1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 struct kvm_caps kvm_caps __read_mostly = { 96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 97 }; 98 EXPORT_SYMBOL_GPL(kvm_caps); 99 100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 101 102 #define emul_to_vcpu(ctxt) \ 103 ((struct kvm_vcpu *)(ctxt)->vcpu) 104 105 /* EFER defaults: 106 * - enable syscall per default because its emulated by KVM 107 * - enable LME and LMA per default on 64 bit KVM 108 */ 109 #ifdef CONFIG_X86_64 110 static 111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 112 #else 113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 114 #endif 115 116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 117 118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 119 120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 121 122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 124 125 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 126 static void process_nmi(struct kvm_vcpu *vcpu); 127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 128 static void store_regs(struct kvm_vcpu *vcpu); 129 static int sync_regs(struct kvm_vcpu *vcpu); 130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 131 132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 134 135 static DEFINE_MUTEX(vendor_module_lock); 136 struct kvm_x86_ops kvm_x86_ops __read_mostly; 137 138 #define KVM_X86_OP(func) \ 139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 140 *(((struct kvm_x86_ops *)0)->func)); 141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 143 #include <asm/kvm-x86-ops.h> 144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 146 147 static bool __read_mostly ignore_msrs = 0; 148 module_param(ignore_msrs, bool, 0644); 149 150 bool __read_mostly report_ignored_msrs = true; 151 module_param(report_ignored_msrs, bool, 0644); 152 EXPORT_SYMBOL_GPL(report_ignored_msrs); 153 154 unsigned int min_timer_period_us = 200; 155 module_param(min_timer_period_us, uint, 0644); 156 157 static bool __read_mostly kvmclock_periodic_sync = true; 158 module_param(kvmclock_periodic_sync, bool, 0444); 159 160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 161 static u32 __read_mostly tsc_tolerance_ppm = 250; 162 module_param(tsc_tolerance_ppm, uint, 0644); 163 164 /* 165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 166 * adaptive tuning starting from default advancement of 1000ns. '0' disables 167 * advancement entirely. Any other value is used as-is and disables adaptive 168 * tuning, i.e. allows privileged userspace to set an exact advancement time. 169 */ 170 static int __read_mostly lapic_timer_advance_ns = -1; 171 module_param(lapic_timer_advance_ns, int, 0644); 172 173 static bool __read_mostly vector_hashing = true; 174 module_param(vector_hashing, bool, 0444); 175 176 bool __read_mostly enable_vmware_backdoor = false; 177 module_param(enable_vmware_backdoor, bool, 0444); 178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 179 180 /* 181 * Flags to manipulate forced emulation behavior (any non-zero value will 182 * enable forced emulation). 183 */ 184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 185 static int __read_mostly force_emulation_prefix; 186 module_param(force_emulation_prefix, int, 0644); 187 188 int __read_mostly pi_inject_timer = -1; 189 module_param(pi_inject_timer, bint, 0644); 190 191 /* Enable/disable PMU virtualization */ 192 bool __read_mostly enable_pmu = true; 193 EXPORT_SYMBOL_GPL(enable_pmu); 194 module_param(enable_pmu, bool, 0444); 195 196 bool __read_mostly eager_page_split = true; 197 module_param(eager_page_split, bool, 0644); 198 199 /* Enable/disable SMT_RSB bug mitigation */ 200 static bool __read_mostly mitigate_smt_rsb; 201 module_param(mitigate_smt_rsb, bool, 0444); 202 203 /* 204 * Restoring the host value for MSRs that are only consumed when running in 205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 206 * returns to userspace, i.e. the kernel can run with the guest's value. 207 */ 208 #define KVM_MAX_NR_USER_RETURN_MSRS 16 209 210 struct kvm_user_return_msrs { 211 struct user_return_notifier urn; 212 bool registered; 213 struct kvm_user_return_msr_values { 214 u64 host; 215 u64 curr; 216 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 217 }; 218 219 u32 __read_mostly kvm_nr_uret_msrs; 220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 222 static struct kvm_user_return_msrs __percpu *user_return_msrs; 223 224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 228 229 u64 __read_mostly host_efer; 230 EXPORT_SYMBOL_GPL(host_efer); 231 232 bool __read_mostly allow_smaller_maxphyaddr = 0; 233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 234 235 bool __read_mostly enable_apicv = true; 236 EXPORT_SYMBOL_GPL(enable_apicv); 237 238 u64 __read_mostly host_xss; 239 EXPORT_SYMBOL_GPL(host_xss); 240 241 u64 __read_mostly host_arch_capabilities; 242 EXPORT_SYMBOL_GPL(host_arch_capabilities); 243 244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 245 KVM_GENERIC_VM_STATS(), 246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 247 STATS_DESC_COUNTER(VM, mmu_pte_write), 248 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 249 STATS_DESC_COUNTER(VM, mmu_flooded), 250 STATS_DESC_COUNTER(VM, mmu_recycled), 251 STATS_DESC_COUNTER(VM, mmu_cache_miss), 252 STATS_DESC_ICOUNTER(VM, mmu_unsync), 253 STATS_DESC_ICOUNTER(VM, pages_4k), 254 STATS_DESC_ICOUNTER(VM, pages_2m), 255 STATS_DESC_ICOUNTER(VM, pages_1g), 256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 259 }; 260 261 const struct kvm_stats_header kvm_vm_stats_header = { 262 .name_size = KVM_STATS_NAME_SIZE, 263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 264 .id_offset = sizeof(struct kvm_stats_header), 265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 267 sizeof(kvm_vm_stats_desc), 268 }; 269 270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 271 KVM_GENERIC_VCPU_STATS(), 272 STATS_DESC_COUNTER(VCPU, pf_taken), 273 STATS_DESC_COUNTER(VCPU, pf_fixed), 274 STATS_DESC_COUNTER(VCPU, pf_emulate), 275 STATS_DESC_COUNTER(VCPU, pf_spurious), 276 STATS_DESC_COUNTER(VCPU, pf_fast), 277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 278 STATS_DESC_COUNTER(VCPU, pf_guest), 279 STATS_DESC_COUNTER(VCPU, tlb_flush), 280 STATS_DESC_COUNTER(VCPU, invlpg), 281 STATS_DESC_COUNTER(VCPU, exits), 282 STATS_DESC_COUNTER(VCPU, io_exits), 283 STATS_DESC_COUNTER(VCPU, mmio_exits), 284 STATS_DESC_COUNTER(VCPU, signal_exits), 285 STATS_DESC_COUNTER(VCPU, irq_window_exits), 286 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 287 STATS_DESC_COUNTER(VCPU, l1d_flush), 288 STATS_DESC_COUNTER(VCPU, halt_exits), 289 STATS_DESC_COUNTER(VCPU, request_irq_exits), 290 STATS_DESC_COUNTER(VCPU, irq_exits), 291 STATS_DESC_COUNTER(VCPU, host_state_reload), 292 STATS_DESC_COUNTER(VCPU, fpu_reload), 293 STATS_DESC_COUNTER(VCPU, insn_emulation), 294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 295 STATS_DESC_COUNTER(VCPU, hypercalls), 296 STATS_DESC_COUNTER(VCPU, irq_injections), 297 STATS_DESC_COUNTER(VCPU, nmi_injections), 298 STATS_DESC_COUNTER(VCPU, req_event), 299 STATS_DESC_COUNTER(VCPU, nested_run), 300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 301 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 302 STATS_DESC_COUNTER(VCPU, preemption_reported), 303 STATS_DESC_COUNTER(VCPU, preemption_other), 304 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 305 STATS_DESC_COUNTER(VCPU, notify_window_exits), 306 }; 307 308 const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315 }; 316 317 u64 __read_mostly host_xcr0; 318 319 static struct kmem_cache *x86_emulator_cache; 320 321 /* 322 * When called, it means the previous get/set msr reached an invalid msr. 323 * Return true if we want to ignore/silent this failed msr access. 324 */ 325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 326 { 327 const char *op = write ? "wrmsr" : "rdmsr"; 328 329 if (ignore_msrs) { 330 if (report_ignored_msrs) 331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 332 op, msr, data); 333 /* Mask the error */ 334 return true; 335 } else { 336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 337 op, msr, data); 338 return false; 339 } 340 } 341 342 static struct kmem_cache *kvm_alloc_emulator_cache(void) 343 { 344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 345 unsigned int size = sizeof(struct x86_emulate_ctxt); 346 347 return kmem_cache_create_usercopy("x86_emulator", size, 348 __alignof__(struct x86_emulate_ctxt), 349 SLAB_ACCOUNT, useroffset, 350 size - useroffset, NULL); 351 } 352 353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 354 355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 356 { 357 int i; 358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 359 vcpu->arch.apf.gfns[i] = ~0; 360 } 361 362 static void kvm_on_user_return(struct user_return_notifier *urn) 363 { 364 unsigned slot; 365 struct kvm_user_return_msrs *msrs 366 = container_of(urn, struct kvm_user_return_msrs, urn); 367 struct kvm_user_return_msr_values *values; 368 unsigned long flags; 369 370 /* 371 * Disabling irqs at this point since the following code could be 372 * interrupted and executed through kvm_arch_hardware_disable() 373 */ 374 local_irq_save(flags); 375 if (msrs->registered) { 376 msrs->registered = false; 377 user_return_notifier_unregister(urn); 378 } 379 local_irq_restore(flags); 380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 381 values = &msrs->values[slot]; 382 if (values->host != values->curr) { 383 wrmsrl(kvm_uret_msrs_list[slot], values->host); 384 values->curr = values->host; 385 } 386 } 387 } 388 389 static int kvm_probe_user_return_msr(u32 msr) 390 { 391 u64 val; 392 int ret; 393 394 preempt_disable(); 395 ret = rdmsrl_safe(msr, &val); 396 if (ret) 397 goto out; 398 ret = wrmsrl_safe(msr, val); 399 out: 400 preempt_enable(); 401 return ret; 402 } 403 404 int kvm_add_user_return_msr(u32 msr) 405 { 406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 407 408 if (kvm_probe_user_return_msr(msr)) 409 return -1; 410 411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 412 return kvm_nr_uret_msrs++; 413 } 414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 415 416 int kvm_find_user_return_msr(u32 msr) 417 { 418 int i; 419 420 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 421 if (kvm_uret_msrs_list[i] == msr) 422 return i; 423 } 424 return -1; 425 } 426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 427 428 static void kvm_user_return_msr_cpu_online(void) 429 { 430 unsigned int cpu = smp_processor_id(); 431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 432 u64 value; 433 int i; 434 435 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 436 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 437 msrs->values[i].host = value; 438 msrs->values[i].curr = value; 439 } 440 } 441 442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 443 { 444 unsigned int cpu = smp_processor_id(); 445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 446 int err; 447 448 value = (value & mask) | (msrs->values[slot].host & ~mask); 449 if (value == msrs->values[slot].curr) 450 return 0; 451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 452 if (err) 453 return 1; 454 455 msrs->values[slot].curr = value; 456 if (!msrs->registered) { 457 msrs->urn.on_user_return = kvm_on_user_return; 458 user_return_notifier_register(&msrs->urn); 459 msrs->registered = true; 460 } 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 464 465 static void drop_user_return_notifiers(void) 466 { 467 unsigned int cpu = smp_processor_id(); 468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 469 470 if (msrs->registered) 471 kvm_on_user_return(&msrs->urn); 472 } 473 474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 475 { 476 return vcpu->arch.apic_base; 477 } 478 479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 480 { 481 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 482 } 483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 484 485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 486 { 487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 491 492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 493 return 1; 494 if (!msr_info->host_initiated) { 495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 496 return 1; 497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 498 return 1; 499 } 500 501 kvm_lapic_set_base(vcpu, msr_info->data); 502 kvm_recalculate_apic_map(vcpu->kvm); 503 return 0; 504 } 505 506 /* 507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 508 * 509 * Hardware virtualization extension instructions may fault if a reboot turns 510 * off virtualization while processes are running. Usually after catching the 511 * fault we just panic; during reboot instead the instruction is ignored. 512 */ 513 noinstr void kvm_spurious_fault(void) 514 { 515 /* Fault while not rebooting. We want the trace. */ 516 BUG_ON(!kvm_rebooting); 517 } 518 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 519 520 #define EXCPT_BENIGN 0 521 #define EXCPT_CONTRIBUTORY 1 522 #define EXCPT_PF 2 523 524 static int exception_class(int vector) 525 { 526 switch (vector) { 527 case PF_VECTOR: 528 return EXCPT_PF; 529 case DE_VECTOR: 530 case TS_VECTOR: 531 case NP_VECTOR: 532 case SS_VECTOR: 533 case GP_VECTOR: 534 return EXCPT_CONTRIBUTORY; 535 default: 536 break; 537 } 538 return EXCPT_BENIGN; 539 } 540 541 #define EXCPT_FAULT 0 542 #define EXCPT_TRAP 1 543 #define EXCPT_ABORT 2 544 #define EXCPT_INTERRUPT 3 545 #define EXCPT_DB 4 546 547 static int exception_type(int vector) 548 { 549 unsigned int mask; 550 551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 552 return EXCPT_INTERRUPT; 553 554 mask = 1 << vector; 555 556 /* 557 * #DBs can be trap-like or fault-like, the caller must check other CPU 558 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 559 */ 560 if (mask & (1 << DB_VECTOR)) 561 return EXCPT_DB; 562 563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 564 return EXCPT_TRAP; 565 566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 567 return EXCPT_ABORT; 568 569 /* Reserved exceptions will result in fault */ 570 return EXCPT_FAULT; 571 } 572 573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 574 struct kvm_queued_exception *ex) 575 { 576 if (!ex->has_payload) 577 return; 578 579 switch (ex->vector) { 580 case DB_VECTOR: 581 /* 582 * "Certain debug exceptions may clear bit 0-3. The 583 * remaining contents of the DR6 register are never 584 * cleared by the processor". 585 */ 586 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 587 /* 588 * In order to reflect the #DB exception payload in guest 589 * dr6, three components need to be considered: active low 590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 591 * DR6_BS and DR6_BT) 592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 593 * In the target guest dr6: 594 * FIXED_1 bits should always be set. 595 * Active low bits should be cleared if 1-setting in payload. 596 * Active high bits should be set if 1-setting in payload. 597 * 598 * Note, the payload is compatible with the pending debug 599 * exceptions/exit qualification under VMX, that active_low bits 600 * are active high in payload. 601 * So they need to be flipped for DR6. 602 */ 603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 604 vcpu->arch.dr6 |= ex->payload; 605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 606 607 /* 608 * The #DB payload is defined as compatible with the 'pending 609 * debug exceptions' field under VMX, not DR6. While bit 12 is 610 * defined in the 'pending debug exceptions' field (enabled 611 * breakpoint), it is reserved and must be zero in DR6. 612 */ 613 vcpu->arch.dr6 &= ~BIT(12); 614 break; 615 case PF_VECTOR: 616 vcpu->arch.cr2 = ex->payload; 617 break; 618 } 619 620 ex->has_payload = false; 621 ex->payload = 0; 622 } 623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 624 625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 626 bool has_error_code, u32 error_code, 627 bool has_payload, unsigned long payload) 628 { 629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 630 631 ex->vector = vector; 632 ex->injected = false; 633 ex->pending = true; 634 ex->has_error_code = has_error_code; 635 ex->error_code = error_code; 636 ex->has_payload = has_payload; 637 ex->payload = payload; 638 } 639 640 /* Forcibly leave the nested mode in cases like a vCPU reset */ 641 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 642 { 643 kvm_x86_ops.nested_ops->leave_nested(vcpu); 644 } 645 646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 647 unsigned nr, bool has_error, u32 error_code, 648 bool has_payload, unsigned long payload, bool reinject) 649 { 650 u32 prev_nr; 651 int class1, class2; 652 653 kvm_make_request(KVM_REQ_EVENT, vcpu); 654 655 /* 656 * If the exception is destined for L2 and isn't being reinjected, 657 * morph it to a VM-Exit if L1 wants to intercept the exception. A 658 * previously injected exception is not checked because it was checked 659 * when it was original queued, and re-checking is incorrect if _L1_ 660 * injected the exception, in which case it's exempt from interception. 661 */ 662 if (!reinject && is_guest_mode(vcpu) && 663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 665 has_payload, payload); 666 return; 667 } 668 669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 670 queue: 671 if (reinject) { 672 /* 673 * On VM-Entry, an exception can be pending if and only 674 * if event injection was blocked by nested_run_pending. 675 * In that case, however, vcpu_enter_guest() requests an 676 * immediate exit, and the guest shouldn't proceed far 677 * enough to need reinjection. 678 */ 679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 680 vcpu->arch.exception.injected = true; 681 if (WARN_ON_ONCE(has_payload)) { 682 /* 683 * A reinjected event has already 684 * delivered its payload. 685 */ 686 has_payload = false; 687 payload = 0; 688 } 689 } else { 690 vcpu->arch.exception.pending = true; 691 vcpu->arch.exception.injected = false; 692 } 693 vcpu->arch.exception.has_error_code = has_error; 694 vcpu->arch.exception.vector = nr; 695 vcpu->arch.exception.error_code = error_code; 696 vcpu->arch.exception.has_payload = has_payload; 697 vcpu->arch.exception.payload = payload; 698 if (!is_guest_mode(vcpu)) 699 kvm_deliver_exception_payload(vcpu, 700 &vcpu->arch.exception); 701 return; 702 } 703 704 /* to check exception */ 705 prev_nr = vcpu->arch.exception.vector; 706 if (prev_nr == DF_VECTOR) { 707 /* triple fault -> shutdown */ 708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 709 return; 710 } 711 class1 = exception_class(prev_nr); 712 class2 = exception_class(nr); 713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 715 /* 716 * Synthesize #DF. Clear the previously injected or pending 717 * exception so as not to incorrectly trigger shutdown. 718 */ 719 vcpu->arch.exception.injected = false; 720 vcpu->arch.exception.pending = false; 721 722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 723 } else { 724 /* replace previous exception with a new one in a hope 725 that instruction re-execution will regenerate lost 726 exception */ 727 goto queue; 728 } 729 } 730 731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 734 } 735 EXPORT_SYMBOL_GPL(kvm_queue_exception); 736 737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 738 { 739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 740 } 741 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 742 743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 744 unsigned long payload) 745 { 746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 747 } 748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 749 750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 751 u32 error_code, unsigned long payload) 752 { 753 kvm_multiple_exception(vcpu, nr, true, error_code, 754 true, payload, false); 755 } 756 757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 758 { 759 if (err) 760 kvm_inject_gp(vcpu, 0); 761 else 762 return kvm_skip_emulated_instruction(vcpu); 763 764 return 1; 765 } 766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 767 768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 769 { 770 if (err) { 771 kvm_inject_gp(vcpu, 0); 772 return 1; 773 } 774 775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 776 EMULTYPE_COMPLETE_USER_EXIT); 777 } 778 779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 780 { 781 ++vcpu->stat.pf_guest; 782 783 /* 784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 785 * whether or not L1 wants to intercept "regular" #PF. 786 */ 787 if (is_guest_mode(vcpu) && fault->async_page_fault) 788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 789 true, fault->error_code, 790 true, fault->address); 791 else 792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 793 fault->address); 794 } 795 796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 797 struct x86_exception *fault) 798 { 799 struct kvm_mmu *fault_mmu; 800 WARN_ON_ONCE(fault->vector != PF_VECTOR); 801 802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 803 vcpu->arch.walk_mmu; 804 805 /* 806 * Invalidate the TLB entry for the faulting address, if it exists, 807 * else the access will fault indefinitely (and to emulate hardware). 808 */ 809 if ((fault->error_code & PFERR_PRESENT_MASK) && 810 !(fault->error_code & PFERR_RSVD_MASK)) 811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 812 KVM_MMU_ROOT_CURRENT); 813 814 fault_mmu->inject_page_fault(vcpu, fault); 815 } 816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 817 818 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 819 { 820 atomic_inc(&vcpu->arch.nmi_queued); 821 kvm_make_request(KVM_REQ_NMI, vcpu); 822 } 823 824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 827 } 828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 829 830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 831 { 832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 833 } 834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 835 836 /* 837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 838 * a #GP and return false. 839 */ 840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 841 { 842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 843 return true; 844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 845 return false; 846 } 847 848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 849 { 850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 851 return true; 852 853 kvm_queue_exception(vcpu, UD_VECTOR); 854 return false; 855 } 856 EXPORT_SYMBOL_GPL(kvm_require_dr); 857 858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 859 { 860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 861 } 862 863 /* 864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 865 */ 866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 867 { 868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 870 gpa_t real_gpa; 871 int i; 872 int ret; 873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 874 875 /* 876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 877 * to an L1 GPA. 878 */ 879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 881 if (real_gpa == INVALID_GPA) 882 return 0; 883 884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 886 cr3 & GENMASK(11, 5), sizeof(pdpte)); 887 if (ret < 0) 888 return 0; 889 890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 891 if ((pdpte[i] & PT_PRESENT_MASK) && 892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 893 return 0; 894 } 895 } 896 897 /* 898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 899 * Shadow page roots need to be reconstructed instead. 900 */ 901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 903 904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 907 vcpu->arch.pdptrs_from_userspace = false; 908 909 return 1; 910 } 911 EXPORT_SYMBOL_GPL(load_pdptrs); 912 913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 914 { 915 #ifdef CONFIG_X86_64 916 if (cr0 & 0xffffffff00000000UL) 917 return false; 918 #endif 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return false; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return false; 925 926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 927 } 928 929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 930 { 931 /* 932 * CR0.WP is incorporated into the MMU role, but only for non-nested, 933 * indirect shadow MMUs. If paging is disabled, no updates are needed 934 * as there are no permission bits to emulate. If TDP is enabled, the 935 * MMU's metadata needs to be updated, e.g. so that emulating guest 936 * translations does the right thing, but there's no need to unload the 937 * root as CR0.WP doesn't affect SPTEs. 938 */ 939 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 940 if (!(cr0 & X86_CR0_PG)) 941 return; 942 943 if (tdp_enabled) { 944 kvm_init_mmu(vcpu); 945 return; 946 } 947 } 948 949 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 950 kvm_clear_async_pf_completion_queue(vcpu); 951 kvm_async_pf_hash_reset(vcpu); 952 953 /* 954 * Clearing CR0.PG is defined to flush the TLB from the guest's 955 * perspective. 956 */ 957 if (!(cr0 & X86_CR0_PG)) 958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 959 } 960 961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 962 kvm_mmu_reset_context(vcpu); 963 964 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 965 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) && 966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 968 } 969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 970 971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 972 { 973 unsigned long old_cr0 = kvm_read_cr0(vcpu); 974 975 if (!kvm_is_valid_cr0(vcpu, cr0)) 976 return 1; 977 978 cr0 |= X86_CR0_ET; 979 980 /* Write to CR0 reserved bits are ignored, even on Intel. */ 981 cr0 &= ~CR0_RESERVED_BITS; 982 983 #ifdef CONFIG_X86_64 984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 985 (cr0 & X86_CR0_PG)) { 986 int cs_db, cs_l; 987 988 if (!is_pae(vcpu)) 989 return 1; 990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 991 if (cs_l) 992 return 1; 993 } 994 #endif 995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if (!(cr0 & X86_CR0_PG) && 1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1002 return 1; 1003 1004 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1005 1006 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1007 1008 return 0; 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1011 1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1013 { 1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1015 } 1016 EXPORT_SYMBOL_GPL(kvm_lmsw); 1017 1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1019 { 1020 if (vcpu->arch.guest_state_protected) 1021 return; 1022 1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1027 1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1031 } 1032 1033 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1034 vcpu->arch.pkru != vcpu->arch.host_pkru && 1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1037 write_pkru(vcpu->arch.pkru); 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1040 1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1042 { 1043 if (vcpu->arch.guest_state_protected) 1044 return; 1045 1046 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1049 vcpu->arch.pkru = rdpkru(); 1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1051 write_pkru(vcpu->arch.host_pkru); 1052 } 1053 1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1055 1056 if (vcpu->arch.xcr0 != host_xcr0) 1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1058 1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1060 vcpu->arch.ia32_xss != host_xss) 1061 wrmsrl(MSR_IA32_XSS, host_xss); 1062 } 1063 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1066 1067 #ifdef CONFIG_X86_64 1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1069 { 1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1071 } 1072 #endif 1073 1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1075 { 1076 u64 xcr0 = xcr; 1077 u64 old_xcr0 = vcpu->arch.xcr0; 1078 u64 valid_bits; 1079 1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1081 if (index != XCR_XFEATURE_ENABLED_MASK) 1082 return 1; 1083 if (!(xcr0 & XFEATURE_MASK_FP)) 1084 return 1; 1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1086 return 1; 1087 1088 /* 1089 * Do not allow the guest to set bits that we do not support 1090 * saving. However, xcr0 bit 0 is always set, even if the 1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1092 */ 1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1094 if (xcr0 & ~valid_bits) 1095 return 1; 1096 1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1098 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1099 return 1; 1100 1101 if (xcr0 & XFEATURE_MASK_AVX512) { 1102 if (!(xcr0 & XFEATURE_MASK_YMM)) 1103 return 1; 1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1105 return 1; 1106 } 1107 1108 if ((xcr0 & XFEATURE_MASK_XTILE) && 1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1110 return 1; 1111 1112 vcpu->arch.xcr0 = xcr0; 1113 1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1115 kvm_update_cpuid_runtime(vcpu); 1116 return 0; 1117 } 1118 1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1120 { 1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 1128 return kvm_skip_emulated_instruction(vcpu); 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1131 1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1133 { 1134 if (cr4 & cr4_reserved_bits) 1135 return false; 1136 1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1138 return false; 1139 1140 return true; 1141 } 1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1143 1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1145 { 1146 return __kvm_is_valid_cr4(vcpu, cr4) && 1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1148 } 1149 1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1151 { 1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1153 kvm_mmu_reset_context(vcpu); 1154 1155 /* 1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1157 * according to the SDM; however, stale prev_roots could be reused 1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1161 * so fall through. 1162 */ 1163 if (!tdp_enabled && 1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1165 kvm_mmu_unload(vcpu); 1166 1167 /* 1168 * The TLB has to be flushed for all PCIDs if any of the following 1169 * (architecturally required) changes happen: 1170 * - CR4.PCIDE is changed from 1 to 0 1171 * - CR4.PGE is toggled 1172 * 1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1174 */ 1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1178 1179 /* 1180 * The TLB has to be flushed for the current PCID if any of the 1181 * following (architecturally required) changes happen: 1182 * - CR4.SMEP is changed from 0 to 1 1183 * - CR4.PAE is toggled 1184 */ 1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1188 1189 } 1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1191 1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1193 { 1194 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1195 1196 if (!kvm_is_valid_cr4(vcpu, cr4)) 1197 return 1; 1198 1199 if (is_long_mode(vcpu)) { 1200 if (!(cr4 & X86_CR4_PAE)) 1201 return 1; 1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1203 return 1; 1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1207 return 1; 1208 1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1212 return 1; 1213 } 1214 1215 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1216 1217 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1222 1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1224 { 1225 struct kvm_mmu *mmu = vcpu->arch.mmu; 1226 unsigned long roots_to_free = 0; 1227 int i; 1228 1229 /* 1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1232 * also via the emulator. KVM's TDP page tables are not in the scope of 1233 * the invalidation, but the guest's TLB entries need to be flushed as 1234 * the CPU may have cached entries in its TLB for the target PCID. 1235 */ 1236 if (unlikely(tdp_enabled)) { 1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1238 return; 1239 } 1240 1241 /* 1242 * If neither the current CR3 nor any of the prev_roots use the given 1243 * PCID, then nothing needs to be done here because a resync will 1244 * happen anyway before switching to any other CR3. 1245 */ 1246 if (kvm_get_active_pcid(vcpu) == pcid) { 1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1249 } 1250 1251 /* 1252 * If PCID is disabled, there is no need to free prev_roots even if the 1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1254 * with PCIDE=0. 1255 */ 1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1257 return; 1258 1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1262 1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1264 } 1265 1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1267 { 1268 bool skip_tlb_flush = false; 1269 unsigned long pcid = 0; 1270 #ifdef CONFIG_X86_64 1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1273 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1274 pcid = cr3 & X86_CR3_PCID_MASK; 1275 } 1276 #endif 1277 1278 /* PDPTRs are always reloaded for PAE paging. */ 1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1280 goto handle_tlb_flush; 1281 1282 /* 1283 * Do not condition the GPA check on long mode, this helper is used to 1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1285 * the current vCPU mode is accurate. 1286 */ 1287 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1288 return 1; 1289 1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1291 return 1; 1292 1293 if (cr3 != kvm_read_cr3(vcpu)) 1294 kvm_mmu_new_pgd(vcpu, cr3); 1295 1296 vcpu->arch.cr3 = cr3; 1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1299 1300 handle_tlb_flush: 1301 /* 1302 * A load of CR3 that flushes the TLB flushes only the current PCID, 1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1304 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1305 * and it's impossible to use a non-zero PCID when PCID is disabled, 1306 * i.e. only PCID=0 can be relevant. 1307 */ 1308 if (!skip_tlb_flush) 1309 kvm_invalidate_pcid(vcpu, pcid); 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1314 1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1316 { 1317 if (cr8 & CR8_RESERVED_BITS) 1318 return 1; 1319 if (lapic_in_kernel(vcpu)) 1320 kvm_lapic_set_tpr(vcpu, cr8); 1321 else 1322 vcpu->arch.cr8 = cr8; 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1326 1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1328 { 1329 if (lapic_in_kernel(vcpu)) 1330 return kvm_lapic_get_cr8(vcpu); 1331 else 1332 return vcpu->arch.cr8; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1335 1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1337 { 1338 int i; 1339 1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1341 for (i = 0; i < KVM_NR_DB_REGS; i++) 1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1343 } 1344 } 1345 1346 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1347 { 1348 unsigned long dr7; 1349 1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1351 dr7 = vcpu->arch.guest_debug_dr7; 1352 else 1353 dr7 = vcpu->arch.dr7; 1354 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1356 if (dr7 & DR7_BP_EN_MASK) 1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1358 } 1359 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1360 1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1362 { 1363 u64 fixed = DR6_FIXED_1; 1364 1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1366 fixed |= DR6_RTM; 1367 1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1369 fixed |= DR6_BUS_LOCK; 1370 return fixed; 1371 } 1372 1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1374 { 1375 size_t size = ARRAY_SIZE(vcpu->arch.db); 1376 1377 switch (dr) { 1378 case 0 ... 3: 1379 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1381 vcpu->arch.eff_db[dr] = val; 1382 break; 1383 case 4: 1384 case 6: 1385 if (!kvm_dr6_valid(val)) 1386 return 1; /* #GP */ 1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1388 break; 1389 case 5: 1390 default: /* 7 */ 1391 if (!kvm_dr7_valid(val)) 1392 return 1; /* #GP */ 1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1394 kvm_update_dr7(vcpu); 1395 break; 1396 } 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_set_dr); 1401 1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1403 { 1404 size_t size = ARRAY_SIZE(vcpu->arch.db); 1405 1406 switch (dr) { 1407 case 0 ... 3: 1408 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1409 break; 1410 case 4: 1411 case 6: 1412 *val = vcpu->arch.dr6; 1413 break; 1414 case 5: 1415 default: /* 7 */ 1416 *val = vcpu->arch.dr7; 1417 break; 1418 } 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_get_dr); 1421 1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1423 { 1424 u32 ecx = kvm_rcx_read(vcpu); 1425 u64 data; 1426 1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1428 kvm_inject_gp(vcpu, 0); 1429 return 1; 1430 } 1431 1432 kvm_rax_write(vcpu, (u32)data); 1433 kvm_rdx_write(vcpu, data >> 32); 1434 return kvm_skip_emulated_instruction(vcpu); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1437 1438 /* 1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1443 * MSRs that KVM emulates without strictly requiring host support. 1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1446 * msrs_to_save and emulated_msrs. 1447 */ 1448 1449 static const u32 msrs_to_save_base[] = { 1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1451 MSR_STAR, 1452 #ifdef CONFIG_X86_64 1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1454 #endif 1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1464 MSR_IA32_UMWAIT_CONTROL, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static const u32 msrs_to_save_pmu[] = { 1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1475 1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1485 1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1488 1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1494 1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1498 }; 1499 1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1501 ARRAY_SIZE(msrs_to_save_pmu)]; 1502 static unsigned num_msrs_to_save; 1503 1504 static const u32 emulated_msrs_all[] = { 1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1507 1508 #ifdef CONFIG_KVM_HYPERV 1509 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1510 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1511 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1512 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1513 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1514 HV_X64_MSR_RESET, 1515 HV_X64_MSR_VP_INDEX, 1516 HV_X64_MSR_VP_RUNTIME, 1517 HV_X64_MSR_SCONTROL, 1518 HV_X64_MSR_STIMER0_CONFIG, 1519 HV_X64_MSR_VP_ASSIST_PAGE, 1520 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1521 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1522 HV_X64_MSR_SYNDBG_OPTIONS, 1523 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1524 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1525 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1526 #endif 1527 1528 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1529 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1530 1531 MSR_IA32_TSC_ADJUST, 1532 MSR_IA32_TSC_DEADLINE, 1533 MSR_IA32_ARCH_CAPABILITIES, 1534 MSR_IA32_PERF_CAPABILITIES, 1535 MSR_IA32_MISC_ENABLE, 1536 MSR_IA32_MCG_STATUS, 1537 MSR_IA32_MCG_CTL, 1538 MSR_IA32_MCG_EXT_CTL, 1539 MSR_IA32_SMBASE, 1540 MSR_SMI_COUNT, 1541 MSR_PLATFORM_INFO, 1542 MSR_MISC_FEATURES_ENABLES, 1543 MSR_AMD64_VIRT_SPEC_CTRL, 1544 MSR_AMD64_TSC_RATIO, 1545 MSR_IA32_POWER_CTL, 1546 MSR_IA32_UCODE_REV, 1547 1548 /* 1549 * KVM always supports the "true" VMX control MSRs, even if the host 1550 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1551 * doesn't strictly require them to exist in the host (ignoring that 1552 * KVM would refuse to load in the first place if the core set of MSRs 1553 * aren't supported). 1554 */ 1555 MSR_IA32_VMX_BASIC, 1556 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1557 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1558 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1559 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1560 MSR_IA32_VMX_MISC, 1561 MSR_IA32_VMX_CR0_FIXED0, 1562 MSR_IA32_VMX_CR4_FIXED0, 1563 MSR_IA32_VMX_VMCS_ENUM, 1564 MSR_IA32_VMX_PROCBASED_CTLS2, 1565 MSR_IA32_VMX_EPT_VPID_CAP, 1566 MSR_IA32_VMX_VMFUNC, 1567 1568 MSR_K7_HWCR, 1569 MSR_KVM_POLL_CONTROL, 1570 }; 1571 1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1573 static unsigned num_emulated_msrs; 1574 1575 /* 1576 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1577 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1578 * feature MSRs, but are handled separately to allow expedited lookups. 1579 */ 1580 static const u32 msr_based_features_all_except_vmx[] = { 1581 MSR_AMD64_DE_CFG, 1582 MSR_IA32_UCODE_REV, 1583 MSR_IA32_ARCH_CAPABILITIES, 1584 MSR_IA32_PERF_CAPABILITIES, 1585 }; 1586 1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1588 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1589 static unsigned int num_msr_based_features; 1590 1591 /* 1592 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1593 * patch, are immutable once the vCPU model is defined. 1594 */ 1595 static bool kvm_is_immutable_feature_msr(u32 msr) 1596 { 1597 int i; 1598 1599 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1600 return true; 1601 1602 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1603 if (msr == msr_based_features_all_except_vmx[i]) 1604 return msr != MSR_IA32_UCODE_REV; 1605 } 1606 1607 return false; 1608 } 1609 1610 /* 1611 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1612 * does not yet virtualize. These include: 1613 * 10 - MISC_PACKAGE_CTRLS 1614 * 11 - ENERGY_FILTERING_CTL 1615 * 12 - DOITM 1616 * 18 - FB_CLEAR_CTRL 1617 * 21 - XAPIC_DISABLE_STATUS 1618 * 23 - OVERCLOCKING_STATUS 1619 */ 1620 1621 #define KVM_SUPPORTED_ARCH_CAP \ 1622 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1623 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1624 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1625 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1626 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO) 1627 1628 static u64 kvm_get_arch_capabilities(void) 1629 { 1630 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1631 1632 /* 1633 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1634 * the nested hypervisor runs with NX huge pages. If it is not, 1635 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1636 * L1 guests, so it need not worry about its own (L2) guests. 1637 */ 1638 data |= ARCH_CAP_PSCHANGE_MC_NO; 1639 1640 /* 1641 * If we're doing cache flushes (either "always" or "cond") 1642 * we will do one whenever the guest does a vmlaunch/vmresume. 1643 * If an outer hypervisor is doing the cache flush for us 1644 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1645 * capability to the guest too, and if EPT is disabled we're not 1646 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1647 * require a nested hypervisor to do a flush of its own. 1648 */ 1649 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1650 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1651 1652 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1653 data |= ARCH_CAP_RDCL_NO; 1654 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1655 data |= ARCH_CAP_SSB_NO; 1656 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1657 data |= ARCH_CAP_MDS_NO; 1658 1659 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1660 /* 1661 * If RTM=0 because the kernel has disabled TSX, the host might 1662 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1663 * and therefore knows that there cannot be TAA) but keep 1664 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1665 * and we want to allow migrating those guests to tsx=off hosts. 1666 */ 1667 data &= ~ARCH_CAP_TAA_NO; 1668 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1669 data |= ARCH_CAP_TAA_NO; 1670 } else { 1671 /* 1672 * Nothing to do here; we emulate TSX_CTRL if present on the 1673 * host so the guest can choose between disabling TSX or 1674 * using VERW to clear CPU buffers. 1675 */ 1676 } 1677 1678 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1679 data |= ARCH_CAP_GDS_NO; 1680 1681 return data; 1682 } 1683 1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1685 { 1686 switch (msr->index) { 1687 case MSR_IA32_ARCH_CAPABILITIES: 1688 msr->data = kvm_get_arch_capabilities(); 1689 break; 1690 case MSR_IA32_PERF_CAPABILITIES: 1691 msr->data = kvm_caps.supported_perf_cap; 1692 break; 1693 case MSR_IA32_UCODE_REV: 1694 rdmsrl_safe(msr->index, &msr->data); 1695 break; 1696 default: 1697 return static_call(kvm_x86_get_msr_feature)(msr); 1698 } 1699 return 0; 1700 } 1701 1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1703 { 1704 struct kvm_msr_entry msr; 1705 int r; 1706 1707 /* Unconditionally clear the output for simplicity */ 1708 msr.data = 0; 1709 msr.index = index; 1710 r = kvm_get_msr_feature(&msr); 1711 1712 if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false)) 1713 r = 0; 1714 1715 *data = msr.data; 1716 1717 return r; 1718 } 1719 1720 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1721 { 1722 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1723 return false; 1724 1725 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1726 return false; 1727 1728 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1729 return false; 1730 1731 if (efer & (EFER_LME | EFER_LMA) && 1732 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1733 return false; 1734 1735 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1736 return false; 1737 1738 return true; 1739 1740 } 1741 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1742 { 1743 if (efer & efer_reserved_bits) 1744 return false; 1745 1746 return __kvm_valid_efer(vcpu, efer); 1747 } 1748 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1749 1750 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1751 { 1752 u64 old_efer = vcpu->arch.efer; 1753 u64 efer = msr_info->data; 1754 int r; 1755 1756 if (efer & efer_reserved_bits) 1757 return 1; 1758 1759 if (!msr_info->host_initiated) { 1760 if (!__kvm_valid_efer(vcpu, efer)) 1761 return 1; 1762 1763 if (is_paging(vcpu) && 1764 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1765 return 1; 1766 } 1767 1768 efer &= ~EFER_LMA; 1769 efer |= vcpu->arch.efer & EFER_LMA; 1770 1771 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1772 if (r) { 1773 WARN_ON(r > 0); 1774 return r; 1775 } 1776 1777 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1778 kvm_mmu_reset_context(vcpu); 1779 1780 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1781 (efer & EFER_SVME)) 1782 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1783 1784 return 0; 1785 } 1786 1787 void kvm_enable_efer_bits(u64 mask) 1788 { 1789 efer_reserved_bits &= ~mask; 1790 } 1791 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1792 1793 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1794 { 1795 struct kvm_x86_msr_filter *msr_filter; 1796 struct msr_bitmap_range *ranges; 1797 struct kvm *kvm = vcpu->kvm; 1798 bool allowed; 1799 int idx; 1800 u32 i; 1801 1802 /* x2APIC MSRs do not support filtering. */ 1803 if (index >= 0x800 && index <= 0x8ff) 1804 return true; 1805 1806 idx = srcu_read_lock(&kvm->srcu); 1807 1808 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1809 if (!msr_filter) { 1810 allowed = true; 1811 goto out; 1812 } 1813 1814 allowed = msr_filter->default_allow; 1815 ranges = msr_filter->ranges; 1816 1817 for (i = 0; i < msr_filter->count; i++) { 1818 u32 start = ranges[i].base; 1819 u32 end = start + ranges[i].nmsrs; 1820 u32 flags = ranges[i].flags; 1821 unsigned long *bitmap = ranges[i].bitmap; 1822 1823 if ((index >= start) && (index < end) && (flags & type)) { 1824 allowed = test_bit(index - start, bitmap); 1825 break; 1826 } 1827 } 1828 1829 out: 1830 srcu_read_unlock(&kvm->srcu, idx); 1831 1832 return allowed; 1833 } 1834 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1835 1836 /* 1837 * Write @data into the MSR specified by @index. Select MSR specific fault 1838 * checks are bypassed if @host_initiated is %true. 1839 * Returns 0 on success, non-0 otherwise. 1840 * Assumes vcpu_load() was already called. 1841 */ 1842 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1843 bool host_initiated) 1844 { 1845 struct msr_data msr; 1846 1847 switch (index) { 1848 case MSR_FS_BASE: 1849 case MSR_GS_BASE: 1850 case MSR_KERNEL_GS_BASE: 1851 case MSR_CSTAR: 1852 case MSR_LSTAR: 1853 if (is_noncanonical_address(data, vcpu)) 1854 return 1; 1855 break; 1856 case MSR_IA32_SYSENTER_EIP: 1857 case MSR_IA32_SYSENTER_ESP: 1858 /* 1859 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1860 * non-canonical address is written on Intel but not on 1861 * AMD (which ignores the top 32-bits, because it does 1862 * not implement 64-bit SYSENTER). 1863 * 1864 * 64-bit code should hence be able to write a non-canonical 1865 * value on AMD. Making the address canonical ensures that 1866 * vmentry does not fail on Intel after writing a non-canonical 1867 * value, and that something deterministic happens if the guest 1868 * invokes 64-bit SYSENTER. 1869 */ 1870 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1871 break; 1872 case MSR_TSC_AUX: 1873 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1874 return 1; 1875 1876 if (!host_initiated && 1877 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1878 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1879 return 1; 1880 1881 /* 1882 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1883 * incomplete and conflicting architectural behavior. Current 1884 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1885 * reserved and always read as zeros. Enforce Intel's reserved 1886 * bits check if and only if the guest CPU is Intel, and clear 1887 * the bits in all other cases. This ensures cross-vendor 1888 * migration will provide consistent behavior for the guest. 1889 */ 1890 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1891 return 1; 1892 1893 data = (u32)data; 1894 break; 1895 } 1896 1897 msr.data = data; 1898 msr.index = index; 1899 msr.host_initiated = host_initiated; 1900 1901 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1902 } 1903 1904 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1905 u32 index, u64 data, bool host_initiated) 1906 { 1907 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1908 1909 if (ret == KVM_MSR_RET_INVALID) 1910 if (kvm_msr_ignored_check(index, data, true)) 1911 ret = 0; 1912 1913 return ret; 1914 } 1915 1916 /* 1917 * Read the MSR specified by @index into @data. Select MSR specific fault 1918 * checks are bypassed if @host_initiated is %true. 1919 * Returns 0 on success, non-0 otherwise. 1920 * Assumes vcpu_load() was already called. 