1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 /* 96 * Note, kvm_caps fields should *never* have default values, all fields must be 97 * recomputed from scratch during vendor module load, e.g. to account for a 98 * vendor module being reloaded with different module parameters. 99 */ 100 struct kvm_caps kvm_caps __read_mostly; 101 EXPORT_SYMBOL_GPL(kvm_caps); 102 103 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 104 105 #define emul_to_vcpu(ctxt) \ 106 ((struct kvm_vcpu *)(ctxt)->vcpu) 107 108 /* EFER defaults: 109 * - enable syscall per default because its emulated by KVM 110 * - enable LME and LMA per default on 64 bit KVM 111 */ 112 #ifdef CONFIG_X86_64 113 static 114 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 115 #else 116 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 117 #endif 118 119 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 120 121 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 122 123 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 124 125 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 126 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 127 128 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 129 static void process_nmi(struct kvm_vcpu *vcpu); 130 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 131 static void store_regs(struct kvm_vcpu *vcpu); 132 static int sync_regs(struct kvm_vcpu *vcpu); 133 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 134 135 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 136 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 137 138 static DEFINE_MUTEX(vendor_module_lock); 139 struct kvm_x86_ops kvm_x86_ops __read_mostly; 140 141 #define KVM_X86_OP(func) \ 142 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 143 *(((struct kvm_x86_ops *)0)->func)); 144 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 145 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 146 #include <asm/kvm-x86-ops.h> 147 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 148 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 149 150 static bool __read_mostly ignore_msrs = 0; 151 module_param(ignore_msrs, bool, 0644); 152 153 bool __read_mostly report_ignored_msrs = true; 154 module_param(report_ignored_msrs, bool, 0644); 155 EXPORT_SYMBOL_GPL(report_ignored_msrs); 156 157 unsigned int min_timer_period_us = 200; 158 module_param(min_timer_period_us, uint, 0644); 159 160 static bool __read_mostly kvmclock_periodic_sync = true; 161 module_param(kvmclock_periodic_sync, bool, 0444); 162 163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 164 static u32 __read_mostly tsc_tolerance_ppm = 250; 165 module_param(tsc_tolerance_ppm, uint, 0644); 166 167 /* 168 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 169 * adaptive tuning starting from default advancement of 1000ns. '0' disables 170 * advancement entirely. Any other value is used as-is and disables adaptive 171 * tuning, i.e. allows privileged userspace to set an exact advancement time. 172 */ 173 static int __read_mostly lapic_timer_advance_ns = -1; 174 module_param(lapic_timer_advance_ns, int, 0644); 175 176 static bool __read_mostly vector_hashing = true; 177 module_param(vector_hashing, bool, 0444); 178 179 bool __read_mostly enable_vmware_backdoor = false; 180 module_param(enable_vmware_backdoor, bool, 0444); 181 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 182 183 /* 184 * Flags to manipulate forced emulation behavior (any non-zero value will 185 * enable forced emulation). 186 */ 187 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 188 static int __read_mostly force_emulation_prefix; 189 module_param(force_emulation_prefix, int, 0644); 190 191 int __read_mostly pi_inject_timer = -1; 192 module_param(pi_inject_timer, bint, 0644); 193 194 /* Enable/disable PMU virtualization */ 195 bool __read_mostly enable_pmu = true; 196 EXPORT_SYMBOL_GPL(enable_pmu); 197 module_param(enable_pmu, bool, 0444); 198 199 bool __read_mostly eager_page_split = true; 200 module_param(eager_page_split, bool, 0644); 201 202 /* Enable/disable SMT_RSB bug mitigation */ 203 static bool __read_mostly mitigate_smt_rsb; 204 module_param(mitigate_smt_rsb, bool, 0444); 205 206 /* 207 * Restoring the host value for MSRs that are only consumed when running in 208 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 209 * returns to userspace, i.e. the kernel can run with the guest's value. 210 */ 211 #define KVM_MAX_NR_USER_RETURN_MSRS 16 212 213 struct kvm_user_return_msrs { 214 struct user_return_notifier urn; 215 bool registered; 216 struct kvm_user_return_msr_values { 217 u64 host; 218 u64 curr; 219 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 220 }; 221 222 u32 __read_mostly kvm_nr_uret_msrs; 223 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 224 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 225 static struct kvm_user_return_msrs __percpu *user_return_msrs; 226 227 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 228 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 229 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 230 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 231 232 u64 __read_mostly host_efer; 233 EXPORT_SYMBOL_GPL(host_efer); 234 235 bool __read_mostly allow_smaller_maxphyaddr = 0; 236 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 237 238 bool __read_mostly enable_apicv = true; 239 EXPORT_SYMBOL_GPL(enable_apicv); 240 241 u64 __read_mostly host_xss; 242 EXPORT_SYMBOL_GPL(host_xss); 243 244 u64 __read_mostly host_arch_capabilities; 245 EXPORT_SYMBOL_GPL(host_arch_capabilities); 246 247 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 248 KVM_GENERIC_VM_STATS(), 249 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 250 STATS_DESC_COUNTER(VM, mmu_pte_write), 251 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 252 STATS_DESC_COUNTER(VM, mmu_flooded), 253 STATS_DESC_COUNTER(VM, mmu_recycled), 254 STATS_DESC_COUNTER(VM, mmu_cache_miss), 255 STATS_DESC_ICOUNTER(VM, mmu_unsync), 256 STATS_DESC_ICOUNTER(VM, pages_4k), 257 STATS_DESC_ICOUNTER(VM, pages_2m), 258 STATS_DESC_ICOUNTER(VM, pages_1g), 259 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 260 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 261 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 262 }; 263 264 const struct kvm_stats_header kvm_vm_stats_header = { 265 .name_size = KVM_STATS_NAME_SIZE, 266 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 267 .id_offset = sizeof(struct kvm_stats_header), 268 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 269 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 270 sizeof(kvm_vm_stats_desc), 271 }; 272 273 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 274 KVM_GENERIC_VCPU_STATS(), 275 STATS_DESC_COUNTER(VCPU, pf_taken), 276 STATS_DESC_COUNTER(VCPU, pf_fixed), 277 STATS_DESC_COUNTER(VCPU, pf_emulate), 278 STATS_DESC_COUNTER(VCPU, pf_spurious), 279 STATS_DESC_COUNTER(VCPU, pf_fast), 280 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 281 STATS_DESC_COUNTER(VCPU, pf_guest), 282 STATS_DESC_COUNTER(VCPU, tlb_flush), 283 STATS_DESC_COUNTER(VCPU, invlpg), 284 STATS_DESC_COUNTER(VCPU, exits), 285 STATS_DESC_COUNTER(VCPU, io_exits), 286 STATS_DESC_COUNTER(VCPU, mmio_exits), 287 STATS_DESC_COUNTER(VCPU, signal_exits), 288 STATS_DESC_COUNTER(VCPU, irq_window_exits), 289 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 290 STATS_DESC_COUNTER(VCPU, l1d_flush), 291 STATS_DESC_COUNTER(VCPU, halt_exits), 292 STATS_DESC_COUNTER(VCPU, request_irq_exits), 293 STATS_DESC_COUNTER(VCPU, irq_exits), 294 STATS_DESC_COUNTER(VCPU, host_state_reload), 295 STATS_DESC_COUNTER(VCPU, fpu_reload), 296 STATS_DESC_COUNTER(VCPU, insn_emulation), 297 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 298 STATS_DESC_COUNTER(VCPU, hypercalls), 299 STATS_DESC_COUNTER(VCPU, irq_injections), 300 STATS_DESC_COUNTER(VCPU, nmi_injections), 301 STATS_DESC_COUNTER(VCPU, req_event), 302 STATS_DESC_COUNTER(VCPU, nested_run), 303 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 304 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 305 STATS_DESC_COUNTER(VCPU, preemption_reported), 306 STATS_DESC_COUNTER(VCPU, preemption_other), 307 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 308 STATS_DESC_COUNTER(VCPU, notify_window_exits), 309 }; 310 311 const struct kvm_stats_header kvm_vcpu_stats_header = { 312 .name_size = KVM_STATS_NAME_SIZE, 313 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 314 .id_offset = sizeof(struct kvm_stats_header), 315 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 316 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 317 sizeof(kvm_vcpu_stats_desc), 318 }; 319 320 u64 __read_mostly host_xcr0; 321 322 static struct kmem_cache *x86_emulator_cache; 323 324 /* 325 * When called, it means the previous get/set msr reached an invalid msr. 326 * Return true if we want to ignore/silent this failed msr access. 327 */ 328 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 329 { 330 const char *op = write ? "wrmsr" : "rdmsr"; 331 332 if (ignore_msrs) { 333 if (report_ignored_msrs) 334 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 335 op, msr, data); 336 /* Mask the error */ 337 return true; 338 } else { 339 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 340 op, msr, data); 341 return false; 342 } 343 } 344 345 static struct kmem_cache *kvm_alloc_emulator_cache(void) 346 { 347 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 348 unsigned int size = sizeof(struct x86_emulate_ctxt); 349 350 return kmem_cache_create_usercopy("x86_emulator", size, 351 __alignof__(struct x86_emulate_ctxt), 352 SLAB_ACCOUNT, useroffset, 353 size - useroffset, NULL); 354 } 355 356 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 357 358 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 359 { 360 int i; 361 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 362 vcpu->arch.apf.gfns[i] = ~0; 363 } 364 365 static void kvm_on_user_return(struct user_return_notifier *urn) 366 { 367 unsigned slot; 368 struct kvm_user_return_msrs *msrs 369 = container_of(urn, struct kvm_user_return_msrs, urn); 370 struct kvm_user_return_msr_values *values; 371 unsigned long flags; 372 373 /* 374 * Disabling irqs at this point since the following code could be 375 * interrupted and executed through kvm_arch_hardware_disable() 376 */ 377 local_irq_save(flags); 378 if (msrs->registered) { 379 msrs->registered = false; 380 user_return_notifier_unregister(urn); 381 } 382 local_irq_restore(flags); 383 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 384 values = &msrs->values[slot]; 385 if (values->host != values->curr) { 386 wrmsrl(kvm_uret_msrs_list[slot], values->host); 387 values->curr = values->host; 388 } 389 } 390 } 391 392 static int kvm_probe_user_return_msr(u32 msr) 393 { 394 u64 val; 395 int ret; 396 397 preempt_disable(); 398 ret = rdmsrl_safe(msr, &val); 399 if (ret) 400 goto out; 401 ret = wrmsrl_safe(msr, val); 402 out: 403 preempt_enable(); 404 return ret; 405 } 406 407 int kvm_add_user_return_msr(u32 msr) 408 { 409 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 410 411 if (kvm_probe_user_return_msr(msr)) 412 return -1; 413 414 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 415 return kvm_nr_uret_msrs++; 416 } 417 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 418 419 int kvm_find_user_return_msr(u32 msr) 420 { 421 int i; 422 423 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 424 if (kvm_uret_msrs_list[i] == msr) 425 return i; 426 } 427 return -1; 428 } 429 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 430 431 static void kvm_user_return_msr_cpu_online(void) 432 { 433 unsigned int cpu = smp_processor_id(); 434 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 435 u64 value; 436 int i; 437 438 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 439 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 440 msrs->values[i].host = value; 441 msrs->values[i].curr = value; 442 } 443 } 444 445 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 446 { 447 unsigned int cpu = smp_processor_id(); 448 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 449 int err; 450 451 value = (value & mask) | (msrs->values[slot].host & ~mask); 452 if (value == msrs->values[slot].curr) 453 return 0; 454 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 455 if (err) 456 return 1; 457 458 msrs->values[slot].curr = value; 459 if (!msrs->registered) { 460 msrs->urn.on_user_return = kvm_on_user_return; 461 user_return_notifier_register(&msrs->urn); 462 msrs->registered = true; 463 } 464 return 0; 465 } 466 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 467 468 static void drop_user_return_notifiers(void) 469 { 470 unsigned int cpu = smp_processor_id(); 471 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 472 473 if (msrs->registered) 474 kvm_on_user_return(&msrs->urn); 475 } 476 477 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 478 { 479 return vcpu->arch.apic_base; 480 } 481 482 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 483 { 484 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 485 } 486 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 487 488 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 489 { 490 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 491 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 492 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 493 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 494 495 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 496 return 1; 497 if (!msr_info->host_initiated) { 498 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 499 return 1; 500 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 501 return 1; 502 } 503 504 kvm_lapic_set_base(vcpu, msr_info->data); 505 kvm_recalculate_apic_map(vcpu->kvm); 506 return 0; 507 } 508 509 /* 510 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 511 * 512 * Hardware virtualization extension instructions may fault if a reboot turns 513 * off virtualization while processes are running. Usually after catching the 514 * fault we just panic; during reboot instead the instruction is ignored. 515 */ 516 noinstr void kvm_spurious_fault(void) 517 { 518 /* Fault while not rebooting. We want the trace. */ 519 BUG_ON(!kvm_rebooting); 520 } 521 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 522 523 #define EXCPT_BENIGN 0 524 #define EXCPT_CONTRIBUTORY 1 525 #define EXCPT_PF 2 526 527 static int exception_class(int vector) 528 { 529 switch (vector) { 530 case PF_VECTOR: 531 return EXCPT_PF; 532 case DE_VECTOR: 533 case TS_VECTOR: 534 case NP_VECTOR: 535 case SS_VECTOR: 536 case GP_VECTOR: 537 return EXCPT_CONTRIBUTORY; 538 default: 539 break; 540 } 541 return EXCPT_BENIGN; 542 } 543 544 #define EXCPT_FAULT 0 545 #define EXCPT_TRAP 1 546 #define EXCPT_ABORT 2 547 #define EXCPT_INTERRUPT 3 548 #define EXCPT_DB 4 549 550 static int exception_type(int vector) 551 { 552 unsigned int mask; 553 554 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 555 return EXCPT_INTERRUPT; 556 557 mask = 1 << vector; 558 559 /* 560 * #DBs can be trap-like or fault-like, the caller must check other CPU 561 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 562 */ 563 if (mask & (1 << DB_VECTOR)) 564 return EXCPT_DB; 565 566 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 567 return EXCPT_TRAP; 568 569 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 570 return EXCPT_ABORT; 571 572 /* Reserved exceptions will result in fault */ 573 return EXCPT_FAULT; 574 } 575 576 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 577 struct kvm_queued_exception *ex) 578 { 579 if (!ex->has_payload) 580 return; 581 582 switch (ex->vector) { 583 case DB_VECTOR: 584 /* 585 * "Certain debug exceptions may clear bit 0-3. The 586 * remaining contents of the DR6 register are never 587 * cleared by the processor". 588 */ 589 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 590 /* 591 * In order to reflect the #DB exception payload in guest 592 * dr6, three components need to be considered: active low 593 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 594 * DR6_BS and DR6_BT) 595 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 596 * In the target guest dr6: 597 * FIXED_1 bits should always be set. 598 * Active low bits should be cleared if 1-setting in payload. 599 * Active high bits should be set if 1-setting in payload. 600 * 601 * Note, the payload is compatible with the pending debug 602 * exceptions/exit qualification under VMX, that active_low bits 603 * are active high in payload. 604 * So they need to be flipped for DR6. 605 */ 606 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 607 vcpu->arch.dr6 |= ex->payload; 608 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 609 610 /* 611 * The #DB payload is defined as compatible with the 'pending 612 * debug exceptions' field under VMX, not DR6. While bit 12 is 613 * defined in the 'pending debug exceptions' field (enabled 614 * breakpoint), it is reserved and must be zero in DR6. 615 */ 616 vcpu->arch.dr6 &= ~BIT(12); 617 break; 618 case PF_VECTOR: 619 vcpu->arch.cr2 = ex->payload; 620 break; 621 } 622 623 ex->has_payload = false; 624 ex->payload = 0; 625 } 626 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 627 628 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 629 bool has_error_code, u32 error_code, 630 bool has_payload, unsigned long payload) 631 { 632 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 633 634 ex->vector = vector; 635 ex->injected = false; 636 ex->pending = true; 637 ex->has_error_code = has_error_code; 638 ex->error_code = error_code; 639 ex->has_payload = has_payload; 640 ex->payload = payload; 641 } 642 643 /* Forcibly leave the nested mode in cases like a vCPU reset */ 644 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 645 { 646 kvm_x86_ops.nested_ops->leave_nested(vcpu); 647 } 648 649 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 650 unsigned nr, bool has_error, u32 error_code, 651 bool has_payload, unsigned long payload, bool reinject) 652 { 653 u32 prev_nr; 654 int class1, class2; 655 656 kvm_make_request(KVM_REQ_EVENT, vcpu); 657 658 /* 659 * If the exception is destined for L2 and isn't being reinjected, 660 * morph it to a VM-Exit if L1 wants to intercept the exception. A 661 * previously injected exception is not checked because it was checked 662 * when it was original queued, and re-checking is incorrect if _L1_ 663 * injected the exception, in which case it's exempt from interception. 664 */ 665 if (!reinject && is_guest_mode(vcpu) && 666 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 667 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 668 has_payload, payload); 669 return; 670 } 671 672 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 673 queue: 674 if (reinject) { 675 /* 676 * On VM-Entry, an exception can be pending if and only 677 * if event injection was blocked by nested_run_pending. 678 * In that case, however, vcpu_enter_guest() requests an 679 * immediate exit, and the guest shouldn't proceed far 680 * enough to need reinjection. 681 */ 682 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 683 vcpu->arch.exception.injected = true; 684 if (WARN_ON_ONCE(has_payload)) { 685 /* 686 * A reinjected event has already 687 * delivered its payload. 688 */ 689 has_payload = false; 690 payload = 0; 691 } 692 } else { 693 vcpu->arch.exception.pending = true; 694 vcpu->arch.exception.injected = false; 695 } 696 vcpu->arch.exception.has_error_code = has_error; 697 vcpu->arch.exception.vector = nr; 698 vcpu->arch.exception.error_code = error_code; 699 vcpu->arch.exception.has_payload = has_payload; 700 vcpu->arch.exception.payload = payload; 701 if (!is_guest_mode(vcpu)) 702 kvm_deliver_exception_payload(vcpu, 703 &vcpu->arch.exception); 704 return; 705 } 706 707 /* to check exception */ 708 prev_nr = vcpu->arch.exception.vector; 709 if (prev_nr == DF_VECTOR) { 710 /* triple fault -> shutdown */ 711 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 712 return; 713 } 714 class1 = exception_class(prev_nr); 715 class2 = exception_class(nr); 716 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 717 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 718 /* 719 * Synthesize #DF. Clear the previously injected or pending 720 * exception so as not to incorrectly trigger shutdown. 721 */ 722 vcpu->arch.exception.injected = false; 723 vcpu->arch.exception.pending = false; 724 725 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 726 } else { 727 /* replace previous exception with a new one in a hope 728 that instruction re-execution will regenerate lost 729 exception */ 730 goto queue; 731 } 732 } 733 734 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 735 { 736 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 737 } 738 EXPORT_SYMBOL_GPL(kvm_queue_exception); 739 740 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 741 { 742 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 743 } 744 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 745 746 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 747 unsigned long payload) 748 { 749 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 750 } 751 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 752 753 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 754 u32 error_code, unsigned long payload) 755 { 756 kvm_multiple_exception(vcpu, nr, true, error_code, 757 true, payload, false); 758 } 759 760 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 761 { 762 if (err) 763 kvm_inject_gp(vcpu, 0); 764 else 765 return kvm_skip_emulated_instruction(vcpu); 766 767 return 1; 768 } 769 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 770 771 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 772 { 773 if (err) { 774 kvm_inject_gp(vcpu, 0); 775 return 1; 776 } 777 778 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 779 EMULTYPE_COMPLETE_USER_EXIT); 780 } 781 782 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 783 { 784 ++vcpu->stat.pf_guest; 785 786 /* 787 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 788 * whether or not L1 wants to intercept "regular" #PF. 789 */ 790 if (is_guest_mode(vcpu) && fault->async_page_fault) 791 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 792 true, fault->error_code, 793 true, fault->address); 794 else 795 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 796 fault->address); 797 } 798 799 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 800 struct x86_exception *fault) 801 { 802 struct kvm_mmu *fault_mmu; 803 WARN_ON_ONCE(fault->vector != PF_VECTOR); 804 805 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 806 vcpu->arch.walk_mmu; 807 808 /* 809 * Invalidate the TLB entry for the faulting address, if it exists, 810 * else the access will fault indefinitely (and to emulate hardware). 811 */ 812 if ((fault->error_code & PFERR_PRESENT_MASK) && 813 !(fault->error_code & PFERR_RSVD_MASK)) 814 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 815 KVM_MMU_ROOT_CURRENT); 816 817 fault_mmu->inject_page_fault(vcpu, fault); 818 } 819 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 820 821 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 822 { 823 atomic_inc(&vcpu->arch.nmi_queued); 824 kvm_make_request(KVM_REQ_NMI, vcpu); 825 } 826 827 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 828 { 829 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 830 } 831 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 832 833 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 834 { 835 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 836 } 837 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 838 839 /* 840 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 841 * a #GP and return false. 842 */ 843 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 844 { 845 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 846 return true; 847 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 848 return false; 849 } 850 851 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 852 { 853 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 854 return true; 855 856 kvm_queue_exception(vcpu, UD_VECTOR); 857 return false; 858 } 859 EXPORT_SYMBOL_GPL(kvm_require_dr); 860 861 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 862 { 863 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 864 } 865 866 /* 867 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 868 */ 869 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 870 { 871 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 872 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 873 gpa_t real_gpa; 874 int i; 875 int ret; 876 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 877 878 /* 879 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 880 * to an L1 GPA. 881 */ 882 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 883 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 884 if (real_gpa == INVALID_GPA) 885 return 0; 886 887 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 888 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 889 cr3 & GENMASK(11, 5), sizeof(pdpte)); 890 if (ret < 0) 891 return 0; 892 893 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 894 if ((pdpte[i] & PT_PRESENT_MASK) && 895 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 896 return 0; 897 } 898 } 899 900 /* 901 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 902 * Shadow page roots need to be reconstructed instead. 903 */ 904 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 905 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 906 907 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 908 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 909 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 910 vcpu->arch.pdptrs_from_userspace = false; 911 912 return 1; 913 } 914 EXPORT_SYMBOL_GPL(load_pdptrs); 915 916 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 917 { 918 #ifdef CONFIG_X86_64 919 if (cr0 & 0xffffffff00000000UL) 920 return false; 921 #endif 922 923 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 924 return false; 925 926 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 927 return false; 928 929 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 930 } 931 932 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 933 { 934 /* 935 * CR0.WP is incorporated into the MMU role, but only for non-nested, 936 * indirect shadow MMUs. If paging is disabled, no updates are needed 937 * as there are no permission bits to emulate. If TDP is enabled, the 938 * MMU's metadata needs to be updated, e.g. so that emulating guest 939 * translations does the right thing, but there's no need to unload the 940 * root as CR0.WP doesn't affect SPTEs. 941 */ 942 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 943 if (!(cr0 & X86_CR0_PG)) 944 return; 945 946 if (tdp_enabled) { 947 kvm_init_mmu(vcpu); 948 return; 949 } 950 } 951 952 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 953 kvm_clear_async_pf_completion_queue(vcpu); 954 kvm_async_pf_hash_reset(vcpu); 955 956 /* 957 * Clearing CR0.PG is defined to flush the TLB from the guest's 958 * perspective. 959 */ 960 if (!(cr0 & X86_CR0_PG)) 961 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 962 } 963 964 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 965 kvm_mmu_reset_context(vcpu); 966 967 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 968 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) && 969 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 970 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 971 } 972 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 973 974 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 975 { 976 unsigned long old_cr0 = kvm_read_cr0(vcpu); 977 978 if (!kvm_is_valid_cr0(vcpu, cr0)) 979 return 1; 980 981 cr0 |= X86_CR0_ET; 982 983 /* Write to CR0 reserved bits are ignored, even on Intel. */ 984 cr0 &= ~CR0_RESERVED_BITS; 985 986 #ifdef CONFIG_X86_64 987 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 988 (cr0 & X86_CR0_PG)) { 989 int cs_db, cs_l; 990 991 if (!is_pae(vcpu)) 992 return 1; 993 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 994 if (cs_l) 995 return 1; 996 } 997 #endif 998 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 999 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 1000 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1001 return 1; 1002 1003 if (!(cr0 & X86_CR0_PG) && 1004 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1005 return 1; 1006 1007 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1008 1009 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1010 1011 return 0; 1012 } 1013 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1014 1015 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1016 { 1017 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1018 } 1019 EXPORT_SYMBOL_GPL(kvm_lmsw); 1020 1021 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1022 { 1023 if (vcpu->arch.guest_state_protected) 1024 return; 1025 1026 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1027 1028 if (vcpu->arch.xcr0 != host_xcr0) 1029 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1030 1031 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1032 vcpu->arch.ia32_xss != host_xss) 1033 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1034 } 1035 1036 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1037 vcpu->arch.pkru != vcpu->arch.host_pkru && 1038 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1039 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1040 write_pkru(vcpu->arch.pkru); 1041 } 1042 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1043 1044 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1045 { 1046 if (vcpu->arch.guest_state_protected) 1047 return; 1048 1049 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1050 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1051 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1052 vcpu->arch.pkru = rdpkru(); 1053 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1054 write_pkru(vcpu->arch.host_pkru); 1055 } 1056 1057 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1058 1059 if (vcpu->arch.xcr0 != host_xcr0) 1060 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1061 1062 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1063 vcpu->arch.ia32_xss != host_xss) 1064 wrmsrl(MSR_IA32_XSS, host_xss); 1065 } 1066 1067 } 1068 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1069 1070 #ifdef CONFIG_X86_64 1071 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1072 { 1073 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1074 } 1075 #endif 1076 1077 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1078 { 1079 u64 xcr0 = xcr; 1080 u64 old_xcr0 = vcpu->arch.xcr0; 1081 u64 valid_bits; 1082 1083 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1084 if (index != XCR_XFEATURE_ENABLED_MASK) 1085 return 1; 1086 if (!(xcr0 & XFEATURE_MASK_FP)) 1087 return 1; 1088 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1089 return 1; 1090 1091 /* 1092 * Do not allow the guest to set bits that we do not support 1093 * saving. However, xcr0 bit 0 is always set, even if the 1094 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1095 */ 1096 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1097 if (xcr0 & ~valid_bits) 1098 return 1; 1099 1100 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1101 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1102 return 1; 1103 1104 if (xcr0 & XFEATURE_MASK_AVX512) { 1105 if (!(xcr0 & XFEATURE_MASK_YMM)) 1106 return 1; 1107 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1108 return 1; 1109 } 1110 1111 if ((xcr0 & XFEATURE_MASK_XTILE) && 1112 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1113 return 1; 1114 1115 vcpu->arch.xcr0 = xcr0; 1116 1117 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1118 kvm_update_cpuid_runtime(vcpu); 1119 return 0; 1120 } 1121 1122 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1123 { 1124 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1125 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1126 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1127 kvm_inject_gp(vcpu, 0); 1128 return 1; 1129 } 1130 1131 return kvm_skip_emulated_instruction(vcpu); 1132 } 1133 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1134 1135 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1136 { 1137 if (cr4 & cr4_reserved_bits) 1138 return false; 1139 1140 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1141 return false; 1142 1143 return true; 1144 } 1145 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1146 1147 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1148 { 1149 return __kvm_is_valid_cr4(vcpu, cr4) && 1150 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1151 } 1152 1153 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1154 { 1155 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1156 kvm_mmu_reset_context(vcpu); 1157 1158 /* 1159 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1160 * according to the SDM; however, stale prev_roots could be reused 1161 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1162 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1163 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1164 * so fall through. 1165 */ 1166 if (!tdp_enabled && 1167 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1168 kvm_mmu_unload(vcpu); 1169 1170 /* 1171 * The TLB has to be flushed for all PCIDs if any of the following 1172 * (architecturally required) changes happen: 1173 * - CR4.PCIDE is changed from 1 to 0 1174 * - CR4.PGE is toggled 1175 * 1176 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1177 */ 1178 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1179 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1180 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1181 1182 /* 1183 * The TLB has to be flushed for the current PCID if any of the 1184 * following (architecturally required) changes happen: 1185 * - CR4.SMEP is changed from 0 to 1 1186 * - CR4.PAE is toggled 1187 */ 1188 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1189 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1190 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1191 1192 } 1193 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1194 1195 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1196 { 1197 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1198 1199 if (!kvm_is_valid_cr4(vcpu, cr4)) 1200 return 1; 1201 1202 if (is_long_mode(vcpu)) { 1203 if (!(cr4 & X86_CR4_PAE)) 1204 return 1; 1205 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1206 return 1; 1207 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1208 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1209 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1210 return 1; 1211 1212 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1213 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1214 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1215 return 1; 1216 } 1217 1218 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1219 1220 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1221 1222 return 0; 1223 } 1224 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1225 1226 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1227 { 1228 struct kvm_mmu *mmu = vcpu->arch.mmu; 1229 unsigned long roots_to_free = 0; 1230 int i; 1231 1232 /* 1233 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1234 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1235 * also via the emulator. KVM's TDP page tables are not in the scope of 1236 * the invalidation, but the guest's TLB entries need to be flushed as 1237 * the CPU may have cached entries in its TLB for the target PCID. 1238 */ 1239 if (unlikely(tdp_enabled)) { 1240 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1241 return; 1242 } 1243 1244 /* 1245 * If neither the current CR3 nor any of the prev_roots use the given 1246 * PCID, then nothing needs to be done here because a resync will 1247 * happen anyway before switching to any other CR3. 1248 */ 1249 if (kvm_get_active_pcid(vcpu) == pcid) { 1250 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1251 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1252 } 1253 1254 /* 1255 * If PCID is disabled, there is no need to free prev_roots even if the 1256 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1257 * with PCIDE=0. 1258 */ 1259 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1260 return; 1261 1262 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1263 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1264 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1265 1266 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1267 } 1268 1269 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1270 { 1271 bool skip_tlb_flush = false; 1272 unsigned long pcid = 0; 1273 #ifdef CONFIG_X86_64 1274 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1275 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1276 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1277 pcid = cr3 & X86_CR3_PCID_MASK; 1278 } 1279 #endif 1280 1281 /* PDPTRs are always reloaded for PAE paging. */ 1282 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1283 goto handle_tlb_flush; 1284 1285 /* 1286 * Do not condition the GPA check on long mode, this helper is used to 1287 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1288 * the current vCPU mode is accurate. 1289 */ 1290 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1291 return 1; 1292 1293 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1294 return 1; 1295 1296 if (cr3 != kvm_read_cr3(vcpu)) 1297 kvm_mmu_new_pgd(vcpu, cr3); 1298 1299 vcpu->arch.cr3 = cr3; 1300 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1301 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1302 1303 handle_tlb_flush: 1304 /* 1305 * A load of CR3 that flushes the TLB flushes only the current PCID, 1306 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1307 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1308 * and it's impossible to use a non-zero PCID when PCID is disabled, 1309 * i.e. only PCID=0 can be relevant. 1310 */ 1311 if (!skip_tlb_flush) 1312 kvm_invalidate_pcid(vcpu, pcid); 1313 1314 return 0; 1315 } 1316 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1317 1318 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1319 { 1320 if (cr8 & CR8_RESERVED_BITS) 1321 return 1; 1322 if (lapic_in_kernel(vcpu)) 1323 kvm_lapic_set_tpr(vcpu, cr8); 1324 else 1325 vcpu->arch.cr8 = cr8; 1326 return 0; 1327 } 1328 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1329 1330 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1331 { 1332 if (lapic_in_kernel(vcpu)) 1333 return kvm_lapic_get_cr8(vcpu); 1334 else 1335 return vcpu->arch.cr8; 1336 } 1337 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1338 1339 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1340 { 1341 int i; 1342 1343 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1344 for (i = 0; i < KVM_NR_DB_REGS; i++) 1345 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1346 } 1347 } 1348 1349 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1350 { 1351 unsigned long dr7; 1352 1353 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1354 dr7 = vcpu->arch.guest_debug_dr7; 1355 else 1356 dr7 = vcpu->arch.dr7; 1357 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1358 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1359 if (dr7 & DR7_BP_EN_MASK) 1360 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1361 } 1362 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1363 1364 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1365 { 1366 u64 fixed = DR6_FIXED_1; 1367 1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1369 fixed |= DR6_RTM; 1370 1371 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1372 fixed |= DR6_BUS_LOCK; 1373 return fixed; 1374 } 1375 1376 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1377 { 1378 size_t size = ARRAY_SIZE(vcpu->arch.db); 1379 1380 switch (dr) { 1381 case 0 ... 3: 1382 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1383 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1384 vcpu->arch.eff_db[dr] = val; 1385 break; 1386 case 4: 1387 case 6: 1388 if (!kvm_dr6_valid(val)) 1389 return 1; /* #GP */ 1390 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1391 break; 1392 case 5: 1393 default: /* 7 */ 1394 if (!kvm_dr7_valid(val)) 1395 return 1; /* #GP */ 1396 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1397 kvm_update_dr7(vcpu); 1398 break; 1399 } 1400 1401 return 0; 1402 } 1403 EXPORT_SYMBOL_GPL(kvm_set_dr); 1404 1405 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) 1406 { 1407 size_t size = ARRAY_SIZE(vcpu->arch.db); 1408 1409 switch (dr) { 1410 case 0 ... 3: 1411 return vcpu->arch.db[array_index_nospec(dr, size)]; 1412 case 4: 1413 case 6: 1414 return vcpu->arch.dr6; 1415 case 5: 1416 default: /* 7 */ 1417 return vcpu->arch.dr7; 1418 } 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_get_dr); 1421 1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1423 { 1424 u32 ecx = kvm_rcx_read(vcpu); 1425 u64 data; 1426 1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1428 kvm_inject_gp(vcpu, 0); 1429 return 1; 1430 } 1431 1432 kvm_rax_write(vcpu, (u32)data); 1433 kvm_rdx_write(vcpu, data >> 32); 1434 return kvm_skip_emulated_instruction(vcpu); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1437 1438 /* 1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1443 * MSRs that KVM emulates without strictly requiring host support. 1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1446 * msrs_to_save and emulated_msrs. 1447 */ 1448 1449 static const u32 msrs_to_save_base[] = { 1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1451 MSR_STAR, 1452 #ifdef CONFIG_X86_64 1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1454 #endif 1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1464 MSR_IA32_UMWAIT_CONTROL, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static const u32 msrs_to_save_pmu[] = { 1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1475 1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1485 1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1488 1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1494 1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1498 }; 1499 1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1501 ARRAY_SIZE(msrs_to_save_pmu)]; 1502 static unsigned num_msrs_to_save; 1503 1504 static const u32 emulated_msrs_all[] = { 1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1507 1508 #ifdef CONFIG_KVM_HYPERV 1509 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1510 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1511 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1512 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1513 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1514 HV_X64_MSR_RESET, 1515 HV_X64_MSR_VP_INDEX, 1516 HV_X64_MSR_VP_RUNTIME, 1517 HV_X64_MSR_SCONTROL, 1518 HV_X64_MSR_STIMER0_CONFIG, 1519 HV_X64_MSR_VP_ASSIST_PAGE, 1520 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1521 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1522 HV_X64_MSR_SYNDBG_OPTIONS, 1523 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1524 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1525 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1526 #endif 1527 1528 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1529 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1530 1531 MSR_IA32_TSC_ADJUST, 1532 MSR_IA32_TSC_DEADLINE, 1533 MSR_IA32_ARCH_CAPABILITIES, 1534 MSR_IA32_PERF_CAPABILITIES, 1535 MSR_IA32_MISC_ENABLE, 1536 MSR_IA32_MCG_STATUS, 1537 MSR_IA32_MCG_CTL, 1538 MSR_IA32_MCG_EXT_CTL, 1539 MSR_IA32_SMBASE, 1540 MSR_SMI_COUNT, 1541 MSR_PLATFORM_INFO, 1542 MSR_MISC_FEATURES_ENABLES, 1543 MSR_AMD64_VIRT_SPEC_CTRL, 1544 MSR_AMD64_TSC_RATIO, 1545 MSR_IA32_POWER_CTL, 1546 MSR_IA32_UCODE_REV, 1547 1548 /* 1549 * KVM always supports the "true" VMX control MSRs, even if the host 1550 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1551 * doesn't strictly require them to exist in the host (ignoring that 1552 * KVM would refuse to load in the first place if the core set of MSRs 1553 * aren't supported). 1554 */ 1555 MSR_IA32_VMX_BASIC, 1556 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1557 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1558 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1559 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1560 MSR_IA32_VMX_MISC, 1561 MSR_IA32_VMX_CR0_FIXED0, 1562 MSR_IA32_VMX_CR4_FIXED0, 1563 MSR_IA32_VMX_VMCS_ENUM, 1564 MSR_IA32_VMX_PROCBASED_CTLS2, 1565 MSR_IA32_VMX_EPT_VPID_CAP, 1566 MSR_IA32_VMX_VMFUNC, 1567 1568 MSR_K7_HWCR, 1569 MSR_KVM_POLL_CONTROL, 1570 }; 1571 1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1573 static unsigned num_emulated_msrs; 1574 1575 /* 1576 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1577 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1578 * feature MSRs, but are handled separately to allow expedited lookups. 1579 */ 1580 static const u32 msr_based_features_all_except_vmx[] = { 1581 MSR_AMD64_DE_CFG, 1582 MSR_IA32_UCODE_REV, 1583 MSR_IA32_ARCH_CAPABILITIES, 1584 MSR_IA32_PERF_CAPABILITIES, 1585 }; 1586 1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1588 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1589 static unsigned int num_msr_based_features; 1590 1591 /* 1592 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1593 * patch, are immutable once the vCPU model is defined. 1594 */ 1595 static bool kvm_is_immutable_feature_msr(u32 msr) 1596 { 1597 int i; 1598 1599 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1600 return true; 1601 1602 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1603 if (msr == msr_based_features_all_except_vmx[i]) 1604 return msr != MSR_IA32_UCODE_REV; 1605 } 1606 1607 return false; 1608 } 1609 1610 /* 1611 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1612 * does not yet virtualize. These include: 1613 * 10 - MISC_PACKAGE_CTRLS 1614 * 11 - ENERGY_FILTERING_CTL 1615 * 12 - DOITM 1616 * 18 - FB_CLEAR_CTRL 1617 * 21 - XAPIC_DISABLE_STATUS 1618 * 23 - OVERCLOCKING_STATUS 1619 */ 1620 1621 #define KVM_SUPPORTED_ARCH_CAP \ 1622 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1623 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1624 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1625 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1626 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1627 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO) 1628 1629 static u64 kvm_get_arch_capabilities(void) 1630 { 1631 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1632 1633 /* 1634 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1635 * the nested hypervisor runs with NX huge pages. If it is not, 1636 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1637 * L1 guests, so it need not worry about its own (L2) guests. 1638 */ 1639 data |= ARCH_CAP_PSCHANGE_MC_NO; 1640 1641 /* 1642 * If we're doing cache flushes (either "always" or "cond") 1643 * we will do one whenever the guest does a vmlaunch/vmresume. 1644 * If an outer hypervisor is doing the cache flush for us 1645 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1646 * capability to the guest too, and if EPT is disabled we're not 1647 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1648 * require a nested hypervisor to do a flush of its own. 1649 */ 1650 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1651 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1652 1653 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1654 data |= ARCH_CAP_RDCL_NO; 1655 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1656 data |= ARCH_CAP_SSB_NO; 1657 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1658 data |= ARCH_CAP_MDS_NO; 1659 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1660 data |= ARCH_CAP_RFDS_NO; 1661 1662 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1663 /* 1664 * If RTM=0 because the kernel has disabled TSX, the host might 1665 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1666 * and therefore knows that there cannot be TAA) but keep 1667 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1668 * and we want to allow migrating those guests to tsx=off hosts. 1669 */ 1670 data &= ~ARCH_CAP_TAA_NO; 1671 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1672 data |= ARCH_CAP_TAA_NO; 1673 } else { 1674 /* 1675 * Nothing to do here; we emulate TSX_CTRL if present on the 1676 * host so the guest can choose between disabling TSX or 1677 * using VERW to clear CPU buffers. 1678 */ 1679 } 1680 1681 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1682 data |= ARCH_CAP_GDS_NO; 1683 1684 return data; 1685 } 1686 1687 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1688 { 1689 switch (msr->index) { 1690 case MSR_IA32_ARCH_CAPABILITIES: 1691 msr->data = kvm_get_arch_capabilities(); 1692 break; 1693 case MSR_IA32_PERF_CAPABILITIES: 1694 msr->data = kvm_caps.supported_perf_cap; 1695 break; 1696 case MSR_IA32_UCODE_REV: 1697 rdmsrl_safe(msr->index, &msr->data); 1698 break; 1699 default: 1700 return static_call(kvm_x86_get_msr_feature)(msr); 1701 } 1702 return 0; 1703 } 1704 1705 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1706 { 1707 struct kvm_msr_entry msr; 1708 int r; 1709 1710 /* Unconditionally clear the output for simplicity */ 1711 msr.data = 0; 1712 msr.index = index; 1713 r = kvm_get_msr_feature(&msr); 1714 1715 if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false)) 1716 r = 0; 1717 1718 *data = msr.data; 1719 1720 return r; 1721 } 1722 1723 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1724 { 1725 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1726 return false; 1727 1728 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1729 return false; 1730 1731 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1732 return false; 1733 1734 if (efer & (EFER_LME | EFER_LMA) && 1735 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1736 return false; 1737 1738 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1739 return false; 1740 1741 return true; 1742 1743 } 1744 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1745 { 1746 if (efer & efer_reserved_bits) 1747 return false; 1748 1749 return __kvm_valid_efer(vcpu, efer); 1750 } 1751 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1752 1753 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1754 { 1755 u64 old_efer = vcpu->arch.efer; 1756 u64 efer = msr_info->data; 1757 int r; 1758 1759 if (efer & efer_reserved_bits) 1760 return 1; 1761 1762 if (!msr_info->host_initiated) { 1763 if (!__kvm_valid_efer(vcpu, efer)) 1764 return 1; 1765 1766 if (is_paging(vcpu) && 1767 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1768 return 1; 1769 } 1770 1771 efer &= ~EFER_LMA; 1772 efer |= vcpu->arch.efer & EFER_LMA; 1773 1774 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1775 if (r) { 1776 WARN_ON(r > 0); 1777 return r; 1778 } 1779 1780 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1781 kvm_mmu_reset_context(vcpu); 1782 1783 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1784 (efer & EFER_SVME)) 1785 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1786 1787 return 0; 1788 } 1789 1790 void kvm_enable_efer_bits(u64 mask) 1791 { 1792 efer_reserved_bits &= ~mask; 1793 } 1794 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1795 1796 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1797 { 1798 struct kvm_x86_msr_filter *msr_filter; 1799 struct msr_bitmap_range *ranges; 1800 struct kvm *kvm = vcpu->kvm; 1801 bool allowed; 1802 int idx; 1803 u32 i; 1804 1805 /* x2APIC MSRs do not support filtering. */ 1806 if (index >= 0x800 && index <= 0x8ff) 1807 return true; 1808 1809 idx = srcu_read_lock(&kvm->srcu); 1810 1811 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1812 if (!msr_filter) { 1813 allowed = true; 1814 goto out; 1815 } 1816 1817 allowed = msr_filter->default_allow; 1818 ranges = msr_filter->ranges; 1819 1820 for (i = 0; i < msr_filter->count; i++) { 1821 u32 start = ranges[i].base; 1822 u32 end = start + ranges[i].nmsrs; 1823 u32 flags = ranges[i].flags; 1824 unsigned long *bitmap = ranges[i].bitmap; 1825 1826 if ((index >= start) && (index < end) && (flags & type)) { 1827 allowed = test_bit(index - start, bitmap); 1828 break; 1829 } 1830 } 1831 1832 out: 1833 srcu_read_unlock(&kvm->srcu, idx); 1834 1835 return allowed; 1836 } 1837 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1838 1839 /* 1840 * Write @data into the MSR specified by @index. Select MSR specific fault 1841 * checks are bypassed if @host_initiated is %true. 1842 * Returns 0 on success, non-0 otherwise. 