xref: /linux/arch/x86/kvm/x86.c (revision d7b4e3287ca3a7baf66efd9158498e551a9550da)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94 
95 struct kvm_caps kvm_caps __read_mostly = {
96 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99 
100 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101 
102 #define emul_to_vcpu(ctxt) \
103 	((struct kvm_vcpu *)(ctxt)->vcpu)
104 
105 /* EFER defaults:
106  * - enable syscall per default because its emulated by KVM
107  * - enable LME and LMA per default on 64 bit KVM
108  */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115 
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117 
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119 
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121 
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124 
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131 
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134 
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137 
138 #define KVM_X86_OP(func)					     \
139 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
140 				*(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146 
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, 0644);
149 
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, 0644);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153 
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, 0644);
156 
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, 0444);
159 
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, 0644);
163 
164 /*
165  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167  * advancement entirely.  Any other value is used as-is and disables adaptive
168  * tuning, i.e. allows privileged userspace to set an exact advancement time.
169  */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, 0644);
172 
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, 0444);
175 
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, 0444);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179 
180 /*
181  * Flags to manipulate forced emulation behavior (any non-zero value will
182  * enable forced emulation).
183  */
184 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187 
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, 0644);
190 
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195 
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198 
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202 
203 /*
204  * Restoring the host value for MSRs that are only consumed when running in
205  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206  * returns to userspace, i.e. the kernel can run with the guest's value.
207  */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209 
210 struct kvm_user_return_msrs {
211 	struct user_return_notifier urn;
212 	bool registered;
213 	struct kvm_user_return_msr_values {
214 		u64 host;
215 		u64 curr;
216 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218 
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223 
224 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228 
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231 
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234 
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237 
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240 
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243 
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 	KVM_GENERIC_VM_STATS(),
246 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 	STATS_DESC_COUNTER(VM, mmu_pte_write),
248 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 	STATS_DESC_COUNTER(VM, mmu_flooded),
250 	STATS_DESC_COUNTER(VM, mmu_recycled),
251 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 	STATS_DESC_ICOUNTER(VM, pages_4k),
254 	STATS_DESC_ICOUNTER(VM, pages_2m),
255 	STATS_DESC_ICOUNTER(VM, pages_1g),
256 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260 
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 	.name_size = KVM_STATS_NAME_SIZE,
263 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 	.id_offset = sizeof(struct kvm_stats_header),
265 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 		       sizeof(kvm_vm_stats_desc),
268 };
269 
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 	KVM_GENERIC_VCPU_STATS(),
272 	STATS_DESC_COUNTER(VCPU, pf_taken),
273 	STATS_DESC_COUNTER(VCPU, pf_fixed),
274 	STATS_DESC_COUNTER(VCPU, pf_emulate),
275 	STATS_DESC_COUNTER(VCPU, pf_spurious),
276 	STATS_DESC_COUNTER(VCPU, pf_fast),
277 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 	STATS_DESC_COUNTER(VCPU, pf_guest),
279 	STATS_DESC_COUNTER(VCPU, tlb_flush),
280 	STATS_DESC_COUNTER(VCPU, invlpg),
281 	STATS_DESC_COUNTER(VCPU, exits),
282 	STATS_DESC_COUNTER(VCPU, io_exits),
283 	STATS_DESC_COUNTER(VCPU, mmio_exits),
284 	STATS_DESC_COUNTER(VCPU, signal_exits),
285 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 	STATS_DESC_COUNTER(VCPU, l1d_flush),
288 	STATS_DESC_COUNTER(VCPU, halt_exits),
289 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 	STATS_DESC_COUNTER(VCPU, irq_exits),
291 	STATS_DESC_COUNTER(VCPU, host_state_reload),
292 	STATS_DESC_COUNTER(VCPU, fpu_reload),
293 	STATS_DESC_COUNTER(VCPU, insn_emulation),
294 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 	STATS_DESC_COUNTER(VCPU, hypercalls),
296 	STATS_DESC_COUNTER(VCPU, irq_injections),
297 	STATS_DESC_COUNTER(VCPU, nmi_injections),
298 	STATS_DESC_COUNTER(VCPU, req_event),
299 	STATS_DESC_COUNTER(VCPU, nested_run),
300 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 	STATS_DESC_COUNTER(VCPU, preemption_reported),
303 	STATS_DESC_COUNTER(VCPU, preemption_other),
304 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307 
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 	.name_size = KVM_STATS_NAME_SIZE,
310 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 	.id_offset = sizeof(struct kvm_stats_header),
312 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 		       sizeof(kvm_vcpu_stats_desc),
315 };
316 
317 u64 __read_mostly host_xcr0;
318 
319 static struct kmem_cache *x86_emulator_cache;
320 
321 /*
322  * When called, it means the previous get/set msr reached an invalid msr.
323  * Return true if we want to ignore/silent this failed msr access.
324  */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 	const char *op = write ? "wrmsr" : "rdmsr";
328 
329 	if (ignore_msrs) {
330 		if (report_ignored_msrs)
331 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 				      op, msr, data);
333 		/* Mask the error */
334 		return true;
335 	} else {
336 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 				      op, msr, data);
338 		return false;
339 	}
340 }
341 
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 	unsigned int size = sizeof(struct x86_emulate_ctxt);
346 
347 	return kmem_cache_create_usercopy("x86_emulator", size,
348 					  __alignof__(struct x86_emulate_ctxt),
349 					  SLAB_ACCOUNT, useroffset,
350 					  size - useroffset, NULL);
351 }
352 
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354 
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 	int i;
358 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 		vcpu->arch.apf.gfns[i] = ~0;
360 }
361 
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 	unsigned slot;
365 	struct kvm_user_return_msrs *msrs
366 		= container_of(urn, struct kvm_user_return_msrs, urn);
367 	struct kvm_user_return_msr_values *values;
368 	unsigned long flags;
369 
370 	/*
371 	 * Disabling irqs at this point since the following code could be
372 	 * interrupted and executed through kvm_arch_hardware_disable()
373 	 */
374 	local_irq_save(flags);
375 	if (msrs->registered) {
376 		msrs->registered = false;
377 		user_return_notifier_unregister(urn);
378 	}
379 	local_irq_restore(flags);
380 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 		values = &msrs->values[slot];
382 		if (values->host != values->curr) {
383 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 			values->curr = values->host;
385 		}
386 	}
387 }
388 
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 	u64 val;
392 	int ret;
393 
394 	preempt_disable();
395 	ret = rdmsrl_safe(msr, &val);
396 	if (ret)
397 		goto out;
398 	ret = wrmsrl_safe(msr, val);
399 out:
400 	preempt_enable();
401 	return ret;
402 }
403 
404 int kvm_add_user_return_msr(u32 msr)
405 {
406 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407 
408 	if (kvm_probe_user_return_msr(msr))
409 		return -1;
410 
411 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 	return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415 
416 int kvm_find_user_return_msr(u32 msr)
417 {
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		if (kvm_uret_msrs_list[i] == msr)
422 			return i;
423 	}
424 	return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427 
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 	unsigned int cpu = smp_processor_id();
431 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 	u64 value;
433 	int i;
434 
435 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 		msrs->values[i].host = value;
438 		msrs->values[i].curr = value;
439 	}
440 }
441 
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 	unsigned int cpu = smp_processor_id();
445 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 	int err;
447 
448 	value = (value & mask) | (msrs->values[slot].host & ~mask);
449 	if (value == msrs->values[slot].curr)
450 		return 0;
451 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 	if (err)
453 		return 1;
454 
455 	msrs->values[slot].curr = value;
456 	if (!msrs->registered) {
457 		msrs->urn.on_user_return = kvm_on_user_return;
458 		user_return_notifier_register(&msrs->urn);
459 		msrs->registered = true;
460 	}
461 	return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464 
465 static void drop_user_return_notifiers(void)
466 {
467 	unsigned int cpu = smp_processor_id();
468 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469 
470 	if (msrs->registered)
471 		kvm_on_user_return(&msrs->urn);
472 }
473 
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 	return vcpu->arch.apic_base;
477 }
478 
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484 
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491 
492 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 		return 1;
494 	if (!msr_info->host_initiated) {
495 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 			return 1;
497 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 			return 1;
499 	}
500 
501 	kvm_lapic_set_base(vcpu, msr_info->data);
502 	kvm_recalculate_apic_map(vcpu->kvm);
503 	return 0;
504 }
505 
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515 	/* Fault while not rebooting.  We want the trace. */
516 	BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519 
520 #define EXCPT_BENIGN		0
521 #define EXCPT_CONTRIBUTORY	1
522 #define EXCPT_PF		2
523 
524 static int exception_class(int vector)
525 {
526 	switch (vector) {
527 	case PF_VECTOR:
528 		return EXCPT_PF;
529 	case DE_VECTOR:
530 	case TS_VECTOR:
531 	case NP_VECTOR:
532 	case SS_VECTOR:
533 	case GP_VECTOR:
534 		return EXCPT_CONTRIBUTORY;
535 	default:
536 		break;
537 	}
538 	return EXCPT_BENIGN;
539 }
540 
541 #define EXCPT_FAULT		0
542 #define EXCPT_TRAP		1
543 #define EXCPT_ABORT		2
544 #define EXCPT_INTERRUPT		3
545 #define EXCPT_DB		4
546 
547 static int exception_type(int vector)
548 {
549 	unsigned int mask;
550 
551 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 		return EXCPT_INTERRUPT;
553 
554 	mask = 1 << vector;
555 
556 	/*
557 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 	 */
560 	if (mask & (1 << DB_VECTOR))
561 		return EXCPT_DB;
562 
563 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 		return EXCPT_TRAP;
565 
566 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 		return EXCPT_ABORT;
568 
569 	/* Reserved exceptions will result in fault */
570 	return EXCPT_FAULT;
571 }
572 
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 				   struct kvm_queued_exception *ex)
575 {
576 	if (!ex->has_payload)
577 		return;
578 
579 	switch (ex->vector) {
580 	case DB_VECTOR:
581 		/*
582 		 * "Certain debug exceptions may clear bit 0-3.  The
583 		 * remaining contents of the DR6 register are never
584 		 * cleared by the processor".
585 		 */
586 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 		/*
588 		 * In order to reflect the #DB exception payload in guest
589 		 * dr6, three components need to be considered: active low
590 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 		 * DR6_BS and DR6_BT)
592 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 		 * In the target guest dr6:
594 		 * FIXED_1 bits should always be set.
595 		 * Active low bits should be cleared if 1-setting in payload.
596 		 * Active high bits should be set if 1-setting in payload.
597 		 *
598 		 * Note, the payload is compatible with the pending debug
599 		 * exceptions/exit qualification under VMX, that active_low bits
600 		 * are active high in payload.
601 		 * So they need to be flipped for DR6.
602 		 */
603 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 		vcpu->arch.dr6 |= ex->payload;
605 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606 
607 		/*
608 		 * The #DB payload is defined as compatible with the 'pending
609 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 		 * defined in the 'pending debug exceptions' field (enabled
611 		 * breakpoint), it is reserved and must be zero in DR6.
612 		 */
613 		vcpu->arch.dr6 &= ~BIT(12);
614 		break;
615 	case PF_VECTOR:
616 		vcpu->arch.cr2 = ex->payload;
617 		break;
618 	}
619 
620 	ex->has_payload = false;
621 	ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624 
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 				       bool has_error_code, u32 error_code,
627 				       bool has_payload, unsigned long payload)
628 {
629 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630 
631 	ex->vector = vector;
632 	ex->injected = false;
633 	ex->pending = true;
634 	ex->has_error_code = has_error_code;
635 	ex->error_code = error_code;
636 	ex->has_payload = has_payload;
637 	ex->payload = payload;
638 }
639 
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645 
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 		unsigned nr, bool has_error, u32 error_code,
648 	        bool has_payload, unsigned long payload, bool reinject)
649 {
650 	u32 prev_nr;
651 	int class1, class2;
652 
653 	kvm_make_request(KVM_REQ_EVENT, vcpu);
654 
655 	/*
656 	 * If the exception is destined for L2 and isn't being reinjected,
657 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658 	 * previously injected exception is not checked because it was checked
659 	 * when it was original queued, and re-checking is incorrect if _L1_
660 	 * injected the exception, in which case it's exempt from interception.
661 	 */
662 	if (!reinject && is_guest_mode(vcpu) &&
663 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 					   has_payload, payload);
666 		return;
667 	}
668 
669 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 	queue:
671 		if (reinject) {
672 			/*
673 			 * On VM-Entry, an exception can be pending if and only
674 			 * if event injection was blocked by nested_run_pending.
675 			 * In that case, however, vcpu_enter_guest() requests an
676 			 * immediate exit, and the guest shouldn't proceed far
677 			 * enough to need reinjection.
678 			 */
679 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 			vcpu->arch.exception.injected = true;
681 			if (WARN_ON_ONCE(has_payload)) {
682 				/*
683 				 * A reinjected event has already
684 				 * delivered its payload.
685 				 */
686 				has_payload = false;
687 				payload = 0;
688 			}
689 		} else {
690 			vcpu->arch.exception.pending = true;
691 			vcpu->arch.exception.injected = false;
692 		}
693 		vcpu->arch.exception.has_error_code = has_error;
694 		vcpu->arch.exception.vector = nr;
695 		vcpu->arch.exception.error_code = error_code;
696 		vcpu->arch.exception.has_payload = has_payload;
697 		vcpu->arch.exception.payload = payload;
698 		if (!is_guest_mode(vcpu))
699 			kvm_deliver_exception_payload(vcpu,
700 						      &vcpu->arch.exception);
701 		return;
702 	}
703 
704 	/* to check exception */
705 	prev_nr = vcpu->arch.exception.vector;
706 	if (prev_nr == DF_VECTOR) {
707 		/* triple fault -> shutdown */
708 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 		return;
710 	}
711 	class1 = exception_class(prev_nr);
712 	class2 = exception_class(nr);
713 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 		/*
716 		 * Synthesize #DF.  Clear the previously injected or pending
717 		 * exception so as not to incorrectly trigger shutdown.
718 		 */
719 		vcpu->arch.exception.injected = false;
720 		vcpu->arch.exception.pending = false;
721 
722 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 	} else {
724 		/* replace previous exception with a new one in a hope
725 		   that instruction re-execution will regenerate lost
726 		   exception */
727 		goto queue;
728 	}
729 }
730 
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736 
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742 
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 			   unsigned long payload)
745 {
746 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749 
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 				    u32 error_code, unsigned long payload)
752 {
753 	kvm_multiple_exception(vcpu, nr, true, error_code,
754 			       true, payload, false);
755 }
756 
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 	if (err)
760 		kvm_inject_gp(vcpu, 0);
761 	else
762 		return kvm_skip_emulated_instruction(vcpu);
763 
764 	return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767 
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 	if (err) {
771 		kvm_inject_gp(vcpu, 0);
772 		return 1;
773 	}
774 
775 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 				       EMULTYPE_COMPLETE_USER_EXIT);
777 }
778 
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 	++vcpu->stat.pf_guest;
782 
783 	/*
784 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 	 * whether or not L1 wants to intercept "regular" #PF.
786 	 */
787 	if (is_guest_mode(vcpu) && fault->async_page_fault)
788 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 					   true, fault->error_code,
790 					   true, fault->address);
791 	else
792 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 					fault->address);
794 }
795 
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 				    struct x86_exception *fault)
798 {
799 	struct kvm_mmu *fault_mmu;
800 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
801 
802 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 					       vcpu->arch.walk_mmu;
804 
805 	/*
806 	 * Invalidate the TLB entry for the faulting address, if it exists,
807 	 * else the access will fault indefinitely (and to emulate hardware).
808 	 */
809 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 	    !(fault->error_code & PFERR_RSVD_MASK))
811 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 					KVM_MMU_ROOT_CURRENT);
813 
814 	fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817 
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 	atomic_inc(&vcpu->arch.nmi_queued);
821 	kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823 
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829 
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835 
836 /*
837  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838  * a #GP and return false.
839  */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 		return true;
844 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 	return false;
846 }
847 
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 		return true;
852 
853 	kvm_queue_exception(vcpu, UD_VECTOR);
854 	return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857 
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862 
863 /*
864  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865  */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 	gpa_t real_gpa;
871 	int i;
872 	int ret;
873 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874 
875 	/*
876 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 	 * to an L1 GPA.
878 	 */
879 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 	if (real_gpa == INVALID_GPA)
882 		return 0;
883 
884 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
887 	if (ret < 0)
888 		return 0;
889 
890 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 		if ((pdpte[i] & PT_PRESENT_MASK) &&
892 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 			return 0;
894 		}
895 	}
896 
897 	/*
898 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 	 * Shadow page roots need to be reconstructed instead.
900 	 */
901 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903 
904 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 	vcpu->arch.pdptrs_from_userspace = false;
908 
909 	return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912 
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 	if (cr0 & 0xffffffff00000000UL)
917 		return false;
918 #endif
919 
920 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 		return false;
922 
923 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 		return false;
925 
926 	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928 
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 	/*
932 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
934 	 * as there are no permission bits to emulate.  If TDP is enabled, the
935 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 	 * translations does the right thing, but there's no need to unload the
937 	 * root as CR0.WP doesn't affect SPTEs.
938 	 */
939 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 		if (!(cr0 & X86_CR0_PG))
941 			return;
942 
943 		if (tdp_enabled) {
944 			kvm_init_mmu(vcpu);
945 			return;
946 		}
947 	}
948 
949 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 		kvm_clear_async_pf_completion_queue(vcpu);
951 		kvm_async_pf_hash_reset(vcpu);
952 
953 		/*
954 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 		 * perspective.
956 		 */
957 		if (!(cr0 & X86_CR0_PG))
958 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 	}
960 
961 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 		kvm_mmu_reset_context(vcpu);
963 
964 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 	    kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970 
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
974 
975 	if (!kvm_is_valid_cr0(vcpu, cr0))
976 		return 1;
977 
978 	cr0 |= X86_CR0_ET;
979 
980 	/* Write to CR0 reserved bits are ignored, even on Intel. */
981 	cr0 &= ~CR0_RESERVED_BITS;
982 
983 #ifdef CONFIG_X86_64
984 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 	    (cr0 & X86_CR0_PG)) {
986 		int cs_db, cs_l;
987 
988 		if (!is_pae(vcpu))
989 			return 1;
990 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 		if (cs_l)
992 			return 1;
993 	}
994 #endif
995 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 		return 1;
999 
1000 	if (!(cr0 & X86_CR0_PG) &&
1001 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 		return 1;
1003 
1004 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005 
1006 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007 
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011 
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017 
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 	if (vcpu->arch.guest_state_protected)
1021 		return;
1022 
1023 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024 
1025 		if (vcpu->arch.xcr0 != host_xcr0)
1026 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027 
1028 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 		    vcpu->arch.ia32_xss != host_xss)
1030 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 	}
1032 
1033 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 		write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040 
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 	if (vcpu->arch.guest_state_protected)
1044 		return;
1045 
1046 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 		vcpu->arch.pkru = rdpkru();
1050 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 			write_pkru(vcpu->arch.host_pkru);
1052 	}
1053 
1054 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055 
1056 		if (vcpu->arch.xcr0 != host_xcr0)
1057 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058 
1059 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 		    vcpu->arch.ia32_xss != host_xss)
1061 			wrmsrl(MSR_IA32_XSS, host_xss);
1062 	}
1063 
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066 
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073 
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 	u64 xcr0 = xcr;
1077 	u64 old_xcr0 = vcpu->arch.xcr0;
1078 	u64 valid_bits;
1079 
1080 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081 	if (index != XCR_XFEATURE_ENABLED_MASK)
1082 		return 1;
1083 	if (!(xcr0 & XFEATURE_MASK_FP))
1084 		return 1;
1085 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 		return 1;
1087 
1088 	/*
1089 	 * Do not allow the guest to set bits that we do not support
1090 	 * saving.  However, xcr0 bit 0 is always set, even if the
1091 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 	 */
1093 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 	if (xcr0 & ~valid_bits)
1095 		return 1;
1096 
1097 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 		return 1;
1100 
1101 	if (xcr0 & XFEATURE_MASK_AVX512) {
1102 		if (!(xcr0 & XFEATURE_MASK_YMM))
1103 			return 1;
1104 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 			return 1;
1106 	}
1107 
1108 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 		return 1;
1111 
1112 	vcpu->arch.xcr0 = xcr0;
1113 
1114 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 		kvm_update_cpuid_runtime(vcpu);
1116 	return 0;
1117 }
1118 
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 		kvm_inject_gp(vcpu, 0);
1125 		return 1;
1126 	}
1127 
1128 	return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131 
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 	if (cr4 & cr4_reserved_bits)
1135 		return false;
1136 
1137 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 		return false;
1139 
1140 	return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143 
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149 
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 		kvm_mmu_reset_context(vcpu);
1154 
1155 	/*
1156 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 	 * according to the SDM; however, stale prev_roots could be reused
1158 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 	 * so fall through.
1162 	 */
1163 	if (!tdp_enabled &&
1164 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 		kvm_mmu_unload(vcpu);
1166 
1167 	/*
1168 	 * The TLB has to be flushed for all PCIDs if any of the following
1169 	 * (architecturally required) changes happen:
1170 	 * - CR4.PCIDE is changed from 1 to 0
1171 	 * - CR4.PGE is toggled
1172 	 *
1173 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 	 */
1175 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178 
1179 	/*
1180 	 * The TLB has to be flushed for the current PCID if any of the
1181 	 * following (architecturally required) changes happen:
1182 	 * - CR4.SMEP is changed from 0 to 1
1183 	 * - CR4.PAE is toggled
1184 	 */
1185 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188 
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191 
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195 
1196 	if (!kvm_is_valid_cr4(vcpu, cr4))
1197 		return 1;
1198 
1199 	if (is_long_mode(vcpu)) {
1200 		if (!(cr4 & X86_CR4_PAE))
1201 			return 1;
1202 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 			return 1;
1204 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 		return 1;
1208 
1209 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 			return 1;
1213 	}
1214 
1215 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216 
1217 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222 
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 	unsigned long roots_to_free = 0;
1227 	int i;
1228 
1229 	/*
1230 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1233 	 * the invalidation, but the guest's TLB entries need to be flushed as
1234 	 * the CPU may have cached entries in its TLB for the target PCID.
1235 	 */
1236 	if (unlikely(tdp_enabled)) {
1237 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * If neither the current CR3 nor any of the prev_roots use the given
1243 	 * PCID, then nothing needs to be done here because a resync will
1244 	 * happen anyway before switching to any other CR3.
1245 	 */
1246 	if (kvm_get_active_pcid(vcpu) == pcid) {
1247 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 	}
1250 
1251 	/*
1252 	 * If PCID is disabled, there is no need to free prev_roots even if the
1253 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 	 * with PCIDE=0.
1255 	 */
1256 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 		return;
1258 
1259 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262 
1263 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265 
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 	bool skip_tlb_flush = false;
1269 	unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 		pcid = cr3 & X86_CR3_PCID_MASK;
1275 	}
1276 #endif
1277 
1278 	/* PDPTRs are always reloaded for PAE paging. */
1279 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 		goto handle_tlb_flush;
1281 
1282 	/*
1283 	 * Do not condition the GPA check on long mode, this helper is used to
1284 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 	 * the current vCPU mode is accurate.
1286 	 */
1287 	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1288 		return 1;
1289 
1290 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 		return 1;
1292 
1293 	if (cr3 != kvm_read_cr3(vcpu))
1294 		kvm_mmu_new_pgd(vcpu, cr3);
1295 
1296 	vcpu->arch.cr3 = cr3;
1297 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299 
1300 handle_tlb_flush:
1301 	/*
1302 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 	 * i.e. only PCID=0 can be relevant.
1307 	 */
1308 	if (!skip_tlb_flush)
1309 		kvm_invalidate_pcid(vcpu, pcid);
1310 
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314 
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 	if (cr8 & CR8_RESERVED_BITS)
1318 		return 1;
1319 	if (lapic_in_kernel(vcpu))
1320 		kvm_lapic_set_tpr(vcpu, cr8);
1321 	else
1322 		vcpu->arch.cr8 = cr8;
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326 
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 	if (lapic_in_kernel(vcpu))
1330 		return kvm_lapic_get_cr8(vcpu);
1331 	else
1332 		return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335 
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 	int i;
1339 
1340 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 	}
1344 }
1345 
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 	unsigned long dr7;
1349 
1350 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 		dr7 = vcpu->arch.guest_debug_dr7;
1352 	else
1353 		dr7 = vcpu->arch.dr7;
1354 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 	if (dr7 & DR7_BP_EN_MASK)
1357 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360 
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 	u64 fixed = DR6_FIXED_1;
1364 
1365 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 		fixed |= DR6_RTM;
1367 
1368 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 		fixed |= DR6_BUS_LOCK;
1370 	return fixed;
1371 }
1372 
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1376 
1377 	switch (dr) {
1378 	case 0 ... 3:
1379 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 			vcpu->arch.eff_db[dr] = val;
1382 		break;
1383 	case 4:
1384 	case 6:
1385 		if (!kvm_dr6_valid(val))
1386 			return 1; /* #GP */
1387 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 		break;
1389 	case 5:
1390 	default: /* 7 */
1391 		if (!kvm_dr7_valid(val))
1392 			return 1; /* #GP */
1393 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 		kvm_update_dr7(vcpu);
1395 		break;
1396 	}
1397 
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401 
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1405 
1406 	switch (dr) {
1407 	case 0 ... 3:
1408 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 		break;
1410 	case 4:
1411 	case 6:
1412 		*val = vcpu->arch.dr6;
1413 		break;
1414 	case 5:
1415 	default: /* 7 */
1416 		*val = vcpu->arch.dr7;
1417 		break;
1418 	}
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421 
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 	u32 ecx = kvm_rcx_read(vcpu);
1425 	u64 data;
1426 
1427 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 		kvm_inject_gp(vcpu, 0);
1429 		return 1;
1430 	}
1431 
1432 	kvm_rax_write(vcpu, (u32)data);
1433 	kvm_rdx_write(vcpu, data >> 32);
1434 	return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437 
1438 /*
1439  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443  * MSRs that KVM emulates without strictly requiring host support.
1444  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446  * msrs_to_save and emulated_msrs.
1447  */
1448 
1449 static const u32 msrs_to_save_base[] = {
1450 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 	MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 	MSR_IA32_UMWAIT_CONTROL,
1465 
1466 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468 
1469 static const u32 msrs_to_save_pmu[] = {
1470 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475 
1476 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485 
1486 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488 
1489 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494 
1495 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499 
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 			ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503 
1504 static const u32 emulated_msrs_all[] = {
1505 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 
1508 #ifdef CONFIG_KVM_HYPERV
1509 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1510 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1511 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1512 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1513 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1514 	HV_X64_MSR_RESET,
1515 	HV_X64_MSR_VP_INDEX,
1516 	HV_X64_MSR_VP_RUNTIME,
1517 	HV_X64_MSR_SCONTROL,
1518 	HV_X64_MSR_STIMER0_CONFIG,
1519 	HV_X64_MSR_VP_ASSIST_PAGE,
1520 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1521 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1522 	HV_X64_MSR_SYNDBG_OPTIONS,
1523 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1524 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1525 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1526 #endif
1527 
1528 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1529 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1530 
1531 	MSR_IA32_TSC_ADJUST,
1532 	MSR_IA32_TSC_DEADLINE,
1533 	MSR_IA32_ARCH_CAPABILITIES,
1534 	MSR_IA32_PERF_CAPABILITIES,
1535 	MSR_IA32_MISC_ENABLE,
1536 	MSR_IA32_MCG_STATUS,
1537 	MSR_IA32_MCG_CTL,
1538 	MSR_IA32_MCG_EXT_CTL,
1539 	MSR_IA32_SMBASE,
1540 	MSR_SMI_COUNT,
1541 	MSR_PLATFORM_INFO,
1542 	MSR_MISC_FEATURES_ENABLES,
1543 	MSR_AMD64_VIRT_SPEC_CTRL,
1544 	MSR_AMD64_TSC_RATIO,
1545 	MSR_IA32_POWER_CTL,
1546 	MSR_IA32_UCODE_REV,
1547 
1548 	/*
1549 	 * KVM always supports the "true" VMX control MSRs, even if the host
1550 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1551 	 * doesn't strictly require them to exist in the host (ignoring that
1552 	 * KVM would refuse to load in the first place if the core set of MSRs
1553 	 * aren't supported).
1554 	 */
1555 	MSR_IA32_VMX_BASIC,
1556 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1557 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1558 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1559 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1560 	MSR_IA32_VMX_MISC,
1561 	MSR_IA32_VMX_CR0_FIXED0,
1562 	MSR_IA32_VMX_CR4_FIXED0,
1563 	MSR_IA32_VMX_VMCS_ENUM,
1564 	MSR_IA32_VMX_PROCBASED_CTLS2,
1565 	MSR_IA32_VMX_EPT_VPID_CAP,
1566 	MSR_IA32_VMX_VMFUNC,
1567 
1568 	MSR_K7_HWCR,
1569 	MSR_KVM_POLL_CONTROL,
1570 };
1571 
1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1573 static unsigned num_emulated_msrs;
1574 
1575 /*
1576  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1577  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1578  * feature MSRs, but are handled separately to allow expedited lookups.
1579  */
1580 static const u32 msr_based_features_all_except_vmx[] = {
1581 	MSR_AMD64_DE_CFG,
1582 	MSR_IA32_UCODE_REV,
1583 	MSR_IA32_ARCH_CAPABILITIES,
1584 	MSR_IA32_PERF_CAPABILITIES,
1585 };
1586 
1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1588 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1589 static unsigned int num_msr_based_features;
1590 
1591 /*
1592  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1593  * patch, are immutable once the vCPU model is defined.
1594  */
1595 static bool kvm_is_immutable_feature_msr(u32 msr)
1596 {
1597 	int i;
1598 
1599 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1600 		return true;
1601 
1602 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1603 		if (msr == msr_based_features_all_except_vmx[i])
1604 			return msr != MSR_IA32_UCODE_REV;
1605 	}
1606 
1607 	return false;
1608 }
1609 
1610 /*
1611  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1612  * does not yet virtualize. These include:
1613  *   10 - MISC_PACKAGE_CTRLS
1614  *   11 - ENERGY_FILTERING_CTL
1615  *   12 - DOITM
1616  *   18 - FB_CLEAR_CTRL
1617  *   21 - XAPIC_DISABLE_STATUS
1618  *   23 - OVERCLOCKING_STATUS
1619  */
1620 
1621 #define KVM_SUPPORTED_ARCH_CAP \
1622 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1623 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1624 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1625 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1626 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1627 
1628 static u64 kvm_get_arch_capabilities(void)
1629 {
1630 	u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1631 
1632 	/*
1633 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1634 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1635 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1636 	 * L1 guests, so it need not worry about its own (L2) guests.
1637 	 */
1638 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1639 
1640 	/*
1641 	 * If we're doing cache flushes (either "always" or "cond")
1642 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1643 	 * If an outer hypervisor is doing the cache flush for us
1644 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1645 	 * capability to the guest too, and if EPT is disabled we're not
1646 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1647 	 * require a nested hypervisor to do a flush of its own.
1648 	 */
1649 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1650 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1651 
1652 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1653 		data |= ARCH_CAP_RDCL_NO;
1654 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1655 		data |= ARCH_CAP_SSB_NO;
1656 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1657 		data |= ARCH_CAP_MDS_NO;
1658 
1659 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1660 		/*
1661 		 * If RTM=0 because the kernel has disabled TSX, the host might
1662 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1663 		 * and therefore knows that there cannot be TAA) but keep
1664 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665 		 * and we want to allow migrating those guests to tsx=off hosts.
1666 		 */
1667 		data &= ~ARCH_CAP_TAA_NO;
1668 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669 		data |= ARCH_CAP_TAA_NO;
1670 	} else {
1671 		/*
1672 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1673 		 * host so the guest can choose between disabling TSX or
1674 		 * using VERW to clear CPU buffers.
1675 		 */
1676 	}
1677 
1678 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679 		data |= ARCH_CAP_GDS_NO;
1680 
1681 	return data;
1682 }
1683 
1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1685 {
1686 	switch (msr->index) {
1687 	case MSR_IA32_ARCH_CAPABILITIES:
1688 		msr->data = kvm_get_arch_capabilities();
1689 		break;
1690 	case MSR_IA32_PERF_CAPABILITIES:
1691 		msr->data = kvm_caps.supported_perf_cap;
1692 		break;
1693 	case MSR_IA32_UCODE_REV:
1694 		rdmsrl_safe(msr->index, &msr->data);
1695 		break;
1696 	default:
1697 		return static_call(kvm_x86_get_msr_feature)(msr);
1698 	}
1699 	return 0;
1700 }
1701 
1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703 {
1704 	struct kvm_msr_entry msr;
1705 	int r;
1706 
1707 	/* Unconditionally clear the output for simplicity */
1708 	msr.data = 0;
1709 	msr.index = index;
1710 	r = kvm_get_msr_feature(&msr);
1711 
1712 	if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false))
1713 		r = 0;
1714 
1715 	*data = msr.data;
1716 
1717 	return r;
1718 }
1719 
1720 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1721 {
1722 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1723 		return false;
1724 
1725 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1726 		return false;
1727 
1728 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1729 		return false;
1730 
1731 	if (efer & (EFER_LME | EFER_LMA) &&
1732 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1733 		return false;
1734 
1735 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1736 		return false;
1737 
1738 	return true;
1739 
1740 }
1741 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1742 {
1743 	if (efer & efer_reserved_bits)
1744 		return false;
1745 
1746 	return __kvm_valid_efer(vcpu, efer);
1747 }
1748 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1749 
1750 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1751 {
1752 	u64 old_efer = vcpu->arch.efer;
1753 	u64 efer = msr_info->data;
1754 	int r;
1755 
1756 	if (efer & efer_reserved_bits)
1757 		return 1;
1758 
1759 	if (!msr_info->host_initiated) {
1760 		if (!__kvm_valid_efer(vcpu, efer))
1761 			return 1;
1762 
1763 		if (is_paging(vcpu) &&
1764 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1765 			return 1;
1766 	}
1767 
1768 	efer &= ~EFER_LMA;
1769 	efer |= vcpu->arch.efer & EFER_LMA;
1770 
1771 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1772 	if (r) {
1773 		WARN_ON(r > 0);
1774 		return r;
1775 	}
1776 
1777 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1778 		kvm_mmu_reset_context(vcpu);
1779 
1780 	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1781 	    (efer & EFER_SVME))
1782 		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1783 
1784 	return 0;
1785 }
1786 
1787 void kvm_enable_efer_bits(u64 mask)
1788 {
1789        efer_reserved_bits &= ~mask;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1792 
1793 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1794 {
1795 	struct kvm_x86_msr_filter *msr_filter;
1796 	struct msr_bitmap_range *ranges;
1797 	struct kvm *kvm = vcpu->kvm;
1798 	bool allowed;
1799 	int idx;
1800 	u32 i;
1801 
1802 	/* x2APIC MSRs do not support filtering. */
1803 	if (index >= 0x800 && index <= 0x8ff)
1804 		return true;
1805 
1806 	idx = srcu_read_lock(&kvm->srcu);
1807 
1808 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1809 	if (!msr_filter) {
1810 		allowed = true;
1811 		goto out;
1812 	}
1813 
1814 	allowed = msr_filter->default_allow;
1815 	ranges = msr_filter->ranges;
1816 
1817 	for (i = 0; i < msr_filter->count; i++) {
1818 		u32 start = ranges[i].base;
1819 		u32 end = start + ranges[i].nmsrs;
1820 		u32 flags = ranges[i].flags;
1821 		unsigned long *bitmap = ranges[i].bitmap;
1822 
1823 		if ((index >= start) && (index < end) && (flags & type)) {
1824 			allowed = test_bit(index - start, bitmap);
1825 			break;
1826 		}
1827 	}
1828 
1829 out:
1830 	srcu_read_unlock(&kvm->srcu, idx);
1831 
1832 	return allowed;
1833 }
1834 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1835 
1836 /*
1837  * Write @data into the MSR specified by @index.  Select MSR specific fault
1838  * checks are bypassed if @host_initiated is %true.
1839  * Returns 0 on success, non-0 otherwise.
1840  * Assumes vcpu_load() was already called.
1841  */
1842 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1843 			 bool host_initiated)
1844 {
1845 	struct msr_data msr;
1846 
1847 	switch (index) {
1848 	case MSR_FS_BASE:
1849 	case MSR_GS_BASE:
1850 	case MSR_KERNEL_GS_BASE:
1851 	case MSR_CSTAR:
1852 	case MSR_LSTAR:
1853 		if (is_noncanonical_address(data, vcpu))
1854 			return 1;
1855 		break;
1856 	case MSR_IA32_SYSENTER_EIP:
1857 	case MSR_IA32_SYSENTER_ESP:
1858 		/*
1859 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1860 		 * non-canonical address is written on Intel but not on
1861 		 * AMD (which ignores the top 32-bits, because it does
1862 		 * not implement 64-bit SYSENTER).
1863 		 *
1864 		 * 64-bit code should hence be able to write a non-canonical
1865 		 * value on AMD.  Making the address canonical ensures that
1866 		 * vmentry does not fail on Intel after writing a non-canonical
1867 		 * value, and that something deterministic happens if the guest
1868 		 * invokes 64-bit SYSENTER.
1869 		 */
1870 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1871 		break;
1872 	case MSR_TSC_AUX:
1873 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1874 			return 1;
1875 
1876 		if (!host_initiated &&
1877 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1878 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1879 			return 1;
1880 
1881 		/*
1882 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1883 		 * incomplete and conflicting architectural behavior.  Current
1884 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1885 		 * reserved and always read as zeros.  Enforce Intel's reserved
1886 		 * bits check if and only if the guest CPU is Intel, and clear
1887 		 * the bits in all other cases.  This ensures cross-vendor
1888 		 * migration will provide consistent behavior for the guest.
1889 		 */
1890 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1891 			return 1;
1892 
1893 		data = (u32)data;
1894 		break;
1895 	}
1896 
1897 	msr.data = data;
1898 	msr.index = index;
1899 	msr.host_initiated = host_initiated;
1900 
1901 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1902 }
1903 
1904 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1905 				     u32 index, u64 data, bool host_initiated)
1906 {
1907 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1908 
1909 	if (ret == KVM_MSR_RET_INVALID)
1910 		if (kvm_msr_ignored_check(index, data, true))
1911 			ret = 0;
1912 
1913 	return ret;
1914 }
1915 
1916 /*
1917  * Read the MSR specified by @index into @data.  Select MSR specific fault
1918  * checks are bypassed if @host_initiated is %true.
1919  * Returns 0 on success, non-0 otherwise.
1920  * Assumes vcpu_load() was already called.
1921  */
1922 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1923 		  bool host_initiated)
1924 {
1925 	struct msr_data msr;
1926 	int ret;
1927 
1928 	switch (index) {
1929 	case MSR_TSC_AUX:
1930 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1931 			return 1;
1932 
1933 		if (!host_initiated &&
1934 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1935 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1936 			return 1;
1937 		break;
1938 	}
1939 
1940 	msr.index = index;
1941 	msr.host_initiated = host_initiated;
1942 
1943 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1944 	if (!ret)
1945 		*data = msr.data;
1946 	return ret;
1947 }
1948 
1949 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1950 				     u32 index, u64 *data, bool host_initiated)
1951 {
1952 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1953 
1954 	if (ret == KVM_MSR_RET_INVALID) {
1955 		/* Unconditionally clear *data for simplicity */
1956 		*data = 0;
1957 		if (kvm_msr_ignored_check(index, 0, false))
1958 			ret = 0;
1959 	}
1960 
1961 	return ret;
1962 }
1963 
1964 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1965 {
1966 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1967 		return KVM_MSR_RET_FILTERED;
1968 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1969 }
1970 
1971 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1972 {
1973 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1974 		return KVM_MSR_RET_FILTERED;
1975 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1976 }
1977 
1978 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1979 {
1980 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_get_msr);
1983 
1984 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1985 {
1986 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1987 }
1988 EXPORT_SYMBOL_GPL(kvm_set_msr);
1989 
1990 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1991 {
1992 	if (!vcpu->run->msr.error) {
1993 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1994 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1995 	}
1996 }
1997 
1998 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1999 {
2000 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2001 }
2002 
2003 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2004 {
2005 	complete_userspace_rdmsr(vcpu);
2006 	return complete_emulated_msr_access(vcpu);
2007 }
2008 
2009 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2010 {
2011 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2012 }
2013 
2014 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2015 {
2016 	complete_userspace_rdmsr(vcpu);
2017 	return complete_fast_msr_access(vcpu);
2018 }
2019 
2020 static u64 kvm_msr_reason(int r)
2021 {
2022 	switch (r) {
2023 	case KVM_MSR_RET_INVALID:
2024 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2025 	case KVM_MSR_RET_FILTERED:
2026 		return KVM_MSR_EXIT_REASON_FILTER;
2027 	default:
2028 		return KVM_MSR_EXIT_REASON_INVAL;
2029 	}
2030 }
2031 
2032 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2033 			      u32 exit_reason, u64 data,
2034 			      int (*completion)(struct kvm_vcpu *vcpu),
2035 			      int r)
2036 {
2037 	u64 msr_reason = kvm_msr_reason(r);
2038 
2039 	/* Check if the user wanted to know about this MSR fault */
2040 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2041 		return 0;
2042 
2043 	vcpu->run->exit_reason = exit_reason;
2044 	vcpu->run->msr.error = 0;
2045 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2046 	vcpu->run->msr.reason = msr_reason;
2047 	vcpu->run->msr.index = index;
2048 	vcpu->run->msr.data = data;
2049 	vcpu->arch.complete_userspace_io = completion;
2050 
2051 	return 1;
2052 }
2053 
2054 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2055 {
2056 	u32 ecx = kvm_rcx_read(vcpu);
2057 	u64 data;
2058 	int r;
2059 
2060 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2061 
2062 	if (!r) {
2063 		trace_kvm_msr_read(ecx, data);
2064 
2065 		kvm_rax_write(vcpu, data & -1u);
2066 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2067 	} else {
2068 		/* MSR read failed? See if we should ask user space */
2069 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2070 				       complete_fast_rdmsr, r))
2071 			return 0;
2072 		trace_kvm_msr_read_ex(ecx);
2073 	}
2074 
2075 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2078 
2079 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2080 {
2081 	u32 ecx = kvm_rcx_read(vcpu);
2082 	u64 data = kvm_read_edx_eax(vcpu);
2083 	int r;
2084 
2085 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2086 
2087 	if (!r) {
2088 		trace_kvm_msr_write(ecx, data);
2089 	} else {
2090 		/* MSR write failed? See if we should ask user space */
2091 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2092 				       complete_fast_msr_access, r))
2093 			return 0;
2094 		/* Signal all other negative errors to userspace */
2095 		if (r < 0)
2096 			return r;
2097 		trace_kvm_msr_write_ex(ecx, data);
2098 	}
2099 
2100 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2103 
2104 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2105 {
2106 	return kvm_skip_emulated_instruction(vcpu);
2107 }
2108 
2109 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2110 {
2111 	/* Treat an INVD instruction as a NOP and just skip it. */
2112 	return kvm_emulate_as_nop(vcpu);
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2115 
2116 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2117 {
2118 	kvm_queue_exception(vcpu, UD_VECTOR);
2119 	return 1;
2120 }
2121 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2122 
2123 
2124 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2125 {
2126 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2127 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2128 		return kvm_handle_invalid_op(vcpu);
2129 
2130 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2131 	return kvm_emulate_as_nop(vcpu);
2132 }
2133 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2134 {
2135 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2136 }
2137 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2138 
2139 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2140 {
2141 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2142 }
2143 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2144 
2145 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2146 {
2147 	xfer_to_guest_mode_prepare();
2148 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2149 		xfer_to_guest_mode_work_pending();
2150 }
2151 
2152 /*
2153  * The fast path for frequent and performance sensitive wrmsr emulation,
2154  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2155  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2156  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2157  * other cases which must be called after interrupts are enabled on the host.
2158  */
2159 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2160 {
2161 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2162 		return 1;
2163 
2164 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2165 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2166 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2167 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2168 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2169 
2170 	return 1;
2171 }
2172 
2173 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2174 {
2175 	if (!kvm_can_use_hv_timer(vcpu))
2176 		return 1;
2177 
2178 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2179 	return 0;
2180 }
2181 
2182 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2183 {
2184 	u32 msr = kvm_rcx_read(vcpu);
2185 	u64 data;
2186 	fastpath_t ret = EXIT_FASTPATH_NONE;
2187 
2188 	kvm_vcpu_srcu_read_lock(vcpu);
2189 
2190 	switch (msr) {
2191 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2192 		data = kvm_read_edx_eax(vcpu);
2193 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2194 			kvm_skip_emulated_instruction(vcpu);
2195 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2196 		}
2197 		break;
2198 	case MSR_IA32_TSC_DEADLINE:
2199 		data = kvm_read_edx_eax(vcpu);
2200 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2201 			kvm_skip_emulated_instruction(vcpu);
2202 			ret = EXIT_FASTPATH_REENTER_GUEST;
2203 		}
2204 		break;
2205 	default:
2206 		break;
2207 	}
2208 
2209 	if (ret != EXIT_FASTPATH_NONE)
2210 		trace_kvm_msr_write(msr, data);
2211 
2212 	kvm_vcpu_srcu_read_unlock(vcpu);
2213 
2214 	return ret;
2215 }
2216 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2217 
2218 /*
2219  * Adapt set_msr() to msr_io()'s calling convention
2220  */
2221 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2222 {
2223 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2224 }
2225 
2226 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2227 {
2228 	u64 val;
2229 
2230 	/*
2231 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2232 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2233 	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2234 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2235 	 * all MSRs when emulating RESET.