1921 */ 1922 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1923 bool host_initiated) 1924 { 1925 struct msr_data msr; 1926 int ret; 1927 1928 switch (index) { 1929 case MSR_TSC_AUX: 1930 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1931 return 1; 1932 1933 if (!host_initiated && 1934 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1935 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1936 return 1; 1937 break; 1938 } 1939 1940 msr.index = index; 1941 msr.host_initiated = host_initiated; 1942 1943 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1944 if (!ret) 1945 *data = msr.data; 1946 return ret; 1947 } 1948 1949 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1950 u32 index, u64 *data, bool host_initiated) 1951 { 1952 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1953 1954 if (ret == KVM_MSR_RET_INVALID) { 1955 /* Unconditionally clear *data for simplicity */ 1956 *data = 0; 1957 if (kvm_msr_ignored_check(index, 0, false)) 1958 ret = 0; 1959 } 1960 1961 return ret; 1962 } 1963 1964 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1965 { 1966 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1967 return KVM_MSR_RET_FILTERED; 1968 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1969 } 1970 1971 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1972 { 1973 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1974 return KVM_MSR_RET_FILTERED; 1975 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1976 } 1977 1978 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1979 { 1980 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1981 } 1982 EXPORT_SYMBOL_GPL(kvm_get_msr); 1983 1984 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1985 { 1986 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1987 } 1988 EXPORT_SYMBOL_GPL(kvm_set_msr); 1989 1990 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1991 { 1992 if (!vcpu->run->msr.error) { 1993 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1994 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1995 } 1996 } 1997 1998 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1999 { 2000 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2001 } 2002 2003 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2004 { 2005 complete_userspace_rdmsr(vcpu); 2006 return complete_emulated_msr_access(vcpu); 2007 } 2008 2009 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2010 { 2011 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2012 } 2013 2014 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2015 { 2016 complete_userspace_rdmsr(vcpu); 2017 return complete_fast_msr_access(vcpu); 2018 } 2019 2020 static u64 kvm_msr_reason(int r) 2021 { 2022 switch (r) { 2023 case KVM_MSR_RET_INVALID: 2024 return KVM_MSR_EXIT_REASON_UNKNOWN; 2025 case KVM_MSR_RET_FILTERED: 2026 return KVM_MSR_EXIT_REASON_FILTER; 2027 default: 2028 return KVM_MSR_EXIT_REASON_INVAL; 2029 } 2030 } 2031 2032 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2033 u32 exit_reason, u64 data, 2034 int (*completion)(struct kvm_vcpu *vcpu), 2035 int r) 2036 { 2037 u64 msr_reason = kvm_msr_reason(r); 2038 2039 /* Check if the user wanted to know about this MSR fault */ 2040 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2041 return 0; 2042 2043 vcpu->run->exit_reason = exit_reason; 2044 vcpu->run->msr.error = 0; 2045 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2046 vcpu->run->msr.reason = msr_reason; 2047 vcpu->run->msr.index = index; 2048 vcpu->run->msr.data = data; 2049 vcpu->arch.complete_userspace_io = completion; 2050 2051 return 1; 2052 } 2053 2054 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2055 { 2056 u32 ecx = kvm_rcx_read(vcpu); 2057 u64 data; 2058 int r; 2059 2060 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2061 2062 if (!r) { 2063 trace_kvm_msr_read(ecx, data); 2064 2065 kvm_rax_write(vcpu, data & -1u); 2066 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2067 } else { 2068 /* MSR read failed? See if we should ask user space */ 2069 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2070 complete_fast_rdmsr, r)) 2071 return 0; 2072 trace_kvm_msr_read_ex(ecx); 2073 } 2074 2075 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2076 } 2077 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2078 2079 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2080 { 2081 u32 ecx = kvm_rcx_read(vcpu); 2082 u64 data = kvm_read_edx_eax(vcpu); 2083 int r; 2084 2085 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2086 2087 if (!r) { 2088 trace_kvm_msr_write(ecx, data); 2089 } else { 2090 /* MSR write failed? See if we should ask user space */ 2091 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2092 complete_fast_msr_access, r)) 2093 return 0; 2094 /* Signal all other negative errors to userspace */ 2095 if (r < 0) 2096 return r; 2097 trace_kvm_msr_write_ex(ecx, data); 2098 } 2099 2100 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2101 } 2102 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2103 2104 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2105 { 2106 return kvm_skip_emulated_instruction(vcpu); 2107 } 2108 2109 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2110 { 2111 /* Treat an INVD instruction as a NOP and just skip it. */ 2112 return kvm_emulate_as_nop(vcpu); 2113 } 2114 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2115 2116 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2117 { 2118 kvm_queue_exception(vcpu, UD_VECTOR); 2119 return 1; 2120 } 2121 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2122 2123 2124 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2125 { 2126 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2127 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2128 return kvm_handle_invalid_op(vcpu); 2129 2130 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2131 return kvm_emulate_as_nop(vcpu); 2132 } 2133 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2134 { 2135 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2136 } 2137 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2138 2139 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2140 { 2141 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2142 } 2143 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2144 2145 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2146 { 2147 xfer_to_guest_mode_prepare(); 2148 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2149 xfer_to_guest_mode_work_pending(); 2150 } 2151 2152 /* 2153 * The fast path for frequent and performance sensitive wrmsr emulation, 2154 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2155 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2156 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2157 * other cases which must be called after interrupts are enabled on the host. 2158 */ 2159 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2160 { 2161 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2162 return 1; 2163 2164 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2165 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2166 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2167 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2168 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2169 2170 return 1; 2171 } 2172 2173 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2174 { 2175 if (!kvm_can_use_hv_timer(vcpu)) 2176 return 1; 2177 2178 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2179 return 0; 2180 } 2181 2182 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2183 { 2184 u32 msr = kvm_rcx_read(vcpu); 2185 u64 data; 2186 fastpath_t ret = EXIT_FASTPATH_NONE; 2187 2188 kvm_vcpu_srcu_read_lock(vcpu); 2189 2190 switch (msr) { 2191 case APIC_BASE_MSR + (APIC_ICR >> 4): 2192 data = kvm_read_edx_eax(vcpu); 2193 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2194 kvm_skip_emulated_instruction(vcpu); 2195 ret = EXIT_FASTPATH_EXIT_HANDLED; 2196 } 2197 break; 2198 case MSR_IA32_TSC_DEADLINE: 2199 data = kvm_read_edx_eax(vcpu); 2200 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2201 kvm_skip_emulated_instruction(vcpu); 2202 ret = EXIT_FASTPATH_REENTER_GUEST; 2203 } 2204 break; 2205 default: 2206 break; 2207 } 2208 2209 if (ret != EXIT_FASTPATH_NONE) 2210 trace_kvm_msr_write(msr, data); 2211 2212 kvm_vcpu_srcu_read_unlock(vcpu); 2213 2214 return ret; 2215 } 2216 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2217 2218 /* 2219 * Adapt set_msr() to msr_io()'s calling convention 2220 */ 2221 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2222 { 2223 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2224 } 2225 2226 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2227 { 2228 u64 val; 2229 2230 /* 2231 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2232 * not support modifying the guest vCPU model on the fly, e.g. changing 2233 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2234 * writes of the same value, e.g. to allow userspace to blindly stuff 2235 * all MSRs when emulating RESET. 2236 */ 2237 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2238 if (do_get_msr(vcpu, index, &val) || *data != val) 2239 return -EINVAL; 2240 2241 return 0; 2242 } 2243 2244 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2245 } 2246 2247 #ifdef CONFIG_X86_64 2248 struct pvclock_clock { 2249 int vclock_mode; 2250 u64 cycle_last; 2251 u64 mask; 2252 u32 mult; 2253 u32 shift; 2254 u64 base_cycles; 2255 u64 offset; 2256 }; 2257 2258 struct pvclock_gtod_data { 2259 seqcount_t seq; 2260 2261 struct pvclock_clock clock; /* extract of a clocksource struct */ 2262 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2263 2264 ktime_t offs_boot; 2265 u64 wall_time_sec; 2266 }; 2267 2268 static struct pvclock_gtod_data pvclock_gtod_data; 2269 2270 static void update_pvclock_gtod(struct timekeeper *tk) 2271 { 2272 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2273 2274 write_seqcount_begin(&vdata->seq); 2275 2276 /* copy pvclock gtod data */ 2277 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2278 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2279 vdata->clock.mask = tk->tkr_mono.mask; 2280 vdata->clock.mult = tk->tkr_mono.mult; 2281 vdata->clock.shift = tk->tkr_mono.shift; 2282 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2283 vdata->clock.offset = tk->tkr_mono.base; 2284 2285 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2286 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2287 vdata->raw_clock.mask = tk->tkr_raw.mask; 2288 vdata->raw_clock.mult = tk->tkr_raw.mult; 2289 vdata->raw_clock.shift = tk->tkr_raw.shift; 2290 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2291 vdata->raw_clock.offset = tk->tkr_raw.base; 2292 2293 vdata->wall_time_sec = tk->xtime_sec; 2294 2295 vdata->offs_boot = tk->offs_boot; 2296 2297 write_seqcount_end(&vdata->seq); 2298 } 2299 2300 static s64 get_kvmclock_base_ns(void) 2301 { 2302 /* Count up from boot time, but with the frequency of the raw clock. */ 2303 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2304 } 2305 #else 2306 static s64 get_kvmclock_base_ns(void) 2307 { 2308 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2309 return ktime_get_boottime_ns(); 2310 } 2311 #endif 2312 2313 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2314 { 2315 int version; 2316 int r; 2317 struct pvclock_wall_clock wc; 2318 u32 wc_sec_hi; 2319 u64 wall_nsec; 2320 2321 if (!wall_clock) 2322 return; 2323 2324 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2325 if (r) 2326 return; 2327 2328 if (version & 1) 2329 ++version; /* first time write, random junk */ 2330 2331 ++version; 2332 2333 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2334 return; 2335 2336 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2337 2338 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2339 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2340 wc.version = version; 2341 2342 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2343 2344 if (sec_hi_ofs) { 2345 wc_sec_hi = wall_nsec >> 32; 2346 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2347 &wc_sec_hi, sizeof(wc_sec_hi)); 2348 } 2349 2350 version++; 2351 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2352 } 2353 2354 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2355 bool old_msr, bool host_initiated) 2356 { 2357 struct kvm_arch *ka = &vcpu->kvm->arch; 2358 2359 if (vcpu->vcpu_id == 0 && !host_initiated) { 2360 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2361 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2362 2363 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2364 } 2365 2366 vcpu->arch.time = system_time; 2367 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2368 2369 /* we verify if the enable bit is set... */ 2370 if (system_time & 1) 2371 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2372 sizeof(struct pvclock_vcpu_time_info)); 2373 else 2374 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2375 2376 return; 2377 } 2378 2379 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2380 { 2381 do_shl32_div32(dividend, divisor); 2382 return dividend; 2383 } 2384 2385 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2386 s8 *pshift, u32 *pmultiplier) 2387 { 2388 uint64_t scaled64; 2389 int32_t shift = 0; 2390 uint64_t tps64; 2391 uint32_t tps32; 2392 2393 tps64 = base_hz; 2394 scaled64 = scaled_hz; 2395 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2396 tps64 >>= 1; 2397 shift--; 2398 } 2399 2400 tps32 = (uint32_t)tps64; 2401 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2402 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2403 scaled64 >>= 1; 2404 else 2405 tps32 <<= 1; 2406 shift++; 2407 } 2408 2409 *pshift = shift; 2410 *pmultiplier = div_frac(scaled64, tps32); 2411 } 2412 2413 #ifdef CONFIG_X86_64 2414 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2415 #endif 2416 2417 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2418 static unsigned long max_tsc_khz; 2419 2420 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2421 { 2422 u64 v = (u64)khz * (1000000 + ppm); 2423 do_div(v, 1000000); 2424 return v; 2425 } 2426 2427 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2428 2429 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2430 { 2431 u64 ratio; 2432 2433 /* Guest TSC same frequency as host TSC? */ 2434 if (!scale) { 2435 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2436 return 0; 2437 } 2438 2439 /* TSC scaling supported? */ 2440 if (!kvm_caps.has_tsc_control) { 2441 if (user_tsc_khz > tsc_khz) { 2442 vcpu->arch.tsc_catchup = 1; 2443 vcpu->arch.tsc_always_catchup = 1; 2444 return 0; 2445 } else { 2446 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2447 return -1; 2448 } 2449 } 2450 2451 /* TSC scaling required - calculate ratio */ 2452 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2453 user_tsc_khz, tsc_khz); 2454 2455 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2456 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2457 user_tsc_khz); 2458 return -1; 2459 } 2460 2461 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2462 return 0; 2463 } 2464 2465 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2466 { 2467 u32 thresh_lo, thresh_hi; 2468 int use_scaling = 0; 2469 2470 /* tsc_khz can be zero if TSC calibration fails */ 2471 if (user_tsc_khz == 0) { 2472 /* set tsc_scaling_ratio to a safe value */ 2473 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2474 return -1; 2475 } 2476 2477 /* Compute a scale to convert nanoseconds in TSC cycles */ 2478 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2479 &vcpu->arch.virtual_tsc_shift, 2480 &vcpu->arch.virtual_tsc_mult); 2481 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2482 2483 /* 2484 * Compute the variation in TSC rate which is acceptable 2485 * within the range of tolerance and decide if the 2486 * rate being applied is within that bounds of the hardware 2487 * rate. If so, no scaling or compensation need be done. 2488 */ 2489 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2490 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2491 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2492 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2493 user_tsc_khz, thresh_lo, thresh_hi); 2494 use_scaling = 1; 2495 } 2496 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2497 } 2498 2499 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2500 { 2501 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2502 vcpu->arch.virtual_tsc_mult, 2503 vcpu->arch.virtual_tsc_shift); 2504 tsc += vcpu->arch.this_tsc_write; 2505 return tsc; 2506 } 2507 2508 #ifdef CONFIG_X86_64 2509 static inline bool gtod_is_based_on_tsc(int mode) 2510 { 2511 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2512 } 2513 #endif 2514 2515 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2516 { 2517 #ifdef CONFIG_X86_64 2518 struct kvm_arch *ka = &vcpu->kvm->arch; 2519 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2520 2521 /* 2522 * To use the masterclock, the host clocksource must be based on TSC 2523 * and all vCPUs must have matching TSCs. Note, the count for matching 2524 * vCPUs doesn't include the reference vCPU, hence "+1". 2525 */ 2526 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2527 atomic_read(&vcpu->kvm->online_vcpus)) && 2528 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2529 2530 /* 2531 * Request a masterclock update if the masterclock needs to be toggled 2532 * on/off, or when starting a new generation and the masterclock is 2533 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2534 * taken _after_ the new generation is created). 2535 */ 2536 if ((ka->use_master_clock && new_generation) || 2537 (ka->use_master_clock != use_master_clock)) 2538 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2539 2540 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2541 atomic_read(&vcpu->kvm->online_vcpus), 2542 ka->use_master_clock, gtod->clock.vclock_mode); 2543 #endif 2544 } 2545 2546 /* 2547 * Multiply tsc by a fixed point number represented by ratio. 2548 * 2549 * The most significant 64-N bits (mult) of ratio represent the 2550 * integral part of the fixed point number; the remaining N bits 2551 * (frac) represent the fractional part, ie. ratio represents a fixed 2552 * point number (mult + frac * 2^(-N)). 2553 * 2554 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2555 */ 2556 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2557 { 2558 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2559 } 2560 2561 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2562 { 2563 u64 _tsc = tsc; 2564 2565 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2566 _tsc = __scale_tsc(ratio, tsc); 2567 2568 return _tsc; 2569 } 2570 2571 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2572 { 2573 u64 tsc; 2574 2575 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2576 2577 return target_tsc - tsc; 2578 } 2579 2580 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2581 { 2582 return vcpu->arch.l1_tsc_offset + 2583 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2584 } 2585 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2586 2587 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2588 { 2589 u64 nested_offset; 2590 2591 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2592 nested_offset = l1_offset; 2593 else 2594 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2595 kvm_caps.tsc_scaling_ratio_frac_bits); 2596 2597 nested_offset += l2_offset; 2598 return nested_offset; 2599 } 2600 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2601 2602 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2603 { 2604 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2605 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2606 kvm_caps.tsc_scaling_ratio_frac_bits); 2607 2608 return l1_multiplier; 2609 } 2610 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2611 2612 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2613 { 2614 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2615 vcpu->arch.l1_tsc_offset, 2616 l1_offset); 2617 2618 vcpu->arch.l1_tsc_offset = l1_offset; 2619 2620 /* 2621 * If we are here because L1 chose not to trap WRMSR to TSC then 2622 * according to the spec this should set L1's TSC (as opposed to 2623 * setting L1's offset for L2). 2624 */ 2625 if (is_guest_mode(vcpu)) 2626 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2627 l1_offset, 2628 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2629 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2630 else 2631 vcpu->arch.tsc_offset = l1_offset; 2632 2633 static_call(kvm_x86_write_tsc_offset)(vcpu); 2634 } 2635 2636 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2637 { 2638 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2639 2640 /* Userspace is changing the multiplier while L2 is active */ 2641 if (is_guest_mode(vcpu)) 2642 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2643 l1_multiplier, 2644 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2645 else 2646 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2647 2648 if (kvm_caps.has_tsc_control) 2649 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2650 } 2651 2652 static inline bool kvm_check_tsc_unstable(void) 2653 { 2654 #ifdef CONFIG_X86_64 2655 /* 2656 * TSC is marked unstable when we're running on Hyper-V, 2657 * 'TSC page' clocksource is good. 2658 */ 2659 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2660 return false; 2661 #endif 2662 return check_tsc_unstable(); 2663 } 2664 2665 /* 2666 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2667 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2668 * participates in. 2669 */ 2670 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2671 u64 ns, bool matched) 2672 { 2673 struct kvm *kvm = vcpu->kvm; 2674 2675 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2676 2677 /* 2678 * We also track th most recent recorded KHZ, write and time to 2679 * allow the matching interval to be extended at each write. 2680 */ 2681 kvm->arch.last_tsc_nsec = ns; 2682 kvm->arch.last_tsc_write = tsc; 2683 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2684 kvm->arch.last_tsc_offset = offset; 2685 2686 vcpu->arch.last_guest_tsc = tsc; 2687 2688 kvm_vcpu_write_tsc_offset(vcpu, offset); 2689 2690 if (!matched) { 2691 /* 2692 * We split periods of matched TSC writes into generations. 2693 * For each generation, we track the original measured 2694 * nanosecond time, offset, and write, so if TSCs are in 2695 * sync, we can match exact offset, and if not, we can match 2696 * exact software computation in compute_guest_tsc() 2697 * 2698 * These values are tracked in kvm->arch.cur_xxx variables. 2699 */ 2700 kvm->arch.cur_tsc_generation++; 2701 kvm->arch.cur_tsc_nsec = ns; 2702 kvm->arch.cur_tsc_write = tsc; 2703 kvm->arch.cur_tsc_offset = offset; 2704 kvm->arch.nr_vcpus_matched_tsc = 0; 2705 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2706 kvm->arch.nr_vcpus_matched_tsc++; 2707 } 2708 2709 /* Keep track of which generation this VCPU has synchronized to */ 2710 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2711 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2712 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2713 2714 kvm_track_tsc_matching(vcpu, !matched); 2715 } 2716 2717 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2718 { 2719 u64 data = user_value ? *user_value : 0; 2720 struct kvm *kvm = vcpu->kvm; 2721 u64 offset, ns, elapsed; 2722 unsigned long flags; 2723 bool matched = false; 2724 bool synchronizing = false; 2725 2726 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2727 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2728 ns = get_kvmclock_base_ns(); 2729 elapsed = ns - kvm->arch.last_tsc_nsec; 2730 2731 if (vcpu->arch.virtual_tsc_khz) { 2732 if (data == 0) { 2733 /* 2734 * Force synchronization when creating a vCPU, or when 2735 * userspace explicitly writes a zero value. 2736 */ 2737 synchronizing = true; 2738 } else if (kvm->arch.user_set_tsc) { 2739 u64 tsc_exp = kvm->arch.last_tsc_write + 2740 nsec_to_cycles(vcpu, elapsed); 2741 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2742 /* 2743 * Here lies UAPI baggage: when a user-initiated TSC write has 2744 * a small delta (1 second) of virtual cycle time against the 2745 * previously set vCPU, we assume that they were intended to be 2746 * in sync and the delta was only due to the racy nature of the 2747 * legacy API. 2748 * 2749 * This trick falls down when restoring a guest which genuinely 2750 * has been running for less time than the 1 second of imprecision 2751 * which we allow for in the legacy API. In this case, the first 2752 * value written by userspace (on any vCPU) should not be subject 2753 * to this 'correction' to make it sync up with values that only 2754 * come from the kernel's default vCPU creation. Make the 1-second 2755 * slop hack only trigger if the user_set_tsc flag is already set. 2756 */ 2757 synchronizing = data < tsc_exp + tsc_hz && 2758 data + tsc_hz > tsc_exp; 2759 } 2760 } 2761 2762 if (user_value) 2763 kvm->arch.user_set_tsc = true; 2764 2765 /* 2766 * For a reliable TSC, we can match TSC offsets, and for an unstable 2767 * TSC, we add elapsed time in this computation. We could let the 2768 * compensation code attempt to catch up if we fall behind, but 2769 * it's better to try to match offsets from the beginning. 2770 */ 2771 if (synchronizing && 2772 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2773 if (!kvm_check_tsc_unstable()) { 2774 offset = kvm->arch.cur_tsc_offset; 2775 } else { 2776 u64 delta = nsec_to_cycles(vcpu, elapsed); 2777 data += delta; 2778 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2779 } 2780 matched = true; 2781 } 2782 2783 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2784 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2785 } 2786 2787 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2788 s64 adjustment) 2789 { 2790 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2791 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2792 } 2793 2794 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2795 { 2796 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2797 WARN_ON(adjustment < 0); 2798 adjustment = kvm_scale_tsc((u64) adjustment, 2799 vcpu->arch.l1_tsc_scaling_ratio); 2800 adjust_tsc_offset_guest(vcpu, adjustment); 2801 } 2802 2803 #ifdef CONFIG_X86_64 2804 2805 static u64 read_tsc(void) 2806 { 2807 u64 ret = (u64)rdtsc_ordered(); 2808 u64 last = pvclock_gtod_data.clock.cycle_last; 2809 2810 if (likely(ret >= last)) 2811 return ret; 2812 2813 /* 2814 * GCC likes to generate cmov here, but this branch is extremely 2815 * predictable (it's just a function of time and the likely is 2816 * very likely) and there's a data dependence, so force GCC 2817 * to generate a branch instead. I don't barrier() because 2818 * we don't actually need a barrier, and if this function 2819 * ever gets inlined it will generate worse code. 2820 */ 2821 asm volatile (""); 2822 return last; 2823 } 2824 2825 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2826 int *mode) 2827 { 2828 u64 tsc_pg_val; 2829 long v; 2830 2831 switch (clock->vclock_mode) { 2832 case VDSO_CLOCKMODE_HVCLOCK: 2833 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2834 tsc_timestamp, &tsc_pg_val)) { 2835 /* TSC page valid */ 2836 *mode = VDSO_CLOCKMODE_HVCLOCK; 2837 v = (tsc_pg_val - clock->cycle_last) & 2838 clock->mask; 2839 } else { 2840 /* TSC page invalid */ 2841 *mode = VDSO_CLOCKMODE_NONE; 2842 } 2843 break; 2844 case VDSO_CLOCKMODE_TSC: 2845 *mode = VDSO_CLOCKMODE_TSC; 2846 *tsc_timestamp = read_tsc(); 2847 v = (*tsc_timestamp - clock->cycle_last) & 2848 clock->mask; 2849 break; 2850 default: 2851 *mode = VDSO_CLOCKMODE_NONE; 2852 } 2853 2854 if (*mode == VDSO_CLOCKMODE_NONE) 2855 *tsc_timestamp = v = 0; 2856 2857 return v * clock->mult; 2858 } 2859 2860 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2861 { 2862 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2863 unsigned long seq; 2864 int mode; 2865 u64 ns; 2866 2867 do { 2868 seq = read_seqcount_begin(>od->seq); 2869 ns = gtod->raw_clock.base_cycles; 2870 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2871 ns >>= gtod->raw_clock.shift; 2872 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2873 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2874 *t = ns; 2875 2876 return mode; 2877 } 2878 2879 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2880 { 2881 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2882 unsigned long seq; 2883 int mode; 2884 u64 ns; 2885 2886 do { 2887 seq = read_seqcount_begin(>od->seq); 2888 ts->tv_sec = gtod->wall_time_sec; 2889 ns = gtod->clock.base_cycles; 2890 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2891 ns >>= gtod->clock.shift; 2892 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2893 2894 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2895 ts->tv_nsec = ns; 2896 2897 return mode; 2898 } 2899 2900 /* returns true if host is using TSC based clocksource */ 2901 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2902 { 2903 /* checked again under seqlock below */ 2904 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2905 return false; 2906 2907 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2908 tsc_timestamp)); 2909 } 2910 2911 /* returns true if host is using TSC based clocksource */ 2912 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2913 u64 *tsc_timestamp) 2914 { 2915 /* checked again under seqlock below */ 2916 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2917 return false; 2918 2919 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2920 } 2921 #endif 2922 2923 /* 2924 * 2925 * Assuming a stable TSC across physical CPUS, and a stable TSC 2926 * across virtual CPUs, the following condition is possible. 2927 * Each numbered line represents an event visible to both 2928 * CPUs at the next numbered event. 2929 * 2930 * "timespecX" represents host monotonic time. "tscX" represents 2931 * RDTSC value. 2932 * 2933 * VCPU0 on CPU0 | VCPU1 on CPU1 2934 * 2935 * 1. read timespec0,tsc0 2936 * 2. | timespec1 = timespec0 + N 2937 * | tsc1 = tsc0 + M 2938 * 3. transition to guest | transition to guest 2939 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2940 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2941 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2942 * 2943 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2944 * 2945 * - ret0 < ret1 2946 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2947 * ... 2948 * - 0 < N - M => M < N 2949 * 2950 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2951 * always the case (the difference between two distinct xtime instances 2952 * might be smaller then the difference between corresponding TSC reads, 2953 * when updating guest vcpus pvclock areas). 2954 * 2955 * To avoid that problem, do not allow visibility of distinct 2956 * system_timestamp/tsc_timestamp values simultaneously: use a master 2957 * copy of host monotonic time values. Update that master copy 2958 * in lockstep. 2959 * 2960 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2961 * 2962 */ 2963 2964 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2965 { 2966 #ifdef CONFIG_X86_64 2967 struct kvm_arch *ka = &kvm->arch; 2968 int vclock_mode; 2969 bool host_tsc_clocksource, vcpus_matched; 2970 2971 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2972 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2973 atomic_read(&kvm->online_vcpus)); 2974 2975 /* 2976 * If the host uses TSC clock, then passthrough TSC as stable 2977 * to the guest. 2978 */ 2979 host_tsc_clocksource = kvm_get_time_and_clockread( 2980 &ka->master_kernel_ns, 2981 &ka->master_cycle_now); 2982 2983 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2984 && !ka->backwards_tsc_observed 2985 && !ka->boot_vcpu_runs_old_kvmclock; 2986 2987 if (ka->use_master_clock) 2988 atomic_set(&kvm_guest_has_master_clock, 1); 2989 2990 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2991 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2992 vcpus_matched); 2993 #endif 2994 } 2995 2996 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2997 { 2998 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2999 } 3000 3001 static void __kvm_start_pvclock_update(struct kvm *kvm) 3002 { 3003 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3004 write_seqcount_begin(&kvm->arch.pvclock_sc); 3005 } 3006 3007 static void kvm_start_pvclock_update(struct kvm *kvm) 3008 { 3009 kvm_make_mclock_inprogress_request(kvm); 3010 3011 /* no guest entries from this point */ 3012 __kvm_start_pvclock_update(kvm); 3013 } 3014 3015 static void kvm_end_pvclock_update(struct kvm *kvm) 3016 { 3017 struct kvm_arch *ka = &kvm->arch; 3018 struct kvm_vcpu *vcpu; 3019 unsigned long i; 3020 3021 write_seqcount_end(&ka->pvclock_sc); 3022 raw_spin_unlock_irq(&ka->tsc_write_lock); 3023 kvm_for_each_vcpu(i, vcpu, kvm) 3024 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3025 3026 /* guest entries allowed */ 3027 kvm_for_each_vcpu(i, vcpu, kvm) 3028 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3029 } 3030 3031 static void kvm_update_masterclock(struct kvm *kvm) 3032 { 3033 kvm_hv_request_tsc_page_update(kvm); 3034 kvm_start_pvclock_update(kvm); 3035 pvclock_update_vm_gtod_copy(kvm); 3036 kvm_end_pvclock_update(kvm); 3037 } 3038 3039 /* 3040 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3041 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3042 * can change during boot even if the TSC is constant, as it's possible for KVM 3043 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3044 * notification when calibration completes, but practically speaking calibration 3045 * will complete before userspace is alive enough to create VMs. 3046 */ 3047 static unsigned long get_cpu_tsc_khz(void) 3048 { 3049 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3050 return tsc_khz; 3051 else 3052 return __this_cpu_read(cpu_tsc_khz); 3053 } 3054 3055 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3056 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3057 { 3058 struct kvm_arch *ka = &kvm->arch; 3059 struct pvclock_vcpu_time_info hv_clock; 3060 3061 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3062 get_cpu(); 3063 3064 data->flags = 0; 3065 if (ka->use_master_clock && 3066 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3067 #ifdef CONFIG_X86_64 3068 struct timespec64 ts; 3069 3070 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3071 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3072 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3073 } else 3074 #endif 3075 data->host_tsc = rdtsc(); 3076 3077 data->flags |= KVM_CLOCK_TSC_STABLE; 3078 hv_clock.tsc_timestamp = ka->master_cycle_now; 3079 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3080 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3081 &hv_clock.tsc_shift, 3082 &hv_clock.tsc_to_system_mul); 3083 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3084 } else { 3085 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3086 } 3087 3088 put_cpu(); 3089 } 3090 3091 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3092 { 3093 struct kvm_arch *ka = &kvm->arch; 3094 unsigned seq; 3095 3096 do { 3097 seq = read_seqcount_begin(&ka->pvclock_sc); 3098 __get_kvmclock(kvm, data); 3099 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3100 } 3101 3102 u64 get_kvmclock_ns(struct kvm *kvm) 3103 { 3104 struct kvm_clock_data data; 3105 3106 get_kvmclock(kvm, &data); 3107 return data.clock; 3108 } 3109 3110 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3111 struct gfn_to_pfn_cache *gpc, 3112 unsigned int offset, 3113 bool force_tsc_unstable) 3114 { 3115 struct kvm_vcpu_arch *vcpu = &v->arch; 3116 struct pvclock_vcpu_time_info *guest_hv_clock; 3117 unsigned long flags; 3118 3119 read_lock_irqsave(&gpc->lock, flags); 3120 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3121 read_unlock_irqrestore(&gpc->lock, flags); 3122 3123 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3124 return; 3125 3126 read_lock_irqsave(&gpc->lock, flags); 3127 } 3128 3129 guest_hv_clock = (void *)(gpc->khva + offset); 3130 3131 /* 3132 * This VCPU is paused, but it's legal for a guest to read another 3133 * VCPU's kvmclock, so we really have to follow the specification where 3134 * it says that version is odd if data is being modified, and even after 3135 * it is consistent. 3136 */ 3137 3138 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3139 smp_wmb(); 3140 3141 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3142 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3143 3144 if (vcpu->pvclock_set_guest_stopped_request) { 3145 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3146 vcpu->pvclock_set_guest_stopped_request = false; 3147 } 3148 3149 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3150 3151 if (force_tsc_unstable) 3152 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT; 3153 3154 smp_wmb(); 3155 3156 guest_hv_clock->version = ++vcpu->hv_clock.version; 3157 3158 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3159 read_unlock_irqrestore(&gpc->lock, flags); 3160 3161 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3162 } 3163 3164 static int kvm_guest_time_update(struct kvm_vcpu *v) 3165 { 3166 unsigned long flags, tgt_tsc_khz; 3167 unsigned seq; 3168 struct kvm_vcpu_arch *vcpu = &v->arch; 3169 struct kvm_arch *ka = &v->kvm->arch; 3170 s64 kernel_ns; 3171 u64 tsc_timestamp, host_tsc; 3172 u8 pvclock_flags; 3173 bool use_master_clock; 3174 #ifdef CONFIG_KVM_XEN 3175 /* 3176 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3177 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3178 * This default behaviour led to bugs in some guest kernels which cause 3179 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3180 */ 3181 bool xen_pvclock_tsc_unstable = 3182 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 3183 #endif 3184 3185 kernel_ns = 0; 3186 host_tsc = 0; 3187 3188 /* 3189 * If the host uses TSC clock, then passthrough TSC as stable 3190 * to the guest. 3191 */ 3192 do { 3193 seq = read_seqcount_begin(&ka->pvclock_sc); 3194 use_master_clock = ka->use_master_clock; 3195 if (use_master_clock) { 3196 host_tsc = ka->master_cycle_now; 3197 kernel_ns = ka->master_kernel_ns; 3198 } 3199 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3200 3201 /* Keep irq disabled to prevent changes to the clock */ 3202 local_irq_save(flags); 3203 tgt_tsc_khz = get_cpu_tsc_khz(); 3204 if (unlikely(tgt_tsc_khz == 0)) { 3205 local_irq_restore(flags); 3206 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3207 return 1; 3208 } 3209 if (!use_master_clock) { 3210 host_tsc = rdtsc(); 3211 kernel_ns = get_kvmclock_base_ns(); 3212 } 3213 3214 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3215 3216 /* 3217 * We may have to catch up the TSC to match elapsed wall clock 3218 * time for two reasons, even if kvmclock is used. 3219 * 1) CPU could have been running below the maximum TSC rate 3220 * 2) Broken TSC compensation resets the base at each VCPU 3221 * entry to avoid unknown leaps of TSC even when running 3222 * again on the same CPU. This may cause apparent elapsed 3223 * time to disappear, and the guest to stand still or run 3224 * very slowly. 3225 */ 3226 if (vcpu->tsc_catchup) { 3227 u64 tsc = compute_guest_tsc(v, kernel_ns); 3228 if (tsc > tsc_timestamp) { 3229 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3230 tsc_timestamp = tsc; 3231 } 3232 } 3233 3234 local_irq_restore(flags); 3235 3236 /* With all the info we got, fill in the values */ 3237 3238 if (kvm_caps.has_tsc_control) 3239 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3240 v->arch.l1_tsc_scaling_ratio); 3241 3242 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3243 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3244 &vcpu->hv_clock.tsc_shift, 3245 &vcpu->hv_clock.tsc_to_system_mul); 3246 vcpu->hw_tsc_khz = tgt_tsc_khz; 3247 kvm_xen_update_tsc_info(v); 3248 } 3249 3250 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3251 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3252 vcpu->last_guest_tsc = tsc_timestamp; 3253 3254 /* If the host uses TSC clocksource, then it is stable */ 3255 pvclock_flags = 0; 3256 if (use_master_clock) 3257 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3258 3259 vcpu->hv_clock.flags = pvclock_flags; 3260 3261 if (vcpu->pv_time.active) 3262 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false); 3263 #ifdef CONFIG_KVM_XEN 3264 if (vcpu->xen.vcpu_info_cache.active) 3265 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3266 offsetof(struct compat_vcpu_info, time), 3267 xen_pvclock_tsc_unstable); 3268 if (vcpu->xen.vcpu_time_info_cache.active) 3269 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0, 3270 xen_pvclock_tsc_unstable); 3271 #endif 3272 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3273 return 0; 3274 } 3275 3276 /* 3277 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3278 * which it started (i.e. its epoch, when its kvmclock was zero). 3279 * 3280 * In fact those clocks are subtly different; wall clock frequency is 3281 * adjusted by NTP and has leap seconds, while the kvmclock is a 3282 * simple function of the TSC without any such adjustment. 3283 * 3284 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3285 * that and kvmclock, but even that would be subject to change over 3286 * time. 3287 * 3288 * Attempt to calculate the epoch at a given moment using the *same* 3289 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3290 * wallclock and kvmclock times, and subtracting one from the other. 3291 * 3292 * Fall back to using their values at slightly different moments by 3293 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3294 */ 3295 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3296 { 3297 #ifdef CONFIG_X86_64 3298 struct pvclock_vcpu_time_info hv_clock; 3299 struct kvm_arch *ka = &kvm->arch; 3300 unsigned long seq, local_tsc_khz; 3301 struct timespec64 ts; 3302 uint64_t host_tsc; 3303 3304 do { 3305 seq = read_seqcount_begin(&ka->pvclock_sc); 3306 3307 local_tsc_khz = 0; 3308 if (!ka->use_master_clock) 3309 break; 3310 3311 /* 3312 * The TSC read and the call to get_cpu_tsc_khz() must happen 3313 * on the same CPU. 3314 */ 3315 get_cpu(); 3316 3317 local_tsc_khz = get_cpu_tsc_khz(); 3318 3319 if (local_tsc_khz && 3320 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3321 local_tsc_khz = 0; /* Fall back to old method */ 3322 3323 put_cpu(); 3324 3325 /* 3326 * These values must be snapshotted within the seqcount loop. 3327 * After that, it's just mathematics which can happen on any 3328 * CPU at any time. 3329 */ 3330 hv_clock.tsc_timestamp = ka->master_cycle_now; 3331 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3332 3333 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3334 3335 /* 3336 * If the conditions were right, and obtaining the wallclock+TSC was 3337 * successful, calculate the KVM clock at the corresponding time and 3338 * subtract one from the other to get the guest's epoch in nanoseconds 3339 * since 1970-01-01. 3340 */ 3341 if (local_tsc_khz) { 3342 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3343 &hv_clock.tsc_shift, 3344 &hv_clock.tsc_to_system_mul); 3345 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3346 __pvclock_read_cycles(&hv_clock, host_tsc); 3347 } 3348 #endif 3349 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3350 } 3351 3352 /* 3353 * kvmclock updates which are isolated to a given vcpu, such as 3354 * vcpu->cpu migration, should not allow system_timestamp from 3355 * the rest of the vcpus to remain static. Otherwise ntp frequency 3356 * correction applies to one vcpu's system_timestamp but not 3357 * the others. 3358 * 3359 * So in those cases, request a kvmclock update for all vcpus. 3360 * We need to rate-limit these requests though, as they can 3361 * considerably slow guests that have a large number of vcpus. 3362 * The time for a remote vcpu to update its kvmclock is bound 3363 * by the delay we use to rate-limit the updates. 3364 */ 3365 3366 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3367 3368 static void kvmclock_update_fn(struct work_struct *work) 3369 { 3370 unsigned long i; 3371 struct delayed_work *dwork = to_delayed_work(work); 3372 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3373 kvmclock_update_work); 3374 struct kvm *kvm = container_of(ka, struct kvm, arch); 3375 struct kvm_vcpu *vcpu; 3376 3377 kvm_for_each_vcpu(i, vcpu, kvm) { 3378 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3379 kvm_vcpu_kick(vcpu); 3380 } 3381 } 3382 3383 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3384 { 3385 struct kvm *kvm = v->kvm; 3386 3387 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3388 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3389 KVMCLOCK_UPDATE_DELAY); 3390 } 3391 3392 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3393 3394 static void kvmclock_sync_fn(struct work_struct *work) 3395 { 3396 struct delayed_work *dwork = to_delayed_work(work); 3397 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3398 kvmclock_sync_work); 3399 struct kvm *kvm = container_of(ka, struct kvm, arch); 3400 3401 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3402 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3403 KVMCLOCK_SYNC_PERIOD); 3404 } 3405 3406 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3407 static bool is_mci_control_msr(u32 msr) 3408 { 3409 return (msr & 3) == 0; 3410 } 3411 static bool is_mci_status_msr(u32 msr) 3412 { 3413 return (msr & 3) == 1; 3414 } 3415 3416 /* 3417 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3418 */ 3419 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3420 { 3421 /* McStatusWrEn enabled? */ 3422 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3423 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3424 3425 return false; 3426 } 3427 3428 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3429 { 3430 u64 mcg_cap = vcpu->arch.mcg_cap; 3431 unsigned bank_num = mcg_cap & 0xff; 3432 u32 msr = msr_info->index; 3433 u64 data = msr_info->data; 3434 u32 offset, last_msr; 3435 3436 switch (msr) { 3437 case MSR_IA32_MCG_STATUS: 3438 vcpu->arch.mcg_status = data; 3439 break; 3440 case MSR_IA32_MCG_CTL: 3441 if (!(mcg_cap & MCG_CTL_P) && 3442 (data || !msr_info->host_initiated)) 3443 return 1; 3444 if (data != 0 && data != ~(u64)0) 3445 return 1; 3446 vcpu->arch.mcg_ctl = data; 3447 break; 3448 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3449 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3450 if (msr > last_msr) 3451 return 1; 3452 3453 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3454 return 1; 3455 /* An attempt to write a 1 to a reserved bit raises #GP */ 3456 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3457 return 1; 3458 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3459 last_msr + 1 - MSR_IA32_MC0_CTL2); 3460 vcpu->arch.mci_ctl2_banks[offset] = data; 3461 break; 3462 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3463 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3464 if (msr > last_msr) 3465 return 1; 3466 3467 /* 3468 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3469 * values are architecturally undefined. But, some Linux 3470 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3471 * issue on AMD K8s, allow bit 10 to be clear when setting all 3472 * other bits in order to avoid an uncaught #GP in the guest. 3473 * 3474 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3475 * single-bit ECC data errors. 3476 */ 3477 if (is_mci_control_msr(msr) && 3478 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3479 return 1; 3480 3481 /* 3482 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3483 * AMD-based CPUs allow non-zero values, but if and only if 3484 * HWCR[McStatusWrEn] is set. 3485 */ 3486 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3487 data != 0 && !can_set_mci_status(vcpu)) 3488 return 1; 3489 3490 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3491 last_msr + 1 - MSR_IA32_MC0_CTL); 3492 vcpu->arch.mce_banks[offset] = data; 3493 break; 3494 default: 3495 return 1; 3496 } 3497 return 0; 3498 } 3499 3500 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3501 { 3502 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3503 3504 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3505 } 3506 3507 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3508 { 3509 gpa_t gpa = data & ~0x3f; 3510 3511 /* Bits 4:5 are reserved, Should be zero */ 3512 if (data & 0x30) 3513 return 1; 3514 3515 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3516 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3517 return 1; 3518 3519 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3520 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3521 return 1; 3522 3523 if (!lapic_in_kernel(vcpu)) 3524 return data ? 1 : 0; 3525 3526 vcpu->arch.apf.msr_en_val = data; 3527 3528 if (!kvm_pv_async_pf_enabled(vcpu)) { 3529 kvm_clear_async_pf_completion_queue(vcpu); 3530 kvm_async_pf_hash_reset(vcpu); 3531 return 0; 3532 } 3533 3534 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3535 sizeof(u64))) 3536 return 1; 3537 3538 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3539 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3540 3541 kvm_async_pf_wakeup_all(vcpu); 3542 3543 return 0; 3544 } 3545 3546 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3547 { 3548 /* Bits 8-63 are reserved */ 3549 if (data >> 8) 3550 return 1; 3551 3552 if (!lapic_in_kernel(vcpu)) 3553 return 1; 3554 3555 vcpu->arch.apf.msr_int_val = data; 3556 3557 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3558 3559 return 0; 3560 } 3561 3562 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3563 { 3564 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3565 vcpu->arch.time = 0; 3566 } 3567 3568 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3569 { 3570 ++vcpu->stat.tlb_flush; 3571 static_call(kvm_x86_flush_tlb_all)(vcpu); 3572 3573 /* Flushing all ASIDs flushes the current ASID... */ 3574 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3575 } 3576 3577 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3578 { 3579 ++vcpu->stat.tlb_flush; 3580 3581 if (!tdp_enabled) { 3582 /* 3583 * A TLB flush on behalf of the guest is equivalent to 3584 * INVPCID(all), toggling CR4.PGE, etc., which requires 3585 * a forced sync of the shadow page tables. Ensure all the 3586 * roots are synced and the guest TLB in hardware is clean. 3587 */ 3588 kvm_mmu_sync_roots(vcpu); 3589 kvm_mmu_sync_prev_roots(vcpu); 3590 } 3591 3592 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3593 3594 /* 3595 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3596 * grained flushing. 