1843 * Assumes vcpu_load() was already called. 1844 */ 1845 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1846 bool host_initiated) 1847 { 1848 struct msr_data msr; 1849 1850 switch (index) { 1851 case MSR_FS_BASE: 1852 case MSR_GS_BASE: 1853 case MSR_KERNEL_GS_BASE: 1854 case MSR_CSTAR: 1855 case MSR_LSTAR: 1856 if (is_noncanonical_address(data, vcpu)) 1857 return 1; 1858 break; 1859 case MSR_IA32_SYSENTER_EIP: 1860 case MSR_IA32_SYSENTER_ESP: 1861 /* 1862 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1863 * non-canonical address is written on Intel but not on 1864 * AMD (which ignores the top 32-bits, because it does 1865 * not implement 64-bit SYSENTER). 1866 * 1867 * 64-bit code should hence be able to write a non-canonical 1868 * value on AMD. Making the address canonical ensures that 1869 * vmentry does not fail on Intel after writing a non-canonical 1870 * value, and that something deterministic happens if the guest 1871 * invokes 64-bit SYSENTER. 1872 */ 1873 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1874 break; 1875 case MSR_TSC_AUX: 1876 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1877 return 1; 1878 1879 if (!host_initiated && 1880 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1881 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1882 return 1; 1883 1884 /* 1885 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1886 * incomplete and conflicting architectural behavior. Current 1887 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1888 * reserved and always read as zeros. Enforce Intel's reserved 1889 * bits check if and only if the guest CPU is Intel, and clear 1890 * the bits in all other cases. This ensures cross-vendor 1891 * migration will provide consistent behavior for the guest. 1892 */ 1893 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1894 return 1; 1895 1896 data = (u32)data; 1897 break; 1898 } 1899 1900 msr.data = data; 1901 msr.index = index; 1902 msr.host_initiated = host_initiated; 1903 1904 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1905 } 1906 1907 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1908 u32 index, u64 data, bool host_initiated) 1909 { 1910 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1911 1912 if (ret == KVM_MSR_RET_INVALID) 1913 if (kvm_msr_ignored_check(index, data, true)) 1914 ret = 0; 1915 1916 return ret; 1917 } 1918 1919 /* 1920 * Read the MSR specified by @index into @data. Select MSR specific fault 1921 * checks are bypassed if @host_initiated is %true. 1922 * Returns 0 on success, non-0 otherwise. 1923 * Assumes vcpu_load() was already called. 1924 */ 1925 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1926 bool host_initiated) 1927 { 1928 struct msr_data msr; 1929 int ret; 1930 1931 switch (index) { 1932 case MSR_TSC_AUX: 1933 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1934 return 1; 1935 1936 if (!host_initiated && 1937 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1938 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1939 return 1; 1940 break; 1941 } 1942 1943 msr.index = index; 1944 msr.host_initiated = host_initiated; 1945 1946 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1947 if (!ret) 1948 *data = msr.data; 1949 return ret; 1950 } 1951 1952 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1953 u32 index, u64 *data, bool host_initiated) 1954 { 1955 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1956 1957 if (ret == KVM_MSR_RET_INVALID) { 1958 /* Unconditionally clear *data for simplicity */ 1959 *data = 0; 1960 if (kvm_msr_ignored_check(index, 0, false)) 1961 ret = 0; 1962 } 1963 1964 return ret; 1965 } 1966 1967 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1968 { 1969 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1970 return KVM_MSR_RET_FILTERED; 1971 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1972 } 1973 1974 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1975 { 1976 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1977 return KVM_MSR_RET_FILTERED; 1978 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1979 } 1980 1981 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1982 { 1983 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1984 } 1985 EXPORT_SYMBOL_GPL(kvm_get_msr); 1986 1987 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1988 { 1989 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1990 } 1991 EXPORT_SYMBOL_GPL(kvm_set_msr); 1992 1993 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1994 { 1995 if (!vcpu->run->msr.error) { 1996 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1997 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1998 } 1999 } 2000 2001 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 2002 { 2003 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2004 } 2005 2006 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2007 { 2008 complete_userspace_rdmsr(vcpu); 2009 return complete_emulated_msr_access(vcpu); 2010 } 2011 2012 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2013 { 2014 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2015 } 2016 2017 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2018 { 2019 complete_userspace_rdmsr(vcpu); 2020 return complete_fast_msr_access(vcpu); 2021 } 2022 2023 static u64 kvm_msr_reason(int r) 2024 { 2025 switch (r) { 2026 case KVM_MSR_RET_INVALID: 2027 return KVM_MSR_EXIT_REASON_UNKNOWN; 2028 case KVM_MSR_RET_FILTERED: 2029 return KVM_MSR_EXIT_REASON_FILTER; 2030 default: 2031 return KVM_MSR_EXIT_REASON_INVAL; 2032 } 2033 } 2034 2035 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2036 u32 exit_reason, u64 data, 2037 int (*completion)(struct kvm_vcpu *vcpu), 2038 int r) 2039 { 2040 u64 msr_reason = kvm_msr_reason(r); 2041 2042 /* Check if the user wanted to know about this MSR fault */ 2043 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2044 return 0; 2045 2046 vcpu->run->exit_reason = exit_reason; 2047 vcpu->run->msr.error = 0; 2048 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2049 vcpu->run->msr.reason = msr_reason; 2050 vcpu->run->msr.index = index; 2051 vcpu->run->msr.data = data; 2052 vcpu->arch.complete_userspace_io = completion; 2053 2054 return 1; 2055 } 2056 2057 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2058 { 2059 u32 ecx = kvm_rcx_read(vcpu); 2060 u64 data; 2061 int r; 2062 2063 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2064 2065 if (!r) { 2066 trace_kvm_msr_read(ecx, data); 2067 2068 kvm_rax_write(vcpu, data & -1u); 2069 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2070 } else { 2071 /* MSR read failed? See if we should ask user space */ 2072 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2073 complete_fast_rdmsr, r)) 2074 return 0; 2075 trace_kvm_msr_read_ex(ecx); 2076 } 2077 2078 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2079 } 2080 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2081 2082 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2083 { 2084 u32 ecx = kvm_rcx_read(vcpu); 2085 u64 data = kvm_read_edx_eax(vcpu); 2086 int r; 2087 2088 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2089 2090 if (!r) { 2091 trace_kvm_msr_write(ecx, data); 2092 } else { 2093 /* MSR write failed? See if we should ask user space */ 2094 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2095 complete_fast_msr_access, r)) 2096 return 0; 2097 /* Signal all other negative errors to userspace */ 2098 if (r < 0) 2099 return r; 2100 trace_kvm_msr_write_ex(ecx, data); 2101 } 2102 2103 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2104 } 2105 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2106 2107 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2108 { 2109 return kvm_skip_emulated_instruction(vcpu); 2110 } 2111 2112 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2113 { 2114 /* Treat an INVD instruction as a NOP and just skip it. */ 2115 return kvm_emulate_as_nop(vcpu); 2116 } 2117 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2118 2119 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2120 { 2121 kvm_queue_exception(vcpu, UD_VECTOR); 2122 return 1; 2123 } 2124 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2125 2126 2127 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2128 { 2129 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2130 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2131 return kvm_handle_invalid_op(vcpu); 2132 2133 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2134 return kvm_emulate_as_nop(vcpu); 2135 } 2136 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2137 { 2138 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2139 } 2140 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2141 2142 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2143 { 2144 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2145 } 2146 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2147 2148 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2149 { 2150 xfer_to_guest_mode_prepare(); 2151 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2152 xfer_to_guest_mode_work_pending(); 2153 } 2154 2155 /* 2156 * The fast path for frequent and performance sensitive wrmsr emulation, 2157 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2158 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2159 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2160 * other cases which must be called after interrupts are enabled on the host. 2161 */ 2162 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2163 { 2164 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2165 return 1; 2166 2167 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2168 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2169 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2170 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2171 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2172 2173 return 1; 2174 } 2175 2176 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2177 { 2178 if (!kvm_can_use_hv_timer(vcpu)) 2179 return 1; 2180 2181 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2182 return 0; 2183 } 2184 2185 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2186 { 2187 u32 msr = kvm_rcx_read(vcpu); 2188 u64 data; 2189 fastpath_t ret = EXIT_FASTPATH_NONE; 2190 2191 kvm_vcpu_srcu_read_lock(vcpu); 2192 2193 switch (msr) { 2194 case APIC_BASE_MSR + (APIC_ICR >> 4): 2195 data = kvm_read_edx_eax(vcpu); 2196 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2197 kvm_skip_emulated_instruction(vcpu); 2198 ret = EXIT_FASTPATH_EXIT_HANDLED; 2199 } 2200 break; 2201 case MSR_IA32_TSC_DEADLINE: 2202 data = kvm_read_edx_eax(vcpu); 2203 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2204 kvm_skip_emulated_instruction(vcpu); 2205 ret = EXIT_FASTPATH_REENTER_GUEST; 2206 } 2207 break; 2208 default: 2209 break; 2210 } 2211 2212 if (ret != EXIT_FASTPATH_NONE) 2213 trace_kvm_msr_write(msr, data); 2214 2215 kvm_vcpu_srcu_read_unlock(vcpu); 2216 2217 return ret; 2218 } 2219 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2220 2221 /* 2222 * Adapt set_msr() to msr_io()'s calling convention 2223 */ 2224 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2225 { 2226 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2227 } 2228 2229 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2230 { 2231 u64 val; 2232 2233 /* 2234 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2235 * not support modifying the guest vCPU model on the fly, e.g. changing 2236 * the nVMX capabilities while L2 is running is nonsensical. Allow 2237 * writes of the same value, e.g. to allow userspace to blindly stuff 2238 * all MSRs when emulating RESET. 2239 */ 2240 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && 2241 (do_get_msr(vcpu, index, &val) || *data != val)) 2242 return -EINVAL; 2243 2244 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2245 } 2246 2247 #ifdef CONFIG_X86_64 2248 struct pvclock_clock { 2249 int vclock_mode; 2250 u64 cycle_last; 2251 u64 mask; 2252 u32 mult; 2253 u32 shift; 2254 u64 base_cycles; 2255 u64 offset; 2256 }; 2257 2258 struct pvclock_gtod_data { 2259 seqcount_t seq; 2260 2261 struct pvclock_clock clock; /* extract of a clocksource struct */ 2262 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2263 2264 ktime_t offs_boot; 2265 u64 wall_time_sec; 2266 }; 2267 2268 static struct pvclock_gtod_data pvclock_gtod_data; 2269 2270 static void update_pvclock_gtod(struct timekeeper *tk) 2271 { 2272 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2273 2274 write_seqcount_begin(&vdata->seq); 2275 2276 /* copy pvclock gtod data */ 2277 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2278 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2279 vdata->clock.mask = tk->tkr_mono.mask; 2280 vdata->clock.mult = tk->tkr_mono.mult; 2281 vdata->clock.shift = tk->tkr_mono.shift; 2282 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2283 vdata->clock.offset = tk->tkr_mono.base; 2284 2285 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2286 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2287 vdata->raw_clock.mask = tk->tkr_raw.mask; 2288 vdata->raw_clock.mult = tk->tkr_raw.mult; 2289 vdata->raw_clock.shift = tk->tkr_raw.shift; 2290 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2291 vdata->raw_clock.offset = tk->tkr_raw.base; 2292 2293 vdata->wall_time_sec = tk->xtime_sec; 2294 2295 vdata->offs_boot = tk->offs_boot; 2296 2297 write_seqcount_end(&vdata->seq); 2298 } 2299 2300 static s64 get_kvmclock_base_ns(void) 2301 { 2302 /* Count up from boot time, but with the frequency of the raw clock. */ 2303 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2304 } 2305 #else 2306 static s64 get_kvmclock_base_ns(void) 2307 { 2308 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2309 return ktime_get_boottime_ns(); 2310 } 2311 #endif 2312 2313 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2314 { 2315 int version; 2316 int r; 2317 struct pvclock_wall_clock wc; 2318 u32 wc_sec_hi; 2319 u64 wall_nsec; 2320 2321 if (!wall_clock) 2322 return; 2323 2324 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2325 if (r) 2326 return; 2327 2328 if (version & 1) 2329 ++version; /* first time write, random junk */ 2330 2331 ++version; 2332 2333 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2334 return; 2335 2336 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2337 2338 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2339 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2340 wc.version = version; 2341 2342 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2343 2344 if (sec_hi_ofs) { 2345 wc_sec_hi = wall_nsec >> 32; 2346 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2347 &wc_sec_hi, sizeof(wc_sec_hi)); 2348 } 2349 2350 version++; 2351 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2352 } 2353 2354 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2355 bool old_msr, bool host_initiated) 2356 { 2357 struct kvm_arch *ka = &vcpu->kvm->arch; 2358 2359 if (vcpu->vcpu_id == 0 && !host_initiated) { 2360 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2361 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2362 2363 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2364 } 2365 2366 vcpu->arch.time = system_time; 2367 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2368 2369 /* we verify if the enable bit is set... */ 2370 if (system_time & 1) 2371 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2372 sizeof(struct pvclock_vcpu_time_info)); 2373 else 2374 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2375 2376 return; 2377 } 2378 2379 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2380 { 2381 do_shl32_div32(dividend, divisor); 2382 return dividend; 2383 } 2384 2385 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2386 s8 *pshift, u32 *pmultiplier) 2387 { 2388 uint64_t scaled64; 2389 int32_t shift = 0; 2390 uint64_t tps64; 2391 uint32_t tps32; 2392 2393 tps64 = base_hz; 2394 scaled64 = scaled_hz; 2395 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2396 tps64 >>= 1; 2397 shift--; 2398 } 2399 2400 tps32 = (uint32_t)tps64; 2401 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2402 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2403 scaled64 >>= 1; 2404 else 2405 tps32 <<= 1; 2406 shift++; 2407 } 2408 2409 *pshift = shift; 2410 *pmultiplier = div_frac(scaled64, tps32); 2411 } 2412 2413 #ifdef CONFIG_X86_64 2414 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2415 #endif 2416 2417 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2418 static unsigned long max_tsc_khz; 2419 2420 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2421 { 2422 u64 v = (u64)khz * (1000000 + ppm); 2423 do_div(v, 1000000); 2424 return v; 2425 } 2426 2427 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2428 2429 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2430 { 2431 u64 ratio; 2432 2433 /* Guest TSC same frequency as host TSC? */ 2434 if (!scale) { 2435 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2436 return 0; 2437 } 2438 2439 /* TSC scaling supported? */ 2440 if (!kvm_caps.has_tsc_control) { 2441 if (user_tsc_khz > tsc_khz) { 2442 vcpu->arch.tsc_catchup = 1; 2443 vcpu->arch.tsc_always_catchup = 1; 2444 return 0; 2445 } else { 2446 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2447 return -1; 2448 } 2449 } 2450 2451 /* TSC scaling required - calculate ratio */ 2452 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2453 user_tsc_khz, tsc_khz); 2454 2455 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2456 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2457 user_tsc_khz); 2458 return -1; 2459 } 2460 2461 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2462 return 0; 2463 } 2464 2465 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2466 { 2467 u32 thresh_lo, thresh_hi; 2468 int use_scaling = 0; 2469 2470 /* tsc_khz can be zero if TSC calibration fails */ 2471 if (user_tsc_khz == 0) { 2472 /* set tsc_scaling_ratio to a safe value */ 2473 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2474 return -1; 2475 } 2476 2477 /* Compute a scale to convert nanoseconds in TSC cycles */ 2478 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2479 &vcpu->arch.virtual_tsc_shift, 2480 &vcpu->arch.virtual_tsc_mult); 2481 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2482 2483 /* 2484 * Compute the variation in TSC rate which is acceptable 2485 * within the range of tolerance and decide if the 2486 * rate being applied is within that bounds of the hardware 2487 * rate. If so, no scaling or compensation need be done. 2488 */ 2489 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2490 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2491 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2492 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2493 user_tsc_khz, thresh_lo, thresh_hi); 2494 use_scaling = 1; 2495 } 2496 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2497 } 2498 2499 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2500 { 2501 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2502 vcpu->arch.virtual_tsc_mult, 2503 vcpu->arch.virtual_tsc_shift); 2504 tsc += vcpu->arch.this_tsc_write; 2505 return tsc; 2506 } 2507 2508 #ifdef CONFIG_X86_64 2509 static inline bool gtod_is_based_on_tsc(int mode) 2510 { 2511 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2512 } 2513 #endif 2514 2515 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2516 { 2517 #ifdef CONFIG_X86_64 2518 struct kvm_arch *ka = &vcpu->kvm->arch; 2519 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2520 2521 /* 2522 * To use the masterclock, the host clocksource must be based on TSC 2523 * and all vCPUs must have matching TSCs. Note, the count for matching 2524 * vCPUs doesn't include the reference vCPU, hence "+1". 2525 */ 2526 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2527 atomic_read(&vcpu->kvm->online_vcpus)) && 2528 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2529 2530 /* 2531 * Request a masterclock update if the masterclock needs to be toggled 2532 * on/off, or when starting a new generation and the masterclock is 2533 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2534 * taken _after_ the new generation is created). 2535 */ 2536 if ((ka->use_master_clock && new_generation) || 2537 (ka->use_master_clock != use_master_clock)) 2538 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2539 2540 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2541 atomic_read(&vcpu->kvm->online_vcpus), 2542 ka->use_master_clock, gtod->clock.vclock_mode); 2543 #endif 2544 } 2545 2546 /* 2547 * Multiply tsc by a fixed point number represented by ratio. 2548 * 2549 * The most significant 64-N bits (mult) of ratio represent the 2550 * integral part of the fixed point number; the remaining N bits 2551 * (frac) represent the fractional part, ie. ratio represents a fixed 2552 * point number (mult + frac * 2^(-N)). 2553 * 2554 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2555 */ 2556 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2557 { 2558 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2559 } 2560 2561 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2562 { 2563 u64 _tsc = tsc; 2564 2565 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2566 _tsc = __scale_tsc(ratio, tsc); 2567 2568 return _tsc; 2569 } 2570 2571 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2572 { 2573 u64 tsc; 2574 2575 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2576 2577 return target_tsc - tsc; 2578 } 2579 2580 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2581 { 2582 return vcpu->arch.l1_tsc_offset + 2583 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2584 } 2585 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2586 2587 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2588 { 2589 u64 nested_offset; 2590 2591 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2592 nested_offset = l1_offset; 2593 else 2594 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2595 kvm_caps.tsc_scaling_ratio_frac_bits); 2596 2597 nested_offset += l2_offset; 2598 return nested_offset; 2599 } 2600 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2601 2602 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2603 { 2604 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2605 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2606 kvm_caps.tsc_scaling_ratio_frac_bits); 2607 2608 return l1_multiplier; 2609 } 2610 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2611 2612 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2613 { 2614 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2615 vcpu->arch.l1_tsc_offset, 2616 l1_offset); 2617 2618 vcpu->arch.l1_tsc_offset = l1_offset; 2619 2620 /* 2621 * If we are here because L1 chose not to trap WRMSR to TSC then 2622 * according to the spec this should set L1's TSC (as opposed to 2623 * setting L1's offset for L2). 2624 */ 2625 if (is_guest_mode(vcpu)) 2626 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2627 l1_offset, 2628 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2629 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2630 else 2631 vcpu->arch.tsc_offset = l1_offset; 2632 2633 static_call(kvm_x86_write_tsc_offset)(vcpu); 2634 } 2635 2636 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2637 { 2638 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2639 2640 /* Userspace is changing the multiplier while L2 is active */ 2641 if (is_guest_mode(vcpu)) 2642 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2643 l1_multiplier, 2644 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2645 else 2646 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2647 2648 if (kvm_caps.has_tsc_control) 2649 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2650 } 2651 2652 static inline bool kvm_check_tsc_unstable(void) 2653 { 2654 #ifdef CONFIG_X86_64 2655 /* 2656 * TSC is marked unstable when we're running on Hyper-V, 2657 * 'TSC page' clocksource is good. 2658 */ 2659 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2660 return false; 2661 #endif 2662 return check_tsc_unstable(); 2663 } 2664 2665 /* 2666 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2667 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2668 * participates in. 2669 */ 2670 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2671 u64 ns, bool matched) 2672 { 2673 struct kvm *kvm = vcpu->kvm; 2674 2675 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2676 2677 /* 2678 * We also track th most recent recorded KHZ, write and time to 2679 * allow the matching interval to be extended at each write. 2680 */ 2681 kvm->arch.last_tsc_nsec = ns; 2682 kvm->arch.last_tsc_write = tsc; 2683 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2684 kvm->arch.last_tsc_offset = offset; 2685 2686 vcpu->arch.last_guest_tsc = tsc; 2687 2688 kvm_vcpu_write_tsc_offset(vcpu, offset); 2689 2690 if (!matched) { 2691 /* 2692 * We split periods of matched TSC writes into generations. 2693 * For each generation, we track the original measured 2694 * nanosecond time, offset, and write, so if TSCs are in 2695 * sync, we can match exact offset, and if not, we can match 2696 * exact software computation in compute_guest_tsc() 2697 * 2698 * These values are tracked in kvm->arch.cur_xxx variables. 2699 */ 2700 kvm->arch.cur_tsc_generation++; 2701 kvm->arch.cur_tsc_nsec = ns; 2702 kvm->arch.cur_tsc_write = tsc; 2703 kvm->arch.cur_tsc_offset = offset; 2704 kvm->arch.nr_vcpus_matched_tsc = 0; 2705 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2706 kvm->arch.nr_vcpus_matched_tsc++; 2707 } 2708 2709 /* Keep track of which generation this VCPU has synchronized to */ 2710 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2711 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2712 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2713 2714 kvm_track_tsc_matching(vcpu, !matched); 2715 } 2716 2717 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2718 { 2719 u64 data = user_value ? *user_value : 0; 2720 struct kvm *kvm = vcpu->kvm; 2721 u64 offset, ns, elapsed; 2722 unsigned long flags; 2723 bool matched = false; 2724 bool synchronizing = false; 2725 2726 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2727 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2728 ns = get_kvmclock_base_ns(); 2729 elapsed = ns - kvm->arch.last_tsc_nsec; 2730 2731 if (vcpu->arch.virtual_tsc_khz) { 2732 if (data == 0) { 2733 /* 2734 * Force synchronization when creating a vCPU, or when 2735 * userspace explicitly writes a zero value. 2736 */ 2737 synchronizing = true; 2738 } else if (kvm->arch.user_set_tsc) { 2739 u64 tsc_exp = kvm->arch.last_tsc_write + 2740 nsec_to_cycles(vcpu, elapsed); 2741 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2742 /* 2743 * Here lies UAPI baggage: when a user-initiated TSC write has 2744 * a small delta (1 second) of virtual cycle time against the 2745 * previously set vCPU, we assume that they were intended to be 2746 * in sync and the delta was only due to the racy nature of the 2747 * legacy API. 2748 * 2749 * This trick falls down when restoring a guest which genuinely 2750 * has been running for less time than the 1 second of imprecision 2751 * which we allow for in the legacy API. In this case, the first 2752 * value written by userspace (on any vCPU) should not be subject 2753 * to this 'correction' to make it sync up with values that only 2754 * come from the kernel's default vCPU creation. Make the 1-second 2755 * slop hack only trigger if the user_set_tsc flag is already set. 2756 */ 2757 synchronizing = data < tsc_exp + tsc_hz && 2758 data + tsc_hz > tsc_exp; 2759 } 2760 } 2761 2762 if (user_value) 2763 kvm->arch.user_set_tsc = true; 2764 2765 /* 2766 * For a reliable TSC, we can match TSC offsets, and for an unstable 2767 * TSC, we add elapsed time in this computation. We could let the 2768 * compensation code attempt to catch up if we fall behind, but 2769 * it's better to try to match offsets from the beginning. 2770 */ 2771 if (synchronizing && 2772 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2773 if (!kvm_check_tsc_unstable()) { 2774 offset = kvm->arch.cur_tsc_offset; 2775 } else { 2776 u64 delta = nsec_to_cycles(vcpu, elapsed); 2777 data += delta; 2778 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2779 } 2780 matched = true; 2781 } 2782 2783 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2784 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2785 } 2786 2787 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2788 s64 adjustment) 2789 { 2790 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2791 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2792 } 2793 2794 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2795 { 2796 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2797 WARN_ON(adjustment < 0); 2798 adjustment = kvm_scale_tsc((u64) adjustment, 2799 vcpu->arch.l1_tsc_scaling_ratio); 2800 adjust_tsc_offset_guest(vcpu, adjustment); 2801 } 2802 2803 #ifdef CONFIG_X86_64 2804 2805 static u64 read_tsc(void) 2806 { 2807 u64 ret = (u64)rdtsc_ordered(); 2808 u64 last = pvclock_gtod_data.clock.cycle_last; 2809 2810 if (likely(ret >= last)) 2811 return ret; 2812 2813 /* 2814 * GCC likes to generate cmov here, but this branch is extremely 2815 * predictable (it's just a function of time and the likely is 2816 * very likely) and there's a data dependence, so force GCC 2817 * to generate a branch instead. I don't barrier() because 2818 * we don't actually need a barrier, and if this function 2819 * ever gets inlined it will generate worse code. 2820 */ 2821 asm volatile (""); 2822 return last; 2823 } 2824 2825 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2826 int *mode) 2827 { 2828 u64 tsc_pg_val; 2829 long v; 2830 2831 switch (clock->vclock_mode) { 2832 case VDSO_CLOCKMODE_HVCLOCK: 2833 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2834 tsc_timestamp, &tsc_pg_val)) { 2835 /* TSC page valid */ 2836 *mode = VDSO_CLOCKMODE_HVCLOCK; 2837 v = (tsc_pg_val - clock->cycle_last) & 2838 clock->mask; 2839 } else { 2840 /* TSC page invalid */ 2841 *mode = VDSO_CLOCKMODE_NONE; 2842 } 2843 break; 2844 case VDSO_CLOCKMODE_TSC: 2845 *mode = VDSO_CLOCKMODE_TSC; 2846 *tsc_timestamp = read_tsc(); 2847 v = (*tsc_timestamp - clock->cycle_last) & 2848 clock->mask; 2849 break; 2850 default: 2851 *mode = VDSO_CLOCKMODE_NONE; 2852 } 2853 2854 if (*mode == VDSO_CLOCKMODE_NONE) 2855 *tsc_timestamp = v = 0; 2856 2857 return v * clock->mult; 2858 } 2859 2860 /* 2861 * As with get_kvmclock_base_ns(), this counts from boot time, at the 2862 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). 2863 */ 2864 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) 2865 { 2866 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2867 unsigned long seq; 2868 int mode; 2869 u64 ns; 2870 2871 do { 2872 seq = read_seqcount_begin(>od->seq); 2873 ns = gtod->raw_clock.base_cycles; 2874 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2875 ns >>= gtod->raw_clock.shift; 2876 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2877 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2878 *t = ns; 2879 2880 return mode; 2881 } 2882 2883 /* 2884 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with 2885 * no boot time offset. 2886 */ 2887 static int do_monotonic(s64 *t, u64 *tsc_timestamp) 2888 { 2889 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2890 unsigned long seq; 2891 int mode; 2892 u64 ns; 2893 2894 do { 2895 seq = read_seqcount_begin(>od->seq); 2896 ns = gtod->clock.base_cycles; 2897 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2898 ns >>= gtod->clock.shift; 2899 ns += ktime_to_ns(gtod->clock.offset); 2900 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2901 *t = ns; 2902 2903 return mode; 2904 } 2905 2906 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2907 { 2908 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2909 unsigned long seq; 2910 int mode; 2911 u64 ns; 2912 2913 do { 2914 seq = read_seqcount_begin(>od->seq); 2915 ts->tv_sec = gtod->wall_time_sec; 2916 ns = gtod->clock.base_cycles; 2917 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2918 ns >>= gtod->clock.shift; 2919 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2920 2921 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2922 ts->tv_nsec = ns; 2923 2924 return mode; 2925 } 2926 2927 /* 2928 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and 2929 * reports the TSC value from which it do so. Returns true if host is 2930 * using TSC based clocksource. 2931 */ 2932 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2933 { 2934 /* checked again under seqlock below */ 2935 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2936 return false; 2937 2938 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, 2939 tsc_timestamp)); 2940 } 2941 2942 /* 2943 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did 2944 * so. Returns true if host is using TSC based clocksource. 2945 */ 2946 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2947 { 2948 /* checked again under seqlock below */ 2949 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2950 return false; 2951 2952 return gtod_is_based_on_tsc(do_monotonic(kernel_ns, 2953 tsc_timestamp)); 2954 } 2955 2956 /* 2957 * Calculates CLOCK_REALTIME and reports the TSC value from which it did 2958 * so. Returns true if host is using TSC based clocksource. 2959 * 2960 * DO NOT USE this for anything related to migration. You want CLOCK_TAI 2961 * for that. 2962 */ 2963 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2964 u64 *tsc_timestamp) 2965 { 2966 /* checked again under seqlock below */ 2967 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2968 return false; 2969 2970 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2971 } 2972 #endif 2973 2974 /* 2975 * 2976 * Assuming a stable TSC across physical CPUS, and a stable TSC 2977 * across virtual CPUs, the following condition is possible. 2978 * Each numbered line represents an event visible to both 2979 * CPUs at the next numbered event. 2980 * 2981 * "timespecX" represents host monotonic time. "tscX" represents 2982 * RDTSC value. 2983 * 2984 * VCPU0 on CPU0 | VCPU1 on CPU1 2985 * 2986 * 1. read timespec0,tsc0 2987 * 2. | timespec1 = timespec0 + N 2988 * | tsc1 = tsc0 + M 2989 * 3. transition to guest | transition to guest 2990 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2991 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2992 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2993 * 2994 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2995 * 2996 * - ret0 < ret1 2997 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2998 * ... 2999 * - 0 < N - M => M < N 3000 * 3001 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 3002 * always the case (the difference between two distinct xtime instances 3003 * might be smaller then the difference between corresponding TSC reads, 3004 * when updating guest vcpus pvclock areas). 3005 * 3006 * To avoid that problem, do not allow visibility of distinct 3007 * system_timestamp/tsc_timestamp values simultaneously: use a master 3008 * copy of host monotonic time values. Update that master copy 3009 * in lockstep. 3010 * 3011 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 3012 * 3013 */ 3014 3015 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 3016 { 3017 #ifdef CONFIG_X86_64 3018 struct kvm_arch *ka = &kvm->arch; 3019 int vclock_mode; 3020 bool host_tsc_clocksource, vcpus_matched; 3021 3022 lockdep_assert_held(&kvm->arch.tsc_write_lock); 3023 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 3024 atomic_read(&kvm->online_vcpus)); 3025 3026 /* 3027 * If the host uses TSC clock, then passthrough TSC as stable 3028 * to the guest. 3029 */ 3030 host_tsc_clocksource = kvm_get_time_and_clockread( 3031 &ka->master_kernel_ns, 3032 &ka->master_cycle_now); 3033 3034 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 3035 && !ka->backwards_tsc_observed 3036 && !ka->boot_vcpu_runs_old_kvmclock; 3037 3038 if (ka->use_master_clock) 3039 atomic_set(&kvm_guest_has_master_clock, 1); 3040 3041 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 3042 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 3043 vcpus_matched); 3044 #endif 3045 } 3046 3047 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3048 { 3049 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3050 } 3051 3052 static void __kvm_start_pvclock_update(struct kvm *kvm) 3053 { 3054 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3055 write_seqcount_begin(&kvm->arch.pvclock_sc); 3056 } 3057 3058 static void kvm_start_pvclock_update(struct kvm *kvm) 3059 { 3060 kvm_make_mclock_inprogress_request(kvm); 3061 3062 /* no guest entries from this point */ 3063 __kvm_start_pvclock_update(kvm); 3064 } 3065 3066 static void kvm_end_pvclock_update(struct kvm *kvm) 3067 { 3068 struct kvm_arch *ka = &kvm->arch; 3069 struct kvm_vcpu *vcpu; 3070 unsigned long i; 3071 3072 write_seqcount_end(&ka->pvclock_sc); 3073 raw_spin_unlock_irq(&ka->tsc_write_lock); 3074 kvm_for_each_vcpu(i, vcpu, kvm) 3075 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3076 3077 /* guest entries allowed */ 3078 kvm_for_each_vcpu(i, vcpu, kvm) 3079 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3080 } 3081 3082 static void kvm_update_masterclock(struct kvm *kvm) 3083 { 3084 kvm_hv_request_tsc_page_update(kvm); 3085 kvm_start_pvclock_update(kvm); 3086 pvclock_update_vm_gtod_copy(kvm); 3087 kvm_end_pvclock_update(kvm); 3088 } 3089 3090 /* 3091 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3092 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3093 * can change during boot even if the TSC is constant, as it's possible for KVM 3094 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3095 * notification when calibration completes, but practically speaking calibration 3096 * will complete before userspace is alive enough to create VMs. 3097 */ 3098 static unsigned long get_cpu_tsc_khz(void) 3099 { 3100 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3101 return tsc_khz; 3102 else 3103 return __this_cpu_read(cpu_tsc_khz); 3104 } 3105 3106 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3107 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3108 { 3109 struct kvm_arch *ka = &kvm->arch; 3110 struct pvclock_vcpu_time_info hv_clock; 3111 3112 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3113 get_cpu(); 3114 3115 data->flags = 0; 3116 if (ka->use_master_clock && 3117 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3118 #ifdef CONFIG_X86_64 3119 struct timespec64 ts; 3120 3121 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3122 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3123 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3124 } else 3125 #endif 3126 data->host_tsc = rdtsc(); 3127 3128 data->flags |= KVM_CLOCK_TSC_STABLE; 3129 hv_clock.tsc_timestamp = ka->master_cycle_now; 3130 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3131 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3132 &hv_clock.tsc_shift, 3133 &hv_clock.tsc_to_system_mul); 3134 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3135 } else { 3136 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3137 } 3138 3139 put_cpu(); 3140 } 3141 3142 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3143 { 3144 struct kvm_arch *ka = &kvm->arch; 3145 unsigned seq; 3146 3147 do { 3148 seq = read_seqcount_begin(&ka->pvclock_sc); 3149 __get_kvmclock(kvm, data); 3150 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3151 } 3152 3153 u64 get_kvmclock_ns(struct kvm *kvm) 3154 { 3155 struct kvm_clock_data data; 3156 3157 get_kvmclock(kvm, &data); 3158 return data.clock; 3159 } 3160 3161 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3162 struct gfn_to_pfn_cache *gpc, 3163 unsigned int offset, 3164 bool force_tsc_unstable) 3165 { 3166 struct kvm_vcpu_arch *vcpu = &v->arch; 3167 struct pvclock_vcpu_time_info *guest_hv_clock; 3168 unsigned long flags; 3169 3170 read_lock_irqsave(&gpc->lock, flags); 3171 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3172 read_unlock_irqrestore(&gpc->lock, flags); 3173 3174 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3175 return; 3176 3177 read_lock_irqsave(&gpc->lock, flags); 3178 } 3179 3180 guest_hv_clock = (void *)(gpc->khva + offset); 3181 3182 /* 3183 * This VCPU is paused, but it's legal for a guest to read another 3184 * VCPU's kvmclock, so we really have to follow the specification where 3185 * it says that version is odd if data is being modified, and even after 3186 * it is consistent. 3187 */ 3188 3189 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3190 smp_wmb(); 3191 3192 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3193 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3194 3195 if (vcpu->pvclock_set_guest_stopped_request) { 3196 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3197 vcpu->pvclock_set_guest_stopped_request = false; 3198 } 3199 3200 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3201 3202 if (force_tsc_unstable) 3203 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT; 3204 3205 smp_wmb(); 3206 3207 guest_hv_clock->version = ++vcpu->hv_clock.version; 3208 3209 kvm_gpc_mark_dirty_in_slot(gpc); 3210 read_unlock_irqrestore(&gpc->lock, flags); 3211 3212 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3213 } 3214 3215 static int kvm_guest_time_update(struct kvm_vcpu *v) 3216 { 3217 unsigned long flags, tgt_tsc_khz; 3218 unsigned seq; 3219 struct kvm_vcpu_arch *vcpu = &v->arch; 3220 struct kvm_arch *ka = &v->kvm->arch; 3221 s64 kernel_ns; 3222 u64 tsc_timestamp, host_tsc; 3223 u8 pvclock_flags; 3224 bool use_master_clock; 3225 #ifdef CONFIG_KVM_XEN 3226 /* 3227 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3228 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3229 * This default behaviour led to bugs in some guest kernels which cause 3230 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3231 */ 3232 bool xen_pvclock_tsc_unstable = 3233 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 3234 #endif 3235 3236 kernel_ns = 0; 3237 host_tsc = 0; 3238 3239 /* 3240 * If the host uses TSC clock, then passthrough TSC as stable 3241 * to the guest. 3242 */ 3243 do { 3244 seq = read_seqcount_begin(&ka->pvclock_sc); 3245 use_master_clock = ka->use_master_clock; 3246 if (use_master_clock) { 3247 host_tsc = ka->master_cycle_now; 3248 kernel_ns = ka->master_kernel_ns; 3249 } 3250 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3251 3252 /* Keep irq disabled to prevent changes to the clock */ 3253 local_irq_save(flags); 3254 tgt_tsc_khz = get_cpu_tsc_khz(); 3255 if (unlikely(tgt_tsc_khz == 0)) { 3256 local_irq_restore(flags); 3257 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3258 return 1; 3259 } 3260 if (!use_master_clock) { 3261 host_tsc = rdtsc(); 3262 kernel_ns = get_kvmclock_base_ns(); 3263 } 3264 3265 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3266 3267 /* 3268 * We may have to catch up the TSC to match elapsed wall clock 3269 * time for two reasons, even if kvmclock is used. 3270 * 1) CPU could have been running below the maximum TSC rate 3271 * 2) Broken TSC compensation resets the base at each VCPU 3272 * entry to avoid unknown leaps of TSC even when running 3273 * again on the same CPU. This may cause apparent elapsed 3274 * time to disappear, and the guest to stand still or run 3275 * very slowly. 3276 */ 3277 if (vcpu->tsc_catchup) { 3278 u64 tsc = compute_guest_tsc(v, kernel_ns); 3279 if (tsc > tsc_timestamp) { 3280 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3281 tsc_timestamp = tsc; 3282 } 3283 } 3284 3285 local_irq_restore(flags); 3286 3287 /* With all the info we got, fill in the values */ 3288 3289 if (kvm_caps.has_tsc_control) 3290 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3291 v->arch.l1_tsc_scaling_ratio); 3292 3293 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3294 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3295 &vcpu->hv_clock.tsc_shift, 3296 &vcpu->hv_clock.tsc_to_system_mul); 3297 vcpu->hw_tsc_khz = tgt_tsc_khz; 3298 kvm_xen_update_tsc_info(v); 3299 } 3300 3301 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3302 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3303 vcpu->last_guest_tsc = tsc_timestamp; 3304 3305 /* If the host uses TSC clocksource, then it is stable */ 3306 pvclock_flags = 0; 3307 if (use_master_clock) 3308 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3309 3310 vcpu->hv_clock.flags = pvclock_flags; 3311 3312 if (vcpu->pv_time.active) 3313 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false); 3314 #ifdef CONFIG_KVM_XEN 3315 if (vcpu->xen.vcpu_info_cache.active) 3316 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3317 offsetof(struct compat_vcpu_info, time), 3318 xen_pvclock_tsc_unstable); 3319 if (vcpu->xen.vcpu_time_info_cache.active) 3320 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0, 3321 xen_pvclock_tsc_unstable); 3322 #endif 3323 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3324 return 0; 3325 } 3326 3327 /* 3328 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3329 * which it started (i.e. its epoch, when its kvmclock was zero). 3330 * 3331 * In fact those clocks are subtly different; wall clock frequency is 3332 * adjusted by NTP and has leap seconds, while the kvmclock is a 3333 * simple function of the TSC without any such adjustment. 3334 * 3335 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3336 * that and kvmclock, but even that would be subject to change over 3337 * time. 3338 * 3339 * Attempt to calculate the epoch at a given moment using the *same* 3340 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3341 * wallclock and kvmclock times, and subtracting one from the other. 3342 * 3343 * Fall back to using their values at slightly different moments by 3344 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3345 */ 3346 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3347 { 3348 #ifdef CONFIG_X86_64 3349 struct pvclock_vcpu_time_info hv_clock; 3350 struct kvm_arch *ka = &kvm->arch; 3351 unsigned long seq, local_tsc_khz; 3352 struct timespec64 ts; 3353 uint64_t host_tsc; 3354 3355 do { 3356 seq = read_seqcount_begin(&ka->pvclock_sc); 3357 3358 local_tsc_khz = 0; 3359 if (!ka->use_master_clock) 3360 break; 3361 3362 /* 3363 * The TSC read and the call to get_cpu_tsc_khz() must happen 3364 * on the same CPU. 3365 */ 3366 get_cpu(); 3367 3368 local_tsc_khz = get_cpu_tsc_khz(); 3369 3370 if (local_tsc_khz && 3371 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3372 local_tsc_khz = 0; /* Fall back to old method */ 3373 3374 put_cpu(); 3375 3376 /* 3377 * These values must be snapshotted within the seqcount loop. 3378 * After that, it's just mathematics which can happen on any 3379 * CPU at any time. 3380 */ 3381 hv_clock.tsc_timestamp = ka->master_cycle_now; 3382 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3383 3384 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3385 3386 /* 3387 * If the conditions were right, and obtaining the wallclock+TSC was 3388 * successful, calculate the KVM clock at the corresponding time and 3389 * subtract one from the other to get the guest's epoch in nanoseconds 3390 * since 1970-01-01. 3391 */ 3392 if (local_tsc_khz) { 3393 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3394 &hv_clock.tsc_shift, 3395 &hv_clock.tsc_to_system_mul); 3396 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3397 __pvclock_read_cycles(&hv_clock, host_tsc); 3398 } 3399 #endif 3400 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3401 } 3402 3403 /* 3404 * kvmclock updates which are isolated to a given vcpu, such as 3405 * vcpu->cpu migration, should not allow system_timestamp from 3406 * the rest of the vcpus to remain static. Otherwise ntp frequency 3407 * correction applies to one vcpu's system_timestamp but not 3408 * the others. 3409 * 3410 * So in those cases, request a kvmclock update for all vcpus. 3411 * We need to rate-limit these requests though, as they can 3412 * considerably slow guests that have a large number of vcpus. 3413 * The time for a remote vcpu to update its kvmclock is bound 3414 * by the delay we use to rate-limit the updates. 3415 */ 3416 3417 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3418 3419 static void kvmclock_update_fn(struct work_struct *work) 3420 { 3421 unsigned long i; 3422 struct delayed_work *dwork = to_delayed_work(work); 3423 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3424 kvmclock_update_work); 3425 struct kvm *kvm = container_of(ka, struct kvm, arch); 3426 struct kvm_vcpu *vcpu; 3427 3428 kvm_for_each_vcpu(i, vcpu, kvm) { 3429 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3430 kvm_vcpu_kick(vcpu); 3431 } 3432 } 3433 3434 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3435 { 3436 struct kvm *kvm = v->kvm; 3437 3438 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3439 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3440 KVMCLOCK_UPDATE_DELAY); 3441 } 3442 3443 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3444 3445 static void kvmclock_sync_fn(struct work_struct *work) 3446 { 3447 struct delayed_work *dwork = to_delayed_work(work); 3448 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3449 kvmclock_sync_work); 3450 struct kvm *kvm = container_of(ka, struct kvm, arch); 3451 3452 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3453 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3454 KVMCLOCK_SYNC_PERIOD); 3455 } 3456 3457 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3458 static bool is_mci_control_msr(u32 msr) 3459 { 3460 return (msr & 3) == 0; 3461 } 3462 static bool is_mci_status_msr(u32 msr) 3463 { 3464 return (msr & 3) == 1; 3465 } 3466 3467 /* 3468 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3469 */ 3470 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3471 { 3472 /* McStatusWrEn enabled? */ 3473 if (guest_cpuid_is_amd_compatible(vcpu)) 3474 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3475 3476 return false; 3477 } 3478 3479 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3480 { 3481 u64 mcg_cap = vcpu->arch.mcg_cap; 3482 unsigned bank_num = mcg_cap & 0xff; 3483 u32 msr = msr_info->index; 3484 u64 data = msr_info->data; 3485 u32 offset, last_msr; 3486 3487 switch (msr) { 3488 case MSR_IA32_MCG_STATUS: 3489 vcpu->arch.mcg_status = data; 3490 break; 3491 case MSR_IA32_MCG_CTL: 3492 if (!(mcg_cap & MCG_CTL_P) && 3493 (data || !msr_info->host_initiated)) 3494 return 1; 3495 if (data != 0 && data != ~(u64)0) 3496 return 1; 3497 vcpu->arch.mcg_ctl = data; 3498 break; 3499 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3500 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3501 if (msr > last_msr) 3502 return 1; 3503 3504 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3505 return 1; 3506 /* An attempt to write a 1 to a reserved bit raises #GP */ 3507 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3508 return 1; 3509 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3510 last_msr + 1 - MSR_IA32_MC0_CTL2); 3511 vcpu->arch.mci_ctl2_banks[offset] = data; 3512 break; 3513 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3514 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3515 if (msr > last_msr) 3516 return 1; 3517 3518 /* 3519 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3520 * values are architecturally undefined. But, some Linux 3521 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3522 * issue on AMD K8s, allow bit 10 to be clear when setting all 3523 * other bits in order to avoid an uncaught #GP in the guest. 