168 	u32 msrs[KVM_NR_SHARED_MSRS];
169 };
170 
171 struct kvm_shared_msrs {
172 	struct user_return_notifier urn;
173 	bool registered;
174 	struct kvm_shared_msr_values {
175 		u64 host;
176 		u64 curr;
177 	} values[KVM_NR_SHARED_MSRS];
178 };
179 
180 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
181 static struct kvm_shared_msrs __percpu *shared_msrs;
182 
183 static u64 __read_mostly host_xss;
184 
185 struct kvm_stats_debugfs_item debugfs_entries[] = {
186 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
187 	{ "pf_guest", VCPU_STAT(pf_guest) },
188 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
189 	{ "invlpg", VCPU_STAT(invlpg) },
190 	{ "exits", VCPU_STAT(exits) },
191 	{ "io_exits", VCPU_STAT(io_exits) },
192 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
193 	{ "signal_exits", VCPU_STAT(signal_exits) },
194 	{ "irq_window", VCPU_STAT(irq_window_exits) },
195 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
196 	{ "halt_exits", VCPU_STAT(halt_exits) },
197 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
198 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
199 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
200 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
201 	{ "hypercalls", VCPU_STAT(hypercalls) },
202 	{ "request_irq", VCPU_STAT(request_irq_exits) },
203 	{ "irq_exits", VCPU_STAT(irq_exits) },
204 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
205 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
206 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
207 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
208 	{ "irq_injections", VCPU_STAT(irq_injections) },
209 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
210 	{ "req_event", VCPU_STAT(req_event) },
211 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
212 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
213 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
214 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
215 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
216 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
217 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
218 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
219 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
220 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
221 	{ "largepages", VM_STAT(lpages, .mode = 0444) },
222 	{ "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
223 	{ "max_mmu_page_hash_collisions",
224 		VM_STAT(max_mmu_page_hash_collisions) },
225 	{ NULL }
226 };
227 
228 u64 __read_mostly host_xcr0;
229 
230 struct kmem_cache *x86_fpu_cache;
231 EXPORT_SYMBOL_GPL(x86_fpu_cache);
232 
233 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
234 
235 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
236 {
237 	int i;
238 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
239 		vcpu->arch.apf.gfns[i] = ~0;
240 }
241 
242 static void kvm_on_user_return(struct user_return_notifier *urn)
243 {
244 	unsigned slot;
245 	struct kvm_shared_msrs *locals
246 		= container_of(urn, struct kvm_shared_msrs, urn);
247 	struct kvm_shared_msr_values *values;
248 	unsigned long flags;
249 
250 	/*
251 	 * Disabling irqs at this point since the following code could be
252 	 * interrupted and executed through kvm_arch_hardware_disable()
253 	 */
254 	local_irq_save(flags);
255 	if (locals->registered) {
256 		locals->registered = false;
257 		user_return_notifier_unregister(urn);
258 	}
259 	local_irq_restore(flags);
260 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
261 		values = &locals->values[slot];
262 		if (values->host != values->curr) {
263 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
264 			values->curr = values->host;
265 		}
266 	}
267 }
268 
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
270 {
271 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272 	shared_msrs_global.msrs[slot] = msr;
273 	if (slot >= shared_msrs_global.nr)
274 		shared_msrs_global.nr = slot + 1;
275 }
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
277 
278 static void kvm_shared_msr_cpu_online(void)
279 {
280 	unsigned int cpu = smp_processor_id();
281 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
282 	u64 value;
283 	int i;
284 
285 	for (i = 0; i < shared_msrs_global.nr; ++i) {
286 		rdmsrl_safe(shared_msrs_global.msrs[i], &value);
287 		smsr->values[i].host = value;
288 		smsr->values[i].curr = value;
289 	}
290 }
291 
292 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
293 {
294 	unsigned int cpu = smp_processor_id();
295 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
296 	int err;
297 
298 	value = (value & mask) | (smsr->values[slot].host & ~mask);
299 	if (value == smsr->values[slot].curr)
300 		return 0;
301 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
302 	if (err)
303 		return 1;
304 
305 	smsr->values[slot].curr = value;
306 	if (!smsr->registered) {
307 		smsr->urn.on_user_return = kvm_on_user_return;
308 		user_return_notifier_register(&smsr->urn);
309 		smsr->registered = true;
310 	}
311 	return 0;
312 }
313 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
314 
315 static void drop_user_return_notifiers(void)
316 {
317 	unsigned int cpu = smp_processor_id();
318 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
319 
320 	if (smsr->registered)
321 		kvm_on_user_return(&smsr->urn);
322 }
323 
324 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
325 {
326 	return vcpu->arch.apic_base;
327 }
328 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
329 
330 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
331 {
332 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
333 }
334 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
335 
336 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
337 {
338 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
339 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
340 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
341 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
342 
343 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
344 		return 1;
345 	if (!msr_info->host_initiated) {
346 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
347 			return 1;
348 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
349 			return 1;
350 	}
351 
352 	kvm_lapic_set_base(vcpu, msr_info->data);
353 	return 0;
354 }
355 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
356 
357 asmlinkage __visible void kvm_spurious_fault(void)
358 {
359 	/* Fault while not rebooting.  We want the trace. */
360 	BUG_ON(!kvm_rebooting);
361 }
362 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
363 
364 #define EXCPT_BENIGN		0
365 #define EXCPT_CONTRIBUTORY	1
366 #define EXCPT_PF		2
367 
368 static int exception_class(int vector)
369 {
370 	switch (vector) {
371 	case PF_VECTOR:
372 		return EXCPT_PF;
373 	case DE_VECTOR:
374 	case TS_VECTOR:
375 	case NP_VECTOR:
376 	case SS_VECTOR:
377 	case GP_VECTOR:
378 		return EXCPT_CONTRIBUTORY;
379 	default:
380 		break;
381 	}
382 	return EXCPT_BENIGN;
383 }
384 
385 #define EXCPT_FAULT		0
386 #define EXCPT_TRAP		1
387 #define EXCPT_ABORT		2
388 #define EXCPT_INTERRUPT		3
389 
390 static int exception_type(int vector)
391 {
392 	unsigned int mask;
393 
394 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
395 		return EXCPT_INTERRUPT;
396 
397 	mask = 1 << vector;
398 
399 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
400 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
401 		return EXCPT_TRAP;
402 
403 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
404 		return EXCPT_ABORT;
405 
406 	/* Reserved exceptions will result in fault */
407 	return EXCPT_FAULT;
408 }
409 
410 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
411 {
412 	unsigned nr = vcpu->arch.exception.nr;
413 	bool has_payload = vcpu->arch.exception.has_payload;
414 	unsigned long payload = vcpu->arch.exception.payload;
415 
416 	if (!has_payload)
417 		return;
418 
419 	switch (nr) {
420 	case DB_VECTOR:
421 		/*
422 		 * "Certain debug exceptions may clear bit 0-3.  The
423 		 * remaining contents of the DR6 register are never
424 		 * cleared by the processor".
425 		 */
426 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
427 		/*
428 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
429 		 */
430 		vcpu->arch.dr6 |= DR6_RTM;
431 		vcpu->arch.dr6 |= payload;
432 		/*
433 		 * Bit 16 should be set in the payload whenever the #DB
434 		 * exception should clear DR6.RTM. This makes the payload
435 		 * compatible with the pending debug exceptions under VMX.
436 		 * Though not currently documented in the SDM, this also
437 		 * makes the payload compatible with the exit qualification
438 		 * for #DB exceptions under VMX.
439 		 */
440 		vcpu->arch.dr6 ^= payload & DR6_RTM;
441 
442 		/*
443 		 * The #DB payload is defined as compatible with the 'pending
444 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
445 		 * defined in the 'pending debug exceptions' field (enabled
446 		 * breakpoint), it is reserved and must be zero in DR6.
447 		 */
448 		vcpu->arch.dr6 &= ~BIT(12);
449 		break;
450 	case PF_VECTOR:
451 		vcpu->arch.cr2 = payload;
452 		break;
453 	}
454 
455 	vcpu->arch.exception.has_payload = false;
456 	vcpu->arch.exception.payload = 0;
457 }
458 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
459 
460 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
461 		unsigned nr, bool has_error, u32 error_code,
462 	        bool has_payload, unsigned long payload, bool reinject)
463 {
464 	u32 prev_nr;
465 	int class1, class2;
466 
467 	kvm_make_request(KVM_REQ_EVENT, vcpu);
468 
469 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
470 	queue:
471 		if (has_error && !is_protmode(vcpu))
472 			has_error = false;
473 		if (reinject) {
474 			/*
475 			 * On vmentry, vcpu->arch.exception.pending is only
476 			 * true if an event injection was blocked by
477 			 * nested_run_pending.  In that case, however,
478 			 * vcpu_enter_guest requests an immediate exit,
479 			 * and the guest shouldn't proceed far enough to
480 			 * need reinjection.
481 			 */
482 			WARN_ON_ONCE(vcpu->arch.exception.pending);
483 			vcpu->arch.exception.injected = true;
484 			if (WARN_ON_ONCE(has_payload)) {
485 				/*
486 				 * A reinjected event has already
487 				 * delivered its payload.
488 				 */
489 				has_payload = false;
490 				payload = 0;
491 			}
492 		} else {
493 			vcpu->arch.exception.pending = true;
494 			vcpu->arch.exception.injected = false;
495 		}
496 		vcpu->arch.exception.has_error_code = has_error;
497 		vcpu->arch.exception.nr = nr;
498 		vcpu->arch.exception.error_code = error_code;
499 		vcpu->arch.exception.has_payload = has_payload;
500 		vcpu->arch.exception.payload = payload;
501 		if (!is_guest_mode(vcpu))
502 			kvm_deliver_exception_payload(vcpu);
503 		return;
504 	}
505 
506 	/* to check exception */
507 	prev_nr = vcpu->arch.exception.nr;
508 	if (prev_nr == DF_VECTOR) {
509 		/* triple fault -> shutdown */
510 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
511 		return;
512 	}
513 	class1 = exception_class(prev_nr);
514 	class2 = exception_class(nr);
515 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
516 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
517 		/*
518 		 * Generate double fault per SDM Table 5-5.  Set
519 		 * exception.pending = true so that the double fault
520 		 * can trigger a nested vmexit.
521 		 */
522 		vcpu->arch.exception.pending = true;
523 		vcpu->arch.exception.injected = false;
524 		vcpu->arch.exception.has_error_code = true;
525 		vcpu->arch.exception.nr = DF_VECTOR;
526 		vcpu->arch.exception.error_code = 0;
527 		vcpu->arch.exception.has_payload = false;
528 		vcpu->arch.exception.payload = 0;
529 	} else
530 		/* replace previous exception with a new one in a hope
531 		   that instruction re-execution will regenerate lost
532 		   exception */
533 		goto queue;
534 }
535 
536 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
537 {
538 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
539 }
540 EXPORT_SYMBOL_GPL(kvm_queue_exception);
541 
542 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
543 {
544 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
545 }
546 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
547 
548 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
549 				  unsigned long payload)
550 {
551 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
552 }
553 
554 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
555 				    u32 error_code, unsigned long payload)
556 {
557 	kvm_multiple_exception(vcpu, nr, true, error_code,
558 			       true, payload, false);
559 }
560 
561 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
562 {
563 	if (err)
564 		kvm_inject_gp(vcpu, 0);
565 	else
566 		return kvm_skip_emulated_instruction(vcpu);
567 
568 	return 1;
569 }
570 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
571 
572 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
573 {
574 	++vcpu->stat.pf_guest;
575 	vcpu->arch.exception.nested_apf =
576 		is_guest_mode(vcpu) && fault->async_page_fault;
577 	if (vcpu->arch.exception.nested_apf) {
578 		vcpu->arch.apf.nested_apf_token = fault->address;
579 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
580 	} else {
581 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
582 					fault->address);
583 	}
584 }
585 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
586 
587 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
588 {
589 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
590 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
591 	else
592 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
593 
594 	return fault->nested_page_fault;
595 }
596 
597 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
598 {
599 	atomic_inc(&vcpu->arch.nmi_queued);
600 	kvm_make_request(KVM_REQ_NMI, vcpu);
601 }
602 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
603 
604 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
605 {
606 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
607 }
608 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
609 
610 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
611 {
612 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
613 }
614 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
615 
616 /*
617  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
618  * a #GP and return false.
619  */
620 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
621 {
622 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
623 		return true;
624 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
625 	return false;
626 }
627 EXPORT_SYMBOL_GPL(kvm_require_cpl);
628 
629 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
630 {
631 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
632 		return true;
633 
634 	kvm_queue_exception(vcpu, UD_VECTOR);
635 	return false;
636 }
637 EXPORT_SYMBOL_GPL(kvm_require_dr);
638 
639 /*
640  * This function will be used to read from the physical memory of the currently
641  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
642  * can read from guest physical or from the guest's guest physical memory.
643  */
644 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
645 			    gfn_t ngfn, void *data, int offset, int len,
646 			    u32 access)
647 {
648 	struct x86_exception exception;
649 	gfn_t real_gfn;
650 	gpa_t ngpa;
651 
652 	ngpa     = gfn_to_gpa(ngfn);
653 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
654 	if (real_gfn == UNMAPPED_GVA)
655 		return -EFAULT;
656 
657 	real_gfn = gpa_to_gfn(real_gfn);
658 
659 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
660 }
661 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
662 
663 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
664 			       void *data, int offset, int len, u32 access)
665 {
666 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
667 				       data, offset, len, access);
668 }
669 
670 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
671 {
672 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
673 	       rsvd_bits(1, 2);
674 }
675 
676 /*
677  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
678  */
679 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
680 {
681 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
682 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
683 	int i;
684 	int ret;
685 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
686 
687 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
688 				      offset * sizeof(u64), sizeof(pdpte),
689 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
690 	if (ret < 0) {
691 		ret = 0;
692 		goto out;
693 	}
694 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
695 		if ((pdpte[i] & PT_PRESENT_MASK) &&
696 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
697 			ret = 0;
698 			goto out;
699 		}
700 	}
701 	ret = 1;
702 
703 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
704 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
705 
706 out:
707 
708 	return ret;
709 }
710 EXPORT_SYMBOL_GPL(load_pdptrs);
711 
712 bool pdptrs_changed(struct kvm_vcpu *vcpu)
713 {
714 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
715 	int offset;
716 	gfn_t gfn;
717 	int r;
718 
719 	if (!is_pae_paging(vcpu))
720 		return false;
721 
722 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
723 		return true;
724 
725 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
726 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
727 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
728 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
729 	if (r < 0)
730 		return true;
731 
732 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
733 }
734 EXPORT_SYMBOL_GPL(pdptrs_changed);
735 
736 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
737 {
738 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
739 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
740 
741 	cr0 |= X86_CR0_ET;
742 
743 #ifdef CONFIG_X86_64
744 	if (cr0 & 0xffffffff00000000UL)
745 		return 1;
746 #endif
747 
748 	cr0 &= ~CR0_RESERVED_BITS;
749 
750 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
751 		return 1;
752 
753 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
754 		return 1;
755 
756 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
757 #ifdef CONFIG_X86_64
758 		if ((vcpu->arch.efer & EFER_LME)) {
759 			int cs_db, cs_l;
760 
761 			if (!is_pae(vcpu))
762 				return 1;
763 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
764 			if (cs_l)
765 				return 1;
766 		} else
767 #endif
768 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
769 						 kvm_read_cr3(vcpu)))
770 			return 1;
771 	}
772 
773 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
774 		return 1;
775 
776 	kvm_x86_ops->set_cr0(vcpu, cr0);
777 
778 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
779 		kvm_clear_async_pf_completion_queue(vcpu);
780 		kvm_async_pf_hash_reset(vcpu);
781 	}
782 
783 	if ((cr0 ^ old_cr0) & update_bits)
784 		kvm_mmu_reset_context(vcpu);
785 
786 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
787 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
788 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
789 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
790 
791 	return 0;
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_cr0);
794 
795 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
796 {
797 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
798 }
799 EXPORT_SYMBOL_GPL(kvm_lmsw);
800 
801 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
802 {
803 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
804 
805 		if (vcpu->arch.xcr0 != host_xcr0)
806 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
807 
808 		if (vcpu->arch.xsaves_enabled &&
809 		    vcpu->arch.ia32_xss != host_xss)
810 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
811 	}
812 }
813 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
814 
815 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
816 {
817 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
818 
819 		if (vcpu->arch.xcr0 != host_xcr0)
820 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
821 
822 		if (vcpu->arch.xsaves_enabled &&
823 		    vcpu->arch.ia32_xss != host_xss)
824 			wrmsrl(MSR_IA32_XSS, host_xss);
825 	}
826 
827 }
828 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
829 
830 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
831 {
832 	u64 xcr0 = xcr;
833 	u64 old_xcr0 = vcpu->arch.xcr0;
834 	u64 valid_bits;
835 
836 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
837 	if (index != XCR_XFEATURE_ENABLED_MASK)
838 		return 1;
839 	if (!(xcr0 & XFEATURE_MASK_FP))
840 		return 1;
841 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
842 		return 1;
843 
844 	/*
845 	 * Do not allow the guest to set bits that we do not support
846 	 * saving.  However, xcr0 bit 0 is always set, even if the
847 	 * emulated CPU does not support XSAVE (see fx_init).
848 	 */
849 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
850 	if (xcr0 & ~valid_bits)
851 		return 1;
852 
853 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
854 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
855 		return 1;
856 
857 	if (xcr0 & XFEATURE_MASK_AVX512) {
858 		if (!(xcr0 & XFEATURE_MASK_YMM))
859 			return 1;
860 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
861 			return 1;
862 	}
863 	vcpu->arch.xcr0 = xcr0;
864 
865 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
866 		kvm_update_cpuid(vcpu);
867 	return 0;
868 }
869 
870 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
871 {
872 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
873 	    __kvm_set_xcr(vcpu, index, xcr)) {
874 		kvm_inject_gp(vcpu, 0);
875 		return 1;
876 	}
877 	return 0;
878 }
879 EXPORT_SYMBOL_GPL(kvm_set_xcr);
880 
881 #define __cr4_reserved_bits(__cpu_has, __c)		\
882 ({							\
883 	u64 __reserved_bits = CR4_RESERVED_BITS;	\
884 							\
885 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))		\
886 		__reserved_bits |= X86_CR4_OSXSAVE;	\
887 	if (!__cpu_has(__c, X86_FEATURE_SMEP))		\
888 		__reserved_bits |= X86_CR4_SMEP;	\
889 	if (!__cpu_has(__c, X86_FEATURE_SMAP))		\
890 		__reserved_bits |= X86_CR4_SMAP;	\
891 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))	\
892 		__reserved_bits |= X86_CR4_FSGSBASE;	\
893 	if (!__cpu_has(__c, X86_FEATURE_PKU))		\
894 		__reserved_bits |= X86_CR4_PKE;		\
895 	if (!__cpu_has(__c, X86_FEATURE_LA57))		\
896 		__reserved_bits |= X86_CR4_LA57;	\
897 	if (!__cpu_has(__c, X86_FEATURE_UMIP))		\
898 		__reserved_bits |= X86_CR4_UMIP;	\
899 	__reserved_bits;				\
900 })
901 
902 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c)
903 {
904 	u64 reserved_bits = __cr4_reserved_bits(cpu_has, c);
905 
906 	if (cpuid_ecx(0x7) & feature_bit(LA57))
907 		reserved_bits &= ~X86_CR4_LA57;
908 
909 	if (kvm_x86_ops->umip_emulated())
910 		reserved_bits &= ~X86_CR4_UMIP;
911 
912 	return reserved_bits;
913 }
914 
915 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
916 {
917 	if (cr4 & cr4_reserved_bits)
918 		return -EINVAL;
919 
920 	if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
921 		return -EINVAL;
922 
923 	return 0;
924 }
925 
926 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
927 {
928 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
929 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
930 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
931 
932 	if (kvm_valid_cr4(vcpu, cr4))
933 		return 1;
934 
935 	if (is_long_mode(vcpu)) {
936 		if (!(cr4 & X86_CR4_PAE))
937 			return 1;
938 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
939 		   && ((cr4 ^ old_cr4) & pdptr_bits)
940 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
941 				   kvm_read_cr3(vcpu)))
942 		return 1;
943 
944 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
945 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
946 			return 1;
947 
948 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
949 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
950 			return 1;
951 	}
952 
953 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
954 		return 1;
955 
956 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
957 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
958 		kvm_mmu_reset_context(vcpu);
959 
960 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
961 		kvm_update_cpuid(vcpu);
962 
963 	return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_cr4);
966 
967 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
968 {
969 	bool skip_tlb_flush = false;
970 #ifdef CONFIG_X86_64
971 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
972 
973 	if (pcid_enabled) {
974 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
975 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
976 	}
977 #endif
978 
979 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
980 		if (!skip_tlb_flush) {
981 			kvm_mmu_sync_roots(vcpu);
982 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
983 		}
984 		return 0;
985 	}
986 
987 	if (is_long_mode(vcpu) &&
988 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
989 		return 1;
990 	else if (is_pae_paging(vcpu) &&
991 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
992 		return 1;
993 
994 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
995 	vcpu->arch.cr3 = cr3;
996 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
997 
998 	return 0;
999 }
1000 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1001 
1002 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1003 {
1004 	if (cr8 & CR8_RESERVED_BITS)
1005 		return 1;
1006 	if (lapic_in_kernel(vcpu))
1007 		kvm_lapic_set_tpr(vcpu, cr8);
1008 	else
1009 		vcpu->arch.cr8 = cr8;
1010 	return 0;
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1013 
1014 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1015 {
1016 	if (lapic_in_kernel(vcpu))
1017 		return kvm_lapic_get_cr8(vcpu);
1018 	else
1019 		return vcpu->arch.cr8;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1022 
1023 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1024 {
1025 	int i;
1026 
1027 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1028 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1029 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1030 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1031 	}
1032 }
1033 
1034 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1035 {
1036 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1037 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1038 }
1039 
1040 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1041 {
1042 	unsigned long dr7;
1043 
1044 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1045 		dr7 = vcpu->arch.guest_debug_dr7;
1046 	else
1047 		dr7 = vcpu->arch.dr7;
1048 	kvm_x86_ops->set_dr7(vcpu, dr7);
1049 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1050 	if (dr7 & DR7_BP_EN_MASK)
1051 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1052 }
1053 
1054 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1055 {
1056 	u64 fixed = DR6_FIXED_1;
1057 
1058 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1059 		fixed |= DR6_RTM;
1060 	return fixed;
1061 }
1062 
1063 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1064 {
1065 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1066 
1067 	switch (dr) {
1068 	case 0 ... 3:
1069 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1070 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1071 			vcpu->arch.eff_db[dr] = val;
1072 		break;
1073 	case 4:
1074 		/* fall through */
1075 	case 6:
1076 		if (val & 0xffffffff00000000ULL)
1077 			return -1; /* #GP */
1078 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1079 		kvm_update_dr6(vcpu);
1080 		break;
1081 	case 5:
1082 		/* fall through */
1083 	default: /* 7 */
1084 		if (!kvm_dr7_valid(val))
1085 			return -1; /* #GP */
1086 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1087 		kvm_update_dr7(vcpu);
1088 		break;
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1095 {
1096 	if (__kvm_set_dr(vcpu, dr, val)) {
1097 		kvm_inject_gp(vcpu, 0);
1098 		return 1;
1099 	}
1100 	return 0;
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_set_dr);
1103 
1104 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1105 {
1106 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1107 
1108 	switch (dr) {
1109 	case 0 ... 3:
1110 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1111 		break;
1112 	case 4:
1113 		/* fall through */
1114 	case 6:
1115 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1116 			*val = vcpu->arch.dr6;
1117 		else
1118 			*val = kvm_x86_ops->get_dr6(vcpu);
1119 		break;
1120 	case 5:
1121 		/* fall through */
1122 	default: /* 7 */
1123 		*val = vcpu->arch.dr7;
1124 		break;
1125 	}
1126 	return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_get_dr);
1129 
1130 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1131 {
1132 	u32 ecx = kvm_rcx_read(vcpu);
1133 	u64 data;
1134 	int err;
1135 
1136 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1137 	if (err)
1138 		return err;
1139 	kvm_rax_write(vcpu, (u32)data);
1140 	kvm_rdx_write(vcpu, data >> 32);
1141 	return err;
1142 }
1143 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1144 
1145 /*
1146  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1147  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1148  *
1149  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1150  * extract the supported MSRs from the related const lists.
1151  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1152  * capabilities of the host cpu. This capabilities test skips MSRs that are
1153  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1154  * may depend on host virtualization features rather than host cpu features.
1155  */
1156 
1157 static const u32 msrs_to_save_all[] = {
1158 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1159 	MSR_STAR,
1160 #ifdef CONFIG_X86_64
1161 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1162 #endif
1163 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1164 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1165 	MSR_IA32_SPEC_CTRL,
1166 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1167 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1168 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1169 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1170 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1171 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1172 	MSR_IA32_UMWAIT_CONTROL,
1173 
1174 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1175 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1176 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1177 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1178 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1179 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1180 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1181 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1182 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1183 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1184 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1185 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1186 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1187 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1188 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1189 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1190 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1191 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1192 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1193 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1194 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1195 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1196 };
1197 
1198 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1199 static unsigned num_msrs_to_save;
1200 
1201 static const u32 emulated_msrs_all[] = {
1202 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1203 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1204 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1205 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1206 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1207 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1208 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1209 	HV_X64_MSR_RESET,
1210 	HV_X64_MSR_VP_INDEX,
1211 	HV_X64_MSR_VP_RUNTIME,
1212 	HV_X64_MSR_SCONTROL,
1213 	HV_X64_MSR_STIMER0_CONFIG,
1214 	HV_X64_MSR_VP_ASSIST_PAGE,
1215 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1216 	HV_X64_MSR_TSC_EMULATION_STATUS,
1217 
1218 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1219 	MSR_KVM_PV_EOI_EN,
1220 
1221 	MSR_IA32_TSC_ADJUST,
1222 	MSR_IA32_TSCDEADLINE,
1223 	MSR_IA32_ARCH_CAPABILITIES,
1224 	MSR_IA32_MISC_ENABLE,
1225 	MSR_IA32_MCG_STATUS,
1226 	MSR_IA32_MCG_CTL,
1227 	MSR_IA32_MCG_EXT_CTL,
1228 	MSR_IA32_SMBASE,
1229 	MSR_SMI_COUNT,
1230 	MSR_PLATFORM_INFO,
1231 	MSR_MISC_FEATURES_ENABLES,
1232 	MSR_AMD64_VIRT_SPEC_CTRL,
1233 	MSR_IA32_POWER_CTL,
1234 	MSR_IA32_UCODE_REV,
1235 
1236 	/*
1237 	 * The following list leaves out MSRs whose values are determined
1238 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1239 	 * We always support the "true" VMX control MSRs, even if the host
1240 	 * processor does not, so I am putting these registers here rather
1241 	 * than in msrs_to_save_all.
1242 	 */
1243 	MSR_IA32_VMX_BASIC,
1244 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1245 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1246 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1247 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1248 	MSR_IA32_VMX_MISC,
1249 	MSR_IA32_VMX_CR0_FIXED0,
1250 	MSR_IA32_VMX_CR4_FIXED0,
1251 	MSR_IA32_VMX_VMCS_ENUM,
1252 	MSR_IA32_VMX_PROCBASED_CTLS2,
1253 	MSR_IA32_VMX_EPT_VPID_CAP,
1254 	MSR_IA32_VMX_VMFUNC,
1255 
1256 	MSR_K7_HWCR,
1257 	MSR_KVM_POLL_CONTROL,
1258 };
1259 
1260 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1261 static unsigned num_emulated_msrs;
1262 
1263 /*
1264  * List of msr numbers which are used to expose MSR-based features that
1265  * can be used by a hypervisor to validate requested CPU features.
1266  */
1267 static const u32 msr_based_features_all[] = {
1268 	MSR_IA32_VMX_BASIC,
1269 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1270 	MSR_IA32_VMX_PINBASED_CTLS,
1271 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1272 	MSR_IA32_VMX_PROCBASED_CTLS,
1273 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1274 	MSR_IA32_VMX_EXIT_CTLS,
1275 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1276 	MSR_IA32_VMX_ENTRY_CTLS,
1277 	MSR_IA32_VMX_MISC,
1278 	MSR_IA32_VMX_CR0_FIXED0,
1279 	MSR_IA32_VMX_CR0_FIXED1,
1280 	MSR_IA32_VMX_CR4_FIXED0,
1281 	MSR_IA32_VMX_CR4_FIXED1,
1282 	MSR_IA32_VMX_VMCS_ENUM,
1283 	MSR_IA32_VMX_PROCBASED_CTLS2,
1284 	MSR_IA32_VMX_EPT_VPID_CAP,
1285 	MSR_IA32_VMX_VMFUNC,
1286 
1287 	MSR_F10H_DECFG,
1288 	MSR_IA32_UCODE_REV,
1289 	MSR_IA32_ARCH_CAPABILITIES,
1290 };
1291 
1292 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1293 static unsigned int num_msr_based_features;
1294 
1295 static u64 kvm_get_arch_capabilities(void)
1296 {
1297 	u64 data = 0;
1298 
1299 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1300 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1301 
1302 	/*
1303 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1304 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1305 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1306 	 * L1 guests, so it need not worry about its own (L2) guests.
1307 	 */
1308 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1309 
1310 	/*
1311 	 * If we're doing cache flushes (either "always" or "cond")
1312 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1313 	 * If an outer hypervisor is doing the cache flush for us
1314 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1315 	 * capability to the guest too, and if EPT is disabled we're not
1316 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1317 	 * require a nested hypervisor to do a flush of its own.
1318 	 */
1319 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1320 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1321 
1322 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1323 		data |= ARCH_CAP_RDCL_NO;
1324 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1325 		data |= ARCH_CAP_SSB_NO;
1326 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1327 		data |= ARCH_CAP_MDS_NO;
1328 
1329 	/*
1330 	 * On TAA affected systems:
1331 	 *      - nothing to do if TSX is disabled on the host.
1332 	 *      - we emulate TSX_CTRL if present on the host.
1333 	 *	  This lets the guest use VERW to clear CPU buffers.
1334 	 */
1335 	if (!boot_cpu_has(X86_FEATURE_RTM))
1336 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1337 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1338 		data |= ARCH_CAP_TAA_NO;
1339 
1340 	return data;
1341 }
1342 
1343 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1344 {
1345 	switch (msr->index) {
1346 	case MSR_IA32_ARCH_CAPABILITIES:
1347 		msr->data = kvm_get_arch_capabilities();
1348 		break;
1349 	case MSR_IA32_UCODE_REV:
1350 		rdmsrl_safe(msr->index, &msr->data);
1351 		break;
1352 	default:
1353 		if (kvm_x86_ops->get_msr_feature(msr))
1354 			return 1;
1355 	}
1356 	return 0;
1357 }
1358 
1359 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1360 {
1361 	struct kvm_msr_entry msr;
1362 	int r;
1363 
1364 	msr.index = index;
1365 	r = kvm_get_msr_feature(&msr);
1366 	if (r)
1367 		return r;
1368 
1369 	*data = msr.data;
1370 
1371 	return 0;
1372 }
1373 
1374 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1375 {
1376 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1377 		return false;
1378 
1379 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1380 		return false;
1381 
1382 	if (efer & (EFER_LME | EFER_LMA) &&
1383 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1384 		return false;
1385 
1386 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1387 		return false;
1388 
1389 	return true;
1390 
1391 }
1392 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1393 {
1394 	if (efer & efer_reserved_bits)
1395 		return false;
1396 
1397 	return __kvm_valid_efer(vcpu, efer);
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1400 
1401 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1402 {
1403 	u64 old_efer = vcpu->arch.efer;
1404 	u64 efer = msr_info->data;
1405 
1406 	if (efer & efer_reserved_bits)
1407 		return 1;
1408 
1409 	if (!msr_info->host_initiated) {
1410 		if (!__kvm_valid_efer(vcpu, efer))
1411 			return 1;
1412 
1413 		if (is_paging(vcpu) &&
1414 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1415 			return 1;
1416 	}
1417 
1418 	efer &= ~EFER_LMA;
1419 	efer |= vcpu->arch.efer & EFER_LMA;
1420 
1421 	kvm_x86_ops->set_efer(vcpu, efer);
1422 
1423 	/* Update reserved bits */
1424 	if ((efer ^ old_efer) & EFER_NX)
1425 		kvm_mmu_reset_context(vcpu);
1426 
1427 	return 0;
1428 }
1429 
1430 void kvm_enable_efer_bits(u64 mask)
1431 {
1432        efer_reserved_bits &= ~mask;
1433 }
1434 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1435 
1436 /*
1437  * Write @data into the MSR specified by @index.  Select MSR specific fault
1438  * checks are bypassed if @host_initiated is %true.
1439  * Returns 0 on success, non-0 otherwise.
1440  * Assumes vcpu_load() was already called.
1441  */
1442 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1443 			 bool host_initiated)
1444 {
1445 	struct msr_data msr;
1446 
1447 	switch (index) {
1448 	case MSR_FS_BASE:
1449 	case MSR_GS_BASE:
1450 	case MSR_KERNEL_GS_BASE:
1451 	case MSR_CSTAR:
1452 	case MSR_LSTAR:
1453 		if (is_noncanonical_address(data, vcpu))
1454 			return 1;
1455 		break;
1456 	case MSR_IA32_SYSENTER_EIP:
1457 	case MSR_IA32_SYSENTER_ESP:
1458 		/*
1459 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1460 		 * non-canonical address is written on Intel but not on
1461 		 * AMD (which ignores the top 32-bits, because it does
1462 		 * not implement 64-bit SYSENTER).
1463 		 *
1464 		 * 64-bit code should hence be able to write a non-canonical
1465 		 * value on AMD.  Making the address canonical ensures that
1466 		 * vmentry does not fail on Intel after writing a non-canonical
1467 		 * value, and that something deterministic happens if the guest
1468 		 * invokes 64-bit SYSENTER.
1469 		 */
1470 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1471 	}
1472 
1473 	msr.data = data;
1474 	msr.index = index;
1475 	msr.host_initiated = host_initiated;
1476 
1477 	return kvm_x86_ops->set_msr(vcpu, &msr);
1478 }
1479 
1480 /*
1481  * Read the MSR specified by @index into @data.  Select MSR specific fault
1482  * checks are bypassed if @host_initiated is %true.
1483  * Returns 0 on success, non-0 otherwise.
1484  * Assumes vcpu_load() was already called.
1485  */
1486 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1487 		  bool host_initiated)
1488 {
1489 	struct msr_data msr;
1490 	int ret;
1491 
1492 	msr.index = index;
1493 	msr.host_initiated = host_initiated;
1494 
1495 	ret = kvm_x86_ops->get_msr(vcpu, &msr);
1496 	if (!ret)
1497 		*data = msr.data;
1498 	return ret;
1499 }
1500 
1501 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1502 {
1503 	return __kvm_get_msr(vcpu, index, data, false);
1504 }
1505 EXPORT_SYMBOL_GPL(kvm_get_msr);
1506 
1507 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1508 {
1509 	return __kvm_set_msr(vcpu, index, data, false);
1510 }
1511 EXPORT_SYMBOL_GPL(kvm_set_msr);
1512 
1513 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1514 {
1515 	u32 ecx = kvm_rcx_read(vcpu);
1516 	u64 data;
1517 
1518 	if (kvm_get_msr(vcpu, ecx, &data)) {
1519 		trace_kvm_msr_read_ex(ecx);
1520 		kvm_inject_gp(vcpu, 0);
1521 		return 1;
1522 	}
1523 
1524 	trace_kvm_msr_read(ecx, data);
1525 
1526 	kvm_rax_write(vcpu, data & -1u);
1527 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1528 	return kvm_skip_emulated_instruction(vcpu);
1529 }
1530 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1531 
1532 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1533 {
1534 	u32 ecx = kvm_rcx_read(vcpu);
1535 	u64 data = kvm_read_edx_eax(vcpu);
1536 
1537 	if (kvm_set_msr(vcpu, ecx, data)) {
1538 		trace_kvm_msr_write_ex(ecx, data);
1539 		kvm_inject_gp(vcpu, 0);
1540 		return 1;
1541 	}
1542 
1543 	trace_kvm_msr_write(ecx, data);
1544 	return kvm_skip_emulated_instruction(vcpu);
1545 }
1546 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1547 
1548 /*
1549  * The fast path for frequent and performance sensitive wrmsr emulation,
1550  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1551  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1552  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1553  * other cases which must be called after interrupts are enabled on the host.
