xref: /linux/arch/x86/kvm/x86.c (revision cc3ae7b0af27118994c1e491382b253be3b762bf)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74 
75 #define emul_to_vcpu(ctxt) \
76 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77 
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88 
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95 
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98 
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104 
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107 
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117 
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121 
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128 
129 static bool __read_mostly backwards_tsc_observed = false;
130 
131 #define KVM_NR_SHARED_MSRS 16
132 
133 struct kvm_shared_msrs_global {
134 	int nr;
135 	u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137 
138 struct kvm_shared_msrs {
139 	struct user_return_notifier urn;
140 	bool registered;
141 	struct kvm_shared_msr_values {
142 		u64 host;
143 		u64 curr;
144 	} values[KVM_NR_SHARED_MSRS];
145 };
146 
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149 
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
152 	{ "pf_guest", VCPU_STAT(pf_guest) },
153 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
154 	{ "invlpg", VCPU_STAT(invlpg) },
155 	{ "exits", VCPU_STAT(exits) },
156 	{ "io_exits", VCPU_STAT(io_exits) },
157 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
158 	{ "signal_exits", VCPU_STAT(signal_exits) },
159 	{ "irq_window", VCPU_STAT(irq_window_exits) },
160 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
161 	{ "halt_exits", VCPU_STAT(halt_exits) },
162 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
165 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
166 	{ "hypercalls", VCPU_STAT(hypercalls) },
167 	{ "request_irq", VCPU_STAT(request_irq_exits) },
168 	{ "irq_exits", VCPU_STAT(irq_exits) },
169 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
170 	{ "efer_reload", VCPU_STAT(efer_reload) },
171 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
172 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
173 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
174 	{ "irq_injections", VCPU_STAT(irq_injections) },
175 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
176 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
177 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
178 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
179 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
180 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
181 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
182 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
183 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
184 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
185 	{ "largepages", VM_STAT(lpages) },
186 	{ NULL }
187 };
188 
189 u64 __read_mostly host_xcr0;
190 
191 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
192 
193 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
194 {
195 	int i;
196 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
197 		vcpu->arch.apf.gfns[i] = ~0;
198 }
199 
200 static void kvm_on_user_return(struct user_return_notifier *urn)
201 {
202 	unsigned slot;
203 	struct kvm_shared_msrs *locals
204 		= container_of(urn, struct kvm_shared_msrs, urn);
205 	struct kvm_shared_msr_values *values;
206 
207 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
208 		values = &locals->values[slot];
209 		if (values->host != values->curr) {
210 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
211 			values->curr = values->host;
212 		}
213 	}
214 	locals->registered = false;
215 	user_return_notifier_unregister(urn);
216 }
217 
218 static void shared_msr_update(unsigned slot, u32 msr)
219 {
220 	u64 value;
221 	unsigned int cpu = smp_processor_id();
222 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
223 
224 	/* only read, and nobody should modify it at this time,
225 	 * so don't need lock */
226 	if (slot >= shared_msrs_global.nr) {
227 		printk(KERN_ERR "kvm: invalid MSR slot!");
228 		return;
229 	}
230 	rdmsrl_safe(msr, &value);
231 	smsr->values[slot].host = value;
232 	smsr->values[slot].curr = value;
233 }
234 
235 void kvm_define_shared_msr(unsigned slot, u32 msr)
236 {
237 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
238 	shared_msrs_global.msrs[slot] = msr;
239 	if (slot >= shared_msrs_global.nr)
240 		shared_msrs_global.nr = slot + 1;
241 }
242 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
243 
244 static void kvm_shared_msr_cpu_online(void)
245 {
246 	unsigned i;
247 
248 	for (i = 0; i < shared_msrs_global.nr; ++i)
249 		shared_msr_update(i, shared_msrs_global.msrs[i]);
250 }
251 
252 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
253 {
254 	unsigned int cpu = smp_processor_id();
255 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
256 	int err;
257 
258 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
259 		return 0;
260 	smsr->values[slot].curr = value;
261 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
262 	if (err)
263 		return 1;
264 
265 	if (!smsr->registered) {
266 		smsr->urn.on_user_return = kvm_on_user_return;
267 		user_return_notifier_register(&smsr->urn);
268 		smsr->registered = true;
269 	}
270 	return 0;
271 }
272 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
273 
274 static void drop_user_return_notifiers(void)
275 {
276 	unsigned int cpu = smp_processor_id();
277 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
278 
279 	if (smsr->registered)
280 		kvm_on_user_return(&smsr->urn);
281 }
282 
283 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
284 {
285 	return vcpu->arch.apic_base;
286 }
287 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
288 
289 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
290 {
291 	u64 old_state = vcpu->arch.apic_base &
292 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
293 	u64 new_state = msr_info->data &
294 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
295 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
296 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
297 
298 	if (!msr_info->host_initiated &&
299 	    ((msr_info->data & reserved_bits) != 0 ||
300 	     new_state == X2APIC_ENABLE ||
301 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
302 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
303 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
304 	      old_state == 0)))
305 		return 1;
306 
307 	kvm_lapic_set_base(vcpu, msr_info->data);
308 	return 0;
309 }
310 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
311 
312 asmlinkage __visible void kvm_spurious_fault(void)
313 {
314 	/* Fault while not rebooting.  We want the trace. */
315 	BUG();
316 }
317 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
318 
319 #define EXCPT_BENIGN		0
320 #define EXCPT_CONTRIBUTORY	1
321 #define EXCPT_PF		2
322 
323 static int exception_class(int vector)
324 {
325 	switch (vector) {
326 	case PF_VECTOR:
327 		return EXCPT_PF;
328 	case DE_VECTOR:
329 	case TS_VECTOR:
330 	case NP_VECTOR:
331 	case SS_VECTOR:
332 	case GP_VECTOR:
333 		return EXCPT_CONTRIBUTORY;
334 	default:
335 		break;
336 	}
337 	return EXCPT_BENIGN;
338 }
339 
340 #define EXCPT_FAULT		0
341 #define EXCPT_TRAP		1
342 #define EXCPT_ABORT		2
343 #define EXCPT_INTERRUPT		3
344 
345 static int exception_type(int vector)
346 {
347 	unsigned int mask;
348 
349 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
350 		return EXCPT_INTERRUPT;
351 
352 	mask = 1 << vector;
353 
354 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
355 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
356 		return EXCPT_TRAP;
357 
358 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
359 		return EXCPT_ABORT;
360 
361 	/* Reserved exceptions will result in fault */
362 	return EXCPT_FAULT;
363 }
364 
365 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
366 		unsigned nr, bool has_error, u32 error_code,
367 		bool reinject)
368 {
369 	u32 prev_nr;
370 	int class1, class2;
371 
372 	kvm_make_request(KVM_REQ_EVENT, vcpu);
373 
374 	if (!vcpu->arch.exception.pending) {
375 	queue:
376 		if (has_error && !is_protmode(vcpu))
377 			has_error = false;
378 		vcpu->arch.exception.pending = true;
379 		vcpu->arch.exception.has_error_code = has_error;
380 		vcpu->arch.exception.nr = nr;
381 		vcpu->arch.exception.error_code = error_code;
382 		vcpu->arch.exception.reinject = reinject;
383 		return;
384 	}
385 
386 	/* to check exception */
387 	prev_nr = vcpu->arch.exception.nr;
388 	if (prev_nr == DF_VECTOR) {
389 		/* triple fault -> shutdown */
390 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
391 		return;
392 	}
393 	class1 = exception_class(prev_nr);
394 	class2 = exception_class(nr);
395 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
396 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
397 		/* generate double fault per SDM Table 5-5 */
398 		vcpu->arch.exception.pending = true;
399 		vcpu->arch.exception.has_error_code = true;
400 		vcpu->arch.exception.nr = DF_VECTOR;
401 		vcpu->arch.exception.error_code = 0;
402 	} else
403 		/* replace previous exception with a new one in a hope
404 		   that instruction re-execution will regenerate lost
405 		   exception */
406 		goto queue;
407 }
408 
409 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
410 {
411 	kvm_multiple_exception(vcpu, nr, false, 0, false);
412 }
413 EXPORT_SYMBOL_GPL(kvm_queue_exception);
414 
415 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
416 {
417 	kvm_multiple_exception(vcpu, nr, false, 0, true);
418 }
419 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
420 
421 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
422 {
423 	if (err)
424 		kvm_inject_gp(vcpu, 0);
425 	else
426 		kvm_x86_ops->skip_emulated_instruction(vcpu);
427 }
428 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
429 
430 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
431 {
432 	++vcpu->stat.pf_guest;
433 	vcpu->arch.cr2 = fault->address;
434 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
435 }
436 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
437 
438 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
439 {
440 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
441 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
442 	else
443 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
444 
445 	return fault->nested_page_fault;
446 }
447 
448 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
449 {
450 	atomic_inc(&vcpu->arch.nmi_queued);
451 	kvm_make_request(KVM_REQ_NMI, vcpu);
452 }
453 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
454 
455 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
456 {
457 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
458 }
459 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
460 
461 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
462 {
463 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
464 }
465 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
466 
467 /*
468  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
469  * a #GP and return false.