3524 * 3525 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3526 * single-bit ECC data errors. 3527 */ 3528 if (is_mci_control_msr(msr) && 3529 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3530 return 1; 3531 3532 /* 3533 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3534 * AMD-based CPUs allow non-zero values, but if and only if 3535 * HWCR[McStatusWrEn] is set. 3536 */ 3537 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3538 data != 0 && !can_set_mci_status(vcpu)) 3539 return 1; 3540 3541 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3542 last_msr + 1 - MSR_IA32_MC0_CTL); 3543 vcpu->arch.mce_banks[offset] = data; 3544 break; 3545 default: 3546 return 1; 3547 } 3548 return 0; 3549 } 3550 3551 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3552 { 3553 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3554 3555 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3556 } 3557 3558 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3559 { 3560 gpa_t gpa = data & ~0x3f; 3561 3562 /* Bits 4:5 are reserved, Should be zero */ 3563 if (data & 0x30) 3564 return 1; 3565 3566 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3567 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3568 return 1; 3569 3570 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3571 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3572 return 1; 3573 3574 if (!lapic_in_kernel(vcpu)) 3575 return data ? 1 : 0; 3576 3577 vcpu->arch.apf.msr_en_val = data; 3578 3579 if (!kvm_pv_async_pf_enabled(vcpu)) { 3580 kvm_clear_async_pf_completion_queue(vcpu); 3581 kvm_async_pf_hash_reset(vcpu); 3582 return 0; 3583 } 3584 3585 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3586 sizeof(u64))) 3587 return 1; 3588 3589 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3590 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3591 3592 kvm_async_pf_wakeup_all(vcpu); 3593 3594 return 0; 3595 } 3596 3597 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3598 { 3599 /* Bits 8-63 are reserved */ 3600 if (data >> 8) 3601 return 1; 3602 3603 if (!lapic_in_kernel(vcpu)) 3604 return 1; 3605 3606 vcpu->arch.apf.msr_int_val = data; 3607 3608 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3609 3610 return 0; 3611 } 3612 3613 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3614 { 3615 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3616 vcpu->arch.time = 0; 3617 } 3618 3619 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3620 { 3621 ++vcpu->stat.tlb_flush; 3622 static_call(kvm_x86_flush_tlb_all)(vcpu); 3623 3624 /* Flushing all ASIDs flushes the current ASID... */ 3625 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3626 } 3627 3628 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3629 { 3630 ++vcpu->stat.tlb_flush; 3631 3632 if (!tdp_enabled) { 3633 /* 3634 * A TLB flush on behalf of the guest is equivalent to 3635 * INVPCID(all), toggling CR4.PGE, etc., which requires 3636 * a forced sync of the shadow page tables. Ensure all the 3637 * roots are synced and the guest TLB in hardware is clean. 3638 */ 3639 kvm_mmu_sync_roots(vcpu); 3640 kvm_mmu_sync_prev_roots(vcpu); 3641 } 3642 3643 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3644 3645 /* 3646 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3647 * grained flushing. 3648 */ 3649 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3650 } 3651 3652 3653 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3654 { 3655 ++vcpu->stat.tlb_flush; 3656 static_call(kvm_x86_flush_tlb_current)(vcpu); 3657 } 3658 3659 /* 3660 * Service "local" TLB flush requests, which are specific to the current MMU 3661 * context. In addition to the generic event handling in vcpu_enter_guest(), 3662 * TLB flushes that are targeted at an MMU context also need to be serviced 3663 * prior before nested VM-Enter/VM-Exit. 3664 */ 3665 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3666 { 3667 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3668 kvm_vcpu_flush_tlb_current(vcpu); 3669 3670 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3671 kvm_vcpu_flush_tlb_guest(vcpu); 3672 } 3673 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3674 3675 static void record_steal_time(struct kvm_vcpu *vcpu) 3676 { 3677 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3678 struct kvm_steal_time __user *st; 3679 struct kvm_memslots *slots; 3680 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3681 u64 steal; 3682 u32 version; 3683 3684 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3685 kvm_xen_runstate_set_running(vcpu); 3686 return; 3687 } 3688 3689 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3690 return; 3691 3692 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3693 return; 3694 3695 slots = kvm_memslots(vcpu->kvm); 3696 3697 if (unlikely(slots->generation != ghc->generation || 3698 gpa != ghc->gpa || 3699 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3700 /* We rely on the fact that it fits in a single page. */ 3701 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3702 3703 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3704 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3705 return; 3706 } 3707 3708 st = (struct kvm_steal_time __user *)ghc->hva; 3709 /* 3710 * Doing a TLB flush here, on the guest's behalf, can avoid 3711 * expensive IPIs. 3712 */ 3713 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3714 u8 st_preempted = 0; 3715 int err = -EFAULT; 3716 3717 if (!user_access_begin(st, sizeof(*st))) 3718 return; 3719 3720 asm volatile("1: xchgb %0, %2\n" 3721 "xor %1, %1\n" 3722 "2:\n" 3723 _ASM_EXTABLE_UA(1b, 2b) 3724 : "+q" (st_preempted), 3725 "+&r" (err), 3726 "+m" (st->preempted)); 3727 if (err) 3728 goto out; 3729 3730 user_access_end(); 3731 3732 vcpu->arch.st.preempted = 0; 3733 3734 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3735 st_preempted & KVM_VCPU_FLUSH_TLB); 3736 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3737 kvm_vcpu_flush_tlb_guest(vcpu); 3738 3739 if (!user_access_begin(st, sizeof(*st))) 3740 goto dirty; 3741 } else { 3742 if (!user_access_begin(st, sizeof(*st))) 3743 return; 3744 3745 unsafe_put_user(0, &st->preempted, out); 3746 vcpu->arch.st.preempted = 0; 3747 } 3748 3749 unsafe_get_user(version, &st->version, out); 3750 if (version & 1) 3751 version += 1; /* first time write, random junk */ 3752 3753 version += 1; 3754 unsafe_put_user(version, &st->version, out); 3755 3756 smp_wmb(); 3757 3758 unsafe_get_user(steal, &st->steal, out); 3759 steal += current->sched_info.run_delay - 3760 vcpu->arch.st.last_steal; 3761 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3762 unsafe_put_user(steal, &st->steal, out); 3763 3764 version += 1; 3765 unsafe_put_user(version, &st->version, out); 3766 3767 out: 3768 user_access_end(); 3769 dirty: 3770 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3771 } 3772 3773 static bool kvm_is_msr_to_save(u32 msr_index) 3774 { 3775 unsigned int i; 3776 3777 for (i = 0; i < num_msrs_to_save; i++) { 3778 if (msrs_to_save[i] == msr_index) 3779 return true; 3780 } 3781 3782 return false; 3783 } 3784 3785 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3786 { 3787 u32 msr = msr_info->index; 3788 u64 data = msr_info->data; 3789 3790 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3791 return kvm_xen_write_hypercall_page(vcpu, data); 3792 3793 switch (msr) { 3794 case MSR_AMD64_NB_CFG: 3795 case MSR_IA32_UCODE_WRITE: 3796 case MSR_VM_HSAVE_PA: 3797 case MSR_AMD64_PATCH_LOADER: 3798 case MSR_AMD64_BU_CFG2: 3799 case MSR_AMD64_DC_CFG: 3800 case MSR_AMD64_TW_CFG: 3801 case MSR_F15H_EX_CFG: 3802 break; 3803 3804 case MSR_IA32_UCODE_REV: 3805 if (msr_info->host_initiated) 3806 vcpu->arch.microcode_version = data; 3807 break; 3808 case MSR_IA32_ARCH_CAPABILITIES: 3809 if (!msr_info->host_initiated) 3810 return 1; 3811 vcpu->arch.arch_capabilities = data; 3812 break; 3813 case MSR_IA32_PERF_CAPABILITIES: 3814 if (!msr_info->host_initiated) 3815 return 1; 3816 if (data & ~kvm_caps.supported_perf_cap) 3817 return 1; 3818 3819 /* 3820 * Note, this is not just a performance optimization! KVM 3821 * disallows changing feature MSRs after the vCPU has run; PMU 3822 * refresh will bug the VM if called after the vCPU has run. 3823 */ 3824 if (vcpu->arch.perf_capabilities == data) 3825 break; 3826 3827 vcpu->arch.perf_capabilities = data; 3828 kvm_pmu_refresh(vcpu); 3829 break; 3830 case MSR_IA32_PRED_CMD: { 3831 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3832 3833 if (!msr_info->host_initiated) { 3834 if ((!guest_has_pred_cmd_msr(vcpu))) 3835 return 1; 3836 3837 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3838 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3839 reserved_bits |= PRED_CMD_IBPB; 3840 3841 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3842 reserved_bits |= PRED_CMD_SBPB; 3843 } 3844 3845 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3846 reserved_bits |= PRED_CMD_IBPB; 3847 3848 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3849 reserved_bits |= PRED_CMD_SBPB; 3850 3851 if (data & reserved_bits) 3852 return 1; 3853 3854 if (!data) 3855 break; 3856 3857 wrmsrl(MSR_IA32_PRED_CMD, data); 3858 break; 3859 } 3860 case MSR_IA32_FLUSH_CMD: 3861 if (!msr_info->host_initiated && 3862 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3863 return 1; 3864 3865 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3866 return 1; 3867 if (!data) 3868 break; 3869 3870 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3871 break; 3872 case MSR_EFER: 3873 return set_efer(vcpu, msr_info); 3874 case MSR_K7_HWCR: 3875 data &= ~(u64)0x40; /* ignore flush filter disable */ 3876 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3877 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3878 3879 /* 3880 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3881 * through at least v6.6 whine if TscFreqSel is clear, 3882 * depending on F/M/S. 3883 */ 3884 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3885 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3886 return 1; 3887 } 3888 vcpu->arch.msr_hwcr = data; 3889 break; 3890 case MSR_FAM10H_MMIO_CONF_BASE: 3891 if (data != 0) { 3892 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3893 return 1; 3894 } 3895 break; 3896 case MSR_IA32_CR_PAT: 3897 if (!kvm_pat_valid(data)) 3898 return 1; 3899 3900 vcpu->arch.pat = data; 3901 break; 3902 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3903 case MSR_MTRRdefType: 3904 return kvm_mtrr_set_msr(vcpu, msr, data); 3905 case MSR_IA32_APICBASE: 3906 return kvm_set_apic_base(vcpu, msr_info); 3907 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3908 return kvm_x2apic_msr_write(vcpu, msr, data); 3909 case MSR_IA32_TSC_DEADLINE: 3910 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3911 break; 3912 case MSR_IA32_TSC_ADJUST: 3913 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3914 if (!msr_info->host_initiated) { 3915 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3916 adjust_tsc_offset_guest(vcpu, adj); 3917 /* Before back to guest, tsc_timestamp must be adjusted 3918 * as well, otherwise guest's percpu pvclock time could jump. 3919 */ 3920 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3921 } 3922 vcpu->arch.ia32_tsc_adjust_msr = data; 3923 } 3924 break; 3925 case MSR_IA32_MISC_ENABLE: { 3926 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3927 3928 if (!msr_info->host_initiated) { 3929 /* RO bits */ 3930 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3931 return 1; 3932 3933 /* R bits, i.e. writes are ignored, but don't fault. */ 3934 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3935 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3936 } 3937 3938 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3939 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3940 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3941 return 1; 3942 vcpu->arch.ia32_misc_enable_msr = data; 3943 kvm_update_cpuid_runtime(vcpu); 3944 } else { 3945 vcpu->arch.ia32_misc_enable_msr = data; 3946 } 3947 break; 3948 } 3949 case MSR_IA32_SMBASE: 3950 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3951 return 1; 3952 vcpu->arch.smbase = data; 3953 break; 3954 case MSR_IA32_POWER_CTL: 3955 vcpu->arch.msr_ia32_power_ctl = data; 3956 break; 3957 case MSR_IA32_TSC: 3958 if (msr_info->host_initiated) { 3959 kvm_synchronize_tsc(vcpu, &data); 3960 } else { 3961 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3962 adjust_tsc_offset_guest(vcpu, adj); 3963 vcpu->arch.ia32_tsc_adjust_msr += adj; 3964 } 3965 break; 3966 case MSR_IA32_XSS: 3967 if (!msr_info->host_initiated && 3968 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3969 return 1; 3970 /* 3971 * KVM supports exposing PT to the guest, but does not support 3972 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3973 * XSAVES/XRSTORS to save/restore PT MSRs. 3974 */ 3975 if (data & ~kvm_caps.supported_xss) 3976 return 1; 3977 vcpu->arch.ia32_xss = data; 3978 kvm_update_cpuid_runtime(vcpu); 3979 break; 3980 case MSR_SMI_COUNT: 3981 if (!msr_info->host_initiated) 3982 return 1; 3983 vcpu->arch.smi_count = data; 3984 break; 3985 case MSR_KVM_WALL_CLOCK_NEW: 3986 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3987 return 1; 3988 3989 vcpu->kvm->arch.wall_clock = data; 3990 kvm_write_wall_clock(vcpu->kvm, data, 0); 3991 break; 3992 case MSR_KVM_WALL_CLOCK: 3993 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3994 return 1; 3995 3996 vcpu->kvm->arch.wall_clock = data; 3997 kvm_write_wall_clock(vcpu->kvm, data, 0); 3998 break; 3999 case MSR_KVM_SYSTEM_TIME_NEW: 4000 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4001 return 1; 4002 4003 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 4004 break; 4005 case MSR_KVM_SYSTEM_TIME: 4006 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4007 return 1; 4008 4009 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 4010 break; 4011 case MSR_KVM_ASYNC_PF_EN: 4012 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4013 return 1; 4014 4015 if (kvm_pv_enable_async_pf(vcpu, data)) 4016 return 1; 4017 break; 4018 case MSR_KVM_ASYNC_PF_INT: 4019 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4020 return 1; 4021 4022 if (kvm_pv_enable_async_pf_int(vcpu, data)) 4023 return 1; 4024 break; 4025 case MSR_KVM_ASYNC_PF_ACK: 4026 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4027 return 1; 4028 if (data & 0x1) { 4029 vcpu->arch.apf.pageready_pending = false; 4030 kvm_check_async_pf_completion(vcpu); 4031 } 4032 break; 4033 case MSR_KVM_STEAL_TIME: 4034 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4035 return 1; 4036 4037 if (unlikely(!sched_info_on())) 4038 return 1; 4039 4040 if (data & KVM_STEAL_RESERVED_MASK) 4041 return 1; 4042 4043 vcpu->arch.st.msr_val = data; 4044 4045 if (!(data & KVM_MSR_ENABLED)) 4046 break; 4047 4048 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4049 4050 break; 4051 case MSR_KVM_PV_EOI_EN: 4052 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4053 return 1; 4054 4055 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4056 return 1; 4057 break; 4058 4059 case MSR_KVM_POLL_CONTROL: 4060 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4061 return 1; 4062 4063 /* only enable bit supported */ 4064 if (data & (-1ULL << 1)) 4065 return 1; 4066 4067 vcpu->arch.msr_kvm_poll_control = data; 4068 break; 4069 4070 case MSR_IA32_MCG_CTL: 4071 case MSR_IA32_MCG_STATUS: 4072 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4073 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4074 return set_msr_mce(vcpu, msr_info); 4075 4076 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4077 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4078 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4079 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4080 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4081 return kvm_pmu_set_msr(vcpu, msr_info); 4082 4083 if (data) 4084 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4085 break; 4086 case MSR_K7_CLK_CTL: 4087 /* 4088 * Ignore all writes to this no longer documented MSR. 4089 * Writes are only relevant for old K7 processors, 4090 * all pre-dating SVM, but a recommended workaround from 4091 * AMD for these chips. It is possible to specify the 4092 * affected processor models on the command line, hence 4093 * the need to ignore the workaround. 4094 */ 4095 break; 4096 #ifdef CONFIG_KVM_HYPERV 4097 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4098 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4099 case HV_X64_MSR_SYNDBG_OPTIONS: 4100 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4101 case HV_X64_MSR_CRASH_CTL: 4102 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4103 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4104 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4105 case HV_X64_MSR_TSC_EMULATION_STATUS: 4106 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4107 return kvm_hv_set_msr_common(vcpu, msr, data, 4108 msr_info->host_initiated); 4109 #endif 4110 case MSR_IA32_BBL_CR_CTL3: 4111 /* Drop writes to this legacy MSR -- see rdmsr 4112 * counterpart for further detail. 4113 */ 4114 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4115 break; 4116 case MSR_AMD64_OSVW_ID_LENGTH: 4117 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4118 return 1; 4119 vcpu->arch.osvw.length = data; 4120 break; 4121 case MSR_AMD64_OSVW_STATUS: 4122 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4123 return 1; 4124 vcpu->arch.osvw.status = data; 4125 break; 4126 case MSR_PLATFORM_INFO: 4127 if (!msr_info->host_initiated || 4128 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 4129 cpuid_fault_enabled(vcpu))) 4130 return 1; 4131 vcpu->arch.msr_platform_info = data; 4132 break; 4133 case MSR_MISC_FEATURES_ENABLES: 4134 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4135 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4136 !supports_cpuid_fault(vcpu))) 4137 return 1; 4138 vcpu->arch.msr_misc_features_enables = data; 4139 break; 4140 #ifdef CONFIG_X86_64 4141 case MSR_IA32_XFD: 4142 if (!msr_info->host_initiated && 4143 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4144 return 1; 4145 4146 if (data & ~kvm_guest_supported_xfd(vcpu)) 4147 return 1; 4148 4149 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4150 break; 4151 case MSR_IA32_XFD_ERR: 4152 if (!msr_info->host_initiated && 4153 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4154 return 1; 4155 4156 if (data & ~kvm_guest_supported_xfd(vcpu)) 4157 return 1; 4158 4159 vcpu->arch.guest_fpu.xfd_err = data; 4160 break; 4161 #endif 4162 default: 4163 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4164 return kvm_pmu_set_msr(vcpu, msr_info); 4165 4166 /* 4167 * Userspace is allowed to write '0' to MSRs that KVM reports 4168 * as to-be-saved, even if an MSRs isn't fully supported. 4169 */ 4170 if (msr_info->host_initiated && !data && 4171 kvm_is_msr_to_save(msr)) 4172 break; 4173 4174 return KVM_MSR_RET_INVALID; 4175 } 4176 return 0; 4177 } 4178 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4179 4180 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4181 { 4182 u64 data; 4183 u64 mcg_cap = vcpu->arch.mcg_cap; 4184 unsigned bank_num = mcg_cap & 0xff; 4185 u32 offset, last_msr; 4186 4187 switch (msr) { 4188 case MSR_IA32_P5_MC_ADDR: 4189 case MSR_IA32_P5_MC_TYPE: 4190 data = 0; 4191 break; 4192 case MSR_IA32_MCG_CAP: 4193 data = vcpu->arch.mcg_cap; 4194 break; 4195 case MSR_IA32_MCG_CTL: 4196 if (!(mcg_cap & MCG_CTL_P) && !host) 4197 return 1; 4198 data = vcpu->arch.mcg_ctl; 4199 break; 4200 case MSR_IA32_MCG_STATUS: 4201 data = vcpu->arch.mcg_status; 4202 break; 4203 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4204 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4205 if (msr > last_msr) 4206 return 1; 4207 4208 if (!(mcg_cap & MCG_CMCI_P) && !host) 4209 return 1; 4210 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4211 last_msr + 1 - MSR_IA32_MC0_CTL2); 4212 data = vcpu->arch.mci_ctl2_banks[offset]; 4213 break; 4214 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4215 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4216 if (msr > last_msr) 4217 return 1; 4218 4219 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4220 last_msr + 1 - MSR_IA32_MC0_CTL); 4221 data = vcpu->arch.mce_banks[offset]; 4222 break; 4223 default: 4224 return 1; 4225 } 4226 *pdata = data; 4227 return 0; 4228 } 4229 4230 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4231 { 4232 switch (msr_info->index) { 4233 case MSR_IA32_PLATFORM_ID: 4234 case MSR_IA32_EBL_CR_POWERON: 4235 case MSR_IA32_LASTBRANCHFROMIP: 4236 case MSR_IA32_LASTBRANCHTOIP: 4237 case MSR_IA32_LASTINTFROMIP: 4238 case MSR_IA32_LASTINTTOIP: 4239 case MSR_AMD64_SYSCFG: 4240 case MSR_K8_TSEG_ADDR: 4241 case MSR_K8_TSEG_MASK: 4242 case MSR_VM_HSAVE_PA: 4243 case MSR_K8_INT_PENDING_MSG: 4244 case MSR_AMD64_NB_CFG: 4245 case MSR_FAM10H_MMIO_CONF_BASE: 4246 case MSR_AMD64_BU_CFG2: 4247 case MSR_IA32_PERF_CTL: 4248 case MSR_AMD64_DC_CFG: 4249 case MSR_AMD64_TW_CFG: 4250 case MSR_F15H_EX_CFG: 4251 /* 4252 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4253 * limit) MSRs. Just return 0, as we do not want to expose the host 4254 * data here. Do not conditionalize this on CPUID, as KVM does not do 4255 * so for existing CPU-specific MSRs. 4256 */ 4257 case MSR_RAPL_POWER_UNIT: 4258 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4259 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4260 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4261 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4262 msr_info->data = 0; 4263 break; 4264 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4265 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4266 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4267 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4268 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4269 return kvm_pmu_get_msr(vcpu, msr_info); 4270 msr_info->data = 0; 4271 break; 4272 case MSR_IA32_UCODE_REV: 4273 msr_info->data = vcpu->arch.microcode_version; 4274 break; 4275 case MSR_IA32_ARCH_CAPABILITIES: 4276 if (!msr_info->host_initiated && 4277 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4278 return 1; 4279 msr_info->data = vcpu->arch.arch_capabilities; 4280 break; 4281 case MSR_IA32_PERF_CAPABILITIES: 4282 if (!msr_info->host_initiated && 4283 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4284 return 1; 4285 msr_info->data = vcpu->arch.perf_capabilities; 4286 break; 4287 case MSR_IA32_POWER_CTL: 4288 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4289 break; 4290 case MSR_IA32_TSC: { 4291 /* 4292 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4293 * even when not intercepted. AMD manual doesn't explicitly 4294 * state this but appears to behave the same. 4295 * 4296 * On userspace reads and writes, however, we unconditionally 4297 * return L1's TSC value to ensure backwards-compatible 4298 * behavior for migration. 4299 */ 4300 u64 offset, ratio; 4301 4302 if (msr_info->host_initiated) { 4303 offset = vcpu->arch.l1_tsc_offset; 4304 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4305 } else { 4306 offset = vcpu->arch.tsc_offset; 4307 ratio = vcpu->arch.tsc_scaling_ratio; 4308 } 4309 4310 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4311 break; 4312 } 4313 case MSR_IA32_CR_PAT: 4314 msr_info->data = vcpu->arch.pat; 4315 break; 4316 case MSR_MTRRcap: 4317 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4318 case MSR_MTRRdefType: 4319 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4320 case 0xcd: /* fsb frequency */ 4321 msr_info->data = 3; 4322 break; 4323 /* 4324 * MSR_EBC_FREQUENCY_ID 4325 * Conservative value valid for even the basic CPU models. 4326 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4327 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4328 * and 266MHz for model 3, or 4. Set Core Clock 4329 * Frequency to System Bus Frequency Ratio to 1 (bits 4330 * 31:24) even though these are only valid for CPU 4331 * models > 2, however guests may end up dividing or 4332 * multiplying by zero otherwise. 4333 */ 4334 case MSR_EBC_FREQUENCY_ID: 4335 msr_info->data = 1 << 24; 4336 break; 4337 case MSR_IA32_APICBASE: 4338 msr_info->data = kvm_get_apic_base(vcpu); 4339 break; 4340 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4341 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4342 case MSR_IA32_TSC_DEADLINE: 4343 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4344 break; 4345 case MSR_IA32_TSC_ADJUST: 4346 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4347 break; 4348 case MSR_IA32_MISC_ENABLE: 4349 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4350 break; 4351 case MSR_IA32_SMBASE: 4352 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4353 return 1; 4354 msr_info->data = vcpu->arch.smbase; 4355 break; 4356 case MSR_SMI_COUNT: 4357 msr_info->data = vcpu->arch.smi_count; 4358 break; 4359 case MSR_IA32_PERF_STATUS: 4360 /* TSC increment by tick */ 4361 msr_info->data = 1000ULL; 4362 /* CPU multiplier */ 4363 msr_info->data |= (((uint64_t)4ULL) << 40); 4364 break; 4365 case MSR_EFER: 4366 msr_info->data = vcpu->arch.efer; 4367 break; 4368 case MSR_KVM_WALL_CLOCK: 4369 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4370 return 1; 4371 4372 msr_info->data = vcpu->kvm->arch.wall_clock; 4373 break; 4374 case MSR_KVM_WALL_CLOCK_NEW: 4375 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4376 return 1; 4377 4378 msr_info->data = vcpu->kvm->arch.wall_clock; 4379 break; 4380 case MSR_KVM_SYSTEM_TIME: 4381 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4382 return 1; 4383 4384 msr_info->data = vcpu->arch.time; 4385 break; 4386 case MSR_KVM_SYSTEM_TIME_NEW: 4387 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4388 return 1; 4389 4390 msr_info->data = vcpu->arch.time; 4391 break; 4392 case MSR_KVM_ASYNC_PF_EN: 4393 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4394 return 1; 4395 4396 msr_info->data = vcpu->arch.apf.msr_en_val; 4397 break; 4398 case MSR_KVM_ASYNC_PF_INT: 4399 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4400 return 1; 4401 4402 msr_info->data = vcpu->arch.apf.msr_int_val; 4403 break; 4404 case MSR_KVM_ASYNC_PF_ACK: 4405 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4406 return 1; 4407 4408 msr_info->data = 0; 4409 break; 4410 case MSR_KVM_STEAL_TIME: 4411 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4412 return 1; 4413 4414 msr_info->data = vcpu->arch.st.msr_val; 4415 break; 4416 case MSR_KVM_PV_EOI_EN: 4417 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4418 return 1; 4419 4420 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4421 break; 4422 case MSR_KVM_POLL_CONTROL: 4423 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4424 return 1; 4425 4426 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4427 break; 4428 case MSR_IA32_P5_MC_ADDR: 4429 case MSR_IA32_P5_MC_TYPE: 4430 case MSR_IA32_MCG_CAP: 4431 case MSR_IA32_MCG_CTL: 4432 case MSR_IA32_MCG_STATUS: 4433 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4434 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4435 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4436 msr_info->host_initiated); 4437 case MSR_IA32_XSS: 4438 if (!msr_info->host_initiated && 4439 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4440 return 1; 4441 msr_info->data = vcpu->arch.ia32_xss; 4442 break; 4443 case MSR_K7_CLK_CTL: 4444 /* 4445 * Provide expected ramp-up count for K7. All other 4446 * are set to zero, indicating minimum divisors for 4447 * every field. 4448 * 4449 * This prevents guest kernels on AMD host with CPU 4450 * type 6, model 8 and higher from exploding due to 4451 * the rdmsr failing. 4452 */ 4453 msr_info->data = 0x20000000; 4454 break; 4455 #ifdef CONFIG_KVM_HYPERV 4456 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4457 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4458 case HV_X64_MSR_SYNDBG_OPTIONS: 4459 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4460 case HV_X64_MSR_CRASH_CTL: 4461 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4462 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4463 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4464 case HV_X64_MSR_TSC_EMULATION_STATUS: 4465 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4466 return kvm_hv_get_msr_common(vcpu, 4467 msr_info->index, &msr_info->data, 4468 msr_info->host_initiated); 4469 #endif 4470 case MSR_IA32_BBL_CR_CTL3: 4471 /* This legacy MSR exists but isn't fully documented in current 4472 * silicon. It is however accessed by winxp in very narrow 4473 * scenarios where it sets bit #19, itself documented as 4474 * a "reserved" bit. Best effort attempt to source coherent 4475 * read data here should the balance of the register be 4476 * interpreted by the guest: 4477 * 4478 * L2 cache control register 3: 64GB range, 256KB size, 4479 * enabled, latency 0x1, configured 4480 */ 4481 msr_info->data = 0xbe702111; 4482 break; 4483 case MSR_AMD64_OSVW_ID_LENGTH: 4484 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4485 return 1; 4486 msr_info->data = vcpu->arch.osvw.length; 4487 break; 4488 case MSR_AMD64_OSVW_STATUS: 4489 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4490 return 1; 4491 msr_info->data = vcpu->arch.osvw.status; 4492 break; 4493 case MSR_PLATFORM_INFO: 4494 if (!msr_info->host_initiated && 4495 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4496 return 1; 4497 msr_info->data = vcpu->arch.msr_platform_info; 4498 break; 4499 case MSR_MISC_FEATURES_ENABLES: 4500 msr_info->data = vcpu->arch.msr_misc_features_enables; 4501 break; 4502 case MSR_K7_HWCR: 4503 msr_info->data = vcpu->arch.msr_hwcr; 4504 break; 4505 #ifdef CONFIG_X86_64 4506 case MSR_IA32_XFD: 4507 if (!msr_info->host_initiated && 4508 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4509 return 1; 4510 4511 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4512 break; 4513 case MSR_IA32_XFD_ERR: 4514 if (!msr_info->host_initiated && 4515 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4516 return 1; 4517 4518 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4519 break; 4520 #endif 4521 default: 4522 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4523 return kvm_pmu_get_msr(vcpu, msr_info); 4524 4525 /* 4526 * Userspace is allowed to read MSRs that KVM reports as 4527 * to-be-saved, even if an MSR isn't fully supported. 4528 */ 4529 if (msr_info->host_initiated && 4530 kvm_is_msr_to_save(msr_info->index)) { 4531 msr_info->data = 0; 4532 break; 4533 } 4534 4535 return KVM_MSR_RET_INVALID; 4536 } 4537 return 0; 4538 } 4539 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4540 4541 /* 4542 * Read or write a bunch of msrs. All parameters are kernel addresses. 4543 * 4544 * @return number of msrs set successfully. 4545 */ 4546 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4547 struct kvm_msr_entry *entries, 4548 int (*do_msr)(struct kvm_vcpu *vcpu, 4549 unsigned index, u64 *data)) 4550 { 4551 int i; 4552 4553 for (i = 0; i < msrs->nmsrs; ++i) 4554 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4555 break; 4556 4557 return i; 4558 } 4559 4560 /* 4561 * Read or write a bunch of msrs. Parameters are user addresses. 4562 * 4563 * @return number of msrs set successfully. 4564 */ 4565 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4566 int (*do_msr)(struct kvm_vcpu *vcpu, 4567 unsigned index, u64 *data), 4568 int writeback) 4569 { 4570 struct kvm_msrs msrs; 4571 struct kvm_msr_entry *entries; 4572 unsigned size; 4573 int r; 4574 4575 r = -EFAULT; 4576 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4577 goto out; 4578 4579 r = -E2BIG; 4580 if (msrs.nmsrs >= MAX_IO_MSRS) 4581 goto out; 4582 4583 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4584 entries = memdup_user(user_msrs->entries, size); 4585 if (IS_ERR(entries)) { 4586 r = PTR_ERR(entries); 4587 goto out; 4588 } 4589 4590 r = __msr_io(vcpu, &msrs, entries, do_msr); 4591 4592 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4593 r = -EFAULT; 4594 4595 kfree(entries); 4596 out: 4597 return r; 4598 } 4599 4600 static inline bool kvm_can_mwait_in_guest(void) 4601 { 4602 return boot_cpu_has(X86_FEATURE_MWAIT) && 4603 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4604 boot_cpu_has(X86_FEATURE_ARAT); 4605 } 4606 4607 #ifdef CONFIG_KVM_HYPERV 4608 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4609 struct kvm_cpuid2 __user *cpuid_arg) 4610 { 4611 struct kvm_cpuid2 cpuid; 4612 int r; 4613 4614 r = -EFAULT; 4615 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4616 return r; 4617 4618 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4619 if (r) 4620 return r; 4621 4622 r = -EFAULT; 4623 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4624 return r; 4625 4626 return 0; 4627 } 4628 #endif 4629 4630 static bool kvm_is_vm_type_supported(unsigned long type) 4631 { 4632 return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); 4633 } 4634 4635 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4636 { 4637 int r = 0; 4638 4639 switch (ext) { 4640 case KVM_CAP_IRQCHIP: 4641 case KVM_CAP_HLT: 4642 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4643 case KVM_CAP_SET_TSS_ADDR: 4644 case KVM_CAP_EXT_CPUID: 4645 case KVM_CAP_EXT_EMUL_CPUID: 4646 case KVM_CAP_CLOCKSOURCE: 4647 case KVM_CAP_PIT: 4648 case KVM_CAP_NOP_IO_DELAY: 4649 case KVM_CAP_MP_STATE: 4650 case KVM_CAP_SYNC_MMU: 4651 case KVM_CAP_USER_NMI: 4652 case KVM_CAP_REINJECT_CONTROL: 4653 case KVM_CAP_IRQ_INJECT_STATUS: 4654 case KVM_CAP_IOEVENTFD: 4655 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4656 case KVM_CAP_PIT2: 4657 case KVM_CAP_PIT_STATE2: 4658 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4659 case KVM_CAP_VCPU_EVENTS: 4660 #ifdef CONFIG_KVM_HYPERV 4661 case KVM_CAP_HYPERV: 4662 case KVM_CAP_HYPERV_VAPIC: 4663 case KVM_CAP_HYPERV_SPIN: 4664 case KVM_CAP_HYPERV_TIME: 4665 case KVM_CAP_HYPERV_SYNIC: 4666 case KVM_CAP_HYPERV_SYNIC2: 4667 case KVM_CAP_HYPERV_VP_INDEX: 4668 case KVM_CAP_HYPERV_EVENTFD: 4669 case KVM_CAP_HYPERV_TLBFLUSH: 4670 case KVM_CAP_HYPERV_SEND_IPI: 4671 case KVM_CAP_HYPERV_CPUID: 4672 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4673 case KVM_CAP_SYS_HYPERV_CPUID: 4674 #endif 4675 case KVM_CAP_PCI_SEGMENT: 4676 case KVM_CAP_DEBUGREGS: 4677 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4678 case KVM_CAP_XSAVE: 4679 case KVM_CAP_ASYNC_PF: 4680 case KVM_CAP_ASYNC_PF_INT: 4681 case KVM_CAP_GET_TSC_KHZ: 4682 case KVM_CAP_KVMCLOCK_CTRL: 4683 case KVM_CAP_READONLY_MEM: 4684 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4685 case KVM_CAP_TSC_DEADLINE_TIMER: 4686 case KVM_CAP_DISABLE_QUIRKS: 4687 case KVM_CAP_SET_BOOT_CPU_ID: 4688 case KVM_CAP_SPLIT_IRQCHIP: 4689 case KVM_CAP_IMMEDIATE_EXIT: 4690 case KVM_CAP_PMU_EVENT_FILTER: 4691 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4692 case KVM_CAP_GET_MSR_FEATURES: 4693 case KVM_CAP_MSR_PLATFORM_INFO: 4694 case KVM_CAP_EXCEPTION_PAYLOAD: 4695 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4696 case KVM_CAP_SET_GUEST_DEBUG: 4697 case KVM_CAP_LAST_CPU: 4698 case KVM_CAP_X86_USER_SPACE_MSR: 4699 case KVM_CAP_X86_MSR_FILTER: 4700 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4701 #ifdef CONFIG_X86_SGX_KVM 4702 case KVM_CAP_SGX_ATTRIBUTE: 4703 #endif 4704 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4705 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4706 case KVM_CAP_SREGS2: 4707 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4708 case KVM_CAP_VCPU_ATTRIBUTES: 4709 case KVM_CAP_SYS_ATTRIBUTES: 4710 case KVM_CAP_VAPIC: 4711 case KVM_CAP_ENABLE_CAP: 4712 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4713 case KVM_CAP_IRQFD_RESAMPLE: 4714 case KVM_CAP_MEMORY_FAULT_INFO: 4715 r = 1; 4716 break; 4717 case KVM_CAP_EXIT_HYPERCALL: 4718 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4719 break; 4720 case KVM_CAP_SET_GUEST_DEBUG2: 4721 return KVM_GUESTDBG_VALID_MASK; 4722 #ifdef CONFIG_KVM_XEN 4723 case KVM_CAP_XEN_HVM: 4724 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4725 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4726 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4727 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4728 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4729 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | 4730 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; 4731 if (sched_info_on()) 4732 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4733 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4734 break; 4735 #endif 4736 case KVM_CAP_SYNC_REGS: 4737 r = KVM_SYNC_X86_VALID_FIELDS; 4738 break; 4739 case KVM_CAP_ADJUST_CLOCK: 4740 r = KVM_CLOCK_VALID_FLAGS; 4741 break; 4742 case KVM_CAP_X86_DISABLE_EXITS: 4743 r = KVM_X86_DISABLE_EXITS_PAUSE; 4744 4745 if (!mitigate_smt_rsb) { 4746 r |= KVM_X86_DISABLE_EXITS_HLT | 4747 KVM_X86_DISABLE_EXITS_CSTATE; 4748 4749 if (kvm_can_mwait_in_guest()) 4750 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4751 } 4752 break; 4753 case KVM_CAP_X86_SMM: 4754 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4755 break; 4756 4757 /* SMBASE is usually relocated above 1M on modern chipsets, 4758 * and SMM handlers might indeed rely on 4G segment limits, 4759 * so do not report SMM to be available if real mode is 4760 * emulated via vm86 mode. Still, do not go to great lengths 4761 * to avoid userspace's usage of the feature, because it is a 4762 * fringe case that is not enabled except via specific settings 4763 * of the module parameters. 4764 */ 4765 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4766 break; 4767 case KVM_CAP_NR_VCPUS: 4768 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4769 break; 4770 case KVM_CAP_MAX_VCPUS: 4771 r = KVM_MAX_VCPUS; 4772 break; 4773 case KVM_CAP_MAX_VCPU_ID: 4774 r = KVM_MAX_VCPU_IDS; 4775 break; 4776 case KVM_CAP_PV_MMU: /* obsolete */ 4777 r = 0; 4778 break; 4779 case KVM_CAP_MCE: 4780 r = KVM_MAX_MCE_BANKS; 4781 break; 4782 case KVM_CAP_XCRS: 4783 r = boot_cpu_has(X86_FEATURE_XSAVE); 4784 break; 4785 case KVM_CAP_TSC_CONTROL: 4786 case KVM_CAP_VM_TSC_CONTROL: 4787 r = kvm_caps.has_tsc_control; 4788 break; 4789 case KVM_CAP_X2APIC_API: 4790 r = KVM_X2APIC_API_VALID_FLAGS; 4791 break; 4792 case KVM_CAP_NESTED_STATE: 4793 r = kvm_x86_ops.nested_ops->get_state ? 4794 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4795 break; 4796 #ifdef CONFIG_KVM_HYPERV 4797 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4798 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4799 break; 4800 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4801 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4802 break; 4803 #endif 4804 case KVM_CAP_SMALLER_MAXPHYADDR: 4805 r = (int) allow_smaller_maxphyaddr; 4806 break; 4807 case KVM_CAP_STEAL_TIME: 4808 r = sched_info_on(); 4809 break; 4810 case KVM_CAP_X86_BUS_LOCK_EXIT: 4811 if (kvm_caps.has_bus_lock_exit) 4812 r = KVM_BUS_LOCK_DETECTION_OFF | 4813 KVM_BUS_LOCK_DETECTION_EXIT; 4814 else 4815 r = 0; 4816 break; 4817 case KVM_CAP_XSAVE2: { 4818 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4819 if (r < sizeof(struct kvm_xsave)) 4820 r = sizeof(struct kvm_xsave); 4821 break; 4822 } 4823 case KVM_CAP_PMU_CAPABILITY: 4824 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4825 break; 4826 case KVM_CAP_DISABLE_QUIRKS2: 4827 r = KVM_X86_VALID_QUIRKS; 4828 break; 4829 case KVM_CAP_X86_NOTIFY_VMEXIT: 4830 r = kvm_caps.has_notify_vmexit; 4831 break; 4832 case KVM_CAP_VM_TYPES: 4833 r = kvm_caps.supported_vm_types; 4834 break; 4835 default: 4836 break; 4837 } 4838 return r; 4839 } 4840 4841 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) 4842 { 4843 if (attr->group) { 4844 if (kvm_x86_ops.dev_get_attr) 4845 return static_call(kvm_x86_dev_get_attr)(attr->group, attr->attr, val); 4846 return -ENXIO; 4847 } 4848 4849 switch (attr->attr) { 4850 case KVM_X86_XCOMP_GUEST_SUPP: 4851 *val = kvm_caps.supported_xcr0; 4852 return 0; 4853 default: 4854 return -ENXIO; 4855 } 4856 } 4857 4858 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4859 { 4860 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 4861 int r; 4862 u64 val; 4863 4864 r = __kvm_x86_dev_get_attr(attr, &val); 4865 if (r < 0) 4866 return r; 4867 4868 if (put_user(val, uaddr)) 4869 return -EFAULT; 4870 4871 return 0; 4872 } 4873 4874 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4875 { 4876 u64 val; 4877 4878 return __kvm_x86_dev_get_attr(attr, &val); 4879 } 4880 4881 long kvm_arch_dev_ioctl(struct file *filp, 4882 unsigned int ioctl, unsigned long arg) 4883 { 4884 void __user *argp = (void __user *)arg; 4885 long r; 4886 4887 switch (ioctl) { 4888 case KVM_GET_MSR_INDEX_LIST: { 4889 struct kvm_msr_list __user *user_msr_list = argp; 4890 struct kvm_msr_list msr_list; 4891 unsigned n; 4892 4893 r = -EFAULT; 4894 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4895 goto out; 4896 n = msr_list.nmsrs; 4897 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4898 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4899 goto out; 4900 r = -E2BIG; 4901 if (n < msr_list.nmsrs) 4902 goto out; 4903 r = -EFAULT; 4904 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4905 num_msrs_to_save * sizeof(u32))) 4906 goto out; 4907 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4908 &emulated_msrs, 4909 num_emulated_msrs * sizeof(u32))) 4910 goto out; 4911 r = 0; 4912 break; 4913 } 4914 case KVM_GET_SUPPORTED_CPUID: 4915 case KVM_GET_EMULATED_CPUID: { 4916 struct kvm_cpuid2 __user *cpuid_arg = argp; 4917 struct kvm_cpuid2 cpuid; 4918 4919 r = -EFAULT; 4920 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4921 goto out; 4922 4923 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4924 ioctl); 4925 if (r) 4926 goto out; 4927 4928 r = -EFAULT; 4929 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4930 goto out; 4931 r = 0; 4932 break; 4933 } 4934 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4935 r = -EFAULT; 4936 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4937 sizeof(kvm_caps.supported_mce_cap))) 4938 goto out; 4939 r = 0; 4940 break; 4941 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4942 struct kvm_msr_list __user *user_msr_list = argp; 4943 struct kvm_msr_list msr_list; 4944 unsigned int n; 4945 4946 r = -EFAULT; 4947 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4948 goto out; 4949 n = msr_list.nmsrs; 4950 msr_list.nmsrs = num_msr_based_features; 4951 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4952 goto out; 4953 r = -E2BIG; 4954 if (n < msr_list.nmsrs) 4955 goto out; 4956 r = -EFAULT; 4957 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4958 num_msr_based_features * sizeof(u32))) 4959 goto out; 4960 r = 0; 4961 break; 4962 } 4963 case KVM_GET_MSRS: 4964 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4965 break; 4966 #ifdef CONFIG_KVM_HYPERV 4967 case KVM_GET_SUPPORTED_HV_CPUID: 4968 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4969 break; 4970 #endif 4971 case KVM_GET_DEVICE_ATTR: { 4972 struct kvm_device_attr attr; 4973 r = -EFAULT; 4974 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4975 break; 4976 r = kvm_x86_dev_get_attr(&attr); 4977 break; 4978 } 4979 case KVM_HAS_DEVICE_ATTR: { 4980 struct kvm_device_attr attr; 4981 r = -EFAULT; 4982 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4983 break; 4984 r = kvm_x86_dev_has_attr(&attr); 4985 break; 4986 } 4987 default: 4988 r = -EINVAL; 4989 break; 4990 } 4991 out: 4992 return r; 4993 } 4994 4995 static void wbinvd_ipi(void *garbage) 4996 { 4997 wbinvd(); 4998 } 4999 5000 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 5001 { 5002 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 5003 } 5004 5005 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 5006 { 5007 /* Address WBINVD may be executed by guest */ 5008 if (need_emulate_wbinvd(vcpu)) { 5009 if (static_call(kvm_x86_has_wbinvd_exit)()) 5010 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5011 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 5012 smp_call_function_single(vcpu->cpu, 5013 wbinvd_ipi, NULL, 1); 5014 } 5015 5016 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 5017 5018 /* Save host pkru register if supported */ 5019 vcpu->arch.host_pkru = read_pkru(); 5020 5021 /* Apply any externally detected TSC adjustments (due to suspend) */ 5022 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 5023 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 5024 vcpu->arch.tsc_offset_adjustment = 0; 5025 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5026 } 5027 5028 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 5029 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 5030 rdtsc() - vcpu->arch.last_host_tsc; 5031 if (tsc_delta < 0) 5032 mark_tsc_unstable("KVM discovered backwards TSC"); 5033 5034 if (kvm_check_tsc_unstable()) { 5035 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 5036 vcpu->arch.last_guest_tsc); 5037 kvm_vcpu_write_tsc_offset(vcpu, offset); 5038 vcpu->arch.tsc_catchup = 1; 5039 } 5040 5041 if (kvm_lapic_hv_timer_in_use(vcpu)) 5042 kvm_lapic_restart_hv_timer(vcpu); 5043 5044 /* 5045 * On a host with synchronized TSC, there is no need to update 5046 * kvmclock on vcpu->cpu migration 5047 */ 5048 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5049 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5050 if (vcpu->cpu != cpu) 5051 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5052 vcpu->cpu = cpu; 5053 } 5054 5055 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5056 } 5057 5058 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5059 { 5060 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5061 struct kvm_steal_time __user *st; 5062 struct kvm_memslots *slots; 5063 static const u8 preempted = KVM_VCPU_PREEMPTED; 5064 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5065 5066 /* 5067 * The vCPU can be marked preempted if and only if the VM-Exit was on 5068 * an instruction boundary and will not trigger guest emulation of any 5069 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5070 * when this is true, for example allowing the vCPU to be marked 5071 * preempted if and only if the VM-Exit was due to a host interrupt. 5072 */ 5073 if (!vcpu->arch.at_instruction_boundary) { 5074 vcpu->stat.preemption_other++; 5075 return; 5076 } 5077 5078 vcpu->stat.preemption_reported++; 5079 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5080 return; 5081 5082 if (vcpu->arch.st.preempted) 5083 return; 5084 5085 /* This happens on process exit */ 5086 if (unlikely(current->mm != vcpu->kvm->mm)) 5087 return; 5088 5089 slots = kvm_memslots(vcpu->kvm); 5090 5091 if (unlikely(slots->generation != ghc->generation || 5092 gpa != ghc->gpa || 5093 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5094 return; 5095 5096 st = (struct kvm_steal_time __user *)ghc->hva; 5097 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5098 5099 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5100 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5101 5102 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5103 } 5104 5105 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5106 { 5107 int idx; 5108 5109 if (vcpu->preempted) { 5110 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu); 5111 5112 /* 5113 * Take the srcu lock as memslots will be accessed to check the gfn 5114 * cache generation against the memslots generation. 5115 */ 5116 idx = srcu_read_lock(&vcpu->kvm->srcu); 5117 if (kvm_xen_msr_enabled(vcpu->kvm)) 5118 kvm_xen_runstate_set_preempted(vcpu); 5119 else 5120 kvm_steal_time_set_preempted(vcpu); 5121 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5122 } 5123 5124 static_call(kvm_x86_vcpu_put)(vcpu); 5125 vcpu->arch.last_host_tsc = rdtsc(); 5126 } 5127 5128 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5129 struct kvm_lapic_state *s) 5130 { 5131 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 5132 5133 return kvm_apic_get_state(vcpu, s); 5134 } 5135 5136 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5137 struct kvm_lapic_state *s) 5138 { 5139 int r; 5140 5141 r = kvm_apic_set_state(vcpu, s); 5142 if (r) 5143 return r; 5144 update_cr8_intercept(vcpu); 5145 5146 return 0; 5147 } 5148 5149 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5150 { 5151 /* 5152 * We can accept userspace's request for interrupt injection 5153 * as long as we have a place to store the interrupt number. 5154 * The actual injection will happen when the CPU is able to 5155 * deliver the interrupt. 5156 */ 5157 if (kvm_cpu_has_extint(vcpu)) 5158 return false; 5159 5160 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5161 return (!lapic_in_kernel(vcpu) || 5162 kvm_apic_accept_pic_intr(vcpu)); 5163 } 5164 5165 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5166 { 5167 /* 5168 * Do not cause an interrupt window exit if an exception 5169 * is pending or an event needs reinjection; userspace 5170 * might want to inject the interrupt manually using KVM_SET_REGS 5171 * or KVM_SET_SREGS. For that to work, we must be at an 5172 * instruction boundary and with no events half-injected. 5173 */ 5174 return (kvm_arch_interrupt_allowed(vcpu) && 5175 kvm_cpu_accept_dm_intr(vcpu) && 5176 !kvm_event_needs_reinjection(vcpu) && 5177 !kvm_is_exception_pending(vcpu)); 5178 } 5179 5180 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5181 struct kvm_interrupt *irq) 5182 { 5183 if (irq->irq >= KVM_NR_INTERRUPTS) 5184 return -EINVAL; 5185 5186 if (!irqchip_in_kernel(vcpu->kvm)) { 5187 kvm_queue_interrupt(vcpu, irq->irq, false); 5188 kvm_make_request(KVM_REQ_EVENT, vcpu); 5189 return 0; 5190 } 5191 5192 /* 5193 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5194 * fail for in-kernel 8259. 5195 */ 5196 if (pic_in_kernel(vcpu->kvm)) 5197 return -ENXIO; 5198 5199 if (vcpu->arch.pending_external_vector != -1) 5200 return -EEXIST; 5201 5202 vcpu->arch.pending_external_vector = irq->irq; 5203 kvm_make_request(KVM_REQ_EVENT, vcpu); 5204 return 0; 5205 } 5206 5207 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5208 { 5209 kvm_inject_nmi(vcpu); 5210 5211 return 0; 5212 } 5213 5214 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5215 struct kvm_tpr_access_ctl *tac) 5216 { 5217 if (tac->flags) 5218 return -EINVAL; 5219 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5220 return 0; 5221 } 5222 5223 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5224 u64 mcg_cap) 5225 { 5226 int r; 5227 unsigned bank_num = mcg_cap & 0xff, bank; 5228 5229 r = -EINVAL; 5230 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5231 goto out; 5232 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5233 goto out; 5234 r = 0; 5235 vcpu->arch.mcg_cap = mcg_cap; 5236 /* Init IA32_MCG_CTL to all 1s */ 5237 if (mcg_cap & MCG_CTL_P) 5238 vcpu->arch.mcg_ctl = ~(u64)0; 5239 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5240 for (bank = 0; bank < bank_num; bank++) { 5241 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5242 if (mcg_cap & MCG_CMCI_P) 5243 vcpu->arch.mci_ctl2_banks[bank] = 0; 5244 } 5245 5246 kvm_apic_after_set_mcg_cap(vcpu); 5247 5248 static_call(kvm_x86_setup_mce)(vcpu); 5249 out: 5250 return r; 5251 } 5252 5253 /* 5254 * Validate this is an UCNA (uncorrectable no action) error by checking the 5255 * MCG_STATUS and MCi_STATUS registers: 5256 * - none of the bits for Machine Check Exceptions are set 5257 * - both the VAL (valid) and UC (uncorrectable) bits are set 5258 * MCI_STATUS_PCC - Processor Context Corrupted 5259 * MCI_STATUS_S - Signaled as a Machine Check Exception 5260 * MCI_STATUS_AR - Software recoverable Action Required 5261 */ 5262 static bool is_ucna(struct kvm_x86_mce *mce) 5263 { 5264 return !mce->mcg_status && 5265 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5266 (mce->status & MCI_STATUS_VAL) && 5267 (mce->status & MCI_STATUS_UC); 5268 } 5269 5270 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5271 { 5272 u64 mcg_cap = vcpu->arch.mcg_cap; 5273 5274 banks[1] = mce->status; 5275 banks[2] = mce->addr; 5276 banks[3] = mce->misc; 5277 vcpu->arch.mcg_status = mce->mcg_status; 5278 5279 if (!