1554  */
1555 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1556 {
1557 	if (lapic_in_kernel(vcpu) && apic_x2apic_mode(vcpu->arch.apic) &&
1558 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1559 		((data & APIC_MODE_MASK) == APIC_DM_FIXED)) {
1560 
1561 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1562 		return kvm_lapic_reg_write(vcpu->arch.apic, APIC_ICR, (u32)data);
1563 	}
1564 
1565 	return 1;
1566 }
1567 
1568 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1569 {
1570 	u32 msr = kvm_rcx_read(vcpu);
1571 	u64 data = kvm_read_edx_eax(vcpu);
1572 	int ret = 0;
1573 
1574 	switch (msr) {
1575 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1576 		ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
1577 		break;
1578 	default:
1579 		return EXIT_FASTPATH_NONE;
1580 	}
1581 
1582 	if (!ret) {
1583 		trace_kvm_msr_write(msr, data);
1584 		return EXIT_FASTPATH_SKIP_EMUL_INS;
1585 	}
1586 
1587 	return EXIT_FASTPATH_NONE;
1588 }
1589 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1590 
1591 /*
1592  * Adapt set_msr() to msr_io()'s calling convention
1593  */
1594 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1595 {
1596 	return __kvm_get_msr(vcpu, index, data, true);
1597 }
1598 
1599 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1600 {
1601 	return __kvm_set_msr(vcpu, index, *data, true);
1602 }
1603 
1604 #ifdef CONFIG_X86_64
1605 struct pvclock_clock {
1606 	int vclock_mode;
1607 	u64 cycle_last;
1608 	u64 mask;
1609 	u32 mult;
1610 	u32 shift;
1611 	u64 base_cycles;
1612 	u64 offset;
1613 };
1614 
1615 struct pvclock_gtod_data {
1616 	seqcount_t	seq;
1617 
1618 	struct pvclock_clock clock; /* extract of a clocksource struct */
1619 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1620 
1621 	ktime_t		offs_boot;
1622 	u64		wall_time_sec;
1623 };
1624 
1625 static struct pvclock_gtod_data pvclock_gtod_data;
1626 
1627 static void update_pvclock_gtod(struct timekeeper *tk)
1628 {
1629 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1630 
1631 	write_seqcount_begin(&vdata->seq);
1632 
1633 	/* copy pvclock gtod data */
1634 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1635 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1636 	vdata->clock.mask		= tk->tkr_mono.mask;
1637 	vdata->clock.mult		= tk->tkr_mono.mult;
1638 	vdata->clock.shift		= tk->tkr_mono.shift;
1639 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1640 	vdata->clock.offset		= tk->tkr_mono.base;
1641 
1642 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->archdata.vclock_mode;
1643 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1644 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1645 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1646 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1647 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1648 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1649 
1650 	vdata->wall_time_sec            = tk->xtime_sec;
1651 
1652 	vdata->offs_boot		= tk->offs_boot;
1653 
1654 	write_seqcount_end(&vdata->seq);
1655 }
1656 
1657 static s64 get_kvmclock_base_ns(void)
1658 {
1659 	/* Count up from boot time, but with the frequency of the raw clock.  */
1660 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1661 }
1662 #else
1663 static s64 get_kvmclock_base_ns(void)
1664 {
1665 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1666 	return ktime_get_boottime_ns();
1667 }
1668 #endif
1669 
1670 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1671 {
1672 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1673 	kvm_vcpu_kick(vcpu);
1674 }
1675 
1676 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1677 {
1678 	int version;
1679 	int r;
1680 	struct pvclock_wall_clock wc;
1681 	u64 wall_nsec;
1682 
1683 	if (!wall_clock)
1684 		return;
1685 
1686 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1687 	if (r)
1688 		return;
1689 
1690 	if (version & 1)
1691 		++version;  /* first time write, random junk */
1692 
1693 	++version;
1694 
1695 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1696 		return;
1697 
1698 	/*
1699 	 * The guest calculates current wall clock time by adding
1700 	 * system time (updated by kvm_guest_time_update below) to the
1701 	 * wall clock specified here.  We do the reverse here.
1702 	 */
1703 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1704 
1705 	wc.nsec = do_div(wall_nsec, 1000000000);
1706 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1707 	wc.version = version;
1708 
1709 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1710 
1711 	version++;
1712 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1713 }
1714 
1715 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1716 {
1717 	do_shl32_div32(dividend, divisor);
1718 	return dividend;
1719 }
1720 
1721 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1722 			       s8 *pshift, u32 *pmultiplier)
1723 {
1724 	uint64_t scaled64;
1725 	int32_t  shift = 0;
1726 	uint64_t tps64;
1727 	uint32_t tps32;
1728 
1729 	tps64 = base_hz;
1730 	scaled64 = scaled_hz;
1731 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1732 		tps64 >>= 1;
1733 		shift--;
1734 	}
1735 
1736 	tps32 = (uint32_t)tps64;
1737 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1738 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1739 			scaled64 >>= 1;
1740 		else
1741 			tps32 <<= 1;
1742 		shift++;
1743 	}
1744 
1745 	*pshift = shift;
1746 	*pmultiplier = div_frac(scaled64, tps32);
1747 }
1748 
1749 #ifdef CONFIG_X86_64
1750 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1751 #endif
1752 
1753 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1754 static unsigned long max_tsc_khz;
1755 
1756 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1757 {
1758 	u64 v = (u64)khz * (1000000 + ppm);
1759 	do_div(v, 1000000);
1760 	return v;
1761 }
1762 
1763 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1764 {
1765 	u64 ratio;
1766 
1767 	/* Guest TSC same frequency as host TSC? */
1768 	if (!scale) {
1769 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1770 		return 0;
1771 	}
1772 
1773 	/* TSC scaling supported? */
1774 	if (!kvm_has_tsc_control) {
1775 		if (user_tsc_khz > tsc_khz) {
1776 			vcpu->arch.tsc_catchup = 1;
1777 			vcpu->arch.tsc_always_catchup = 1;
1778 			return 0;
1779 		} else {
1780 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1781 			return -1;
1782 		}
1783 	}
1784 
1785 	/* TSC scaling required  - calculate ratio */
1786 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1787 				user_tsc_khz, tsc_khz);
1788 
1789 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1790 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1791 			            user_tsc_khz);
1792 		return -1;
1793 	}
1794 
1795 	vcpu->arch.tsc_scaling_ratio = ratio;
1796 	return 0;
1797 }
1798 
1799 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1800 {
1801 	u32 thresh_lo, thresh_hi;
1802 	int use_scaling = 0;
1803 
1804 	/* tsc_khz can be zero if TSC calibration fails */
1805 	if (user_tsc_khz == 0) {
1806 		/* set tsc_scaling_ratio to a safe value */
1807 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1808 		return -1;
1809 	}
1810 
1811 	/* Compute a scale to convert nanoseconds in TSC cycles */
1812 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1813 			   &vcpu->arch.virtual_tsc_shift,
1814 			   &vcpu->arch.virtual_tsc_mult);
1815 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1816 
1817 	/*
1818 	 * Compute the variation in TSC rate which is acceptable
1819 	 * within the range of tolerance and decide if the
1820 	 * rate being applied is within that bounds of the hardware
1821 	 * rate.  If so, no scaling or compensation need be done.
1822 	 */
1823 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1824 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1825 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1826 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1827 		use_scaling = 1;
1828 	}
1829 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1830 }
1831 
1832 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1833 {
1834 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1835 				      vcpu->arch.virtual_tsc_mult,
1836 				      vcpu->arch.virtual_tsc_shift);
1837 	tsc += vcpu->arch.this_tsc_write;
1838 	return tsc;
1839 }
1840 
1841 static inline int gtod_is_based_on_tsc(int mode)
1842 {
1843 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1844 }
1845 
1846 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1847 {
1848 #ifdef CONFIG_X86_64
1849 	bool vcpus_matched;
1850 	struct kvm_arch *ka = &vcpu->kvm->arch;
1851 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1852 
1853 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1854 			 atomic_read(&vcpu->kvm->online_vcpus));
1855 
1856 	/*
1857 	 * Once the masterclock is enabled, always perform request in
1858 	 * order to update it.
1859 	 *
1860 	 * In order to enable masterclock, the host clocksource must be TSC
1861 	 * and the vcpus need to have matched TSCs.  When that happens,
1862 	 * perform request to enable masterclock.
1863 	 */
1864 	if (ka->use_master_clock ||
1865 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1866 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1867 
1868 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1869 			    atomic_read(&vcpu->kvm->online_vcpus),
1870 		            ka->use_master_clock, gtod->clock.vclock_mode);
1871 #endif
1872 }
1873 
1874 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1875 {
1876 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1877 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1878 }
1879 
1880 /*
1881  * Multiply tsc by a fixed point number represented by ratio.
1882  *
1883  * The most significant 64-N bits (mult) of ratio represent the
1884  * integral part of the fixed point number; the remaining N bits
1885  * (frac) represent the fractional part, ie. ratio represents a fixed
1886  * point number (mult + frac * 2^(-N)).
1887  *
1888  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1889  */
1890 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1891 {
1892 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1893 }
1894 
1895 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1896 {
1897 	u64 _tsc = tsc;
1898 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1899 
1900 	if (ratio != kvm_default_tsc_scaling_ratio)
1901 		_tsc = __scale_tsc(ratio, tsc);
1902 
1903 	return _tsc;
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1906 
1907 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1908 {
1909 	u64 tsc;
1910 
1911 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1912 
1913 	return target_tsc - tsc;
1914 }
1915 
1916 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1917 {
1918 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1919 
1920 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1921 }
1922 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1923 
1924 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1925 {
1926 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1927 }
1928 
1929 static inline bool kvm_check_tsc_unstable(void)
1930 {
1931 #ifdef CONFIG_X86_64
1932 	/*
1933 	 * TSC is marked unstable when we're running on Hyper-V,
1934 	 * 'TSC page' clocksource is good.
1935 	 */
1936 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1937 		return false;
1938 #endif
1939 	return check_tsc_unstable();
1940 }
1941 
1942 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1943 {
1944 	struct kvm *kvm = vcpu->kvm;
1945 	u64 offset, ns, elapsed;
1946 	unsigned long flags;
1947 	bool matched;
1948 	bool already_matched;
1949 	u64 data = msr->data;
1950 	bool synchronizing = false;
1951 
1952 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1953 	offset = kvm_compute_tsc_offset(vcpu, data);
1954 	ns = get_kvmclock_base_ns();
1955 	elapsed = ns - kvm->arch.last_tsc_nsec;
1956 
1957 	if (vcpu->arch.virtual_tsc_khz) {
1958 		if (data == 0 && msr->host_initiated) {
1959 			/*
1960 			 * detection of vcpu initialization -- need to sync
1961 			 * with other vCPUs. This particularly helps to keep
1962 			 * kvm_clock stable after CPU hotplug
1963 			 */
1964 			synchronizing = true;
1965 		} else {
1966 			u64 tsc_exp = kvm->arch.last_tsc_write +
1967 						nsec_to_cycles(vcpu, elapsed);
1968 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1969 			/*
1970 			 * Special case: TSC write with a small delta (1 second)
1971 			 * of virtual cycle time against real time is
1972 			 * interpreted as an attempt to synchronize the CPU.
1973 			 */
1974 			synchronizing = data < tsc_exp + tsc_hz &&
1975 					data + tsc_hz > tsc_exp;
1976 		}
1977 	}
1978 
1979 	/*
1980 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1981 	 * TSC, we add elapsed time in this computation.  We could let the
1982 	 * compensation code attempt to catch up if we fall behind, but
1983 	 * it's better to try to match offsets from the beginning.
1984          */
1985 	if (synchronizing &&
1986 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1987 		if (!kvm_check_tsc_unstable()) {
1988 			offset = kvm->arch.cur_tsc_offset;
1989 		} else {
1990 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1991 			data += delta;
1992 			offset = kvm_compute_tsc_offset(vcpu, data);
1993 		}
1994 		matched = true;
1995 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1996 	} else {
1997 		/*
1998 		 * We split periods of matched TSC writes into generations.
1999 		 * For each generation, we track the original measured
2000 		 * nanosecond time, offset, and write, so if TSCs are in
2001 		 * sync, we can match exact offset, and if not, we can match
2002 		 * exact software computation in compute_guest_tsc()
2003 		 *
2004 		 * These values are tracked in kvm->arch.cur_xxx variables.
2005 		 */
2006 		kvm->arch.cur_tsc_generation++;
2007 		kvm->arch.cur_tsc_nsec = ns;
2008 		kvm->arch.cur_tsc_write = data;
2009 		kvm->arch.cur_tsc_offset = offset;
2010 		matched = false;
2011 	}
2012 
2013 	/*
2014 	 * We also track th most recent recorded KHZ, write and time to
2015 	 * allow the matching interval to be extended at each write.
2016 	 */
2017 	kvm->arch.last_tsc_nsec = ns;
2018 	kvm->arch.last_tsc_write = data;
2019 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2020 
2021 	vcpu->arch.last_guest_tsc = data;
2022 
2023 	/* Keep track of which generation this VCPU has synchronized to */
2024 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2025 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2026 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2027 
2028 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2029 		update_ia32_tsc_adjust_msr(vcpu, offset);
2030 
2031 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2032 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2033 
2034 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2035 	if (!matched) {
2036 		kvm->arch.nr_vcpus_matched_tsc = 0;
2037 	} else if (!already_matched) {
2038 		kvm->arch.nr_vcpus_matched_tsc++;
2039 	}
2040 
2041 	kvm_track_tsc_matching(vcpu);
2042 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2043 }
2044 
2045 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2046 
2047 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2048 					   s64 adjustment)
2049 {
2050 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
2051 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2052 }
2053 
2054 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2055 {
2056 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2057 		WARN_ON(adjustment < 0);
2058 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2059 	adjust_tsc_offset_guest(vcpu, adjustment);
2060 }
2061 
2062 #ifdef CONFIG_X86_64
2063 
2064 static u64 read_tsc(void)
2065 {
2066 	u64 ret = (u64)rdtsc_ordered();
2067 	u64 last = pvclock_gtod_data.clock.cycle_last;
2068 
2069 	if (likely(ret >= last))
2070 		return ret;
2071 
2072 	/*
2073 	 * GCC likes to generate cmov here, but this branch is extremely
2074 	 * predictable (it's just a function of time and the likely is
2075 	 * very likely) and there's a data dependence, so force GCC
2076 	 * to generate a branch instead.  I don't barrier() because
2077 	 * we don't actually need a barrier, and if this function
2078 	 * ever gets inlined it will generate worse code.
2079 	 */
2080 	asm volatile ("");
2081 	return last;
2082 }
2083 
2084 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2085 			  int *mode)
2086 {
2087 	long v;
2088 	u64 tsc_pg_val;
2089 
2090 	switch (clock->vclock_mode) {
2091 	case VCLOCK_HVCLOCK:
2092 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2093 						  tsc_timestamp);
2094 		if (tsc_pg_val != U64_MAX) {
2095 			/* TSC page valid */
2096 			*mode = VCLOCK_HVCLOCK;
2097 			v = (tsc_pg_val - clock->cycle_last) &
2098 				clock->mask;
2099 		} else {
2100 			/* TSC page invalid */
2101 			*mode = VCLOCK_NONE;
2102 		}
2103 		break;
2104 	case VCLOCK_TSC:
2105 		*mode = VCLOCK_TSC;
2106 		*tsc_timestamp = read_tsc();
2107 		v = (*tsc_timestamp - clock->cycle_last) &
2108 			clock->mask;
2109 		break;
2110 	default:
2111 		*mode = VCLOCK_NONE;
2112 	}
2113 
2114 	if (*mode == VCLOCK_NONE)
2115 		*tsc_timestamp = v = 0;
2116 
2117 	return v * clock->mult;
2118 }
2119 
2120 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2121 {
2122 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2123 	unsigned long seq;
2124 	int mode;
2125 	u64 ns;
2126 
2127 	do {
2128 		seq = read_seqcount_begin(&gtod->seq);
2129 		ns = gtod->raw_clock.base_cycles;
2130 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2131 		ns >>= gtod->raw_clock.shift;
2132 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2133 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2134 	*t = ns;
2135 
2136 	return mode;
2137 }
2138 
2139 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2140 {
2141 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2142 	unsigned long seq;
2143 	int mode;
2144 	u64 ns;
2145 
2146 	do {
2147 		seq = read_seqcount_begin(&gtod->seq);
2148 		ts->tv_sec = gtod->wall_time_sec;
2149 		ns = gtod->clock.base_cycles;
2150 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2151 		ns >>= gtod->clock.shift;
2152 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2153 
2154 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2155 	ts->tv_nsec = ns;
2156 
2157 	return mode;
2158 }
2159 
2160 /* returns true if host is using TSC based clocksource */
2161 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2162 {
2163 	/* checked again under seqlock below */
2164 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2165 		return false;
2166 
2167 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2168 						      tsc_timestamp));
2169 }
2170 
2171 /* returns true if host is using TSC based clocksource */
2172 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2173 					   u64 *tsc_timestamp)
2174 {
2175 	/* checked again under seqlock below */
2176 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2177 		return false;
2178 
2179 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2180 }
2181 #endif
2182 
2183 /*
2184  *
2185  * Assuming a stable TSC across physical CPUS, and a stable TSC
2186  * across virtual CPUs, the following condition is possible.
2187  * Each numbered line represents an event visible to both
2188  * CPUs at the next numbered event.
2189  *
2190  * "timespecX" represents host monotonic time. "tscX" represents
2191  * RDTSC value.
2192  *
2193  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2194  *
2195  * 1.  read timespec0,tsc0
2196  * 2.					| timespec1 = timespec0 + N
2197  * 					| tsc1 = tsc0 + M
2198  * 3. transition to guest		| transition to guest
2199  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2200  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2201  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2202  *
2203  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2204  *
2205  * 	- ret0 < ret1
2206  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2207  *		...
2208  *	- 0 < N - M => M < N
2209  *
2210  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2211  * always the case (the difference between two distinct xtime instances
2212  * might be smaller then the difference between corresponding TSC reads,
2213  * when updating guest vcpus pvclock areas).
2214  *
2215  * To avoid that problem, do not allow visibility of distinct
2216  * system_timestamp/tsc_timestamp values simultaneously: use a master
2217  * copy of host monotonic time values. Update that master copy
2218  * in lockstep.
2219  *
2220  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2221  *
2222  */
2223 
2224 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2225 {
2226 #ifdef CONFIG_X86_64
2227 	struct kvm_arch *ka = &kvm->arch;
2228 	int vclock_mode;
2229 	bool host_tsc_clocksource, vcpus_matched;
2230 
2231 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2232 			atomic_read(&kvm->online_vcpus));
2233 
2234 	/*
2235 	 * If the host uses TSC clock, then passthrough TSC as stable
2236 	 * to the guest.
2237 	 */
2238 	host_tsc_clocksource = kvm_get_time_and_clockread(
2239 					&ka->master_kernel_ns,
2240 					&ka->master_cycle_now);
2241 
2242 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2243 				&& !ka->backwards_tsc_observed
2244 				&& !ka->boot_vcpu_runs_old_kvmclock;
2245 
2246 	if (ka->use_master_clock)
2247 		atomic_set(&kvm_guest_has_master_clock, 1);
2248 
2249 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2250 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2251 					vcpus_matched);
2252 #endif
2253 }
2254 
2255 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2256 {
2257 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2258 }
2259 
2260 static void kvm_gen_update_masterclock(struct kvm *kvm)
2261 {
2262 #ifdef CONFIG_X86_64
2263 	int i;
2264 	struct kvm_vcpu *vcpu;
2265 	struct kvm_arch *ka = &kvm->arch;
2266 
2267 	spin_lock(&ka->pvclock_gtod_sync_lock);
2268 	kvm_make_mclock_inprogress_request(kvm);
2269 	/* no guest entries from this point */
2270 	pvclock_update_vm_gtod_copy(kvm);
2271 
2272 	kvm_for_each_vcpu(i, vcpu, kvm)
2273 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2274 
2275 	/* guest entries allowed */
2276 	kvm_for_each_vcpu(i, vcpu, kvm)
2277 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2278 
2279 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2280 #endif
2281 }
2282 
2283 u64 get_kvmclock_ns(struct kvm *kvm)
2284 {
2285 	struct kvm_arch *ka = &kvm->arch;
2286 	struct pvclock_vcpu_time_info hv_clock;
2287 	u64 ret;
2288 
2289 	spin_lock(&ka->pvclock_gtod_sync_lock);
2290 	if (!ka->use_master_clock) {
2291 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2292 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2293 	}
2294 
2295 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2296 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2297 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2298 
2299 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2300 	get_cpu();
2301 
2302 	if (__this_cpu_read(cpu_tsc_khz)) {
2303 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2304 				   &hv_clock.tsc_shift,
2305 				   &hv_clock.tsc_to_system_mul);
2306 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2307 	} else
2308 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2309 
2310 	put_cpu();
2311 
2312 	return ret;
2313 }
2314 
2315 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2316 {
2317 	struct kvm_vcpu_arch *vcpu = &v->arch;
2318 	struct pvclock_vcpu_time_info guest_hv_clock;
2319 
2320 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2321 		&guest_hv_clock, sizeof(guest_hv_clock))))
2322 		return;
2323 
2324 	/* This VCPU is paused, but it's legal for a guest to read another
2325 	 * VCPU's kvmclock, so we really have to follow the specification where
2326 	 * it says that version is odd if data is being modified, and even after
2327 	 * it is consistent.
2328 	 *
2329 	 * Version field updates must be kept separate.  This is because
2330 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2331 	 * writes within a string instruction are weakly ordered.  So there
2332 	 * are three writes overall.
2333 	 *
2334 	 * As a small optimization, only write the version field in the first
2335 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2336 	 * version field is the first in the struct.
2337 	 */
2338 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2339 
2340 	if (guest_hv_clock.version & 1)
2341 		++guest_hv_clock.version;  /* first time write, random junk */
2342 
2343 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2344 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2345 				&vcpu->hv_clock,
2346 				sizeof(vcpu->hv_clock.version));
2347 
2348 	smp_wmb();
2349 
2350 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2351 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2352 
2353 	if (vcpu->pvclock_set_guest_stopped_request) {
2354 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2355 		vcpu->pvclock_set_guest_stopped_request = false;
2356 	}
2357 
2358 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2359 
2360 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2361 				&vcpu->hv_clock,
2362 				sizeof(vcpu->hv_clock));
2363 
2364 	smp_wmb();
2365 
2366 	vcpu->hv_clock.version++;
2367 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2368 				&vcpu->hv_clock,
2369 				sizeof(vcpu->hv_clock.version));
2370 }
2371 
2372 static int kvm_guest_time_update(struct kvm_vcpu *v)
2373 {
2374 	unsigned long flags, tgt_tsc_khz;
2375 	struct kvm_vcpu_arch *vcpu = &v->arch;
2376 	struct kvm_arch *ka = &v->kvm->arch;
2377 	s64 kernel_ns;
2378 	u64 tsc_timestamp, host_tsc;
2379 	u8 pvclock_flags;
2380 	bool use_master_clock;
2381 
2382 	kernel_ns = 0;
2383 	host_tsc = 0;
2384 
2385 	/*
2386 	 * If the host uses TSC clock, then passthrough TSC as stable
2387 	 * to the guest.
2388 	 */
2389 	spin_lock(&ka->pvclock_gtod_sync_lock);
2390 	use_master_clock = ka->use_master_clock;
2391 	if (use_master_clock) {
2392 		host_tsc = ka->master_cycle_now;
2393 		kernel_ns = ka->master_kernel_ns;
2394 	}
2395 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2396 
2397 	/* Keep irq disabled to prevent changes to the clock */
2398 	local_irq_save(flags);
2399 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2400 	if (unlikely(tgt_tsc_khz == 0)) {
2401 		local_irq_restore(flags);
2402 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2403 		return 1;
2404 	}
2405 	if (!use_master_clock) {
2406 		host_tsc = rdtsc();
2407 		kernel_ns = get_kvmclock_base_ns();
2408 	}
2409 
2410 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2411 
2412 	/*
2413 	 * We may have to catch up the TSC to match elapsed wall clock
2414 	 * time for two reasons, even if kvmclock is used.
2415 	 *   1) CPU could have been running below the maximum TSC rate
2416 	 *   2) Broken TSC compensation resets the base at each VCPU
2417 	 *      entry to avoid unknown leaps of TSC even when running
2418 	 *      again on the same CPU.  This may cause apparent elapsed
2419 	 *      time to disappear, and the guest to stand still or run
2420 	 *	very slowly.
2421 	 */
2422 	if (vcpu->tsc_catchup) {
2423 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2424 		if (tsc > tsc_timestamp) {
2425 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2426 			tsc_timestamp = tsc;
2427 		}
2428 	}
2429 
2430 	local_irq_restore(flags);
2431 
2432 	/* With all the info we got, fill in the values */
2433 
2434 	if (kvm_has_tsc_control)
2435 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2436 
2437 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2438 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2439 				   &vcpu->hv_clock.tsc_shift,
2440 				   &vcpu->hv_clock.tsc_to_system_mul);
2441 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2442 	}
2443 
2444 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2445 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2446 	vcpu->last_guest_tsc = tsc_timestamp;
2447 	WARN_ON((s64)vcpu->hv_clock.system_time < 0);
2448 
2449 	/* If the host uses TSC clocksource, then it is stable */
2450 	pvclock_flags = 0;
2451 	if (use_master_clock)
2452 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2453 
2454 	vcpu->hv_clock.flags = pvclock_flags;
2455 
2456 	if (vcpu->pv_time_enabled)
2457 		kvm_setup_pvclock_page(v);
2458 	if (v == kvm_get_vcpu(v->kvm, 0))
2459 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2460 	return 0;
2461 }
2462 
2463 /*
2464  * kvmclock updates which are isolated to a given vcpu, such as
2465  * vcpu->cpu migration, should not allow system_timestamp from
2466  * the rest of the vcpus to remain static. Otherwise ntp frequency
2467  * correction applies to one vcpu's system_timestamp but not
2468  * the others.
2469  *
2470  * So in those cases, request a kvmclock update for all vcpus.
2471  * We need to rate-limit these requests though, as they can
2472  * considerably slow guests that have a large number of vcpus.
2473  * The time for a remote vcpu to update its kvmclock is bound
2474  * by the delay we use to rate-limit the updates.
2475  */
2476 
2477 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2478 
2479 static void kvmclock_update_fn(struct work_struct *work)
2480 {
2481 	int i;
2482 	struct delayed_work *dwork = to_delayed_work(work);
2483 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2484 					   kvmclock_update_work);
2485 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2486 	struct kvm_vcpu *vcpu;
2487 
2488 	kvm_for_each_vcpu(i, vcpu, kvm) {
2489 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2490 		kvm_vcpu_kick(vcpu);
2491 	}
2492 }
2493 
2494 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2495 {
2496 	struct kvm *kvm = v->kvm;
2497 
2498 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2499 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2500 					KVMCLOCK_UPDATE_DELAY);
2501 }
2502 
2503 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2504 
2505 static void kvmclock_sync_fn(struct work_struct *work)
2506 {
2507 	struct delayed_work *dwork = to_delayed_work(work);
2508 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2509 					   kvmclock_sync_work);
2510 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2511 
2512 	if (!kvmclock_periodic_sync)
2513 		return;
2514 
2515 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2516 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2517 					KVMCLOCK_SYNC_PERIOD);
2518 }
2519 
2520 /*
2521  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2522  */
2523 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2524 {
2525 	/* McStatusWrEn enabled? */
2526 	if (guest_cpuid_is_amd(vcpu))
2527 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2528 
2529 	return false;
2530 }
2531 
2532 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2533 {
2534 	u64 mcg_cap = vcpu->arch.mcg_cap;
2535 	unsigned bank_num = mcg_cap & 0xff;
2536 	u32 msr = msr_info->index;
2537 	u64 data = msr_info->data;
2538 
2539 	switch (msr) {
2540 	case MSR_IA32_MCG_STATUS:
2541 		vcpu->arch.mcg_status = data;
2542 		break;
2543 	case MSR_IA32_MCG_CTL:
2544 		if (!(mcg_cap & MCG_CTL_P) &&
2545 		    (data || !msr_info->host_initiated))
2546 			return 1;
2547 		if (data != 0 && data != ~(u64)0)
2548 			return 1;
2549 		vcpu->arch.mcg_ctl = data;
2550 		break;
2551 	default:
2552 		if (msr >= MSR_IA32_MC0_CTL &&
2553 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2554 			u32 offset = array_index_nospec(
2555 				msr - MSR_IA32_MC0_CTL,
2556 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2557 
2558 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2559 			 * some Linux kernels though clear bit 10 in bank 4 to
2560 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2561 			 * this to avoid an uncatched #GP in the guest
2562 			 */
2563 			if ((offset & 0x3) == 0 &&
2564 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2565 				return -1;
2566 
2567 			/* MCi_STATUS */
2568 			if (!msr_info->host_initiated &&
2569 			    (offset & 0x3) == 1 && data != 0) {
2570 				if (!can_set_mci_status(vcpu))
2571 					return -1;
2572 			}
2573 
2574 			vcpu->arch.mce_banks[offset] = data;
2575 			break;
2576 		}
2577 		return 1;
2578 	}
2579 	return 0;
2580 }
2581 
2582 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2583 {
2584 	struct kvm *kvm = vcpu->kvm;
2585 	int lm = is_long_mode(vcpu);
2586 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2587 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2588 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2589 		: kvm->arch.xen_hvm_config.blob_size_32;
2590 	u32 page_num = data & ~PAGE_MASK;
2591 	u64 page_addr = data & PAGE_MASK;
2592 	u8 *page;
2593 	int r;
2594 
2595 	r = -E2BIG;
2596 	if (page_num >= blob_size)
2597 		goto out;
2598 	r = -ENOMEM;
2599 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2600 	if (IS_ERR(page)) {
2601 		r = PTR_ERR(page);
2602 		goto out;
2603 	}
2604 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2605 		goto out_free;
2606 	r = 0;
2607 out_free:
2608 	kfree(page);
2609 out:
2610 	return r;
2611 }
2612 
2613 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2614 {
2615 	gpa_t gpa = data & ~0x3f;
2616 
2617 	/* Bits 3:5 are reserved, Should be zero */
2618 	if (data & 0x38)
2619 		return 1;
2620 
2621 	vcpu->arch.apf.msr_val = data;
2622 
2623 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2624 		kvm_clear_async_pf_completion_queue(vcpu);
2625 		kvm_async_pf_hash_reset(vcpu);
2626 		return 0;
2627 	}
2628 
2629 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2630 					sizeof(u32)))
2631 		return 1;
2632 
2633 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2634 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2635 	kvm_async_pf_wakeup_all(vcpu);
2636 	return 0;
2637 }
2638 
2639 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2640 {
2641 	vcpu->arch.pv_time_enabled = false;
2642 	vcpu->arch.time = 0;
2643 }
2644 
2645 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2646 {
2647 	++vcpu->stat.tlb_flush;
2648 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2649 }
2650 
2651 static void record_steal_time(struct kvm_vcpu *vcpu)
2652 {
2653 	struct kvm_host_map map;
2654 	struct kvm_steal_time *st;
2655 
2656 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2657 		return;
2658 
2659 	/* -EAGAIN is returned in atomic context so we can just return. */
2660 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2661 			&map, &vcpu->arch.st.cache, false))
2662 		return;
2663 
2664 	st = map.hva +
2665 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2666 
2667 	/*
2668 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2669 	 * expensive IPIs.
2670 	 */
2671 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2672 		st->preempted & KVM_VCPU_FLUSH_TLB);
2673 	if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2674 		kvm_vcpu_flush_tlb(vcpu, false);
2675 
2676 	vcpu->arch.st.preempted = 0;
2677 
2678 	if (st->version & 1)
2679 		st->version += 1;  /* first time write, random junk */
2680 
2681 	st->version += 1;
2682 
2683 	smp_wmb();
2684 
2685 	st->steal += current->sched_info.run_delay -
2686 		vcpu->arch.st.last_steal;
2687 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2688 
2689 	smp_wmb();
2690 
2691 	st->version += 1;
2692 
2693 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2694 }
2695 
2696 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2697 {
2698 	bool pr = false;
2699 	u32 msr = msr_info->index;
2700 	u64 data = msr_info->data;
2701 
2702 	switch (msr) {
2703 	case MSR_AMD64_NB_CFG:
2704 	case MSR_IA32_UCODE_WRITE:
2705 	case MSR_VM_HSAVE_PA:
2706 	case MSR_AMD64_PATCH_LOADER:
2707 	case MSR_AMD64_BU_CFG2:
2708 	case MSR_AMD64_DC_CFG:
2709 	case MSR_F15H_EX_CFG:
2710 		break;
2711 
2712 	case MSR_IA32_UCODE_REV:
2713 		if (msr_info->host_initiated)
2714 			vcpu->arch.microcode_version = data;
2715 		break;
2716 	case MSR_IA32_ARCH_CAPABILITIES:
2717 		if (!msr_info->host_initiated)
2718 			return 1;
2719 		vcpu->arch.arch_capabilities = data;
2720 		break;
2721 	case MSR_EFER:
2722 		return set_efer(vcpu, msr_info);
2723 	case MSR_K7_HWCR:
2724 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2725 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2726 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2727 
2728 		/* Handle McStatusWrEn */
2729 		if (data == BIT_ULL(18)) {
2730 			vcpu->arch.msr_hwcr = data;
2731 		} else if (data != 0) {
2732 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2733 				    data);
2734 			return 1;
2735 		}
2736 		break;
2737 	case MSR_FAM10H_MMIO_CONF_BASE:
2738 		if (data != 0) {
2739 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2740 				    "0x%llx\n", data);
2741 			return 1;
2742 		}
2743 		break;
2744 	case MSR_IA32_DEBUGCTLMSR:
2745 		if (!data) {
2746 			/* We support the non-activated case already */
2747 			break;
2748 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2749 			/* Values other than LBR and BTF are vendor-specific,
2750 			   thus reserved and should throw a #GP */
2751 			return 1;
2752 		}
2753 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2754 			    __func__, data);
2755 		break;
2756 	case 0x200 ... 0x2ff:
2757 		return kvm_mtrr_set_msr(vcpu, msr, data);
2758 	case MSR_IA32_APICBASE:
2759 		return kvm_set_apic_base(vcpu, msr_info);
2760 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2761 		return kvm_x2apic_msr_write(vcpu, msr, data);
2762 	case MSR_IA32_TSCDEADLINE:
2763 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2764 		break;
2765 	case MSR_IA32_TSC_ADJUST:
2766 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2767 			if (!msr_info->host_initiated) {
2768 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2769 				adjust_tsc_offset_guest(vcpu, adj);
2770 			}
2771 			vcpu->arch.ia32_tsc_adjust_msr = data;
2772 		}
2773 		break;
2774 	case MSR_IA32_MISC_ENABLE:
2775 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2776 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2777 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2778 				return 1;
2779 			vcpu->arch.ia32_misc_enable_msr = data;
2780 			kvm_update_cpuid(vcpu);
2781 		} else {
2782 			vcpu->arch.ia32_misc_enable_msr = data;
2783 		}
2784 		break;
2785 	case MSR_IA32_SMBASE:
2786 		if (!msr_info->host_initiated)
2787 			return 1;
2788 		vcpu->arch.smbase = data;
2789 		break;
2790 	case MSR_IA32_POWER_CTL:
2791 		vcpu->arch.msr_ia32_power_ctl = data;
2792 		break;
2793 	case MSR_IA32_TSC:
2794 		kvm_write_tsc(vcpu, msr_info);
2795 		break;
2796 	case MSR_IA32_XSS:
2797 		if (!msr_info->host_initiated &&
2798 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2799 			return 1;
2800 		/*
2801 		 * We do support PT if kvm_x86_ops->pt_supported(), but we do
2802 		 * not support IA32_XSS[bit 8]. Guests will have to use
2803 		 * RDMSR/WRMSR rather than XSAVES/XRSTORS to save/restore PT
2804 		 * MSRs.