2236 	 */
2237 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2238 		if (do_get_msr(vcpu, index, &val) || *data != val)
2239 			return -EINVAL;
2240 
2241 		return 0;
2242 	}
2243 
2244 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2245 }
2246 
2247 #ifdef CONFIG_X86_64
2248 struct pvclock_clock {
2249 	int vclock_mode;
2250 	u64 cycle_last;
2251 	u64 mask;
2252 	u32 mult;
2253 	u32 shift;
2254 	u64 base_cycles;
2255 	u64 offset;
2256 };
2257 
2258 struct pvclock_gtod_data {
2259 	seqcount_t	seq;
2260 
2261 	struct pvclock_clock clock; /* extract of a clocksource struct */
2262 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2263 
2264 	ktime_t		offs_boot;
2265 	u64		wall_time_sec;
2266 };
2267 
2268 static struct pvclock_gtod_data pvclock_gtod_data;
2269 
2270 static void update_pvclock_gtod(struct timekeeper *tk)
2271 {
2272 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2273 
2274 	write_seqcount_begin(&vdata->seq);
2275 
2276 	/* copy pvclock gtod data */
2277 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2278 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2279 	vdata->clock.mask		= tk->tkr_mono.mask;
2280 	vdata->clock.mult		= tk->tkr_mono.mult;
2281 	vdata->clock.shift		= tk->tkr_mono.shift;
2282 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2283 	vdata->clock.offset		= tk->tkr_mono.base;
2284 
2285 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2286 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2287 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2288 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2289 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2290 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2291 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2292 
2293 	vdata->wall_time_sec            = tk->xtime_sec;
2294 
2295 	vdata->offs_boot		= tk->offs_boot;
2296 
2297 	write_seqcount_end(&vdata->seq);
2298 }
2299 
2300 static s64 get_kvmclock_base_ns(void)
2301 {
2302 	/* Count up from boot time, but with the frequency of the raw clock.  */
2303 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2304 }
2305 #else
2306 static s64 get_kvmclock_base_ns(void)
2307 {
2308 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2309 	return ktime_get_boottime_ns();
2310 }
2311 #endif
2312 
2313 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2314 {
2315 	int version;
2316 	int r;
2317 	struct pvclock_wall_clock wc;
2318 	u32 wc_sec_hi;
2319 	u64 wall_nsec;
2320 
2321 	if (!wall_clock)
2322 		return;
2323 
2324 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2325 	if (r)
2326 		return;
2327 
2328 	if (version & 1)
2329 		++version;  /* first time write, random junk */
2330 
2331 	++version;
2332 
2333 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2334 		return;
2335 
2336 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2337 
2338 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2339 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2340 	wc.version = version;
2341 
2342 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2343 
2344 	if (sec_hi_ofs) {
2345 		wc_sec_hi = wall_nsec >> 32;
2346 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2347 				&wc_sec_hi, sizeof(wc_sec_hi));
2348 	}
2349 
2350 	version++;
2351 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2352 }
2353 
2354 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2355 				  bool old_msr, bool host_initiated)
2356 {
2357 	struct kvm_arch *ka = &vcpu->kvm->arch;
2358 
2359 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2360 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2361 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2362 
2363 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2364 	}
2365 
2366 	vcpu->arch.time = system_time;
2367 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2368 
2369 	/* we verify if the enable bit is set... */
2370 	if (system_time & 1)
2371 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2372 				 sizeof(struct pvclock_vcpu_time_info));
2373 	else
2374 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2375 
2376 	return;
2377 }
2378 
2379 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2380 {
2381 	do_shl32_div32(dividend, divisor);
2382 	return dividend;
2383 }
2384 
2385 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2386 			       s8 *pshift, u32 *pmultiplier)
2387 {
2388 	uint64_t scaled64;
2389 	int32_t  shift = 0;
2390 	uint64_t tps64;
2391 	uint32_t tps32;
2392 
2393 	tps64 = base_hz;
2394 	scaled64 = scaled_hz;
2395 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2396 		tps64 >>= 1;
2397 		shift--;
2398 	}
2399 
2400 	tps32 = (uint32_t)tps64;
2401 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2402 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2403 			scaled64 >>= 1;
2404 		else
2405 			tps32 <<= 1;
2406 		shift++;
2407 	}
2408 
2409 	*pshift = shift;
2410 	*pmultiplier = div_frac(scaled64, tps32);
2411 }
2412 
2413 #ifdef CONFIG_X86_64
2414 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2415 #endif
2416 
2417 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2418 static unsigned long max_tsc_khz;
2419 
2420 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2421 {
2422 	u64 v = (u64)khz * (1000000 + ppm);
2423 	do_div(v, 1000000);
2424 	return v;
2425 }
2426 
2427 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2428 
2429 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2430 {
2431 	u64 ratio;
2432 
2433 	/* Guest TSC same frequency as host TSC? */
2434 	if (!scale) {
2435 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2436 		return 0;
2437 	}
2438 
2439 	/* TSC scaling supported? */
2440 	if (!kvm_caps.has_tsc_control) {
2441 		if (user_tsc_khz > tsc_khz) {
2442 			vcpu->arch.tsc_catchup = 1;
2443 			vcpu->arch.tsc_always_catchup = 1;
2444 			return 0;
2445 		} else {
2446 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2447 			return -1;
2448 		}
2449 	}
2450 
2451 	/* TSC scaling required  - calculate ratio */
2452 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2453 				user_tsc_khz, tsc_khz);
2454 
2455 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2456 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2457 			            user_tsc_khz);
2458 		return -1;
2459 	}
2460 
2461 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2462 	return 0;
2463 }
2464 
2465 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2466 {
2467 	u32 thresh_lo, thresh_hi;
2468 	int use_scaling = 0;
2469 
2470 	/* tsc_khz can be zero if TSC calibration fails */
2471 	if (user_tsc_khz == 0) {
2472 		/* set tsc_scaling_ratio to a safe value */
2473 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2474 		return -1;
2475 	}
2476 
2477 	/* Compute a scale to convert nanoseconds in TSC cycles */
2478 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2479 			   &vcpu->arch.virtual_tsc_shift,
2480 			   &vcpu->arch.virtual_tsc_mult);
2481 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2482 
2483 	/*
2484 	 * Compute the variation in TSC rate which is acceptable
2485 	 * within the range of tolerance and decide if the
2486 	 * rate being applied is within that bounds of the hardware
2487 	 * rate.  If so, no scaling or compensation need be done.
2488 	 */
2489 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2490 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2491 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2492 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2493 			 user_tsc_khz, thresh_lo, thresh_hi);
2494 		use_scaling = 1;
2495 	}
2496 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2497 }
2498 
2499 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2500 {
2501 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2502 				      vcpu->arch.virtual_tsc_mult,
2503 				      vcpu->arch.virtual_tsc_shift);
2504 	tsc += vcpu->arch.this_tsc_write;
2505 	return tsc;
2506 }
2507 
2508 #ifdef CONFIG_X86_64
2509 static inline bool gtod_is_based_on_tsc(int mode)
2510 {
2511 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2512 }
2513 #endif
2514 
2515 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2516 {
2517 #ifdef CONFIG_X86_64
2518 	struct kvm_arch *ka = &vcpu->kvm->arch;
2519 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2520 
2521 	/*
2522 	 * To use the masterclock, the host clocksource must be based on TSC
2523 	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2524 	 * vCPUs doesn't include the reference vCPU, hence "+1".
2525 	 */
2526 	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2527 				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2528 				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2529 
2530 	/*
2531 	 * Request a masterclock update if the masterclock needs to be toggled
2532 	 * on/off, or when starting a new generation and the masterclock is
2533 	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2534 	 * taken _after_ the new generation is created).
2535 	 */
2536 	if ((ka->use_master_clock && new_generation) ||
2537 	    (ka->use_master_clock != use_master_clock))
2538 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2539 
2540 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2541 			    atomic_read(&vcpu->kvm->online_vcpus),
2542 		            ka->use_master_clock, gtod->clock.vclock_mode);
2543 #endif
2544 }
2545 
2546 /*
2547  * Multiply tsc by a fixed point number represented by ratio.
2548  *
2549  * The most significant 64-N bits (mult) of ratio represent the
2550  * integral part of the fixed point number; the remaining N bits
2551  * (frac) represent the fractional part, ie. ratio represents a fixed
2552  * point number (mult + frac * 2^(-N)).
2553  *
2554  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2555  */
2556 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2557 {
2558 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2559 }
2560 
2561 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2562 {
2563 	u64 _tsc = tsc;
2564 
2565 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2566 		_tsc = __scale_tsc(ratio, tsc);
2567 
2568 	return _tsc;
2569 }
2570 
2571 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2572 {
2573 	u64 tsc;
2574 
2575 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2576 
2577 	return target_tsc - tsc;
2578 }
2579 
2580 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2581 {
2582 	return vcpu->arch.l1_tsc_offset +
2583 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2584 }
2585 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2586 
2587 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2588 {
2589 	u64 nested_offset;
2590 
2591 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2592 		nested_offset = l1_offset;
2593 	else
2594 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2595 						kvm_caps.tsc_scaling_ratio_frac_bits);
2596 
2597 	nested_offset += l2_offset;
2598 	return nested_offset;
2599 }
2600 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2601 
2602 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2603 {
2604 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2605 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2606 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2607 
2608 	return l1_multiplier;
2609 }
2610 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2611 
2612 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2613 {
2614 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2615 				   vcpu->arch.l1_tsc_offset,
2616 				   l1_offset);
2617 
2618 	vcpu->arch.l1_tsc_offset = l1_offset;
2619 
2620 	/*
2621 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2622 	 * according to the spec this should set L1's TSC (as opposed to
2623 	 * setting L1's offset for L2).
2624 	 */
2625 	if (is_guest_mode(vcpu))
2626 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2627 			l1_offset,
2628 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2629 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2630 	else
2631 		vcpu->arch.tsc_offset = l1_offset;
2632 
2633 	static_call(kvm_x86_write_tsc_offset)(vcpu);
2634 }
2635 
2636 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2637 {
2638 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2639 
2640 	/* Userspace is changing the multiplier while L2 is active */
2641 	if (is_guest_mode(vcpu))
2642 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2643 			l1_multiplier,
2644 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2645 	else
2646 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2647 
2648 	if (kvm_caps.has_tsc_control)
2649 		static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2650 }
2651 
2652 static inline bool kvm_check_tsc_unstable(void)
2653 {
2654 #ifdef CONFIG_X86_64
2655 	/*
2656 	 * TSC is marked unstable when we're running on Hyper-V,
2657 	 * 'TSC page' clocksource is good.
2658 	 */
2659 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2660 		return false;
2661 #endif
2662 	return check_tsc_unstable();
2663 }
2664 
2665 /*
2666  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2667  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2668  * participates in.
2669  */
2670 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2671 				  u64 ns, bool matched)
2672 {
2673 	struct kvm *kvm = vcpu->kvm;
2674 
2675 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2676 
2677 	/*
2678 	 * We also track th most recent recorded KHZ, write and time to
2679 	 * allow the matching interval to be extended at each write.
2680 	 */
2681 	kvm->arch.last_tsc_nsec = ns;
2682 	kvm->arch.last_tsc_write = tsc;
2683 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2684 	kvm->arch.last_tsc_offset = offset;
2685 
2686 	vcpu->arch.last_guest_tsc = tsc;
2687 
2688 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2689 
2690 	if (!matched) {
2691 		/*
2692 		 * We split periods of matched TSC writes into generations.
2693 		 * For each generation, we track the original measured
2694 		 * nanosecond time, offset, and write, so if TSCs are in
2695 		 * sync, we can match exact offset, and if not, we can match
2696 		 * exact software computation in compute_guest_tsc()
2697 		 *
2698 		 * These values are tracked in kvm->arch.cur_xxx variables.
2699 		 */
2700 		kvm->arch.cur_tsc_generation++;
2701 		kvm->arch.cur_tsc_nsec = ns;
2702 		kvm->arch.cur_tsc_write = tsc;
2703 		kvm->arch.cur_tsc_offset = offset;
2704 		kvm->arch.nr_vcpus_matched_tsc = 0;
2705 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2706 		kvm->arch.nr_vcpus_matched_tsc++;
2707 	}
2708 
2709 	/* Keep track of which generation this VCPU has synchronized to */
2710 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2711 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2712 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2713 
2714 	kvm_track_tsc_matching(vcpu, !matched);
2715 }
2716 
2717 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2718 {
2719 	u64 data = user_value ? *user_value : 0;
2720 	struct kvm *kvm = vcpu->kvm;
2721 	u64 offset, ns, elapsed;
2722 	unsigned long flags;
2723 	bool matched = false;
2724 	bool synchronizing = false;
2725 
2726 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2727 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2728 	ns = get_kvmclock_base_ns();
2729 	elapsed = ns - kvm->arch.last_tsc_nsec;
2730 
2731 	if (vcpu->arch.virtual_tsc_khz) {
2732 		if (data == 0) {
2733 			/*
2734 			 * Force synchronization when creating a vCPU, or when
2735 			 * userspace explicitly writes a zero value.
2736 			 */
2737 			synchronizing = true;
2738 		} else if (kvm->arch.user_set_tsc) {
2739 			u64 tsc_exp = kvm->arch.last_tsc_write +
2740 						nsec_to_cycles(vcpu, elapsed);
2741 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2742 			/*
2743 			 * Here lies UAPI baggage: when a user-initiated TSC write has
2744 			 * a small delta (1 second) of virtual cycle time against the
2745 			 * previously set vCPU, we assume that they were intended to be
2746 			 * in sync and the delta was only due to the racy nature of the
2747 			 * legacy API.
2748 			 *
2749 			 * This trick falls down when restoring a guest which genuinely
2750 			 * has been running for less time than the 1 second of imprecision
2751 			 * which we allow for in the legacy API. In this case, the first
2752 			 * value written by userspace (on any vCPU) should not be subject
2753 			 * to this 'correction' to make it sync up with values that only
2754 			 * come from the kernel's default vCPU creation. Make the 1-second
2755 			 * slop hack only trigger if the user_set_tsc flag is already set.
2756 			 */
2757 			synchronizing = data < tsc_exp + tsc_hz &&
2758 					data + tsc_hz > tsc_exp;
2759 		}
2760 	}
2761 
2762 	if (user_value)
2763 		kvm->arch.user_set_tsc = true;
2764 
2765 	/*
2766 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2767 	 * TSC, we add elapsed time in this computation.  We could let the
2768 	 * compensation code attempt to catch up if we fall behind, but
2769 	 * it's better to try to match offsets from the beginning.
2770          */
2771 	if (synchronizing &&
2772 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2773 		if (!kvm_check_tsc_unstable()) {
2774 			offset = kvm->arch.cur_tsc_offset;
2775 		} else {
2776 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2777 			data += delta;
2778 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2779 		}
2780 		matched = true;
2781 	}
2782 
2783 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2784 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2785 }
2786 
2787 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2788 					   s64 adjustment)
2789 {
2790 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2791 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2792 }
2793 
2794 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2795 {
2796 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2797 		WARN_ON(adjustment < 0);
2798 	adjustment = kvm_scale_tsc((u64) adjustment,
2799 				   vcpu->arch.l1_tsc_scaling_ratio);
2800 	adjust_tsc_offset_guest(vcpu, adjustment);
2801 }
2802 
2803 #ifdef CONFIG_X86_64
2804 
2805 static u64 read_tsc(void)
2806 {
2807 	u64 ret = (u64)rdtsc_ordered();
2808 	u64 last = pvclock_gtod_data.clock.cycle_last;
2809 
2810 	if (likely(ret >= last))
2811 		return ret;
2812 
2813 	/*
2814 	 * GCC likes to generate cmov here, but this branch is extremely
2815 	 * predictable (it's just a function of time and the likely is
2816 	 * very likely) and there's a data dependence, so force GCC
2817 	 * to generate a branch instead.  I don't barrier() because
2818 	 * we don't actually need a barrier, and if this function
2819 	 * ever gets inlined it will generate worse code.
2820 	 */
2821 	asm volatile ("");
2822 	return last;
2823 }
2824 
2825 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2826 			  int *mode)
2827 {
2828 	u64 tsc_pg_val;
2829 	long v;
2830 
2831 	switch (clock->vclock_mode) {
2832 	case VDSO_CLOCKMODE_HVCLOCK:
2833 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2834 					 tsc_timestamp, &tsc_pg_val)) {
2835 			/* TSC page valid */
2836 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2837 			v = (tsc_pg_val - clock->cycle_last) &
2838 				clock->mask;
2839 		} else {
2840 			/* TSC page invalid */
2841 			*mode = VDSO_CLOCKMODE_NONE;
2842 		}
2843 		break;
2844 	case VDSO_CLOCKMODE_TSC:
2845 		*mode = VDSO_CLOCKMODE_TSC;
2846 		*tsc_timestamp = read_tsc();
2847 		v = (*tsc_timestamp - clock->cycle_last) &
2848 			clock->mask;
2849 		break;
2850 	default:
2851 		*mode = VDSO_CLOCKMODE_NONE;
2852 	}
2853 
2854 	if (*mode == VDSO_CLOCKMODE_NONE)
2855 		*tsc_timestamp = v = 0;
2856 
2857 	return v * clock->mult;
2858 }
2859 
2860 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2861 {
2862 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2863 	unsigned long seq;
2864 	int mode;
2865 	u64 ns;
2866 
2867 	do {
2868 		seq = read_seqcount_begin(&gtod->seq);
2869 		ns = gtod->raw_clock.base_cycles;
2870 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2871 		ns >>= gtod->raw_clock.shift;
2872 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2873 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2874 	*t = ns;
2875 
2876 	return mode;
2877 }
2878 
2879 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2880 {
2881 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2882 	unsigned long seq;
2883 	int mode;
2884 	u64 ns;
2885 
2886 	do {
2887 		seq = read_seqcount_begin(&gtod->seq);
2888 		ts->tv_sec = gtod->wall_time_sec;
2889 		ns = gtod->clock.base_cycles;
2890 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2891 		ns >>= gtod->clock.shift;
2892 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2893 
2894 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2895 	ts->tv_nsec = ns;
2896 
2897 	return mode;
2898 }
2899 
2900 /* returns true if host is using TSC based clocksource */
2901 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2902 {
2903 	/* checked again under seqlock below */
2904 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2905 		return false;
2906 
2907 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2908 						      tsc_timestamp));
2909 }
2910 
2911 /* returns true if host is using TSC based clocksource */
2912 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2913 					   u64 *tsc_timestamp)
2914 {
2915 	/* checked again under seqlock below */
2916 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2917 		return false;
2918 
2919 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2920 }
2921 #endif
2922 
2923 /*
2924  *
2925  * Assuming a stable TSC across physical CPUS, and a stable TSC
2926  * across virtual CPUs, the following condition is possible.
2927  * Each numbered line represents an event visible to both
2928  * CPUs at the next numbered event.
2929  *
2930  * "timespecX" represents host monotonic time. "tscX" represents
2931  * RDTSC value.
2932  *
2933  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2934  *
2935  * 1.  read timespec0,tsc0
2936  * 2.					| timespec1 = timespec0 + N
2937  * 					| tsc1 = tsc0 + M
2938  * 3. transition to guest		| transition to guest
2939  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2940  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2941  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2942  *
2943  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2944  *
2945  * 	- ret0 < ret1
2946  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2947  *		...
2948  *	- 0 < N - M => M < N
2949  *
2950  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2951  * always the case (the difference between two distinct xtime instances
2952  * might be smaller then the difference between corresponding TSC reads,
2953  * when updating guest vcpus pvclock areas).
2954  *
2955  * To avoid that problem, do not allow visibility of distinct
2956  * system_timestamp/tsc_timestamp values simultaneously: use a master
2957  * copy of host monotonic time values. Update that master copy
2958  * in lockstep.
2959  *
2960  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2961  *
2962  */
2963 
2964 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2965 {
2966 #ifdef CONFIG_X86_64
2967 	struct kvm_arch *ka = &kvm->arch;
2968 	int vclock_mode;
2969 	bool host_tsc_clocksource, vcpus_matched;
2970 
2971 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2972 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2973 			atomic_read(&kvm->online_vcpus));
2974 
2975 	/*
2976 	 * If the host uses TSC clock, then passthrough TSC as stable
2977 	 * to the guest.
2978 	 */
2979 	host_tsc_clocksource = kvm_get_time_and_clockread(
2980 					&ka->master_kernel_ns,
2981 					&ka->master_cycle_now);
2982 
2983 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2984 				&& !ka->backwards_tsc_observed
2985 				&& !ka->boot_vcpu_runs_old_kvmclock;
2986 
2987 	if (ka->use_master_clock)
2988 		atomic_set(&kvm_guest_has_master_clock, 1);
2989 
2990 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2991 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2992 					vcpus_matched);
2993 #endif
2994 }
2995 
2996 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2997 {
2998 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2999 }
3000 
3001 static void __kvm_start_pvclock_update(struct kvm *kvm)
3002 {
3003 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3004 	write_seqcount_begin(&kvm->arch.pvclock_sc);
3005 }
3006 
3007 static void kvm_start_pvclock_update(struct kvm *kvm)
3008 {
3009 	kvm_make_mclock_inprogress_request(kvm);
3010 
3011 	/* no guest entries from this point */
3012 	__kvm_start_pvclock_update(kvm);
3013 }
3014 
3015 static void kvm_end_pvclock_update(struct kvm *kvm)
3016 {
3017 	struct kvm_arch *ka = &kvm->arch;
3018 	struct kvm_vcpu *vcpu;
3019 	unsigned long i;
3020 
3021 	write_seqcount_end(&ka->pvclock_sc);
3022 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3023 	kvm_for_each_vcpu(i, vcpu, kvm)
3024 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3025 
3026 	/* guest entries allowed */
3027 	kvm_for_each_vcpu(i, vcpu, kvm)
3028 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3029 }
3030 
3031 static void kvm_update_masterclock(struct kvm *kvm)
3032 {
3033 	kvm_hv_request_tsc_page_update(kvm);
3034 	kvm_start_pvclock_update(kvm);
3035 	pvclock_update_vm_gtod_copy(kvm);
3036 	kvm_end_pvclock_update(kvm);
3037 }
3038 
3039 /*
3040  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3041  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3042  * can change during boot even if the TSC is constant, as it's possible for KVM
3043  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3044  * notification when calibration completes, but practically speaking calibration
3045  * will complete before userspace is alive enough to create VMs.
3046  */
3047 static unsigned long get_cpu_tsc_khz(void)
3048 {
3049 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3050 		return tsc_khz;
3051 	else
3052 		return __this_cpu_read(cpu_tsc_khz);
3053 }
3054 
3055 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3056 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3057 {
3058 	struct kvm_arch *ka = &kvm->arch;
3059 	struct pvclock_vcpu_time_info hv_clock;
3060 
3061 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3062 	get_cpu();
3063 
3064 	data->flags = 0;
3065 	if (ka->use_master_clock &&
3066 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3067 #ifdef CONFIG_X86_64
3068 		struct timespec64 ts;
3069 
3070 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3071 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3072 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3073 		} else
3074 #endif
3075 		data->host_tsc = rdtsc();
3076 
3077 		data->flags |= KVM_CLOCK_TSC_STABLE;
3078 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3079 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3080 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3081 				   &hv_clock.tsc_shift,
3082 				   &hv_clock.tsc_to_system_mul);
3083 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3084 	} else {
3085 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3086 	}
3087 
3088 	put_cpu();
3089 }
3090 
3091 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3092 {
3093 	struct kvm_arch *ka = &kvm->arch;
3094 	unsigned seq;
3095 
3096 	do {
3097 		seq = read_seqcount_begin(&ka->pvclock_sc);
3098 		__get_kvmclock(kvm, data);
3099 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3100 }
3101 
3102 u64 get_kvmclock_ns(struct kvm *kvm)
3103 {
3104 	struct kvm_clock_data data;
3105 
3106 	get_kvmclock(kvm, &data);
3107 	return data.clock;
3108 }
3109 
3110 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3111 				    struct gfn_to_pfn_cache *gpc,
3112 				    unsigned int offset,
3113 				    bool force_tsc_unstable)
3114 {
3115 	struct kvm_vcpu_arch *vcpu = &v->arch;
3116 	struct pvclock_vcpu_time_info *guest_hv_clock;
3117 	unsigned long flags;
3118 
3119 	read_lock_irqsave(&gpc->lock, flags);
3120 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3121 		read_unlock_irqrestore(&gpc->lock, flags);
3122 
3123 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3124 			return;
3125 
3126 		read_lock_irqsave(&gpc->lock, flags);
3127 	}
3128 
3129 	guest_hv_clock = (void *)(gpc->khva + offset);
3130 
3131 	/*
3132 	 * This VCPU is paused, but it's legal for a guest to read another
3133 	 * VCPU's kvmclock, so we really have to follow the specification where
3134 	 * it says that version is odd if data is being modified, and even after
3135 	 * it is consistent.
3136 	 */
3137 
3138 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3139 	smp_wmb();
3140 
3141 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3142 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3143 
3144 	if (vcpu->pvclock_set_guest_stopped_request) {
3145 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3146 		vcpu->pvclock_set_guest_stopped_request = false;
3147 	}
3148 
3149 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3150 
3151 	if (force_tsc_unstable)
3152 		guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3153 
3154 	smp_wmb();
3155 
3156 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3157 
3158 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3159 	read_unlock_irqrestore(&gpc->lock, flags);
3160 
3161 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3162 }
3163 
3164 static int kvm_guest_time_update(struct kvm_vcpu *v)
3165 {
3166 	unsigned long flags, tgt_tsc_khz;
3167 	unsigned seq;
3168 	struct kvm_vcpu_arch *vcpu = &v->arch;
3169 	struct kvm_arch *ka = &v->kvm->arch;
3170 	s64 kernel_ns;
3171 	u64 tsc_timestamp, host_tsc;
3172 	u8 pvclock_flags;
3173 	bool use_master_clock;
3174 #ifdef CONFIG_KVM_XEN
3175 	/*
3176 	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3177 	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3178 	 * This default behaviour led to bugs in some guest kernels which cause
3179 	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3180 	 */
3181 	bool xen_pvclock_tsc_unstable =
3182 		ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3183 #endif
3184 
3185 	kernel_ns = 0;
3186 	host_tsc = 0;
3187 
3188 	/*
3189 	 * If the host uses TSC clock, then passthrough TSC as stable
3190 	 * to the guest.
3191 	 */
3192 	do {
3193 		seq = read_seqcount_begin(&ka->pvclock_sc);
3194 		use_master_clock = ka->use_master_clock;
3195 		if (use_master_clock) {
3196 			host_tsc = ka->master_cycle_now;
3197 			kernel_ns = ka->master_kernel_ns;
3198 		}
3199 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3200 
3201 	/* Keep irq disabled to prevent changes to the clock */
3202 	local_irq_save(flags);
3203 	tgt_tsc_khz = get_cpu_tsc_khz();
3204 	if (unlikely(tgt_tsc_khz == 0)) {
3205 		local_irq_restore(flags);
3206 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3207 		return 1;
3208 	}
3209 	if (!use_master_clock) {
3210 		host_tsc = rdtsc();
3211 		kernel_ns = get_kvmclock_base_ns();
3212 	}
3213 
3214 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3215 
3216 	/*
3217 	 * We may have to catch up the TSC to match elapsed wall clock
3218 	 * time for two reasons, even if kvmclock is used.
3219 	 *   1) CPU could have been running below the maximum TSC rate
3220 	 *   2) Broken TSC compensation resets the base at each VCPU
3221 	 *      entry to avoid unknown leaps of TSC even when running
3222 	 *      again on the same CPU.  This may cause apparent elapsed
3223 	 *      time to disappear, and the guest to stand still or run
3224 	 *	very slowly.
3225 	 */
3226 	if (vcpu->tsc_catchup) {
3227 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3228 		if (tsc > tsc_timestamp) {
3229 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3230 			tsc_timestamp = tsc;
3231 		}
3232 	}
3233 
3234 	local_irq_restore(flags);
3235 
3236 	/* With all the info we got, fill in the values */
3237 
3238 	if (kvm_caps.has_tsc_control)
3239 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3240 					    v->arch.l1_tsc_scaling_ratio);
3241 
3242 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3243 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3244 				   &vcpu->hv_clock.tsc_shift,
3245 				   &vcpu->hv_clock.tsc_to_system_mul);
3246 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3247 		kvm_xen_update_tsc_info(v);
3248 	}
3249 
3250 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3251 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3252 	vcpu->last_guest_tsc = tsc_timestamp;
3253 
3254 	/* If the host uses TSC clocksource, then it is stable */
3255 	pvclock_flags = 0;
3256 	if (use_master_clock)
3257 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3258 
3259 	vcpu->hv_clock.flags = pvclock_flags;
3260 
3261 	if (vcpu->pv_time.active)
3262 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3263 #ifdef CONFIG_KVM_XEN
3264 	if (vcpu->xen.vcpu_info_cache.active)
3265 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3266 					offsetof(struct compat_vcpu_info, time),
3267 					xen_pvclock_tsc_unstable);
3268 	if (vcpu->xen.vcpu_time_info_cache.active)
3269 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3270 					xen_pvclock_tsc_unstable);
3271 #endif
3272 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3273 	return 0;
3274 }
3275 
3276 /*
3277  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3278  * which it started (i.e. its epoch, when its kvmclock was zero).
3279  *
3280  * In fact those clocks are subtly different; wall clock frequency is
3281  * adjusted by NTP and has leap seconds, while the kvmclock is a
3282  * simple function of the TSC without any such adjustment.
3283  *
3284  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3285  * that and kvmclock, but even that would be subject to change over
3286  * time.
3287  *
3288  * Attempt to calculate the epoch at a given moment using the *same*
3289  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3290  * wallclock and kvmclock times, and subtracting one from the other.
3291  *
3292  * Fall back to using their values at slightly different moments by
3293  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3294  */
3295 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3296 {
3297 #ifdef CONFIG_X86_64
3298 	struct pvclock_vcpu_time_info hv_clock;
3299 	struct kvm_arch *ka = &kvm->arch;
3300 	unsigned long seq, local_tsc_khz;
3301 	struct timespec64 ts;
3302 	uint64_t host_tsc;
3303 
3304 	do {
3305 		seq = read_seqcount_begin(&ka->pvclock_sc);
3306 
3307 		local_tsc_khz = 0;
3308 		if (!ka->use_master_clock)
3309 			break;
3310 
3311 		/*
3312 		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3313 		 * on the same CPU.
3314 		 */
3315 		get_cpu();
3316 
3317 		local_tsc_khz = get_cpu_tsc_khz();
3318 
3319 		if (local_tsc_khz &&
3320 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3321 			local_tsc_khz = 0; /* Fall back to old method */
3322 
3323 		put_cpu();
3324 
3325 		/*
3326 		 * These values must be snapshotted within the seqcount loop.
3327 		 * After that, it's just mathematics which can happen on any
3328 		 * CPU at any time.
3329 		 */
3330 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3331 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3332 
3333 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3334 
3335 	/*
3336 	 * If the conditions were right, and obtaining the wallclock+TSC was
3337 	 * successful, calculate the KVM clock at the corresponding time and
3338 	 * subtract one from the other to get the guest's epoch in nanoseconds
3339 	 * since 1970-01-01.
3340 	 */
3341 	if (local_tsc_khz) {
3342 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3343 				   &hv_clock.tsc_shift,
3344 				   &hv_clock.tsc_to_system_mul);
3345 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3346 			__pvclock_read_cycles(&hv_clock, host_tsc);
3347 	}
3348 #endif
3349 	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3350 }
3351 
3352 /*
3353  * kvmclock updates which are isolated to a given vcpu, such as
3354  * vcpu->cpu migration, should not allow system_timestamp from
3355  * the rest of the vcpus to remain static. Otherwise ntp frequency
3356  * correction applies to one vcpu's system_timestamp but not
3357  * the others.
3358  *
3359  * So in those cases, request a kvmclock update for all vcpus.
3360  * We need to rate-limit these requests though, as they can
3361  * considerably slow guests that have a large number of vcpus.
3362  * The time for a remote vcpu to update its kvmclock is bound
3363  * by the delay we use to rate-limit the updates.
3364  */
3365 
3366 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3367 
3368 static void kvmclock_update_fn(struct work_struct *work)
3369 {
3370 	unsigned long i;
3371 	struct delayed_work *dwork = to_delayed_work(work);
3372 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3373 					   kvmclock_update_work);
3374 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3375 	struct kvm_vcpu *vcpu;
3376 
3377 	kvm_for_each_vcpu(i, vcpu, kvm) {
3378 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3379 		kvm_vcpu_kick(vcpu);
3380 	}
3381 }
3382 
3383 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3384 {
3385 	struct kvm *kvm = v->kvm;
3386 
3387 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3388 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3389 					KVMCLOCK_UPDATE_DELAY);
3390 }
3391 
3392 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3393 
3394 static void kvmclock_sync_fn(struct work_struct *work)
3395 {
3396 	struct delayed_work *dwork = to_delayed_work(work);
3397 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3398 					   kvmclock_sync_work);
3399 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3400 
3401 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3402 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3403 					KVMCLOCK_SYNC_PERIOD);
3404 }
3405 
3406 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3407 static bool is_mci_control_msr(u32 msr)
3408 {
3409 	return (msr & 3) == 0;
3410 }
3411 static bool is_mci_status_msr(u32 msr)
3412 {
3413 	return (msr & 3) == 1;
3414 }
3415 
3416 /*
3417  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3418  */
3419 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3420 {
3421 	/* McStatusWrEn enabled? */
3422 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3423 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3424 
3425 	return false;
3426 }
3427 
3428 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3429 {
3430 	u64 mcg_cap = vcpu->arch.mcg_cap;
3431 	unsigned bank_num = mcg_cap & 0xff;
3432 	u32 msr = msr_info->index;
3433 	u64 data = msr_info->data;
3434 	u32 offset, last_msr;
3435 
3436 	switch (msr) {
3437 	case MSR_IA32_MCG_STATUS:
3438 		vcpu->arch.mcg_status = data;
3439 		break;
3440 	case MSR_IA32_MCG_CTL:
3441 		if (!(mcg_cap & MCG_CTL_P) &&
3442 		    (data || !msr_info->host_initiated))
3443 			return 1;
3444 		if (data != 0 && data != ~(u64)0)
3445 			return 1;
3446 		vcpu->arch.mcg_ctl = data;
3447 		break;
3448 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3449 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3450 		if (msr > last_msr)
3451 			return 1;
3452 
3453 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3454 			return 1;
3455 		/* An attempt to write a 1 to a reserved bit raises #GP */
3456 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3457 			return 1;
3458 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3459 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3460 		vcpu->arch.mci_ctl2_banks[offset] = data;
3461 		break;
3462 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3463 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3464 		if (msr > last_msr)
3465 			return 1;
3466 
3467 		/*
3468 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3469 		 * values are architecturally undefined.  But, some Linux
3470 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3471 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3472 		 * other bits in order to avoid an uncaught #GP in the guest.
3473 		 *
3474 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3475 		 * single-bit ECC data errors.
3476 		 */
3477 		if (is_mci_control_msr(msr) &&
3478 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3479 			return 1;
3480 
3481 		/*
3482 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3483 		 * AMD-based CPUs allow non-zero values, but if and only if
3484 		 * HWCR[McStatusWrEn] is set.
3485 		 */
3486 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3487 		    data != 0 && !can_set_mci_status(vcpu))
3488 			return 1;
3489 
3490 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3491 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3492 		vcpu->arch.mce_banks[offset] = data;
3493 		break;
3494 	default:
3495 		return 1;
3496 	}
3497 	return 0;
3498 }
3499 
3500 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3501 {
3502 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3503 
3504 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3505 }
3506 
3507 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3508 {
3509 	gpa_t gpa = data & ~0x3f;
3510 
3511 	/* Bits 4:5 are reserved, Should be zero */
3512 	if (data & 0x30)
3513 		return 1;
3514 
3515 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3516 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3517 		return 1;
3518 
3519 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3520 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3521 		return 1;
3522 
3523 	if (!lapic_in_kernel(vcpu))
3524 		return data ? 1 : 0;
3525 
3526 	vcpu->arch.apf.msr_en_val = data;
3527 
3528 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3529 		kvm_clear_async_pf_completion_queue(vcpu);
3530 		kvm_async_pf_hash_reset(vcpu);
3531 		return 0;
3532 	}
3533 
3534 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3535 					sizeof(u64)))
3536 		return 1;
3537 
3538 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3539 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3540 
3541 	kvm_async_pf_wakeup_all(vcpu);
3542 
3543 	return 0;
3544 }
3545 
3546 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3547 {
3548 	/* Bits 8-63 are reserved */
3549 	if (data >> 8)
3550 		return 1;
3551 
3552 	if (!lapic_in_kernel(vcpu))
3553 		return 1;
3554 
3555 	vcpu->arch.apf.msr_int_val = data;
3556 
3557 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3558 
3559 	return 0;
3560 }
3561 
3562 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3563 {
3564 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3565 	vcpu->arch.time = 0;
3566 }
3567 
3568 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3569 {
3570 	++vcpu->stat.tlb_flush;
3571 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3572 
3573 	/* Flushing all ASIDs flushes the current ASID... */
3574 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3575 }
3576 
3577 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3578 {
3579 	++vcpu->stat.tlb_flush;
3580 
3581 	if (!tdp_enabled) {
3582 		/*
3583 		 * A TLB flush on behalf of the guest is equivalent to
3584 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3585 		 * a forced sync of the shadow page tables.  Ensure all the
3586 		 * roots are synced and the guest TLB in hardware is clean.
3587 		 */
3588 		kvm_mmu_sync_roots(vcpu);
3589 		kvm_mmu_sync_prev_roots(vcpu);
3590 	}
3591 
3592 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3593 
3594 	/*
3595 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3596 	 * grained flushing.
3597 	 */
3598 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3599 }
3600 
3601 
3602 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3603 {
3604 	++vcpu->stat.tlb_flush;
3605 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3606 }
3607 
3608 /*
3609  * Service "local" TLB flush requests, which are specific to the current MMU
3610  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3611  * TLB flushes that are targeted at an MMU context also need to be serviced
3612  * prior before nested VM-Enter/VM-Exit.
3613  */
3614 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3615 {
3616 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3617 		kvm_vcpu_flush_tlb_current(vcpu);
3618 
3619 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3620 		kvm_vcpu_flush_tlb_guest(vcpu);
3621 }
3622 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3623 
3624 static void record_steal_time(struct kvm_vcpu *vcpu)
3625 {
3626 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3627 	struct kvm_steal_time __user *st;
3628 	struct kvm_memslots *slots;
3629 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3630 	u64 steal;
3631 	u32 version;
3632 
3633 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3634 		kvm_xen_runstate_set_running(vcpu);
3635 		return;
3636 	}
3637 
3638 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3639 		return;
3640 
3641 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3642 		return;
3643 
3644 	slots = kvm_memslots(vcpu->kvm);
3645 
3646 	if (unlikely(slots->generation != ghc->generation ||
3647 		     gpa != ghc->gpa ||
3648 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3649 		/* We rely on the fact that it fits in a single page. */
3650 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3651 
3652 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3653 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3654 			return;
3655 	}
3656 
3657 	st = (struct kvm_steal_time __user *)ghc->hva;
3658 	/*
3659 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3660 	 * expensive IPIs.
3661 	 */
3662 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3663 		u8 st_preempted = 0;
3664 		int err = -EFAULT;
3665 
3666 		if (!user_access_begin(st, sizeof(*st)))
3667 			return;
3668 
3669 		asm volatile("1: xchgb %0, %2\n"
3670 			     "xor %1, %1\n"
3671 			     "2:\n"
3672 			     _ASM_EXTABLE_UA(1b, 2b)
3673 			     : "+q" (st_preempted),
3674 			       "+&r" (err),
3675 			       "+m" (st->preempted));
3676 		if (err)
3677 			goto out;
3678 
3679 		user_access_end();
3680 
3681 		vcpu->arch.st.preempted = 0;
3682 
3683 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3684 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3685 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3686 			kvm_vcpu_flush_tlb_guest(vcpu);
3687 
3688 		if (!user_access_begin(st, sizeof(*st)))
3689 			goto dirty;
3690 	} else {
3691 		if (!user_access_begin(st, sizeof(*st)))
3692 			return;
3693 
3694 		unsafe_put_user(0, &st->preempted, out);
3695 		vcpu->arch.st.preempted = 0;
3696 	}
3697 
3698 	unsafe_get_user(version, &st->version, out);
3699 	if (version & 1)
3700 		version += 1;  /* first time write, random junk */
3701 
3702 	version += 1;
3703 	unsafe_put_user(version, &st->version, out);
3704 
3705 	smp_wmb();
3706 
3707 	unsafe_get_user(steal, &st->steal, out);
3708 	steal += current->sched_info.run_delay -
3709 		vcpu->arch.st.last_steal;
3710 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3711 	unsafe_put_user(steal, &st->steal, out);
3712 
3713 	version += 1;
3714 	unsafe_put_user(version, &st->version, out);
3715 
3716  out:
3717 	user_access_end();
3718  dirty:
3719 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3720 }
3721 
3722 static bool kvm_is_msr_to_save(u32 msr_index)
3723 {
3724 	unsigned int i;
3725 
3726 	for (i = 0; i < num_msrs_to_save; i++) {
3727 		if (msrs_to_save[i] == msr_index)
3728 			return true;
3729 	}
3730 
3731 	return false;
3732 }
3733 
3734 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3735 {
3736 	u32 msr = msr_info->index;
3737 	u64 data = msr_info->data;
3738 
3739 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3740 		return kvm_xen_write_hypercall_page(vcpu, data);
3741 
3742 	switch (msr) {
3743 	case MSR_AMD64_NB_CFG:
3744 	case MSR_IA32_UCODE_WRITE:
3745 	case MSR_VM_HSAVE_PA:
3746 	case MSR_AMD64_PATCH_LOADER:
3747 	case MSR_AMD64_BU_CFG2:
3748 	case MSR_AMD64_DC_CFG:
3749 	case MSR_AMD64_TW_CFG:
3750 	case MSR_F15H_EX_CFG:
3751 		break;
3752 
3753 	case MSR_IA32_UCODE_REV:
3754 		if (msr_info->host_initiated)
3755 			vcpu->arch.microcode_version = data;
3756 		break;
3757 	case MSR_IA32_ARCH_CAPABILITIES:
3758 		if (!msr_info->host_initiated)
3759 			return 1;
3760 		vcpu->arch.arch_capabilities = data;
3761 		break;
3762 	case MSR_IA32_PERF_CAPABILITIES:
3763 		if (!msr_info->host_initiated)
3764 			return 1;
3765 		if (data & ~kvm_caps.supported_perf_cap)
3766 			return 1;
3767 
3768 		/*
3769 		 * Note, this is not just a performance optimization!  KVM
3770 		 * disallows changing feature MSRs after the vCPU has run; PMU
3771 		 * refresh will bug the VM if called after the vCPU has run.
3772 		 */
3773 		if (vcpu->arch.perf_capabilities == data)
3774 			break;
3775 
3776 		vcpu->arch.perf_capabilities = data;
3777 		kvm_pmu_refresh(vcpu);
3778 		break;
3779 	case MSR_IA32_PRED_CMD: {
3780 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3781 
3782 		if (!msr_info->host_initiated) {
3783 			if ((!guest_has_pred_cmd_msr(vcpu)))
3784 				return 1;
3785 
3786 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3787 			    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3788 				reserved_bits |= PRED_CMD_IBPB;
3789 
3790 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3791 				reserved_bits |= PRED_CMD_SBPB;
3792 		}
3793 
3794 		if (!boot_cpu_has(X86_FEATURE_IBPB))
3795 			reserved_bits |= PRED_CMD_IBPB;
3796 
3797 		if (!boot_cpu_has(X86_FEATURE_SBPB))
3798 			reserved_bits |= PRED_CMD_SBPB;
3799 
3800 		if (data & reserved_bits)
3801 			return 1;
3802 
3803 		if (!data)
3804 			break;
3805 
3806 		wrmsrl(MSR_IA32_PRED_CMD, data);
3807 		break;
3808 	}
3809 	case MSR_IA32_FLUSH_CMD:
3810 		if (!msr_info->host_initiated &&
3811 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3812 			return 1;
3813 
3814 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3815 			return 1;
3816 		if (!data)
3817 			break;
3818 
3819 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3820 		break;
3821 	case MSR_EFER:
3822 		return set_efer(vcpu, msr_info);
3823 	case MSR_K7_HWCR:
3824 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3825 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3826 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3827 
3828 		/*
3829 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3830 		 * through at least v6.6 whine if TscFreqSel is clear,
3831 		 * depending on F/M/S.
3832 		 */
3833 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3834 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3835 			return 1;
3836 		}
3837 		vcpu->arch.msr_hwcr = data;
3838 		break;
3839 	case MSR_FAM10H_MMIO_CONF_BASE:
3840 		if (data != 0) {
3841 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3842 			return 1;
3843 		}
3844 		break;
3845 	case MSR_IA32_CR_PAT:
3846 		if (!kvm_pat_valid(data))
3847 			return 1;
3848 
3849 		vcpu->arch.pat = data;
3850 		break;
3851 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3852 	case MSR_MTRRdefType:
3853 		return kvm_mtrr_set_msr(vcpu, msr, data);
3854 	case MSR_IA32_APICBASE:
3855 		return kvm_set_apic_base(vcpu, msr_info);
3856 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3857 		return kvm_x2apic_msr_write(vcpu, msr, data);
3858 	case MSR_IA32_TSC_DEADLINE:
3859 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3860 		break;
3861 	case MSR_IA32_TSC_ADJUST:
3862 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3863 			if (!msr_info->host_initiated) {
3864 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3865 				adjust_tsc_offset_guest(vcpu, adj);
3866 				/* Before back to guest, tsc_timestamp must be adjusted
3867 				 * as well, otherwise guest's percpu pvclock time could jump.