3597 */ 3598 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3599 } 3600 3601 3602 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3603 { 3604 ++vcpu->stat.tlb_flush; 3605 static_call(kvm_x86_flush_tlb_current)(vcpu); 3606 } 3607 3608 /* 3609 * Service "local" TLB flush requests, which are specific to the current MMU 3610 * context. In addition to the generic event handling in vcpu_enter_guest(), 3611 * TLB flushes that are targeted at an MMU context also need to be serviced 3612 * prior before nested VM-Enter/VM-Exit. 3613 */ 3614 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3615 { 3616 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3617 kvm_vcpu_flush_tlb_current(vcpu); 3618 3619 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3620 kvm_vcpu_flush_tlb_guest(vcpu); 3621 } 3622 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3623 3624 static void record_steal_time(struct kvm_vcpu *vcpu) 3625 { 3626 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3627 struct kvm_steal_time __user *st; 3628 struct kvm_memslots *slots; 3629 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3630 u64 steal; 3631 u32 version; 3632 3633 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3634 kvm_xen_runstate_set_running(vcpu); 3635 return; 3636 } 3637 3638 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3639 return; 3640 3641 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3642 return; 3643 3644 slots = kvm_memslots(vcpu->kvm); 3645 3646 if (unlikely(slots->generation != ghc->generation || 3647 gpa != ghc->gpa || 3648 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3649 /* We rely on the fact that it fits in a single page. */ 3650 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3651 3652 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3653 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3654 return; 3655 } 3656 3657 st = (struct kvm_steal_time __user *)ghc->hva; 3658 /* 3659 * Doing a TLB flush here, on the guest's behalf, can avoid 3660 * expensive IPIs. 3661 */ 3662 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3663 u8 st_preempted = 0; 3664 int err = -EFAULT; 3665 3666 if (!user_access_begin(st, sizeof(*st))) 3667 return; 3668 3669 asm volatile("1: xchgb %0, %2\n" 3670 "xor %1, %1\n" 3671 "2:\n" 3672 _ASM_EXTABLE_UA(1b, 2b) 3673 : "+q" (st_preempted), 3674 "+&r" (err), 3675 "+m" (st->preempted)); 3676 if (err) 3677 goto out; 3678 3679 user_access_end(); 3680 3681 vcpu->arch.st.preempted = 0; 3682 3683 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3684 st_preempted & KVM_VCPU_FLUSH_TLB); 3685 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3686 kvm_vcpu_flush_tlb_guest(vcpu); 3687 3688 if (!user_access_begin(st, sizeof(*st))) 3689 goto dirty; 3690 } else { 3691 if (!user_access_begin(st, sizeof(*st))) 3692 return; 3693 3694 unsafe_put_user(0, &st->preempted, out); 3695 vcpu->arch.st.preempted = 0; 3696 } 3697 3698 unsafe_get_user(version, &st->version, out); 3699 if (version & 1) 3700 version += 1; /* first time write, random junk */ 3701 3702 version += 1; 3703 unsafe_put_user(version, &st->version, out); 3704 3705 smp_wmb(); 3706 3707 unsafe_get_user(steal, &st->steal, out); 3708 steal += current->sched_info.run_delay - 3709 vcpu->arch.st.last_steal; 3710 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3711 unsafe_put_user(steal, &st->steal, out); 3712 3713 version += 1; 3714 unsafe_put_user(version, &st->version, out); 3715 3716 out: 3717 user_access_end(); 3718 dirty: 3719 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3720 } 3721 3722 static bool kvm_is_msr_to_save(u32 msr_index) 3723 { 3724 unsigned int i; 3725 3726 for (i = 0; i < num_msrs_to_save; i++) { 3727 if (msrs_to_save[i] == msr_index) 3728 return true; 3729 } 3730 3731 return false; 3732 } 3733 3734 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3735 { 3736 u32 msr = msr_info->index; 3737 u64 data = msr_info->data; 3738 3739 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3740 return kvm_xen_write_hypercall_page(vcpu, data); 3741 3742 switch (msr) { 3743 case MSR_AMD64_NB_CFG: 3744 case MSR_IA32_UCODE_WRITE: 3745 case MSR_VM_HSAVE_PA: 3746 case MSR_AMD64_PATCH_LOADER: 3747 case MSR_AMD64_BU_CFG2: 3748 case MSR_AMD64_DC_CFG: 3749 case MSR_AMD64_TW_CFG: 3750 case MSR_F15H_EX_CFG: 3751 break; 3752 3753 case MSR_IA32_UCODE_REV: 3754 if (msr_info->host_initiated) 3755 vcpu->arch.microcode_version = data; 3756 break; 3757 case MSR_IA32_ARCH_CAPABILITIES: 3758 if (!msr_info->host_initiated) 3759 return 1; 3760 vcpu->arch.arch_capabilities = data; 3761 break; 3762 case MSR_IA32_PERF_CAPABILITIES: 3763 if (!msr_info->host_initiated) 3764 return 1; 3765 if (data & ~kvm_caps.supported_perf_cap) 3766 return 1; 3767 3768 /* 3769 * Note, this is not just a performance optimization! KVM 3770 * disallows changing feature MSRs after the vCPU has run; PMU 3771 * refresh will bug the VM if called after the vCPU has run. 3772 */ 3773 if (vcpu->arch.perf_capabilities == data) 3774 break; 3775 3776 vcpu->arch.perf_capabilities = data; 3777 kvm_pmu_refresh(vcpu); 3778 break; 3779 case MSR_IA32_PRED_CMD: { 3780 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3781 3782 if (!msr_info->host_initiated) { 3783 if ((!guest_has_pred_cmd_msr(vcpu))) 3784 return 1; 3785 3786 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3787 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3788 reserved_bits |= PRED_CMD_IBPB; 3789 3790 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3791 reserved_bits |= PRED_CMD_SBPB; 3792 } 3793 3794 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3795 reserved_bits |= PRED_CMD_IBPB; 3796 3797 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3798 reserved_bits |= PRED_CMD_SBPB; 3799 3800 if (data & reserved_bits) 3801 return 1; 3802 3803 if (!data) 3804 break; 3805 3806 wrmsrl(MSR_IA32_PRED_CMD, data); 3807 break; 3808 } 3809 case MSR_IA32_FLUSH_CMD: 3810 if (!msr_info->host_initiated && 3811 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3812 return 1; 3813 3814 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3815 return 1; 3816 if (!data) 3817 break; 3818 3819 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3820 break; 3821 case MSR_EFER: 3822 return set_efer(vcpu, msr_info); 3823 case MSR_K7_HWCR: 3824 data &= ~(u64)0x40; /* ignore flush filter disable */ 3825 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3826 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3827 3828 /* 3829 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3830 * through at least v6.6 whine if TscFreqSel is clear, 3831 * depending on F/M/S. 3832 */ 3833 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3834 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3835 return 1; 3836 } 3837 vcpu->arch.msr_hwcr = data; 3838 break; 3839 case MSR_FAM10H_MMIO_CONF_BASE: 3840 if (data != 0) { 3841 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3842 return 1; 3843 } 3844 break; 3845 case MSR_IA32_CR_PAT: 3846 if (!kvm_pat_valid(data)) 3847 return 1; 3848 3849 vcpu->arch.pat = data; 3850 break; 3851 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3852 case MSR_MTRRdefType: 3853 return kvm_mtrr_set_msr(vcpu, msr, data); 3854 case MSR_IA32_APICBASE: 3855 return kvm_set_apic_base(vcpu, msr_info); 3856 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3857 return kvm_x2apic_msr_write(vcpu, msr, data); 3858 case MSR_IA32_TSC_DEADLINE: 3859 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3860 break; 3861 case MSR_IA32_TSC_ADJUST: 3862 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3863 if (!msr_info->host_initiated) { 3864 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3865 adjust_tsc_offset_guest(vcpu, adj); 3866 /* Before back to guest, tsc_timestamp must be adjusted 3867 * as well, otherwise guest's percpu pvclock time could jump. 3868 */ 3869 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3870 } 3871 vcpu->arch.ia32_tsc_adjust_msr = data; 3872 } 3873 break; 3874 case MSR_IA32_MISC_ENABLE: { 3875 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3876 3877 if (!msr_info->host_initiated) { 3878 /* RO bits */ 3879 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3880 return 1; 3881 3882 /* R bits, i.e. writes are ignored, but don't fault. */ 3883 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3884 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3885 } 3886 3887 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3888 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3889 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3890 return 1; 3891 vcpu->arch.ia32_misc_enable_msr = data; 3892 kvm_update_cpuid_runtime(vcpu); 3893 } else { 3894 vcpu->arch.ia32_misc_enable_msr = data; 3895 } 3896 break; 3897 } 3898 case MSR_IA32_SMBASE: 3899 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3900 return 1; 3901 vcpu->arch.smbase = data; 3902 break; 3903 case MSR_IA32_POWER_CTL: 3904 vcpu->arch.msr_ia32_power_ctl = data; 3905 break; 3906 case MSR_IA32_TSC: 3907 if (msr_info->host_initiated) { 3908 kvm_synchronize_tsc(vcpu, &data); 3909 } else { 3910 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3911 adjust_tsc_offset_guest(vcpu, adj); 3912 vcpu->arch.ia32_tsc_adjust_msr += adj; 3913 } 3914 break; 3915 case MSR_IA32_XSS: 3916 if (!msr_info->host_initiated && 3917 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3918 return 1; 3919 /* 3920 * KVM supports exposing PT to the guest, but does not support 3921 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3922 * XSAVES/XRSTORS to save/restore PT MSRs. 3923 */ 3924 if (data & ~kvm_caps.supported_xss) 3925 return 1; 3926 vcpu->arch.ia32_xss = data; 3927 kvm_update_cpuid_runtime(vcpu); 3928 break; 3929 case MSR_SMI_COUNT: 3930 if (!msr_info->host_initiated) 3931 return 1; 3932 vcpu->arch.smi_count = data; 3933 break; 3934 case MSR_KVM_WALL_CLOCK_NEW: 3935 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3936 return 1; 3937 3938 vcpu->kvm->arch.wall_clock = data; 3939 kvm_write_wall_clock(vcpu->kvm, data, 0); 3940 break; 3941 case MSR_KVM_WALL_CLOCK: 3942 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3943 return 1; 3944 3945 vcpu->kvm->arch.wall_clock = data; 3946 kvm_write_wall_clock(vcpu->kvm, data, 0); 3947 break; 3948 case MSR_KVM_SYSTEM_TIME_NEW: 3949 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3950 return 1; 3951 3952 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3953 break; 3954 case MSR_KVM_SYSTEM_TIME: 3955 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3956 return 1; 3957 3958 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3959 break; 3960 case MSR_KVM_ASYNC_PF_EN: 3961 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3962 return 1; 3963 3964 if (kvm_pv_enable_async_pf(vcpu, data)) 3965 return 1; 3966 break; 3967 case MSR_KVM_ASYNC_PF_INT: 3968 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3969 return 1; 3970 3971 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3972 return 1; 3973 break; 3974 case MSR_KVM_ASYNC_PF_ACK: 3975 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3976 return 1; 3977 if (data & 0x1) { 3978 vcpu->arch.apf.pageready_pending = false; 3979 kvm_check_async_pf_completion(vcpu); 3980 } 3981 break; 3982 case MSR_KVM_STEAL_TIME: 3983 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3984 return 1; 3985 3986 if (unlikely(!sched_info_on())) 3987 return 1; 3988 3989 if (data & KVM_STEAL_RESERVED_MASK) 3990 return 1; 3991 3992 vcpu->arch.st.msr_val = data; 3993 3994 if (!(data & KVM_MSR_ENABLED)) 3995 break; 3996 3997 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3998 3999 break; 4000 case MSR_KVM_PV_EOI_EN: 4001 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4002 return 1; 4003 4004 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4005 return 1; 4006 break; 4007 4008 case MSR_KVM_POLL_CONTROL: 4009 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4010 return 1; 4011 4012 /* only enable bit supported */ 4013 if (data & (-1ULL << 1)) 4014 return 1; 4015 4016 vcpu->arch.msr_kvm_poll_control = data; 4017 break; 4018 4019 case MSR_IA32_MCG_CTL: 4020 case MSR_IA32_MCG_STATUS: 4021 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4022 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4023 return set_msr_mce(vcpu, msr_info); 4024 4025 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4026 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4027 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4028 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4029 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4030 return kvm_pmu_set_msr(vcpu, msr_info); 4031 4032 if (data) 4033 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4034 break; 4035 case MSR_K7_CLK_CTL: 4036 /* 4037 * Ignore all writes to this no longer documented MSR. 4038 * Writes are only relevant for old K7 processors, 4039 * all pre-dating SVM, but a recommended workaround from 4040 * AMD for these chips. It is possible to specify the 4041 * affected processor models on the command line, hence 4042 * the need to ignore the workaround. 4043 */ 4044 break; 4045 #ifdef CONFIG_KVM_HYPERV 4046 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4047 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4048 case HV_X64_MSR_SYNDBG_OPTIONS: 4049 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4050 case HV_X64_MSR_CRASH_CTL: 4051 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4052 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4053 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4054 case HV_X64_MSR_TSC_EMULATION_STATUS: 4055 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4056 return kvm_hv_set_msr_common(vcpu, msr, data, 4057 msr_info->host_initiated); 4058 #endif 4059 case MSR_IA32_BBL_CR_CTL3: 4060 /* Drop writes to this legacy MSR -- see rdmsr 4061 * counterpart for further detail. 4062 */ 4063 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4064 break; 4065 case MSR_AMD64_OSVW_ID_LENGTH: 4066 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4067 return 1; 4068 vcpu->arch.osvw.length = data; 4069 break; 4070 case MSR_AMD64_OSVW_STATUS: 4071 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4072 return 1; 4073 vcpu->arch.osvw.status = data; 4074 break; 4075 case MSR_PLATFORM_INFO: 4076 if (!msr_info->host_initiated || 4077 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 4078 cpuid_fault_enabled(vcpu))) 4079 return 1; 4080 vcpu->arch.msr_platform_info = data; 4081 break; 4082 case MSR_MISC_FEATURES_ENABLES: 4083 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4084 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4085 !supports_cpuid_fault(vcpu))) 4086 return 1; 4087 vcpu->arch.msr_misc_features_enables = data; 4088 break; 4089 #ifdef CONFIG_X86_64 4090 case MSR_IA32_XFD: 4091 if (!msr_info->host_initiated && 4092 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4093 return 1; 4094 4095 if (data & ~kvm_guest_supported_xfd(vcpu)) 4096 return 1; 4097 4098 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4099 break; 4100 case MSR_IA32_XFD_ERR: 4101 if (!msr_info->host_initiated && 4102 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4103 return 1; 4104 4105 if (data & ~kvm_guest_supported_xfd(vcpu)) 4106 return 1; 4107 4108 vcpu->arch.guest_fpu.xfd_err = data; 4109 break; 4110 #endif 4111 default: 4112 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4113 return kvm_pmu_set_msr(vcpu, msr_info); 4114 4115 /* 4116 * Userspace is allowed to write '0' to MSRs that KVM reports 4117 * as to-be-saved, even if an MSRs isn't fully supported. 4118 */ 4119 if (msr_info->host_initiated && !data && 4120 kvm_is_msr_to_save(msr)) 4121 break; 4122 4123 return KVM_MSR_RET_INVALID; 4124 } 4125 return 0; 4126 } 4127 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4128 4129 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4130 { 4131 u64 data; 4132 u64 mcg_cap = vcpu->arch.mcg_cap; 4133 unsigned bank_num = mcg_cap & 0xff; 4134 u32 offset, last_msr; 4135 4136 switch (msr) { 4137 case MSR_IA32_P5_MC_ADDR: 4138 case MSR_IA32_P5_MC_TYPE: 4139 data = 0; 4140 break; 4141 case MSR_IA32_MCG_CAP: 4142 data = vcpu->arch.mcg_cap; 4143 break; 4144 case MSR_IA32_MCG_CTL: 4145 if (!(mcg_cap & MCG_CTL_P) && !host) 4146 return 1; 4147 data = vcpu->arch.mcg_ctl; 4148 break; 4149 case MSR_IA32_MCG_STATUS: 4150 data = vcpu->arch.mcg_status; 4151 break; 4152 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4153 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4154 if (msr > last_msr) 4155 return 1; 4156 4157 if (!(mcg_cap & MCG_CMCI_P) && !host) 4158 return 1; 4159 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4160 last_msr + 1 - MSR_IA32_MC0_CTL2); 4161 data = vcpu->arch.mci_ctl2_banks[offset]; 4162 break; 4163 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4164 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4165 if (msr > last_msr) 4166 return 1; 4167 4168 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4169 last_msr + 1 - MSR_IA32_MC0_CTL); 4170 data = vcpu->arch.mce_banks[offset]; 4171 break; 4172 default: 4173 return 1; 4174 } 4175 *pdata = data; 4176 return 0; 4177 } 4178 4179 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4180 { 4181 switch (msr_info->index) { 4182 case MSR_IA32_PLATFORM_ID: 4183 case MSR_IA32_EBL_CR_POWERON: 4184 case MSR_IA32_LASTBRANCHFROMIP: 4185 case MSR_IA32_LASTBRANCHTOIP: 4186 case MSR_IA32_LASTINTFROMIP: 4187 case MSR_IA32_LASTINTTOIP: 4188 case MSR_AMD64_SYSCFG: 4189 case MSR_K8_TSEG_ADDR: 4190 case MSR_K8_TSEG_MASK: 4191 case MSR_VM_HSAVE_PA: 4192 case MSR_K8_INT_PENDING_MSG: 4193 case MSR_AMD64_NB_CFG: 4194 case MSR_FAM10H_MMIO_CONF_BASE: 4195 case MSR_AMD64_BU_CFG2: 4196 case MSR_IA32_PERF_CTL: 4197 case MSR_AMD64_DC_CFG: 4198 case MSR_AMD64_TW_CFG: 4199 case MSR_F15H_EX_CFG: 4200 /* 4201 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4202 * limit) MSRs. Just return 0, as we do not want to expose the host 4203 * data here. Do not conditionalize this on CPUID, as KVM does not do 4204 * so for existing CPU-specific MSRs. 4205 */ 4206 case MSR_RAPL_POWER_UNIT: 4207 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4208 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4209 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4210 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4211 msr_info->data = 0; 4212 break; 4213 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4214 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4215 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4216 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4217 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4218 return kvm_pmu_get_msr(vcpu, msr_info); 4219 msr_info->data = 0; 4220 break; 4221 case MSR_IA32_UCODE_REV: 4222 msr_info->data = vcpu->arch.microcode_version; 4223 break; 4224 case MSR_IA32_ARCH_CAPABILITIES: 4225 if (!msr_info->host_initiated && 4226 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4227 return 1; 4228 msr_info->data = vcpu->arch.arch_capabilities; 4229 break; 4230 case MSR_IA32_PERF_CAPABILITIES: 4231 if (!msr_info->host_initiated && 4232 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4233 return 1; 4234 msr_info->data = vcpu->arch.perf_capabilities; 4235 break; 4236 case MSR_IA32_POWER_CTL: 4237 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4238 break; 4239 case MSR_IA32_TSC: { 4240 /* 4241 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4242 * even when not intercepted. AMD manual doesn't explicitly 4243 * state this but appears to behave the same. 4244 * 4245 * On userspace reads and writes, however, we unconditionally 4246 * return L1's TSC value to ensure backwards-compatible 4247 * behavior for migration. 4248 */ 4249 u64 offset, ratio; 4250 4251 if (msr_info->host_initiated) { 4252 offset = vcpu->arch.l1_tsc_offset; 4253 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4254 } else { 4255 offset = vcpu->arch.tsc_offset; 4256 ratio = vcpu->arch.tsc_scaling_ratio; 4257 } 4258 4259 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4260 break; 4261 } 4262 case MSR_IA32_CR_PAT: 4263 msr_info->data = vcpu->arch.pat; 4264 break; 4265 case MSR_MTRRcap: 4266 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4267 case MSR_MTRRdefType: 4268 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4269 case 0xcd: /* fsb frequency */ 4270 msr_info->data = 3; 4271 break; 4272 /* 4273 * MSR_EBC_FREQUENCY_ID 4274 * Conservative value valid for even the basic CPU models. 4275 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4276 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4277 * and 266MHz for model 3, or 4. Set Core Clock 4278 * Frequency to System Bus Frequency Ratio to 1 (bits 4279 * 31:24) even though these are only valid for CPU 4280 * models > 2, however guests may end up dividing or 4281 * multiplying by zero otherwise. 4282 */ 4283 case MSR_EBC_FREQUENCY_ID: 4284 msr_info->data = 1 << 24; 4285 break; 4286 case MSR_IA32_APICBASE: 4287 msr_info->data = kvm_get_apic_base(vcpu); 4288 break; 4289 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4290 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4291 case MSR_IA32_TSC_DEADLINE: 4292 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4293 break; 4294 case MSR_IA32_TSC_ADJUST: 4295 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4296 break; 4297 case MSR_IA32_MISC_ENABLE: 4298 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4299 break; 4300 case MSR_IA32_SMBASE: 4301 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4302 return 1; 4303 msr_info->data = vcpu->arch.smbase; 4304 break; 4305 case MSR_SMI_COUNT: 4306 msr_info->data = vcpu->arch.smi_count; 4307 break; 4308 case MSR_IA32_PERF_STATUS: 4309 /* TSC increment by tick */ 4310 msr_info->data = 1000ULL; 4311 /* CPU multiplier */ 4312 msr_info->data |= (((uint64_t)4ULL) << 40); 4313 break; 4314 case MSR_EFER: 4315 msr_info->data = vcpu->arch.efer; 4316 break; 4317 case MSR_KVM_WALL_CLOCK: 4318 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4319 return 1; 4320 4321 msr_info->data = vcpu->kvm->arch.wall_clock; 4322 break; 4323 case MSR_KVM_WALL_CLOCK_NEW: 4324 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4325 return 1; 4326 4327 msr_info->data = vcpu->kvm->arch.wall_clock; 4328 break; 4329 case MSR_KVM_SYSTEM_TIME: 4330 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4331 return 1; 4332 4333 msr_info->data = vcpu->arch.time; 4334 break; 4335 case MSR_KVM_SYSTEM_TIME_NEW: 4336 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4337 return 1; 4338 4339 msr_info->data = vcpu->arch.time; 4340 break; 4341 case MSR_KVM_ASYNC_PF_EN: 4342 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4343 return 1; 4344 4345 msr_info->data = vcpu->arch.apf.msr_en_val; 4346 break; 4347 case MSR_KVM_ASYNC_PF_INT: 4348 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4349 return 1; 4350 4351 msr_info->data = vcpu->arch.apf.msr_int_val; 4352 break; 4353 case MSR_KVM_ASYNC_PF_ACK: 4354 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4355 return 1; 4356 4357 msr_info->data = 0; 4358 break; 4359 case MSR_KVM_STEAL_TIME: 4360 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4361 return 1; 4362 4363 msr_info->data = vcpu->arch.st.msr_val; 4364 break; 4365 case MSR_KVM_PV_EOI_EN: 4366 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4367 return 1; 4368 4369 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4370 break; 4371 case MSR_KVM_POLL_CONTROL: 4372 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4373 return 1; 4374 4375 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4376 break; 4377 case MSR_IA32_P5_MC_ADDR: 4378 case MSR_IA32_P5_MC_TYPE: 4379 case MSR_IA32_MCG_CAP: 4380 case MSR_IA32_MCG_CTL: 4381 case MSR_IA32_MCG_STATUS: 4382 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4383 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4384 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4385 msr_info->host_initiated); 4386 case MSR_IA32_XSS: 4387 if (!msr_info->host_initiated && 4388 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4389 return 1; 4390 msr_info->data = vcpu->arch.ia32_xss; 4391 break; 4392 case MSR_K7_CLK_CTL: 4393 /* 4394 * Provide expected ramp-up count for K7. All other 4395 * are set to zero, indicating minimum divisors for 4396 * every field. 4397 * 4398 * This prevents guest kernels on AMD host with CPU 4399 * type 6, model 8 and higher from exploding due to 4400 * the rdmsr failing. 4401 */ 4402 msr_info->data = 0x20000000; 4403 break; 4404 #ifdef CONFIG_KVM_HYPERV 4405 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4406 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4407 case HV_X64_MSR_SYNDBG_OPTIONS: 4408 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4409 case HV_X64_MSR_CRASH_CTL: 4410 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4411 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4412 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4413 case HV_X64_MSR_TSC_EMULATION_STATUS: 4414 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4415 return kvm_hv_get_msr_common(vcpu, 4416 msr_info->index, &msr_info->data, 4417 msr_info->host_initiated); 4418 #endif 4419 case MSR_IA32_BBL_CR_CTL3: 4420 /* This legacy MSR exists but isn't fully documented in current 4421 * silicon. It is however accessed by winxp in very narrow 4422 * scenarios where it sets bit #19, itself documented as 4423 * a "reserved" bit. Best effort attempt to source coherent 4424 * read data here should the balance of the register be 4425 * interpreted by the guest: 4426 * 4427 * L2 cache control register 3: 64GB range, 256KB size, 4428 * enabled, latency 0x1, configured 4429 */ 4430 msr_info->data = 0xbe702111; 4431 break; 4432 case MSR_AMD64_OSVW_ID_LENGTH: 4433 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4434 return 1; 4435 msr_info->data = vcpu->arch.osvw.length; 4436 break; 4437 case MSR_AMD64_OSVW_STATUS: 4438 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4439 return 1; 4440 msr_info->data = vcpu->arch.osvw.status; 4441 break; 4442 case MSR_PLATFORM_INFO: 4443 if (!msr_info->host_initiated && 4444 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4445 return 1; 4446 msr_info->data = vcpu->arch.msr_platform_info; 4447 break; 4448 case MSR_MISC_FEATURES_ENABLES: 4449 msr_info->data = vcpu->arch.msr_misc_features_enables; 4450 break; 4451 case MSR_K7_HWCR: 4452 msr_info->data = vcpu->arch.msr_hwcr; 4453 break; 4454 #ifdef CONFIG_X86_64 4455 case MSR_IA32_XFD: 4456 if (!msr_info->host_initiated && 4457 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4458 return 1; 4459 4460 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4461 break; 4462 case MSR_IA32_XFD_ERR: 4463 if (!msr_info->host_initiated && 4464 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4465 return 1; 4466 4467 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4468 break; 4469 #endif 4470 default: 4471 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4472 return kvm_pmu_get_msr(vcpu, msr_info); 4473 4474 /* 4475 * Userspace is allowed to read MSRs that KVM reports as 4476 * to-be-saved, even if an MSR isn't fully supported. 4477 */ 4478 if (msr_info->host_initiated && 4479 kvm_is_msr_to_save(msr_info->index)) { 4480 msr_info->data = 0; 4481 break; 4482 } 4483 4484 return KVM_MSR_RET_INVALID; 4485 } 4486 return 0; 4487 } 4488 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4489 4490 /* 4491 * Read or write a bunch of msrs. All parameters are kernel addresses. 4492 * 4493 * @return number of msrs set successfully. 4494 */ 4495 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4496 struct kvm_msr_entry *entries, 4497 int (*do_msr)(struct kvm_vcpu *vcpu, 4498 unsigned index, u64 *data)) 4499 { 4500 int i; 4501 4502 for (i = 0; i < msrs->nmsrs; ++i) 4503 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4504 break; 4505 4506 return i; 4507 } 4508 4509 /* 4510 * Read or write a bunch of msrs. Parameters are user addresses. 4511 * 4512 * @return number of msrs set successfully. 4513 */ 4514 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4515 int (*do_msr)(struct kvm_vcpu *vcpu, 4516 unsigned index, u64 *data), 4517 int writeback) 4518 { 4519 struct kvm_msrs msrs; 4520 struct kvm_msr_entry *entries; 4521 unsigned size; 4522 int r; 4523 4524 r = -EFAULT; 4525 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4526 goto out; 4527 4528 r = -E2BIG; 4529 if (msrs.nmsrs >= MAX_IO_MSRS) 4530 goto out; 4531 4532 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4533 entries = memdup_user(user_msrs->entries, size); 4534 if (IS_ERR(entries)) { 4535 r = PTR_ERR(entries); 4536 goto out; 4537 } 4538 4539 r = __msr_io(vcpu, &msrs, entries, do_msr); 4540 4541 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4542 r = -EFAULT; 4543 4544 kfree(entries); 4545 out: 4546 return r; 4547 } 4548 4549 static inline bool kvm_can_mwait_in_guest(void) 4550 { 4551 return boot_cpu_has(X86_FEATURE_MWAIT) && 4552 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4553 boot_cpu_has(X86_FEATURE_ARAT); 4554 } 4555 4556 #ifdef CONFIG_KVM_HYPERV 4557 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4558 struct kvm_cpuid2 __user *cpuid_arg) 4559 { 4560 struct kvm_cpuid2 cpuid; 4561 int r; 4562 4563 r = -EFAULT; 4564 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4565 return r; 4566 4567 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4568 if (r) 4569 return r; 4570 4571 r = -EFAULT; 4572 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4573 return r; 4574 4575 return 0; 4576 } 4577 #endif 4578 4579 static bool kvm_is_vm_type_supported(unsigned long type) 4580 { 4581 return type == KVM_X86_DEFAULT_VM || 4582 (type == KVM_X86_SW_PROTECTED_VM && 4583 IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled); 4584 } 4585 4586 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4587 { 4588 int r = 0; 4589 4590 switch (ext) { 4591 case KVM_CAP_IRQCHIP: 4592 case KVM_CAP_HLT: 4593 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4594 case KVM_CAP_SET_TSS_ADDR: 4595 case KVM_CAP_EXT_CPUID: 4596 case KVM_CAP_EXT_EMUL_CPUID: 4597 case KVM_CAP_CLOCKSOURCE: 4598 case KVM_CAP_PIT: 4599 case KVM_CAP_NOP_IO_DELAY: 4600 case KVM_CAP_MP_STATE: 4601 case KVM_CAP_SYNC_MMU: 4602 case KVM_CAP_USER_NMI: 4603 case KVM_CAP_REINJECT_CONTROL: 4604 case KVM_CAP_IRQ_INJECT_STATUS: 4605 case KVM_CAP_IOEVENTFD: 4606 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4607 case KVM_CAP_PIT2: 4608 case KVM_CAP_PIT_STATE2: 4609 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4610 case KVM_CAP_VCPU_EVENTS: 4611 #ifdef CONFIG_KVM_HYPERV 4612 case KVM_CAP_HYPERV: 4613 case KVM_CAP_HYPERV_VAPIC: 4614 case KVM_CAP_HYPERV_SPIN: 4615 case KVM_CAP_HYPERV_TIME: 4616 case KVM_CAP_HYPERV_SYNIC: 4617 case KVM_CAP_HYPERV_SYNIC2: 4618 case KVM_CAP_HYPERV_VP_INDEX: 4619 case KVM_CAP_HYPERV_EVENTFD: 4620 case KVM_CAP_HYPERV_TLBFLUSH: 4621 case KVM_CAP_HYPERV_SEND_IPI: 4622 case KVM_CAP_HYPERV_CPUID: 4623 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4624 case KVM_CAP_SYS_HYPERV_CPUID: 4625 #endif 4626 case KVM_CAP_PCI_SEGMENT: 4627 case KVM_CAP_DEBUGREGS: 4628 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4629 case KVM_CAP_XSAVE: 4630 case KVM_CAP_ASYNC_PF: 4631 case KVM_CAP_ASYNC_PF_INT: 4632 case KVM_CAP_GET_TSC_KHZ: 4633 case KVM_CAP_KVMCLOCK_CTRL: 4634 case KVM_CAP_READONLY_MEM: 4635 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4636 case KVM_CAP_TSC_DEADLINE_TIMER: 4637 case KVM_CAP_DISABLE_QUIRKS: 4638 case KVM_CAP_SET_BOOT_CPU_ID: 4639 case KVM_CAP_SPLIT_IRQCHIP: 4640 case KVM_CAP_IMMEDIATE_EXIT: 4641 case KVM_CAP_PMU_EVENT_FILTER: 4642 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4643 case KVM_CAP_GET_MSR_FEATURES: 4644 case KVM_CAP_MSR_PLATFORM_INFO: 4645 case KVM_CAP_EXCEPTION_PAYLOAD: 4646 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4647 case KVM_CAP_SET_GUEST_DEBUG: 4648 case KVM_CAP_LAST_CPU: 4649 case KVM_CAP_X86_USER_SPACE_MSR: 4650 case KVM_CAP_X86_MSR_FILTER: 4651 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4652 #ifdef CONFIG_X86_SGX_KVM 4653 case KVM_CAP_SGX_ATTRIBUTE: 4654 #endif 4655 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4656 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4657 case KVM_CAP_SREGS2: 4658 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4659 case KVM_CAP_VCPU_ATTRIBUTES: 4660 case KVM_CAP_SYS_ATTRIBUTES: 4661 case KVM_CAP_VAPIC: 4662 case KVM_CAP_ENABLE_CAP: 4663 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4664 case KVM_CAP_IRQFD_RESAMPLE: 4665 case KVM_CAP_MEMORY_FAULT_INFO: 4666 r = 1; 4667 break; 4668 case KVM_CAP_EXIT_HYPERCALL: 4669 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4670 break; 4671 case KVM_CAP_SET_GUEST_DEBUG2: 4672 return KVM_GUESTDBG_VALID_MASK; 4673 #ifdef CONFIG_KVM_XEN 4674 case KVM_CAP_XEN_HVM: 4675 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4676 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4677 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4678 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4679 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4680 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 4681 if (sched_info_on()) 4682 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4683 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4684 break; 4685 #endif 4686 case KVM_CAP_SYNC_REGS: 4687 r = KVM_SYNC_X86_VALID_FIELDS; 4688 break; 4689 case KVM_CAP_ADJUST_CLOCK: 4690 r = KVM_CLOCK_VALID_FLAGS; 4691 break; 4692 case KVM_CAP_X86_DISABLE_EXITS: 4693 r = KVM_X86_DISABLE_EXITS_PAUSE; 4694 4695 if (!mitigate_smt_rsb) { 4696 r |= KVM_X86_DISABLE_EXITS_HLT | 4697 KVM_X86_DISABLE_EXITS_CSTATE; 4698 4699 if (kvm_can_mwait_in_guest()) 4700 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4701 } 4702 break; 4703 case KVM_CAP_X86_SMM: 4704 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4705 break; 4706 4707 /* SMBASE is usually relocated above 1M on modern chipsets, 4708 * and SMM handlers might indeed rely on 4G segment limits, 4709 * so do not report SMM to be available if real mode is 4710 * emulated via vm86 mode. Still, do not go to great lengths 4711 * to avoid userspace's usage of the feature, because it is a 4712 * fringe case that is not enabled except via specific settings 4713 * of the module parameters. 4714 */ 4715 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4716 break; 4717 case KVM_CAP_NR_VCPUS: 4718 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4719 break; 4720 case KVM_CAP_MAX_VCPUS: 4721 r = KVM_MAX_VCPUS; 4722 break; 4723 case KVM_CAP_MAX_VCPU_ID: 4724 r = KVM_MAX_VCPU_IDS; 4725 break; 4726 case KVM_CAP_PV_MMU: /* obsolete */ 4727 r = 0; 4728 break; 4729 case KVM_CAP_MCE: 4730 r = KVM_MAX_MCE_BANKS; 4731 break; 4732 case KVM_CAP_XCRS: 4733 r = boot_cpu_has(X86_FEATURE_XSAVE); 4734 break; 4735 case KVM_CAP_TSC_CONTROL: 4736 case KVM_CAP_VM_TSC_CONTROL: 4737 r = kvm_caps.has_tsc_control; 4738 break; 4739 case KVM_CAP_X2APIC_API: 4740 r = KVM_X2APIC_API_VALID_FLAGS; 4741 break; 4742 case KVM_CAP_NESTED_STATE: 4743 r = kvm_x86_ops.nested_ops->get_state ? 4744 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4745 break; 4746 #ifdef CONFIG_KVM_HYPERV 4747 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4748 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4749 break; 4750 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4751 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4752 break; 4753 #endif 4754 case KVM_CAP_SMALLER_MAXPHYADDR: 4755 r = (int) allow_smaller_maxphyaddr; 4756 break; 4757 case KVM_CAP_STEAL_TIME: 4758 r = sched_info_on(); 4759 break; 4760 case KVM_CAP_X86_BUS_LOCK_EXIT: 4761 if (kvm_caps.has_bus_lock_exit) 4762 r = KVM_BUS_LOCK_DETECTION_OFF | 4763 KVM_BUS_LOCK_DETECTION_EXIT; 4764 else 4765 r = 0; 4766 break; 4767 case KVM_CAP_XSAVE2: { 4768 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4769 if (r < sizeof(struct kvm_xsave)) 4770 r = sizeof(struct kvm_xsave); 4771 break; 4772 } 4773 case KVM_CAP_PMU_CAPABILITY: 4774 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4775 break; 4776 case KVM_CAP_DISABLE_QUIRKS2: 4777 r = KVM_X86_VALID_QUIRKS; 4778 break; 4779 case KVM_CAP_X86_NOTIFY_VMEXIT: 4780 r = kvm_caps.has_notify_vmexit; 4781 break; 4782 case KVM_CAP_VM_TYPES: 4783 r = BIT(KVM_X86_DEFAULT_VM); 4784 if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM)) 4785 r |= BIT(KVM_X86_SW_PROTECTED_VM); 4786 break; 4787 default: 4788 break; 4789 } 4790 return r; 4791 } 4792 4793 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4794 { 4795 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4796 4797 if ((u64)(unsigned long)uaddr != attr->addr) 4798 return ERR_PTR_USR(-EFAULT); 4799 return uaddr; 4800 } 4801 4802 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4803 { 4804 u64 __user *uaddr = kvm_get_attr_addr(attr); 4805 4806 if (attr->group) 4807 return -ENXIO; 4808 4809 if (IS_ERR(uaddr)) 4810 return PTR_ERR(uaddr); 4811 4812 switch (attr->attr) { 4813 case KVM_X86_XCOMP_GUEST_SUPP: 4814 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4815 return -EFAULT; 4816 return 0; 4817 default: 4818 return -ENXIO; 4819 } 4820 } 4821 4822 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4823 { 4824 if (attr->group) 4825 return -ENXIO; 4826 4827 switch (attr->attr) { 4828 case KVM_X86_XCOMP_GUEST_SUPP: 4829 return 0; 4830 default: 4831 return -ENXIO; 4832 } 4833 } 4834 4835 long kvm_arch_dev_ioctl(struct file *filp, 4836 unsigned int ioctl, unsigned long arg) 4837 { 4838 void __user *argp = (void __user *)arg; 4839 long r; 4840 4841 switch (ioctl) { 4842 case KVM_GET_MSR_INDEX_LIST: { 4843 struct kvm_msr_list __user *user_msr_list = argp; 4844 struct kvm_msr_list msr_list; 4845 unsigned n; 4846 4847 r = -EFAULT; 4848 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4849 goto out; 4850 n = msr_list.nmsrs; 4851 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4852 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4853 goto out; 4854 r = -E2BIG; 4855 if (n < msr_list.nmsrs) 4856 goto out; 4857 r = -EFAULT; 4858 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4859 num_msrs_to_save * sizeof(u32))) 4860 goto out; 4861 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4862 &emulated_msrs, 4863 num_emulated_msrs * sizeof(u32))) 4864 goto out; 4865 r = 0; 4866 break; 4867 } 4868 case KVM_GET_SUPPORTED_CPUID: 4869 case KVM_GET_EMULATED_CPUID: { 4870 struct kvm_cpuid2 __user *cpuid_arg = argp; 4871 struct kvm_cpuid2 cpuid; 4872 4873 r = -EFAULT; 4874 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4875 goto out; 4876 4877 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4878 ioctl); 4879 if (r) 4880 goto out; 4881 4882 r = -EFAULT; 4883 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4884 goto out; 4885 r = 0; 4886 break; 4887 } 4888 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4889 r = -EFAULT; 4890 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4891 sizeof(kvm_caps.supported_mce_cap))) 4892 goto out; 4893 r = 0; 4894 break; 4895 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4896 struct kvm_msr_list __user *user_msr_list = argp; 4897 struct kvm_msr_list msr_list; 4898 unsigned int n; 4899 4900 r = -EFAULT; 4901 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4902 goto out; 4903 n = msr_list.nmsrs; 4904 msr_list.nmsrs = num_msr_based_features; 4905 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4906 goto out; 4907 r = -E2BIG; 4908 if (n < msr_list.nmsrs) 4909 goto out; 4910 r = -EFAULT; 4911 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4912 num_msr_based_features * sizeof(u32))) 4913 goto out; 4914 r = 0; 4915 break; 4916 } 4917 case KVM_GET_MSRS: 4918 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4919 break; 4920 #ifdef CONFIG_KVM_HYPERV 4921 case KVM_GET_SUPPORTED_HV_CPUID: 4922 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4923 break; 4924 #endif 4925 case KVM_GET_DEVICE_ATTR: { 4926 struct kvm_device_attr attr; 4927 r = -EFAULT; 4928 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4929 break; 4930 r = kvm_x86_dev_get_attr(&attr); 4931 break; 4932 } 4933 case KVM_HAS_DEVICE_ATTR: { 4934 struct kvm_device_attr attr; 4935 r = -EFAULT; 4936 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4937 break; 4938 r = kvm_x86_dev_has_attr(&attr); 4939 break; 4940 } 4941 default: 4942 r = -EINVAL; 4943 break; 4944 } 4945 out: 4946 return r; 4947 } 4948 4949 static void wbinvd_ipi(void *garbage) 4950 { 4951 wbinvd(); 4952 } 4953 4954 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4955 { 4956 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4957 } 4958 4959 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4960 { 4961 /* Address WBINVD may be executed by guest */ 4962 if (need_emulate_wbinvd(vcpu)) { 4963 if (static_call(kvm_x86_has_wbinvd_exit)()) 4964 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4965 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4966 smp_call_function_single(vcpu->cpu, 4967 wbinvd_ipi, NULL, 1); 4968 } 4969 4970 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4971 4972 /* Save host pkru register if supported */ 4973 vcpu->arch.host_pkru = read_pkru(); 4974 4975 /* Apply any externally detected TSC adjustments (due to suspend) */ 4976 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4977 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4978 vcpu->arch.tsc_offset_adjustment = 0; 4979 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4980 } 4981 4982 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4983 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4984 rdtsc() - vcpu->arch.last_host_tsc; 4985 if (tsc_delta < 0) 4986 mark_tsc_unstable("KVM discovered backwards TSC"); 4987 4988 if (kvm_check_tsc_unstable()) { 4989 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4990 vcpu->arch.last_guest_tsc); 4991 kvm_vcpu_write_tsc_offset(vcpu, offset); 4992 vcpu->arch.tsc_catchup = 1; 4993 } 4994 4995 if (kvm_lapic_hv_timer_in_use(vcpu)) 4996 kvm_lapic_restart_hv_timer(vcpu); 4997 4998 /* 4999 * On a host with synchronized TSC, there is no need to update 5000 * kvmclock on vcpu->cpu migration 5001 */ 5002 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5003 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5004 if (vcpu->cpu != cpu) 5005 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5006 vcpu->cpu = cpu; 5007 } 5008 5009 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5010 } 5011 5012 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5013 { 5014 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5015 struct kvm_steal_time __user *st; 5016 struct kvm_memslots *slots; 5017 static const u8 preempted = KVM_VCPU_PREEMPTED; 5018 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5019 5020 /* 5021 * The vCPU can be marked preempted if and only if the VM-Exit was on 5022 * an instruction boundary and will not trigger guest emulation of any 5023 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5024 * when this is true, for example allowing the vCPU to be marked 5025 * preempted if and only if the VM-Exit was due to a host interrupt. 5026 */ 5027 if (!vcpu->arch.at_instruction_boundary) { 5028 vcpu->stat.preemption_other++; 5029 return; 5030 } 5031 5032 vcpu->stat.preemption_reported++; 5033 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5034 return; 5035 5036 if (vcpu->arch.st.preempted) 5037 return; 5038 5039 /* This happens on process exit */ 5040 if (unlikely(current->mm != vcpu->kvm->mm)) 5041 return; 5042 5043 slots = kvm_memslots(vcpu->kvm); 5044 5045 if (unlikely(slots->generation != ghc->generation || 5046 gpa != ghc->gpa || 5047 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5048 return; 5049 5050 st = (struct kvm_steal_time __user *)ghc->hva; 5051 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5052 5053 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5054 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5055 5056 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5057 } 5058 5059 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5060 { 5061 int idx; 5062 5063 if (vcpu->preempted) { 5064 if (!vcpu->arch.guest_state_protected) 5065 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 5066 5067 /* 5068 * Take the srcu lock as memslots will be accessed to check the gfn 5069 * cache generation against the memslots generation. 5070 */ 5071 idx = srcu_read_lock(&vcpu->kvm->srcu); 5072 if (kvm_xen_msr_enabled(vcpu->kvm)) 5073 kvm_xen_runstate_set_preempted(vcpu); 5074 else 5075 kvm_steal_time_set_preempted(vcpu); 5076 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5077 } 5078 5079 static_call(kvm_x86_vcpu_put)(vcpu); 5080 vcpu->arch.last_host_tsc = rdtsc(); 5081 } 5082 5083 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5084 struct kvm_lapic_state *s) 5085 { 5086 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 5087 5088 return kvm_apic_get_state(vcpu, s); 5089 } 5090 5091 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5092 struct kvm_lapic_state *s) 5093 { 5094 int r; 5095 5096 r = kvm_apic_set_state(vcpu, s); 5097 if (r) 5098 return r; 5099 update_cr8_intercept(vcpu); 5100 5101 return 0; 5102 } 5103 5104 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5105 { 5106 /* 5107 * We can accept userspace's request for interrupt injection 5108 * as long as we have a place to store the interrupt number. 5109 * The actual injection will happen when the CPU is able to 5110 * deliver the interrupt. 5111 */ 5112 if (kvm_cpu_has_extint(vcpu)) 5113 return false; 5114 5115 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5116 return (!lapic_in_kernel(vcpu) || 5117 kvm_apic_accept_pic_intr(vcpu)); 5118 } 5119 5120 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5121 { 5122 /* 5123 * Do not cause an interrupt window exit if an exception 5124 * is pending or an event needs reinjection; userspace 5125 * might want to inject the interrupt manually using KVM_SET_REGS 5126 * or KVM_SET_SREGS. For that to work, we must be at an 5127 * instruction boundary and with no events half-injected. 5128 */ 5129 return (kvm_arch_interrupt_allowed(vcpu) && 5130 kvm_cpu_accept_dm_intr(vcpu) && 5131 !kvm_event_needs_reinjection(vcpu) && 5132 !kvm_is_exception_pending(vcpu)); 5133 } 5134 5135 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5136 struct kvm_interrupt *irq) 5137 { 5138 if (irq->irq >= KVM_NR_INTERRUPTS) 5139 return -EINVAL; 5140 5141 if (!irqchip_in_kernel(vcpu->kvm)) { 5142 kvm_queue_interrupt(vcpu, irq->irq, false); 5143 kvm_make_request(KVM_REQ_EVENT, vcpu); 5144 return 0; 5145 } 5146 5147 /* 5148 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5149 * fail for in-kernel 8259. 5150 */ 5151 if (pic_in_kernel(vcpu->kvm)) 5152 return -ENXIO; 5153 5154 if (vcpu->arch.pending_external_vector != -1) 5155 return -EEXIST; 5156 5157 vcpu->arch.pending_external_vector = irq->irq; 5158 kvm_make_request(KVM_REQ_EVENT, vcpu); 5159 return 0; 5160 } 5161 5162 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5163 { 5164 kvm_inject_nmi(vcpu); 5165 5166 return 0; 5167 } 5168 5169 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5170 struct kvm_tpr_access_ctl *tac) 5171 { 5172 if (tac->flags) 5173 return -EINVAL; 5174 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5175 return 0; 5176 } 5177 5178 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5179 u64 mcg_cap) 5180 { 5181 int r; 5182 unsigned bank_num = mcg_cap & 0xff, bank; 5183 5184 r = -EINVAL; 5185 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5186 goto out; 5187 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5188 goto out; 5189 r = 0; 5190 vcpu->arch.mcg_cap = mcg_cap; 5191 /* Init IA32_MCG_CTL to all 1s */ 5192 if (mcg_cap & MCG_CTL_P) 5193 vcpu->arch.mcg_ctl = ~(u64)0; 5194 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5195 for (bank = 0; bank < bank_num; bank++) { 5196 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5197 if (mcg_cap & MCG_CMCI_P) 5198 vcpu->arch.mci_ctl2_banks[bank] = 0; 5199 } 5200 5201 kvm_apic_after_set_mcg_cap(vcpu); 5202 5203 static_call(kvm_x86_setup_mce)(vcpu); 5204 out: 5205 return r; 5206 } 5207 5208 /* 5209 * Validate this is an UCNA (uncorrectable no action) error by checking the 5210 * MCG_STATUS and MCi_STATUS registers: 5211 * - none of the bits for Machine Check Exceptions are set 5212 * - both the VAL (valid) and UC (uncorrectable) bits are set 5213 * MCI_STATUS_PCC - Processor Context Corrupted 5214 * MCI_STATUS_S - Signaled as a Machine Check Exception 5215 * MCI_STATUS_AR - Software recoverable Action Required 5216 */ 5217 static bool is_ucna(struct kvm_x86_mce *mce) 5218 { 5219 return !mce->mcg_status && 5220 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5221 (mce->status & MCI_STATUS_VAL) && 5222 (mce->status & MCI_STATUS_UC); 5223 } 5224 5225 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5226 { 5227 u64 mcg_cap = vcpu->arch.mcg_cap; 5228 5229 banks[1] = mce->status; 5230 banks[2] = mce->addr; 5231 banks[3] = mce->misc; 5232 vcpu->arch.mcg_status = mce->mcg_status; 5233 5234 if (!(mcg_cap & MCG_CMCI_P) || 5235 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5236 return 0; 5237 5238 if (lapic_in_kernel(vcpu)) 5239 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5240 5241 return 0; 5242 } 5243 5244 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5245 struct kvm_x86_mce *mce) 5246 { 5247 u64 mcg_cap = vcpu->arch.mcg_cap; 5248 unsigned bank_num = mcg_cap & 0xff; 5249 u64 *banks = vcpu->arch.mce_banks; 5250 5251 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5252 return -EINVAL; 5253 5254 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5255 5256 if (is_ucna(mce)) 5257 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5258 5259 /* 5260 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5261 * reporting is disabled 5262 */ 5263 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5264 vcpu->arch.mcg_ctl != ~(u64)0) 5265 return 0; 5266 /* 5267 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5268 * reporting is disabled for the bank 5269 */ 5270 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5271 return 0; 5272 if (mce->status & MCI_STATUS_UC) { 5273 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5274 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5275 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5276 return 0; 5277 } 5278 if (banks[1] & MCI_STATUS_VAL) 5279 mce->status |= MCI_STATUS_OVER; 5280 banks[2] = mce->addr; 5281 banks[3] = mce->misc; 5282 vcpu->arch.mcg_status = mce->mcg_status; 5283 banks[1] = mce->status; 5284 kvm_queue_exception(vcpu, MC_VECTOR); 5285 } else if (!(banks[1] & MCI_STATUS_VAL) 5286 || !(banks[1] & MCI_STATUS_UC)) { 5287 if (banks[1] & MCI_STATUS_VAL) 5288 mce->status |= MCI_STATUS_OVER; 5289 banks[2] = mce->addr; 5290 banks[3] = mce->misc; 5291 banks[1] = mce->status; 5292 } else 5293 banks[1] |= MCI_STATUS_OVER; 5294 return 0; 5295 } 5296 5297 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5298 struct kvm_vcpu_events *events) 5299 { 5300 struct kvm_queued_exception *ex; 5301 5302 process_nmi(vcpu); 5303 5304 #ifdef CONFIG_KVM_SMM 5305 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5306 process_smi(vcpu); 5307 #endif 5308 5309 /* 5310 * KVM's ABI only allows for one exception to be migrated. Luckily, 5311 * the only time there can be two queued exceptions is if there's a 5312 * non-exiting _injected_ exception, and a pending exiting exception. 5313 * In that case, ignore the VM-Exiting exception as it's an extension 5314 * of the injected exception. 5315 */ 5316 if (vcpu->arch.exception_vmexit.pending && 5317 !vcpu->arch.exception.pending && 5318 !vcpu->arch.exception.injected) 5319 ex = &vcpu->arch.exception_vmexit; 5320 else 5321 ex = &vcpu->arch.exception; 5322 5323 /* 5324 * In guest mode, payload delivery should be deferred if the exception 5325 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5326 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5327 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5328 * propagate the payload and so it cannot be safely deferred. Deliver 5329 * the payload if the capability hasn't been requested. 