(mcg_cap & MCG_CMCI_P) || 5280 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5281 return 0; 5282 5283 if (lapic_in_kernel(vcpu)) 5284 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5285 5286 return 0; 5287 } 5288 5289 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5290 struct kvm_x86_mce *mce) 5291 { 5292 u64 mcg_cap = vcpu->arch.mcg_cap; 5293 unsigned bank_num = mcg_cap & 0xff; 5294 u64 *banks = vcpu->arch.mce_banks; 5295 5296 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5297 return -EINVAL; 5298 5299 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5300 5301 if (is_ucna(mce)) 5302 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5303 5304 /* 5305 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5306 * reporting is disabled 5307 */ 5308 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5309 vcpu->arch.mcg_ctl != ~(u64)0) 5310 return 0; 5311 /* 5312 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5313 * reporting is disabled for the bank 5314 */ 5315 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5316 return 0; 5317 if (mce->status & MCI_STATUS_UC) { 5318 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5319 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5320 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5321 return 0; 5322 } 5323 if (banks[1] & MCI_STATUS_VAL) 5324 mce->status |= MCI_STATUS_OVER; 5325 banks[2] = mce->addr; 5326 banks[3] = mce->misc; 5327 vcpu->arch.mcg_status = mce->mcg_status; 5328 banks[1] = mce->status; 5329 kvm_queue_exception(vcpu, MC_VECTOR); 5330 } else if (!(banks[1] & MCI_STATUS_VAL) 5331 || !(banks[1] & MCI_STATUS_UC)) { 5332 if (banks[1] & MCI_STATUS_VAL) 5333 mce->status |= MCI_STATUS_OVER; 5334 banks[2] = mce->addr; 5335 banks[3] = mce->misc; 5336 banks[1] = mce->status; 5337 } else 5338 banks[1] |= MCI_STATUS_OVER; 5339 return 0; 5340 } 5341 5342 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5343 struct kvm_vcpu_events *events) 5344 { 5345 struct kvm_queued_exception *ex; 5346 5347 process_nmi(vcpu); 5348 5349 #ifdef CONFIG_KVM_SMM 5350 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5351 process_smi(vcpu); 5352 #endif 5353 5354 /* 5355 * KVM's ABI only allows for one exception to be migrated. Luckily, 5356 * the only time there can be two queued exceptions is if there's a 5357 * non-exiting _injected_ exception, and a pending exiting exception. 5358 * In that case, ignore the VM-Exiting exception as it's an extension 5359 * of the injected exception. 5360 */ 5361 if (vcpu->arch.exception_vmexit.pending && 5362 !vcpu->arch.exception.pending && 5363 !vcpu->arch.exception.injected) 5364 ex = &vcpu->arch.exception_vmexit; 5365 else 5366 ex = &vcpu->arch.exception; 5367 5368 /* 5369 * In guest mode, payload delivery should be deferred if the exception 5370 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5371 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5372 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5373 * propagate the payload and so it cannot be safely deferred. Deliver 5374 * the payload if the capability hasn't been requested. 5375 */ 5376 if (!vcpu->kvm->arch.exception_payload_enabled && 5377 ex->pending && ex->has_payload) 5378 kvm_deliver_exception_payload(vcpu, ex); 5379 5380 memset(events, 0, sizeof(*events)); 5381 5382 /* 5383 * The API doesn't provide the instruction length for software 5384 * exceptions, so don't report them. As long as the guest RIP 5385 * isn't advanced, we should expect to encounter the exception 5386 * again. 5387 */ 5388 if (!kvm_exception_is_soft(ex->vector)) { 5389 events->exception.injected = ex->injected; 5390 events->exception.pending = ex->pending; 5391 /* 5392 * For ABI compatibility, deliberately conflate 5393 * pending and injected exceptions when 5394 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5395 */ 5396 if (!vcpu->kvm->arch.exception_payload_enabled) 5397 events->exception.injected |= ex->pending; 5398 } 5399 events->exception.nr = ex->vector; 5400 events->exception.has_error_code = ex->has_error_code; 5401 events->exception.error_code = ex->error_code; 5402 events->exception_has_payload = ex->has_payload; 5403 events->exception_payload = ex->payload; 5404 5405 events->interrupt.injected = 5406 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5407 events->interrupt.nr = vcpu->arch.interrupt.nr; 5408 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5409 5410 events->nmi.injected = vcpu->arch.nmi_injected; 5411 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5412 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5413 5414 /* events->sipi_vector is never valid when reporting to user space */ 5415 5416 #ifdef CONFIG_KVM_SMM 5417 events->smi.smm = is_smm(vcpu); 5418 events->smi.pending = vcpu->arch.smi_pending; 5419 events->smi.smm_inside_nmi = 5420 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5421 #endif 5422 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5423 5424 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5425 | KVM_VCPUEVENT_VALID_SHADOW 5426 | KVM_VCPUEVENT_VALID_SMM); 5427 if (vcpu->kvm->arch.exception_payload_enabled) 5428 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5429 if (vcpu->kvm->arch.triple_fault_event) { 5430 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5431 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5432 } 5433 } 5434 5435 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5436 struct kvm_vcpu_events *events) 5437 { 5438 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5439 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5440 | KVM_VCPUEVENT_VALID_SHADOW 5441 | KVM_VCPUEVENT_VALID_SMM 5442 | KVM_VCPUEVENT_VALID_PAYLOAD 5443 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5444 return -EINVAL; 5445 5446 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5447 if (!vcpu->kvm->arch.exception_payload_enabled) 5448 return -EINVAL; 5449 if (events->exception.pending) 5450 events->exception.injected = 0; 5451 else 5452 events->exception_has_payload = 0; 5453 } else { 5454 events->exception.pending = 0; 5455 events->exception_has_payload = 0; 5456 } 5457 5458 if ((events->exception.injected || events->exception.pending) && 5459 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5460 return -EINVAL; 5461 5462 /* INITs are latched while in SMM */ 5463 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5464 (events->smi.smm || events->smi.pending) && 5465 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5466 return -EINVAL; 5467 5468 process_nmi(vcpu); 5469 5470 /* 5471 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5472 * morph the exception to a VM-Exit if appropriate. Do this only for 5473 * pending exceptions, already-injected exceptions are not subject to 5474 * intercpetion. Note, userspace that conflates pending and injected 5475 * is hosed, and will incorrectly convert an injected exception into a 5476 * pending exception, which in turn may cause a spurious VM-Exit. 5477 */ 5478 vcpu->arch.exception_from_userspace = events->exception.pending; 5479 5480 vcpu->arch.exception_vmexit.pending = false; 5481 5482 vcpu->arch.exception.injected = events->exception.injected; 5483 vcpu->arch.exception.pending = events->exception.pending; 5484 vcpu->arch.exception.vector = events->exception.nr; 5485 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5486 vcpu->arch.exception.error_code = events->exception.error_code; 5487 vcpu->arch.exception.has_payload = events->exception_has_payload; 5488 vcpu->arch.exception.payload = events->exception_payload; 5489 5490 vcpu->arch.interrupt.injected = events->interrupt.injected; 5491 vcpu->arch.interrupt.nr = events->interrupt.nr; 5492 vcpu->arch.interrupt.soft = events->interrupt.soft; 5493 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5494 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5495 events->interrupt.shadow); 5496 5497 vcpu->arch.nmi_injected = events->nmi.injected; 5498 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5499 vcpu->arch.nmi_pending = 0; 5500 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5501 if (events->nmi.pending) 5502 kvm_make_request(KVM_REQ_NMI, vcpu); 5503 } 5504 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5505 5506 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5507 lapic_in_kernel(vcpu)) 5508 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5509 5510 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5511 #ifdef CONFIG_KVM_SMM 5512 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5513 kvm_leave_nested(vcpu); 5514 kvm_smm_changed(vcpu, events->smi.smm); 5515 } 5516 5517 vcpu->arch.smi_pending = events->smi.pending; 5518 5519 if (events->smi.smm) { 5520 if (events->smi.smm_inside_nmi) 5521 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5522 else 5523 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5524 } 5525 5526 #else 5527 if (events->smi.smm || events->smi.pending || 5528 events->smi.smm_inside_nmi) 5529 return -EINVAL; 5530 #endif 5531 5532 if (lapic_in_kernel(vcpu)) { 5533 if (events->smi.latched_init) 5534 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5535 else 5536 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5537 } 5538 } 5539 5540 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5541 if (!vcpu->kvm->arch.triple_fault_event) 5542 return -EINVAL; 5543 if (events->triple_fault.pending) 5544 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5545 else 5546 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5547 } 5548 5549 kvm_make_request(KVM_REQ_EVENT, vcpu); 5550 5551 return 0; 5552 } 5553 5554 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5555 struct kvm_debugregs *dbgregs) 5556 { 5557 unsigned int i; 5558 5559 if (vcpu->kvm->arch.has_protected_state && 5560 vcpu->arch.guest_state_protected) 5561 return -EINVAL; 5562 5563 memset(dbgregs, 0, sizeof(*dbgregs)); 5564 5565 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); 5566 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5567 dbgregs->db[i] = vcpu->arch.db[i]; 5568 5569 dbgregs->dr6 = vcpu->arch.dr6; 5570 dbgregs->dr7 = vcpu->arch.dr7; 5571 return 0; 5572 } 5573 5574 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5575 struct kvm_debugregs *dbgregs) 5576 { 5577 unsigned int i; 5578 5579 if (vcpu->kvm->arch.has_protected_state && 5580 vcpu->arch.guest_state_protected) 5581 return -EINVAL; 5582 5583 if (dbgregs->flags) 5584 return -EINVAL; 5585 5586 if (!kvm_dr6_valid(dbgregs->dr6)) 5587 return -EINVAL; 5588 if (!kvm_dr7_valid(dbgregs->dr7)) 5589 return -EINVAL; 5590 5591 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5592 vcpu->arch.db[i] = dbgregs->db[i]; 5593 5594 kvm_update_dr0123(vcpu); 5595 vcpu->arch.dr6 = dbgregs->dr6; 5596 vcpu->arch.dr7 = dbgregs->dr7; 5597 kvm_update_dr7(vcpu); 5598 5599 return 0; 5600 } 5601 5602 5603 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5604 u8 *state, unsigned int size) 5605 { 5606 /* 5607 * Only copy state for features that are enabled for the guest. The 5608 * state itself isn't problematic, but setting bits in the header for 5609 * features that are supported in *this* host but not exposed to the 5610 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5611 * compatible host without the features that are NOT exposed to the 5612 * guest. 5613 * 5614 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5615 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5616 * supported by the host. 5617 */ 5618 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5619 XFEATURE_MASK_FPSSE; 5620 5621 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5622 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5623 5624 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5625 supported_xcr0, vcpu->arch.pkru); 5626 return 0; 5627 } 5628 5629 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5630 struct kvm_xsave *guest_xsave) 5631 { 5632 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5633 sizeof(guest_xsave->region)); 5634 } 5635 5636 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5637 struct kvm_xsave *guest_xsave) 5638 { 5639 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5640 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5641 5642 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5643 guest_xsave->region, 5644 kvm_caps.supported_xcr0, 5645 &vcpu->arch.pkru); 5646 } 5647 5648 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5649 struct kvm_xcrs *guest_xcrs) 5650 { 5651 if (vcpu->kvm->arch.has_protected_state && 5652 vcpu->arch.guest_state_protected) 5653 return -EINVAL; 5654 5655 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5656 guest_xcrs->nr_xcrs = 0; 5657 return 0; 5658 } 5659 5660 guest_xcrs->nr_xcrs = 1; 5661 guest_xcrs->flags = 0; 5662 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5663 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5664 return 0; 5665 } 5666 5667 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5668 struct kvm_xcrs *guest_xcrs) 5669 { 5670 int i, r = 0; 5671 5672 if (vcpu->kvm->arch.has_protected_state && 5673 vcpu->arch.guest_state_protected) 5674 return -EINVAL; 5675 5676 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5677 return -EINVAL; 5678 5679 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5680 return -EINVAL; 5681 5682 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5683 /* Only support XCR0 currently */ 5684 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5685 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5686 guest_xcrs->xcrs[i].value); 5687 break; 5688 } 5689 if (r) 5690 r = -EINVAL; 5691 return r; 5692 } 5693 5694 /* 5695 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5696 * stopped by the hypervisor. This function will be called from the host only. 5697 * EINVAL is returned when the host attempts to set the flag for a guest that 5698 * does not support pv clocks. 5699 */ 5700 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5701 { 5702 if (!vcpu->arch.pv_time.active) 5703 return -EINVAL; 5704 vcpu->arch.pvclock_set_guest_stopped_request = true; 5705 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5706 return 0; 5707 } 5708 5709 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5710 struct kvm_device_attr *attr) 5711 { 5712 int r; 5713 5714 switch (attr->attr) { 5715 case KVM_VCPU_TSC_OFFSET: 5716 r = 0; 5717 break; 5718 default: 5719 r = -ENXIO; 5720 } 5721 5722 return r; 5723 } 5724 5725 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5726 struct kvm_device_attr *attr) 5727 { 5728 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5729 int r; 5730 5731 switch (attr->attr) { 5732 case KVM_VCPU_TSC_OFFSET: 5733 r = -EFAULT; 5734 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5735 break; 5736 r = 0; 5737 break; 5738 default: 5739 r = -ENXIO; 5740 } 5741 5742 return r; 5743 } 5744 5745 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5746 struct kvm_device_attr *attr) 5747 { 5748 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5749 struct kvm *kvm = vcpu->kvm; 5750 int r; 5751 5752 switch (attr->attr) { 5753 case KVM_VCPU_TSC_OFFSET: { 5754 u64 offset, tsc, ns; 5755 unsigned long flags; 5756 bool matched; 5757 5758 r = -EFAULT; 5759 if (get_user(offset, uaddr)) 5760 break; 5761 5762 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5763 5764 matched = (vcpu->arch.virtual_tsc_khz && 5765 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5766 kvm->arch.last_tsc_offset == offset); 5767 5768 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5769 ns = get_kvmclock_base_ns(); 5770 5771 kvm->arch.user_set_tsc = true; 5772 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5773 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5774 5775 r = 0; 5776 break; 5777 } 5778 default: 5779 r = -ENXIO; 5780 } 5781 5782 return r; 5783 } 5784 5785 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5786 unsigned int ioctl, 5787 void __user *argp) 5788 { 5789 struct kvm_device_attr attr; 5790 int r; 5791 5792 if (copy_from_user(&attr, argp, sizeof(attr))) 5793 return -EFAULT; 5794 5795 if (attr.group != KVM_VCPU_TSC_CTRL) 5796 return -ENXIO; 5797 5798 switch (ioctl) { 5799 case KVM_HAS_DEVICE_ATTR: 5800 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5801 break; 5802 case KVM_GET_DEVICE_ATTR: 5803 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5804 break; 5805 case KVM_SET_DEVICE_ATTR: 5806 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5807 break; 5808 } 5809 5810 return r; 5811 } 5812 5813 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5814 struct kvm_enable_cap *cap) 5815 { 5816 if (cap->flags) 5817 return -EINVAL; 5818 5819 switch (cap->cap) { 5820 #ifdef CONFIG_KVM_HYPERV 5821 case KVM_CAP_HYPERV_SYNIC2: 5822 if (cap->args[0]) 5823 return -EINVAL; 5824 fallthrough; 5825 5826 case KVM_CAP_HYPERV_SYNIC: 5827 if (!irqchip_in_kernel(vcpu->kvm)) 5828 return -EINVAL; 5829 return kvm_hv_activate_synic(vcpu, cap->cap == 5830 KVM_CAP_HYPERV_SYNIC2); 5831 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5832 { 5833 int r; 5834 uint16_t vmcs_version; 5835 void __user *user_ptr; 5836 5837 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5838 return -ENOTTY; 5839 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5840 if (!r) { 5841 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5842 if (copy_to_user(user_ptr, &vmcs_version, 5843 sizeof(vmcs_version))) 5844 r = -EFAULT; 5845 } 5846 return r; 5847 } 5848 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5849 if (!kvm_x86_ops.enable_l2_tlb_flush) 5850 return -ENOTTY; 5851 5852 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5853 5854 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5855 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5856 #endif 5857 5858 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5859 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5860 if (vcpu->arch.pv_cpuid.enforce) 5861 kvm_update_pv_runtime(vcpu); 5862 5863 return 0; 5864 default: 5865 return -EINVAL; 5866 } 5867 } 5868 5869 long kvm_arch_vcpu_ioctl(struct file *filp, 5870 unsigned int ioctl, unsigned long arg) 5871 { 5872 struct kvm_vcpu *vcpu = filp->private_data; 5873 void __user *argp = (void __user *)arg; 5874 int r; 5875 union { 5876 struct kvm_sregs2 *sregs2; 5877 struct kvm_lapic_state *lapic; 5878 struct kvm_xsave *xsave; 5879 struct kvm_xcrs *xcrs; 5880 void *buffer; 5881 } u; 5882 5883 vcpu_load(vcpu); 5884 5885 u.buffer = NULL; 5886 switch (ioctl) { 5887 case KVM_GET_LAPIC: { 5888 r = -EINVAL; 5889 if (!lapic_in_kernel(vcpu)) 5890 goto out; 5891 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5892 GFP_KERNEL_ACCOUNT); 5893 5894 r = -ENOMEM; 5895 if (!u.lapic) 5896 goto out; 5897 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5898 if (r) 5899 goto out; 5900 r = -EFAULT; 5901 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5902 goto out; 5903 r = 0; 5904 break; 5905 } 5906 case KVM_SET_LAPIC: { 5907 r = -EINVAL; 5908 if (!lapic_in_kernel(vcpu)) 5909 goto out; 5910 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5911 if (IS_ERR(u.lapic)) { 5912 r = PTR_ERR(u.lapic); 5913 goto out_nofree; 5914 } 5915 5916 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5917 break; 5918 } 5919 case KVM_INTERRUPT: { 5920 struct kvm_interrupt irq; 5921 5922 r = -EFAULT; 5923 if (copy_from_user(&irq, argp, sizeof(irq))) 5924 goto out; 5925 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5926 break; 5927 } 5928 case KVM_NMI: { 5929 r = kvm_vcpu_ioctl_nmi(vcpu); 5930 break; 5931 } 5932 case KVM_SMI: { 5933 r = kvm_inject_smi(vcpu); 5934 break; 5935 } 5936 case KVM_SET_CPUID: { 5937 struct kvm_cpuid __user *cpuid_arg = argp; 5938 struct kvm_cpuid cpuid; 5939 5940 r = -EFAULT; 5941 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5942 goto out; 5943 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5944 break; 5945 } 5946 case KVM_SET_CPUID2: { 5947 struct kvm_cpuid2 __user *cpuid_arg = argp; 5948 struct kvm_cpuid2 cpuid; 5949 5950 r = -EFAULT; 5951 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5952 goto out; 5953 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5954 cpuid_arg->entries); 5955 break; 5956 } 5957 case KVM_GET_CPUID2: { 5958 struct kvm_cpuid2 __user *cpuid_arg = argp; 5959 struct kvm_cpuid2 cpuid; 5960 5961 r = -EFAULT; 5962 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5963 goto out; 5964 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5965 cpuid_arg->entries); 5966 if (r) 5967 goto out; 5968 r = -EFAULT; 5969 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5970 goto out; 5971 r = 0; 5972 break; 5973 } 5974 case KVM_GET_MSRS: { 5975 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5976 r = msr_io(vcpu, argp, do_get_msr, 1); 5977 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5978 break; 5979 } 5980 case KVM_SET_MSRS: { 5981 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5982 r = msr_io(vcpu, argp, do_set_msr, 0); 5983 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5984 break; 5985 } 5986 case KVM_TPR_ACCESS_REPORTING: { 5987 struct kvm_tpr_access_ctl tac; 5988 5989 r = -EFAULT; 5990 if (copy_from_user(&tac, argp, sizeof(tac))) 5991 goto out; 5992 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5993 if (r) 5994 goto out; 5995 r = -EFAULT; 5996 if (copy_to_user(argp, &tac, sizeof(tac))) 5997 goto out; 5998 r = 0; 5999 break; 6000 }; 6001 case KVM_SET_VAPIC_ADDR: { 6002 struct kvm_vapic_addr va; 6003 int idx; 6004 6005 r = -EINVAL; 6006 if (!lapic_in_kernel(vcpu)) 6007 goto out; 6008 r = -EFAULT; 6009 if (copy_from_user(&va, argp, sizeof(va))) 6010 goto out; 6011 idx = srcu_read_lock(&vcpu->kvm->srcu); 6012 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 6013 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6014 break; 6015 } 6016 case KVM_X86_SETUP_MCE: { 6017 u64 mcg_cap; 6018 6019 r = -EFAULT; 6020 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 6021 goto out; 6022 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 6023 break; 6024 } 6025 case KVM_X86_SET_MCE: { 6026 struct kvm_x86_mce mce; 6027 6028 r = -EFAULT; 6029 if (copy_from_user(&mce, argp, sizeof(mce))) 6030 goto out; 6031 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 6032 break; 6033 } 6034 case KVM_GET_VCPU_EVENTS: { 6035 struct kvm_vcpu_events events; 6036 6037 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 6038 6039 r = -EFAULT; 6040 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 6041 break; 6042 r = 0; 6043 break; 6044 } 6045 case KVM_SET_VCPU_EVENTS: { 6046 struct kvm_vcpu_events events; 6047 6048 r = -EFAULT; 6049 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 6050 break; 6051 6052 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 6053 break; 6054 } 6055 case KVM_GET_DEBUGREGS: { 6056 struct kvm_debugregs dbgregs; 6057 6058 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 6059 if (r < 0) 6060 break; 6061 6062 r = -EFAULT; 6063 if (copy_to_user(argp, &dbgregs, 6064 sizeof(struct kvm_debugregs))) 6065 break; 6066 r = 0; 6067 break; 6068 } 6069 case KVM_SET_DEBUGREGS: { 6070 struct kvm_debugregs dbgregs; 6071 6072 r = -EFAULT; 6073 if (copy_from_user(&dbgregs, argp, 6074 sizeof(struct kvm_debugregs))) 6075 break; 6076 6077 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6078 break; 6079 } 6080 case KVM_GET_XSAVE: { 6081 r = -EINVAL; 6082 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6083 break; 6084 6085 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 6086 r = -ENOMEM; 6087 if (!u.xsave) 6088 break; 6089 6090 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6091 if (r < 0) 6092 break; 6093 6094 r = -EFAULT; 6095 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6096 break; 6097 r = 0; 6098 break; 6099 } 6100 case KVM_SET_XSAVE: { 6101 int size = vcpu->arch.guest_fpu.uabi_size; 6102 6103 u.xsave = memdup_user(argp, size); 6104 if (IS_ERR(u.xsave)) { 6105 r = PTR_ERR(u.xsave); 6106 goto out_nofree; 6107 } 6108 6109 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6110 break; 6111 } 6112 6113 case KVM_GET_XSAVE2: { 6114 int size = vcpu->arch.guest_fpu.uabi_size; 6115 6116 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 6117 r = -ENOMEM; 6118 if (!u.xsave) 6119 break; 6120 6121 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6122 if (r < 0) 6123 break; 6124 6125 r = -EFAULT; 6126 if (copy_to_user(argp, u.xsave, size)) 6127 break; 6128 6129 r = 0; 6130 break; 6131 } 6132 6133 case KVM_GET_XCRS: { 6134 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 6135 r = -ENOMEM; 6136 if (!u.xcrs) 6137 break; 6138 6139 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6140 if (r < 0) 6141 break; 6142 6143 r = -EFAULT; 6144 if (copy_to_user(argp, u.xcrs, 6145 sizeof(struct kvm_xcrs))) 6146 break; 6147 r = 0; 6148 break; 6149 } 6150 case KVM_SET_XCRS: { 6151 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6152 if (IS_ERR(u.xcrs)) { 6153 r = PTR_ERR(u.xcrs); 6154 goto out_nofree; 6155 } 6156 6157 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6158 break; 6159 } 6160 case KVM_SET_TSC_KHZ: { 6161 u32 user_tsc_khz; 6162 6163 r = -EINVAL; 6164 user_tsc_khz = (u32)arg; 6165 6166 if (kvm_caps.has_tsc_control && 6167 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6168 goto out; 6169 6170 if (user_tsc_khz == 0) 6171 user_tsc_khz = tsc_khz; 6172 6173 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6174 r = 0; 6175 6176 goto out; 6177 } 6178 case KVM_GET_TSC_KHZ: { 6179 r = vcpu->arch.virtual_tsc_khz; 6180 goto out; 6181 } 6182 case KVM_KVMCLOCK_CTRL: { 6183 r = kvm_set_guest_paused(vcpu); 6184 goto out; 6185 } 6186 case KVM_ENABLE_CAP: { 6187 struct kvm_enable_cap cap; 6188 6189 r = -EFAULT; 6190 if (copy_from_user(&cap, argp, sizeof(cap))) 6191 goto out; 6192 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6193 break; 6194 } 6195 case KVM_GET_NESTED_STATE: { 6196 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6197 u32 user_data_size; 6198 6199 r = -EINVAL; 6200 if (!kvm_x86_ops.nested_ops->get_state) 6201 break; 6202 6203 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6204 r = -EFAULT; 6205 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6206 break; 6207 6208 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6209 user_data_size); 6210 if (r < 0) 6211 break; 6212 6213 if (r > user_data_size) { 6214 if (put_user(r, &user_kvm_nested_state->size)) 6215 r = -EFAULT; 6216 else 6217 r = -E2BIG; 6218 break; 6219 } 6220 6221 r = 0; 6222 break; 6223 } 6224 case KVM_SET_NESTED_STATE: { 6225 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6226 struct kvm_nested_state kvm_state; 6227 int idx; 6228 6229 r = -EINVAL; 6230 if (!kvm_x86_ops.nested_ops->set_state) 6231 break; 6232 6233 r = -EFAULT; 6234 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6235 break; 6236 6237 r = -EINVAL; 6238 if (kvm_state.size < sizeof(kvm_state)) 6239 break; 6240 6241 if (kvm_state.flags & 6242 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6243 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6244 | KVM_STATE_NESTED_GIF_SET)) 6245 break; 6246 6247 /* nested_run_pending implies guest_mode. */ 6248 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6249 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6250 break; 6251 6252 idx = srcu_read_lock(&vcpu->kvm->srcu); 6253 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6254 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6255 break; 6256 } 6257 #ifdef CONFIG_KVM_HYPERV 6258 case KVM_GET_SUPPORTED_HV_CPUID: 6259 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6260 break; 6261 #endif 6262 #ifdef CONFIG_KVM_XEN 6263 case KVM_XEN_VCPU_GET_ATTR: { 6264 struct kvm_xen_vcpu_attr xva; 6265 6266 r = -EFAULT; 6267 if (copy_from_user(&xva, argp, sizeof(xva))) 6268 goto out; 6269 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6270 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6271 r = -EFAULT; 6272 break; 6273 } 6274 case KVM_XEN_VCPU_SET_ATTR: { 6275 struct kvm_xen_vcpu_attr xva; 6276 6277 r = -EFAULT; 6278 if (copy_from_user(&xva, argp, sizeof(xva))) 6279 goto out; 6280 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6281 break; 6282 } 6283 #endif 6284 case KVM_GET_SREGS2: { 6285 r = -EINVAL; 6286 if (vcpu->kvm->arch.has_protected_state && 6287 vcpu->arch.guest_state_protected) 6288 goto out; 6289 6290 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6291 r = -ENOMEM; 6292 if (!u.sregs2) 6293 goto out; 6294 __get_sregs2(vcpu, u.sregs2); 6295 r = -EFAULT; 6296 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6297 goto out; 6298 r = 0; 6299 break; 6300 } 6301 case KVM_SET_SREGS2: { 6302 r = -EINVAL; 6303 if (vcpu->kvm->arch.has_protected_state && 6304 vcpu->arch.guest_state_protected) 6305 goto out; 6306 6307 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6308 if (IS_ERR(u.sregs2)) { 6309 r = PTR_ERR(u.sregs2); 6310 u.sregs2 = NULL; 6311 goto out; 6312 } 6313 r = __set_sregs2(vcpu, u.sregs2); 6314 break; 6315 } 6316 case KVM_HAS_DEVICE_ATTR: 6317 case KVM_GET_DEVICE_ATTR: 6318 case KVM_SET_DEVICE_ATTR: 6319 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6320 break; 6321 default: 6322 r = -EINVAL; 6323 } 6324 out: 6325 kfree(u.buffer); 6326 out_nofree: 6327 vcpu_put(vcpu); 6328 return r; 6329 } 6330 6331 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6332 { 6333 return VM_FAULT_SIGBUS; 6334 } 6335 6336 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6337 { 6338 int ret; 6339 6340 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6341 return -EINVAL; 6342 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6343 return ret; 6344 } 6345 6346 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6347 u64 ident_addr) 6348 { 6349 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6350 } 6351 6352 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6353 unsigned long kvm_nr_mmu_pages) 6354 { 6355 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6356 return -EINVAL; 6357 6358 mutex_lock(&kvm->slots_lock); 6359 6360 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6361 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6362 6363 mutex_unlock(&kvm->slots_lock); 6364 return 0; 6365 } 6366 6367 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6368 { 6369 struct kvm_pic *pic = kvm->arch.vpic; 6370 int r; 6371 6372 r = 0; 6373 switch (chip->chip_id) { 6374 case KVM_IRQCHIP_PIC_MASTER: 6375 memcpy(&chip->chip.pic, &pic->pics[0], 6376 sizeof(struct kvm_pic_state)); 6377 break; 6378 case KVM_IRQCHIP_PIC_SLAVE: 6379 memcpy(&chip->chip.pic, &pic->pics[1], 6380 sizeof(struct kvm_pic_state)); 6381 break; 6382 case KVM_IRQCHIP_IOAPIC: 6383 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6384 break; 6385 default: 6386 r = -EINVAL; 6387 break; 6388 } 6389 return r; 6390 } 6391 6392 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6393 { 6394 struct kvm_pic *pic = kvm->arch.vpic; 6395 int r; 6396 6397 r = 0; 6398 switch (chip->chip_id) { 6399 case KVM_IRQCHIP_PIC_MASTER: 6400 spin_lock(&pic->lock); 6401 memcpy(&pic->pics[0], &chip->chip.pic, 6402 sizeof(struct kvm_pic_state)); 6403 spin_unlock(&pic->lock); 6404 break; 6405 case KVM_IRQCHIP_PIC_SLAVE: 6406 spin_lock(&pic->lock); 6407 memcpy(&pic->pics[1], &chip->chip.pic, 6408 sizeof(struct kvm_pic_state)); 6409 spin_unlock(&pic->lock); 6410 break; 6411 case KVM_IRQCHIP_IOAPIC: 6412 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6413 break; 6414 default: 6415 r = -EINVAL; 6416 break; 6417 } 6418 kvm_pic_update_irq(pic); 6419 return r; 6420 } 6421 6422 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6423 { 6424 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6425 6426 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6427 6428 mutex_lock(&kps->lock); 6429 memcpy(ps, &kps->channels, sizeof(*ps)); 6430 mutex_unlock(&kps->lock); 6431 return 0; 6432 } 6433 6434 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6435 { 6436 int i; 6437 struct kvm_pit *pit = kvm->arch.vpit; 6438 6439 mutex_lock(&pit->pit_state.lock); 6440 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6441 for (i = 0; i < 3; i++) 6442 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6443 mutex_unlock(&pit->pit_state.lock); 6444 return 0; 6445 } 6446 6447 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6448 { 6449 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6450 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6451 sizeof(ps->channels)); 6452 ps->flags = kvm->arch.vpit->pit_state.flags; 6453 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6454 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6455 return 0; 6456 } 6457 6458 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6459 { 6460 int start = 0; 6461 int i; 6462 u32 prev_legacy, cur_legacy; 6463 struct kvm_pit *pit = kvm->arch.vpit; 6464 6465 mutex_lock(&pit->pit_state.lock); 6466 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6467 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6468 if (!prev_legacy && cur_legacy) 6469 start = 1; 6470 memcpy(&pit->pit_state.channels, &ps->channels, 6471 sizeof(pit->pit_state.channels)); 6472 pit->pit_state.flags = ps->flags; 6473 for (i = 0; i < 3; i++) 6474 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6475 start && i == 0); 6476 mutex_unlock(&pit->pit_state.lock); 6477 return 0; 6478 } 6479 6480 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6481 struct kvm_reinject_control *control) 6482 { 6483 struct kvm_pit *pit = kvm->arch.vpit; 6484 6485 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6486 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6487 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6488 */ 6489 mutex_lock(&pit->pit_state.lock); 6490 kvm_pit_set_reinject(pit, control->pit_reinject); 6491 mutex_unlock(&pit->pit_state.lock); 6492 6493 return 0; 6494 } 6495 6496 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6497 { 6498 6499 /* 6500 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6501 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6502 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6503 * VM-Exit. 6504 */ 6505 struct kvm_vcpu *vcpu; 6506 unsigned long i; 6507 6508 if (!kvm_x86_ops.cpu_dirty_log_size) 6509 return; 6510 6511 kvm_for_each_vcpu(i, vcpu, kvm) 6512 kvm_vcpu_kick(vcpu); 6513 } 6514 6515 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6516 bool line_status) 6517 { 6518 if (!irqchip_in_kernel(kvm)) 6519 return -ENXIO; 6520 6521 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6522 irq_event->irq, irq_event->level, 6523 line_status); 6524 return 0; 6525 } 6526 6527 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6528 struct kvm_enable_cap *cap) 6529 { 6530 int r; 6531 6532 if (cap->flags) 6533 return -EINVAL; 6534 6535 switch (cap->cap) { 6536 case KVM_CAP_DISABLE_QUIRKS2: 6537 r = -EINVAL; 6538 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6539 break; 6540 fallthrough; 6541 case KVM_CAP_DISABLE_QUIRKS: 6542 kvm->arch.disabled_quirks = cap->args[0]; 6543 r = 0; 6544 break; 6545 case KVM_CAP_SPLIT_IRQCHIP: { 6546 mutex_lock(&kvm->lock); 6547 r = -EINVAL; 6548 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6549 goto split_irqchip_unlock; 6550 r = -EEXIST; 6551 if (irqchip_in_kernel(kvm)) 6552 goto split_irqchip_unlock; 6553 if (kvm->created_vcpus) 6554 goto split_irqchip_unlock; 6555 r = kvm_setup_empty_irq_routing(kvm); 6556 if (r) 6557 goto split_irqchip_unlock; 6558 /* Pairs with irqchip_in_kernel. */ 6559 smp_wmb(); 6560 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6561 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6562 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6563 r = 0; 6564 split_irqchip_unlock: 6565 mutex_unlock(&kvm->lock); 6566 break; 6567 } 6568 case KVM_CAP_X2APIC_API: 6569 r = -EINVAL; 6570 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6571 break; 6572 6573 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6574 kvm->arch.x2apic_format = true; 6575 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6576 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6577 6578 r = 0; 6579 break; 6580 case KVM_CAP_X86_DISABLE_EXITS: 6581 r = -EINVAL; 6582 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6583 break; 6584 6585 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6586 kvm->arch.pause_in_guest = true; 6587 6588 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6589 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6590 6591 if (!mitigate_smt_rsb) { 6592 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6593 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6594 pr_warn_once(SMT_RSB_MSG); 6595 6596 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6597 kvm_can_mwait_in_guest()) 6598 kvm->arch.mwait_in_guest = true; 6599 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6600 kvm->arch.hlt_in_guest = true; 6601 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6602 kvm->arch.cstate_in_guest = true; 6603 } 6604 6605 r = 0; 6606 break; 6607 case KVM_CAP_MSR_PLATFORM_INFO: 6608 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6609 r = 0; 6610 break; 6611 case KVM_CAP_EXCEPTION_PAYLOAD: 6612 kvm->arch.exception_payload_enabled = cap->args[0]; 6613 r = 0; 6614 break; 6615 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6616 kvm->arch.triple_fault_event = cap->args[0]; 6617 r = 0; 6618 break; 6619 case KVM_CAP_X86_USER_SPACE_MSR: 6620 r = -EINVAL; 6621 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6622 break; 6623 kvm->arch.user_space_msr_mask = cap->args[0]; 6624 r = 0; 6625 break; 6626 case KVM_CAP_X86_BUS_LOCK_EXIT: 6627 r = -EINVAL; 6628 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6629 break; 6630 6631 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6632 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6633 break; 6634 6635 if (kvm_caps.has_bus_lock_exit && 6636 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6637 kvm->arch.bus_lock_detection_enabled = true; 6638 r = 0; 6639 break; 6640 #ifdef CONFIG_X86_SGX_KVM 6641 case KVM_CAP_SGX_ATTRIBUTE: { 6642 unsigned long allowed_attributes = 0; 6643 6644 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6645 if (r) 6646 break; 6647 6648 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6649 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6650 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6651 kvm->arch.sgx_provisioning_allowed = true; 6652 else 6653 r = -EINVAL; 6654 break; 6655 } 6656 #endif 6657 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6658 r = -EINVAL; 6659 if (!kvm_x86_ops.vm_copy_enc_context_from) 6660 break; 6661 6662 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6663 break; 6664 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6665 r = -EINVAL; 6666 if (!kvm_x86_ops.vm_move_enc_context_from) 6667 break; 6668 6669 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6670 break; 6671 case KVM_CAP_EXIT_HYPERCALL: 6672 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6673 r = -EINVAL; 6674 break; 6675 } 6676 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6677 r = 0; 6678 break; 6679 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6680 r = -EINVAL; 6681 if (cap->args[0] & ~1) 6682 break; 6683 kvm->arch.exit_on_emulation_error = cap->args[0]; 6684 r = 0; 6685 break; 6686 case KVM_CAP_PMU_CAPABILITY: 6687 r = -EINVAL; 6688 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6689 break; 6690 6691 mutex_lock(&kvm->lock); 6692 if (!kvm->created_vcpus) { 6693 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6694 r = 0; 6695 } 6696 mutex_unlock(&kvm->lock); 6697 break; 6698 case KVM_CAP_MAX_VCPU_ID: 6699 r = -EINVAL; 6700 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6701 break; 6702 6703 mutex_lock(&kvm->lock); 6704 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6705 r = 0; 6706 } else if (!kvm->arch.max_vcpu_ids) { 6707 kvm->arch.max_vcpu_ids = cap->args[0]; 6708 r = 0; 6709 } 6710 mutex_unlock(&kvm->lock); 6711 break; 6712 case KVM_CAP_X86_NOTIFY_VMEXIT: 6713 r = -EINVAL; 6714 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6715 break; 6716 if (!kvm_caps.has_notify_vmexit) 6717 break; 6718 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6719 break; 6720 mutex_lock(&kvm->lock); 6721 if (!kvm->created_vcpus) { 6722 kvm->arch.notify_window = cap->args[0] >> 32; 6723 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6724 r = 0; 6725 } 6726 mutex_unlock(&kvm->lock); 6727 break; 6728 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6729 r = -EINVAL; 6730 6731 /* 6732 * Since the risk of disabling NX hugepages is a guest crashing 6733 * the system, ensure the userspace process has permission to 6734 * reboot the system. 6735 * 6736 * Note that unlike the reboot() syscall, the process must have 6737 * this capability in the root namespace because exposing 6738 * /dev/kvm into a container does not limit the scope of the 6739 * iTLB multihit bug to that container. In other words, 6740 * this must use capable(), not ns_capable(). 6741 */ 6742 if (!capable(CAP_SYS_BOOT)) { 6743 r = -EPERM; 6744 break; 6745 } 6746 6747 if (cap->args[0]) 6748 break; 6749 6750 mutex_lock(&kvm->lock); 6751 if (!kvm->created_vcpus) { 6752 kvm->arch.disable_nx_huge_pages = true; 6753 r = 0; 6754 } 6755 mutex_unlock(&kvm->lock); 6756 break; 6757 default: 6758 r = -EINVAL; 6759 break; 6760 } 6761 return r; 6762 } 6763 6764 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6765 { 6766 struct kvm_x86_msr_filter *msr_filter; 6767 6768 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6769 if (!msr_filter) 6770 return NULL; 6771 6772 msr_filter->default_allow = default_allow; 6773 return msr_filter; 6774 } 6775 6776 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6777 { 6778 u32 i; 6779 6780 if (!msr_filter) 6781 return; 6782 6783 for (i = 0; i < msr_filter->count; i++) 6784 kfree(msr_filter->ranges[i].bitmap); 6785 6786 kfree(msr_filter); 6787 } 6788 6789 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6790 struct kvm_msr_filter_range *user_range) 6791 { 6792 unsigned long *bitmap; 6793 size_t bitmap_size; 6794 6795 if (!user_range->nmsrs) 6796 return 0; 6797 6798 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6799 return -EINVAL; 6800 6801 if (!user_range->flags) 6802 return -EINVAL; 6803 6804 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6805 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6806 return -EINVAL; 6807 6808 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6809 if (IS_ERR(bitmap)) 6810 return PTR_ERR(bitmap); 6811 6812 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6813 .flags = user_range->flags, 6814 .base = user_range->base, 6815 .nmsrs = user_range->nmsrs, 6816 .bitmap = bitmap, 6817 }; 6818 6819 msr_filter->count++; 6820 return 0; 6821 } 6822 6823 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6824 struct kvm_msr_filter *filter) 6825 { 6826 struct kvm_x86_msr_filter *new_filter, *old_filter; 6827 bool default_allow; 6828 bool empty = true; 6829 int r; 6830 u32 i; 6831 6832 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6833 return -EINVAL; 6834 6835 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6836 empty &= !filter->ranges[i].nmsrs; 6837 6838 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6839 if (empty && !default_allow) 6840 return -EINVAL; 6841 6842 new_filter = kvm_alloc_msr_filter(default_allow); 6843 if (!new_filter) 6844 return -ENOMEM; 6845 6846 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6847 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6848 if (r) { 6849 kvm_free_msr_filter(new_filter); 6850 return r; 6851 } 6852 } 6853 6854 mutex_lock(&kvm->lock); 6855 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6856 mutex_is_locked(&kvm->lock)); 6857 mutex_unlock(&kvm->lock); 6858 synchronize_srcu(&kvm->srcu); 6859 6860 kvm_free_msr_filter(old_filter); 6861 6862 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6863 6864 return 0; 6865 } 6866 6867 #ifdef CONFIG_KVM_COMPAT 6868 /* for KVM_X86_SET_MSR_FILTER */ 6869 struct kvm_msr_filter_range_compat { 6870 __u32 flags; 6871 __u32 nmsrs; 6872 __u32 base; 6873 __u32 bitmap; 6874 }; 6875 6876 struct kvm_msr_filter_compat { 6877 __u32 flags; 6878 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6879 }; 6880 6881 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6882 6883 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6884 unsigned long arg) 6885 { 6886 void __user *argp = (void __user *)arg; 6887 struct kvm *kvm = filp->private_data; 6888 long r = -ENOTTY; 6889 6890 switch (ioctl) { 6891 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6892 struct kvm_msr_filter __user *user_msr_filter = argp; 6893 struct kvm_msr_filter_compat filter_compat; 6894 struct kvm_msr_filter filter; 6895 int i; 6896 6897 if (copy_from_user(&filter_compat, user_msr_filter, 6898 sizeof(filter_compat))) 6899 return -EFAULT; 6900 6901 filter.flags = filter_compat.flags; 6902 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6903 struct kvm_msr_filter_range_compat *cr; 6904 6905 cr = &filter_compat.ranges[i]; 6906 filter.ranges[i] = (struct kvm_msr_filter_range) { 6907 .flags = cr->flags, 6908 .nmsrs = cr->nmsrs, 6909 .base = cr->base, 6910 .bitmap = (__u8 *)(ulong)cr->bitmap, 6911 }; 6912 } 6913 6914 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6915 break; 6916 } 6917 } 6918 6919 return r; 6920 } 6921 #endif 6922 6923 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6924 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6925 { 6926 struct kvm_vcpu *vcpu; 6927 unsigned long i; 6928 int ret = 0; 6929 6930 mutex_lock(&kvm->lock); 6931 kvm_for_each_vcpu(i, vcpu, kvm) { 6932 if (!vcpu->arch.pv_time.active) 6933 continue; 6934 6935 ret = kvm_set_guest_paused(vcpu); 6936 if (ret) { 6937 kvm_err("Failed to pause guest VCPU%d: %d\n", 6938 vcpu->vcpu_id, ret); 6939 break; 6940 } 6941 } 6942 mutex_unlock(&kvm->lock); 6943 6944 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6945 } 6946 6947 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6948 { 6949 switch (state) { 6950 case PM_HIBERNATION_PREPARE: 6951 case PM_SUSPEND_PREPARE: 6952 return kvm_arch_suspend_notifier(kvm); 6953 } 6954 6955 return NOTIFY_DONE; 6956 } 6957 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6958 6959 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6960 { 6961 struct kvm_clock_data data = { 0 }; 6962 6963 get_kvmclock(kvm, &data); 6964 if (copy_to_user(argp, &data, sizeof(data))) 6965 return -EFAULT; 6966 6967 return 0; 6968 } 6969 6970 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6971 { 6972 struct kvm_arch *ka = &kvm->arch; 6973 struct kvm_clock_data data; 6974 u64 now_raw_ns; 6975 6976 if (copy_from_user(&data, argp, sizeof(data))) 6977 return -EFAULT; 6978 6979 /* 6980 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6981 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6982 */ 6983 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6984 return -EINVAL; 6985 6986 kvm_hv_request_tsc_page_update(kvm); 6987 kvm_start_pvclock_update(kvm); 6988 pvclock_update_vm_gtod_copy(kvm); 6989 6990 /* 6991 * This pairs with kvm_guest_time_update(): when masterclock is 6992 * in use, we use master_kernel_ns + kvmclock_offset to set 6993 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6994 * is slightly ahead) here we risk going negative on unsigned 6995 * 'system_time' when 'data.clock' is very small. 6996 */ 6997 if (data.flags & KVM_CLOCK_REALTIME) { 6998 u64 now_real_ns = ktime_get_real_ns(); 6999 7000 /* 7001 * Avoid stepping the kvmclock backwards. 7002 */ 7003 if (now_real_ns > data.realtime) 7004 data.clock += now_real_ns - data.realtime; 7005 } 7006 7007 if (ka->use_master_clock) 7008 now_raw_ns = ka->master_kernel_ns; 7009 else 7010 now_raw_ns = get_kvmclock_base_ns(); 7011 ka->kvmclock_offset = data.clock - now_raw_ns; 7012 kvm_end_pvclock_update(kvm); 7013 return 0; 7014 } 7015 7016 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 7017 { 7018 struct kvm *kvm = filp->private_data; 7019 void __user *argp = (void __user *)arg; 7020 int r = -ENOTTY; 7021 /* 7022 * This union makes it completely explicit to gcc-3.x 7023 * that these two variables' stack usage should be 7024 * combined, not added together. 