2805 		 */
2806 		if (data != 0)
2807 			return 1;
2808 		vcpu->arch.ia32_xss = data;
2809 		break;
2810 	case MSR_SMI_COUNT:
2811 		if (!msr_info->host_initiated)
2812 			return 1;
2813 		vcpu->arch.smi_count = data;
2814 		break;
2815 	case MSR_KVM_WALL_CLOCK_NEW:
2816 	case MSR_KVM_WALL_CLOCK:
2817 		vcpu->kvm->arch.wall_clock = data;
2818 		kvm_write_wall_clock(vcpu->kvm, data);
2819 		break;
2820 	case MSR_KVM_SYSTEM_TIME_NEW:
2821 	case MSR_KVM_SYSTEM_TIME: {
2822 		struct kvm_arch *ka = &vcpu->kvm->arch;
2823 
2824 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2825 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2826 
2827 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2828 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2829 
2830 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2831 		}
2832 
2833 		vcpu->arch.time = data;
2834 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2835 
2836 		/* we verify if the enable bit is set... */
2837 		vcpu->arch.pv_time_enabled = false;
2838 		if (!(data & 1))
2839 			break;
2840 
2841 		if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2842 		     &vcpu->arch.pv_time, data & ~1ULL,
2843 		     sizeof(struct pvclock_vcpu_time_info)))
2844 			vcpu->arch.pv_time_enabled = true;
2845 
2846 		break;
2847 	}
2848 	case MSR_KVM_ASYNC_PF_EN:
2849 		if (kvm_pv_enable_async_pf(vcpu, data))
2850 			return 1;
2851 		break;
2852 	case MSR_KVM_STEAL_TIME:
2853 
2854 		if (unlikely(!sched_info_on()))
2855 			return 1;
2856 
2857 		if (data & KVM_STEAL_RESERVED_MASK)
2858 			return 1;
2859 
2860 		vcpu->arch.st.msr_val = data;
2861 
2862 		if (!(data & KVM_MSR_ENABLED))
2863 			break;
2864 
2865 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2866 
2867 		break;
2868 	case MSR_KVM_PV_EOI_EN:
2869 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2870 			return 1;
2871 		break;
2872 
2873 	case MSR_KVM_POLL_CONTROL:
2874 		/* only enable bit supported */
2875 		if (data & (-1ULL << 1))
2876 			return 1;
2877 
2878 		vcpu->arch.msr_kvm_poll_control = data;
2879 		break;
2880 
2881 	case MSR_IA32_MCG_CTL:
2882 	case MSR_IA32_MCG_STATUS:
2883 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2884 		return set_msr_mce(vcpu, msr_info);
2885 
2886 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2887 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2888 		pr = true; /* fall through */
2889 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2890 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2891 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2892 			return kvm_pmu_set_msr(vcpu, msr_info);
2893 
2894 		if (pr || data != 0)
2895 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2896 				    "0x%x data 0x%llx\n", msr, data);
2897 		break;
2898 	case MSR_K7_CLK_CTL:
2899 		/*
2900 		 * Ignore all writes to this no longer documented MSR.
2901 		 * Writes are only relevant for old K7 processors,
2902 		 * all pre-dating SVM, but a recommended workaround from
2903 		 * AMD for these chips. It is possible to specify the
2904 		 * affected processor models on the command line, hence
2905 		 * the need to ignore the workaround.
2906 		 */
2907 		break;
2908 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2909 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2910 	case HV_X64_MSR_CRASH_CTL:
2911 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2912 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2913 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2914 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2915 		return kvm_hv_set_msr_common(vcpu, msr, data,
2916 					     msr_info->host_initiated);
2917 	case MSR_IA32_BBL_CR_CTL3:
2918 		/* Drop writes to this legacy MSR -- see rdmsr
2919 		 * counterpart for further detail.
2920 		 */
2921 		if (report_ignored_msrs)
2922 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2923 				msr, data);
2924 		break;
2925 	case MSR_AMD64_OSVW_ID_LENGTH:
2926 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2927 			return 1;
2928 		vcpu->arch.osvw.length = data;
2929 		break;
2930 	case MSR_AMD64_OSVW_STATUS:
2931 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2932 			return 1;
2933 		vcpu->arch.osvw.status = data;
2934 		break;
2935 	case MSR_PLATFORM_INFO:
2936 		if (!msr_info->host_initiated ||
2937 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2938 		     cpuid_fault_enabled(vcpu)))
2939 			return 1;
2940 		vcpu->arch.msr_platform_info = data;
2941 		break;
2942 	case MSR_MISC_FEATURES_ENABLES:
2943 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2944 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2945 		     !supports_cpuid_fault(vcpu)))
2946 			return 1;
2947 		vcpu->arch.msr_misc_features_enables = data;
2948 		break;
2949 	default:
2950 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2951 			return xen_hvm_config(vcpu, data);
2952 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2953 			return kvm_pmu_set_msr(vcpu, msr_info);
2954 		if (!ignore_msrs) {
2955 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2956 				    msr, data);
2957 			return 1;
2958 		} else {
2959 			if (report_ignored_msrs)
2960 				vcpu_unimpl(vcpu,
2961 					"ignored wrmsr: 0x%x data 0x%llx\n",
2962 					msr, data);
2963 			break;
2964 		}
2965 	}
2966 	return 0;
2967 }
2968 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2969 
2970 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2971 {
2972 	u64 data;
2973 	u64 mcg_cap = vcpu->arch.mcg_cap;
2974 	unsigned bank_num = mcg_cap & 0xff;
2975 
2976 	switch (msr) {
2977 	case MSR_IA32_P5_MC_ADDR:
2978 	case MSR_IA32_P5_MC_TYPE:
2979 		data = 0;
2980 		break;
2981 	case MSR_IA32_MCG_CAP:
2982 		data = vcpu->arch.mcg_cap;
2983 		break;
2984 	case MSR_IA32_MCG_CTL:
2985 		if (!(mcg_cap & MCG_CTL_P) && !host)
2986 			return 1;
2987 		data = vcpu->arch.mcg_ctl;
2988 		break;
2989 	case MSR_IA32_MCG_STATUS:
2990 		data = vcpu->arch.mcg_status;
2991 		break;
2992 	default:
2993 		if (msr >= MSR_IA32_MC0_CTL &&
2994 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2995 			u32 offset = array_index_nospec(
2996 				msr - MSR_IA32_MC0_CTL,
2997 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2998 
2999 			data = vcpu->arch.mce_banks[offset];
3000 			break;
3001 		}
3002 		return 1;
3003 	}
3004 	*pdata = data;
3005 	return 0;
3006 }
3007 
3008 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3009 {
3010 	switch (msr_info->index) {
3011 	case MSR_IA32_PLATFORM_ID:
3012 	case MSR_IA32_EBL_CR_POWERON:
3013 	case MSR_IA32_DEBUGCTLMSR:
3014 	case MSR_IA32_LASTBRANCHFROMIP:
3015 	case MSR_IA32_LASTBRANCHTOIP:
3016 	case MSR_IA32_LASTINTFROMIP:
3017 	case MSR_IA32_LASTINTTOIP:
3018 	case MSR_K8_SYSCFG:
3019 	case MSR_K8_TSEG_ADDR:
3020 	case MSR_K8_TSEG_MASK:
3021 	case MSR_VM_HSAVE_PA:
3022 	case MSR_K8_INT_PENDING_MSG:
3023 	case MSR_AMD64_NB_CFG:
3024 	case MSR_FAM10H_MMIO_CONF_BASE:
3025 	case MSR_AMD64_BU_CFG2:
3026 	case MSR_IA32_PERF_CTL:
3027 	case MSR_AMD64_DC_CFG:
3028 	case MSR_F15H_EX_CFG:
3029 		msr_info->data = 0;
3030 		break;
3031 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3032 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3033 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3034 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3035 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3036 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3037 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3038 		msr_info->data = 0;
3039 		break;
3040 	case MSR_IA32_UCODE_REV:
3041 		msr_info->data = vcpu->arch.microcode_version;
3042 		break;
3043 	case MSR_IA32_ARCH_CAPABILITIES:
3044 		if (!msr_info->host_initiated &&
3045 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3046 			return 1;
3047 		msr_info->data = vcpu->arch.arch_capabilities;
3048 		break;
3049 	case MSR_IA32_POWER_CTL:
3050 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3051 		break;
3052 	case MSR_IA32_TSC:
3053 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3054 		break;
3055 	case MSR_MTRRcap:
3056 	case 0x200 ... 0x2ff:
3057 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3058 	case 0xcd: /* fsb frequency */
3059 		msr_info->data = 3;
3060 		break;
3061 		/*
3062 		 * MSR_EBC_FREQUENCY_ID
3063 		 * Conservative value valid for even the basic CPU models.
3064 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3065 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3066 		 * and 266MHz for model 3, or 4. Set Core Clock
3067 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3068 		 * 31:24) even though these are only valid for CPU
3069 		 * models > 2, however guests may end up dividing or
3070 		 * multiplying by zero otherwise.
3071 		 */
3072 	case MSR_EBC_FREQUENCY_ID:
3073 		msr_info->data = 1 << 24;
3074 		break;
3075 	case MSR_IA32_APICBASE:
3076 		msr_info->data = kvm_get_apic_base(vcpu);
3077 		break;
3078 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3079 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3080 		break;
3081 	case MSR_IA32_TSCDEADLINE:
3082 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3083 		break;
3084 	case MSR_IA32_TSC_ADJUST:
3085 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3086 		break;
3087 	case MSR_IA32_MISC_ENABLE:
3088 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3089 		break;
3090 	case MSR_IA32_SMBASE:
3091 		if (!msr_info->host_initiated)
3092 			return 1;
3093 		msr_info->data = vcpu->arch.smbase;
3094 		break;
3095 	case MSR_SMI_COUNT:
3096 		msr_info->data = vcpu->arch.smi_count;
3097 		break;
3098 	case MSR_IA32_PERF_STATUS:
3099 		/* TSC increment by tick */
3100 		msr_info->data = 1000ULL;
3101 		/* CPU multiplier */
3102 		msr_info->data |= (((uint64_t)4ULL) << 40);
3103 		break;
3104 	case MSR_EFER:
3105 		msr_info->data = vcpu->arch.efer;
3106 		break;
3107 	case MSR_KVM_WALL_CLOCK:
3108 	case MSR_KVM_WALL_CLOCK_NEW:
3109 		msr_info->data = vcpu->kvm->arch.wall_clock;
3110 		break;
3111 	case MSR_KVM_SYSTEM_TIME:
3112 	case MSR_KVM_SYSTEM_TIME_NEW:
3113 		msr_info->data = vcpu->arch.time;
3114 		break;
3115 	case MSR_KVM_ASYNC_PF_EN:
3116 		msr_info->data = vcpu->arch.apf.msr_val;
3117 		break;
3118 	case MSR_KVM_STEAL_TIME:
3119 		msr_info->data = vcpu->arch.st.msr_val;
3120 		break;
3121 	case MSR_KVM_PV_EOI_EN:
3122 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3123 		break;
3124 	case MSR_KVM_POLL_CONTROL:
3125 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3126 		break;
3127 	case MSR_IA32_P5_MC_ADDR:
3128 	case MSR_IA32_P5_MC_TYPE:
3129 	case MSR_IA32_MCG_CAP:
3130 	case MSR_IA32_MCG_CTL:
3131 	case MSR_IA32_MCG_STATUS:
3132 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3133 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3134 				   msr_info->host_initiated);
3135 	case MSR_IA32_XSS:
3136 		if (!msr_info->host_initiated &&
3137 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3138 			return 1;
3139 		msr_info->data = vcpu->arch.ia32_xss;
3140 		break;
3141 	case MSR_K7_CLK_CTL:
3142 		/*
3143 		 * Provide expected ramp-up count for K7. All other
3144 		 * are set to zero, indicating minimum divisors for
3145 		 * every field.
3146 		 *
3147 		 * This prevents guest kernels on AMD host with CPU
3148 		 * type 6, model 8 and higher from exploding due to
3149 		 * the rdmsr failing.
3150 		 */
3151 		msr_info->data = 0x20000000;
3152 		break;
3153 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3154 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3155 	case HV_X64_MSR_CRASH_CTL:
3156 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3157 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3158 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3159 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3160 		return kvm_hv_get_msr_common(vcpu,
3161 					     msr_info->index, &msr_info->data,
3162 					     msr_info->host_initiated);
3163 		break;
3164 	case MSR_IA32_BBL_CR_CTL3:
3165 		/* This legacy MSR exists but isn't fully documented in current
3166 		 * silicon.  It is however accessed by winxp in very narrow
3167 		 * scenarios where it sets bit #19, itself documented as
3168 		 * a "reserved" bit.  Best effort attempt to source coherent
3169 		 * read data here should the balance of the register be
3170 		 * interpreted by the guest:
3171 		 *
3172 		 * L2 cache control register 3: 64GB range, 256KB size,
3173 		 * enabled, latency 0x1, configured
3174 		 */
3175 		msr_info->data = 0xbe702111;
3176 		break;
3177 	case MSR_AMD64_OSVW_ID_LENGTH:
3178 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3179 			return 1;
3180 		msr_info->data = vcpu->arch.osvw.length;
3181 		break;
3182 	case MSR_AMD64_OSVW_STATUS:
3183 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3184 			return 1;
3185 		msr_info->data = vcpu->arch.osvw.status;
3186 		break;
3187 	case MSR_PLATFORM_INFO:
3188 		if (!msr_info->host_initiated &&
3189 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3190 			return 1;
3191 		msr_info->data = vcpu->arch.msr_platform_info;
3192 		break;
3193 	case MSR_MISC_FEATURES_ENABLES:
3194 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3195 		break;
3196 	case MSR_K7_HWCR:
3197 		msr_info->data = vcpu->arch.msr_hwcr;
3198 		break;
3199 	default:
3200 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3201 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3202 		if (!ignore_msrs) {
3203 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3204 					       msr_info->index);
3205 			return 1;
3206 		} else {
3207 			if (report_ignored_msrs)
3208 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3209 					msr_info->index);
3210 			msr_info->data = 0;
3211 		}
3212 		break;
3213 	}
3214 	return 0;
3215 }
3216 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3217 
3218 /*
3219  * Read or write a bunch of msrs. All parameters are kernel addresses.
3220  *
3221  * @return number of msrs set successfully.
3222  */
3223 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3224 		    struct kvm_msr_entry *entries,
3225 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3226 				  unsigned index, u64 *data))
3227 {
3228 	int i;
3229 
3230 	for (i = 0; i < msrs->nmsrs; ++i)
3231 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3232 			break;
3233 
3234 	return i;
3235 }
3236 
3237 /*
3238  * Read or write a bunch of msrs. Parameters are user addresses.
3239  *
3240  * @return number of msrs set successfully.
3241  */
3242 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3243 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3244 				unsigned index, u64 *data),
3245 		  int writeback)
3246 {
3247 	struct kvm_msrs msrs;
3248 	struct kvm_msr_entry *entries;
3249 	int r, n;
3250 	unsigned size;
3251 
3252 	r = -EFAULT;
3253 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3254 		goto out;
3255 
3256 	r = -E2BIG;
3257 	if (msrs.nmsrs >= MAX_IO_MSRS)
3258 		goto out;
3259 
3260 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3261 	entries = memdup_user(user_msrs->entries, size);
3262 	if (IS_ERR(entries)) {
3263 		r = PTR_ERR(entries);
3264 		goto out;
3265 	}
3266 
3267 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3268 	if (r < 0)
3269 		goto out_free;
3270 
3271 	r = -EFAULT;
3272 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3273 		goto out_free;
3274 
3275 	r = n;
3276 
3277 out_free:
3278 	kfree(entries);
3279 out:
3280 	return r;
3281 }
3282 
3283 static inline bool kvm_can_mwait_in_guest(void)
3284 {
3285 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3286 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3287 		boot_cpu_has(X86_FEATURE_ARAT);
3288 }
3289 
3290 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3291 {
3292 	int r = 0;
3293 
3294 	switch (ext) {
3295 	case KVM_CAP_IRQCHIP:
3296 	case KVM_CAP_HLT:
3297 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3298 	case KVM_CAP_SET_TSS_ADDR:
3299 	case KVM_CAP_EXT_CPUID:
3300 	case KVM_CAP_EXT_EMUL_CPUID:
3301 	case KVM_CAP_CLOCKSOURCE:
3302 	case KVM_CAP_PIT:
3303 	case KVM_CAP_NOP_IO_DELAY:
3304 	case KVM_CAP_MP_STATE:
3305 	case KVM_CAP_SYNC_MMU:
3306 	case KVM_CAP_USER_NMI:
3307 	case KVM_CAP_REINJECT_CONTROL:
3308 	case KVM_CAP_IRQ_INJECT_STATUS:
3309 	case KVM_CAP_IOEVENTFD:
3310 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3311 	case KVM_CAP_PIT2:
3312 	case KVM_CAP_PIT_STATE2:
3313 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3314 	case KVM_CAP_XEN_HVM:
3315 	case KVM_CAP_VCPU_EVENTS:
3316 	case KVM_CAP_HYPERV:
3317 	case KVM_CAP_HYPERV_VAPIC:
3318 	case KVM_CAP_HYPERV_SPIN:
3319 	case KVM_CAP_HYPERV_SYNIC:
3320 	case KVM_CAP_HYPERV_SYNIC2:
3321 	case KVM_CAP_HYPERV_VP_INDEX:
3322 	case KVM_CAP_HYPERV_EVENTFD:
3323 	case KVM_CAP_HYPERV_TLBFLUSH:
3324 	case KVM_CAP_HYPERV_SEND_IPI:
3325 	case KVM_CAP_HYPERV_CPUID:
3326 	case KVM_CAP_PCI_SEGMENT:
3327 	case KVM_CAP_DEBUGREGS:
3328 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3329 	case KVM_CAP_XSAVE:
3330 	case KVM_CAP_ASYNC_PF:
3331 	case KVM_CAP_GET_TSC_KHZ:
3332 	case KVM_CAP_KVMCLOCK_CTRL:
3333 	case KVM_CAP_READONLY_MEM:
3334 	case KVM_CAP_HYPERV_TIME:
3335 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3336 	case KVM_CAP_TSC_DEADLINE_TIMER:
3337 	case KVM_CAP_DISABLE_QUIRKS:
3338 	case KVM_CAP_SET_BOOT_CPU_ID:
3339  	case KVM_CAP_SPLIT_IRQCHIP:
3340 	case KVM_CAP_IMMEDIATE_EXIT:
3341 	case KVM_CAP_PMU_EVENT_FILTER:
3342 	case KVM_CAP_GET_MSR_FEATURES:
3343 	case KVM_CAP_MSR_PLATFORM_INFO:
3344 	case KVM_CAP_EXCEPTION_PAYLOAD:
3345 		r = 1;
3346 		break;
3347 	case KVM_CAP_SYNC_REGS:
3348 		r = KVM_SYNC_X86_VALID_FIELDS;
3349 		break;
3350 	case KVM_CAP_ADJUST_CLOCK:
3351 		r = KVM_CLOCK_TSC_STABLE;
3352 		break;
3353 	case KVM_CAP_X86_DISABLE_EXITS:
3354 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3355 		      KVM_X86_DISABLE_EXITS_CSTATE;
3356 		if(kvm_can_mwait_in_guest())
3357 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3358 		break;
3359 	case KVM_CAP_X86_SMM:
3360 		/* SMBASE is usually relocated above 1M on modern chipsets,
3361 		 * and SMM handlers might indeed rely on 4G segment limits,
3362 		 * so do not report SMM to be available if real mode is
3363 		 * emulated via vm86 mode.  Still, do not go to great lengths
3364 		 * to avoid userspace's usage of the feature, because it is a
3365 		 * fringe case that is not enabled except via specific settings
3366 		 * of the module parameters.
3367 		 */
3368 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3369 		break;
3370 	case KVM_CAP_VAPIC:
3371 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3372 		break;
3373 	case KVM_CAP_NR_VCPUS:
3374 		r = KVM_SOFT_MAX_VCPUS;
3375 		break;
3376 	case KVM_CAP_MAX_VCPUS:
3377 		r = KVM_MAX_VCPUS;
3378 		break;
3379 	case KVM_CAP_MAX_VCPU_ID:
3380 		r = KVM_MAX_VCPU_ID;
3381 		break;
3382 	case KVM_CAP_PV_MMU:	/* obsolete */
3383 		r = 0;
3384 		break;
3385 	case KVM_CAP_MCE:
3386 		r = KVM_MAX_MCE_BANKS;
3387 		break;
3388 	case KVM_CAP_XCRS:
3389 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3390 		break;
3391 	case KVM_CAP_TSC_CONTROL:
3392 		r = kvm_has_tsc_control;
3393 		break;
3394 	case KVM_CAP_X2APIC_API:
3395 		r = KVM_X2APIC_API_VALID_FLAGS;
3396 		break;
3397 	case KVM_CAP_NESTED_STATE:
3398 		r = kvm_x86_ops->get_nested_state ?
3399 			kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3400 		break;
3401 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3402 		r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3403 		break;
3404 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3405 		r = kvm_x86_ops->nested_enable_evmcs != NULL;
3406 		break;
3407 	default:
3408 		break;
3409 	}
3410 	return r;
3411 
3412 }
3413 
3414 long kvm_arch_dev_ioctl(struct file *filp,
3415 			unsigned int ioctl, unsigned long arg)
3416 {
3417 	void __user *argp = (void __user *)arg;
3418 	long r;
3419 
3420 	switch (ioctl) {
3421 	case KVM_GET_MSR_INDEX_LIST: {
3422 		struct kvm_msr_list __user *user_msr_list = argp;
3423 		struct kvm_msr_list msr_list;
3424 		unsigned n;
3425 
3426 		r = -EFAULT;
3427 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3428 			goto out;
3429 		n = msr_list.nmsrs;
3430 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3431 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3432 			goto out;
3433 		r = -E2BIG;
3434 		if (n < msr_list.nmsrs)
3435 			goto out;
3436 		r = -EFAULT;
3437 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3438 				 num_msrs_to_save * sizeof(u32)))
3439 			goto out;
3440 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3441 				 &emulated_msrs,
3442 				 num_emulated_msrs * sizeof(u32)))
3443 			goto out;
3444 		r = 0;
3445 		break;
3446 	}
3447 	case KVM_GET_SUPPORTED_CPUID:
3448 	case KVM_GET_EMULATED_CPUID: {
3449 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3450 		struct kvm_cpuid2 cpuid;
3451 
3452 		r = -EFAULT;
3453 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3454 			goto out;
3455 
3456 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3457 					    ioctl);
3458 		if (r)
3459 			goto out;
3460 
3461 		r = -EFAULT;
3462 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3463 			goto out;
3464 		r = 0;
3465 		break;
3466 	}
3467 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3468 		r = -EFAULT;
3469 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3470 				 sizeof(kvm_mce_cap_supported)))
3471 			goto out;
3472 		r = 0;
3473 		break;
3474 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3475 		struct kvm_msr_list __user *user_msr_list = argp;
3476 		struct kvm_msr_list msr_list;
3477 		unsigned int n;
3478 
3479 		r = -EFAULT;
3480 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3481 			goto out;
3482 		n = msr_list.nmsrs;
3483 		msr_list.nmsrs = num_msr_based_features;
3484 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3485 			goto out;
3486 		r = -E2BIG;
3487 		if (n < msr_list.nmsrs)
3488 			goto out;
3489 		r = -EFAULT;
3490 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3491 				 num_msr_based_features * sizeof(u32)))
3492 			goto out;
3493 		r = 0;
3494 		break;
3495 	}
3496 	case KVM_GET_MSRS:
3497 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3498 		break;
3499 	}
3500 	default:
3501 		r = -EINVAL;
3502 	}
3503 out:
3504 	return r;
3505 }
3506 
3507 static void wbinvd_ipi(void *garbage)
3508 {
3509 	wbinvd();
3510 }
3511 
3512 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3513 {
3514 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3515 }
3516 
3517 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3518 {
3519 	/* Address WBINVD may be executed by guest */
3520 	if (need_emulate_wbinvd(vcpu)) {
3521 		if (kvm_x86_ops->has_wbinvd_exit())
3522 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3523 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3524 			smp_call_function_single(vcpu->cpu,
3525 					wbinvd_ipi, NULL, 1);
3526 	}
3527 
3528 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3529 
3530 	/* Apply any externally detected TSC adjustments (due to suspend) */
3531 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3532 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3533 		vcpu->arch.tsc_offset_adjustment = 0;
3534 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3535 	}
3536 
3537 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3538 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3539 				rdtsc() - vcpu->arch.last_host_tsc;
3540 		if (tsc_delta < 0)
3541 			mark_tsc_unstable("KVM discovered backwards TSC");
3542 
3543 		if (kvm_check_tsc_unstable()) {
3544 			u64 offset = kvm_compute_tsc_offset(vcpu,
3545 						vcpu->arch.last_guest_tsc);
3546 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3547 			vcpu->arch.tsc_catchup = 1;
3548 		}
3549 
3550 		if (kvm_lapic_hv_timer_in_use(vcpu))
3551 			kvm_lapic_restart_hv_timer(vcpu);
3552 
3553 		/*
3554 		 * On a host with synchronized TSC, there is no need to update
3555 		 * kvmclock on vcpu->cpu migration
3556 		 */
3557 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3558 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3559 		if (vcpu->cpu != cpu)
3560 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3561 		vcpu->cpu = cpu;
3562 	}
3563 
3564 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3565 }
3566 
3567 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3568 {
3569 	struct kvm_host_map map;
3570 	struct kvm_steal_time *st;
3571 
3572 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3573 		return;
3574 
3575 	if (vcpu->arch.st.preempted)
3576 		return;
3577 
3578 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3579 			&vcpu->arch.st.cache, true))
3580 		return;
3581 
3582 	st = map.hva +
3583 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3584 
3585 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3586 
3587 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3588 }
3589 
3590 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3591 {
3592 	int idx;
3593 
3594 	if (vcpu->preempted)
3595 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3596 
3597 	/*
3598 	 * Disable page faults because we're in atomic context here.
3599 	 * kvm_write_guest_offset_cached() would call might_fault()
3600 	 * that relies on pagefault_disable() to tell if there's a
3601 	 * bug. NOTE: the write to guest memory may not go through if
3602 	 * during postcopy live migration or if there's heavy guest
3603 	 * paging.
3604 	 */
3605 	pagefault_disable();
3606 	/*
3607 	 * kvm_memslots() will be called by
3608 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3609 	 */
3610 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3611 	kvm_steal_time_set_preempted(vcpu);
3612 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3613 	pagefault_enable();
3614 	kvm_x86_ops->vcpu_put(vcpu);
3615 	vcpu->arch.last_host_tsc = rdtsc();
3616 	/*
3617 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3618 	 * on every vmexit, but if not, we might have a stale dr6 from the
3619 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3620 	 */
3621 	set_debugreg(0, 6);
3622 }
3623 
3624 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3625 				    struct kvm_lapic_state *s)
3626 {
3627 	if (vcpu->arch.apicv_active)
3628 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3629 
3630 	return kvm_apic_get_state(vcpu, s);
3631 }
3632 
3633 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3634 				    struct kvm_lapic_state *s)
3635 {
3636 	int r;
3637 
3638 	r = kvm_apic_set_state(vcpu, s);
3639 	if (r)
3640 		return r;
3641 	update_cr8_intercept(vcpu);
3642 
3643 	return 0;
3644 }
3645 
3646 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3647 {
3648 	return (!lapic_in_kernel(vcpu) ||
3649 		kvm_apic_accept_pic_intr(vcpu));
3650 }
3651 
3652 /*
3653  * if userspace requested an interrupt window, check that the
3654  * interrupt window is open.
3655  *
3656  * No need to exit to userspace if we already have an interrupt queued.
3657  */
3658 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3659 {
3660 	return kvm_arch_interrupt_allowed(vcpu) &&
3661 		!kvm_cpu_has_interrupt(vcpu) &&
3662 		!kvm_event_needs_reinjection(vcpu) &&
3663 		kvm_cpu_accept_dm_intr(vcpu);
3664 }
3665 
3666 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3667 				    struct kvm_interrupt *irq)
3668 {
3669 	if (irq->irq >= KVM_NR_INTERRUPTS)
3670 		return -EINVAL;
3671 
3672 	if (!irqchip_in_kernel(vcpu->kvm)) {
3673 		kvm_queue_interrupt(vcpu, irq->irq, false);
3674 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3675 		return 0;
3676 	}
3677 
3678 	/*
3679 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3680 	 * fail for in-kernel 8259.
3681 	 */
3682 	if (pic_in_kernel(vcpu->kvm))
3683 		return -ENXIO;
3684 
3685 	if (vcpu->arch.pending_external_vector != -1)
3686 		return -EEXIST;
3687 
3688 	vcpu->arch.pending_external_vector = irq->irq;
3689 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3690 	return 0;
3691 }
3692 
3693 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3694 {
3695 	kvm_inject_nmi(vcpu);
3696 
3697 	return 0;
3698 }
3699 
3700 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3701 {
3702 	kvm_make_request(KVM_REQ_SMI, vcpu);
3703 
3704 	return 0;
3705 }
3706 
3707 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3708 					   struct kvm_tpr_access_ctl *tac)
3709 {
3710 	if (tac->flags)
3711 		return -EINVAL;
3712 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3713 	return 0;
3714 }
3715 
3716 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3717 					u64 mcg_cap)
3718 {
3719 	int r;
3720 	unsigned bank_num = mcg_cap & 0xff, bank;
3721 
3722 	r = -EINVAL;
3723 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3724 		goto out;
3725 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3726 		goto out;
3727 	r = 0;
3728 	vcpu->arch.mcg_cap = mcg_cap;
3729 	/* Init IA32_MCG_CTL to all 1s */
3730 	if (mcg_cap & MCG_CTL_P)
3731 		vcpu->arch.mcg_ctl = ~(u64)0;
3732 	/* Init IA32_MCi_CTL to all 1s */
3733 	for (bank = 0; bank < bank_num; bank++)
3734 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3735 
3736 	kvm_x86_ops->setup_mce(vcpu);
3737 out:
3738 	return r;
3739 }
3740 
3741 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3742 				      struct kvm_x86_mce *mce)
3743 {
3744 	u64 mcg_cap = vcpu->arch.mcg_cap;
3745 	unsigned bank_num = mcg_cap & 0xff;
3746 	u64 *banks = vcpu->arch.mce_banks;
3747 
3748 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3749 		return -EINVAL;
3750 	/*
3751 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3752 	 * reporting is disabled
3753 	 */
3754 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3755 	    vcpu->arch.mcg_ctl != ~(u64)0)
3756 		return 0;
3757 	banks += 4 * mce->bank;
3758 	/*
3759 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3760 	 * reporting is disabled for the bank
3761 	 */
3762 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3763 		return 0;
3764 	if (mce->status & MCI_STATUS_UC) {
3765 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3766 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3767 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3768 			return 0;
3769 		}
3770 		if (banks[1] & MCI_STATUS_VAL)
3771 			mce->status |= MCI_STATUS_OVER;
3772 		banks[2] = mce->addr;
3773 		banks[3] = mce->misc;
3774 		vcpu->arch.mcg_status = mce->mcg_status;
3775 		banks[1] = mce->status;
3776 		kvm_queue_exception(vcpu, MC_VECTOR);
3777 	} else if (!(banks[1] & MCI_STATUS_VAL)
3778 		   || !(banks[1] & MCI_STATUS_UC)) {
3779 		if (banks[1] & MCI_STATUS_VAL)
3780 			mce->status |= MCI_STATUS_OVER;
3781 		banks[2] = mce->addr;
3782 		banks[3] = mce->misc;
3783 		banks[1] = mce->status;
3784 	} else
3785 		banks[1] |= MCI_STATUS_OVER;
3786 	return 0;
3787 }
3788 
3789 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3790 					       struct kvm_vcpu_events *events)
3791 {
3792 	process_nmi(vcpu);
3793 
3794 	/*
3795 	 * In guest mode, payload delivery should be deferred,
3796 	 * so that the L1 hypervisor can intercept #PF before
3797 	 * CR2 is modified (or intercept #DB before DR6 is
3798 	 * modified under nVMX). Unless the per-VM capability,
3799 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3800 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3801 	 * opportunistically defer the exception payload, deliver it if the
3802 	 * capability hasn't been requested before processing a
3803 	 * KVM_GET_VCPU_EVENTS.
3804 	 */
3805 	if (!vcpu->kvm->arch.exception_payload_enabled &&
3806 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3807 		kvm_deliver_exception_payload(vcpu);
3808 
3809 	/*
3810 	 * The API doesn't provide the instruction length for software
3811 	 * exceptions, so don't report them. As long as the guest RIP
3812 	 * isn't advanced, we should expect to encounter the exception
3813 	 * again.
3814 	 */
3815 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3816 		events->exception.injected = 0;
3817 		events->exception.pending = 0;
3818 	} else {
3819 		events->exception.injected = vcpu->arch.exception.injected;
3820 		events->exception.pending = vcpu->arch.exception.pending;
3821 		/*
3822 		 * For ABI compatibility, deliberately conflate
3823 		 * pending and injected exceptions when
3824 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3825 		 */
3826 		if (!vcpu->kvm->arch.exception_payload_enabled)
3827 			events->exception.injected |=
3828 				vcpu->arch.exception.pending;
3829 	}
3830 	events->exception.nr = vcpu->arch.exception.nr;
3831 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3832 	events->exception.error_code = vcpu->arch.exception.error_code;
3833 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3834 	events->exception_payload = vcpu->arch.exception.payload;
3835 
3836 	events->interrupt.injected =
3837 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3838 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3839 	events->interrupt.soft = 0;
3840 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3841 
3842 	events->nmi.injected = vcpu->arch.nmi_injected;
3843 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3844 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3845 	events->nmi.pad = 0;
3846 
3847 	events->sipi_vector = 0; /* never valid when reporting to user space */
3848 
3849 	events->smi.smm = is_smm(vcpu);
3850 	events->smi.pending = vcpu->arch.smi_pending;
3851 	events->smi.smm_inside_nmi =
3852 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3853 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3854 
3855 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3856 			 | KVM_VCPUEVENT_VALID_SHADOW
3857 			 | KVM_VCPUEVENT_VALID_SMM);
3858 	if (vcpu->kvm->arch.exception_payload_enabled)
3859 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3860 
3861 	memset(&events->reserved, 0, sizeof(events->reserved));
3862 }
3863 
3864 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3865 
3866 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3867 					      struct kvm_vcpu_events *events)
3868 {
3869 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3870 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3871 			      | KVM_VCPUEVENT_VALID_SHADOW
3872 			      | KVM_VCPUEVENT_VALID_SMM
3873 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3874 		return -EINVAL;
3875 
3876 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3877 		if (!vcpu->kvm->arch.exception_payload_enabled)
3878 			return -EINVAL;
3879 		if (events->exception.pending)
3880 			events->exception.injected = 0;
3881 		else
3882 			events->exception_has_payload = 0;
3883 	} else {
3884 		events->exception.pending = 0;
3885 		events->exception_has_payload = 0;
3886 	}
3887 
3888 	if ((events->exception.injected || events->exception.pending) &&
3889 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3890 		return -EINVAL;
3891 
3892 	/* INITs are latched while in SMM */
3893 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3894 	    (events->smi.smm || events->smi.pending) &&
3895 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3896 		return -EINVAL;
3897 
3898 	process_nmi(vcpu);
3899 	vcpu->arch.exception.injected = events->exception.injected;
3900 	vcpu->arch.exception.pending = events->exception.pending;
3901 	vcpu->arch.exception.nr = events->exception.nr;
3902 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3903 	vcpu->arch.exception.error_code = events->exception.error_code;
3904 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3905 	vcpu->arch.exception.payload = events->exception_payload;
3906 
3907 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3908 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3909 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3910 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3911 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3912 						  events->interrupt.shadow);
3913 
3914 	vcpu->arch.nmi_injected = events->nmi.injected;
3915 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3916 		vcpu->arch.nmi_pending = events->nmi.pending;
3917 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3918 
3919 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3920 	    lapic_in_kernel(vcpu))
3921 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3922 
3923 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3924 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3925 			if (events->smi.smm)
3926 				vcpu->arch.hflags |= HF_SMM_MASK;
3927 			else
3928 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3929 			kvm_smm_changed(vcpu);
3930 		}
3931 
3932 		vcpu->arch.smi_pending = events->smi.pending;
3933 
3934 		if (events->smi.smm) {
3935 			if (events->smi.smm_inside_nmi)
3936 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3937 			else
3938 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3939 		}
3940 
3941 		if (lapic_in_kernel(vcpu)) {
3942 			if (events->smi.latched_init)
3943 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3944 			else
3945 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3946 		}
3947 	}
3948 
3949 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3950 
3951 	return 0;
3952 }
3953 
3954 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3955 					     struct kvm_debugregs *dbgregs)
3956 {
3957 	unsigned long val;
3958 
3959 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3960 	kvm_get_dr(vcpu, 6, &val);
3961 	dbgregs->dr6 = val;
3962 	dbgregs->dr7 = vcpu->arch.dr7;
3963 	dbgregs->flags = 0;
3964 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3965 }
3966 
3967 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3968 					    struct kvm_debugregs *dbgregs)
3969 {
3970 	if (dbgregs->flags)
3971 		return -EINVAL;
3972 
3973 	if (dbgregs->dr6 & ~0xffffffffull)
3974 		return -EINVAL;
3975 	if (dbgregs->dr7 & ~0xffffffffull)
3976 		return -EINVAL;
3977 
3978 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3979 	kvm_update_dr0123(vcpu);
3980 	vcpu->arch.dr6 = dbgregs->dr6;
3981 	kvm_update_dr6(vcpu);
3982 	vcpu->arch.dr7 = dbgregs->dr7;
3983 	kvm_update_dr7(vcpu);
3984 
3985 	return 0;
3986 }
3987 
3988 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3989 
3990 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3991 {
3992 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3993 	u64 xstate_bv = xsave->header.xfeatures;
3994 	u64 valid;
3995 
3996 	/*
3997 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3998 	 * leaves 0 and 1 in the loop below.