5330 */ 5331 if (!vcpu->kvm->arch.exception_payload_enabled && 5332 ex->pending && ex->has_payload) 5333 kvm_deliver_exception_payload(vcpu, ex); 5334 5335 memset(events, 0, sizeof(*events)); 5336 5337 /* 5338 * The API doesn't provide the instruction length for software 5339 * exceptions, so don't report them. As long as the guest RIP 5340 * isn't advanced, we should expect to encounter the exception 5341 * again. 5342 */ 5343 if (!kvm_exception_is_soft(ex->vector)) { 5344 events->exception.injected = ex->injected; 5345 events->exception.pending = ex->pending; 5346 /* 5347 * For ABI compatibility, deliberately conflate 5348 * pending and injected exceptions when 5349 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5350 */ 5351 if (!vcpu->kvm->arch.exception_payload_enabled) 5352 events->exception.injected |= ex->pending; 5353 } 5354 events->exception.nr = ex->vector; 5355 events->exception.has_error_code = ex->has_error_code; 5356 events->exception.error_code = ex->error_code; 5357 events->exception_has_payload = ex->has_payload; 5358 events->exception_payload = ex->payload; 5359 5360 events->interrupt.injected = 5361 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5362 events->interrupt.nr = vcpu->arch.interrupt.nr; 5363 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5364 5365 events->nmi.injected = vcpu->arch.nmi_injected; 5366 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5367 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5368 5369 /* events->sipi_vector is never valid when reporting to user space */ 5370 5371 #ifdef CONFIG_KVM_SMM 5372 events->smi.smm = is_smm(vcpu); 5373 events->smi.pending = vcpu->arch.smi_pending; 5374 events->smi.smm_inside_nmi = 5375 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5376 #endif 5377 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5378 5379 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5380 | KVM_VCPUEVENT_VALID_SHADOW 5381 | KVM_VCPUEVENT_VALID_SMM); 5382 if (vcpu->kvm->arch.exception_payload_enabled) 5383 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5384 if (vcpu->kvm->arch.triple_fault_event) { 5385 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5386 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5387 } 5388 } 5389 5390 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5391 struct kvm_vcpu_events *events) 5392 { 5393 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5394 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5395 | KVM_VCPUEVENT_VALID_SHADOW 5396 | KVM_VCPUEVENT_VALID_SMM 5397 | KVM_VCPUEVENT_VALID_PAYLOAD 5398 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5399 return -EINVAL; 5400 5401 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5402 if (!vcpu->kvm->arch.exception_payload_enabled) 5403 return -EINVAL; 5404 if (events->exception.pending) 5405 events->exception.injected = 0; 5406 else 5407 events->exception_has_payload = 0; 5408 } else { 5409 events->exception.pending = 0; 5410 events->exception_has_payload = 0; 5411 } 5412 5413 if ((events->exception.injected || events->exception.pending) && 5414 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5415 return -EINVAL; 5416 5417 /* INITs are latched while in SMM */ 5418 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5419 (events->smi.smm || events->smi.pending) && 5420 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5421 return -EINVAL; 5422 5423 process_nmi(vcpu); 5424 5425 /* 5426 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5427 * morph the exception to a VM-Exit if appropriate. Do this only for 5428 * pending exceptions, already-injected exceptions are not subject to 5429 * intercpetion. Note, userspace that conflates pending and injected 5430 * is hosed, and will incorrectly convert an injected exception into a 5431 * pending exception, which in turn may cause a spurious VM-Exit. 5432 */ 5433 vcpu->arch.exception_from_userspace = events->exception.pending; 5434 5435 vcpu->arch.exception_vmexit.pending = false; 5436 5437 vcpu->arch.exception.injected = events->exception.injected; 5438 vcpu->arch.exception.pending = events->exception.pending; 5439 vcpu->arch.exception.vector = events->exception.nr; 5440 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5441 vcpu->arch.exception.error_code = events->exception.error_code; 5442 vcpu->arch.exception.has_payload = events->exception_has_payload; 5443 vcpu->arch.exception.payload = events->exception_payload; 5444 5445 vcpu->arch.interrupt.injected = events->interrupt.injected; 5446 vcpu->arch.interrupt.nr = events->interrupt.nr; 5447 vcpu->arch.interrupt.soft = events->interrupt.soft; 5448 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5449 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5450 events->interrupt.shadow); 5451 5452 vcpu->arch.nmi_injected = events->nmi.injected; 5453 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5454 vcpu->arch.nmi_pending = 0; 5455 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5456 if (events->nmi.pending) 5457 kvm_make_request(KVM_REQ_NMI, vcpu); 5458 } 5459 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5460 5461 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5462 lapic_in_kernel(vcpu)) 5463 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5464 5465 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5466 #ifdef CONFIG_KVM_SMM 5467 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5468 kvm_leave_nested(vcpu); 5469 kvm_smm_changed(vcpu, events->smi.smm); 5470 } 5471 5472 vcpu->arch.smi_pending = events->smi.pending; 5473 5474 if (events->smi.smm) { 5475 if (events->smi.smm_inside_nmi) 5476 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5477 else 5478 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5479 } 5480 5481 #else 5482 if (events->smi.smm || events->smi.pending || 5483 events->smi.smm_inside_nmi) 5484 return -EINVAL; 5485 #endif 5486 5487 if (lapic_in_kernel(vcpu)) { 5488 if (events->smi.latched_init) 5489 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5490 else 5491 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5492 } 5493 } 5494 5495 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5496 if (!vcpu->kvm->arch.triple_fault_event) 5497 return -EINVAL; 5498 if (events->triple_fault.pending) 5499 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5500 else 5501 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5502 } 5503 5504 kvm_make_request(KVM_REQ_EVENT, vcpu); 5505 5506 return 0; 5507 } 5508 5509 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5510 struct kvm_debugregs *dbgregs) 5511 { 5512 unsigned long val; 5513 5514 memset(dbgregs, 0, sizeof(*dbgregs)); 5515 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5516 kvm_get_dr(vcpu, 6, &val); 5517 dbgregs->dr6 = val; 5518 dbgregs->dr7 = vcpu->arch.dr7; 5519 } 5520 5521 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5522 struct kvm_debugregs *dbgregs) 5523 { 5524 if (dbgregs->flags) 5525 return -EINVAL; 5526 5527 if (!kvm_dr6_valid(dbgregs->dr6)) 5528 return -EINVAL; 5529 if (!kvm_dr7_valid(dbgregs->dr7)) 5530 return -EINVAL; 5531 5532 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5533 kvm_update_dr0123(vcpu); 5534 vcpu->arch.dr6 = dbgregs->dr6; 5535 vcpu->arch.dr7 = dbgregs->dr7; 5536 kvm_update_dr7(vcpu); 5537 5538 return 0; 5539 } 5540 5541 5542 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5543 u8 *state, unsigned int size) 5544 { 5545 /* 5546 * Only copy state for features that are enabled for the guest. The 5547 * state itself isn't problematic, but setting bits in the header for 5548 * features that are supported in *this* host but not exposed to the 5549 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5550 * compatible host without the features that are NOT exposed to the 5551 * guest. 5552 * 5553 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5554 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5555 * supported by the host. 5556 */ 5557 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5558 XFEATURE_MASK_FPSSE; 5559 5560 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5561 return; 5562 5563 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5564 supported_xcr0, vcpu->arch.pkru); 5565 } 5566 5567 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5568 struct kvm_xsave *guest_xsave) 5569 { 5570 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5571 sizeof(guest_xsave->region)); 5572 } 5573 5574 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5575 struct kvm_xsave *guest_xsave) 5576 { 5577 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5578 return 0; 5579 5580 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5581 guest_xsave->region, 5582 kvm_caps.supported_xcr0, 5583 &vcpu->arch.pkru); 5584 } 5585 5586 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5587 struct kvm_xcrs *guest_xcrs) 5588 { 5589 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5590 guest_xcrs->nr_xcrs = 0; 5591 return; 5592 } 5593 5594 guest_xcrs->nr_xcrs = 1; 5595 guest_xcrs->flags = 0; 5596 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5597 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5598 } 5599 5600 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5601 struct kvm_xcrs *guest_xcrs) 5602 { 5603 int i, r = 0; 5604 5605 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5606 return -EINVAL; 5607 5608 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5609 return -EINVAL; 5610 5611 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5612 /* Only support XCR0 currently */ 5613 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5614 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5615 guest_xcrs->xcrs[i].value); 5616 break; 5617 } 5618 if (r) 5619 r = -EINVAL; 5620 return r; 5621 } 5622 5623 /* 5624 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5625 * stopped by the hypervisor. This function will be called from the host only. 5626 * EINVAL is returned when the host attempts to set the flag for a guest that 5627 * does not support pv clocks. 5628 */ 5629 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5630 { 5631 if (!vcpu->arch.pv_time.active) 5632 return -EINVAL; 5633 vcpu->arch.pvclock_set_guest_stopped_request = true; 5634 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5635 return 0; 5636 } 5637 5638 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5639 struct kvm_device_attr *attr) 5640 { 5641 int r; 5642 5643 switch (attr->attr) { 5644 case KVM_VCPU_TSC_OFFSET: 5645 r = 0; 5646 break; 5647 default: 5648 r = -ENXIO; 5649 } 5650 5651 return r; 5652 } 5653 5654 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5655 struct kvm_device_attr *attr) 5656 { 5657 u64 __user *uaddr = kvm_get_attr_addr(attr); 5658 int r; 5659 5660 if (IS_ERR(uaddr)) 5661 return PTR_ERR(uaddr); 5662 5663 switch (attr->attr) { 5664 case KVM_VCPU_TSC_OFFSET: 5665 r = -EFAULT; 5666 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5667 break; 5668 r = 0; 5669 break; 5670 default: 5671 r = -ENXIO; 5672 } 5673 5674 return r; 5675 } 5676 5677 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5678 struct kvm_device_attr *attr) 5679 { 5680 u64 __user *uaddr = kvm_get_attr_addr(attr); 5681 struct kvm *kvm = vcpu->kvm; 5682 int r; 5683 5684 if (IS_ERR(uaddr)) 5685 return PTR_ERR(uaddr); 5686 5687 switch (attr->attr) { 5688 case KVM_VCPU_TSC_OFFSET: { 5689 u64 offset, tsc, ns; 5690 unsigned long flags; 5691 bool matched; 5692 5693 r = -EFAULT; 5694 if (get_user(offset, uaddr)) 5695 break; 5696 5697 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5698 5699 matched = (vcpu->arch.virtual_tsc_khz && 5700 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5701 kvm->arch.last_tsc_offset == offset); 5702 5703 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5704 ns = get_kvmclock_base_ns(); 5705 5706 kvm->arch.user_set_tsc = true; 5707 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5708 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5709 5710 r = 0; 5711 break; 5712 } 5713 default: 5714 r = -ENXIO; 5715 } 5716 5717 return r; 5718 } 5719 5720 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5721 unsigned int ioctl, 5722 void __user *argp) 5723 { 5724 struct kvm_device_attr attr; 5725 int r; 5726 5727 if (copy_from_user(&attr, argp, sizeof(attr))) 5728 return -EFAULT; 5729 5730 if (attr.group != KVM_VCPU_TSC_CTRL) 5731 return -ENXIO; 5732 5733 switch (ioctl) { 5734 case KVM_HAS_DEVICE_ATTR: 5735 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5736 break; 5737 case KVM_GET_DEVICE_ATTR: 5738 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5739 break; 5740 case KVM_SET_DEVICE_ATTR: 5741 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5742 break; 5743 } 5744 5745 return r; 5746 } 5747 5748 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5749 struct kvm_enable_cap *cap) 5750 { 5751 if (cap->flags) 5752 return -EINVAL; 5753 5754 switch (cap->cap) { 5755 #ifdef CONFIG_KVM_HYPERV 5756 case KVM_CAP_HYPERV_SYNIC2: 5757 if (cap->args[0]) 5758 return -EINVAL; 5759 fallthrough; 5760 5761 case KVM_CAP_HYPERV_SYNIC: 5762 if (!irqchip_in_kernel(vcpu->kvm)) 5763 return -EINVAL; 5764 return kvm_hv_activate_synic(vcpu, cap->cap == 5765 KVM_CAP_HYPERV_SYNIC2); 5766 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5767 { 5768 int r; 5769 uint16_t vmcs_version; 5770 void __user *user_ptr; 5771 5772 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5773 return -ENOTTY; 5774 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5775 if (!r) { 5776 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5777 if (copy_to_user(user_ptr, &vmcs_version, 5778 sizeof(vmcs_version))) 5779 r = -EFAULT; 5780 } 5781 return r; 5782 } 5783 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5784 if (!kvm_x86_ops.enable_l2_tlb_flush) 5785 return -ENOTTY; 5786 5787 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5788 5789 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5790 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5791 #endif 5792 5793 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5794 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5795 if (vcpu->arch.pv_cpuid.enforce) 5796 kvm_update_pv_runtime(vcpu); 5797 5798 return 0; 5799 default: 5800 return -EINVAL; 5801 } 5802 } 5803 5804 long kvm_arch_vcpu_ioctl(struct file *filp, 5805 unsigned int ioctl, unsigned long arg) 5806 { 5807 struct kvm_vcpu *vcpu = filp->private_data; 5808 void __user *argp = (void __user *)arg; 5809 int r; 5810 union { 5811 struct kvm_sregs2 *sregs2; 5812 struct kvm_lapic_state *lapic; 5813 struct kvm_xsave *xsave; 5814 struct kvm_xcrs *xcrs; 5815 void *buffer; 5816 } u; 5817 5818 vcpu_load(vcpu); 5819 5820 u.buffer = NULL; 5821 switch (ioctl) { 5822 case KVM_GET_LAPIC: { 5823 r = -EINVAL; 5824 if (!lapic_in_kernel(vcpu)) 5825 goto out; 5826 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5827 GFP_KERNEL_ACCOUNT); 5828 5829 r = -ENOMEM; 5830 if (!u.lapic) 5831 goto out; 5832 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5833 if (r) 5834 goto out; 5835 r = -EFAULT; 5836 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5837 goto out; 5838 r = 0; 5839 break; 5840 } 5841 case KVM_SET_LAPIC: { 5842 r = -EINVAL; 5843 if (!lapic_in_kernel(vcpu)) 5844 goto out; 5845 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5846 if (IS_ERR(u.lapic)) { 5847 r = PTR_ERR(u.lapic); 5848 goto out_nofree; 5849 } 5850 5851 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5852 break; 5853 } 5854 case KVM_INTERRUPT: { 5855 struct kvm_interrupt irq; 5856 5857 r = -EFAULT; 5858 if (copy_from_user(&irq, argp, sizeof(irq))) 5859 goto out; 5860 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5861 break; 5862 } 5863 case KVM_NMI: { 5864 r = kvm_vcpu_ioctl_nmi(vcpu); 5865 break; 5866 } 5867 case KVM_SMI: { 5868 r = kvm_inject_smi(vcpu); 5869 break; 5870 } 5871 case KVM_SET_CPUID: { 5872 struct kvm_cpuid __user *cpuid_arg = argp; 5873 struct kvm_cpuid cpuid; 5874 5875 r = -EFAULT; 5876 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5877 goto out; 5878 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5879 break; 5880 } 5881 case KVM_SET_CPUID2: { 5882 struct kvm_cpuid2 __user *cpuid_arg = argp; 5883 struct kvm_cpuid2 cpuid; 5884 5885 r = -EFAULT; 5886 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5887 goto out; 5888 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5889 cpuid_arg->entries); 5890 break; 5891 } 5892 case KVM_GET_CPUID2: { 5893 struct kvm_cpuid2 __user *cpuid_arg = argp; 5894 struct kvm_cpuid2 cpuid; 5895 5896 r = -EFAULT; 5897 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5898 goto out; 5899 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5900 cpuid_arg->entries); 5901 if (r) 5902 goto out; 5903 r = -EFAULT; 5904 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5905 goto out; 5906 r = 0; 5907 break; 5908 } 5909 case KVM_GET_MSRS: { 5910 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5911 r = msr_io(vcpu, argp, do_get_msr, 1); 5912 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5913 break; 5914 } 5915 case KVM_SET_MSRS: { 5916 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5917 r = msr_io(vcpu, argp, do_set_msr, 0); 5918 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5919 break; 5920 } 5921 case KVM_TPR_ACCESS_REPORTING: { 5922 struct kvm_tpr_access_ctl tac; 5923 5924 r = -EFAULT; 5925 if (copy_from_user(&tac, argp, sizeof(tac))) 5926 goto out; 5927 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5928 if (r) 5929 goto out; 5930 r = -EFAULT; 5931 if (copy_to_user(argp, &tac, sizeof(tac))) 5932 goto out; 5933 r = 0; 5934 break; 5935 }; 5936 case KVM_SET_VAPIC_ADDR: { 5937 struct kvm_vapic_addr va; 5938 int idx; 5939 5940 r = -EINVAL; 5941 if (!lapic_in_kernel(vcpu)) 5942 goto out; 5943 r = -EFAULT; 5944 if (copy_from_user(&va, argp, sizeof(va))) 5945 goto out; 5946 idx = srcu_read_lock(&vcpu->kvm->srcu); 5947 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5948 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5949 break; 5950 } 5951 case KVM_X86_SETUP_MCE: { 5952 u64 mcg_cap; 5953 5954 r = -EFAULT; 5955 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5956 goto out; 5957 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5958 break; 5959 } 5960 case KVM_X86_SET_MCE: { 5961 struct kvm_x86_mce mce; 5962 5963 r = -EFAULT; 5964 if (copy_from_user(&mce, argp, sizeof(mce))) 5965 goto out; 5966 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5967 break; 5968 } 5969 case KVM_GET_VCPU_EVENTS: { 5970 struct kvm_vcpu_events events; 5971 5972 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5973 5974 r = -EFAULT; 5975 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5976 break; 5977 r = 0; 5978 break; 5979 } 5980 case KVM_SET_VCPU_EVENTS: { 5981 struct kvm_vcpu_events events; 5982 5983 r = -EFAULT; 5984 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5985 break; 5986 5987 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5988 break; 5989 } 5990 case KVM_GET_DEBUGREGS: { 5991 struct kvm_debugregs dbgregs; 5992 5993 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5994 5995 r = -EFAULT; 5996 if (copy_to_user(argp, &dbgregs, 5997 sizeof(struct kvm_debugregs))) 5998 break; 5999 r = 0; 6000 break; 6001 } 6002 case KVM_SET_DEBUGREGS: { 6003 struct kvm_debugregs dbgregs; 6004 6005 r = -EFAULT; 6006 if (copy_from_user(&dbgregs, argp, 6007 sizeof(struct kvm_debugregs))) 6008 break; 6009 6010 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6011 break; 6012 } 6013 case KVM_GET_XSAVE: { 6014 r = -EINVAL; 6015 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6016 break; 6017 6018 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 6019 r = -ENOMEM; 6020 if (!u.xsave) 6021 break; 6022 6023 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6024 6025 r = -EFAULT; 6026 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6027 break; 6028 r = 0; 6029 break; 6030 } 6031 case KVM_SET_XSAVE: { 6032 int size = vcpu->arch.guest_fpu.uabi_size; 6033 6034 u.xsave = memdup_user(argp, size); 6035 if (IS_ERR(u.xsave)) { 6036 r = PTR_ERR(u.xsave); 6037 goto out_nofree; 6038 } 6039 6040 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6041 break; 6042 } 6043 6044 case KVM_GET_XSAVE2: { 6045 int size = vcpu->arch.guest_fpu.uabi_size; 6046 6047 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 6048 r = -ENOMEM; 6049 if (!u.xsave) 6050 break; 6051 6052 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6053 6054 r = -EFAULT; 6055 if (copy_to_user(argp, u.xsave, size)) 6056 break; 6057 6058 r = 0; 6059 break; 6060 } 6061 6062 case KVM_GET_XCRS: { 6063 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 6064 r = -ENOMEM; 6065 if (!u.xcrs) 6066 break; 6067 6068 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6069 6070 r = -EFAULT; 6071 if (copy_to_user(argp, u.xcrs, 6072 sizeof(struct kvm_xcrs))) 6073 break; 6074 r = 0; 6075 break; 6076 } 6077 case KVM_SET_XCRS: { 6078 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6079 if (IS_ERR(u.xcrs)) { 6080 r = PTR_ERR(u.xcrs); 6081 goto out_nofree; 6082 } 6083 6084 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6085 break; 6086 } 6087 case KVM_SET_TSC_KHZ: { 6088 u32 user_tsc_khz; 6089 6090 r = -EINVAL; 6091 user_tsc_khz = (u32)arg; 6092 6093 if (kvm_caps.has_tsc_control && 6094 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6095 goto out; 6096 6097 if (user_tsc_khz == 0) 6098 user_tsc_khz = tsc_khz; 6099 6100 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6101 r = 0; 6102 6103 goto out; 6104 } 6105 case KVM_GET_TSC_KHZ: { 6106 r = vcpu->arch.virtual_tsc_khz; 6107 goto out; 6108 } 6109 case KVM_KVMCLOCK_CTRL: { 6110 r = kvm_set_guest_paused(vcpu); 6111 goto out; 6112 } 6113 case KVM_ENABLE_CAP: { 6114 struct kvm_enable_cap cap; 6115 6116 r = -EFAULT; 6117 if (copy_from_user(&cap, argp, sizeof(cap))) 6118 goto out; 6119 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6120 break; 6121 } 6122 case KVM_GET_NESTED_STATE: { 6123 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6124 u32 user_data_size; 6125 6126 r = -EINVAL; 6127 if (!kvm_x86_ops.nested_ops->get_state) 6128 break; 6129 6130 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6131 r = -EFAULT; 6132 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6133 break; 6134 6135 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6136 user_data_size); 6137 if (r < 0) 6138 break; 6139 6140 if (r > user_data_size) { 6141 if (put_user(r, &user_kvm_nested_state->size)) 6142 r = -EFAULT; 6143 else 6144 r = -E2BIG; 6145 break; 6146 } 6147 6148 r = 0; 6149 break; 6150 } 6151 case KVM_SET_NESTED_STATE: { 6152 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6153 struct kvm_nested_state kvm_state; 6154 int idx; 6155 6156 r = -EINVAL; 6157 if (!kvm_x86_ops.nested_ops->set_state) 6158 break; 6159 6160 r = -EFAULT; 6161 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6162 break; 6163 6164 r = -EINVAL; 6165 if (kvm_state.size < sizeof(kvm_state)) 6166 break; 6167 6168 if (kvm_state.flags & 6169 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6170 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6171 | KVM_STATE_NESTED_GIF_SET)) 6172 break; 6173 6174 /* nested_run_pending implies guest_mode. */ 6175 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6176 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6177 break; 6178 6179 idx = srcu_read_lock(&vcpu->kvm->srcu); 6180 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6181 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6182 break; 6183 } 6184 #ifdef CONFIG_KVM_HYPERV 6185 case KVM_GET_SUPPORTED_HV_CPUID: 6186 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6187 break; 6188 #endif 6189 #ifdef CONFIG_KVM_XEN 6190 case KVM_XEN_VCPU_GET_ATTR: { 6191 struct kvm_xen_vcpu_attr xva; 6192 6193 r = -EFAULT; 6194 if (copy_from_user(&xva, argp, sizeof(xva))) 6195 goto out; 6196 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6197 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6198 r = -EFAULT; 6199 break; 6200 } 6201 case KVM_XEN_VCPU_SET_ATTR: { 6202 struct kvm_xen_vcpu_attr xva; 6203 6204 r = -EFAULT; 6205 if (copy_from_user(&xva, argp, sizeof(xva))) 6206 goto out; 6207 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6208 break; 6209 } 6210 #endif 6211 case KVM_GET_SREGS2: { 6212 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6213 r = -ENOMEM; 6214 if (!u.sregs2) 6215 goto out; 6216 __get_sregs2(vcpu, u.sregs2); 6217 r = -EFAULT; 6218 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6219 goto out; 6220 r = 0; 6221 break; 6222 } 6223 case KVM_SET_SREGS2: { 6224 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6225 if (IS_ERR(u.sregs2)) { 6226 r = PTR_ERR(u.sregs2); 6227 u.sregs2 = NULL; 6228 goto out; 6229 } 6230 r = __set_sregs2(vcpu, u.sregs2); 6231 break; 6232 } 6233 case KVM_HAS_DEVICE_ATTR: 6234 case KVM_GET_DEVICE_ATTR: 6235 case KVM_SET_DEVICE_ATTR: 6236 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6237 break; 6238 default: 6239 r = -EINVAL; 6240 } 6241 out: 6242 kfree(u.buffer); 6243 out_nofree: 6244 vcpu_put(vcpu); 6245 return r; 6246 } 6247 6248 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6249 { 6250 return VM_FAULT_SIGBUS; 6251 } 6252 6253 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6254 { 6255 int ret; 6256 6257 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6258 return -EINVAL; 6259 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6260 return ret; 6261 } 6262 6263 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6264 u64 ident_addr) 6265 { 6266 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6267 } 6268 6269 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6270 unsigned long kvm_nr_mmu_pages) 6271 { 6272 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6273 return -EINVAL; 6274 6275 mutex_lock(&kvm->slots_lock); 6276 6277 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6278 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6279 6280 mutex_unlock(&kvm->slots_lock); 6281 return 0; 6282 } 6283 6284 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6285 { 6286 struct kvm_pic *pic = kvm->arch.vpic; 6287 int r; 6288 6289 r = 0; 6290 switch (chip->chip_id) { 6291 case KVM_IRQCHIP_PIC_MASTER: 6292 memcpy(&chip->chip.pic, &pic->pics[0], 6293 sizeof(struct kvm_pic_state)); 6294 break; 6295 case KVM_IRQCHIP_PIC_SLAVE: 6296 memcpy(&chip->chip.pic, &pic->pics[1], 6297 sizeof(struct kvm_pic_state)); 6298 break; 6299 case KVM_IRQCHIP_IOAPIC: 6300 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6301 break; 6302 default: 6303 r = -EINVAL; 6304 break; 6305 } 6306 return r; 6307 } 6308 6309 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6310 { 6311 struct kvm_pic *pic = kvm->arch.vpic; 6312 int r; 6313 6314 r = 0; 6315 switch (chip->chip_id) { 6316 case KVM_IRQCHIP_PIC_MASTER: 6317 spin_lock(&pic->lock); 6318 memcpy(&pic->pics[0], &chip->chip.pic, 6319 sizeof(struct kvm_pic_state)); 6320 spin_unlock(&pic->lock); 6321 break; 6322 case KVM_IRQCHIP_PIC_SLAVE: 6323 spin_lock(&pic->lock); 6324 memcpy(&pic->pics[1], &chip->chip.pic, 6325 sizeof(struct kvm_pic_state)); 6326 spin_unlock(&pic->lock); 6327 break; 6328 case KVM_IRQCHIP_IOAPIC: 6329 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6330 break; 6331 default: 6332 r = -EINVAL; 6333 break; 6334 } 6335 kvm_pic_update_irq(pic); 6336 return r; 6337 } 6338 6339 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6340 { 6341 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6342 6343 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6344 6345 mutex_lock(&kps->lock); 6346 memcpy(ps, &kps->channels, sizeof(*ps)); 6347 mutex_unlock(&kps->lock); 6348 return 0; 6349 } 6350 6351 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6352 { 6353 int i; 6354 struct kvm_pit *pit = kvm->arch.vpit; 6355 6356 mutex_lock(&pit->pit_state.lock); 6357 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6358 for (i = 0; i < 3; i++) 6359 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6360 mutex_unlock(&pit->pit_state.lock); 6361 return 0; 6362 } 6363 6364 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6365 { 6366 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6367 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6368 sizeof(ps->channels)); 6369 ps->flags = kvm->arch.vpit->pit_state.flags; 6370 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6371 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6372 return 0; 6373 } 6374 6375 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6376 { 6377 int start = 0; 6378 int i; 6379 u32 prev_legacy, cur_legacy; 6380 struct kvm_pit *pit = kvm->arch.vpit; 6381 6382 mutex_lock(&pit->pit_state.lock); 6383 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6384 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6385 if (!prev_legacy && cur_legacy) 6386 start = 1; 6387 memcpy(&pit->pit_state.channels, &ps->channels, 6388 sizeof(pit->pit_state.channels)); 6389 pit->pit_state.flags = ps->flags; 6390 for (i = 0; i < 3; i++) 6391 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6392 start && i == 0); 6393 mutex_unlock(&pit->pit_state.lock); 6394 return 0; 6395 } 6396 6397 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6398 struct kvm_reinject_control *control) 6399 { 6400 struct kvm_pit *pit = kvm->arch.vpit; 6401 6402 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6403 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6404 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6405 */ 6406 mutex_lock(&pit->pit_state.lock); 6407 kvm_pit_set_reinject(pit, control->pit_reinject); 6408 mutex_unlock(&pit->pit_state.lock); 6409 6410 return 0; 6411 } 6412 6413 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6414 { 6415 6416 /* 6417 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6418 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6419 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6420 * VM-Exit. 6421 */ 6422 struct kvm_vcpu *vcpu; 6423 unsigned long i; 6424 6425 if (!kvm_x86_ops.cpu_dirty_log_size) 6426 return; 6427 6428 kvm_for_each_vcpu(i, vcpu, kvm) 6429 kvm_vcpu_kick(vcpu); 6430 } 6431 6432 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6433 bool line_status) 6434 { 6435 if (!irqchip_in_kernel(kvm)) 6436 return -ENXIO; 6437 6438 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6439 irq_event->irq, irq_event->level, 6440 line_status); 6441 return 0; 6442 } 6443 6444 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6445 struct kvm_enable_cap *cap) 6446 { 6447 int r; 6448 6449 if (cap->flags) 6450 return -EINVAL; 6451 6452 switch (cap->cap) { 6453 case KVM_CAP_DISABLE_QUIRKS2: 6454 r = -EINVAL; 6455 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6456 break; 6457 fallthrough; 6458 case KVM_CAP_DISABLE_QUIRKS: 6459 kvm->arch.disabled_quirks = cap->args[0]; 6460 r = 0; 6461 break; 6462 case KVM_CAP_SPLIT_IRQCHIP: { 6463 mutex_lock(&kvm->lock); 6464 r = -EINVAL; 6465 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6466 goto split_irqchip_unlock; 6467 r = -EEXIST; 6468 if (irqchip_in_kernel(kvm)) 6469 goto split_irqchip_unlock; 6470 if (kvm->created_vcpus) 6471 goto split_irqchip_unlock; 6472 r = kvm_setup_empty_irq_routing(kvm); 6473 if (r) 6474 goto split_irqchip_unlock; 6475 /* Pairs with irqchip_in_kernel. */ 6476 smp_wmb(); 6477 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6478 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6479 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6480 r = 0; 6481 split_irqchip_unlock: 6482 mutex_unlock(&kvm->lock); 6483 break; 6484 } 6485 case KVM_CAP_X2APIC_API: 6486 r = -EINVAL; 6487 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6488 break; 6489 6490 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6491 kvm->arch.x2apic_format = true; 6492 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6493 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6494 6495 r = 0; 6496 break; 6497 case KVM_CAP_X86_DISABLE_EXITS: 6498 r = -EINVAL; 6499 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6500 break; 6501 6502 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6503 kvm->arch.pause_in_guest = true; 6504 6505 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6506 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6507 6508 if (!mitigate_smt_rsb) { 6509 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6510 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6511 pr_warn_once(SMT_RSB_MSG); 6512 6513 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6514 kvm_can_mwait_in_guest()) 6515 kvm->arch.mwait_in_guest = true; 6516 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6517 kvm->arch.hlt_in_guest = true; 6518 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6519 kvm->arch.cstate_in_guest = true; 6520 } 6521 6522 r = 0; 6523 break; 6524 case KVM_CAP_MSR_PLATFORM_INFO: 6525 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6526 r = 0; 6527 break; 6528 case KVM_CAP_EXCEPTION_PAYLOAD: 6529 kvm->arch.exception_payload_enabled = cap->args[0]; 6530 r = 0; 6531 break; 6532 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6533 kvm->arch.triple_fault_event = cap->args[0]; 6534 r = 0; 6535 break; 6536 case KVM_CAP_X86_USER_SPACE_MSR: 6537 r = -EINVAL; 6538 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6539 break; 6540 kvm->arch.user_space_msr_mask = cap->args[0]; 6541 r = 0; 6542 break; 6543 case KVM_CAP_X86_BUS_LOCK_EXIT: 6544 r = -EINVAL; 6545 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6546 break; 6547 6548 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6549 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6550 break; 6551 6552 if (kvm_caps.has_bus_lock_exit && 6553 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6554 kvm->arch.bus_lock_detection_enabled = true; 6555 r = 0; 6556 break; 6557 #ifdef CONFIG_X86_SGX_KVM 6558 case KVM_CAP_SGX_ATTRIBUTE: { 6559 unsigned long allowed_attributes = 0; 6560 6561 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6562 if (r) 6563 break; 6564 6565 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6566 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6567 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6568 kvm->arch.sgx_provisioning_allowed = true; 6569 else 6570 r = -EINVAL; 6571 break; 6572 } 6573 #endif 6574 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6575 r = -EINVAL; 6576 if (!kvm_x86_ops.vm_copy_enc_context_from) 6577 break; 6578 6579 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6580 break; 6581 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6582 r = -EINVAL; 6583 if (!kvm_x86_ops.vm_move_enc_context_from) 6584 break; 6585 6586 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6587 break; 6588 case KVM_CAP_EXIT_HYPERCALL: 6589 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6590 r = -EINVAL; 6591 break; 6592 } 6593 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6594 r = 0; 6595 break; 6596 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6597 r = -EINVAL; 6598 if (cap->args[0] & ~1) 6599 break; 6600 kvm->arch.exit_on_emulation_error = cap->args[0]; 6601 r = 0; 6602 break; 6603 case KVM_CAP_PMU_CAPABILITY: 6604 r = -EINVAL; 6605 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6606 break; 6607 6608 mutex_lock(&kvm->lock); 6609 if (!kvm->created_vcpus) { 6610 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6611 r = 0; 6612 } 6613 mutex_unlock(&kvm->lock); 6614 break; 6615 case KVM_CAP_MAX_VCPU_ID: 6616 r = -EINVAL; 6617 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6618 break; 6619 6620 mutex_lock(&kvm->lock); 6621 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6622 r = 0; 6623 } else if (!kvm->arch.max_vcpu_ids) { 6624 kvm->arch.max_vcpu_ids = cap->args[0]; 6625 r = 0; 6626 } 6627 mutex_unlock(&kvm->lock); 6628 break; 6629 case KVM_CAP_X86_NOTIFY_VMEXIT: 6630 r = -EINVAL; 6631 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6632 break; 6633 if (!kvm_caps.has_notify_vmexit) 6634 break; 6635 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6636 break; 6637 mutex_lock(&kvm->lock); 6638 if (!kvm->created_vcpus) { 6639 kvm->arch.notify_window = cap->args[0] >> 32; 6640 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6641 r = 0; 6642 } 6643 mutex_unlock(&kvm->lock); 6644 break; 6645 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6646 r = -EINVAL; 6647 6648 /* 6649 * Since the risk of disabling NX hugepages is a guest crashing 6650 * the system, ensure the userspace process has permission to 6651 * reboot the system. 6652 * 6653 * Note that unlike the reboot() syscall, the process must have 6654 * this capability in the root namespace because exposing 6655 * /dev/kvm into a container does not limit the scope of the 6656 * iTLB multihit bug to that container. In other words, 6657 * this must use capable(), not ns_capable(). 6658 */ 6659 if (!capable(CAP_SYS_BOOT)) { 6660 r = -EPERM; 6661 break; 6662 } 6663 6664 if (cap->args[0]) 6665 break; 6666 6667 mutex_lock(&kvm->lock); 6668 if (!kvm->created_vcpus) { 6669 kvm->arch.disable_nx_huge_pages = true; 6670 r = 0; 6671 } 6672 mutex_unlock(&kvm->lock); 6673 break; 6674 default: 6675 r = -EINVAL; 6676 break; 6677 } 6678 return r; 6679 } 6680 6681 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6682 { 6683 struct kvm_x86_msr_filter *msr_filter; 6684 6685 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6686 if (!msr_filter) 6687 return NULL; 6688 6689 msr_filter->default_allow = default_allow; 6690 return msr_filter; 6691 } 6692 6693 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6694 { 6695 u32 i; 6696 6697 if (!msr_filter) 6698 return; 6699 6700 for (i = 0; i < msr_filter->count; i++) 6701 kfree(msr_filter->ranges[i].bitmap); 6702 6703 kfree(msr_filter); 6704 } 6705 6706 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6707 struct kvm_msr_filter_range *user_range) 6708 { 6709 unsigned long *bitmap; 6710 size_t bitmap_size; 6711 6712 if (!user_range->nmsrs) 6713 return 0; 6714 6715 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6716 return -EINVAL; 6717 6718 if (!user_range->flags) 6719 return -EINVAL; 6720 6721 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6722 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6723 return -EINVAL; 6724 6725 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6726 if (IS_ERR(bitmap)) 6727 return PTR_ERR(bitmap); 6728 6729 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6730 .flags = user_range->flags, 6731 .base = user_range->base, 6732 .nmsrs = user_range->nmsrs, 6733 .bitmap = bitmap, 6734 }; 6735 6736 msr_filter->count++; 6737 return 0; 6738 } 6739 6740 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6741 struct kvm_msr_filter *filter) 6742 { 6743 struct kvm_x86_msr_filter *new_filter, *old_filter; 6744 bool default_allow; 6745 bool empty = true; 6746 int r; 6747 u32 i; 6748 6749 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6750 return -EINVAL; 6751 6752 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6753 empty &= !filter->ranges[i].nmsrs; 6754 6755 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6756 if (empty && !default_allow) 6757 return -EINVAL; 6758 6759 new_filter = kvm_alloc_msr_filter(default_allow); 6760 if (!new_filter) 6761 return -ENOMEM; 6762 6763 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6764 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6765 if (r) { 6766 kvm_free_msr_filter(new_filter); 6767 return r; 6768 } 6769 } 6770 6771 mutex_lock(&kvm->lock); 6772 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6773 mutex_is_locked(&kvm->lock)); 6774 mutex_unlock(&kvm->lock); 6775 synchronize_srcu(&kvm->srcu); 6776 6777 kvm_free_msr_filter(old_filter); 6778 6779 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6780 6781 return 0; 6782 } 6783 6784 #ifdef CONFIG_KVM_COMPAT 6785 /* for KVM_X86_SET_MSR_FILTER */ 6786 struct kvm_msr_filter_range_compat { 6787 __u32 flags; 6788 __u32 nmsrs; 6789 __u32 base; 6790 __u32 bitmap; 6791 }; 6792 6793 struct kvm_msr_filter_compat { 6794 __u32 flags; 6795 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6796 }; 6797 6798 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6799 6800 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6801 unsigned long arg) 6802 { 6803 void __user *argp = (void __user *)arg; 6804 struct kvm *kvm = filp->private_data; 6805 long r = -ENOTTY; 6806 6807 switch (ioctl) { 6808 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6809 struct kvm_msr_filter __user *user_msr_filter = argp; 6810 struct kvm_msr_filter_compat filter_compat; 6811 struct kvm_msr_filter filter; 6812 int i; 6813 6814 if (copy_from_user(&filter_compat, user_msr_filter, 6815 sizeof(filter_compat))) 6816 return -EFAULT; 6817 6818 filter.flags = filter_compat.flags; 6819 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6820 struct kvm_msr_filter_range_compat *cr; 6821 6822 cr = &filter_compat.ranges[i]; 6823 filter.ranges[i] = (struct kvm_msr_filter_range) { 6824 .flags = cr->flags, 6825 .nmsrs = cr->nmsrs, 6826 .base = cr->base, 6827 .bitmap = (__u8 *)(ulong)cr->bitmap, 6828 }; 6829 } 6830 6831 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6832 break; 6833 } 6834 } 6835 6836 return r; 6837 } 6838 #endif 6839 6840 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6841 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6842 { 6843 struct kvm_vcpu *vcpu; 6844 unsigned long i; 6845 int ret = 0; 6846 6847 mutex_lock(&kvm->lock); 6848 kvm_for_each_vcpu(i, vcpu, kvm) { 6849 if (!vcpu->arch.pv_time.active) 6850 continue; 6851 6852 ret = kvm_set_guest_paused(vcpu); 6853 if (ret) { 6854 kvm_err("Failed to pause guest VCPU%d: %d\n", 6855 vcpu->vcpu_id, ret); 6856 break; 6857 } 6858 } 6859 mutex_unlock(&kvm->lock); 6860 6861 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6862 } 6863 6864 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6865 { 6866 switch (state) { 6867 case PM_HIBERNATION_PREPARE: 6868 case PM_SUSPEND_PREPARE: 6869 return kvm_arch_suspend_notifier(kvm); 6870 } 6871 6872 return NOTIFY_DONE; 6873 } 6874 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6875 6876 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6877 { 6878 struct kvm_clock_data data = { 0 }; 6879 6880 get_kvmclock(kvm, &data); 6881 if (copy_to_user(argp, &data, sizeof(data))) 6882 return -EFAULT; 6883 6884 return 0; 6885 } 6886 6887 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6888 { 6889 struct kvm_arch *ka = &kvm->arch; 6890 struct kvm_clock_data data; 6891 u64 now_raw_ns; 6892 6893 if (copy_from_user(&data, argp, sizeof(data))) 6894 return -EFAULT; 6895 6896 /* 6897 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6898 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6899 */ 6900 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6901 return -EINVAL; 6902 6903 kvm_hv_request_tsc_page_update(kvm); 6904 kvm_start_pvclock_update(kvm); 6905 pvclock_update_vm_gtod_copy(kvm); 6906 6907 /* 6908 * This pairs with kvm_guest_time_update(): when masterclock is 6909 * in use, we use master_kernel_ns + kvmclock_offset to set 6910 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6911 * is slightly ahead) here we risk going negative on unsigned 6912 * 'system_time' when 'data.clock' is very small. 6913 */ 6914 if (data.flags & KVM_CLOCK_REALTIME) { 6915 u64 now_real_ns = ktime_get_real_ns(); 6916 6917 /* 6918 * Avoid stepping the kvmclock backwards. 6919 */ 6920 if (now_real_ns > data.realtime) 6921 data.clock += now_real_ns - data.realtime; 6922 } 6923 6924 if (ka->use_master_clock) 6925 now_raw_ns = ka->master_kernel_ns; 6926 else 6927 now_raw_ns = get_kvmclock_base_ns(); 6928 ka->kvmclock_offset = data.clock - now_raw_ns; 6929 kvm_end_pvclock_update(kvm); 6930 return 0; 6931 } 6932 6933 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6934 { 6935 struct kvm *kvm = filp->private_data; 6936 void __user *argp = (void __user *)arg; 6937 int r = -ENOTTY; 6938 /* 6939 * This union makes it completely explicit to gcc-3.x 6940 * that these two variables' stack usage should be 6941 * combined, not added together. 6942 */ 6943 union { 6944 struct kvm_pit_state ps; 6945 struct kvm_pit_state2 ps2; 6946 struct kvm_pit_config pit_config; 6947 } u; 6948 6949 switch (ioctl) { 6950 case KVM_SET_TSS_ADDR: 6951 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6952 break; 6953 case KVM_SET_IDENTITY_MAP_ADDR: { 6954 u64 ident_addr; 6955 6956 mutex_lock(&kvm->lock); 6957 r = -EINVAL; 6958 if (kvm->created_vcpus) 6959 goto set_identity_unlock; 6960 r = -EFAULT; 6961 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6962 goto set_identity_unlock; 6963 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6964 set_identity_unlock: 6965 mutex_unlock(&kvm->lock); 6966 break; 6967 } 6968 case KVM_SET_NR_MMU_PAGES: 6969 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6970 break; 6971 case KVM_CREATE_IRQCHIP: { 6972 mutex_lock(&kvm->lock); 6973 6974 r = -EEXIST; 6975 if (irqchip_in_kernel(kvm)) 6976 goto create_irqchip_unlock; 6977 6978 r = -EINVAL; 6979 if (kvm->created_vcpus) 6980 goto create_irqchip_unlock; 6981 6982 r = kvm_pic_init(kvm); 6983 if (r) 6984 goto create_irqchip_unlock; 6985 6986 r = kvm_ioapic_init(kvm); 6987 if (r) { 6988 kvm_pic_destroy(kvm); 6989 goto create_irqchip_unlock; 6990 } 6991 6992 r = kvm_setup_default_irq_routing(kvm); 6993 if (r) { 6994 kvm_ioapic_destroy(kvm); 6995 kvm_pic_destroy(kvm); 6996 goto create_irqchip_unlock; 6997 } 6998 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6999 smp_wmb(); 7000 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7001 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7002 create_irqchip_unlock: 7003 mutex_unlock(&kvm->lock); 7004 break; 7005 } 7006 case KVM_CREATE_PIT: 7007 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7008 goto create_pit; 7009 case KVM_CREATE_PIT2: 7010 r = -EFAULT; 7011 if (copy_from_user(&u.pit_config, argp, 7012 sizeof(struct kvm_pit_config))) 7013 goto out; 7014 create_pit: 7015 mutex_lock(&kvm->lock); 7016 r = -EEXIST; 7017 if (kvm->arch.vpit) 7018 goto create_pit_unlock; 7019 r = -ENOENT; 7020 if (!pic_in_kernel(kvm)) 7021 goto create_pit_unlock; 7022 r = -ENOMEM; 7023 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7024 if (kvm->arch.vpit) 7025 r = 0; 7026 create_pit_unlock: 7027 mutex_unlock(&kvm->lock); 7028 break; 7029 case KVM_GET_IRQCHIP: { 7030 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7031 struct kvm_irqchip *chip; 7032 7033 chip = memdup_user(argp, sizeof(*chip)); 7034 if (IS_ERR(chip)) { 7035 r = PTR_ERR(chip); 7036 goto out; 7037 } 7038 7039 r = -ENXIO; 7040 if (!irqchip_kernel(kvm)) 7041 goto get_irqchip_out; 7042 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7043 if (r) 7044 goto get_irqchip_out; 7045 r = -EFAULT; 7046 if (copy_to_user(argp, chip, sizeof(*chip))) 7047 goto get_irqchip_out; 7048 r = 0; 7049 get_irqchip_out: 7050 kfree(chip); 7051 break; 7052 } 7053 case KVM_SET_IRQCHIP: { 7054 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7055 struct kvm_irqchip *chip; 7056 7057 chip = memdup_user(argp, sizeof(*chip)); 7058 if (IS_ERR(chip)) { 7059 r = PTR_ERR(chip); 7060 goto out; 7061 } 7062 7063 r = -ENXIO; 7064 if (!irqchip_kernel(kvm)) 7065 goto set_irqchip_out; 7066 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7067 set_irqchip_out: 7068 kfree(chip); 7069 break; 7070 } 7071 case KVM_GET_PIT: { 7072 r = -EFAULT; 7073 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7074 goto out; 7075 r = -ENXIO; 7076 if (!kvm->arch.vpit) 7077 goto out; 7078 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7079 if (r) 7080 goto out; 7081 r = -EFAULT; 7082 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7083 goto out; 7084 r = 0; 7085 break; 7086 } 7087 case KVM_SET_PIT: { 7088 r = -EFAULT; 7089 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7090 goto out; 7091 mutex_lock(&kvm->lock); 7092 r = -ENXIO; 7093 if (!kvm->arch.vpit) 7094 goto set_pit_out; 7095 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7096 set_pit_out: 7097 mutex_unlock(&kvm->lock); 7098 break; 7099 } 7100 case KVM_GET_PIT2: { 7101 r = -ENXIO; 7102 if (!kvm->arch.vpit) 7103 goto out; 7104 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7105 if (r) 7106 goto out; 7107 r = -EFAULT; 7108 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7109 goto out; 7110 r = 0; 7111 break; 7112 } 7113 case KVM_SET_PIT2: { 7114 r = -EFAULT; 7115 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7116 goto out; 7117 mutex_lock(&kvm->lock); 7118 r = -ENXIO; 7119 if (!kvm->arch.vpit) 7120 goto set_pit2_out; 7121 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7122 set_pit2_out: 7123 mutex_unlock(&kvm->lock); 7124 break; 7125 } 7126 case KVM_REINJECT_CONTROL: { 7127 struct kvm_reinject_control control; 7128 r = -EFAULT; 7129 if (copy_from_user(&control, argp, sizeof(control))) 7130 goto out; 7131 r = -ENXIO; 7132 if (!kvm->arch.vpit) 7133 goto out; 7134 r = kvm_vm_ioctl_reinject(kvm, &control); 7135 break; 7136 } 7137 case KVM_SET_BOOT_CPU_ID: 7138 r = 0; 7139 mutex_lock(&kvm->lock); 7140 if (kvm->created_vcpus) 7141 r = -EBUSY; 7142 else 7143 kvm->arch.bsp_vcpu_id = arg; 7144 mutex_unlock(&kvm->lock); 7145 break; 7146 #ifdef CONFIG_KVM_XEN 7147 case KVM_XEN_HVM_CONFIG: { 7148 struct kvm_xen_hvm_config xhc; 7149 r = -EFAULT; 7150 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7151 goto out; 7152 r = kvm_xen_hvm_config(kvm, &xhc); 7153 break; 7154 } 7155 case KVM_XEN_HVM_GET_ATTR: { 7156 struct kvm_xen_hvm_attr xha; 7157 7158 r = -EFAULT; 7159 if (copy_from_user(&xha, argp, sizeof(xha))) 7160 goto out; 7161 r = kvm_xen_hvm_get_attr(kvm, &xha); 7162 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7163 r = -EFAULT; 7164 break; 7165 } 7166 case KVM_XEN_HVM_SET_ATTR: { 7167 struct kvm_xen_hvm_attr xha; 7168 7169 r = -EFAULT; 7170 if (copy_from_user(&xha, argp, sizeof(xha))) 7171 goto out; 7172 r = kvm_xen_hvm_set_attr(kvm, &xha); 7173 break; 7174 } 7175 case KVM_XEN_HVM_EVTCHN_SEND: { 7176 struct kvm_irq_routing_xen_evtchn uxe; 7177 7178 r = -EFAULT; 7179 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7180 goto out; 7181 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7182 break; 7183 } 7184 #endif 7185 case KVM_SET_CLOCK: 7186 r = kvm_vm_ioctl_set_clock(kvm, argp); 7187 break; 7188 case KVM_GET_CLOCK: 7189 r = kvm_vm_ioctl_get_clock(kvm, argp); 7190 break; 7191 case KVM_SET_TSC_KHZ: { 7192 u32 user_tsc_khz; 7193 7194 r = -EINVAL; 7195 user_tsc_khz = (u32)arg; 7196 7197 if (kvm_caps.has_tsc_control && 7198 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7199 goto out; 7200 7201 if (user_tsc_khz == 0) 7202 user_tsc_khz = tsc_khz; 7203 7204 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7205 r = 0; 7206 7207 goto out; 7208 } 7209 case KVM_GET_TSC_KHZ: { 7210 r = READ_ONCE(kvm->arch.default_tsc_khz); 7211 goto out; 7212 } 7213 case KVM_MEMORY_ENCRYPT_OP: { 7214 r = -ENOTTY; 7215 if (!kvm_x86_ops.mem_enc_ioctl) 7216 goto out; 7217 7218 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7219 break; 7220 } 7221 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7222 struct kvm_enc_region region; 7223 7224 r = -EFAULT; 7225 if (copy_from_user(®ion, argp, sizeof(region))) 7226 goto out; 7227 7228 r = -ENOTTY; 7229 if (!kvm_x86_ops.mem_enc_register_region) 7230 goto out; 7231 7232 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7233 break; 7234 } 7235 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7236 struct kvm_enc_region region; 7237 7238 r = -EFAULT; 7239 if (copy_from_user(®ion, argp, sizeof(region))) 7240 goto out; 7241 7242 r = -ENOTTY; 7243 if (!kvm_x86_ops.mem_enc_unregister_region) 7244 goto out; 7245 7246 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7247 break; 7248 } 7249 #ifdef CONFIG_KVM_HYPERV 7250 case KVM_HYPERV_EVENTFD: { 7251 struct kvm_hyperv_eventfd hvevfd; 7252 7253 r = -EFAULT; 7254 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7255 goto out; 7256 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7257 break; 7258 } 7259 #endif 7260 case KVM_SET_PMU_EVENT_FILTER: 7261 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7262 break; 7263 case KVM_X86_SET_MSR_FILTER: { 7264 struct kvm_msr_filter __user *user_msr_filter = argp; 7265 struct kvm_msr_filter filter; 7266 7267 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7268 return -EFAULT; 7269 7270 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7271 break; 7272 } 7273 default: 7274 r = -ENOTTY; 7275 } 7276 out: 7277 return r; 7278 } 7279 7280 static void kvm_probe_feature_msr(u32 msr_index) 7281 { 7282 struct kvm_msr_entry msr = { 7283 .index = msr_index, 7284 }; 7285 7286 if (kvm_get_msr_feature(&msr)) 7287 return; 7288 7289 msr_based_features[num_msr_based_features++] = msr_index; 7290 } 7291 7292 static void kvm_probe_msr_to_save(u32 msr_index) 7293 { 7294 u32 dummy[2]; 7295 7296 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7297 return; 7298 7299 /* 7300 * Even MSRs that are valid in the host may not be exposed to guests in 7301 * some cases. 