3868 				 */
3869 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3870 			}
3871 			vcpu->arch.ia32_tsc_adjust_msr = data;
3872 		}
3873 		break;
3874 	case MSR_IA32_MISC_ENABLE: {
3875 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3876 
3877 		if (!msr_info->host_initiated) {
3878 			/* RO bits */
3879 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3880 				return 1;
3881 
3882 			/* R bits, i.e. writes are ignored, but don't fault. */
3883 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3884 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3885 		}
3886 
3887 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3888 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3889 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3890 				return 1;
3891 			vcpu->arch.ia32_misc_enable_msr = data;
3892 			kvm_update_cpuid_runtime(vcpu);
3893 		} else {
3894 			vcpu->arch.ia32_misc_enable_msr = data;
3895 		}
3896 		break;
3897 	}
3898 	case MSR_IA32_SMBASE:
3899 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3900 			return 1;
3901 		vcpu->arch.smbase = data;
3902 		break;
3903 	case MSR_IA32_POWER_CTL:
3904 		vcpu->arch.msr_ia32_power_ctl = data;
3905 		break;
3906 	case MSR_IA32_TSC:
3907 		if (msr_info->host_initiated) {
3908 			kvm_synchronize_tsc(vcpu, &data);
3909 		} else {
3910 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3911 			adjust_tsc_offset_guest(vcpu, adj);
3912 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3913 		}
3914 		break;
3915 	case MSR_IA32_XSS:
3916 		if (!msr_info->host_initiated &&
3917 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3918 			return 1;
3919 		/*
3920 		 * KVM supports exposing PT to the guest, but does not support
3921 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3922 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3923 		 */
3924 		if (data & ~kvm_caps.supported_xss)
3925 			return 1;
3926 		vcpu->arch.ia32_xss = data;
3927 		kvm_update_cpuid_runtime(vcpu);
3928 		break;
3929 	case MSR_SMI_COUNT:
3930 		if (!msr_info->host_initiated)
3931 			return 1;
3932 		vcpu->arch.smi_count = data;
3933 		break;
3934 	case MSR_KVM_WALL_CLOCK_NEW:
3935 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3936 			return 1;
3937 
3938 		vcpu->kvm->arch.wall_clock = data;
3939 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3940 		break;
3941 	case MSR_KVM_WALL_CLOCK:
3942 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3943 			return 1;
3944 
3945 		vcpu->kvm->arch.wall_clock = data;
3946 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3947 		break;
3948 	case MSR_KVM_SYSTEM_TIME_NEW:
3949 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3950 			return 1;
3951 
3952 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3953 		break;
3954 	case MSR_KVM_SYSTEM_TIME:
3955 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3956 			return 1;
3957 
3958 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3959 		break;
3960 	case MSR_KVM_ASYNC_PF_EN:
3961 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3962 			return 1;
3963 
3964 		if (kvm_pv_enable_async_pf(vcpu, data))
3965 			return 1;
3966 		break;
3967 	case MSR_KVM_ASYNC_PF_INT:
3968 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3969 			return 1;
3970 
3971 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3972 			return 1;
3973 		break;
3974 	case MSR_KVM_ASYNC_PF_ACK:
3975 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3976 			return 1;
3977 		if (data & 0x1) {
3978 			vcpu->arch.apf.pageready_pending = false;
3979 			kvm_check_async_pf_completion(vcpu);
3980 		}
3981 		break;
3982 	case MSR_KVM_STEAL_TIME:
3983 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3984 			return 1;
3985 
3986 		if (unlikely(!sched_info_on()))
3987 			return 1;
3988 
3989 		if (data & KVM_STEAL_RESERVED_MASK)
3990 			return 1;
3991 
3992 		vcpu->arch.st.msr_val = data;
3993 
3994 		if (!(data & KVM_MSR_ENABLED))
3995 			break;
3996 
3997 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3998 
3999 		break;
4000 	case MSR_KVM_PV_EOI_EN:
4001 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4002 			return 1;
4003 
4004 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4005 			return 1;
4006 		break;
4007 
4008 	case MSR_KVM_POLL_CONTROL:
4009 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4010 			return 1;
4011 
4012 		/* only enable bit supported */
4013 		if (data & (-1ULL << 1))
4014 			return 1;
4015 
4016 		vcpu->arch.msr_kvm_poll_control = data;
4017 		break;
4018 
4019 	case MSR_IA32_MCG_CTL:
4020 	case MSR_IA32_MCG_STATUS:
4021 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4022 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4023 		return set_msr_mce(vcpu, msr_info);
4024 
4025 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4026 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4027 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4028 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4029 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4030 			return kvm_pmu_set_msr(vcpu, msr_info);
4031 
4032 		if (data)
4033 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4034 		break;
4035 	case MSR_K7_CLK_CTL:
4036 		/*
4037 		 * Ignore all writes to this no longer documented MSR.
4038 		 * Writes are only relevant for old K7 processors,
4039 		 * all pre-dating SVM, but a recommended workaround from
4040 		 * AMD for these chips. It is possible to specify the
4041 		 * affected processor models on the command line, hence
4042 		 * the need to ignore the workaround.
4043 		 */
4044 		break;
4045 #ifdef CONFIG_KVM_HYPERV
4046 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4047 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4048 	case HV_X64_MSR_SYNDBG_OPTIONS:
4049 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4050 	case HV_X64_MSR_CRASH_CTL:
4051 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4052 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4053 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4054 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4055 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4056 		return kvm_hv_set_msr_common(vcpu, msr, data,
4057 					     msr_info->host_initiated);
4058 #endif
4059 	case MSR_IA32_BBL_CR_CTL3:
4060 		/* Drop writes to this legacy MSR -- see rdmsr
4061 		 * counterpart for further detail.
4062 		 */
4063 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4064 		break;
4065 	case MSR_AMD64_OSVW_ID_LENGTH:
4066 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4067 			return 1;
4068 		vcpu->arch.osvw.length = data;
4069 		break;
4070 	case MSR_AMD64_OSVW_STATUS:
4071 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4072 			return 1;
4073 		vcpu->arch.osvw.status = data;
4074 		break;
4075 	case MSR_PLATFORM_INFO:
4076 		if (!msr_info->host_initiated ||
4077 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4078 		     cpuid_fault_enabled(vcpu)))
4079 			return 1;
4080 		vcpu->arch.msr_platform_info = data;
4081 		break;
4082 	case MSR_MISC_FEATURES_ENABLES:
4083 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4084 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4085 		     !supports_cpuid_fault(vcpu)))
4086 			return 1;
4087 		vcpu->arch.msr_misc_features_enables = data;
4088 		break;
4089 #ifdef CONFIG_X86_64
4090 	case MSR_IA32_XFD:
4091 		if (!msr_info->host_initiated &&
4092 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4093 			return 1;
4094 
4095 		if (data & ~kvm_guest_supported_xfd(vcpu))
4096 			return 1;
4097 
4098 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4099 		break;
4100 	case MSR_IA32_XFD_ERR:
4101 		if (!msr_info->host_initiated &&
4102 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4103 			return 1;
4104 
4105 		if (data & ~kvm_guest_supported_xfd(vcpu))
4106 			return 1;
4107 
4108 		vcpu->arch.guest_fpu.xfd_err = data;
4109 		break;
4110 #endif
4111 	default:
4112 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4113 			return kvm_pmu_set_msr(vcpu, msr_info);
4114 
4115 		/*
4116 		 * Userspace is allowed to write '0' to MSRs that KVM reports
4117 		 * as to-be-saved, even if an MSRs isn't fully supported.
4118 		 */
4119 		if (msr_info->host_initiated && !data &&
4120 		    kvm_is_msr_to_save(msr))
4121 			break;
4122 
4123 		return KVM_MSR_RET_INVALID;
4124 	}
4125 	return 0;
4126 }
4127 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4128 
4129 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4130 {
4131 	u64 data;
4132 	u64 mcg_cap = vcpu->arch.mcg_cap;
4133 	unsigned bank_num = mcg_cap & 0xff;
4134 	u32 offset, last_msr;
4135 
4136 	switch (msr) {
4137 	case MSR_IA32_P5_MC_ADDR:
4138 	case MSR_IA32_P5_MC_TYPE:
4139 		data = 0;
4140 		break;
4141 	case MSR_IA32_MCG_CAP:
4142 		data = vcpu->arch.mcg_cap;
4143 		break;
4144 	case MSR_IA32_MCG_CTL:
4145 		if (!(mcg_cap & MCG_CTL_P) && !host)
4146 			return 1;
4147 		data = vcpu->arch.mcg_ctl;
4148 		break;
4149 	case MSR_IA32_MCG_STATUS:
4150 		data = vcpu->arch.mcg_status;
4151 		break;
4152 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4153 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4154 		if (msr > last_msr)
4155 			return 1;
4156 
4157 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4158 			return 1;
4159 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4160 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4161 		data = vcpu->arch.mci_ctl2_banks[offset];
4162 		break;
4163 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4164 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4165 		if (msr > last_msr)
4166 			return 1;
4167 
4168 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4169 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4170 		data = vcpu->arch.mce_banks[offset];
4171 		break;
4172 	default:
4173 		return 1;
4174 	}
4175 	*pdata = data;
4176 	return 0;
4177 }
4178 
4179 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4180 {
4181 	switch (msr_info->index) {
4182 	case MSR_IA32_PLATFORM_ID:
4183 	case MSR_IA32_EBL_CR_POWERON:
4184 	case MSR_IA32_LASTBRANCHFROMIP:
4185 	case MSR_IA32_LASTBRANCHTOIP:
4186 	case MSR_IA32_LASTINTFROMIP:
4187 	case MSR_IA32_LASTINTTOIP:
4188 	case MSR_AMD64_SYSCFG:
4189 	case MSR_K8_TSEG_ADDR:
4190 	case MSR_K8_TSEG_MASK:
4191 	case MSR_VM_HSAVE_PA:
4192 	case MSR_K8_INT_PENDING_MSG:
4193 	case MSR_AMD64_NB_CFG:
4194 	case MSR_FAM10H_MMIO_CONF_BASE:
4195 	case MSR_AMD64_BU_CFG2:
4196 	case MSR_IA32_PERF_CTL:
4197 	case MSR_AMD64_DC_CFG:
4198 	case MSR_AMD64_TW_CFG:
4199 	case MSR_F15H_EX_CFG:
4200 	/*
4201 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4202 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4203 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4204 	 * so for existing CPU-specific MSRs.
4205 	 */
4206 	case MSR_RAPL_POWER_UNIT:
4207 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4208 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4209 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4210 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4211 		msr_info->data = 0;
4212 		break;
4213 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4214 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4215 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4216 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4217 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4218 			return kvm_pmu_get_msr(vcpu, msr_info);
4219 		msr_info->data = 0;
4220 		break;
4221 	case MSR_IA32_UCODE_REV:
4222 		msr_info->data = vcpu->arch.microcode_version;
4223 		break;
4224 	case MSR_IA32_ARCH_CAPABILITIES:
4225 		if (!msr_info->host_initiated &&
4226 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4227 			return 1;
4228 		msr_info->data = vcpu->arch.arch_capabilities;
4229 		break;
4230 	case MSR_IA32_PERF_CAPABILITIES:
4231 		if (!msr_info->host_initiated &&
4232 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4233 			return 1;
4234 		msr_info->data = vcpu->arch.perf_capabilities;
4235 		break;
4236 	case MSR_IA32_POWER_CTL:
4237 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4238 		break;
4239 	case MSR_IA32_TSC: {
4240 		/*
4241 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4242 		 * even when not intercepted. AMD manual doesn't explicitly
4243 		 * state this but appears to behave the same.
4244 		 *
4245 		 * On userspace reads and writes, however, we unconditionally
4246 		 * return L1's TSC value to ensure backwards-compatible
4247 		 * behavior for migration.
4248 		 */
4249 		u64 offset, ratio;
4250 
4251 		if (msr_info->host_initiated) {
4252 			offset = vcpu->arch.l1_tsc_offset;
4253 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4254 		} else {
4255 			offset = vcpu->arch.tsc_offset;
4256 			ratio = vcpu->arch.tsc_scaling_ratio;
4257 		}
4258 
4259 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4260 		break;
4261 	}
4262 	case MSR_IA32_CR_PAT:
4263 		msr_info->data = vcpu->arch.pat;
4264 		break;
4265 	case MSR_MTRRcap:
4266 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4267 	case MSR_MTRRdefType:
4268 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4269 	case 0xcd: /* fsb frequency */
4270 		msr_info->data = 3;
4271 		break;
4272 		/*
4273 		 * MSR_EBC_FREQUENCY_ID
4274 		 * Conservative value valid for even the basic CPU models.
4275 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4276 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4277 		 * and 266MHz for model 3, or 4. Set Core Clock
4278 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4279 		 * 31:24) even though these are only valid for CPU
4280 		 * models > 2, however guests may end up dividing or
4281 		 * multiplying by zero otherwise.
4282 		 */
4283 	case MSR_EBC_FREQUENCY_ID:
4284 		msr_info->data = 1 << 24;
4285 		break;
4286 	case MSR_IA32_APICBASE:
4287 		msr_info->data = kvm_get_apic_base(vcpu);
4288 		break;
4289 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4290 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4291 	case MSR_IA32_TSC_DEADLINE:
4292 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4293 		break;
4294 	case MSR_IA32_TSC_ADJUST:
4295 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4296 		break;
4297 	case MSR_IA32_MISC_ENABLE:
4298 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4299 		break;
4300 	case MSR_IA32_SMBASE:
4301 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4302 			return 1;
4303 		msr_info->data = vcpu->arch.smbase;
4304 		break;
4305 	case MSR_SMI_COUNT:
4306 		msr_info->data = vcpu->arch.smi_count;
4307 		break;
4308 	case MSR_IA32_PERF_STATUS:
4309 		/* TSC increment by tick */
4310 		msr_info->data = 1000ULL;
4311 		/* CPU multiplier */
4312 		msr_info->data |= (((uint64_t)4ULL) << 40);
4313 		break;
4314 	case MSR_EFER:
4315 		msr_info->data = vcpu->arch.efer;
4316 		break;
4317 	case MSR_KVM_WALL_CLOCK:
4318 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4319 			return 1;
4320 
4321 		msr_info->data = vcpu->kvm->arch.wall_clock;
4322 		break;
4323 	case MSR_KVM_WALL_CLOCK_NEW:
4324 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4325 			return 1;
4326 
4327 		msr_info->data = vcpu->kvm->arch.wall_clock;
4328 		break;
4329 	case MSR_KVM_SYSTEM_TIME:
4330 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4331 			return 1;
4332 
4333 		msr_info->data = vcpu->arch.time;
4334 		break;
4335 	case MSR_KVM_SYSTEM_TIME_NEW:
4336 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4337 			return 1;
4338 
4339 		msr_info->data = vcpu->arch.time;
4340 		break;
4341 	case MSR_KVM_ASYNC_PF_EN:
4342 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4343 			return 1;
4344 
4345 		msr_info->data = vcpu->arch.apf.msr_en_val;
4346 		break;
4347 	case MSR_KVM_ASYNC_PF_INT:
4348 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4349 			return 1;
4350 
4351 		msr_info->data = vcpu->arch.apf.msr_int_val;
4352 		break;
4353 	case MSR_KVM_ASYNC_PF_ACK:
4354 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4355 			return 1;
4356 
4357 		msr_info->data = 0;
4358 		break;
4359 	case MSR_KVM_STEAL_TIME:
4360 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4361 			return 1;
4362 
4363 		msr_info->data = vcpu->arch.st.msr_val;
4364 		break;
4365 	case MSR_KVM_PV_EOI_EN:
4366 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4367 			return 1;
4368 
4369 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4370 		break;
4371 	case MSR_KVM_POLL_CONTROL:
4372 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4373 			return 1;
4374 
4375 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4376 		break;
4377 	case MSR_IA32_P5_MC_ADDR:
4378 	case MSR_IA32_P5_MC_TYPE:
4379 	case MSR_IA32_MCG_CAP:
4380 	case MSR_IA32_MCG_CTL:
4381 	case MSR_IA32_MCG_STATUS:
4382 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4383 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4384 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4385 				   msr_info->host_initiated);
4386 	case MSR_IA32_XSS:
4387 		if (!msr_info->host_initiated &&
4388 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4389 			return 1;
4390 		msr_info->data = vcpu->arch.ia32_xss;
4391 		break;
4392 	case MSR_K7_CLK_CTL:
4393 		/*
4394 		 * Provide expected ramp-up count for K7. All other
4395 		 * are set to zero, indicating minimum divisors for
4396 		 * every field.
4397 		 *
4398 		 * This prevents guest kernels on AMD host with CPU
4399 		 * type 6, model 8 and higher from exploding due to
4400 		 * the rdmsr failing.
4401 		 */
4402 		msr_info->data = 0x20000000;
4403 		break;
4404 #ifdef CONFIG_KVM_HYPERV
4405 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4406 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4407 	case HV_X64_MSR_SYNDBG_OPTIONS:
4408 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4409 	case HV_X64_MSR_CRASH_CTL:
4410 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4411 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4412 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4413 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4414 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4415 		return kvm_hv_get_msr_common(vcpu,
4416 					     msr_info->index, &msr_info->data,
4417 					     msr_info->host_initiated);
4418 #endif
4419 	case MSR_IA32_BBL_CR_CTL3:
4420 		/* This legacy MSR exists but isn't fully documented in current
4421 		 * silicon.  It is however accessed by winxp in very narrow
4422 		 * scenarios where it sets bit #19, itself documented as
4423 		 * a "reserved" bit.  Best effort attempt to source coherent
4424 		 * read data here should the balance of the register be
4425 		 * interpreted by the guest:
4426 		 *
4427 		 * L2 cache control register 3: 64GB range, 256KB size,
4428 		 * enabled, latency 0x1, configured
4429 		 */
4430 		msr_info->data = 0xbe702111;
4431 		break;
4432 	case MSR_AMD64_OSVW_ID_LENGTH:
4433 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4434 			return 1;
4435 		msr_info->data = vcpu->arch.osvw.length;
4436 		break;
4437 	case MSR_AMD64_OSVW_STATUS:
4438 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4439 			return 1;
4440 		msr_info->data = vcpu->arch.osvw.status;
4441 		break;
4442 	case MSR_PLATFORM_INFO:
4443 		if (!msr_info->host_initiated &&
4444 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4445 			return 1;
4446 		msr_info->data = vcpu->arch.msr_platform_info;
4447 		break;
4448 	case MSR_MISC_FEATURES_ENABLES:
4449 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4450 		break;
4451 	case MSR_K7_HWCR:
4452 		msr_info->data = vcpu->arch.msr_hwcr;
4453 		break;
4454 #ifdef CONFIG_X86_64
4455 	case MSR_IA32_XFD:
4456 		if (!msr_info->host_initiated &&
4457 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4458 			return 1;
4459 
4460 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4461 		break;
4462 	case MSR_IA32_XFD_ERR:
4463 		if (!msr_info->host_initiated &&
4464 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4465 			return 1;
4466 
4467 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4468 		break;
4469 #endif
4470 	default:
4471 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4472 			return kvm_pmu_get_msr(vcpu, msr_info);
4473 
4474 		/*
4475 		 * Userspace is allowed to read MSRs that KVM reports as
4476 		 * to-be-saved, even if an MSR isn't fully supported.
4477 		 */
4478 		if (msr_info->host_initiated &&
4479 		    kvm_is_msr_to_save(msr_info->index)) {
4480 			msr_info->data = 0;
4481 			break;
4482 		}
4483 
4484 		return KVM_MSR_RET_INVALID;
4485 	}
4486 	return 0;
4487 }
4488 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4489 
4490 /*
4491  * Read or write a bunch of msrs. All parameters are kernel addresses.
4492  *
4493  * @return number of msrs set successfully.
4494  */
4495 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4496 		    struct kvm_msr_entry *entries,
4497 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4498 				  unsigned index, u64 *data))
4499 {
4500 	int i;
4501 
4502 	for (i = 0; i < msrs->nmsrs; ++i)
4503 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4504 			break;
4505 
4506 	return i;
4507 }
4508 
4509 /*
4510  * Read or write a bunch of msrs. Parameters are user addresses.
4511  *
4512  * @return number of msrs set successfully.
4513  */
4514 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4515 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4516 				unsigned index, u64 *data),
4517 		  int writeback)
4518 {
4519 	struct kvm_msrs msrs;
4520 	struct kvm_msr_entry *entries;
4521 	unsigned size;
4522 	int r;
4523 
4524 	r = -EFAULT;
4525 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4526 		goto out;
4527 
4528 	r = -E2BIG;
4529 	if (msrs.nmsrs >= MAX_IO_MSRS)
4530 		goto out;
4531 
4532 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4533 	entries = memdup_user(user_msrs->entries, size);
4534 	if (IS_ERR(entries)) {
4535 		r = PTR_ERR(entries);
4536 		goto out;
4537 	}
4538 
4539 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4540 
4541 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4542 		r = -EFAULT;
4543 
4544 	kfree(entries);
4545 out:
4546 	return r;
4547 }
4548 
4549 static inline bool kvm_can_mwait_in_guest(void)
4550 {
4551 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4552 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4553 		boot_cpu_has(X86_FEATURE_ARAT);
4554 }
4555 
4556 #ifdef CONFIG_KVM_HYPERV
4557 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4558 					    struct kvm_cpuid2 __user *cpuid_arg)
4559 {
4560 	struct kvm_cpuid2 cpuid;
4561 	int r;
4562 
4563 	r = -EFAULT;
4564 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4565 		return r;
4566 
4567 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4568 	if (r)
4569 		return r;
4570 
4571 	r = -EFAULT;
4572 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4573 		return r;
4574 
4575 	return 0;
4576 }
4577 #endif
4578 
4579 static bool kvm_is_vm_type_supported(unsigned long type)
4580 {
4581 	return type == KVM_X86_DEFAULT_VM ||
4582 	       (type == KVM_X86_SW_PROTECTED_VM &&
4583 		IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled);
4584 }
4585 
4586 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4587 {
4588 	int r = 0;
4589 
4590 	switch (ext) {
4591 	case KVM_CAP_IRQCHIP:
4592 	case KVM_CAP_HLT:
4593 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4594 	case KVM_CAP_SET_TSS_ADDR:
4595 	case KVM_CAP_EXT_CPUID:
4596 	case KVM_CAP_EXT_EMUL_CPUID:
4597 	case KVM_CAP_CLOCKSOURCE:
4598 	case KVM_CAP_PIT:
4599 	case KVM_CAP_NOP_IO_DELAY:
4600 	case KVM_CAP_MP_STATE:
4601 	case KVM_CAP_SYNC_MMU:
4602 	case KVM_CAP_USER_NMI:
4603 	case KVM_CAP_REINJECT_CONTROL:
4604 	case KVM_CAP_IRQ_INJECT_STATUS:
4605 	case KVM_CAP_IOEVENTFD:
4606 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4607 	case KVM_CAP_PIT2:
4608 	case KVM_CAP_PIT_STATE2:
4609 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4610 	case KVM_CAP_VCPU_EVENTS:
4611 #ifdef CONFIG_KVM_HYPERV
4612 	case KVM_CAP_HYPERV:
4613 	case KVM_CAP_HYPERV_VAPIC:
4614 	case KVM_CAP_HYPERV_SPIN:
4615 	case KVM_CAP_HYPERV_TIME:
4616 	case KVM_CAP_HYPERV_SYNIC:
4617 	case KVM_CAP_HYPERV_SYNIC2:
4618 	case KVM_CAP_HYPERV_VP_INDEX:
4619 	case KVM_CAP_HYPERV_EVENTFD:
4620 	case KVM_CAP_HYPERV_TLBFLUSH:
4621 	case KVM_CAP_HYPERV_SEND_IPI:
4622 	case KVM_CAP_HYPERV_CPUID:
4623 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4624 	case KVM_CAP_SYS_HYPERV_CPUID:
4625 #endif
4626 	case KVM_CAP_PCI_SEGMENT:
4627 	case KVM_CAP_DEBUGREGS:
4628 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4629 	case KVM_CAP_XSAVE:
4630 	case KVM_CAP_ASYNC_PF:
4631 	case KVM_CAP_ASYNC_PF_INT:
4632 	case KVM_CAP_GET_TSC_KHZ:
4633 	case KVM_CAP_KVMCLOCK_CTRL:
4634 	case KVM_CAP_READONLY_MEM:
4635 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4636 	case KVM_CAP_TSC_DEADLINE_TIMER:
4637 	case KVM_CAP_DISABLE_QUIRKS:
4638 	case KVM_CAP_SET_BOOT_CPU_ID:
4639  	case KVM_CAP_SPLIT_IRQCHIP:
4640 	case KVM_CAP_IMMEDIATE_EXIT:
4641 	case KVM_CAP_PMU_EVENT_FILTER:
4642 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4643 	case KVM_CAP_GET_MSR_FEATURES:
4644 	case KVM_CAP_MSR_PLATFORM_INFO:
4645 	case KVM_CAP_EXCEPTION_PAYLOAD:
4646 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4647 	case KVM_CAP_SET_GUEST_DEBUG:
4648 	case KVM_CAP_LAST_CPU:
4649 	case KVM_CAP_X86_USER_SPACE_MSR:
4650 	case KVM_CAP_X86_MSR_FILTER:
4651 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4652 #ifdef CONFIG_X86_SGX_KVM
4653 	case KVM_CAP_SGX_ATTRIBUTE:
4654 #endif
4655 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4656 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4657 	case KVM_CAP_SREGS2:
4658 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4659 	case KVM_CAP_VCPU_ATTRIBUTES:
4660 	case KVM_CAP_SYS_ATTRIBUTES:
4661 	case KVM_CAP_VAPIC:
4662 	case KVM_CAP_ENABLE_CAP:
4663 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4664 	case KVM_CAP_IRQFD_RESAMPLE:
4665 	case KVM_CAP_MEMORY_FAULT_INFO:
4666 		r = 1;
4667 		break;
4668 	case KVM_CAP_EXIT_HYPERCALL:
4669 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4670 		break;
4671 	case KVM_CAP_SET_GUEST_DEBUG2:
4672 		return KVM_GUESTDBG_VALID_MASK;
4673 #ifdef CONFIG_KVM_XEN
4674 	case KVM_CAP_XEN_HVM:
4675 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4676 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4677 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4678 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4679 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4680 		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
4681 		if (sched_info_on())
4682 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4683 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4684 		break;
4685 #endif
4686 	case KVM_CAP_SYNC_REGS:
4687 		r = KVM_SYNC_X86_VALID_FIELDS;
4688 		break;
4689 	case KVM_CAP_ADJUST_CLOCK:
4690 		r = KVM_CLOCK_VALID_FLAGS;
4691 		break;
4692 	case KVM_CAP_X86_DISABLE_EXITS:
4693 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4694 
4695 		if (!mitigate_smt_rsb) {
4696 			r |= KVM_X86_DISABLE_EXITS_HLT |
4697 			     KVM_X86_DISABLE_EXITS_CSTATE;
4698 
4699 			if (kvm_can_mwait_in_guest())
4700 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4701 		}
4702 		break;
4703 	case KVM_CAP_X86_SMM:
4704 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4705 			break;
4706 
4707 		/* SMBASE is usually relocated above 1M on modern chipsets,
4708 		 * and SMM handlers might indeed rely on 4G segment limits,
4709 		 * so do not report SMM to be available if real mode is
4710 		 * emulated via vm86 mode.  Still, do not go to great lengths
4711 		 * to avoid userspace's usage of the feature, because it is a
4712 		 * fringe case that is not enabled except via specific settings
4713 		 * of the module parameters.
4714 		 */
4715 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4716 		break;
4717 	case KVM_CAP_NR_VCPUS:
4718 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4719 		break;
4720 	case KVM_CAP_MAX_VCPUS:
4721 		r = KVM_MAX_VCPUS;
4722 		break;
4723 	case KVM_CAP_MAX_VCPU_ID:
4724 		r = KVM_MAX_VCPU_IDS;
4725 		break;
4726 	case KVM_CAP_PV_MMU:	/* obsolete */
4727 		r = 0;
4728 		break;
4729 	case KVM_CAP_MCE:
4730 		r = KVM_MAX_MCE_BANKS;
4731 		break;
4732 	case KVM_CAP_XCRS:
4733 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4734 		break;
4735 	case KVM_CAP_TSC_CONTROL:
4736 	case KVM_CAP_VM_TSC_CONTROL:
4737 		r = kvm_caps.has_tsc_control;
4738 		break;
4739 	case KVM_CAP_X2APIC_API:
4740 		r = KVM_X2APIC_API_VALID_FLAGS;
4741 		break;
4742 	case KVM_CAP_NESTED_STATE:
4743 		r = kvm_x86_ops.nested_ops->get_state ?
4744 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4745 		break;
4746 #ifdef CONFIG_KVM_HYPERV
4747 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4748 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4749 		break;
4750 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4751 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4752 		break;
4753 #endif
4754 	case KVM_CAP_SMALLER_MAXPHYADDR:
4755 		r = (int) allow_smaller_maxphyaddr;
4756 		break;
4757 	case KVM_CAP_STEAL_TIME:
4758 		r = sched_info_on();
4759 		break;
4760 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4761 		if (kvm_caps.has_bus_lock_exit)
4762 			r = KVM_BUS_LOCK_DETECTION_OFF |
4763 			    KVM_BUS_LOCK_DETECTION_EXIT;
4764 		else
4765 			r = 0;
4766 		break;
4767 	case KVM_CAP_XSAVE2: {
4768 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4769 		if (r < sizeof(struct kvm_xsave))
4770 			r = sizeof(struct kvm_xsave);
4771 		break;
4772 	}
4773 	case KVM_CAP_PMU_CAPABILITY:
4774 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4775 		break;
4776 	case KVM_CAP_DISABLE_QUIRKS2:
4777 		r = KVM_X86_VALID_QUIRKS;
4778 		break;
4779 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4780 		r = kvm_caps.has_notify_vmexit;
4781 		break;
4782 	case KVM_CAP_VM_TYPES:
4783 		r = BIT(KVM_X86_DEFAULT_VM);
4784 		if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM))
4785 			r |= BIT(KVM_X86_SW_PROTECTED_VM);
4786 		break;
4787 	default:
4788 		break;
4789 	}
4790 	return r;
4791 }
4792 
4793 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4794 {
4795 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4796 
4797 	if ((u64)(unsigned long)uaddr != attr->addr)
4798 		return ERR_PTR_USR(-EFAULT);
4799 	return uaddr;
4800 }
4801 
4802 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4803 {
4804 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4805 
4806 	if (attr->group)
4807 		return -ENXIO;
4808 
4809 	if (IS_ERR(uaddr))
4810 		return PTR_ERR(uaddr);
4811 
4812 	switch (attr->attr) {
4813 	case KVM_X86_XCOMP_GUEST_SUPP:
4814 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4815 			return -EFAULT;
4816 		return 0;
4817 	default:
4818 		return -ENXIO;
4819 	}
4820 }
4821 
4822 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4823 {
4824 	if (attr->group)
4825 		return -ENXIO;
4826 
4827 	switch (attr->attr) {
4828 	case KVM_X86_XCOMP_GUEST_SUPP:
4829 		return 0;
4830 	default:
4831 		return -ENXIO;
4832 	}
4833 }
4834 
4835 long kvm_arch_dev_ioctl(struct file *filp,
4836 			unsigned int ioctl, unsigned long arg)
4837 {
4838 	void __user *argp = (void __user *)arg;
4839 	long r;
4840 
4841 	switch (ioctl) {
4842 	case KVM_GET_MSR_INDEX_LIST: {
4843 		struct kvm_msr_list __user *user_msr_list = argp;
4844 		struct kvm_msr_list msr_list;
4845 		unsigned n;
4846 
4847 		r = -EFAULT;
4848 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4849 			goto out;
4850 		n = msr_list.nmsrs;
4851 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4852 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4853 			goto out;
4854 		r = -E2BIG;
4855 		if (n < msr_list.nmsrs)
4856 			goto out;
4857 		r = -EFAULT;
4858 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4859 				 num_msrs_to_save * sizeof(u32)))
4860 			goto out;
4861 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4862 				 &emulated_msrs,
4863 				 num_emulated_msrs * sizeof(u32)))
4864 			goto out;
4865 		r = 0;
4866 		break;
4867 	}
4868 	case KVM_GET_SUPPORTED_CPUID:
4869 	case KVM_GET_EMULATED_CPUID: {
4870 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4871 		struct kvm_cpuid2 cpuid;
4872 
4873 		r = -EFAULT;
4874 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4875 			goto out;
4876 
4877 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4878 					    ioctl);
4879 		if (r)
4880 			goto out;
4881 
4882 		r = -EFAULT;
4883 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4884 			goto out;
4885 		r = 0;
4886 		break;
4887 	}
4888 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4889 		r = -EFAULT;
4890 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4891 				 sizeof(kvm_caps.supported_mce_cap)))
4892 			goto out;
4893 		r = 0;
4894 		break;
4895 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4896 		struct kvm_msr_list __user *user_msr_list = argp;
4897 		struct kvm_msr_list msr_list;
4898 		unsigned int n;
4899 
4900 		r = -EFAULT;
4901 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4902 			goto out;
4903 		n = msr_list.nmsrs;
4904 		msr_list.nmsrs = num_msr_based_features;
4905 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4906 			goto out;
4907 		r = -E2BIG;
4908 		if (n < msr_list.nmsrs)
4909 			goto out;
4910 		r = -EFAULT;
4911 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4912 				 num_msr_based_features * sizeof(u32)))
4913 			goto out;
4914 		r = 0;
4915 		break;
4916 	}
4917 	case KVM_GET_MSRS:
4918 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4919 		break;
4920 #ifdef CONFIG_KVM_HYPERV
4921 	case KVM_GET_SUPPORTED_HV_CPUID:
4922 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4923 		break;
4924 #endif
4925 	case KVM_GET_DEVICE_ATTR: {
4926 		struct kvm_device_attr attr;
4927 		r = -EFAULT;
4928 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4929 			break;
4930 		r = kvm_x86_dev_get_attr(&attr);
4931 		break;
4932 	}
4933 	case KVM_HAS_DEVICE_ATTR: {
4934 		struct kvm_device_attr attr;
4935 		r = -EFAULT;
4936 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4937 			break;
4938 		r = kvm_x86_dev_has_attr(&attr);
4939 		break;
4940 	}
4941 	default:
4942 		r = -EINVAL;
4943 		break;
4944 	}
4945 out:
4946 	return r;
4947 }
4948 
4949 static void wbinvd_ipi(void *garbage)
4950 {
4951 	wbinvd();
4952 }
4953 
4954 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4955 {
4956 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4957 }
4958 
4959 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4960 {
4961 	/* Address WBINVD may be executed by guest */
4962 	if (need_emulate_wbinvd(vcpu)) {
4963 		if (static_call(kvm_x86_has_wbinvd_exit)())
4964 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4965 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4966 			smp_call_function_single(vcpu->cpu,
4967 					wbinvd_ipi, NULL, 1);
4968 	}
4969 
4970 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4971 
4972 	/* Save host pkru register if supported */
4973 	vcpu->arch.host_pkru = read_pkru();
4974 
4975 	/* Apply any externally detected TSC adjustments (due to suspend) */
4976 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4977 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4978 		vcpu->arch.tsc_offset_adjustment = 0;
4979 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4980 	}
4981 
4982 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4983 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4984 				rdtsc() - vcpu->arch.last_host_tsc;
4985 		if (tsc_delta < 0)
4986 			mark_tsc_unstable("KVM discovered backwards TSC");
4987 
4988 		if (kvm_check_tsc_unstable()) {
4989 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4990 						vcpu->arch.last_guest_tsc);
4991 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4992 			vcpu->arch.tsc_catchup = 1;
4993 		}
4994 
4995 		if (kvm_lapic_hv_timer_in_use(vcpu))
4996 			kvm_lapic_restart_hv_timer(vcpu);
4997 
4998 		/*
4999 		 * On a host with synchronized TSC, there is no need to update
5000 		 * kvmclock on vcpu->cpu migration
5001 		 */
5002 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5003 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5004 		if (vcpu->cpu != cpu)
5005 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5006 		vcpu->cpu = cpu;
5007 	}
5008 
5009 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5010 }
5011 
5012 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5013 {
5014 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5015 	struct kvm_steal_time __user *st;
5016 	struct kvm_memslots *slots;
5017 	static const u8 preempted = KVM_VCPU_PREEMPTED;
5018 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5019 
5020 	/*
5021 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5022 	 * an instruction boundary and will not trigger guest emulation of any
5023 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5024 	 * when this is true, for example allowing the vCPU to be marked
5025 	 * preempted if and only if the VM-Exit was due to a host interrupt.
5026 	 */
5027 	if (!vcpu->arch.at_instruction_boundary) {
5028 		vcpu->stat.preemption_other++;
5029 		return;
5030 	}
5031 
5032 	vcpu->stat.preemption_reported++;
5033 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5034 		return;
5035 
5036 	if (vcpu->arch.st.preempted)
5037 		return;
5038 
5039 	/* This happens on process exit */
5040 	if (unlikely(current->mm != vcpu->kvm->mm))
5041 		return;
5042 
5043 	slots = kvm_memslots(vcpu->kvm);
5044 
5045 	if (unlikely(slots->generation != ghc->generation ||
5046 		     gpa != ghc->gpa ||
5047 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5048 		return;
5049 
5050 	st = (struct kvm_steal_time __user *)ghc->hva;
5051 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5052 
5053 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5054 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5055 
5056 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5057 }
5058 
5059 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5060 {
5061 	int idx;
5062 
5063 	if (vcpu->preempted) {
5064 		if (!vcpu->arch.guest_state_protected)
5065 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
5066 
5067 		/*
5068 		 * Take the srcu lock as memslots will be accessed to check the gfn
5069 		 * cache generation against the memslots generation.
5070 		 */
5071 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5072 		if (kvm_xen_msr_enabled(vcpu->kvm))
5073 			kvm_xen_runstate_set_preempted(vcpu);
5074 		else
5075 			kvm_steal_time_set_preempted(vcpu);
5076 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5077 	}
5078 
5079 	static_call(kvm_x86_vcpu_put)(vcpu);
5080 	vcpu->arch.last_host_tsc = rdtsc();
5081 }
5082 
5083 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5084 				    struct kvm_lapic_state *s)
5085 {
5086 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5087 
5088 	return kvm_apic_get_state(vcpu, s);
5089 }
5090 
5091 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5092 				    struct kvm_lapic_state *s)
5093 {
5094 	int r;
5095 
5096 	r = kvm_apic_set_state(vcpu, s);
5097 	if (r)
5098 		return r;
5099 	update_cr8_intercept(vcpu);
5100 
5101 	return 0;
5102 }
5103 
5104 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5105 {
5106 	/*
5107 	 * We can accept userspace's request for interrupt injection
5108 	 * as long as we have a place to store the interrupt number.
5109 	 * The actual injection will happen when the CPU is able to
5110 	 * deliver the interrupt.
5111 	 */
5112 	if (kvm_cpu_has_extint(vcpu))
5113 		return false;
5114 
5115 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5116 	return (!lapic_in_kernel(vcpu) ||
5117 		kvm_apic_accept_pic_intr(vcpu));
5118 }
5119 
5120 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5121 {
5122 	/*
5123 	 * Do not cause an interrupt window exit if an exception
5124 	 * is pending or an event needs reinjection; userspace
5125 	 * might want to inject the interrupt manually using KVM_SET_REGS
5126 	 * or KVM_SET_SREGS.  For that to work, we must be at an
5127 	 * instruction boundary and with no events half-injected.
5128 	 */
5129 	return (kvm_arch_interrupt_allowed(vcpu) &&
5130 		kvm_cpu_accept_dm_intr(vcpu) &&
5131 		!kvm_event_needs_reinjection(vcpu) &&
5132 		!kvm_is_exception_pending(vcpu));
5133 }
5134 
5135 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5136 				    struct kvm_interrupt *irq)
5137 {
5138 	if (irq->irq >= KVM_NR_INTERRUPTS)
5139 		return -EINVAL;
5140 
5141 	if (!irqchip_in_kernel(vcpu->kvm)) {
5142 		kvm_queue_interrupt(vcpu, irq->irq, false);
5143 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5144 		return 0;
5145 	}
5146 
5147 	/*
5148 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5149 	 * fail for in-kernel 8259.
5150 	 */
5151 	if (pic_in_kernel(vcpu->kvm))
5152 		return -ENXIO;
5153 
5154 	if (vcpu->arch.pending_external_vector != -1)
5155 		return -EEXIST;
5156 
5157 	vcpu->arch.pending_external_vector = irq->irq;
5158 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5159 	return 0;
5160 }
5161 
5162 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5163 {
5164 	kvm_inject_nmi(vcpu);
5165 
5166 	return 0;
5167 }
5168 
5169 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5170 					   struct kvm_tpr_access_ctl *tac)
5171 {
5172 	if (tac->flags)
5173 		return -EINVAL;
5174 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5175 	return 0;
5176 }
5177 
5178 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5179 					u64 mcg_cap)
5180 {
5181 	int r;
5182 	unsigned bank_num = mcg_cap & 0xff, bank;
5183 
5184 	r = -EINVAL;
5185 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5186 		goto out;
5187 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5188 		goto out;
5189 	r = 0;
5190 	vcpu->arch.mcg_cap = mcg_cap;
5191 	/* Init IA32_MCG_CTL to all 1s */
5192 	if (mcg_cap & MCG_CTL_P)
5193 		vcpu->arch.mcg_ctl = ~(u64)0;
5194 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5195 	for (bank = 0; bank < bank_num; bank++) {
5196 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5197 		if (mcg_cap & MCG_CMCI_P)
5198 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5199 	}
5200 
5201 	kvm_apic_after_set_mcg_cap(vcpu);
5202 
5203 	static_call(kvm_x86_setup_mce)(vcpu);
5204 out:
5205 	return r;
5206 }
5207 
5208 /*
5209  * Validate this is an UCNA (uncorrectable no action) error by checking the
5210  * MCG_STATUS and MCi_STATUS registers:
5211  * - none of the bits for Machine Check Exceptions are set
5212  * - both the VAL (valid) and UC (uncorrectable) bits are set
5213  * MCI_STATUS_PCC - Processor Context Corrupted
5214  * MCI_STATUS_S - Signaled as a Machine Check Exception
5215  * MCI_STATUS_AR - Software recoverable Action Required
5216  */
5217 static bool is_ucna(struct kvm_x86_mce *mce)
5218 {
5219 	return	!mce->mcg_status &&
5220 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5221 		(mce->status & MCI_STATUS_VAL) &&
5222 		(mce->status & MCI_STATUS_UC);
5223 }
5224 
5225 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5226 {
5227 	u64 mcg_cap = vcpu->arch.mcg_cap;
5228 
5229 	banks[1] = mce->status;
5230 	banks[2] = mce->addr;
5231 	banks[3] = mce->misc;
5232 	vcpu->arch.mcg_status = mce->mcg_status;
5233 
5234 	if (!(mcg_cap & MCG_CMCI_P) ||
5235 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5236 		return 0;
5237 
5238 	if (lapic_in_kernel(vcpu))
5239 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5240 
5241 	return 0;
5242 }
5243 
5244 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5245 				      struct kvm_x86_mce *mce)
5246 {
5247 	u64 mcg_cap = vcpu->arch.mcg_cap;
5248 	unsigned bank_num = mcg_cap & 0xff;
5249 	u64 *banks = vcpu->arch.mce_banks;
5250 
5251 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5252 		return -EINVAL;
5253 
5254 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5255 
5256 	if (is_ucna(mce))
5257 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5258 
5259 	/*
5260 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5261 	 * reporting is disabled
5262 	 */
5263 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5264 	    vcpu->arch.mcg_ctl != ~(u64)0)
5265 		return 0;
5266 	/*
5267 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5268 	 * reporting is disabled for the bank
5269 	 */
5270 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5271 		return 0;
5272 	if (mce->status & MCI_STATUS_UC) {
5273 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5274 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5275 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5276 			return 0;
5277 		}
5278 		if (banks[1] & MCI_STATUS_VAL)
5279 			mce->status |= MCI_STATUS_OVER;
5280 		banks[2] = mce->addr;
5281 		banks[3] = mce->misc;
5282 		vcpu->arch.mcg_status = mce->mcg_status;
5283 		banks[1] = mce->status;
5284 		kvm_queue_exception(vcpu, MC_VECTOR);
5285 	} else if (!(banks[1] & MCI_STATUS_VAL)
5286 		   || !(banks[1] & MCI_STATUS_UC)) {
5287 		if (banks[1] & MCI_STATUS_VAL)
5288 			mce->status |= MCI_STATUS_OVER;
5289 		banks[2] = mce->addr;
5290 		banks[3] = mce->misc;
5291 		banks[1] = mce->status;
5292 	} else
5293 		banks[1] |= MCI_STATUS_OVER;
5294 	return 0;
5295 }
5296 
5297 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5298 					       struct kvm_vcpu_events *events)
5299 {
5300 	struct kvm_queued_exception *ex;
5301 
5302 	process_nmi(vcpu);
5303 
5304 #ifdef CONFIG_KVM_SMM
5305 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5306 		process_smi(vcpu);
5307 #endif
5308 
5309 	/*
5310 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5311 	 * the only time there can be two queued exceptions is if there's a
5312 	 * non-exiting _injected_ exception, and a pending exiting exception.
5313 	 * In that case, ignore the VM-Exiting exception as it's an extension
5314 	 * of the injected exception.
5315 	 */
5316 	if (vcpu->arch.exception_vmexit.pending &&
5317 	    !vcpu->arch.exception.pending &&
5318 	    !vcpu->arch.exception.injected)
5319 		ex = &vcpu->arch.exception_vmexit;
5320 	else
5321 		ex = &vcpu->arch.exception;
5322 
5323 	/*
5324 	 * In guest mode, payload delivery should be deferred if the exception
5325 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5326 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5327 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5328 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5329 	 * the payload if the capability hasn't been requested.
5330 	 */
5331 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5332 	    ex->pending && ex->has_payload)
5333 		kvm_deliver_exception_payload(vcpu, ex);
5334 
5335 	memset(events, 0, sizeof(*events));
5336 
5337 	/*
5338 	 * The API doesn't provide the instruction length for software
5339 	 * exceptions, so don't report them. As long as the guest RIP
5340 	 * isn't advanced, we should expect to encounter the exception
5341 	 * again.
5342 	 */
5343 	if (!kvm_exception_is_soft(ex->vector)) {
5344 		events->exception.injected = ex->injected;
5345 		events->exception.pending = ex->pending;
5346 		/*
5347 		 * For ABI compatibility, deliberately conflate
5348 		 * pending and injected exceptions when
5349 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5350 		 */
5351 		if (!vcpu->kvm->arch.exception_payload_enabled)
5352 			events->exception.injected |= ex->pending;
5353 	}
5354 	events->exception.nr = ex->vector;
5355 	events->exception.has_error_code = ex->has_error_code;
5356 	events->exception.error_code = ex->error_code;
5357 	events->exception_has_payload = ex->has_payload;
5358 	events->exception_payload = ex->payload;
5359 
5360 	events->interrupt.injected =
5361 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5362 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5363 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5364 
5365 	events->nmi.injected = vcpu->arch.nmi_injected;
5366 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5367 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5368 
5369 	/* events->sipi_vector is never valid when reporting to user space */
5370 
5371 #ifdef CONFIG_KVM_SMM
5372 	events->smi.smm = is_smm(vcpu);
5373 	events->smi.pending = vcpu->arch.smi_pending;
5374 	events->smi.smm_inside_nmi =
5375 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5376 #endif
5377 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5378 
5379 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5380 			 | KVM_VCPUEVENT_VALID_SHADOW
5381 			 | KVM_VCPUEVENT_VALID_SMM);
5382 	if (vcpu->kvm->arch.exception_payload_enabled)
5383 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5384 	if (vcpu->kvm->arch.triple_fault_event) {
5385 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5386 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5387 	}
5388 }
5389 
5390 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5391 					      struct kvm_vcpu_events *events)
5392 {
5393 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5394 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5395 			      | KVM_VCPUEVENT_VALID_SHADOW
5396 			      | KVM_VCPUEVENT_VALID_SMM
5397 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5398 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5399 		return -EINVAL;
5400 
5401 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5402 		if (!vcpu->kvm->arch.exception_payload_enabled)
5403 			return -EINVAL;
5404 		if (events->exception.pending)
5405 			events->exception.injected = 0;
5406 		else
5407 			events->exception_has_payload = 0;
5408 	} else {
5409 		events->exception.pending = 0;
5410 		events->exception_has_payload = 0;
5411 	}
5412 
5413 	if ((events->exception.injected || events->exception.pending) &&
5414 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5415 		return -EINVAL;
5416 
5417 	/* INITs are latched while in SMM */
5418 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5419 	    (events->smi.smm || events->smi.pending) &&
5420 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5421 		return -EINVAL;
5422 
5423 	process_nmi(vcpu);
5424 
5425 	/*
5426 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5427 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5428 	 * pending exceptions, already-injected exceptions are not subject to
5429 	 * intercpetion.  Note, userspace that conflates pending and injected
5430 	 * is hosed, and will incorrectly convert an injected exception into a
5431 	 * pending exception, which in turn may cause a spurious VM-Exit.