3999 	 */
4000 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4001 
4002 	/* Set XSTATE_BV */
4003 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4004 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4005 
4006 	/*
4007 	 * Copy each region from the possibly compacted offset to the
4008 	 * non-compacted offset.
4009 	 */
4010 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4011 	while (valid) {
4012 		u64 xfeature_mask = valid & -valid;
4013 		int xfeature_nr = fls64(xfeature_mask) - 1;
4014 		void *src = get_xsave_addr(xsave, xfeature_nr);
4015 
4016 		if (src) {
4017 			u32 size, offset, ecx, edx;
4018 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4019 				    &size, &offset, &ecx, &edx);
4020 			if (xfeature_nr == XFEATURE_PKRU)
4021 				memcpy(dest + offset, &vcpu->arch.pkru,
4022 				       sizeof(vcpu->arch.pkru));
4023 			else
4024 				memcpy(dest + offset, src, size);
4025 
4026 		}
4027 
4028 		valid -= xfeature_mask;
4029 	}
4030 }
4031 
4032 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4033 {
4034 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4035 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4036 	u64 valid;
4037 
4038 	/*
4039 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4040 	 * leaves 0 and 1 in the loop below.
4041 	 */
4042 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4043 
4044 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4045 	xsave->header.xfeatures = xstate_bv;
4046 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4047 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4048 
4049 	/*
4050 	 * Copy each region from the non-compacted offset to the
4051 	 * possibly compacted offset.
4052 	 */
4053 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4054 	while (valid) {
4055 		u64 xfeature_mask = valid & -valid;
4056 		int xfeature_nr = fls64(xfeature_mask) - 1;
4057 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4058 
4059 		if (dest) {
4060 			u32 size, offset, ecx, edx;
4061 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4062 				    &size, &offset, &ecx, &edx);
4063 			if (xfeature_nr == XFEATURE_PKRU)
4064 				memcpy(&vcpu->arch.pkru, src + offset,
4065 				       sizeof(vcpu->arch.pkru));
4066 			else
4067 				memcpy(dest, src + offset, size);
4068 		}
4069 
4070 		valid -= xfeature_mask;
4071 	}
4072 }
4073 
4074 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4075 					 struct kvm_xsave *guest_xsave)
4076 {
4077 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4078 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4079 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4080 	} else {
4081 		memcpy(guest_xsave->region,
4082 			&vcpu->arch.guest_fpu->state.fxsave,
4083 			sizeof(struct fxregs_state));
4084 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4085 			XFEATURE_MASK_FPSSE;
4086 	}
4087 }
4088 
4089 #define XSAVE_MXCSR_OFFSET 24
4090 
4091 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4092 					struct kvm_xsave *guest_xsave)
4093 {
4094 	u64 xstate_bv =
4095 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4096 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4097 
4098 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4099 		/*
4100 		 * Here we allow setting states that are not present in
4101 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4102 		 * with old userspace.
4103 		 */
4104 		if (xstate_bv & ~kvm_supported_xcr0() ||
4105 			mxcsr & ~mxcsr_feature_mask)
4106 			return -EINVAL;
4107 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4108 	} else {
4109 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4110 			mxcsr & ~mxcsr_feature_mask)
4111 			return -EINVAL;
4112 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4113 			guest_xsave->region, sizeof(struct fxregs_state));
4114 	}
4115 	return 0;
4116 }
4117 
4118 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4119 					struct kvm_xcrs *guest_xcrs)
4120 {
4121 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4122 		guest_xcrs->nr_xcrs = 0;
4123 		return;
4124 	}
4125 
4126 	guest_xcrs->nr_xcrs = 1;
4127 	guest_xcrs->flags = 0;
4128 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4129 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4130 }
4131 
4132 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4133 				       struct kvm_xcrs *guest_xcrs)
4134 {
4135 	int i, r = 0;
4136 
4137 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4138 		return -EINVAL;
4139 
4140 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4141 		return -EINVAL;
4142 
4143 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4144 		/* Only support XCR0 currently */
4145 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4146 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4147 				guest_xcrs->xcrs[i].value);
4148 			break;
4149 		}
4150 	if (r)
4151 		r = -EINVAL;
4152 	return r;
4153 }
4154 
4155 /*
4156  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4157  * stopped by the hypervisor.  This function will be called from the host only.
4158  * EINVAL is returned when the host attempts to set the flag for a guest that
4159  * does not support pv clocks.
4160  */
4161 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4162 {
4163 	if (!vcpu->arch.pv_time_enabled)
4164 		return -EINVAL;
4165 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4166 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4167 	return 0;
4168 }
4169 
4170 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4171 				     struct kvm_enable_cap *cap)
4172 {
4173 	int r;
4174 	uint16_t vmcs_version;
4175 	void __user *user_ptr;
4176 
4177 	if (cap->flags)
4178 		return -EINVAL;
4179 
4180 	switch (cap->cap) {
4181 	case KVM_CAP_HYPERV_SYNIC2:
4182 		if (cap->args[0])
4183 			return -EINVAL;
4184 		/* fall through */
4185 
4186 	case KVM_CAP_HYPERV_SYNIC:
4187 		if (!irqchip_in_kernel(vcpu->kvm))
4188 			return -EINVAL;
4189 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4190 					     KVM_CAP_HYPERV_SYNIC2);
4191 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4192 		if (!kvm_x86_ops->nested_enable_evmcs)
4193 			return -ENOTTY;
4194 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4195 		if (!r) {
4196 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4197 			if (copy_to_user(user_ptr, &vmcs_version,
4198 					 sizeof(vmcs_version)))
4199 				r = -EFAULT;
4200 		}
4201 		return r;
4202 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4203 		if (!kvm_x86_ops->enable_direct_tlbflush)
4204 			return -ENOTTY;
4205 
4206 		return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4207 
4208 	default:
4209 		return -EINVAL;
4210 	}
4211 }
4212 
4213 long kvm_arch_vcpu_ioctl(struct file *filp,
4214 			 unsigned int ioctl, unsigned long arg)
4215 {
4216 	struct kvm_vcpu *vcpu = filp->private_data;
4217 	void __user *argp = (void __user *)arg;
4218 	int r;
4219 	union {
4220 		struct kvm_lapic_state *lapic;
4221 		struct kvm_xsave *xsave;
4222 		struct kvm_xcrs *xcrs;
4223 		void *buffer;
4224 	} u;
4225 
4226 	vcpu_load(vcpu);
4227 
4228 	u.buffer = NULL;
4229 	switch (ioctl) {
4230 	case KVM_GET_LAPIC: {
4231 		r = -EINVAL;
4232 		if (!lapic_in_kernel(vcpu))
4233 			goto out;
4234 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4235 				GFP_KERNEL_ACCOUNT);
4236 
4237 		r = -ENOMEM;
4238 		if (!u.lapic)
4239 			goto out;
4240 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4241 		if (r)
4242 			goto out;
4243 		r = -EFAULT;
4244 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4245 			goto out;
4246 		r = 0;
4247 		break;
4248 	}
4249 	case KVM_SET_LAPIC: {
4250 		r = -EINVAL;
4251 		if (!lapic_in_kernel(vcpu))
4252 			goto out;
4253 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4254 		if (IS_ERR(u.lapic)) {
4255 			r = PTR_ERR(u.lapic);
4256 			goto out_nofree;
4257 		}
4258 
4259 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4260 		break;
4261 	}
4262 	case KVM_INTERRUPT: {
4263 		struct kvm_interrupt irq;
4264 
4265 		r = -EFAULT;
4266 		if (copy_from_user(&irq, argp, sizeof(irq)))
4267 			goto out;
4268 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4269 		break;
4270 	}
4271 	case KVM_NMI: {
4272 		r = kvm_vcpu_ioctl_nmi(vcpu);
4273 		break;
4274 	}
4275 	case KVM_SMI: {
4276 		r = kvm_vcpu_ioctl_smi(vcpu);
4277 		break;
4278 	}
4279 	case KVM_SET_CPUID: {
4280 		struct kvm_cpuid __user *cpuid_arg = argp;
4281 		struct kvm_cpuid cpuid;
4282 
4283 		r = -EFAULT;
4284 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4285 			goto out;
4286 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4287 		break;
4288 	}
4289 	case KVM_SET_CPUID2: {
4290 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4291 		struct kvm_cpuid2 cpuid;
4292 
4293 		r = -EFAULT;
4294 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4295 			goto out;
4296 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4297 					      cpuid_arg->entries);
4298 		break;
4299 	}
4300 	case KVM_GET_CPUID2: {
4301 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4302 		struct kvm_cpuid2 cpuid;
4303 
4304 		r = -EFAULT;
4305 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4306 			goto out;
4307 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4308 					      cpuid_arg->entries);
4309 		if (r)
4310 			goto out;
4311 		r = -EFAULT;
4312 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4313 			goto out;
4314 		r = 0;
4315 		break;
4316 	}
4317 	case KVM_GET_MSRS: {
4318 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4319 		r = msr_io(vcpu, argp, do_get_msr, 1);
4320 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4321 		break;
4322 	}
4323 	case KVM_SET_MSRS: {
4324 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4325 		r = msr_io(vcpu, argp, do_set_msr, 0);
4326 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4327 		break;
4328 	}
4329 	case KVM_TPR_ACCESS_REPORTING: {
4330 		struct kvm_tpr_access_ctl tac;
4331 
4332 		r = -EFAULT;
4333 		if (copy_from_user(&tac, argp, sizeof(tac)))
4334 			goto out;
4335 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4336 		if (r)
4337 			goto out;
4338 		r = -EFAULT;
4339 		if (copy_to_user(argp, &tac, sizeof(tac)))
4340 			goto out;
4341 		r = 0;
4342 		break;
4343 	};
4344 	case KVM_SET_VAPIC_ADDR: {
4345 		struct kvm_vapic_addr va;
4346 		int idx;
4347 
4348 		r = -EINVAL;
4349 		if (!lapic_in_kernel(vcpu))
4350 			goto out;
4351 		r = -EFAULT;
4352 		if (copy_from_user(&va, argp, sizeof(va)))
4353 			goto out;
4354 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4355 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4356 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4357 		break;
4358 	}
4359 	case KVM_X86_SETUP_MCE: {
4360 		u64 mcg_cap;
4361 
4362 		r = -EFAULT;
4363 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4364 			goto out;
4365 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4366 		break;
4367 	}
4368 	case KVM_X86_SET_MCE: {
4369 		struct kvm_x86_mce mce;
4370 
4371 		r = -EFAULT;
4372 		if (copy_from_user(&mce, argp, sizeof(mce)))
4373 			goto out;
4374 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4375 		break;
4376 	}
4377 	case KVM_GET_VCPU_EVENTS: {
4378 		struct kvm_vcpu_events events;
4379 
4380 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4381 
4382 		r = -EFAULT;
4383 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4384 			break;
4385 		r = 0;
4386 		break;
4387 	}
4388 	case KVM_SET_VCPU_EVENTS: {
4389 		struct kvm_vcpu_events events;
4390 
4391 		r = -EFAULT;
4392 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4393 			break;
4394 
4395 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4396 		break;
4397 	}
4398 	case KVM_GET_DEBUGREGS: {
4399 		struct kvm_debugregs dbgregs;
4400 
4401 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4402 
4403 		r = -EFAULT;
4404 		if (copy_to_user(argp, &dbgregs,
4405 				 sizeof(struct kvm_debugregs)))
4406 			break;
4407 		r = 0;
4408 		break;
4409 	}
4410 	case KVM_SET_DEBUGREGS: {
4411 		struct kvm_debugregs dbgregs;
4412 
4413 		r = -EFAULT;
4414 		if (copy_from_user(&dbgregs, argp,
4415 				   sizeof(struct kvm_debugregs)))
4416 			break;
4417 
4418 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4419 		break;
4420 	}
4421 	case KVM_GET_XSAVE: {
4422 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4423 		r = -ENOMEM;
4424 		if (!u.xsave)
4425 			break;
4426 
4427 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4428 
4429 		r = -EFAULT;
4430 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4431 			break;
4432 		r = 0;
4433 		break;
4434 	}
4435 	case KVM_SET_XSAVE: {
4436 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4437 		if (IS_ERR(u.xsave)) {
4438 			r = PTR_ERR(u.xsave);
4439 			goto out_nofree;
4440 		}
4441 
4442 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4443 		break;
4444 	}
4445 	case KVM_GET_XCRS: {
4446 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4447 		r = -ENOMEM;
4448 		if (!u.xcrs)
4449 			break;
4450 
4451 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4452 
4453 		r = -EFAULT;
4454 		if (copy_to_user(argp, u.xcrs,
4455 				 sizeof(struct kvm_xcrs)))
4456 			break;
4457 		r = 0;
4458 		break;
4459 	}
4460 	case KVM_SET_XCRS: {
4461 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4462 		if (IS_ERR(u.xcrs)) {
4463 			r = PTR_ERR(u.xcrs);
4464 			goto out_nofree;
4465 		}
4466 
4467 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4468 		break;
4469 	}
4470 	case KVM_SET_TSC_KHZ: {
4471 		u32 user_tsc_khz;
4472 
4473 		r = -EINVAL;
4474 		user_tsc_khz = (u32)arg;
4475 
4476 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4477 			goto out;
4478 
4479 		if (user_tsc_khz == 0)
4480 			user_tsc_khz = tsc_khz;
4481 
4482 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4483 			r = 0;
4484 
4485 		goto out;
4486 	}
4487 	case KVM_GET_TSC_KHZ: {
4488 		r = vcpu->arch.virtual_tsc_khz;
4489 		goto out;
4490 	}
4491 	case KVM_KVMCLOCK_CTRL: {
4492 		r = kvm_set_guest_paused(vcpu);
4493 		goto out;
4494 	}
4495 	case KVM_ENABLE_CAP: {
4496 		struct kvm_enable_cap cap;
4497 
4498 		r = -EFAULT;
4499 		if (copy_from_user(&cap, argp, sizeof(cap)))
4500 			goto out;
4501 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4502 		break;
4503 	}
4504 	case KVM_GET_NESTED_STATE: {
4505 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4506 		u32 user_data_size;
4507 
4508 		r = -EINVAL;
4509 		if (!kvm_x86_ops->get_nested_state)
4510 			break;
4511 
4512 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4513 		r = -EFAULT;
4514 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4515 			break;
4516 
4517 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4518 						  user_data_size);
4519 		if (r < 0)
4520 			break;
4521 
4522 		if (r > user_data_size) {
4523 			if (put_user(r, &user_kvm_nested_state->size))
4524 				r = -EFAULT;
4525 			else
4526 				r = -E2BIG;
4527 			break;
4528 		}
4529 
4530 		r = 0;
4531 		break;
4532 	}
4533 	case KVM_SET_NESTED_STATE: {
4534 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4535 		struct kvm_nested_state kvm_state;
4536 		int idx;
4537 
4538 		r = -EINVAL;
4539 		if (!kvm_x86_ops->set_nested_state)
4540 			break;
4541 
4542 		r = -EFAULT;
4543 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4544 			break;
4545 
4546 		r = -EINVAL;
4547 		if (kvm_state.size < sizeof(kvm_state))
4548 			break;
4549 
4550 		if (kvm_state.flags &
4551 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4552 		      | KVM_STATE_NESTED_EVMCS))
4553 			break;
4554 
4555 		/* nested_run_pending implies guest_mode.  */
4556 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4557 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4558 			break;
4559 
4560 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4561 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4562 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4563 		break;
4564 	}
4565 	case KVM_GET_SUPPORTED_HV_CPUID: {
4566 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4567 		struct kvm_cpuid2 cpuid;
4568 
4569 		r = -EFAULT;
4570 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4571 			goto out;
4572 
4573 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4574 						cpuid_arg->entries);
4575 		if (r)
4576 			goto out;
4577 
4578 		r = -EFAULT;
4579 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4580 			goto out;
4581 		r = 0;
4582 		break;
4583 	}
4584 	default:
4585 		r = -EINVAL;
4586 	}
4587 out:
4588 	kfree(u.buffer);
4589 out_nofree:
4590 	vcpu_put(vcpu);
4591 	return r;
4592 }
4593 
4594 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4595 {
4596 	return VM_FAULT_SIGBUS;
4597 }
4598 
4599 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4600 {
4601 	int ret;
4602 
4603 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4604 		return -EINVAL;
4605 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4606 	return ret;
4607 }
4608 
4609 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4610 					      u64 ident_addr)
4611 {
4612 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4613 }
4614 
4615 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4616 					 unsigned long kvm_nr_mmu_pages)
4617 {
4618 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4619 		return -EINVAL;
4620 
4621 	mutex_lock(&kvm->slots_lock);
4622 
4623 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4624 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4625 
4626 	mutex_unlock(&kvm->slots_lock);
4627 	return 0;
4628 }
4629 
4630 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4631 {
4632 	return kvm->arch.n_max_mmu_pages;
4633 }
4634 
4635 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4636 {
4637 	struct kvm_pic *pic = kvm->arch.vpic;
4638 	int r;
4639 
4640 	r = 0;
4641 	switch (chip->chip_id) {
4642 	case KVM_IRQCHIP_PIC_MASTER:
4643 		memcpy(&chip->chip.pic, &pic->pics[0],
4644 			sizeof(struct kvm_pic_state));
4645 		break;
4646 	case KVM_IRQCHIP_PIC_SLAVE:
4647 		memcpy(&chip->chip.pic, &pic->pics[1],
4648 			sizeof(struct kvm_pic_state));
4649 		break;
4650 	case KVM_IRQCHIP_IOAPIC:
4651 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4652 		break;
4653 	default:
4654 		r = -EINVAL;
4655 		break;
4656 	}
4657 	return r;
4658 }
4659 
4660 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4661 {
4662 	struct kvm_pic *pic = kvm->arch.vpic;
4663 	int r;
4664 
4665 	r = 0;
4666 	switch (chip->chip_id) {
4667 	case KVM_IRQCHIP_PIC_MASTER:
4668 		spin_lock(&pic->lock);
4669 		memcpy(&pic->pics[0], &chip->chip.pic,
4670 			sizeof(struct kvm_pic_state));
4671 		spin_unlock(&pic->lock);
4672 		break;
4673 	case KVM_IRQCHIP_PIC_SLAVE:
4674 		spin_lock(&pic->lock);
4675 		memcpy(&pic->pics[1], &chip->chip.pic,
4676 			sizeof(struct kvm_pic_state));
4677 		spin_unlock(&pic->lock);
4678 		break;
4679 	case KVM_IRQCHIP_IOAPIC:
4680 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4681 		break;
4682 	default:
4683 		r = -EINVAL;
4684 		break;
4685 	}
4686 	kvm_pic_update_irq(pic);
4687 	return r;
4688 }
4689 
4690 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4691 {
4692 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4693 
4694 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4695 
4696 	mutex_lock(&kps->lock);
4697 	memcpy(ps, &kps->channels, sizeof(*ps));
4698 	mutex_unlock(&kps->lock);
4699 	return 0;
4700 }
4701 
4702 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4703 {
4704 	int i;
4705 	struct kvm_pit *pit = kvm->arch.vpit;
4706 
4707 	mutex_lock(&pit->pit_state.lock);
4708 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4709 	for (i = 0; i < 3; i++)
4710 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4711 	mutex_unlock(&pit->pit_state.lock);
4712 	return 0;
4713 }
4714 
4715 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4716 {
4717 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4718 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4719 		sizeof(ps->channels));
4720 	ps->flags = kvm->arch.vpit->pit_state.flags;
4721 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4722 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4723 	return 0;
4724 }
4725 
4726 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4727 {
4728 	int start = 0;
4729 	int i;
4730 	u32 prev_legacy, cur_legacy;
4731 	struct kvm_pit *pit = kvm->arch.vpit;
4732 
4733 	mutex_lock(&pit->pit_state.lock);
4734 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4735 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4736 	if (!prev_legacy && cur_legacy)
4737 		start = 1;
4738 	memcpy(&pit->pit_state.channels, &ps->channels,
4739 	       sizeof(pit->pit_state.channels));
4740 	pit->pit_state.flags = ps->flags;
4741 	for (i = 0; i < 3; i++)
4742 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4743 				   start && i == 0);
4744 	mutex_unlock(&pit->pit_state.lock);
4745 	return 0;
4746 }
4747 
4748 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4749 				 struct kvm_reinject_control *control)
4750 {
4751 	struct kvm_pit *pit = kvm->arch.vpit;
4752 
4753 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4754 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4755 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4756 	 */
4757 	mutex_lock(&pit->pit_state.lock);
4758 	kvm_pit_set_reinject(pit, control->pit_reinject);
4759 	mutex_unlock(&pit->pit_state.lock);
4760 
4761 	return 0;
4762 }
4763 
4764 /**
4765  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4766  * @kvm: kvm instance
4767  * @log: slot id and address to which we copy the log
4768  *
4769  * Steps 1-4 below provide general overview of dirty page logging. See
4770  * kvm_get_dirty_log_protect() function description for additional details.
4771  *
4772  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4773  * always flush the TLB (step 4) even if previous step failed  and the dirty
4774  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4775  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4776  * writes will be marked dirty for next log read.
4777  *
4778  *   1. Take a snapshot of the bit and clear it if needed.
4779  *   2. Write protect the corresponding page.
4780  *   3. Copy the snapshot to the userspace.
4781  *   4. Flush TLB's if needed.
4782  */
4783 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4784 {
4785 	bool flush = false;
4786 	int r;
4787 
4788 	mutex_lock(&kvm->slots_lock);
4789 
4790 	/*
4791 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4792 	 */
4793 	if (kvm_x86_ops->flush_log_dirty)
4794 		kvm_x86_ops->flush_log_dirty(kvm);
4795 
4796 	r = kvm_get_dirty_log_protect(kvm, log, &flush);
4797 
4798 	/*
4799 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4800 	 * kvm_mmu_slot_remove_write_access().
4801 	 */
4802 	lockdep_assert_held(&kvm->slots_lock);
4803 	if (flush)
4804 		kvm_flush_remote_tlbs(kvm);
4805 
4806 	mutex_unlock(&kvm->slots_lock);
4807 	return r;
4808 }
4809 
4810 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4811 {
4812 	bool flush = false;
4813 	int r;
4814 
4815 	mutex_lock(&kvm->slots_lock);
4816 
4817 	/*
4818 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4819 	 */
4820 	if (kvm_x86_ops->flush_log_dirty)
4821 		kvm_x86_ops->flush_log_dirty(kvm);
4822 
4823 	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4824 
4825 	/*
4826 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4827 	 * kvm_mmu_slot_remove_write_access().
4828 	 */
4829 	lockdep_assert_held(&kvm->slots_lock);
4830 	if (flush)
4831 		kvm_flush_remote_tlbs(kvm);
4832 
4833 	mutex_unlock(&kvm->slots_lock);
4834 	return r;
4835 }
4836 
4837 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4838 			bool line_status)
4839 {
4840 	if (!irqchip_in_kernel(kvm))
4841 		return -ENXIO;
4842 
4843 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4844 					irq_event->irq, irq_event->level,
4845 					line_status);
4846 	return 0;
4847 }
4848 
4849 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4850 			    struct kvm_enable_cap *cap)
4851 {
4852 	int r;
4853 
4854 	if (cap->flags)
4855 		return -EINVAL;
4856 
4857 	switch (cap->cap) {
4858 	case KVM_CAP_DISABLE_QUIRKS:
4859 		kvm->arch.disabled_quirks = cap->args[0];
4860 		r = 0;
4861 		break;
4862 	case KVM_CAP_SPLIT_IRQCHIP: {
4863 		mutex_lock(&kvm->lock);
4864 		r = -EINVAL;
4865 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4866 			goto split_irqchip_unlock;
4867 		r = -EEXIST;
4868 		if (irqchip_in_kernel(kvm))
4869 			goto split_irqchip_unlock;
4870 		if (kvm->created_vcpus)
4871 			goto split_irqchip_unlock;
4872 		r = kvm_setup_empty_irq_routing(kvm);
4873 		if (r)
4874 			goto split_irqchip_unlock;
4875 		/* Pairs with irqchip_in_kernel. */
4876 		smp_wmb();
4877 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4878 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4879 		r = 0;
4880 split_irqchip_unlock:
4881 		mutex_unlock(&kvm->lock);
4882 		break;
4883 	}
4884 	case KVM_CAP_X2APIC_API:
4885 		r = -EINVAL;
4886 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4887 			break;
4888 
4889 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4890 			kvm->arch.x2apic_format = true;
4891 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4892 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4893 
4894 		r = 0;
4895 		break;
4896 	case KVM_CAP_X86_DISABLE_EXITS:
4897 		r = -EINVAL;
4898 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4899 			break;
4900 
4901 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4902 			kvm_can_mwait_in_guest())
4903 			kvm->arch.mwait_in_guest = true;
4904 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4905 			kvm->arch.hlt_in_guest = true;
4906 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4907 			kvm->arch.pause_in_guest = true;
4908 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4909 			kvm->arch.cstate_in_guest = true;
4910 		r = 0;
4911 		break;
4912 	case KVM_CAP_MSR_PLATFORM_INFO:
4913 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4914 		r = 0;
4915 		break;
4916 	case KVM_CAP_EXCEPTION_PAYLOAD:
4917 		kvm->arch.exception_payload_enabled = cap->args[0];
4918 		r = 0;
4919 		break;
4920 	default:
4921 		r = -EINVAL;
4922 		break;
4923 	}
4924 	return r;
4925 }
4926 
4927 long kvm_arch_vm_ioctl(struct file *filp,
4928 		       unsigned int ioctl, unsigned long arg)
4929 {
4930 	struct kvm *kvm = filp->private_data;
4931 	void __user *argp = (void __user *)arg;
4932 	int r = -ENOTTY;
4933 	/*
4934 	 * This union makes it completely explicit to gcc-3.x
4935 	 * that these two variables' stack usage should be
4936 	 * combined, not added together.
4937 	 */
4938 	union {
4939 		struct kvm_pit_state ps;
4940 		struct kvm_pit_state2 ps2;
4941 		struct kvm_pit_config pit_config;
4942 	} u;
4943 
4944 	switch (ioctl) {
4945 	case KVM_SET_TSS_ADDR:
4946 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4947 		break;
4948 	case KVM_SET_IDENTITY_MAP_ADDR: {
4949 		u64 ident_addr;
4950 
4951 		mutex_lock(&kvm->lock);
4952 		r = -EINVAL;
4953 		if (kvm->created_vcpus)
4954 			goto set_identity_unlock;
4955 		r = -EFAULT;
4956 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4957 			goto set_identity_unlock;
4958 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4959 set_identity_unlock:
4960 		mutex_unlock(&kvm->lock);
4961 		break;
4962 	}
4963 	case KVM_SET_NR_MMU_PAGES:
4964 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4965 		break;
4966 	case KVM_GET_NR_MMU_PAGES:
4967 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4968 		break;
4969 	case KVM_CREATE_IRQCHIP: {
4970 		mutex_lock(&kvm->lock);
4971 
4972 		r = -EEXIST;
4973 		if (irqchip_in_kernel(kvm))
4974 			goto create_irqchip_unlock;
4975 
4976 		r = -EINVAL;
4977 		if (kvm->created_vcpus)
4978 			goto create_irqchip_unlock;
4979 
4980 		r = kvm_pic_init(kvm);
4981 		if (r)
4982 			goto create_irqchip_unlock;
4983 
4984 		r = kvm_ioapic_init(kvm);
4985 		if (r) {
4986 			kvm_pic_destroy(kvm);
4987 			goto create_irqchip_unlock;
4988 		}
4989 
4990 		r = kvm_setup_default_irq_routing(kvm);
4991 		if (r) {
4992 			kvm_ioapic_destroy(kvm);
4993 			kvm_pic_destroy(kvm);
4994 			goto create_irqchip_unlock;
4995 		}
4996 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4997 		smp_wmb();
4998 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4999 	create_irqchip_unlock:
5000 		mutex_unlock(&kvm->lock);
5001 		break;
5002 	}
5003 	case KVM_CREATE_PIT:
5004 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5005 		goto create_pit;
5006 	case KVM_CREATE_PIT2:
5007 		r = -EFAULT;
5008 		if (copy_from_user(&u.pit_config, argp,
5009 				   sizeof(struct kvm_pit_config)))
5010 			goto out;
5011 	create_pit:
5012 		mutex_lock(&kvm->lock);
5013 		r = -EEXIST;
5014 		if (kvm->arch.vpit)
5015 			goto create_pit_unlock;
5016 		r = -ENOMEM;
5017 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5018 		if (kvm->arch.vpit)
5019 			r = 0;
5020 	create_pit_unlock:
5021 		mutex_unlock(&kvm->lock);
5022 		break;
5023 	case KVM_GET_IRQCHIP: {
5024 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5025 		struct kvm_irqchip *chip;
5026 
5027 		chip = memdup_user(argp, sizeof(*chip));
5028 		if (IS_ERR(chip)) {
5029 			r = PTR_ERR(chip);
5030 			goto out;
5031 		}
5032 
5033 		r = -ENXIO;
5034 		if (!irqchip_kernel(kvm))
5035 			goto get_irqchip_out;
5036 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5037 		if (r)
5038 			goto get_irqchip_out;
5039 		r = -EFAULT;
5040 		if (copy_to_user(argp, chip, sizeof(*chip)))
5041 			goto get_irqchip_out;
5042 		r = 0;
5043 	get_irqchip_out:
5044 		kfree(chip);
5045 		break;
5046 	}
5047 	case KVM_SET_IRQCHIP: {
5048 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5049 		struct kvm_irqchip *chip;
5050 
5051 		chip = memdup_user(argp, sizeof(*chip));
5052 		if (IS_ERR(chip)) {
5053 			r = PTR_ERR(chip);
5054 			goto out;
5055 		}
5056 
5057 		r = -ENXIO;
5058 		if (!irqchip_kernel(kvm))
5059 			goto set_irqchip_out;
5060 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5061 	set_irqchip_out:
5062 		kfree(chip);
5063 		break;
5064 	}
5065 	case KVM_GET_PIT: {
5066 		r = -EFAULT;
5067 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5068 			goto out;
5069 		r = -ENXIO;
5070 		if (!kvm->arch.vpit)
5071 			goto out;
5072 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5073 		if (r)
5074 			goto out;
5075 		r = -EFAULT;
5076 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5077 			goto out;
5078 		r = 0;
5079 		break;
5080 	}
5081 	case KVM_SET_PIT: {
5082 		r = -EFAULT;
5083 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5084 			goto out;
5085 		r = -ENXIO;
5086 		if (!kvm->arch.vpit)
5087 			goto out;
5088 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5089 		break;
5090 	}
5091 	case KVM_GET_PIT2: {
5092 		r = -ENXIO;
5093 		if (!kvm->arch.vpit)
5094 			goto out;
5095 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5096 		if (r)
5097 			goto out;
5098 		r = -EFAULT;
5099 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5100 			goto out;
5101 		r = 0;
5102 		break;
5103 	}
5104 	case KVM_SET_PIT2: {
5105 		r = -EFAULT;
5106 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5107 			goto out;
5108 		r = -ENXIO;
5109 		if (!kvm->arch.vpit)
5110 			goto out;
5111 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5112 		break;
5113 	}
5114 	case KVM_REINJECT_CONTROL: {
5115 		struct kvm_reinject_control control;
5116 		r =  -EFAULT;
5117 		if (copy_from_user(&control, argp, sizeof(control)))
5118 			goto out;
5119 		r = -ENXIO;
5120 		if (!kvm->arch.vpit)
5121 			goto out;
5122 		r = kvm_vm_ioctl_reinject(kvm, &control);
5123 		break;
5124 	}
5125 	case KVM_SET_BOOT_CPU_ID:
5126 		r = 0;
5127 		mutex_lock(&kvm->lock);
5128 		if (kvm->created_vcpus)
5129 			r = -EBUSY;
5130 		else
5131 			kvm->arch.bsp_vcpu_id = arg;
5132 		mutex_unlock(&kvm->lock);
5133 		break;
5134 	case KVM_XEN_HVM_CONFIG: {
5135 		struct kvm_xen_hvm_config xhc;
5136 		r = -EFAULT;
5137 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5138 			goto out;
5139 		r = -EINVAL;
5140 		if (xhc.flags)
5141 			goto out;
5142 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5143 		r = 0;
5144 		break;
5145 	}
5146 	case KVM_SET_CLOCK: {
5147 		struct kvm_clock_data user_ns;
5148 		u64 now_ns;
5149 
5150 		r = -EFAULT;
5151 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5152 			goto out;
5153 
5154 		r = -EINVAL;
5155 		if (user_ns.flags)
5156 			goto out;
5157 
5158 		r = 0;
5159 		/*
5160 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5161 		 * kvm_gen_update_masterclock() can be cut down to locked
5162 		 * pvclock_update_vm_gtod_copy().
5163 		 */
5164 		kvm_gen_update_masterclock(kvm);
5165 		now_ns = get_kvmclock_ns(kvm);
5166 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5167 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5168 		break;
5169 	}
5170 	case KVM_GET_CLOCK: {
5171 		struct kvm_clock_data user_ns;
5172 		u64 now_ns;
5173 
5174 		now_ns = get_kvmclock_ns(kvm);
5175 		user_ns.clock = now_ns;
5176 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5177 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5178 
5179 		r = -EFAULT;
5180 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5181 			goto out;
5182 		r = 0;
5183 		break;
5184 	}
5185 	case KVM_MEMORY_ENCRYPT_OP: {
5186 		r = -ENOTTY;
5187 		if (kvm_x86_ops->mem_enc_op)
5188 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
5189 		break;
5190 	}
5191 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5192 		struct kvm_enc_region region;
5193 
5194 		r = -EFAULT;
5195 		if (copy_from_user(&region, argp, sizeof(region)))
5196 			goto out;
5197 
5198 		r = -ENOTTY;
5199 		if (kvm_x86_ops->mem_enc_reg_region)
5200 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5201 		break;
5202 	}
5203 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5204 		struct kvm_enc_region region;
5205 
5206 		r = -EFAULT;
5207 		if (copy_from_user(&region, argp, sizeof(region)))
5208 			goto out;
5209 
5210 		r = -ENOTTY;
5211 		if (kvm_x86_ops->mem_enc_unreg_region)
5212 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5213 		break;
5214 	}
5215 	case KVM_HYPERV_EVENTFD: {
5216 		struct kvm_hyperv_eventfd hvevfd;
5217 
5218 		r = -EFAULT;
5219 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5220 			goto out;
5221 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5222 		break;
5223 	}
5224 	case KVM_SET_PMU_EVENT_FILTER:
5225 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5226 		break;
5227 	default:
5228 		r = -ENOTTY;
5229 	}
5230 out:
5231 	return r;
5232 }
5233 
5234 static void kvm_init_msr_list(void)
5235 {
5236 	struct x86_pmu_capability x86_pmu;
5237 	u32 dummy[2];
5238 	unsigned i;
5239 
5240 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5241 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5242 
5243 	perf_get_x86_pmu_capability(&x86_pmu);
5244 
5245 	num_msrs_to_save = 0;
5246 	num_emulated_msrs = 0;
5247 	num_msr_based_features = 0;
5248 
5249 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5250 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5251 			continue;
5252 
5253 		/*
5254 		 * Even MSRs that are valid in the host may not be exposed
5255 		 * to the guests in some cases.