470  */
471 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
472 {
473 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
474 		return true;
475 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
476 	return false;
477 }
478 EXPORT_SYMBOL_GPL(kvm_require_cpl);
479 
480 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
481 {
482 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
483 		return true;
484 
485 	kvm_queue_exception(vcpu, UD_VECTOR);
486 	return false;
487 }
488 EXPORT_SYMBOL_GPL(kvm_require_dr);
489 
490 /*
491  * This function will be used to read from the physical memory of the currently
492  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
493  * can read from guest physical or from the guest's guest physical memory.
494  */
495 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
496 			    gfn_t ngfn, void *data, int offset, int len,
497 			    u32 access)
498 {
499 	struct x86_exception exception;
500 	gfn_t real_gfn;
501 	gpa_t ngpa;
502 
503 	ngpa     = gfn_to_gpa(ngfn);
504 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
505 	if (real_gfn == UNMAPPED_GVA)
506 		return -EFAULT;
507 
508 	real_gfn = gpa_to_gfn(real_gfn);
509 
510 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
511 }
512 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
513 
514 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
515 			       void *data, int offset, int len, u32 access)
516 {
517 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
518 				       data, offset, len, access);
519 }
520 
521 /*
522  * Load the pae pdptrs.  Return true is they are all valid.
523  */
524 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
525 {
526 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
527 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
528 	int i;
529 	int ret;
530 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
531 
532 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
533 				      offset * sizeof(u64), sizeof(pdpte),
534 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
535 	if (ret < 0) {
536 		ret = 0;
537 		goto out;
538 	}
539 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
540 		if (is_present_gpte(pdpte[i]) &&
541 		    (pdpte[i] &
542 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
543 			ret = 0;
544 			goto out;
545 		}
546 	}
547 	ret = 1;
548 
549 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
550 	__set_bit(VCPU_EXREG_PDPTR,
551 		  (unsigned long *)&vcpu->arch.regs_avail);
552 	__set_bit(VCPU_EXREG_PDPTR,
553 		  (unsigned long *)&vcpu->arch.regs_dirty);
554 out:
555 
556 	return ret;
557 }
558 EXPORT_SYMBOL_GPL(load_pdptrs);
559 
560 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
561 {
562 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
563 	bool changed = true;
564 	int offset;
565 	gfn_t gfn;
566 	int r;
567 
568 	if (is_long_mode(vcpu) || !is_pae(vcpu))
569 		return false;
570 
571 	if (!test_bit(VCPU_EXREG_PDPTR,
572 		      (unsigned long *)&vcpu->arch.regs_avail))
573 		return true;
574 
575 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
576 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
577 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
578 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
579 	if (r < 0)
580 		goto out;
581 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
582 out:
583 
584 	return changed;
585 }
586 
587 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
588 {
589 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
590 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
591 
592 	cr0 |= X86_CR0_ET;
593 
594 #ifdef CONFIG_X86_64
595 	if (cr0 & 0xffffffff00000000UL)
596 		return 1;
597 #endif
598 
599 	cr0 &= ~CR0_RESERVED_BITS;
600 
601 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
602 		return 1;
603 
604 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
605 		return 1;
606 
607 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
608 #ifdef CONFIG_X86_64
609 		if ((vcpu->arch.efer & EFER_LME)) {
610 			int cs_db, cs_l;
611 
612 			if (!is_pae(vcpu))
613 				return 1;
614 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
615 			if (cs_l)
616 				return 1;
617 		} else
618 #endif
619 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
620 						 kvm_read_cr3(vcpu)))
621 			return 1;
622 	}
623 
624 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
625 		return 1;
626 
627 	kvm_x86_ops->set_cr0(vcpu, cr0);
628 
629 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
630 		kvm_clear_async_pf_completion_queue(vcpu);
631 		kvm_async_pf_hash_reset(vcpu);
632 	}
633 
634 	if ((cr0 ^ old_cr0) & update_bits)
635 		kvm_mmu_reset_context(vcpu);
636 
637 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
638 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
639 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
640 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
641 
642 	return 0;
643 }
644 EXPORT_SYMBOL_GPL(kvm_set_cr0);
645 
646 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
647 {
648 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
649 }
650 EXPORT_SYMBOL_GPL(kvm_lmsw);
651 
652 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
653 {
654 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
655 			!vcpu->guest_xcr0_loaded) {
656 		/* kvm_set_xcr() also depends on this */
657 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
658 		vcpu->guest_xcr0_loaded = 1;
659 	}
660 }
661 
662 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
663 {
664 	if (vcpu->guest_xcr0_loaded) {
665 		if (vcpu->arch.xcr0 != host_xcr0)
666 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
667 		vcpu->guest_xcr0_loaded = 0;
668 	}
669 }
670 
671 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
672 {
673 	u64 xcr0 = xcr;
674 	u64 old_xcr0 = vcpu->arch.xcr0;
675 	u64 valid_bits;
676 
677 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
678 	if (index != XCR_XFEATURE_ENABLED_MASK)
679 		return 1;
680 	if (!(xcr0 & XFEATURE_MASK_FP))
681 		return 1;
682 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
683 		return 1;
684 
685 	/*
686 	 * Do not allow the guest to set bits that we do not support
687 	 * saving.  However, xcr0 bit 0 is always set, even if the
688 	 * emulated CPU does not support XSAVE (see fx_init).
689 	 */
690 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
691 	if (xcr0 & ~valid_bits)
692 		return 1;
693 
694 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
695 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
696 		return 1;
697 
698 	if (xcr0 & XFEATURE_MASK_AVX512) {
699 		if (!(xcr0 & XFEATURE_MASK_YMM))
700 			return 1;
701 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
702 			return 1;
703 	}
704 	vcpu->arch.xcr0 = xcr0;
705 
706 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
707 		kvm_update_cpuid(vcpu);
708 	return 0;
709 }
710 
711 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
712 {
713 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
714 	    __kvm_set_xcr(vcpu, index, xcr)) {
715 		kvm_inject_gp(vcpu, 0);
716 		return 1;
717 	}
718 	return 0;
719 }
720 EXPORT_SYMBOL_GPL(kvm_set_xcr);
721 
722 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
723 {
724 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
725 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
726 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
727 
728 	if (cr4 & CR4_RESERVED_BITS)
729 		return 1;
730 
731 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
732 		return 1;
733 
734 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
735 		return 1;
736 
737 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
738 		return 1;
739 
740 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
741 		return 1;
742 
743 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
744 		return 1;
745 
746 	if (is_long_mode(vcpu)) {
747 		if (!(cr4 & X86_CR4_PAE))
748 			return 1;
749 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
750 		   && ((cr4 ^ old_cr4) & pdptr_bits)
751 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
752 				   kvm_read_cr3(vcpu)))
753 		return 1;
754 
755 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
756 		if (!guest_cpuid_has_pcid(vcpu))
757 			return 1;
758 
759 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
760 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
761 			return 1;
762 	}
763 
764 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
765 		return 1;
766 
767 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
768 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
769 		kvm_mmu_reset_context(vcpu);
770 
771 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
772 		kvm_update_cpuid(vcpu);
773 
774 	return 0;
775 }
776 EXPORT_SYMBOL_GPL(kvm_set_cr4);
777 
778 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
779 {
780 #ifdef CONFIG_X86_64
781 	cr3 &= ~CR3_PCID_INVD;
782 #endif
783 
784 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
785 		kvm_mmu_sync_roots(vcpu);
786 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
787 		return 0;
788 	}
789 
790 	if (is_long_mode(vcpu)) {
791 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
792 			return 1;
793 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
794 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
795 		return 1;
796 
797 	vcpu->arch.cr3 = cr3;
798 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
799 	kvm_mmu_new_cr3(vcpu);
800 	return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr3);
803 