5432 	 */
5433 	vcpu->arch.exception_from_userspace = events->exception.pending;
5434 
5435 	vcpu->arch.exception_vmexit.pending = false;
5436 
5437 	vcpu->arch.exception.injected = events->exception.injected;
5438 	vcpu->arch.exception.pending = events->exception.pending;
5439 	vcpu->arch.exception.vector = events->exception.nr;
5440 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5441 	vcpu->arch.exception.error_code = events->exception.error_code;
5442 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5443 	vcpu->arch.exception.payload = events->exception_payload;
5444 
5445 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5446 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5447 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5448 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5449 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5450 						events->interrupt.shadow);
5451 
5452 	vcpu->arch.nmi_injected = events->nmi.injected;
5453 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5454 		vcpu->arch.nmi_pending = 0;
5455 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5456 		if (events->nmi.pending)
5457 			kvm_make_request(KVM_REQ_NMI, vcpu);
5458 	}
5459 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5460 
5461 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5462 	    lapic_in_kernel(vcpu))
5463 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5464 
5465 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5466 #ifdef CONFIG_KVM_SMM
5467 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5468 			kvm_leave_nested(vcpu);
5469 			kvm_smm_changed(vcpu, events->smi.smm);
5470 		}
5471 
5472 		vcpu->arch.smi_pending = events->smi.pending;
5473 
5474 		if (events->smi.smm) {
5475 			if (events->smi.smm_inside_nmi)
5476 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5477 			else
5478 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5479 		}
5480 
5481 #else
5482 		if (events->smi.smm || events->smi.pending ||
5483 		    events->smi.smm_inside_nmi)
5484 			return -EINVAL;
5485 #endif
5486 
5487 		if (lapic_in_kernel(vcpu)) {
5488 			if (events->smi.latched_init)
5489 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5490 			else
5491 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5492 		}
5493 	}
5494 
5495 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5496 		if (!vcpu->kvm->arch.triple_fault_event)
5497 			return -EINVAL;
5498 		if (events->triple_fault.pending)
5499 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5500 		else
5501 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5502 	}
5503 
5504 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5505 
5506 	return 0;
5507 }
5508 
5509 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5510 					     struct kvm_debugregs *dbgregs)
5511 {
5512 	unsigned long val;
5513 
5514 	memset(dbgregs, 0, sizeof(*dbgregs));
5515 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5516 	kvm_get_dr(vcpu, 6, &val);
5517 	dbgregs->dr6 = val;
5518 	dbgregs->dr7 = vcpu->arch.dr7;
5519 }
5520 
5521 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5522 					    struct kvm_debugregs *dbgregs)
5523 {
5524 	if (dbgregs->flags)
5525 		return -EINVAL;
5526 
5527 	if (!kvm_dr6_valid(dbgregs->dr6))
5528 		return -EINVAL;
5529 	if (!kvm_dr7_valid(dbgregs->dr7))
5530 		return -EINVAL;
5531 
5532 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5533 	kvm_update_dr0123(vcpu);
5534 	vcpu->arch.dr6 = dbgregs->dr6;
5535 	vcpu->arch.dr7 = dbgregs->dr7;
5536 	kvm_update_dr7(vcpu);
5537 
5538 	return 0;
5539 }
5540 
5541 
5542 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5543 					  u8 *state, unsigned int size)
5544 {
5545 	/*
5546 	 * Only copy state for features that are enabled for the guest.  The
5547 	 * state itself isn't problematic, but setting bits in the header for
5548 	 * features that are supported in *this* host but not exposed to the
5549 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5550 	 * compatible host without the features that are NOT exposed to the
5551 	 * guest.
5552 	 *
5553 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5554 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5555 	 * supported by the host.
5556 	 */
5557 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5558 			     XFEATURE_MASK_FPSSE;
5559 
5560 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5561 		return;
5562 
5563 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5564 				       supported_xcr0, vcpu->arch.pkru);
5565 }
5566 
5567 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5568 					 struct kvm_xsave *guest_xsave)
5569 {
5570 	kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5571 				      sizeof(guest_xsave->region));
5572 }
5573 
5574 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5575 					struct kvm_xsave *guest_xsave)
5576 {
5577 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5578 		return 0;
5579 
5580 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5581 					      guest_xsave->region,
5582 					      kvm_caps.supported_xcr0,
5583 					      &vcpu->arch.pkru);
5584 }
5585 
5586 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5587 					struct kvm_xcrs *guest_xcrs)
5588 {
5589 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5590 		guest_xcrs->nr_xcrs = 0;
5591 		return;
5592 	}
5593 
5594 	guest_xcrs->nr_xcrs = 1;
5595 	guest_xcrs->flags = 0;
5596 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5597 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5598 }
5599 
5600 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5601 				       struct kvm_xcrs *guest_xcrs)
5602 {
5603 	int i, r = 0;
5604 
5605 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5606 		return -EINVAL;
5607 
5608 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5609 		return -EINVAL;
5610 
5611 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5612 		/* Only support XCR0 currently */
5613 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5614 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5615 				guest_xcrs->xcrs[i].value);
5616 			break;
5617 		}
5618 	if (r)
5619 		r = -EINVAL;
5620 	return r;
5621 }
5622 
5623 /*
5624  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5625  * stopped by the hypervisor.  This function will be called from the host only.
5626  * EINVAL is returned when the host attempts to set the flag for a guest that
5627  * does not support pv clocks.
5628  */
5629 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5630 {
5631 	if (!vcpu->arch.pv_time.active)
5632 		return -EINVAL;
5633 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5634 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5635 	return 0;
5636 }
5637 
5638 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5639 				 struct kvm_device_attr *attr)
5640 {
5641 	int r;
5642 
5643 	switch (attr->attr) {
5644 	case KVM_VCPU_TSC_OFFSET:
5645 		r = 0;
5646 		break;
5647 	default:
5648 		r = -ENXIO;
5649 	}
5650 
5651 	return r;
5652 }
5653 
5654 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5655 				 struct kvm_device_attr *attr)
5656 {
5657 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5658 	int r;
5659 
5660 	if (IS_ERR(uaddr))
5661 		return PTR_ERR(uaddr);
5662 
5663 	switch (attr->attr) {
5664 	case KVM_VCPU_TSC_OFFSET:
5665 		r = -EFAULT;
5666 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5667 			break;
5668 		r = 0;
5669 		break;
5670 	default:
5671 		r = -ENXIO;
5672 	}
5673 
5674 	return r;
5675 }
5676 
5677 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5678 				 struct kvm_device_attr *attr)
5679 {
5680 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5681 	struct kvm *kvm = vcpu->kvm;
5682 	int r;
5683 
5684 	if (IS_ERR(uaddr))
5685 		return PTR_ERR(uaddr);
5686 
5687 	switch (attr->attr) {
5688 	case KVM_VCPU_TSC_OFFSET: {
5689 		u64 offset, tsc, ns;
5690 		unsigned long flags;
5691 		bool matched;
5692 
5693 		r = -EFAULT;
5694 		if (get_user(offset, uaddr))
5695 			break;
5696 
5697 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5698 
5699 		matched = (vcpu->arch.virtual_tsc_khz &&
5700 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5701 			   kvm->arch.last_tsc_offset == offset);
5702 
5703 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5704 		ns = get_kvmclock_base_ns();
5705 
5706 		kvm->arch.user_set_tsc = true;
5707 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5708 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5709 
5710 		r = 0;
5711 		break;
5712 	}
5713 	default:
5714 		r = -ENXIO;
5715 	}
5716 
5717 	return r;
5718 }
5719 
5720 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5721 				      unsigned int ioctl,
5722 				      void __user *argp)
5723 {
5724 	struct kvm_device_attr attr;
5725 	int r;
5726 
5727 	if (copy_from_user(&attr, argp, sizeof(attr)))
5728 		return -EFAULT;
5729 
5730 	if (attr.group != KVM_VCPU_TSC_CTRL)
5731 		return -ENXIO;
5732 
5733 	switch (ioctl) {
5734 	case KVM_HAS_DEVICE_ATTR:
5735 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5736 		break;
5737 	case KVM_GET_DEVICE_ATTR:
5738 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5739 		break;
5740 	case KVM_SET_DEVICE_ATTR:
5741 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5742 		break;
5743 	}
5744 
5745 	return r;
5746 }
5747 
5748 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5749 				     struct kvm_enable_cap *cap)
5750 {
5751 	if (cap->flags)
5752 		return -EINVAL;
5753 
5754 	switch (cap->cap) {
5755 #ifdef CONFIG_KVM_HYPERV
5756 	case KVM_CAP_HYPERV_SYNIC2:
5757 		if (cap->args[0])
5758 			return -EINVAL;
5759 		fallthrough;
5760 
5761 	case KVM_CAP_HYPERV_SYNIC:
5762 		if (!irqchip_in_kernel(vcpu->kvm))
5763 			return -EINVAL;
5764 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5765 					     KVM_CAP_HYPERV_SYNIC2);
5766 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5767 		{
5768 			int r;
5769 			uint16_t vmcs_version;
5770 			void __user *user_ptr;
5771 
5772 			if (!kvm_x86_ops.nested_ops->enable_evmcs)
5773 				return -ENOTTY;
5774 			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5775 			if (!r) {
5776 				user_ptr = (void __user *)(uintptr_t)cap->args[0];
5777 				if (copy_to_user(user_ptr, &vmcs_version,
5778 						 sizeof(vmcs_version)))
5779 					r = -EFAULT;
5780 			}
5781 			return r;
5782 		}
5783 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5784 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5785 			return -ENOTTY;
5786 
5787 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5788 
5789 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5790 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5791 #endif
5792 
5793 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5794 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5795 		if (vcpu->arch.pv_cpuid.enforce)
5796 			kvm_update_pv_runtime(vcpu);
5797 
5798 		return 0;
5799 	default:
5800 		return -EINVAL;
5801 	}
5802 }
5803 
5804 long kvm_arch_vcpu_ioctl(struct file *filp,
5805 			 unsigned int ioctl, unsigned long arg)
5806 {
5807 	struct kvm_vcpu *vcpu = filp->private_data;
5808 	void __user *argp = (void __user *)arg;
5809 	int r;
5810 	union {
5811 		struct kvm_sregs2 *sregs2;
5812 		struct kvm_lapic_state *lapic;
5813 		struct kvm_xsave *xsave;
5814 		struct kvm_xcrs *xcrs;
5815 		void *buffer;
5816 	} u;
5817 
5818 	vcpu_load(vcpu);
5819 
5820 	u.buffer = NULL;
5821 	switch (ioctl) {
5822 	case KVM_GET_LAPIC: {
5823 		r = -EINVAL;
5824 		if (!lapic_in_kernel(vcpu))
5825 			goto out;
5826 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5827 				GFP_KERNEL_ACCOUNT);
5828 
5829 		r = -ENOMEM;
5830 		if (!u.lapic)
5831 			goto out;
5832 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5833 		if (r)
5834 			goto out;
5835 		r = -EFAULT;
5836 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5837 			goto out;
5838 		r = 0;
5839 		break;
5840 	}
5841 	case KVM_SET_LAPIC: {
5842 		r = -EINVAL;
5843 		if (!lapic_in_kernel(vcpu))
5844 			goto out;
5845 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5846 		if (IS_ERR(u.lapic)) {
5847 			r = PTR_ERR(u.lapic);
5848 			goto out_nofree;
5849 		}
5850 
5851 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5852 		break;
5853 	}
5854 	case KVM_INTERRUPT: {
5855 		struct kvm_interrupt irq;
5856 
5857 		r = -EFAULT;
5858 		if (copy_from_user(&irq, argp, sizeof(irq)))
5859 			goto out;
5860 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5861 		break;
5862 	}
5863 	case KVM_NMI: {
5864 		r = kvm_vcpu_ioctl_nmi(vcpu);
5865 		break;
5866 	}
5867 	case KVM_SMI: {
5868 		r = kvm_inject_smi(vcpu);
5869 		break;
5870 	}
5871 	case KVM_SET_CPUID: {
5872 		struct kvm_cpuid __user *cpuid_arg = argp;
5873 		struct kvm_cpuid cpuid;
5874 
5875 		r = -EFAULT;
5876 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5877 			goto out;
5878 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5879 		break;
5880 	}
5881 	case KVM_SET_CPUID2: {
5882 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5883 		struct kvm_cpuid2 cpuid;
5884 
5885 		r = -EFAULT;
5886 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5887 			goto out;
5888 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5889 					      cpuid_arg->entries);
5890 		break;
5891 	}
5892 	case KVM_GET_CPUID2: {
5893 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5894 		struct kvm_cpuid2 cpuid;
5895 
5896 		r = -EFAULT;
5897 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5898 			goto out;
5899 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5900 					      cpuid_arg->entries);
5901 		if (r)
5902 			goto out;
5903 		r = -EFAULT;
5904 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5905 			goto out;
5906 		r = 0;
5907 		break;
5908 	}
5909 	case KVM_GET_MSRS: {
5910 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5911 		r = msr_io(vcpu, argp, do_get_msr, 1);
5912 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5913 		break;
5914 	}
5915 	case KVM_SET_MSRS: {
5916 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5917 		r = msr_io(vcpu, argp, do_set_msr, 0);
5918 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5919 		break;
5920 	}
5921 	case KVM_TPR_ACCESS_REPORTING: {
5922 		struct kvm_tpr_access_ctl tac;
5923 
5924 		r = -EFAULT;
5925 		if (copy_from_user(&tac, argp, sizeof(tac)))
5926 			goto out;
5927 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5928 		if (r)
5929 			goto out;
5930 		r = -EFAULT;
5931 		if (copy_to_user(argp, &tac, sizeof(tac)))
5932 			goto out;
5933 		r = 0;
5934 		break;
5935 	};
5936 	case KVM_SET_VAPIC_ADDR: {
5937 		struct kvm_vapic_addr va;
5938 		int idx;
5939 
5940 		r = -EINVAL;
5941 		if (!lapic_in_kernel(vcpu))
5942 			goto out;
5943 		r = -EFAULT;
5944 		if (copy_from_user(&va, argp, sizeof(va)))
5945 			goto out;
5946 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5947 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5948 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5949 		break;
5950 	}
5951 	case KVM_X86_SETUP_MCE: {
5952 		u64 mcg_cap;
5953 
5954 		r = -EFAULT;
5955 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5956 			goto out;
5957 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5958 		break;
5959 	}
5960 	case KVM_X86_SET_MCE: {
5961 		struct kvm_x86_mce mce;
5962 
5963 		r = -EFAULT;
5964 		if (copy_from_user(&mce, argp, sizeof(mce)))
5965 			goto out;
5966 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5967 		break;
5968 	}
5969 	case KVM_GET_VCPU_EVENTS: {
5970 		struct kvm_vcpu_events events;
5971 
5972 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5973 
5974 		r = -EFAULT;
5975 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5976 			break;
5977 		r = 0;
5978 		break;
5979 	}
5980 	case KVM_SET_VCPU_EVENTS: {
5981 		struct kvm_vcpu_events events;
5982 
5983 		r = -EFAULT;
5984 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5985 			break;
5986 
5987 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5988 		break;
5989 	}
5990 	case KVM_GET_DEBUGREGS: {
5991 		struct kvm_debugregs dbgregs;
5992 
5993 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5994 
5995 		r = -EFAULT;
5996 		if (copy_to_user(argp, &dbgregs,
5997 				 sizeof(struct kvm_debugregs)))
5998 			break;
5999 		r = 0;
6000 		break;
6001 	}
6002 	case KVM_SET_DEBUGREGS: {
6003 		struct kvm_debugregs dbgregs;
6004 
6005 		r = -EFAULT;
6006 		if (copy_from_user(&dbgregs, argp,
6007 				   sizeof(struct kvm_debugregs)))
6008 			break;
6009 
6010 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6011 		break;
6012 	}
6013 	case KVM_GET_XSAVE: {
6014 		r = -EINVAL;
6015 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6016 			break;
6017 
6018 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6019 		r = -ENOMEM;
6020 		if (!u.xsave)
6021 			break;
6022 
6023 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6024 
6025 		r = -EFAULT;
6026 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6027 			break;
6028 		r = 0;
6029 		break;
6030 	}
6031 	case KVM_SET_XSAVE: {
6032 		int size = vcpu->arch.guest_fpu.uabi_size;
6033 
6034 		u.xsave = memdup_user(argp, size);
6035 		if (IS_ERR(u.xsave)) {
6036 			r = PTR_ERR(u.xsave);
6037 			goto out_nofree;
6038 		}
6039 
6040 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6041 		break;
6042 	}
6043 
6044 	case KVM_GET_XSAVE2: {
6045 		int size = vcpu->arch.guest_fpu.uabi_size;
6046 
6047 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6048 		r = -ENOMEM;
6049 		if (!u.xsave)
6050 			break;
6051 
6052 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6053 
6054 		r = -EFAULT;
6055 		if (copy_to_user(argp, u.xsave, size))
6056 			break;
6057 
6058 		r = 0;
6059 		break;
6060 	}
6061 
6062 	case KVM_GET_XCRS: {
6063 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6064 		r = -ENOMEM;
6065 		if (!u.xcrs)
6066 			break;
6067 
6068 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6069 
6070 		r = -EFAULT;
6071 		if (copy_to_user(argp, u.xcrs,
6072 				 sizeof(struct kvm_xcrs)))
6073 			break;
6074 		r = 0;
6075 		break;
6076 	}
6077 	case KVM_SET_XCRS: {
6078 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6079 		if (IS_ERR(u.xcrs)) {
6080 			r = PTR_ERR(u.xcrs);
6081 			goto out_nofree;
6082 		}
6083 
6084 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6085 		break;
6086 	}
6087 	case KVM_SET_TSC_KHZ: {
6088 		u32 user_tsc_khz;
6089 
6090 		r = -EINVAL;
6091 		user_tsc_khz = (u32)arg;
6092 
6093 		if (kvm_caps.has_tsc_control &&
6094 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6095 			goto out;
6096 
6097 		if (user_tsc_khz == 0)
6098 			user_tsc_khz = tsc_khz;
6099 
6100 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6101 			r = 0;
6102 
6103 		goto out;
6104 	}
6105 	case KVM_GET_TSC_KHZ: {
6106 		r = vcpu->arch.virtual_tsc_khz;
6107 		goto out;
6108 	}
6109 	case KVM_KVMCLOCK_CTRL: {
6110 		r = kvm_set_guest_paused(vcpu);
6111 		goto out;
6112 	}
6113 	case KVM_ENABLE_CAP: {
6114 		struct kvm_enable_cap cap;
6115 
6116 		r = -EFAULT;
6117 		if (copy_from_user(&cap, argp, sizeof(cap)))
6118 			goto out;
6119 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6120 		break;
6121 	}
6122 	case KVM_GET_NESTED_STATE: {
6123 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6124 		u32 user_data_size;
6125 
6126 		r = -EINVAL;
6127 		if (!kvm_x86_ops.nested_ops->get_state)
6128 			break;
6129 
6130 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6131 		r = -EFAULT;
6132 		if (get_user(user_data_size, &user_kvm_nested_state->size))
6133 			break;
6134 
6135 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6136 						     user_data_size);
6137 		if (r < 0)
6138 			break;
6139 
6140 		if (r > user_data_size) {
6141 			if (put_user(r, &user_kvm_nested_state->size))
6142 				r = -EFAULT;
6143 			else
6144 				r = -E2BIG;
6145 			break;
6146 		}
6147 
6148 		r = 0;
6149 		break;
6150 	}
6151 	case KVM_SET_NESTED_STATE: {
6152 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6153 		struct kvm_nested_state kvm_state;
6154 		int idx;
6155 
6156 		r = -EINVAL;
6157 		if (!kvm_x86_ops.nested_ops->set_state)
6158 			break;
6159 
6160 		r = -EFAULT;
6161 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6162 			break;
6163 
6164 		r = -EINVAL;
6165 		if (kvm_state.size < sizeof(kvm_state))
6166 			break;
6167 
6168 		if (kvm_state.flags &
6169 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6170 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6171 		      | KVM_STATE_NESTED_GIF_SET))
6172 			break;
6173 
6174 		/* nested_run_pending implies guest_mode.  */
6175 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6176 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6177 			break;
6178 
6179 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6180 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6181 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6182 		break;
6183 	}
6184 #ifdef CONFIG_KVM_HYPERV
6185 	case KVM_GET_SUPPORTED_HV_CPUID:
6186 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6187 		break;
6188 #endif
6189 #ifdef CONFIG_KVM_XEN
6190 	case KVM_XEN_VCPU_GET_ATTR: {
6191 		struct kvm_xen_vcpu_attr xva;
6192 
6193 		r = -EFAULT;
6194 		if (copy_from_user(&xva, argp, sizeof(xva)))
6195 			goto out;
6196 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6197 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6198 			r = -EFAULT;
6199 		break;
6200 	}
6201 	case KVM_XEN_VCPU_SET_ATTR: {
6202 		struct kvm_xen_vcpu_attr xva;
6203 
6204 		r = -EFAULT;
6205 		if (copy_from_user(&xva, argp, sizeof(xva)))
6206 			goto out;
6207 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6208 		break;
6209 	}
6210 #endif
6211 	case KVM_GET_SREGS2: {
6212 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6213 		r = -ENOMEM;
6214 		if (!u.sregs2)
6215 			goto out;
6216 		__get_sregs2(vcpu, u.sregs2);
6217 		r = -EFAULT;
6218 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6219 			goto out;
6220 		r = 0;
6221 		break;
6222 	}
6223 	case KVM_SET_SREGS2: {
6224 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6225 		if (IS_ERR(u.sregs2)) {
6226 			r = PTR_ERR(u.sregs2);
6227 			u.sregs2 = NULL;
6228 			goto out;
6229 		}
6230 		r = __set_sregs2(vcpu, u.sregs2);
6231 		break;
6232 	}
6233 	case KVM_HAS_DEVICE_ATTR:
6234 	case KVM_GET_DEVICE_ATTR:
6235 	case KVM_SET_DEVICE_ATTR:
6236 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6237 		break;
6238 	default:
6239 		r = -EINVAL;
6240 	}
6241 out:
6242 	kfree(u.buffer);
6243 out_nofree:
6244 	vcpu_put(vcpu);
6245 	return r;
6246 }
6247 
6248 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6249 {
6250 	return VM_FAULT_SIGBUS;
6251 }
6252 
6253 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6254 {
6255 	int ret;
6256 
6257 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6258 		return -EINVAL;
6259 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6260 	return ret;
6261 }
6262 
6263 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6264 					      u64 ident_addr)
6265 {
6266 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6267 }
6268 
6269 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6270 					 unsigned long kvm_nr_mmu_pages)
6271 {
6272 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6273 		return -EINVAL;
6274 
6275 	mutex_lock(&kvm->slots_lock);
6276 
6277 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6278 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6279 
6280 	mutex_unlock(&kvm->slots_lock);
6281 	return 0;
6282 }
6283 
6284 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6285 {
6286 	struct kvm_pic *pic = kvm->arch.vpic;
6287 	int r;
6288 
6289 	r = 0;
6290 	switch (chip->chip_id) {
6291 	case KVM_IRQCHIP_PIC_MASTER:
6292 		memcpy(&chip->chip.pic, &pic->pics[0],
6293 			sizeof(struct kvm_pic_state));
6294 		break;
6295 	case KVM_IRQCHIP_PIC_SLAVE:
6296 		memcpy(&chip->chip.pic, &pic->pics[1],
6297 			sizeof(struct kvm_pic_state));
6298 		break;
6299 	case KVM_IRQCHIP_IOAPIC:
6300 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6301 		break;
6302 	default:
6303 		r = -EINVAL;
6304 		break;
6305 	}
6306 	return r;
6307 }
6308 
6309 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6310 {
6311 	struct kvm_pic *pic = kvm->arch.vpic;
6312 	int r;
6313 
6314 	r = 0;
6315 	switch (chip->chip_id) {
6316 	case KVM_IRQCHIP_PIC_MASTER:
6317 		spin_lock(&pic->lock);
6318 		memcpy(&pic->pics[0], &chip->chip.pic,
6319 			sizeof(struct kvm_pic_state));
6320 		spin_unlock(&pic->lock);
6321 		break;
6322 	case KVM_IRQCHIP_PIC_SLAVE:
6323 		spin_lock(&pic->lock);
6324 		memcpy(&pic->pics[1], &chip->chip.pic,
6325 			sizeof(struct kvm_pic_state));
6326 		spin_unlock(&pic->lock);
6327 		break;
6328 	case KVM_IRQCHIP_IOAPIC:
6329 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6330 		break;
6331 	default:
6332 		r = -EINVAL;
6333 		break;
6334 	}
6335 	kvm_pic_update_irq(pic);
6336 	return r;
6337 }
6338 
6339 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6340 {
6341 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6342 
6343 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6344 
6345 	mutex_lock(&kps->lock);
6346 	memcpy(ps, &kps->channels, sizeof(*ps));
6347 	mutex_unlock(&kps->lock);
6348 	return 0;
6349 }
6350 
6351 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6352 {
6353 	int i;
6354 	struct kvm_pit *pit = kvm->arch.vpit;
6355 
6356 	mutex_lock(&pit->pit_state.lock);
6357 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6358 	for (i = 0; i < 3; i++)
6359 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6360 	mutex_unlock(&pit->pit_state.lock);
6361 	return 0;
6362 }
6363 
6364 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6365 {
6366 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6367 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6368 		sizeof(ps->channels));
6369 	ps->flags = kvm->arch.vpit->pit_state.flags;
6370 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6371 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6372 	return 0;
6373 }
6374 
6375 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6376 {
6377 	int start = 0;
6378 	int i;
6379 	u32 prev_legacy, cur_legacy;
6380 	struct kvm_pit *pit = kvm->arch.vpit;
6381 
6382 	mutex_lock(&pit->pit_state.lock);
6383 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6384 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6385 	if (!prev_legacy && cur_legacy)
6386 		start = 1;
6387 	memcpy(&pit->pit_state.channels, &ps->channels,
6388 	       sizeof(pit->pit_state.channels));
6389 	pit->pit_state.flags = ps->flags;
6390 	for (i = 0; i < 3; i++)
6391 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6392 				   start && i == 0);
6393 	mutex_unlock(&pit->pit_state.lock);
6394 	return 0;
6395 }
6396 
6397 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6398 				 struct kvm_reinject_control *control)
6399 {
6400 	struct kvm_pit *pit = kvm->arch.vpit;
6401 
6402 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6403 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6404 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6405 	 */
6406 	mutex_lock(&pit->pit_state.lock);
6407 	kvm_pit_set_reinject(pit, control->pit_reinject);
6408 	mutex_unlock(&pit->pit_state.lock);
6409 
6410 	return 0;
6411 }
6412 
6413 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6414 {
6415 
6416 	/*
6417 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6418 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6419 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6420 	 * VM-Exit.
6421 	 */
6422 	struct kvm_vcpu *vcpu;
6423 	unsigned long i;
6424 
6425 	if (!kvm_x86_ops.cpu_dirty_log_size)
6426 		return;
6427 
6428 	kvm_for_each_vcpu(i, vcpu, kvm)
6429 		kvm_vcpu_kick(vcpu);
6430 }
6431 
6432 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6433 			bool line_status)
6434 {
6435 	if (!irqchip_in_kernel(kvm))
6436 		return -ENXIO;
6437 
6438 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6439 					irq_event->irq, irq_event->level,
6440 					line_status);
6441 	return 0;
6442 }
6443 
6444 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6445 			    struct kvm_enable_cap *cap)
6446 {
6447 	int r;
6448 
6449 	if (cap->flags)
6450 		return -EINVAL;
6451 
6452 	switch (cap->cap) {
6453 	case KVM_CAP_DISABLE_QUIRKS2:
6454 		r = -EINVAL;
6455 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6456 			break;
6457 		fallthrough;
6458 	case KVM_CAP_DISABLE_QUIRKS:
6459 		kvm->arch.disabled_quirks = cap->args[0];
6460 		r = 0;
6461 		break;
6462 	case KVM_CAP_SPLIT_IRQCHIP: {
6463 		mutex_lock(&kvm->lock);
6464 		r = -EINVAL;
6465 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6466 			goto split_irqchip_unlock;
6467 		r = -EEXIST;
6468 		if (irqchip_in_kernel(kvm))
6469 			goto split_irqchip_unlock;
6470 		if (kvm->created_vcpus)
6471 			goto split_irqchip_unlock;
6472 		r = kvm_setup_empty_irq_routing(kvm);
6473 		if (r)
6474 			goto split_irqchip_unlock;
6475 		/* Pairs with irqchip_in_kernel. */
6476 		smp_wmb();
6477 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6478 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6479 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6480 		r = 0;
6481 split_irqchip_unlock:
6482 		mutex_unlock(&kvm->lock);
6483 		break;
6484 	}
6485 	case KVM_CAP_X2APIC_API:
6486 		r = -EINVAL;
6487 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6488 			break;
6489 
6490 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6491 			kvm->arch.x2apic_format = true;
6492 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6493 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6494 
6495 		r = 0;
6496 		break;
6497 	case KVM_CAP_X86_DISABLE_EXITS:
6498 		r = -EINVAL;
6499 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6500 			break;
6501 
6502 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6503 			kvm->arch.pause_in_guest = true;
6504 
6505 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6506 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6507 
6508 		if (!mitigate_smt_rsb) {
6509 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6510 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6511 				pr_warn_once(SMT_RSB_MSG);
6512 
6513 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6514 			    kvm_can_mwait_in_guest())
6515 				kvm->arch.mwait_in_guest = true;
6516 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6517 				kvm->arch.hlt_in_guest = true;
6518 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6519 				kvm->arch.cstate_in_guest = true;
6520 		}
6521 
6522 		r = 0;
6523 		break;
6524 	case KVM_CAP_MSR_PLATFORM_INFO:
6525 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6526 		r = 0;
6527 		break;
6528 	case KVM_CAP_EXCEPTION_PAYLOAD:
6529 		kvm->arch.exception_payload_enabled = cap->args[0];
6530 		r = 0;
6531 		break;
6532 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6533 		kvm->arch.triple_fault_event = cap->args[0];
6534 		r = 0;
6535 		break;
6536 	case KVM_CAP_X86_USER_SPACE_MSR:
6537 		r = -EINVAL;
6538 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6539 			break;
6540 		kvm->arch.user_space_msr_mask = cap->args[0];
6541 		r = 0;
6542 		break;
6543 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6544 		r = -EINVAL;
6545 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6546 			break;
6547 
6548 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6549 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6550 			break;
6551 
6552 		if (kvm_caps.has_bus_lock_exit &&
6553 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6554 			kvm->arch.bus_lock_detection_enabled = true;
6555 		r = 0;
6556 		break;
6557 #ifdef CONFIG_X86_SGX_KVM
6558 	case KVM_CAP_SGX_ATTRIBUTE: {
6559 		unsigned long allowed_attributes = 0;
6560 
6561 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6562 		if (r)
6563 			break;
6564 
6565 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6566 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6567 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6568 			kvm->arch.sgx_provisioning_allowed = true;
6569 		else
6570 			r = -EINVAL;
6571 		break;
6572 	}
6573 #endif
6574 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6575 		r = -EINVAL;
6576 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6577 			break;
6578 
6579 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6580 		break;
6581 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6582 		r = -EINVAL;
6583 		if (!kvm_x86_ops.vm_move_enc_context_from)
6584 			break;
6585 
6586 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6587 		break;
6588 	case KVM_CAP_EXIT_HYPERCALL:
6589 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6590 			r = -EINVAL;
6591 			break;
6592 		}
6593 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6594 		r = 0;
6595 		break;
6596 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6597 		r = -EINVAL;
6598 		if (cap->args[0] & ~1)
6599 			break;
6600 		kvm->arch.exit_on_emulation_error = cap->args[0];
6601 		r = 0;
6602 		break;
6603 	case KVM_CAP_PMU_CAPABILITY:
6604 		r = -EINVAL;
6605 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6606 			break;
6607 
6608 		mutex_lock(&kvm->lock);
6609 		if (!kvm->created_vcpus) {
6610 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6611 			r = 0;
6612 		}
6613 		mutex_unlock(&kvm->lock);
6614 		break;
6615 	case KVM_CAP_MAX_VCPU_ID:
6616 		r = -EINVAL;
6617 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6618 			break;
6619 
6620 		mutex_lock(&kvm->lock);
6621 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6622 			r = 0;
6623 		} else if (!kvm->arch.max_vcpu_ids) {
6624 			kvm->arch.max_vcpu_ids = cap->args[0];
6625 			r = 0;
6626 		}
6627 		mutex_unlock(&kvm->lock);
6628 		break;
6629 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6630 		r = -EINVAL;
6631 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6632 			break;
6633 		if (!kvm_caps.has_notify_vmexit)
6634 			break;
6635 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6636 			break;
6637 		mutex_lock(&kvm->lock);
6638 		if (!kvm->created_vcpus) {
6639 			kvm->arch.notify_window = cap->args[0] >> 32;
6640 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6641 			r = 0;
6642 		}
6643 		mutex_unlock(&kvm->lock);
6644 		break;
6645 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6646 		r = -EINVAL;
6647 
6648 		/*
6649 		 * Since the risk of disabling NX hugepages is a guest crashing
6650 		 * the system, ensure the userspace process has permission to
6651 		 * reboot the system.
6652 		 *
6653 		 * Note that unlike the reboot() syscall, the process must have
6654 		 * this capability in the root namespace because exposing
6655 		 * /dev/kvm into a container does not limit the scope of the
6656 		 * iTLB multihit bug to that container. In other words,
6657 		 * this must use capable(), not ns_capable().
6658 		 */
6659 		if (!capable(CAP_SYS_BOOT)) {
6660 			r = -EPERM;
6661 			break;
6662 		}
6663 
6664 		if (cap->args[0])
6665 			break;
6666 
6667 		mutex_lock(&kvm->lock);
6668 		if (!kvm->created_vcpus) {
6669 			kvm->arch.disable_nx_huge_pages = true;
6670 			r = 0;
6671 		}
6672 		mutex_unlock(&kvm->lock);
6673 		break;
6674 	default:
6675 		r = -EINVAL;
6676 		break;
6677 	}
6678 	return r;
6679 }
6680 
6681 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6682 {
6683 	struct kvm_x86_msr_filter *msr_filter;
6684 
6685 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6686 	if (!msr_filter)
6687 		return NULL;
6688 
6689 	msr_filter->default_allow = default_allow;
6690 	return msr_filter;
6691 }
6692 
6693 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6694 {
6695 	u32 i;
6696 
6697 	if (!msr_filter)
6698 		return;
6699 
6700 	for (i = 0; i < msr_filter->count; i++)
6701 		kfree(msr_filter->ranges[i].bitmap);
6702 
6703 	kfree(msr_filter);
6704 }
6705 
6706 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6707 			      struct kvm_msr_filter_range *user_range)
6708 {
6709 	unsigned long *bitmap;
6710 	size_t bitmap_size;
6711 
6712 	if (!user_range->nmsrs)
6713 		return 0;
6714 
6715 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6716 		return -EINVAL;
6717 
6718 	if (!user_range->flags)
6719 		return -EINVAL;
6720 
6721 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6722 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6723 		return -EINVAL;
6724 
6725 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6726 	if (IS_ERR(bitmap))
6727 		return PTR_ERR(bitmap);
6728 
6729 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6730 		.flags = user_range->flags,
6731 		.base = user_range->base,
6732 		.nmsrs = user_range->nmsrs,
6733 		.bitmap = bitmap,
6734 	};
6735 
6736 	msr_filter->count++;
6737 	return 0;
6738 }
6739 
6740 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6741 				       struct kvm_msr_filter *filter)
6742 {
6743 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6744 	bool default_allow;
6745 	bool empty = true;
6746 	int r;
6747 	u32 i;
6748 
6749 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6750 		return -EINVAL;
6751 
6752 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6753 		empty &= !filter->ranges[i].nmsrs;
6754 
6755 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6756 	if (empty && !default_allow)
6757 		return -EINVAL;
6758 
6759 	new_filter = kvm_alloc_msr_filter(default_allow);
6760 	if (!new_filter)
6761 		return -ENOMEM;
6762 
6763 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6764 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6765 		if (r) {
6766 			kvm_free_msr_filter(new_filter);
6767 			return r;
6768 		}
6769 	}
6770 
6771 	mutex_lock(&kvm->lock);
6772 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6773 					 mutex_is_locked(&kvm->lock));
6774 	mutex_unlock(&kvm->lock);
6775 	synchronize_srcu(&kvm->srcu);
6776 
6777 	kvm_free_msr_filter(old_filter);
6778 
6779 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6780 
6781 	return 0;
6782 }
6783 
6784 #ifdef CONFIG_KVM_COMPAT
6785 /* for KVM_X86_SET_MSR_FILTER */
6786 struct kvm_msr_filter_range_compat {
6787 	__u32 flags;
6788 	__u32 nmsrs;
6789 	__u32 base;
6790 	__u32 bitmap;
6791 };
6792 
6793 struct kvm_msr_filter_compat {
6794 	__u32 flags;
6795 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6796 };
6797 
6798 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6799 
6800 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6801 			      unsigned long arg)
6802 {
6803 	void __user *argp = (void __user *)arg;
6804 	struct kvm *kvm = filp->private_data;
6805 	long r = -ENOTTY;
6806 
6807 	switch (ioctl) {
6808 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6809 		struct kvm_msr_filter __user *user_msr_filter = argp;
6810 		struct kvm_msr_filter_compat filter_compat;
6811 		struct kvm_msr_filter filter;
6812 		int i;
6813 
6814 		if (copy_from_user(&filter_compat, user_msr_filter,
6815 				   sizeof(filter_compat)))
6816 			return -EFAULT;
6817 
6818 		filter.flags = filter_compat.flags;
6819 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6820 			struct kvm_msr_filter_range_compat *cr;
6821 
6822 			cr = &filter_compat.ranges[i];
6823 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6824 				.flags = cr->flags,
6825 				.nmsrs = cr->nmsrs,
6826 				.base = cr->base,
6827 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6828 			};
6829 		}
6830 
6831 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6832 		break;
6833 	}
6834 	}
6835 
6836 	return r;
6837 }
6838 #endif
6839 
6840 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6841 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6842 {
6843 	struct kvm_vcpu *vcpu;
6844 	unsigned long i;
6845 	int ret = 0;
6846 
6847 	mutex_lock(&kvm->lock);
6848 	kvm_for_each_vcpu(i, vcpu, kvm) {
6849 		if (!vcpu->arch.pv_time.active)
6850 			continue;
6851 
6852 		ret = kvm_set_guest_paused(vcpu);
6853 		if (ret) {
6854 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6855 				vcpu->vcpu_id, ret);
6856 			break;
6857 		}
6858 	}
6859 	mutex_unlock(&kvm->lock);
6860 
6861 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6862 }
6863 
6864 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6865 {
6866 	switch (state) {
6867 	case PM_HIBERNATION_PREPARE:
6868 	case PM_SUSPEND_PREPARE:
6869 		return kvm_arch_suspend_notifier(kvm);
6870 	}
6871 
6872 	return NOTIFY_DONE;
6873 }
6874 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6875 
6876 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6877 {
6878 	struct kvm_clock_data data = { 0 };
6879 
6880 	get_kvmclock(kvm, &data);
6881 	if (copy_to_user(argp, &data, sizeof(data)))
6882 		return -EFAULT;
6883 
6884 	return 0;
6885 }
6886 
6887 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6888 {
6889 	struct kvm_arch *ka = &kvm->arch;
6890 	struct kvm_clock_data data;
6891 	u64 now_raw_ns;
6892 
6893 	if (copy_from_user(&data, argp, sizeof(data)))
6894 		return -EFAULT;
6895 
6896 	/*
6897 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6898 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6899 	 */
6900 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6901 		return -EINVAL;
6902 
6903 	kvm_hv_request_tsc_page_update(kvm);
6904 	kvm_start_pvclock_update(kvm);
6905 	pvclock_update_vm_gtod_copy(kvm);
6906 
6907 	/*
6908 	 * This pairs with kvm_guest_time_update(): when masterclock is
6909 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6910 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6911 	 * is slightly ahead) here we risk going negative on unsigned
6912 	 * 'system_time' when 'data.clock' is very small.
6913 	 */
6914 	if (data.flags & KVM_CLOCK_REALTIME) {
6915 		u64 now_real_ns = ktime_get_real_ns();
6916 
6917 		/*
6918 		 * Avoid stepping the kvmclock backwards.
6919 		 */
6920 		if (now_real_ns > data.realtime)
6921 			data.clock += now_real_ns - data.realtime;
6922 	}
6923 
6924 	if (ka->use_master_clock)
6925 		now_raw_ns = ka->master_kernel_ns;
6926 	else
6927 		now_raw_ns = get_kvmclock_base_ns();
6928 	ka->kvmclock_offset = data.clock - now_raw_ns;
6929 	kvm_end_pvclock_update(kvm);
6930 	return 0;
6931 }
6932 
6933 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6934 {
6935 	struct kvm *kvm = filp->private_data;
6936 	void __user *argp = (void __user *)arg;
6937 	int r = -ENOTTY;
6938 	/*
6939 	 * This union makes it completely explicit to gcc-3.x
6940 	 * that these two variables' stack usage should be
6941 	 * combined, not added together.
6942 	 */
6943 	union {
6944 		struct kvm_pit_state ps;
6945 		struct kvm_pit_state2 ps2;
6946 		struct kvm_pit_config pit_config;
6947 	} u;
6948 
6949 	switch (ioctl) {
6950 	case KVM_SET_TSS_ADDR:
6951 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6952 		break;
6953 	case KVM_SET_IDENTITY_MAP_ADDR: {
6954 		u64 ident_addr;
6955 
6956 		mutex_lock(&kvm->lock);
6957 		r = -EINVAL;
6958 		if (kvm->created_vcpus)
6959 			goto set_identity_unlock;
6960 		r = -EFAULT;
6961 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6962 			goto set_identity_unlock;
6963 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6964 set_identity_unlock:
6965 		mutex_unlock(&kvm->lock);
6966 		break;
6967 	}
6968 	case KVM_SET_NR_MMU_PAGES:
6969 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6970 		break;
6971 	case KVM_CREATE_IRQCHIP: {
6972 		mutex_lock(&kvm->lock);
6973 
6974 		r = -EEXIST;
6975 		if (irqchip_in_kernel(kvm))
6976 			goto create_irqchip_unlock;
6977 
6978 		r = -EINVAL;
6979 		if (kvm->created_vcpus)
6980 			goto create_irqchip_unlock;
6981 
6982 		r = kvm_pic_init(kvm);
6983 		if (r)
6984 			goto create_irqchip_unlock;
6985 
6986 		r = kvm_ioapic_init(kvm);
6987 		if (r) {
6988 			kvm_pic_destroy(kvm);
6989 			goto create_irqchip_unlock;
6990 		}
6991 
6992 		r = kvm_setup_default_irq_routing(kvm);
6993 		if (r) {
6994 			kvm_ioapic_destroy(kvm);
6995 			kvm_pic_destroy(kvm);
6996 			goto create_irqchip_unlock;
6997 		}
6998 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6999 		smp_wmb();
7000 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7001 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7002 	create_irqchip_unlock:
7003 		mutex_unlock(&kvm->lock);
7004 		break;
7005 	}
7006 	case KVM_CREATE_PIT:
7007 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7008 		goto create_pit;
7009 	case KVM_CREATE_PIT2:
7010 		r = -EFAULT;
7011 		if (copy_from_user(&u.pit_config, argp,
7012 				   sizeof(struct kvm_pit_config)))
7013 			goto out;
7014 	create_pit:
7015 		mutex_lock(&kvm->lock);
7016 		r = -EEXIST;
7017 		if (kvm->arch.vpit)
7018 			goto create_pit_unlock;
7019 		r = -ENOENT;
7020 		if (!pic_in_kernel(kvm))
7021 			goto create_pit_unlock;
7022 		r = -ENOMEM;
7023 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7024 		if (kvm->arch.vpit)
7025 			r = 0;
7026 	create_pit_unlock:
7027 		mutex_unlock(&kvm->lock);
7028 		break;
7029 	case KVM_GET_IRQCHIP: {
7030 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7031 		struct kvm_irqchip *chip;
7032 
7033 		chip = memdup_user(argp, sizeof(*chip));
7034 		if (IS_ERR(chip)) {
7035 			r = PTR_ERR(chip);
7036 			goto out;
7037 		}
7038 
7039 		r = -ENXIO;
7040 		if (!irqchip_kernel(kvm))
7041 			goto get_irqchip_out;
7042 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7043 		if (r)
7044 			goto get_irqchip_out;
7045 		r = -EFAULT;
7046 		if (copy_to_user(argp, chip, sizeof(*chip)))
7047 			goto get_irqchip_out;
7048 		r = 0;
7049 	get_irqchip_out:
7050 		kfree(chip);
7051 		break;
7052 	}
7053 	case KVM_SET_IRQCHIP: {
7054 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7055 		struct kvm_irqchip *chip;
7056 
7057 		chip = memdup_user(argp, sizeof(*chip));
7058 		if (IS_ERR(chip)) {
7059 			r = PTR_ERR(chip);
7060 			goto out;
7061 		}
7062 
7063 		r = -ENXIO;
7064 		if (!irqchip_kernel(kvm))
7065 			goto set_irqchip_out;
7066 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7067 	set_irqchip_out:
7068 		kfree(chip);
7069 		break;
7070 	}
7071 	case KVM_GET_PIT: {
7072 		r = -EFAULT;
7073 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7074 			goto out;
7075 		r = -ENXIO;
7076 		if (!kvm->arch.vpit)
7077 			goto out;
7078 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7079 		if (r)
7080 			goto out;
7081 		r = -EFAULT;
7082 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7083 			goto out;
7084 		r = 0;
7085 		break;
7086 	}
7087 	case KVM_SET_PIT: {
7088 		r = -EFAULT;
7089 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7090 			goto out;
7091 		mutex_lock(&kvm->lock);
7092 		r = -ENXIO;
7093 		if (!kvm->arch.vpit)
7094 			goto set_pit_out;
7095 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7096 set_pit_out:
7097 		mutex_unlock(&kvm->lock);
7098 		break;
7099 	}
7100 	case KVM_GET_PIT2: {
7101 		r = -ENXIO;
7102 		if (!kvm->arch.vpit)
7103 			goto out;
7104 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7105 		if (r)
7106 			goto out;
7107 		r = -EFAULT;
7108 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7109 			goto out;
7110 		r = 0;
7111 		break;
7112 	}
7113 	case KVM_SET_PIT2: {
7114 		r = -EFAULT;
7115 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7116 			goto out;
7117 		mutex_lock(&kvm->lock);
7118 		r = -ENXIO;
7119 		if (!kvm->arch.vpit)
7120 			goto set_pit2_out;
7121 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7122 set_pit2_out:
7123 		mutex_unlock(&kvm->lock);
7124 		break;
7125 	}
7126 	case KVM_REINJECT_CONTROL: {
7127 		struct kvm_reinject_control control;
7128 		r =  -EFAULT;
7129 		if (copy_from_user(&control, argp, sizeof(control)))
7130 			goto out;
7131 		r = -ENXIO;
7132 		if (!kvm->arch.vpit)
7133 			goto out;
7134 		r = kvm_vm_ioctl_reinject(kvm, &control);
7135 		break;
7136 	}
7137 	case KVM_SET_BOOT_CPU_ID:
7138 		r = 0;
7139 		mutex_lock(&kvm->lock);
7140 		if (kvm->created_vcpus)
7141 			r = -EBUSY;
7142 		else
7143 			kvm->arch.bsp_vcpu_id = arg;
7144 		mutex_unlock(&kvm->lock);
7145 		break;
7146 #ifdef CONFIG_KVM_XEN
7147 	case KVM_XEN_HVM_CONFIG: {
7148 		struct kvm_xen_hvm_config xhc;
7149 		r = -EFAULT;
7150 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7151 			goto out;
7152 		r = kvm_xen_hvm_config(kvm, &xhc);
7153 		break;
7154 	}
7155 	case KVM_XEN_HVM_GET_ATTR: {
7156 		struct kvm_xen_hvm_attr xha;
7157 
7158 		r = -EFAULT;
7159 		if (copy_from_user(&xha, argp, sizeof(xha)))
7160 			goto out;
7161 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7162 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7163 			r = -EFAULT;
7164 		break;
7165 	}
7166 	case KVM_XEN_HVM_SET_ATTR: {
7167 		struct kvm_xen_hvm_attr xha;
7168 
7169 		r = -EFAULT;
7170 		if (copy_from_user(&xha, argp, sizeof(xha)))
7171 			goto out;
7172 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7173 		break;
7174 	}
7175 	case KVM_XEN_HVM_EVTCHN_SEND: {
7176 		struct kvm_irq_routing_xen_evtchn uxe;
7177 
7178 		r = -EFAULT;
7179 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7180 			goto out;
7181 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7182 		break;
7183 	}
7184 #endif
7185 	case KVM_SET_CLOCK:
7186 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7187 		break;
7188 	case KVM_GET_CLOCK:
7189 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7190 		break;
7191 	case KVM_SET_TSC_KHZ: {
7192 		u32 user_tsc_khz;
7193 
7194 		r = -EINVAL;
7195 		user_tsc_khz = (u32)arg;
7196 
7197 		if (kvm_caps.has_tsc_control &&
7198 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7199 			goto out;
7200 
7201 		if (user_tsc_khz == 0)
7202 			user_tsc_khz = tsc_khz;
7203 
7204 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7205 		r = 0;
7206 
7207 		goto out;
7208 	}
7209 	case KVM_GET_TSC_KHZ: {
7210 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7211 		goto out;
7212 	}
7213 	case KVM_MEMORY_ENCRYPT_OP: {
7214 		r = -ENOTTY;
7215 		if (!kvm_x86_ops.mem_enc_ioctl)
7216 			goto out;
7217 
7218 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7219 		break;
7220 	}
7221 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7222 		struct kvm_enc_region region;
7223 
7224 		r = -EFAULT;
7225 		if (copy_from_user(&region, argp, sizeof(region)))
7226 			goto out;
7227 
7228 		r = -ENOTTY;
7229 		if (!kvm_x86_ops.mem_enc_register_region)
7230 			goto out;
7231 
7232 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7233 		break;
7234 	}
7235 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7236 		struct kvm_enc_region region;
7237 
7238 		r = -EFAULT;
7239 		if (copy_from_user(&region, argp, sizeof(region)))
7240 			goto out;
7241 
7242 		r = -ENOTTY;
7243 		if (!kvm_x86_ops.mem_enc_unregister_region)
7244 			goto out;
7245 
7246 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7247 		break;
7248 	}
7249 #ifdef CONFIG_KVM_HYPERV
7250 	case KVM_HYPERV_EVENTFD: {
7251 		struct kvm_hyperv_eventfd hvevfd;
7252 
7253 		r = -EFAULT;
7254 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7255 			goto out;
7256 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7257 		break;
7258 	}
7259 #endif
7260 	case KVM_SET_PMU_EVENT_FILTER:
7261 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7262 		break;
7263 	case KVM_X86_SET_MSR_FILTER: {
7264 		struct kvm_msr_filter __user *user_msr_filter = argp;
7265 		struct kvm_msr_filter filter;
7266 
7267 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7268 			return -EFAULT;
7269 
7270 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7271 		break;
7272 	}
7273 	default:
7274 		r = -ENOTTY;
7275 	}
7276 out:
7277 	return r;
7278 }
7279 
7280 static void kvm_probe_feature_msr(u32 msr_index)
7281 {
7282 	struct kvm_msr_entry msr = {
7283 		.index = msr_index,
7284 	};
7285 
7286 	if (kvm_get_msr_feature(&msr))
7287 		return;
7288 
7289 	msr_based_features[num_msr_based_features++] = msr_index;
7290 }
7291 
7292 static void kvm_probe_msr_to_save(u32 msr_index)
7293 {
7294 	u32 dummy[2];
7295 
7296 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7297 		return;
7298 
7299 	/*
7300 	 * Even MSRs that are valid in the host may not be exposed to guests in
7301 	 * some cases.