7025 */ 7026 union { 7027 struct kvm_pit_state ps; 7028 struct kvm_pit_state2 ps2; 7029 struct kvm_pit_config pit_config; 7030 } u; 7031 7032 switch (ioctl) { 7033 case KVM_SET_TSS_ADDR: 7034 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 7035 break; 7036 case KVM_SET_IDENTITY_MAP_ADDR: { 7037 u64 ident_addr; 7038 7039 mutex_lock(&kvm->lock); 7040 r = -EINVAL; 7041 if (kvm->created_vcpus) 7042 goto set_identity_unlock; 7043 r = -EFAULT; 7044 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 7045 goto set_identity_unlock; 7046 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 7047 set_identity_unlock: 7048 mutex_unlock(&kvm->lock); 7049 break; 7050 } 7051 case KVM_SET_NR_MMU_PAGES: 7052 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 7053 break; 7054 case KVM_CREATE_IRQCHIP: { 7055 mutex_lock(&kvm->lock); 7056 7057 r = -EEXIST; 7058 if (irqchip_in_kernel(kvm)) 7059 goto create_irqchip_unlock; 7060 7061 r = -EINVAL; 7062 if (kvm->created_vcpus) 7063 goto create_irqchip_unlock; 7064 7065 r = kvm_pic_init(kvm); 7066 if (r) 7067 goto create_irqchip_unlock; 7068 7069 r = kvm_ioapic_init(kvm); 7070 if (r) { 7071 kvm_pic_destroy(kvm); 7072 goto create_irqchip_unlock; 7073 } 7074 7075 r = kvm_setup_default_irq_routing(kvm); 7076 if (r) { 7077 kvm_ioapic_destroy(kvm); 7078 kvm_pic_destroy(kvm); 7079 goto create_irqchip_unlock; 7080 } 7081 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 7082 smp_wmb(); 7083 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7084 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7085 create_irqchip_unlock: 7086 mutex_unlock(&kvm->lock); 7087 break; 7088 } 7089 case KVM_CREATE_PIT: 7090 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7091 goto create_pit; 7092 case KVM_CREATE_PIT2: 7093 r = -EFAULT; 7094 if (copy_from_user(&u.pit_config, argp, 7095 sizeof(struct kvm_pit_config))) 7096 goto out; 7097 create_pit: 7098 mutex_lock(&kvm->lock); 7099 r = -EEXIST; 7100 if (kvm->arch.vpit) 7101 goto create_pit_unlock; 7102 r = -ENOENT; 7103 if (!pic_in_kernel(kvm)) 7104 goto create_pit_unlock; 7105 r = -ENOMEM; 7106 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7107 if (kvm->arch.vpit) 7108 r = 0; 7109 create_pit_unlock: 7110 mutex_unlock(&kvm->lock); 7111 break; 7112 case KVM_GET_IRQCHIP: { 7113 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7114 struct kvm_irqchip *chip; 7115 7116 chip = memdup_user(argp, sizeof(*chip)); 7117 if (IS_ERR(chip)) { 7118 r = PTR_ERR(chip); 7119 goto out; 7120 } 7121 7122 r = -ENXIO; 7123 if (!irqchip_kernel(kvm)) 7124 goto get_irqchip_out; 7125 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7126 if (r) 7127 goto get_irqchip_out; 7128 r = -EFAULT; 7129 if (copy_to_user(argp, chip, sizeof(*chip))) 7130 goto get_irqchip_out; 7131 r = 0; 7132 get_irqchip_out: 7133 kfree(chip); 7134 break; 7135 } 7136 case KVM_SET_IRQCHIP: { 7137 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7138 struct kvm_irqchip *chip; 7139 7140 chip = memdup_user(argp, sizeof(*chip)); 7141 if (IS_ERR(chip)) { 7142 r = PTR_ERR(chip); 7143 goto out; 7144 } 7145 7146 r = -ENXIO; 7147 if (!irqchip_kernel(kvm)) 7148 goto set_irqchip_out; 7149 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7150 set_irqchip_out: 7151 kfree(chip); 7152 break; 7153 } 7154 case KVM_GET_PIT: { 7155 r = -EFAULT; 7156 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7157 goto out; 7158 r = -ENXIO; 7159 if (!kvm->arch.vpit) 7160 goto out; 7161 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7162 if (r) 7163 goto out; 7164 r = -EFAULT; 7165 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7166 goto out; 7167 r = 0; 7168 break; 7169 } 7170 case KVM_SET_PIT: { 7171 r = -EFAULT; 7172 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7173 goto out; 7174 mutex_lock(&kvm->lock); 7175 r = -ENXIO; 7176 if (!kvm->arch.vpit) 7177 goto set_pit_out; 7178 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7179 set_pit_out: 7180 mutex_unlock(&kvm->lock); 7181 break; 7182 } 7183 case KVM_GET_PIT2: { 7184 r = -ENXIO; 7185 if (!kvm->arch.vpit) 7186 goto out; 7187 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7188 if (r) 7189 goto out; 7190 r = -EFAULT; 7191 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7192 goto out; 7193 r = 0; 7194 break; 7195 } 7196 case KVM_SET_PIT2: { 7197 r = -EFAULT; 7198 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7199 goto out; 7200 mutex_lock(&kvm->lock); 7201 r = -ENXIO; 7202 if (!kvm->arch.vpit) 7203 goto set_pit2_out; 7204 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7205 set_pit2_out: 7206 mutex_unlock(&kvm->lock); 7207 break; 7208 } 7209 case KVM_REINJECT_CONTROL: { 7210 struct kvm_reinject_control control; 7211 r = -EFAULT; 7212 if (copy_from_user(&control, argp, sizeof(control))) 7213 goto out; 7214 r = -ENXIO; 7215 if (!kvm->arch.vpit) 7216 goto out; 7217 r = kvm_vm_ioctl_reinject(kvm, &control); 7218 break; 7219 } 7220 case KVM_SET_BOOT_CPU_ID: 7221 r = 0; 7222 mutex_lock(&kvm->lock); 7223 if (kvm->created_vcpus) 7224 r = -EBUSY; 7225 else 7226 kvm->arch.bsp_vcpu_id = arg; 7227 mutex_unlock(&kvm->lock); 7228 break; 7229 #ifdef CONFIG_KVM_XEN 7230 case KVM_XEN_HVM_CONFIG: { 7231 struct kvm_xen_hvm_config xhc; 7232 r = -EFAULT; 7233 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7234 goto out; 7235 r = kvm_xen_hvm_config(kvm, &xhc); 7236 break; 7237 } 7238 case KVM_XEN_HVM_GET_ATTR: { 7239 struct kvm_xen_hvm_attr xha; 7240 7241 r = -EFAULT; 7242 if (copy_from_user(&xha, argp, sizeof(xha))) 7243 goto out; 7244 r = kvm_xen_hvm_get_attr(kvm, &xha); 7245 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7246 r = -EFAULT; 7247 break; 7248 } 7249 case KVM_XEN_HVM_SET_ATTR: { 7250 struct kvm_xen_hvm_attr xha; 7251 7252 r = -EFAULT; 7253 if (copy_from_user(&xha, argp, sizeof(xha))) 7254 goto out; 7255 r = kvm_xen_hvm_set_attr(kvm, &xha); 7256 break; 7257 } 7258 case KVM_XEN_HVM_EVTCHN_SEND: { 7259 struct kvm_irq_routing_xen_evtchn uxe; 7260 7261 r = -EFAULT; 7262 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7263 goto out; 7264 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7265 break; 7266 } 7267 #endif 7268 case KVM_SET_CLOCK: 7269 r = kvm_vm_ioctl_set_clock(kvm, argp); 7270 break; 7271 case KVM_GET_CLOCK: 7272 r = kvm_vm_ioctl_get_clock(kvm, argp); 7273 break; 7274 case KVM_SET_TSC_KHZ: { 7275 u32 user_tsc_khz; 7276 7277 r = -EINVAL; 7278 user_tsc_khz = (u32)arg; 7279 7280 if (kvm_caps.has_tsc_control && 7281 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7282 goto out; 7283 7284 if (user_tsc_khz == 0) 7285 user_tsc_khz = tsc_khz; 7286 7287 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7288 r = 0; 7289 7290 goto out; 7291 } 7292 case KVM_GET_TSC_KHZ: { 7293 r = READ_ONCE(kvm->arch.default_tsc_khz); 7294 goto out; 7295 } 7296 case KVM_MEMORY_ENCRYPT_OP: { 7297 r = -ENOTTY; 7298 if (!kvm_x86_ops.mem_enc_ioctl) 7299 goto out; 7300 7301 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7302 break; 7303 } 7304 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7305 struct kvm_enc_region region; 7306 7307 r = -EFAULT; 7308 if (copy_from_user(®ion, argp, sizeof(region))) 7309 goto out; 7310 7311 r = -ENOTTY; 7312 if (!kvm_x86_ops.mem_enc_register_region) 7313 goto out; 7314 7315 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7316 break; 7317 } 7318 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7319 struct kvm_enc_region region; 7320 7321 r = -EFAULT; 7322 if (copy_from_user(®ion, argp, sizeof(region))) 7323 goto out; 7324 7325 r = -ENOTTY; 7326 if (!kvm_x86_ops.mem_enc_unregister_region) 7327 goto out; 7328 7329 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7330 break; 7331 } 7332 #ifdef CONFIG_KVM_HYPERV 7333 case KVM_HYPERV_EVENTFD: { 7334 struct kvm_hyperv_eventfd hvevfd; 7335 7336 r = -EFAULT; 7337 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7338 goto out; 7339 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7340 break; 7341 } 7342 #endif 7343 case KVM_SET_PMU_EVENT_FILTER: 7344 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7345 break; 7346 case KVM_X86_SET_MSR_FILTER: { 7347 struct kvm_msr_filter __user *user_msr_filter = argp; 7348 struct kvm_msr_filter filter; 7349 7350 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7351 return -EFAULT; 7352 7353 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7354 break; 7355 } 7356 default: 7357 r = -ENOTTY; 7358 } 7359 out: 7360 return r; 7361 } 7362 7363 static void kvm_probe_feature_msr(u32 msr_index) 7364 { 7365 struct kvm_msr_entry msr = { 7366 .index = msr_index, 7367 }; 7368 7369 if (kvm_get_msr_feature(&msr)) 7370 return; 7371 7372 msr_based_features[num_msr_based_features++] = msr_index; 7373 } 7374 7375 static void kvm_probe_msr_to_save(u32 msr_index) 7376 { 7377 u32 dummy[2]; 7378 7379 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7380 return; 7381 7382 /* 7383 * Even MSRs that are valid in the host may not be exposed to guests in 7384 * some cases. 7385 */ 7386 switch (msr_index) { 7387 case MSR_IA32_BNDCFGS: 7388 if (!kvm_mpx_supported()) 7389 return; 7390 break; 7391 case MSR_TSC_AUX: 7392 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7393 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7394 return; 7395 break; 7396 case MSR_IA32_UMWAIT_CONTROL: 7397 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7398 return; 7399 break; 7400 case MSR_IA32_RTIT_CTL: 7401 case MSR_IA32_RTIT_STATUS: 7402 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7403 return; 7404 break; 7405 case MSR_IA32_RTIT_CR3_MATCH: 7406 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7407 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7408 return; 7409 break; 7410 case MSR_IA32_RTIT_OUTPUT_BASE: 7411 case MSR_IA32_RTIT_OUTPUT_MASK: 7412 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7413 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7414 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7415 return; 7416 break; 7417 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7418 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7419 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7420 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7421 return; 7422 break; 7423 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7424 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7425 kvm_pmu_cap.num_counters_gp) 7426 return; 7427 break; 7428 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7429 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7430 kvm_pmu_cap.num_counters_gp) 7431 return; 7432 break; 7433 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7434 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7435 kvm_pmu_cap.num_counters_fixed) 7436 return; 7437 break; 7438 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7439 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7440 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7441 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7442 return; 7443 break; 7444 case MSR_IA32_XFD: 7445 case MSR_IA32_XFD_ERR: 7446 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7447 return; 7448 break; 7449 case MSR_IA32_TSX_CTRL: 7450 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7451 return; 7452 break; 7453 default: 7454 break; 7455 } 7456 7457 msrs_to_save[num_msrs_to_save++] = msr_index; 7458 } 7459 7460 static void kvm_init_msr_lists(void) 7461 { 7462 unsigned i; 7463 7464 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7465 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7466 7467 num_msrs_to_save = 0; 7468 num_emulated_msrs = 0; 7469 num_msr_based_features = 0; 7470 7471 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7472 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7473 7474 if (enable_pmu) { 7475 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7476 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7477 } 7478 7479 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7480 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7481 continue; 7482 7483 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7484 } 7485 7486 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7487 kvm_probe_feature_msr(i); 7488 7489 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7490 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7491 } 7492 7493 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7494 const void *v) 7495 { 7496 int handled = 0; 7497 int n; 7498 7499 do { 7500 n = min(len, 8); 7501 if (!(lapic_in_kernel(vcpu) && 7502 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7503 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7504 break; 7505 handled += n; 7506 addr += n; 7507 len -= n; 7508 v += n; 7509 } while (len); 7510 7511 return handled; 7512 } 7513 7514 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7515 { 7516 int handled = 0; 7517 int n; 7518 7519 do { 7520 n = min(len, 8); 7521 if (!(lapic_in_kernel(vcpu) && 7522 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7523 addr, n, v)) 7524 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7525 break; 7526 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7527 handled += n; 7528 addr += n; 7529 len -= n; 7530 v += n; 7531 } while (len); 7532 7533 return handled; 7534 } 7535 7536 void kvm_set_segment(struct kvm_vcpu *vcpu, 7537 struct kvm_segment *var, int seg) 7538 { 7539 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7540 } 7541 7542 void kvm_get_segment(struct kvm_vcpu *vcpu, 7543 struct kvm_segment *var, int seg) 7544 { 7545 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7546 } 7547 7548 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7549 struct x86_exception *exception) 7550 { 7551 struct kvm_mmu *mmu = vcpu->arch.mmu; 7552 gpa_t t_gpa; 7553 7554 BUG_ON(!mmu_is_nested(vcpu)); 7555 7556 /* NPT walks are always user-walks */ 7557 access |= PFERR_USER_MASK; 7558 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7559 7560 return t_gpa; 7561 } 7562 7563 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7564 struct x86_exception *exception) 7565 { 7566 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7567 7568 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7569 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7570 } 7571 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7572 7573 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7574 struct x86_exception *exception) 7575 { 7576 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7577 7578 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7579 access |= PFERR_WRITE_MASK; 7580 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7581 } 7582 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7583 7584 /* uses this to access any guest's mapped memory without checking CPL */ 7585 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7586 struct x86_exception *exception) 7587 { 7588 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7589 7590 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7591 } 7592 7593 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7594 struct kvm_vcpu *vcpu, u64 access, 7595 struct x86_exception *exception) 7596 { 7597 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7598 void *data = val; 7599 int r = X86EMUL_CONTINUE; 7600 7601 while (bytes) { 7602 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7603 unsigned offset = addr & (PAGE_SIZE-1); 7604 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7605 int ret; 7606 7607 if (gpa == INVALID_GPA) 7608 return X86EMUL_PROPAGATE_FAULT; 7609 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7610 offset, toread); 7611 if (ret < 0) { 7612 r = X86EMUL_IO_NEEDED; 7613 goto out; 7614 } 7615 7616 bytes -= toread; 7617 data += toread; 7618 addr += toread; 7619 } 7620 out: 7621 return r; 7622 } 7623 7624 /* used for instruction fetching */ 7625 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7626 gva_t addr, void *val, unsigned int bytes, 7627 struct x86_exception *exception) 7628 { 7629 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7630 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7631 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7632 unsigned offset; 7633 int ret; 7634 7635 /* Inline kvm_read_guest_virt_helper for speed. */ 7636 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7637 exception); 7638 if (unlikely(gpa == INVALID_GPA)) 7639 return X86EMUL_PROPAGATE_FAULT; 7640 7641 offset = addr & (PAGE_SIZE-1); 7642 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7643 bytes = (unsigned)PAGE_SIZE - offset; 7644 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7645 offset, bytes); 7646 if (unlikely(ret < 0)) 7647 return X86EMUL_IO_NEEDED; 7648 7649 return X86EMUL_CONTINUE; 7650 } 7651 7652 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7653 gva_t addr, void *val, unsigned int bytes, 7654 struct x86_exception *exception) 7655 { 7656 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7657 7658 /* 7659 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7660 * is returned, but our callers are not ready for that and they blindly 7661 * call kvm_inject_page_fault. Ensure that they at least do not leak 7662 * uninitialized kernel stack memory into cr2 and error code. 7663 */ 7664 memset(exception, 0, sizeof(*exception)); 7665 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7666 exception); 7667 } 7668 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7669 7670 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7671 gva_t addr, void *val, unsigned int bytes, 7672 struct x86_exception *exception, bool system) 7673 { 7674 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7675 u64 access = 0; 7676 7677 if (system) 7678 access |= PFERR_IMPLICIT_ACCESS; 7679 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7680 access |= PFERR_USER_MASK; 7681 7682 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7683 } 7684 7685 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7686 struct kvm_vcpu *vcpu, u64 access, 7687 struct x86_exception *exception) 7688 { 7689 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7690 void *data = val; 7691 int r = X86EMUL_CONTINUE; 7692 7693 while (bytes) { 7694 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7695 unsigned offset = addr & (PAGE_SIZE-1); 7696 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7697 int ret; 7698 7699 if (gpa == INVALID_GPA) 7700 return X86EMUL_PROPAGATE_FAULT; 7701 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7702 if (ret < 0) { 7703 r = X86EMUL_IO_NEEDED; 7704 goto out; 7705 } 7706 7707 bytes -= towrite; 7708 data += towrite; 7709 addr += towrite; 7710 } 7711 out: 7712 return r; 7713 } 7714 7715 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7716 unsigned int bytes, struct x86_exception *exception, 7717 bool system) 7718 { 7719 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7720 u64 access = PFERR_WRITE_MASK; 7721 7722 if (system) 7723 access |= PFERR_IMPLICIT_ACCESS; 7724 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7725 access |= PFERR_USER_MASK; 7726 7727 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7728 access, exception); 7729 } 7730 7731 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7732 unsigned int bytes, struct x86_exception *exception) 7733 { 7734 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7735 vcpu->arch.l1tf_flush_l1d = true; 7736 7737 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7738 PFERR_WRITE_MASK, exception); 7739 } 7740 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7741 7742 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7743 void *insn, int insn_len) 7744 { 7745 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type, 7746 insn, insn_len); 7747 } 7748 7749 int handle_ud(struct kvm_vcpu *vcpu) 7750 { 7751 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7752 int fep_flags = READ_ONCE(force_emulation_prefix); 7753 int emul_type = EMULTYPE_TRAP_UD; 7754 char sig[5]; /* ud2; .ascii "kvm" */ 7755 struct x86_exception e; 7756 int r; 7757 7758 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7759 if (r != X86EMUL_CONTINUE) 7760 return 1; 7761 7762 if (fep_flags && 7763 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7764 sig, sizeof(sig), &e) == 0 && 7765 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7766 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7767 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7768 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7769 emul_type = EMULTYPE_TRAP_UD_FORCED; 7770 } 7771 7772 return kvm_emulate_instruction(vcpu, emul_type); 7773 } 7774 EXPORT_SYMBOL_GPL(handle_ud); 7775 7776 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7777 gpa_t gpa, bool write) 7778 { 7779 /* For APIC access vmexit */ 7780 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7781 return 1; 7782 7783 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7784 trace_vcpu_match_mmio(gva, gpa, write, true); 7785 return 1; 7786 } 7787 7788 return 0; 7789 } 7790 7791 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7792 gpa_t *gpa, struct x86_exception *exception, 7793 bool write) 7794 { 7795 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7796 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7797 | (write ? PFERR_WRITE_MASK : 0); 7798 7799 /* 7800 * currently PKRU is only applied to ept enabled guest so 7801 * there is no pkey in EPT page table for L1 guest or EPT 7802 * shadow page table for L2 guest. 7803 */ 7804 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7805 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7806 vcpu->arch.mmio_access, 0, access))) { 7807 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7808 (gva & (PAGE_SIZE - 1)); 7809 trace_vcpu_match_mmio(gva, *gpa, write, false); 7810 return 1; 7811 } 7812 7813 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7814 7815 if (*gpa == INVALID_GPA) 7816 return -1; 7817 7818 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7819 } 7820 7821 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7822 const void *val, int bytes) 7823 { 7824 int ret; 7825 7826 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7827 if (ret < 0) 7828 return 0; 7829 kvm_page_track_write(vcpu, gpa, val, bytes); 7830 return 1; 7831 } 7832 7833 struct read_write_emulator_ops { 7834 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7835 int bytes); 7836 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7837 void *val, int bytes); 7838 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7839 int bytes, void *val); 7840 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7841 void *val, int bytes); 7842 bool write; 7843 }; 7844 7845 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7846 { 7847 if (vcpu->mmio_read_completed) { 7848 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7849 vcpu->mmio_fragments[0].gpa, val); 7850 vcpu->mmio_read_completed = 0; 7851 return 1; 7852 } 7853 7854 return 0; 7855 } 7856 7857 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7858 void *val, int bytes) 7859 { 7860 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7861 } 7862 7863 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7864 void *val, int bytes) 7865 { 7866 return emulator_write_phys(vcpu, gpa, val, bytes); 7867 } 7868 7869 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7870 { 7871 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7872 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7873 } 7874 7875 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7876 void *val, int bytes) 7877 { 7878 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7879 return X86EMUL_IO_NEEDED; 7880 } 7881 7882 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7883 void *val, int bytes) 7884 { 7885 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7886 7887 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7888 return X86EMUL_CONTINUE; 7889 } 7890 7891 static const struct read_write_emulator_ops read_emultor = { 7892 .read_write_prepare = read_prepare, 7893 .read_write_emulate = read_emulate, 7894 .read_write_mmio = vcpu_mmio_read, 7895 .read_write_exit_mmio = read_exit_mmio, 7896 }; 7897 7898 static const struct read_write_emulator_ops write_emultor = { 7899 .read_write_emulate = write_emulate, 7900 .read_write_mmio = write_mmio, 7901 .read_write_exit_mmio = write_exit_mmio, 7902 .write = true, 7903 }; 7904 7905 static int emulator_read_write_onepage(unsigned long addr, void *val, 7906 unsigned int bytes, 7907 struct x86_exception *exception, 7908 struct kvm_vcpu *vcpu, 7909 const struct read_write_emulator_ops *ops) 7910 { 7911 gpa_t gpa; 7912 int handled, ret; 7913 bool write = ops->write; 7914 struct kvm_mmio_fragment *frag; 7915 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7916 7917 /* 7918 * If the exit was due to a NPF we may already have a GPA. 7919 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7920 * Note, this cannot be used on string operations since string 7921 * operation using rep will only have the initial GPA from the NPF 7922 * occurred. 7923 */ 7924 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7925 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7926 gpa = ctxt->gpa_val; 7927 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7928 } else { 7929 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7930 if (ret < 0) 7931 return X86EMUL_PROPAGATE_FAULT; 7932 } 7933 7934 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7935 return X86EMUL_CONTINUE; 7936 7937 /* 7938 * Is this MMIO handled locally? 7939 */ 7940 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7941 if (handled == bytes) 7942 return X86EMUL_CONTINUE; 7943 7944 gpa += handled; 7945 bytes -= handled; 7946 val += handled; 7947 7948 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7949 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7950 frag->gpa = gpa; 7951 frag->data = val; 7952 frag->len = bytes; 7953 return X86EMUL_CONTINUE; 7954 } 7955 7956 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7957 unsigned long addr, 7958 void *val, unsigned int bytes, 7959 struct x86_exception *exception, 7960 const struct read_write_emulator_ops *ops) 7961 { 7962 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7963 gpa_t gpa; 7964 int rc; 7965 7966 if (ops->read_write_prepare && 7967 ops->read_write_prepare(vcpu, val, bytes)) 7968 return X86EMUL_CONTINUE; 7969 7970 vcpu->mmio_nr_fragments = 0; 7971 7972 /* Crossing a page boundary? */ 7973 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7974 int now; 7975 7976 now = -addr & ~PAGE_MASK; 7977 rc = emulator_read_write_onepage(addr, val, now, exception, 7978 vcpu, ops); 7979 7980 if (rc != X86EMUL_CONTINUE) 7981 return rc; 7982 addr += now; 7983 if (ctxt->mode != X86EMUL_MODE_PROT64) 7984 addr = (u32)addr; 7985 val += now; 7986 bytes -= now; 7987 } 7988 7989 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7990 vcpu, ops); 7991 if (rc != X86EMUL_CONTINUE) 7992 return rc; 7993 7994 if (!vcpu->mmio_nr_fragments) 7995 return rc; 7996 7997 gpa = vcpu->mmio_fragments[0].gpa; 7998 7999 vcpu->mmio_needed = 1; 8000 vcpu->mmio_cur_fragment = 0; 8001 8002 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 8003 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 8004 vcpu->run->exit_reason = KVM_EXIT_MMIO; 8005 vcpu->run->mmio.phys_addr = gpa; 8006 8007 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 8008 } 8009 8010 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 8011 unsigned long addr, 8012 void *val, 8013 unsigned int bytes, 8014 struct x86_exception *exception) 8015 { 8016 return emulator_read_write(ctxt, addr, val, bytes, 8017 exception, &read_emultor); 8018 } 8019 8020 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 8021 unsigned long addr, 8022 const void *val, 8023 unsigned int bytes, 8024 struct x86_exception *exception) 8025 { 8026 return emulator_read_write(ctxt, addr, (void *)val, bytes, 8027 exception, &write_emultor); 8028 } 8029 8030 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 8031 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 8032 8033 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 8034 unsigned long addr, 8035 const void *old, 8036 const void *new, 8037 unsigned int bytes, 8038 struct x86_exception *exception) 8039 { 8040 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8041 u64 page_line_mask; 8042 unsigned long hva; 8043 gpa_t gpa; 8044 int r; 8045 8046 /* guests cmpxchg8b have to be emulated atomically */ 8047 if (bytes > 8 || (bytes & (bytes - 1))) 8048 goto emul_write; 8049 8050 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 8051 8052 if (gpa == INVALID_GPA || 8053 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 8054 goto emul_write; 8055 8056 /* 8057 * Emulate the atomic as a straight write to avoid #AC if SLD is 8058 * enabled in the host and the access splits a cache line. 8059 */ 8060 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 8061 page_line_mask = ~(cache_line_size() - 1); 8062 else 8063 page_line_mask = PAGE_MASK; 8064 8065 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 8066 goto emul_write; 8067 8068 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 8069 if (kvm_is_error_hva(hva)) 8070 goto emul_write; 8071 8072 hva += offset_in_page(gpa); 8073 8074 switch (bytes) { 8075 case 1: 8076 r = emulator_try_cmpxchg_user(u8, hva, old, new); 8077 break; 8078 case 2: 8079 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8080 break; 8081 case 4: 8082 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8083 break; 8084 case 8: 8085 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8086 break; 8087 default: 8088 BUG(); 8089 } 8090 8091 if (r < 0) 8092 return X86EMUL_UNHANDLEABLE; 8093 8094 /* 8095 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8096 * successful, as the old value is written back on failure. Note, for 8097 * live migration, this is unnecessarily conservative as CMPXCHG writes 8098 * back the original value and the access is atomic, but KVM's ABI is 8099 * that all writes are dirty logged, regardless of the value written. 8100 */ 8101 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8102 8103 if (r) 8104 return X86EMUL_CMPXCHG_FAILED; 8105 8106 kvm_page_track_write(vcpu, gpa, new, bytes); 8107 8108 return X86EMUL_CONTINUE; 8109 8110 emul_write: 8111 pr_warn_once("emulating exchange as write\n"); 8112 8113 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8114 } 8115 8116 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8117 unsigned short port, void *data, 8118 unsigned int count, bool in) 8119 { 8120 unsigned i; 8121 int r; 8122 8123 WARN_ON_ONCE(vcpu->arch.pio.count); 8124 for (i = 0; i < count; i++) { 8125 if (in) 8126 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8127 else 8128 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8129 8130 if (r) { 8131 if (i == 0) 8132 goto userspace_io; 8133 8134 /* 8135 * Userspace must have unregistered the device while PIO 8136 * was running. Drop writes / read as 0. 8137 */ 8138 if (in) 8139 memset(data, 0, size * (count - i)); 8140 break; 8141 } 8142 8143 data += size; 8144 } 8145 return 1; 8146 8147 userspace_io: 8148 vcpu->arch.pio.port = port; 8149 vcpu->arch.pio.in = in; 8150 vcpu->arch.pio.count = count; 8151 vcpu->arch.pio.size = size; 8152 8153 if (in) 8154 memset(vcpu->arch.pio_data, 0, size * count); 8155 else 8156 memcpy(vcpu->arch.pio_data, data, size * count); 8157 8158 vcpu->run->exit_reason = KVM_EXIT_IO; 8159 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8160 vcpu->run->io.size = size; 8161 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8162 vcpu->run->io.count = count; 8163 vcpu->run->io.port = port; 8164 return 0; 8165 } 8166 8167 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8168 unsigned short port, void *val, unsigned int count) 8169 { 8170 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8171 if (r) 8172 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8173 8174 return r; 8175 } 8176 8177 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8178 { 8179 int size = vcpu->arch.pio.size; 8180 unsigned int count = vcpu->arch.pio.count; 8181 memcpy(val, vcpu->arch.pio_data, size * count); 8182 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8183 vcpu->arch.pio.count = 0; 8184 } 8185 8186 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8187 int size, unsigned short port, void *val, 8188 unsigned int count) 8189 { 8190 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8191 if (vcpu->arch.pio.count) { 8192 /* 8193 * Complete a previous iteration that required userspace I/O. 8194 * Note, @count isn't guaranteed to match pio.count as userspace 8195 * can modify ECX before rerunning the vCPU. Ignore any such 8196 * shenanigans as KVM doesn't support modifying the rep count, 8197 * and the emulator ensures @count doesn't overflow the buffer. 8198 */ 8199 complete_emulator_pio_in(vcpu, val); 8200 return 1; 8201 } 8202 8203 return emulator_pio_in(vcpu, size, port, val, count); 8204 } 8205 8206 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8207 unsigned short port, const void *val, 8208 unsigned int count) 8209 { 8210 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8211 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8212 } 8213 8214 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8215 int size, unsigned short port, 8216 const void *val, unsigned int count) 8217 { 8218 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8219 } 8220 8221 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8222 { 8223 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 8224 } 8225 8226 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8227 { 8228 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8229 } 8230 8231 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8232 { 8233 if (!need_emulate_wbinvd(vcpu)) 8234 return X86EMUL_CONTINUE; 8235 8236 if (static_call(kvm_x86_has_wbinvd_exit)()) { 8237 int cpu = get_cpu(); 8238 8239 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8240 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8241 wbinvd_ipi, NULL, 1); 8242 put_cpu(); 8243 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8244 } else 8245 wbinvd(); 8246 return X86EMUL_CONTINUE; 8247 } 8248 8249 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8250 { 8251 kvm_emulate_wbinvd_noskip(vcpu); 8252 return kvm_skip_emulated_instruction(vcpu); 8253 } 8254 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8255 8256 8257 8258 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8259 { 8260 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8261 } 8262 8263 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) 8264 { 8265 return kvm_get_dr(emul_to_vcpu(ctxt), dr); 8266 } 8267 8268 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8269 unsigned long value) 8270 { 8271 8272 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8273 } 8274 8275 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8276 { 8277 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8278 } 8279 8280 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8281 { 8282 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8283 unsigned long value; 8284 8285 switch (cr) { 8286 case 0: 8287 value = kvm_read_cr0(vcpu); 8288 break; 8289 case 2: 8290 value = vcpu->arch.cr2; 8291 break; 8292 case 3: 8293 value = kvm_read_cr3(vcpu); 8294 break; 8295 case 4: 8296 value = kvm_read_cr4(vcpu); 8297 break; 8298 case 8: 8299 value = kvm_get_cr8(vcpu); 8300 break; 8301 default: 8302 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8303 return 0; 8304 } 8305 8306 return value; 8307 } 8308 8309 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8310 { 8311 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8312 int res = 0; 8313 8314 switch (cr) { 8315 case 0: 8316 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8317 break; 8318 case 2: 8319 vcpu->arch.cr2 = val; 8320 break; 8321 case 3: 8322 res = kvm_set_cr3(vcpu, val); 8323 break; 8324 case 4: 8325 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8326 break; 8327 case 8: 8328 res = kvm_set_cr8(vcpu, val); 8329 break; 8330 default: 8331 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8332 res = -1; 8333 } 8334 8335 return res; 8336 } 8337 8338 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8339 { 8340 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8341 } 8342 8343 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8344 { 8345 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8346 } 8347 8348 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8349 { 8350 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8351 } 8352 8353 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8354 { 8355 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8356 } 8357 8358 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8359 { 8360 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8361 } 8362 8363 static unsigned long emulator_get_cached_segment_base( 8364 struct x86_emulate_ctxt *ctxt, int seg) 8365 { 8366 return get_segment_base(emul_to_vcpu(ctxt), seg); 8367 } 8368 8369 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8370 struct desc_struct *desc, u32 *base3, 8371 int seg) 8372 { 8373 struct kvm_segment var; 8374 8375 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8376 *selector = var.selector; 8377 8378 if (var.unusable) { 8379 memset(desc, 0, sizeof(*desc)); 8380 if (base3) 8381 *base3 = 0; 8382 return false; 8383 } 8384 8385 if (var.g) 8386 var.limit >>= 12; 8387 set_desc_limit(desc, var.limit); 8388 set_desc_base(desc, (unsigned long)var.base); 8389 #ifdef CONFIG_X86_64 8390 if (base3) 8391 *base3 = var.base >> 32; 8392 #endif 8393 desc->type = var.type; 8394 desc->s = var.s; 8395 desc->dpl = var.dpl; 8396 desc->p = var.present; 8397 desc->avl = var.avl; 8398 desc->l = var.l; 8399 desc->d = var.db; 8400 desc->g = var.g; 8401 8402 return true; 8403 } 8404 8405 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8406 struct desc_struct *desc, u32 base3, 8407 int seg) 8408 { 8409 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8410 struct kvm_segment var; 8411 8412 var.selector = selector; 8413 var.base = get_desc_base(desc); 8414 #ifdef CONFIG_X86_64 8415 var.base |= ((u64)base3) << 32; 8416 #endif 8417 var.limit = get_desc_limit(desc); 8418 if (desc->g) 8419 var.limit = (var.limit << 12) | 0xfff; 8420 var.type = desc->type; 8421 var.dpl = desc->dpl; 8422 var.db = desc->d; 8423 var.s = desc->s; 8424 var.l = desc->l; 8425 var.g = desc->g; 8426 var.avl = desc->avl; 8427 var.present = desc->p; 8428 var.unusable = !var.present; 8429 var.padding = 0; 8430 8431 kvm_set_segment(vcpu, &var, seg); 8432 return; 8433 } 8434 8435 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8436 u32 msr_index, u64 *pdata) 8437 { 8438 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8439 int r; 8440 8441 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8442 if (r < 0) 8443 return X86EMUL_UNHANDLEABLE; 8444 8445 if (r) { 8446 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8447 complete_emulated_rdmsr, r)) 8448 return X86EMUL_IO_NEEDED; 8449 8450 trace_kvm_msr_read_ex(msr_index); 8451 return X86EMUL_PROPAGATE_FAULT; 8452 } 8453 8454 trace_kvm_msr_read(msr_index, *pdata); 8455 return X86EMUL_CONTINUE; 8456 } 8457 8458 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8459 u32 msr_index, u64 data) 8460 { 8461 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8462 int r; 8463 8464 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8465 if (r < 0) 8466 return X86EMUL_UNHANDLEABLE; 8467 8468 if (r) { 8469 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8470 complete_emulated_msr_access, r)) 8471 return X86EMUL_IO_NEEDED; 8472 8473 trace_kvm_msr_write_ex(msr_index, data); 8474 return X86EMUL_PROPAGATE_FAULT; 8475 } 8476 8477 trace_kvm_msr_write(msr_index, data); 8478 return X86EMUL_CONTINUE; 8479 } 8480 8481 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8482 u32 msr_index, u64 *pdata) 8483 { 8484 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8485 } 8486 8487 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) 8488 { 8489 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); 8490 } 8491 8492 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8493 u32 pmc, u64 *pdata) 8494 { 8495 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8496 } 8497 8498 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8499 { 8500 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8501 } 8502 8503 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8504 struct x86_instruction_info *info, 8505 enum x86_intercept_stage stage) 8506 { 8507 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8508 &ctxt->exception); 8509 } 8510 8511 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8512 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8513 bool exact_only) 8514 { 8515 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8516 } 8517 8518 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8519 { 8520 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8521 } 8522 8523 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8524 { 8525 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8526 } 8527 8528 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8529 { 8530 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8531 } 8532 8533 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8534 { 8535 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8536 } 8537 8538 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8539 { 8540 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8541 } 8542 8543 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8544 { 8545 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8546 } 8547 8548 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8549 { 8550 return is_smm(emul_to_vcpu(ctxt)); 8551 } 8552 8553 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8554 { 8555 return is_guest_mode(emul_to_vcpu(ctxt)); 8556 } 8557 8558 #ifndef CONFIG_KVM_SMM 8559 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8560 { 8561 WARN_ON_ONCE(1); 8562 return X86EMUL_UNHANDLEABLE; 8563 } 8564 #endif 8565 8566 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8567 { 8568 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8569 } 8570 8571 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8572 { 8573 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8574 } 8575 8576 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8577 { 8578 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8579 8580 if (!kvm->vm_bugged) 8581 kvm_vm_bugged(kvm); 8582 } 8583 8584 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8585 gva_t addr, unsigned int flags) 8586 { 8587 if (!kvm_x86_ops.get_untagged_addr) 8588 return addr; 8589 8590 return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags); 8591 } 8592 8593 static const struct x86_emulate_ops emulate_ops = { 8594 .vm_bugged = emulator_vm_bugged, 8595 .read_gpr = emulator_read_gpr, 8596 .write_gpr = emulator_write_gpr, 8597 .read_std = emulator_read_std, 8598 .write_std = emulator_write_std, 8599 .fetch = kvm_fetch_guest_virt, 8600 .read_emulated = emulator_read_emulated, 8601 .write_emulated = emulator_write_emulated, 8602 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8603 .invlpg = emulator_invlpg, 8604 .pio_in_emulated = emulator_pio_in_emulated, 8605 .pio_out_emulated = emulator_pio_out_emulated, 8606 .get_segment = emulator_get_segment, 8607 .set_segment = emulator_set_segment, 8608 .get_cached_segment_base = emulator_get_cached_segment_base, 8609 .get_gdt = emulator_get_gdt, 8610 .get_idt = emulator_get_idt, 8611 .set_gdt = emulator_set_gdt, 8612 .set_idt = emulator_set_idt, 8613 .get_cr = emulator_get_cr, 8614 .set_cr = emulator_set_cr, 8615 .cpl = emulator_get_cpl, 8616 .get_dr = emulator_get_dr, 8617 .set_dr = emulator_set_dr, 8618 .set_msr_with_filter = emulator_set_msr_with_filter, 8619 .get_msr_with_filter = emulator_get_msr_with_filter, 8620 .get_msr = emulator_get_msr, 8621 .check_rdpmc_early = emulator_check_rdpmc_early, 8622 .read_pmc = emulator_read_pmc, 8623 .halt = emulator_halt, 8624 .wbinvd = emulator_wbinvd, 8625 .fix_hypercall = emulator_fix_hypercall, 8626 .intercept = emulator_intercept, 8627 .get_cpuid = emulator_get_cpuid, 8628 .guest_has_movbe = emulator_guest_has_movbe, 8629 .guest_has_fxsr = emulator_guest_has_fxsr, 8630 .guest_has_rdpid = emulator_guest_has_rdpid, 8631 .set_nmi_mask = emulator_set_nmi_mask, 8632 .is_smm = emulator_is_smm, 8633 .is_guest_mode = emulator_is_guest_mode, 8634 .leave_smm = emulator_leave_smm, 8635 .triple_fault = emulator_triple_fault, 8636 .set_xcr = emulator_set_xcr, 8637 .get_untagged_addr = emulator_get_untagged_addr, 8638 }; 8639 8640 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8641 { 8642 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8643 /* 8644 * an sti; sti; sequence only disable interrupts for the first 8645 * instruction. So, if the last instruction, be it emulated or 8646 * not, left the system with the INT_STI flag enabled, it 8647 * means that the last instruction is an sti. We should not 8648 * leave the flag on in this case. The same goes for mov ss 8649 */ 8650 if (int_shadow & mask) 8651 mask = 0; 8652 if (unlikely(int_shadow || mask)) { 8653 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8654 if (!mask) 8655 kvm_make_request(KVM_REQ_EVENT, vcpu); 8656 } 8657 } 8658 8659 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8660 { 8661 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8662 8663 if (ctxt->exception.vector == PF_VECTOR) 8664 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8665 else if (ctxt->exception.error_code_valid) 8666 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8667 ctxt->exception.error_code); 8668 else 8669 kvm_queue_exception(vcpu, ctxt->exception.vector); 8670 } 8671 8672 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8673 { 8674 struct x86_emulate_ctxt *ctxt; 8675 8676 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8677 if (!ctxt) { 8678 pr_err("failed to allocate vcpu's emulator\n"); 8679 return NULL; 8680 } 8681 8682 ctxt->vcpu = vcpu; 8683 ctxt->ops = &emulate_ops; 8684 vcpu->arch.emulate_ctxt = ctxt; 8685 8686 return ctxt; 8687 } 8688 8689 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8690 { 8691 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8692 int cs_db, cs_l; 8693 8694 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8695 8696 ctxt->gpa_available = false; 8697 ctxt->eflags = kvm_get_rflags(vcpu); 8698 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8699 8700 ctxt->eip = kvm_rip_read(vcpu); 8701 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8702 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8703 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8704 cs_db ? X86EMUL_MODE_PROT32 : 8705 X86EMUL_MODE_PROT16; 8706 ctxt->interruptibility = 0; 8707 ctxt->have_exception = false; 8708 ctxt->exception.vector = -1; 8709 ctxt->perm_ok = false; 8710 8711 init_decode_cache(ctxt); 8712 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8713 } 8714 8715 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8716 { 8717 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8718 int ret; 8719 8720 init_emulate_ctxt(vcpu); 8721 8722 ctxt->op_bytes = 2; 8723 ctxt->ad_bytes = 2; 8724 ctxt->_eip = ctxt->eip + inc_eip; 8725 ret = emulate_int_real(ctxt, irq); 8726 8727 if (ret != X86EMUL_CONTINUE) { 8728 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8729 } else { 8730 ctxt->eip = ctxt->_eip; 8731 kvm_rip_write(vcpu, ctxt->eip); 8732 kvm_set_rflags(vcpu, ctxt->eflags); 8733 } 8734 } 8735 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8736 8737 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8738 u8 ndata, u8 *insn_bytes, u8 insn_size) 8739 { 8740 struct kvm_run *run = vcpu->run; 8741 u64 info[5]; 8742 u8 info_start; 8743 8744 /* 8745 * Zero the whole array used to retrieve the exit info, as casting to 8746 * u32 for select entries will leave some chunks uninitialized. 8747 */ 8748 memset(&info, 0, sizeof(info)); 8749 8750 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8751 &info[2], (u32 *)&info[3], 8752 (u32 *)&info[4]); 8753 8754 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8755 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8756 8757 /* 8758 * There's currently space for 13 entries, but 5 are used for the exit 8759 * reason and info. Restrict to 4 to reduce the maintenance burden 8760 * when expanding kvm_run.emulation_failure in the future. 8761 */ 8762 if (WARN_ON_ONCE(ndata > 4)) 8763 ndata = 4; 8764 8765 /* Always include the flags as a 'data' entry. */ 8766 info_start = 1; 8767 run->emulation_failure.flags = 0; 8768 8769 if (insn_size) { 8770 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8771 sizeof(run->emulation_failure.insn_bytes) != 16)); 8772 info_start += 2; 8773 run->emulation_failure.flags |= 8774 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8775 run->emulation_failure.insn_size = insn_size; 8776 memset(run->emulation_failure.insn_bytes, 0x90, 8777 sizeof(run->emulation_failure.insn_bytes)); 8778 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8779 } 8780 8781 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8782 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8783 ndata * sizeof(data[0])); 8784 8785 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8786 } 8787 8788 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8789 { 8790 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8791 8792 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8793 ctxt->fetch.end - ctxt->fetch.data); 8794 } 8795 8796 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8797 u8 ndata) 8798 { 8799 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8800 } 8801 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8802 8803 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8804 { 8805 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8806 } 8807 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8808 8809 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8810 { 8811 struct kvm *kvm = vcpu->kvm; 8812 8813 ++vcpu->stat.insn_emulation_fail; 8814 trace_kvm_emulate_insn_failed(vcpu); 8815 8816 if (emulation_type & EMULTYPE_VMWARE_GP) { 8817 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8818 return 1; 8819 } 8820 8821 if (kvm->arch.exit_on_emulation_error || 8822 (emulation_type & EMULTYPE_SKIP)) { 8823 prepare_emulation_ctxt_failure_exit(vcpu); 8824 return 0; 8825 } 8826 8827 kvm_queue_exception(vcpu, UD_VECTOR); 8828 8829 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8830 prepare_emulation_ctxt_failure_exit(vcpu); 8831 return 0; 8832 } 8833 8834 return 1; 8835 } 8836 8837 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8838 int emulation_type) 8839 { 8840 gpa_t gpa = cr2_or_gpa; 8841 kvm_pfn_t pfn; 8842 8843 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8844 return false; 8845 8846 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8847 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8848 return false; 8849 8850 if (!vcpu->arch.mmu->root_role.direct) { 8851 /* 8852 * Write permission should be allowed since only 8853 * write access need to be emulated. 8854 */ 8855 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8856 8857 /* 8858 * If the mapping is invalid in guest, let cpu retry 8859 * it to generate fault. 8860 */ 8861 if (gpa == INVALID_GPA) 8862 return true; 8863 } 8864 8865 /* 8866 * Do not retry the unhandleable instruction if it faults on the 8867 * readonly host memory, otherwise it will goto a infinite loop: 8868 * retry instruction -> write #PF -> emulation fail -> retry 8869 * instruction -> ... 8870 */ 8871 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8872 8873 /* 8874 * If the instruction failed on the error pfn, it can not be fixed, 8875 * report the error to userspace. 8876 */ 8877 if (is_error_noslot_pfn(pfn)) 8878 return false; 8879 8880 kvm_release_pfn_clean(pfn); 8881 8882 /* 8883 * If emulation may have been triggered by a write to a shadowed page 8884 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the 8885 * guest to let the CPU re-execute the instruction in the hope that the 8886 * CPU can cleanly execute the instruction that KVM failed to emulate. 8887 */ 8888 if (vcpu->kvm->arch.indirect_shadow_pages) 8889 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8890 8891 /* 8892 * If the failed instruction faulted on an access to page tables that 8893 * are used to translate any part of the instruction, KVM can't resolve 8894 * the issue by unprotecting the gfn, as zapping the shadow page will 8895 * result in the instruction taking a !PRESENT page fault and thus put 8896 * the vCPU into an infinite loop of page faults. E.g. KVM will create 8897 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and 8898 * then zap the SPTE to unprotect the gfn, and then do it all over 8899 * again. Report the error to userspace. 8900 */ 8901 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8902 } 8903 8904 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8905 gpa_t cr2_or_gpa, int emulation_type) 8906 { 8907 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8908 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8909 8910 last_retry_eip = vcpu->arch.last_retry_eip; 8911 last_retry_addr = vcpu->arch.last_retry_addr; 8912 8913 /* 8914 * If the emulation is caused by #PF and it is non-page_table 8915 * writing instruction, it means the VM-EXIT is caused by shadow 8916 * page protected, we can zap the shadow page and retry this 8917 * instruction directly. 8918 * 8919 * Note: if the guest uses a non-page-table modifying instruction 8920 * on the PDE that points to the instruction, then we will unmap 8921 * the instruction and go to an infinite loop. So, we cache the 8922 * last retried eip and the last fault address, if we meet the eip 8923 * and the address again, we can break out of the potential infinite 8924 * loop. 8925 */ 8926 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8927 8928 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8929 return false; 8930 8931 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8932 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8933 return false; 8934 8935 if (x86_page_table_writing_insn(ctxt)) 8936 return false; 8937 8938 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8939 return false; 8940 8941 vcpu->arch.last_retry_eip = ctxt->eip; 8942 vcpu->arch.last_retry_addr = cr2_or_gpa; 8943 8944 if (!vcpu->arch.mmu->root_role.direct) 8945 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8946 8947 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8948 8949 return true; 8950 } 8951 8952 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8953 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8954 8955 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8956 unsigned long *db) 8957 { 8958 u32 dr6 = 0; 8959 int i; 8960 u32 enable, rwlen; 8961 8962 enable = dr7; 8963 rwlen = dr7 >> 16; 8964 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8965 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8966 dr6 |= (1 << i); 8967 return dr6; 8968 } 8969 8970 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8971 { 8972 struct kvm_run *kvm_run = vcpu->run; 8973 8974 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8975 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8976 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8977 kvm_run->debug.arch.exception = DB_VECTOR; 8978 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8979 return 0; 8980 } 8981 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8982 return 1; 8983 } 8984 8985 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8986 { 8987 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8988 int r; 8989 8990 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8991 if (unlikely(!r)) 8992 return 0; 8993 8994 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 8995 8996 /* 8997 * rflags is the old, "raw" value of the flags. The new value has 8998 * not been saved yet. 8999 * 9000 * This is correct even for TF set by the guest, because "the 9001 * processor will not generate this exception after the instruction 9002 * that sets the TF flag". 