804 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
805 {
806 	if (cr8 & CR8_RESERVED_BITS)
807 		return 1;
808 	if (lapic_in_kernel(vcpu))
809 		kvm_lapic_set_tpr(vcpu, cr8);
810 	else
811 		vcpu->arch.cr8 = cr8;
812 	return 0;
813 }
814 EXPORT_SYMBOL_GPL(kvm_set_cr8);
815 
816 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
817 {
818 	if (lapic_in_kernel(vcpu))
819 		return kvm_lapic_get_cr8(vcpu);
820 	else
821 		return vcpu->arch.cr8;
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_cr8);
824 
825 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
826 {
827 	int i;
828 
829 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
830 		for (i = 0; i < KVM_NR_DB_REGS; i++)
831 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
832 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
833 	}
834 }
835 
836 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
837 {
838 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
839 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
840 }
841 
842 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
843 {
844 	unsigned long dr7;
845 
846 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
847 		dr7 = vcpu->arch.guest_debug_dr7;
848 	else
849 		dr7 = vcpu->arch.dr7;
850 	kvm_x86_ops->set_dr7(vcpu, dr7);
851 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
852 	if (dr7 & DR7_BP_EN_MASK)
853 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
854 }
855 
856 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
857 {
858 	u64 fixed = DR6_FIXED_1;
859 
860 	if (!guest_cpuid_has_rtm(vcpu))
861 		fixed |= DR6_RTM;
862 	return fixed;
863 }
864 
865 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
866 {
867 	switch (dr) {
868 	case 0 ... 3:
869 		vcpu->arch.db[dr] = val;
870 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
871 			vcpu->arch.eff_db[dr] = val;
872 		break;
873 	case 4:
874 		/* fall through */
875 	case 6:
876 		if (val & 0xffffffff00000000ULL)
877 			return -1; /* #GP */
878 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
879 		kvm_update_dr6(vcpu);
880 		break;
881 	case 5:
882 		/* fall through */
883 	default: /* 7 */
884 		if (val & 0xffffffff00000000ULL)
885 			return -1; /* #GP */
886 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
887 		kvm_update_dr7(vcpu);
888 		break;
889 	}
890 
891 	return 0;
892 }
893 
894 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
895 {
896 	if (__kvm_set_dr(vcpu, dr, val)) {
897 		kvm_inject_gp(vcpu, 0);
898 		return 1;
899 	}
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_set_dr);
903 
904 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
905 {
906 	switch (dr) {
907 	case 0 ... 3:
908 		*val = vcpu->arch.db[dr];
909 		break;
910 	case 4:
911 		/* fall through */
912 	case 6:
913 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
914 			*val = vcpu->arch.dr6;
915 		else
916 			*val = kvm_x86_ops->get_dr6(vcpu);
917 		break;
918 	case 5:
919 		/* fall through */
920 	default: /* 7 */
921 		*val = vcpu->arch.dr7;
922 		break;
923 	}
924 	return 0;
925 }
926 EXPORT_SYMBOL_GPL(kvm_get_dr);
927 
928 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
929 {
930 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
931 	u64 data;
932 	int err;
933 
934 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
935 	if (err)
936 		return err;
937 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
938 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
939 	return err;
940 }
941 EXPORT_SYMBOL_GPL(kvm_rdpmc);
942 
943 /*
944  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
945  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
946  *
947  * This list is modified at module load time to reflect the
948  * capabilities of the host cpu. This capabilities test skips MSRs that are
949  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
950  * may depend on host virtualization features rather than host cpu features.
951  */
952 
953 static u32 msrs_to_save[] = {
954 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
955 	MSR_STAR,
956 #ifdef CONFIG_X86_64
957 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
958 #endif
959 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
960 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
961 };
962 
963 static unsigned num_msrs_to_save;
964 
965 static u32 emulated_msrs[] = {
966 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
967 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
968 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
969 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
970 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
971 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
972 	HV_X64_MSR_RESET,
973 	HV_X64_MSR_VP_INDEX,
974 	HV_X64_MSR_VP_RUNTIME,
975 	HV_X64_MSR_SCONTROL,
976 	HV_X64_MSR_STIMER0_CONFIG,
977 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
978 	MSR_KVM_PV_EOI_EN,
979 
980 	MSR_IA32_TSC_ADJUST,
981 	MSR_IA32_TSCDEADLINE,
982 	MSR_IA32_MISC_ENABLE,
983 	MSR_IA32_MCG_STATUS,
984 	MSR_IA32_MCG_CTL,
985 	MSR_IA32_SMBASE,
986 };
987 
988 static unsigned num_emulated_msrs;
989 
990 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992 	if (efer & efer_reserved_bits)
993 		return false;
994 
995 	if (efer & EFER_FFXSR) {
996 		struct kvm_cpuid_entry2 *feat;
997 
998 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
999 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1000 			return false;
1001 	}
1002 
1003 	if (efer & EFER_SVME) {
1004 		struct kvm_cpuid_entry2 *feat;
1005 
1006 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1008 			return false;
1009 	}
1010 
1011 	return true;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1014 
1015 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1016 {
1017 	u64 old_efer = vcpu->arch.efer;
1018 
1019 	if (!kvm_valid_efer(vcpu, efer))
1020 		return 1;
1021 
1022 	if (is_paging(vcpu)
1023 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1024 		return 1;
1025 
1026 	efer &= ~EFER_LMA;
1027 	efer |= vcpu->arch.efer & EFER_LMA;
1028 
1029 	kvm_x86_ops->set_efer(vcpu, efer);
1030 
1031 	/* Update reserved bits */
1032 	if ((efer ^ old_efer) & EFER_NX)
1033 		kvm_mmu_reset_context(vcpu);
1034 
1035 	return 0;
1036 }
1037 
1038 void kvm_enable_efer_bits(u64 mask)
1039 {
1040        efer_reserved_bits &= ~mask;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1043 
1044 /*
1045  * Writes msr value into into the appropriate "register".
1046  * Returns 0 on success, non-0 otherwise.
1047  * Assumes vcpu_load() was already called.
1048  */
1049 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1050 {
1051 	switch (msr->index) {
1052 	case MSR_FS_BASE:
1053 	case MSR_GS_BASE:
1054 	case MSR_KERNEL_GS_BASE:
1055 	case MSR_CSTAR:
1056 	case MSR_LSTAR:
1057 		if (is_noncanonical_address(msr->data))
1058 			return 1;
1059 		break;
1060 	case MSR_IA32_SYSENTER_EIP:
1061 	case MSR_IA32_SYSENTER_ESP:
1062 		/*
1063 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1064 		 * non-canonical address is written on Intel but not on
1065 		 * AMD (which ignores the top 32-bits, because it does
1066 		 * not implement 64-bit SYSENTER).
1067 		 *
1068 		 * 64-bit code should hence be able to write a non-canonical
1069 		 * value on AMD.  Making the address canonical ensures that
1070 		 * vmentry does not fail on Intel after writing a non-canonical
1071 		 * value, and that something deterministic happens if the guest
1072 		 * invokes 64-bit SYSENTER.
1073 		 */
1074 		msr->data = get_canonical(msr->data);
1075 	}
1076 	return kvm_x86_ops->set_msr(vcpu, msr);
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_msr);
1079 
1080 /*
1081  * Adapt set_msr() to msr_io()'s calling convention
1082  */
1083 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1084 {
1085 	struct msr_data msr;
1086 	int r;
1087 
1088 	msr.index = index;
1089 	msr.host_initiated = true;
1090 	r = kvm_get_msr(vcpu, &msr);
1091 	if (r)
1092 		return r;
1093 
1094 	*data = msr.data;
1095 	return 0;
1096 }
1097 
1098 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1099 {
1100 	struct msr_data msr;
1101 
1102 	msr.data = *data;
1103 	msr.index = index;
1104 	msr.host_initiated = true;
1105 	return kvm_set_msr(vcpu, &msr);
1106 }
1107 
1108 #ifdef CONFIG_X86_64
1109 struct pvclock_gtod_data {
1110 	seqcount_t	seq;
1111 
1112 	struct { /* extract of a clocksource struct */
1113 		int vclock_mode;
1114 		cycle_t	cycle_last;
1115 		cycle_t	mask;
1116 		u32	mult;
1117 		u32	shift;
1118 	} clock;
1119 
1120 	u64		boot_ns;
1121 	u64		nsec_base;
1122 };
1123 
1124 static struct pvclock_gtod_data pvclock_gtod_data;
1125 
1126 static void update_pvclock_gtod(struct timekeeper *tk)
1127 {
1128 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1129 	u64 boot_ns;
1130 
1131 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1132 
1133 	write_seqcount_begin(&vdata->seq);
1134 
1135 	/* copy pvclock gtod data */
1136 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1137 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1138 	vdata->clock.mask		= tk->tkr_mono.mask;
1139 	vdata->clock.mult		= tk->tkr_mono.mult;
1140 	vdata->clock.shift		= tk->tkr_mono.shift;
1141 
1142 	vdata->boot_ns			= boot_ns;
1143 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1144 
1145 	write_seqcount_end(&vdata->seq);
1146 }
1147 #endif
1148 
1149 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1150 {
1151 	/*
1152 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1153 	 * vcpu_enter_guest.  This function is only called from
1154 	 * the physical CPU that is running vcpu.