7302 */ 7303 switch (msr_index) { 7304 case MSR_IA32_BNDCFGS: 7305 if (!kvm_mpx_supported()) 7306 return; 7307 break; 7308 case MSR_TSC_AUX: 7309 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7310 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7311 return; 7312 break; 7313 case MSR_IA32_UMWAIT_CONTROL: 7314 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7315 return; 7316 break; 7317 case MSR_IA32_RTIT_CTL: 7318 case MSR_IA32_RTIT_STATUS: 7319 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7320 return; 7321 break; 7322 case MSR_IA32_RTIT_CR3_MATCH: 7323 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7324 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7325 return; 7326 break; 7327 case MSR_IA32_RTIT_OUTPUT_BASE: 7328 case MSR_IA32_RTIT_OUTPUT_MASK: 7329 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7330 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7331 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7332 return; 7333 break; 7334 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7335 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7336 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7337 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7338 return; 7339 break; 7340 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7341 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7342 kvm_pmu_cap.num_counters_gp) 7343 return; 7344 break; 7345 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7346 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7347 kvm_pmu_cap.num_counters_gp) 7348 return; 7349 break; 7350 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7351 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7352 kvm_pmu_cap.num_counters_fixed) 7353 return; 7354 break; 7355 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7356 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7357 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7358 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7359 return; 7360 break; 7361 case MSR_IA32_XFD: 7362 case MSR_IA32_XFD_ERR: 7363 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7364 return; 7365 break; 7366 case MSR_IA32_TSX_CTRL: 7367 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7368 return; 7369 break; 7370 default: 7371 break; 7372 } 7373 7374 msrs_to_save[num_msrs_to_save++] = msr_index; 7375 } 7376 7377 static void kvm_init_msr_lists(void) 7378 { 7379 unsigned i; 7380 7381 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7382 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7383 7384 num_msrs_to_save = 0; 7385 num_emulated_msrs = 0; 7386 num_msr_based_features = 0; 7387 7388 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7389 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7390 7391 if (enable_pmu) { 7392 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7393 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7394 } 7395 7396 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7397 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7398 continue; 7399 7400 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7401 } 7402 7403 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7404 kvm_probe_feature_msr(i); 7405 7406 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7407 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7408 } 7409 7410 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7411 const void *v) 7412 { 7413 int handled = 0; 7414 int n; 7415 7416 do { 7417 n = min(len, 8); 7418 if (!(lapic_in_kernel(vcpu) && 7419 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7420 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7421 break; 7422 handled += n; 7423 addr += n; 7424 len -= n; 7425 v += n; 7426 } while (len); 7427 7428 return handled; 7429 } 7430 7431 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7432 { 7433 int handled = 0; 7434 int n; 7435 7436 do { 7437 n = min(len, 8); 7438 if (!(lapic_in_kernel(vcpu) && 7439 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7440 addr, n, v)) 7441 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7442 break; 7443 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7444 handled += n; 7445 addr += n; 7446 len -= n; 7447 v += n; 7448 } while (len); 7449 7450 return handled; 7451 } 7452 7453 void kvm_set_segment(struct kvm_vcpu *vcpu, 7454 struct kvm_segment *var, int seg) 7455 { 7456 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7457 } 7458 7459 void kvm_get_segment(struct kvm_vcpu *vcpu, 7460 struct kvm_segment *var, int seg) 7461 { 7462 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7463 } 7464 7465 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7466 struct x86_exception *exception) 7467 { 7468 struct kvm_mmu *mmu = vcpu->arch.mmu; 7469 gpa_t t_gpa; 7470 7471 BUG_ON(!mmu_is_nested(vcpu)); 7472 7473 /* NPT walks are always user-walks */ 7474 access |= PFERR_USER_MASK; 7475 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7476 7477 return t_gpa; 7478 } 7479 7480 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7481 struct x86_exception *exception) 7482 { 7483 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7484 7485 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7486 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7487 } 7488 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7489 7490 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7491 struct x86_exception *exception) 7492 { 7493 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7494 7495 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7496 access |= PFERR_WRITE_MASK; 7497 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7498 } 7499 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7500 7501 /* uses this to access any guest's mapped memory without checking CPL */ 7502 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7503 struct x86_exception *exception) 7504 { 7505 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7506 7507 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7508 } 7509 7510 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7511 struct kvm_vcpu *vcpu, u64 access, 7512 struct x86_exception *exception) 7513 { 7514 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7515 void *data = val; 7516 int r = X86EMUL_CONTINUE; 7517 7518 while (bytes) { 7519 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7520 unsigned offset = addr & (PAGE_SIZE-1); 7521 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7522 int ret; 7523 7524 if (gpa == INVALID_GPA) 7525 return X86EMUL_PROPAGATE_FAULT; 7526 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7527 offset, toread); 7528 if (ret < 0) { 7529 r = X86EMUL_IO_NEEDED; 7530 goto out; 7531 } 7532 7533 bytes -= toread; 7534 data += toread; 7535 addr += toread; 7536 } 7537 out: 7538 return r; 7539 } 7540 7541 /* used for instruction fetching */ 7542 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7543 gva_t addr, void *val, unsigned int bytes, 7544 struct x86_exception *exception) 7545 { 7546 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7547 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7548 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7549 unsigned offset; 7550 int ret; 7551 7552 /* Inline kvm_read_guest_virt_helper for speed. */ 7553 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7554 exception); 7555 if (unlikely(gpa == INVALID_GPA)) 7556 return X86EMUL_PROPAGATE_FAULT; 7557 7558 offset = addr & (PAGE_SIZE-1); 7559 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7560 bytes = (unsigned)PAGE_SIZE - offset; 7561 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7562 offset, bytes); 7563 if (unlikely(ret < 0)) 7564 return X86EMUL_IO_NEEDED; 7565 7566 return X86EMUL_CONTINUE; 7567 } 7568 7569 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7570 gva_t addr, void *val, unsigned int bytes, 7571 struct x86_exception *exception) 7572 { 7573 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7574 7575 /* 7576 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7577 * is returned, but our callers are not ready for that and they blindly 7578 * call kvm_inject_page_fault. Ensure that they at least do not leak 7579 * uninitialized kernel stack memory into cr2 and error code. 7580 */ 7581 memset(exception, 0, sizeof(*exception)); 7582 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7583 exception); 7584 } 7585 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7586 7587 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7588 gva_t addr, void *val, unsigned int bytes, 7589 struct x86_exception *exception, bool system) 7590 { 7591 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7592 u64 access = 0; 7593 7594 if (system) 7595 access |= PFERR_IMPLICIT_ACCESS; 7596 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7597 access |= PFERR_USER_MASK; 7598 7599 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7600 } 7601 7602 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7603 struct kvm_vcpu *vcpu, u64 access, 7604 struct x86_exception *exception) 7605 { 7606 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7607 void *data = val; 7608 int r = X86EMUL_CONTINUE; 7609 7610 while (bytes) { 7611 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7612 unsigned offset = addr & (PAGE_SIZE-1); 7613 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7614 int ret; 7615 7616 if (gpa == INVALID_GPA) 7617 return X86EMUL_PROPAGATE_FAULT; 7618 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7619 if (ret < 0) { 7620 r = X86EMUL_IO_NEEDED; 7621 goto out; 7622 } 7623 7624 bytes -= towrite; 7625 data += towrite; 7626 addr += towrite; 7627 } 7628 out: 7629 return r; 7630 } 7631 7632 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7633 unsigned int bytes, struct x86_exception *exception, 7634 bool system) 7635 { 7636 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7637 u64 access = PFERR_WRITE_MASK; 7638 7639 if (system) 7640 access |= PFERR_IMPLICIT_ACCESS; 7641 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7642 access |= PFERR_USER_MASK; 7643 7644 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7645 access, exception); 7646 } 7647 7648 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7649 unsigned int bytes, struct x86_exception *exception) 7650 { 7651 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7652 vcpu->arch.l1tf_flush_l1d = true; 7653 7654 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7655 PFERR_WRITE_MASK, exception); 7656 } 7657 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7658 7659 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7660 void *insn, int insn_len) 7661 { 7662 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type, 7663 insn, insn_len); 7664 } 7665 7666 int handle_ud(struct kvm_vcpu *vcpu) 7667 { 7668 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7669 int fep_flags = READ_ONCE(force_emulation_prefix); 7670 int emul_type = EMULTYPE_TRAP_UD; 7671 char sig[5]; /* ud2; .ascii "kvm" */ 7672 struct x86_exception e; 7673 int r; 7674 7675 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7676 if (r != X86EMUL_CONTINUE) 7677 return 1; 7678 7679 if (fep_flags && 7680 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7681 sig, sizeof(sig), &e) == 0 && 7682 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7683 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7684 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7685 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7686 emul_type = EMULTYPE_TRAP_UD_FORCED; 7687 } 7688 7689 return kvm_emulate_instruction(vcpu, emul_type); 7690 } 7691 EXPORT_SYMBOL_GPL(handle_ud); 7692 7693 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7694 gpa_t gpa, bool write) 7695 { 7696 /* For APIC access vmexit */ 7697 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7698 return 1; 7699 7700 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7701 trace_vcpu_match_mmio(gva, gpa, write, true); 7702 return 1; 7703 } 7704 7705 return 0; 7706 } 7707 7708 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7709 gpa_t *gpa, struct x86_exception *exception, 7710 bool write) 7711 { 7712 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7713 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7714 | (write ? PFERR_WRITE_MASK : 0); 7715 7716 /* 7717 * currently PKRU is only applied to ept enabled guest so 7718 * there is no pkey in EPT page table for L1 guest or EPT 7719 * shadow page table for L2 guest. 7720 */ 7721 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7722 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7723 vcpu->arch.mmio_access, 0, access))) { 7724 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7725 (gva & (PAGE_SIZE - 1)); 7726 trace_vcpu_match_mmio(gva, *gpa, write, false); 7727 return 1; 7728 } 7729 7730 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7731 7732 if (*gpa == INVALID_GPA) 7733 return -1; 7734 7735 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7736 } 7737 7738 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7739 const void *val, int bytes) 7740 { 7741 int ret; 7742 7743 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7744 if (ret < 0) 7745 return 0; 7746 kvm_page_track_write(vcpu, gpa, val, bytes); 7747 return 1; 7748 } 7749 7750 struct read_write_emulator_ops { 7751 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7752 int bytes); 7753 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7754 void *val, int bytes); 7755 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7756 int bytes, void *val); 7757 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7758 void *val, int bytes); 7759 bool write; 7760 }; 7761 7762 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7763 { 7764 if (vcpu->mmio_read_completed) { 7765 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7766 vcpu->mmio_fragments[0].gpa, val); 7767 vcpu->mmio_read_completed = 0; 7768 return 1; 7769 } 7770 7771 return 0; 7772 } 7773 7774 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7775 void *val, int bytes) 7776 { 7777 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7778 } 7779 7780 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7781 void *val, int bytes) 7782 { 7783 return emulator_write_phys(vcpu, gpa, val, bytes); 7784 } 7785 7786 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7787 { 7788 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7789 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7790 } 7791 7792 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7793 void *val, int bytes) 7794 { 7795 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7796 return X86EMUL_IO_NEEDED; 7797 } 7798 7799 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7800 void *val, int bytes) 7801 { 7802 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7803 7804 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7805 return X86EMUL_CONTINUE; 7806 } 7807 7808 static const struct read_write_emulator_ops read_emultor = { 7809 .read_write_prepare = read_prepare, 7810 .read_write_emulate = read_emulate, 7811 .read_write_mmio = vcpu_mmio_read, 7812 .read_write_exit_mmio = read_exit_mmio, 7813 }; 7814 7815 static const struct read_write_emulator_ops write_emultor = { 7816 .read_write_emulate = write_emulate, 7817 .read_write_mmio = write_mmio, 7818 .read_write_exit_mmio = write_exit_mmio, 7819 .write = true, 7820 }; 7821 7822 static int emulator_read_write_onepage(unsigned long addr, void *val, 7823 unsigned int bytes, 7824 struct x86_exception *exception, 7825 struct kvm_vcpu *vcpu, 7826 const struct read_write_emulator_ops *ops) 7827 { 7828 gpa_t gpa; 7829 int handled, ret; 7830 bool write = ops->write; 7831 struct kvm_mmio_fragment *frag; 7832 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7833 7834 /* 7835 * If the exit was due to a NPF we may already have a GPA. 7836 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7837 * Note, this cannot be used on string operations since string 7838 * operation using rep will only have the initial GPA from the NPF 7839 * occurred. 7840 */ 7841 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7842 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7843 gpa = ctxt->gpa_val; 7844 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7845 } else { 7846 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7847 if (ret < 0) 7848 return X86EMUL_PROPAGATE_FAULT; 7849 } 7850 7851 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7852 return X86EMUL_CONTINUE; 7853 7854 /* 7855 * Is this MMIO handled locally? 7856 */ 7857 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7858 if (handled == bytes) 7859 return X86EMUL_CONTINUE; 7860 7861 gpa += handled; 7862 bytes -= handled; 7863 val += handled; 7864 7865 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7866 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7867 frag->gpa = gpa; 7868 frag->data = val; 7869 frag->len = bytes; 7870 return X86EMUL_CONTINUE; 7871 } 7872 7873 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7874 unsigned long addr, 7875 void *val, unsigned int bytes, 7876 struct x86_exception *exception, 7877 const struct read_write_emulator_ops *ops) 7878 { 7879 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7880 gpa_t gpa; 7881 int rc; 7882 7883 if (ops->read_write_prepare && 7884 ops->read_write_prepare(vcpu, val, bytes)) 7885 return X86EMUL_CONTINUE; 7886 7887 vcpu->mmio_nr_fragments = 0; 7888 7889 /* Crossing a page boundary? */ 7890 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7891 int now; 7892 7893 now = -addr & ~PAGE_MASK; 7894 rc = emulator_read_write_onepage(addr, val, now, exception, 7895 vcpu, ops); 7896 7897 if (rc != X86EMUL_CONTINUE) 7898 return rc; 7899 addr += now; 7900 if (ctxt->mode != X86EMUL_MODE_PROT64) 7901 addr = (u32)addr; 7902 val += now; 7903 bytes -= now; 7904 } 7905 7906 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7907 vcpu, ops); 7908 if (rc != X86EMUL_CONTINUE) 7909 return rc; 7910 7911 if (!vcpu->mmio_nr_fragments) 7912 return rc; 7913 7914 gpa = vcpu->mmio_fragments[0].gpa; 7915 7916 vcpu->mmio_needed = 1; 7917 vcpu->mmio_cur_fragment = 0; 7918 7919 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7920 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7921 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7922 vcpu->run->mmio.phys_addr = gpa; 7923 7924 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7925 } 7926 7927 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7928 unsigned long addr, 7929 void *val, 7930 unsigned int bytes, 7931 struct x86_exception *exception) 7932 { 7933 return emulator_read_write(ctxt, addr, val, bytes, 7934 exception, &read_emultor); 7935 } 7936 7937 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7938 unsigned long addr, 7939 const void *val, 7940 unsigned int bytes, 7941 struct x86_exception *exception) 7942 { 7943 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7944 exception, &write_emultor); 7945 } 7946 7947 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7948 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7949 7950 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7951 unsigned long addr, 7952 const void *old, 7953 const void *new, 7954 unsigned int bytes, 7955 struct x86_exception *exception) 7956 { 7957 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7958 u64 page_line_mask; 7959 unsigned long hva; 7960 gpa_t gpa; 7961 int r; 7962 7963 /* guests cmpxchg8b have to be emulated atomically */ 7964 if (bytes > 8 || (bytes & (bytes - 1))) 7965 goto emul_write; 7966 7967 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7968 7969 if (gpa == INVALID_GPA || 7970 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7971 goto emul_write; 7972 7973 /* 7974 * Emulate the atomic as a straight write to avoid #AC if SLD is 7975 * enabled in the host and the access splits a cache line. 7976 */ 7977 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7978 page_line_mask = ~(cache_line_size() - 1); 7979 else 7980 page_line_mask = PAGE_MASK; 7981 7982 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7983 goto emul_write; 7984 7985 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7986 if (kvm_is_error_hva(hva)) 7987 goto emul_write; 7988 7989 hva += offset_in_page(gpa); 7990 7991 switch (bytes) { 7992 case 1: 7993 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7994 break; 7995 case 2: 7996 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7997 break; 7998 case 4: 7999 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8000 break; 8001 case 8: 8002 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8003 break; 8004 default: 8005 BUG(); 8006 } 8007 8008 if (r < 0) 8009 return X86EMUL_UNHANDLEABLE; 8010 8011 /* 8012 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8013 * successful, as the old value is written back on failure. Note, for 8014 * live migration, this is unnecessarily conservative as CMPXCHG writes 8015 * back the original value and the access is atomic, but KVM's ABI is 8016 * that all writes are dirty logged, regardless of the value written. 8017 */ 8018 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8019 8020 if (r) 8021 return X86EMUL_CMPXCHG_FAILED; 8022 8023 kvm_page_track_write(vcpu, gpa, new, bytes); 8024 8025 return X86EMUL_CONTINUE; 8026 8027 emul_write: 8028 pr_warn_once("emulating exchange as write\n"); 8029 8030 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8031 } 8032 8033 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8034 unsigned short port, void *data, 8035 unsigned int count, bool in) 8036 { 8037 unsigned i; 8038 int r; 8039 8040 WARN_ON_ONCE(vcpu->arch.pio.count); 8041 for (i = 0; i < count; i++) { 8042 if (in) 8043 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8044 else 8045 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8046 8047 if (r) { 8048 if (i == 0) 8049 goto userspace_io; 8050 8051 /* 8052 * Userspace must have unregistered the device while PIO 8053 * was running. Drop writes / read as 0. 8054 */ 8055 if (in) 8056 memset(data, 0, size * (count - i)); 8057 break; 8058 } 8059 8060 data += size; 8061 } 8062 return 1; 8063 8064 userspace_io: 8065 vcpu->arch.pio.port = port; 8066 vcpu->arch.pio.in = in; 8067 vcpu->arch.pio.count = count; 8068 vcpu->arch.pio.size = size; 8069 8070 if (in) 8071 memset(vcpu->arch.pio_data, 0, size * count); 8072 else 8073 memcpy(vcpu->arch.pio_data, data, size * count); 8074 8075 vcpu->run->exit_reason = KVM_EXIT_IO; 8076 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8077 vcpu->run->io.size = size; 8078 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8079 vcpu->run->io.count = count; 8080 vcpu->run->io.port = port; 8081 return 0; 8082 } 8083 8084 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8085 unsigned short port, void *val, unsigned int count) 8086 { 8087 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8088 if (r) 8089 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8090 8091 return r; 8092 } 8093 8094 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8095 { 8096 int size = vcpu->arch.pio.size; 8097 unsigned int count = vcpu->arch.pio.count; 8098 memcpy(val, vcpu->arch.pio_data, size * count); 8099 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8100 vcpu->arch.pio.count = 0; 8101 } 8102 8103 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8104 int size, unsigned short port, void *val, 8105 unsigned int count) 8106 { 8107 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8108 if (vcpu->arch.pio.count) { 8109 /* 8110 * Complete a previous iteration that required userspace I/O. 8111 * Note, @count isn't guaranteed to match pio.count as userspace 8112 * can modify ECX before rerunning the vCPU. Ignore any such 8113 * shenanigans as KVM doesn't support modifying the rep count, 8114 * and the emulator ensures @count doesn't overflow the buffer. 8115 */ 8116 complete_emulator_pio_in(vcpu, val); 8117 return 1; 8118 } 8119 8120 return emulator_pio_in(vcpu, size, port, val, count); 8121 } 8122 8123 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8124 unsigned short port, const void *val, 8125 unsigned int count) 8126 { 8127 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8128 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8129 } 8130 8131 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8132 int size, unsigned short port, 8133 const void *val, unsigned int count) 8134 { 8135 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8136 } 8137 8138 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8139 { 8140 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 8141 } 8142 8143 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8144 { 8145 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8146 } 8147 8148 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8149 { 8150 if (!need_emulate_wbinvd(vcpu)) 8151 return X86EMUL_CONTINUE; 8152 8153 if (static_call(kvm_x86_has_wbinvd_exit)()) { 8154 int cpu = get_cpu(); 8155 8156 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8157 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8158 wbinvd_ipi, NULL, 1); 8159 put_cpu(); 8160 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8161 } else 8162 wbinvd(); 8163 return X86EMUL_CONTINUE; 8164 } 8165 8166 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8167 { 8168 kvm_emulate_wbinvd_noskip(vcpu); 8169 return kvm_skip_emulated_instruction(vcpu); 8170 } 8171 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8172 8173 8174 8175 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8176 { 8177 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8178 } 8179 8180 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 8181 unsigned long *dest) 8182 { 8183 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 8184 } 8185 8186 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8187 unsigned long value) 8188 { 8189 8190 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8191 } 8192 8193 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8194 { 8195 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8196 } 8197 8198 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8199 { 8200 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8201 unsigned long value; 8202 8203 switch (cr) { 8204 case 0: 8205 value = kvm_read_cr0(vcpu); 8206 break; 8207 case 2: 8208 value = vcpu->arch.cr2; 8209 break; 8210 case 3: 8211 value = kvm_read_cr3(vcpu); 8212 break; 8213 case 4: 8214 value = kvm_read_cr4(vcpu); 8215 break; 8216 case 8: 8217 value = kvm_get_cr8(vcpu); 8218 break; 8219 default: 8220 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8221 return 0; 8222 } 8223 8224 return value; 8225 } 8226 8227 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8228 { 8229 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8230 int res = 0; 8231 8232 switch (cr) { 8233 case 0: 8234 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8235 break; 8236 case 2: 8237 vcpu->arch.cr2 = val; 8238 break; 8239 case 3: 8240 res = kvm_set_cr3(vcpu, val); 8241 break; 8242 case 4: 8243 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8244 break; 8245 case 8: 8246 res = kvm_set_cr8(vcpu, val); 8247 break; 8248 default: 8249 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8250 res = -1; 8251 } 8252 8253 return res; 8254 } 8255 8256 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8257 { 8258 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8259 } 8260 8261 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8262 { 8263 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8264 } 8265 8266 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8267 { 8268 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8269 } 8270 8271 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8272 { 8273 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8274 } 8275 8276 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8277 { 8278 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8279 } 8280 8281 static unsigned long emulator_get_cached_segment_base( 8282 struct x86_emulate_ctxt *ctxt, int seg) 8283 { 8284 return get_segment_base(emul_to_vcpu(ctxt), seg); 8285 } 8286 8287 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8288 struct desc_struct *desc, u32 *base3, 8289 int seg) 8290 { 8291 struct kvm_segment var; 8292 8293 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8294 *selector = var.selector; 8295 8296 if (var.unusable) { 8297 memset(desc, 0, sizeof(*desc)); 8298 if (base3) 8299 *base3 = 0; 8300 return false; 8301 } 8302 8303 if (var.g) 8304 var.limit >>= 12; 8305 set_desc_limit(desc, var.limit); 8306 set_desc_base(desc, (unsigned long)var.base); 8307 #ifdef CONFIG_X86_64 8308 if (base3) 8309 *base3 = var.base >> 32; 8310 #endif 8311 desc->type = var.type; 8312 desc->s = var.s; 8313 desc->dpl = var.dpl; 8314 desc->p = var.present; 8315 desc->avl = var.avl; 8316 desc->l = var.l; 8317 desc->d = var.db; 8318 desc->g = var.g; 8319 8320 return true; 8321 } 8322 8323 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8324 struct desc_struct *desc, u32 base3, 8325 int seg) 8326 { 8327 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8328 struct kvm_segment var; 8329 8330 var.selector = selector; 8331 var.base = get_desc_base(desc); 8332 #ifdef CONFIG_X86_64 8333 var.base |= ((u64)base3) << 32; 8334 #endif 8335 var.limit = get_desc_limit(desc); 8336 if (desc->g) 8337 var.limit = (var.limit << 12) | 0xfff; 8338 var.type = desc->type; 8339 var.dpl = desc->dpl; 8340 var.db = desc->d; 8341 var.s = desc->s; 8342 var.l = desc->l; 8343 var.g = desc->g; 8344 var.avl = desc->avl; 8345 var.present = desc->p; 8346 var.unusable = !var.present; 8347 var.padding = 0; 8348 8349 kvm_set_segment(vcpu, &var, seg); 8350 return; 8351 } 8352 8353 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8354 u32 msr_index, u64 *pdata) 8355 { 8356 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8357 int r; 8358 8359 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8360 if (r < 0) 8361 return X86EMUL_UNHANDLEABLE; 8362 8363 if (r) { 8364 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8365 complete_emulated_rdmsr, r)) 8366 return X86EMUL_IO_NEEDED; 8367 8368 trace_kvm_msr_read_ex(msr_index); 8369 return X86EMUL_PROPAGATE_FAULT; 8370 } 8371 8372 trace_kvm_msr_read(msr_index, *pdata); 8373 return X86EMUL_CONTINUE; 8374 } 8375 8376 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8377 u32 msr_index, u64 data) 8378 { 8379 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8380 int r; 8381 8382 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8383 if (r < 0) 8384 return X86EMUL_UNHANDLEABLE; 8385 8386 if (r) { 8387 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8388 complete_emulated_msr_access, r)) 8389 return X86EMUL_IO_NEEDED; 8390 8391 trace_kvm_msr_write_ex(msr_index, data); 8392 return X86EMUL_PROPAGATE_FAULT; 8393 } 8394 8395 trace_kvm_msr_write(msr_index, data); 8396 return X86EMUL_CONTINUE; 8397 } 8398 8399 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8400 u32 msr_index, u64 *pdata) 8401 { 8402 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8403 } 8404 8405 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8406 u32 pmc) 8407 { 8408 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8409 return 0; 8410 return -EINVAL; 8411 } 8412 8413 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8414 u32 pmc, u64 *pdata) 8415 { 8416 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8417 } 8418 8419 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8420 { 8421 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8422 } 8423 8424 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8425 struct x86_instruction_info *info, 8426 enum x86_intercept_stage stage) 8427 { 8428 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8429 &ctxt->exception); 8430 } 8431 8432 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8433 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8434 bool exact_only) 8435 { 8436 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8437 } 8438 8439 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8440 { 8441 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8442 } 8443 8444 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8445 { 8446 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8447 } 8448 8449 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8450 { 8451 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8452 } 8453 8454 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8455 { 8456 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8457 } 8458 8459 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8460 { 8461 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8462 } 8463 8464 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8465 { 8466 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8467 } 8468 8469 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8470 { 8471 return is_smm(emul_to_vcpu(ctxt)); 8472 } 8473 8474 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8475 { 8476 return is_guest_mode(emul_to_vcpu(ctxt)); 8477 } 8478 8479 #ifndef CONFIG_KVM_SMM 8480 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8481 { 8482 WARN_ON_ONCE(1); 8483 return X86EMUL_UNHANDLEABLE; 8484 } 8485 #endif 8486 8487 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8488 { 8489 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8490 } 8491 8492 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8493 { 8494 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8495 } 8496 8497 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8498 { 8499 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8500 8501 if (!kvm->vm_bugged) 8502 kvm_vm_bugged(kvm); 8503 } 8504 8505 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8506 gva_t addr, unsigned int flags) 8507 { 8508 if (!kvm_x86_ops.get_untagged_addr) 8509 return addr; 8510 8511 return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags); 8512 } 8513 8514 static const struct x86_emulate_ops emulate_ops = { 8515 .vm_bugged = emulator_vm_bugged, 8516 .read_gpr = emulator_read_gpr, 8517 .write_gpr = emulator_write_gpr, 8518 .read_std = emulator_read_std, 8519 .write_std = emulator_write_std, 8520 .fetch = kvm_fetch_guest_virt, 8521 .read_emulated = emulator_read_emulated, 8522 .write_emulated = emulator_write_emulated, 8523 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8524 .invlpg = emulator_invlpg, 8525 .pio_in_emulated = emulator_pio_in_emulated, 8526 .pio_out_emulated = emulator_pio_out_emulated, 8527 .get_segment = emulator_get_segment, 8528 .set_segment = emulator_set_segment, 8529 .get_cached_segment_base = emulator_get_cached_segment_base, 8530 .get_gdt = emulator_get_gdt, 8531 .get_idt = emulator_get_idt, 8532 .set_gdt = emulator_set_gdt, 8533 .set_idt = emulator_set_idt, 8534 .get_cr = emulator_get_cr, 8535 .set_cr = emulator_set_cr, 8536 .cpl = emulator_get_cpl, 8537 .get_dr = emulator_get_dr, 8538 .set_dr = emulator_set_dr, 8539 .set_msr_with_filter = emulator_set_msr_with_filter, 8540 .get_msr_with_filter = emulator_get_msr_with_filter, 8541 .get_msr = emulator_get_msr, 8542 .check_pmc = emulator_check_pmc, 8543 .read_pmc = emulator_read_pmc, 8544 .halt = emulator_halt, 8545 .wbinvd = emulator_wbinvd, 8546 .fix_hypercall = emulator_fix_hypercall, 8547 .intercept = emulator_intercept, 8548 .get_cpuid = emulator_get_cpuid, 8549 .guest_has_movbe = emulator_guest_has_movbe, 8550 .guest_has_fxsr = emulator_guest_has_fxsr, 8551 .guest_has_rdpid = emulator_guest_has_rdpid, 8552 .set_nmi_mask = emulator_set_nmi_mask, 8553 .is_smm = emulator_is_smm, 8554 .is_guest_mode = emulator_is_guest_mode, 8555 .leave_smm = emulator_leave_smm, 8556 .triple_fault = emulator_triple_fault, 8557 .set_xcr = emulator_set_xcr, 8558 .get_untagged_addr = emulator_get_untagged_addr, 8559 }; 8560 8561 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8562 { 8563 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8564 /* 8565 * an sti; sti; sequence only disable interrupts for the first 8566 * instruction. So, if the last instruction, be it emulated or 8567 * not, left the system with the INT_STI flag enabled, it 8568 * means that the last instruction is an sti. We should not 8569 * leave the flag on in this case. The same goes for mov ss 8570 */ 8571 if (int_shadow & mask) 8572 mask = 0; 8573 if (unlikely(int_shadow || mask)) { 8574 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8575 if (!mask) 8576 kvm_make_request(KVM_REQ_EVENT, vcpu); 8577 } 8578 } 8579 8580 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8581 { 8582 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8583 8584 if (ctxt->exception.vector == PF_VECTOR) 8585 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8586 else if (ctxt->exception.error_code_valid) 8587 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8588 ctxt->exception.error_code); 8589 else 8590 kvm_queue_exception(vcpu, ctxt->exception.vector); 8591 } 8592 8593 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8594 { 8595 struct x86_emulate_ctxt *ctxt; 8596 8597 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8598 if (!ctxt) { 8599 pr_err("failed to allocate vcpu's emulator\n"); 8600 return NULL; 8601 } 8602 8603 ctxt->vcpu = vcpu; 8604 ctxt->ops = &emulate_ops; 8605 vcpu->arch.emulate_ctxt = ctxt; 8606 8607 return ctxt; 8608 } 8609 8610 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8611 { 8612 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8613 int cs_db, cs_l; 8614 8615 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8616 8617 ctxt->gpa_available = false; 8618 ctxt->eflags = kvm_get_rflags(vcpu); 8619 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8620 8621 ctxt->eip = kvm_rip_read(vcpu); 8622 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8623 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8624 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8625 cs_db ? X86EMUL_MODE_PROT32 : 8626 X86EMUL_MODE_PROT16; 8627 ctxt->interruptibility = 0; 8628 ctxt->have_exception = false; 8629 ctxt->exception.vector = -1; 8630 ctxt->perm_ok = false; 8631 8632 init_decode_cache(ctxt); 8633 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8634 } 8635 8636 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8637 { 8638 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8639 int ret; 8640 8641 init_emulate_ctxt(vcpu); 8642 8643 ctxt->op_bytes = 2; 8644 ctxt->ad_bytes = 2; 8645 ctxt->_eip = ctxt->eip + inc_eip; 8646 ret = emulate_int_real(ctxt, irq); 8647 8648 if (ret != X86EMUL_CONTINUE) { 8649 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8650 } else { 8651 ctxt->eip = ctxt->_eip; 8652 kvm_rip_write(vcpu, ctxt->eip); 8653 kvm_set_rflags(vcpu, ctxt->eflags); 8654 } 8655 } 8656 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8657 8658 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8659 u8 ndata, u8 *insn_bytes, u8 insn_size) 8660 { 8661 struct kvm_run *run = vcpu->run; 8662 u64 info[5]; 8663 u8 info_start; 8664 8665 /* 8666 * Zero the whole array used to retrieve the exit info, as casting to 8667 * u32 for select entries will leave some chunks uninitialized. 8668 */ 8669 memset(&info, 0, sizeof(info)); 8670 8671 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8672 &info[2], (u32 *)&info[3], 8673 (u32 *)&info[4]); 8674 8675 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8676 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8677 8678 /* 8679 * There's currently space for 13 entries, but 5 are used for the exit 8680 * reason and info. Restrict to 4 to reduce the maintenance burden 8681 * when expanding kvm_run.emulation_failure in the future. 8682 */ 8683 if (WARN_ON_ONCE(ndata > 4)) 8684 ndata = 4; 8685 8686 /* Always include the flags as a 'data' entry. */ 8687 info_start = 1; 8688 run->emulation_failure.flags = 0; 8689 8690 if (insn_size) { 8691 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8692 sizeof(run->emulation_failure.insn_bytes) != 16)); 8693 info_start += 2; 8694 run->emulation_failure.flags |= 8695 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8696 run->emulation_failure.insn_size = insn_size; 8697 memset(run->emulation_failure.insn_bytes, 0x90, 8698 sizeof(run->emulation_failure.insn_bytes)); 8699 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8700 } 8701 8702 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8703 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8704 ndata * sizeof(data[0])); 8705 8706 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8707 } 8708 8709 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8710 { 8711 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8712 8713 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8714 ctxt->fetch.end - ctxt->fetch.data); 8715 } 8716 8717 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8718 u8 ndata) 8719 { 8720 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8721 } 8722 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8723 8724 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8725 { 8726 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8727 } 8728 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8729 8730 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8731 { 8732 struct kvm *kvm = vcpu->kvm; 8733 8734 ++vcpu->stat.insn_emulation_fail; 8735 trace_kvm_emulate_insn_failed(vcpu); 8736 8737 if (emulation_type & EMULTYPE_VMWARE_GP) { 8738 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8739 return 1; 8740 } 8741 8742 if (kvm->arch.exit_on_emulation_error || 8743 (emulation_type & EMULTYPE_SKIP)) { 8744 prepare_emulation_ctxt_failure_exit(vcpu); 8745 return 0; 8746 } 8747 8748 kvm_queue_exception(vcpu, UD_VECTOR); 8749 8750 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8751 prepare_emulation_ctxt_failure_exit(vcpu); 8752 return 0; 8753 } 8754 8755 return 1; 8756 } 8757 8758 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8759 int emulation_type) 8760 { 8761 gpa_t gpa = cr2_or_gpa; 8762 kvm_pfn_t pfn; 8763 8764 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8765 return false; 8766 8767 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8768 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8769 return false; 8770 8771 if (!vcpu->arch.mmu->root_role.direct) { 8772 /* 8773 * Write permission should be allowed since only 8774 * write access need to be emulated. 8775 */ 8776 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8777 8778 /* 8779 * If the mapping is invalid in guest, let cpu retry 8780 * it to generate fault. 8781 */ 8782 if (gpa == INVALID_GPA) 8783 return true; 8784 } 8785 8786 /* 8787 * Do not retry the unhandleable instruction if it faults on the 8788 * readonly host memory, otherwise it will goto a infinite loop: 8789 * retry instruction -> write #PF -> emulation fail -> retry 8790 * instruction -> ... 8791 */ 8792 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8793 8794 /* 8795 * If the instruction failed on the error pfn, it can not be fixed, 8796 * report the error to userspace. 8797 */ 8798 if (is_error_noslot_pfn(pfn)) 8799 return false; 8800 8801 kvm_release_pfn_clean(pfn); 8802 8803 /* The instructions are well-emulated on direct mmu. */ 8804 if (vcpu->arch.mmu->root_role.direct) { 8805 unsigned int indirect_shadow_pages; 8806 8807 write_lock(&vcpu->kvm->mmu_lock); 8808 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8809 write_unlock(&vcpu->kvm->mmu_lock); 8810 8811 if (indirect_shadow_pages) 8812 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8813 8814 return true; 8815 } 8816 8817 /* 8818 * if emulation was due to access to shadowed page table 8819 * and it failed try to unshadow page and re-enter the 8820 * guest to let CPU execute the instruction. 8821 */ 8822 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8823 8824 /* 8825 * If the access faults on its page table, it can not 8826 * be fixed by unprotecting shadow page and it should 8827 * be reported to userspace. 8828 */ 8829 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8830 } 8831 8832 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8833 gpa_t cr2_or_gpa, int emulation_type) 8834 { 8835 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8836 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8837 8838 last_retry_eip = vcpu->arch.last_retry_eip; 8839 last_retry_addr = vcpu->arch.last_retry_addr; 8840 8841 /* 8842 * If the emulation is caused by #PF and it is non-page_table 8843 * writing instruction, it means the VM-EXIT is caused by shadow 8844 * page protected, we can zap the shadow page and retry this 8845 * instruction directly. 8846 * 8847 * Note: if the guest uses a non-page-table modifying instruction 8848 * on the PDE that points to the instruction, then we will unmap 8849 * the instruction and go to an infinite loop. So, we cache the 8850 * last retried eip and the last fault address, if we meet the eip 8851 * and the address again, we can break out of the potential infinite 8852 * loop. 8853 */ 8854 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8855 8856 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8857 return false; 8858 8859 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8860 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8861 return false; 8862 8863 if (x86_page_table_writing_insn(ctxt)) 8864 return false; 8865 8866 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8867 return false; 8868 8869 vcpu->arch.last_retry_eip = ctxt->eip; 8870 vcpu->arch.last_retry_addr = cr2_or_gpa; 8871 8872 if (!vcpu->arch.mmu->root_role.direct) 8873 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8874 8875 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8876 8877 return true; 8878 } 8879 8880 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8881 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8882 8883 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8884 unsigned long *db) 8885 { 8886 u32 dr6 = 0; 8887 int i; 8888 u32 enable, rwlen; 8889 8890 enable = dr7; 8891 rwlen = dr7 >> 16; 8892 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8893 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8894 dr6 |= (1 << i); 8895 return dr6; 8896 } 8897 8898 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8899 { 8900 struct kvm_run *kvm_run = vcpu->run; 8901 8902 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8903 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8904 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8905 kvm_run->debug.arch.exception = DB_VECTOR; 8906 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8907 return 0; 8908 } 8909 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8910 return 1; 8911 } 8912 8913 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8914 { 8915 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8916 int r; 8917 8918 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8919 if (unlikely(!r)) 8920 return 0; 8921 8922 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8923 8924 /* 8925 * rflags is the old, "raw" value of the flags. The new value has 8926 * not been saved yet. 8927 * 8928 * This is correct even for TF set by the guest, because "the 8929 * processor will not generate this exception after the instruction 8930 * that sets the TF flag". 8931 */ 8932 if (unlikely(rflags & X86_EFLAGS_TF)) 8933 r = kvm_vcpu_do_singlestep(vcpu); 8934 return r; 8935 } 8936 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8937 8938 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8939 { 8940 u32 shadow; 8941 8942 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8943 return true; 8944 8945 /* 8946 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8947 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8948 * to avoid the relatively expensive CPUID lookup. 8949 */ 8950 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8951 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8952 guest_cpuid_is_intel(vcpu); 8953 } 8954 8955 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8956 int emulation_type, int *r) 8957 { 8958 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8959 8960 /* 8961 * Do not check for code breakpoints if hardware has already done the 8962 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8963 * the instruction has passed all exception checks, and all intercepted 8964 * exceptions that trigger emulation have lower priority than code 8965 * breakpoints, i.e. the fact that the intercepted exception occurred 8966 * means any code breakpoints have already been serviced. 8967 * 8968 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8969 * hardware has checked the RIP of the magic prefix, but not the RIP of 8970 * the instruction being emulated. The intent of forced emulation is 8971 * to behave as if KVM intercepted the instruction without an exception 8972 * and without a prefix. 8973 */ 8974 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8975 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8976 return false; 8977 8978 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8979 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8980 struct kvm_run *kvm_run = vcpu->run; 8981 unsigned long eip = kvm_get_linear_rip(vcpu); 8982 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8983 vcpu->arch.guest_debug_dr7, 8984 vcpu->arch.eff_db); 8985 8986 if (dr6 != 0) { 8987 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8988 kvm_run->debug.arch.pc = eip; 8989 kvm_run->debug.arch.exception = DB_VECTOR; 8990 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8991 *r = 0; 8992 return true; 8993 } 8994 } 8995 8996 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8997 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8998 unsigned long eip = kvm_get_linear_rip(vcpu); 8999 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9000 vcpu->arch.dr7, 9001 vcpu->arch.db); 9002 9003 if (dr6 != 0) { 9004 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 9005 *r = 1; 9006 return true; 9007 } 9008 } 9009 9010 return false; 9011 } 9012 9013 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9014 { 9015 switch (ctxt->opcode_len) { 9016 case 1: 9017 switch (ctxt->b) { 9018 case 0xe4: /* IN */ 9019 case 0xe5: 9020 case 0xec: 9021 case 0xed: 9022 case 0xe6: /* OUT */ 9023 case 0xe7: 9024 case 0xee: 9025 case 0xef: 9026 case 0x6c: /* INS */ 9027 case 0x6d: 9028 case 0x6e: /* OUTS */ 9029 case 0x6f: 9030 return true; 9031 } 9032 break; 9033 case 2: 9034 switch (ctxt->b) { 9035 case 0x33: /* RDPMC */ 9036 return true; 9037 } 9038 break; 9039 } 9040 9041 return false; 9042 } 9043 9044 /* 9045 * Decode an instruction for emulation. The caller is responsible for handling 9046 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9047 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9048 * code breakpoints have higher priority and thus have already been done by 9049 * hardware. 