9003 */ 9004 if (unlikely(rflags & X86_EFLAGS_TF)) 9005 r = kvm_vcpu_do_singlestep(vcpu); 9006 return r; 9007 } 9008 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 9009 9010 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 9011 { 9012 u32 shadow; 9013 9014 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 9015 return true; 9016 9017 /* 9018 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 9019 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 9020 * to avoid the relatively expensive CPUID lookup. 9021 */ 9022 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 9023 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 9024 guest_cpuid_is_intel(vcpu); 9025 } 9026 9027 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 9028 int emulation_type, int *r) 9029 { 9030 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 9031 9032 /* 9033 * Do not check for code breakpoints if hardware has already done the 9034 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 9035 * the instruction has passed all exception checks, and all intercepted 9036 * exceptions that trigger emulation have lower priority than code 9037 * breakpoints, i.e. the fact that the intercepted exception occurred 9038 * means any code breakpoints have already been serviced. 9039 * 9040 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 9041 * hardware has checked the RIP of the magic prefix, but not the RIP of 9042 * the instruction being emulated. The intent of forced emulation is 9043 * to behave as if KVM intercepted the instruction without an exception 9044 * and without a prefix. 9045 */ 9046 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 9047 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 9048 return false; 9049 9050 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 9051 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 9052 struct kvm_run *kvm_run = vcpu->run; 9053 unsigned long eip = kvm_get_linear_rip(vcpu); 9054 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9055 vcpu->arch.guest_debug_dr7, 9056 vcpu->arch.eff_db); 9057 9058 if (dr6 != 0) { 9059 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 9060 kvm_run->debug.arch.pc = eip; 9061 kvm_run->debug.arch.exception = DB_VECTOR; 9062 kvm_run->exit_reason = KVM_EXIT_DEBUG; 9063 *r = 0; 9064 return true; 9065 } 9066 } 9067 9068 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 9069 !kvm_is_code_breakpoint_inhibited(vcpu)) { 9070 unsigned long eip = kvm_get_linear_rip(vcpu); 9071 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9072 vcpu->arch.dr7, 9073 vcpu->arch.db); 9074 9075 if (dr6 != 0) { 9076 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 9077 *r = 1; 9078 return true; 9079 } 9080 } 9081 9082 return false; 9083 } 9084 9085 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9086 { 9087 switch (ctxt->opcode_len) { 9088 case 1: 9089 switch (ctxt->b) { 9090 case 0xe4: /* IN */ 9091 case 0xe5: 9092 case 0xec: 9093 case 0xed: 9094 case 0xe6: /* OUT */ 9095 case 0xe7: 9096 case 0xee: 9097 case 0xef: 9098 case 0x6c: /* INS */ 9099 case 0x6d: 9100 case 0x6e: /* OUTS */ 9101 case 0x6f: 9102 return true; 9103 } 9104 break; 9105 case 2: 9106 switch (ctxt->b) { 9107 case 0x33: /* RDPMC */ 9108 return true; 9109 } 9110 break; 9111 } 9112 9113 return false; 9114 } 9115 9116 /* 9117 * Decode an instruction for emulation. The caller is responsible for handling 9118 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9119 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9120 * code breakpoints have higher priority and thus have already been done by 9121 * hardware. 9122 * 9123 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9124 * response to a machine check. 9125 */ 9126 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9127 void *insn, int insn_len) 9128 { 9129 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9130 int r; 9131 9132 init_emulate_ctxt(vcpu); 9133 9134 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9135 9136 trace_kvm_emulate_insn_start(vcpu); 9137 ++vcpu->stat.insn_emulation; 9138 9139 return r; 9140 } 9141 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9142 9143 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9144 int emulation_type, void *insn, int insn_len) 9145 { 9146 int r; 9147 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9148 bool writeback = true; 9149 9150 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9151 if (r != X86EMUL_CONTINUE) { 9152 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9153 return 1; 9154 9155 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9156 return handle_emulation_failure(vcpu, emulation_type); 9157 } 9158 9159 vcpu->arch.l1tf_flush_l1d = true; 9160 9161 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9162 kvm_clear_exception_queue(vcpu); 9163 9164 /* 9165 * Return immediately if RIP hits a code breakpoint, such #DBs 9166 * are fault-like and are higher priority than any faults on 9167 * the code fetch itself. 9168 */ 9169 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9170 return r; 9171 9172 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9173 insn, insn_len); 9174 if (r != EMULATION_OK) { 9175 if ((emulation_type & EMULTYPE_TRAP_UD) || 9176 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9177 kvm_queue_exception(vcpu, UD_VECTOR); 9178 return 1; 9179 } 9180 if (reexecute_instruction(vcpu, cr2_or_gpa, 9181 emulation_type)) 9182 return 1; 9183 9184 if (ctxt->have_exception && 9185 !(emulation_type & EMULTYPE_SKIP)) { 9186 /* 9187 * #UD should result in just EMULATION_FAILED, and trap-like 9188 * exception should not be encountered during decode. 9189 */ 9190 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9191 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9192 inject_emulated_exception(vcpu); 9193 return 1; 9194 } 9195 return handle_emulation_failure(vcpu, emulation_type); 9196 } 9197 } 9198 9199 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9200 !is_vmware_backdoor_opcode(ctxt)) { 9201 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9202 return 1; 9203 } 9204 9205 /* 9206 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9207 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9208 * The caller is responsible for updating interruptibility state and 9209 * injecting single-step #DBs. 9210 */ 9211 if (emulation_type & EMULTYPE_SKIP) { 9212 if (ctxt->mode != X86EMUL_MODE_PROT64) 9213 ctxt->eip = (u32)ctxt->_eip; 9214 else 9215 ctxt->eip = ctxt->_eip; 9216 9217 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9218 r = 1; 9219 goto writeback; 9220 } 9221 9222 kvm_rip_write(vcpu, ctxt->eip); 9223 if (ctxt->eflags & X86_EFLAGS_RF) 9224 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9225 return 1; 9226 } 9227 9228 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 9229 return 1; 9230 9231 /* this is needed for vmware backdoor interface to work since it 9232 changes registers values during IO operation */ 9233 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9234 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9235 emulator_invalidate_register_cache(ctxt); 9236 } 9237 9238 restart: 9239 if (emulation_type & EMULTYPE_PF) { 9240 /* Save the faulting GPA (cr2) in the address field */ 9241 ctxt->exception.address = cr2_or_gpa; 9242 9243 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9244 if (vcpu->arch.mmu->root_role.direct) { 9245 ctxt->gpa_available = true; 9246 ctxt->gpa_val = cr2_or_gpa; 9247 } 9248 } else { 9249 /* Sanitize the address out of an abundance of paranoia. */ 9250 ctxt->exception.address = 0; 9251 } 9252 9253 r = x86_emulate_insn(ctxt); 9254 9255 if (r == EMULATION_INTERCEPTED) 9256 return 1; 9257 9258 if (r == EMULATION_FAILED) { 9259 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 9260 return 1; 9261 9262 return handle_emulation_failure(vcpu, emulation_type); 9263 } 9264 9265 if (ctxt->have_exception) { 9266 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9267 vcpu->mmio_needed = false; 9268 r = 1; 9269 inject_emulated_exception(vcpu); 9270 } else if (vcpu->arch.pio.count) { 9271 if (!vcpu->arch.pio.in) { 9272 /* FIXME: return into emulator if single-stepping. */ 9273 vcpu->arch.pio.count = 0; 9274 } else { 9275 writeback = false; 9276 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9277 } 9278 r = 0; 9279 } else if (vcpu->mmio_needed) { 9280 ++vcpu->stat.mmio_exits; 9281 9282 if (!vcpu->mmio_is_write) 9283 writeback = false; 9284 r = 0; 9285 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9286 } else if (vcpu->arch.complete_userspace_io) { 9287 writeback = false; 9288 r = 0; 9289 } else if (r == EMULATION_RESTART) 9290 goto restart; 9291 else 9292 r = 1; 9293 9294 writeback: 9295 if (writeback) { 9296 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9297 toggle_interruptibility(vcpu, ctxt->interruptibility); 9298 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9299 9300 /* 9301 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9302 * only supports code breakpoints and general detect #DB, both 9303 * of which are fault-like. 9304 */ 9305 if (!ctxt->have_exception || 9306 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9307 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9308 if (ctxt->is_branch) 9309 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); 9310 kvm_rip_write(vcpu, ctxt->eip); 9311 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9312 r = kvm_vcpu_do_singlestep(vcpu); 9313 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9314 __kvm_set_rflags(vcpu, ctxt->eflags); 9315 } 9316 9317 /* 9318 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9319 * do nothing, and it will be requested again as soon as 9320 * the shadow expires. But we still need to check here, 9321 * because POPF has no interrupt shadow. 9322 */ 9323 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9324 kvm_make_request(KVM_REQ_EVENT, vcpu); 9325 } else 9326 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9327 9328 return r; 9329 } 9330 9331 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9332 { 9333 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9334 } 9335 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9336 9337 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9338 void *insn, int insn_len) 9339 { 9340 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9341 } 9342 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9343 9344 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9345 { 9346 vcpu->arch.pio.count = 0; 9347 return 1; 9348 } 9349 9350 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9351 { 9352 vcpu->arch.pio.count = 0; 9353 9354 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9355 return 1; 9356 9357 return kvm_skip_emulated_instruction(vcpu); 9358 } 9359 9360 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9361 unsigned short port) 9362 { 9363 unsigned long val = kvm_rax_read(vcpu); 9364 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9365 9366 if (ret) 9367 return ret; 9368 9369 /* 9370 * Workaround userspace that relies on old KVM behavior of %rip being 9371 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9372 */ 9373 if (port == 0x7e && 9374 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9375 vcpu->arch.complete_userspace_io = 9376 complete_fast_pio_out_port_0x7e; 9377 kvm_skip_emulated_instruction(vcpu); 9378 } else { 9379 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9380 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9381 } 9382 return 0; 9383 } 9384 9385 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9386 { 9387 unsigned long val; 9388 9389 /* We should only ever be called with arch.pio.count equal to 1 */ 9390 BUG_ON(vcpu->arch.pio.count != 1); 9391 9392 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9393 vcpu->arch.pio.count = 0; 9394 return 1; 9395 } 9396 9397 /* For size less than 4 we merge, else we zero extend */ 9398 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9399 9400 complete_emulator_pio_in(vcpu, &val); 9401 kvm_rax_write(vcpu, val); 9402 9403 return kvm_skip_emulated_instruction(vcpu); 9404 } 9405 9406 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9407 unsigned short port) 9408 { 9409 unsigned long val; 9410 int ret; 9411 9412 /* For size less than 4 we merge, else we zero extend */ 9413 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9414 9415 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9416 if (ret) { 9417 kvm_rax_write(vcpu, val); 9418 return ret; 9419 } 9420 9421 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9422 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9423 9424 return 0; 9425 } 9426 9427 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9428 { 9429 int ret; 9430 9431 if (in) 9432 ret = kvm_fast_pio_in(vcpu, size, port); 9433 else 9434 ret = kvm_fast_pio_out(vcpu, size, port); 9435 return ret && kvm_skip_emulated_instruction(vcpu); 9436 } 9437 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9438 9439 static int kvmclock_cpu_down_prep(unsigned int cpu) 9440 { 9441 __this_cpu_write(cpu_tsc_khz, 0); 9442 return 0; 9443 } 9444 9445 static void tsc_khz_changed(void *data) 9446 { 9447 struct cpufreq_freqs *freq = data; 9448 unsigned long khz; 9449 9450 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9451 9452 if (data) 9453 khz = freq->new; 9454 else 9455 khz = cpufreq_quick_get(raw_smp_processor_id()); 9456 if (!khz) 9457 khz = tsc_khz; 9458 __this_cpu_write(cpu_tsc_khz, khz); 9459 } 9460 9461 #ifdef CONFIG_X86_64 9462 static void kvm_hyperv_tsc_notifier(void) 9463 { 9464 struct kvm *kvm; 9465 int cpu; 9466 9467 mutex_lock(&kvm_lock); 9468 list_for_each_entry(kvm, &vm_list, vm_list) 9469 kvm_make_mclock_inprogress_request(kvm); 9470 9471 /* no guest entries from this point */ 9472 hyperv_stop_tsc_emulation(); 9473 9474 /* TSC frequency always matches when on Hyper-V */ 9475 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9476 for_each_present_cpu(cpu) 9477 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9478 } 9479 kvm_caps.max_guest_tsc_khz = tsc_khz; 9480 9481 list_for_each_entry(kvm, &vm_list, vm_list) { 9482 __kvm_start_pvclock_update(kvm); 9483 pvclock_update_vm_gtod_copy(kvm); 9484 kvm_end_pvclock_update(kvm); 9485 } 9486 9487 mutex_unlock(&kvm_lock); 9488 } 9489 #endif 9490 9491 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9492 { 9493 struct kvm *kvm; 9494 struct kvm_vcpu *vcpu; 9495 int send_ipi = 0; 9496 unsigned long i; 9497 9498 /* 9499 * We allow guests to temporarily run on slowing clocks, 9500 * provided we notify them after, or to run on accelerating 9501 * clocks, provided we notify them before. Thus time never 9502 * goes backwards. 9503 * 9504 * However, we have a problem. We can't atomically update 9505 * the frequency of a given CPU from this function; it is 9506 * merely a notifier, which can be called from any CPU. 9507 * Changing the TSC frequency at arbitrary points in time 9508 * requires a recomputation of local variables related to 9509 * the TSC for each VCPU. We must flag these local variables 9510 * to be updated and be sure the update takes place with the 9511 * new frequency before any guests proceed. 9512 * 9513 * Unfortunately, the combination of hotplug CPU and frequency 9514 * change creates an intractable locking scenario; the order 9515 * of when these callouts happen is undefined with respect to 9516 * CPU hotplug, and they can race with each other. As such, 9517 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9518 * undefined; you can actually have a CPU frequency change take 9519 * place in between the computation of X and the setting of the 9520 * variable. To protect against this problem, all updates of 9521 * the per_cpu tsc_khz variable are done in an interrupt 9522 * protected IPI, and all callers wishing to update the value 9523 * must wait for a synchronous IPI to complete (which is trivial 9524 * if the caller is on the CPU already). This establishes the 9525 * necessary total order on variable updates. 9526 * 9527 * Note that because a guest time update may take place 9528 * anytime after the setting of the VCPU's request bit, the 9529 * correct TSC value must be set before the request. However, 9530 * to ensure the update actually makes it to any guest which 9531 * starts running in hardware virtualization between the set 9532 * and the acquisition of the spinlock, we must also ping the 9533 * CPU after setting the request bit. 9534 * 9535 */ 9536 9537 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9538 9539 mutex_lock(&kvm_lock); 9540 list_for_each_entry(kvm, &vm_list, vm_list) { 9541 kvm_for_each_vcpu(i, vcpu, kvm) { 9542 if (vcpu->cpu != cpu) 9543 continue; 9544 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9545 if (vcpu->cpu != raw_smp_processor_id()) 9546 send_ipi = 1; 9547 } 9548 } 9549 mutex_unlock(&kvm_lock); 9550 9551 if (freq->old < freq->new && send_ipi) { 9552 /* 9553 * We upscale the frequency. Must make the guest 9554 * doesn't see old kvmclock values while running with 9555 * the new frequency, otherwise we risk the guest sees 9556 * time go backwards. 9557 * 9558 * In case we update the frequency for another cpu 9559 * (which might be in guest context) send an interrupt 9560 * to kick the cpu out of guest context. Next time 9561 * guest context is entered kvmclock will be updated, 9562 * so the guest will not see stale values. 9563 */ 9564 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9565 } 9566 } 9567 9568 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9569 void *data) 9570 { 9571 struct cpufreq_freqs *freq = data; 9572 int cpu; 9573 9574 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9575 return 0; 9576 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9577 return 0; 9578 9579 for_each_cpu(cpu, freq->policy->cpus) 9580 __kvmclock_cpufreq_notifier(freq, cpu); 9581 9582 return 0; 9583 } 9584 9585 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9586 .notifier_call = kvmclock_cpufreq_notifier 9587 }; 9588 9589 static int kvmclock_cpu_online(unsigned int cpu) 9590 { 9591 tsc_khz_changed(NULL); 9592 return 0; 9593 } 9594 9595 static void kvm_timer_init(void) 9596 { 9597 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9598 max_tsc_khz = tsc_khz; 9599 9600 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9601 struct cpufreq_policy *policy; 9602 int cpu; 9603 9604 cpu = get_cpu(); 9605 policy = cpufreq_cpu_get(cpu); 9606 if (policy) { 9607 if (policy->cpuinfo.max_freq) 9608 max_tsc_khz = policy->cpuinfo.max_freq; 9609 cpufreq_cpu_put(policy); 9610 } 9611 put_cpu(); 9612 } 9613 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9614 CPUFREQ_TRANSITION_NOTIFIER); 9615 9616 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9617 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9618 } 9619 } 9620 9621 #ifdef CONFIG_X86_64 9622 static void pvclock_gtod_update_fn(struct work_struct *work) 9623 { 9624 struct kvm *kvm; 9625 struct kvm_vcpu *vcpu; 9626 unsigned long i; 9627 9628 mutex_lock(&kvm_lock); 9629 list_for_each_entry(kvm, &vm_list, vm_list) 9630 kvm_for_each_vcpu(i, vcpu, kvm) 9631 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9632 atomic_set(&kvm_guest_has_master_clock, 0); 9633 mutex_unlock(&kvm_lock); 9634 } 9635 9636 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9637 9638 /* 9639 * Indirection to move queue_work() out of the tk_core.seq write held 9640 * region to prevent possible deadlocks against time accessors which 9641 * are invoked with work related locks held. 9642 */ 9643 static void pvclock_irq_work_fn(struct irq_work *w) 9644 { 9645 queue_work(system_long_wq, &pvclock_gtod_work); 9646 } 9647 9648 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9649 9650 /* 9651 * Notification about pvclock gtod data update. 9652 */ 9653 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9654 void *priv) 9655 { 9656 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9657 struct timekeeper *tk = priv; 9658 9659 update_pvclock_gtod(tk); 9660 9661 /* 9662 * Disable master clock if host does not trust, or does not use, 9663 * TSC based clocksource. Delegate queue_work() to irq_work as 9664 * this is invoked with tk_core.seq write held. 9665 */ 9666 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9667 atomic_read(&kvm_guest_has_master_clock) != 0) 9668 irq_work_queue(&pvclock_irq_work); 9669 return 0; 9670 } 9671 9672 static struct notifier_block pvclock_gtod_notifier = { 9673 .notifier_call = pvclock_gtod_notify, 9674 }; 9675 #endif 9676 9677 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9678 { 9679 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9680 9681 #define __KVM_X86_OP(func) \ 9682 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9683 #define KVM_X86_OP(func) \ 9684 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9685 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9686 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9687 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9688 (void *)__static_call_return0); 9689 #include <asm/kvm-x86-ops.h> 9690 #undef __KVM_X86_OP 9691 9692 kvm_pmu_ops_update(ops->pmu_ops); 9693 } 9694 9695 static int kvm_x86_check_processor_compatibility(void) 9696 { 9697 int cpu = smp_processor_id(); 9698 struct cpuinfo_x86 *c = &cpu_data(cpu); 9699 9700 /* 9701 * Compatibility checks are done when loading KVM and when enabling 9702 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9703 * compatible, i.e. KVM should never perform a compatibility check on 9704 * an offline CPU. 9705 */ 9706 WARN_ON(!cpu_online(cpu)); 9707 9708 if (__cr4_reserved_bits(cpu_has, c) != 9709 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9710 return -EIO; 9711 9712 return static_call(kvm_x86_check_processor_compatibility)(); 9713 } 9714 9715 static void kvm_x86_check_cpu_compat(void *ret) 9716 { 9717 *(int *)ret = kvm_x86_check_processor_compatibility(); 9718 } 9719 9720 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9721 { 9722 u64 host_pat; 9723 int r, cpu; 9724 9725 guard(mutex)(&vendor_module_lock); 9726 9727 if (kvm_x86_ops.hardware_enable) { 9728 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9729 return -EEXIST; 9730 } 9731 9732 /* 9733 * KVM explicitly assumes that the guest has an FPU and 9734 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9735 * vCPU's FPU state as a fxregs_state struct. 9736 */ 9737 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9738 pr_err("inadequate fpu\n"); 9739 return -EOPNOTSUPP; 9740 } 9741 9742 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9743 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9744 return -EOPNOTSUPP; 9745 } 9746 9747 /* 9748 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9749 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9750 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9751 * with an exception. PAT[0] is set to WB on RESET and also by the 9752 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9753 */ 9754 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9755 (host_pat & GENMASK(2, 0)) != 6) { 9756 pr_err("host PAT[0] is not WB\n"); 9757 return -EIO; 9758 } 9759 9760 memset(&kvm_caps, 0, sizeof(kvm_caps)); 9761 9762 x86_emulator_cache = kvm_alloc_emulator_cache(); 9763 if (!x86_emulator_cache) { 9764 pr_err("failed to allocate cache for x86 emulator\n"); 9765 return -ENOMEM; 9766 } 9767 9768 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9769 if (!user_return_msrs) { 9770 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9771 r = -ENOMEM; 9772 goto out_free_x86_emulator_cache; 9773 } 9774 kvm_nr_uret_msrs = 0; 9775 9776 r = kvm_mmu_vendor_module_init(); 9777 if (r) 9778 goto out_free_percpu; 9779 9780 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); 9781 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; 9782 9783 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9784 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9785 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9786 } 9787 9788 rdmsrl_safe(MSR_EFER, &host_efer); 9789 9790 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9791 rdmsrl(MSR_IA32_XSS, host_xss); 9792 9793 kvm_init_pmu_capability(ops->pmu_ops); 9794 9795 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9796 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9797 9798 r = ops->hardware_setup(); 9799 if (r != 0) 9800 goto out_mmu_exit; 9801 9802 kvm_ops_update(ops); 9803 9804 for_each_online_cpu(cpu) { 9805 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9806 if (r < 0) 9807 goto out_unwind_ops; 9808 } 9809 9810 /* 9811 * Point of no return! DO NOT add error paths below this point unless 9812 * absolutely necessary, as most operations from this point forward 9813 * require unwinding. 9814 */ 9815 kvm_timer_init(); 9816 9817 if (pi_inject_timer == -1) 9818 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9819 #ifdef CONFIG_X86_64 9820 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9821 9822 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9823 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9824 #endif 9825 9826 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9827 9828 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) 9829 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); 9830 9831 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9832 kvm_caps.supported_xss = 0; 9833 9834 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9835 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9836 #undef __kvm_cpu_cap_has 9837 9838 if (kvm_caps.has_tsc_control) { 9839 /* 9840 * Make sure the user can only configure tsc_khz values that 9841 * fit into a signed integer. 9842 * A min value is not calculated because it will always 9843 * be 1 on all machines. 9844 */ 9845 u64 max = min(0x7fffffffULL, 9846 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9847 kvm_caps.max_guest_tsc_khz = max; 9848 } 9849 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9850 kvm_init_msr_lists(); 9851 return 0; 9852 9853 out_unwind_ops: 9854 kvm_x86_ops.hardware_enable = NULL; 9855 static_call(kvm_x86_hardware_unsetup)(); 9856 out_mmu_exit: 9857 kvm_mmu_vendor_module_exit(); 9858 out_free_percpu: 9859 free_percpu(user_return_msrs); 9860 out_free_x86_emulator_cache: 9861 kmem_cache_destroy(x86_emulator_cache); 9862 return r; 9863 } 9864 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9865 9866 void kvm_x86_vendor_exit(void) 9867 { 9868 kvm_unregister_perf_callbacks(); 9869 9870 #ifdef CONFIG_X86_64 9871 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9872 clear_hv_tscchange_cb(); 9873 #endif 9874 kvm_lapic_exit(); 9875 9876 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9877 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9878 CPUFREQ_TRANSITION_NOTIFIER); 9879 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9880 } 9881 #ifdef CONFIG_X86_64 9882 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9883 irq_work_sync(&pvclock_irq_work); 9884 cancel_work_sync(&pvclock_gtod_work); 9885 #endif 9886 static_call(kvm_x86_hardware_unsetup)(); 9887 kvm_mmu_vendor_module_exit(); 9888 free_percpu(user_return_msrs); 9889 kmem_cache_destroy(x86_emulator_cache); 9890 #ifdef CONFIG_KVM_XEN 9891 static_key_deferred_flush(&kvm_xen_enabled); 9892 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9893 #endif 9894 mutex_lock(&vendor_module_lock); 9895 kvm_x86_ops.hardware_enable = NULL; 9896 mutex_unlock(&vendor_module_lock); 9897 } 9898 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9899 9900 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9901 { 9902 /* 9903 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9904 * local APIC is in-kernel, the run loop will detect the non-runnable 9905 * state and halt the vCPU. Exit to userspace if the local APIC is 9906 * managed by userspace, in which case userspace is responsible for 9907 * handling wake events. 9908 */ 9909 ++vcpu->stat.halt_exits; 9910 if (lapic_in_kernel(vcpu)) { 9911 vcpu->arch.mp_state = state; 9912 return 1; 9913 } else { 9914 vcpu->run->exit_reason = reason; 9915 return 0; 9916 } 9917 } 9918 9919 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9920 { 9921 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9922 } 9923 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9924 9925 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9926 { 9927 int ret = kvm_skip_emulated_instruction(vcpu); 9928 /* 9929 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9930 * KVM_EXIT_DEBUG here. 9931 */ 9932 return kvm_emulate_halt_noskip(vcpu) && ret; 9933 } 9934 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9935 9936 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9937 { 9938 int ret = kvm_skip_emulated_instruction(vcpu); 9939 9940 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9941 KVM_EXIT_AP_RESET_HOLD) && ret; 9942 } 9943 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9944 9945 #ifdef CONFIG_X86_64 9946 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9947 unsigned long clock_type) 9948 { 9949 struct kvm_clock_pairing clock_pairing; 9950 struct timespec64 ts; 9951 u64 cycle; 9952 int ret; 9953 9954 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9955 return -KVM_EOPNOTSUPP; 9956 9957 /* 9958 * When tsc is in permanent catchup mode guests won't be able to use 9959 * pvclock_read_retry loop to get consistent view of pvclock 9960 */ 9961 if (vcpu->arch.tsc_always_catchup) 9962 return -KVM_EOPNOTSUPP; 9963 9964 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9965 return -KVM_EOPNOTSUPP; 9966 9967 clock_pairing.sec = ts.tv_sec; 9968 clock_pairing.nsec = ts.tv_nsec; 9969 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9970 clock_pairing.flags = 0; 9971 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9972 9973 ret = 0; 9974 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9975 sizeof(struct kvm_clock_pairing))) 9976 ret = -KVM_EFAULT; 9977 9978 return ret; 9979 } 9980 #endif 9981 9982 /* 9983 * kvm_pv_kick_cpu_op: Kick a vcpu. 9984 * 9985 * @apicid - apicid of vcpu to be kicked. 9986 */ 9987 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9988 { 9989 /* 9990 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9991 * common code, e.g. for tracing. Defer initialization to the compiler. 9992 */ 9993 struct kvm_lapic_irq lapic_irq = { 9994 .delivery_mode = APIC_DM_REMRD, 9995 .dest_mode = APIC_DEST_PHYSICAL, 9996 .shorthand = APIC_DEST_NOSHORT, 9997 .dest_id = apicid, 9998 }; 9999 10000 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 10001 } 10002 10003 bool kvm_apicv_activated(struct kvm *kvm) 10004 { 10005 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 10006 } 10007 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 10008 10009 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 10010 { 10011 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 10012 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 10013 10014 return (vm_reasons | vcpu_reasons) == 0; 10015 } 10016 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 10017 10018 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 10019 enum kvm_apicv_inhibit reason, bool set) 10020 { 10021 if (set) 10022 __set_bit(reason, inhibits); 10023 else 10024 __clear_bit(reason, inhibits); 10025 10026 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 10027 } 10028 10029 static void kvm_apicv_init(struct kvm *kvm) 10030 { 10031 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : 10032 APICV_INHIBIT_REASON_DISABLE; 10033 10034 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); 10035 10036 init_rwsem(&kvm->arch.apicv_update_lock); 10037 } 10038 10039 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 10040 { 10041 struct kvm_vcpu *target = NULL; 10042 struct kvm_apic_map *map; 10043 10044 vcpu->stat.directed_yield_attempted++; 10045 10046 if (single_task_running()) 10047 goto no_yield; 10048 10049 rcu_read_lock(); 10050 map = rcu_dereference(vcpu->kvm->arch.apic_map); 10051 10052 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 10053 target = map->phys_map[dest_id]->vcpu; 10054 10055 rcu_read_unlock(); 10056 10057 if (!target || !READ_ONCE(target->ready)) 10058 goto no_yield; 10059 10060 /* Ignore requests to yield to self */ 10061 if (vcpu == target) 10062 goto no_yield; 10063 10064 if (kvm_vcpu_yield_to(target) <= 0) 10065 goto no_yield; 10066 10067 vcpu->stat.directed_yield_successful++; 10068 10069 no_yield: 10070 return; 10071 } 10072 10073 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 10074 { 10075 u64 ret = vcpu->run->hypercall.ret; 10076 10077 if (!is_64_bit_mode(vcpu)) 10078 ret = (u32)ret; 10079 kvm_rax_write(vcpu, ret); 10080 ++vcpu->stat.hypercalls; 10081 return kvm_skip_emulated_instruction(vcpu); 10082 } 10083 10084 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr, 10085 unsigned long a0, unsigned long a1, 10086 unsigned long a2, unsigned long a3, 10087 int op_64_bit, int cpl) 10088 { 10089 unsigned long ret; 10090 10091 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10092 10093 if (!op_64_bit) { 10094 nr &= 0xFFFFFFFF; 10095 a0 &= 0xFFFFFFFF; 10096 a1 &= 0xFFFFFFFF; 10097 a2 &= 0xFFFFFFFF; 10098 a3 &= 0xFFFFFFFF; 10099 } 10100 10101 if (cpl) { 10102 ret = -KVM_EPERM; 10103 goto out; 10104 } 10105 10106 ret = -KVM_ENOSYS; 10107 10108 switch (nr) { 10109 case KVM_HC_VAPIC_POLL_IRQ: 10110 ret = 0; 10111 break; 10112 case KVM_HC_KICK_CPU: 10113 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10114 break; 10115 10116 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10117 kvm_sched_yield(vcpu, a1); 10118 ret = 0; 10119 break; 10120 #ifdef CONFIG_X86_64 10121 case KVM_HC_CLOCK_PAIRING: 10122 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10123 break; 10124 #endif 10125 case KVM_HC_SEND_IPI: 10126 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10127 break; 10128 10129 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10130 break; 10131 case KVM_HC_SCHED_YIELD: 10132 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10133 break; 10134 10135 kvm_sched_yield(vcpu, a0); 10136 ret = 0; 10137 break; 10138 case KVM_HC_MAP_GPA_RANGE: { 10139 u64 gpa = a0, npages = a1, attrs = a2; 10140 10141 ret = -KVM_ENOSYS; 10142 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10143 break; 10144 10145 if (!PAGE_ALIGNED(gpa) || !npages || 10146 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10147 ret = -KVM_EINVAL; 10148 break; 10149 } 10150 10151 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10152 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10153 vcpu->run->hypercall.args[0] = gpa; 10154 vcpu->run->hypercall.args[1] = npages; 10155 vcpu->run->hypercall.args[2] = attrs; 10156 vcpu->run->hypercall.flags = 0; 10157 if (op_64_bit) 10158 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10159 10160 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10161 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10162 /* stat is incremented on completion. */ 10163 return 0; 10164 } 10165 default: 10166 ret = -KVM_ENOSYS; 10167 break; 10168 } 10169 10170 out: 10171 ++vcpu->stat.hypercalls; 10172 return ret; 10173 } 10174 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall); 10175 10176 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10177 { 10178 unsigned long nr, a0, a1, a2, a3, ret; 10179 int op_64_bit; 10180 int cpl; 10181 10182 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10183 return kvm_xen_hypercall(vcpu); 10184 10185 if (kvm_hv_hypercall_enabled(vcpu)) 10186 return kvm_hv_hypercall(vcpu); 10187 10188 nr = kvm_rax_read(vcpu); 10189 a0 = kvm_rbx_read(vcpu); 10190 a1 = kvm_rcx_read(vcpu); 10191 a2 = kvm_rdx_read(vcpu); 10192 a3 = kvm_rsi_read(vcpu); 10193 op_64_bit = is_64_bit_hypercall(vcpu); 10194 cpl = static_call(kvm_x86_get_cpl)(vcpu); 10195 10196 ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl); 10197 if (nr == KVM_HC_MAP_GPA_RANGE && !ret) 10198 /* MAP_GPA tosses the request to the user space. */ 10199 return 0; 10200 10201 if (!op_64_bit) 10202 ret = (u32)ret; 10203 kvm_rax_write(vcpu, ret); 10204 10205 return kvm_skip_emulated_instruction(vcpu); 10206 } 10207 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10208 10209 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10210 { 10211 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10212 char instruction[3]; 10213 unsigned long rip = kvm_rip_read(vcpu); 10214 10215 /* 10216 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10217 * the pieces. 10218 */ 10219 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10220 ctxt->exception.error_code_valid = false; 10221 ctxt->exception.vector = UD_VECTOR; 10222 ctxt->have_exception = true; 10223 return X86EMUL_PROPAGATE_FAULT; 10224 } 10225 10226 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 10227 10228 return emulator_write_emulated(ctxt, rip, instruction, 3, 10229 &ctxt->exception); 10230 } 10231 10232 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10233 { 10234 return vcpu->run->request_interrupt_window && 10235 likely(!pic_in_kernel(vcpu->kvm)); 10236 } 10237 10238 /* Called within kvm->srcu read side. */ 10239 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10240 { 10241 struct kvm_run *kvm_run = vcpu->run; 10242 10243 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 10244 kvm_run->cr8 = kvm_get_cr8(vcpu); 10245 kvm_run->apic_base = kvm_get_apic_base(vcpu); 10246 10247 kvm_run->ready_for_interrupt_injection = 10248 pic_in_kernel(vcpu->kvm) || 10249 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10250 10251 if (is_smm(vcpu)) 10252 kvm_run->flags |= KVM_RUN_X86_SMM; 10253 } 10254 10255 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10256 { 10257 int max_irr, tpr; 10258 10259 if (!kvm_x86_ops.update_cr8_intercept) 10260 return; 10261 10262 if (!lapic_in_kernel(vcpu)) 10263 return; 10264 10265 if (vcpu->arch.apic->apicv_active) 10266 return; 10267 10268 if (!vcpu->arch.apic->vapic_addr) 10269 max_irr = kvm_lapic_find_highest_irr(vcpu); 10270 else 10271 max_irr = -1; 10272 10273 if (max_irr != -1) 10274 max_irr >>= 4; 10275 10276 tpr = kvm_lapic_get_cr8(vcpu); 10277 10278 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 10279 } 10280 10281 10282 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10283 { 10284 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10285 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10286 return 1; 10287 } 10288 10289 return kvm_x86_ops.nested_ops->check_events(vcpu); 10290 } 10291 10292 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10293 { 10294 /* 10295 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10296 * exceptions don't report error codes. The presence of an error code 10297 * is carried with the exception and only stripped when the exception 10298 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10299 * report an error code despite the CPU being in Real Mode. 10300 */ 10301 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10302 10303 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10304 vcpu->arch.exception.has_error_code, 10305 vcpu->arch.exception.error_code, 10306 vcpu->arch.exception.injected); 10307 10308 static_call(kvm_x86_inject_exception)(vcpu); 10309 } 10310 10311 /* 10312 * Check for any event (interrupt or exception) that is ready to be injected, 10313 * and if there is at least one event, inject the event with the highest 10314 * priority. This handles both "pending" events, i.e. events that have never 10315 * been injected into the guest, and "injected" events, i.e. events that were 10316 * injected as part of a previous VM-Enter, but weren't successfully delivered 10317 * and need to be re-injected. 10318 * 10319 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10320 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10321 * be able to inject exceptions in the "middle" of an instruction, and so must 10322 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10323 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10324 * boundaries is necessary and correct. 10325 * 10326 * For simplicity, KVM uses a single path to inject all events (except events 10327 * that are injected directly from L1 to L2) and doesn't explicitly track 10328 * instruction boundaries for asynchronous events. However, because VM-Exits 10329 * that can occur during instruction execution typically result in KVM skipping 10330 * the instruction or injecting an exception, e.g. instruction and exception 10331 * intercepts, and because pending exceptions have higher priority than pending 10332 * interrupts, KVM still honors instruction boundaries in most scenarios. 10333 * 10334 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10335 * the instruction or inject an exception, then KVM can incorrecty inject a new 10336 * asynchronous event if the event became pending after the CPU fetched the 10337 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10338 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10339 * injected on the restarted instruction instead of being deferred until the 10340 * instruction completes. 10341 * 10342 * In practice, this virtualization hole is unlikely to be observed by the 10343 * guest, and even less likely to cause functional problems. To detect the 10344 * hole, the guest would have to trigger an event on a side effect of an early 10345 * phase of instruction execution, e.g. on the instruction fetch from memory. 10346 * And for it to be a functional problem, the guest would need to depend on the 10347 * ordering between that side effect, the instruction completing, _and_ the 10348 * delivery of the asynchronous event. 10349 */ 10350 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10351 bool *req_immediate_exit) 10352 { 10353 bool can_inject; 10354 int r; 10355 10356 /* 10357 * Process nested events first, as nested VM-Exit supersedes event 10358 * re-injection. If there's an event queued for re-injection, it will 10359 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10360 */ 10361 if (is_guest_mode(vcpu)) 10362 r = kvm_check_nested_events(vcpu); 10363 else 10364 r = 0; 10365 10366 /* 10367 * Re-inject exceptions and events *especially* if immediate entry+exit 10368 * to/from L2 is needed, as any event that has already been injected 10369 * into L2 needs to complete its lifecycle before injecting a new event. 10370 * 10371 * Don't re-inject an NMI or interrupt if there is a pending exception. 10372 * This collision arises if an exception occurred while vectoring the 10373 * injected event, KVM intercepted said exception, and KVM ultimately 10374 * determined the fault belongs to the guest and queues the exception 10375 * for injection back into the guest. 10376 * 10377 * "Injected" interrupts can also collide with pending exceptions if 10378 * userspace ignores the "ready for injection" flag and blindly queues 10379 * an interrupt. In that case, prioritizing the exception is correct, 10380 * as the exception "occurred" before the exit to userspace. Trap-like 10381 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10382 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10383 * priority, they're only generated (pended) during instruction 10384 * execution, and interrupts are recognized at instruction boundaries. 10385 * Thus a pending fault-like exception means the fault occurred on the 10386 * *previous* instruction and must be serviced prior to recognizing any 10387 * new events in order to fully complete the previous instruction. 10388 */ 10389 if (vcpu->arch.exception.injected) 10390 kvm_inject_exception(vcpu); 10391 else if (kvm_is_exception_pending(vcpu)) 10392 ; /* see above */ 10393 else if (vcpu->arch.nmi_injected) 10394 static_call(kvm_x86_inject_nmi)(vcpu); 10395 else if (vcpu->arch.interrupt.injected) 10396 static_call(kvm_x86_inject_irq)(vcpu, true); 10397 10398 /* 10399 * Exceptions that morph to VM-Exits are handled above, and pending 10400 * exceptions on top of injected exceptions that do not VM-Exit should 10401 * either morph to #DF or, sadly, override the injected exception. 10402 */ 10403 WARN_ON_ONCE(vcpu->arch.exception.injected && 10404 vcpu->arch.exception.pending); 10405 10406 /* 10407 * Bail if immediate entry+exit to/from the guest is needed to complete 10408 * nested VM-Enter or event re-injection so that a different pending 10409 * event can be serviced (or if KVM needs to exit to userspace). 10410 * 10411 * Otherwise, continue processing events even if VM-Exit occurred. The 10412 * VM-Exit will have cleared exceptions that were meant for L2, but 10413 * there may now be events that can be injected into L1. 10414 */ 10415 if (r < 0) 10416 goto out; 10417 10418 /* 10419 * A pending exception VM-Exit should either result in nested VM-Exit 10420 * or force an immediate re-entry and exit to/from L2, and exception 10421 * VM-Exits cannot be injected (flag should _never_ be set). 10422 */ 10423 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10424 vcpu->arch.exception_vmexit.pending); 10425 10426 /* 10427 * New events, other than exceptions, cannot be injected if KVM needs 10428 * to re-inject a previous event. See above comments on re-injecting 10429 * for why pending exceptions get priority. 10430 */ 10431 can_inject = !kvm_event_needs_reinjection(vcpu); 10432 10433 if (vcpu->arch.exception.pending) { 10434 /* 10435 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10436 * value pushed on the stack. Trap-like exception and all #DBs 10437 * leave RF as-is (KVM follows Intel's behavior in this regard; 10438 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10439 * 10440 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10441 * describe the behavior of General Detect #DBs, which are 10442 * fault-like. They do _not_ set RF, a la code breakpoints. 10443 */ 10444 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10445 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10446 X86_EFLAGS_RF); 10447 10448 if (vcpu->arch.exception.vector == DB_VECTOR) { 10449 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10450 if (vcpu->arch.dr7 & DR7_GD) { 10451 vcpu->arch.dr7 &= ~DR7_GD; 10452 kvm_update_dr7(vcpu); 10453 } 10454 } 10455 10456 kvm_inject_exception(vcpu); 10457 10458 vcpu->arch.exception.pending = false; 10459 vcpu->arch.exception.injected = true; 10460 10461 can_inject = false; 10462 } 10463 10464 /* Don't inject interrupts if the user asked to avoid doing so */ 10465 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10466 return 0; 10467 10468 /* 10469 * Finally, inject interrupt events. If an event cannot be injected 10470 * due to architectural conditions (e.g. IF=0) a window-open exit 10471 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10472 * and can architecturally be injected, but we cannot do it right now: 10473 * an interrupt could have arrived just now and we have to inject it 10474 * as a vmexit, or there could already an event in the queue, which is 10475 * indicated by can_inject. In that case we request an immediate exit 10476 * in order to make progress and get back here for another iteration. 10477 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10478 */ 10479 #ifdef CONFIG_KVM_SMM 10480 if (vcpu->arch.smi_pending) { 10481 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10482 if (r < 0) 10483 goto out; 10484 if (r) { 10485 vcpu->arch.smi_pending = false; 10486 ++vcpu->arch.smi_count; 10487 enter_smm(vcpu); 10488 can_inject = false; 10489 } else 10490 static_call(kvm_x86_enable_smi_window)(vcpu); 10491 } 10492 #endif 10493 10494 if (vcpu->arch.nmi_pending) { 10495 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10496 if (r < 0) 10497 goto out; 10498 if (r) { 10499 --vcpu->arch.nmi_pending; 10500 vcpu->arch.nmi_injected = true; 10501 static_call(kvm_x86_inject_nmi)(vcpu); 10502 can_inject = false; 10503 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10504 } 10505 if (vcpu->arch.nmi_pending) 10506 static_call(kvm_x86_enable_nmi_window)(vcpu); 10507 } 10508 10509 if (kvm_cpu_has_injectable_intr(vcpu)) { 10510 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10511 if (r < 0) 10512 goto out; 10513 if (r) { 10514 int irq = kvm_cpu_get_interrupt(vcpu); 10515 10516 if (!WARN_ON_ONCE(irq == -1)) { 10517 kvm_queue_interrupt(vcpu, irq, false); 10518 static_call(kvm_x86_inject_irq)(vcpu, false); 10519 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10520 } 10521 } 10522 if (kvm_cpu_has_injectable_intr(vcpu)) 10523 static_call(kvm_x86_enable_irq_window)(vcpu); 10524 } 10525 10526 if (is_guest_mode(vcpu) && 10527 kvm_x86_ops.nested_ops->has_events && 10528 kvm_x86_ops.nested_ops->has_events(vcpu)) 10529 *req_immediate_exit = true; 10530 10531 /* 10532 * KVM must never queue a new exception while injecting an event; KVM 10533 * is done emulating and should only propagate the to-be-injected event 10534 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10535 * infinite loop as KVM will bail from VM-Enter to inject the pending 10536 * exception and start the cycle all over. 10537 * 10538 * Exempt triple faults as they have special handling and won't put the 10539 * vCPU into an infinite loop. Triple fault can be queued when running 10540 * VMX without unrestricted guest, as that requires KVM to emulate Real 10541 * Mode events (see kvm_inject_realmode_interrupt()). 10542 */ 10543 WARN_ON_ONCE(vcpu->arch.exception.pending || 10544 vcpu->arch.exception_vmexit.pending); 10545 return 0; 10546 10547 out: 10548 if (r == -EBUSY) { 10549 *req_immediate_exit = true; 10550 r = 0; 10551 } 10552 return r; 10553 } 10554 10555 static void process_nmi(struct kvm_vcpu *vcpu) 10556 { 10557 unsigned int limit; 10558 10559 /* 10560 * x86 is limited to one NMI pending, but because KVM can't react to 10561 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10562 * scheduled out, KVM needs to play nice with two queued NMIs showing 10563 * up at the same time. To handle this scenario, allow two NMIs to be 10564 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10565 * waiting for a previous NMI injection to complete (which effectively 10566 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10567 * will request an NMI window to handle the second NMI. 10568 */ 10569 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10570 limit = 1; 10571 else 10572 limit = 2; 10573 10574 /* 10575 * Adjust the limit to account for pending virtual NMIs, which aren't 10576 * tracked in vcpu->arch.nmi_pending. 10577 */ 10578 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10579 limit--; 10580 10581 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10582 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10583 10584 if (vcpu->arch.nmi_pending && 10585 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10586 vcpu->arch.nmi_pending--; 10587 10588 if (vcpu->arch.nmi_pending) 10589 kvm_make_request(KVM_REQ_EVENT, vcpu); 10590 } 10591 10592 /* Return total number of NMIs pending injection to the VM */ 10593 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10594 { 10595 return vcpu->arch.nmi_pending + 10596 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10597 } 10598 10599 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10600 unsigned long *vcpu_bitmap) 10601 { 10602 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10603 } 10604 10605 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10606 { 10607 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10608 } 10609 10610 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10611 { 10612 struct kvm_lapic *apic = vcpu->arch.apic; 10613 bool activate; 10614 10615 if (!lapic_in_kernel(vcpu)) 10616 return; 10617 10618 down_read(&vcpu->kvm->arch.apicv_update_lock); 10619 preempt_disable(); 10620 10621 /* Do not activate APICV when APIC is disabled */ 10622 activate = kvm_vcpu_apicv_activated(vcpu) && 10623 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10624 10625 if (apic->apicv_active == activate) 10626 goto out; 10627 10628 apic->apicv_active = activate; 10629 kvm_apic_update_apicv(vcpu); 10630 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10631 10632 /* 10633 * When APICv gets disabled, we may still have injected interrupts 10634 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10635 * still active when the interrupt got accepted. Make sure 10636 * kvm_check_and_inject_events() is called to check for that. 10637 */ 10638 if (!apic->apicv_active) 10639 kvm_make_request(KVM_REQ_EVENT, vcpu); 10640 10641 out: 10642 preempt_enable(); 10643 up_read(&vcpu->kvm->arch.apicv_update_lock); 10644 } 10645 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10646 10647 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10648 { 10649 if (!lapic_in_kernel(vcpu)) 10650 return; 10651 10652 /* 10653 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10654 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10655 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10656 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10657 * this case so that KVM can the AVIC doorbell to inject interrupts to 10658 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10659 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10660 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10661 * access page is sticky. 