1155 	 */
1156 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1157 }
1158 
1159 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1160 {
1161 	int version;
1162 	int r;
1163 	struct pvclock_wall_clock wc;
1164 	struct timespec boot;
1165 
1166 	if (!wall_clock)
1167 		return;
1168 
1169 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1170 	if (r)
1171 		return;
1172 
1173 	if (version & 1)
1174 		++version;  /* first time write, random junk */
1175 
1176 	++version;
1177 
1178 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1179 		return;
1180 
1181 	/*
1182 	 * The guest calculates current wall clock time by adding
1183 	 * system time (updated by kvm_guest_time_update below) to the
1184 	 * wall clock specified here.  guest system time equals host
1185 	 * system time for us, thus we must fill in host boot time here.
1186 	 */
1187 	getboottime(&boot);
1188 
1189 	if (kvm->arch.kvmclock_offset) {
1190 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1191 		boot = timespec_sub(boot, ts);
1192 	}
1193 	wc.sec = boot.tv_sec;
1194 	wc.nsec = boot.tv_nsec;
1195 	wc.version = version;
1196 
1197 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1198 
1199 	version++;
1200 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1201 }
1202 
1203 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1204 {
1205 	do_shl32_div32(dividend, divisor);
1206 	return dividend;
1207 }
1208 
1209 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1210 			       s8 *pshift, u32 *pmultiplier)
1211 {
1212 	uint64_t scaled64;
1213 	int32_t  shift = 0;
1214 	uint64_t tps64;
1215 	uint32_t tps32;
1216 
1217 	tps64 = base_hz;
1218 	scaled64 = scaled_hz;
1219 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1220 		tps64 >>= 1;
1221 		shift--;
1222 	}
1223 
1224 	tps32 = (uint32_t)tps64;
1225 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1226 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1227 			scaled64 >>= 1;
1228 		else
1229 			tps32 <<= 1;
1230 		shift++;
1231 	}
1232 
1233 	*pshift = shift;
1234 	*pmultiplier = div_frac(scaled64, tps32);
1235 
1236 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1237 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1238 }
1239 
1240 #ifdef CONFIG_X86_64
1241 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1242 #endif
1243 
1244 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1245 static unsigned long max_tsc_khz;
1246 
1247 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1248 {
1249 	u64 v = (u64)khz * (1000000 + ppm);
1250 	do_div(v, 1000000);
1251 	return v;
1252 }
1253 
1254 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1255 {
1256 	u64 ratio;
1257 
1258 	/* Guest TSC same frequency as host TSC? */
1259 	if (!scale) {
1260 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1261 		return 0;
1262 	}
1263 
1264 	/* TSC scaling supported? */
1265 	if (!kvm_has_tsc_control) {
1266 		if (user_tsc_khz > tsc_khz) {
1267 			vcpu->arch.tsc_catchup = 1;
1268 			vcpu->arch.tsc_always_catchup = 1;
1269 			return 0;
1270 		} else {
1271 			WARN(1, "user requested TSC rate below hardware speed\n");
1272 			return -1;
1273 		}
1274 	}
1275 
1276 	/* TSC scaling required  - calculate ratio */
1277 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1278 				user_tsc_khz, tsc_khz);
1279 
1280 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1281 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1282 			  user_tsc_khz);
1283 		return -1;
1284 	}
1285 
1286 	vcpu->arch.tsc_scaling_ratio = ratio;
1287 	return 0;
1288 }
1289 
1290 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1291 {
1292 	u32 thresh_lo, thresh_hi;
1293 	int use_scaling = 0;
1294 
1295 	/* tsc_khz can be zero if TSC calibration fails */
1296 	if (user_tsc_khz == 0) {
1297 		/* set tsc_scaling_ratio to a safe value */
1298 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1299 		return -1;
1300 	}
1301 
1302 	/* Compute a scale to convert nanoseconds in TSC cycles */
1303 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1304 			   &vcpu->arch.virtual_tsc_shift,
1305 			   &vcpu->arch.virtual_tsc_mult);
1306 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1307 
1308 	/*
1309 	 * Compute the variation in TSC rate which is acceptable
1310 	 * within the range of tolerance and decide if the
1311 	 * rate being applied is within that bounds of the hardware
1312 	 * rate.  If so, no scaling or compensation need be done.
1313 	 */
1314 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1315 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1316 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1317 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1318 		use_scaling = 1;
1319 	}
1320 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1321 }
1322 
1323 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1324 {
1325 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1326 				      vcpu->arch.virtual_tsc_mult,
1327 				      vcpu->arch.virtual_tsc_shift);
1328 	tsc += vcpu->arch.this_tsc_write;
1329 	return tsc;
1330 }
1331 
1332 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1333 {
1334 #ifdef CONFIG_X86_64
1335 	bool vcpus_matched;
1336 	struct kvm_arch *ka = &vcpu->kvm->arch;
1337 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1338 
1339 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1340 			 atomic_read(&vcpu->kvm->online_vcpus));
1341 
1342 	/*
1343 	 * Once the masterclock is enabled, always perform request in
1344 	 * order to update it.
1345 	 *
1346 	 * In order to enable masterclock, the host clocksource must be TSC
1347 	 * and the vcpus need to have matched TSCs.  When that happens,
1348 	 * perform request to enable masterclock.
1349 	 */
1350 	if (ka->use_master_clock ||
1351 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1352 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1353 
1354 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1355 			    atomic_read(&vcpu->kvm->online_vcpus),
1356 		            ka->use_master_clock, gtod->clock.vclock_mode);
1357 #endif
1358 }
1359 
1360 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1361 {
1362 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1363 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1364 }
1365 
1366 /*
1367  * Multiply tsc by a fixed point number represented by ratio.
1368  *
1369  * The most significant 64-N bits (mult) of ratio represent the
1370  * integral part of the fixed point number; the remaining N bits
1371  * (frac) represent the fractional part, ie. ratio represents a fixed
1372  * point number (mult + frac * 2^(-N)).
1373  *
1374  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1375  */
1376 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1377 {
1378 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1379 }
1380 
1381 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1382 {
1383 	u64 _tsc = tsc;
1384 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1385 
1386 	if (ratio != kvm_default_tsc_scaling_ratio)
1387 		_tsc = __scale_tsc(ratio, tsc);
1388 
1389 	return _tsc;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1392 
1393 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1394 {
1395 	u64 tsc;
1396 
1397 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1398 
1399 	return target_tsc - tsc;
1400 }
1401 
1402 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1403 {
1404 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1405 }
1406 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1407 
1408 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1409 {
1410 	struct kvm *kvm = vcpu->kvm;
1411 	u64 offset, ns, elapsed;
1412 	unsigned long flags;
1413 	s64 usdiff;
1414 	bool matched;
1415 	bool already_matched;
1416 	u64 data = msr->data;
1417 
1418 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1419 	offset = kvm_compute_tsc_offset(vcpu, data);
1420 	ns = get_kernel_ns();
1421 	elapsed = ns - kvm->arch.last_tsc_nsec;
1422 
1423 	if (vcpu->arch.virtual_tsc_khz) {
1424 		int faulted = 0;
1425 
1426 		/* n.b - signed multiplication and division required */
1427 		usdiff = data - kvm->arch.last_tsc_write;
1428 #ifdef CONFIG_X86_64
1429 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1430 #else
1431 		/* do_div() only does unsigned */
1432 		asm("1: idivl %[divisor]\n"
1433 		    "2: xor %%edx, %%edx\n"
1434 		    "   movl $0, %[faulted]\n"
1435 		    "3:\n"
1436 		    ".section .fixup,\"ax\"\n"
1437 		    "4: movl $1, %[faulted]\n"
1438 		    "   jmp  3b\n"
1439 		    ".previous\n"
1440 
1441 		_ASM_EXTABLE(1b, 4b)
1442 
1443 		: "=A"(usdiff), [faulted] "=r" (faulted)
1444 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1445 
1446 #endif
1447 		do_div(elapsed, 1000);
1448 		usdiff -= elapsed;
1449 		if (usdiff < 0)
1450 			usdiff = -usdiff;
1451 
1452 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1453 		if (faulted)
1454 			usdiff = USEC_PER_SEC;
1455 	} else
1456 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1457 
1458 	/*
1459 	 * Special case: TSC write with a small delta (1 second) of virtual
1460 	 * cycle time against real time is interpreted as an attempt to
1461 	 * synchronize the CPU.