7302 	 */
7303 	switch (msr_index) {
7304 	case MSR_IA32_BNDCFGS:
7305 		if (!kvm_mpx_supported())
7306 			return;
7307 		break;
7308 	case MSR_TSC_AUX:
7309 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7310 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7311 			return;
7312 		break;
7313 	case MSR_IA32_UMWAIT_CONTROL:
7314 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7315 			return;
7316 		break;
7317 	case MSR_IA32_RTIT_CTL:
7318 	case MSR_IA32_RTIT_STATUS:
7319 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7320 			return;
7321 		break;
7322 	case MSR_IA32_RTIT_CR3_MATCH:
7323 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7324 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7325 			return;
7326 		break;
7327 	case MSR_IA32_RTIT_OUTPUT_BASE:
7328 	case MSR_IA32_RTIT_OUTPUT_MASK:
7329 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7330 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7331 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7332 			return;
7333 		break;
7334 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7335 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7336 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7337 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7338 			return;
7339 		break;
7340 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7341 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7342 		    kvm_pmu_cap.num_counters_gp)
7343 			return;
7344 		break;
7345 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7346 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7347 		    kvm_pmu_cap.num_counters_gp)
7348 			return;
7349 		break;
7350 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7351 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7352 		    kvm_pmu_cap.num_counters_fixed)
7353 			return;
7354 		break;
7355 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7356 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7357 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7358 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7359 			return;
7360 		break;
7361 	case MSR_IA32_XFD:
7362 	case MSR_IA32_XFD_ERR:
7363 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7364 			return;
7365 		break;
7366 	case MSR_IA32_TSX_CTRL:
7367 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7368 			return;
7369 		break;
7370 	default:
7371 		break;
7372 	}
7373 
7374 	msrs_to_save[num_msrs_to_save++] = msr_index;
7375 }
7376 
7377 static void kvm_init_msr_lists(void)
7378 {
7379 	unsigned i;
7380 
7381 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7382 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7383 
7384 	num_msrs_to_save = 0;
7385 	num_emulated_msrs = 0;
7386 	num_msr_based_features = 0;
7387 
7388 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7389 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7390 
7391 	if (enable_pmu) {
7392 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7393 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7394 	}
7395 
7396 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7397 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7398 			continue;
7399 
7400 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7401 	}
7402 
7403 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7404 		kvm_probe_feature_msr(i);
7405 
7406 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7407 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7408 }
7409 
7410 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7411 			   const void *v)
7412 {
7413 	int handled = 0;
7414 	int n;
7415 
7416 	do {
7417 		n = min(len, 8);
7418 		if (!(lapic_in_kernel(vcpu) &&
7419 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7420 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7421 			break;
7422 		handled += n;
7423 		addr += n;
7424 		len -= n;
7425 		v += n;
7426 	} while (len);
7427 
7428 	return handled;
7429 }
7430 
7431 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7432 {
7433 	int handled = 0;
7434 	int n;
7435 
7436 	do {
7437 		n = min(len, 8);
7438 		if (!(lapic_in_kernel(vcpu) &&
7439 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7440 					 addr, n, v))
7441 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7442 			break;
7443 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7444 		handled += n;
7445 		addr += n;
7446 		len -= n;
7447 		v += n;
7448 	} while (len);
7449 
7450 	return handled;
7451 }
7452 
7453 void kvm_set_segment(struct kvm_vcpu *vcpu,
7454 		     struct kvm_segment *var, int seg)
7455 {
7456 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7457 }
7458 
7459 void kvm_get_segment(struct kvm_vcpu *vcpu,
7460 		     struct kvm_segment *var, int seg)
7461 {
7462 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7463 }
7464 
7465 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7466 			   struct x86_exception *exception)
7467 {
7468 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7469 	gpa_t t_gpa;
7470 
7471 	BUG_ON(!mmu_is_nested(vcpu));
7472 
7473 	/* NPT walks are always user-walks */
7474 	access |= PFERR_USER_MASK;
7475 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7476 
7477 	return t_gpa;
7478 }
7479 
7480 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7481 			      struct x86_exception *exception)
7482 {
7483 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7484 
7485 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7486 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7487 }
7488 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7489 
7490 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7491 			       struct x86_exception *exception)
7492 {
7493 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7494 
7495 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7496 	access |= PFERR_WRITE_MASK;
7497 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7498 }
7499 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7500 
7501 /* uses this to access any guest's mapped memory without checking CPL */
7502 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7503 				struct x86_exception *exception)
7504 {
7505 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7506 
7507 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7508 }
7509 
7510 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7511 				      struct kvm_vcpu *vcpu, u64 access,
7512 				      struct x86_exception *exception)
7513 {
7514 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7515 	void *data = val;
7516 	int r = X86EMUL_CONTINUE;
7517 
7518 	while (bytes) {
7519 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7520 		unsigned offset = addr & (PAGE_SIZE-1);
7521 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7522 		int ret;
7523 
7524 		if (gpa == INVALID_GPA)
7525 			return X86EMUL_PROPAGATE_FAULT;
7526 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7527 					       offset, toread);
7528 		if (ret < 0) {
7529 			r = X86EMUL_IO_NEEDED;
7530 			goto out;
7531 		}
7532 
7533 		bytes -= toread;
7534 		data += toread;
7535 		addr += toread;
7536 	}
7537 out:
7538 	return r;
7539 }
7540 
7541 /* used for instruction fetching */
7542 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7543 				gva_t addr, void *val, unsigned int bytes,
7544 				struct x86_exception *exception)
7545 {
7546 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7547 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7548 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7549 	unsigned offset;
7550 	int ret;
7551 
7552 	/* Inline kvm_read_guest_virt_helper for speed.  */
7553 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7554 				    exception);
7555 	if (unlikely(gpa == INVALID_GPA))
7556 		return X86EMUL_PROPAGATE_FAULT;
7557 
7558 	offset = addr & (PAGE_SIZE-1);
7559 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7560 		bytes = (unsigned)PAGE_SIZE - offset;
7561 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7562 				       offset, bytes);
7563 	if (unlikely(ret < 0))
7564 		return X86EMUL_IO_NEEDED;
7565 
7566 	return X86EMUL_CONTINUE;
7567 }
7568 
7569 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7570 			       gva_t addr, void *val, unsigned int bytes,
7571 			       struct x86_exception *exception)
7572 {
7573 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7574 
7575 	/*
7576 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7577 	 * is returned, but our callers are not ready for that and they blindly
7578 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7579 	 * uninitialized kernel stack memory into cr2 and error code.
7580 	 */
7581 	memset(exception, 0, sizeof(*exception));
7582 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7583 					  exception);
7584 }
7585 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7586 
7587 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7588 			     gva_t addr, void *val, unsigned int bytes,
7589 			     struct x86_exception *exception, bool system)
7590 {
7591 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7592 	u64 access = 0;
7593 
7594 	if (system)
7595 		access |= PFERR_IMPLICIT_ACCESS;
7596 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7597 		access |= PFERR_USER_MASK;
7598 
7599 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7600 }
7601 
7602 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7603 				      struct kvm_vcpu *vcpu, u64 access,
7604 				      struct x86_exception *exception)
7605 {
7606 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7607 	void *data = val;
7608 	int r = X86EMUL_CONTINUE;
7609 
7610 	while (bytes) {
7611 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7612 		unsigned offset = addr & (PAGE_SIZE-1);
7613 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7614 		int ret;
7615 
7616 		if (gpa == INVALID_GPA)
7617 			return X86EMUL_PROPAGATE_FAULT;
7618 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7619 		if (ret < 0) {
7620 			r = X86EMUL_IO_NEEDED;
7621 			goto out;
7622 		}
7623 
7624 		bytes -= towrite;
7625 		data += towrite;
7626 		addr += towrite;
7627 	}
7628 out:
7629 	return r;
7630 }
7631 
7632 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7633 			      unsigned int bytes, struct x86_exception *exception,
7634 			      bool system)
7635 {
7636 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7637 	u64 access = PFERR_WRITE_MASK;
7638 
7639 	if (system)
7640 		access |= PFERR_IMPLICIT_ACCESS;
7641 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7642 		access |= PFERR_USER_MASK;
7643 
7644 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7645 					   access, exception);
7646 }
7647 
7648 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7649 				unsigned int bytes, struct x86_exception *exception)
7650 {
7651 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7652 	vcpu->arch.l1tf_flush_l1d = true;
7653 
7654 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7655 					   PFERR_WRITE_MASK, exception);
7656 }
7657 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7658 
7659 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7660 				  void *insn, int insn_len)
7661 {
7662 	return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7663 							      insn, insn_len);
7664 }
7665 
7666 int handle_ud(struct kvm_vcpu *vcpu)
7667 {
7668 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7669 	int fep_flags = READ_ONCE(force_emulation_prefix);
7670 	int emul_type = EMULTYPE_TRAP_UD;
7671 	char sig[5]; /* ud2; .ascii "kvm" */
7672 	struct x86_exception e;
7673 	int r;
7674 
7675 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7676 	if (r != X86EMUL_CONTINUE)
7677 		return 1;
7678 
7679 	if (fep_flags &&
7680 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7681 				sig, sizeof(sig), &e) == 0 &&
7682 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7683 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7684 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7685 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7686 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7687 	}
7688 
7689 	return kvm_emulate_instruction(vcpu, emul_type);
7690 }
7691 EXPORT_SYMBOL_GPL(handle_ud);
7692 
7693 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7694 			    gpa_t gpa, bool write)
7695 {
7696 	/* For APIC access vmexit */
7697 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7698 		return 1;
7699 
7700 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7701 		trace_vcpu_match_mmio(gva, gpa, write, true);
7702 		return 1;
7703 	}
7704 
7705 	return 0;
7706 }
7707 
7708 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7709 				gpa_t *gpa, struct x86_exception *exception,
7710 				bool write)
7711 {
7712 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7713 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7714 		| (write ? PFERR_WRITE_MASK : 0);
7715 
7716 	/*
7717 	 * currently PKRU is only applied to ept enabled guest so
7718 	 * there is no pkey in EPT page table for L1 guest or EPT
7719 	 * shadow page table for L2 guest.
7720 	 */
7721 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7722 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7723 			      vcpu->arch.mmio_access, 0, access))) {
7724 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7725 					(gva & (PAGE_SIZE - 1));
7726 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7727 		return 1;
7728 	}
7729 
7730 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7731 
7732 	if (*gpa == INVALID_GPA)
7733 		return -1;
7734 
7735 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7736 }
7737 
7738 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7739 			const void *val, int bytes)
7740 {
7741 	int ret;
7742 
7743 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7744 	if (ret < 0)
7745 		return 0;
7746 	kvm_page_track_write(vcpu, gpa, val, bytes);
7747 	return 1;
7748 }
7749 
7750 struct read_write_emulator_ops {
7751 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7752 				  int bytes);
7753 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7754 				  void *val, int bytes);
7755 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7756 			       int bytes, void *val);
7757 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7758 				    void *val, int bytes);
7759 	bool write;
7760 };
7761 
7762 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7763 {
7764 	if (vcpu->mmio_read_completed) {
7765 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7766 			       vcpu->mmio_fragments[0].gpa, val);
7767 		vcpu->mmio_read_completed = 0;
7768 		return 1;
7769 	}
7770 
7771 	return 0;
7772 }
7773 
7774 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7775 			void *val, int bytes)
7776 {
7777 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7778 }
7779 
7780 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7781 			 void *val, int bytes)
7782 {
7783 	return emulator_write_phys(vcpu, gpa, val, bytes);
7784 }
7785 
7786 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7787 {
7788 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7789 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7790 }
7791 
7792 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7793 			  void *val, int bytes)
7794 {
7795 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7796 	return X86EMUL_IO_NEEDED;
7797 }
7798 
7799 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7800 			   void *val, int bytes)
7801 {
7802 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7803 
7804 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7805 	return X86EMUL_CONTINUE;
7806 }
7807 
7808 static const struct read_write_emulator_ops read_emultor = {
7809 	.read_write_prepare = read_prepare,
7810 	.read_write_emulate = read_emulate,
7811 	.read_write_mmio = vcpu_mmio_read,
7812 	.read_write_exit_mmio = read_exit_mmio,
7813 };
7814 
7815 static const struct read_write_emulator_ops write_emultor = {
7816 	.read_write_emulate = write_emulate,
7817 	.read_write_mmio = write_mmio,
7818 	.read_write_exit_mmio = write_exit_mmio,
7819 	.write = true,
7820 };
7821 
7822 static int emulator_read_write_onepage(unsigned long addr, void *val,
7823 				       unsigned int bytes,
7824 				       struct x86_exception *exception,
7825 				       struct kvm_vcpu *vcpu,
7826 				       const struct read_write_emulator_ops *ops)
7827 {
7828 	gpa_t gpa;
7829 	int handled, ret;
7830 	bool write = ops->write;
7831 	struct kvm_mmio_fragment *frag;
7832 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7833 
7834 	/*
7835 	 * If the exit was due to a NPF we may already have a GPA.
7836 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7837 	 * Note, this cannot be used on string operations since string
7838 	 * operation using rep will only have the initial GPA from the NPF
7839 	 * occurred.
7840 	 */
7841 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7842 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7843 		gpa = ctxt->gpa_val;
7844 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7845 	} else {
7846 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7847 		if (ret < 0)
7848 			return X86EMUL_PROPAGATE_FAULT;
7849 	}
7850 
7851 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7852 		return X86EMUL_CONTINUE;
7853 
7854 	/*
7855 	 * Is this MMIO handled locally?
7856 	 */
7857 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7858 	if (handled == bytes)
7859 		return X86EMUL_CONTINUE;
7860 
7861 	gpa += handled;
7862 	bytes -= handled;
7863 	val += handled;
7864 
7865 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7866 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7867 	frag->gpa = gpa;
7868 	frag->data = val;
7869 	frag->len = bytes;
7870 	return X86EMUL_CONTINUE;
7871 }
7872 
7873 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7874 			unsigned long addr,
7875 			void *val, unsigned int bytes,
7876 			struct x86_exception *exception,
7877 			const struct read_write_emulator_ops *ops)
7878 {
7879 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7880 	gpa_t gpa;
7881 	int rc;
7882 
7883 	if (ops->read_write_prepare &&
7884 		  ops->read_write_prepare(vcpu, val, bytes))
7885 		return X86EMUL_CONTINUE;
7886 
7887 	vcpu->mmio_nr_fragments = 0;
7888 
7889 	/* Crossing a page boundary? */
7890 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7891 		int now;
7892 
7893 		now = -addr & ~PAGE_MASK;
7894 		rc = emulator_read_write_onepage(addr, val, now, exception,
7895 						 vcpu, ops);
7896 
7897 		if (rc != X86EMUL_CONTINUE)
7898 			return rc;
7899 		addr += now;
7900 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7901 			addr = (u32)addr;
7902 		val += now;
7903 		bytes -= now;
7904 	}
7905 
7906 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7907 					 vcpu, ops);
7908 	if (rc != X86EMUL_CONTINUE)
7909 		return rc;
7910 
7911 	if (!vcpu->mmio_nr_fragments)
7912 		return rc;
7913 
7914 	gpa = vcpu->mmio_fragments[0].gpa;
7915 
7916 	vcpu->mmio_needed = 1;
7917 	vcpu->mmio_cur_fragment = 0;
7918 
7919 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7920 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7921 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7922 	vcpu->run->mmio.phys_addr = gpa;
7923 
7924 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7925 }
7926 
7927 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7928 				  unsigned long addr,
7929 				  void *val,
7930 				  unsigned int bytes,
7931 				  struct x86_exception *exception)
7932 {
7933 	return emulator_read_write(ctxt, addr, val, bytes,
7934 				   exception, &read_emultor);
7935 }
7936 
7937 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7938 			    unsigned long addr,
7939 			    const void *val,
7940 			    unsigned int bytes,
7941 			    struct x86_exception *exception)
7942 {
7943 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7944 				   exception, &write_emultor);
7945 }
7946 
7947 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7948 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7949 
7950 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7951 				     unsigned long addr,
7952 				     const void *old,
7953 				     const void *new,
7954 				     unsigned int bytes,
7955 				     struct x86_exception *exception)
7956 {
7957 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7958 	u64 page_line_mask;
7959 	unsigned long hva;
7960 	gpa_t gpa;
7961 	int r;
7962 
7963 	/* guests cmpxchg8b have to be emulated atomically */
7964 	if (bytes > 8 || (bytes & (bytes - 1)))
7965 		goto emul_write;
7966 
7967 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7968 
7969 	if (gpa == INVALID_GPA ||
7970 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7971 		goto emul_write;
7972 
7973 	/*
7974 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7975 	 * enabled in the host and the access splits a cache line.
7976 	 */
7977 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7978 		page_line_mask = ~(cache_line_size() - 1);
7979 	else
7980 		page_line_mask = PAGE_MASK;
7981 
7982 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7983 		goto emul_write;
7984 
7985 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7986 	if (kvm_is_error_hva(hva))
7987 		goto emul_write;
7988 
7989 	hva += offset_in_page(gpa);
7990 
7991 	switch (bytes) {
7992 	case 1:
7993 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7994 		break;
7995 	case 2:
7996 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7997 		break;
7998 	case 4:
7999 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8000 		break;
8001 	case 8:
8002 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8003 		break;
8004 	default:
8005 		BUG();
8006 	}
8007 
8008 	if (r < 0)
8009 		return X86EMUL_UNHANDLEABLE;
8010 
8011 	/*
8012 	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8013 	 * successful, as the old value is written back on failure.  Note, for
8014 	 * live migration, this is unnecessarily conservative as CMPXCHG writes
8015 	 * back the original value and the access is atomic, but KVM's ABI is
8016 	 * that all writes are dirty logged, regardless of the value written.
8017 	 */
8018 	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8019 
8020 	if (r)
8021 		return X86EMUL_CMPXCHG_FAILED;
8022 
8023 	kvm_page_track_write(vcpu, gpa, new, bytes);
8024 
8025 	return X86EMUL_CONTINUE;
8026 
8027 emul_write:
8028 	pr_warn_once("emulating exchange as write\n");
8029 
8030 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8031 }
8032 
8033 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8034 			       unsigned short port, void *data,
8035 			       unsigned int count, bool in)
8036 {
8037 	unsigned i;
8038 	int r;
8039 
8040 	WARN_ON_ONCE(vcpu->arch.pio.count);
8041 	for (i = 0; i < count; i++) {
8042 		if (in)
8043 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8044 		else
8045 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8046 
8047 		if (r) {
8048 			if (i == 0)
8049 				goto userspace_io;
8050 
8051 			/*
8052 			 * Userspace must have unregistered the device while PIO
8053 			 * was running.  Drop writes / read as 0.
8054 			 */
8055 			if (in)
8056 				memset(data, 0, size * (count - i));
8057 			break;
8058 		}
8059 
8060 		data += size;
8061 	}
8062 	return 1;
8063 
8064 userspace_io:
8065 	vcpu->arch.pio.port = port;
8066 	vcpu->arch.pio.in = in;
8067 	vcpu->arch.pio.count = count;
8068 	vcpu->arch.pio.size = size;
8069 
8070 	if (in)
8071 		memset(vcpu->arch.pio_data, 0, size * count);
8072 	else
8073 		memcpy(vcpu->arch.pio_data, data, size * count);
8074 
8075 	vcpu->run->exit_reason = KVM_EXIT_IO;
8076 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8077 	vcpu->run->io.size = size;
8078 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8079 	vcpu->run->io.count = count;
8080 	vcpu->run->io.port = port;
8081 	return 0;
8082 }
8083 
8084 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8085       			   unsigned short port, void *val, unsigned int count)
8086 {
8087 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8088 	if (r)
8089 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8090 
8091 	return r;
8092 }
8093 
8094 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8095 {
8096 	int size = vcpu->arch.pio.size;
8097 	unsigned int count = vcpu->arch.pio.count;
8098 	memcpy(val, vcpu->arch.pio_data, size * count);
8099 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8100 	vcpu->arch.pio.count = 0;
8101 }
8102 
8103 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8104 				    int size, unsigned short port, void *val,
8105 				    unsigned int count)
8106 {
8107 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8108 	if (vcpu->arch.pio.count) {
8109 		/*
8110 		 * Complete a previous iteration that required userspace I/O.
8111 		 * Note, @count isn't guaranteed to match pio.count as userspace
8112 		 * can modify ECX before rerunning the vCPU.  Ignore any such
8113 		 * shenanigans as KVM doesn't support modifying the rep count,
8114 		 * and the emulator ensures @count doesn't overflow the buffer.
8115 		 */
8116 		complete_emulator_pio_in(vcpu, val);
8117 		return 1;
8118 	}
8119 
8120 	return emulator_pio_in(vcpu, size, port, val, count);
8121 }
8122 
8123 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8124 			    unsigned short port, const void *val,
8125 			    unsigned int count)
8126 {
8127 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8128 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8129 }
8130 
8131 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8132 				     int size, unsigned short port,
8133 				     const void *val, unsigned int count)
8134 {
8135 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8136 }
8137 
8138 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8139 {
8140 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8141 }
8142 
8143 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8144 {
8145 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8146 }
8147 
8148 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8149 {
8150 	if (!need_emulate_wbinvd(vcpu))
8151 		return X86EMUL_CONTINUE;
8152 
8153 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
8154 		int cpu = get_cpu();
8155 
8156 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8157 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8158 				wbinvd_ipi, NULL, 1);
8159 		put_cpu();
8160 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8161 	} else
8162 		wbinvd();
8163 	return X86EMUL_CONTINUE;
8164 }
8165 
8166 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8167 {
8168 	kvm_emulate_wbinvd_noskip(vcpu);
8169 	return kvm_skip_emulated_instruction(vcpu);
8170 }
8171 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8172 
8173 
8174 
8175 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8176 {
8177 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8178 }
8179 
8180 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8181 			    unsigned long *dest)
8182 {
8183 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8184 }
8185 
8186 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8187 			   unsigned long value)
8188 {
8189 
8190 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8191 }
8192 
8193 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8194 {
8195 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8196 }
8197 
8198 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8199 {
8200 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8201 	unsigned long value;
8202 
8203 	switch (cr) {
8204 	case 0:
8205 		value = kvm_read_cr0(vcpu);
8206 		break;
8207 	case 2:
8208 		value = vcpu->arch.cr2;
8209 		break;
8210 	case 3:
8211 		value = kvm_read_cr3(vcpu);
8212 		break;
8213 	case 4:
8214 		value = kvm_read_cr4(vcpu);
8215 		break;
8216 	case 8:
8217 		value = kvm_get_cr8(vcpu);
8218 		break;
8219 	default:
8220 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8221 		return 0;
8222 	}
8223 
8224 	return value;
8225 }
8226 
8227 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8228 {
8229 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8230 	int res = 0;
8231 
8232 	switch (cr) {
8233 	case 0:
8234 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8235 		break;
8236 	case 2:
8237 		vcpu->arch.cr2 = val;
8238 		break;
8239 	case 3:
8240 		res = kvm_set_cr3(vcpu, val);
8241 		break;
8242 	case 4:
8243 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8244 		break;
8245 	case 8:
8246 		res = kvm_set_cr8(vcpu, val);
8247 		break;
8248 	default:
8249 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8250 		res = -1;
8251 	}
8252 
8253 	return res;
8254 }
8255 
8256 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8257 {
8258 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8259 }
8260 
8261 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8262 {
8263 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8264 }
8265 
8266 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8267 {
8268 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8269 }
8270 
8271 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8272 {
8273 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8274 }
8275 
8276 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8277 {
8278 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8279 }
8280 
8281 static unsigned long emulator_get_cached_segment_base(
8282 	struct x86_emulate_ctxt *ctxt, int seg)
8283 {
8284 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8285 }
8286 
8287 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8288 				 struct desc_struct *desc, u32 *base3,
8289 				 int seg)
8290 {
8291 	struct kvm_segment var;
8292 
8293 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8294 	*selector = var.selector;
8295 
8296 	if (var.unusable) {
8297 		memset(desc, 0, sizeof(*desc));
8298 		if (base3)
8299 			*base3 = 0;
8300 		return false;
8301 	}
8302 
8303 	if (var.g)
8304 		var.limit >>= 12;
8305 	set_desc_limit(desc, var.limit);
8306 	set_desc_base(desc, (unsigned long)var.base);
8307 #ifdef CONFIG_X86_64
8308 	if (base3)
8309 		*base3 = var.base >> 32;
8310 #endif
8311 	desc->type = var.type;
8312 	desc->s = var.s;
8313 	desc->dpl = var.dpl;
8314 	desc->p = var.present;
8315 	desc->avl = var.avl;
8316 	desc->l = var.l;
8317 	desc->d = var.db;
8318 	desc->g = var.g;
8319 
8320 	return true;
8321 }
8322 
8323 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8324 				 struct desc_struct *desc, u32 base3,
8325 				 int seg)
8326 {
8327 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8328 	struct kvm_segment var;
8329 
8330 	var.selector = selector;
8331 	var.base = get_desc_base(desc);
8332 #ifdef CONFIG_X86_64
8333 	var.base |= ((u64)base3) << 32;
8334 #endif
8335 	var.limit = get_desc_limit(desc);
8336 	if (desc->g)
8337 		var.limit = (var.limit << 12) | 0xfff;
8338 	var.type = desc->type;
8339 	var.dpl = desc->dpl;
8340 	var.db = desc->d;
8341 	var.s = desc->s;
8342 	var.l = desc->l;
8343 	var.g = desc->g;
8344 	var.avl = desc->avl;
8345 	var.present = desc->p;
8346 	var.unusable = !var.present;
8347 	var.padding = 0;
8348 
8349 	kvm_set_segment(vcpu, &var, seg);
8350 	return;
8351 }
8352 
8353 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8354 					u32 msr_index, u64 *pdata)
8355 {
8356 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8357 	int r;
8358 
8359 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8360 	if (r < 0)
8361 		return X86EMUL_UNHANDLEABLE;
8362 
8363 	if (r) {
8364 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8365 				       complete_emulated_rdmsr, r))
8366 			return X86EMUL_IO_NEEDED;
8367 
8368 		trace_kvm_msr_read_ex(msr_index);
8369 		return X86EMUL_PROPAGATE_FAULT;
8370 	}
8371 
8372 	trace_kvm_msr_read(msr_index, *pdata);
8373 	return X86EMUL_CONTINUE;
8374 }
8375 
8376 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8377 					u32 msr_index, u64 data)
8378 {
8379 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8380 	int r;
8381 
8382 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8383 	if (r < 0)
8384 		return X86EMUL_UNHANDLEABLE;
8385 
8386 	if (r) {
8387 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8388 				       complete_emulated_msr_access, r))
8389 			return X86EMUL_IO_NEEDED;
8390 
8391 		trace_kvm_msr_write_ex(msr_index, data);
8392 		return X86EMUL_PROPAGATE_FAULT;
8393 	}
8394 
8395 	trace_kvm_msr_write(msr_index, data);
8396 	return X86EMUL_CONTINUE;
8397 }
8398 
8399 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8400 			    u32 msr_index, u64 *pdata)
8401 {
8402 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8403 }
8404 
8405 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8406 			      u32 pmc)
8407 {
8408 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8409 		return 0;
8410 	return -EINVAL;
8411 }
8412 
8413 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8414 			     u32 pmc, u64 *pdata)
8415 {
8416 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8417 }
8418 
8419 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8420 {
8421 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8422 }
8423 
8424 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8425 			      struct x86_instruction_info *info,
8426 			      enum x86_intercept_stage stage)
8427 {
8428 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8429 					    &ctxt->exception);
8430 }
8431 
8432 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8433 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8434 			      bool exact_only)
8435 {
8436 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8437 }
8438 
8439 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8440 {
8441 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8442 }
8443 
8444 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8445 {
8446 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8447 }
8448 
8449 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8450 {
8451 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8452 }
8453 
8454 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8455 {
8456 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8457 }
8458 
8459 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8460 {
8461 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8462 }
8463 
8464 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8465 {
8466 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8467 }
8468 
8469 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8470 {
8471 	return is_smm(emul_to_vcpu(ctxt));
8472 }
8473 
8474 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8475 {
8476 	return is_guest_mode(emul_to_vcpu(ctxt));
8477 }
8478 
8479 #ifndef CONFIG_KVM_SMM
8480 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8481 {
8482 	WARN_ON_ONCE(1);
8483 	return X86EMUL_UNHANDLEABLE;
8484 }
8485 #endif
8486 
8487 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8488 {
8489 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8490 }
8491 
8492 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8493 {
8494 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8495 }
8496 
8497 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8498 {
8499 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8500 
8501 	if (!kvm->vm_bugged)
8502 		kvm_vm_bugged(kvm);
8503 }
8504 
8505 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8506 					gva_t addr, unsigned int flags)
8507 {
8508 	if (!kvm_x86_ops.get_untagged_addr)
8509 		return addr;
8510 
8511 	return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8512 }
8513 
8514 static const struct x86_emulate_ops emulate_ops = {
8515 	.vm_bugged           = emulator_vm_bugged,
8516 	.read_gpr            = emulator_read_gpr,
8517 	.write_gpr           = emulator_write_gpr,
8518 	.read_std            = emulator_read_std,
8519 	.write_std           = emulator_write_std,
8520 	.fetch               = kvm_fetch_guest_virt,
8521 	.read_emulated       = emulator_read_emulated,
8522 	.write_emulated      = emulator_write_emulated,
8523 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8524 	.invlpg              = emulator_invlpg,
8525 	.pio_in_emulated     = emulator_pio_in_emulated,
8526 	.pio_out_emulated    = emulator_pio_out_emulated,
8527 	.get_segment         = emulator_get_segment,
8528 	.set_segment         = emulator_set_segment,
8529 	.get_cached_segment_base = emulator_get_cached_segment_base,
8530 	.get_gdt             = emulator_get_gdt,
8531 	.get_idt	     = emulator_get_idt,
8532 	.set_gdt             = emulator_set_gdt,
8533 	.set_idt	     = emulator_set_idt,
8534 	.get_cr              = emulator_get_cr,
8535 	.set_cr              = emulator_set_cr,
8536 	.cpl                 = emulator_get_cpl,
8537 	.get_dr              = emulator_get_dr,
8538 	.set_dr              = emulator_set_dr,
8539 	.set_msr_with_filter = emulator_set_msr_with_filter,
8540 	.get_msr_with_filter = emulator_get_msr_with_filter,
8541 	.get_msr             = emulator_get_msr,
8542 	.check_pmc	     = emulator_check_pmc,
8543 	.read_pmc            = emulator_read_pmc,
8544 	.halt                = emulator_halt,
8545 	.wbinvd              = emulator_wbinvd,
8546 	.fix_hypercall       = emulator_fix_hypercall,
8547 	.intercept           = emulator_intercept,
8548 	.get_cpuid           = emulator_get_cpuid,
8549 	.guest_has_movbe     = emulator_guest_has_movbe,
8550 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8551 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8552 	.set_nmi_mask        = emulator_set_nmi_mask,
8553 	.is_smm              = emulator_is_smm,
8554 	.is_guest_mode       = emulator_is_guest_mode,
8555 	.leave_smm           = emulator_leave_smm,
8556 	.triple_fault        = emulator_triple_fault,
8557 	.set_xcr             = emulator_set_xcr,
8558 	.get_untagged_addr   = emulator_get_untagged_addr,
8559 };
8560 
8561 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8562 {
8563 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8564 	/*
8565 	 * an sti; sti; sequence only disable interrupts for the first
8566 	 * instruction. So, if the last instruction, be it emulated or
8567 	 * not, left the system with the INT_STI flag enabled, it
8568 	 * means that the last instruction is an sti. We should not
8569 	 * leave the flag on in this case. The same goes for mov ss
8570 	 */
8571 	if (int_shadow & mask)
8572 		mask = 0;
8573 	if (unlikely(int_shadow || mask)) {
8574 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8575 		if (!mask)
8576 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8577 	}
8578 }
8579 
8580 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8581 {
8582 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8583 
8584 	if (ctxt->exception.vector == PF_VECTOR)
8585 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8586 	else if (ctxt->exception.error_code_valid)
8587 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8588 				      ctxt->exception.error_code);
8589 	else
8590 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8591 }
8592 
8593 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8594 {
8595 	struct x86_emulate_ctxt *ctxt;
8596 
8597 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8598 	if (!ctxt) {
8599 		pr_err("failed to allocate vcpu's emulator\n");
8600 		return NULL;
8601 	}
8602 
8603 	ctxt->vcpu = vcpu;
8604 	ctxt->ops = &emulate_ops;
8605 	vcpu->arch.emulate_ctxt = ctxt;
8606 
8607 	return ctxt;
8608 }
8609 
8610 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8611 {
8612 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8613 	int cs_db, cs_l;
8614 
8615 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8616 
8617 	ctxt->gpa_available = false;
8618 	ctxt->eflags = kvm_get_rflags(vcpu);
8619 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8620 
8621 	ctxt->eip = kvm_rip_read(vcpu);
8622 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8623 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8624 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8625 		     cs_db				? X86EMUL_MODE_PROT32 :
8626 							  X86EMUL_MODE_PROT16;
8627 	ctxt->interruptibility = 0;
8628 	ctxt->have_exception = false;
8629 	ctxt->exception.vector = -1;
8630 	ctxt->perm_ok = false;
8631 
8632 	init_decode_cache(ctxt);
8633 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8634 }
8635 
8636 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8637 {
8638 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8639 	int ret;
8640 
8641 	init_emulate_ctxt(vcpu);
8642 
8643 	ctxt->op_bytes = 2;
8644 	ctxt->ad_bytes = 2;
8645 	ctxt->_eip = ctxt->eip + inc_eip;
8646 	ret = emulate_int_real(ctxt, irq);
8647 
8648 	if (ret != X86EMUL_CONTINUE) {
8649 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8650 	} else {
8651 		ctxt->eip = ctxt->_eip;
8652 		kvm_rip_write(vcpu, ctxt->eip);
8653 		kvm_set_rflags(vcpu, ctxt->eflags);
8654 	}
8655 }
8656 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8657 
8658 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8659 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8660 {
8661 	struct kvm_run *run = vcpu->run;
8662 	u64 info[5];
8663 	u8 info_start;
8664 
8665 	/*
8666 	 * Zero the whole array used to retrieve the exit info, as casting to
8667 	 * u32 for select entries will leave some chunks uninitialized.
8668 	 */
8669 	memset(&info, 0, sizeof(info));
8670 
8671 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8672 					   &info[2], (u32 *)&info[3],
8673 					   (u32 *)&info[4]);
8674 
8675 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8676 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8677 
8678 	/*
8679 	 * There's currently space for 13 entries, but 5 are used for the exit
8680 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8681 	 * when expanding kvm_run.emulation_failure in the future.
8682 	 */
8683 	if (WARN_ON_ONCE(ndata > 4))
8684 		ndata = 4;
8685 
8686 	/* Always include the flags as a 'data' entry. */
8687 	info_start = 1;
8688 	run->emulation_failure.flags = 0;
8689 
8690 	if (insn_size) {
8691 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8692 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8693 		info_start += 2;
8694 		run->emulation_failure.flags |=
8695 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8696 		run->emulation_failure.insn_size = insn_size;
8697 		memset(run->emulation_failure.insn_bytes, 0x90,
8698 		       sizeof(run->emulation_failure.insn_bytes));
8699 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8700 	}
8701 
8702 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8703 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8704 	       ndata * sizeof(data[0]));
8705 
8706 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8707 }
8708 
8709 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8710 {
8711 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8712 
8713 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8714 				       ctxt->fetch.end - ctxt->fetch.data);
8715 }
8716 
8717 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8718 					  u8 ndata)
8719 {
8720 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8721 }
8722 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8723 
8724 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8725 {
8726 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8727 }
8728 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8729 
8730 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8731 {
8732 	struct kvm *kvm = vcpu->kvm;
8733 
8734 	++vcpu->stat.insn_emulation_fail;
8735 	trace_kvm_emulate_insn_failed(vcpu);
8736 
8737 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8738 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8739 		return 1;
8740 	}
8741 
8742 	if (kvm->arch.exit_on_emulation_error ||
8743 	    (emulation_type & EMULTYPE_SKIP)) {
8744 		prepare_emulation_ctxt_failure_exit(vcpu);
8745 		return 0;
8746 	}
8747 
8748 	kvm_queue_exception(vcpu, UD_VECTOR);
8749 
8750 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8751 		prepare_emulation_ctxt_failure_exit(vcpu);
8752 		return 0;
8753 	}
8754 
8755 	return 1;
8756 }
8757 
8758 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8759 				  int emulation_type)
8760 {
8761 	gpa_t gpa = cr2_or_gpa;
8762 	kvm_pfn_t pfn;
8763 
8764 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8765 		return false;
8766 
8767 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8768 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8769 		return false;
8770 
8771 	if (!vcpu->arch.mmu->root_role.direct) {
8772 		/*
8773 		 * Write permission should be allowed since only
8774 		 * write access need to be emulated.
8775 		 */
8776 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8777 
8778 		/*
8779 		 * If the mapping is invalid in guest, let cpu retry
8780 		 * it to generate fault.
8781 		 */
8782 		if (gpa == INVALID_GPA)
8783 			return true;
8784 	}
8785 
8786 	/*
8787 	 * Do not retry the unhandleable instruction if it faults on the
8788 	 * readonly host memory, otherwise it will goto a infinite loop:
8789 	 * retry instruction -> write #PF -> emulation fail -> retry
8790 	 * instruction -> ...
8791 	 */
8792 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8793 
8794 	/*
8795 	 * If the instruction failed on the error pfn, it can not be fixed,
8796 	 * report the error to userspace.
8797 	 */
8798 	if (is_error_noslot_pfn(pfn))
8799 		return false;
8800 
8801 	kvm_release_pfn_clean(pfn);
8802 
8803 	/* The instructions are well-emulated on direct mmu. */
8804 	if (vcpu->arch.mmu->root_role.direct) {
8805 		unsigned int indirect_shadow_pages;
8806 
8807 		write_lock(&vcpu->kvm->mmu_lock);
8808 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8809 		write_unlock(&vcpu->kvm->mmu_lock);
8810 
8811 		if (indirect_shadow_pages)
8812 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8813 
8814 		return true;
8815 	}
8816 
8817 	/*
8818 	 * if emulation was due to access to shadowed page table
8819 	 * and it failed try to unshadow page and re-enter the
8820 	 * guest to let CPU execute the instruction.
8821 	 */
8822 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8823 
8824 	/*
8825 	 * If the access faults on its page table, it can not
8826 	 * be fixed by unprotecting shadow page and it should
8827 	 * be reported to userspace.
8828 	 */
8829 	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8830 }
8831 
8832 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8833 			      gpa_t cr2_or_gpa,  int emulation_type)
8834 {
8835 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8836 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8837 
8838 	last_retry_eip = vcpu->arch.last_retry_eip;
8839 	last_retry_addr = vcpu->arch.last_retry_addr;
8840 
8841 	/*
8842 	 * If the emulation is caused by #PF and it is non-page_table
8843 	 * writing instruction, it means the VM-EXIT is caused by shadow
8844 	 * page protected, we can zap the shadow page and retry this
8845 	 * instruction directly.
8846 	 *
8847 	 * Note: if the guest uses a non-page-table modifying instruction
8848 	 * on the PDE that points to the instruction, then we will unmap
8849 	 * the instruction and go to an infinite loop. So, we cache the
8850 	 * last retried eip and the last fault address, if we meet the eip
8851 	 * and the address again, we can break out of the potential infinite
8852 	 * loop.
8853 	 */
8854 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8855 
8856 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8857 		return false;
8858 
8859 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8860 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8861 		return false;
8862 
8863 	if (x86_page_table_writing_insn(ctxt))
8864 		return false;
8865 
8866 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8867 		return false;
8868 
8869 	vcpu->arch.last_retry_eip = ctxt->eip;
8870 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8871 
8872 	if (!vcpu->arch.mmu->root_role.direct)
8873 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8874 
8875 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8876 
8877 	return true;
8878 }
8879 
8880 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8881 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8882 
8883 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8884 				unsigned long *db)
8885 {
8886 	u32 dr6 = 0;
8887 	int i;
8888 	u32 enable, rwlen;
8889 
8890 	enable = dr7;
8891 	rwlen = dr7 >> 16;
8892 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8893 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8894 			dr6 |= (1 << i);
8895 	return dr6;
8896 }
8897 
8898 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8899 {
8900 	struct kvm_run *kvm_run = vcpu->run;
8901 
8902 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8903 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8904 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8905 		kvm_run->debug.arch.exception = DB_VECTOR;
8906 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8907 		return 0;
8908 	}
8909 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8910 	return 1;
8911 }
8912 
8913 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8914 {
8915 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8916 	int r;
8917 
8918 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8919 	if (unlikely(!r))
8920 		return 0;
8921 
8922 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8923 
8924 	/*
8925 	 * rflags is the old, "raw" value of the flags.  The new value has
8926 	 * not been saved yet.
8927 	 *
8928 	 * This is correct even for TF set by the guest, because "the
8929 	 * processor will not generate this exception after the instruction
8930 	 * that sets the TF flag".
8931 	 */
8932 	if (unlikely(rflags & X86_EFLAGS_TF))
8933 		r = kvm_vcpu_do_singlestep(vcpu);
8934 	return r;
8935 }
8936 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8937 
8938 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8939 {
8940 	u32 shadow;
8941 
8942 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8943 		return true;
8944 
8945 	/*
8946 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8947 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8948 	 * to avoid the relatively expensive CPUID lookup.