9050 * 9051 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9052 * response to a machine check. 9053 */ 9054 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9055 void *insn, int insn_len) 9056 { 9057 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9058 int r; 9059 9060 init_emulate_ctxt(vcpu); 9061 9062 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9063 9064 trace_kvm_emulate_insn_start(vcpu); 9065 ++vcpu->stat.insn_emulation; 9066 9067 return r; 9068 } 9069 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9070 9071 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9072 int emulation_type, void *insn, int insn_len) 9073 { 9074 int r; 9075 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9076 bool writeback = true; 9077 9078 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9079 if (r != X86EMUL_CONTINUE) { 9080 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9081 return 1; 9082 9083 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9084 return handle_emulation_failure(vcpu, emulation_type); 9085 } 9086 9087 vcpu->arch.l1tf_flush_l1d = true; 9088 9089 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9090 kvm_clear_exception_queue(vcpu); 9091 9092 /* 9093 * Return immediately if RIP hits a code breakpoint, such #DBs 9094 * are fault-like and are higher priority than any faults on 9095 * the code fetch itself. 9096 */ 9097 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9098 return r; 9099 9100 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9101 insn, insn_len); 9102 if (r != EMULATION_OK) { 9103 if ((emulation_type & EMULTYPE_TRAP_UD) || 9104 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9105 kvm_queue_exception(vcpu, UD_VECTOR); 9106 return 1; 9107 } 9108 if (reexecute_instruction(vcpu, cr2_or_gpa, 9109 emulation_type)) 9110 return 1; 9111 9112 if (ctxt->have_exception && 9113 !(emulation_type & EMULTYPE_SKIP)) { 9114 /* 9115 * #UD should result in just EMULATION_FAILED, and trap-like 9116 * exception should not be encountered during decode. 9117 */ 9118 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9119 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9120 inject_emulated_exception(vcpu); 9121 return 1; 9122 } 9123 return handle_emulation_failure(vcpu, emulation_type); 9124 } 9125 } 9126 9127 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9128 !is_vmware_backdoor_opcode(ctxt)) { 9129 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9130 return 1; 9131 } 9132 9133 /* 9134 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9135 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9136 * The caller is responsible for updating interruptibility state and 9137 * injecting single-step #DBs. 9138 */ 9139 if (emulation_type & EMULTYPE_SKIP) { 9140 if (ctxt->mode != X86EMUL_MODE_PROT64) 9141 ctxt->eip = (u32)ctxt->_eip; 9142 else 9143 ctxt->eip = ctxt->_eip; 9144 9145 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9146 r = 1; 9147 goto writeback; 9148 } 9149 9150 kvm_rip_write(vcpu, ctxt->eip); 9151 if (ctxt->eflags & X86_EFLAGS_RF) 9152 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9153 return 1; 9154 } 9155 9156 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 9157 return 1; 9158 9159 /* this is needed for vmware backdoor interface to work since it 9160 changes registers values during IO operation */ 9161 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9162 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9163 emulator_invalidate_register_cache(ctxt); 9164 } 9165 9166 restart: 9167 if (emulation_type & EMULTYPE_PF) { 9168 /* Save the faulting GPA (cr2) in the address field */ 9169 ctxt->exception.address = cr2_or_gpa; 9170 9171 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9172 if (vcpu->arch.mmu->root_role.direct) { 9173 ctxt->gpa_available = true; 9174 ctxt->gpa_val = cr2_or_gpa; 9175 } 9176 } else { 9177 /* Sanitize the address out of an abundance of paranoia. */ 9178 ctxt->exception.address = 0; 9179 } 9180 9181 r = x86_emulate_insn(ctxt); 9182 9183 if (r == EMULATION_INTERCEPTED) 9184 return 1; 9185 9186 if (r == EMULATION_FAILED) { 9187 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 9188 return 1; 9189 9190 return handle_emulation_failure(vcpu, emulation_type); 9191 } 9192 9193 if (ctxt->have_exception) { 9194 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9195 vcpu->mmio_needed = false; 9196 r = 1; 9197 inject_emulated_exception(vcpu); 9198 } else if (vcpu->arch.pio.count) { 9199 if (!vcpu->arch.pio.in) { 9200 /* FIXME: return into emulator if single-stepping. */ 9201 vcpu->arch.pio.count = 0; 9202 } else { 9203 writeback = false; 9204 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9205 } 9206 r = 0; 9207 } else if (vcpu->mmio_needed) { 9208 ++vcpu->stat.mmio_exits; 9209 9210 if (!vcpu->mmio_is_write) 9211 writeback = false; 9212 r = 0; 9213 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9214 } else if (vcpu->arch.complete_userspace_io) { 9215 writeback = false; 9216 r = 0; 9217 } else if (r == EMULATION_RESTART) 9218 goto restart; 9219 else 9220 r = 1; 9221 9222 writeback: 9223 if (writeback) { 9224 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9225 toggle_interruptibility(vcpu, ctxt->interruptibility); 9226 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9227 9228 /* 9229 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9230 * only supports code breakpoints and general detect #DB, both 9231 * of which are fault-like. 9232 */ 9233 if (!ctxt->have_exception || 9234 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9235 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9236 if (ctxt->is_branch) 9237 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9238 kvm_rip_write(vcpu, ctxt->eip); 9239 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9240 r = kvm_vcpu_do_singlestep(vcpu); 9241 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9242 __kvm_set_rflags(vcpu, ctxt->eflags); 9243 } 9244 9245 /* 9246 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9247 * do nothing, and it will be requested again as soon as 9248 * the shadow expires. But we still need to check here, 9249 * because POPF has no interrupt shadow. 9250 */ 9251 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9252 kvm_make_request(KVM_REQ_EVENT, vcpu); 9253 } else 9254 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9255 9256 return r; 9257 } 9258 9259 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9260 { 9261 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9262 } 9263 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9264 9265 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9266 void *insn, int insn_len) 9267 { 9268 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9269 } 9270 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9271 9272 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9273 { 9274 vcpu->arch.pio.count = 0; 9275 return 1; 9276 } 9277 9278 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9279 { 9280 vcpu->arch.pio.count = 0; 9281 9282 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9283 return 1; 9284 9285 return kvm_skip_emulated_instruction(vcpu); 9286 } 9287 9288 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9289 unsigned short port) 9290 { 9291 unsigned long val = kvm_rax_read(vcpu); 9292 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9293 9294 if (ret) 9295 return ret; 9296 9297 /* 9298 * Workaround userspace that relies on old KVM behavior of %rip being 9299 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9300 */ 9301 if (port == 0x7e && 9302 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9303 vcpu->arch.complete_userspace_io = 9304 complete_fast_pio_out_port_0x7e; 9305 kvm_skip_emulated_instruction(vcpu); 9306 } else { 9307 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9308 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9309 } 9310 return 0; 9311 } 9312 9313 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9314 { 9315 unsigned long val; 9316 9317 /* We should only ever be called with arch.pio.count equal to 1 */ 9318 BUG_ON(vcpu->arch.pio.count != 1); 9319 9320 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9321 vcpu->arch.pio.count = 0; 9322 return 1; 9323 } 9324 9325 /* For size less than 4 we merge, else we zero extend */ 9326 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9327 9328 complete_emulator_pio_in(vcpu, &val); 9329 kvm_rax_write(vcpu, val); 9330 9331 return kvm_skip_emulated_instruction(vcpu); 9332 } 9333 9334 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9335 unsigned short port) 9336 { 9337 unsigned long val; 9338 int ret; 9339 9340 /* For size less than 4 we merge, else we zero extend */ 9341 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9342 9343 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9344 if (ret) { 9345 kvm_rax_write(vcpu, val); 9346 return ret; 9347 } 9348 9349 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9350 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9351 9352 return 0; 9353 } 9354 9355 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9356 { 9357 int ret; 9358 9359 if (in) 9360 ret = kvm_fast_pio_in(vcpu, size, port); 9361 else 9362 ret = kvm_fast_pio_out(vcpu, size, port); 9363 return ret && kvm_skip_emulated_instruction(vcpu); 9364 } 9365 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9366 9367 static int kvmclock_cpu_down_prep(unsigned int cpu) 9368 { 9369 __this_cpu_write(cpu_tsc_khz, 0); 9370 return 0; 9371 } 9372 9373 static void tsc_khz_changed(void *data) 9374 { 9375 struct cpufreq_freqs *freq = data; 9376 unsigned long khz; 9377 9378 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9379 9380 if (data) 9381 khz = freq->new; 9382 else 9383 khz = cpufreq_quick_get(raw_smp_processor_id()); 9384 if (!khz) 9385 khz = tsc_khz; 9386 __this_cpu_write(cpu_tsc_khz, khz); 9387 } 9388 9389 #ifdef CONFIG_X86_64 9390 static void kvm_hyperv_tsc_notifier(void) 9391 { 9392 struct kvm *kvm; 9393 int cpu; 9394 9395 mutex_lock(&kvm_lock); 9396 list_for_each_entry(kvm, &vm_list, vm_list) 9397 kvm_make_mclock_inprogress_request(kvm); 9398 9399 /* no guest entries from this point */ 9400 hyperv_stop_tsc_emulation(); 9401 9402 /* TSC frequency always matches when on Hyper-V */ 9403 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9404 for_each_present_cpu(cpu) 9405 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9406 } 9407 kvm_caps.max_guest_tsc_khz = tsc_khz; 9408 9409 list_for_each_entry(kvm, &vm_list, vm_list) { 9410 __kvm_start_pvclock_update(kvm); 9411 pvclock_update_vm_gtod_copy(kvm); 9412 kvm_end_pvclock_update(kvm); 9413 } 9414 9415 mutex_unlock(&kvm_lock); 9416 } 9417 #endif 9418 9419 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9420 { 9421 struct kvm *kvm; 9422 struct kvm_vcpu *vcpu; 9423 int send_ipi = 0; 9424 unsigned long i; 9425 9426 /* 9427 * We allow guests to temporarily run on slowing clocks, 9428 * provided we notify them after, or to run on accelerating 9429 * clocks, provided we notify them before. Thus time never 9430 * goes backwards. 9431 * 9432 * However, we have a problem. We can't atomically update 9433 * the frequency of a given CPU from this function; it is 9434 * merely a notifier, which can be called from any CPU. 9435 * Changing the TSC frequency at arbitrary points in time 9436 * requires a recomputation of local variables related to 9437 * the TSC for each VCPU. We must flag these local variables 9438 * to be updated and be sure the update takes place with the 9439 * new frequency before any guests proceed. 9440 * 9441 * Unfortunately, the combination of hotplug CPU and frequency 9442 * change creates an intractable locking scenario; the order 9443 * of when these callouts happen is undefined with respect to 9444 * CPU hotplug, and they can race with each other. As such, 9445 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9446 * undefined; you can actually have a CPU frequency change take 9447 * place in between the computation of X and the setting of the 9448 * variable. To protect against this problem, all updates of 9449 * the per_cpu tsc_khz variable are done in an interrupt 9450 * protected IPI, and all callers wishing to update the value 9451 * must wait for a synchronous IPI to complete (which is trivial 9452 * if the caller is on the CPU already). This establishes the 9453 * necessary total order on variable updates. 9454 * 9455 * Note that because a guest time update may take place 9456 * anytime after the setting of the VCPU's request bit, the 9457 * correct TSC value must be set before the request. However, 9458 * to ensure the update actually makes it to any guest which 9459 * starts running in hardware virtualization between the set 9460 * and the acquisition of the spinlock, we must also ping the 9461 * CPU after setting the request bit. 9462 * 9463 */ 9464 9465 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9466 9467 mutex_lock(&kvm_lock); 9468 list_for_each_entry(kvm, &vm_list, vm_list) { 9469 kvm_for_each_vcpu(i, vcpu, kvm) { 9470 if (vcpu->cpu != cpu) 9471 continue; 9472 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9473 if (vcpu->cpu != raw_smp_processor_id()) 9474 send_ipi = 1; 9475 } 9476 } 9477 mutex_unlock(&kvm_lock); 9478 9479 if (freq->old < freq->new && send_ipi) { 9480 /* 9481 * We upscale the frequency. Must make the guest 9482 * doesn't see old kvmclock values while running with 9483 * the new frequency, otherwise we risk the guest sees 9484 * time go backwards. 9485 * 9486 * In case we update the frequency for another cpu 9487 * (which might be in guest context) send an interrupt 9488 * to kick the cpu out of guest context. Next time 9489 * guest context is entered kvmclock will be updated, 9490 * so the guest will not see stale values. 9491 */ 9492 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9493 } 9494 } 9495 9496 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9497 void *data) 9498 { 9499 struct cpufreq_freqs *freq = data; 9500 int cpu; 9501 9502 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9503 return 0; 9504 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9505 return 0; 9506 9507 for_each_cpu(cpu, freq->policy->cpus) 9508 __kvmclock_cpufreq_notifier(freq, cpu); 9509 9510 return 0; 9511 } 9512 9513 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9514 .notifier_call = kvmclock_cpufreq_notifier 9515 }; 9516 9517 static int kvmclock_cpu_online(unsigned int cpu) 9518 { 9519 tsc_khz_changed(NULL); 9520 return 0; 9521 } 9522 9523 static void kvm_timer_init(void) 9524 { 9525 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9526 max_tsc_khz = tsc_khz; 9527 9528 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9529 struct cpufreq_policy *policy; 9530 int cpu; 9531 9532 cpu = get_cpu(); 9533 policy = cpufreq_cpu_get(cpu); 9534 if (policy) { 9535 if (policy->cpuinfo.max_freq) 9536 max_tsc_khz = policy->cpuinfo.max_freq; 9537 cpufreq_cpu_put(policy); 9538 } 9539 put_cpu(); 9540 } 9541 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9542 CPUFREQ_TRANSITION_NOTIFIER); 9543 9544 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9545 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9546 } 9547 } 9548 9549 #ifdef CONFIG_X86_64 9550 static void pvclock_gtod_update_fn(struct work_struct *work) 9551 { 9552 struct kvm *kvm; 9553 struct kvm_vcpu *vcpu; 9554 unsigned long i; 9555 9556 mutex_lock(&kvm_lock); 9557 list_for_each_entry(kvm, &vm_list, vm_list) 9558 kvm_for_each_vcpu(i, vcpu, kvm) 9559 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9560 atomic_set(&kvm_guest_has_master_clock, 0); 9561 mutex_unlock(&kvm_lock); 9562 } 9563 9564 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9565 9566 /* 9567 * Indirection to move queue_work() out of the tk_core.seq write held 9568 * region to prevent possible deadlocks against time accessors which 9569 * are invoked with work related locks held. 9570 */ 9571 static void pvclock_irq_work_fn(struct irq_work *w) 9572 { 9573 queue_work(system_long_wq, &pvclock_gtod_work); 9574 } 9575 9576 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9577 9578 /* 9579 * Notification about pvclock gtod data update. 9580 */ 9581 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9582 void *priv) 9583 { 9584 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9585 struct timekeeper *tk = priv; 9586 9587 update_pvclock_gtod(tk); 9588 9589 /* 9590 * Disable master clock if host does not trust, or does not use, 9591 * TSC based clocksource. Delegate queue_work() to irq_work as 9592 * this is invoked with tk_core.seq write held. 9593 */ 9594 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9595 atomic_read(&kvm_guest_has_master_clock) != 0) 9596 irq_work_queue(&pvclock_irq_work); 9597 return 0; 9598 } 9599 9600 static struct notifier_block pvclock_gtod_notifier = { 9601 .notifier_call = pvclock_gtod_notify, 9602 }; 9603 #endif 9604 9605 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9606 { 9607 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9608 9609 #define __KVM_X86_OP(func) \ 9610 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9611 #define KVM_X86_OP(func) \ 9612 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9613 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9614 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9615 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9616 (void *)__static_call_return0); 9617 #include <asm/kvm-x86-ops.h> 9618 #undef __KVM_X86_OP 9619 9620 kvm_pmu_ops_update(ops->pmu_ops); 9621 } 9622 9623 static int kvm_x86_check_processor_compatibility(void) 9624 { 9625 int cpu = smp_processor_id(); 9626 struct cpuinfo_x86 *c = &cpu_data(cpu); 9627 9628 /* 9629 * Compatibility checks are done when loading KVM and when enabling 9630 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9631 * compatible, i.e. KVM should never perform a compatibility check on 9632 * an offline CPU. 9633 */ 9634 WARN_ON(!cpu_online(cpu)); 9635 9636 if (__cr4_reserved_bits(cpu_has, c) != 9637 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9638 return -EIO; 9639 9640 return static_call(kvm_x86_check_processor_compatibility)(); 9641 } 9642 9643 static void kvm_x86_check_cpu_compat(void *ret) 9644 { 9645 *(int *)ret = kvm_x86_check_processor_compatibility(); 9646 } 9647 9648 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9649 { 9650 u64 host_pat; 9651 int r, cpu; 9652 9653 if (kvm_x86_ops.hardware_enable) { 9654 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9655 return -EEXIST; 9656 } 9657 9658 /* 9659 * KVM explicitly assumes that the guest has an FPU and 9660 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9661 * vCPU's FPU state as a fxregs_state struct. 9662 */ 9663 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9664 pr_err("inadequate fpu\n"); 9665 return -EOPNOTSUPP; 9666 } 9667 9668 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9669 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9670 return -EOPNOTSUPP; 9671 } 9672 9673 /* 9674 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9675 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9676 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9677 * with an exception. PAT[0] is set to WB on RESET and also by the 9678 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9679 */ 9680 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9681 (host_pat & GENMASK(2, 0)) != 6) { 9682 pr_err("host PAT[0] is not WB\n"); 9683 return -EIO; 9684 } 9685 9686 x86_emulator_cache = kvm_alloc_emulator_cache(); 9687 if (!x86_emulator_cache) { 9688 pr_err("failed to allocate cache for x86 emulator\n"); 9689 return -ENOMEM; 9690 } 9691 9692 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9693 if (!user_return_msrs) { 9694 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9695 r = -ENOMEM; 9696 goto out_free_x86_emulator_cache; 9697 } 9698 kvm_nr_uret_msrs = 0; 9699 9700 r = kvm_mmu_vendor_module_init(); 9701 if (r) 9702 goto out_free_percpu; 9703 9704 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9705 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9706 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9707 } 9708 9709 rdmsrl_safe(MSR_EFER, &host_efer); 9710 9711 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9712 rdmsrl(MSR_IA32_XSS, host_xss); 9713 9714 kvm_init_pmu_capability(ops->pmu_ops); 9715 9716 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9717 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9718 9719 r = ops->hardware_setup(); 9720 if (r != 0) 9721 goto out_mmu_exit; 9722 9723 kvm_ops_update(ops); 9724 9725 for_each_online_cpu(cpu) { 9726 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9727 if (r < 0) 9728 goto out_unwind_ops; 9729 } 9730 9731 /* 9732 * Point of no return! DO NOT add error paths below this point unless 9733 * absolutely necessary, as most operations from this point forward 9734 * require unwinding. 9735 */ 9736 kvm_timer_init(); 9737 9738 if (pi_inject_timer == -1) 9739 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9740 #ifdef CONFIG_X86_64 9741 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9742 9743 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9744 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9745 #endif 9746 9747 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9748 9749 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9750 kvm_caps.supported_xss = 0; 9751 9752 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9753 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9754 #undef __kvm_cpu_cap_has 9755 9756 if (kvm_caps.has_tsc_control) { 9757 /* 9758 * Make sure the user can only configure tsc_khz values that 9759 * fit into a signed integer. 9760 * A min value is not calculated because it will always 9761 * be 1 on all machines. 9762 */ 9763 u64 max = min(0x7fffffffULL, 9764 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9765 kvm_caps.max_guest_tsc_khz = max; 9766 } 9767 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9768 kvm_init_msr_lists(); 9769 return 0; 9770 9771 out_unwind_ops: 9772 kvm_x86_ops.hardware_enable = NULL; 9773 static_call(kvm_x86_hardware_unsetup)(); 9774 out_mmu_exit: 9775 kvm_mmu_vendor_module_exit(); 9776 out_free_percpu: 9777 free_percpu(user_return_msrs); 9778 out_free_x86_emulator_cache: 9779 kmem_cache_destroy(x86_emulator_cache); 9780 return r; 9781 } 9782 9783 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9784 { 9785 int r; 9786 9787 mutex_lock(&vendor_module_lock); 9788 r = __kvm_x86_vendor_init(ops); 9789 mutex_unlock(&vendor_module_lock); 9790 9791 return r; 9792 } 9793 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9794 9795 void kvm_x86_vendor_exit(void) 9796 { 9797 kvm_unregister_perf_callbacks(); 9798 9799 #ifdef CONFIG_X86_64 9800 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9801 clear_hv_tscchange_cb(); 9802 #endif 9803 kvm_lapic_exit(); 9804 9805 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9806 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9807 CPUFREQ_TRANSITION_NOTIFIER); 9808 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9809 } 9810 #ifdef CONFIG_X86_64 9811 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9812 irq_work_sync(&pvclock_irq_work); 9813 cancel_work_sync(&pvclock_gtod_work); 9814 #endif 9815 static_call(kvm_x86_hardware_unsetup)(); 9816 kvm_mmu_vendor_module_exit(); 9817 free_percpu(user_return_msrs); 9818 kmem_cache_destroy(x86_emulator_cache); 9819 #ifdef CONFIG_KVM_XEN 9820 static_key_deferred_flush(&kvm_xen_enabled); 9821 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9822 #endif 9823 mutex_lock(&vendor_module_lock); 9824 kvm_x86_ops.hardware_enable = NULL; 9825 mutex_unlock(&vendor_module_lock); 9826 } 9827 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9828 9829 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9830 { 9831 /* 9832 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9833 * local APIC is in-kernel, the run loop will detect the non-runnable 9834 * state and halt the vCPU. Exit to userspace if the local APIC is 9835 * managed by userspace, in which case userspace is responsible for 9836 * handling wake events. 9837 */ 9838 ++vcpu->stat.halt_exits; 9839 if (lapic_in_kernel(vcpu)) { 9840 vcpu->arch.mp_state = state; 9841 return 1; 9842 } else { 9843 vcpu->run->exit_reason = reason; 9844 return 0; 9845 } 9846 } 9847 9848 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9849 { 9850 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9851 } 9852 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9853 9854 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9855 { 9856 int ret = kvm_skip_emulated_instruction(vcpu); 9857 /* 9858 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9859 * KVM_EXIT_DEBUG here. 9860 */ 9861 return kvm_emulate_halt_noskip(vcpu) && ret; 9862 } 9863 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9864 9865 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9866 { 9867 int ret = kvm_skip_emulated_instruction(vcpu); 9868 9869 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9870 KVM_EXIT_AP_RESET_HOLD) && ret; 9871 } 9872 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9873 9874 #ifdef CONFIG_X86_64 9875 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9876 unsigned long clock_type) 9877 { 9878 struct kvm_clock_pairing clock_pairing; 9879 struct timespec64 ts; 9880 u64 cycle; 9881 int ret; 9882 9883 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9884 return -KVM_EOPNOTSUPP; 9885 9886 /* 9887 * When tsc is in permanent catchup mode guests won't be able to use 9888 * pvclock_read_retry loop to get consistent view of pvclock 9889 */ 9890 if (vcpu->arch.tsc_always_catchup) 9891 return -KVM_EOPNOTSUPP; 9892 9893 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9894 return -KVM_EOPNOTSUPP; 9895 9896 clock_pairing.sec = ts.tv_sec; 9897 clock_pairing.nsec = ts.tv_nsec; 9898 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9899 clock_pairing.flags = 0; 9900 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9901 9902 ret = 0; 9903 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9904 sizeof(struct kvm_clock_pairing))) 9905 ret = -KVM_EFAULT; 9906 9907 return ret; 9908 } 9909 #endif 9910 9911 /* 9912 * kvm_pv_kick_cpu_op: Kick a vcpu. 9913 * 9914 * @apicid - apicid of vcpu to be kicked. 9915 */ 9916 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9917 { 9918 /* 9919 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9920 * common code, e.g. for tracing. Defer initialization to the compiler. 9921 */ 9922 struct kvm_lapic_irq lapic_irq = { 9923 .delivery_mode = APIC_DM_REMRD, 9924 .dest_mode = APIC_DEST_PHYSICAL, 9925 .shorthand = APIC_DEST_NOSHORT, 9926 .dest_id = apicid, 9927 }; 9928 9929 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9930 } 9931 9932 bool kvm_apicv_activated(struct kvm *kvm) 9933 { 9934 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9935 } 9936 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9937 9938 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9939 { 9940 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9941 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9942 9943 return (vm_reasons | vcpu_reasons) == 0; 9944 } 9945 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9946 9947 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9948 enum kvm_apicv_inhibit reason, bool set) 9949 { 9950 if (set) 9951 __set_bit(reason, inhibits); 9952 else 9953 __clear_bit(reason, inhibits); 9954 9955 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9956 } 9957 9958 static void kvm_apicv_init(struct kvm *kvm) 9959 { 9960 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9961 9962 init_rwsem(&kvm->arch.apicv_update_lock); 9963 9964 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9965 9966 if (!enable_apicv) 9967 set_or_clear_apicv_inhibit(inhibits, 9968 APICV_INHIBIT_REASON_DISABLE, true); 9969 } 9970 9971 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9972 { 9973 struct kvm_vcpu *target = NULL; 9974 struct kvm_apic_map *map; 9975 9976 vcpu->stat.directed_yield_attempted++; 9977 9978 if (single_task_running()) 9979 goto no_yield; 9980 9981 rcu_read_lock(); 9982 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9983 9984 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9985 target = map->phys_map[dest_id]->vcpu; 9986 9987 rcu_read_unlock(); 9988 9989 if (!target || !READ_ONCE(target->ready)) 9990 goto no_yield; 9991 9992 /* Ignore requests to yield to self */ 9993 if (vcpu == target) 9994 goto no_yield; 9995 9996 if (kvm_vcpu_yield_to(target) <= 0) 9997 goto no_yield; 9998 9999 vcpu->stat.directed_yield_successful++; 10000 10001 no_yield: 10002 return; 10003 } 10004 10005 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 10006 { 10007 u64 ret = vcpu->run->hypercall.ret; 10008 10009 if (!is_64_bit_mode(vcpu)) 10010 ret = (u32)ret; 10011 kvm_rax_write(vcpu, ret); 10012 ++vcpu->stat.hypercalls; 10013 return kvm_skip_emulated_instruction(vcpu); 10014 } 10015 10016 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10017 { 10018 unsigned long nr, a0, a1, a2, a3, ret; 10019 int op_64_bit; 10020 10021 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10022 return kvm_xen_hypercall(vcpu); 10023 10024 if (kvm_hv_hypercall_enabled(vcpu)) 10025 return kvm_hv_hypercall(vcpu); 10026 10027 nr = kvm_rax_read(vcpu); 10028 a0 = kvm_rbx_read(vcpu); 10029 a1 = kvm_rcx_read(vcpu); 10030 a2 = kvm_rdx_read(vcpu); 10031 a3 = kvm_rsi_read(vcpu); 10032 10033 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10034 10035 op_64_bit = is_64_bit_hypercall(vcpu); 10036 if (!op_64_bit) { 10037 nr &= 0xFFFFFFFF; 10038 a0 &= 0xFFFFFFFF; 10039 a1 &= 0xFFFFFFFF; 10040 a2 &= 0xFFFFFFFF; 10041 a3 &= 0xFFFFFFFF; 10042 } 10043 10044 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 10045 ret = -KVM_EPERM; 10046 goto out; 10047 } 10048 10049 ret = -KVM_ENOSYS; 10050 10051 switch (nr) { 10052 case KVM_HC_VAPIC_POLL_IRQ: 10053 ret = 0; 10054 break; 10055 case KVM_HC_KICK_CPU: 10056 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10057 break; 10058 10059 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10060 kvm_sched_yield(vcpu, a1); 10061 ret = 0; 10062 break; 10063 #ifdef CONFIG_X86_64 10064 case KVM_HC_CLOCK_PAIRING: 10065 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10066 break; 10067 #endif 10068 case KVM_HC_SEND_IPI: 10069 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10070 break; 10071 10072 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10073 break; 10074 case KVM_HC_SCHED_YIELD: 10075 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10076 break; 10077 10078 kvm_sched_yield(vcpu, a0); 10079 ret = 0; 10080 break; 10081 case KVM_HC_MAP_GPA_RANGE: { 10082 u64 gpa = a0, npages = a1, attrs = a2; 10083 10084 ret = -KVM_ENOSYS; 10085 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10086 break; 10087 10088 if (!PAGE_ALIGNED(gpa) || !npages || 10089 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10090 ret = -KVM_EINVAL; 10091 break; 10092 } 10093 10094 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10095 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10096 vcpu->run->hypercall.args[0] = gpa; 10097 vcpu->run->hypercall.args[1] = npages; 10098 vcpu->run->hypercall.args[2] = attrs; 10099 vcpu->run->hypercall.flags = 0; 10100 if (op_64_bit) 10101 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10102 10103 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10104 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10105 return 0; 10106 } 10107 default: 10108 ret = -KVM_ENOSYS; 10109 break; 10110 } 10111 out: 10112 if (!op_64_bit) 10113 ret = (u32)ret; 10114 kvm_rax_write(vcpu, ret); 10115 10116 ++vcpu->stat.hypercalls; 10117 return kvm_skip_emulated_instruction(vcpu); 10118 } 10119 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10120 10121 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10122 { 10123 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10124 char instruction[3]; 10125 unsigned long rip = kvm_rip_read(vcpu); 10126 10127 /* 10128 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10129 * the pieces. 10130 */ 10131 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10132 ctxt->exception.error_code_valid = false; 10133 ctxt->exception.vector = UD_VECTOR; 10134 ctxt->have_exception = true; 10135 return X86EMUL_PROPAGATE_FAULT; 10136 } 10137 10138 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 10139 10140 return emulator_write_emulated(ctxt, rip, instruction, 3, 10141 &ctxt->exception); 10142 } 10143 10144 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10145 { 10146 return vcpu->run->request_interrupt_window && 10147 likely(!pic_in_kernel(vcpu->kvm)); 10148 } 10149 10150 /* Called within kvm->srcu read side. */ 10151 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10152 { 10153 struct kvm_run *kvm_run = vcpu->run; 10154 10155 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 10156 kvm_run->cr8 = kvm_get_cr8(vcpu); 10157 kvm_run->apic_base = kvm_get_apic_base(vcpu); 10158 10159 kvm_run->ready_for_interrupt_injection = 10160 pic_in_kernel(vcpu->kvm) || 10161 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10162 10163 if (is_smm(vcpu)) 10164 kvm_run->flags |= KVM_RUN_X86_SMM; 10165 } 10166 10167 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10168 { 10169 int max_irr, tpr; 10170 10171 if (!kvm_x86_ops.update_cr8_intercept) 10172 return; 10173 10174 if (!lapic_in_kernel(vcpu)) 10175 return; 10176 10177 if (vcpu->arch.apic->apicv_active) 10178 return; 10179 10180 if (!vcpu->arch.apic->vapic_addr) 10181 max_irr = kvm_lapic_find_highest_irr(vcpu); 10182 else 10183 max_irr = -1; 10184 10185 if (max_irr != -1) 10186 max_irr >>= 4; 10187 10188 tpr = kvm_lapic_get_cr8(vcpu); 10189 10190 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 10191 } 10192 10193 10194 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10195 { 10196 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10197 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10198 return 1; 10199 } 10200 10201 return kvm_x86_ops.nested_ops->check_events(vcpu); 10202 } 10203 10204 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10205 { 10206 /* 10207 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10208 * exceptions don't report error codes. The presence of an error code 10209 * is carried with the exception and only stripped when the exception 10210 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10211 * report an error code despite the CPU being in Real Mode. 10212 */ 10213 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10214 10215 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10216 vcpu->arch.exception.has_error_code, 10217 vcpu->arch.exception.error_code, 10218 vcpu->arch.exception.injected); 10219 10220 static_call(kvm_x86_inject_exception)(vcpu); 10221 } 10222 10223 /* 10224 * Check for any event (interrupt or exception) that is ready to be injected, 10225 * and if there is at least one event, inject the event with the highest 10226 * priority. This handles both "pending" events, i.e. events that have never 10227 * been injected into the guest, and "injected" events, i.e. events that were 10228 * injected as part of a previous VM-Enter, but weren't successfully delivered 10229 * and need to be re-injected. 10230 * 10231 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10232 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10233 * be able to inject exceptions in the "middle" of an instruction, and so must 10234 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10235 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10236 * boundaries is necessary and correct. 10237 * 10238 * For simplicity, KVM uses a single path to inject all events (except events 10239 * that are injected directly from L1 to L2) and doesn't explicitly track 10240 * instruction boundaries for asynchronous events. However, because VM-Exits 10241 * that can occur during instruction execution typically result in KVM skipping 10242 * the instruction or injecting an exception, e.g. instruction and exception 10243 * intercepts, and because pending exceptions have higher priority than pending 10244 * interrupts, KVM still honors instruction boundaries in most scenarios. 10245 * 10246 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10247 * the instruction or inject an exception, then KVM can incorrecty inject a new 10248 * asynchronous event if the event became pending after the CPU fetched the 10249 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10250 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10251 * injected on the restarted instruction instead of being deferred until the 10252 * instruction completes. 10253 * 10254 * In practice, this virtualization hole is unlikely to be observed by the 10255 * guest, and even less likely to cause functional problems. To detect the 10256 * hole, the guest would have to trigger an event on a side effect of an early 10257 * phase of instruction execution, e.g. on the instruction fetch from memory. 10258 * And for it to be a functional problem, the guest would need to depend on the 10259 * ordering between that side effect, the instruction completing, _and_ the 10260 * delivery of the asynchronous event. 10261 */ 10262 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10263 bool *req_immediate_exit) 10264 { 10265 bool can_inject; 10266 int r; 10267 10268 /* 10269 * Process nested events first, as nested VM-Exit supersedes event 10270 * re-injection. If there's an event queued for re-injection, it will 10271 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10272 */ 10273 if (is_guest_mode(vcpu)) 10274 r = kvm_check_nested_events(vcpu); 10275 else 10276 r = 0; 10277 10278 /* 10279 * Re-inject exceptions and events *especially* if immediate entry+exit 10280 * to/from L2 is needed, as any event that has already been injected 10281 * into L2 needs to complete its lifecycle before injecting a new event. 10282 * 10283 * Don't re-inject an NMI or interrupt if there is a pending exception. 10284 * This collision arises if an exception occurred while vectoring the 10285 * injected event, KVM intercepted said exception, and KVM ultimately 10286 * determined the fault belongs to the guest and queues the exception 10287 * for injection back into the guest. 10288 * 10289 * "Injected" interrupts can also collide with pending exceptions if 10290 * userspace ignores the "ready for injection" flag and blindly queues 10291 * an interrupt. In that case, prioritizing the exception is correct, 10292 * as the exception "occurred" before the exit to userspace. Trap-like 10293 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10294 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10295 * priority, they're only generated (pended) during instruction 10296 * execution, and interrupts are recognized at instruction boundaries. 10297 * Thus a pending fault-like exception means the fault occurred on the 10298 * *previous* instruction and must be serviced prior to recognizing any 10299 * new events in order to fully complete the previous instruction. 10300 */ 10301 if (vcpu->arch.exception.injected) 10302 kvm_inject_exception(vcpu); 10303 else if (kvm_is_exception_pending(vcpu)) 10304 ; /* see above */ 10305 else if (vcpu->arch.nmi_injected) 10306 static_call(kvm_x86_inject_nmi)(vcpu); 10307 else if (vcpu->arch.interrupt.injected) 10308 static_call(kvm_x86_inject_irq)(vcpu, true); 10309 10310 /* 10311 * Exceptions that morph to VM-Exits are handled above, and pending 10312 * exceptions on top of injected exceptions that do not VM-Exit should 10313 * either morph to #DF or, sadly, override the injected exception. 10314 */ 10315 WARN_ON_ONCE(vcpu->arch.exception.injected && 10316 vcpu->arch.exception.pending); 10317 10318 /* 10319 * Bail if immediate entry+exit to/from the guest is needed to complete 10320 * nested VM-Enter or event re-injection so that a different pending 10321 * event can be serviced (or if KVM needs to exit to userspace). 10322 * 10323 * Otherwise, continue processing events even if VM-Exit occurred. The 10324 * VM-Exit will have cleared exceptions that were meant for L2, but 10325 * there may now be events that can be injected into L1. 10326 */ 10327 if (r < 0) 10328 goto out; 10329 10330 /* 10331 * A pending exception VM-Exit should either result in nested VM-Exit 10332 * or force an immediate re-entry and exit to/from L2, and exception 10333 * VM-Exits cannot be injected (flag should _never_ be set). 10334 */ 10335 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10336 vcpu->arch.exception_vmexit.pending); 10337 10338 /* 10339 * New events, other than exceptions, cannot be injected if KVM needs 10340 * to re-inject a previous event. See above comments on re-injecting 10341 * for why pending exceptions get priority. 10342 */ 10343 can_inject = !kvm_event_needs_reinjection(vcpu); 10344 10345 if (vcpu->arch.exception.pending) { 10346 /* 10347 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10348 * value pushed on the stack. Trap-like exception and all #DBs 10349 * leave RF as-is (KVM follows Intel's behavior in this regard; 10350 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10351 * 10352 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10353 * describe the behavior of General Detect #DBs, which are 10354 * fault-like. They do _not_ set RF, a la code breakpoints. 10355 */ 10356 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10357 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10358 X86_EFLAGS_RF); 10359 10360 if (vcpu->arch.exception.vector == DB_VECTOR) { 10361 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10362 if (vcpu->arch.dr7 & DR7_GD) { 10363 vcpu->arch.dr7 &= ~DR7_GD; 10364 kvm_update_dr7(vcpu); 10365 } 10366 } 10367 10368 kvm_inject_exception(vcpu); 10369 10370 vcpu->arch.exception.pending = false; 10371 vcpu->arch.exception.injected = true; 10372 10373 can_inject = false; 10374 } 10375 10376 /* Don't inject interrupts if the user asked to avoid doing so */ 10377 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10378 return 0; 10379 10380 /* 10381 * Finally, inject interrupt events. If an event cannot be injected 10382 * due to architectural conditions (e.g. IF=0) a window-open exit 10383 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10384 * and can architecturally be injected, but we cannot do it right now: 10385 * an interrupt could have arrived just now and we have to inject it 10386 * as a vmexit, or there could already an event in the queue, which is 10387 * indicated by can_inject. In that case we request an immediate exit 10388 * in order to make progress and get back here for another iteration. 10389 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10390 */ 10391 #ifdef CONFIG_KVM_SMM 10392 if (vcpu->arch.smi_pending) { 10393 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10394 if (r < 0) 10395 goto out; 10396 if (r) { 10397 vcpu->arch.smi_pending = false; 10398 ++vcpu->arch.smi_count; 10399 enter_smm(vcpu); 10400 can_inject = false; 10401 } else 10402 static_call(kvm_x86_enable_smi_window)(vcpu); 10403 } 10404 #endif 10405 10406 if (vcpu->arch.nmi_pending) { 10407 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10408 if (r < 0) 10409 goto out; 10410 if (r) { 10411 --vcpu->arch.nmi_pending; 10412 vcpu->arch.nmi_injected = true; 10413 static_call(kvm_x86_inject_nmi)(vcpu); 10414 can_inject = false; 10415 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10416 } 10417 if (vcpu->arch.nmi_pending) 10418 static_call(kvm_x86_enable_nmi_window)(vcpu); 10419 } 10420 10421 if (kvm_cpu_has_injectable_intr(vcpu)) { 10422 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10423 if (r < 0) 10424 goto out; 10425 if (r) { 10426 int irq = kvm_cpu_get_interrupt(vcpu); 10427 10428 if (!WARN_ON_ONCE(irq == -1)) { 10429 kvm_queue_interrupt(vcpu, irq, false); 10430 static_call(kvm_x86_inject_irq)(vcpu, false); 10431 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10432 } 10433 } 10434 if (kvm_cpu_has_injectable_intr(vcpu)) 10435 static_call(kvm_x86_enable_irq_window)(vcpu); 10436 } 10437 10438 if (is_guest_mode(vcpu) && 10439 kvm_x86_ops.nested_ops->has_events && 10440 kvm_x86_ops.nested_ops->has_events(vcpu)) 10441 *req_immediate_exit = true; 10442 10443 /* 10444 * KVM must never queue a new exception while injecting an event; KVM 10445 * is done emulating and should only propagate the to-be-injected event 10446 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10447 * infinite loop as KVM will bail from VM-Enter to inject the pending 10448 * exception and start the cycle all over. 10449 * 10450 * Exempt triple faults as they have special handling and won't put the 10451 * vCPU into an infinite loop. Triple fault can be queued when running 10452 * VMX without unrestricted guest, as that requires KVM to emulate Real 10453 * Mode events (see kvm_inject_realmode_interrupt()). 10454 */ 10455 WARN_ON_ONCE(vcpu->arch.exception.pending || 10456 vcpu->arch.exception_vmexit.pending); 10457 return 0; 10458 10459 out: 10460 if (r == -EBUSY) { 10461 *req_immediate_exit = true; 10462 r = 0; 10463 } 10464 return r; 10465 } 10466 10467 static void process_nmi(struct kvm_vcpu *vcpu) 10468 { 10469 unsigned int limit; 10470 10471 /* 10472 * x86 is limited to one NMI pending, but because KVM can't react to 10473 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10474 * scheduled out, KVM needs to play nice with two queued NMIs showing 10475 * up at the same time. To handle this scenario, allow two NMIs to be 10476 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10477 * waiting for a previous NMI injection to complete (which effectively 10478 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10479 * will request an NMI window to handle the second NMI. 10480 */ 10481 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10482 limit = 1; 10483 else 10484 limit = 2; 10485 10486 /* 10487 * Adjust the limit to account for pending virtual NMIs, which aren't 10488 * tracked in vcpu->arch.nmi_pending. 10489 */ 10490 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10491 limit--; 10492 10493 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10494 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10495 10496 if (vcpu->arch.nmi_pending && 10497 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10498 vcpu->arch.nmi_pending--; 10499 10500 if (vcpu->arch.nmi_pending) 10501 kvm_make_request(KVM_REQ_EVENT, vcpu); 10502 } 10503 10504 /* Return total number of NMIs pending injection to the VM */ 10505 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10506 { 10507 return vcpu->arch.nmi_pending + 10508 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10509 } 10510 10511 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10512 unsigned long *vcpu_bitmap) 10513 { 10514 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10515 } 10516 10517 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10518 { 10519 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10520 } 10521 10522 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10523 { 10524 struct kvm_lapic *apic = vcpu->arch.apic; 10525 bool activate; 10526 10527 if (!lapic_in_kernel(vcpu)) 10528 return; 10529 10530 down_read(&vcpu->kvm->arch.apicv_update_lock); 10531 preempt_disable(); 10532 10533 /* Do not activate APICV when APIC is disabled */ 10534 activate = kvm_vcpu_apicv_activated(vcpu) && 10535 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10536 10537 if (apic->apicv_active == activate) 10538 goto out; 10539 10540 apic->apicv_active = activate; 10541 kvm_apic_update_apicv(vcpu); 10542 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10543 10544 /* 10545 * When APICv gets disabled, we may still have injected interrupts 10546 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10547 * still active when the interrupt got accepted. Make sure 10548 * kvm_check_and_inject_events() is called to check for that. 10549 */ 10550 if (!apic->apicv_active) 10551 kvm_make_request(KVM_REQ_EVENT, vcpu); 10552 10553 out: 10554 preempt_enable(); 10555 up_read(&vcpu->kvm->arch.apicv_update_lock); 10556 } 10557 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10558 10559 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10560 { 10561 if (!lapic_in_kernel(vcpu)) 10562 return; 10563 10564 /* 10565 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10566 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10567 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10568 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10569 * this case so that KVM can the AVIC doorbell to inject interrupts to 10570 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10571 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10572 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10573 * access page is sticky. 10574 */ 10575 if (apic_x2apic_mode(vcpu->arch.apic) && 10576 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10577 kvm_inhibit_apic_access_page(vcpu); 10578 10579 __kvm_vcpu_update_apicv(vcpu); 10580 } 10581 10582 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10583 enum kvm_apicv_inhibit reason, bool set) 10584 { 10585 unsigned long old, new; 10586 10587 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10588 10589 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10590 return; 10591 10592 old = new = kvm->arch.apicv_inhibit_reasons; 10593 10594 set_or_clear_apicv_inhibit(&new, reason, set); 10595 10596 if (!!old != !!new) { 10597 /* 10598 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10599 * false positives in the sanity check WARN in svm_vcpu_run(). 10600 * This task will wait for all vCPUs to ack the kick IRQ before 10601 * updating apicv_inhibit_reasons, and all other vCPUs will 10602 * block on acquiring apicv_update_lock so that vCPUs can't 10603 * redo svm_vcpu_run() without seeing the new inhibit state. 10604 * 10605 * Note, holding apicv_update_lock and taking it in the read 10606 * side (handling the request) also prevents other vCPUs from 10607 * servicing the request with a stale apicv_inhibit_reasons. 