1462          *
1463 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1464 	 * TSC, we add elapsed time in this computation.  We could let the
1465 	 * compensation code attempt to catch up if we fall behind, but
1466 	 * it's better to try to match offsets from the beginning.
1467          */
1468 	if (usdiff < USEC_PER_SEC &&
1469 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1470 		if (!check_tsc_unstable()) {
1471 			offset = kvm->arch.cur_tsc_offset;
1472 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1473 		} else {
1474 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1475 			data += delta;
1476 			offset = kvm_compute_tsc_offset(vcpu, data);
1477 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1478 		}
1479 		matched = true;
1480 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1481 	} else {
1482 		/*
1483 		 * We split periods of matched TSC writes into generations.
1484 		 * For each generation, we track the original measured
1485 		 * nanosecond time, offset, and write, so if TSCs are in
1486 		 * sync, we can match exact offset, and if not, we can match
1487 		 * exact software computation in compute_guest_tsc()
1488 		 *
1489 		 * These values are tracked in kvm->arch.cur_xxx variables.
1490 		 */
1491 		kvm->arch.cur_tsc_generation++;
1492 		kvm->arch.cur_tsc_nsec = ns;
1493 		kvm->arch.cur_tsc_write = data;
1494 		kvm->arch.cur_tsc_offset = offset;
1495 		matched = false;
1496 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1497 			 kvm->arch.cur_tsc_generation, data);
1498 	}
1499 
1500 	/*
1501 	 * We also track th most recent recorded KHZ, write and time to
1502 	 * allow the matching interval to be extended at each write.
1503 	 */
1504 	kvm->arch.last_tsc_nsec = ns;
1505 	kvm->arch.last_tsc_write = data;
1506 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1507 
1508 	vcpu->arch.last_guest_tsc = data;
1509 
1510 	/* Keep track of which generation this VCPU has synchronized to */
1511 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1512 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1513 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1514 
1515 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1516 		update_ia32_tsc_adjust_msr(vcpu, offset);
1517 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1518 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1519 
1520 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1521 	if (!matched) {
1522 		kvm->arch.nr_vcpus_matched_tsc = 0;
1523 	} else if (!already_matched) {
1524 		kvm->arch.nr_vcpus_matched_tsc++;
1525 	}
1526 
1527 	kvm_track_tsc_matching(vcpu);
1528 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1529 }
1530 
1531 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1532 
1533 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1534 					   s64 adjustment)
1535 {
1536 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1537 }
1538 
1539 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1540 {
1541 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1542 		WARN_ON(adjustment < 0);
1543 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1544 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1545 }
1546 
1547 #ifdef CONFIG_X86_64
1548 
1549 static cycle_t read_tsc(void)
1550 {
1551 	cycle_t ret = (cycle_t)rdtsc_ordered();
1552 	u64 last = pvclock_gtod_data.clock.cycle_last;
1553 
1554 	if (likely(ret >= last))
1555 		return ret;
1556 
1557 	/*
1558 	 * GCC likes to generate cmov here, but this branch is extremely
1559 	 * predictable (it's just a function of time and the likely is
1560 	 * very likely) and there's a data dependence, so force GCC
1561 	 * to generate a branch instead.  I don't barrier() because
1562 	 * we don't actually need a barrier, and if this function
1563 	 * ever gets inlined it will generate worse code.
1564 	 */
1565 	asm volatile ("");
1566 	return last;
1567 }
1568 
1569 static inline u64 vgettsc(cycle_t *cycle_now)
1570 {
1571 	long v;
1572 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1573 
1574 	*cycle_now = read_tsc();
1575 
1576 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1577 	return v * gtod->clock.mult;
1578 }
1579 
1580 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1581 {
1582 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1583 	unsigned long seq;
1584 	int mode;
1585 	u64 ns;
1586 
1587 	do {
1588 		seq = read_seqcount_begin(&gtod->seq);
1589 		mode = gtod->clock.vclock_mode;
1590 		ns = gtod->nsec_base;
1591 		ns += vgettsc(cycle_now);
1592 		ns >>= gtod->clock.shift;
1593 		ns += gtod->boot_ns;
1594 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1595 	*t = ns;
1596 
1597 	return mode;
1598 }
1599 
1600 /* returns true if host is using tsc clocksource */
1601 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1602 {
1603 	/* checked again under seqlock below */
1604 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1605 		return false;
1606 
1607 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1608 }
1609 #endif
1610 
1611 /*
1612  *
1613  * Assuming a stable TSC across physical CPUS, and a stable TSC
1614  * across virtual CPUs, the following condition is possible.
1615  * Each numbered line represents an event visible to both
1616  * CPUs at the next numbered event.
1617  *
1618  * "timespecX" represents host monotonic time. "tscX" represents
1619  * RDTSC value.
1620  *
1621  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1622  *
1623  * 1.  read timespec0,tsc0
1624  * 2.					| timespec1 = timespec0 + N
1625  * 					| tsc1 = tsc0 + M
1626  * 3. transition to guest		| transition to guest
1627  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1628  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1629  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1630  *
1631  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1632  *
1633  * 	- ret0 < ret1
1634  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1635  *		...
1636  *	- 0 < N - M => M < N
1637  *
1638  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1639  * always the case (the difference between two distinct xtime instances
1640  * might be smaller then the difference between corresponding TSC reads,
1641  * when updating guest vcpus pvclock areas).
1642  *
1643  * To avoid that problem, do not allow visibility of distinct
1644  * system_timestamp/tsc_timestamp values simultaneously: use a master
1645  * copy of host monotonic time values. Update that master copy
1646  * in lockstep.
1647  *
1648  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1649  *
1650  */
1651 
1652 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1653 {
1654 #ifdef CONFIG_X86_64
1655 	struct kvm_arch *ka = &kvm->arch;
1656 	int vclock_mode;
1657 	bool host_tsc_clocksource, vcpus_matched;
1658 
1659 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1660 			atomic_read(&kvm->online_vcpus));
1661 
1662 	/*
1663 	 * If the host uses TSC clock, then passthrough TSC as stable
1664 	 * to the guest.
1665 	 */
1666 	host_tsc_clocksource = kvm_get_time_and_clockread(
1667 					&ka->master_kernel_ns,
1668 					&ka->master_cycle_now);
1669 
1670 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1671 				&& !backwards_tsc_observed
1672 				&& !ka->boot_vcpu_runs_old_kvmclock;
1673 
1674 	if (ka->use_master_clock)
1675 		atomic_set(&kvm_guest_has_master_clock, 1);
1676 
1677 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1678 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1679 					vcpus_matched);
1680 #endif
1681 }
1682 
1683 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1684 {
1685 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1686 }
1687 
1688 static void kvm_gen_update_masterclock(struct kvm *kvm)
1689 {
1690 #ifdef CONFIG_X86_64
1691 	int i;
1692 	struct kvm_vcpu *vcpu;
1693 	struct kvm_arch *ka = &kvm->arch;
1694 
1695 	spin_lock(&ka->pvclock_gtod_sync_lock);
1696 	kvm_make_mclock_inprogress_request(kvm);
1697 	/* no guest entries from this point */
1698 	pvclock_update_vm_gtod_copy(kvm);
1699 
1700 	kvm_for_each_vcpu(i, vcpu, kvm)
1701 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1702 
1703 	/* guest entries allowed */
1704 	kvm_for_each_vcpu(i, vcpu, kvm)
1705 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1706 
1707 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1708 #endif
1709 }
1710 
1711 static int kvm_guest_time_update(struct kvm_vcpu *v)
1712 {
1713 	unsigned long flags, tgt_tsc_khz;
1714 	struct kvm_vcpu_arch *vcpu = &v->arch;
1715 	struct kvm_arch *ka = &v->kvm->arch;
1716 	s64 kernel_ns;
1717 	u64 tsc_timestamp, host_tsc;
1718 	struct pvclock_vcpu_time_info guest_hv_clock;
1719 	u8 pvclock_flags;
1720 	bool use_master_clock;
1721 
1722 	kernel_ns = 0;
1723 	host_tsc = 0;
1724 
1725 	/*
1726 	 * If the host uses TSC clock, then passthrough TSC as stable
1727 	 * to the guest.