8949 	 */
8950 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8951 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8952 	       guest_cpuid_is_intel(vcpu);
8953 }
8954 
8955 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8956 					   int emulation_type, int *r)
8957 {
8958 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8959 
8960 	/*
8961 	 * Do not check for code breakpoints if hardware has already done the
8962 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8963 	 * the instruction has passed all exception checks, and all intercepted
8964 	 * exceptions that trigger emulation have lower priority than code
8965 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8966 	 * means any code breakpoints have already been serviced.
8967 	 *
8968 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8969 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8970 	 * the instruction being emulated.  The intent of forced emulation is
8971 	 * to behave as if KVM intercepted the instruction without an exception
8972 	 * and without a prefix.
8973 	 */
8974 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8975 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8976 		return false;
8977 
8978 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8979 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8980 		struct kvm_run *kvm_run = vcpu->run;
8981 		unsigned long eip = kvm_get_linear_rip(vcpu);
8982 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8983 					   vcpu->arch.guest_debug_dr7,
8984 					   vcpu->arch.eff_db);
8985 
8986 		if (dr6 != 0) {
8987 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8988 			kvm_run->debug.arch.pc = eip;
8989 			kvm_run->debug.arch.exception = DB_VECTOR;
8990 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8991 			*r = 0;
8992 			return true;
8993 		}
8994 	}
8995 
8996 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8997 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8998 		unsigned long eip = kvm_get_linear_rip(vcpu);
8999 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9000 					   vcpu->arch.dr7,
9001 					   vcpu->arch.db);
9002 
9003 		if (dr6 != 0) {
9004 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9005 			*r = 1;
9006 			return true;
9007 		}
9008 	}
9009 
9010 	return false;
9011 }
9012 
9013 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9014 {
9015 	switch (ctxt->opcode_len) {
9016 	case 1:
9017 		switch (ctxt->b) {
9018 		case 0xe4:	/* IN */
9019 		case 0xe5:
9020 		case 0xec:
9021 		case 0xed:
9022 		case 0xe6:	/* OUT */
9023 		case 0xe7:
9024 		case 0xee:
9025 		case 0xef:
9026 		case 0x6c:	/* INS */
9027 		case 0x6d:
9028 		case 0x6e:	/* OUTS */
9029 		case 0x6f:
9030 			return true;
9031 		}
9032 		break;
9033 	case 2:
9034 		switch (ctxt->b) {
9035 		case 0x33:	/* RDPMC */
9036 			return true;
9037 		}
9038 		break;
9039 	}
9040 
9041 	return false;
9042 }
9043 
9044 /*
9045  * Decode an instruction for emulation.  The caller is responsible for handling
9046  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9047  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9048  * code breakpoints have higher priority and thus have already been done by
9049  * hardware.
9050  *
9051  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9052  *     response to a machine check.
9053  */
9054 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9055 				    void *insn, int insn_len)
9056 {
9057 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9058 	int r;
9059 
9060 	init_emulate_ctxt(vcpu);
9061 
9062 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9063 
9064 	trace_kvm_emulate_insn_start(vcpu);
9065 	++vcpu->stat.insn_emulation;
9066 
9067 	return r;
9068 }
9069 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9070 
9071 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9072 			    int emulation_type, void *insn, int insn_len)
9073 {
9074 	int r;
9075 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9076 	bool writeback = true;
9077 
9078 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9079 	if (r != X86EMUL_CONTINUE) {
9080 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9081 			return 1;
9082 
9083 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9084 		return handle_emulation_failure(vcpu, emulation_type);
9085 	}
9086 
9087 	vcpu->arch.l1tf_flush_l1d = true;
9088 
9089 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9090 		kvm_clear_exception_queue(vcpu);
9091 
9092 		/*
9093 		 * Return immediately if RIP hits a code breakpoint, such #DBs
9094 		 * are fault-like and are higher priority than any faults on
9095 		 * the code fetch itself.
9096 		 */
9097 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9098 			return r;
9099 
9100 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9101 						    insn, insn_len);
9102 		if (r != EMULATION_OK)  {
9103 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9104 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9105 				kvm_queue_exception(vcpu, UD_VECTOR);
9106 				return 1;
9107 			}
9108 			if (reexecute_instruction(vcpu, cr2_or_gpa,
9109 						  emulation_type))
9110 				return 1;
9111 
9112 			if (ctxt->have_exception &&
9113 			    !(emulation_type & EMULTYPE_SKIP)) {
9114 				/*
9115 				 * #UD should result in just EMULATION_FAILED, and trap-like
9116 				 * exception should not be encountered during decode.
9117 				 */
9118 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9119 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9120 				inject_emulated_exception(vcpu);
9121 				return 1;
9122 			}
9123 			return handle_emulation_failure(vcpu, emulation_type);
9124 		}
9125 	}
9126 
9127 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9128 	    !is_vmware_backdoor_opcode(ctxt)) {
9129 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9130 		return 1;
9131 	}
9132 
9133 	/*
9134 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9135 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9136 	 * The caller is responsible for updating interruptibility state and
9137 	 * injecting single-step #DBs.
9138 	 */
9139 	if (emulation_type & EMULTYPE_SKIP) {
9140 		if (ctxt->mode != X86EMUL_MODE_PROT64)
9141 			ctxt->eip = (u32)ctxt->_eip;
9142 		else
9143 			ctxt->eip = ctxt->_eip;
9144 
9145 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9146 			r = 1;
9147 			goto writeback;
9148 		}
9149 
9150 		kvm_rip_write(vcpu, ctxt->eip);
9151 		if (ctxt->eflags & X86_EFLAGS_RF)
9152 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9153 		return 1;
9154 	}
9155 
9156 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9157 		return 1;
9158 
9159 	/* this is needed for vmware backdoor interface to work since it
9160 	   changes registers values  during IO operation */
9161 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9162 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9163 		emulator_invalidate_register_cache(ctxt);
9164 	}
9165 
9166 restart:
9167 	if (emulation_type & EMULTYPE_PF) {
9168 		/* Save the faulting GPA (cr2) in the address field */
9169 		ctxt->exception.address = cr2_or_gpa;
9170 
9171 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9172 		if (vcpu->arch.mmu->root_role.direct) {
9173 			ctxt->gpa_available = true;
9174 			ctxt->gpa_val = cr2_or_gpa;
9175 		}
9176 	} else {
9177 		/* Sanitize the address out of an abundance of paranoia. */
9178 		ctxt->exception.address = 0;
9179 	}
9180 
9181 	r = x86_emulate_insn(ctxt);
9182 
9183 	if (r == EMULATION_INTERCEPTED)
9184 		return 1;
9185 
9186 	if (r == EMULATION_FAILED) {
9187 		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9188 			return 1;
9189 
9190 		return handle_emulation_failure(vcpu, emulation_type);
9191 	}
9192 
9193 	if (ctxt->have_exception) {
9194 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9195 		vcpu->mmio_needed = false;
9196 		r = 1;
9197 		inject_emulated_exception(vcpu);
9198 	} else if (vcpu->arch.pio.count) {
9199 		if (!vcpu->arch.pio.in) {
9200 			/* FIXME: return into emulator if single-stepping.  */
9201 			vcpu->arch.pio.count = 0;
9202 		} else {
9203 			writeback = false;
9204 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9205 		}
9206 		r = 0;
9207 	} else if (vcpu->mmio_needed) {
9208 		++vcpu->stat.mmio_exits;
9209 
9210 		if (!vcpu->mmio_is_write)
9211 			writeback = false;
9212 		r = 0;
9213 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9214 	} else if (vcpu->arch.complete_userspace_io) {
9215 		writeback = false;
9216 		r = 0;
9217 	} else if (r == EMULATION_RESTART)
9218 		goto restart;
9219 	else
9220 		r = 1;
9221 
9222 writeback:
9223 	if (writeback) {
9224 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9225 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9226 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9227 
9228 		/*
9229 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9230 		 * only supports code breakpoints and general detect #DB, both
9231 		 * of which are fault-like.
9232 		 */
9233 		if (!ctxt->have_exception ||
9234 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9235 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9236 			if (ctxt->is_branch)
9237 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9238 			kvm_rip_write(vcpu, ctxt->eip);
9239 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9240 				r = kvm_vcpu_do_singlestep(vcpu);
9241 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9242 			__kvm_set_rflags(vcpu, ctxt->eflags);
9243 		}
9244 
9245 		/*
9246 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9247 		 * do nothing, and it will be requested again as soon as
9248 		 * the shadow expires.  But we still need to check here,
9249 		 * because POPF has no interrupt shadow.
9250 		 */
9251 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9252 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9253 	} else
9254 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9255 
9256 	return r;
9257 }
9258 
9259 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9260 {
9261 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9262 }
9263 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9264 
9265 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9266 					void *insn, int insn_len)
9267 {
9268 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9269 }
9270 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9271 
9272 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9273 {
9274 	vcpu->arch.pio.count = 0;
9275 	return 1;
9276 }
9277 
9278 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9279 {
9280 	vcpu->arch.pio.count = 0;
9281 
9282 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9283 		return 1;
9284 
9285 	return kvm_skip_emulated_instruction(vcpu);
9286 }
9287 
9288 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9289 			    unsigned short port)
9290 {
9291 	unsigned long val = kvm_rax_read(vcpu);
9292 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9293 
9294 	if (ret)
9295 		return ret;
9296 
9297 	/*
9298 	 * Workaround userspace that relies on old KVM behavior of %rip being
9299 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9300 	 */
9301 	if (port == 0x7e &&
9302 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9303 		vcpu->arch.complete_userspace_io =
9304 			complete_fast_pio_out_port_0x7e;
9305 		kvm_skip_emulated_instruction(vcpu);
9306 	} else {
9307 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9308 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9309 	}
9310 	return 0;
9311 }
9312 
9313 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9314 {
9315 	unsigned long val;
9316 
9317 	/* We should only ever be called with arch.pio.count equal to 1 */
9318 	BUG_ON(vcpu->arch.pio.count != 1);
9319 
9320 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9321 		vcpu->arch.pio.count = 0;
9322 		return 1;
9323 	}
9324 
9325 	/* For size less than 4 we merge, else we zero extend */
9326 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9327 
9328 	complete_emulator_pio_in(vcpu, &val);
9329 	kvm_rax_write(vcpu, val);
9330 
9331 	return kvm_skip_emulated_instruction(vcpu);
9332 }
9333 
9334 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9335 			   unsigned short port)
9336 {
9337 	unsigned long val;
9338 	int ret;
9339 
9340 	/* For size less than 4 we merge, else we zero extend */
9341 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9342 
9343 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9344 	if (ret) {
9345 		kvm_rax_write(vcpu, val);
9346 		return ret;
9347 	}
9348 
9349 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9350 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9351 
9352 	return 0;
9353 }
9354 
9355 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9356 {
9357 	int ret;
9358 
9359 	if (in)
9360 		ret = kvm_fast_pio_in(vcpu, size, port);
9361 	else
9362 		ret = kvm_fast_pio_out(vcpu, size, port);
9363 	return ret && kvm_skip_emulated_instruction(vcpu);
9364 }
9365 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9366 
9367 static int kvmclock_cpu_down_prep(unsigned int cpu)
9368 {
9369 	__this_cpu_write(cpu_tsc_khz, 0);
9370 	return 0;
9371 }
9372 
9373 static void tsc_khz_changed(void *data)
9374 {
9375 	struct cpufreq_freqs *freq = data;
9376 	unsigned long khz;
9377 
9378 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9379 
9380 	if (data)
9381 		khz = freq->new;
9382 	else
9383 		khz = cpufreq_quick_get(raw_smp_processor_id());
9384 	if (!khz)
9385 		khz = tsc_khz;
9386 	__this_cpu_write(cpu_tsc_khz, khz);
9387 }
9388 
9389 #ifdef CONFIG_X86_64
9390 static void kvm_hyperv_tsc_notifier(void)
9391 {
9392 	struct kvm *kvm;
9393 	int cpu;
9394 
9395 	mutex_lock(&kvm_lock);
9396 	list_for_each_entry(kvm, &vm_list, vm_list)
9397 		kvm_make_mclock_inprogress_request(kvm);
9398 
9399 	/* no guest entries from this point */
9400 	hyperv_stop_tsc_emulation();
9401 
9402 	/* TSC frequency always matches when on Hyper-V */
9403 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9404 		for_each_present_cpu(cpu)
9405 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9406 	}
9407 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9408 
9409 	list_for_each_entry(kvm, &vm_list, vm_list) {
9410 		__kvm_start_pvclock_update(kvm);
9411 		pvclock_update_vm_gtod_copy(kvm);
9412 		kvm_end_pvclock_update(kvm);
9413 	}
9414 
9415 	mutex_unlock(&kvm_lock);
9416 }
9417 #endif
9418 
9419 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9420 {
9421 	struct kvm *kvm;
9422 	struct kvm_vcpu *vcpu;
9423 	int send_ipi = 0;
9424 	unsigned long i;
9425 
9426 	/*
9427 	 * We allow guests to temporarily run on slowing clocks,
9428 	 * provided we notify them after, or to run on accelerating
9429 	 * clocks, provided we notify them before.  Thus time never
9430 	 * goes backwards.
9431 	 *
9432 	 * However, we have a problem.  We can't atomically update
9433 	 * the frequency of a given CPU from this function; it is
9434 	 * merely a notifier, which can be called from any CPU.
9435 	 * Changing the TSC frequency at arbitrary points in time
9436 	 * requires a recomputation of local variables related to
9437 	 * the TSC for each VCPU.  We must flag these local variables
9438 	 * to be updated and be sure the update takes place with the
9439 	 * new frequency before any guests proceed.
9440 	 *
9441 	 * Unfortunately, the combination of hotplug CPU and frequency
9442 	 * change creates an intractable locking scenario; the order
9443 	 * of when these callouts happen is undefined with respect to
9444 	 * CPU hotplug, and they can race with each other.  As such,
9445 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9446 	 * undefined; you can actually have a CPU frequency change take
9447 	 * place in between the computation of X and the setting of the
9448 	 * variable.  To protect against this problem, all updates of
9449 	 * the per_cpu tsc_khz variable are done in an interrupt
9450 	 * protected IPI, and all callers wishing to update the value
9451 	 * must wait for a synchronous IPI to complete (which is trivial
9452 	 * if the caller is on the CPU already).  This establishes the
9453 	 * necessary total order on variable updates.
9454 	 *
9455 	 * Note that because a guest time update may take place
9456 	 * anytime after the setting of the VCPU's request bit, the
9457 	 * correct TSC value must be set before the request.  However,
9458 	 * to ensure the update actually makes it to any guest which
9459 	 * starts running in hardware virtualization between the set
9460 	 * and the acquisition of the spinlock, we must also ping the
9461 	 * CPU after setting the request bit.
9462 	 *
9463 	 */
9464 
9465 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9466 
9467 	mutex_lock(&kvm_lock);
9468 	list_for_each_entry(kvm, &vm_list, vm_list) {
9469 		kvm_for_each_vcpu(i, vcpu, kvm) {
9470 			if (vcpu->cpu != cpu)
9471 				continue;
9472 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9473 			if (vcpu->cpu != raw_smp_processor_id())
9474 				send_ipi = 1;
9475 		}
9476 	}
9477 	mutex_unlock(&kvm_lock);
9478 
9479 	if (freq->old < freq->new && send_ipi) {
9480 		/*
9481 		 * We upscale the frequency.  Must make the guest
9482 		 * doesn't see old kvmclock values while running with
9483 		 * the new frequency, otherwise we risk the guest sees
9484 		 * time go backwards.
9485 		 *
9486 		 * In case we update the frequency for another cpu
9487 		 * (which might be in guest context) send an interrupt
9488 		 * to kick the cpu out of guest context.  Next time
9489 		 * guest context is entered kvmclock will be updated,
9490 		 * so the guest will not see stale values.
9491 		 */
9492 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9493 	}
9494 }
9495 
9496 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9497 				     void *data)
9498 {
9499 	struct cpufreq_freqs *freq = data;
9500 	int cpu;
9501 
9502 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9503 		return 0;
9504 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9505 		return 0;
9506 
9507 	for_each_cpu(cpu, freq->policy->cpus)
9508 		__kvmclock_cpufreq_notifier(freq, cpu);
9509 
9510 	return 0;
9511 }
9512 
9513 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9514 	.notifier_call  = kvmclock_cpufreq_notifier
9515 };
9516 
9517 static int kvmclock_cpu_online(unsigned int cpu)
9518 {
9519 	tsc_khz_changed(NULL);
9520 	return 0;
9521 }
9522 
9523 static void kvm_timer_init(void)
9524 {
9525 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9526 		max_tsc_khz = tsc_khz;
9527 
9528 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9529 			struct cpufreq_policy *policy;
9530 			int cpu;
9531 
9532 			cpu = get_cpu();
9533 			policy = cpufreq_cpu_get(cpu);
9534 			if (policy) {
9535 				if (policy->cpuinfo.max_freq)
9536 					max_tsc_khz = policy->cpuinfo.max_freq;
9537 				cpufreq_cpu_put(policy);
9538 			}
9539 			put_cpu();
9540 		}
9541 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9542 					  CPUFREQ_TRANSITION_NOTIFIER);
9543 
9544 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9545 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9546 	}
9547 }
9548 
9549 #ifdef CONFIG_X86_64
9550 static void pvclock_gtod_update_fn(struct work_struct *work)
9551 {
9552 	struct kvm *kvm;
9553 	struct kvm_vcpu *vcpu;
9554 	unsigned long i;
9555 
9556 	mutex_lock(&kvm_lock);
9557 	list_for_each_entry(kvm, &vm_list, vm_list)
9558 		kvm_for_each_vcpu(i, vcpu, kvm)
9559 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9560 	atomic_set(&kvm_guest_has_master_clock, 0);
9561 	mutex_unlock(&kvm_lock);
9562 }
9563 
9564 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9565 
9566 /*
9567  * Indirection to move queue_work() out of the tk_core.seq write held
9568  * region to prevent possible deadlocks against time accessors which
9569  * are invoked with work related locks held.
9570  */
9571 static void pvclock_irq_work_fn(struct irq_work *w)
9572 {
9573 	queue_work(system_long_wq, &pvclock_gtod_work);
9574 }
9575 
9576 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9577 
9578 /*
9579  * Notification about pvclock gtod data update.
9580  */
9581 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9582 			       void *priv)
9583 {
9584 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9585 	struct timekeeper *tk = priv;
9586 
9587 	update_pvclock_gtod(tk);
9588 
9589 	/*
9590 	 * Disable master clock if host does not trust, or does not use,
9591 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9592 	 * this is invoked with tk_core.seq write held.
9593 	 */
9594 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9595 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9596 		irq_work_queue(&pvclock_irq_work);
9597 	return 0;
9598 }
9599 
9600 static struct notifier_block pvclock_gtod_notifier = {
9601 	.notifier_call = pvclock_gtod_notify,
9602 };
9603 #endif
9604 
9605 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9606 {
9607 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9608 
9609 #define __KVM_X86_OP(func) \
9610 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9611 #define KVM_X86_OP(func) \
9612 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9613 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9614 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9615 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9616 					   (void *)__static_call_return0);
9617 #include <asm/kvm-x86-ops.h>
9618 #undef __KVM_X86_OP
9619 
9620 	kvm_pmu_ops_update(ops->pmu_ops);
9621 }
9622 
9623 static int kvm_x86_check_processor_compatibility(void)
9624 {
9625 	int cpu = smp_processor_id();
9626 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9627 
9628 	/*
9629 	 * Compatibility checks are done when loading KVM and when enabling
9630 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9631 	 * compatible, i.e. KVM should never perform a compatibility check on
9632 	 * an offline CPU.
9633 	 */
9634 	WARN_ON(!cpu_online(cpu));
9635 
9636 	if (__cr4_reserved_bits(cpu_has, c) !=
9637 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9638 		return -EIO;
9639 
9640 	return static_call(kvm_x86_check_processor_compatibility)();
9641 }
9642 
9643 static void kvm_x86_check_cpu_compat(void *ret)
9644 {
9645 	*(int *)ret = kvm_x86_check_processor_compatibility();
9646 }
9647 
9648 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9649 {
9650 	u64 host_pat;
9651 	int r, cpu;
9652 
9653 	if (kvm_x86_ops.hardware_enable) {
9654 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9655 		return -EEXIST;
9656 	}
9657 
9658 	/*
9659 	 * KVM explicitly assumes that the guest has an FPU and
9660 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9661 	 * vCPU's FPU state as a fxregs_state struct.
9662 	 */
9663 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9664 		pr_err("inadequate fpu\n");
9665 		return -EOPNOTSUPP;
9666 	}
9667 
9668 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9669 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9670 		return -EOPNOTSUPP;
9671 	}
9672 
9673 	/*
9674 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9675 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9676 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9677 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9678 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9679 	 */
9680 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9681 	    (host_pat & GENMASK(2, 0)) != 6) {
9682 		pr_err("host PAT[0] is not WB\n");
9683 		return -EIO;
9684 	}
9685 
9686 	x86_emulator_cache = kvm_alloc_emulator_cache();
9687 	if (!x86_emulator_cache) {
9688 		pr_err("failed to allocate cache for x86 emulator\n");
9689 		return -ENOMEM;
9690 	}
9691 
9692 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9693 	if (!user_return_msrs) {
9694 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9695 		r = -ENOMEM;
9696 		goto out_free_x86_emulator_cache;
9697 	}
9698 	kvm_nr_uret_msrs = 0;
9699 
9700 	r = kvm_mmu_vendor_module_init();
9701 	if (r)
9702 		goto out_free_percpu;
9703 
9704 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9705 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9706 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9707 	}
9708 
9709 	rdmsrl_safe(MSR_EFER, &host_efer);
9710 
9711 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9712 		rdmsrl(MSR_IA32_XSS, host_xss);
9713 
9714 	kvm_init_pmu_capability(ops->pmu_ops);
9715 
9716 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9717 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9718 
9719 	r = ops->hardware_setup();
9720 	if (r != 0)
9721 		goto out_mmu_exit;
9722 
9723 	kvm_ops_update(ops);
9724 
9725 	for_each_online_cpu(cpu) {
9726 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9727 		if (r < 0)
9728 			goto out_unwind_ops;
9729 	}
9730 
9731 	/*
9732 	 * Point of no return!  DO NOT add error paths below this point unless
9733 	 * absolutely necessary, as most operations from this point forward
9734 	 * require unwinding.
9735 	 */
9736 	kvm_timer_init();
9737 
9738 	if (pi_inject_timer == -1)
9739 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9740 #ifdef CONFIG_X86_64
9741 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9742 
9743 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9744 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9745 #endif
9746 
9747 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9748 
9749 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9750 		kvm_caps.supported_xss = 0;
9751 
9752 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9753 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9754 #undef __kvm_cpu_cap_has
9755 
9756 	if (kvm_caps.has_tsc_control) {
9757 		/*
9758 		 * Make sure the user can only configure tsc_khz values that
9759 		 * fit into a signed integer.
9760 		 * A min value is not calculated because it will always
9761 		 * be 1 on all machines.
9762 		 */
9763 		u64 max = min(0x7fffffffULL,
9764 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9765 		kvm_caps.max_guest_tsc_khz = max;
9766 	}
9767 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9768 	kvm_init_msr_lists();
9769 	return 0;
9770 
9771 out_unwind_ops:
9772 	kvm_x86_ops.hardware_enable = NULL;
9773 	static_call(kvm_x86_hardware_unsetup)();
9774 out_mmu_exit:
9775 	kvm_mmu_vendor_module_exit();
9776 out_free_percpu:
9777 	free_percpu(user_return_msrs);
9778 out_free_x86_emulator_cache:
9779 	kmem_cache_destroy(x86_emulator_cache);
9780 	return r;
9781 }
9782 
9783 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9784 {
9785 	int r;
9786 
9787 	mutex_lock(&vendor_module_lock);
9788 	r = __kvm_x86_vendor_init(ops);
9789 	mutex_unlock(&vendor_module_lock);
9790 
9791 	return r;
9792 }
9793 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9794 
9795 void kvm_x86_vendor_exit(void)
9796 {
9797 	kvm_unregister_perf_callbacks();
9798 
9799 #ifdef CONFIG_X86_64
9800 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9801 		clear_hv_tscchange_cb();
9802 #endif
9803 	kvm_lapic_exit();
9804 
9805 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9806 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9807 					    CPUFREQ_TRANSITION_NOTIFIER);
9808 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9809 	}
9810 #ifdef CONFIG_X86_64
9811 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9812 	irq_work_sync(&pvclock_irq_work);
9813 	cancel_work_sync(&pvclock_gtod_work);
9814 #endif
9815 	static_call(kvm_x86_hardware_unsetup)();
9816 	kvm_mmu_vendor_module_exit();
9817 	free_percpu(user_return_msrs);
9818 	kmem_cache_destroy(x86_emulator_cache);
9819 #ifdef CONFIG_KVM_XEN
9820 	static_key_deferred_flush(&kvm_xen_enabled);
9821 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9822 #endif
9823 	mutex_lock(&vendor_module_lock);
9824 	kvm_x86_ops.hardware_enable = NULL;
9825 	mutex_unlock(&vendor_module_lock);
9826 }
9827 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9828 
9829 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9830 {
9831 	/*
9832 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9833 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9834 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9835 	 * managed by userspace, in which case userspace is responsible for
9836 	 * handling wake events.
9837 	 */
9838 	++vcpu->stat.halt_exits;
9839 	if (lapic_in_kernel(vcpu)) {
9840 		vcpu->arch.mp_state = state;
9841 		return 1;
9842 	} else {
9843 		vcpu->run->exit_reason = reason;
9844 		return 0;
9845 	}
9846 }
9847 
9848 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9849 {
9850 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9851 }
9852 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9853 
9854 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9855 {
9856 	int ret = kvm_skip_emulated_instruction(vcpu);
9857 	/*
9858 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9859 	 * KVM_EXIT_DEBUG here.
9860 	 */
9861 	return kvm_emulate_halt_noskip(vcpu) && ret;
9862 }
9863 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9864 
9865 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9866 {
9867 	int ret = kvm_skip_emulated_instruction(vcpu);
9868 
9869 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9870 					KVM_EXIT_AP_RESET_HOLD) && ret;
9871 }
9872 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9873 
9874 #ifdef CONFIG_X86_64
9875 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9876 			        unsigned long clock_type)
9877 {
9878 	struct kvm_clock_pairing clock_pairing;
9879 	struct timespec64 ts;
9880 	u64 cycle;
9881 	int ret;
9882 
9883 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9884 		return -KVM_EOPNOTSUPP;
9885 
9886 	/*
9887 	 * When tsc is in permanent catchup mode guests won't be able to use
9888 	 * pvclock_read_retry loop to get consistent view of pvclock
9889 	 */
9890 	if (vcpu->arch.tsc_always_catchup)
9891 		return -KVM_EOPNOTSUPP;
9892 
9893 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9894 		return -KVM_EOPNOTSUPP;
9895 
9896 	clock_pairing.sec = ts.tv_sec;
9897 	clock_pairing.nsec = ts.tv_nsec;
9898 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9899 	clock_pairing.flags = 0;
9900 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9901 
9902 	ret = 0;
9903 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9904 			    sizeof(struct kvm_clock_pairing)))
9905 		ret = -KVM_EFAULT;
9906 
9907 	return ret;
9908 }
9909 #endif
9910 
9911 /*
9912  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9913  *
9914  * @apicid - apicid of vcpu to be kicked.
9915  */
9916 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9917 {
9918 	/*
9919 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9920 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9921 	 */
9922 	struct kvm_lapic_irq lapic_irq = {
9923 		.delivery_mode = APIC_DM_REMRD,
9924 		.dest_mode = APIC_DEST_PHYSICAL,
9925 		.shorthand = APIC_DEST_NOSHORT,
9926 		.dest_id = apicid,
9927 	};
9928 
9929 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9930 }
9931 
9932 bool kvm_apicv_activated(struct kvm *kvm)
9933 {
9934 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9935 }
9936 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9937 
9938 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9939 {
9940 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9941 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9942 
9943 	return (vm_reasons | vcpu_reasons) == 0;
9944 }
9945 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9946 
9947 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9948 				       enum kvm_apicv_inhibit reason, bool set)
9949 {
9950 	if (set)
9951 		__set_bit(reason, inhibits);
9952 	else
9953 		__clear_bit(reason, inhibits);
9954 
9955 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9956 }
9957 
9958 static void kvm_apicv_init(struct kvm *kvm)
9959 {
9960 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9961 
9962 	init_rwsem(&kvm->arch.apicv_update_lock);
9963 
9964 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9965 
9966 	if (!enable_apicv)
9967 		set_or_clear_apicv_inhibit(inhibits,
9968 					   APICV_INHIBIT_REASON_DISABLE, true);
9969 }
9970 
9971 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9972 {
9973 	struct kvm_vcpu *target = NULL;
9974 	struct kvm_apic_map *map;
9975 
9976 	vcpu->stat.directed_yield_attempted++;
9977 
9978 	if (single_task_running())
9979 		goto no_yield;
9980 
9981 	rcu_read_lock();
9982 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9983 
9984 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9985 		target = map->phys_map[dest_id]->vcpu;
9986 
9987 	rcu_read_unlock();
9988 
9989 	if (!target || !READ_ONCE(target->ready))
9990 		goto no_yield;
9991 
9992 	/* Ignore requests to yield to self */
9993 	if (vcpu == target)
9994 		goto no_yield;
9995 
9996 	if (kvm_vcpu_yield_to(target) <= 0)
9997 		goto no_yield;
9998 
9999 	vcpu->stat.directed_yield_successful++;
10000 
10001 no_yield:
10002 	return;
10003 }
10004 
10005 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10006 {
10007 	u64 ret = vcpu->run->hypercall.ret;
10008 
10009 	if (!is_64_bit_mode(vcpu))
10010 		ret = (u32)ret;
10011 	kvm_rax_write(vcpu, ret);
10012 	++vcpu->stat.hypercalls;
10013 	return kvm_skip_emulated_instruction(vcpu);
10014 }
10015 
10016 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10017 {
10018 	unsigned long nr, a0, a1, a2, a3, ret;
10019 	int op_64_bit;
10020 
10021 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10022 		return kvm_xen_hypercall(vcpu);
10023 
10024 	if (kvm_hv_hypercall_enabled(vcpu))
10025 		return kvm_hv_hypercall(vcpu);
10026 
10027 	nr = kvm_rax_read(vcpu);
10028 	a0 = kvm_rbx_read(vcpu);
10029 	a1 = kvm_rcx_read(vcpu);
10030 	a2 = kvm_rdx_read(vcpu);
10031 	a3 = kvm_rsi_read(vcpu);
10032 
10033 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10034 
10035 	op_64_bit = is_64_bit_hypercall(vcpu);
10036 	if (!op_64_bit) {
10037 		nr &= 0xFFFFFFFF;
10038 		a0 &= 0xFFFFFFFF;
10039 		a1 &= 0xFFFFFFFF;
10040 		a2 &= 0xFFFFFFFF;
10041 		a3 &= 0xFFFFFFFF;
10042 	}
10043 
10044 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
10045 		ret = -KVM_EPERM;
10046 		goto out;
10047 	}
10048 
10049 	ret = -KVM_ENOSYS;
10050 
10051 	switch (nr) {
10052 	case KVM_HC_VAPIC_POLL_IRQ:
10053 		ret = 0;
10054 		break;
10055 	case KVM_HC_KICK_CPU:
10056 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10057 			break;
10058 
10059 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10060 		kvm_sched_yield(vcpu, a1);
10061 		ret = 0;
10062 		break;
10063 #ifdef CONFIG_X86_64
10064 	case KVM_HC_CLOCK_PAIRING:
10065 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10066 		break;
10067 #endif
10068 	case KVM_HC_SEND_IPI:
10069 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10070 			break;
10071 
10072 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10073 		break;
10074 	case KVM_HC_SCHED_YIELD:
10075 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10076 			break;
10077 
10078 		kvm_sched_yield(vcpu, a0);
10079 		ret = 0;
10080 		break;
10081 	case KVM_HC_MAP_GPA_RANGE: {
10082 		u64 gpa = a0, npages = a1, attrs = a2;
10083 
10084 		ret = -KVM_ENOSYS;
10085 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10086 			break;
10087 
10088 		if (!PAGE_ALIGNED(gpa) || !npages ||
10089 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10090 			ret = -KVM_EINVAL;
10091 			break;
10092 		}
10093 
10094 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10095 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10096 		vcpu->run->hypercall.args[0]  = gpa;
10097 		vcpu->run->hypercall.args[1]  = npages;
10098 		vcpu->run->hypercall.args[2]  = attrs;
10099 		vcpu->run->hypercall.flags    = 0;
10100 		if (op_64_bit)
10101 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10102 
10103 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10104 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10105 		return 0;
10106 	}
10107 	default:
10108 		ret = -KVM_ENOSYS;
10109 		break;
10110 	}
10111 out:
10112 	if (!op_64_bit)
10113 		ret = (u32)ret;
10114 	kvm_rax_write(vcpu, ret);
10115 
10116 	++vcpu->stat.hypercalls;
10117 	return kvm_skip_emulated_instruction(vcpu);
10118 }
10119 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10120 
10121 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10122 {
10123 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10124 	char instruction[3];
10125 	unsigned long rip = kvm_rip_read(vcpu);
10126 
10127 	/*
10128 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10129 	 * the pieces.
10130 	 */
10131 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10132 		ctxt->exception.error_code_valid = false;
10133 		ctxt->exception.vector = UD_VECTOR;
10134 		ctxt->have_exception = true;
10135 		return X86EMUL_PROPAGATE_FAULT;
10136 	}
10137 
10138 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10139 
10140 	return emulator_write_emulated(ctxt, rip, instruction, 3,
10141 		&ctxt->exception);
10142 }
10143 
10144 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10145 {
10146 	return vcpu->run->request_interrupt_window &&
10147 		likely(!pic_in_kernel(vcpu->kvm));
10148 }
10149 
10150 /* Called within kvm->srcu read side.  */
10151 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10152 {
10153 	struct kvm_run *kvm_run = vcpu->run;
10154 
10155 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10156 	kvm_run->cr8 = kvm_get_cr8(vcpu);
10157 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
10158 
10159 	kvm_run->ready_for_interrupt_injection =
10160 		pic_in_kernel(vcpu->kvm) ||
10161 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10162 
10163 	if (is_smm(vcpu))
10164 		kvm_run->flags |= KVM_RUN_X86_SMM;
10165 }
10166 
10167 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10168 {
10169 	int max_irr, tpr;
10170 
10171 	if (!kvm_x86_ops.update_cr8_intercept)
10172 		return;
10173 
10174 	if (!lapic_in_kernel(vcpu))
10175 		return;
10176 
10177 	if (vcpu->arch.apic->apicv_active)
10178 		return;
10179 
10180 	if (!vcpu->arch.apic->vapic_addr)
10181 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10182 	else
10183 		max_irr = -1;
10184 
10185 	if (max_irr != -1)
10186 		max_irr >>= 4;
10187 
10188 	tpr = kvm_lapic_get_cr8(vcpu);
10189 
10190 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10191 }
10192 
10193 
10194 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10195 {
10196 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10197 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10198 		return 1;
10199 	}
10200 
10201 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10202 }
10203 
10204 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10205 {
10206 	/*
10207 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10208 	 * exceptions don't report error codes.  The presence of an error code
10209 	 * is carried with the exception and only stripped when the exception
10210 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10211 	 * report an error code despite the CPU being in Real Mode.
10212 	 */
10213 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10214 
10215 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10216 				vcpu->arch.exception.has_error_code,
10217 				vcpu->arch.exception.error_code,
10218 				vcpu->arch.exception.injected);
10219 
10220 	static_call(kvm_x86_inject_exception)(vcpu);
10221 }
10222 
10223 /*
10224  * Check for any event (interrupt or exception) that is ready to be injected,
10225  * and if there is at least one event, inject the event with the highest
10226  * priority.  This handles both "pending" events, i.e. events that have never
10227  * been injected into the guest, and "injected" events, i.e. events that were
10228  * injected as part of a previous VM-Enter, but weren't successfully delivered
10229  * and need to be re-injected.
10230  *
10231  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10232  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10233  * be able to inject exceptions in the "middle" of an instruction, and so must
10234  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10235  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10236  * boundaries is necessary and correct.
10237  *
10238  * For simplicity, KVM uses a single path to inject all events (except events
10239  * that are injected directly from L1 to L2) and doesn't explicitly track
10240  * instruction boundaries for asynchronous events.  However, because VM-Exits
10241  * that can occur during instruction execution typically result in KVM skipping
10242  * the instruction or injecting an exception, e.g. instruction and exception
10243  * intercepts, and because pending exceptions have higher priority than pending
10244  * interrupts, KVM still honors instruction boundaries in most scenarios.
10245  *
10246  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10247  * the instruction or inject an exception, then KVM can incorrecty inject a new
10248  * asynchronous event if the event became pending after the CPU fetched the
10249  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10250  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10251  * injected on the restarted instruction instead of being deferred until the
10252  * instruction completes.
10253  *
10254  * In practice, this virtualization hole is unlikely to be observed by the
10255  * guest, and even less likely to cause functional problems.  To detect the
10256  * hole, the guest would have to trigger an event on a side effect of an early
10257  * phase of instruction execution, e.g. on the instruction fetch from memory.
10258  * And for it to be a functional problem, the guest would need to depend on the
10259  * ordering between that side effect, the instruction completing, _and_ the
10260  * delivery of the asynchronous event.
10261  */
10262 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10263 				       bool *req_immediate_exit)
10264 {
10265 	bool can_inject;
10266 	int r;
10267 
10268 	/*
10269 	 * Process nested events first, as nested VM-Exit supersedes event
10270 	 * re-injection.  If there's an event queued for re-injection, it will
10271 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10272 	 */
10273 	if (is_guest_mode(vcpu))
10274 		r = kvm_check_nested_events(vcpu);
10275 	else
10276 		r = 0;
10277 
10278 	/*
10279 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10280 	 * to/from L2 is needed, as any event that has already been injected
10281 	 * into L2 needs to complete its lifecycle before injecting a new event.
10282 	 *
10283 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10284 	 * This collision arises if an exception occurred while vectoring the
10285 	 * injected event, KVM intercepted said exception, and KVM ultimately
10286 	 * determined the fault belongs to the guest and queues the exception
10287 	 * for injection back into the guest.
10288 	 *
10289 	 * "Injected" interrupts can also collide with pending exceptions if
10290 	 * userspace ignores the "ready for injection" flag and blindly queues
10291 	 * an interrupt.  In that case, prioritizing the exception is correct,
10292 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10293 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10294 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10295 	 * priority, they're only generated (pended) during instruction
10296 	 * execution, and interrupts are recognized at instruction boundaries.
10297 	 * Thus a pending fault-like exception means the fault occurred on the
10298 	 * *previous* instruction and must be serviced prior to recognizing any
10299 	 * new events in order to fully complete the previous instruction.
10300 	 */
10301 	if (vcpu->arch.exception.injected)
10302 		kvm_inject_exception(vcpu);
10303 	else if (kvm_is_exception_pending(vcpu))
10304 		; /* see above */
10305 	else if (vcpu->arch.nmi_injected)
10306 		static_call(kvm_x86_inject_nmi)(vcpu);
10307 	else if (vcpu->arch.interrupt.injected)
10308 		static_call(kvm_x86_inject_irq)(vcpu, true);
10309 
10310 	/*
10311 	 * Exceptions that morph to VM-Exits are handled above, and pending
10312 	 * exceptions on top of injected exceptions that do not VM-Exit should
10313 	 * either morph to #DF or, sadly, override the injected exception.
10314 	 */
10315 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10316 		     vcpu->arch.exception.pending);
10317 
10318 	/*
10319 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10320 	 * nested VM-Enter or event re-injection so that a different pending
10321 	 * event can be serviced (or if KVM needs to exit to userspace).
10322 	 *
10323 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10324 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10325 	 * there may now be events that can be injected into L1.
10326 	 */
10327 	if (r < 0)
10328 		goto out;
10329 
10330 	/*
10331 	 * A pending exception VM-Exit should either result in nested VM-Exit
10332 	 * or force an immediate re-entry and exit to/from L2, and exception
10333 	 * VM-Exits cannot be injected (flag should _never_ be set).
10334 	 */
10335 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10336 		     vcpu->arch.exception_vmexit.pending);
10337 
10338 	/*
10339 	 * New events, other than exceptions, cannot be injected if KVM needs
10340 	 * to re-inject a previous event.  See above comments on re-injecting
10341 	 * for why pending exceptions get priority.
10342 	 */
10343 	can_inject = !kvm_event_needs_reinjection(vcpu);
10344 
10345 	if (vcpu->arch.exception.pending) {
10346 		/*
10347 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10348 		 * value pushed on the stack.  Trap-like exception and all #DBs
10349 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10350 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10351 		 *
10352 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10353 		 * describe the behavior of General Detect #DBs, which are
10354 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10355 		 */
10356 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10357 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10358 					     X86_EFLAGS_RF);
10359 
10360 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10361 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10362 			if (vcpu->arch.dr7 & DR7_GD) {
10363 				vcpu->arch.dr7 &= ~DR7_GD;
10364 				kvm_update_dr7(vcpu);
10365 			}
10366 		}
10367 
10368 		kvm_inject_exception(vcpu);
10369 
10370 		vcpu->arch.exception.pending = false;
10371 		vcpu->arch.exception.injected = true;
10372 
10373 		can_inject = false;
10374 	}
10375 
10376 	/* Don't inject interrupts if the user asked to avoid doing so */
10377 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10378 		return 0;
10379 
10380 	/*
10381 	 * Finally, inject interrupt events.  If an event cannot be injected
10382 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10383 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10384 	 * and can architecturally be injected, but we cannot do it right now:
10385 	 * an interrupt could have arrived just now and we have to inject it
10386 	 * as a vmexit, or there could already an event in the queue, which is
10387 	 * indicated by can_inject.  In that case we request an immediate exit
10388 	 * in order to make progress and get back here for another iteration.
10389 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10390 	 */
10391 #ifdef CONFIG_KVM_SMM
10392 	if (vcpu->arch.smi_pending) {
10393 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10394 		if (r < 0)
10395 			goto out;
10396 		if (r) {
10397 			vcpu->arch.smi_pending = false;
10398 			++vcpu->arch.smi_count;
10399 			enter_smm(vcpu);
10400 			can_inject = false;
10401 		} else
10402 			static_call(kvm_x86_enable_smi_window)(vcpu);
10403 	}
10404 #endif
10405 
10406 	if (vcpu->arch.nmi_pending) {
10407 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10408 		if (r < 0)
10409 			goto out;
10410 		if (r) {
10411 			--vcpu->arch.nmi_pending;
10412 			vcpu->arch.nmi_injected = true;
10413 			static_call(kvm_x86_inject_nmi)(vcpu);
10414 			can_inject = false;
10415 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10416 		}
10417 		if (vcpu->arch.nmi_pending)
10418 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10419 	}
10420 
10421 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10422 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10423 		if (r < 0)
10424 			goto out;
10425 		if (r) {
10426 			int irq = kvm_cpu_get_interrupt(vcpu);
10427 
10428 			if (!WARN_ON_ONCE(irq == -1)) {
10429 				kvm_queue_interrupt(vcpu, irq, false);
10430 				static_call(kvm_x86_inject_irq)(vcpu, false);
10431 				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10432 			}
10433 		}
10434 		if (kvm_cpu_has_injectable_intr(vcpu))
10435 			static_call(kvm_x86_enable_irq_window)(vcpu);
10436 	}
10437 
10438 	if (is_guest_mode(vcpu) &&
10439 	    kvm_x86_ops.nested_ops->has_events &&
10440 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10441 		*req_immediate_exit = true;
10442 
10443 	/*
10444 	 * KVM must never queue a new exception while injecting an event; KVM
10445 	 * is done emulating and should only propagate the to-be-injected event
10446 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10447 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10448 	 * exception and start the cycle all over.
10449 	 *
10450 	 * Exempt triple faults as they have special handling and won't put the
10451 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10452 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10453 	 * Mode events (see kvm_inject_realmode_interrupt()).
10454 	 */
10455 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10456 		     vcpu->arch.exception_vmexit.pending);
10457 	return 0;
10458 
10459 out:
10460 	if (r == -EBUSY) {
10461 		*req_immediate_exit = true;
10462 		r = 0;
10463 	}
10464 	return r;
10465 }
10466 
10467 static void process_nmi(struct kvm_vcpu *vcpu)
10468 {
10469 	unsigned int limit;
10470 
10471 	/*
10472 	 * x86 is limited to one NMI pending, but because KVM can't react to
10473 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10474 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10475 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10476 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10477 	 * waiting for a previous NMI injection to complete (which effectively
10478 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10479 	 * will request an NMI window to handle the second NMI.
10480 	 */
10481 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10482 		limit = 1;
10483 	else
10484 		limit = 2;
10485 
10486 	/*
10487 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10488 	 * tracked in vcpu->arch.nmi_pending.
10489 	 */
10490 	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10491 		limit--;
10492 
10493 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10494 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10495 
10496 	if (vcpu->arch.nmi_pending &&
10497 	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10498 		vcpu->arch.nmi_pending--;
10499 
10500 	if (vcpu->arch.nmi_pending)
10501 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10502 }
10503 
10504 /* Return total number of NMIs pending injection to the VM */
10505 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10506 {
10507 	return vcpu->arch.nmi_pending +
10508 	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10509 }
10510 
10511 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10512 				       unsigned long *vcpu_bitmap)
10513 {
10514 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10515 }
10516 
10517 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10518 {
10519 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10520 }
10521 
10522 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10523 {
10524 	struct kvm_lapic *apic = vcpu->arch.apic;
10525 	bool activate;
10526 
10527 	if (!lapic_in_kernel(vcpu))
10528 		return;
10529 
10530 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10531 	preempt_disable();
10532 
10533 	/* Do not activate APICV when APIC is disabled */
10534 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10535 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10536 
10537 	if (apic->apicv_active == activate)
10538 		goto out;
10539 
10540 	apic->apicv_active = activate;
10541 	kvm_apic_update_apicv(vcpu);
10542 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10543 
10544 	/*
10545 	 * When APICv gets disabled, we may still have injected interrupts
10546 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10547 	 * still active when the interrupt got accepted. Make sure
10548 	 * kvm_check_and_inject_events() is called to check for that.
10549 	 */
10550 	if (!apic->apicv_active)
10551 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10552 
10553 out:
10554 	preempt_enable();
10555 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10556 }
10557 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10558 
10559 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10560 {
10561 	if (!lapic_in_kernel(vcpu))
10562 		return;
10563 
10564 	/*
10565 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10566 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10567 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10568 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10569 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10570 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10571 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10572 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10573 	 * access page is sticky.
10574 	 */
10575 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10576 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10577 		kvm_inhibit_apic_access_page(vcpu);
10578 
10579 	__kvm_vcpu_update_apicv(vcpu);
10580 }
10581 
10582 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10583 				      enum kvm_apicv_inhibit reason, bool set)
10584 {
10585 	unsigned long old, new;
10586 
10587 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10588 
10589 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10590 		return;
10591 
10592 	old = new = kvm->arch.apicv_inhibit_reasons;
10593 
10594 	set_or_clear_apicv_inhibit(&new, reason, set);
10595 
10596 	if (!!old != !!new) {
10597 		/*
10598 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10599 		 * false positives in the sanity check WARN in svm_vcpu_run().