10608 */ 10609 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10610 kvm->arch.apicv_inhibit_reasons = new; 10611 if (new) { 10612 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10613 int idx = srcu_read_lock(&kvm->srcu); 10614 10615 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10616 srcu_read_unlock(&kvm->srcu, idx); 10617 } 10618 } else { 10619 kvm->arch.apicv_inhibit_reasons = new; 10620 } 10621 } 10622 10623 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10624 enum kvm_apicv_inhibit reason, bool set) 10625 { 10626 if (!enable_apicv) 10627 return; 10628 10629 down_write(&kvm->arch.apicv_update_lock); 10630 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10631 up_write(&kvm->arch.apicv_update_lock); 10632 } 10633 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10634 10635 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10636 { 10637 if (!kvm_apic_present(vcpu)) 10638 return; 10639 10640 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10641 10642 if (irqchip_split(vcpu->kvm)) 10643 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10644 else { 10645 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10646 if (ioapic_in_kernel(vcpu->kvm)) 10647 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10648 } 10649 10650 if (is_guest_mode(vcpu)) 10651 vcpu->arch.load_eoi_exitmap_pending = true; 10652 else 10653 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10654 } 10655 10656 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10657 { 10658 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10659 return; 10660 10661 #ifdef CONFIG_KVM_HYPERV 10662 if (to_hv_vcpu(vcpu)) { 10663 u64 eoi_exit_bitmap[4]; 10664 10665 bitmap_or((ulong *)eoi_exit_bitmap, 10666 vcpu->arch.ioapic_handled_vectors, 10667 to_hv_synic(vcpu)->vec_bitmap, 256); 10668 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10669 return; 10670 } 10671 #endif 10672 static_call_cond(kvm_x86_load_eoi_exitmap)( 10673 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10674 } 10675 10676 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10677 { 10678 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10679 } 10680 10681 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10682 { 10683 if (!lapic_in_kernel(vcpu)) 10684 return; 10685 10686 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10687 } 10688 10689 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10690 { 10691 smp_send_reschedule(vcpu->cpu); 10692 } 10693 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10694 10695 /* 10696 * Called within kvm->srcu read side. 10697 * Returns 1 to let vcpu_run() continue the guest execution loop without 10698 * exiting to the userspace. Otherwise, the value will be returned to the 10699 * userspace. 10700 */ 10701 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10702 { 10703 int r; 10704 bool req_int_win = 10705 dm_request_for_irq_injection(vcpu) && 10706 kvm_cpu_accept_dm_intr(vcpu); 10707 fastpath_t exit_fastpath; 10708 10709 bool req_immediate_exit = false; 10710 10711 if (kvm_request_pending(vcpu)) { 10712 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10713 r = -EIO; 10714 goto out; 10715 } 10716 10717 if (kvm_dirty_ring_check_request(vcpu)) { 10718 r = 0; 10719 goto out; 10720 } 10721 10722 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10723 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10724 r = 0; 10725 goto out; 10726 } 10727 } 10728 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10729 kvm_mmu_free_obsolete_roots(vcpu); 10730 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10731 __kvm_migrate_timers(vcpu); 10732 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10733 kvm_update_masterclock(vcpu->kvm); 10734 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10735 kvm_gen_kvmclock_update(vcpu); 10736 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10737 r = kvm_guest_time_update(vcpu); 10738 if (unlikely(r)) 10739 goto out; 10740 } 10741 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10742 kvm_mmu_sync_roots(vcpu); 10743 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10744 kvm_mmu_load_pgd(vcpu); 10745 10746 /* 10747 * Note, the order matters here, as flushing "all" TLB entries 10748 * also flushes the "current" TLB entries, i.e. servicing the 10749 * flush "all" will clear any request to flush "current". 10750 */ 10751 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10752 kvm_vcpu_flush_tlb_all(vcpu); 10753 10754 kvm_service_local_tlb_flush_requests(vcpu); 10755 10756 /* 10757 * Fall back to a "full" guest flush if Hyper-V's precise 10758 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10759 * the flushes are considered "remote" and not "local" because 10760 * the requests can be initiated from other vCPUs. 10761 */ 10762 #ifdef CONFIG_KVM_HYPERV 10763 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10764 kvm_hv_vcpu_flush_tlb(vcpu)) 10765 kvm_vcpu_flush_tlb_guest(vcpu); 10766 #endif 10767 10768 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10769 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10770 r = 0; 10771 goto out; 10772 } 10773 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10774 if (is_guest_mode(vcpu)) 10775 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10776 10777 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10778 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10779 vcpu->mmio_needed = 0; 10780 r = 0; 10781 goto out; 10782 } 10783 } 10784 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10785 /* Page is swapped out. Do synthetic halt */ 10786 vcpu->arch.apf.halted = true; 10787 r = 1; 10788 goto out; 10789 } 10790 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10791 record_steal_time(vcpu); 10792 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10793 kvm_pmu_handle_event(vcpu); 10794 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10795 kvm_pmu_deliver_pmi(vcpu); 10796 #ifdef CONFIG_KVM_SMM 10797 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10798 process_smi(vcpu); 10799 #endif 10800 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10801 process_nmi(vcpu); 10802 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10803 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10804 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10805 vcpu->arch.ioapic_handled_vectors)) { 10806 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10807 vcpu->run->eoi.vector = 10808 vcpu->arch.pending_ioapic_eoi; 10809 r = 0; 10810 goto out; 10811 } 10812 } 10813 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10814 vcpu_scan_ioapic(vcpu); 10815 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10816 vcpu_load_eoi_exitmap(vcpu); 10817 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10818 kvm_vcpu_reload_apic_access_page(vcpu); 10819 #ifdef CONFIG_KVM_HYPERV 10820 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10821 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10822 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10823 vcpu->run->system_event.ndata = 0; 10824 r = 0; 10825 goto out; 10826 } 10827 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10828 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10829 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10830 vcpu->run->system_event.ndata = 0; 10831 r = 0; 10832 goto out; 10833 } 10834 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10835 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10836 10837 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10838 vcpu->run->hyperv = hv_vcpu->exit; 10839 r = 0; 10840 goto out; 10841 } 10842 10843 /* 10844 * KVM_REQ_HV_STIMER has to be processed after 10845 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10846 * depend on the guest clock being up-to-date 10847 */ 10848 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10849 kvm_hv_process_stimers(vcpu); 10850 #endif 10851 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10852 kvm_vcpu_update_apicv(vcpu); 10853 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10854 kvm_check_async_pf_completion(vcpu); 10855 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10856 static_call(kvm_x86_msr_filter_changed)(vcpu); 10857 10858 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10859 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10860 } 10861 10862 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10863 kvm_xen_has_interrupt(vcpu)) { 10864 ++vcpu->stat.req_event; 10865 r = kvm_apic_accept_events(vcpu); 10866 if (r < 0) { 10867 r = 0; 10868 goto out; 10869 } 10870 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10871 r = 1; 10872 goto out; 10873 } 10874 10875 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10876 if (r < 0) { 10877 r = 0; 10878 goto out; 10879 } 10880 if (req_int_win) 10881 static_call(kvm_x86_enable_irq_window)(vcpu); 10882 10883 if (kvm_lapic_enabled(vcpu)) { 10884 update_cr8_intercept(vcpu); 10885 kvm_lapic_sync_to_vapic(vcpu); 10886 } 10887 } 10888 10889 r = kvm_mmu_reload(vcpu); 10890 if (unlikely(r)) { 10891 goto cancel_injection; 10892 } 10893 10894 preempt_disable(); 10895 10896 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10897 10898 /* 10899 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10900 * IPI are then delayed after guest entry, which ensures that they 10901 * result in virtual interrupt delivery. 10902 */ 10903 local_irq_disable(); 10904 10905 /* Store vcpu->apicv_active before vcpu->mode. */ 10906 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10907 10908 kvm_vcpu_srcu_read_unlock(vcpu); 10909 10910 /* 10911 * 1) We should set ->mode before checking ->requests. Please see 10912 * the comment in kvm_vcpu_exiting_guest_mode(). 10913 * 10914 * 2) For APICv, we should set ->mode before checking PID.ON. This 10915 * pairs with the memory barrier implicit in pi_test_and_set_on 10916 * (see vmx_deliver_posted_interrupt). 10917 * 10918 * 3) This also orders the write to mode from any reads to the page 10919 * tables done while the VCPU is running. Please see the comment 10920 * in kvm_flush_remote_tlbs. 10921 */ 10922 smp_mb__after_srcu_read_unlock(); 10923 10924 /* 10925 * Process pending posted interrupts to handle the case where the 10926 * notification IRQ arrived in the host, or was never sent (because the 10927 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10928 * status, KVM doesn't update assigned devices when APICv is inhibited, 10929 * i.e. they can post interrupts even if APICv is temporarily disabled. 10930 */ 10931 if (kvm_lapic_enabled(vcpu)) 10932 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10933 10934 if (kvm_vcpu_exit_request(vcpu)) { 10935 vcpu->mode = OUTSIDE_GUEST_MODE; 10936 smp_wmb(); 10937 local_irq_enable(); 10938 preempt_enable(); 10939 kvm_vcpu_srcu_read_lock(vcpu); 10940 r = 1; 10941 goto cancel_injection; 10942 } 10943 10944 if (req_immediate_exit) { 10945 kvm_make_request(KVM_REQ_EVENT, vcpu); 10946 static_call(kvm_x86_request_immediate_exit)(vcpu); 10947 } 10948 10949 fpregs_assert_state_consistent(); 10950 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10951 switch_fpu_return(); 10952 10953 if (vcpu->arch.guest_fpu.xfd_err) 10954 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10955 10956 if (unlikely(vcpu->arch.switch_db_regs)) { 10957 set_debugreg(0, 7); 10958 set_debugreg(vcpu->arch.eff_db[0], 0); 10959 set_debugreg(vcpu->arch.eff_db[1], 1); 10960 set_debugreg(vcpu->arch.eff_db[2], 2); 10961 set_debugreg(vcpu->arch.eff_db[3], 3); 10962 } else if (unlikely(hw_breakpoint_active())) { 10963 set_debugreg(0, 7); 10964 } 10965 10966 guest_timing_enter_irqoff(); 10967 10968 for (;;) { 10969 /* 10970 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10971 * update must kick and wait for all vCPUs before toggling the 10972 * per-VM state, and responding vCPUs must wait for the update 10973 * to complete before servicing KVM_REQ_APICV_UPDATE. 10974 */ 10975 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10976 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10977 10978 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10979 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10980 break; 10981 10982 if (kvm_lapic_enabled(vcpu)) 10983 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10984 10985 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10986 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10987 break; 10988 } 10989 10990 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10991 ++vcpu->stat.exits; 10992 } 10993 10994 /* 10995 * Do this here before restoring debug registers on the host. And 10996 * since we do this before handling the vmexit, a DR access vmexit 10997 * can (a) read the correct value of the debug registers, (b) set 10998 * KVM_DEBUGREG_WONT_EXIT again. 10999 */ 11000 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 11001 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 11002 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 11003 kvm_update_dr0123(vcpu); 11004 kvm_update_dr7(vcpu); 11005 } 11006 11007 /* 11008 * If the guest has used debug registers, at least dr7 11009 * will be disabled while returning to the host. 11010 * If we don't have active breakpoints in the host, we don't 11011 * care about the messed up debug address registers. But if 11012 * we have some of them active, restore the old state. 11013 */ 11014 if (hw_breakpoint_active()) 11015 hw_breakpoint_restore(); 11016 11017 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11018 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11019 11020 vcpu->mode = OUTSIDE_GUEST_MODE; 11021 smp_wmb(); 11022 11023 /* 11024 * Sync xfd before calling handle_exit_irqoff() which may 11025 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11026 * in #NM irqoff handler). 11027 */ 11028 if (vcpu->arch.xfd_no_write_intercept) 11029 fpu_sync_guest_vmexit_xfd_state(); 11030 11031 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 11032 11033 if (vcpu->arch.guest_fpu.xfd_err) 11034 wrmsrl(MSR_IA32_XFD_ERR, 0); 11035 11036 /* 11037 * Consume any pending interrupts, including the possible source of 11038 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11039 * An instruction is required after local_irq_enable() to fully unblock 11040 * interrupts on processors that implement an interrupt shadow, the 11041 * stat.exits increment will do nicely. 11042 */ 11043 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11044 local_irq_enable(); 11045 ++vcpu->stat.exits; 11046 local_irq_disable(); 11047 kvm_after_interrupt(vcpu); 11048 11049 /* 11050 * Wait until after servicing IRQs to account guest time so that any 11051 * ticks that occurred while running the guest are properly accounted 11052 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11053 * of accounting via context tracking, but the loss of accuracy is 11054 * acceptable for all known use cases. 11055 */ 11056 guest_timing_exit_irqoff(); 11057 11058 local_irq_enable(); 11059 preempt_enable(); 11060 11061 kvm_vcpu_srcu_read_lock(vcpu); 11062 11063 /* 11064 * Profile KVM exit RIPs: 11065 */ 11066 if (unlikely(prof_on == KVM_PROFILING)) { 11067 unsigned long rip = kvm_rip_read(vcpu); 11068 profile_hit(KVM_PROFILING, (void *)rip); 11069 } 11070 11071 if (unlikely(vcpu->arch.tsc_always_catchup)) 11072 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11073 11074 if (vcpu->arch.apic_attention) 11075 kvm_lapic_sync_from_vapic(vcpu); 11076 11077 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 11078 return r; 11079 11080 cancel_injection: 11081 if (req_immediate_exit) 11082 kvm_make_request(KVM_REQ_EVENT, vcpu); 11083 static_call(kvm_x86_cancel_injection)(vcpu); 11084 if (unlikely(vcpu->arch.apic_attention)) 11085 kvm_lapic_sync_from_vapic(vcpu); 11086 out: 11087 return r; 11088 } 11089 11090 /* Called within kvm->srcu read side. */ 11091 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11092 { 11093 bool hv_timer; 11094 11095 if (!kvm_arch_vcpu_runnable(vcpu)) { 11096 /* 11097 * Switch to the software timer before halt-polling/blocking as 11098 * the guest's timer may be a break event for the vCPU, and the 11099 * hypervisor timer runs only when the CPU is in guest mode. 11100 * Switch before halt-polling so that KVM recognizes an expired 11101 * timer before blocking. 11102 */ 11103 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11104 if (hv_timer) 11105 kvm_lapic_switch_to_sw_timer(vcpu); 11106 11107 kvm_vcpu_srcu_read_unlock(vcpu); 11108 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11109 kvm_vcpu_halt(vcpu); 11110 else 11111 kvm_vcpu_block(vcpu); 11112 kvm_vcpu_srcu_read_lock(vcpu); 11113 11114 if (hv_timer) 11115 kvm_lapic_switch_to_hv_timer(vcpu); 11116 11117 /* 11118 * If the vCPU is not runnable, a signal or another host event 11119 * of some kind is pending; service it without changing the 11120 * vCPU's activity state. 11121 */ 11122 if (!kvm_arch_vcpu_runnable(vcpu)) 11123 return 1; 11124 } 11125 11126 /* 11127 * Evaluate nested events before exiting the halted state. This allows 11128 * the halt state to be recorded properly in the VMCS12's activity 11129 * state field (AMD does not have a similar field and a VM-Exit always 11130 * causes a spurious wakeup from HLT). 11131 */ 11132 if (is_guest_mode(vcpu)) { 11133 if (kvm_check_nested_events(vcpu) < 0) 11134 return 0; 11135 } 11136 11137 if (kvm_apic_accept_events(vcpu) < 0) 11138 return 0; 11139 switch(vcpu->arch.mp_state) { 11140 case KVM_MP_STATE_HALTED: 11141 case KVM_MP_STATE_AP_RESET_HOLD: 11142 vcpu->arch.pv.pv_unhalted = false; 11143 vcpu->arch.mp_state = 11144 KVM_MP_STATE_RUNNABLE; 11145 fallthrough; 11146 case KVM_MP_STATE_RUNNABLE: 11147 vcpu->arch.apf.halted = false; 11148 break; 11149 case KVM_MP_STATE_INIT_RECEIVED: 11150 break; 11151 default: 11152 WARN_ON_ONCE(1); 11153 break; 11154 } 11155 return 1; 11156 } 11157 11158 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11159 { 11160 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11161 !vcpu->arch.apf.halted); 11162 } 11163 11164 /* Called within kvm->srcu read side. */ 11165 static int vcpu_run(struct kvm_vcpu *vcpu) 11166 { 11167 int r; 11168 11169 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11170 vcpu->arch.l1tf_flush_l1d = true; 11171 11172 for (;;) { 11173 /* 11174 * If another guest vCPU requests a PV TLB flush in the middle 11175 * of instruction emulation, the rest of the emulation could 11176 * use a stale page translation. Assume that any code after 11177 * this point can start executing an instruction. 11178 */ 11179 vcpu->arch.at_instruction_boundary = false; 11180 if (kvm_vcpu_running(vcpu)) { 11181 r = vcpu_enter_guest(vcpu); 11182 } else { 11183 r = vcpu_block(vcpu); 11184 } 11185 11186 if (r <= 0) 11187 break; 11188 11189 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11190 if (kvm_xen_has_pending_events(vcpu)) 11191 kvm_xen_inject_pending_events(vcpu); 11192 11193 if (kvm_cpu_has_pending_timer(vcpu)) 11194 kvm_inject_pending_timer_irqs(vcpu); 11195 11196 if (dm_request_for_irq_injection(vcpu) && 11197 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11198 r = 0; 11199 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11200 ++vcpu->stat.request_irq_exits; 11201 break; 11202 } 11203 11204 if (__xfer_to_guest_mode_work_pending()) { 11205 kvm_vcpu_srcu_read_unlock(vcpu); 11206 r = xfer_to_guest_mode_handle_work(vcpu); 11207 kvm_vcpu_srcu_read_lock(vcpu); 11208 if (r) 11209 return r; 11210 } 11211 } 11212 11213 return r; 11214 } 11215 11216 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11217 { 11218 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11219 } 11220 11221 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11222 { 11223 BUG_ON(!vcpu->arch.pio.count); 11224 11225 return complete_emulated_io(vcpu); 11226 } 11227 11228 /* 11229 * Implements the following, as a state machine: 11230 * 11231 * read: 11232 * for each fragment 11233 * for each mmio piece in the fragment 11234 * write gpa, len 11235 * exit 11236 * copy data 11237 * execute insn 11238 * 11239 * write: 11240 * for each fragment 11241 * for each mmio piece in the fragment 11242 * write gpa, len 11243 * copy data 11244 * exit 11245 */ 11246 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11247 { 11248 struct kvm_run *run = vcpu->run; 11249 struct kvm_mmio_fragment *frag; 11250 unsigned len; 11251 11252 BUG_ON(!vcpu->mmio_needed); 11253 11254 /* Complete previous fragment */ 11255 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11256 len = min(8u, frag->len); 11257 if (!vcpu->mmio_is_write) 11258 memcpy(frag->data, run->mmio.data, len); 11259 11260 if (frag->len <= 8) { 11261 /* Switch to the next fragment. */ 11262 frag++; 11263 vcpu->mmio_cur_fragment++; 11264 } else { 11265 /* Go forward to the next mmio piece. */ 11266 frag->data += len; 11267 frag->gpa += len; 11268 frag->len -= len; 11269 } 11270 11271 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11272 vcpu->mmio_needed = 0; 11273 11274 /* FIXME: return into emulator if single-stepping. */ 11275 if (vcpu->mmio_is_write) 11276 return 1; 11277 vcpu->mmio_read_completed = 1; 11278 return complete_emulated_io(vcpu); 11279 } 11280 11281 run->exit_reason = KVM_EXIT_MMIO; 11282 run->mmio.phys_addr = frag->gpa; 11283 if (vcpu->mmio_is_write) 11284 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11285 run->mmio.len = min(8u, frag->len); 11286 run->mmio.is_write = vcpu->mmio_is_write; 11287 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11288 return 0; 11289 } 11290 11291 /* Swap (qemu) user FPU context for the guest FPU context. */ 11292 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11293 { 11294 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11295 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11296 trace_kvm_fpu(1); 11297 } 11298 11299 /* When vcpu_run ends, restore user space FPU context. */ 11300 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11301 { 11302 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11303 ++vcpu->stat.fpu_reload; 11304 trace_kvm_fpu(0); 11305 } 11306 11307 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11308 { 11309 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11310 struct kvm_run *kvm_run = vcpu->run; 11311 int r; 11312 11313 vcpu_load(vcpu); 11314 kvm_sigset_activate(vcpu); 11315 kvm_run->flags = 0; 11316 kvm_load_guest_fpu(vcpu); 11317 11318 kvm_vcpu_srcu_read_lock(vcpu); 11319 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11320 if (kvm_run->immediate_exit) { 11321 r = -EINTR; 11322 goto out; 11323 } 11324 11325 /* 11326 * Don't bother switching APIC timer emulation from the 11327 * hypervisor timer to the software timer, the only way for the 11328 * APIC timer to be active is if userspace stuffed vCPU state, 11329 * i.e. put the vCPU into a nonsensical state. Only an INIT 11330 * will transition the vCPU out of UNINITIALIZED (without more 11331 * state stuffing from userspace), which will reset the local 11332 * APIC and thus cancel the timer or drop the IRQ (if the timer 11333 * already expired). 11334 */ 11335 kvm_vcpu_srcu_read_unlock(vcpu); 11336 kvm_vcpu_block(vcpu); 11337 kvm_vcpu_srcu_read_lock(vcpu); 11338 11339 if (kvm_apic_accept_events(vcpu) < 0) { 11340 r = 0; 11341 goto out; 11342 } 11343 r = -EAGAIN; 11344 if (signal_pending(current)) { 11345 r = -EINTR; 11346 kvm_run->exit_reason = KVM_EXIT_INTR; 11347 ++vcpu->stat.signal_exits; 11348 } 11349 goto out; 11350 } 11351 11352 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11353 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11354 r = -EINVAL; 11355 goto out; 11356 } 11357 11358 if (kvm_run->kvm_dirty_regs) { 11359 r = sync_regs(vcpu); 11360 if (r != 0) 11361 goto out; 11362 } 11363 11364 /* re-sync apic's tpr */ 11365 if (!lapic_in_kernel(vcpu)) { 11366 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11367 r = -EINVAL; 11368 goto out; 11369 } 11370 } 11371 11372 /* 11373 * If userspace set a pending exception and L2 is active, convert it to 11374 * a pending VM-Exit if L1 wants to intercept the exception. 11375 */ 11376 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11377 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11378 ex->error_code)) { 11379 kvm_queue_exception_vmexit(vcpu, ex->vector, 11380 ex->has_error_code, ex->error_code, 11381 ex->has_payload, ex->payload); 11382 ex->injected = false; 11383 ex->pending = false; 11384 } 11385 vcpu->arch.exception_from_userspace = false; 11386 11387 if (unlikely(vcpu->arch.complete_userspace_io)) { 11388 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11389 vcpu->arch.complete_userspace_io = NULL; 11390 r = cui(vcpu); 11391 if (r <= 0) 11392 goto out; 11393 } else { 11394 WARN_ON_ONCE(vcpu->arch.pio.count); 11395 WARN_ON_ONCE(vcpu->mmio_needed); 11396 } 11397 11398 if (kvm_run->immediate_exit) { 11399 r = -EINTR; 11400 goto out; 11401 } 11402 11403 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11404 if (r <= 0) 11405 goto out; 11406 11407 r = vcpu_run(vcpu); 11408 11409 out: 11410 kvm_put_guest_fpu(vcpu); 11411 if (kvm_run->kvm_valid_regs) 11412 store_regs(vcpu); 11413 post_kvm_run_save(vcpu); 11414 kvm_vcpu_srcu_read_unlock(vcpu); 11415 11416 kvm_sigset_deactivate(vcpu); 11417 vcpu_put(vcpu); 11418 return r; 11419 } 11420 11421 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11422 { 11423 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11424 /* 11425 * We are here if userspace calls get_regs() in the middle of 11426 * instruction emulation. Registers state needs to be copied 11427 * back from emulation context to vcpu. Userspace shouldn't do 11428 * that usually, but some bad designed PV devices (vmware 11429 * backdoor interface) need this to work 11430 */ 11431 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11432 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11433 } 11434 regs->rax = kvm_rax_read(vcpu); 11435 regs->rbx = kvm_rbx_read(vcpu); 11436 regs->rcx = kvm_rcx_read(vcpu); 11437 regs->rdx = kvm_rdx_read(vcpu); 11438 regs->rsi = kvm_rsi_read(vcpu); 11439 regs->rdi = kvm_rdi_read(vcpu); 11440 regs->rsp = kvm_rsp_read(vcpu); 11441 regs->rbp = kvm_rbp_read(vcpu); 11442 #ifdef CONFIG_X86_64 11443 regs->r8 = kvm_r8_read(vcpu); 11444 regs->r9 = kvm_r9_read(vcpu); 11445 regs->r10 = kvm_r10_read(vcpu); 11446 regs->r11 = kvm_r11_read(vcpu); 11447 regs->r12 = kvm_r12_read(vcpu); 11448 regs->r13 = kvm_r13_read(vcpu); 11449 regs->r14 = kvm_r14_read(vcpu); 11450 regs->r15 = kvm_r15_read(vcpu); 11451 #endif 11452 11453 regs->rip = kvm_rip_read(vcpu); 11454 regs->rflags = kvm_get_rflags(vcpu); 11455 } 11456 11457 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11458 { 11459 vcpu_load(vcpu); 11460 __get_regs(vcpu, regs); 11461 vcpu_put(vcpu); 11462 return 0; 11463 } 11464 11465 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11466 { 11467 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11468 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11469 11470 kvm_rax_write(vcpu, regs->rax); 11471 kvm_rbx_write(vcpu, regs->rbx); 11472 kvm_rcx_write(vcpu, regs->rcx); 11473 kvm_rdx_write(vcpu, regs->rdx); 11474 kvm_rsi_write(vcpu, regs->rsi); 11475 kvm_rdi_write(vcpu, regs->rdi); 11476 kvm_rsp_write(vcpu, regs->rsp); 11477 kvm_rbp_write(vcpu, regs->rbp); 11478 #ifdef CONFIG_X86_64 11479 kvm_r8_write(vcpu, regs->r8); 11480 kvm_r9_write(vcpu, regs->r9); 11481 kvm_r10_write(vcpu, regs->r10); 11482 kvm_r11_write(vcpu, regs->r11); 11483 kvm_r12_write(vcpu, regs->r12); 11484 kvm_r13_write(vcpu, regs->r13); 11485 kvm_r14_write(vcpu, regs->r14); 11486 kvm_r15_write(vcpu, regs->r15); 11487 #endif 11488 11489 kvm_rip_write(vcpu, regs->rip); 11490 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11491 11492 vcpu->arch.exception.pending = false; 11493 vcpu->arch.exception_vmexit.pending = false; 11494 11495 kvm_make_request(KVM_REQ_EVENT, vcpu); 11496 } 11497 11498 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11499 { 11500 vcpu_load(vcpu); 11501 __set_regs(vcpu, regs); 11502 vcpu_put(vcpu); 11503 return 0; 11504 } 11505 11506 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11507 { 11508 struct desc_ptr dt; 11509 11510 if (vcpu->arch.guest_state_protected) 11511 goto skip_protected_regs; 11512 11513 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11514 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11515 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11516 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11517 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11518 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11519 11520 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11521 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11522 11523 static_call(kvm_x86_get_idt)(vcpu, &dt); 11524 sregs->idt.limit = dt.size; 11525 sregs->idt.base = dt.address; 11526 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11527 sregs->gdt.limit = dt.size; 11528 sregs->gdt.base = dt.address; 11529 11530 sregs->cr2 = vcpu->arch.cr2; 11531 sregs->cr3 = kvm_read_cr3(vcpu); 11532 11533 skip_protected_regs: 11534 sregs->cr0 = kvm_read_cr0(vcpu); 11535 sregs->cr4 = kvm_read_cr4(vcpu); 11536 sregs->cr8 = kvm_get_cr8(vcpu); 11537 sregs->efer = vcpu->arch.efer; 11538 sregs->apic_base = kvm_get_apic_base(vcpu); 11539 } 11540 11541 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11542 { 11543 __get_sregs_common(vcpu, sregs); 11544 11545 if (vcpu->arch.guest_state_protected) 11546 return; 11547 11548 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11549 set_bit(vcpu->arch.interrupt.nr, 11550 (unsigned long *)sregs->interrupt_bitmap); 11551 } 11552 11553 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11554 { 11555 int i; 11556 11557 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11558 11559 if (vcpu->arch.guest_state_protected) 11560 return; 11561 11562 if (is_pae_paging(vcpu)) { 11563 for (i = 0 ; i < 4 ; i++) 11564 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11565 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11566 } 11567 } 11568 11569 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11570 struct kvm_sregs *sregs) 11571 { 11572 vcpu_load(vcpu); 11573 __get_sregs(vcpu, sregs); 11574 vcpu_put(vcpu); 11575 return 0; 11576 } 11577 11578 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11579 struct kvm_mp_state *mp_state) 11580 { 11581 int r; 11582 11583 vcpu_load(vcpu); 11584 if (kvm_mpx_supported()) 11585 kvm_load_guest_fpu(vcpu); 11586 11587 r = kvm_apic_accept_events(vcpu); 11588 if (r < 0) 11589 goto out; 11590 r = 0; 11591 11592 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11593 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11594 vcpu->arch.pv.pv_unhalted) 11595 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11596 else 11597 mp_state->mp_state = vcpu->arch.mp_state; 11598 11599 out: 11600 if (kvm_mpx_supported()) 11601 kvm_put_guest_fpu(vcpu); 11602 vcpu_put(vcpu); 11603 return r; 11604 } 11605 11606 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11607 struct kvm_mp_state *mp_state) 11608 { 11609 int ret = -EINVAL; 11610 11611 vcpu_load(vcpu); 11612 11613 switch (mp_state->mp_state) { 11614 case KVM_MP_STATE_UNINITIALIZED: 11615 case KVM_MP_STATE_HALTED: 11616 case KVM_MP_STATE_AP_RESET_HOLD: 11617 case KVM_MP_STATE_INIT_RECEIVED: 11618 case KVM_MP_STATE_SIPI_RECEIVED: 11619 if (!lapic_in_kernel(vcpu)) 11620 goto out; 11621 break; 11622 11623 case KVM_MP_STATE_RUNNABLE: 11624 break; 11625 11626 default: 11627 goto out; 11628 } 11629 11630 /* 11631 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11632 * forcing the guest into INIT/SIPI if those events are supposed to be 11633 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11634 * if an SMI is pending as well. 11635 */ 11636 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11637 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11638 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11639 goto out; 11640 11641 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11642 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11643 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11644 } else 11645 vcpu->arch.mp_state = mp_state->mp_state; 11646 kvm_make_request(KVM_REQ_EVENT, vcpu); 11647 11648 ret = 0; 11649 out: 11650 vcpu_put(vcpu); 11651 return ret; 11652 } 11653 11654 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11655 int reason, bool has_error_code, u32 error_code) 11656 { 11657 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11658 int ret; 11659 11660 init_emulate_ctxt(vcpu); 11661 11662 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11663 has_error_code, error_code); 11664 if (ret) { 11665 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11666 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11667 vcpu->run->internal.ndata = 0; 11668 return 0; 11669 } 11670 11671 kvm_rip_write(vcpu, ctxt->eip); 11672 kvm_set_rflags(vcpu, ctxt->eflags); 11673 return 1; 11674 } 11675 EXPORT_SYMBOL_GPL(kvm_task_switch); 11676 11677 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11678 { 11679 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11680 /* 11681 * When EFER.LME and CR0.PG are set, the processor is in 11682 * 64-bit mode (though maybe in a 32-bit code segment). 11683 * CR4.PAE and EFER.LMA must be set. 11684 */ 11685 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11686 return false; 11687 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11688 return false; 11689 } else { 11690 /* 11691 * Not in 64-bit mode: EFER.LMA is clear and the code 11692 * segment cannot be 64-bit. 11693 */ 11694 if (sregs->efer & EFER_LMA || sregs->cs.l) 11695 return false; 11696 } 11697 11698 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11699 kvm_is_valid_cr0(vcpu, sregs->cr0); 11700 } 11701 11702 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11703 int *mmu_reset_needed, bool update_pdptrs) 11704 { 11705 struct msr_data apic_base_msr; 11706 int idx; 11707 struct desc_ptr dt; 11708 11709 if (!kvm_is_valid_sregs(vcpu, sregs)) 11710 return -EINVAL; 11711 11712 apic_base_msr.data = sregs->apic_base; 11713 apic_base_msr.host_initiated = true; 11714 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11715 return -EINVAL; 11716 11717 if (vcpu->arch.guest_state_protected) 11718 return 0; 11719 11720 dt.size = sregs->idt.limit; 11721 dt.address = sregs->idt.base; 11722 static_call(kvm_x86_set_idt)(vcpu, &dt); 11723 dt.size = sregs->gdt.limit; 11724 dt.address = sregs->gdt.base; 11725 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11726 11727 vcpu->arch.cr2 = sregs->cr2; 11728 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11729 vcpu->arch.cr3 = sregs->cr3; 11730 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11731 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11732 11733 kvm_set_cr8(vcpu, sregs->cr8); 11734 11735 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11736 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11737 11738 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11739 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11740 11741 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11742 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11743 11744 if (update_pdptrs) { 11745 idx = srcu_read_lock(&vcpu->kvm->srcu); 11746 if (is_pae_paging(vcpu)) { 11747 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11748 *mmu_reset_needed = 1; 11749 } 11750 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11751 } 11752 11753 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11754 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11755 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11756 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11757 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11758 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11759 11760 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11761 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11762 11763 update_cr8_intercept(vcpu); 11764 11765 /* Older userspace won't unhalt the vcpu on reset. */ 11766 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11767 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11768 !is_protmode(vcpu)) 11769 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11770 11771 return 0; 11772 } 11773 11774 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11775 { 11776 int pending_vec, max_bits; 11777 int mmu_reset_needed = 0; 11778 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11779 11780 if (ret) 11781 return ret; 11782 11783 if (mmu_reset_needed) { 11784 kvm_mmu_reset_context(vcpu); 11785 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11786 } 11787 11788 max_bits = KVM_NR_INTERRUPTS; 11789 pending_vec = find_first_bit( 11790 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11791 11792 if (pending_vec < max_bits) { 11793 kvm_queue_interrupt(vcpu, pending_vec, false); 11794 pr_debug("Set back pending irq %d\n", pending_vec); 11795 kvm_make_request(KVM_REQ_EVENT, vcpu); 11796 } 11797 return 0; 11798 } 11799 11800 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11801 { 11802 int mmu_reset_needed = 0; 11803 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11804 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11805 !(sregs2->efer & EFER_LMA); 11806 int i, ret; 11807 11808 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11809 return -EINVAL; 11810 11811 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11812 return -EINVAL; 11813 11814 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11815 &mmu_reset_needed, !valid_pdptrs); 11816 if (ret) 11817 return ret; 11818 11819 if (valid_pdptrs) { 11820 for (i = 0; i < 4 ; i++) 11821 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11822 11823 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11824 mmu_reset_needed = 1; 11825 vcpu->arch.pdptrs_from_userspace = true; 11826 } 11827 if (mmu_reset_needed) { 11828 kvm_mmu_reset_context(vcpu); 11829 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11830 } 11831 return 0; 11832 } 11833 11834 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11835 struct kvm_sregs *sregs) 11836 { 11837 int ret; 11838 11839 vcpu_load(vcpu); 11840 ret = __set_sregs(vcpu, sregs); 11841 vcpu_put(vcpu); 11842 return ret; 11843 } 11844 11845 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11846 { 11847 bool set = false; 11848 struct kvm_vcpu *vcpu; 11849 unsigned long i; 11850 11851 if (!enable_apicv) 11852 return; 11853 11854 down_write(&kvm->arch.apicv_update_lock); 11855 11856 kvm_for_each_vcpu(i, vcpu, kvm) { 11857 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11858 set = true; 11859 break; 11860 } 11861 } 11862 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11863 up_write(&kvm->arch.apicv_update_lock); 11864 } 11865 11866 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11867 struct kvm_guest_debug *dbg) 11868 { 11869 unsigned long rflags; 11870 int i, r; 11871 11872 if (vcpu->arch.guest_state_protected) 11873 return -EINVAL; 11874 11875 vcpu_load(vcpu); 11876 11877 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11878 r = -EBUSY; 11879 if (kvm_is_exception_pending(vcpu)) 11880 goto out; 11881 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11882 kvm_queue_exception(vcpu, DB_VECTOR); 11883 else 11884 kvm_queue_exception(vcpu, BP_VECTOR); 11885 } 11886 11887 /* 11888 * Read rflags as long as potentially injected trace flags are still 11889 * filtered out. 11890 */ 11891 rflags = kvm_get_rflags(vcpu); 11892 11893 vcpu->guest_debug = dbg->control; 11894 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11895 vcpu->guest_debug = 0; 11896 11897 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11898 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11899 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11900 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11901 } else { 11902 for (i = 0; i < KVM_NR_DB_REGS; i++) 11903 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11904 } 11905 kvm_update_dr7(vcpu); 11906 11907 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11908 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11909 11910 /* 11911 * Trigger an rflags update that will inject or remove the trace 11912 * flags. 11913 */ 11914 kvm_set_rflags(vcpu, rflags); 11915 11916 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11917 11918 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11919 11920 r = 0; 11921 11922 out: 11923 vcpu_put(vcpu); 11924 return r; 11925 } 11926 11927 /* 11928 * Translate a guest virtual address to a guest physical address. 11929 */ 11930 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11931 struct kvm_translation *tr) 11932 { 11933 unsigned long vaddr = tr->linear_address; 11934 gpa_t gpa; 11935 int idx; 11936 11937 vcpu_load(vcpu); 11938 11939 idx = srcu_read_lock(&vcpu->kvm->srcu); 11940 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11941 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11942 tr->physical_address = gpa; 11943 tr->valid = gpa != INVALID_GPA; 11944 tr->writeable = 1; 11945 tr->usermode = 0; 11946 11947 vcpu_put(vcpu); 11948 return 0; 11949 } 11950 11951 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11952 { 11953 struct fxregs_state *fxsave; 11954 11955 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11956 return 0; 11957 11958 vcpu_load(vcpu); 11959 11960 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11961 memcpy(fpu->fpr, fxsave->st_space, 128); 11962 fpu->fcw = fxsave->cwd; 11963 fpu->fsw = fxsave->swd; 11964 fpu->ftwx = fxsave->twd; 11965 fpu->last_opcode = fxsave->fop; 11966 fpu->last_ip = fxsave->rip; 11967 fpu->last_dp = fxsave->rdp; 11968 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11969 11970 vcpu_put(vcpu); 11971 return 0; 11972 } 11973 11974 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11975 { 11976 struct fxregs_state *fxsave; 11977 11978 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11979 return 0; 11980 11981 vcpu_load(vcpu); 11982 11983 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11984 11985 memcpy(fxsave->st_space, fpu->fpr, 128); 11986 fxsave->cwd = fpu->fcw; 11987 fxsave->swd = fpu->fsw; 11988 fxsave->twd = fpu->ftwx; 11989 fxsave->fop = fpu->last_opcode; 11990 fxsave->rip = fpu->last_ip; 11991 fxsave->rdp = fpu->last_dp; 11992 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11993 11994 vcpu_put(vcpu); 11995 return 0; 11996 } 11997 11998 static void store_regs(struct kvm_vcpu *vcpu) 11999 { 12000 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12001 12002 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12003 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12004 12005 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12006 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12007 12008 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12009 kvm_vcpu_ioctl_x86_get_vcpu_events( 12010 vcpu, &vcpu->run->s.regs.events); 12011 } 12012 12013 static int sync_regs(struct kvm_vcpu *vcpu) 12014 { 12015 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12016 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12017 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12018 } 12019 12020 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12021 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12022 12023 if (__set_sregs(vcpu, &sregs)) 12024 return -EINVAL; 12025 12026 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12027 } 12028 12029 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12030 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12031 12032 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12033 return -EINVAL; 12034 12035 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12036 } 12037 12038 return 0; 12039 } 12040 12041 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12042 { 12043 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12044 pr_warn_once("SMP vm created on host with unstable TSC; " 12045 "guest TSC will not be reliable\n"); 12046 12047 if (!kvm->arch.max_vcpu_ids) 12048 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12049 12050 if (id >= kvm->arch.max_vcpu_ids) 12051 return -EINVAL; 12052 12053 return static_call(kvm_x86_vcpu_precreate)(kvm); 12054 } 12055 12056 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12057 { 12058 struct page *page; 12059 int r; 12060 12061 vcpu->arch.last_vmentry_cpu = -1; 12062 vcpu->arch.regs_avail = ~0; 12063 vcpu->arch.regs_dirty = ~0; 12064 12065 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 12066 12067 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12068 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12069 else 12070 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 12071 12072 r = kvm_mmu_create(vcpu); 12073 if (r < 0) 12074 return r; 12075 12076 if (irqchip_in_kernel(vcpu->kvm)) { 12077 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 12078 if (r < 0) 12079 goto fail_mmu_destroy; 12080 12081 /* 12082 * Defer evaluating inhibits until the vCPU is first run, as 12083 * this vCPU will not get notified of any changes until this 12084 * vCPU is visible to other vCPUs (marked online and added to 12085 * the set of vCPUs). Opportunistically mark APICv active as 12086 * VMX in particularly is highly unlikely to have inhibits. 12087 * Ignore the current per-VM APICv state so that vCPU creation 12088 * is guaranteed to run with a deterministic value, the request 12089 * will ensure the vCPU gets the correct state before VM-Entry. 12090 */ 12091 if (enable_apicv) { 12092 vcpu->arch.apic->apicv_active = true; 12093 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 12094 } 12095 } else 12096 static_branch_inc(&kvm_has_noapic_vcpu); 12097 12098 r = -ENOMEM; 12099 12100 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12101 if (!page) 12102 goto fail_free_lapic; 12103 vcpu->arch.pio_data = page_address(page); 12104 12105 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12106 GFP_KERNEL_ACCOUNT); 12107 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12108 GFP_KERNEL_ACCOUNT); 12109 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12110 goto fail_free_mce_banks; 12111 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12112 12113 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12114 GFP_KERNEL_ACCOUNT)) 12115 goto fail_free_mce_banks; 12116 12117 if (!alloc_emulate_ctxt(vcpu)) 12118 goto free_wbinvd_dirty_mask; 12119 12120 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12121 pr_err("failed to allocate vcpu's fpu\n"); 12122 goto free_emulate_ctxt; 12123 } 12124 12125 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12126 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12127 12128 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12129 12130 kvm_async_pf_hash_reset(vcpu); 12131 12132 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12133 kvm_pmu_init(vcpu); 12134 12135 vcpu->arch.pending_external_vector = -1; 12136 vcpu->arch.preempted_in_kernel = false; 12137 12138 #if IS_ENABLED(CONFIG_HYPERV) 12139 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12140 #endif 12141 12142 r = static_call(kvm_x86_vcpu_create)(vcpu); 12143 if (r) 12144 goto free_guest_fpu; 12145 12146 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12147 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12148 kvm_xen_init_vcpu(vcpu); 12149 kvm_vcpu_mtrr_init(vcpu); 12150 vcpu_load(vcpu); 12151 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12152 kvm_vcpu_reset(vcpu, false); 12153 kvm_init_mmu(vcpu); 12154 vcpu_put(vcpu); 12155 return 0; 12156 12157 free_guest_fpu: 12158 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12159 free_emulate_ctxt: 12160 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12161 free_wbinvd_dirty_mask: 12162 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12163 fail_free_mce_banks: 12164 kfree(vcpu->arch.mce_banks); 12165 kfree(vcpu->arch.mci_ctl2_banks); 12166 free_page((unsigned long)vcpu->arch.pio_data); 12167 fail_free_lapic: 12168 kvm_free_lapic(vcpu); 12169 fail_mmu_destroy: 12170 kvm_mmu_destroy(vcpu); 12171 return r; 12172 } 12173 12174 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12175 { 12176 struct kvm *kvm = vcpu->kvm; 12177 12178 if (mutex_lock_killable(&vcpu->mutex)) 12179 return; 12180 vcpu_load(vcpu); 12181 kvm_synchronize_tsc(vcpu, NULL); 12182 vcpu_put(vcpu); 12183 12184 /* poll control enabled by default */ 12185 vcpu->arch.msr_kvm_poll_control = 1; 12186 12187 mutex_unlock(&vcpu->mutex); 12188 12189 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12190 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12191 KVMCLOCK_SYNC_PERIOD); 12192 } 12193 12194 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12195 { 12196 int idx; 12197 12198 kvmclock_reset(vcpu); 12199 12200 static_call(kvm_x86_vcpu_free)(vcpu); 12201 12202 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12203 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12204 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12205 12206 kvm_xen_destroy_vcpu(vcpu); 12207 kvm_hv_vcpu_uninit(vcpu); 12208 kvm_pmu_destroy(vcpu); 12209 kfree(vcpu->arch.mce_banks); 12210 kfree(vcpu->arch.mci_ctl2_banks); 12211 kvm_free_lapic(vcpu); 12212 idx = srcu_read_lock(&vcpu->kvm->srcu); 12213 kvm_mmu_destroy(vcpu); 12214 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12215 free_page((unsigned long)vcpu->arch.pio_data); 12216 kvfree(vcpu->arch.cpuid_entries); 12217 if (!lapic_in_kernel(vcpu)) 12218 static_branch_dec(&kvm_has_noapic_vcpu); 12219 } 12220 12221 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12222 { 12223 struct kvm_cpuid_entry2 *cpuid_0x1; 12224 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12225 unsigned long new_cr0; 12226 12227 /* 12228 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12229 * to handle side effects. RESET emulation hits those flows and relies 12230 * on emulated/virtualized registers, including those that are loaded 12231 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12232 * to detect improper or missing initialization. 12233 */ 12234 WARN_ON_ONCE(!init_event && 12235 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12236 12237 /* 12238 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12239 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12240 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12241 * bits), i.e. virtualization is disabled. 12242 */ 12243 if (is_guest_mode(vcpu)) 12244 kvm_leave_nested(vcpu); 12245 12246 kvm_lapic_reset(vcpu, init_event); 12247 12248 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12249 vcpu->arch.hflags = 0; 12250 12251 vcpu->arch.smi_pending = 0; 12252 vcpu->arch.smi_count = 0; 12253 atomic_set(&vcpu->arch.nmi_queued, 0); 12254 vcpu->arch.nmi_pending = 0; 12255 vcpu->arch.nmi_injected = false; 12256 kvm_clear_interrupt_queue(vcpu); 12257 kvm_clear_exception_queue(vcpu); 12258 12259 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12260 kvm_update_dr0123(vcpu); 12261 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12262 vcpu->arch.dr7 = DR7_FIXED_1; 12263 kvm_update_dr7(vcpu); 12264 12265 vcpu->arch.cr2 = 0; 12266 12267 kvm_make_request(KVM_REQ_EVENT, vcpu); 12268 vcpu->arch.apf.msr_en_val = 0; 12269 vcpu->arch.apf.msr_int_val = 0; 12270 vcpu->arch.st.msr_val = 0; 12271 12272 kvmclock_reset(vcpu); 12273 12274 kvm_clear_async_pf_completion_queue(vcpu); 12275 kvm_async_pf_hash_reset(vcpu); 12276 vcpu->arch.apf.halted = false; 12277 12278 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12279 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12280 12281 /* 12282 * All paths that lead to INIT are required to load the guest's 12283 * FPU state (because most paths are buried in KVM_RUN). 