1728 	 */
1729 	spin_lock(&ka->pvclock_gtod_sync_lock);
1730 	use_master_clock = ka->use_master_clock;
1731 	if (use_master_clock) {
1732 		host_tsc = ka->master_cycle_now;
1733 		kernel_ns = ka->master_kernel_ns;
1734 	}
1735 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1736 
1737 	/* Keep irq disabled to prevent changes to the clock */
1738 	local_irq_save(flags);
1739 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1740 	if (unlikely(tgt_tsc_khz == 0)) {
1741 		local_irq_restore(flags);
1742 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1743 		return 1;
1744 	}
1745 	if (!use_master_clock) {
1746 		host_tsc = rdtsc();
1747 		kernel_ns = get_kernel_ns();
1748 	}
1749 
1750 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1751 
1752 	/*
1753 	 * We may have to catch up the TSC to match elapsed wall clock
1754 	 * time for two reasons, even if kvmclock is used.
1755 	 *   1) CPU could have been running below the maximum TSC rate
1756 	 *   2) Broken TSC compensation resets the base at each VCPU
1757 	 *      entry to avoid unknown leaps of TSC even when running
1758 	 *      again on the same CPU.  This may cause apparent elapsed
1759 	 *      time to disappear, and the guest to stand still or run
1760 	 *	very slowly.
1761 	 */
1762 	if (vcpu->tsc_catchup) {
1763 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1764 		if (tsc > tsc_timestamp) {
1765 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1766 			tsc_timestamp = tsc;
1767 		}
1768 	}
1769 
1770 	local_irq_restore(flags);
1771 
1772 	if (!vcpu->pv_time_enabled)
1773 		return 0;
1774 
1775 	if (kvm_has_tsc_control)
1776 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1777 
1778 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1779 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1780 				   &vcpu->hv_clock.tsc_shift,
1781 				   &vcpu->hv_clock.tsc_to_system_mul);
1782 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1783 	}
1784 
1785 	/* With all the info we got, fill in the values */
1786 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1787 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1788 	vcpu->last_guest_tsc = tsc_timestamp;
1789 
1790 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1791 		&guest_hv_clock, sizeof(guest_hv_clock))))
1792 		return 0;
1793 
1794 	/* This VCPU is paused, but it's legal for a guest to read another
1795 	 * VCPU's kvmclock, so we really have to follow the specification where
1796 	 * it says that version is odd if data is being modified, and even after
1797 	 * it is consistent.
1798 	 *
1799 	 * Version field updates must be kept separate.  This is because
1800 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1801 	 * writes within a string instruction are weakly ordered.  So there
1802 	 * are three writes overall.
1803 	 *
1804 	 * As a small optimization, only write the version field in the first
1805 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1806 	 * version field is the first in the struct.
1807 	 */
1808 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1809 
1810 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1811 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1812 				&vcpu->hv_clock,
1813 				sizeof(vcpu->hv_clock.version));
1814 
1815 	smp_wmb();
1816 
1817 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1818 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1819 
1820 	if (vcpu->pvclock_set_guest_stopped_request) {
1821 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1822 		vcpu->pvclock_set_guest_stopped_request = false;
1823 	}
1824 
1825 	/* If the host uses TSC clocksource, then it is stable */
1826 	if (use_master_clock)
1827 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1828 
1829 	vcpu->hv_clock.flags = pvclock_flags;
1830 
1831 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1832 
1833 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1834 				&vcpu->hv_clock,
1835 				sizeof(vcpu->hv_clock));
1836 
1837 	smp_wmb();
1838 
1839 	vcpu->hv_clock.version++;
1840 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1841 				&vcpu->hv_clock,
1842 				sizeof(vcpu->hv_clock.version));
1843 	return 0;
1844 }
1845 
1846 /*
1847  * kvmclock updates which are isolated to a given vcpu, such as
1848  * vcpu->cpu migration, should not allow system_timestamp from
1849  * the rest of the vcpus to remain static. Otherwise ntp frequency
1850  * correction applies to one vcpu's system_timestamp but not
1851  * the others.
1852  *
1853  * So in those cases, request a kvmclock update for all vcpus.
1854  * We need to rate-limit these requests though, as they can
1855  * considerably slow guests that have a large number of vcpus.
1856  * The time for a remote vcpu to update its kvmclock is bound
1857  * by the delay we use to rate-limit the updates.
1858  */
1859 
1860 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1861 
1862 static void kvmclock_update_fn(struct work_struct *work)
1863 {
1864 	int i;
1865 	struct delayed_work *dwork = to_delayed_work(work);
1866 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1867 					   kvmclock_update_work);
1868 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1869 	struct kvm_vcpu *vcpu;
1870 
1871 	kvm_for_each_vcpu(i, vcpu, kvm) {
1872 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1873 		kvm_vcpu_kick(vcpu);
1874 	}
1875 }
1876 
1877 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1878 {
1879 	struct kvm *kvm = v->kvm;
1880 
1881 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1882 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1883 					KVMCLOCK_UPDATE_DELAY);
1884 }
1885 
1886 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1887 
1888 static void kvmclock_sync_fn(struct work_struct *work)
1889 {
1890 	struct delayed_work *dwork = to_delayed_work(work);
1891 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1892 					   kvmclock_sync_work);
1893 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1894 
1895 	if (!kvmclock_periodic_sync)
1896 		return;
1897 
1898 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1899 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1900 					KVMCLOCK_SYNC_PERIOD);
1901 }
1902 
1903 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1904 {
1905 	u64 mcg_cap = vcpu->arch.mcg_cap;
1906 	unsigned bank_num = mcg_cap & 0xff;
1907 
1908 	switch (msr) {
1909 	case MSR_IA32_MCG_STATUS:
1910 		vcpu->arch.mcg_status = data;
1911 		break;
1912 	case MSR_IA32_MCG_CTL:
1913 		if (!(mcg_cap & MCG_CTL_P))
1914 			return 1;
1915 		if (data != 0 && data != ~(u64)0)
1916 			return -1;
1917 		vcpu->arch.mcg_ctl = data;
1918 		break;
1919 	default:
1920 		if (msr >= MSR_IA32_MC0_CTL &&
1921 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1922 			u32 offset = msr - MSR_IA32_MC0_CTL;
1923 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1924 			 * some Linux kernels though clear bit 10 in bank 4 to
1925 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1926 			 * this to avoid an uncatched #GP in the guest
1927 			 */
1928 			if ((offset & 0x3) == 0 &&
1929 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1930 				return -1;
1931 			vcpu->arch.mce_banks[offset] = data;
1932 			break;
1933 		}
1934 		return 1;
1935 	}
1936 	return 0;
1937 }
1938 
1939 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1940 {
1941 	struct kvm *kvm = vcpu->kvm;
1942 	int lm = is_long_mode(vcpu);
1943 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1944 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1945 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1946 		: kvm->arch.xen_hvm_config.blob_size_32;
1947 	u32 page_num = data & ~PAGE_MASK;
1948 	u64 page_addr = data & PAGE_MASK;
1949 	u8 *page;
1950 	int r;
1951 
1952 	r = -E2BIG;
1953 	if (page_num >= blob_size)
1954 		goto out;
1955 	r = -ENOMEM;
1956 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1957 	if (IS_ERR(page)) {
1958 		r = PTR_ERR(page);
1959 		goto out;
1960 	}
1961 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1962 		goto out_free;
1963 	r = 0;
1964 out_free:
1965 	kfree(page);
1966 out:
1967 	return r;
1968 }
1969 
1970 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1971 {
1972 	gpa_t gpa = data & ~0x3f;
1973 
1974 	/* Bits 2:5 are reserved, Should be zero */
1975 	if (data & 0x3c)
1976 		return 1;
1977 
1978 	vcpu->arch.apf.msr_val = data;
1979 
1980 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1981 		kvm_clear_async_pf_completion_queue(vcpu);