10600 		 * This task will wait for all vCPUs to ack the kick IRQ before
10601 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10602 		 * block on acquiring apicv_update_lock so that vCPUs can't
10603 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10604 		 *
10605 		 * Note, holding apicv_update_lock and taking it in the read
10606 		 * side (handling the request) also prevents other vCPUs from
10607 		 * servicing the request with a stale apicv_inhibit_reasons.
10608 		 */
10609 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10610 		kvm->arch.apicv_inhibit_reasons = new;
10611 		if (new) {
10612 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10613 			int idx = srcu_read_lock(&kvm->srcu);
10614 
10615 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10616 			srcu_read_unlock(&kvm->srcu, idx);
10617 		}
10618 	} else {
10619 		kvm->arch.apicv_inhibit_reasons = new;
10620 	}
10621 }
10622 
10623 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10624 				    enum kvm_apicv_inhibit reason, bool set)
10625 {
10626 	if (!enable_apicv)
10627 		return;
10628 
10629 	down_write(&kvm->arch.apicv_update_lock);
10630 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10631 	up_write(&kvm->arch.apicv_update_lock);
10632 }
10633 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10634 
10635 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10636 {
10637 	if (!kvm_apic_present(vcpu))
10638 		return;
10639 
10640 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10641 
10642 	if (irqchip_split(vcpu->kvm))
10643 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10644 	else {
10645 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10646 		if (ioapic_in_kernel(vcpu->kvm))
10647 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10648 	}
10649 
10650 	if (is_guest_mode(vcpu))
10651 		vcpu->arch.load_eoi_exitmap_pending = true;
10652 	else
10653 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10654 }
10655 
10656 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10657 {
10658 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10659 		return;
10660 
10661 #ifdef CONFIG_KVM_HYPERV
10662 	if (to_hv_vcpu(vcpu)) {
10663 		u64 eoi_exit_bitmap[4];
10664 
10665 		bitmap_or((ulong *)eoi_exit_bitmap,
10666 			  vcpu->arch.ioapic_handled_vectors,
10667 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10668 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10669 		return;
10670 	}
10671 #endif
10672 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10673 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10674 }
10675 
10676 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10677 {
10678 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10679 }
10680 
10681 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10682 {
10683 	if (!lapic_in_kernel(vcpu))
10684 		return;
10685 
10686 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10687 }
10688 
10689 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10690 {
10691 	smp_send_reschedule(vcpu->cpu);
10692 }
10693 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10694 
10695 /*
10696  * Called within kvm->srcu read side.
10697  * Returns 1 to let vcpu_run() continue the guest execution loop without
10698  * exiting to the userspace.  Otherwise, the value will be returned to the
10699  * userspace.
10700  */
10701 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10702 {
10703 	int r;
10704 	bool req_int_win =
10705 		dm_request_for_irq_injection(vcpu) &&
10706 		kvm_cpu_accept_dm_intr(vcpu);
10707 	fastpath_t exit_fastpath;
10708 
10709 	bool req_immediate_exit = false;
10710 
10711 	if (kvm_request_pending(vcpu)) {
10712 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10713 			r = -EIO;
10714 			goto out;
10715 		}
10716 
10717 		if (kvm_dirty_ring_check_request(vcpu)) {
10718 			r = 0;
10719 			goto out;
10720 		}
10721 
10722 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10723 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10724 				r = 0;
10725 				goto out;
10726 			}
10727 		}
10728 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10729 			kvm_mmu_free_obsolete_roots(vcpu);
10730 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10731 			__kvm_migrate_timers(vcpu);
10732 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10733 			kvm_update_masterclock(vcpu->kvm);
10734 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10735 			kvm_gen_kvmclock_update(vcpu);
10736 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10737 			r = kvm_guest_time_update(vcpu);
10738 			if (unlikely(r))
10739 				goto out;
10740 		}
10741 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10742 			kvm_mmu_sync_roots(vcpu);
10743 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10744 			kvm_mmu_load_pgd(vcpu);
10745 
10746 		/*
10747 		 * Note, the order matters here, as flushing "all" TLB entries
10748 		 * also flushes the "current" TLB entries, i.e. servicing the
10749 		 * flush "all" will clear any request to flush "current".
10750 		 */
10751 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10752 			kvm_vcpu_flush_tlb_all(vcpu);
10753 
10754 		kvm_service_local_tlb_flush_requests(vcpu);
10755 
10756 		/*
10757 		 * Fall back to a "full" guest flush if Hyper-V's precise
10758 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10759 		 * the flushes are considered "remote" and not "local" because
10760 		 * the requests can be initiated from other vCPUs.
10761 		 */
10762 #ifdef CONFIG_KVM_HYPERV
10763 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10764 		    kvm_hv_vcpu_flush_tlb(vcpu))
10765 			kvm_vcpu_flush_tlb_guest(vcpu);
10766 #endif
10767 
10768 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10769 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10770 			r = 0;
10771 			goto out;
10772 		}
10773 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10774 			if (is_guest_mode(vcpu))
10775 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10776 
10777 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10778 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10779 				vcpu->mmio_needed = 0;
10780 				r = 0;
10781 				goto out;
10782 			}
10783 		}
10784 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10785 			/* Page is swapped out. Do synthetic halt */
10786 			vcpu->arch.apf.halted = true;
10787 			r = 1;
10788 			goto out;
10789 		}
10790 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10791 			record_steal_time(vcpu);
10792 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10793 			kvm_pmu_handle_event(vcpu);
10794 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10795 			kvm_pmu_deliver_pmi(vcpu);
10796 #ifdef CONFIG_KVM_SMM
10797 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10798 			process_smi(vcpu);
10799 #endif
10800 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10801 			process_nmi(vcpu);
10802 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10803 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10804 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10805 				     vcpu->arch.ioapic_handled_vectors)) {
10806 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10807 				vcpu->run->eoi.vector =
10808 						vcpu->arch.pending_ioapic_eoi;
10809 				r = 0;
10810 				goto out;
10811 			}
10812 		}
10813 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10814 			vcpu_scan_ioapic(vcpu);
10815 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10816 			vcpu_load_eoi_exitmap(vcpu);
10817 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10818 			kvm_vcpu_reload_apic_access_page(vcpu);
10819 #ifdef CONFIG_KVM_HYPERV
10820 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10821 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10822 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10823 			vcpu->run->system_event.ndata = 0;
10824 			r = 0;
10825 			goto out;
10826 		}
10827 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10828 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10829 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10830 			vcpu->run->system_event.ndata = 0;
10831 			r = 0;
10832 			goto out;
10833 		}
10834 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10835 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10836 
10837 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10838 			vcpu->run->hyperv = hv_vcpu->exit;
10839 			r = 0;
10840 			goto out;
10841 		}
10842 
10843 		/*
10844 		 * KVM_REQ_HV_STIMER has to be processed after
10845 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10846 		 * depend on the guest clock being up-to-date
10847 		 */
10848 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10849 			kvm_hv_process_stimers(vcpu);
10850 #endif
10851 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10852 			kvm_vcpu_update_apicv(vcpu);
10853 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10854 			kvm_check_async_pf_completion(vcpu);
10855 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10856 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10857 
10858 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10859 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10860 	}
10861 
10862 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10863 	    kvm_xen_has_interrupt(vcpu)) {
10864 		++vcpu->stat.req_event;
10865 		r = kvm_apic_accept_events(vcpu);
10866 		if (r < 0) {
10867 			r = 0;
10868 			goto out;
10869 		}
10870 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10871 			r = 1;
10872 			goto out;
10873 		}
10874 
10875 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10876 		if (r < 0) {
10877 			r = 0;
10878 			goto out;
10879 		}
10880 		if (req_int_win)
10881 			static_call(kvm_x86_enable_irq_window)(vcpu);
10882 
10883 		if (kvm_lapic_enabled(vcpu)) {
10884 			update_cr8_intercept(vcpu);
10885 			kvm_lapic_sync_to_vapic(vcpu);
10886 		}
10887 	}
10888 
10889 	r = kvm_mmu_reload(vcpu);
10890 	if (unlikely(r)) {
10891 		goto cancel_injection;
10892 	}
10893 
10894 	preempt_disable();
10895 
10896 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10897 
10898 	/*
10899 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10900 	 * IPI are then delayed after guest entry, which ensures that they
10901 	 * result in virtual interrupt delivery.
10902 	 */
10903 	local_irq_disable();
10904 
10905 	/* Store vcpu->apicv_active before vcpu->mode.  */
10906 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10907 
10908 	kvm_vcpu_srcu_read_unlock(vcpu);
10909 
10910 	/*
10911 	 * 1) We should set ->mode before checking ->requests.  Please see
10912 	 * the comment in kvm_vcpu_exiting_guest_mode().
10913 	 *
10914 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10915 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10916 	 * (see vmx_deliver_posted_interrupt).
10917 	 *
10918 	 * 3) This also orders the write to mode from any reads to the page
10919 	 * tables done while the VCPU is running.  Please see the comment
10920 	 * in kvm_flush_remote_tlbs.
10921 	 */
10922 	smp_mb__after_srcu_read_unlock();
10923 
10924 	/*
10925 	 * Process pending posted interrupts to handle the case where the
10926 	 * notification IRQ arrived in the host, or was never sent (because the
10927 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10928 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10929 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10930 	 */
10931 	if (kvm_lapic_enabled(vcpu))
10932 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10933 
10934 	if (kvm_vcpu_exit_request(vcpu)) {
10935 		vcpu->mode = OUTSIDE_GUEST_MODE;
10936 		smp_wmb();
10937 		local_irq_enable();
10938 		preempt_enable();
10939 		kvm_vcpu_srcu_read_lock(vcpu);
10940 		r = 1;
10941 		goto cancel_injection;
10942 	}
10943 
10944 	if (req_immediate_exit) {
10945 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10946 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10947 	}
10948 
10949 	fpregs_assert_state_consistent();
10950 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10951 		switch_fpu_return();
10952 
10953 	if (vcpu->arch.guest_fpu.xfd_err)
10954 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10955 
10956 	if (unlikely(vcpu->arch.switch_db_regs)) {
10957 		set_debugreg(0, 7);
10958 		set_debugreg(vcpu->arch.eff_db[0], 0);
10959 		set_debugreg(vcpu->arch.eff_db[1], 1);
10960 		set_debugreg(vcpu->arch.eff_db[2], 2);
10961 		set_debugreg(vcpu->arch.eff_db[3], 3);
10962 	} else if (unlikely(hw_breakpoint_active())) {
10963 		set_debugreg(0, 7);
10964 	}
10965 
10966 	guest_timing_enter_irqoff();
10967 
10968 	for (;;) {
10969 		/*
10970 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10971 		 * update must kick and wait for all vCPUs before toggling the
10972 		 * per-VM state, and responding vCPUs must wait for the update
10973 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10974 		 */
10975 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10976 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10977 
10978 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10979 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10980 			break;
10981 
10982 		if (kvm_lapic_enabled(vcpu))
10983 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10984 
10985 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10986 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10987 			break;
10988 		}
10989 
10990 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10991 		++vcpu->stat.exits;
10992 	}
10993 
10994 	/*
10995 	 * Do this here before restoring debug registers on the host.  And
10996 	 * since we do this before handling the vmexit, a DR access vmexit
10997 	 * can (a) read the correct value of the debug registers, (b) set
10998 	 * KVM_DEBUGREG_WONT_EXIT again.
10999 	 */
11000 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11001 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11002 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
11003 		kvm_update_dr0123(vcpu);
11004 		kvm_update_dr7(vcpu);
11005 	}
11006 
11007 	/*
11008 	 * If the guest has used debug registers, at least dr7
11009 	 * will be disabled while returning to the host.
11010 	 * If we don't have active breakpoints in the host, we don't
11011 	 * care about the messed up debug address registers. But if
11012 	 * we have some of them active, restore the old state.
11013 	 */
11014 	if (hw_breakpoint_active())
11015 		hw_breakpoint_restore();
11016 
11017 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11018 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11019 
11020 	vcpu->mode = OUTSIDE_GUEST_MODE;
11021 	smp_wmb();
11022 
11023 	/*
11024 	 * Sync xfd before calling handle_exit_irqoff() which may
11025 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11026 	 * in #NM irqoff handler).
11027 	 */
11028 	if (vcpu->arch.xfd_no_write_intercept)
11029 		fpu_sync_guest_vmexit_xfd_state();
11030 
11031 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11032 
11033 	if (vcpu->arch.guest_fpu.xfd_err)
11034 		wrmsrl(MSR_IA32_XFD_ERR, 0);
11035 
11036 	/*
11037 	 * Consume any pending interrupts, including the possible source of
11038 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11039 	 * An instruction is required after local_irq_enable() to fully unblock
11040 	 * interrupts on processors that implement an interrupt shadow, the
11041 	 * stat.exits increment will do nicely.
11042 	 */
11043 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11044 	local_irq_enable();
11045 	++vcpu->stat.exits;
11046 	local_irq_disable();
11047 	kvm_after_interrupt(vcpu);
11048 
11049 	/*
11050 	 * Wait until after servicing IRQs to account guest time so that any
11051 	 * ticks that occurred while running the guest are properly accounted
11052 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11053 	 * of accounting via context tracking, but the loss of accuracy is
11054 	 * acceptable for all known use cases.
11055 	 */
11056 	guest_timing_exit_irqoff();
11057 
11058 	local_irq_enable();
11059 	preempt_enable();
11060 
11061 	kvm_vcpu_srcu_read_lock(vcpu);
11062 
11063 	/*
11064 	 * Profile KVM exit RIPs:
11065 	 */
11066 	if (unlikely(prof_on == KVM_PROFILING)) {
11067 		unsigned long rip = kvm_rip_read(vcpu);
11068 		profile_hit(KVM_PROFILING, (void *)rip);
11069 	}
11070 
11071 	if (unlikely(vcpu->arch.tsc_always_catchup))
11072 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11073 
11074 	if (vcpu->arch.apic_attention)
11075 		kvm_lapic_sync_from_vapic(vcpu);
11076 
11077 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11078 	return r;
11079 
11080 cancel_injection:
11081 	if (req_immediate_exit)
11082 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11083 	static_call(kvm_x86_cancel_injection)(vcpu);
11084 	if (unlikely(vcpu->arch.apic_attention))
11085 		kvm_lapic_sync_from_vapic(vcpu);
11086 out:
11087 	return r;
11088 }
11089 
11090 /* Called within kvm->srcu read side.  */
11091 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11092 {
11093 	bool hv_timer;
11094 
11095 	if (!kvm_arch_vcpu_runnable(vcpu)) {
11096 		/*
11097 		 * Switch to the software timer before halt-polling/blocking as
11098 		 * the guest's timer may be a break event for the vCPU, and the
11099 		 * hypervisor timer runs only when the CPU is in guest mode.
11100 		 * Switch before halt-polling so that KVM recognizes an expired
11101 		 * timer before blocking.
11102 		 */
11103 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11104 		if (hv_timer)
11105 			kvm_lapic_switch_to_sw_timer(vcpu);
11106 
11107 		kvm_vcpu_srcu_read_unlock(vcpu);
11108 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11109 			kvm_vcpu_halt(vcpu);
11110 		else
11111 			kvm_vcpu_block(vcpu);
11112 		kvm_vcpu_srcu_read_lock(vcpu);
11113 
11114 		if (hv_timer)
11115 			kvm_lapic_switch_to_hv_timer(vcpu);
11116 
11117 		/*
11118 		 * If the vCPU is not runnable, a signal or another host event
11119 		 * of some kind is pending; service it without changing the
11120 		 * vCPU's activity state.
11121 		 */
11122 		if (!kvm_arch_vcpu_runnable(vcpu))
11123 			return 1;
11124 	}
11125 
11126 	/*
11127 	 * Evaluate nested events before exiting the halted state.  This allows
11128 	 * the halt state to be recorded properly in the VMCS12's activity
11129 	 * state field (AMD does not have a similar field and a VM-Exit always
11130 	 * causes a spurious wakeup from HLT).
11131 	 */
11132 	if (is_guest_mode(vcpu)) {
11133 		if (kvm_check_nested_events(vcpu) < 0)
11134 			return 0;
11135 	}
11136 
11137 	if (kvm_apic_accept_events(vcpu) < 0)
11138 		return 0;
11139 	switch(vcpu->arch.mp_state) {
11140 	case KVM_MP_STATE_HALTED:
11141 	case KVM_MP_STATE_AP_RESET_HOLD:
11142 		vcpu->arch.pv.pv_unhalted = false;
11143 		vcpu->arch.mp_state =
11144 			KVM_MP_STATE_RUNNABLE;
11145 		fallthrough;
11146 	case KVM_MP_STATE_RUNNABLE:
11147 		vcpu->arch.apf.halted = false;
11148 		break;
11149 	case KVM_MP_STATE_INIT_RECEIVED:
11150 		break;
11151 	default:
11152 		WARN_ON_ONCE(1);
11153 		break;
11154 	}
11155 	return 1;
11156 }
11157 
11158 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11159 {
11160 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11161 		!vcpu->arch.apf.halted);
11162 }
11163 
11164 /* Called within kvm->srcu read side.  */
11165 static int vcpu_run(struct kvm_vcpu *vcpu)
11166 {
11167 	int r;
11168 
11169 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11170 	vcpu->arch.l1tf_flush_l1d = true;
11171 
11172 	for (;;) {
11173 		/*
11174 		 * If another guest vCPU requests a PV TLB flush in the middle
11175 		 * of instruction emulation, the rest of the emulation could
11176 		 * use a stale page translation. Assume that any code after
11177 		 * this point can start executing an instruction.
11178 		 */
11179 		vcpu->arch.at_instruction_boundary = false;
11180 		if (kvm_vcpu_running(vcpu)) {
11181 			r = vcpu_enter_guest(vcpu);
11182 		} else {
11183 			r = vcpu_block(vcpu);
11184 		}
11185 
11186 		if (r <= 0)
11187 			break;
11188 
11189 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11190 		if (kvm_xen_has_pending_events(vcpu))
11191 			kvm_xen_inject_pending_events(vcpu);
11192 
11193 		if (kvm_cpu_has_pending_timer(vcpu))
11194 			kvm_inject_pending_timer_irqs(vcpu);
11195 
11196 		if (dm_request_for_irq_injection(vcpu) &&
11197 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11198 			r = 0;
11199 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11200 			++vcpu->stat.request_irq_exits;
11201 			break;
11202 		}
11203 
11204 		if (__xfer_to_guest_mode_work_pending()) {
11205 			kvm_vcpu_srcu_read_unlock(vcpu);
11206 			r = xfer_to_guest_mode_handle_work(vcpu);
11207 			kvm_vcpu_srcu_read_lock(vcpu);
11208 			if (r)
11209 				return r;
11210 		}
11211 	}
11212 
11213 	return r;
11214 }
11215 
11216 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11217 {
11218 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11219 }
11220 
11221 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11222 {
11223 	BUG_ON(!vcpu->arch.pio.count);
11224 
11225 	return complete_emulated_io(vcpu);
11226 }
11227 
11228 /*
11229  * Implements the following, as a state machine:
11230  *
11231  * read:
11232  *   for each fragment
11233  *     for each mmio piece in the fragment
11234  *       write gpa, len
11235  *       exit
11236  *       copy data
11237  *   execute insn
11238  *
11239  * write:
11240  *   for each fragment
11241  *     for each mmio piece in the fragment
11242  *       write gpa, len
11243  *       copy data
11244  *       exit
11245  */
11246 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11247 {
11248 	struct kvm_run *run = vcpu->run;
11249 	struct kvm_mmio_fragment *frag;
11250 	unsigned len;
11251 
11252 	BUG_ON(!vcpu->mmio_needed);
11253 
11254 	/* Complete previous fragment */
11255 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11256 	len = min(8u, frag->len);
11257 	if (!vcpu->mmio_is_write)
11258 		memcpy(frag->data, run->mmio.data, len);
11259 
11260 	if (frag->len <= 8) {
11261 		/* Switch to the next fragment. */
11262 		frag++;
11263 		vcpu->mmio_cur_fragment++;
11264 	} else {
11265 		/* Go forward to the next mmio piece. */
11266 		frag->data += len;
11267 		frag->gpa += len;
11268 		frag->len -= len;
11269 	}
11270 
11271 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11272 		vcpu->mmio_needed = 0;
11273 
11274 		/* FIXME: return into emulator if single-stepping.  */
11275 		if (vcpu->mmio_is_write)
11276 			return 1;
11277 		vcpu->mmio_read_completed = 1;
11278 		return complete_emulated_io(vcpu);
11279 	}
11280 
11281 	run->exit_reason = KVM_EXIT_MMIO;
11282 	run->mmio.phys_addr = frag->gpa;
11283 	if (vcpu->mmio_is_write)
11284 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11285 	run->mmio.len = min(8u, frag->len);
11286 	run->mmio.is_write = vcpu->mmio_is_write;
11287 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11288 	return 0;
11289 }
11290 
11291 /* Swap (qemu) user FPU context for the guest FPU context. */
11292 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11293 {
11294 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11295 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11296 	trace_kvm_fpu(1);
11297 }
11298 
11299 /* When vcpu_run ends, restore user space FPU context. */
11300 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11301 {
11302 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11303 	++vcpu->stat.fpu_reload;
11304 	trace_kvm_fpu(0);
11305 }
11306 
11307 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11308 {
11309 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11310 	struct kvm_run *kvm_run = vcpu->run;
11311 	int r;
11312 
11313 	vcpu_load(vcpu);
11314 	kvm_sigset_activate(vcpu);
11315 	kvm_run->flags = 0;
11316 	kvm_load_guest_fpu(vcpu);
11317 
11318 	kvm_vcpu_srcu_read_lock(vcpu);
11319 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11320 		if (kvm_run->immediate_exit) {
11321 			r = -EINTR;
11322 			goto out;
11323 		}
11324 
11325 		/*
11326 		 * Don't bother switching APIC timer emulation from the
11327 		 * hypervisor timer to the software timer, the only way for the
11328 		 * APIC timer to be active is if userspace stuffed vCPU state,
11329 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11330 		 * will transition the vCPU out of UNINITIALIZED (without more
11331 		 * state stuffing from userspace), which will reset the local
11332 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11333 		 * already expired).
11334 		 */
11335 		kvm_vcpu_srcu_read_unlock(vcpu);
11336 		kvm_vcpu_block(vcpu);
11337 		kvm_vcpu_srcu_read_lock(vcpu);
11338 
11339 		if (kvm_apic_accept_events(vcpu) < 0) {
11340 			r = 0;
11341 			goto out;
11342 		}
11343 		r = -EAGAIN;
11344 		if (signal_pending(current)) {
11345 			r = -EINTR;
11346 			kvm_run->exit_reason = KVM_EXIT_INTR;
11347 			++vcpu->stat.signal_exits;
11348 		}
11349 		goto out;
11350 	}
11351 
11352 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11353 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11354 		r = -EINVAL;
11355 		goto out;
11356 	}
11357 
11358 	if (kvm_run->kvm_dirty_regs) {
11359 		r = sync_regs(vcpu);
11360 		if (r != 0)
11361 			goto out;
11362 	}
11363 
11364 	/* re-sync apic's tpr */
11365 	if (!lapic_in_kernel(vcpu)) {
11366 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11367 			r = -EINVAL;
11368 			goto out;
11369 		}
11370 	}
11371 
11372 	/*
11373 	 * If userspace set a pending exception and L2 is active, convert it to
11374 	 * a pending VM-Exit if L1 wants to intercept the exception.
11375 	 */
11376 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11377 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11378 							ex->error_code)) {
11379 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11380 					   ex->has_error_code, ex->error_code,
11381 					   ex->has_payload, ex->payload);
11382 		ex->injected = false;
11383 		ex->pending = false;
11384 	}
11385 	vcpu->arch.exception_from_userspace = false;
11386 
11387 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11388 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11389 		vcpu->arch.complete_userspace_io = NULL;
11390 		r = cui(vcpu);
11391 		if (r <= 0)
11392 			goto out;
11393 	} else {
11394 		WARN_ON_ONCE(vcpu->arch.pio.count);
11395 		WARN_ON_ONCE(vcpu->mmio_needed);
11396 	}
11397 
11398 	if (kvm_run->immediate_exit) {
11399 		r = -EINTR;
11400 		goto out;
11401 	}
11402 
11403 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11404 	if (r <= 0)
11405 		goto out;
11406 
11407 	r = vcpu_run(vcpu);
11408 
11409 out:
11410 	kvm_put_guest_fpu(vcpu);
11411 	if (kvm_run->kvm_valid_regs)
11412 		store_regs(vcpu);
11413 	post_kvm_run_save(vcpu);
11414 	kvm_vcpu_srcu_read_unlock(vcpu);
11415 
11416 	kvm_sigset_deactivate(vcpu);
11417 	vcpu_put(vcpu);
11418 	return r;
11419 }
11420 
11421 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11422 {
11423 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11424 		/*
11425 		 * We are here if userspace calls get_regs() in the middle of
11426 		 * instruction emulation. Registers state needs to be copied
11427 		 * back from emulation context to vcpu. Userspace shouldn't do
11428 		 * that usually, but some bad designed PV devices (vmware
11429 		 * backdoor interface) need this to work
11430 		 */
11431 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11432 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11433 	}
11434 	regs->rax = kvm_rax_read(vcpu);
11435 	regs->rbx = kvm_rbx_read(vcpu);
11436 	regs->rcx = kvm_rcx_read(vcpu);
11437 	regs->rdx = kvm_rdx_read(vcpu);
11438 	regs->rsi = kvm_rsi_read(vcpu);
11439 	regs->rdi = kvm_rdi_read(vcpu);
11440 	regs->rsp = kvm_rsp_read(vcpu);
11441 	regs->rbp = kvm_rbp_read(vcpu);
11442 #ifdef CONFIG_X86_64
11443 	regs->r8 = kvm_r8_read(vcpu);
11444 	regs->r9 = kvm_r9_read(vcpu);
11445 	regs->r10 = kvm_r10_read(vcpu);
11446 	regs->r11 = kvm_r11_read(vcpu);
11447 	regs->r12 = kvm_r12_read(vcpu);
11448 	regs->r13 = kvm_r13_read(vcpu);
11449 	regs->r14 = kvm_r14_read(vcpu);
11450 	regs->r15 = kvm_r15_read(vcpu);
11451 #endif
11452 
11453 	regs->rip = kvm_rip_read(vcpu);
11454 	regs->rflags = kvm_get_rflags(vcpu);
11455 }
11456 
11457 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11458 {
11459 	vcpu_load(vcpu);
11460 	__get_regs(vcpu, regs);
11461 	vcpu_put(vcpu);
11462 	return 0;
11463 }
11464 
11465 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11466 {
11467 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11468 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11469 
11470 	kvm_rax_write(vcpu, regs->rax);
11471 	kvm_rbx_write(vcpu, regs->rbx);
11472 	kvm_rcx_write(vcpu, regs->rcx);
11473 	kvm_rdx_write(vcpu, regs->rdx);
11474 	kvm_rsi_write(vcpu, regs->rsi);
11475 	kvm_rdi_write(vcpu, regs->rdi);
11476 	kvm_rsp_write(vcpu, regs->rsp);
11477 	kvm_rbp_write(vcpu, regs->rbp);
11478 #ifdef CONFIG_X86_64
11479 	kvm_r8_write(vcpu, regs->r8);
11480 	kvm_r9_write(vcpu, regs->r9);
11481 	kvm_r10_write(vcpu, regs->r10);
11482 	kvm_r11_write(vcpu, regs->r11);
11483 	kvm_r12_write(vcpu, regs->r12);
11484 	kvm_r13_write(vcpu, regs->r13);
11485 	kvm_r14_write(vcpu, regs->r14);
11486 	kvm_r15_write(vcpu, regs->r15);
11487 #endif
11488 
11489 	kvm_rip_write(vcpu, regs->rip);
11490 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11491 
11492 	vcpu->arch.exception.pending = false;
11493 	vcpu->arch.exception_vmexit.pending = false;
11494 
11495 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11496 }
11497 
11498 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11499 {
11500 	vcpu_load(vcpu);
11501 	__set_regs(vcpu, regs);
11502 	vcpu_put(vcpu);
11503 	return 0;
11504 }
11505 
11506 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11507 {
11508 	struct desc_ptr dt;
11509 
11510 	if (vcpu->arch.guest_state_protected)
11511 		goto skip_protected_regs;
11512 
11513 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11514 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11515 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11516 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11517 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11518 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11519 
11520 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11521 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11522 
11523 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11524 	sregs->idt.limit = dt.size;
11525 	sregs->idt.base = dt.address;
11526 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11527 	sregs->gdt.limit = dt.size;
11528 	sregs->gdt.base = dt.address;
11529 
11530 	sregs->cr2 = vcpu->arch.cr2;
11531 	sregs->cr3 = kvm_read_cr3(vcpu);
11532 
11533 skip_protected_regs:
11534 	sregs->cr0 = kvm_read_cr0(vcpu);
11535 	sregs->cr4 = kvm_read_cr4(vcpu);
11536 	sregs->cr8 = kvm_get_cr8(vcpu);
11537 	sregs->efer = vcpu->arch.efer;
11538 	sregs->apic_base = kvm_get_apic_base(vcpu);
11539 }
11540 
11541 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11542 {
11543 	__get_sregs_common(vcpu, sregs);
11544 
11545 	if (vcpu->arch.guest_state_protected)
11546 		return;
11547 
11548 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11549 		set_bit(vcpu->arch.interrupt.nr,
11550 			(unsigned long *)sregs->interrupt_bitmap);
11551 }
11552 
11553 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11554 {
11555 	int i;
11556 
11557 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11558 
11559 	if (vcpu->arch.guest_state_protected)
11560 		return;
11561 
11562 	if (is_pae_paging(vcpu)) {
11563 		for (i = 0 ; i < 4 ; i++)
11564 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11565 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11566 	}
11567 }
11568 
11569 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11570 				  struct kvm_sregs *sregs)
11571 {
11572 	vcpu_load(vcpu);
11573 	__get_sregs(vcpu, sregs);
11574 	vcpu_put(vcpu);
11575 	return 0;
11576 }
11577 
11578 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11579 				    struct kvm_mp_state *mp_state)
11580 {
11581 	int r;
11582 
11583 	vcpu_load(vcpu);
11584 	if (kvm_mpx_supported())
11585 		kvm_load_guest_fpu(vcpu);
11586 
11587 	r = kvm_apic_accept_events(vcpu);
11588 	if (r < 0)
11589 		goto out;
11590 	r = 0;
11591 
11592 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11593 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11594 	    vcpu->arch.pv.pv_unhalted)
11595 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11596 	else
11597 		mp_state->mp_state = vcpu->arch.mp_state;
11598 
11599 out:
11600 	if (kvm_mpx_supported())
11601 		kvm_put_guest_fpu(vcpu);
11602 	vcpu_put(vcpu);
11603 	return r;
11604 }
11605 
11606 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11607 				    struct kvm_mp_state *mp_state)
11608 {
11609 	int ret = -EINVAL;
11610 
11611 	vcpu_load(vcpu);
11612 
11613 	switch (mp_state->mp_state) {
11614 	case KVM_MP_STATE_UNINITIALIZED:
11615 	case KVM_MP_STATE_HALTED:
11616 	case KVM_MP_STATE_AP_RESET_HOLD:
11617 	case KVM_MP_STATE_INIT_RECEIVED:
11618 	case KVM_MP_STATE_SIPI_RECEIVED:
11619 		if (!lapic_in_kernel(vcpu))
11620 			goto out;
11621 		break;
11622 
11623 	case KVM_MP_STATE_RUNNABLE:
11624 		break;
11625 
11626 	default:
11627 		goto out;
11628 	}
11629 
11630 	/*
11631 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11632 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11633 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11634 	 * if an SMI is pending as well.
11635 	 */
11636 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11637 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11638 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11639 		goto out;
11640 
11641 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11642 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11643 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11644 	} else
11645 		vcpu->arch.mp_state = mp_state->mp_state;
11646 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11647 
11648 	ret = 0;
11649 out:
11650 	vcpu_put(vcpu);
11651 	return ret;
11652 }
11653 
11654 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11655 		    int reason, bool has_error_code, u32 error_code)
11656 {
11657 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11658 	int ret;
11659 
11660 	init_emulate_ctxt(vcpu);
11661 
11662 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11663 				   has_error_code, error_code);
11664 	if (ret) {
11665 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11666 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11667 		vcpu->run->internal.ndata = 0;
11668 		return 0;
11669 	}
11670 
11671 	kvm_rip_write(vcpu, ctxt->eip);
11672 	kvm_set_rflags(vcpu, ctxt->eflags);
11673 	return 1;
11674 }
11675 EXPORT_SYMBOL_GPL(kvm_task_switch);
11676 
11677 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11678 {
11679 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11680 		/*
11681 		 * When EFER.LME and CR0.PG are set, the processor is in
11682 		 * 64-bit mode (though maybe in a 32-bit code segment).
11683 		 * CR4.PAE and EFER.LMA must be set.
11684 		 */
11685 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11686 			return false;
11687 		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11688 			return false;
11689 	} else {
11690 		/*
11691 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11692 		 * segment cannot be 64-bit.
11693 		 */
11694 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11695 			return false;
11696 	}
11697 
11698 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11699 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11700 }
11701 
11702 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11703 		int *mmu_reset_needed, bool update_pdptrs)
11704 {
11705 	struct msr_data apic_base_msr;
11706 	int idx;
11707 	struct desc_ptr dt;
11708 
11709 	if (!kvm_is_valid_sregs(vcpu, sregs))
11710 		return -EINVAL;
11711 
11712 	apic_base_msr.data = sregs->apic_base;
11713 	apic_base_msr.host_initiated = true;
11714 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11715 		return -EINVAL;
11716 
11717 	if (vcpu->arch.guest_state_protected)
11718 		return 0;
11719 
11720 	dt.size = sregs->idt.limit;
11721 	dt.address = sregs->idt.base;
11722 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11723 	dt.size = sregs->gdt.limit;
11724 	dt.address = sregs->gdt.base;
11725 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11726 
11727 	vcpu->arch.cr2 = sregs->cr2;
11728 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11729 	vcpu->arch.cr3 = sregs->cr3;
11730 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11731 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11732 
11733 	kvm_set_cr8(vcpu, sregs->cr8);
11734 
11735 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11736 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11737 
11738 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11739 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11740 
11741 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11742 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11743 
11744 	if (update_pdptrs) {
11745 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11746 		if (is_pae_paging(vcpu)) {
11747 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11748 			*mmu_reset_needed = 1;
11749 		}
11750 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11751 	}
11752 
11753 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11754 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11755 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11756 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11757 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11758 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11759 
11760 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11761 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11762 
11763 	update_cr8_intercept(vcpu);
11764 
11765 	/* Older userspace won't unhalt the vcpu on reset. */
11766 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11767 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11768 	    !is_protmode(vcpu))
11769 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11770 
11771 	return 0;
11772 }
11773 
11774 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11775 {
11776 	int pending_vec, max_bits;
11777 	int mmu_reset_needed = 0;
11778 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11779 
11780 	if (ret)
11781 		return ret;
11782 
11783 	if (mmu_reset_needed) {
11784 		kvm_mmu_reset_context(vcpu);
11785 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11786 	}
11787 
11788 	max_bits = KVM_NR_INTERRUPTS;
11789 	pending_vec = find_first_bit(
11790 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11791 
11792 	if (pending_vec < max_bits) {
11793 		kvm_queue_interrupt(vcpu, pending_vec, false);
11794 		pr_debug("Set back pending irq %d\n", pending_vec);
11795 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11796 	}
11797 	return 0;
11798 }
11799 
11800 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11801 {
11802 	int mmu_reset_needed = 0;
11803 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11804 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11805 		!(sregs2->efer & EFER_LMA);
11806 	int i, ret;
11807 
11808 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11809 		return -EINVAL;
11810 
11811 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11812 		return -EINVAL;
11813 
11814 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11815 				 &mmu_reset_needed, !valid_pdptrs);
11816 	if (ret)
11817 		return ret;
11818 
11819 	if (valid_pdptrs) {
11820 		for (i = 0; i < 4 ; i++)
11821 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11822 
11823 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11824 		mmu_reset_needed = 1;
11825 		vcpu->arch.pdptrs_from_userspace = true;
11826 	}
11827 	if (mmu_reset_needed) {
11828 		kvm_mmu_reset_context(vcpu);
11829 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11830 	}
11831 	return 0;
11832 }
11833 
11834 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11835 				  struct kvm_sregs *sregs)
11836 {
11837 	int ret;
11838 
11839 	vcpu_load(vcpu);
11840 	ret = __set_sregs(vcpu, sregs);
11841 	vcpu_put(vcpu);
11842 	return ret;
11843 }
11844 
11845 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11846 {
11847 	bool set = false;
11848 	struct kvm_vcpu *vcpu;
11849 	unsigned long i;
11850 
11851 	if (!enable_apicv)
11852 		return;
11853 
11854 	down_write(&kvm->arch.apicv_update_lock);
11855 
11856 	kvm_for_each_vcpu(i, vcpu, kvm) {
11857 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11858 			set = true;
11859 			break;
11860 		}
11861 	}
11862 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11863 	up_write(&kvm->arch.apicv_update_lock);
11864 }
11865 
11866 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11867 					struct kvm_guest_debug *dbg)
11868 {
11869 	unsigned long rflags;
11870 	int i, r;
11871 
11872 	if (vcpu->arch.guest_state_protected)
11873 		return -EINVAL;
11874 
11875 	vcpu_load(vcpu);
11876 
11877 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11878 		r = -EBUSY;
11879 		if (kvm_is_exception_pending(vcpu))
11880 			goto out;
11881 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11882 			kvm_queue_exception(vcpu, DB_VECTOR);
11883 		else
11884 			kvm_queue_exception(vcpu, BP_VECTOR);
11885 	}
11886 
11887 	/*
11888 	 * Read rflags as long as potentially injected trace flags are still
11889 	 * filtered out.
11890 	 */
11891 	rflags = kvm_get_rflags(vcpu);
11892 
11893 	vcpu->guest_debug = dbg->control;
11894 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11895 		vcpu->guest_debug = 0;
11896 
11897 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11898 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11899 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11900 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11901 	} else {
11902 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11903 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11904 	}
11905 	kvm_update_dr7(vcpu);
11906 
11907 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11908 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11909 
11910 	/*
11911 	 * Trigger an rflags update that will inject or remove the trace
11912 	 * flags.
11913 	 */
11914 	kvm_set_rflags(vcpu, rflags);
11915 
11916 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11917 
11918 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11919 
11920 	r = 0;
11921 
11922 out:
11923 	vcpu_put(vcpu);
11924 	return r;
11925 }
11926 
11927 /*
11928  * Translate a guest virtual address to a guest physical address.
11929  */
11930 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11931 				    struct kvm_translation *tr)
11932 {
11933 	unsigned long vaddr = tr->linear_address;
11934 	gpa_t gpa;
11935 	int idx;
11936 
11937 	vcpu_load(vcpu);
11938 
11939 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11940 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11941 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11942 	tr->physical_address = gpa;
11943 	tr->valid = gpa != INVALID_GPA;
11944 	tr->writeable = 1;
11945 	tr->usermode = 0;
11946 
11947 	vcpu_put(vcpu);
11948 	return 0;
11949 }
11950 
11951 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11952 {
11953 	struct fxregs_state *fxsave;
11954 
11955 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11956 		return 0;
11957 
11958 	vcpu_load(vcpu);
11959 
11960 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11961 	memcpy(fpu->fpr, fxsave->st_space, 128);
11962 	fpu->fcw = fxsave->cwd;
11963 	fpu->fsw = fxsave->swd;
11964 	fpu->ftwx = fxsave->twd;
11965 	fpu->last_opcode = fxsave->fop;
11966 	fpu->last_ip = fxsave->rip;
11967 	fpu->last_dp = fxsave->rdp;
11968 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11969 
11970 	vcpu_put(vcpu);
11971 	return 0;
11972 }
11973 
11974 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11975 {
11976 	struct fxregs_state *fxsave;
11977 
11978 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11979 		return 0;
11980 
11981 	vcpu_load(vcpu);
11982 
11983 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11984 
11985 	memcpy(fxsave->st_space, fpu->fpr, 128);
11986 	fxsave->cwd = fpu->fcw;
11987 	fxsave->swd = fpu->fsw;
11988 	fxsave->twd = fpu->ftwx;
11989 	fxsave->fop = fpu->last_opcode;
11990 	fxsave->rip = fpu->last_ip;
11991 	fxsave->rdp = fpu->last_dp;
11992 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11993 
11994 	vcpu_put(vcpu);
11995 	return 0;
11996 }
11997 
11998 static void store_regs(struct kvm_vcpu *vcpu)
11999 {
12000 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12001 
12002 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12003 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
12004 
12005 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12006 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12007 
12008 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12009 		kvm_vcpu_ioctl_x86_get_vcpu_events(
12010 				vcpu, &vcpu->run->s.regs.events);
12011 }
12012 
12013 static int sync_regs(struct kvm_vcpu *vcpu)
12014 {
12015 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12016 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12017 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12018 	}
12019 
12020 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12021 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12022 
12023 		if (__set_sregs(vcpu, &sregs))
12024 			return -EINVAL;
12025 
12026 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12027 	}
12028 
12029 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12030 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12031 
12032 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12033 			return -EINVAL;
12034 
12035 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12036 	}
12037 
12038 	return 0;
12039 }
12040 
12041 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12042 {
12043 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12044 		pr_warn_once("SMP vm created on host with unstable TSC; "
12045 			     "guest TSC will not be reliable\n");
12046 
12047 	if (!kvm->arch.max_vcpu_ids)
12048 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12049 
12050 	if (id >= kvm->arch.max_vcpu_ids)
12051 		return -EINVAL;
12052 
12053 	return static_call(kvm_x86_vcpu_precreate)(kvm);
12054 }
12055 
12056 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12057 {
12058 	struct page *page;
12059 	int r;
12060 
12061 	vcpu->arch.last_vmentry_cpu = -1;
12062 	vcpu->arch.regs_avail = ~0;
12063 	vcpu->arch.regs_dirty = ~0;
12064 
12065 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
12066 
12067 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12068 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12069 	else
12070 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12071 
12072 	r = kvm_mmu_create(vcpu);
12073 	if (r < 0)
12074 		return r;
12075 
12076 	if (irqchip_in_kernel(vcpu->kvm)) {
12077 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
12078 		if (r < 0)
12079 			goto fail_mmu_destroy;
12080 
12081 		/*
12082 		 * Defer evaluating inhibits until the vCPU is first run, as
12083 		 * this vCPU will not get notified of any changes until this
12084 		 * vCPU is visible to other vCPUs (marked online and added to
12085 		 * the set of vCPUs).  Opportunistically mark APICv active as
12086 		 * VMX in particularly is highly unlikely to have inhibits.
12087 		 * Ignore the current per-VM APICv state so that vCPU creation
12088 		 * is guaranteed to run with a deterministic value, the request
12089 		 * will ensure the vCPU gets the correct state before VM-Entry.
12090 		 */
12091 		if (enable_apicv) {
12092 			vcpu->arch.apic->apicv_active = true;
12093 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
12094 		}
12095 	} else
12096 		static_branch_inc(&kvm_has_noapic_vcpu);
12097 
12098 	r = -ENOMEM;
12099 
12100 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12101 	if (!page)
12102 		goto fail_free_lapic;
12103 	vcpu->arch.pio_data = page_address(page);
12104 
12105 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12106 				       GFP_KERNEL_ACCOUNT);
12107 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12108 					    GFP_KERNEL_ACCOUNT);
12109 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12110 		goto fail_free_mce_banks;
12111 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12112 
12113 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12114 				GFP_KERNEL_ACCOUNT))
12115 		goto fail_free_mce_banks;
12116 
12117 	if (!alloc_emulate_ctxt(vcpu))
12118 		goto free_wbinvd_dirty_mask;
12119 
12120 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12121 		pr_err("failed to allocate vcpu's fpu\n");
12122 		goto free_emulate_ctxt;
12123 	}
12124 
12125 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12126 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12127 
12128 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12129 
12130 	kvm_async_pf_hash_reset(vcpu);
12131 
12132 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12133 	kvm_pmu_init(vcpu);
12134 
12135 	vcpu->arch.pending_external_vector = -1;
12136 	vcpu->arch.preempted_in_kernel = false;
12137 
12138 #if IS_ENABLED(CONFIG_HYPERV)
12139 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12140 #endif
12141 
12142 	r = static_call(kvm_x86_vcpu_create)(vcpu);
12143 	if (r)
12144 		goto free_guest_fpu;
12145 
12146 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12147 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12148 	kvm_xen_init_vcpu(vcpu);
12149 	kvm_vcpu_mtrr_init(vcpu);
12150 	vcpu_load(vcpu);
12151 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12152 	kvm_vcpu_reset(vcpu, false);
12153 	kvm_init_mmu(vcpu);
12154 	vcpu_put(vcpu);
12155 	return 0;
12156 
12157 free_guest_fpu:
12158 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12159 free_emulate_ctxt:
12160 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12161 free_wbinvd_dirty_mask:
12162 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12163 fail_free_mce_banks:
12164 	kfree(vcpu->arch.mce_banks);
12165 	kfree(vcpu->arch.mci_ctl2_banks);
12166 	free_page((unsigned long)vcpu->arch.pio_data);
12167 fail_free_lapic:
12168 	kvm_free_lapic(vcpu);
12169 fail_mmu_destroy:
12170 	kvm_mmu_destroy(vcpu);
12171 	return r;
12172 }
12173 
12174 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12175 {
12176 	struct kvm *kvm = vcpu->kvm;
12177 
12178 	if (mutex_lock_killable(&vcpu->mutex))
12179 		return;
12180 	vcpu_load(vcpu);
12181 	kvm_synchronize_tsc(vcpu, NULL);
12182 	vcpu_put(vcpu);
12183 
12184 	/* poll control enabled by default */
12185 	vcpu->arch.msr_kvm_poll_control = 1;
12186 
12187 	mutex_unlock(&vcpu->mutex);
12188 
12189 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12190 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12191 						KVMCLOCK_SYNC_PERIOD);
12192 }
12193 
12194 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12195 {
12196 	int idx;
12197 
12198 	kvmclock_reset(vcpu);
12199 
12200 	static_call(kvm_x86_vcpu_free)(vcpu);
12201 
12202 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12203 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12204 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12205 
12206 	kvm_xen_destroy_vcpu(vcpu);
12207 	kvm_hv_vcpu_uninit(vcpu);
12208 	kvm_pmu_destroy(vcpu);
12209 	kfree(vcpu->arch.mce_banks);
12210 	kfree(vcpu->arch.mci_ctl2_banks);
12211 	kvm_free_lapic(vcpu);
12212 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12213 	kvm_mmu_destroy(vcpu);
12214 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12215 	free_page((unsigned long)vcpu->arch.pio_data);
12216 	kvfree(vcpu->arch.cpuid_entries);
12217 	if (!lapic_in_kernel(vcpu))
12218 		static_branch_dec(&kvm_has_noapic_vcpu);
12219 }
12220 
12221 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12222 {
12223 	struct kvm_cpuid_entry2 *cpuid_0x1;
12224 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12225 	unsigned long new_cr0;
12226 
12227 	/*
12228 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12229 	 * to handle side effects.  RESET emulation hits those flows and relies
12230 	 * on emulated/virtualized registers, including those that are loaded
12231 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12232 	 * to detect improper or missing initialization.