5256 		 */
5257 		switch (msrs_to_save_all[i]) {
5258 		case MSR_IA32_BNDCFGS:
5259 			if (!kvm_mpx_supported())
5260 				continue;
5261 			break;
5262 		case MSR_TSC_AUX:
5263 			if (!kvm_x86_ops->rdtscp_supported())
5264 				continue;
5265 			break;
5266 		case MSR_IA32_RTIT_CTL:
5267 		case MSR_IA32_RTIT_STATUS:
5268 			if (!kvm_x86_ops->pt_supported())
5269 				continue;
5270 			break;
5271 		case MSR_IA32_RTIT_CR3_MATCH:
5272 			if (!kvm_x86_ops->pt_supported() ||
5273 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5274 				continue;
5275 			break;
5276 		case MSR_IA32_RTIT_OUTPUT_BASE:
5277 		case MSR_IA32_RTIT_OUTPUT_MASK:
5278 			if (!kvm_x86_ops->pt_supported() ||
5279 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5280 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5281 				continue;
5282 			break;
5283 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5284 			if (!kvm_x86_ops->pt_supported() ||
5285 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5286 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5287 				continue;
5288 			break;
5289 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5290 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5291 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5292 				continue;
5293 			break;
5294 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5295 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5296 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5297 				continue;
5298 		}
5299 		default:
5300 			break;
5301 		}
5302 
5303 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5304 	}
5305 
5306 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5307 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
5308 			continue;
5309 
5310 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5311 	}
5312 
5313 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5314 		struct kvm_msr_entry msr;
5315 
5316 		msr.index = msr_based_features_all[i];
5317 		if (kvm_get_msr_feature(&msr))
5318 			continue;
5319 
5320 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5321 	}
5322 }
5323 
5324 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5325 			   const void *v)
5326 {
5327 	int handled = 0;
5328 	int n;
5329 
5330 	do {
5331 		n = min(len, 8);
5332 		if (!(lapic_in_kernel(vcpu) &&
5333 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5334 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5335 			break;
5336 		handled += n;
5337 		addr += n;
5338 		len -= n;
5339 		v += n;
5340 	} while (len);
5341 
5342 	return handled;
5343 }
5344 
5345 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5346 {
5347 	int handled = 0;
5348 	int n;
5349 
5350 	do {
5351 		n = min(len, 8);
5352 		if (!(lapic_in_kernel(vcpu) &&
5353 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5354 					 addr, n, v))
5355 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5356 			break;
5357 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5358 		handled += n;
5359 		addr += n;
5360 		len -= n;
5361 		v += n;
5362 	} while (len);
5363 
5364 	return handled;
5365 }
5366 
5367 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5368 			struct kvm_segment *var, int seg)
5369 {
5370 	kvm_x86_ops->set_segment(vcpu, var, seg);
5371 }
5372 
5373 void kvm_get_segment(struct kvm_vcpu *vcpu,
5374 		     struct kvm_segment *var, int seg)
5375 {
5376 	kvm_x86_ops->get_segment(vcpu, var, seg);
5377 }
5378 
5379 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5380 			   struct x86_exception *exception)
5381 {
5382 	gpa_t t_gpa;
5383 
5384 	BUG_ON(!mmu_is_nested(vcpu));
5385 
5386 	/* NPT walks are always user-walks */
5387 	access |= PFERR_USER_MASK;
5388 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5389 
5390 	return t_gpa;
5391 }
5392 
5393 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5394 			      struct x86_exception *exception)
5395 {
5396 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5397 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5398 }
5399 
5400  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5401 				struct x86_exception *exception)
5402 {
5403 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5404 	access |= PFERR_FETCH_MASK;
5405 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5406 }
5407 
5408 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5409 			       struct x86_exception *exception)
5410 {
5411 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5412 	access |= PFERR_WRITE_MASK;
5413 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5414 }
5415 
5416 /* uses this to access any guest's mapped memory without checking CPL */
5417 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5418 				struct x86_exception *exception)
5419 {
5420 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5421 }
5422 
5423 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5424 				      struct kvm_vcpu *vcpu, u32 access,
5425 				      struct x86_exception *exception)
5426 {
5427 	void *data = val;
5428 	int r = X86EMUL_CONTINUE;
5429 
5430 	while (bytes) {
5431 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5432 							    exception);
5433 		unsigned offset = addr & (PAGE_SIZE-1);
5434 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5435 		int ret;
5436 
5437 		if (gpa == UNMAPPED_GVA)
5438 			return X86EMUL_PROPAGATE_FAULT;
5439 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5440 					       offset, toread);
5441 		if (ret < 0) {
5442 			r = X86EMUL_IO_NEEDED;
5443 			goto out;
5444 		}
5445 
5446 		bytes -= toread;
5447 		data += toread;
5448 		addr += toread;
5449 	}
5450 out:
5451 	return r;
5452 }
5453 
5454 /* used for instruction fetching */
5455 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5456 				gva_t addr, void *val, unsigned int bytes,
5457 				struct x86_exception *exception)
5458 {
5459 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5460 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5461 	unsigned offset;
5462 	int ret;
5463 
5464 	/* Inline kvm_read_guest_virt_helper for speed.  */
5465 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5466 						    exception);
5467 	if (unlikely(gpa == UNMAPPED_GVA))
5468 		return X86EMUL_PROPAGATE_FAULT;
5469 
5470 	offset = addr & (PAGE_SIZE-1);
5471 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5472 		bytes = (unsigned)PAGE_SIZE - offset;
5473 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5474 				       offset, bytes);
5475 	if (unlikely(ret < 0))
5476 		return X86EMUL_IO_NEEDED;
5477 
5478 	return X86EMUL_CONTINUE;
5479 }
5480 
5481 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5482 			       gva_t addr, void *val, unsigned int bytes,
5483 			       struct x86_exception *exception)
5484 {
5485 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5486 
5487 	/*
5488 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5489 	 * is returned, but our callers are not ready for that and they blindly
5490 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5491 	 * uninitialized kernel stack memory into cr2 and error code.
5492 	 */
5493 	memset(exception, 0, sizeof(*exception));
5494 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5495 					  exception);
5496 }
5497 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5498 
5499 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5500 			     gva_t addr, void *val, unsigned int bytes,
5501 			     struct x86_exception *exception, bool system)
5502 {
5503 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5504 	u32 access = 0;
5505 
5506 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5507 		access |= PFERR_USER_MASK;
5508 
5509 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5510 }
5511 
5512 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5513 		unsigned long addr, void *val, unsigned int bytes)
5514 {
5515 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5516 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5517 
5518 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5519 }
5520 
5521 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5522 				      struct kvm_vcpu *vcpu, u32 access,
5523 				      struct x86_exception *exception)
5524 {
5525 	void *data = val;
5526 	int r = X86EMUL_CONTINUE;
5527 
5528 	while (bytes) {
5529 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5530 							     access,
5531 							     exception);
5532 		unsigned offset = addr & (PAGE_SIZE-1);
5533 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5534 		int ret;
5535 
5536 		if (gpa == UNMAPPED_GVA)
5537 			return X86EMUL_PROPAGATE_FAULT;
5538 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5539 		if (ret < 0) {
5540 			r = X86EMUL_IO_NEEDED;
5541 			goto out;
5542 		}
5543 
5544 		bytes -= towrite;
5545 		data += towrite;
5546 		addr += towrite;
5547 	}
5548 out:
5549 	return r;
5550 }
5551 
5552 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5553 			      unsigned int bytes, struct x86_exception *exception,
5554 			      bool system)
5555 {
5556 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5557 	u32 access = PFERR_WRITE_MASK;
5558 
5559 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5560 		access |= PFERR_USER_MASK;
5561 
5562 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5563 					   access, exception);
5564 }
5565 
5566 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5567 				unsigned int bytes, struct x86_exception *exception)
5568 {
5569 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5570 	vcpu->arch.l1tf_flush_l1d = true;
5571 
5572 	/*
5573 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5574 	 * is returned, but our callers are not ready for that and they blindly
5575 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5576 	 * uninitialized kernel stack memory into cr2 and error code.
5577 	 */
5578 	memset(exception, 0, sizeof(*exception));
5579 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5580 					   PFERR_WRITE_MASK, exception);
5581 }
5582 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5583 
5584 int handle_ud(struct kvm_vcpu *vcpu)
5585 {
5586 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5587 	int emul_type = EMULTYPE_TRAP_UD;
5588 	char sig[5]; /* ud2; .ascii "kvm" */
5589 	struct x86_exception e;
5590 
5591 	if (force_emulation_prefix &&
5592 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5593 				sig, sizeof(sig), &e) == 0 &&
5594 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5595 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5596 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5597 	}
5598 
5599 	return kvm_emulate_instruction(vcpu, emul_type);
5600 }
5601 EXPORT_SYMBOL_GPL(handle_ud);
5602 
5603 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5604 			    gpa_t gpa, bool write)
5605 {
5606 	/* For APIC access vmexit */
5607 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5608 		return 1;
5609 
5610 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5611 		trace_vcpu_match_mmio(gva, gpa, write, true);
5612 		return 1;
5613 	}
5614 
5615 	return 0;
5616 }
5617 
5618 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5619 				gpa_t *gpa, struct x86_exception *exception,
5620 				bool write)
5621 {
5622 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5623 		| (write ? PFERR_WRITE_MASK : 0);
5624 
5625 	/*
5626 	 * currently PKRU is only applied to ept enabled guest so
5627 	 * there is no pkey in EPT page table for L1 guest or EPT
5628 	 * shadow page table for L2 guest.
5629 	 */
5630 	if (vcpu_match_mmio_gva(vcpu, gva)
5631 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5632 				 vcpu->arch.mmio_access, 0, access)) {
5633 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5634 					(gva & (PAGE_SIZE - 1));
5635 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5636 		return 1;
5637 	}
5638 
5639 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5640 
5641 	if (*gpa == UNMAPPED_GVA)
5642 		return -1;
5643 
5644 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5645 }
5646 
5647 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5648 			const void *val, int bytes)
5649 {
5650 	int ret;
5651 
5652 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5653 	if (ret < 0)
5654 		return 0;
5655 	kvm_page_track_write(vcpu, gpa, val, bytes);
5656 	return 1;
5657 }
5658 
5659 struct read_write_emulator_ops {
5660 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5661 				  int bytes);
5662 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5663 				  void *val, int bytes);
5664 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5665 			       int bytes, void *val);
5666 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5667 				    void *val, int bytes);
5668 	bool write;
5669 };
5670 
5671 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5672 {
5673 	if (vcpu->mmio_read_completed) {
5674 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5675 			       vcpu->mmio_fragments[0].gpa, val);
5676 		vcpu->mmio_read_completed = 0;
5677 		return 1;
5678 	}
5679 
5680 	return 0;
5681 }
5682 
5683 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5684 			void *val, int bytes)
5685 {
5686 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5687 }
5688 
5689 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5690 			 void *val, int bytes)
5691 {
5692 	return emulator_write_phys(vcpu, gpa, val, bytes);
5693 }
5694 
5695 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5696 {
5697 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5698 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5699 }
5700 
5701 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5702 			  void *val, int bytes)
5703 {
5704 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5705 	return X86EMUL_IO_NEEDED;
5706 }
5707 
5708 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5709 			   void *val, int bytes)
5710 {
5711 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5712 
5713 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5714 	return X86EMUL_CONTINUE;
5715 }
5716 
5717 static const struct read_write_emulator_ops read_emultor = {
5718 	.read_write_prepare = read_prepare,
5719 	.read_write_emulate = read_emulate,
5720 	.read_write_mmio = vcpu_mmio_read,
5721 	.read_write_exit_mmio = read_exit_mmio,
5722 };
5723 
5724 static const struct read_write_emulator_ops write_emultor = {
5725 	.read_write_emulate = write_emulate,
5726 	.read_write_mmio = write_mmio,
5727 	.read_write_exit_mmio = write_exit_mmio,
5728 	.write = true,
5729 };
5730 
5731 static int emulator_read_write_onepage(unsigned long addr, void *val,
5732 				       unsigned int bytes,
5733 				       struct x86_exception *exception,
5734 				       struct kvm_vcpu *vcpu,
5735 				       const struct read_write_emulator_ops *ops)
5736 {
5737 	gpa_t gpa;
5738 	int handled, ret;
5739 	bool write = ops->write;
5740 	struct kvm_mmio_fragment *frag;
5741 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5742 
5743 	/*
5744 	 * If the exit was due to a NPF we may already have a GPA.
5745 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5746 	 * Note, this cannot be used on string operations since string
5747 	 * operation using rep will only have the initial GPA from the NPF
5748 	 * occurred.
5749 	 */
5750 	if (vcpu->arch.gpa_available &&
5751 	    emulator_can_use_gpa(ctxt) &&
5752 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5753 		gpa = vcpu->arch.gpa_val;
5754 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5755 	} else {
5756 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5757 		if (ret < 0)
5758 			return X86EMUL_PROPAGATE_FAULT;
5759 	}
5760 
5761 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5762 		return X86EMUL_CONTINUE;
5763 
5764 	/*
5765 	 * Is this MMIO handled locally?
5766 	 */
5767 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5768 	if (handled == bytes)
5769 		return X86EMUL_CONTINUE;
5770 
5771 	gpa += handled;
5772 	bytes -= handled;
5773 	val += handled;
5774 
5775 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5776 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5777 	frag->gpa = gpa;
5778 	frag->data = val;
5779 	frag->len = bytes;
5780 	return X86EMUL_CONTINUE;
5781 }
5782 
5783 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5784 			unsigned long addr,
5785 			void *val, unsigned int bytes,
5786 			struct x86_exception *exception,
5787 			const struct read_write_emulator_ops *ops)
5788 {
5789 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5790 	gpa_t gpa;
5791 	int rc;
5792 
5793 	if (ops->read_write_prepare &&
5794 		  ops->read_write_prepare(vcpu, val, bytes))
5795 		return X86EMUL_CONTINUE;
5796 
5797 	vcpu->mmio_nr_fragments = 0;
5798 
5799 	/* Crossing a page boundary? */
5800 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5801 		int now;
5802 
5803 		now = -addr & ~PAGE_MASK;
5804 		rc = emulator_read_write_onepage(addr, val, now, exception,
5805 						 vcpu, ops);
5806 
5807 		if (rc != X86EMUL_CONTINUE)
5808 			return rc;
5809 		addr += now;
5810 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5811 			addr = (u32)addr;
5812 		val += now;
5813 		bytes -= now;
5814 	}
5815 
5816 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5817 					 vcpu, ops);
5818 	if (rc != X86EMUL_CONTINUE)
5819 		return rc;
5820 
5821 	if (!vcpu->mmio_nr_fragments)
5822 		return rc;
5823 
5824 	gpa = vcpu->mmio_fragments[0].gpa;
5825 
5826 	vcpu->mmio_needed = 1;
5827 	vcpu->mmio_cur_fragment = 0;
5828 
5829 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5830 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5831 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5832 	vcpu->run->mmio.phys_addr = gpa;
5833 
5834 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5835 }
5836 
5837 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5838 				  unsigned long addr,
5839 				  void *val,
5840 				  unsigned int bytes,
5841 				  struct x86_exception *exception)
5842 {
5843 	return emulator_read_write(ctxt, addr, val, bytes,
5844 				   exception, &read_emultor);
5845 }
5846 
5847 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5848 			    unsigned long addr,
5849 			    const void *val,
5850 			    unsigned int bytes,
5851 			    struct x86_exception *exception)
5852 {
5853 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5854 				   exception, &write_emultor);
5855 }
5856 
5857 #define CMPXCHG_TYPE(t, ptr, old, new) \
5858 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5859 
5860 #ifdef CONFIG_X86_64
5861 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5862 #else
5863 #  define CMPXCHG64(ptr, old, new) \
5864 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5865 #endif
5866 
5867 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5868 				     unsigned long addr,
5869 				     const void *old,
5870 				     const void *new,
5871 				     unsigned int bytes,
5872 				     struct x86_exception *exception)
5873 {
5874 	struct kvm_host_map map;
5875 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5876 	gpa_t gpa;
5877 	char *kaddr;
5878 	bool exchanged;
5879 
5880 	/* guests cmpxchg8b have to be emulated atomically */
5881 	if (bytes > 8 || (bytes & (bytes - 1)))
5882 		goto emul_write;
5883 
5884 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5885 
5886 	if (gpa == UNMAPPED_GVA ||
5887 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5888 		goto emul_write;
5889 
5890 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5891 		goto emul_write;
5892 
5893 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5894 		goto emul_write;
5895 
5896 	kaddr = map.hva + offset_in_page(gpa);
5897 
5898 	switch (bytes) {
5899 	case 1:
5900 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5901 		break;
5902 	case 2:
5903 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5904 		break;
5905 	case 4:
5906 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5907 		break;
5908 	case 8:
5909 		exchanged = CMPXCHG64(kaddr, old, new);
5910 		break;
5911 	default:
5912 		BUG();
5913 	}
5914 
5915 	kvm_vcpu_unmap(vcpu, &map, true);
5916 
5917 	if (!exchanged)
5918 		return X86EMUL_CMPXCHG_FAILED;
5919 
5920 	kvm_page_track_write(vcpu, gpa, new, bytes);
5921 
5922 	return X86EMUL_CONTINUE;
5923 
5924 emul_write:
5925 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5926 
5927 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5928 }
5929 
5930 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5931 {
5932 	int r = 0, i;
5933 
5934 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5935 		if (vcpu->arch.pio.in)
5936 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5937 					    vcpu->arch.pio.size, pd);
5938 		else
5939 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5940 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5941 					     pd);
5942 		if (r)
5943 			break;
5944 		pd += vcpu->arch.pio.size;
5945 	}
5946 	return r;
5947 }
5948 
5949 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5950 			       unsigned short port, void *val,
5951 			       unsigned int count, bool in)
5952 {
5953 	vcpu->arch.pio.port = port;
5954 	vcpu->arch.pio.in = in;
5955 	vcpu->arch.pio.count  = count;
5956 	vcpu->arch.pio.size = size;
5957 
5958 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5959 		vcpu->arch.pio.count = 0;
5960 		return 1;
5961 	}
5962 
5963 	vcpu->run->exit_reason = KVM_EXIT_IO;
5964 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5965 	vcpu->run->io.size = size;
5966 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5967 	vcpu->run->io.count = count;
5968 	vcpu->run->io.port = port;
5969 
5970 	return 0;
5971 }
5972 
5973 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5974 				    int size, unsigned short port, void *val,
5975 				    unsigned int count)
5976 {
5977 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5978 	int ret;
5979 
5980 	if (vcpu->arch.pio.count)
5981 		goto data_avail;
5982 
5983 	memset(vcpu->arch.pio_data, 0, size * count);
5984 
5985 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5986 	if (ret) {
5987 data_avail:
5988 		memcpy(val, vcpu->arch.pio_data, size * count);
5989 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5990 		vcpu->arch.pio.count = 0;
5991 		return 1;
5992 	}
5993 
5994 	return 0;
5995 }
5996 
5997 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5998 				     int size, unsigned short port,
5999 				     const void *val, unsigned int count)
6000 {
6001 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6002 
6003 	memcpy(vcpu->arch.pio_data, val, size * count);
6004 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6005 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6006 }
6007 
6008 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6009 {
6010 	return kvm_x86_ops->get_segment_base(vcpu, seg);
6011 }
6012 
6013 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6014 {
6015 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6016 }
6017 
6018 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6019 {
6020 	if (!need_emulate_wbinvd(vcpu))
6021 		return X86EMUL_CONTINUE;
6022 
6023 	if (kvm_x86_ops->has_wbinvd_exit()) {
6024 		int cpu = get_cpu();
6025 
6026 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6027 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6028 				wbinvd_ipi, NULL, 1);
6029 		put_cpu();
6030 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6031 	} else
6032 		wbinvd();
6033 	return X86EMUL_CONTINUE;
6034 }
6035 
6036 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6037 {
6038 	kvm_emulate_wbinvd_noskip(vcpu);
6039 	return kvm_skip_emulated_instruction(vcpu);
6040 }
6041 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6042 
6043 
6044 
6045 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6046 {
6047 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6048 }
6049 
6050 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6051 			   unsigned long *dest)
6052 {
6053 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6054 }
6055 
6056 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6057 			   unsigned long value)
6058 {
6059 
6060 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6061 }
6062 
6063 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6064 {
6065 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6066 }
6067 
6068 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6069 {
6070 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6071 	unsigned long value;
6072 
6073 	switch (cr) {
6074 	case 0:
6075 		value = kvm_read_cr0(vcpu);
6076 		break;
6077 	case 2:
6078 		value = vcpu->arch.cr2;
6079 		break;
6080 	case 3:
6081 		value = kvm_read_cr3(vcpu);
6082 		break;
6083 	case 4:
6084 		value = kvm_read_cr4(vcpu);
6085 		break;
6086 	case 8:
6087 		value = kvm_get_cr8(vcpu);
6088 		break;
6089 	default:
6090 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6091 		return 0;
6092 	}
6093 
6094 	return value;
6095 }
6096 
6097 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6098 {
6099 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6100 	int res = 0;
6101 
6102 	switch (cr) {
6103 	case 0:
6104 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6105 		break;
6106 	case 2:
6107 		vcpu->arch.cr2 = val;
6108 		break;
6109 	case 3:
6110 		res = kvm_set_cr3(vcpu, val);
6111 		break;
6112 	case 4:
6113 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6114 		break;
6115 	case 8:
6116 		res = kvm_set_cr8(vcpu, val);
6117 		break;
6118 	default:
6119 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6120 		res = -1;
6121 	}
6122 
6123 	return res;
6124 }
6125 
6126 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6127 {
6128 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
6129 }
6130 
6131 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6132 {
6133 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
6134 }
6135 
6136 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6137 {
6138 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
6139 }
6140 
6141 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6142 {
6143 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6144 }
6145 
6146 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6147 {
6148 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6149 }
6150 
6151 static unsigned long emulator_get_cached_segment_base(
6152 	struct x86_emulate_ctxt *ctxt, int seg)
6153 {
6154 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6155 }
6156 
6157 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6158 				 struct desc_struct *desc, u32 *base3,
6159 				 int seg)
6160 {
6161 	struct kvm_segment var;
6162 
6163 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6164 	*selector = var.selector;
6165 
6166 	if (var.unusable) {
6167 		memset(desc, 0, sizeof(*desc));
6168 		if (base3)
6169 			*base3 = 0;
6170 		return false;
6171 	}
6172 
6173 	if (var.g)
6174 		var.limit >>= 12;
6175 	set_desc_limit(desc, var.limit);
6176 	set_desc_base(desc, (unsigned long)var.base);
6177 #ifdef CONFIG_X86_64
6178 	if (base3)
6179 		*base3 = var.base >> 32;
6180 #endif
6181 	desc->type = var.type;
6182 	desc->s = var.s;
6183 	desc->dpl = var.dpl;
6184 	desc->p = var.present;
6185 	desc->avl = var.avl;
6186 	desc->l = var.l;
6187 	desc->d = var.db;
6188 	desc->g = var.g;
6189 
6190 	return true;
6191 }
6192 
6193 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6194 				 struct desc_struct *desc, u32 base3,
6195 				 int seg)
6196 {
6197 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6198 	struct kvm_segment var;
6199 
6200 	var.selector = selector;
6201 	var.base = get_desc_base(desc);
6202 #ifdef CONFIG_X86_64
6203 	var.base |= ((u64)base3) << 32;
6204 #endif
6205 	var.limit = get_desc_limit(desc);
6206 	if (desc->g)
6207 		var.limit = (var.limit << 12) | 0xfff;
6208 	var.type = desc->type;
6209 	var.dpl = desc->dpl;
6210 	var.db = desc->d;
6211 	var.s = desc->s;
6212 	var.l = desc->l;
6213 	var.g = desc->g;
6214 	var.avl = desc->avl;
6215 	var.present = desc->p;
6216 	var.unusable = !var.present;
6217 	var.padding = 0;
6218 
6219 	kvm_set_segment(vcpu, &var, seg);
6220 	return;
6221 }
6222 
6223 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6224 			    u32 msr_index, u64 *pdata)
6225 {
6226 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6227 }
6228 
6229 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6230 			    u32 msr_index, u64 data)
6231 {
6232 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6233 }
6234 
6235 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6236 {
6237 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6238 
6239 	return vcpu->arch.smbase;
6240 }
6241 
6242 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6243 {
6244 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6245 
6246 	vcpu->arch.smbase = smbase;
6247 }
6248 
6249 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6250 			      u32 pmc)
6251 {
6252 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6253 }
6254 
6255 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6256 			     u32 pmc, u64 *pdata)
6257 {
6258 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6259 }
6260 
6261 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6262 {
6263 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6264 }
6265 
6266 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6267 			      struct x86_instruction_info *info,
6268 			      enum x86_intercept_stage stage)
6269 {
6270 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6271 }
6272 
6273 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6274 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6275 {
6276 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6277 }
6278 
6279 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6280 {
6281 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6282 }
6283 
6284 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6285 {
6286 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6287 }
6288 
6289 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6290 {
6291 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6292 }
6293 
6294 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6295 {
6296 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6297 }
6298 
6299 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6300 {
6301 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6302 }
6303 
6304 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6305 {
6306 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6307 }
6308 
6309 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6310 {
6311 	return emul_to_vcpu(ctxt)->arch.hflags;
6312 }
6313 
6314 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6315 {
6316 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6317 }
6318 
6319 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6320 				  const char *smstate)
6321 {
6322 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6323 }
6324 
6325 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6326 {
6327 	kvm_smm_changed(emul_to_vcpu(ctxt));
6328 }
6329 
6330 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6331 {
6332 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6333 }
6334 
6335 static const struct x86_emulate_ops emulate_ops = {
6336 	.read_gpr            = emulator_read_gpr,
6337 	.write_gpr           = emulator_write_gpr,
6338 	.read_std            = emulator_read_std,
6339 	.write_std           = emulator_write_std,
6340 	.read_phys           = kvm_read_guest_phys_system,
6341 	.fetch               = kvm_fetch_guest_virt,
6342 	.read_emulated       = emulator_read_emulated,
6343 	.write_emulated      = emulator_write_emulated,
6344 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6345 	.invlpg              = emulator_invlpg,
6346 	.pio_in_emulated     = emulator_pio_in_emulated,
6347 	.pio_out_emulated    = emulator_pio_out_emulated,
6348 	.get_segment         = emulator_get_segment,
6349 	.set_segment         = emulator_set_segment,
6350 	.get_cached_segment_base = emulator_get_cached_segment_base,
6351 	.get_gdt             = emulator_get_gdt,
6352 	.get_idt	     = emulator_get_idt,
6353 	.set_gdt             = emulator_set_gdt,
6354 	.set_idt	     = emulator_set_idt,
6355 	.get_cr              = emulator_get_cr,
6356 	.set_cr              = emulator_set_cr,
6357 	.cpl                 = emulator_get_cpl,
6358 	.get_dr              = emulator_get_dr,
6359 	.set_dr              = emulator_set_dr,
6360 	.get_smbase          = emulator_get_smbase,
6361 	.set_smbase          = emulator_set_smbase,
6362 	.set_msr             = emulator_set_msr,
6363 	.get_msr             = emulator_get_msr,
6364 	.check_pmc	     = emulator_check_pmc,
6365 	.read_pmc            = emulator_read_pmc,
6366 	.halt                = emulator_halt,
6367 	.wbinvd              = emulator_wbinvd,
6368 	.fix_hypercall       = emulator_fix_hypercall,
6369 	.intercept           = emulator_intercept,
6370 	.get_cpuid           = emulator_get_cpuid,
6371 	.guest_has_long_mode = emulator_guest_has_long_mode,
6372 	.guest_has_movbe     = emulator_guest_has_movbe,
6373 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6374 	.set_nmi_mask        = emulator_set_nmi_mask,
6375 	.get_hflags          = emulator_get_hflags,
6376 	.set_hflags          = emulator_set_hflags,
6377 	.pre_leave_smm       = emulator_pre_leave_smm,
6378 	.post_leave_smm      = emulator_post_leave_smm,
6379 	.set_xcr             = emulator_set_xcr,
6380 };
6381 
6382 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6383 {
6384 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6385 	/*
6386 	 * an sti; sti; sequence only disable interrupts for the first
6387 	 * instruction. So, if the last instruction, be it emulated or
6388 	 * not, left the system with the INT_STI flag enabled, it
6389 	 * means that the last instruction is an sti. We should not
6390 	 * leave the flag on in this case. The same goes for mov ss
6391 	 */
6392 	if (int_shadow & mask)
6393 		mask = 0;
6394 	if (unlikely(int_shadow || mask)) {
6395 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6396 		if (!mask)
6397 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6398 	}
6399 }
6400 
6401 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6402 {
6403 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6404 	if (ctxt->exception.vector == PF_VECTOR)
6405 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6406 
6407 	if (ctxt->exception.error_code_valid)
6408 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6409 				      ctxt->exception.error_code);
6410 	else
6411 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6412 	return false;
6413 }
6414 
6415 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6416 {
6417 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6418 	int cs_db, cs_l;
6419 
6420 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6421 
6422 	ctxt->eflags = kvm_get_rflags(vcpu);
6423 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6424 
6425 	ctxt->eip = kvm_rip_read(vcpu);
6426 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6427 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6428 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6429 		     cs_db				? X86EMUL_MODE_PROT32 :
6430 							  X86EMUL_MODE_PROT16;
6431 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6432 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6433 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6434 
6435 	init_decode_cache(ctxt);
6436 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6437 }
6438 
6439 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6440 {
6441 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6442 	int ret;
6443 
6444 	init_emulate_ctxt(vcpu);
6445 
6446 	ctxt->op_bytes = 2;
6447 	ctxt->ad_bytes = 2;
6448 	ctxt->_eip = ctxt->eip + inc_eip;
6449 	ret = emulate_int_real(ctxt, irq);
6450 
6451 	if (ret != X86EMUL_CONTINUE) {
6452 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6453 	} else {
6454 		ctxt->eip = ctxt->_eip;
6455 		kvm_rip_write(vcpu, ctxt->eip);
6456 		kvm_set_rflags(vcpu, ctxt->eflags);
6457 	}
6458 }
6459 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6460 
6461 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6462 {
6463 	++vcpu->stat.insn_emulation_fail;
6464 	trace_kvm_emulate_insn_failed(vcpu);
6465 
6466 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6467 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6468 		return 1;
6469 	}
6470 
6471 	if (emulation_type & EMULTYPE_SKIP) {
6472 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6473 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6474 		vcpu->run->internal.ndata = 0;
6475 		return 0;
6476 	}
6477 
6478 	kvm_queue_exception(vcpu, UD_VECTOR);
6479 
6480 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6481 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6482 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6483 		vcpu->run->internal.ndata = 0;
6484 		return 0;
6485 	}
6486 
6487 	return 1;
6488 }
6489 
6490 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6491 				  bool write_fault_to_shadow_pgtable,
6492 				  int emulation_type)
6493 {
6494 	gpa_t gpa = cr2_or_gpa;
6495 	kvm_pfn_t pfn;
6496 
6497 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6498 		return false;
6499 
6500 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6501 		return false;
6502 
6503 	if (!vcpu->arch.mmu->direct_map) {
6504 		/*
6505 		 * Write permission should be allowed since only
6506 		 * write access need to be emulated.
6507 		 */
6508 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6509 
6510 		/*
6511 		 * If the mapping is invalid in guest, let cpu retry
6512 		 * it to generate fault.
6513 		 */
6514 		if (gpa == UNMAPPED_GVA)
6515 			return true;
6516 	}
6517 
6518 	/*
6519 	 * Do not retry the unhandleable instruction if it faults on the
6520 	 * readonly host memory, otherwise it will goto a infinite loop:
6521 	 * retry instruction -> write #PF -> emulation fail -> retry
6522 	 * instruction -> ...
6523 	 */
6524 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6525 
6526 	/*
6527 	 * If the instruction failed on the error pfn, it can not be fixed,
6528 	 * report the error to userspace.
6529 	 */
6530 	if (is_error_noslot_pfn(pfn))
6531 		return false;
6532 
6533 	kvm_release_pfn_clean(pfn);
6534 
6535 	/* The instructions are well-emulated on direct mmu. */
6536 	if (vcpu->arch.mmu->direct_map) {
6537 		unsigned int indirect_shadow_pages;
6538 
6539 		spin_lock(&vcpu->kvm->mmu_lock);
6540 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6541 		spin_unlock(&vcpu->kvm->mmu_lock);
6542 
6543 		if (indirect_shadow_pages)
6544 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6545 
6546 		return true;
6547 	}
6548 
6549 	/*
6550 	 * if emulation was due to access to shadowed page table
6551 	 * and it failed try to unshadow page and re-enter the
6552 	 * guest to let CPU execute the instruction.
6553 	 */
6554 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6555 
6556 	/*
6557 	 * If the access faults on its page table, it can not
6558 	 * be fixed by unprotecting shadow page and it should
6559 	 * be reported to userspace.
6560 	 */
6561 	return !write_fault_to_shadow_pgtable;
6562 }
6563 
6564 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6565 			      gpa_t cr2_or_gpa,  int emulation_type)
6566 {
6567 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6568 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6569 
6570 	last_retry_eip = vcpu->arch.last_retry_eip;
6571 	last_retry_addr = vcpu->arch.last_retry_addr;
6572 
6573 	/*
6574 	 * If the emulation is caused by #PF and it is non-page_table
6575 	 * writing instruction, it means the VM-EXIT is caused by shadow
6576 	 * page protected, we can zap the shadow page and retry this
6577 	 * instruction directly.
6578 	 *
6579 	 * Note: if the guest uses a non-page-table modifying instruction
6580 	 * on the PDE that points to the instruction, then we will unmap
6581 	 * the instruction and go to an infinite loop. So, we cache the
6582 	 * last retried eip and the last fault address, if we meet the eip
6583 	 * and the address again, we can break out of the potential infinite
6584 	 * loop.
6585 	 */
6586 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6587 
6588 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6589 		return false;
6590 
6591 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6592 		return false;
6593 
6594 	if (x86_page_table_writing_insn(ctxt))
6595 		return false;
6596 
6597 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6598 		return false;
6599 
6600 	vcpu->arch.last_retry_eip = ctxt->eip;
6601 	vcpu->arch.last_retry_addr = cr2_or_gpa;
6602 
6603 	if (!vcpu->arch.mmu->direct_map)
6604 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6605 
6606 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6607 
6608 	return true;
6609 }
6610 
6611 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6612 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6613 
6614 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6615 {
6616 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6617 		/* This is a good place to trace that we are exiting SMM.  */
6618 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6619 
6620 		/* Process a latched INIT or SMI, if any.  */
6621 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6622 	}
6623 
6624 	kvm_mmu_reset_context(vcpu);
6625 }
6626 
6627 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6628 				unsigned long *db)
6629 {
6630 	u32 dr6 = 0;
6631 	int i;
6632 	u32 enable, rwlen;
6633 
6634 	enable = dr7;
6635 	rwlen = dr7 >> 16;
6636 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6637 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6638 			dr6 |= (1 << i);
6639 	return dr6;
6640 }
6641 
6642 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6643 {
6644 	struct kvm_run *kvm_run = vcpu->run;
6645 
6646 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6647 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6648 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6649 		kvm_run->debug.arch.exception = DB_VECTOR;
6650 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6651 		return 0;
6652 	}
6653 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6654 	return 1;
6655 }
6656 
6657 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6658 {
6659 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6660 	int r;
6661 
6662 	r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6663 	if (unlikely(!r))
6664 		return 0;
6665 
6666 	/*
6667 	 * rflags is the old, "raw" value of the flags.  The new value has
6668 	 * not been saved yet.
6669 	 *
6670 	 * This is correct even for TF set by the guest, because "the
6671 	 * processor will not generate this exception after the instruction
6672 	 * that sets the TF flag".