1982 		kvm_async_pf_hash_reset(vcpu);
1983 		return 0;
1984 	}
1985 
1986 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1987 					sizeof(u32)))
1988 		return 1;
1989 
1990 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1991 	kvm_async_pf_wakeup_all(vcpu);
1992 	return 0;
1993 }
1994 
1995 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1996 {
1997 	vcpu->arch.pv_time_enabled = false;
1998 }
1999 
2000 static void record_steal_time(struct kvm_vcpu *vcpu)
2001 {
2002 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2003 		return;
2004 
2005 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2006 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2007 		return;
2008 
2009 	if (vcpu->arch.st.steal.version & 1)
2010 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2011 
2012 	vcpu->arch.st.steal.version += 1;
2013 
2014 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2015 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2016 
2017 	smp_wmb();
2018 
2019 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2020 		vcpu->arch.st.last_steal;
2021 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2022 
2023 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2024 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2025 
2026 	smp_wmb();
2027 
2028 	vcpu->arch.st.steal.version += 1;
2029 
2030 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2031 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2032 }
2033 
2034 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2035 {
2036 	bool pr = false;
2037 	u32 msr = msr_info->index;
2038 	u64 data = msr_info->data;
2039 
2040 	switch (msr) {
2041 	case MSR_AMD64_NB_CFG:
2042 	case MSR_IA32_UCODE_REV:
2043 	case MSR_IA32_UCODE_WRITE:
2044 	case MSR_VM_HSAVE_PA:
2045 	case MSR_AMD64_PATCH_LOADER:
2046 	case MSR_AMD64_BU_CFG2:
2047 		break;
2048 
2049 	case MSR_EFER:
2050 		return set_efer(vcpu, data);
2051 	case MSR_K7_HWCR:
2052 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2053 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2054 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2055 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2056 		if (data != 0) {
2057 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2058 				    data);
2059 			return 1;
2060 		}
2061 		break;
2062 	case MSR_FAM10H_MMIO_CONF_BASE:
2063 		if (data != 0) {
2064 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2065 				    "0x%llx\n", data);
2066 			return 1;
2067 		}
2068 		break;
2069 	case MSR_IA32_DEBUGCTLMSR:
2070 		if (!data) {
2071 			/* We support the non-activated case already */
2072 			break;
2073 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2074 			/* Values other than LBR and BTF are vendor-specific,
2075 			   thus reserved and should throw a #GP */
2076 			return 1;
2077 		}
2078 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2079 			    __func__, data);
2080 		break;
2081 	case 0x200 ... 0x2ff:
2082 		return kvm_mtrr_set_msr(vcpu, msr, data);
2083 	case MSR_IA32_APICBASE:
2084 		return kvm_set_apic_base(vcpu, msr_info);
2085 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2086 		return kvm_x2apic_msr_write(vcpu, msr, data);
2087 	case MSR_IA32_TSCDEADLINE:
2088 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2089 		break;
2090 	case MSR_IA32_TSC_ADJUST:
2091 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2092 			if (!msr_info->host_initiated) {
2093 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2094 				adjust_tsc_offset_guest(vcpu, adj);
2095 			}
2096 			vcpu->arch.ia32_tsc_adjust_msr = data;
2097 		}
2098 		break;
2099 	case MSR_IA32_MISC_ENABLE:
2100 		vcpu->arch.ia32_misc_enable_msr = data;
2101 		break;
2102 	case MSR_IA32_SMBASE:
2103 		if (!msr_info->host_initiated)
2104 			return 1;
2105 		vcpu->arch.smbase = data;
2106 		break;
2107 	case MSR_KVM_WALL_CLOCK_NEW:
2108 	case MSR_KVM_WALL_CLOCK:
2109 		vcpu->kvm->arch.wall_clock = data;
2110 		kvm_write_wall_clock(vcpu->kvm, data);
2111 		break;
2112 	case MSR_KVM_SYSTEM_TIME_NEW:
2113 	case MSR_KVM_SYSTEM_TIME: {
2114 		u64 gpa_offset;
2115 		struct kvm_arch *ka = &vcpu->kvm->arch;
2116 
2117 		kvmclock_reset(vcpu);
2118 
2119 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2120 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2121 
2122 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2123 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2124 					&vcpu->requests);
2125 
2126 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2127 		}
2128 
2129 		vcpu->arch.time = data;
2130 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2131 
2132 		/* we verify if the enable bit is set... */
2133 		if (!(data & 1))
2134 			break;
2135 
2136 		gpa_offset = data & ~(PAGE_MASK | 1);
2137 
2138 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2139 		     &vcpu->arch.pv_time, data & ~1ULL,
2140 		     sizeof(struct pvclock_vcpu_time_info)))
2141 			vcpu->arch.pv_time_enabled = false;
2142 		else
2143 			vcpu->arch.pv_time_enabled = true;
2144 
2145 		break;
2146 	}
2147 	case MSR_KVM_ASYNC_PF_EN:
2148 		if (kvm_pv_enable_async_pf(vcpu, data))
2149 			return 1;
2150 		break;
2151 	case MSR_KVM_STEAL_TIME:
2152 
2153 		if (unlikely(!sched_info_on()))
2154 			return 1;
2155 
2156 		if (data & KVM_STEAL_RESERVED_MASK)
2157 			return 1;
2158 
2159 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2160 						data & KVM_STEAL_VALID_BITS,
2161 						sizeof(struct kvm_steal_time)))
2162 			return 1;
2163 
2164 		vcpu->arch.st.msr_val = data;
2165 
2166 		if (!(data & KVM_MSR_ENABLED))
2167 			break;
2168 
2169 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2170 
2171 		break;
2172 	case MSR_KVM_PV_EOI_EN:
2173 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2174 			return 1;
2175 		break;
2176 
2177 	case MSR_IA32_MCG_CTL:
2178 	case MSR_IA32_MCG_STATUS:
2179 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2180 		return set_msr_mce(vcpu, msr, data);
2181 
2182 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2183 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2184 		pr = true; /* fall through */
2185 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2186 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2187 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2188 			return kvm_pmu_set_msr(vcpu, msr_info);
2189 
2190 		if (pr || data != 0)
2191 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2192 				    "0x%x data 0x%llx\n", msr, data);
2193 		break;
2194 	case MSR_K7_CLK_CTL:
2195 		/*
2196 		 * Ignore all writes to this no longer documented MSR.
2197 		 * Writes are only relevant for old K7 processors,
2198 		 * all pre-dating SVM, but a recommended workaround from
2199 		 * AMD for these chips. It is possible to specify the
2200 		 * affected processor models on the command line, hence
2201 		 * the need to ignore the workaround.
2202 		 */
2203 		break;
2204 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2205 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2206 	case HV_X64_MSR_CRASH_CTL:
2207 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2208 		return kvm_hv_set_msr_common(vcpu, msr, data,
2209 					     msr_info->host_initiated);
2210 	case MSR_IA32_BBL_CR_CTL3:
2211 		/* Drop writes to this legacy MSR -- see rdmsr
2212 		 * counterpart for further detail.
2213 		 */
2214 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2215 		break;
2216 	case MSR_AMD64_OSVW_ID_LENGTH:
2217 		if (!guest_cpuid_has_osvw(vcpu))
2218 			return 1;
2219 		vcpu->arch.osvw.length = data;
2220 		break;
2221 	case MSR_AMD64_OSVW_STATUS:
2222 		if (!guest_cpuid_has_osvw(vcpu))
2223 			return 1;
2224 		vcpu->arch.osvw.status = data;
2225 		break;
2226 	default:
2227 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2228 			return xen_hvm_config(vcpu, data);
2229 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2230 			return kvm_pmu_set_msr(vcpu, msr_info);
2231 		if (!ignore_msrs) {
2232 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2233 				    msr, data);
2234 			return 1;
2235 		} else {
2236 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2237 				    msr, data);
2238 			break;
2239 		}
2240 	}
2241 	return 0;
2242 }
2243 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2244 
2245 
2246 /*
2247  * Reads an msr value (of 'msr_index') into 'pdata'.
2248  * Returns 0 on success, non-0 otherwise.
2249  * Assumes vcpu_load() was already called.