12233 	 */
12234 	WARN_ON_ONCE(!init_event &&
12235 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12236 
12237 	/*
12238 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12239 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12240 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12241 	 * bits), i.e. virtualization is disabled.
12242 	 */
12243 	if (is_guest_mode(vcpu))
12244 		kvm_leave_nested(vcpu);
12245 
12246 	kvm_lapic_reset(vcpu, init_event);
12247 
12248 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12249 	vcpu->arch.hflags = 0;
12250 
12251 	vcpu->arch.smi_pending = 0;
12252 	vcpu->arch.smi_count = 0;
12253 	atomic_set(&vcpu->arch.nmi_queued, 0);
12254 	vcpu->arch.nmi_pending = 0;
12255 	vcpu->arch.nmi_injected = false;
12256 	kvm_clear_interrupt_queue(vcpu);
12257 	kvm_clear_exception_queue(vcpu);
12258 
12259 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12260 	kvm_update_dr0123(vcpu);
12261 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12262 	vcpu->arch.dr7 = DR7_FIXED_1;
12263 	kvm_update_dr7(vcpu);
12264 
12265 	vcpu->arch.cr2 = 0;
12266 
12267 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12268 	vcpu->arch.apf.msr_en_val = 0;
12269 	vcpu->arch.apf.msr_int_val = 0;
12270 	vcpu->arch.st.msr_val = 0;
12271 
12272 	kvmclock_reset(vcpu);
12273 
12274 	kvm_clear_async_pf_completion_queue(vcpu);
12275 	kvm_async_pf_hash_reset(vcpu);
12276 	vcpu->arch.apf.halted = false;
12277 
12278 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12279 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12280 
12281 		/*
12282 		 * All paths that lead to INIT are required to load the guest's
12283 		 * FPU state (because most paths are buried in KVM_RUN).
12284 		 */
12285 		if (init_event)
12286 			kvm_put_guest_fpu(vcpu);
12287 
12288 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12289 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12290 
12291 		if (init_event)
12292 			kvm_load_guest_fpu(vcpu);
12293 	}
12294 
12295 	if (!init_event) {
12296 		vcpu->arch.smbase = 0x30000;
12297 
12298 		vcpu->arch.msr_misc_features_enables = 0;
12299 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12300 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12301 
12302 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12303 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12304 	}
12305 
12306 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12307 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12308 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12309 
12310 	/*
12311 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12312 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12313 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12314 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12315 	 * on RESET.  But, go through the motions in case that's ever remedied.
12316 	 */
12317 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12318 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12319 
12320 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12321 
12322 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12323 	kvm_rip_write(vcpu, 0xfff0);
12324 
12325 	vcpu->arch.cr3 = 0;
12326 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12327 
12328 	/*
12329 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12330 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12331 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12332 	 */
12333 	new_cr0 = X86_CR0_ET;
12334 	if (init_event)
12335 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12336 	else
12337 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12338 
12339 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12340 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12341 	static_call(kvm_x86_set_efer)(vcpu, 0);
12342 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12343 
12344 	/*
12345 	 * On the standard CR0/CR4/EFER modification paths, there are several
12346 	 * complex conditions determining whether the MMU has to be reset and/or
12347 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12348 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12349 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12350 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12351 	 */
12352 	if (old_cr0 & X86_CR0_PG) {
12353 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12354 		kvm_mmu_reset_context(vcpu);
12355 	}
12356 
12357 	/*
12358 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12359 	 * APM states the TLBs are untouched by INIT, but it also states that
12360 	 * the TLBs are flushed on "External initialization of the processor."
12361 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12362 	 * benefit in relying on the guest to flush the TLB immediately after
12363 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12364 	 * performance perspective.
12365 	 */
12366 	if (init_event)
12367 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12368 }
12369 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12370 
12371 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12372 {
12373 	struct kvm_segment cs;
12374 
12375 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12376 	cs.selector = vector << 8;
12377 	cs.base = vector << 12;
12378 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12379 	kvm_rip_write(vcpu, 0);
12380 }
12381 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12382 
12383 int kvm_arch_hardware_enable(void)
12384 {
12385 	struct kvm *kvm;
12386 	struct kvm_vcpu *vcpu;
12387 	unsigned long i;
12388 	int ret;
12389 	u64 local_tsc;
12390 	u64 max_tsc = 0;
12391 	bool stable, backwards_tsc = false;
12392 
12393 	kvm_user_return_msr_cpu_online();
12394 
12395 	ret = kvm_x86_check_processor_compatibility();
12396 	if (ret)
12397 		return ret;
12398 
12399 	ret = static_call(kvm_x86_hardware_enable)();
12400 	if (ret != 0)
12401 		return ret;
12402 
12403 	local_tsc = rdtsc();
12404 	stable = !kvm_check_tsc_unstable();
12405 	list_for_each_entry(kvm, &vm_list, vm_list) {
12406 		kvm_for_each_vcpu(i, vcpu, kvm) {
12407 			if (!stable && vcpu->cpu == smp_processor_id())
12408 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12409 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12410 				backwards_tsc = true;
12411 				if (vcpu->arch.last_host_tsc > max_tsc)
12412 					max_tsc = vcpu->arch.last_host_tsc;
12413 			}
12414 		}
12415 	}
12416 
12417 	/*
12418 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12419 	 * platforms that reset TSC during suspend or hibernate actions, but
12420 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12421 	 * detect that condition here, which happens early in CPU bringup,
12422 	 * before any KVM threads can be running.  Unfortunately, we can't
12423 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12424 	 * enough into CPU bringup that we know how much real time has actually
12425 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12426 	 * variables that haven't been updated yet.
12427 	 *
12428 	 * So we simply find the maximum observed TSC above, then record the
12429 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12430 	 * the adjustment will be applied.  Note that we accumulate
12431 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12432 	 * gets a chance to run again.  In the event that no KVM threads get a
12433 	 * chance to run, we will miss the entire elapsed period, as we'll have
12434 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12435 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12436 	 * uniform across all VCPUs (not to mention the scenario is extremely
12437 	 * unlikely). It is possible that a second hibernate recovery happens
12438 	 * much faster than a first, causing the observed TSC here to be
12439 	 * smaller; this would require additional padding adjustment, which is
12440 	 * why we set last_host_tsc to the local tsc observed here.
12441 	 *
12442 	 * N.B. - this code below runs only on platforms with reliable TSC,
12443 	 * as that is the only way backwards_tsc is set above.  Also note
12444 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12445 	 * have the same delta_cyc adjustment applied if backwards_tsc
12446 	 * is detected.  Note further, this adjustment is only done once,
12447 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12448 	 * called multiple times (one for each physical CPU bringup).
12449 	 *
12450 	 * Platforms with unreliable TSCs don't have to deal with this, they
12451 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12452 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12453 	 * guarantee that they stay in perfect synchronization.
12454 	 */
12455 	if (backwards_tsc) {
12456 		u64 delta_cyc = max_tsc - local_tsc;
12457 		list_for_each_entry(kvm, &vm_list, vm_list) {
12458 			kvm->arch.backwards_tsc_observed = true;
12459 			kvm_for_each_vcpu(i, vcpu, kvm) {
12460 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12461 				vcpu->arch.last_host_tsc = local_tsc;
12462 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12463 			}
12464 
12465 			/*
12466 			 * We have to disable TSC offset matching.. if you were
12467 			 * booting a VM while issuing an S4 host suspend....
12468 			 * you may have some problem.  Solving this issue is
12469 			 * left as an exercise to the reader.
12470 			 */
12471 			kvm->arch.last_tsc_nsec = 0;
12472 			kvm->arch.last_tsc_write = 0;
12473 		}
12474 
12475 	}
12476 	return 0;
12477 }
12478 
12479 void kvm_arch_hardware_disable(void)
12480 {
12481 	static_call(kvm_x86_hardware_disable)();
12482 	drop_user_return_notifiers();
12483 }
12484 
12485 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12486 {
12487 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12488 }
12489 
12490 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12491 {
12492 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12493 }
12494 
12495 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12496 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12497 
12498 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12499 {
12500 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12501 
12502 	vcpu->arch.l1tf_flush_l1d = true;
12503 	if (pmu->version && unlikely(pmu->event_count)) {
12504 		pmu->need_cleanup = true;
12505 		kvm_make_request(KVM_REQ_PMU, vcpu);
12506 	}
12507 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12508 }
12509 
12510 void kvm_arch_free_vm(struct kvm *kvm)
12511 {
12512 #if IS_ENABLED(CONFIG_HYPERV)
12513 	kfree(kvm->arch.hv_pa_pg);
12514 #endif
12515 	__kvm_arch_free_vm(kvm);
12516 }
12517 
12518 
12519 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12520 {
12521 	int ret;
12522 	unsigned long flags;
12523 
12524 	if (!kvm_is_vm_type_supported(type))
12525 		return -EINVAL;
12526 
12527 	kvm->arch.vm_type = type;
12528 
12529 	ret = kvm_page_track_init(kvm);
12530 	if (ret)
12531 		goto out;
12532 
12533 	kvm_mmu_init_vm(kvm);
12534 
12535 	ret = static_call(kvm_x86_vm_init)(kvm);
12536 	if (ret)
12537 		goto out_uninit_mmu;
12538 
12539 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12540 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12541 
12542 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12543 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12544 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12545 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12546 		&kvm->arch.irq_sources_bitmap);
12547 
12548 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12549 	mutex_init(&kvm->arch.apic_map_lock);
12550 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12551 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12552 
12553 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12554 	pvclock_update_vm_gtod_copy(kvm);
12555 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12556 
12557 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12558 	kvm->arch.guest_can_read_msr_platform_info = true;
12559 	kvm->arch.enable_pmu = enable_pmu;
12560 
12561 #if IS_ENABLED(CONFIG_HYPERV)
12562 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12563 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12564 #endif
12565 
12566 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12567 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12568 
12569 	kvm_apicv_init(kvm);
12570 	kvm_hv_init_vm(kvm);
12571 	kvm_xen_init_vm(kvm);
12572 
12573 	return 0;
12574 
12575 out_uninit_mmu:
12576 	kvm_mmu_uninit_vm(kvm);
12577 	kvm_page_track_cleanup(kvm);
12578 out:
12579 	return ret;
12580 }
12581 
12582 int kvm_arch_post_init_vm(struct kvm *kvm)
12583 {
12584 	return kvm_mmu_post_init_vm(kvm);
12585 }
12586 
12587 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12588 {
12589 	vcpu_load(vcpu);
12590 	kvm_mmu_unload(vcpu);
12591 	vcpu_put(vcpu);
12592 }
12593 
12594 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12595 {
12596 	unsigned long i;
12597 	struct kvm_vcpu *vcpu;
12598 
12599 	kvm_for_each_vcpu(i, vcpu, kvm) {
12600 		kvm_clear_async_pf_completion_queue(vcpu);
12601 		kvm_unload_vcpu_mmu(vcpu);
12602 	}
12603 }
12604 
12605 void kvm_arch_sync_events(struct kvm *kvm)
12606 {
12607 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12608 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12609 	kvm_free_pit(kvm);
12610 }
12611 
12612 /**
12613  * __x86_set_memory_region: Setup KVM internal memory slot
12614  *
12615  * @kvm: the kvm pointer to the VM.
12616  * @id: the slot ID to setup.
12617  * @gpa: the GPA to install the slot (unused when @size == 0).
12618  * @size: the size of the slot. Set to zero to uninstall a slot.
12619  *
12620  * This function helps to setup a KVM internal memory slot.  Specify
12621  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12622  * slot.  The return code can be one of the following:
12623  *
12624  *   HVA:           on success (uninstall will return a bogus HVA)
12625  *   -errno:        on error
12626  *
12627  * The caller should always use IS_ERR() to check the return value
12628  * before use.  Note, the KVM internal memory slots are guaranteed to
12629  * remain valid and unchanged until the VM is destroyed, i.e., the
12630  * GPA->HVA translation will not change.  However, the HVA is a user
12631  * address, i.e. its accessibility is not guaranteed, and must be
12632  * accessed via __copy_{to,from}_user().
12633  */
12634 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12635 				      u32 size)
12636 {
12637 	int i, r;
12638 	unsigned long hva, old_npages;
12639 	struct kvm_memslots *slots = kvm_memslots(kvm);
12640 	struct kvm_memory_slot *slot;
12641 
12642 	/* Called with kvm->slots_lock held.  */
12643 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12644 		return ERR_PTR_USR(-EINVAL);
12645 
12646 	slot = id_to_memslot(slots, id);
12647 	if (size) {
12648 		if (slot && slot->npages)
12649 			return ERR_PTR_USR(-EEXIST);
12650 
12651 		/*
12652 		 * MAP_SHARED to prevent internal slot pages from being moved
12653 		 * by fork()/COW.
12654 		 */
12655 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12656 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12657 		if (IS_ERR_VALUE(hva))
12658 			return (void __user *)hva;
12659 	} else {
12660 		if (!slot || !slot->npages)
12661 			return NULL;
12662 
12663 		old_npages = slot->npages;
12664 		hva = slot->userspace_addr;
12665 	}
12666 
12667 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12668 		struct kvm_userspace_memory_region2 m;
12669 
12670 		m.slot = id | (i << 16);
12671 		m.flags = 0;
12672 		m.guest_phys_addr = gpa;
12673 		m.userspace_addr = hva;
12674 		m.memory_size = size;
12675 		r = __kvm_set_memory_region(kvm, &m);
12676 		if (r < 0)
12677 			return ERR_PTR_USR(r);
12678 	}
12679 
12680 	if (!size)
12681 		vm_munmap(hva, old_npages * PAGE_SIZE);
12682 
12683 	return (void __user *)hva;
12684 }
12685 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12686 
12687 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12688 {
12689 	kvm_mmu_pre_destroy_vm(kvm);
12690 }
12691 
12692 void kvm_arch_destroy_vm(struct kvm *kvm)
12693 {
12694 	if (current->mm == kvm->mm) {
12695 		/*
12696 		 * Free memory regions allocated on behalf of userspace,
12697 		 * unless the memory map has changed due to process exit
12698 		 * or fd copying.
12699 		 */
12700 		mutex_lock(&kvm->slots_lock);
12701 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12702 					0, 0);
12703 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12704 					0, 0);
12705 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12706 		mutex_unlock(&kvm->slots_lock);
12707 	}
12708 	kvm_unload_vcpu_mmus(kvm);
12709 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12710 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12711 	kvm_pic_destroy(kvm);
12712 	kvm_ioapic_destroy(kvm);
12713 	kvm_destroy_vcpus(kvm);
12714 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12715 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12716 	kvm_mmu_uninit_vm(kvm);
12717 	kvm_page_track_cleanup(kvm);
12718 	kvm_xen_destroy_vm(kvm);
12719 	kvm_hv_destroy_vm(kvm);
12720 }
12721 
12722 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12723 {
12724 	int i;
12725 
12726 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12727 		kvfree(slot->arch.rmap[i]);
12728 		slot->arch.rmap[i] = NULL;
12729 	}
12730 }
12731 
12732 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12733 {
12734 	int i;
12735 
12736 	memslot_rmap_free(slot);
12737 
12738 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12739 		kvfree(slot->arch.lpage_info[i - 1]);
12740 		slot->arch.lpage_info[i - 1] = NULL;
12741 	}
12742 
12743 	kvm_page_track_free_memslot(slot);
12744 }
12745 
12746 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12747 {
12748 	const int sz = sizeof(*slot->arch.rmap[0]);
12749 	int i;
12750 
12751 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12752 		int level = i + 1;
12753 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12754 
12755 		if (slot->arch.rmap[i])
12756 			continue;
12757 
12758 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12759 		if (!slot->arch.rmap[i]) {
12760 			memslot_rmap_free(slot);
12761 			return -ENOMEM;
12762 		}
12763 	}
12764 
12765 	return 0;
12766 }
12767 
12768 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12769 				      struct kvm_memory_slot *slot)
12770 {
12771 	unsigned long npages = slot->npages;
12772 	int i, r;
12773 
12774 	/*
12775 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12776 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12777 	 * the new memslot is successful.
12778 	 */
12779 	memset(&slot->arch, 0, sizeof(slot->arch));
12780 
12781 	if (kvm_memslots_have_rmaps(kvm)) {
12782 		r = memslot_rmap_alloc(slot, npages);
12783 		if (r)
12784 			return r;
12785 	}
12786 
12787 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12788 		struct kvm_lpage_info *linfo;
12789 		unsigned long ugfn;
12790 		int lpages;
12791 		int level = i + 1;
12792 
12793 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12794 
12795 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12796 		if (!linfo)
12797 			goto out_free;
12798 
12799 		slot->arch.lpage_info[i - 1] = linfo;
12800 
12801 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12802 			linfo[0].disallow_lpage = 1;
12803 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12804 			linfo[lpages - 1].disallow_lpage = 1;
12805 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12806 		/*
12807 		 * If the gfn and userspace address are not aligned wrt each
12808 		 * other, disable large page support for this slot.
12809 		 */
12810 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12811 			unsigned long j;
12812 
12813 			for (j = 0; j < lpages; ++j)
12814 				linfo[j].disallow_lpage = 1;
12815 		}
12816 	}
12817 
12818 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12819 	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12820 #endif
12821 
12822 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12823 		goto out_free;
12824 
12825 	return 0;
12826 
12827 out_free:
12828 	memslot_rmap_free(slot);
12829 
12830 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12831 		kvfree(slot->arch.lpage_info[i - 1]);
12832 		slot->arch.lpage_info[i - 1] = NULL;
12833 	}
12834 	return -ENOMEM;
12835 }
12836 
12837 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12838 {
12839 	struct kvm_vcpu *vcpu;
12840 	unsigned long i;
12841 
12842 	/*
12843 	 * memslots->generation has been incremented.
12844 	 * mmio generation may have reached its maximum value.
12845 	 */
12846 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12847 
12848 	/* Force re-initialization of steal_time cache */
12849 	kvm_for_each_vcpu(i, vcpu, kvm)
12850 		kvm_vcpu_kick(vcpu);
12851 }
12852 
12853 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12854 				   const struct kvm_memory_slot *old,
12855 				   struct kvm_memory_slot *new,
12856 				   enum kvm_mr_change change)
12857 {
12858 	/*
12859 	 * KVM doesn't support moving memslots when there are external page
12860 	 * trackers attached to the VM, i.e. if KVMGT is in use.
12861 	 */
12862 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12863 		return -EINVAL;
12864 
12865 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12866 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12867 			return -EINVAL;
12868 
12869 		return kvm_alloc_memslot_metadata(kvm, new);
12870 	}
12871 
12872 	if (change == KVM_MR_FLAGS_ONLY)
12873 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12874 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12875 		return -EIO;
12876 
12877 	return 0;
12878 }
12879 
12880 
12881 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12882 {
12883 	int nr_slots;
12884 
12885 	if (!kvm_x86_ops.cpu_dirty_log_size)
12886 		return;
12887 
12888 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12889 	if ((enable && nr_slots == 1) || !nr_slots)
12890 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12891 }
12892 
12893 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12894 				     struct kvm_memory_slot *old,
12895 				     const struct kvm_memory_slot *new,
12896 				     enum kvm_mr_change change)
12897 {
12898 	u32 old_flags = old ? old->flags : 0;
12899 	u32 new_flags = new ? new->flags : 0;
12900 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12901 
12902 	/*
12903 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12904 	 * applies to all operations.
12905 	 */
12906 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12907 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12908 
12909 	/*
12910 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12911 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12912 	 *
12913 	 * For a memslot with dirty logging disabled:
12914 	 * CREATE:      No dirty mappings will already exist.
12915 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12916 	 *		kvm_arch_flush_shadow_memslot()
12917 	 *
12918 	 * For a memslot with dirty logging enabled:
12919 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12920 	 *		and no dirty bits to clear.
12921 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12922 	 *		kvm_arch_flush_shadow_memslot().
12923 	 */
12924 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12925 		return;
12926 
12927 	/*
12928 	 * READONLY and non-flags changes were filtered out above, and the only
12929 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12930 	 * logging isn't being toggled on or off.
12931 	 */
12932 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12933 		return;
12934 
12935 	if (!log_dirty_pages) {
12936 		/*
12937 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12938 		 * large sptes have to be split.  If live migration succeeds,
12939 		 * the guest in the source machine will be destroyed and large
12940 		 * sptes will be created in the destination.  However, if the
12941 		 * guest continues to run in the source machine (for example if
12942 		 * live migration fails), small sptes will remain around and
12943 		 * cause bad performance.
12944 		 *
12945 		 * Scan sptes if dirty logging has been stopped, dropping those
12946 		 * which can be collapsed into a single large-page spte.  Later
12947 		 * page faults will create the large-page sptes.
12948 		 */
12949 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12950 	} else {
12951 		/*
12952 		 * Initially-all-set does not require write protecting any page,
12953 		 * because they're all assumed to be dirty.
12954 		 */
12955 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12956 			return;
12957 
12958 		if (READ_ONCE(eager_page_split))
12959 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12960 
12961 		if (kvm_x86_ops.cpu_dirty_log_size) {
12962 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12963 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12964 		} else {
12965 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12966 		}
12967 
12968 		/*
12969 		 * Unconditionally flush the TLBs after enabling dirty logging.
12970 		 * A flush is almost always going to be necessary (see below),
12971 		 * and unconditionally flushing allows the helpers to omit
12972 		 * the subtly complex checks when removing write access.
12973 		 *
12974 		 * Do the flush outside of mmu_lock to reduce the amount of
12975 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12976 		 * safe as KVM only needs to guarantee the slot is fully
12977 		 * write-protected before returning to userspace, i.e. before
12978 		 * userspace can consume the dirty status.
12979 		 *
12980 		 * Flushing outside of mmu_lock requires KVM to be careful when
12981 		 * making decisions based on writable status of an SPTE, e.g. a
12982 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12983 		 *
12984 		 * Specifically, KVM also write-protects guest page tables to
12985 		 * monitor changes when using shadow paging, and must guarantee
12986 		 * no CPUs can write to those page before mmu_lock is dropped.
12987 		 * Because CPUs may have stale TLB entries at this point, a
12988 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12989 		 *
12990 		 * KVM also allows making SPTES writable outside of mmu_lock,
12991 		 * e.g. to allow dirty logging without taking mmu_lock.
12992 		 *
12993 		 * To handle these scenarios, KVM uses a separate software-only
12994 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12995 		 * a guest page table being write-protected (KVM clears the
12996 		 * MMU-writable flag when write-protecting for shadow paging).
12997 		 *
12998 		 * The use of MMU-writable is also the primary motivation for
12999 		 * the unconditional flush.  Because KVM must guarantee that a
13000 		 * CPU doesn't contain stale, writable TLB entries for a
13001 		 * !MMU-writable SPTE, KVM must flush if it encounters any
13002 		 * MMU-writable SPTE regardless of whether the actual hardware
13003 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
13004 		 * to flush, while unconditionally flushing allows the "remove
13005 		 * write access" helpers to ignore MMU-writable entirely.
13006 		 *
13007 		 * See is_writable_pte() for more details (the case involving
13008 		 * access-tracked SPTEs is particularly relevant).
13009 		 */
13010 		kvm_flush_remote_tlbs_memslot(kvm, new);
13011 	}
13012 }
13013 
13014 void kvm_arch_commit_memory_region(struct kvm *kvm,
13015 				struct kvm_memory_slot *old,
13016 				const struct kvm_memory_slot *new,
13017 				enum kvm_mr_change change)
13018 {
13019 	if (change == KVM_MR_DELETE)
13020 		kvm_page_track_delete_slot(kvm, old);
13021 
13022 	if (!kvm->arch.n_requested_mmu_pages &&
13023 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13024 		unsigned long nr_mmu_pages;
13025 
13026 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13027 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13028 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13029 	}
13030 
13031 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13032 
13033 	/* Free the arrays associated with the old memslot. */
13034 	if (change == KVM_MR_MOVE)
13035 		kvm_arch_free_memslot(kvm, old);
13036 }
13037 
13038 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13039 {
13040 	return (is_guest_mode(vcpu) &&
13041 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13042 }
13043 
13044 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13045 {
13046 	if (!list_empty_careful(&vcpu->async_pf.done))
13047 		return true;
13048 
13049 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13050 	    kvm_apic_init_sipi_allowed(vcpu))
13051 		return true;
13052 
13053 	if (vcpu->arch.pv.pv_unhalted)
13054 		return true;
13055 
13056 	if (kvm_is_exception_pending(vcpu))
13057 		return true;
13058 
13059 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13060 	    (vcpu->arch.nmi_pending &&
13061 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13062 		return true;
13063 
13064 #ifdef CONFIG_KVM_SMM
13065 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13066 	    (vcpu->arch.smi_pending &&
13067 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
13068 		return true;
13069 #endif
13070 
13071 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
13072 		return true;
13073 
13074 	if (kvm_arch_interrupt_allowed(vcpu) &&
13075 	    (kvm_cpu_has_interrupt(vcpu) ||
13076 	    kvm_guest_apic_has_interrupt(vcpu)))
13077 		return true;
13078 
13079 	if (kvm_hv_has_stimer_pending(vcpu))
13080 		return true;
13081 
13082 	if (is_guest_mode(vcpu) &&
13083 	    kvm_x86_ops.nested_ops->has_events &&
13084 	    kvm_x86_ops.nested_ops->has_events(vcpu))
13085 		return true;
13086 
13087 	if (kvm_xen_has_pending_events(vcpu))
13088 		return true;
13089 
13090 	return false;
13091 }
13092 
13093 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13094 {
13095 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13096 }
13097 
13098 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13099 {
13100 	if (kvm_vcpu_apicv_active(vcpu) &&
13101 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
13102 		return true;
13103 
13104 	return false;
13105 }
13106 
13107 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13108 {
13109 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13110 		return true;
13111 
13112 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13113 #ifdef CONFIG_KVM_SMM
13114 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
13115 #endif
13116 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
13117 		return true;
13118 
13119 	return kvm_arch_dy_has_pending_interrupt(vcpu);
13120 }
13121 
13122 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13123 {
13124 	if (vcpu->arch.guest_state_protected)
13125 		return true;
13126 
13127 	if (vcpu != kvm_get_running_vcpu())
13128 		return vcpu->arch.preempted_in_kernel;
13129 
13130 	return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13131 }
13132 
13133 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13134 {
13135 	return kvm_rip_read(vcpu);
13136 }
13137 
13138 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13139 {
13140 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13141 }
13142 
13143 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13144 {
13145 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13146 }
13147 
13148 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13149 {
13150 	/* Can't read the RIP when guest state is protected, just return 0 */
13151 	if (vcpu->arch.guest_state_protected)
13152 		return 0;
13153 
13154 	if (is_64_bit_mode(vcpu))
13155 		return kvm_rip_read(vcpu);
13156 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13157 		     kvm_rip_read(vcpu));
13158 }
13159 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13160 
13161 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13162 {
13163 	return kvm_get_linear_rip(vcpu) == linear_rip;
13164 }
13165 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13166 
13167 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13168 {
13169 	unsigned long rflags;
13170 
13171 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
13172 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13173 		rflags &= ~X86_EFLAGS_TF;
13174 	return rflags;
13175 }
13176 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13177 
13178 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13179 {
13180 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13181 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13182 		rflags |= X86_EFLAGS_TF;
13183 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
13184 }
13185 
13186 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13187 {
13188 	__kvm_set_rflags(vcpu, rflags);
13189 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13190 }
13191 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13192 
13193 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13194 {
13195 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13196 
13197 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13198 }
13199 
13200 static inline u32 kvm_async_pf_next_probe(u32 key)
13201 {
13202 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13203 }
13204 
13205 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13206 {
13207 	u32 key = kvm_async_pf_hash_fn(gfn);
13208 
13209 	while (vcpu->arch.apf.gfns[key] != ~0)
13210 		key = kvm_async_pf_next_probe(key);
13211 
13212 	vcpu->arch.apf.gfns[key] = gfn;
13213 }
13214 
13215 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13216 {
13217 	int i;
13218 	u32 key = kvm_async_pf_hash_fn(gfn);
13219 
13220 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13221 		     (vcpu->arch.apf.gfns[key] != gfn &&
13222 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13223 		key = kvm_async_pf_next_probe(key);
13224 
13225 	return key;
13226 }
13227 
13228 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13229 {
13230 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13231 }
13232 
13233 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13234 {
13235 	u32 i, j, k;
13236 
13237 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13238 
13239 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13240 		return;
13241 
13242 	while (true) {
13243 		vcpu->arch.apf.gfns[i] = ~0;
13244 		do {
13245 			j = kvm_async_pf_next_probe(j);
13246 			if (vcpu->arch.apf.gfns[j] == ~0)
13247 				return;
13248 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13249 			/*
13250 			 * k lies cyclically in ]i,j]
13251 			 * |    i.k.j |
13252 			 * |....j i.k.| or  |.k..j i...|
13253 			 */
13254 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13255 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13256 		i = j;
13257 	}
13258 }
13259 
13260 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13261 {
13262 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13263 
13264 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13265 				      sizeof(reason));
13266 }
13267 
13268 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13269 {
13270 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13271 
13272 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13273 					     &token, offset, sizeof(token));
13274 }
13275 
13276 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13277 {
13278 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13279 	u32 val;
13280 
13281 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13282 					 &val, offset, sizeof(val)))
13283 		return false;
13284 
13285 	return !val;
13286 }
13287 
13288 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13289 {
13290 
13291 	if (!kvm_pv_async_pf_enabled(vcpu))
13292 		return false;
13293 
13294 	if (vcpu->arch.apf.send_user_only &&
13295 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13296 		return false;
13297 
13298 	if (is_guest_mode(vcpu)) {
13299 		/*
13300 		 * L1 needs to opt into the special #PF vmexits that are
13301 		 * used to deliver async page faults.
13302 		 */
13303 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13304 	} else {
13305 		/*
13306 		 * Play it safe in case the guest temporarily disables paging.
13307 		 * The real mode IDT in particular is unlikely to have a #PF
13308 		 * exception setup.
13309 		 */
13310 		return is_paging(vcpu);
13311 	}
13312 }
13313 
13314 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13315 {
13316 	if (unlikely(!lapic_in_kernel(vcpu) ||
13317 		     kvm_event_needs_reinjection(vcpu) ||
13318 		     kvm_is_exception_pending(vcpu)))
13319 		return false;
13320 
13321 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13322 		return false;
13323 
13324 	/*
13325 	 * If interrupts are off we cannot even use an artificial
13326 	 * halt state.
13327 	 */
13328 	return kvm_arch_interrupt_allowed(vcpu);
13329 }
13330 
13331 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13332 				     struct kvm_async_pf *work)
13333 {
13334 	struct x86_exception fault;
13335 
13336 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13337 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13338 
13339 	if (kvm_can_deliver_async_pf(vcpu) &&
13340 	    !apf_put_user_notpresent(vcpu)) {
13341 		fault.vector = PF_VECTOR;
13342 		fault.error_code_valid = true;
13343 		fault.error_code = 0;
13344 		fault.nested_page_fault = false;
13345 		fault.address = work->arch.token;
13346 		fault.async_page_fault = true;
13347 		kvm_inject_page_fault(vcpu, &fault);
13348 		return true;
13349 	} else {
13350 		/*
13351 		 * It is not possible to deliver a paravirtualized asynchronous
13352 		 * page fault, but putting the guest in an artificial halt state
13353 		 * can be beneficial nevertheless: if an interrupt arrives, we
13354 		 * can deliver it timely and perhaps the guest will schedule
13355 		 * another process.  When the instruction that triggered a page
13356 		 * fault is retried, hopefully the page will be ready in the host.
13357 		 */
13358 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13359 		return false;
13360 	}
13361 }
13362 
13363 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13364 				 struct kvm_async_pf *work)
13365 {
13366 	struct kvm_lapic_irq irq = {
13367 		.delivery_mode = APIC_DM_FIXED,
13368 		.vector = vcpu->arch.apf.vec
13369 	};
13370 
13371 	if (work->wakeup_all)
13372 		work->arch.token = ~0; /* broadcast wakeup */
13373 	else
13374 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13375 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13376 
13377 	if ((work->wakeup_all || work->notpresent_injected) &&
13378 	    kvm_pv_async_pf_enabled(vcpu) &&
13379 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13380 		vcpu->arch.apf.pageready_pending = true;
13381 		kvm_apic_set_irq(vcpu, &irq, NULL);
13382 	}
13383 
13384 	vcpu->arch.apf.halted = false;
13385 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13386 }
13387 
13388 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13389 {
13390 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13391 	if (!vcpu->arch.apf.pageready_pending)
13392 		kvm_vcpu_kick(vcpu);
13393 }
13394 
13395 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13396 {
13397 	if (!kvm_pv_async_pf_enabled(vcpu))
13398 		return true;
13399 	else
13400 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13401 }
13402 
13403 void kvm_arch_start_assignment(struct kvm *kvm)
13404 {
13405 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13406 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13407 }
13408 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13409 
13410 void kvm_arch_end_assignment(struct kvm *kvm)
13411 {
13412 	atomic_dec(&kvm->arch.assigned_device_count);
13413 }
13414 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13415 
13416 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13417 {
13418 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13419 }
13420 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13421 
13422 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13423 {
13424 	/*
13425 	 * Non-coherent DMA assignment and de-assignment will affect
13426 	 * whether KVM honors guest MTRRs and cause changes in memtypes
13427 	 * in TDP.
13428 	 * So, pass %true unconditionally to indicate non-coherent DMA was,
13429 	 * or will be involved, and that zapping SPTEs might be necessary.
13430 	 */
13431 	if (__kvm_mmu_honors_guest_mtrrs(true))
13432 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13433 }
13434 
13435 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13436 {
13437 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13438 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13439 }
13440 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13441 
13442 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13443 {
13444 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13445 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13446 }
13447 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13448 
13449 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13450 {
13451 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13452 }
13453 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13454 
13455 bool kvm_arch_has_irq_bypass(void)
13456 {
13457 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13458 }
13459 
13460 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13461 				      struct irq_bypass_producer *prod)
13462 {
13463 	struct kvm_kernel_irqfd *irqfd =
13464 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13465 	int ret;
13466 
13467 	irqfd->producer = prod;
13468 	kvm_arch_start_assignment(irqfd->kvm);
13469 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13470 					 prod->irq, irqfd->gsi, 1);
13471 
13472 	if (ret)
13473 		kvm_arch_end_assignment(irqfd->kvm);
13474 
13475 	return ret;
13476 }
13477 
13478 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13479 				      struct irq_bypass_producer *prod)
13480 {
13481 	int ret;
13482 	struct kvm_kernel_irqfd *irqfd =
13483 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13484 
13485 	WARN_ON(irqfd->producer != prod);
13486 	irqfd->producer = NULL;
13487 
13488 	/*
13489 	 * When producer of consumer is unregistered, we change back to
13490 	 * remapped mode, so we can re-use the current implementation
13491 	 * when the irq is masked/disabled or the consumer side (KVM
13492 	 * int this case doesn't want to receive the interrupts.
13493 	*/
13494 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13495 	if (ret)
13496 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13497 		       " fails: %d\n", irqfd->consumer.token, ret);
13498 
13499 	kvm_arch_end_assignment(irqfd->kvm);
13500 }
13501 
13502 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13503 				   uint32_t guest_irq, bool set)
13504 {
13505 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13506 }
13507 
13508 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13509 				  struct kvm_kernel_irq_routing_entry *new)
13510 {
13511 	if (new->type != KVM_IRQ_ROUTING_MSI)
13512 		return true;
13513 
13514 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13515 }
13516 
13517 bool kvm_vector_hashing_enabled(void)
13518 {
13519 	return vector_hashing;
13520 }
13521 
13522 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13523 {
13524 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13525 }
13526 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13527 
13528 
13529 int kvm_spec_ctrl_test_value(u64 value)
13530 {
13531 	/*
13532 	 * test that setting IA32_SPEC_CTRL to given value
13533 	 * is allowed by the host processor
13534 	 */
13535 
13536 	u64 saved_value;
13537 	unsigned long flags;
13538 	int ret = 0;
13539 
13540 	local_irq_save(flags);
13541 
13542 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13543 		ret = 1;
13544 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13545 		ret = 1;
13546 	else
13547 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13548 
13549 	local_irq_restore(flags);
13550 
13551 	return ret;
13552 }
13553 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13554 
13555 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13556 {
13557 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13558 	struct x86_exception fault;
13559 	u64 access = error_code &
13560 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13561 
13562 	if (!(error_code & PFERR_PRESENT_MASK) ||
13563 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13564 		/*
13565 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13566 		 * tables probably do not match the TLB.  Just proceed
13567 		 * with the error code that the processor gave.
13568 		 */
13569 		fault.vector = PF_VECTOR;
13570 		fault.error_code_valid = true;
13571 		fault.error_code = error_code;
13572 		fault.nested_page_fault = false;
13573 		fault.address = gva;
13574 		fault.async_page_fault = false;
13575 	}
13576 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13577 }
13578 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13579 
13580 /*
13581  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13582  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13583  * indicates whether exit to userspace is needed.
13584  */
13585 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13586 			      struct x86_exception *e)
13587 {
13588 	if (r == X86EMUL_PROPAGATE_FAULT) {
13589 		if (KVM_BUG_ON(!e, vcpu->kvm))
13590 			return -EIO;
13591 
13592 		kvm_inject_emulated_page_fault(vcpu, e);
13593 		return 1;
13594 	}
13595 
13596 	/*
13597 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13598 	 * while handling a VMX instruction KVM could've handled the request
13599 	 * correctly by exiting to userspace and performing I/O but there
13600 	 * doesn't seem to be a real use-case behind such requests, just return
13601 	 * KVM_EXIT_INTERNAL_ERROR for now.
13602 	 */
13603 	kvm_prepare_emulation_failure_exit(vcpu);
13604 
13605 	return 0;
13606 }
13607 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13608 
13609 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13610 {
13611 	bool pcid_enabled;
13612 	struct x86_exception e;
13613 	struct {
13614 		u64 pcid;
13615 		u64 gla;
13616 	} operand;
13617 	int r;
13618 
13619 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13620 	if (r != X86EMUL_CONTINUE)
13621 		return kvm_handle_memory_failure(vcpu, r, &e);
13622 
13623 	if (operand.pcid >> 12 != 0) {
13624 		kvm_inject_gp(vcpu, 0);
13625 		return 1;
13626 	}
13627 
13628 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13629 
13630 	switch (type) {
13631 	case INVPCID_TYPE_INDIV_ADDR:
13632 		/*
13633 		 * LAM doesn't apply to addresses that are inputs to TLB
13634 		 * invalidation.
13635 		 */
13636 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13637 		    is_noncanonical_address(operand.gla, vcpu)) {
13638 			kvm_inject_gp(vcpu, 0);
13639 			return 1;
13640 		}
13641 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13642 		return kvm_skip_emulated_instruction(vcpu);
13643 
13644 	case INVPCID_TYPE_SINGLE_CTXT:
13645 		if (!pcid_enabled && (operand.pcid != 0)) {
13646 			kvm_inject_gp(vcpu, 0);
13647 			return 1;
13648 		}
13649 
13650 		kvm_invalidate_pcid(vcpu, operand.pcid);
13651 		return kvm_skip_emulated_instruction(vcpu);
13652 
13653 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13654 		/*
13655 		 * Currently, KVM doesn't mark global entries in the shadow
13656 		 * page tables, so a non-global flush just degenerates to a
13657 		 * global flush. If needed, we could optimize this later by
13658 		 * keeping track of global entries in shadow page tables.
13659 		 */
13660 
13661 		fallthrough;
13662 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13663 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13664 		return kvm_skip_emulated_instruction(vcpu);
13665 
13666 	default:
13667 		kvm_inject_gp(vcpu, 0);
13668 		return 1;
13669 	}
13670 }
13671 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13672 
13673 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13674 {
13675 	struct kvm_run *run = vcpu->run;
13676 	struct kvm_mmio_fragment *frag;
13677 	unsigned int len;
13678 
13679 	BUG_ON(!vcpu->mmio_needed);
13680 
13681 	/* Complete previous fragment */
13682 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13683 	len = min(8u, frag->len);
13684 	if (!vcpu->mmio_is_write)
13685 		memcpy(frag->data, run->mmio.data, len);
13686 
13687 	if (frag->len <= 8) {
13688 		/* Switch to the next fragment. */
13689 		frag++;
13690 		vcpu->mmio_cur_fragment++;
13691 	} else {
13692 		/* Go forward to the next mmio piece. */
13693 		frag->data += len;
13694 		frag->gpa += len;
13695 		frag->len -= len;
13696 	}
13697 
13698 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13699 		vcpu->mmio_needed = 0;
13700 
13701 		// VMG change, at this point, we're always done
13702 		// RIP has already been advanced
13703 		return 1;
13704 	}
13705 
13706 	// More MMIO is needed
13707 	run->mmio.phys_addr = frag->gpa;
13708 	run->mmio.len = min(8u, frag->len);
13709 	run->mmio.is_write = vcpu->mmio_is_write;
13710 	if (run->mmio.is_write)
13711 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13712 	run->exit_reason = KVM_EXIT_MMIO;
13713 
13714 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13715 
13716 	return 0;
13717 }
13718 
13719 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13720 			  void *data)
13721 {
13722 	int handled;
13723 	struct kvm_mmio_fragment *frag;
13724 
13725 	if (!data)
13726 		return -EINVAL;
13727 
13728 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13729 	if (handled == bytes)
13730 		return 1;
13731 
13732 	bytes -= handled;
13733 	gpa += handled;
13734 	data += handled;
13735 
13736 	/*TODO: Check if need to increment number of frags */
13737 	frag = vcpu->mmio_fragments;
13738 	vcpu->mmio_nr_fragments = 1;
13739 	frag->len = bytes;
13740 	frag->gpa = gpa;
13741 	frag->data = data;
13742 
13743 	vcpu->mmio_needed = 1;
13744 	vcpu->mmio_cur_fragment = 0;
13745 
13746 	vcpu->run->mmio.phys_addr = gpa;
13747 	vcpu->run->mmio.len = min(8u, frag->len);
13748 	vcpu->run->mmio.is_write = 1;
13749 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13750 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13751 
13752 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13753 
13754 	return 0;
13755 }
13756 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13757 
13758 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13759 			 void *data)
13760 {
13761 	int handled;
13762 	struct kvm_mmio_fragment *frag;
13763 
13764 	if (!data)
13765 		return -EINVAL;
13766 
13767 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13768 	if (handled == bytes)
13769 		return 1;
13770 
13771 	bytes -= handled;
13772 	gpa += handled;
13773 	data += handled;
13774 
13775 	/*TODO: Check if need to increment number of frags */
13776 	frag = vcpu->mmio_fragments;
13777 	vcpu->mmio_nr_fragments = 1;
13778 	frag->len = bytes;
13779 	frag->gpa = gpa;
13780 	frag->data = data;
13781 
13782 	vcpu->mmio_needed = 1;
13783 	vcpu->mmio_cur_fragment = 0;
13784 
13785 	vcpu->run->mmio.phys_addr = gpa;
13786 	vcpu->run->mmio.len = min(8u, frag->len);
13787 	vcpu->run->mmio.is_write = 0;
13788 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13789 
13790 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13791 
13792 	return 0;
13793 }
13794 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13795 
13796 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13797 {
13798 	vcpu->arch.sev_pio_count -= count;
13799 	vcpu->arch.sev_pio_data += count * size;
13800 }
13801 
13802 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13803 			   unsigned int port);
13804 
13805 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13806 {
13807 	int size = vcpu->arch.pio.size;
13808 	int port = vcpu->arch.pio.port;
13809 
13810 	vcpu->arch.pio.count = 0;
13811 	if (vcpu->arch.sev_pio_count)
13812 		return kvm_sev_es_outs(vcpu, size, port);
13813 	return 1;
13814 }
13815 
13816 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13817 			   unsigned int port)
13818 {
13819 	for (;;) {
13820 		unsigned int count =
13821 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13822 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13823 
13824 		/* memcpy done already by emulator_pio_out.  */
13825 		advance_sev_es_emulated_pio(vcpu, count, size);
13826 		if (!ret)
13827 			break;
13828 
13829 		/* Emulation done by the kernel.  */
13830 		if (!vcpu->arch.sev_pio_count)
13831 			return 1;
13832 	}
13833 
13834 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13835 	return 0;
13836 }
13837 
13838 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13839 			  unsigned int port);
13840 
13841 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13842 {
13843 	unsigned count = vcpu->arch.pio.count;
13844 	int size = vcpu->arch.pio.size;
13845 	int port = vcpu->arch.pio.port;
13846 
13847 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13848 	advance_sev_es_emulated_pio(vcpu, count, size);
13849 	if (vcpu->arch.sev_pio_count)
13850 		return kvm_sev_es_ins(vcpu, size, port);
13851 	return 1;
13852 }
13853 
13854 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13855 			  unsigned int port)
13856 {
13857 	for (;;) {
13858 		unsigned int count =
13859 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13860 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13861 			break;
13862 
13863 		/* Emulation done by the kernel.  */
13864 		advance_sev_es_emulated_pio(vcpu, count, size);
13865 		if (!vcpu->arch.sev_pio_count)
13866 			return 1;
13867 	}
13868 
13869 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13870 	return 0;
13871 }
13872 
13873 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13874 			 unsigned int port, void *data,  unsigned int count,
13875 			 int in)
13876 {
13877 	vcpu->arch.sev_pio_data = data;
13878 	vcpu->arch.sev_pio_count = count;
13879 	return in ? kvm_sev_es_ins(vcpu, size, port)
13880 		  : kvm_sev_es_outs(vcpu, size, port);
13881 }
13882 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13883 
13884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13906 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13907 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13908 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13909 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13910 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13911 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13913 
13914 static int __init kvm_x86_init(void)
13915 {
13916 	kvm_mmu_x86_module_init();
13917 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13918 	return 0;
13919 }
13920 module_init(kvm_x86_init);
13921 
13922 static void __exit kvm_x86_exit(void)
13923 {
13924 	/*
13925 	 * If module_init() is implemented, module_exit() must also be
13926 	 * implemented to allow module unload.
13927 	 */
13928 }
13929 module_exit(kvm_x86_exit);
13930