6673 	 */
6674 	if (unlikely(rflags & X86_EFLAGS_TF))
6675 		r = kvm_vcpu_do_singlestep(vcpu);
6676 	return r;
6677 }
6678 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6679 
6680 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6681 {
6682 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6683 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6684 		struct kvm_run *kvm_run = vcpu->run;
6685 		unsigned long eip = kvm_get_linear_rip(vcpu);
6686 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6687 					   vcpu->arch.guest_debug_dr7,
6688 					   vcpu->arch.eff_db);
6689 
6690 		if (dr6 != 0) {
6691 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6692 			kvm_run->debug.arch.pc = eip;
6693 			kvm_run->debug.arch.exception = DB_VECTOR;
6694 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6695 			*r = 0;
6696 			return true;
6697 		}
6698 	}
6699 
6700 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6701 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6702 		unsigned long eip = kvm_get_linear_rip(vcpu);
6703 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6704 					   vcpu->arch.dr7,
6705 					   vcpu->arch.db);
6706 
6707 		if (dr6 != 0) {
6708 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6709 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6710 			kvm_queue_exception(vcpu, DB_VECTOR);
6711 			*r = 1;
6712 			return true;
6713 		}
6714 	}
6715 
6716 	return false;
6717 }
6718 
6719 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6720 {
6721 	switch (ctxt->opcode_len) {
6722 	case 1:
6723 		switch (ctxt->b) {
6724 		case 0xe4:	/* IN */
6725 		case 0xe5:
6726 		case 0xec:
6727 		case 0xed:
6728 		case 0xe6:	/* OUT */
6729 		case 0xe7:
6730 		case 0xee:
6731 		case 0xef:
6732 		case 0x6c:	/* INS */
6733 		case 0x6d:
6734 		case 0x6e:	/* OUTS */
6735 		case 0x6f:
6736 			return true;
6737 		}
6738 		break;
6739 	case 2:
6740 		switch (ctxt->b) {
6741 		case 0x33:	/* RDPMC */
6742 			return true;
6743 		}
6744 		break;
6745 	}
6746 
6747 	return false;
6748 }
6749 
6750 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6751 			    int emulation_type, void *insn, int insn_len)
6752 {
6753 	int r;
6754 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6755 	bool writeback = true;
6756 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6757 
6758 	vcpu->arch.l1tf_flush_l1d = true;
6759 
6760 	/*
6761 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6762 	 * never reused.
6763 	 */
6764 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6765 	kvm_clear_exception_queue(vcpu);
6766 
6767 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6768 		init_emulate_ctxt(vcpu);
6769 
6770 		/*
6771 		 * We will reenter on the same instruction since
6772 		 * we do not set complete_userspace_io.  This does not
6773 		 * handle watchpoints yet, those would be handled in
6774 		 * the emulate_ops.
6775 		 */
6776 		if (!(emulation_type & EMULTYPE_SKIP) &&
6777 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6778 			return r;
6779 
6780 		ctxt->interruptibility = 0;
6781 		ctxt->have_exception = false;
6782 		ctxt->exception.vector = -1;
6783 		ctxt->perm_ok = false;
6784 
6785 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6786 
6787 		r = x86_decode_insn(ctxt, insn, insn_len);
6788 
6789 		trace_kvm_emulate_insn_start(vcpu);
6790 		++vcpu->stat.insn_emulation;
6791 		if (r != EMULATION_OK)  {
6792 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6793 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6794 				kvm_queue_exception(vcpu, UD_VECTOR);
6795 				return 1;
6796 			}
6797 			if (reexecute_instruction(vcpu, cr2_or_gpa,
6798 						  write_fault_to_spt,
6799 						  emulation_type))
6800 				return 1;
6801 			if (ctxt->have_exception) {
6802 				/*
6803 				 * #UD should result in just EMULATION_FAILED, and trap-like
6804 				 * exception should not be encountered during decode.
6805 				 */
6806 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6807 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6808 				inject_emulated_exception(vcpu);
6809 				return 1;
6810 			}
6811 			return handle_emulation_failure(vcpu, emulation_type);
6812 		}
6813 	}
6814 
6815 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6816 	    !is_vmware_backdoor_opcode(ctxt)) {
6817 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6818 		return 1;
6819 	}
6820 
6821 	/*
6822 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6823 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6824 	 * updating interruptibility state and injecting single-step #DBs.
6825 	 */
6826 	if (emulation_type & EMULTYPE_SKIP) {
6827 		kvm_rip_write(vcpu, ctxt->_eip);
6828 		if (ctxt->eflags & X86_EFLAGS_RF)
6829 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6830 		return 1;
6831 	}
6832 
6833 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6834 		return 1;
6835 
6836 	/* this is needed for vmware backdoor interface to work since it
6837 	   changes registers values  during IO operation */
6838 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6839 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6840 		emulator_invalidate_register_cache(ctxt);
6841 	}
6842 
6843 restart:
6844 	/* Save the faulting GPA (cr2) in the address field */
6845 	ctxt->exception.address = cr2_or_gpa;
6846 
6847 	r = x86_emulate_insn(ctxt);
6848 
6849 	if (r == EMULATION_INTERCEPTED)
6850 		return 1;
6851 
6852 	if (r == EMULATION_FAILED) {
6853 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6854 					emulation_type))
6855 			return 1;
6856 
6857 		return handle_emulation_failure(vcpu, emulation_type);
6858 	}
6859 
6860 	if (ctxt->have_exception) {
6861 		r = 1;
6862 		if (inject_emulated_exception(vcpu))
6863 			return r;
6864 	} else if (vcpu->arch.pio.count) {
6865 		if (!vcpu->arch.pio.in) {
6866 			/* FIXME: return into emulator if single-stepping.  */
6867 			vcpu->arch.pio.count = 0;
6868 		} else {
6869 			writeback = false;
6870 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6871 		}
6872 		r = 0;
6873 	} else if (vcpu->mmio_needed) {
6874 		++vcpu->stat.mmio_exits;
6875 
6876 		if (!vcpu->mmio_is_write)
6877 			writeback = false;
6878 		r = 0;
6879 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6880 	} else if (r == EMULATION_RESTART)
6881 		goto restart;
6882 	else
6883 		r = 1;
6884 
6885 	if (writeback) {
6886 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6887 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6888 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6889 		if (!ctxt->have_exception ||
6890 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6891 			kvm_rip_write(vcpu, ctxt->eip);
6892 			if (r && ctxt->tf)
6893 				r = kvm_vcpu_do_singlestep(vcpu);
6894 			if (kvm_x86_ops->update_emulated_instruction)
6895 				kvm_x86_ops->update_emulated_instruction(vcpu);
6896 			__kvm_set_rflags(vcpu, ctxt->eflags);
6897 		}
6898 
6899 		/*
6900 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6901 		 * do nothing, and it will be requested again as soon as
6902 		 * the shadow expires.  But we still need to check here,
6903 		 * because POPF has no interrupt shadow.
6904 		 */
6905 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6906 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6907 	} else
6908 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6909 
6910 	return r;
6911 }
6912 
6913 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6914 {
6915 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6916 }
6917 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6918 
6919 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6920 					void *insn, int insn_len)
6921 {
6922 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6923 }
6924 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6925 
6926 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6927 {
6928 	vcpu->arch.pio.count = 0;
6929 	return 1;
6930 }
6931 
6932 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6933 {
6934 	vcpu->arch.pio.count = 0;
6935 
6936 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6937 		return 1;
6938 
6939 	return kvm_skip_emulated_instruction(vcpu);
6940 }
6941 
6942 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6943 			    unsigned short port)
6944 {
6945 	unsigned long val = kvm_rax_read(vcpu);
6946 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6947 					    size, port, &val, 1);
6948 	if (ret)
6949 		return ret;
6950 
6951 	/*
6952 	 * Workaround userspace that relies on old KVM behavior of %rip being
6953 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6954 	 */
6955 	if (port == 0x7e &&
6956 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6957 		vcpu->arch.complete_userspace_io =
6958 			complete_fast_pio_out_port_0x7e;
6959 		kvm_skip_emulated_instruction(vcpu);
6960 	} else {
6961 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6962 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6963 	}
6964 	return 0;
6965 }
6966 
6967 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6968 {
6969 	unsigned long val;
6970 
6971 	/* We should only ever be called with arch.pio.count equal to 1 */
6972 	BUG_ON(vcpu->arch.pio.count != 1);
6973 
6974 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6975 		vcpu->arch.pio.count = 0;
6976 		return 1;
6977 	}
6978 
6979 	/* For size less than 4 we merge, else we zero extend */
6980 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6981 
6982 	/*
6983 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6984 	 * the copy and tracing
6985 	 */
6986 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6987 				 vcpu->arch.pio.port, &val, 1);
6988 	kvm_rax_write(vcpu, val);
6989 
6990 	return kvm_skip_emulated_instruction(vcpu);
6991 }
6992 
6993 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6994 			   unsigned short port)
6995 {
6996 	unsigned long val;
6997 	int ret;
6998 
6999 	/* For size less than 4 we merge, else we zero extend */
7000 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7001 
7002 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
7003 				       &val, 1);
7004 	if (ret) {
7005 		kvm_rax_write(vcpu, val);
7006 		return ret;
7007 	}
7008 
7009 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7010 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7011 
7012 	return 0;
7013 }
7014 
7015 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7016 {
7017 	int ret;
7018 
7019 	if (in)
7020 		ret = kvm_fast_pio_in(vcpu, size, port);
7021 	else
7022 		ret = kvm_fast_pio_out(vcpu, size, port);
7023 	return ret && kvm_skip_emulated_instruction(vcpu);
7024 }
7025 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7026 
7027 static int kvmclock_cpu_down_prep(unsigned int cpu)
7028 {
7029 	__this_cpu_write(cpu_tsc_khz, 0);
7030 	return 0;
7031 }
7032 
7033 static void tsc_khz_changed(void *data)
7034 {
7035 	struct cpufreq_freqs *freq = data;
7036 	unsigned long khz = 0;
7037 
7038 	if (data)
7039 		khz = freq->new;
7040 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7041 		khz = cpufreq_quick_get(raw_smp_processor_id());
7042 	if (!khz)
7043 		khz = tsc_khz;
7044 	__this_cpu_write(cpu_tsc_khz, khz);
7045 }
7046 
7047 #ifdef CONFIG_X86_64
7048 static void kvm_hyperv_tsc_notifier(void)
7049 {
7050 	struct kvm *kvm;
7051 	struct kvm_vcpu *vcpu;
7052 	int cpu;
7053 
7054 	mutex_lock(&kvm_lock);
7055 	list_for_each_entry(kvm, &vm_list, vm_list)
7056 		kvm_make_mclock_inprogress_request(kvm);
7057 
7058 	hyperv_stop_tsc_emulation();
7059 
7060 	/* TSC frequency always matches when on Hyper-V */
7061 	for_each_present_cpu(cpu)
7062 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7063 	kvm_max_guest_tsc_khz = tsc_khz;
7064 
7065 	list_for_each_entry(kvm, &vm_list, vm_list) {
7066 		struct kvm_arch *ka = &kvm->arch;
7067 
7068 		spin_lock(&ka->pvclock_gtod_sync_lock);
7069 
7070 		pvclock_update_vm_gtod_copy(kvm);
7071 
7072 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7073 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7074 
7075 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7076 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7077 
7078 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7079 	}
7080 	mutex_unlock(&kvm_lock);
7081 }
7082 #endif
7083 
7084 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7085 {
7086 	struct kvm *kvm;
7087 	struct kvm_vcpu *vcpu;
7088 	int i, send_ipi = 0;
7089 
7090 	/*
7091 	 * We allow guests to temporarily run on slowing clocks,
7092 	 * provided we notify them after, or to run on accelerating
7093 	 * clocks, provided we notify them before.  Thus time never
7094 	 * goes backwards.
7095 	 *
7096 	 * However, we have a problem.  We can't atomically update
7097 	 * the frequency of a given CPU from this function; it is
7098 	 * merely a notifier, which can be called from any CPU.
7099 	 * Changing the TSC frequency at arbitrary points in time
7100 	 * requires a recomputation of local variables related to
7101 	 * the TSC for each VCPU.  We must flag these local variables
7102 	 * to be updated and be sure the update takes place with the
7103 	 * new frequency before any guests proceed.
7104 	 *
7105 	 * Unfortunately, the combination of hotplug CPU and frequency
7106 	 * change creates an intractable locking scenario; the order
7107 	 * of when these callouts happen is undefined with respect to
7108 	 * CPU hotplug, and they can race with each other.  As such,
7109 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7110 	 * undefined; you can actually have a CPU frequency change take
7111 	 * place in between the computation of X and the setting of the
7112 	 * variable.  To protect against this problem, all updates of
7113 	 * the per_cpu tsc_khz variable are done in an interrupt
7114 	 * protected IPI, and all callers wishing to update the value
7115 	 * must wait for a synchronous IPI to complete (which is trivial
7116 	 * if the caller is on the CPU already).  This establishes the
7117 	 * necessary total order on variable updates.
7118 	 *
7119 	 * Note that because a guest time update may take place
7120 	 * anytime after the setting of the VCPU's request bit, the
7121 	 * correct TSC value must be set before the request.  However,
7122 	 * to ensure the update actually makes it to any guest which
7123 	 * starts running in hardware virtualization between the set
7124 	 * and the acquisition of the spinlock, we must also ping the
7125 	 * CPU after setting the request bit.
7126 	 *
7127 	 */
7128 
7129 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7130 
7131 	mutex_lock(&kvm_lock);
7132 	list_for_each_entry(kvm, &vm_list, vm_list) {
7133 		kvm_for_each_vcpu(i, vcpu, kvm) {
7134 			if (vcpu->cpu != cpu)
7135 				continue;
7136 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7137 			if (vcpu->cpu != raw_smp_processor_id())
7138 				send_ipi = 1;
7139 		}
7140 	}
7141 	mutex_unlock(&kvm_lock);
7142 
7143 	if (freq->old < freq->new && send_ipi) {
7144 		/*
7145 		 * We upscale the frequency.  Must make the guest
7146 		 * doesn't see old kvmclock values while running with
7147 		 * the new frequency, otherwise we risk the guest sees
7148 		 * time go backwards.
7149 		 *
7150 		 * In case we update the frequency for another cpu
7151 		 * (which might be in guest context) send an interrupt
7152 		 * to kick the cpu out of guest context.  Next time
7153 		 * guest context is entered kvmclock will be updated,
7154 		 * so the guest will not see stale values.
7155 		 */
7156 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7157 	}
7158 }
7159 
7160 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7161 				     void *data)
7162 {
7163 	struct cpufreq_freqs *freq = data;
7164 	int cpu;
7165 
7166 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7167 		return 0;
7168 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7169 		return 0;
7170 
7171 	for_each_cpu(cpu, freq->policy->cpus)
7172 		__kvmclock_cpufreq_notifier(freq, cpu);
7173 
7174 	return 0;
7175 }
7176 
7177 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7178 	.notifier_call  = kvmclock_cpufreq_notifier
7179 };
7180 
7181 static int kvmclock_cpu_online(unsigned int cpu)
7182 {
7183 	tsc_khz_changed(NULL);
7184 	return 0;
7185 }
7186 
7187 static void kvm_timer_init(void)
7188 {
7189 	max_tsc_khz = tsc_khz;
7190 
7191 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7192 #ifdef CONFIG_CPU_FREQ
7193 		struct cpufreq_policy policy;
7194 		int cpu;
7195 
7196 		memset(&policy, 0, sizeof(policy));
7197 		cpu = get_cpu();
7198 		cpufreq_get_policy(&policy, cpu);
7199 		if (policy.cpuinfo.max_freq)
7200 			max_tsc_khz = policy.cpuinfo.max_freq;
7201 		put_cpu();
7202 #endif
7203 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7204 					  CPUFREQ_TRANSITION_NOTIFIER);
7205 	}
7206 
7207 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7208 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7209 }
7210 
7211 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7212 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7213 
7214 int kvm_is_in_guest(void)
7215 {
7216 	return __this_cpu_read(current_vcpu) != NULL;
7217 }
7218 
7219 static int kvm_is_user_mode(void)
7220 {
7221 	int user_mode = 3;
7222 
7223 	if (__this_cpu_read(current_vcpu))
7224 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7225 
7226 	return user_mode != 0;
7227 }
7228 
7229 static unsigned long kvm_get_guest_ip(void)
7230 {
7231 	unsigned long ip = 0;
7232 
7233 	if (__this_cpu_read(current_vcpu))
7234 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7235 
7236 	return ip;
7237 }
7238 
7239 static void kvm_handle_intel_pt_intr(void)
7240 {
7241 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7242 
7243 	kvm_make_request(KVM_REQ_PMI, vcpu);
7244 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7245 			(unsigned long *)&vcpu->arch.pmu.global_status);
7246 }
7247 
7248 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7249 	.is_in_guest		= kvm_is_in_guest,
7250 	.is_user_mode		= kvm_is_user_mode,
7251 	.get_guest_ip		= kvm_get_guest_ip,
7252 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7253 };
7254 
7255 #ifdef CONFIG_X86_64
7256 static void pvclock_gtod_update_fn(struct work_struct *work)
7257 {
7258 	struct kvm *kvm;
7259 
7260 	struct kvm_vcpu *vcpu;
7261 	int i;
7262 
7263 	mutex_lock(&kvm_lock);
7264 	list_for_each_entry(kvm, &vm_list, vm_list)
7265 		kvm_for_each_vcpu(i, vcpu, kvm)
7266 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7267 	atomic_set(&kvm_guest_has_master_clock, 0);
7268 	mutex_unlock(&kvm_lock);
7269 }
7270 
7271 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7272 
7273 /*
7274  * Notification about pvclock gtod data update.
7275  */
7276 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7277 			       void *priv)
7278 {
7279 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7280 	struct timekeeper *tk = priv;
7281 
7282 	update_pvclock_gtod(tk);
7283 
7284 	/* disable master clock if host does not trust, or does not
7285 	 * use, TSC based clocksource.
7286 	 */
7287 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7288 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7289 		queue_work(system_long_wq, &pvclock_gtod_work);
7290 
7291 	return 0;
7292 }
7293 
7294 static struct notifier_block pvclock_gtod_notifier = {
7295 	.notifier_call = pvclock_gtod_notify,
7296 };
7297 #endif
7298 
7299 int kvm_arch_init(void *opaque)
7300 {
7301 	int r;
7302 	struct kvm_x86_ops *ops = opaque;
7303 
7304 	if (kvm_x86_ops) {
7305 		printk(KERN_ERR "kvm: already loaded the other module\n");
7306 		r = -EEXIST;
7307 		goto out;
7308 	}
7309 
7310 	if (!ops->cpu_has_kvm_support()) {
7311 		printk(KERN_ERR "kvm: no hardware support\n");
7312 		r = -EOPNOTSUPP;
7313 		goto out;
7314 	}
7315 	if (ops->disabled_by_bios()) {
7316 		printk(KERN_ERR "kvm: disabled by bios\n");
7317 		r = -EOPNOTSUPP;
7318 		goto out;
7319 	}
7320 
7321 	/*
7322 	 * KVM explicitly assumes that the guest has an FPU and
7323 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7324 	 * vCPU's FPU state as a fxregs_state struct.
7325 	 */
7326 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7327 		printk(KERN_ERR "kvm: inadequate fpu\n");
7328 		r = -EOPNOTSUPP;
7329 		goto out;
7330 	}
7331 
7332 	r = -ENOMEM;
7333 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7334 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7335 					  NULL);
7336 	if (!x86_fpu_cache) {
7337 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7338 		goto out;
7339 	}
7340 
7341 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7342 	if (!shared_msrs) {
7343 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7344 		goto out_free_x86_fpu_cache;
7345 	}
7346 
7347 	r = kvm_mmu_module_init();
7348 	if (r)
7349 		goto out_free_percpu;
7350 
7351 	kvm_x86_ops = ops;
7352 
7353 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7354 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7355 			PT_PRESENT_MASK, 0, sme_me_mask);
7356 	kvm_timer_init();
7357 
7358 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7359 
7360 	if (boot_cpu_has(X86_FEATURE_XSAVE))
7361 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7362 
7363 	kvm_lapic_init();
7364 	if (pi_inject_timer == -1)
7365 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7366 #ifdef CONFIG_X86_64
7367 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7368 
7369 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7370 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7371 #endif
7372 
7373 	return 0;
7374 
7375 out_free_percpu:
7376 	free_percpu(shared_msrs);
7377 out_free_x86_fpu_cache:
7378 	kmem_cache_destroy(x86_fpu_cache);
7379 out:
7380 	return r;
7381 }
7382 
7383 void kvm_arch_exit(void)
7384 {
7385 #ifdef CONFIG_X86_64
7386 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7387 		clear_hv_tscchange_cb();
7388 #endif
7389 	kvm_lapic_exit();
7390 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7391 
7392 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7393 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7394 					    CPUFREQ_TRANSITION_NOTIFIER);
7395 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7396 #ifdef CONFIG_X86_64
7397 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7398 #endif
7399 	kvm_x86_ops = NULL;
7400 	kvm_mmu_module_exit();
7401 	free_percpu(shared_msrs);
7402 	kmem_cache_destroy(x86_fpu_cache);
7403 }
7404 
7405 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7406 {
7407 	++vcpu->stat.halt_exits;
7408 	if (lapic_in_kernel(vcpu)) {
7409 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7410 		return 1;
7411 	} else {
7412 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7413 		return 0;
7414 	}
7415 }
7416 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7417 
7418 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7419 {
7420 	int ret = kvm_skip_emulated_instruction(vcpu);
7421 	/*
7422 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7423 	 * KVM_EXIT_DEBUG here.
7424 	 */
7425 	return kvm_vcpu_halt(vcpu) && ret;
7426 }
7427 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7428 
7429 #ifdef CONFIG_X86_64
7430 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7431 			        unsigned long clock_type)
7432 {
7433 	struct kvm_clock_pairing clock_pairing;
7434 	struct timespec64 ts;
7435 	u64 cycle;
7436 	int ret;
7437 
7438 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7439 		return -KVM_EOPNOTSUPP;
7440 
7441 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7442 		return -KVM_EOPNOTSUPP;
7443 
7444 	clock_pairing.sec = ts.tv_sec;
7445 	clock_pairing.nsec = ts.tv_nsec;
7446 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7447 	clock_pairing.flags = 0;
7448 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7449 
7450 	ret = 0;
7451 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7452 			    sizeof(struct kvm_clock_pairing)))
7453 		ret = -KVM_EFAULT;
7454 
7455 	return ret;
7456 }
7457 #endif
7458 
7459 /*
7460  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7461  *
7462  * @apicid - apicid of vcpu to be kicked.
7463  */
7464 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7465 {
7466 	struct kvm_lapic_irq lapic_irq;
7467 
7468 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
7469 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7470 	lapic_irq.level = 0;
7471 	lapic_irq.dest_id = apicid;
7472 	lapic_irq.msi_redir_hint = false;
7473 
7474 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7475 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7476 }
7477 
7478 bool kvm_apicv_activated(struct kvm *kvm)
7479 {
7480 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7481 }
7482 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7483 
7484 void kvm_apicv_init(struct kvm *kvm, bool enable)
7485 {
7486 	if (enable)
7487 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
7488 			  &kvm->arch.apicv_inhibit_reasons);
7489 	else
7490 		set_bit(APICV_INHIBIT_REASON_DISABLE,
7491 			&kvm->arch.apicv_inhibit_reasons);
7492 }
7493 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7494 
7495 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7496 {
7497 	struct kvm_vcpu *target = NULL;
7498 	struct kvm_apic_map *map;
7499 
7500 	rcu_read_lock();
7501 	map = rcu_dereference(kvm->arch.apic_map);
7502 
7503 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7504 		target = map->phys_map[dest_id]->vcpu;
7505 
7506 	rcu_read_unlock();
7507 
7508 	if (target && READ_ONCE(target->ready))
7509 		kvm_vcpu_yield_to(target);
7510 }
7511 
7512 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7513 {
7514 	unsigned long nr, a0, a1, a2, a3, ret;
7515 	int op_64_bit;
7516 
7517 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7518 		return kvm_hv_hypercall(vcpu);
7519 
7520 	nr = kvm_rax_read(vcpu);
7521 	a0 = kvm_rbx_read(vcpu);
7522 	a1 = kvm_rcx_read(vcpu);
7523 	a2 = kvm_rdx_read(vcpu);
7524 	a3 = kvm_rsi_read(vcpu);
7525 
7526 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7527 
7528 	op_64_bit = is_64_bit_mode(vcpu);
7529 	if (!op_64_bit) {
7530 		nr &= 0xFFFFFFFF;
7531 		a0 &= 0xFFFFFFFF;
7532 		a1 &= 0xFFFFFFFF;
7533 		a2 &= 0xFFFFFFFF;
7534 		a3 &= 0xFFFFFFFF;
7535 	}
7536 
7537 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7538 		ret = -KVM_EPERM;
7539 		goto out;
7540 	}
7541 
7542 	switch (nr) {
7543 	case KVM_HC_VAPIC_POLL_IRQ:
7544 		ret = 0;
7545 		break;
7546 	case KVM_HC_KICK_CPU:
7547 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7548 		kvm_sched_yield(vcpu->kvm, a1);
7549 		ret = 0;
7550 		break;
7551 #ifdef CONFIG_X86_64
7552 	case KVM_HC_CLOCK_PAIRING:
7553 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7554 		break;
7555 #endif
7556 	case KVM_HC_SEND_IPI:
7557 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7558 		break;
7559 	case KVM_HC_SCHED_YIELD:
7560 		kvm_sched_yield(vcpu->kvm, a0);
7561 		ret = 0;
7562 		break;
7563 	default:
7564 		ret = -KVM_ENOSYS;
7565 		break;
7566 	}
7567 out:
7568 	if (!op_64_bit)
7569 		ret = (u32)ret;
7570 	kvm_rax_write(vcpu, ret);
7571 
7572 	++vcpu->stat.hypercalls;
7573 	return kvm_skip_emulated_instruction(vcpu);
7574 }
7575 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7576 
7577 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7578 {
7579 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7580 	char instruction[3];
7581 	unsigned long rip = kvm_rip_read(vcpu);
7582 
7583 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7584 
7585 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7586 		&ctxt->exception);
7587 }
7588 
7589 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7590 {
7591 	return vcpu->run->request_interrupt_window &&
7592 		likely(!pic_in_kernel(vcpu->kvm));
7593 }
7594 
7595 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7596 {
7597 	struct kvm_run *kvm_run = vcpu->run;
7598 
7599 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7600 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7601 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7602 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7603 	kvm_run->ready_for_interrupt_injection =
7604 		pic_in_kernel(vcpu->kvm) ||
7605 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7606 }
7607 
7608 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7609 {
7610 	int max_irr, tpr;
7611 
7612 	if (!kvm_x86_ops->update_cr8_intercept)
7613 		return;
7614 
7615 	if (!lapic_in_kernel(vcpu))
7616 		return;
7617 
7618 	if (vcpu->arch.apicv_active)
7619 		return;
7620 
7621 	if (!vcpu->arch.apic->vapic_addr)
7622 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7623 	else
7624 		max_irr = -1;
7625 
7626 	if (max_irr != -1)
7627 		max_irr >>= 4;
7628 
7629 	tpr = kvm_lapic_get_cr8(vcpu);
7630 
7631 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7632 }
7633 
7634 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7635 {
7636 	int r;
7637 
7638 	/* try to reinject previous events if any */
7639 
7640 	if (vcpu->arch.exception.injected)
7641 		kvm_x86_ops->queue_exception(vcpu);
7642 	/*
7643 	 * Do not inject an NMI or interrupt if there is a pending
7644 	 * exception.  Exceptions and interrupts are recognized at
7645 	 * instruction boundaries, i.e. the start of an instruction.
7646 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7647 	 * NMIs and interrupts, i.e. traps are recognized before an
7648 	 * NMI/interrupt that's pending on the same instruction.
7649 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7650 	 * priority, but are only generated (pended) during instruction
7651 	 * execution, i.e. a pending fault-like exception means the
7652 	 * fault occurred on the *previous* instruction and must be
7653 	 * serviced prior to recognizing any new events in order to
7654 	 * fully complete the previous instruction.
7655 	 */
7656 	else if (!vcpu->arch.exception.pending) {
7657 		if (vcpu->arch.nmi_injected)
7658 			kvm_x86_ops->set_nmi(vcpu);
7659 		else if (vcpu->arch.interrupt.injected)
7660 			kvm_x86_ops->set_irq(vcpu);
7661 	}
7662 
7663 	/*
7664 	 * Call check_nested_events() even if we reinjected a previous event
7665 	 * in order for caller to determine if it should require immediate-exit
7666 	 * from L2 to L1 due to pending L1 events which require exit
7667 	 * from L2 to L1.
7668 	 */
7669 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7670 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7671 		if (r != 0)
7672 			return r;
7673 	}
7674 
7675 	/* try to inject new event if pending */
7676 	if (vcpu->arch.exception.pending) {
7677 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7678 					vcpu->arch.exception.has_error_code,
7679 					vcpu->arch.exception.error_code);
7680 
7681 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7682 		vcpu->arch.exception.pending = false;
7683 		vcpu->arch.exception.injected = true;
7684 
7685 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7686 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7687 					     X86_EFLAGS_RF);
7688 
7689 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7690 			/*
7691 			 * This code assumes that nSVM doesn't use
7692 			 * check_nested_events(). If it does, the
7693 			 * DR6/DR7 changes should happen before L1
7694 			 * gets a #VMEXIT for an intercepted #DB in
7695 			 * L2.  (Under VMX, on the other hand, the
7696 			 * DR6/DR7 changes should not happen in the
7697 			 * event of a VM-exit to L1 for an intercepted
7698 			 * #DB in L2.)
7699 			 */
7700 			kvm_deliver_exception_payload(vcpu);
7701 			if (vcpu->arch.dr7 & DR7_GD) {
7702 				vcpu->arch.dr7 &= ~DR7_GD;
7703 				kvm_update_dr7(vcpu);
7704 			}
7705 		}
7706 
7707 		kvm_x86_ops->queue_exception(vcpu);
7708 	}
7709 
7710 	/* Don't consider new event if we re-injected an event */
7711 	if (kvm_event_needs_reinjection(vcpu))
7712 		return 0;
7713 
7714 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7715 	    kvm_x86_ops->smi_allowed(vcpu)) {
7716 		vcpu->arch.smi_pending = false;
7717 		++vcpu->arch.smi_count;
7718 		enter_smm(vcpu);
7719 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7720 		--vcpu->arch.nmi_pending;
7721 		vcpu->arch.nmi_injected = true;
7722 		kvm_x86_ops->set_nmi(vcpu);
7723 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7724 		/*
7725 		 * Because interrupts can be injected asynchronously, we are
7726 		 * calling check_nested_events again here to avoid a race condition.
7727 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7728 		 * proposal and current concerns.  Perhaps we should be setting
7729 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7730 		 */
7731 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7732 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7733 			if (r != 0)
7734 				return r;
7735 		}
7736 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7737 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7738 					    false);
7739 			kvm_x86_ops->set_irq(vcpu);
7740 		}
7741 	}
7742 
7743 	return 0;
7744 }
7745 
7746 static void process_nmi(struct kvm_vcpu *vcpu)
7747 {
7748 	unsigned limit = 2;
7749 
7750 	/*
7751 	 * x86 is limited to one NMI running, and one NMI pending after it.
7752 	 * If an NMI is already in progress, limit further NMIs to just one.
7753 	 * Otherwise, allow two (and we'll inject the first one immediately).
7754 	 */
7755 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7756 		limit = 1;
7757 
7758 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7759 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7760 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7761 }
7762 
7763 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7764 {
7765 	u32 flags = 0;
7766 	flags |= seg->g       << 23;
7767 	flags |= seg->db      << 22;
7768 	flags |= seg->l       << 21;
7769 	flags |= seg->avl     << 20;
7770 	flags |= seg->present << 15;
7771 	flags |= seg->dpl     << 13;
7772 	flags |= seg->s       << 12;
7773 	flags |= seg->type    << 8;
7774 	return flags;
7775 }
7776 
7777 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7778 {
7779 	struct kvm_segment seg;
7780 	int offset;
7781 
7782 	kvm_get_segment(vcpu, &seg, n);
7783 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7784 
7785 	if (n < 3)
7786 		offset = 0x7f84 + n * 12;
7787 	else
7788 		offset = 0x7f2c + (n - 3) * 12;
7789 
7790 	put_smstate(u32, buf, offset + 8, seg.base);
7791 	put_smstate(u32, buf, offset + 4, seg.limit);
7792 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7793 }
7794 
7795 #ifdef CONFIG_X86_64
7796 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7797 {
7798 	struct kvm_segment seg;
7799 	int offset;
7800 	u16 flags;
7801 
7802 	kvm_get_segment(vcpu, &seg, n);
7803 	offset = 0x7e00 + n * 16;
7804 
7805 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7806 	put_smstate(u16, buf, offset, seg.selector);
7807 	put_smstate(u16, buf, offset + 2, flags);
7808 	put_smstate(u32, buf, offset + 4, seg.limit);
7809 	put_smstate(u64, buf, offset + 8, seg.base);
7810 }
7811 #endif
7812 
7813 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7814 {
7815 	struct desc_ptr dt;
7816 	struct kvm_segment seg;
7817 	unsigned long val;
7818 	int i;
7819 
7820 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7821 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7822 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7823 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7824 
7825 	for (i = 0; i < 8; i++)
7826 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7827 
7828 	kvm_get_dr(vcpu, 6, &val);
7829 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7830 	kvm_get_dr(vcpu, 7, &val);
7831 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7832 
7833 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7834 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7835 	put_smstate(u32, buf, 0x7f64, seg.base);
7836 	put_smstate(u32, buf, 0x7f60, seg.limit);
7837 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7838 
7839 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7840 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7841 	put_smstate(u32, buf, 0x7f80, seg.base);
7842 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7843 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7844 
7845 	kvm_x86_ops->get_gdt(vcpu, &dt);
7846 	put_smstate(u32, buf, 0x7f74, dt.address);
7847 	put_smstate(u32, buf, 0x7f70, dt.size);
7848 
7849 	kvm_x86_ops->get_idt(vcpu, &dt);
7850 	put_smstate(u32, buf, 0x7f58, dt.address);
7851 	put_smstate(u32, buf, 0x7f54, dt.size);
7852 
7853 	for (i = 0; i < 6; i++)
7854 		enter_smm_save_seg_32(vcpu, buf, i);
7855 
7856 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7857 
7858 	/* revision id */
7859 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7860 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7861 }
7862 
7863 #ifdef CONFIG_X86_64
7864 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7865 {
7866 	struct desc_ptr dt;
7867 	struct kvm_segment seg;
7868 	unsigned long val;
7869 	int i;
7870 
7871 	for (i = 0; i < 16; i++)
7872 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7873 
7874 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7875 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7876 
7877 	kvm_get_dr(vcpu, 6, &val);
7878 	put_smstate(u64, buf, 0x7f68, val);
7879 	kvm_get_dr(vcpu, 7, &val);
7880 	put_smstate(u64, buf, 0x7f60, val);
7881 
7882 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7883 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7884 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7885 
7886 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7887 
7888 	/* revision id */
7889 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7890 
7891 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7892 
7893 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7894 	put_smstate(u16, buf, 0x7e90, seg.selector);
7895 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7896 	put_smstate(u32, buf, 0x7e94, seg.limit);
7897 	put_smstate(u64, buf, 0x7e98, seg.base);
7898 
7899 	kvm_x86_ops->get_idt(vcpu, &dt);
7900 	put_smstate(u32, buf, 0x7e84, dt.size);
7901 	put_smstate(u64, buf, 0x7e88, dt.address);
7902 
7903 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7904 	put_smstate(u16, buf, 0x7e70, seg.selector);
7905 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7906 	put_smstate(u32, buf, 0x7e74, seg.limit);
7907 	put_smstate(u64, buf, 0x7e78, seg.base);
7908 
7909 	kvm_x86_ops->get_gdt(vcpu, &dt);
7910 	put_smstate(u32, buf, 0x7e64, dt.size);
7911 	put_smstate(u64, buf, 0x7e68, dt.address);
7912 
7913 	for (i = 0; i < 6; i++)
7914 		enter_smm_save_seg_64(vcpu, buf, i);
7915 }
7916 #endif
7917 
7918 static void enter_smm(struct kvm_vcpu *vcpu)
7919 {
7920 	struct kvm_segment cs, ds;
7921 	struct desc_ptr dt;
7922 	char buf[512];
7923 	u32 cr0;
7924 
7925 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7926 	memset(buf, 0, 512);
7927 #ifdef CONFIG_X86_64
7928 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7929 		enter_smm_save_state_64(vcpu, buf);
7930 	else
7931 #endif
7932 		enter_smm_save_state_32(vcpu, buf);
7933 
7934 	/*
7935 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7936 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7937 	 * the SMM state-save area.