12284 */ 12285 if (init_event) 12286 kvm_put_guest_fpu(vcpu); 12287 12288 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12289 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12290 12291 if (init_event) 12292 kvm_load_guest_fpu(vcpu); 12293 } 12294 12295 if (!init_event) { 12296 vcpu->arch.smbase = 0x30000; 12297 12298 vcpu->arch.msr_misc_features_enables = 0; 12299 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12300 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12301 12302 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12303 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12304 } 12305 12306 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12307 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12308 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12309 12310 /* 12311 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12312 * if no CPUID match is found. Note, it's impossible to get a match at 12313 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12314 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12315 * on RESET. But, go through the motions in case that's ever remedied. 12316 */ 12317 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12318 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12319 12320 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12321 12322 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12323 kvm_rip_write(vcpu, 0xfff0); 12324 12325 vcpu->arch.cr3 = 0; 12326 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12327 12328 /* 12329 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12330 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12331 * (or qualify) that with a footnote stating that CD/NW are preserved. 12332 */ 12333 new_cr0 = X86_CR0_ET; 12334 if (init_event) 12335 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12336 else 12337 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12338 12339 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12340 static_call(kvm_x86_set_cr4)(vcpu, 0); 12341 static_call(kvm_x86_set_efer)(vcpu, 0); 12342 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12343 12344 /* 12345 * On the standard CR0/CR4/EFER modification paths, there are several 12346 * complex conditions determining whether the MMU has to be reset and/or 12347 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12348 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12349 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12350 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12351 */ 12352 if (old_cr0 & X86_CR0_PG) { 12353 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12354 kvm_mmu_reset_context(vcpu); 12355 } 12356 12357 /* 12358 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12359 * APM states the TLBs are untouched by INIT, but it also states that 12360 * the TLBs are flushed on "External initialization of the processor." 12361 * Flush the guest TLB regardless of vendor, there is no meaningful 12362 * benefit in relying on the guest to flush the TLB immediately after 12363 * INIT. A spurious TLB flush is benign and likely negligible from a 12364 * performance perspective. 12365 */ 12366 if (init_event) 12367 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12368 } 12369 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12370 12371 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12372 { 12373 struct kvm_segment cs; 12374 12375 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12376 cs.selector = vector << 8; 12377 cs.base = vector << 12; 12378 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12379 kvm_rip_write(vcpu, 0); 12380 } 12381 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12382 12383 int kvm_arch_hardware_enable(void) 12384 { 12385 struct kvm *kvm; 12386 struct kvm_vcpu *vcpu; 12387 unsigned long i; 12388 int ret; 12389 u64 local_tsc; 12390 u64 max_tsc = 0; 12391 bool stable, backwards_tsc = false; 12392 12393 kvm_user_return_msr_cpu_online(); 12394 12395 ret = kvm_x86_check_processor_compatibility(); 12396 if (ret) 12397 return ret; 12398 12399 ret = static_call(kvm_x86_hardware_enable)(); 12400 if (ret != 0) 12401 return ret; 12402 12403 local_tsc = rdtsc(); 12404 stable = !kvm_check_tsc_unstable(); 12405 list_for_each_entry(kvm, &vm_list, vm_list) { 12406 kvm_for_each_vcpu(i, vcpu, kvm) { 12407 if (!stable && vcpu->cpu == smp_processor_id()) 12408 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12409 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12410 backwards_tsc = true; 12411 if (vcpu->arch.last_host_tsc > max_tsc) 12412 max_tsc = vcpu->arch.last_host_tsc; 12413 } 12414 } 12415 } 12416 12417 /* 12418 * Sometimes, even reliable TSCs go backwards. This happens on 12419 * platforms that reset TSC during suspend or hibernate actions, but 12420 * maintain synchronization. We must compensate. Fortunately, we can 12421 * detect that condition here, which happens early in CPU bringup, 12422 * before any KVM threads can be running. Unfortunately, we can't 12423 * bring the TSCs fully up to date with real time, as we aren't yet far 12424 * enough into CPU bringup that we know how much real time has actually 12425 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12426 * variables that haven't been updated yet. 12427 * 12428 * So we simply find the maximum observed TSC above, then record the 12429 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12430 * the adjustment will be applied. Note that we accumulate 12431 * adjustments, in case multiple suspend cycles happen before some VCPU 12432 * gets a chance to run again. In the event that no KVM threads get a 12433 * chance to run, we will miss the entire elapsed period, as we'll have 12434 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12435 * loose cycle time. This isn't too big a deal, since the loss will be 12436 * uniform across all VCPUs (not to mention the scenario is extremely 12437 * unlikely). It is possible that a second hibernate recovery happens 12438 * much faster than a first, causing the observed TSC here to be 12439 * smaller; this would require additional padding adjustment, which is 12440 * why we set last_host_tsc to the local tsc observed here. 12441 * 12442 * N.B. - this code below runs only on platforms with reliable TSC, 12443 * as that is the only way backwards_tsc is set above. Also note 12444 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12445 * have the same delta_cyc adjustment applied if backwards_tsc 12446 * is detected. Note further, this adjustment is only done once, 12447 * as we reset last_host_tsc on all VCPUs to stop this from being 12448 * called multiple times (one for each physical CPU bringup). 12449 * 12450 * Platforms with unreliable TSCs don't have to deal with this, they 12451 * will be compensated by the logic in vcpu_load, which sets the TSC to 12452 * catchup mode. This will catchup all VCPUs to real time, but cannot 12453 * guarantee that they stay in perfect synchronization. 12454 */ 12455 if (backwards_tsc) { 12456 u64 delta_cyc = max_tsc - local_tsc; 12457 list_for_each_entry(kvm, &vm_list, vm_list) { 12458 kvm->arch.backwards_tsc_observed = true; 12459 kvm_for_each_vcpu(i, vcpu, kvm) { 12460 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12461 vcpu->arch.last_host_tsc = local_tsc; 12462 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12463 } 12464 12465 /* 12466 * We have to disable TSC offset matching.. if you were 12467 * booting a VM while issuing an S4 host suspend.... 12468 * you may have some problem. Solving this issue is 12469 * left as an exercise to the reader. 12470 */ 12471 kvm->arch.last_tsc_nsec = 0; 12472 kvm->arch.last_tsc_write = 0; 12473 } 12474 12475 } 12476 return 0; 12477 } 12478 12479 void kvm_arch_hardware_disable(void) 12480 { 12481 static_call(kvm_x86_hardware_disable)(); 12482 drop_user_return_notifiers(); 12483 } 12484 12485 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12486 { 12487 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12488 } 12489 12490 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12491 { 12492 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12493 } 12494 12495 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12496 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12497 12498 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12499 { 12500 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12501 12502 vcpu->arch.l1tf_flush_l1d = true; 12503 if (pmu->version && unlikely(pmu->event_count)) { 12504 pmu->need_cleanup = true; 12505 kvm_make_request(KVM_REQ_PMU, vcpu); 12506 } 12507 static_call(kvm_x86_sched_in)(vcpu, cpu); 12508 } 12509 12510 void kvm_arch_free_vm(struct kvm *kvm) 12511 { 12512 #if IS_ENABLED(CONFIG_HYPERV) 12513 kfree(kvm->arch.hv_pa_pg); 12514 #endif 12515 __kvm_arch_free_vm(kvm); 12516 } 12517 12518 12519 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12520 { 12521 int ret; 12522 unsigned long flags; 12523 12524 if (!kvm_is_vm_type_supported(type)) 12525 return -EINVAL; 12526 12527 kvm->arch.vm_type = type; 12528 12529 ret = kvm_page_track_init(kvm); 12530 if (ret) 12531 goto out; 12532 12533 kvm_mmu_init_vm(kvm); 12534 12535 ret = static_call(kvm_x86_vm_init)(kvm); 12536 if (ret) 12537 goto out_uninit_mmu; 12538 12539 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12540 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12541 12542 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12543 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12544 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12545 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12546 &kvm->arch.irq_sources_bitmap); 12547 12548 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12549 mutex_init(&kvm->arch.apic_map_lock); 12550 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12551 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12552 12553 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12554 pvclock_update_vm_gtod_copy(kvm); 12555 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12556 12557 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12558 kvm->arch.guest_can_read_msr_platform_info = true; 12559 kvm->arch.enable_pmu = enable_pmu; 12560 12561 #if IS_ENABLED(CONFIG_HYPERV) 12562 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12563 kvm->arch.hv_root_tdp = INVALID_PAGE; 12564 #endif 12565 12566 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12567 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12568 12569 kvm_apicv_init(kvm); 12570 kvm_hv_init_vm(kvm); 12571 kvm_xen_init_vm(kvm); 12572 12573 return 0; 12574 12575 out_uninit_mmu: 12576 kvm_mmu_uninit_vm(kvm); 12577 kvm_page_track_cleanup(kvm); 12578 out: 12579 return ret; 12580 } 12581 12582 int kvm_arch_post_init_vm(struct kvm *kvm) 12583 { 12584 return kvm_mmu_post_init_vm(kvm); 12585 } 12586 12587 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12588 { 12589 vcpu_load(vcpu); 12590 kvm_mmu_unload(vcpu); 12591 vcpu_put(vcpu); 12592 } 12593 12594 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12595 { 12596 unsigned long i; 12597 struct kvm_vcpu *vcpu; 12598 12599 kvm_for_each_vcpu(i, vcpu, kvm) { 12600 kvm_clear_async_pf_completion_queue(vcpu); 12601 kvm_unload_vcpu_mmu(vcpu); 12602 } 12603 } 12604 12605 void kvm_arch_sync_events(struct kvm *kvm) 12606 { 12607 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12608 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12609 kvm_free_pit(kvm); 12610 } 12611 12612 /** 12613 * __x86_set_memory_region: Setup KVM internal memory slot 12614 * 12615 * @kvm: the kvm pointer to the VM. 12616 * @id: the slot ID to setup. 12617 * @gpa: the GPA to install the slot (unused when @size == 0). 12618 * @size: the size of the slot. Set to zero to uninstall a slot. 12619 * 12620 * This function helps to setup a KVM internal memory slot. Specify 12621 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12622 * slot. The return code can be one of the following: 12623 * 12624 * HVA: on success (uninstall will return a bogus HVA) 12625 * -errno: on error 12626 * 12627 * The caller should always use IS_ERR() to check the return value 12628 * before use. Note, the KVM internal memory slots are guaranteed to 12629 * remain valid and unchanged until the VM is destroyed, i.e., the 12630 * GPA->HVA translation will not change. However, the HVA is a user 12631 * address, i.e. its accessibility is not guaranteed, and must be 12632 * accessed via __copy_{to,from}_user(). 12633 */ 12634 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12635 u32 size) 12636 { 12637 int i, r; 12638 unsigned long hva, old_npages; 12639 struct kvm_memslots *slots = kvm_memslots(kvm); 12640 struct kvm_memory_slot *slot; 12641 12642 /* Called with kvm->slots_lock held. */ 12643 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12644 return ERR_PTR_USR(-EINVAL); 12645 12646 slot = id_to_memslot(slots, id); 12647 if (size) { 12648 if (slot && slot->npages) 12649 return ERR_PTR_USR(-EEXIST); 12650 12651 /* 12652 * MAP_SHARED to prevent internal slot pages from being moved 12653 * by fork()/COW. 12654 */ 12655 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12656 MAP_SHARED | MAP_ANONYMOUS, 0); 12657 if (IS_ERR_VALUE(hva)) 12658 return (void __user *)hva; 12659 } else { 12660 if (!slot || !slot->npages) 12661 return NULL; 12662 12663 old_npages = slot->npages; 12664 hva = slot->userspace_addr; 12665 } 12666 12667 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12668 struct kvm_userspace_memory_region2 m; 12669 12670 m.slot = id | (i << 16); 12671 m.flags = 0; 12672 m.guest_phys_addr = gpa; 12673 m.userspace_addr = hva; 12674 m.memory_size = size; 12675 r = __kvm_set_memory_region(kvm, &m); 12676 if (r < 0) 12677 return ERR_PTR_USR(r); 12678 } 12679 12680 if (!size) 12681 vm_munmap(hva, old_npages * PAGE_SIZE); 12682 12683 return (void __user *)hva; 12684 } 12685 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12686 12687 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12688 { 12689 kvm_mmu_pre_destroy_vm(kvm); 12690 } 12691 12692 void kvm_arch_destroy_vm(struct kvm *kvm) 12693 { 12694 if (current->mm == kvm->mm) { 12695 /* 12696 * Free memory regions allocated on behalf of userspace, 12697 * unless the memory map has changed due to process exit 12698 * or fd copying. 12699 */ 12700 mutex_lock(&kvm->slots_lock); 12701 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12702 0, 0); 12703 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12704 0, 0); 12705 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12706 mutex_unlock(&kvm->slots_lock); 12707 } 12708 kvm_unload_vcpu_mmus(kvm); 12709 static_call_cond(kvm_x86_vm_destroy)(kvm); 12710 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12711 kvm_pic_destroy(kvm); 12712 kvm_ioapic_destroy(kvm); 12713 kvm_destroy_vcpus(kvm); 12714 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12715 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12716 kvm_mmu_uninit_vm(kvm); 12717 kvm_page_track_cleanup(kvm); 12718 kvm_xen_destroy_vm(kvm); 12719 kvm_hv_destroy_vm(kvm); 12720 } 12721 12722 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12723 { 12724 int i; 12725 12726 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12727 kvfree(slot->arch.rmap[i]); 12728 slot->arch.rmap[i] = NULL; 12729 } 12730 } 12731 12732 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12733 { 12734 int i; 12735 12736 memslot_rmap_free(slot); 12737 12738 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12739 kvfree(slot->arch.lpage_info[i - 1]); 12740 slot->arch.lpage_info[i - 1] = NULL; 12741 } 12742 12743 kvm_page_track_free_memslot(slot); 12744 } 12745 12746 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12747 { 12748 const int sz = sizeof(*slot->arch.rmap[0]); 12749 int i; 12750 12751 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12752 int level = i + 1; 12753 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12754 12755 if (slot->arch.rmap[i]) 12756 continue; 12757 12758 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12759 if (!slot->arch.rmap[i]) { 12760 memslot_rmap_free(slot); 12761 return -ENOMEM; 12762 } 12763 } 12764 12765 return 0; 12766 } 12767 12768 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12769 struct kvm_memory_slot *slot) 12770 { 12771 unsigned long npages = slot->npages; 12772 int i, r; 12773 12774 /* 12775 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12776 * old arrays will be freed by __kvm_set_memory_region() if installing 12777 * the new memslot is successful. 12778 */ 12779 memset(&slot->arch, 0, sizeof(slot->arch)); 12780 12781 if (kvm_memslots_have_rmaps(kvm)) { 12782 r = memslot_rmap_alloc(slot, npages); 12783 if (r) 12784 return r; 12785 } 12786 12787 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12788 struct kvm_lpage_info *linfo; 12789 unsigned long ugfn; 12790 int lpages; 12791 int level = i + 1; 12792 12793 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12794 12795 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12796 if (!linfo) 12797 goto out_free; 12798 12799 slot->arch.lpage_info[i - 1] = linfo; 12800 12801 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12802 linfo[0].disallow_lpage = 1; 12803 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12804 linfo[lpages - 1].disallow_lpage = 1; 12805 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12806 /* 12807 * If the gfn and userspace address are not aligned wrt each 12808 * other, disable large page support for this slot. 12809 */ 12810 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12811 unsigned long j; 12812 12813 for (j = 0; j < lpages; ++j) 12814 linfo[j].disallow_lpage = 1; 12815 } 12816 } 12817 12818 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12819 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12820 #endif 12821 12822 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12823 goto out_free; 12824 12825 return 0; 12826 12827 out_free: 12828 memslot_rmap_free(slot); 12829 12830 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12831 kvfree(slot->arch.lpage_info[i - 1]); 12832 slot->arch.lpage_info[i - 1] = NULL; 12833 } 12834 return -ENOMEM; 12835 } 12836 12837 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12838 { 12839 struct kvm_vcpu *vcpu; 12840 unsigned long i; 12841 12842 /* 12843 * memslots->generation has been incremented. 12844 * mmio generation may have reached its maximum value. 12845 */ 12846 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12847 12848 /* Force re-initialization of steal_time cache */ 12849 kvm_for_each_vcpu(i, vcpu, kvm) 12850 kvm_vcpu_kick(vcpu); 12851 } 12852 12853 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12854 const struct kvm_memory_slot *old, 12855 struct kvm_memory_slot *new, 12856 enum kvm_mr_change change) 12857 { 12858 /* 12859 * KVM doesn't support moving memslots when there are external page 12860 * trackers attached to the VM, i.e. if KVMGT is in use. 12861 */ 12862 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12863 return -EINVAL; 12864 12865 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12866 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12867 return -EINVAL; 12868 12869 return kvm_alloc_memslot_metadata(kvm, new); 12870 } 12871 12872 if (change == KVM_MR_FLAGS_ONLY) 12873 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12874 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12875 return -EIO; 12876 12877 return 0; 12878 } 12879 12880 12881 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12882 { 12883 int nr_slots; 12884 12885 if (!kvm_x86_ops.cpu_dirty_log_size) 12886 return; 12887 12888 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12889 if ((enable && nr_slots == 1) || !nr_slots) 12890 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12891 } 12892 12893 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12894 struct kvm_memory_slot *old, 12895 const struct kvm_memory_slot *new, 12896 enum kvm_mr_change change) 12897 { 12898 u32 old_flags = old ? old->flags : 0; 12899 u32 new_flags = new ? new->flags : 0; 12900 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12901 12902 /* 12903 * Update CPU dirty logging if dirty logging is being toggled. This 12904 * applies to all operations. 12905 */ 12906 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12907 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12908 12909 /* 12910 * Nothing more to do for RO slots (which can't be dirtied and can't be 12911 * made writable) or CREATE/MOVE/DELETE of a slot. 12912 * 12913 * For a memslot with dirty logging disabled: 12914 * CREATE: No dirty mappings will already exist. 12915 * MOVE/DELETE: The old mappings will already have been cleaned up by 12916 * kvm_arch_flush_shadow_memslot() 12917 * 12918 * For a memslot with dirty logging enabled: 12919 * CREATE: No shadow pages exist, thus nothing to write-protect 12920 * and no dirty bits to clear. 12921 * MOVE/DELETE: The old mappings will already have been cleaned up by 12922 * kvm_arch_flush_shadow_memslot(). 12923 */ 12924 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12925 return; 12926 12927 /* 12928 * READONLY and non-flags changes were filtered out above, and the only 12929 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12930 * logging isn't being toggled on or off. 12931 */ 12932 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12933 return; 12934 12935 if (!log_dirty_pages) { 12936 /* 12937 * Dirty logging tracks sptes in 4k granularity, meaning that 12938 * large sptes have to be split. If live migration succeeds, 12939 * the guest in the source machine will be destroyed and large 12940 * sptes will be created in the destination. However, if the 12941 * guest continues to run in the source machine (for example if 12942 * live migration fails), small sptes will remain around and 12943 * cause bad performance. 12944 * 12945 * Scan sptes if dirty logging has been stopped, dropping those 12946 * which can be collapsed into a single large-page spte. Later 12947 * page faults will create the large-page sptes. 12948 */ 12949 kvm_mmu_zap_collapsible_sptes(kvm, new); 12950 } else { 12951 /* 12952 * Initially-all-set does not require write protecting any page, 12953 * because they're all assumed to be dirty. 12954 */ 12955 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12956 return; 12957 12958 if (READ_ONCE(eager_page_split)) 12959 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12960 12961 if (kvm_x86_ops.cpu_dirty_log_size) { 12962 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12963 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12964 } else { 12965 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12966 } 12967 12968 /* 12969 * Unconditionally flush the TLBs after enabling dirty logging. 12970 * A flush is almost always going to be necessary (see below), 12971 * and unconditionally flushing allows the helpers to omit 12972 * the subtly complex checks when removing write access. 12973 * 12974 * Do the flush outside of mmu_lock to reduce the amount of 12975 * time mmu_lock is held. Flushing after dropping mmu_lock is 12976 * safe as KVM only needs to guarantee the slot is fully 12977 * write-protected before returning to userspace, i.e. before 12978 * userspace can consume the dirty status. 12979 * 12980 * Flushing outside of mmu_lock requires KVM to be careful when 12981 * making decisions based on writable status of an SPTE, e.g. a 12982 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12983 * 12984 * Specifically, KVM also write-protects guest page tables to 12985 * monitor changes when using shadow paging, and must guarantee 12986 * no CPUs can write to those page before mmu_lock is dropped. 12987 * Because CPUs may have stale TLB entries at this point, a 12988 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12989 * 12990 * KVM also allows making SPTES writable outside of mmu_lock, 12991 * e.g. to allow dirty logging without taking mmu_lock. 12992 * 12993 * To handle these scenarios, KVM uses a separate software-only 12994 * bit (MMU-writable) to track if a SPTE is !writable due to 12995 * a guest page table being write-protected (KVM clears the 12996 * MMU-writable flag when write-protecting for shadow paging). 12997 * 12998 * The use of MMU-writable is also the primary motivation for 12999 * the unconditional flush. Because KVM must guarantee that a 13000 * CPU doesn't contain stale, writable TLB entries for a 13001 * !MMU-writable SPTE, KVM must flush if it encounters any 13002 * MMU-writable SPTE regardless of whether the actual hardware 13003 * writable bit was set. I.e. KVM is almost guaranteed to need 13004 * to flush, while unconditionally flushing allows the "remove 13005 * write access" helpers to ignore MMU-writable entirely. 13006 * 13007 * See is_writable_pte() for more details (the case involving 13008 * access-tracked SPTEs is particularly relevant). 13009 */ 13010 kvm_flush_remote_tlbs_memslot(kvm, new); 13011 } 13012 } 13013 13014 void kvm_arch_commit_memory_region(struct kvm *kvm, 13015 struct kvm_memory_slot *old, 13016 const struct kvm_memory_slot *new, 13017 enum kvm_mr_change change) 13018 { 13019 if (change == KVM_MR_DELETE) 13020 kvm_page_track_delete_slot(kvm, old); 13021 13022 if (!kvm->arch.n_requested_mmu_pages && 13023 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13024 unsigned long nr_mmu_pages; 13025 13026 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13027 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13028 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13029 } 13030 13031 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13032 13033 /* Free the arrays associated with the old memslot. */ 13034 if (change == KVM_MR_MOVE) 13035 kvm_arch_free_memslot(kvm, old); 13036 } 13037 13038 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 13039 { 13040 return (is_guest_mode(vcpu) && 13041 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 13042 } 13043 13044 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 13045 { 13046 if (!list_empty_careful(&vcpu->async_pf.done)) 13047 return true; 13048 13049 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 13050 kvm_apic_init_sipi_allowed(vcpu)) 13051 return true; 13052 13053 if (vcpu->arch.pv.pv_unhalted) 13054 return true; 13055 13056 if (kvm_is_exception_pending(vcpu)) 13057 return true; 13058 13059 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13060 (vcpu->arch.nmi_pending && 13061 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 13062 return true; 13063 13064 #ifdef CONFIG_KVM_SMM 13065 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 13066 (vcpu->arch.smi_pending && 13067 static_call(kvm_x86_smi_allowed)(vcpu, false))) 13068 return true; 13069 #endif 13070 13071 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 13072 return true; 13073 13074 if (kvm_arch_interrupt_allowed(vcpu) && 13075 (kvm_cpu_has_interrupt(vcpu) || 13076 kvm_guest_apic_has_interrupt(vcpu))) 13077 return true; 13078 13079 if (kvm_hv_has_stimer_pending(vcpu)) 13080 return true; 13081 13082 if (is_guest_mode(vcpu) && 13083 kvm_x86_ops.nested_ops->has_events && 13084 kvm_x86_ops.nested_ops->has_events(vcpu)) 13085 return true; 13086 13087 if (kvm_xen_has_pending_events(vcpu)) 13088 return true; 13089 13090 return false; 13091 } 13092 13093 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 13094 { 13095 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 13096 } 13097 13098 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 13099 { 13100 if (kvm_vcpu_apicv_active(vcpu) && 13101 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 13102 return true; 13103 13104 return false; 13105 } 13106 13107 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 13108 { 13109 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 13110 return true; 13111 13112 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13113 #ifdef CONFIG_KVM_SMM 13114 kvm_test_request(KVM_REQ_SMI, vcpu) || 13115 #endif 13116 kvm_test_request(KVM_REQ_EVENT, vcpu)) 13117 return true; 13118 13119 return kvm_arch_dy_has_pending_interrupt(vcpu); 13120 } 13121 13122 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13123 { 13124 if (vcpu->arch.guest_state_protected) 13125 return true; 13126 13127 if (vcpu != kvm_get_running_vcpu()) 13128 return vcpu->arch.preempted_in_kernel; 13129 13130 return static_call(kvm_x86_get_cpl)(vcpu) == 0; 13131 } 13132 13133 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13134 { 13135 return kvm_rip_read(vcpu); 13136 } 13137 13138 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13139 { 13140 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13141 } 13142 13143 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13144 { 13145 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 13146 } 13147 13148 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13149 { 13150 /* Can't read the RIP when guest state is protected, just return 0 */ 13151 if (vcpu->arch.guest_state_protected) 13152 return 0; 13153 13154 if (is_64_bit_mode(vcpu)) 13155 return kvm_rip_read(vcpu); 13156 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13157 kvm_rip_read(vcpu)); 13158 } 13159 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13160 13161 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13162 { 13163 return kvm_get_linear_rip(vcpu) == linear_rip; 13164 } 13165 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13166 13167 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13168 { 13169 unsigned long rflags; 13170 13171 rflags = static_call(kvm_x86_get_rflags)(vcpu); 13172 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13173 rflags &= ~X86_EFLAGS_TF; 13174 return rflags; 13175 } 13176 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13177 13178 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13179 { 13180 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13181 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13182 rflags |= X86_EFLAGS_TF; 13183 static_call(kvm_x86_set_rflags)(vcpu, rflags); 13184 } 13185 13186 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13187 { 13188 __kvm_set_rflags(vcpu, rflags); 13189 kvm_make_request(KVM_REQ_EVENT, vcpu); 13190 } 13191 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13192 13193 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13194 { 13195 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13196 13197 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13198 } 13199 13200 static inline u32 kvm_async_pf_next_probe(u32 key) 13201 { 13202 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13203 } 13204 13205 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13206 { 13207 u32 key = kvm_async_pf_hash_fn(gfn); 13208 13209 while (vcpu->arch.apf.gfns[key] != ~0) 13210 key = kvm_async_pf_next_probe(key); 13211 13212 vcpu->arch.apf.gfns[key] = gfn; 13213 } 13214 13215 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13216 { 13217 int i; 13218 u32 key = kvm_async_pf_hash_fn(gfn); 13219 13220 for (i = 0; i < ASYNC_PF_PER_VCPU && 13221 (vcpu->arch.apf.gfns[key] != gfn && 13222 vcpu->arch.apf.gfns[key] != ~0); i++) 13223 key = kvm_async_pf_next_probe(key); 13224 13225 return key; 13226 } 13227 13228 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13229 { 13230 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13231 } 13232 13233 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13234 { 13235 u32 i, j, k; 13236 13237 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13238 13239 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13240 return; 13241 13242 while (true) { 13243 vcpu->arch.apf.gfns[i] = ~0; 13244 do { 13245 j = kvm_async_pf_next_probe(j); 13246 if (vcpu->arch.apf.gfns[j] == ~0) 13247 return; 13248 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13249 /* 13250 * k lies cyclically in ]i,j] 13251 * | i.k.j | 13252 * |....j i.k.| or |.k..j i...| 13253 */ 13254 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13255 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13256 i = j; 13257 } 13258 } 13259 13260 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13261 { 13262 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13263 13264 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13265 sizeof(reason)); 13266 } 13267 13268 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13269 { 13270 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13271 13272 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13273 &token, offset, sizeof(token)); 13274 } 13275 13276 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13277 { 13278 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13279 u32 val; 13280 13281 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13282 &val, offset, sizeof(val))) 13283 return false; 13284 13285 return !val; 13286 } 13287 13288 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13289 { 13290 13291 if (!kvm_pv_async_pf_enabled(vcpu)) 13292 return false; 13293 13294 if (vcpu->arch.apf.send_user_only && 13295 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13296 return false; 13297 13298 if (is_guest_mode(vcpu)) { 13299 /* 13300 * L1 needs to opt into the special #PF vmexits that are 13301 * used to deliver async page faults. 13302 */ 13303 return vcpu->arch.apf.delivery_as_pf_vmexit; 13304 } else { 13305 /* 13306 * Play it safe in case the guest temporarily disables paging. 13307 * The real mode IDT in particular is unlikely to have a #PF 13308 * exception setup. 13309 */ 13310 return is_paging(vcpu); 13311 } 13312 } 13313 13314 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13315 { 13316 if (unlikely(!lapic_in_kernel(vcpu) || 13317 kvm_event_needs_reinjection(vcpu) || 13318 kvm_is_exception_pending(vcpu))) 13319 return false; 13320 13321 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13322 return false; 13323 13324 /* 13325 * If interrupts are off we cannot even use an artificial 13326 * halt state. 13327 */ 13328 return kvm_arch_interrupt_allowed(vcpu); 13329 } 13330 13331 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13332 struct kvm_async_pf *work) 13333 { 13334 struct x86_exception fault; 13335 13336 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13337 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13338 13339 if (kvm_can_deliver_async_pf(vcpu) && 13340 !apf_put_user_notpresent(vcpu)) { 13341 fault.vector = PF_VECTOR; 13342 fault.error_code_valid = true; 13343 fault.error_code = 0; 13344 fault.nested_page_fault = false; 13345 fault.address = work->arch.token; 13346 fault.async_page_fault = true; 13347 kvm_inject_page_fault(vcpu, &fault); 13348 return true; 13349 } else { 13350 /* 13351 * It is not possible to deliver a paravirtualized asynchronous 13352 * page fault, but putting the guest in an artificial halt state 13353 * can be beneficial nevertheless: if an interrupt arrives, we 13354 * can deliver it timely and perhaps the guest will schedule 13355 * another process. When the instruction that triggered a page 13356 * fault is retried, hopefully the page will be ready in the host. 13357 */ 13358 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13359 return false; 13360 } 13361 } 13362 13363 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13364 struct kvm_async_pf *work) 13365 { 13366 struct kvm_lapic_irq irq = { 13367 .delivery_mode = APIC_DM_FIXED, 13368 .vector = vcpu->arch.apf.vec 13369 }; 13370 13371 if (work->wakeup_all) 13372 work->arch.token = ~0; /* broadcast wakeup */ 13373 else 13374 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13375 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13376 13377 if ((work->wakeup_all || work->notpresent_injected) && 13378 kvm_pv_async_pf_enabled(vcpu) && 13379 !apf_put_user_ready(vcpu, work->arch.token)) { 13380 vcpu->arch.apf.pageready_pending = true; 13381 kvm_apic_set_irq(vcpu, &irq, NULL); 13382 } 13383 13384 vcpu->arch.apf.halted = false; 13385 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13386 } 13387 13388 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13389 { 13390 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13391 if (!vcpu->arch.apf.pageready_pending) 13392 kvm_vcpu_kick(vcpu); 13393 } 13394 13395 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13396 { 13397 if (!kvm_pv_async_pf_enabled(vcpu)) 13398 return true; 13399 else 13400 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13401 } 13402 13403 void kvm_arch_start_assignment(struct kvm *kvm) 13404 { 13405 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13406 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13407 } 13408 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13409 13410 void kvm_arch_end_assignment(struct kvm *kvm) 13411 { 13412 atomic_dec(&kvm->arch.assigned_device_count); 13413 } 13414 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13415 13416 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13417 { 13418 return raw_atomic_read(&kvm->arch.assigned_device_count); 13419 } 13420 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13421 13422 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13423 { 13424 /* 13425 * Non-coherent DMA assignment and de-assignment will affect 13426 * whether KVM honors guest MTRRs and cause changes in memtypes 13427 * in TDP. 13428 * So, pass %true unconditionally to indicate non-coherent DMA was, 13429 * or will be involved, and that zapping SPTEs might be necessary. 13430 */ 13431 if (__kvm_mmu_honors_guest_mtrrs(true)) 13432 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13433 } 13434 13435 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13436 { 13437 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13438 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13439 } 13440 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13441 13442 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13443 { 13444 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13445 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13446 } 13447 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13448 13449 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13450 { 13451 return atomic_read(&kvm->arch.noncoherent_dma_count); 13452 } 13453 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13454 13455 bool kvm_arch_has_irq_bypass(void) 13456 { 13457 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13458 } 13459 13460 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13461 struct irq_bypass_producer *prod) 13462 { 13463 struct kvm_kernel_irqfd *irqfd = 13464 container_of(cons, struct kvm_kernel_irqfd, consumer); 13465 int ret; 13466 13467 irqfd->producer = prod; 13468 kvm_arch_start_assignment(irqfd->kvm); 13469 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13470 prod->irq, irqfd->gsi, 1); 13471 13472 if (ret) 13473 kvm_arch_end_assignment(irqfd->kvm); 13474 13475 return ret; 13476 } 13477 13478 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13479 struct irq_bypass_producer *prod) 13480 { 13481 int ret; 13482 struct kvm_kernel_irqfd *irqfd = 13483 container_of(cons, struct kvm_kernel_irqfd, consumer); 13484 13485 WARN_ON(irqfd->producer != prod); 13486 irqfd->producer = NULL; 13487 13488 /* 13489 * When producer of consumer is unregistered, we change back to 13490 * remapped mode, so we can re-use the current implementation 13491 * when the irq is masked/disabled or the consumer side (KVM 13492 * int this case doesn't want to receive the interrupts. 13493 */ 13494 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13495 if (ret) 13496 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13497 " fails: %d\n", irqfd->consumer.token, ret); 13498 13499 kvm_arch_end_assignment(irqfd->kvm); 13500 } 13501 13502 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13503 uint32_t guest_irq, bool set) 13504 { 13505 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13506 } 13507 13508 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13509 struct kvm_kernel_irq_routing_entry *new) 13510 { 13511 if (new->type != KVM_IRQ_ROUTING_MSI) 13512 return true; 13513 13514 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13515 } 13516 13517 bool kvm_vector_hashing_enabled(void) 13518 { 13519 return vector_hashing; 13520 } 13521 13522 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13523 { 13524 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13525 } 13526 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13527 13528 13529 int kvm_spec_ctrl_test_value(u64 value) 13530 { 13531 /* 13532 * test that setting IA32_SPEC_CTRL to given value 13533 * is allowed by the host processor 13534 */ 13535 13536 u64 saved_value; 13537 unsigned long flags; 13538 int ret = 0; 13539 13540 local_irq_save(flags); 13541 13542 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13543 ret = 1; 13544 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13545 ret = 1; 13546 else 13547 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13548 13549 local_irq_restore(flags); 13550 13551 return ret; 13552 } 13553 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13554 13555 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13556 { 13557 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13558 struct x86_exception fault; 13559 u64 access = error_code & 13560 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13561 13562 if (!(error_code & PFERR_PRESENT_MASK) || 13563 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13564 /* 13565 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13566 * tables probably do not match the TLB. Just proceed 13567 * with the error code that the processor gave. 13568 */ 13569 fault.vector = PF_VECTOR; 13570 fault.error_code_valid = true; 13571 fault.error_code = error_code; 13572 fault.nested_page_fault = false; 13573 fault.address = gva; 13574 fault.async_page_fault = false; 13575 } 13576 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13577 } 13578 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13579 13580 /* 13581 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13582 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13583 * indicates whether exit to userspace is needed. 13584 */ 13585 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13586 struct x86_exception *e) 13587 { 13588 if (r == X86EMUL_PROPAGATE_FAULT) { 13589 if (KVM_BUG_ON(!e, vcpu->kvm)) 13590 return -EIO; 13591 13592 kvm_inject_emulated_page_fault(vcpu, e); 13593 return 1; 13594 } 13595 13596 /* 13597 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13598 * while handling a VMX instruction KVM could've handled the request 13599 * correctly by exiting to userspace and performing I/O but there 13600 * doesn't seem to be a real use-case behind such requests, just return 13601 * KVM_EXIT_INTERNAL_ERROR for now. 13602 */ 13603 kvm_prepare_emulation_failure_exit(vcpu); 13604 13605 return 0; 13606 } 13607 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13608 13609 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13610 { 13611 bool pcid_enabled; 13612 struct x86_exception e; 13613 struct { 13614 u64 pcid; 13615 u64 gla; 13616 } operand; 13617 int r; 13618 13619 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13620 if (r != X86EMUL_CONTINUE) 13621 return kvm_handle_memory_failure(vcpu, r, &e); 13622 13623 if (operand.pcid >> 12 != 0) { 13624 kvm_inject_gp(vcpu, 0); 13625 return 1; 13626 } 13627 13628 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13629 13630 switch (type) { 13631 case INVPCID_TYPE_INDIV_ADDR: 13632 /* 13633 * LAM doesn't apply to addresses that are inputs to TLB 13634 * invalidation. 13635 */ 13636 if ((!pcid_enabled && (operand.pcid != 0)) || 13637 is_noncanonical_address(operand.gla, vcpu)) { 13638 kvm_inject_gp(vcpu, 0); 13639 return 1; 13640 } 13641 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13642 return kvm_skip_emulated_instruction(vcpu); 13643 13644 case INVPCID_TYPE_SINGLE_CTXT: 13645 if (!pcid_enabled && (operand.pcid != 0)) { 13646 kvm_inject_gp(vcpu, 0); 13647 return 1; 13648 } 13649 13650 kvm_invalidate_pcid(vcpu, operand.pcid); 13651 return kvm_skip_emulated_instruction(vcpu); 13652 13653 case INVPCID_TYPE_ALL_NON_GLOBAL: 13654 /* 13655 * Currently, KVM doesn't mark global entries in the shadow 13656 * page tables, so a non-global flush just degenerates to a 13657 * global flush. If needed, we could optimize this later by 13658 * keeping track of global entries in shadow page tables. 13659 */ 13660 13661 fallthrough; 13662 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13663 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13664 return kvm_skip_emulated_instruction(vcpu); 13665 13666 default: 13667 kvm_inject_gp(vcpu, 0); 13668 return 1; 13669 } 13670 } 13671 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13672 13673 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13674 { 13675 struct kvm_run *run = vcpu->run; 13676 struct kvm_mmio_fragment *frag; 13677 unsigned int len; 13678 13679 BUG_ON(!vcpu->mmio_needed); 13680 13681 /* Complete previous fragment */ 13682 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13683 len = min(8u, frag->len); 13684 if (!vcpu->mmio_is_write) 13685 memcpy(frag->data, run->mmio.data, len); 13686 13687 if (frag->len <= 8) { 13688 /* Switch to the next fragment. */ 13689 frag++; 13690 vcpu->mmio_cur_fragment++; 13691 } else { 13692 /* Go forward to the next mmio piece. */ 13693 frag->data += len; 13694 frag->gpa += len; 13695 frag->len -= len; 13696 } 13697 13698 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13699 vcpu->mmio_needed = 0; 13700 13701 // VMG change, at this point, we're always done 13702 // RIP has already been advanced 13703 return 1; 13704 } 13705 13706 // More MMIO is needed 13707 run->mmio.phys_addr = frag->gpa; 13708 run->mmio.len = min(8u, frag->len); 13709 run->mmio.is_write = vcpu->mmio_is_write; 13710 if (run->mmio.is_write) 13711 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13712 run->exit_reason = KVM_EXIT_MMIO; 13713 13714 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13715 13716 return 0; 13717 } 13718 13719 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13720 void *data) 13721 { 13722 int handled; 13723 struct kvm_mmio_fragment *frag; 13724 13725 if (!data) 13726 return -EINVAL; 13727 13728 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13729 if (handled == bytes) 13730 return 1; 13731 13732 bytes -= handled; 13733 gpa += handled; 13734 data += handled; 13735 13736 /*TODO: Check if need to increment number of frags */ 13737 frag = vcpu->mmio_fragments; 13738 vcpu->mmio_nr_fragments = 1; 13739 frag->len = bytes; 13740 frag->gpa = gpa; 13741 frag->data = data; 13742 13743 vcpu->mmio_needed = 1; 13744 vcpu->mmio_cur_fragment = 0; 13745 13746 vcpu->run->mmio.phys_addr = gpa; 13747 vcpu->run->mmio.len = min(8u, frag->len); 13748 vcpu->run->mmio.is_write = 1; 13749 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13750 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13751 13752 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13753 13754 return 0; 13755 } 13756 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13757 13758 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13759 void *data) 13760 { 13761 int handled; 13762 struct kvm_mmio_fragment *frag; 13763 13764 if (!data) 13765 return -EINVAL; 13766 13767 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13768 if (handled == bytes) 13769 return 1; 13770 13771 bytes -= handled; 13772 gpa += handled; 13773 data += handled; 13774 13775 /*TODO: Check if need to increment number of frags */ 13776 frag = vcpu->mmio_fragments; 13777 vcpu->mmio_nr_fragments = 1; 13778 frag->len = bytes; 13779 frag->gpa = gpa; 13780 frag->data = data; 13781 13782 vcpu->mmio_needed = 1; 13783 vcpu->mmio_cur_fragment = 0; 13784 13785 vcpu->run->mmio.phys_addr = gpa; 13786 vcpu->run->mmio.len = min(8u, frag->len); 13787 vcpu->run->mmio.is_write = 0; 13788 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13789 13790 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13791 13792 return 0; 13793 } 13794 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13795 13796 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13797 { 13798 vcpu->arch.sev_pio_count -= count; 13799 vcpu->arch.sev_pio_data += count * size; 13800 } 13801 13802 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13803 unsigned int port); 13804 13805 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13806 { 13807 int size = vcpu->arch.pio.size; 13808 int port = vcpu->arch.pio.port; 13809 13810 vcpu->arch.pio.count = 0; 13811 if (vcpu->arch.sev_pio_count) 13812 return kvm_sev_es_outs(vcpu, size, port); 13813 return 1; 13814 } 13815 13816 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13817 unsigned int port) 13818 { 13819 for (;;) { 13820 unsigned int count = 13821 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13822 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13823 13824 /* memcpy done already by emulator_pio_out. */ 13825 advance_sev_es_emulated_pio(vcpu, count, size); 13826 if (!ret) 13827 break; 13828 13829 /* Emulation done by the kernel. */ 13830 if (!vcpu->arch.sev_pio_count) 13831 return 1; 13832 } 13833 13834 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13835 return 0; 13836 } 13837 13838 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13839 unsigned int port); 13840 13841 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13842 { 13843 unsigned count = vcpu->arch.pio.count; 13844 int size = vcpu->arch.pio.size; 13845 int port = vcpu->arch.pio.port; 13846 13847 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13848 advance_sev_es_emulated_pio(vcpu, count, size); 13849 if (vcpu->arch.sev_pio_count) 13850 return kvm_sev_es_ins(vcpu, size, port); 13851 return 1; 13852 } 13853 13854 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13855 unsigned int port) 13856 { 13857 for (;;) { 13858 unsigned int count = 13859 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13860 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13861 break; 13862 13863 /* Emulation done by the kernel. */ 13864 advance_sev_es_emulated_pio(vcpu, count, size); 13865 if (!vcpu->arch.sev_pio_count) 13866 return 1; 13867 } 13868 13869 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13870 return 0; 13871 } 13872 13873 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13874 unsigned int port, void *data, unsigned int count, 13875 int in) 13876 { 13877 vcpu->arch.sev_pio_data = data; 13878 vcpu->arch.sev_pio_count = count; 13879 return in ? kvm_sev_es_ins(vcpu, size, port) 13880 : kvm_sev_es_outs(vcpu, size, port); 13881 } 13882 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13883 13884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13906 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13907 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13908 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13909 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13910 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13911 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13913 13914 static int __init kvm_x86_init(void) 13915 { 13916 kvm_mmu_x86_module_init(); 13917 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13918 return 0; 13919 } 13920 module_init(kvm_x86_init); 13921 13922 static void __exit kvm_x86_exit(void) 13923 { 13924 /* 13925 * If module_init() is implemented, module_exit() must also be 13926 * implemented to allow module unload. 13927 */ 13928 } 13929 module_exit(kvm_x86_exit); 13930