10662 */ 10663 if (apic_x2apic_mode(vcpu->arch.apic) && 10664 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10665 kvm_inhibit_apic_access_page(vcpu); 10666 10667 __kvm_vcpu_update_apicv(vcpu); 10668 } 10669 10670 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10671 enum kvm_apicv_inhibit reason, bool set) 10672 { 10673 unsigned long old, new; 10674 10675 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10676 10677 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10678 return; 10679 10680 old = new = kvm->arch.apicv_inhibit_reasons; 10681 10682 set_or_clear_apicv_inhibit(&new, reason, set); 10683 10684 if (!!old != !!new) { 10685 /* 10686 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10687 * false positives in the sanity check WARN in svm_vcpu_run(). 10688 * This task will wait for all vCPUs to ack the kick IRQ before 10689 * updating apicv_inhibit_reasons, and all other vCPUs will 10690 * block on acquiring apicv_update_lock so that vCPUs can't 10691 * redo svm_vcpu_run() without seeing the new inhibit state. 10692 * 10693 * Note, holding apicv_update_lock and taking it in the read 10694 * side (handling the request) also prevents other vCPUs from 10695 * servicing the request with a stale apicv_inhibit_reasons. 10696 */ 10697 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10698 kvm->arch.apicv_inhibit_reasons = new; 10699 if (new) { 10700 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10701 int idx = srcu_read_lock(&kvm->srcu); 10702 10703 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10704 srcu_read_unlock(&kvm->srcu, idx); 10705 } 10706 } else { 10707 kvm->arch.apicv_inhibit_reasons = new; 10708 } 10709 } 10710 10711 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10712 enum kvm_apicv_inhibit reason, bool set) 10713 { 10714 if (!enable_apicv) 10715 return; 10716 10717 down_write(&kvm->arch.apicv_update_lock); 10718 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10719 up_write(&kvm->arch.apicv_update_lock); 10720 } 10721 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10722 10723 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10724 { 10725 if (!kvm_apic_present(vcpu)) 10726 return; 10727 10728 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10729 10730 if (irqchip_split(vcpu->kvm)) 10731 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10732 else { 10733 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10734 if (ioapic_in_kernel(vcpu->kvm)) 10735 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10736 } 10737 10738 if (is_guest_mode(vcpu)) 10739 vcpu->arch.load_eoi_exitmap_pending = true; 10740 else 10741 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10742 } 10743 10744 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10745 { 10746 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10747 return; 10748 10749 #ifdef CONFIG_KVM_HYPERV 10750 if (to_hv_vcpu(vcpu)) { 10751 u64 eoi_exit_bitmap[4]; 10752 10753 bitmap_or((ulong *)eoi_exit_bitmap, 10754 vcpu->arch.ioapic_handled_vectors, 10755 to_hv_synic(vcpu)->vec_bitmap, 256); 10756 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10757 return; 10758 } 10759 #endif 10760 static_call_cond(kvm_x86_load_eoi_exitmap)( 10761 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10762 } 10763 10764 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10765 { 10766 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10767 } 10768 10769 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10770 { 10771 if (!lapic_in_kernel(vcpu)) 10772 return; 10773 10774 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10775 } 10776 10777 /* 10778 * Called within kvm->srcu read side. 10779 * Returns 1 to let vcpu_run() continue the guest execution loop without 10780 * exiting to the userspace. Otherwise, the value will be returned to the 10781 * userspace. 10782 */ 10783 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10784 { 10785 int r; 10786 bool req_int_win = 10787 dm_request_for_irq_injection(vcpu) && 10788 kvm_cpu_accept_dm_intr(vcpu); 10789 fastpath_t exit_fastpath; 10790 10791 bool req_immediate_exit = false; 10792 10793 if (kvm_request_pending(vcpu)) { 10794 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10795 r = -EIO; 10796 goto out; 10797 } 10798 10799 if (kvm_dirty_ring_check_request(vcpu)) { 10800 r = 0; 10801 goto out; 10802 } 10803 10804 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10805 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10806 r = 0; 10807 goto out; 10808 } 10809 } 10810 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10811 kvm_mmu_free_obsolete_roots(vcpu); 10812 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10813 __kvm_migrate_timers(vcpu); 10814 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10815 kvm_update_masterclock(vcpu->kvm); 10816 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10817 kvm_gen_kvmclock_update(vcpu); 10818 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10819 r = kvm_guest_time_update(vcpu); 10820 if (unlikely(r)) 10821 goto out; 10822 } 10823 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10824 kvm_mmu_sync_roots(vcpu); 10825 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10826 kvm_mmu_load_pgd(vcpu); 10827 10828 /* 10829 * Note, the order matters here, as flushing "all" TLB entries 10830 * also flushes the "current" TLB entries, i.e. servicing the 10831 * flush "all" will clear any request to flush "current". 10832 */ 10833 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10834 kvm_vcpu_flush_tlb_all(vcpu); 10835 10836 kvm_service_local_tlb_flush_requests(vcpu); 10837 10838 /* 10839 * Fall back to a "full" guest flush if Hyper-V's precise 10840 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10841 * the flushes are considered "remote" and not "local" because 10842 * the requests can be initiated from other vCPUs. 10843 */ 10844 #ifdef CONFIG_KVM_HYPERV 10845 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10846 kvm_hv_vcpu_flush_tlb(vcpu)) 10847 kvm_vcpu_flush_tlb_guest(vcpu); 10848 #endif 10849 10850 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10851 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10852 r = 0; 10853 goto out; 10854 } 10855 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10856 if (is_guest_mode(vcpu)) 10857 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10858 10859 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10860 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10861 vcpu->mmio_needed = 0; 10862 r = 0; 10863 goto out; 10864 } 10865 } 10866 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10867 /* Page is swapped out. Do synthetic halt */ 10868 vcpu->arch.apf.halted = true; 10869 r = 1; 10870 goto out; 10871 } 10872 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10873 record_steal_time(vcpu); 10874 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10875 kvm_pmu_handle_event(vcpu); 10876 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10877 kvm_pmu_deliver_pmi(vcpu); 10878 #ifdef CONFIG_KVM_SMM 10879 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10880 process_smi(vcpu); 10881 #endif 10882 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10883 process_nmi(vcpu); 10884 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10885 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10886 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10887 vcpu->arch.ioapic_handled_vectors)) { 10888 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10889 vcpu->run->eoi.vector = 10890 vcpu->arch.pending_ioapic_eoi; 10891 r = 0; 10892 goto out; 10893 } 10894 } 10895 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10896 vcpu_scan_ioapic(vcpu); 10897 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10898 vcpu_load_eoi_exitmap(vcpu); 10899 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10900 kvm_vcpu_reload_apic_access_page(vcpu); 10901 #ifdef CONFIG_KVM_HYPERV 10902 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10903 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10904 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10905 vcpu->run->system_event.ndata = 0; 10906 r = 0; 10907 goto out; 10908 } 10909 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10910 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10911 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10912 vcpu->run->system_event.ndata = 0; 10913 r = 0; 10914 goto out; 10915 } 10916 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10917 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10918 10919 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10920 vcpu->run->hyperv = hv_vcpu->exit; 10921 r = 0; 10922 goto out; 10923 } 10924 10925 /* 10926 * KVM_REQ_HV_STIMER has to be processed after 10927 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10928 * depend on the guest clock being up-to-date 10929 */ 10930 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10931 kvm_hv_process_stimers(vcpu); 10932 #endif 10933 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10934 kvm_vcpu_update_apicv(vcpu); 10935 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10936 kvm_check_async_pf_completion(vcpu); 10937 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10938 static_call(kvm_x86_msr_filter_changed)(vcpu); 10939 10940 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10941 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10942 } 10943 10944 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10945 kvm_xen_has_interrupt(vcpu)) { 10946 ++vcpu->stat.req_event; 10947 r = kvm_apic_accept_events(vcpu); 10948 if (r < 0) { 10949 r = 0; 10950 goto out; 10951 } 10952 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10953 r = 1; 10954 goto out; 10955 } 10956 10957 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10958 if (r < 0) { 10959 r = 0; 10960 goto out; 10961 } 10962 if (req_int_win) 10963 static_call(kvm_x86_enable_irq_window)(vcpu); 10964 10965 if (kvm_lapic_enabled(vcpu)) { 10966 update_cr8_intercept(vcpu); 10967 kvm_lapic_sync_to_vapic(vcpu); 10968 } 10969 } 10970 10971 r = kvm_mmu_reload(vcpu); 10972 if (unlikely(r)) { 10973 goto cancel_injection; 10974 } 10975 10976 preempt_disable(); 10977 10978 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10979 10980 /* 10981 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10982 * IPI are then delayed after guest entry, which ensures that they 10983 * result in virtual interrupt delivery. 10984 */ 10985 local_irq_disable(); 10986 10987 /* Store vcpu->apicv_active before vcpu->mode. */ 10988 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10989 10990 kvm_vcpu_srcu_read_unlock(vcpu); 10991 10992 /* 10993 * 1) We should set ->mode before checking ->requests. Please see 10994 * the comment in kvm_vcpu_exiting_guest_mode(). 10995 * 10996 * 2) For APICv, we should set ->mode before checking PID.ON. This 10997 * pairs with the memory barrier implicit in pi_test_and_set_on 10998 * (see vmx_deliver_posted_interrupt). 10999 * 11000 * 3) This also orders the write to mode from any reads to the page 11001 * tables done while the VCPU is running. Please see the comment 11002 * in kvm_flush_remote_tlbs. 11003 */ 11004 smp_mb__after_srcu_read_unlock(); 11005 11006 /* 11007 * Process pending posted interrupts to handle the case where the 11008 * notification IRQ arrived in the host, or was never sent (because the 11009 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 11010 * status, KVM doesn't update assigned devices when APICv is inhibited, 11011 * i.e. they can post interrupts even if APICv is temporarily disabled. 11012 */ 11013 if (kvm_lapic_enabled(vcpu)) 11014 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 11015 11016 if (kvm_vcpu_exit_request(vcpu)) { 11017 vcpu->mode = OUTSIDE_GUEST_MODE; 11018 smp_wmb(); 11019 local_irq_enable(); 11020 preempt_enable(); 11021 kvm_vcpu_srcu_read_lock(vcpu); 11022 r = 1; 11023 goto cancel_injection; 11024 } 11025 11026 if (req_immediate_exit) 11027 kvm_make_request(KVM_REQ_EVENT, vcpu); 11028 11029 fpregs_assert_state_consistent(); 11030 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 11031 switch_fpu_return(); 11032 11033 if (vcpu->arch.guest_fpu.xfd_err) 11034 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 11035 11036 if (unlikely(vcpu->arch.switch_db_regs)) { 11037 set_debugreg(0, 7); 11038 set_debugreg(vcpu->arch.eff_db[0], 0); 11039 set_debugreg(vcpu->arch.eff_db[1], 1); 11040 set_debugreg(vcpu->arch.eff_db[2], 2); 11041 set_debugreg(vcpu->arch.eff_db[3], 3); 11042 } else if (unlikely(hw_breakpoint_active())) { 11043 set_debugreg(0, 7); 11044 } 11045 11046 guest_timing_enter_irqoff(); 11047 11048 for (;;) { 11049 /* 11050 * Assert that vCPU vs. VM APICv state is consistent. An APICv 11051 * update must kick and wait for all vCPUs before toggling the 11052 * per-VM state, and responding vCPUs must wait for the update 11053 * to complete before servicing KVM_REQ_APICV_UPDATE. 11054 */ 11055 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 11056 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 11057 11058 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu, req_immediate_exit); 11059 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 11060 break; 11061 11062 if (kvm_lapic_enabled(vcpu)) 11063 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 11064 11065 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 11066 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 11067 break; 11068 } 11069 11070 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 11071 ++vcpu->stat.exits; 11072 } 11073 11074 /* 11075 * Do this here before restoring debug registers on the host. And 11076 * since we do this before handling the vmexit, a DR access vmexit 11077 * can (a) read the correct value of the debug registers, (b) set 11078 * KVM_DEBUGREG_WONT_EXIT again. 11079 */ 11080 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 11081 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 11082 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 11083 kvm_update_dr0123(vcpu); 11084 kvm_update_dr7(vcpu); 11085 } 11086 11087 /* 11088 * If the guest has used debug registers, at least dr7 11089 * will be disabled while returning to the host. 11090 * If we don't have active breakpoints in the host, we don't 11091 * care about the messed up debug address registers. But if 11092 * we have some of them active, restore the old state. 11093 */ 11094 if (hw_breakpoint_active()) 11095 hw_breakpoint_restore(); 11096 11097 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11098 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11099 11100 vcpu->mode = OUTSIDE_GUEST_MODE; 11101 smp_wmb(); 11102 11103 /* 11104 * Sync xfd before calling handle_exit_irqoff() which may 11105 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11106 * in #NM irqoff handler). 11107 */ 11108 if (vcpu->arch.xfd_no_write_intercept) 11109 fpu_sync_guest_vmexit_xfd_state(); 11110 11111 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 11112 11113 if (vcpu->arch.guest_fpu.xfd_err) 11114 wrmsrl(MSR_IA32_XFD_ERR, 0); 11115 11116 /* 11117 * Consume any pending interrupts, including the possible source of 11118 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11119 * An instruction is required after local_irq_enable() to fully unblock 11120 * interrupts on processors that implement an interrupt shadow, the 11121 * stat.exits increment will do nicely. 11122 */ 11123 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11124 local_irq_enable(); 11125 ++vcpu->stat.exits; 11126 local_irq_disable(); 11127 kvm_after_interrupt(vcpu); 11128 11129 /* 11130 * Wait until after servicing IRQs to account guest time so that any 11131 * ticks that occurred while running the guest are properly accounted 11132 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11133 * of accounting via context tracking, but the loss of accuracy is 11134 * acceptable for all known use cases. 11135 */ 11136 guest_timing_exit_irqoff(); 11137 11138 local_irq_enable(); 11139 preempt_enable(); 11140 11141 kvm_vcpu_srcu_read_lock(vcpu); 11142 11143 /* 11144 * Profile KVM exit RIPs: 11145 */ 11146 if (unlikely(prof_on == KVM_PROFILING)) { 11147 unsigned long rip = kvm_rip_read(vcpu); 11148 profile_hit(KVM_PROFILING, (void *)rip); 11149 } 11150 11151 if (unlikely(vcpu->arch.tsc_always_catchup)) 11152 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11153 11154 if (vcpu->arch.apic_attention) 11155 kvm_lapic_sync_from_vapic(vcpu); 11156 11157 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 11158 return r; 11159 11160 cancel_injection: 11161 if (req_immediate_exit) 11162 kvm_make_request(KVM_REQ_EVENT, vcpu); 11163 static_call(kvm_x86_cancel_injection)(vcpu); 11164 if (unlikely(vcpu->arch.apic_attention)) 11165 kvm_lapic_sync_from_vapic(vcpu); 11166 out: 11167 return r; 11168 } 11169 11170 /* Called within kvm->srcu read side. */ 11171 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11172 { 11173 bool hv_timer; 11174 11175 if (!kvm_arch_vcpu_runnable(vcpu)) { 11176 /* 11177 * Switch to the software timer before halt-polling/blocking as 11178 * the guest's timer may be a break event for the vCPU, and the 11179 * hypervisor timer runs only when the CPU is in guest mode. 11180 * Switch before halt-polling so that KVM recognizes an expired 11181 * timer before blocking. 11182 */ 11183 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11184 if (hv_timer) 11185 kvm_lapic_switch_to_sw_timer(vcpu); 11186 11187 kvm_vcpu_srcu_read_unlock(vcpu); 11188 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11189 kvm_vcpu_halt(vcpu); 11190 else 11191 kvm_vcpu_block(vcpu); 11192 kvm_vcpu_srcu_read_lock(vcpu); 11193 11194 if (hv_timer) 11195 kvm_lapic_switch_to_hv_timer(vcpu); 11196 11197 /* 11198 * If the vCPU is not runnable, a signal or another host event 11199 * of some kind is pending; service it without changing the 11200 * vCPU's activity state. 11201 */ 11202 if (!kvm_arch_vcpu_runnable(vcpu)) 11203 return 1; 11204 } 11205 11206 /* 11207 * Evaluate nested events before exiting the halted state. This allows 11208 * the halt state to be recorded properly in the VMCS12's activity 11209 * state field (AMD does not have a similar field and a VM-Exit always 11210 * causes a spurious wakeup from HLT). 11211 */ 11212 if (is_guest_mode(vcpu)) { 11213 if (kvm_check_nested_events(vcpu) < 0) 11214 return 0; 11215 } 11216 11217 if (kvm_apic_accept_events(vcpu) < 0) 11218 return 0; 11219 switch(vcpu->arch.mp_state) { 11220 case KVM_MP_STATE_HALTED: 11221 case KVM_MP_STATE_AP_RESET_HOLD: 11222 vcpu->arch.pv.pv_unhalted = false; 11223 vcpu->arch.mp_state = 11224 KVM_MP_STATE_RUNNABLE; 11225 fallthrough; 11226 case KVM_MP_STATE_RUNNABLE: 11227 vcpu->arch.apf.halted = false; 11228 break; 11229 case KVM_MP_STATE_INIT_RECEIVED: 11230 break; 11231 default: 11232 WARN_ON_ONCE(1); 11233 break; 11234 } 11235 return 1; 11236 } 11237 11238 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11239 { 11240 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11241 !vcpu->arch.apf.halted); 11242 } 11243 11244 /* Called within kvm->srcu read side. */ 11245 static int vcpu_run(struct kvm_vcpu *vcpu) 11246 { 11247 int r; 11248 11249 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11250 vcpu->arch.l1tf_flush_l1d = true; 11251 11252 for (;;) { 11253 /* 11254 * If another guest vCPU requests a PV TLB flush in the middle 11255 * of instruction emulation, the rest of the emulation could 11256 * use a stale page translation. Assume that any code after 11257 * this point can start executing an instruction. 11258 */ 11259 vcpu->arch.at_instruction_boundary = false; 11260 if (kvm_vcpu_running(vcpu)) { 11261 r = vcpu_enter_guest(vcpu); 11262 } else { 11263 r = vcpu_block(vcpu); 11264 } 11265 11266 if (r <= 0) 11267 break; 11268 11269 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11270 if (kvm_xen_has_pending_events(vcpu)) 11271 kvm_xen_inject_pending_events(vcpu); 11272 11273 if (kvm_cpu_has_pending_timer(vcpu)) 11274 kvm_inject_pending_timer_irqs(vcpu); 11275 11276 if (dm_request_for_irq_injection(vcpu) && 11277 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11278 r = 0; 11279 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11280 ++vcpu->stat.request_irq_exits; 11281 break; 11282 } 11283 11284 if (__xfer_to_guest_mode_work_pending()) { 11285 kvm_vcpu_srcu_read_unlock(vcpu); 11286 r = xfer_to_guest_mode_handle_work(vcpu); 11287 kvm_vcpu_srcu_read_lock(vcpu); 11288 if (r) 11289 return r; 11290 } 11291 } 11292 11293 return r; 11294 } 11295 11296 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11297 { 11298 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11299 } 11300 11301 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11302 { 11303 BUG_ON(!vcpu->arch.pio.count); 11304 11305 return complete_emulated_io(vcpu); 11306 } 11307 11308 /* 11309 * Implements the following, as a state machine: 11310 * 11311 * read: 11312 * for each fragment 11313 * for each mmio piece in the fragment 11314 * write gpa, len 11315 * exit 11316 * copy data 11317 * execute insn 11318 * 11319 * write: 11320 * for each fragment 11321 * for each mmio piece in the fragment 11322 * write gpa, len 11323 * copy data 11324 * exit 11325 */ 11326 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11327 { 11328 struct kvm_run *run = vcpu->run; 11329 struct kvm_mmio_fragment *frag; 11330 unsigned len; 11331 11332 BUG_ON(!vcpu->mmio_needed); 11333 11334 /* Complete previous fragment */ 11335 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11336 len = min(8u, frag->len); 11337 if (!vcpu->mmio_is_write) 11338 memcpy(frag->data, run->mmio.data, len); 11339 11340 if (frag->len <= 8) { 11341 /* Switch to the next fragment. */ 11342 frag++; 11343 vcpu->mmio_cur_fragment++; 11344 } else { 11345 /* Go forward to the next mmio piece. */ 11346 frag->data += len; 11347 frag->gpa += len; 11348 frag->len -= len; 11349 } 11350 11351 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11352 vcpu->mmio_needed = 0; 11353 11354 /* FIXME: return into emulator if single-stepping. */ 11355 if (vcpu->mmio_is_write) 11356 return 1; 11357 vcpu->mmio_read_completed = 1; 11358 return complete_emulated_io(vcpu); 11359 } 11360 11361 run->exit_reason = KVM_EXIT_MMIO; 11362 run->mmio.phys_addr = frag->gpa; 11363 if (vcpu->mmio_is_write) 11364 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11365 run->mmio.len = min(8u, frag->len); 11366 run->mmio.is_write = vcpu->mmio_is_write; 11367 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11368 return 0; 11369 } 11370 11371 /* Swap (qemu) user FPU context for the guest FPU context. */ 11372 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11373 { 11374 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11375 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11376 trace_kvm_fpu(1); 11377 } 11378 11379 /* When vcpu_run ends, restore user space FPU context. */ 11380 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11381 { 11382 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11383 ++vcpu->stat.fpu_reload; 11384 trace_kvm_fpu(0); 11385 } 11386 11387 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11388 { 11389 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11390 struct kvm_run *kvm_run = vcpu->run; 11391 int r; 11392 11393 vcpu_load(vcpu); 11394 kvm_sigset_activate(vcpu); 11395 kvm_run->flags = 0; 11396 kvm_load_guest_fpu(vcpu); 11397 11398 kvm_vcpu_srcu_read_lock(vcpu); 11399 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11400 if (kvm_run->immediate_exit) { 11401 r = -EINTR; 11402 goto out; 11403 } 11404 11405 /* 11406 * Don't bother switching APIC timer emulation from the 11407 * hypervisor timer to the software timer, the only way for the 11408 * APIC timer to be active is if userspace stuffed vCPU state, 11409 * i.e. put the vCPU into a nonsensical state. Only an INIT 11410 * will transition the vCPU out of UNINITIALIZED (without more 11411 * state stuffing from userspace), which will reset the local 11412 * APIC and thus cancel the timer or drop the IRQ (if the timer 11413 * already expired). 11414 */ 11415 kvm_vcpu_srcu_read_unlock(vcpu); 11416 kvm_vcpu_block(vcpu); 11417 kvm_vcpu_srcu_read_lock(vcpu); 11418 11419 if (kvm_apic_accept_events(vcpu) < 0) { 11420 r = 0; 11421 goto out; 11422 } 11423 r = -EAGAIN; 11424 if (signal_pending(current)) { 11425 r = -EINTR; 11426 kvm_run->exit_reason = KVM_EXIT_INTR; 11427 ++vcpu->stat.signal_exits; 11428 } 11429 goto out; 11430 } 11431 11432 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11433 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11434 r = -EINVAL; 11435 goto out; 11436 } 11437 11438 if (kvm_run->kvm_dirty_regs) { 11439 r = sync_regs(vcpu); 11440 if (r != 0) 11441 goto out; 11442 } 11443 11444 /* re-sync apic's tpr */ 11445 if (!lapic_in_kernel(vcpu)) { 11446 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11447 r = -EINVAL; 11448 goto out; 11449 } 11450 } 11451 11452 /* 11453 * If userspace set a pending exception and L2 is active, convert it to 11454 * a pending VM-Exit if L1 wants to intercept the exception. 11455 */ 11456 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11457 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11458 ex->error_code)) { 11459 kvm_queue_exception_vmexit(vcpu, ex->vector, 11460 ex->has_error_code, ex->error_code, 11461 ex->has_payload, ex->payload); 11462 ex->injected = false; 11463 ex->pending = false; 11464 } 11465 vcpu->arch.exception_from_userspace = false; 11466 11467 if (unlikely(vcpu->arch.complete_userspace_io)) { 11468 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11469 vcpu->arch.complete_userspace_io = NULL; 11470 r = cui(vcpu); 11471 if (r <= 0) 11472 goto out; 11473 } else { 11474 WARN_ON_ONCE(vcpu->arch.pio.count); 11475 WARN_ON_ONCE(vcpu->mmio_needed); 11476 } 11477 11478 if (kvm_run->immediate_exit) { 11479 r = -EINTR; 11480 goto out; 11481 } 11482 11483 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11484 if (r <= 0) 11485 goto out; 11486 11487 r = vcpu_run(vcpu); 11488 11489 out: 11490 kvm_put_guest_fpu(vcpu); 11491 if (kvm_run->kvm_valid_regs) 11492 store_regs(vcpu); 11493 post_kvm_run_save(vcpu); 11494 kvm_vcpu_srcu_read_unlock(vcpu); 11495 11496 kvm_sigset_deactivate(vcpu); 11497 vcpu_put(vcpu); 11498 return r; 11499 } 11500 11501 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11502 { 11503 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11504 /* 11505 * We are here if userspace calls get_regs() in the middle of 11506 * instruction emulation. Registers state needs to be copied 11507 * back from emulation context to vcpu. Userspace shouldn't do 11508 * that usually, but some bad designed PV devices (vmware 11509 * backdoor interface) need this to work 11510 */ 11511 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11512 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11513 } 11514 regs->rax = kvm_rax_read(vcpu); 11515 regs->rbx = kvm_rbx_read(vcpu); 11516 regs->rcx = kvm_rcx_read(vcpu); 11517 regs->rdx = kvm_rdx_read(vcpu); 11518 regs->rsi = kvm_rsi_read(vcpu); 11519 regs->rdi = kvm_rdi_read(vcpu); 11520 regs->rsp = kvm_rsp_read(vcpu); 11521 regs->rbp = kvm_rbp_read(vcpu); 11522 #ifdef CONFIG_X86_64 11523 regs->r8 = kvm_r8_read(vcpu); 11524 regs->r9 = kvm_r9_read(vcpu); 11525 regs->r10 = kvm_r10_read(vcpu); 11526 regs->r11 = kvm_r11_read(vcpu); 11527 regs->r12 = kvm_r12_read(vcpu); 11528 regs->r13 = kvm_r13_read(vcpu); 11529 regs->r14 = kvm_r14_read(vcpu); 11530 regs->r15 = kvm_r15_read(vcpu); 11531 #endif 11532 11533 regs->rip = kvm_rip_read(vcpu); 11534 regs->rflags = kvm_get_rflags(vcpu); 11535 } 11536 11537 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11538 { 11539 if (vcpu->kvm->arch.has_protected_state && 11540 vcpu->arch.guest_state_protected) 11541 return -EINVAL; 11542 11543 vcpu_load(vcpu); 11544 __get_regs(vcpu, regs); 11545 vcpu_put(vcpu); 11546 return 0; 11547 } 11548 11549 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11550 { 11551 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11552 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11553 11554 kvm_rax_write(vcpu, regs->rax); 11555 kvm_rbx_write(vcpu, regs->rbx); 11556 kvm_rcx_write(vcpu, regs->rcx); 11557 kvm_rdx_write(vcpu, regs->rdx); 11558 kvm_rsi_write(vcpu, regs->rsi); 11559 kvm_rdi_write(vcpu, regs->rdi); 11560 kvm_rsp_write(vcpu, regs->rsp); 11561 kvm_rbp_write(vcpu, regs->rbp); 11562 #ifdef CONFIG_X86_64 11563 kvm_r8_write(vcpu, regs->r8); 11564 kvm_r9_write(vcpu, regs->r9); 11565 kvm_r10_write(vcpu, regs->r10); 11566 kvm_r11_write(vcpu, regs->r11); 11567 kvm_r12_write(vcpu, regs->r12); 11568 kvm_r13_write(vcpu, regs->r13); 11569 kvm_r14_write(vcpu, regs->r14); 11570 kvm_r15_write(vcpu, regs->r15); 11571 #endif 11572 11573 kvm_rip_write(vcpu, regs->rip); 11574 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11575 11576 vcpu->arch.exception.pending = false; 11577 vcpu->arch.exception_vmexit.pending = false; 11578 11579 kvm_make_request(KVM_REQ_EVENT, vcpu); 11580 } 11581 11582 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11583 { 11584 if (vcpu->kvm->arch.has_protected_state && 11585 vcpu->arch.guest_state_protected) 11586 return -EINVAL; 11587 11588 vcpu_load(vcpu); 11589 __set_regs(vcpu, regs); 11590 vcpu_put(vcpu); 11591 return 0; 11592 } 11593 11594 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11595 { 11596 struct desc_ptr dt; 11597 11598 if (vcpu->arch.guest_state_protected) 11599 goto skip_protected_regs; 11600 11601 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11602 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11603 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11604 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11605 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11606 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11607 11608 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11609 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11610 11611 static_call(kvm_x86_get_idt)(vcpu, &dt); 11612 sregs->idt.limit = dt.size; 11613 sregs->idt.base = dt.address; 11614 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11615 sregs->gdt.limit = dt.size; 11616 sregs->gdt.base = dt.address; 11617 11618 sregs->cr2 = vcpu->arch.cr2; 11619 sregs->cr3 = kvm_read_cr3(vcpu); 11620 11621 skip_protected_regs: 11622 sregs->cr0 = kvm_read_cr0(vcpu); 11623 sregs->cr4 = kvm_read_cr4(vcpu); 11624 sregs->cr8 = kvm_get_cr8(vcpu); 11625 sregs->efer = vcpu->arch.efer; 11626 sregs->apic_base = kvm_get_apic_base(vcpu); 11627 } 11628 11629 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11630 { 11631 __get_sregs_common(vcpu, sregs); 11632 11633 if (vcpu->arch.guest_state_protected) 11634 return; 11635 11636 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11637 set_bit(vcpu->arch.interrupt.nr, 11638 (unsigned long *)sregs->interrupt_bitmap); 11639 } 11640 11641 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11642 { 11643 int i; 11644 11645 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11646 11647 if (vcpu->arch.guest_state_protected) 11648 return; 11649 11650 if (is_pae_paging(vcpu)) { 11651 for (i = 0 ; i < 4 ; i++) 11652 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11653 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11654 } 11655 } 11656 11657 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11658 struct kvm_sregs *sregs) 11659 { 11660 if (vcpu->kvm->arch.has_protected_state && 11661 vcpu->arch.guest_state_protected) 11662 return -EINVAL; 11663 11664 vcpu_load(vcpu); 11665 __get_sregs(vcpu, sregs); 11666 vcpu_put(vcpu); 11667 return 0; 11668 } 11669 11670 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11671 struct kvm_mp_state *mp_state) 11672 { 11673 int r; 11674 11675 vcpu_load(vcpu); 11676 if (kvm_mpx_supported()) 11677 kvm_load_guest_fpu(vcpu); 11678 11679 r = kvm_apic_accept_events(vcpu); 11680 if (r < 0) 11681 goto out; 11682 r = 0; 11683 11684 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11685 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11686 vcpu->arch.pv.pv_unhalted) 11687 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11688 else 11689 mp_state->mp_state = vcpu->arch.mp_state; 11690 11691 out: 11692 if (kvm_mpx_supported()) 11693 kvm_put_guest_fpu(vcpu); 11694 vcpu_put(vcpu); 11695 return r; 11696 } 11697 11698 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11699 struct kvm_mp_state *mp_state) 11700 { 11701 int ret = -EINVAL; 11702 11703 vcpu_load(vcpu); 11704 11705 switch (mp_state->mp_state) { 11706 case KVM_MP_STATE_UNINITIALIZED: 11707 case KVM_MP_STATE_HALTED: 11708 case KVM_MP_STATE_AP_RESET_HOLD: 11709 case KVM_MP_STATE_INIT_RECEIVED: 11710 case KVM_MP_STATE_SIPI_RECEIVED: 11711 if (!lapic_in_kernel(vcpu)) 11712 goto out; 11713 break; 11714 11715 case KVM_MP_STATE_RUNNABLE: 11716 break; 11717 11718 default: 11719 goto out; 11720 } 11721 11722 /* 11723 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11724 * forcing the guest into INIT/SIPI if those events are supposed to be 11725 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11726 * if an SMI is pending as well. 11727 */ 11728 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11729 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11730 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11731 goto out; 11732 11733 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11734 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11735 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11736 } else 11737 vcpu->arch.mp_state = mp_state->mp_state; 11738 kvm_make_request(KVM_REQ_EVENT, vcpu); 11739 11740 ret = 0; 11741 out: 11742 vcpu_put(vcpu); 11743 return ret; 11744 } 11745 11746 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11747 int reason, bool has_error_code, u32 error_code) 11748 { 11749 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11750 int ret; 11751 11752 init_emulate_ctxt(vcpu); 11753 11754 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11755 has_error_code, error_code); 11756 if (ret) { 11757 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11758 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11759 vcpu->run->internal.ndata = 0; 11760 return 0; 11761 } 11762 11763 kvm_rip_write(vcpu, ctxt->eip); 11764 kvm_set_rflags(vcpu, ctxt->eflags); 11765 return 1; 11766 } 11767 EXPORT_SYMBOL_GPL(kvm_task_switch); 11768 11769 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11770 { 11771 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11772 /* 11773 * When EFER.LME and CR0.PG are set, the processor is in 11774 * 64-bit mode (though maybe in a 32-bit code segment). 11775 * CR4.PAE and EFER.LMA must be set. 11776 */ 11777 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11778 return false; 11779 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11780 return false; 11781 } else { 11782 /* 11783 * Not in 64-bit mode: EFER.LMA is clear and the code 11784 * segment cannot be 64-bit. 11785 */ 11786 if (sregs->efer & EFER_LMA || sregs->cs.l) 11787 return false; 11788 } 11789 11790 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11791 kvm_is_valid_cr0(vcpu, sregs->cr0); 11792 } 11793 11794 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11795 int *mmu_reset_needed, bool update_pdptrs) 11796 { 11797 struct msr_data apic_base_msr; 11798 int idx; 11799 struct desc_ptr dt; 11800 11801 if (!kvm_is_valid_sregs(vcpu, sregs)) 11802 return -EINVAL; 11803 11804 apic_base_msr.data = sregs->apic_base; 11805 apic_base_msr.host_initiated = true; 11806 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11807 return -EINVAL; 11808 11809 if (vcpu->arch.guest_state_protected) 11810 return 0; 11811 11812 dt.size = sregs->idt.limit; 11813 dt.address = sregs->idt.base; 11814 static_call(kvm_x86_set_idt)(vcpu, &dt); 11815 dt.size = sregs->gdt.limit; 11816 dt.address = sregs->gdt.base; 11817 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11818 11819 vcpu->arch.cr2 = sregs->cr2; 11820 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11821 vcpu->arch.cr3 = sregs->cr3; 11822 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11823 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11824 11825 kvm_set_cr8(vcpu, sregs->cr8); 11826 11827 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11828 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11829 11830 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11831 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11832 11833 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11834 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11835 11836 if (update_pdptrs) { 11837 idx = srcu_read_lock(&vcpu->kvm->srcu); 11838 if (is_pae_paging(vcpu)) { 11839 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11840 *mmu_reset_needed = 1; 11841 } 11842 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11843 } 11844 11845 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11846 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11847 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11848 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11849 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11850 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11851 11852 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11853 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11854 11855 update_cr8_intercept(vcpu); 11856 11857 /* Older userspace won't unhalt the vcpu on reset. */ 11858 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11859 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11860 !is_protmode(vcpu)) 11861 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11862 11863 return 0; 11864 } 11865 11866 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11867 { 11868 int pending_vec, max_bits; 11869 int mmu_reset_needed = 0; 11870 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11871 11872 if (ret) 11873 return ret; 11874 11875 if (mmu_reset_needed) { 11876 kvm_mmu_reset_context(vcpu); 11877 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11878 } 11879 11880 max_bits = KVM_NR_INTERRUPTS; 11881 pending_vec = find_first_bit( 11882 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11883 11884 if (pending_vec < max_bits) { 11885 kvm_queue_interrupt(vcpu, pending_vec, false); 11886 pr_debug("Set back pending irq %d\n", pending_vec); 11887 kvm_make_request(KVM_REQ_EVENT, vcpu); 11888 } 11889 return 0; 11890 } 11891 11892 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11893 { 11894 int mmu_reset_needed = 0; 11895 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11896 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11897 !(sregs2->efer & EFER_LMA); 11898 int i, ret; 11899 11900 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11901 return -EINVAL; 11902 11903 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11904 return -EINVAL; 11905 11906 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11907 &mmu_reset_needed, !valid_pdptrs); 11908 if (ret) 11909 return ret; 11910 11911 if (valid_pdptrs) { 11912 for (i = 0; i < 4 ; i++) 11913 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11914 11915 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11916 mmu_reset_needed = 1; 11917 vcpu->arch.pdptrs_from_userspace = true; 11918 } 11919 if (mmu_reset_needed) { 11920 kvm_mmu_reset_context(vcpu); 11921 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11922 } 11923 return 0; 11924 } 11925 11926 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11927 struct kvm_sregs *sregs) 11928 { 11929 int ret; 11930 11931 if (vcpu->kvm->arch.has_protected_state && 11932 vcpu->arch.guest_state_protected) 11933 return -EINVAL; 11934 11935 vcpu_load(vcpu); 11936 ret = __set_sregs(vcpu, sregs); 11937 vcpu_put(vcpu); 11938 return ret; 11939 } 11940 11941 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11942 { 11943 bool set = false; 11944 struct kvm_vcpu *vcpu; 11945 unsigned long i; 11946 11947 if (!enable_apicv) 11948 return; 11949 11950 down_write(&kvm->arch.apicv_update_lock); 11951 11952 kvm_for_each_vcpu(i, vcpu, kvm) { 11953 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11954 set = true; 11955 break; 11956 } 11957 } 11958 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11959 up_write(&kvm->arch.apicv_update_lock); 11960 } 11961 11962 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11963 struct kvm_guest_debug *dbg) 11964 { 11965 unsigned long rflags; 11966 int i, r; 11967 11968 if (vcpu->arch.guest_state_protected) 11969 return -EINVAL; 11970 11971 vcpu_load(vcpu); 11972 11973 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11974 r = -EBUSY; 11975 if (kvm_is_exception_pending(vcpu)) 11976 goto out; 11977 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11978 kvm_queue_exception(vcpu, DB_VECTOR); 11979 else 11980 kvm_queue_exception(vcpu, BP_VECTOR); 11981 } 11982 11983 /* 11984 * Read rflags as long as potentially injected trace flags are still 11985 * filtered out. 11986 */ 11987 rflags = kvm_get_rflags(vcpu); 11988 11989 vcpu->guest_debug = dbg->control; 11990 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11991 vcpu->guest_debug = 0; 11992 11993 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11994 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11995 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11996 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11997 } else { 11998 for (i = 0; i < KVM_NR_DB_REGS; i++) 11999 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 12000 } 12001 kvm_update_dr7(vcpu); 12002 12003 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12004 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 12005 12006 /* 12007 * Trigger an rflags update that will inject or remove the trace 12008 * flags. 12009 */ 12010 kvm_set_rflags(vcpu, rflags); 12011 12012 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12013 12014 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 12015 12016 r = 0; 12017 12018 out: 12019 vcpu_put(vcpu); 12020 return r; 12021 } 12022 12023 /* 12024 * Translate a guest virtual address to a guest physical address. 12025 */ 12026 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 12027 struct kvm_translation *tr) 12028 { 12029 unsigned long vaddr = tr->linear_address; 12030 gpa_t gpa; 12031 int idx; 12032 12033 vcpu_load(vcpu); 12034 12035 idx = srcu_read_lock(&vcpu->kvm->srcu); 12036 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 12037 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12038 tr->physical_address = gpa; 12039 tr->valid = gpa != INVALID_GPA; 12040 tr->writeable = 1; 12041 tr->usermode = 0; 12042 12043 vcpu_put(vcpu); 12044 return 0; 12045 } 12046 12047 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12048 { 12049 struct fxregs_state *fxsave; 12050 12051 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12052 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12053 12054 vcpu_load(vcpu); 12055 12056 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12057 memcpy(fpu->fpr, fxsave->st_space, 128); 12058 fpu->fcw = fxsave->cwd; 12059 fpu->fsw = fxsave->swd; 12060 fpu->ftwx = fxsave->twd; 12061 fpu->last_opcode = fxsave->fop; 12062 fpu->last_ip = fxsave->rip; 12063 fpu->last_dp = fxsave->rdp; 12064 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 12065 12066 vcpu_put(vcpu); 12067 return 0; 12068 } 12069 12070 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12071 { 12072 struct fxregs_state *fxsave; 12073 12074 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12075 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12076 12077 vcpu_load(vcpu); 12078 12079 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12080 12081 memcpy(fxsave->st_space, fpu->fpr, 128); 12082 fxsave->cwd = fpu->fcw; 12083 fxsave->swd = fpu->fsw; 12084 fxsave->twd = fpu->ftwx; 12085 fxsave->fop = fpu->last_opcode; 12086 fxsave->rip = fpu->last_ip; 12087 fxsave->rdp = fpu->last_dp; 12088 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 12089 12090 vcpu_put(vcpu); 12091 return 0; 12092 } 12093 12094 static void store_regs(struct kvm_vcpu *vcpu) 12095 { 12096 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12097 12098 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12099 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12100 12101 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12102 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12103 12104 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12105 kvm_vcpu_ioctl_x86_get_vcpu_events( 12106 vcpu, &vcpu->run->s.regs.events); 12107 } 12108 12109 static int sync_regs(struct kvm_vcpu *vcpu) 12110 { 12111 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12112 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12113 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12114 } 12115 12116 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12117 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12118 12119 if (__set_sregs(vcpu, &sregs)) 12120 return -EINVAL; 12121 12122 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12123 } 12124 12125 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12126 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12127 12128 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12129 return -EINVAL; 12130 12131 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12132 } 12133 12134 return 0; 12135 } 12136 12137 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12138 { 12139 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12140 pr_warn_once("SMP vm created on host with unstable TSC; " 12141 "guest TSC will not be reliable\n"); 12142 12143 if (!kvm->arch.max_vcpu_ids) 12144 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12145 12146 if (id >= kvm->arch.max_vcpu_ids) 12147 return -EINVAL; 12148 12149 return static_call(kvm_x86_vcpu_precreate)(kvm); 12150 } 12151 12152 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12153 { 12154 struct page *page; 12155 int r; 12156 12157 vcpu->arch.last_vmentry_cpu = -1; 12158 vcpu->arch.regs_avail = ~0; 12159 vcpu->arch.regs_dirty = ~0; 12160 12161 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); 12162 12163 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12164 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12165 else 12166 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 12167 12168 r = kvm_mmu_create(vcpu); 12169 if (r < 0) 12170 return r; 12171 12172 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 12173 if (r < 0) 12174 goto fail_mmu_destroy; 12175 12176 r = -ENOMEM; 12177 12178 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12179 if (!page) 12180 goto fail_free_lapic; 12181 vcpu->arch.pio_data = page_address(page); 12182 12183 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12184 GFP_KERNEL_ACCOUNT); 12185 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12186 GFP_KERNEL_ACCOUNT); 12187 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12188 goto fail_free_mce_banks; 12189 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12190 12191 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12192 GFP_KERNEL_ACCOUNT)) 12193 goto fail_free_mce_banks; 12194 12195 if (!alloc_emulate_ctxt(vcpu)) 12196 goto free_wbinvd_dirty_mask; 12197 12198 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12199 pr_err("failed to allocate vcpu's fpu\n"); 12200 goto free_emulate_ctxt; 12201 } 12202 12203 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12204 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12205 12206 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12207 12208 kvm_async_pf_hash_reset(vcpu); 12209 12210 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12211 kvm_pmu_init(vcpu); 12212 12213 vcpu->arch.pending_external_vector = -1; 12214 vcpu->arch.preempted_in_kernel = false; 12215 12216 #if IS_ENABLED(CONFIG_HYPERV) 12217 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12218 #endif 12219 12220 r = static_call(kvm_x86_vcpu_create)(vcpu); 12221 if (r) 12222 goto free_guest_fpu; 12223 12224 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12225 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12226 kvm_xen_init_vcpu(vcpu); 12227 kvm_vcpu_mtrr_init(vcpu); 12228 vcpu_load(vcpu); 12229 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12230 kvm_vcpu_reset(vcpu, false); 12231 kvm_init_mmu(vcpu); 12232 vcpu_put(vcpu); 12233 return 0; 12234 12235 free_guest_fpu: 12236 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12237 free_emulate_ctxt: 12238 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12239 free_wbinvd_dirty_mask: 12240 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12241 fail_free_mce_banks: 12242 kfree(vcpu->arch.mce_banks); 12243 kfree(vcpu->arch.mci_ctl2_banks); 12244 free_page((unsigned long)vcpu->arch.pio_data); 12245 fail_free_lapic: 12246 kvm_free_lapic(vcpu); 12247 fail_mmu_destroy: 12248 kvm_mmu_destroy(vcpu); 12249 return r; 12250 } 12251 12252 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12253 { 12254 struct kvm *kvm = vcpu->kvm; 12255 12256 if (mutex_lock_killable(&vcpu->mutex)) 12257 return; 12258 vcpu_load(vcpu); 12259 kvm_synchronize_tsc(vcpu, NULL); 12260 vcpu_put(vcpu); 12261 12262 /* poll control enabled by default */ 12263 vcpu->arch.msr_kvm_poll_control = 1; 12264 12265 mutex_unlock(&vcpu->mutex); 12266 12267 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12268 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12269 KVMCLOCK_SYNC_PERIOD); 12270 } 12271 12272 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12273 { 12274 int idx; 12275 12276 kvmclock_reset(vcpu); 12277 12278 static_call(kvm_x86_vcpu_free)(vcpu); 12279 12280 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12281 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12282 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12283 12284 kvm_xen_destroy_vcpu(vcpu); 12285 kvm_hv_vcpu_uninit(vcpu); 12286 kvm_pmu_destroy(vcpu); 12287 kfree(vcpu->arch.mce_banks); 12288 kfree(vcpu->arch.mci_ctl2_banks); 12289 kvm_free_lapic(vcpu); 12290 idx = srcu_read_lock(&vcpu->kvm->srcu); 12291 kvm_mmu_destroy(vcpu); 12292 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12293 free_page((unsigned long)vcpu->arch.pio_data); 12294 kvfree(vcpu->arch.cpuid_entries); 12295 } 12296 12297 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12298 { 12299 struct kvm_cpuid_entry2 *cpuid_0x1; 12300 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12301 unsigned long new_cr0; 12302 12303 /* 12304 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12305 * to handle side effects. RESET emulation hits those flows and relies 12306 * on emulated/virtualized registers, including those that are loaded 12307 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12308 * to detect improper or missing initialization. 12309 */ 12310 WARN_ON_ONCE(!init_event && 12311 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12312 12313 /* 12314 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12315 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12316 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12317 * bits), i.e. virtualization is disabled. 