7938 	 */
7939 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7940 
7941 	vcpu->arch.hflags |= HF_SMM_MASK;
7942 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7943 
7944 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7945 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7946 	else
7947 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7948 
7949 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7950 	kvm_rip_write(vcpu, 0x8000);
7951 
7952 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7953 	kvm_x86_ops->set_cr0(vcpu, cr0);
7954 	vcpu->arch.cr0 = cr0;
7955 
7956 	kvm_x86_ops->set_cr4(vcpu, 0);
7957 
7958 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7959 	dt.address = dt.size = 0;
7960 	kvm_x86_ops->set_idt(vcpu, &dt);
7961 
7962 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7963 
7964 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7965 	cs.base = vcpu->arch.smbase;
7966 
7967 	ds.selector = 0;
7968 	ds.base = 0;
7969 
7970 	cs.limit    = ds.limit = 0xffffffff;
7971 	cs.type     = ds.type = 0x3;
7972 	cs.dpl      = ds.dpl = 0;
7973 	cs.db       = ds.db = 0;
7974 	cs.s        = ds.s = 1;
7975 	cs.l        = ds.l = 0;
7976 	cs.g        = ds.g = 1;
7977 	cs.avl      = ds.avl = 0;
7978 	cs.present  = ds.present = 1;
7979 	cs.unusable = ds.unusable = 0;
7980 	cs.padding  = ds.padding = 0;
7981 
7982 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7983 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7984 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7985 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7986 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7987 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7988 
7989 #ifdef CONFIG_X86_64
7990 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7991 		kvm_x86_ops->set_efer(vcpu, 0);
7992 #endif
7993 
7994 	kvm_update_cpuid(vcpu);
7995 	kvm_mmu_reset_context(vcpu);
7996 }
7997 
7998 static void process_smi(struct kvm_vcpu *vcpu)
7999 {
8000 	vcpu->arch.smi_pending = true;
8001 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8002 }
8003 
8004 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8005 				       unsigned long *vcpu_bitmap)
8006 {
8007 	cpumask_var_t cpus;
8008 
8009 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8010 
8011 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8012 				    vcpu_bitmap, cpus);
8013 
8014 	free_cpumask_var(cpus);
8015 }
8016 
8017 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8018 {
8019 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8020 }
8021 
8022 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8023 {
8024 	if (!lapic_in_kernel(vcpu))
8025 		return;
8026 
8027 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8028 	kvm_apic_update_apicv(vcpu);
8029 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
8030 }
8031 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8032 
8033 /*
8034  * NOTE: Do not hold any lock prior to calling this.
8035  *
8036  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8037  * locked, because it calls __x86_set_memory_region() which does
8038  * synchronize_srcu(&kvm->srcu).
8039  */
8040 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8041 {
8042 	if (!kvm_x86_ops->check_apicv_inhibit_reasons ||
8043 	    !kvm_x86_ops->check_apicv_inhibit_reasons(bit))
8044 		return;
8045 
8046 	if (activate) {
8047 		if (!test_and_clear_bit(bit, &kvm->arch.apicv_inhibit_reasons) ||
8048 		    !kvm_apicv_activated(kvm))
8049 			return;
8050 	} else {
8051 		if (test_and_set_bit(bit, &kvm->arch.apicv_inhibit_reasons) ||
8052 		    kvm_apicv_activated(kvm))
8053 			return;
8054 	}
8055 
8056 	trace_kvm_apicv_update_request(activate, bit);
8057 	if (kvm_x86_ops->pre_update_apicv_exec_ctrl)
8058 		kvm_x86_ops->pre_update_apicv_exec_ctrl(kvm, activate);
8059 	kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
8060 }
8061 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8062 
8063 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8064 {
8065 	if (!kvm_apic_present(vcpu))
8066 		return;
8067 
8068 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8069 
8070 	if (irqchip_split(vcpu->kvm))
8071 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8072 	else {
8073 		if (vcpu->arch.apicv_active)
8074 			kvm_x86_ops->sync_pir_to_irr(vcpu);
8075 		if (ioapic_in_kernel(vcpu->kvm))
8076 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8077 	}
8078 
8079 	if (is_guest_mode(vcpu))
8080 		vcpu->arch.load_eoi_exitmap_pending = true;
8081 	else
8082 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8083 }
8084 
8085 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8086 {
8087 	u64 eoi_exit_bitmap[4];
8088 
8089 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8090 		return;
8091 
8092 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8093 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8094 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8095 }
8096 
8097 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8098 		unsigned long start, unsigned long end,
8099 		bool blockable)
8100 {
8101 	unsigned long apic_address;
8102 
8103 	/*
8104 	 * The physical address of apic access page is stored in the VMCS.
8105 	 * Update it when it becomes invalid.
8106 	 */
8107 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8108 	if (start <= apic_address && apic_address < end)
8109 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8110 
8111 	return 0;
8112 }
8113 
8114 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8115 {
8116 	struct page *page = NULL;
8117 
8118 	if (!lapic_in_kernel(vcpu))
8119 		return;
8120 
8121 	if (!kvm_x86_ops->set_apic_access_page_addr)
8122 		return;
8123 
8124 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8125 	if (is_error_page(page))
8126 		return;
8127 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
8128 
8129 	/*
8130 	 * Do not pin apic access page in memory, the MMU notifier
8131 	 * will call us again if it is migrated or swapped out.
8132 	 */
8133 	put_page(page);
8134 }
8135 
8136 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8137 {
8138 	smp_send_reschedule(vcpu->cpu);
8139 }
8140 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8141 
8142 /*
8143  * Returns 1 to let vcpu_run() continue the guest execution loop without
8144  * exiting to the userspace.  Otherwise, the value will be returned to the
8145  * userspace.
8146  */
8147 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8148 {
8149 	int r;
8150 	bool req_int_win =
8151 		dm_request_for_irq_injection(vcpu) &&
8152 		kvm_cpu_accept_dm_intr(vcpu);
8153 	enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE;
8154 
8155 	bool req_immediate_exit = false;
8156 
8157 	if (kvm_request_pending(vcpu)) {
8158 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8159 			if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
8160 				r = 0;
8161 				goto out;
8162 			}
8163 		}
8164 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8165 			kvm_mmu_unload(vcpu);
8166 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8167 			__kvm_migrate_timers(vcpu);
8168 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8169 			kvm_gen_update_masterclock(vcpu->kvm);
8170 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8171 			kvm_gen_kvmclock_update(vcpu);
8172 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8173 			r = kvm_guest_time_update(vcpu);
8174 			if (unlikely(r))
8175 				goto out;
8176 		}
8177 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8178 			kvm_mmu_sync_roots(vcpu);
8179 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
8180 			kvm_mmu_load_cr3(vcpu);
8181 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8182 			kvm_vcpu_flush_tlb(vcpu, true);
8183 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8184 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8185 			r = 0;
8186 			goto out;
8187 		}
8188 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8189 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8190 			vcpu->mmio_needed = 0;
8191 			r = 0;
8192 			goto out;
8193 		}
8194 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8195 			/* Page is swapped out. Do synthetic halt */
8196 			vcpu->arch.apf.halted = true;
8197 			r = 1;
8198 			goto out;
8199 		}
8200 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8201 			record_steal_time(vcpu);
8202 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8203 			process_smi(vcpu);
8204 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8205 			process_nmi(vcpu);
8206 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8207 			kvm_pmu_handle_event(vcpu);
8208 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8209 			kvm_pmu_deliver_pmi(vcpu);
8210 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8211 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8212 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8213 				     vcpu->arch.ioapic_handled_vectors)) {
8214 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8215 				vcpu->run->eoi.vector =
8216 						vcpu->arch.pending_ioapic_eoi;
8217 				r = 0;
8218 				goto out;
8219 			}
8220 		}
8221 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8222 			vcpu_scan_ioapic(vcpu);
8223 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8224 			vcpu_load_eoi_exitmap(vcpu);
8225 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8226 			kvm_vcpu_reload_apic_access_page(vcpu);
8227 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8228 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8229 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8230 			r = 0;
8231 			goto out;
8232 		}
8233 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8234 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8235 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8236 			r = 0;
8237 			goto out;
8238 		}
8239 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8240 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8241 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8242 			r = 0;
8243 			goto out;
8244 		}
8245 
8246 		/*
8247 		 * KVM_REQ_HV_STIMER has to be processed after
8248 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8249 		 * depend on the guest clock being up-to-date
8250 		 */
8251 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8252 			kvm_hv_process_stimers(vcpu);
8253 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8254 			kvm_vcpu_update_apicv(vcpu);
8255 	}
8256 
8257 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8258 		++vcpu->stat.req_event;
8259 		kvm_apic_accept_events(vcpu);
8260 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8261 			r = 1;
8262 			goto out;
8263 		}
8264 
8265 		if (inject_pending_event(vcpu, req_int_win) != 0)
8266 			req_immediate_exit = true;
8267 		else {
8268 			/* Enable SMI/NMI/IRQ window open exits if needed.
8269 			 *
8270 			 * SMIs have three cases:
8271 			 * 1) They can be nested, and then there is nothing to
8272 			 *    do here because RSM will cause a vmexit anyway.
8273 			 * 2) There is an ISA-specific reason why SMI cannot be
8274 			 *    injected, and the moment when this changes can be
8275 			 *    intercepted.
8276 			 * 3) Or the SMI can be pending because
8277 			 *    inject_pending_event has completed the injection
8278 			 *    of an IRQ or NMI from the previous vmexit, and
8279 			 *    then we request an immediate exit to inject the
8280 			 *    SMI.
8281 			 */
8282 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
8283 				if (!kvm_x86_ops->enable_smi_window(vcpu))
8284 					req_immediate_exit = true;
8285 			if (vcpu->arch.nmi_pending)
8286 				kvm_x86_ops->enable_nmi_window(vcpu);
8287 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8288 				kvm_x86_ops->enable_irq_window(vcpu);
8289 			WARN_ON(vcpu->arch.exception.pending);
8290 		}
8291 
8292 		if (kvm_lapic_enabled(vcpu)) {
8293 			update_cr8_intercept(vcpu);
8294 			kvm_lapic_sync_to_vapic(vcpu);
8295 		}
8296 	}
8297 
8298 	r = kvm_mmu_reload(vcpu);
8299 	if (unlikely(r)) {
8300 		goto cancel_injection;
8301 	}
8302 
8303 	preempt_disable();
8304 
8305 	kvm_x86_ops->prepare_guest_switch(vcpu);
8306 
8307 	/*
8308 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8309 	 * IPI are then delayed after guest entry, which ensures that they
8310 	 * result in virtual interrupt delivery.
8311 	 */
8312 	local_irq_disable();
8313 	vcpu->mode = IN_GUEST_MODE;
8314 
8315 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8316 
8317 	/*
8318 	 * 1) We should set ->mode before checking ->requests.  Please see
8319 	 * the comment in kvm_vcpu_exiting_guest_mode().
8320 	 *
8321 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8322 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8323 	 * (see vmx_deliver_posted_interrupt).
8324 	 *
8325 	 * 3) This also orders the write to mode from any reads to the page
8326 	 * tables done while the VCPU is running.  Please see the comment
8327 	 * in kvm_flush_remote_tlbs.
8328 	 */
8329 	smp_mb__after_srcu_read_unlock();
8330 
8331 	/*
8332 	 * This handles the case where a posted interrupt was
8333 	 * notified with kvm_vcpu_kick.
8334 	 */
8335 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8336 		kvm_x86_ops->sync_pir_to_irr(vcpu);
8337 
8338 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8339 	    || need_resched() || signal_pending(current)) {
8340 		vcpu->mode = OUTSIDE_GUEST_MODE;
8341 		smp_wmb();
8342 		local_irq_enable();
8343 		preempt_enable();
8344 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8345 		r = 1;
8346 		goto cancel_injection;
8347 	}
8348 
8349 	if (req_immediate_exit) {
8350 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8351 		kvm_x86_ops->request_immediate_exit(vcpu);
8352 	}
8353 
8354 	trace_kvm_entry(vcpu->vcpu_id);
8355 	guest_enter_irqoff();
8356 
8357 	fpregs_assert_state_consistent();
8358 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8359 		switch_fpu_return();
8360 
8361 	if (unlikely(vcpu->arch.switch_db_regs)) {
8362 		set_debugreg(0, 7);
8363 		set_debugreg(vcpu->arch.eff_db[0], 0);
8364 		set_debugreg(vcpu->arch.eff_db[1], 1);
8365 		set_debugreg(vcpu->arch.eff_db[2], 2);
8366 		set_debugreg(vcpu->arch.eff_db[3], 3);
8367 		set_debugreg(vcpu->arch.dr6, 6);
8368 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8369 	}
8370 
8371 	kvm_x86_ops->run(vcpu);
8372 
8373 	/*
8374 	 * Do this here before restoring debug registers on the host.  And
8375 	 * since we do this before handling the vmexit, a DR access vmexit
8376 	 * can (a) read the correct value of the debug registers, (b) set
8377 	 * KVM_DEBUGREG_WONT_EXIT again.
8378 	 */
8379 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8380 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8381 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8382 		kvm_update_dr0123(vcpu);
8383 		kvm_update_dr6(vcpu);
8384 		kvm_update_dr7(vcpu);
8385 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8386 	}
8387 
8388 	/*
8389 	 * If the guest has used debug registers, at least dr7
8390 	 * will be disabled while returning to the host.
8391 	 * If we don't have active breakpoints in the host, we don't
8392 	 * care about the messed up debug address registers. But if
8393 	 * we have some of them active, restore the old state.
8394 	 */
8395 	if (hw_breakpoint_active())
8396 		hw_breakpoint_restore();
8397 
8398 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8399 
8400 	vcpu->mode = OUTSIDE_GUEST_MODE;
8401 	smp_wmb();
8402 
8403 	kvm_x86_ops->handle_exit_irqoff(vcpu, &exit_fastpath);
8404 
8405 	/*
8406 	 * Consume any pending interrupts, including the possible source of
8407 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8408 	 * An instruction is required after local_irq_enable() to fully unblock
8409 	 * interrupts on processors that implement an interrupt shadow, the
8410 	 * stat.exits increment will do nicely.
8411 	 */
8412 	kvm_before_interrupt(vcpu);
8413 	local_irq_enable();
8414 	++vcpu->stat.exits;
8415 	local_irq_disable();
8416 	kvm_after_interrupt(vcpu);
8417 
8418 	guest_exit_irqoff();
8419 	if (lapic_in_kernel(vcpu)) {
8420 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8421 		if (delta != S64_MIN) {
8422 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8423 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8424 		}
8425 	}
8426 
8427 	local_irq_enable();
8428 	preempt_enable();
8429 
8430 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8431 
8432 	/*
8433 	 * Profile KVM exit RIPs:
8434 	 */
8435 	if (unlikely(prof_on == KVM_PROFILING)) {
8436 		unsigned long rip = kvm_rip_read(vcpu);
8437 		profile_hit(KVM_PROFILING, (void *)rip);
8438 	}
8439 
8440 	if (unlikely(vcpu->arch.tsc_always_catchup))
8441 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8442 
8443 	if (vcpu->arch.apic_attention)
8444 		kvm_lapic_sync_from_vapic(vcpu);
8445 
8446 	vcpu->arch.gpa_available = false;
8447 	r = kvm_x86_ops->handle_exit(vcpu, exit_fastpath);
8448 	return r;
8449 
8450 cancel_injection:
8451 	kvm_x86_ops->cancel_injection(vcpu);
8452 	if (unlikely(vcpu->arch.apic_attention))
8453 		kvm_lapic_sync_from_vapic(vcpu);
8454 out:
8455 	return r;
8456 }
8457 
8458 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8459 {
8460 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8461 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8462 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8463 		kvm_vcpu_block(vcpu);
8464 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8465 
8466 		if (kvm_x86_ops->post_block)
8467 			kvm_x86_ops->post_block(vcpu);
8468 
8469 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8470 			return 1;
8471 	}
8472 
8473 	kvm_apic_accept_events(vcpu);
8474 	switch(vcpu->arch.mp_state) {
8475 	case KVM_MP_STATE_HALTED:
8476 		vcpu->arch.pv.pv_unhalted = false;
8477 		vcpu->arch.mp_state =
8478 			KVM_MP_STATE_RUNNABLE;
8479 		/* fall through */
8480 	case KVM_MP_STATE_RUNNABLE:
8481 		vcpu->arch.apf.halted = false;
8482 		break;
8483 	case KVM_MP_STATE_INIT_RECEIVED:
8484 		break;
8485 	default:
8486 		return -EINTR;
8487 		break;
8488 	}
8489 	return 1;
8490 }
8491 
8492 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8493 {
8494 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8495 		kvm_x86_ops->check_nested_events(vcpu, false);
8496 
8497 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8498 		!vcpu->arch.apf.halted);
8499 }
8500 
8501 static int vcpu_run(struct kvm_vcpu *vcpu)
8502 {
8503 	int r;
8504 	struct kvm *kvm = vcpu->kvm;
8505 
8506 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8507 	vcpu->arch.l1tf_flush_l1d = true;
8508 
8509 	for (;;) {
8510 		if (kvm_vcpu_running(vcpu)) {
8511 			r = vcpu_enter_guest(vcpu);
8512 		} else {
8513 			r = vcpu_block(kvm, vcpu);
8514 		}
8515 
8516 		if (r <= 0)
8517 			break;
8518 
8519 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8520 		if (kvm_cpu_has_pending_timer(vcpu))
8521 			kvm_inject_pending_timer_irqs(vcpu);
8522 
8523 		if (dm_request_for_irq_injection(vcpu) &&
8524 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8525 			r = 0;
8526 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8527 			++vcpu->stat.request_irq_exits;
8528 			break;
8529 		}
8530 
8531 		kvm_check_async_pf_completion(vcpu);
8532 
8533 		if (signal_pending(current)) {
8534 			r = -EINTR;
8535 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8536 			++vcpu->stat.signal_exits;
8537 			break;
8538 		}
8539 		if (need_resched()) {
8540 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8541 			cond_resched();
8542 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8543 		}
8544 	}
8545 
8546 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8547 
8548 	return r;
8549 }
8550 
8551 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8552 {
8553 	int r;
8554 
8555 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8556 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8557 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8558 	return r;
8559 }
8560 
8561 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8562 {
8563 	BUG_ON(!vcpu->arch.pio.count);
8564 
8565 	return complete_emulated_io(vcpu);
8566 }
8567 
8568 /*
8569  * Implements the following, as a state machine:
8570  *
8571  * read:
8572  *   for each fragment
8573  *     for each mmio piece in the fragment
8574  *       write gpa, len
8575  *       exit
8576  *       copy data
8577  *   execute insn
8578  *
8579  * write:
8580  *   for each fragment
8581  *     for each mmio piece in the fragment
8582  *       write gpa, len
8583  *       copy data
8584  *       exit
8585  */
8586 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8587 {
8588 	struct kvm_run *run = vcpu->run;
8589 	struct kvm_mmio_fragment *frag;
8590 	unsigned len;
8591 
8592 	BUG_ON(!vcpu->mmio_needed);
8593 
8594 	/* Complete previous fragment */
8595 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8596 	len = min(8u, frag->len);
8597 	if (!vcpu->mmio_is_write)
8598 		memcpy(frag->data, run->mmio.data, len);
8599 
8600 	if (frag->len <= 8) {
8601 		/* Switch to the next fragment. */
8602 		frag++;
8603 		vcpu->mmio_cur_fragment++;
8604 	} else {
8605 		/* Go forward to the next mmio piece. */
8606 		frag->data += len;
8607 		frag->gpa += len;
8608 		frag->len -= len;
8609 	}
8610 
8611 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8612 		vcpu->mmio_needed = 0;
8613 
8614 		/* FIXME: return into emulator if single-stepping.  */
8615 		if (vcpu->mmio_is_write)
8616 			return 1;
8617 		vcpu->mmio_read_completed = 1;
8618 		return complete_emulated_io(vcpu);
8619 	}
8620 
8621 	run->exit_reason = KVM_EXIT_MMIO;
8622 	run->mmio.phys_addr = frag->gpa;
8623 	if (vcpu->mmio_is_write)
8624 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8625 	run->mmio.len = min(8u, frag->len);
8626 	run->mmio.is_write = vcpu->mmio_is_write;
8627 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8628 	return 0;
8629 }
8630 
8631 static void kvm_save_current_fpu(struct fpu *fpu)
8632 {
8633 	/*
8634 	 * If the target FPU state is not resident in the CPU registers, just
8635 	 * memcpy() from current, else save CPU state directly to the target.
8636 	 */
8637 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8638 		memcpy(&fpu->state, &current->thread.fpu.state,
8639 		       fpu_kernel_xstate_size);
8640 	else
8641 		copy_fpregs_to_fpstate(fpu);
8642 }
8643 
8644 /* Swap (qemu) user FPU context for the guest FPU context. */
8645 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8646 {
8647 	fpregs_lock();
8648 
8649 	kvm_save_current_fpu(vcpu->arch.user_fpu);
8650 
8651 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8652 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8653 				~XFEATURE_MASK_PKRU);
8654 
8655 	fpregs_mark_activate();
8656 	fpregs_unlock();
8657 
8658 	trace_kvm_fpu(1);
8659 }
8660 
8661 /* When vcpu_run ends, restore user space FPU context. */
8662 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8663 {
8664 	fpregs_lock();
8665 
8666 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
8667 
8668 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8669 
8670 	fpregs_mark_activate();
8671 	fpregs_unlock();
8672 
8673 	++vcpu->stat.fpu_reload;
8674 	trace_kvm_fpu(0);
8675 }
8676 
8677 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8678 {
8679 	int r;
8680 
8681 	vcpu_load(vcpu);
8682 	kvm_sigset_activate(vcpu);
8683 	kvm_load_guest_fpu(vcpu);
8684 
8685 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8686 		if (kvm_run->immediate_exit) {
8687 			r = -EINTR;
8688 			goto out;
8689 		}
8690 		kvm_vcpu_block(vcpu);
8691 		kvm_apic_accept_events(vcpu);
8692 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8693 		r = -EAGAIN;
8694 		if (signal_pending(current)) {
8695 			r = -EINTR;
8696 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8697 			++vcpu->stat.signal_exits;
8698 		}
8699 		goto out;
8700 	}
8701 
8702 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8703 		r = -EINVAL;
8704 		goto out;
8705 	}
8706 
8707 	if (vcpu->run->kvm_dirty_regs) {
8708 		r = sync_regs(vcpu);
8709 		if (r != 0)
8710 			goto out;
8711 	}
8712 
8713 	/* re-sync apic's tpr */
8714 	if (!lapic_in_kernel(vcpu)) {
8715 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8716 			r = -EINVAL;
8717 			goto out;
8718 		}
8719 	}
8720 
8721 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8722 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8723 		vcpu->arch.complete_userspace_io = NULL;
8724 		r = cui(vcpu);
8725 		if (r <= 0)
8726 			goto out;
8727 	} else
8728 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8729 
8730 	if (kvm_run->immediate_exit)
8731 		r = -EINTR;
8732 	else
8733 		r = vcpu_run(vcpu);
8734 
8735 out:
8736 	kvm_put_guest_fpu(vcpu);
8737 	if (vcpu->run->kvm_valid_regs)
8738 		store_regs(vcpu);
8739 	post_kvm_run_save(vcpu);
8740 	kvm_sigset_deactivate(vcpu);
8741 
8742 	vcpu_put(vcpu);
8743 	return r;
8744 }
8745 
8746 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8747 {
8748 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8749 		/*
8750 		 * We are here if userspace calls get_regs() in the middle of
8751 		 * instruction emulation. Registers state needs to be copied
8752 		 * back from emulation context to vcpu. Userspace shouldn't do
8753 		 * that usually, but some bad designed PV devices (vmware
8754 		 * backdoor interface) need this to work
8755 		 */
8756 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8757 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8758 	}
8759 	regs->rax = kvm_rax_read(vcpu);
8760 	regs->rbx = kvm_rbx_read(vcpu);
8761 	regs->rcx = kvm_rcx_read(vcpu);
8762 	regs->rdx = kvm_rdx_read(vcpu);
8763 	regs->rsi = kvm_rsi_read(vcpu);
8764 	regs->rdi = kvm_rdi_read(vcpu);
8765 	regs->rsp = kvm_rsp_read(vcpu);
8766 	regs->rbp = kvm_rbp_read(vcpu);
8767 #ifdef CONFIG_X86_64
8768 	regs->r8 = kvm_r8_read(vcpu);
8769 	regs->r9 = kvm_r9_read(vcpu);
8770 	regs->r10 = kvm_r10_read(vcpu);
8771 	regs->r11 = kvm_r11_read(vcpu);
8772 	regs->r12 = kvm_r12_read(vcpu);
8773 	regs->r13 = kvm_r13_read(vcpu);
8774 	regs->r14 = kvm_r14_read(vcpu);
8775 	regs->r15 = kvm_r15_read(vcpu);
8776 #endif
8777 
8778 	regs->rip = kvm_rip_read(vcpu);
8779 	regs->rflags = kvm_get_rflags(vcpu);
8780 }
8781 
8782 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8783 {
8784 	vcpu_load(vcpu);
8785 	__get_regs(vcpu, regs);
8786 	vcpu_put(vcpu);
8787 	return 0;
8788 }
8789 
8790 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8791 {
8792 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8793 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8794 
8795 	kvm_rax_write(vcpu, regs->rax);
8796 	kvm_rbx_write(vcpu, regs->rbx);
8797 	kvm_rcx_write(vcpu, regs->rcx);
8798 	kvm_rdx_write(vcpu, regs->rdx);
8799 	kvm_rsi_write(vcpu, regs->rsi);
8800 	kvm_rdi_write(vcpu, regs->rdi);
8801 	kvm_rsp_write(vcpu, regs->rsp);
8802 	kvm_rbp_write(vcpu, regs->rbp);
8803 #ifdef CONFIG_X86_64
8804 	kvm_r8_write(vcpu, regs->r8);
8805 	kvm_r9_write(vcpu, regs->r9);
8806 	kvm_r10_write(vcpu, regs->r10);
8807 	kvm_r11_write(vcpu, regs->r11);
8808 	kvm_r12_write(vcpu, regs->r12);
8809 	kvm_r13_write(vcpu, regs->r13);
8810 	kvm_r14_write(vcpu, regs->r14);
8811 	kvm_r15_write(vcpu, regs->r15);
8812 #endif
8813 
8814 	kvm_rip_write(vcpu, regs->rip);
8815 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8816 
8817 	vcpu->arch.exception.pending = false;
8818 
8819 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8820 }
8821 
8822 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8823 {
8824 	vcpu_load(vcpu);
8825 	__set_regs(vcpu, regs);
8826 	vcpu_put(vcpu);
8827 	return 0;
8828 }
8829 
8830 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8831 {
8832 	struct kvm_segment cs;
8833 
8834 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8835 	*db = cs.db;
8836 	*l = cs.l;
8837 }
8838 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8839 
8840 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8841 {
8842 	struct desc_ptr dt;
8843 
8844 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8845 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8846 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8847 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8848 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8849 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8850 
8851 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8852 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8853 
8854 	kvm_x86_ops->get_idt(vcpu, &dt);
8855 	sregs->idt.limit = dt.size;
8856 	sregs->idt.base = dt.address;
8857 	kvm_x86_ops->get_gdt(vcpu, &dt);
8858 	sregs->gdt.limit = dt.size;
8859 	sregs->gdt.base = dt.address;
8860 
8861 	sregs->cr0 = kvm_read_cr0(vcpu);
8862 	sregs->cr2 = vcpu->arch.cr2;
8863 	sregs->cr3 = kvm_read_cr3(vcpu);
8864 	sregs->cr4 = kvm_read_cr4(vcpu);
8865 	sregs->cr8 = kvm_get_cr8(vcpu);
8866 	sregs->efer = vcpu->arch.efer;
8867 	sregs->apic_base = kvm_get_apic_base(vcpu);
8868 
8869 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8870 
8871 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8872 		set_bit(vcpu->arch.interrupt.nr,
8873 			(unsigned long *)sregs->interrupt_bitmap);
8874 }
8875 
8876 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8877 				  struct kvm_sregs *sregs)
8878 {
8879 	vcpu_load(vcpu);
8880 	__get_sregs(vcpu, sregs);
8881 	vcpu_put(vcpu);
8882 	return 0;
8883 }
8884 
8885 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8886 				    struct kvm_mp_state *mp_state)
8887 {
8888 	vcpu_load(vcpu);
8889 	if (kvm_mpx_supported())
8890 		kvm_load_guest_fpu(vcpu);
8891 
8892 	kvm_apic_accept_events(vcpu);
8893 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8894 					vcpu->arch.pv.pv_unhalted)
8895 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8896 	else
8897 		mp_state->mp_state = vcpu->arch.mp_state;
8898 
8899 	if (kvm_mpx_supported())
8900 		kvm_put_guest_fpu(vcpu);
8901 	vcpu_put(vcpu);
8902 	return 0;
8903 }
8904 
8905 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8906 				    struct kvm_mp_state *mp_state)
8907 {
8908 	int ret = -EINVAL;
8909 
8910 	vcpu_load(vcpu);
8911 
8912 	if (!lapic_in_kernel(vcpu) &&
8913 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8914 		goto out;
8915 
8916 	/*
8917 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8918 	 * INIT state; latched init should be reported using
8919 	 * KVM_SET_VCPU_EVENTS, so reject it here.
8920 	 */
8921 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8922 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8923 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8924 		goto out;
8925 
8926 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8927 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8928 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8929 	} else
8930 		vcpu->arch.mp_state = mp_state->mp_state;
8931 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8932 
8933 	ret = 0;
8934 out:
8935 	vcpu_put(vcpu);
8936 	return ret;
8937 }
8938 
8939 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8940 		    int reason, bool has_error_code, u32 error_code)
8941 {
8942 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8943 	int ret;
8944 
8945 	init_emulate_ctxt(vcpu);
8946 
8947 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8948 				   has_error_code, error_code);
8949 	if (ret) {
8950 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8951 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8952 		vcpu->run->internal.ndata = 0;
8953 		return 0;
8954 	}
8955 
8956 	kvm_rip_write(vcpu, ctxt->eip);
8957 	kvm_set_rflags(vcpu, ctxt->eflags);
8958 	return 1;
8959 }
8960 EXPORT_SYMBOL_GPL(kvm_task_switch);
8961 
8962 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8963 {
8964 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8965 		/*
8966 		 * When EFER.LME and CR0.PG are set, the processor is in
8967 		 * 64-bit mode (though maybe in a 32-bit code segment).
8968 		 * CR4.PAE and EFER.LMA must be set.
8969 		 */
8970 		if (!(sregs->cr4 & X86_CR4_PAE)
8971 		    || !(sregs->efer & EFER_LMA))
8972 			return -EINVAL;
8973 	} else {
8974 		/*
8975 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8976 		 * segment cannot be 64-bit.
8977 		 */
8978 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8979 			return -EINVAL;
8980 	}
8981 
8982 	return kvm_valid_cr4(vcpu, sregs->cr4);
8983 }
8984 
8985 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8986 {
8987 	struct msr_data apic_base_msr;
8988 	int mmu_reset_needed = 0;
8989 	int cpuid_update_needed = 0;
8990 	int pending_vec, max_bits, idx;
8991 	struct desc_ptr dt;
8992 	int ret = -EINVAL;
8993 
8994 	if (kvm_valid_sregs(vcpu, sregs))
8995 		goto out;
8996 
8997 	apic_base_msr.data = sregs->apic_base;
8998 	apic_base_msr.host_initiated = true;
8999 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9000 		goto out;
9001 
9002 	dt.size = sregs->idt.limit;
9003 	dt.address = sregs->idt.base;
9004 	kvm_x86_ops->set_idt(vcpu, &dt);
9005 	dt.size = sregs->gdt.limit;
9006 	dt.address = sregs->gdt.base;
9007 	kvm_x86_ops->set_gdt(vcpu, &dt);
9008 
9009 	vcpu->arch.cr2 = sregs->cr2;
9010 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9011 	vcpu->arch.cr3 = sregs->cr3;
9012 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9013 
9014 	kvm_set_cr8(vcpu, sregs->cr8);
9015 
9016 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9017 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
9018 
9019 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9020 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
9021 	vcpu->arch.cr0 = sregs->cr0;
9022 
9023 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9024 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9025 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9026 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
9027 	if (cpuid_update_needed)
9028 		kvm_update_cpuid(vcpu);
9029 
9030 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9031 	if (is_pae_paging(vcpu)) {
9032 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9033 		mmu_reset_needed = 1;
9034 	}
9035 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9036 
9037 	if (mmu_reset_needed)
9038 		kvm_mmu_reset_context(vcpu);
9039 
9040 	max_bits = KVM_NR_INTERRUPTS;
9041 	pending_vec = find_first_bit(
9042 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9043 	if (pending_vec < max_bits) {
9044 		kvm_queue_interrupt(vcpu, pending_vec, false);
9045 		pr_debug("Set back pending irq %d\n", pending_vec);
9046 	}
9047 
9048 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9049 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9050 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9051 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9052 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9053 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9054 
9055 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9056 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9057 
9058 	update_cr8_intercept(vcpu);
9059 
9060 	/* Older userspace won't unhalt the vcpu on reset. */
9061 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9062 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9063 	    !is_protmode(vcpu))
9064 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9065 
9066 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9067 
9068 	ret = 0;
9069 out:
9070 	return ret;
9071 }
9072 
9073 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9074 				  struct kvm_sregs *sregs)
9075 {
9076 	int ret;
9077 
9078 	vcpu_load(vcpu);
9079 	ret = __set_sregs(vcpu, sregs);
9080 	vcpu_put(vcpu);
9081 	return ret;
9082 }
9083 
9084 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9085 					struct kvm_guest_debug *dbg)
9086 {
9087 	unsigned long rflags;
9088 	int i, r;
9089 
9090 	vcpu_load(vcpu);
9091 
9092 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9093 		r = -EBUSY;
9094 		if (vcpu->arch.exception.pending)
9095 			goto out;
9096 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9097 			kvm_queue_exception(vcpu, DB_VECTOR);
9098 		else
9099 			kvm_queue_exception(vcpu, BP_VECTOR);
9100 	}
9101 
9102 	/*
9103 	 * Read rflags as long as potentially injected trace flags are still
9104 	 * filtered out.
9105 	 */
9106 	rflags = kvm_get_rflags(vcpu);
9107 
9108 	vcpu->guest_debug = dbg->control;
9109 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9110 		vcpu->guest_debug = 0;
9111 
9112 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9113 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9114 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9115 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9116 	} else {
9117 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9118 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9119 	}
9120 	kvm_update_dr7(vcpu);
9121 
9122 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9123 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9124 			get_segment_base(vcpu, VCPU_SREG_CS);
9125 
9126 	/*
9127 	 * Trigger an rflags update that will inject or remove the trace
9128 	 * flags.
9129 	 */
9130 	kvm_set_rflags(vcpu, rflags);
9131 
9132 	kvm_x86_ops->update_bp_intercept(vcpu);
9133 
9134 	r = 0;
9135 
9136 out:
9137 	vcpu_put(vcpu);
9138 	return r;
9139 }
9140 
9141 /*
9142  * Translate a guest virtual address to a guest physical address.
9143  */
9144 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9145 				    struct kvm_translation *tr)
9146 {
9147 	unsigned long vaddr = tr->linear_address;
9148 	gpa_t gpa;
9149 	int idx;
9150 
9151 	vcpu_load(vcpu);
9152 
9153 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9154 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9155 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9156 	tr->physical_address = gpa;
9157 	tr->valid = gpa != UNMAPPED_GVA;
9158 	tr->writeable = 1;
9159 	tr->usermode = 0;
9160 
9161 	vcpu_put(vcpu);
9162 	return 0;
9163 }
9164 
9165 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9166 {
9167 	struct fxregs_state *fxsave;
9168 
9169 	vcpu_load(vcpu);
9170 
9171 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9172 	memcpy(fpu->fpr, fxsave->st_space, 128);
9173 	fpu->fcw = fxsave->cwd;
9174 	fpu->fsw = fxsave->swd;
9175 	fpu->ftwx = fxsave->twd;
9176 	fpu->last_opcode = fxsave->fop;
9177 	fpu->last_ip = fxsave->rip;
9178 	fpu->last_dp = fxsave->rdp;
9179 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9180 
9181 	vcpu_put(vcpu);
9182 	return 0;
9183 }
9184 
9185 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9186 {
9187 	struct fxregs_state *fxsave;
9188 
9189 	vcpu_load(vcpu);
9190 
9191 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9192 
9193 	memcpy(fxsave->st_space, fpu->fpr, 128);
9194 	fxsave->cwd = fpu->fcw;
9195 	fxsave->swd = fpu->fsw;
9196 	fxsave->twd = fpu->ftwx;
9197 	fxsave->fop = fpu->last_opcode;
9198 	fxsave->rip = fpu->last_ip;
9199 	fxsave->rdp = fpu->last_dp;
9200 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9201 
9202 	vcpu_put(vcpu);
9203 	return 0;
9204 }
9205 
9206 static void store_regs(struct kvm_vcpu *vcpu)
9207 {
9208 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9209 
9210 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9211 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9212 
9213 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9214 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9215 
9216 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9217 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9218 				vcpu, &vcpu->run->s.regs.events);
9219 }
9220 
9221 static int sync_regs(struct kvm_vcpu *vcpu)
9222 {
9223 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9224 		return -EINVAL;
9225 
9226 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9227 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9228 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9229 	}
9230 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9231 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9232 			return -EINVAL;
9233 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9234 	}
9235 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9236 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9237 				vcpu, &vcpu->run->s.regs.events))
9238 			return -EINVAL;
9239 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9240 	}
9241 
9242 	return 0;
9243 }
9244 
9245 static void fx_init(struct kvm_vcpu *vcpu)
9246 {
9247 	fpstate_init(&vcpu->arch.guest_fpu->state);
9248 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9249 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9250 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9251 
9252 	/*
9253 	 * Ensure guest xcr0 is valid for loading
9254 	 */
9255 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9256 
9257 	vcpu->arch.cr0 |= X86_CR0_ET;
9258 }
9259 
9260 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9261 {
9262 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9263 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9264 			     "guest TSC will not be reliable\n");
9265 
9266 	return 0;
9267 }
9268 
9269 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9270 {
9271 	struct page *page;
9272 	int r;
9273 
9274 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9275 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9276 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9277 	else
9278 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9279 
9280 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9281 
9282 	r = kvm_mmu_create(vcpu);
9283 	if (r < 0)
9284 		return r;
9285 
9286 	if (irqchip_in_kernel(vcpu->kvm)) {
9287 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9288 		if (r < 0)
9289 			goto fail_mmu_destroy;
9290 		if (kvm_apicv_activated(vcpu->kvm))
9291 			vcpu->arch.apicv_active = true;
9292 	} else
9293 		static_key_slow_inc(&kvm_no_apic_vcpu);
9294 
9295 	r = -ENOMEM;
9296 
9297 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9298 	if (!page)
9299 		goto fail_free_lapic;
9300 	vcpu->arch.pio_data = page_address(page);
9301 
9302 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9303 				       GFP_KERNEL_ACCOUNT);
9304 	if (!vcpu->arch.mce_banks)
9305 		goto fail_free_pio_data;
9306 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9307 
9308 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9309 				GFP_KERNEL_ACCOUNT))
9310 		goto fail_free_mce_banks;
9311 
9312 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9313 						GFP_KERNEL_ACCOUNT);
9314 	if (!vcpu->arch.user_fpu) {
9315 		pr_err("kvm: failed to allocate userspace's fpu\n");
9316 		goto free_wbinvd_dirty_mask;
9317 	}
9318 
9319 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9320 						 GFP_KERNEL_ACCOUNT);
9321 	if (!vcpu->arch.guest_fpu) {
9322 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9323 		goto free_user_fpu;
9324 	}
9325 	fx_init(vcpu);
9326 
9327 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9328 
9329 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9330 
9331 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9332 
9333 	kvm_async_pf_hash_reset(vcpu);
9334 	kvm_pmu_init(vcpu);
9335 
9336 	vcpu->arch.pending_external_vector = -1;
9337 	vcpu->arch.preempted_in_kernel = false;
9338 
9339 	kvm_hv_vcpu_init(vcpu);
9340 
9341 	r = kvm_x86_ops->vcpu_create(vcpu);
9342 	if (r)
9343 		goto free_guest_fpu;
9344 
9345 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9346 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9347 	kvm_vcpu_mtrr_init(vcpu);
9348 	vcpu_load(vcpu);
9349 	kvm_vcpu_reset(vcpu, false);
9350 	kvm_init_mmu(vcpu, false);
9351 	vcpu_put(vcpu);
9352 	return 0;
9353 
9354 free_guest_fpu:
9355 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9356 free_user_fpu:
9357 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9358 free_wbinvd_dirty_mask:
9359 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9360 fail_free_mce_banks:
9361 	kfree(vcpu->arch.mce_banks);
9362 fail_free_pio_data:
9363 	free_page((unsigned long)vcpu->arch.pio_data);
9364 fail_free_lapic:
9365 	kvm_free_lapic(vcpu);
9366 fail_mmu_destroy:
9367 	kvm_mmu_destroy(vcpu);
9368 	return r;
9369 }
9370 
9371 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9372 {
9373 	struct msr_data msr;
9374 	struct kvm *kvm = vcpu->kvm;
9375 
9376 	kvm_hv_vcpu_postcreate(vcpu);
9377 
9378 	if (mutex_lock_killable(&vcpu->mutex))
9379 		return;
9380 	vcpu_load(vcpu);
9381 	msr.data = 0x0;
9382 	msr.index = MSR_IA32_TSC;
9383 	msr.host_initiated = true;
9384 	kvm_write_tsc(vcpu, &msr);
9385 	vcpu_put(vcpu);
9386 
9387 	/* poll control enabled by default */
9388 	vcpu->arch.msr_kvm_poll_control = 1;
9389 
9390 	mutex_unlock(&vcpu->mutex);
9391 
9392 	if (!kvmclock_periodic_sync)
9393 		return;
9394 
9395 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9396 					KVMCLOCK_SYNC_PERIOD);
9397 }
9398 
9399 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9400 {
9401 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9402 	int idx;
9403 
9404 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
9405 
9406 	kvmclock_reset(vcpu);
9407 
9408 	kvm_x86_ops->vcpu_free(vcpu);
9409 
9410 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9411 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9412 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9413 
9414 	kvm_hv_vcpu_uninit(vcpu);
9415 	kvm_pmu_destroy(vcpu);
9416 	kfree(vcpu->arch.mce_banks);
9417 	kvm_free_lapic(vcpu);
9418 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9419 	kvm_mmu_destroy(vcpu);
9420 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9421 	free_page((unsigned long)vcpu->arch.pio_data);
9422 	if (!lapic_in_kernel(vcpu))
9423 		static_key_slow_dec(&kvm_no_apic_vcpu);
9424 }
9425 
9426 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9427 {
9428 	kvm_lapic_reset(vcpu, init_event);
9429 
9430 	vcpu->arch.hflags = 0;
9431 
9432 	vcpu->arch.smi_pending = 0;
9433 	vcpu->arch.smi_count = 0;
9434 	atomic_set(&vcpu->arch.nmi_queued, 0);
9435 	vcpu->arch.nmi_pending = 0;
9436 	vcpu->arch.nmi_injected = false;
9437 	kvm_clear_interrupt_queue(vcpu);
9438 	kvm_clear_exception_queue(vcpu);
9439 
9440 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9441 	kvm_update_dr0123(vcpu);
9442 	vcpu->arch.dr6 = DR6_INIT;
9443 	kvm_update_dr6(vcpu);
9444 	vcpu->arch.dr7 = DR7_FIXED_1;
9445 	kvm_update_dr7(vcpu);
9446 
9447 	vcpu->arch.cr2 = 0;
9448 
9449 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9450 	vcpu->arch.apf.msr_val = 0;
9451 	vcpu->arch.st.msr_val = 0;
9452 
9453 	kvmclock_reset(vcpu);
9454 
9455 	kvm_clear_async_pf_completion_queue(vcpu);
9456 	kvm_async_pf_hash_reset(vcpu);
9457 	vcpu->arch.apf.halted = false;
9458 
9459 	if (kvm_mpx_supported()) {
9460 		void *mpx_state_buffer;
9461 
9462 		/*
9463 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9464 		 * called with loaded FPU and does not let userspace fix the state.
9465 		 */
9466 		if (init_event)
9467 			kvm_put_guest_fpu(vcpu);
9468 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9469 					XFEATURE_BNDREGS);
9470 		if (mpx_state_buffer)
9471 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9472 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9473 					XFEATURE_BNDCSR);
9474 		if (mpx_state_buffer)
9475 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9476 		if (init_event)
9477 			kvm_load_guest_fpu(vcpu);
9478 	}
9479 
9480 	if (!init_event) {
9481 		kvm_pmu_reset(vcpu);
9482 		vcpu->arch.smbase = 0x30000;
9483 
9484 		vcpu->arch.msr_misc_features_enables = 0;
9485 
9486 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9487 	}
9488 
9489 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9490 	vcpu->arch.regs_avail = ~0;
9491 	vcpu->arch.regs_dirty = ~0;
9492 
9493 	vcpu->arch.ia32_xss = 0;
9494 
9495 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
9496 }
9497 
9498 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9499 {
9500 	struct kvm_segment cs;
9501 
9502 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9503 	cs.selector = vector << 8;
9504 	cs.base = vector << 12;
9505 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9506 	kvm_rip_write(vcpu, 0);
9507 }
9508 
9509 int kvm_arch_hardware_enable(void)
9510 {
9511 	struct kvm *kvm;
9512 	struct kvm_vcpu *vcpu;
9513 	int i;
9514 	int ret;
9515 	u64 local_tsc;
9516 	u64 max_tsc = 0;
9517 	bool stable, backwards_tsc = false;
9518 
9519 	kvm_shared_msr_cpu_online();
9520 	ret = kvm_x86_ops->hardware_enable();
9521 	if (ret != 0)
9522 		return ret;
9523 
9524 	local_tsc = rdtsc();
9525 	stable = !kvm_check_tsc_unstable();
9526 	list_for_each_entry(kvm, &vm_list, vm_list) {
9527 		kvm_for_each_vcpu(i, vcpu, kvm) {
9528 			if (!stable && vcpu->cpu == smp_processor_id())
9529 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9530 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9531 				backwards_tsc = true;
9532 				if (vcpu->arch.last_host_tsc > max_tsc)
9533 					max_tsc = vcpu->arch.last_host_tsc;
9534 			}
9535 		}
9536 	}
9537 
9538 	/*
9539 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9540 	 * platforms that reset TSC during suspend or hibernate actions, but
9541 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9542 	 * detect that condition here, which happens early in CPU bringup,
9543 	 * before any KVM threads can be running.  Unfortunately, we can't
9544 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9545 	 * enough into CPU bringup that we know how much real time has actually
9546 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9547 	 * variables that haven't been updated yet.
9548 	 *
9549 	 * So we simply find the maximum observed TSC above, then record the
9550 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9551 	 * the adjustment will be applied.  Note that we accumulate
9552 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9553 	 * gets a chance to run again.  In the event that no KVM threads get a
9554 	 * chance to run, we will miss the entire elapsed period, as we'll have
9555 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9556 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9557 	 * uniform across all VCPUs (not to mention the scenario is extremely
9558 	 * unlikely). It is possible that a second hibernate recovery happens
9559 	 * much faster than a first, causing the observed TSC here to be
9560 	 * smaller; this would require additional padding adjustment, which is
9561 	 * why we set last_host_tsc to the local tsc observed here.
9562 	 *
9563 	 * N.B. - this code below runs only on platforms with reliable TSC,
9564 	 * as that is the only way backwards_tsc is set above.  Also note
9565 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9566 	 * have the same delta_cyc adjustment applied if backwards_tsc
9567 	 * is detected.  Note further, this adjustment is only done once,
9568 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9569 	 * called multiple times (one for each physical CPU bringup).
9570 	 *
9571 	 * Platforms with unreliable TSCs don't have to deal with this, they
9572 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9573 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9574 	 * guarantee that they stay in perfect synchronization.
9575 	 */
9576 	if (backwards_tsc) {
9577 		u64 delta_cyc = max_tsc - local_tsc;
9578 		list_for_each_entry(kvm, &vm_list, vm_list) {
9579 			kvm->arch.backwards_tsc_observed = true;
9580 			kvm_for_each_vcpu(i, vcpu, kvm) {
9581 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9582 				vcpu->arch.last_host_tsc = local_tsc;
9583 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9584 			}
9585 
9586 			/*
9587 			 * We have to disable TSC offset matching.. if you were
9588 			 * booting a VM while issuing an S4 host suspend....
9589 			 * you may have some problem.  Solving this issue is
9590 			 * left as an exercise to the reader.
9591 			 */
9592 			kvm->arch.last_tsc_nsec = 0;
9593 			kvm->arch.last_tsc_write = 0;
9594 		}
9595 
9596 	}
9597 	return 0;
9598 }
9599 
9600 void kvm_arch_hardware_disable(void)
9601 {
9602 	kvm_x86_ops->hardware_disable();
9603 	drop_user_return_notifiers();
9604 }
9605 
9606 int kvm_arch_hardware_setup(void)
9607 {
9608 	int r;
9609 
9610 	r = kvm_x86_ops->hardware_setup();
9611 	if (r != 0)
9612 		return r;
9613 
9614 	cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data);
9615 
9616 	if (kvm_has_tsc_control) {
9617 		/*
9618 		 * Make sure the user can only configure tsc_khz values that
9619 		 * fit into a signed integer.
9620 		 * A min value is not calculated because it will always
9621 		 * be 1 on all machines.
9622 		 */
9623 		u64 max = min(0x7fffffffULL,
9624 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9625 		kvm_max_guest_tsc_khz = max;
9626 
9627 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9628 	}
9629 
9630 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9631 		rdmsrl(MSR_IA32_XSS, host_xss);
9632 
9633 	kvm_init_msr_list();
9634 	return 0;
9635 }
9636 
9637 void kvm_arch_hardware_unsetup(void)
9638 {
9639 	kvm_x86_ops->hardware_unsetup();
9640 }
9641 
9642 int kvm_arch_check_processor_compat(void)
9643 {
9644 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9645 
9646 	WARN_ON(!irqs_disabled());
9647 
9648 	if (kvm_host_cr4_reserved_bits(c) != cr4_reserved_bits)
9649 		return -EIO;
9650 
9651 	return kvm_x86_ops->check_processor_compatibility();
9652 }
9653 
9654 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9655 {
9656 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9657 }
9658 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9659 
9660 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9661 {
9662 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9663 }
9664 
9665 struct static_key kvm_no_apic_vcpu __read_mostly;
9666 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9667 
9668 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9669 {
9670 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9671 
9672 	vcpu->arch.l1tf_flush_l1d = true;
9673 	if (pmu->version && unlikely(pmu->event_count)) {
9674 		pmu->need_cleanup = true;
9675 		kvm_make_request(KVM_REQ_PMU, vcpu);
9676 	}
9677 	kvm_x86_ops->sched_in(vcpu, cpu);
9678 }
9679 
9680 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9681 {
9682 	if (type)
9683 		return -EINVAL;
9684 
9685 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9686 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9687 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9688 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9689 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9690 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9691 
9692 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9693 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9694 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9695 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9696 		&kvm->arch.irq_sources_bitmap);
9697 
9698 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9699 	mutex_init(&kvm->arch.apic_map_lock);
9700 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9701 
9702 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9703 	pvclock_update_vm_gtod_copy(kvm);
9704 
9705 	kvm->arch.guest_can_read_msr_platform_info = true;
9706 
9707 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9708 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9709 
9710 	kvm_hv_init_vm(kvm);
9711 	kvm_page_track_init(kvm);
9712 	kvm_mmu_init_vm(kvm);
9713 
9714 	return kvm_x86_ops->vm_init(kvm);
9715 }
9716 
9717 int kvm_arch_post_init_vm(struct kvm *kvm)
9718 {
9719 	return kvm_mmu_post_init_vm(kvm);
9720 }
9721 
9722 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9723 {
9724 	vcpu_load(vcpu);
9725 	kvm_mmu_unload(vcpu);
9726 	vcpu_put(vcpu);
9727 }
9728 
9729 static void kvm_free_vcpus(struct kvm *kvm)
9730 {
9731 	unsigned int i;
9732 	struct kvm_vcpu *vcpu;
9733 
9734 	/*
9735 	 * Unpin any mmu pages first.
9736 	 */
9737 	kvm_for_each_vcpu(i, vcpu, kvm) {
9738 		kvm_clear_async_pf_completion_queue(vcpu);
9739 		kvm_unload_vcpu_mmu(vcpu);
9740 	}
9741 	kvm_for_each_vcpu(i, vcpu, kvm)
9742 		kvm_vcpu_destroy(vcpu);
9743 
9744 	mutex_lock(&kvm->lock);
9745 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9746 		kvm->vcpus[i] = NULL;
9747 
9748 	atomic_set(&kvm->online_vcpus, 0);
9749 	mutex_unlock(&kvm->lock);
9750 }
9751 
9752 void kvm_arch_sync_events(struct kvm *kvm)
9753 {
9754 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9755 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9756 	kvm_free_pit(kvm);
9757 }
9758 
9759 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9760 {
9761 	int i, r;
9762 	unsigned long hva;
9763 	struct kvm_memslots *slots = kvm_memslots(kvm);
9764 	struct kvm_memory_slot *slot, old;
9765 
9766 	/* Called with kvm->slots_lock held.  */
9767 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9768 		return -EINVAL;
9769 
9770 	slot = id_to_memslot(slots, id);
9771 	if (size) {
9772 		if (slot->npages)
9773 			return -EEXIST;
9774 
9775 		/*
9776 		 * MAP_SHARED to prevent internal slot pages from being moved
9777 		 * by fork()/COW.
9778 		 */
9779 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9780 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9781 		if (IS_ERR((void *)hva))
9782 			return PTR_ERR((void *)hva);
9783 	} else {
9784 		if (!slot->npages)
9785 			return 0;
9786 
9787 		hva = 0;
9788 	}
9789 
9790 	old = *slot;
9791 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9792 		struct kvm_userspace_memory_region m;
9793 
9794 		m.slot = id | (i << 16);
9795 		m.flags = 0;
9796 		m.guest_phys_addr = gpa;
9797 		m.userspace_addr = hva;
9798 		m.memory_size = size;
9799 		r = __kvm_set_memory_region(kvm, &m);
9800 		if (r < 0)
9801 			return r;
9802 	}
9803 
9804 	if (!size)
9805 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9806 
9807 	return 0;
9808 }
9809 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9810 
9811 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9812 {
9813 	kvm_mmu_pre_destroy_vm(kvm);
9814 }
9815 
9816 void kvm_arch_destroy_vm(struct kvm *kvm)
9817 {
9818 	if (current->mm == kvm->mm) {
9819 		/*
9820 		 * Free memory regions allocated on behalf of userspace,
9821 		 * unless the the memory map has changed due to process exit
9822 		 * or fd copying.
9823 		 */
9824 		mutex_lock(&kvm->slots_lock);
9825 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9826 					0, 0);
9827 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9828 					0, 0);
9829 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9830 		mutex_unlock(&kvm->slots_lock);
9831 	}
9832 	if (kvm_x86_ops->vm_destroy)
9833 		kvm_x86_ops->vm_destroy(kvm);
9834 	kvm_pic_destroy(kvm);
9835 	kvm_ioapic_destroy(kvm);
9836 	kvm_free_vcpus(kvm);
9837 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9838 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9839 	kvm_mmu_uninit_vm(kvm);
9840 	kvm_page_track_cleanup(kvm);
9841 	kvm_hv_destroy_vm(kvm);
9842 }
9843 
9844 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9845 			   struct kvm_memory_slot *dont)
9846 {
9847 	int i;
9848 
9849 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9850 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9851 			kvfree(free->arch.rmap[i]);
9852 			free->arch.rmap[i] = NULL;
9853 		}
9854 		if (i == 0)
9855 			continue;
9856 
9857 		if (!dont || free->arch.lpage_info[i - 1] !=
9858 			     dont->arch.lpage_info[i - 1]) {
9859 			kvfree(free->arch.lpage_info[i - 1]);
9860 			free->arch.lpage_info[i - 1] = NULL;
9861 		}
9862 	}
9863 
9864 	kvm_page_track_free_memslot(free, dont);
9865 }
9866 
9867 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9868 			    unsigned long npages)
9869 {
9870 	int i;
9871 
9872 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9873 		struct kvm_lpage_info *linfo;
9874 		unsigned long ugfn;
9875 		int lpages;
9876 		int level = i + 1;
9877 
9878 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9879 				      slot->base_gfn, level) + 1;
9880 
9881 		slot->arch.rmap[i] =
9882 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9883 				 GFP_KERNEL_ACCOUNT);
9884 		if (!slot->arch.rmap[i])
9885 			goto out_free;
9886 		if (i == 0)
9887 			continue;
9888 
9889 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9890 		if (!linfo)
9891 			goto out_free;
9892 
9893 		slot->arch.lpage_info[i - 1] = linfo;
9894 
9895 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9896 			linfo[0].disallow_lpage = 1;
9897 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9898 			linfo[lpages - 1].disallow_lpage = 1;
9899 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9900 		/*
9901 		 * If the gfn and userspace address are not aligned wrt each
9902 		 * other, or if explicitly asked to, disable large page
9903 		 * support for this slot
9904 		 */
9905 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9906 		    !kvm_largepages_enabled()) {
9907 			unsigned long j;
9908 
9909 			for (j = 0; j < lpages; ++j)
9910 				linfo[j].disallow_lpage = 1;
9911 		}
9912 	}
9913 
9914 	if (kvm_page_track_create_memslot(slot, npages))
9915 		goto out_free;
9916 
9917 	return 0;
9918 
9919 out_free:
9920 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9921 		kvfree(slot->arch.rmap[i]);
9922 		slot->arch.rmap[i] = NULL;
9923 		if (i == 0)
9924 			continue;
9925 
9926 		kvfree(slot->arch.lpage_info[i - 1]);
9927 		slot->arch.lpage_info[i - 1] = NULL;
9928 	}
9929 	return -ENOMEM;
9930 }
9931 
9932 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9933 {
9934 	struct kvm_vcpu *vcpu;
9935 	int i;
9936 
9937 	/*
9938 	 * memslots->generation has been incremented.
9939 	 * mmio generation may have reached its maximum value.
9940 	 */
9941 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9942 
9943 	/* Force re-initialization of steal_time cache */
9944 	kvm_for_each_vcpu(i, vcpu, kvm)
9945 		kvm_vcpu_kick(vcpu);
9946 }
9947 
9948 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9949 				struct kvm_memory_slot *memslot,
9950 				const struct kvm_userspace_memory_region *mem,
9951 				enum kvm_mr_change change)
9952 {
9953 	return 0;
9954 }
9955 
9956 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9957 				     struct kvm_memory_slot *new)
9958 {
9959 	/* Still write protect RO slot */
9960 	if (new->flags & KVM_MEM_READONLY) {
9961 		kvm_mmu_slot_remove_write_access(kvm, new);
9962 		return;
9963 	}
9964 
9965 	/*
9966 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9967 	 *
9968 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9969 	 *
9970 	 *  - KVM_MR_CREATE with dirty logging is disabled
9971 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9972 	 *
9973 	 * The reason is, in case of PML, we need to set D-bit for any slots
9974 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9975 	 * logging in PML buffer (and potential PML buffer full VMEXIT). This
9976 	 * guarantees leaving PML enabled during guest's lifetime won't have
9977 	 * any additional overhead from PML when guest is running with dirty
9978 	 * logging disabled for memory slots.
9979 	 *
9980 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9981 	 * to dirty logging mode.
9982 	 *
9983 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9984 	 *
9985 	 * In case of write protect:
9986 	 *
9987 	 * Write protect all pages for dirty logging.
9988 	 *
9989 	 * All the sptes including the large sptes which point to this
9990 	 * slot are set to readonly. We can not create any new large
9991 	 * spte on this slot until the end of the logging.
9992 	 *
9993 	 * See the comments in fast_page_fault().
9994 	 */
9995 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9996 		if (kvm_x86_ops->slot_enable_log_dirty)
9997 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9998 		else
9999 			kvm_mmu_slot_remove_write_access(kvm, new);
10000 	} else {
10001 		if (kvm_x86_ops->slot_disable_log_dirty)
10002 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
10003 	}
10004 }
10005 
10006 void kvm_arch_commit_memory_region(struct kvm *kvm,
10007 				const struct kvm_userspace_memory_region *mem,
10008 				const struct kvm_memory_slot *old,
10009 				const struct kvm_memory_slot *new,
10010 				enum kvm_mr_change change)
10011 {
10012 	if (!kvm->arch.n_requested_mmu_pages)
10013 		kvm_mmu_change_mmu_pages(kvm,
10014 				kvm_mmu_calculate_default_mmu_pages(kvm));
10015 
10016 	/*
10017 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10018 	 * sptes have to be split.  If live migration is successful, the guest
10019 	 * in the source machine will be destroyed and large sptes will be
10020 	 * created in the destination. However, if the guest continues to run
10021 	 * in the source machine (for example if live migration fails), small
10022 	 * sptes will remain around and cause bad performance.
10023 	 *
10024 	 * Scan sptes if dirty logging has been stopped, dropping those
10025 	 * which can be collapsed into a single large-page spte.  Later
10026 	 * page faults will create the large-page sptes.
10027 	 *
10028 	 * There is no need to do this in any of the following cases:
10029 	 * CREATE:	No dirty mappings will already exist.
10030 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
10031 	 *		kvm_arch_flush_shadow_memslot()
10032 	 */
10033 	if (change == KVM_MR_FLAGS_ONLY &&
10034 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10035 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10036 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10037 
10038 	/*
10039 	 * Set up write protection and/or dirty logging for the new slot.
10040 	 *
10041 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
10042 	 * been zapped so no dirty logging staff is needed for old slot. For
10043 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
10044 	 * new and it's also covered when dealing with the new slot.
10045 	 *
10046 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10047 	 */
10048 	if (change != KVM_MR_DELETE)
10049 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
10050 }
10051 
10052 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10053 {
10054 	kvm_mmu_zap_all(kvm);
10055 }
10056 
10057 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10058 				   struct kvm_memory_slot *slot)
10059 {
10060 	kvm_page_track_flush_slot(kvm, slot);
10061 }
10062 
10063 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10064 {
10065 	return (is_guest_mode(vcpu) &&
10066 			kvm_x86_ops->guest_apic_has_interrupt &&
10067 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
10068 }
10069 
10070 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10071 {
10072 	if (!list_empty_careful(&vcpu->async_pf.done))
10073 		return true;
10074 
10075 	if (kvm_apic_has_events(vcpu))
10076 		return true;
10077 
10078 	if (vcpu->arch.pv.pv_unhalted)
10079 		return true;
10080 
10081 	if (vcpu->arch.exception.pending)
10082 		return true;
10083 
10084 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10085 	    (vcpu->arch.nmi_pending &&
10086 	     kvm_x86_ops->nmi_allowed(vcpu)))
10087 		return true;
10088 
10089 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10090 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
10091 		return true;
10092 
10093 	if (kvm_arch_interrupt_allowed(vcpu) &&
10094 	    (kvm_cpu_has_interrupt(vcpu) ||
10095 	    kvm_guest_apic_has_interrupt(vcpu)))
10096 		return true;
10097 
10098 	if (kvm_hv_has_stimer_pending(vcpu))
10099 		return true;
10100 
10101 	return false;
10102 }
10103 
10104 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10105 {
10106 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10107 }
10108 
10109 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10110 {
10111 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10112 		return true;
10113 
10114 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10115 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10116 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10117 		return true;
10118 
10119 	if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
10120 		return true;
10121 
10122 	return false;
10123 }
10124 
10125 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10126 {
10127 	return vcpu->arch.preempted_in_kernel;
10128 }
10129 
10130 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10131 {
10132 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10133 }
10134 
10135 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10136 {
10137 	return kvm_x86_ops->interrupt_allowed(vcpu);
10138 }
10139 
10140 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10141 {
10142 	if (is_64_bit_mode(vcpu))
10143 		return kvm_rip_read(vcpu);
10144 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10145 		     kvm_rip_read(vcpu));
10146 }
10147 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10148 
10149 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10150 {
10151 	return kvm_get_linear_rip(vcpu) == linear_rip;
10152 }
10153 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10154 
10155 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10156 {
10157 	unsigned long rflags;
10158 
10159 	rflags = kvm_x86_ops->get_rflags(vcpu);
10160 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10161 		rflags &= ~X86_EFLAGS_TF;
10162 	return rflags;
10163 }
10164 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10165 
10166 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10167 {
10168 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10169 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10170 		rflags |= X86_EFLAGS_TF;
10171 	kvm_x86_ops->set_rflags(vcpu, rflags);
10172 }
10173 
10174 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10175 {
10176 	__kvm_set_rflags(vcpu, rflags);
10177 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10178 }
10179 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10180 
10181 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10182 {
10183 	int r;
10184 
10185 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10186 	      work->wakeup_all)
10187 		return;
10188 
10189 	r = kvm_mmu_reload(vcpu);
10190 	if (unlikely(r))
10191 		return;
10192 
10193 	if (!vcpu->arch.mmu->direct_map &&
10194 	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
10195 		return;
10196 
10197 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10198 }
10199 
10200 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10201 {
10202 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10203 }
10204 
10205 static inline u32 kvm_async_pf_next_probe(u32 key)
10206 {
10207 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10208 }
10209 
10210 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10211 {
10212 	u32 key = kvm_async_pf_hash_fn(gfn);
10213 
10214 	while (vcpu->arch.apf.gfns[key] != ~0)
10215 		key = kvm_async_pf_next_probe(key);
10216 
10217 	vcpu->arch.apf.gfns[key] = gfn;
10218 }
10219 
10220 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10221 {
10222 	int i;
10223 	u32 key = kvm_async_pf_hash_fn(gfn);
10224 
10225 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10226 		     (vcpu->arch.apf.gfns[key] != gfn &&
10227 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10228 		key = kvm_async_pf_next_probe(key);
10229 
10230 	return key;
10231 }
10232 
10233 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10234 {
10235 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10236 }
10237 
10238 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10239 {
10240 	u32 i, j, k;
10241 
10242 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10243 	while (true) {
10244 		vcpu->arch.apf.gfns[i] = ~0;
10245 		do {
10246 			j = kvm_async_pf_next_probe(j);
10247 			if (vcpu->arch.apf.gfns[j] == ~0)
10248 				return;
10249 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10250 			/*
10251 			 * k lies cyclically in ]i,j]
10252 			 * |    i.k.j |
10253 			 * |....j i.k.| or  |.k..j i...|
10254 			 */
10255 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10256 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10257 		i = j;
10258 	}
10259 }
10260 
10261 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10262 {
10263 
10264 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10265 				      sizeof(val));
10266 }
10267 
10268 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10269 {
10270 
10271 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10272 				      sizeof(u32));
10273 }
10274 
10275 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10276 {
10277 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10278 		return false;
10279 
10280 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10281 	    (vcpu->arch.apf.send_user_only &&
10282 	     kvm_x86_ops->get_cpl(vcpu) == 0))
10283 		return false;
10284 
10285 	return true;
10286 }
10287 
10288 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10289 {
10290 	if (unlikely(!lapic_in_kernel(vcpu) ||
10291 		     kvm_event_needs_reinjection(vcpu) ||
10292 		     vcpu->arch.exception.pending))
10293 		return false;
10294 
10295 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10296 		return false;
10297 
10298 	/*
10299 	 * If interrupts are off we cannot even use an artificial
10300 	 * halt state.
10301 	 */
10302 	return kvm_x86_ops->interrupt_allowed(vcpu);
10303 }
10304 
10305 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10306 				     struct kvm_async_pf *work)
10307 {
10308 	struct x86_exception fault;
10309 
10310 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10311 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10312 
10313 	if (kvm_can_deliver_async_pf(vcpu) &&
10314 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10315 		fault.vector = PF_VECTOR;
10316 		fault.error_code_valid = true;
10317 		fault.error_code = 0;
10318 		fault.nested_page_fault = false;
10319 		fault.address = work->arch.token;
10320 		fault.async_page_fault = true;
10321 		kvm_inject_page_fault(vcpu, &fault);
10322 	} else {
10323 		/*
10324 		 * It is not possible to deliver a paravirtualized asynchronous
10325 		 * page fault, but putting the guest in an artificial halt state
10326 		 * can be beneficial nevertheless: if an interrupt arrives, we
10327 		 * can deliver it timely and perhaps the guest will schedule
10328 		 * another process.  When the instruction that triggered a page
10329 		 * fault is retried, hopefully the page will be ready in the host.
10330 		 */
10331 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10332 	}
10333 }
10334 
10335 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10336 				 struct kvm_async_pf *work)
10337 {
10338 	struct x86_exception fault;
10339 	u32 val;
10340 
10341 	if (work->wakeup_all)
10342 		work->arch.token = ~0; /* broadcast wakeup */
10343 	else
10344 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10345 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10346 
10347 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10348 	    !apf_get_user(vcpu, &val)) {
10349 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10350 		    vcpu->arch.exception.pending &&
10351 		    vcpu->arch.exception.nr == PF_VECTOR &&
10352 		    !apf_put_user(vcpu, 0)) {
10353 			vcpu->arch.exception.injected = false;
10354 			vcpu->arch.exception.pending = false;
10355 			vcpu->arch.exception.nr = 0;
10356 			vcpu->arch.exception.has_error_code = false;
10357 			vcpu->arch.exception.error_code = 0;
10358 			vcpu->arch.exception.has_payload = false;
10359 			vcpu->arch.exception.payload = 0;
10360 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10361 			fault.vector = PF_VECTOR;
10362 			fault.error_code_valid = true;
10363 			fault.error_code = 0;
10364 			fault.nested_page_fault = false;
10365 			fault.address = work->arch.token;
10366 			fault.async_page_fault = true;
10367 			kvm_inject_page_fault(vcpu, &fault);
10368 		}
10369 	}
10370 	vcpu->arch.apf.halted = false;
10371 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10372 }
10373 
10374 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10375 {
10376 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10377 		return true;
10378 	else
10379 		return kvm_can_do_async_pf(vcpu);
10380 }
10381 
10382 void kvm_arch_start_assignment(struct kvm *kvm)
10383 {
10384 	atomic_inc(&kvm->arch.assigned_device_count);
10385 }
10386 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10387 
10388 void kvm_arch_end_assignment(struct kvm *kvm)
10389 {
10390 	atomic_dec(&kvm->arch.assigned_device_count);
10391 }
10392 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10393 
10394 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10395 {
10396 	return atomic_read(&kvm->arch.assigned_device_count);
10397 }
10398 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10399 
10400 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10401 {
10402 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10403 }
10404 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10405 
10406 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10407 {
10408 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10409 }
10410 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10411 
10412 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10413 {
10414 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10415 }
10416 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10417 
10418 bool kvm_arch_has_irq_bypass(void)
10419 {
10420 	return true;
10421 }
10422 
10423 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10424 				      struct irq_bypass_producer *prod)
10425 {
10426 	struct kvm_kernel_irqfd *irqfd =
10427 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10428 
10429 	irqfd->producer = prod;
10430 
10431 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10432 					   prod->irq, irqfd->gsi, 1);
10433 }
10434 
10435 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10436 				      struct irq_bypass_producer *prod)
10437 {
10438 	int ret;
10439 	struct kvm_kernel_irqfd *irqfd =
10440 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10441 
10442 	WARN_ON(irqfd->producer != prod);
10443 	irqfd->producer = NULL;
10444 
10445 	/*
10446 	 * When producer of consumer is unregistered, we change back to
10447 	 * remapped mode, so we can re-use the current implementation
10448 	 * when the irq is masked/disabled or the consumer side (KVM
10449 	 * int this case doesn't want to receive the interrupts.
10450 	*/
10451 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10452 	if (ret)
10453 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10454 		       " fails: %d\n", irqfd->consumer.token, ret);
10455 }
10456 
10457 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10458 				   uint32_t guest_irq, bool set)
10459 {
10460 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10461 }
10462 
10463 bool kvm_vector_hashing_enabled(void)
10464 {
10465 	return vector_hashing;
10466 }
10467 
10468 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10469 {
10470 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10471 }
10472 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10473 
10474 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10475 {
10476 	uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10477 
10478 	/* The STIBP bit doesn't fault even if it's not advertised */
10479 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10480 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10481 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10482 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10483 	    !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10484 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10485 
10486 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10487 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10488 		bits &= ~SPEC_CTRL_SSBD;
10489 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10490 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10491 		bits &= ~SPEC_CTRL_SSBD;
10492 
10493 	return bits;
10494 }
10495 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10496 
10497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10506 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10507 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10508 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10509 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10510 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10511 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10512 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10513 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10514 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10515 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10516 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10517 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
10518