12318 */ 12319 if (is_guest_mode(vcpu)) 12320 kvm_leave_nested(vcpu); 12321 12322 kvm_lapic_reset(vcpu, init_event); 12323 12324 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12325 vcpu->arch.hflags = 0; 12326 12327 vcpu->arch.smi_pending = 0; 12328 vcpu->arch.smi_count = 0; 12329 atomic_set(&vcpu->arch.nmi_queued, 0); 12330 vcpu->arch.nmi_pending = 0; 12331 vcpu->arch.nmi_injected = false; 12332 kvm_clear_interrupt_queue(vcpu); 12333 kvm_clear_exception_queue(vcpu); 12334 12335 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12336 kvm_update_dr0123(vcpu); 12337 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12338 vcpu->arch.dr7 = DR7_FIXED_1; 12339 kvm_update_dr7(vcpu); 12340 12341 vcpu->arch.cr2 = 0; 12342 12343 kvm_make_request(KVM_REQ_EVENT, vcpu); 12344 vcpu->arch.apf.msr_en_val = 0; 12345 vcpu->arch.apf.msr_int_val = 0; 12346 vcpu->arch.st.msr_val = 0; 12347 12348 kvmclock_reset(vcpu); 12349 12350 kvm_clear_async_pf_completion_queue(vcpu); 12351 kvm_async_pf_hash_reset(vcpu); 12352 vcpu->arch.apf.halted = false; 12353 12354 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12355 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12356 12357 /* 12358 * All paths that lead to INIT are required to load the guest's 12359 * FPU state (because most paths are buried in KVM_RUN). 12360 */ 12361 if (init_event) 12362 kvm_put_guest_fpu(vcpu); 12363 12364 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12365 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12366 12367 if (init_event) 12368 kvm_load_guest_fpu(vcpu); 12369 } 12370 12371 if (!init_event) { 12372 vcpu->arch.smbase = 0x30000; 12373 12374 vcpu->arch.msr_misc_features_enables = 0; 12375 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12376 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12377 12378 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12379 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12380 } 12381 12382 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12383 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12384 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12385 12386 /* 12387 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12388 * if no CPUID match is found. Note, it's impossible to get a match at 12389 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12390 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12391 * on RESET. But, go through the motions in case that's ever remedied. 12392 */ 12393 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12394 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12395 12396 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12397 12398 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12399 kvm_rip_write(vcpu, 0xfff0); 12400 12401 vcpu->arch.cr3 = 0; 12402 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12403 12404 /* 12405 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12406 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12407 * (or qualify) that with a footnote stating that CD/NW are preserved. 12408 */ 12409 new_cr0 = X86_CR0_ET; 12410 if (init_event) 12411 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12412 else 12413 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12414 12415 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12416 static_call(kvm_x86_set_cr4)(vcpu, 0); 12417 static_call(kvm_x86_set_efer)(vcpu, 0); 12418 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12419 12420 /* 12421 * On the standard CR0/CR4/EFER modification paths, there are several 12422 * complex conditions determining whether the MMU has to be reset and/or 12423 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12424 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12425 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12426 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12427 */ 12428 if (old_cr0 & X86_CR0_PG) { 12429 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12430 kvm_mmu_reset_context(vcpu); 12431 } 12432 12433 /* 12434 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12435 * APM states the TLBs are untouched by INIT, but it also states that 12436 * the TLBs are flushed on "External initialization of the processor." 12437 * Flush the guest TLB regardless of vendor, there is no meaningful 12438 * benefit in relying on the guest to flush the TLB immediately after 12439 * INIT. A spurious TLB flush is benign and likely negligible from a 12440 * performance perspective. 12441 */ 12442 if (init_event) 12443 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12444 } 12445 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12446 12447 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12448 { 12449 struct kvm_segment cs; 12450 12451 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12452 cs.selector = vector << 8; 12453 cs.base = vector << 12; 12454 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12455 kvm_rip_write(vcpu, 0); 12456 } 12457 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12458 12459 int kvm_arch_hardware_enable(void) 12460 { 12461 struct kvm *kvm; 12462 struct kvm_vcpu *vcpu; 12463 unsigned long i; 12464 int ret; 12465 u64 local_tsc; 12466 u64 max_tsc = 0; 12467 bool stable, backwards_tsc = false; 12468 12469 kvm_user_return_msr_cpu_online(); 12470 12471 ret = kvm_x86_check_processor_compatibility(); 12472 if (ret) 12473 return ret; 12474 12475 ret = static_call(kvm_x86_hardware_enable)(); 12476 if (ret != 0) 12477 return ret; 12478 12479 local_tsc = rdtsc(); 12480 stable = !kvm_check_tsc_unstable(); 12481 list_for_each_entry(kvm, &vm_list, vm_list) { 12482 kvm_for_each_vcpu(i, vcpu, kvm) { 12483 if (!stable && vcpu->cpu == smp_processor_id()) 12484 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12485 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12486 backwards_tsc = true; 12487 if (vcpu->arch.last_host_tsc > max_tsc) 12488 max_tsc = vcpu->arch.last_host_tsc; 12489 } 12490 } 12491 } 12492 12493 /* 12494 * Sometimes, even reliable TSCs go backwards. This happens on 12495 * platforms that reset TSC during suspend or hibernate actions, but 12496 * maintain synchronization. We must compensate. Fortunately, we can 12497 * detect that condition here, which happens early in CPU bringup, 12498 * before any KVM threads can be running. Unfortunately, we can't 12499 * bring the TSCs fully up to date with real time, as we aren't yet far 12500 * enough into CPU bringup that we know how much real time has actually 12501 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12502 * variables that haven't been updated yet. 12503 * 12504 * So we simply find the maximum observed TSC above, then record the 12505 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12506 * the adjustment will be applied. Note that we accumulate 12507 * adjustments, in case multiple suspend cycles happen before some VCPU 12508 * gets a chance to run again. In the event that no KVM threads get a 12509 * chance to run, we will miss the entire elapsed period, as we'll have 12510 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12511 * loose cycle time. This isn't too big a deal, since the loss will be 12512 * uniform across all VCPUs (not to mention the scenario is extremely 12513 * unlikely). It is possible that a second hibernate recovery happens 12514 * much faster than a first, causing the observed TSC here to be 12515 * smaller; this would require additional padding adjustment, which is 12516 * why we set last_host_tsc to the local tsc observed here. 12517 * 12518 * N.B. - this code below runs only on platforms with reliable TSC, 12519 * as that is the only way backwards_tsc is set above. Also note 12520 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12521 * have the same delta_cyc adjustment applied if backwards_tsc 12522 * is detected. Note further, this adjustment is only done once, 12523 * as we reset last_host_tsc on all VCPUs to stop this from being 12524 * called multiple times (one for each physical CPU bringup). 12525 * 12526 * Platforms with unreliable TSCs don't have to deal with this, they 12527 * will be compensated by the logic in vcpu_load, which sets the TSC to 12528 * catchup mode. This will catchup all VCPUs to real time, but cannot 12529 * guarantee that they stay in perfect synchronization. 12530 */ 12531 if (backwards_tsc) { 12532 u64 delta_cyc = max_tsc - local_tsc; 12533 list_for_each_entry(kvm, &vm_list, vm_list) { 12534 kvm->arch.backwards_tsc_observed = true; 12535 kvm_for_each_vcpu(i, vcpu, kvm) { 12536 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12537 vcpu->arch.last_host_tsc = local_tsc; 12538 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12539 } 12540 12541 /* 12542 * We have to disable TSC offset matching.. if you were 12543 * booting a VM while issuing an S4 host suspend.... 12544 * you may have some problem. Solving this issue is 12545 * left as an exercise to the reader. 12546 */ 12547 kvm->arch.last_tsc_nsec = 0; 12548 kvm->arch.last_tsc_write = 0; 12549 } 12550 12551 } 12552 return 0; 12553 } 12554 12555 void kvm_arch_hardware_disable(void) 12556 { 12557 static_call(kvm_x86_hardware_disable)(); 12558 drop_user_return_notifiers(); 12559 } 12560 12561 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12562 { 12563 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12564 } 12565 12566 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12567 { 12568 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12569 } 12570 12571 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12572 { 12573 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12574 12575 vcpu->arch.l1tf_flush_l1d = true; 12576 if (pmu->version && unlikely(pmu->event_count)) { 12577 pmu->need_cleanup = true; 12578 kvm_make_request(KVM_REQ_PMU, vcpu); 12579 } 12580 static_call(kvm_x86_sched_in)(vcpu, cpu); 12581 } 12582 12583 void kvm_arch_free_vm(struct kvm *kvm) 12584 { 12585 #if IS_ENABLED(CONFIG_HYPERV) 12586 kfree(kvm->arch.hv_pa_pg); 12587 #endif 12588 __kvm_arch_free_vm(kvm); 12589 } 12590 12591 12592 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12593 { 12594 int ret; 12595 unsigned long flags; 12596 12597 if (!kvm_is_vm_type_supported(type)) 12598 return -EINVAL; 12599 12600 kvm->arch.vm_type = type; 12601 kvm->arch.has_private_mem = 12602 (type == KVM_X86_SW_PROTECTED_VM); 12603 12604 ret = kvm_page_track_init(kvm); 12605 if (ret) 12606 goto out; 12607 12608 kvm_mmu_init_vm(kvm); 12609 12610 ret = static_call(kvm_x86_vm_init)(kvm); 12611 if (ret) 12612 goto out_uninit_mmu; 12613 12614 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12615 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12616 12617 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12618 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12619 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12620 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12621 &kvm->arch.irq_sources_bitmap); 12622 12623 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12624 mutex_init(&kvm->arch.apic_map_lock); 12625 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12626 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12627 12628 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12629 pvclock_update_vm_gtod_copy(kvm); 12630 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12631 12632 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12633 kvm->arch.guest_can_read_msr_platform_info = true; 12634 kvm->arch.enable_pmu = enable_pmu; 12635 12636 #if IS_ENABLED(CONFIG_HYPERV) 12637 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12638 kvm->arch.hv_root_tdp = INVALID_PAGE; 12639 #endif 12640 12641 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12642 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12643 12644 kvm_apicv_init(kvm); 12645 kvm_hv_init_vm(kvm); 12646 kvm_xen_init_vm(kvm); 12647 12648 return 0; 12649 12650 out_uninit_mmu: 12651 kvm_mmu_uninit_vm(kvm); 12652 kvm_page_track_cleanup(kvm); 12653 out: 12654 return ret; 12655 } 12656 12657 int kvm_arch_post_init_vm(struct kvm *kvm) 12658 { 12659 return kvm_mmu_post_init_vm(kvm); 12660 } 12661 12662 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12663 { 12664 vcpu_load(vcpu); 12665 kvm_mmu_unload(vcpu); 12666 vcpu_put(vcpu); 12667 } 12668 12669 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12670 { 12671 unsigned long i; 12672 struct kvm_vcpu *vcpu; 12673 12674 kvm_for_each_vcpu(i, vcpu, kvm) { 12675 kvm_clear_async_pf_completion_queue(vcpu); 12676 kvm_unload_vcpu_mmu(vcpu); 12677 } 12678 } 12679 12680 void kvm_arch_sync_events(struct kvm *kvm) 12681 { 12682 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12683 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12684 kvm_free_pit(kvm); 12685 } 12686 12687 /** 12688 * __x86_set_memory_region: Setup KVM internal memory slot 12689 * 12690 * @kvm: the kvm pointer to the VM. 12691 * @id: the slot ID to setup. 12692 * @gpa: the GPA to install the slot (unused when @size == 0). 12693 * @size: the size of the slot. Set to zero to uninstall a slot. 12694 * 12695 * This function helps to setup a KVM internal memory slot. Specify 12696 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12697 * slot. The return code can be one of the following: 12698 * 12699 * HVA: on success (uninstall will return a bogus HVA) 12700 * -errno: on error 12701 * 12702 * The caller should always use IS_ERR() to check the return value 12703 * before use. Note, the KVM internal memory slots are guaranteed to 12704 * remain valid and unchanged until the VM is destroyed, i.e., the 12705 * GPA->HVA translation will not change. However, the HVA is a user 12706 * address, i.e. its accessibility is not guaranteed, and must be 12707 * accessed via __copy_{to,from}_user(). 12708 */ 12709 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12710 u32 size) 12711 { 12712 int i, r; 12713 unsigned long hva, old_npages; 12714 struct kvm_memslots *slots = kvm_memslots(kvm); 12715 struct kvm_memory_slot *slot; 12716 12717 /* Called with kvm->slots_lock held. */ 12718 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12719 return ERR_PTR_USR(-EINVAL); 12720 12721 slot = id_to_memslot(slots, id); 12722 if (size) { 12723 if (slot && slot->npages) 12724 return ERR_PTR_USR(-EEXIST); 12725 12726 /* 12727 * MAP_SHARED to prevent internal slot pages from being moved 12728 * by fork()/COW. 12729 */ 12730 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12731 MAP_SHARED | MAP_ANONYMOUS, 0); 12732 if (IS_ERR_VALUE(hva)) 12733 return (void __user *)hva; 12734 } else { 12735 if (!slot || !slot->npages) 12736 return NULL; 12737 12738 old_npages = slot->npages; 12739 hva = slot->userspace_addr; 12740 } 12741 12742 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12743 struct kvm_userspace_memory_region2 m; 12744 12745 m.slot = id | (i << 16); 12746 m.flags = 0; 12747 m.guest_phys_addr = gpa; 12748 m.userspace_addr = hva; 12749 m.memory_size = size; 12750 r = __kvm_set_memory_region(kvm, &m); 12751 if (r < 0) 12752 return ERR_PTR_USR(r); 12753 } 12754 12755 if (!size) 12756 vm_munmap(hva, old_npages * PAGE_SIZE); 12757 12758 return (void __user *)hva; 12759 } 12760 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12761 12762 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12763 { 12764 kvm_mmu_pre_destroy_vm(kvm); 12765 } 12766 12767 void kvm_arch_destroy_vm(struct kvm *kvm) 12768 { 12769 if (current->mm == kvm->mm) { 12770 /* 12771 * Free memory regions allocated on behalf of userspace, 12772 * unless the memory map has changed due to process exit 12773 * or fd copying. 12774 */ 12775 mutex_lock(&kvm->slots_lock); 12776 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12777 0, 0); 12778 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12779 0, 0); 12780 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12781 mutex_unlock(&kvm->slots_lock); 12782 } 12783 kvm_unload_vcpu_mmus(kvm); 12784 static_call_cond(kvm_x86_vm_destroy)(kvm); 12785 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12786 kvm_pic_destroy(kvm); 12787 kvm_ioapic_destroy(kvm); 12788 kvm_destroy_vcpus(kvm); 12789 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12790 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12791 kvm_mmu_uninit_vm(kvm); 12792 kvm_page_track_cleanup(kvm); 12793 kvm_xen_destroy_vm(kvm); 12794 kvm_hv_destroy_vm(kvm); 12795 } 12796 12797 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12798 { 12799 int i; 12800 12801 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12802 vfree(slot->arch.rmap[i]); 12803 slot->arch.rmap[i] = NULL; 12804 } 12805 } 12806 12807 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12808 { 12809 int i; 12810 12811 memslot_rmap_free(slot); 12812 12813 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12814 vfree(slot->arch.lpage_info[i - 1]); 12815 slot->arch.lpage_info[i - 1] = NULL; 12816 } 12817 12818 kvm_page_track_free_memslot(slot); 12819 } 12820 12821 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12822 { 12823 const int sz = sizeof(*slot->arch.rmap[0]); 12824 int i; 12825 12826 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12827 int level = i + 1; 12828 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12829 12830 if (slot->arch.rmap[i]) 12831 continue; 12832 12833 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12834 if (!slot->arch.rmap[i]) { 12835 memslot_rmap_free(slot); 12836 return -ENOMEM; 12837 } 12838 } 12839 12840 return 0; 12841 } 12842 12843 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12844 struct kvm_memory_slot *slot) 12845 { 12846 unsigned long npages = slot->npages; 12847 int i, r; 12848 12849 /* 12850 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12851 * old arrays will be freed by __kvm_set_memory_region() if installing 12852 * the new memslot is successful. 12853 */ 12854 memset(&slot->arch, 0, sizeof(slot->arch)); 12855 12856 if (kvm_memslots_have_rmaps(kvm)) { 12857 r = memslot_rmap_alloc(slot, npages); 12858 if (r) 12859 return r; 12860 } 12861 12862 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12863 struct kvm_lpage_info *linfo; 12864 unsigned long ugfn; 12865 int lpages; 12866 int level = i + 1; 12867 12868 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12869 12870 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12871 if (!linfo) 12872 goto out_free; 12873 12874 slot->arch.lpage_info[i - 1] = linfo; 12875 12876 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12877 linfo[0].disallow_lpage = 1; 12878 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12879 linfo[lpages - 1].disallow_lpage = 1; 12880 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12881 /* 12882 * If the gfn and userspace address are not aligned wrt each 12883 * other, disable large page support for this slot. 12884 */ 12885 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12886 unsigned long j; 12887 12888 for (j = 0; j < lpages; ++j) 12889 linfo[j].disallow_lpage = 1; 12890 } 12891 } 12892 12893 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12894 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12895 #endif 12896 12897 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12898 goto out_free; 12899 12900 return 0; 12901 12902 out_free: 12903 memslot_rmap_free(slot); 12904 12905 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12906 vfree(slot->arch.lpage_info[i - 1]); 12907 slot->arch.lpage_info[i - 1] = NULL; 12908 } 12909 return -ENOMEM; 12910 } 12911 12912 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12913 { 12914 struct kvm_vcpu *vcpu; 12915 unsigned long i; 12916 12917 /* 12918 * memslots->generation has been incremented. 12919 * mmio generation may have reached its maximum value. 12920 */ 12921 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12922 12923 /* Force re-initialization of steal_time cache */ 12924 kvm_for_each_vcpu(i, vcpu, kvm) 12925 kvm_vcpu_kick(vcpu); 12926 } 12927 12928 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12929 const struct kvm_memory_slot *old, 12930 struct kvm_memory_slot *new, 12931 enum kvm_mr_change change) 12932 { 12933 /* 12934 * KVM doesn't support moving memslots when there are external page 12935 * trackers attached to the VM, i.e. if KVMGT is in use. 12936 */ 12937 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12938 return -EINVAL; 12939 12940 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12941 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12942 return -EINVAL; 12943 12944 return kvm_alloc_memslot_metadata(kvm, new); 12945 } 12946 12947 if (change == KVM_MR_FLAGS_ONLY) 12948 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12949 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12950 return -EIO; 12951 12952 return 0; 12953 } 12954 12955 12956 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12957 { 12958 int nr_slots; 12959 12960 if (!kvm_x86_ops.cpu_dirty_log_size) 12961 return; 12962 12963 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12964 if ((enable && nr_slots == 1) || !nr_slots) 12965 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12966 } 12967 12968 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12969 struct kvm_memory_slot *old, 12970 const struct kvm_memory_slot *new, 12971 enum kvm_mr_change change) 12972 { 12973 u32 old_flags = old ? old->flags : 0; 12974 u32 new_flags = new ? new->flags : 0; 12975 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12976 12977 /* 12978 * Update CPU dirty logging if dirty logging is being toggled. This 12979 * applies to all operations. 12980 */ 12981 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12982 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12983 12984 /* 12985 * Nothing more to do for RO slots (which can't be dirtied and can't be 12986 * made writable) or CREATE/MOVE/DELETE of a slot. 12987 * 12988 * For a memslot with dirty logging disabled: 12989 * CREATE: No dirty mappings will already exist. 12990 * MOVE/DELETE: The old mappings will already have been cleaned up by 12991 * kvm_arch_flush_shadow_memslot() 12992 * 12993 * For a memslot with dirty logging enabled: 12994 * CREATE: No shadow pages exist, thus nothing to write-protect 12995 * and no dirty bits to clear. 12996 * MOVE/DELETE: The old mappings will already have been cleaned up by 12997 * kvm_arch_flush_shadow_memslot(). 12998 */ 12999 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 13000 return; 13001 13002 /* 13003 * READONLY and non-flags changes were filtered out above, and the only 13004 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 13005 * logging isn't being toggled on or off. 13006 */ 13007 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 13008 return; 13009 13010 if (!log_dirty_pages) { 13011 /* 13012 * Dirty logging tracks sptes in 4k granularity, meaning that 13013 * large sptes have to be split. If live migration succeeds, 13014 * the guest in the source machine will be destroyed and large 13015 * sptes will be created in the destination. However, if the 13016 * guest continues to run in the source machine (for example if 13017 * live migration fails), small sptes will remain around and 13018 * cause bad performance. 13019 * 13020 * Scan sptes if dirty logging has been stopped, dropping those 13021 * which can be collapsed into a single large-page spte. Later 13022 * page faults will create the large-page sptes. 13023 */ 13024 kvm_mmu_zap_collapsible_sptes(kvm, new); 13025 } else { 13026 /* 13027 * Initially-all-set does not require write protecting any page, 13028 * because they're all assumed to be dirty. 13029 */ 13030 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 13031 return; 13032 13033 if (READ_ONCE(eager_page_split)) 13034 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 13035 13036 if (kvm_x86_ops.cpu_dirty_log_size) { 13037 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 13038 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 13039 } else { 13040 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 13041 } 13042 13043 /* 13044 * Unconditionally flush the TLBs after enabling dirty logging. 13045 * A flush is almost always going to be necessary (see below), 13046 * and unconditionally flushing allows the helpers to omit 13047 * the subtly complex checks when removing write access. 13048 * 13049 * Do the flush outside of mmu_lock to reduce the amount of 13050 * time mmu_lock is held. Flushing after dropping mmu_lock is 13051 * safe as KVM only needs to guarantee the slot is fully 13052 * write-protected before returning to userspace, i.e. before 13053 * userspace can consume the dirty status. 13054 * 13055 * Flushing outside of mmu_lock requires KVM to be careful when 13056 * making decisions based on writable status of an SPTE, e.g. a 13057 * !writable SPTE doesn't guarantee a CPU can't perform writes. 13058 * 13059 * Specifically, KVM also write-protects guest page tables to 13060 * monitor changes when using shadow paging, and must guarantee 13061 * no CPUs can write to those page before mmu_lock is dropped. 13062 * Because CPUs may have stale TLB entries at this point, a 13063 * !writable SPTE doesn't guarantee CPUs can't perform writes. 13064 * 13065 * KVM also allows making SPTES writable outside of mmu_lock, 13066 * e.g. to allow dirty logging without taking mmu_lock. 13067 * 13068 * To handle these scenarios, KVM uses a separate software-only 13069 * bit (MMU-writable) to track if a SPTE is !writable due to 13070 * a guest page table being write-protected (KVM clears the 13071 * MMU-writable flag when write-protecting for shadow paging). 13072 * 13073 * The use of MMU-writable is also the primary motivation for 13074 * the unconditional flush. Because KVM must guarantee that a 13075 * CPU doesn't contain stale, writable TLB entries for a 13076 * !MMU-writable SPTE, KVM must flush if it encounters any 13077 * MMU-writable SPTE regardless of whether the actual hardware 13078 * writable bit was set. I.e. KVM is almost guaranteed to need 13079 * to flush, while unconditionally flushing allows the "remove 13080 * write access" helpers to ignore MMU-writable entirely. 13081 * 13082 * See is_writable_pte() for more details (the case involving 13083 * access-tracked SPTEs is particularly relevant). 13084 */ 13085 kvm_flush_remote_tlbs_memslot(kvm, new); 13086 } 13087 } 13088 13089 void kvm_arch_commit_memory_region(struct kvm *kvm, 13090 struct kvm_memory_slot *old, 13091 const struct kvm_memory_slot *new, 13092 enum kvm_mr_change change) 13093 { 13094 if (change == KVM_MR_DELETE) 13095 kvm_page_track_delete_slot(kvm, old); 13096 13097 if (!kvm->arch.n_requested_mmu_pages && 13098 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13099 unsigned long nr_mmu_pages; 13100 13101 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13102 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13103 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13104 } 13105 13106 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13107 13108 /* Free the arrays associated with the old memslot. */ 13109 if (change == KVM_MR_MOVE) 13110 kvm_arch_free_memslot(kvm, old); 13111 } 13112 13113 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 13114 { 13115 return (is_guest_mode(vcpu) && 13116 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 13117 } 13118 13119 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 13120 { 13121 if (!list_empty_careful(&vcpu->async_pf.done)) 13122 return true; 13123 13124 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 13125 kvm_apic_init_sipi_allowed(vcpu)) 13126 return true; 13127 13128 if (vcpu->arch.pv.pv_unhalted) 13129 return true; 13130 13131 if (kvm_is_exception_pending(vcpu)) 13132 return true; 13133 13134 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13135 (vcpu->arch.nmi_pending && 13136 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 13137 return true; 13138 13139 #ifdef CONFIG_KVM_SMM 13140 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 13141 (vcpu->arch.smi_pending && 13142 static_call(kvm_x86_smi_allowed)(vcpu, false))) 13143 return true; 13144 #endif 13145 13146 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 13147 return true; 13148 13149 if (kvm_arch_interrupt_allowed(vcpu) && 13150 (kvm_cpu_has_interrupt(vcpu) || 13151 kvm_guest_apic_has_interrupt(vcpu))) 13152 return true; 13153 13154 if (kvm_hv_has_stimer_pending(vcpu)) 13155 return true; 13156 13157 if (is_guest_mode(vcpu) && 13158 kvm_x86_ops.nested_ops->has_events && 13159 kvm_x86_ops.nested_ops->has_events(vcpu)) 13160 return true; 13161 13162 if (kvm_xen_has_pending_events(vcpu)) 13163 return true; 13164 13165 return false; 13166 } 13167 13168 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 13169 { 13170 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 13171 } 13172 13173 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 13174 { 13175 return kvm_vcpu_apicv_active(vcpu) && 13176 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu); 13177 } 13178 13179 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 13180 { 13181 return vcpu->arch.preempted_in_kernel; 13182 } 13183 13184 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 13185 { 13186 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 13187 return true; 13188 13189 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13190 #ifdef CONFIG_KVM_SMM 13191 kvm_test_request(KVM_REQ_SMI, vcpu) || 13192 #endif 13193 kvm_test_request(KVM_REQ_EVENT, vcpu)) 13194 return true; 13195 13196 return kvm_arch_dy_has_pending_interrupt(vcpu); 13197 } 13198 13199 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13200 { 13201 if (vcpu->arch.guest_state_protected) 13202 return true; 13203 13204 return static_call(kvm_x86_get_cpl)(vcpu) == 0; 13205 } 13206 13207 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13208 { 13209 return kvm_rip_read(vcpu); 13210 } 13211 13212 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13213 { 13214 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13215 } 13216 13217 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13218 { 13219 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 13220 } 13221 13222 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13223 { 13224 /* Can't read the RIP when guest state is protected, just return 0 */ 13225 if (vcpu->arch.guest_state_protected) 13226 return 0; 13227 13228 if (is_64_bit_mode(vcpu)) 13229 return kvm_rip_read(vcpu); 13230 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13231 kvm_rip_read(vcpu)); 13232 } 13233 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13234 13235 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13236 { 13237 return kvm_get_linear_rip(vcpu) == linear_rip; 13238 } 13239 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13240 13241 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13242 { 13243 unsigned long rflags; 13244 13245 rflags = static_call(kvm_x86_get_rflags)(vcpu); 13246 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13247 rflags &= ~X86_EFLAGS_TF; 13248 return rflags; 13249 } 13250 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13251 13252 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13253 { 13254 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13255 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13256 rflags |= X86_EFLAGS_TF; 13257 static_call(kvm_x86_set_rflags)(vcpu, rflags); 13258 } 13259 13260 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13261 { 13262 __kvm_set_rflags(vcpu, rflags); 13263 kvm_make_request(KVM_REQ_EVENT, vcpu); 13264 } 13265 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13266 13267 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13268 { 13269 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13270 13271 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13272 } 13273 13274 static inline u32 kvm_async_pf_next_probe(u32 key) 13275 { 13276 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13277 } 13278 13279 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13280 { 13281 u32 key = kvm_async_pf_hash_fn(gfn); 13282 13283 while (vcpu->arch.apf.gfns[key] != ~0) 13284 key = kvm_async_pf_next_probe(key); 13285 13286 vcpu->arch.apf.gfns[key] = gfn; 13287 } 13288 13289 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13290 { 13291 int i; 13292 u32 key = kvm_async_pf_hash_fn(gfn); 13293 13294 for (i = 0; i < ASYNC_PF_PER_VCPU && 13295 (vcpu->arch.apf.gfns[key] != gfn && 13296 vcpu->arch.apf.gfns[key] != ~0); i++) 13297 key = kvm_async_pf_next_probe(key); 13298 13299 return key; 13300 } 13301 13302 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13303 { 13304 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13305 } 13306 13307 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13308 { 13309 u32 i, j, k; 13310 13311 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13312 13313 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13314 return; 13315 13316 while (true) { 13317 vcpu->arch.apf.gfns[i] = ~0; 13318 do { 13319 j = kvm_async_pf_next_probe(j); 13320 if (vcpu->arch.apf.gfns[j] == ~0) 13321 return; 13322 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13323 /* 13324 * k lies cyclically in ]i,j] 13325 * | i.k.j | 13326 * |....j i.k.| or |.k..j i...| 13327 */ 13328 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13329 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13330 i = j; 13331 } 13332 } 13333 13334 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13335 { 13336 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13337 13338 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13339 sizeof(reason)); 13340 } 13341 13342 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13343 { 13344 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13345 13346 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13347 &token, offset, sizeof(token)); 13348 } 13349 13350 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13351 { 13352 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13353 u32 val; 13354 13355 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13356 &val, offset, sizeof(val))) 13357 return false; 13358 13359 return !val; 13360 } 13361 13362 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13363 { 13364 13365 if (!kvm_pv_async_pf_enabled(vcpu)) 13366 return false; 13367 13368 if (vcpu->arch.apf.send_user_only && 13369 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13370 return false; 13371 13372 if (is_guest_mode(vcpu)) { 13373 /* 13374 * L1 needs to opt into the special #PF vmexits that are 13375 * used to deliver async page faults. 13376 */ 13377 return vcpu->arch.apf.delivery_as_pf_vmexit; 13378 } else { 13379 /* 13380 * Play it safe in case the guest temporarily disables paging. 13381 * The real mode IDT in particular is unlikely to have a #PF 13382 * exception setup. 13383 */ 13384 return is_paging(vcpu); 13385 } 13386 } 13387 13388 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13389 { 13390 if (unlikely(!lapic_in_kernel(vcpu) || 13391 kvm_event_needs_reinjection(vcpu) || 13392 kvm_is_exception_pending(vcpu))) 13393 return false; 13394 13395 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13396 return false; 13397 13398 /* 13399 * If interrupts are off we cannot even use an artificial 13400 * halt state. 13401 */ 13402 return kvm_arch_interrupt_allowed(vcpu); 13403 } 13404 13405 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13406 struct kvm_async_pf *work) 13407 { 13408 struct x86_exception fault; 13409 13410 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13411 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13412 13413 if (kvm_can_deliver_async_pf(vcpu) && 13414 !apf_put_user_notpresent(vcpu)) { 13415 fault.vector = PF_VECTOR; 13416 fault.error_code_valid = true; 13417 fault.error_code = 0; 13418 fault.nested_page_fault = false; 13419 fault.address = work->arch.token; 13420 fault.async_page_fault = true; 13421 kvm_inject_page_fault(vcpu, &fault); 13422 return true; 13423 } else { 13424 /* 13425 * It is not possible to deliver a paravirtualized asynchronous 13426 * page fault, but putting the guest in an artificial halt state 13427 * can be beneficial nevertheless: if an interrupt arrives, we 13428 * can deliver it timely and perhaps the guest will schedule 13429 * another process. When the instruction that triggered a page 13430 * fault is retried, hopefully the page will be ready in the host. 13431 */ 13432 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13433 return false; 13434 } 13435 } 13436 13437 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13438 struct kvm_async_pf *work) 13439 { 13440 struct kvm_lapic_irq irq = { 13441 .delivery_mode = APIC_DM_FIXED, 13442 .vector = vcpu->arch.apf.vec 13443 }; 13444 13445 if (work->wakeup_all) 13446 work->arch.token = ~0; /* broadcast wakeup */ 13447 else 13448 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13449 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13450 13451 if ((work->wakeup_all || work->notpresent_injected) && 13452 kvm_pv_async_pf_enabled(vcpu) && 13453 !apf_put_user_ready(vcpu, work->arch.token)) { 13454 vcpu->arch.apf.pageready_pending = true; 13455 kvm_apic_set_irq(vcpu, &irq, NULL); 13456 } 13457 13458 vcpu->arch.apf.halted = false; 13459 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13460 } 13461 13462 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13463 { 13464 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13465 if (!vcpu->arch.apf.pageready_pending) 13466 kvm_vcpu_kick(vcpu); 13467 } 13468 13469 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13470 { 13471 if (!kvm_pv_async_pf_enabled(vcpu)) 13472 return true; 13473 else 13474 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13475 } 13476 13477 void kvm_arch_start_assignment(struct kvm *kvm) 13478 { 13479 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13480 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13481 } 13482 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13483 13484 void kvm_arch_end_assignment(struct kvm *kvm) 13485 { 13486 atomic_dec(&kvm->arch.assigned_device_count); 13487 } 13488 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13489 13490 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13491 { 13492 return raw_atomic_read(&kvm->arch.assigned_device_count); 13493 } 13494 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13495 13496 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13497 { 13498 /* 13499 * Non-coherent DMA assignment and de-assignment will affect 13500 * whether KVM honors guest MTRRs and cause changes in memtypes 13501 * in TDP. 13502 * So, pass %true unconditionally to indicate non-coherent DMA was, 13503 * or will be involved, and that zapping SPTEs might be necessary. 13504 */ 13505 if (__kvm_mmu_honors_guest_mtrrs(true)) 13506 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13507 } 13508 13509 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13510 { 13511 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13512 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13513 } 13514 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13515 13516 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13517 { 13518 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13519 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13520 } 13521 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13522 13523 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13524 { 13525 return atomic_read(&kvm->arch.noncoherent_dma_count); 13526 } 13527 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13528 13529 bool kvm_arch_has_irq_bypass(void) 13530 { 13531 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13532 } 13533 13534 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13535 struct irq_bypass_producer *prod) 13536 { 13537 struct kvm_kernel_irqfd *irqfd = 13538 container_of(cons, struct kvm_kernel_irqfd, consumer); 13539 int ret; 13540 13541 irqfd->producer = prod; 13542 kvm_arch_start_assignment(irqfd->kvm); 13543 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13544 prod->irq, irqfd->gsi, 1); 13545 13546 if (ret) 13547 kvm_arch_end_assignment(irqfd->kvm); 13548 13549 return ret; 13550 } 13551 13552 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13553 struct irq_bypass_producer *prod) 13554 { 13555 int ret; 13556 struct kvm_kernel_irqfd *irqfd = 13557 container_of(cons, struct kvm_kernel_irqfd, consumer); 13558 13559 WARN_ON(irqfd->producer != prod); 13560 irqfd->producer = NULL; 13561 13562 /* 13563 * When producer of consumer is unregistered, we change back to 13564 * remapped mode, so we can re-use the current implementation 13565 * when the irq is masked/disabled or the consumer side (KVM 13566 * int this case doesn't want to receive the interrupts. 13567 */ 13568 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13569 if (ret) 13570 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13571 " fails: %d\n", irqfd->consumer.token, ret); 13572 13573 kvm_arch_end_assignment(irqfd->kvm); 13574 } 13575 13576 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13577 uint32_t guest_irq, bool set) 13578 { 13579 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13580 } 13581 13582 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13583 struct kvm_kernel_irq_routing_entry *new) 13584 { 13585 if (new->type != KVM_IRQ_ROUTING_MSI) 13586 return true; 13587 13588 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13589 } 13590 13591 bool kvm_vector_hashing_enabled(void) 13592 { 13593 return vector_hashing; 13594 } 13595 13596 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13597 { 13598 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13599 } 13600 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13601 13602 13603 int kvm_spec_ctrl_test_value(u64 value) 13604 { 13605 /* 13606 * test that setting IA32_SPEC_CTRL to given value 13607 * is allowed by the host processor 13608 */ 13609 13610 u64 saved_value; 13611 unsigned long flags; 13612 int ret = 0; 13613 13614 local_irq_save(flags); 13615 13616 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13617 ret = 1; 13618 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13619 ret = 1; 13620 else 13621 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13622 13623 local_irq_restore(flags); 13624 13625 return ret; 13626 } 13627 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13628 13629 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13630 { 13631 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13632 struct x86_exception fault; 13633 u64 access = error_code & 13634 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13635 13636 if (!(error_code & PFERR_PRESENT_MASK) || 13637 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13638 /* 13639 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13640 * tables probably do not match the TLB. Just proceed 13641 * with the error code that the processor gave. 13642 */ 13643 fault.vector = PF_VECTOR; 13644 fault.error_code_valid = true; 13645 fault.error_code = error_code; 13646 fault.nested_page_fault = false; 13647 fault.address = gva; 13648 fault.async_page_fault = false; 13649 } 13650 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13651 } 13652 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13653 13654 /* 13655 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13656 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13657 * indicates whether exit to userspace is needed. 13658 */ 13659 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13660 struct x86_exception *e) 13661 { 13662 if (r == X86EMUL_PROPAGATE_FAULT) { 13663 if (KVM_BUG_ON(!e, vcpu->kvm)) 13664 return -EIO; 13665 13666 kvm_inject_emulated_page_fault(vcpu, e); 13667 return 1; 13668 } 13669 13670 /* 13671 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13672 * while handling a VMX instruction KVM could've handled the request 13673 * correctly by exiting to userspace and performing I/O but there 13674 * doesn't seem to be a real use-case behind such requests, just return 13675 * KVM_EXIT_INTERNAL_ERROR for now. 13676 */ 13677 kvm_prepare_emulation_failure_exit(vcpu); 13678 13679 return 0; 13680 } 13681 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13682 13683 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13684 { 13685 bool pcid_enabled; 13686 struct x86_exception e; 13687 struct { 13688 u64 pcid; 13689 u64 gla; 13690 } operand; 13691 int r; 13692 13693 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13694 if (r != X86EMUL_CONTINUE) 13695 return kvm_handle_memory_failure(vcpu, r, &e); 13696 13697 if (operand.pcid >> 12 != 0) { 13698 kvm_inject_gp(vcpu, 0); 13699 return 1; 13700 } 13701 13702 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13703 13704 switch (type) { 13705 case INVPCID_TYPE_INDIV_ADDR: 13706 /* 13707 * LAM doesn't apply to addresses that are inputs to TLB 13708 * invalidation. 13709 */ 13710 if ((!pcid_enabled && (operand.pcid != 0)) || 13711 is_noncanonical_address(operand.gla, vcpu)) { 13712 kvm_inject_gp(vcpu, 0); 13713 return 1; 13714 } 13715 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13716 return kvm_skip_emulated_instruction(vcpu); 13717 13718 case INVPCID_TYPE_SINGLE_CTXT: 13719 if (!pcid_enabled && (operand.pcid != 0)) { 13720 kvm_inject_gp(vcpu, 0); 13721 return 1; 13722 } 13723 13724 kvm_invalidate_pcid(vcpu, operand.pcid); 13725 return kvm_skip_emulated_instruction(vcpu); 13726 13727 case INVPCID_TYPE_ALL_NON_GLOBAL: 13728 /* 13729 * Currently, KVM doesn't mark global entries in the shadow 13730 * page tables, so a non-global flush just degenerates to a 13731 * global flush. If needed, we could optimize this later by 13732 * keeping track of global entries in shadow page tables. 13733 */ 13734 13735 fallthrough; 13736 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13737 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13738 return kvm_skip_emulated_instruction(vcpu); 13739 13740 default: 13741 kvm_inject_gp(vcpu, 0); 13742 return 1; 13743 } 13744 } 13745 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13746 13747 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13748 { 13749 struct kvm_run *run = vcpu->run; 13750 struct kvm_mmio_fragment *frag; 13751 unsigned int len; 13752 13753 BUG_ON(!vcpu->mmio_needed); 13754 13755 /* Complete previous fragment */ 13756 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13757 len = min(8u, frag->len); 13758 if (!vcpu->mmio_is_write) 13759 memcpy(frag->data, run->mmio.data, len); 13760 13761 if (frag->len <= 8) { 13762 /* Switch to the next fragment. */ 13763 frag++; 13764 vcpu->mmio_cur_fragment++; 13765 } else { 13766 /* Go forward to the next mmio piece. */ 13767 frag->data += len; 13768 frag->gpa += len; 13769 frag->len -= len; 13770 } 13771 13772 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13773 vcpu->mmio_needed = 0; 13774 13775 // VMG change, at this point, we're always done 13776 // RIP has already been advanced 13777 return 1; 13778 } 13779 13780 // More MMIO is needed 13781 run->mmio.phys_addr = frag->gpa; 13782 run->mmio.len = min(8u, frag->len); 13783 run->mmio.is_write = vcpu->mmio_is_write; 13784 if (run->mmio.is_write) 13785 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13786 run->exit_reason = KVM_EXIT_MMIO; 13787 13788 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13789 13790 return 0; 13791 } 13792 13793 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13794 void *data) 13795 { 13796 int handled; 13797 struct kvm_mmio_fragment *frag; 13798 13799 if (!data) 13800 return -EINVAL; 13801 13802 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13803 if (handled == bytes) 13804 return 1; 13805 13806 bytes -= handled; 13807 gpa += handled; 13808 data += handled; 13809 13810 /*TODO: Check if need to increment number of frags */ 13811 frag = vcpu->mmio_fragments; 13812 vcpu->mmio_nr_fragments = 1; 13813 frag->len = bytes; 13814 frag->gpa = gpa; 13815 frag->data = data; 13816 13817 vcpu->mmio_needed = 1; 13818 vcpu->mmio_cur_fragment = 0; 13819 13820 vcpu->run->mmio.phys_addr = gpa; 13821 vcpu->run->mmio.len = min(8u, frag->len); 13822 vcpu->run->mmio.is_write = 1; 13823 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13824 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13825 13826 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13827 13828 return 0; 13829 } 13830 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13831 13832 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13833 void *data) 13834 { 13835 int handled; 13836 struct kvm_mmio_fragment *frag; 13837 13838 if (!data) 13839 return -EINVAL; 13840 13841 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13842 if (handled == bytes) 13843 return 1; 13844 13845 bytes -= handled; 13846 gpa += handled; 13847 data += handled; 13848 13849 /*TODO: Check if need to increment number of frags */ 13850 frag = vcpu->mmio_fragments; 13851 vcpu->mmio_nr_fragments = 1; 13852 frag->len = bytes; 13853 frag->gpa = gpa; 13854 frag->data = data; 13855 13856 vcpu->mmio_needed = 1; 13857 vcpu->mmio_cur_fragment = 0; 13858 13859 vcpu->run->mmio.phys_addr = gpa; 13860 vcpu->run->mmio.len = min(8u, frag->len); 13861 vcpu->run->mmio.is_write = 0; 13862 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13863 13864 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13865 13866 return 0; 13867 } 13868 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13869 13870 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13871 { 13872 vcpu->arch.sev_pio_count -= count; 13873 vcpu->arch.sev_pio_data += count * size; 13874 } 13875 13876 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13877 unsigned int port); 13878 13879 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13880 { 13881 int size = vcpu->arch.pio.size; 13882 int port = vcpu->arch.pio.port; 13883 13884 vcpu->arch.pio.count = 0; 13885 if (vcpu->arch.sev_pio_count) 13886 return kvm_sev_es_outs(vcpu, size, port); 13887 return 1; 13888 } 13889 13890 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13891 unsigned int port) 13892 { 13893 for (;;) { 13894 unsigned int count = 13895 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13896 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13897 13898 /* memcpy done already by emulator_pio_out. */ 13899 advance_sev_es_emulated_pio(vcpu, count, size); 13900 if (!ret) 13901 break; 13902 13903 /* Emulation done by the kernel. */ 13904 if (!vcpu->arch.sev_pio_count) 13905 return 1; 13906 } 13907 13908 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13909 return 0; 13910 } 13911 13912 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13913 unsigned int port); 13914 13915 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13916 { 13917 unsigned count = vcpu->arch.pio.count; 13918 int size = vcpu->arch.pio.size; 13919 int port = vcpu->arch.pio.port; 13920 13921 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13922 advance_sev_es_emulated_pio(vcpu, count, size); 13923 if (vcpu->arch.sev_pio_count) 13924 return kvm_sev_es_ins(vcpu, size, port); 13925 return 1; 13926 } 13927 13928 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13929 unsigned int port) 13930 { 13931 for (;;) { 13932 unsigned int count = 13933 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13934 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13935 break; 13936 13937 /* Emulation done by the kernel. */ 13938 advance_sev_es_emulated_pio(vcpu, count, size); 13939 if (!vcpu->arch.sev_pio_count) 13940 return 1; 13941 } 13942 13943 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13944 return 0; 13945 } 13946 13947 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13948 unsigned int port, void *data, unsigned int count, 13949 int in) 13950 { 13951 vcpu->arch.sev_pio_data = data; 13952 vcpu->arch.sev_pio_count = count; 13953 return in ? kvm_sev_es_ins(vcpu, size, port) 13954 : kvm_sev_es_outs(vcpu, size, port); 13955 } 13956 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13957 13958 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13959 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13960 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13987 13988 static int __init kvm_x86_init(void) 13989 { 13990 kvm_mmu_x86_module_init(); 13991 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13992 return 0; 13993 } 13994 module_init(kvm_x86_init); 13995 13996 static void __exit kvm_x86_exit(void) 13997 { 13998 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); 13999 } 14000 module_exit(kvm_x86_exit); 14001