2250  */
2251 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2252 {
2253 	return kvm_x86_ops->get_msr(vcpu, msr);
2254 }
2255 EXPORT_SYMBOL_GPL(kvm_get_msr);
2256 
2257 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2258 {
2259 	u64 data;
2260 	u64 mcg_cap = vcpu->arch.mcg_cap;
2261 	unsigned bank_num = mcg_cap & 0xff;
2262 
2263 	switch (msr) {
2264 	case MSR_IA32_P5_MC_ADDR:
2265 	case MSR_IA32_P5_MC_TYPE:
2266 		data = 0;
2267 		break;
2268 	case MSR_IA32_MCG_CAP:
2269 		data = vcpu->arch.mcg_cap;
2270 		break;
2271 	case MSR_IA32_MCG_CTL:
2272 		if (!(mcg_cap & MCG_CTL_P))
2273 			return 1;
2274 		data = vcpu->arch.mcg_ctl;
2275 		break;
2276 	case MSR_IA32_MCG_STATUS:
2277 		data = vcpu->arch.mcg_status;
2278 		break;
2279 	default:
2280 		if (msr >= MSR_IA32_MC0_CTL &&
2281 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2282 			u32 offset = msr - MSR_IA32_MC0_CTL;
2283 			data = vcpu->arch.mce_banks[offset];
2284 			break;
2285 		}
2286 		return 1;
2287 	}
2288 	*pdata = data;
2289 	return 0;
2290 }
2291 
2292 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2293 {
2294 	switch (msr_info->index) {
2295 	case MSR_IA32_PLATFORM_ID:
2296 	case MSR_IA32_EBL_CR_POWERON:
2297 	case MSR_IA32_DEBUGCTLMSR:
2298 	case MSR_IA32_LASTBRANCHFROMIP:
2299 	case MSR_IA32_LASTBRANCHTOIP:
2300 	case MSR_IA32_LASTINTFROMIP:
2301 	case MSR_IA32_LASTINTTOIP:
2302 	case MSR_K8_SYSCFG:
2303 	case MSR_K8_TSEG_ADDR:
2304 	case MSR_K8_TSEG_MASK:
2305 	case MSR_K7_HWCR:
2306 	case MSR_VM_HSAVE_PA:
2307 	case MSR_K8_INT_PENDING_MSG:
2308 	case MSR_AMD64_NB_CFG:
2309 	case MSR_FAM10H_MMIO_CONF_BASE:
2310 	case MSR_AMD64_BU_CFG2:
2311 	case MSR_IA32_PERF_CTL:
2312 		msr_info->data = 0;
2313 		break;
2314 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2315 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2316 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2317 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2318 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2319 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2320 		msr_info->data = 0;
2321 		break;
2322 	case MSR_IA32_UCODE_REV:
2323 		msr_info->data = 0x100000000ULL;
2324 		break;
2325 	case MSR_MTRRcap:
2326 	case 0x200 ... 0x2ff:
2327 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2328 	case 0xcd: /* fsb frequency */
2329 		msr_info->data = 3;
2330 		break;
2331 		/*
2332 		 * MSR_EBC_FREQUENCY_ID
2333 		 * Conservative value valid for even the basic CPU models.
2334 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2335 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2336 		 * and 266MHz for model 3, or 4. Set Core Clock
2337 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2338 		 * 31:24) even though these are only valid for CPU
2339 		 * models > 2, however guests may end up dividing or
2340 		 * multiplying by zero otherwise.
2341 		 */
2342 	case MSR_EBC_FREQUENCY_ID:
2343 		msr_info->data = 1 << 24;
2344 		break;
2345 	case MSR_IA32_APICBASE:
2346 		msr_info->data = kvm_get_apic_base(vcpu);
2347 		break;
2348 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2349 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2350 		break;
2351 	case MSR_IA32_TSCDEADLINE:
2352 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2353 		break;
2354 	case MSR_IA32_TSC_ADJUST:
2355 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2356 		break;
2357 	case MSR_IA32_MISC_ENABLE:
2358 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2359 		break;
2360 	case MSR_IA32_SMBASE:
2361 		if (!msr_info->host_initiated)
2362 			return 1;
2363 		msr_info->data = vcpu->arch.smbase;
2364 		break;
2365 	case MSR_IA32_PERF_STATUS:
2366 		/* TSC increment by tick */
2367 		msr_info->data = 1000ULL;
2368 		/* CPU multiplier */
2369 		msr_info->data |= (((uint64_t)4ULL) << 40);
2370 		break;
2371 	case MSR_EFER:
2372 		msr_info->data = vcpu->arch.efer;
2373 		break;
2374 	case MSR_KVM_WALL_CLOCK:
2375 	case MSR_KVM_WALL_CLOCK_NEW:
2376 		msr_info->data = vcpu->kvm->arch.wall_clock;
2377 		break;
2378 	case MSR_KVM_SYSTEM_TIME:
2379 	case MSR_KVM_SYSTEM_TIME_NEW:
2380 		msr_info->data = vcpu->arch.time;
2381 		break;
2382 	case MSR_KVM_ASYNC_PF_EN:
2383 		msr_info->data = vcpu->arch.apf.msr_val;
2384 		break;
2385 	case MSR_KVM_STEAL_TIME:
2386 		msr_info->data = vcpu->arch.st.msr_val;
2387 		break;
2388 	case MSR_KVM_PV_EOI_EN:
2389 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2390 		break;
2391 	case MSR_IA32_P5_MC_ADDR:
2392 	case MSR_IA32_P5_MC_TYPE:
2393 	case MSR_IA32_MCG_CAP:
2394 	case MSR_IA32_MCG_CTL:
2395 	case MSR_IA32_MCG_STATUS:
2396 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2397 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2398 	case MSR_K7_CLK_CTL:
2399 		/*
2400 		 * Provide expected ramp-up count for K7. All other
2401 		 * are set to zero, indicating minimum divisors for
2402 		 * every field.
2403 		 *
2404 		 * This prevents guest kernels on AMD host with CPU
2405 		 * type 6, model 8 and higher from exploding due to
2406 		 * the rdmsr failing.
2407 		 */
2408 		msr_info->data = 0x20000000;
2409 		break;
2410 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2411 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2412 	case HV_X64_MSR_CRASH_CTL:
2413 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2414 		return kvm_hv_get_msr_common(vcpu,
2415 					     msr_info->index, &msr_info->data);
2416 		break;
2417 	case MSR_IA32_BBL_CR_CTL3:
2418 		/* This legacy MSR exists but isn't fully documented in current
2419 		 * silicon.  It is however accessed by winxp in very narrow
2420 		 * scenarios where it sets bit #19, itself documented as
2421 		 * a "reserved" bit.  Best effort attempt to source coherent
2422 		 * read data here should the balance of the register be
2423 		 * interpreted by the guest:
2424 		 *
2425 		 * L2 cache control register 3: 64GB range, 256KB size,
2426 		 * enabled, latency 0x1, configured
2427 		 */
2428 		msr_info->data = 0xbe702111;
2429 		break;
2430 	case MSR_AMD64_OSVW_ID_LENGTH:
2431 		if (!guest_cpuid_has_osvw(vcpu))
2432 			return 1;
2433 		msr_info->data = vcpu->arch.osvw.length;
2434 		break;
2435 	case MSR_AMD64_OSVW_STATUS:
2436 		if (!guest_cpuid_has_osvw(vcpu))
2437 			return 1;
2438 		msr_info->data = vcpu->arch.osvw.status;
2439 		break;
2440 	default:
2441 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2442 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2443 		if (!ignore_msrs) {
2444 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2445 			return 1;
2446 		} else {
2447 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2448 			msr_info->data = 0;
2449 		}
2450 		break;
2451 	}
2452 	return 0;
2453 }
2454 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2455 
2456 /*
2457  * Read or write a bunch of msrs. All parameters are kernel addresses.
2458  *
2459  * @return number of msrs set successfully.
2460  */
2461 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2462 		    struct kvm_msr_entry *entries,
2463 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2464 				  unsigned index, u64 *data))
2465 {
2466 	int i, idx;
2467 
2468 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2469 	for (i = 0; i < msrs->nmsrs; ++i)
2470 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2471 			break;
2472 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2473 
2474 	return i;
2475 }
2476 
2477 /*
2478  * Read or write a bunch of msrs. Parameters are user addresses.
2479  *
2480  * @return number of msrs set successfully.
2481  */
2482 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2483 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2484 				unsigned index, u64 *data),
2485 		  int writeback)
2486 {
2487 	struct kvm_msrs msrs;
2488 	struct kvm_msr_entry *entries;
2489 	int r, n;
2490 	unsigned size;
2491 
2492 	r = -EFAULT;
2493 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2494 		goto out;
2495 
2496 	r = -E2BIG;
2497 	if (msrs.nmsrs >= MAX_IO_MSRS)
2498 		goto out;
2499 
2500 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2501 	entries = memdup_user(user_msrs->entries, size);
2502 	if (IS_ERR(entries)) {
2503 		r = PTR_ERR(entries);
2504 		goto out;
2505 	}
2506 
2507 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2508 	if (r < 0)
2509 		goto out_free;
2510 
2511 	r = -EFAULT;
2512 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2513 		goto out_free;
2514 
2515 	r = n;
2516 
2517 out_free:
2518 	kfree(entries);
2519 out:
2520 	return r;
2521 }
2522 
2523 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2524 {
2525 	int r;
2526 
2527 	switch (ext) {
2528 	case KVM_CAP_IRQCHIP:
2529 	case KVM_CAP_HLT:
2530 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2531 	case KVM_CAP_SET_TSS_ADDR:
2532 	case KVM_CAP_EXT_CPUID:
2533 	case KVM_CAP_EXT_EMUL_CPUID:
2534 	case KVM_CAP_CLOCKSOURCE:
2535 	case KVM_CAP_PIT:
2536 	case KVM_CAP_NOP_IO_DELAY:
2537 	case KVM_CAP_MP_STATE:
2538 	case KVM_CAP_SYNC_MMU:
2539 	case KVM_CAP_USER_NMI:
2540 	case KVM_CAP_REINJECT_CONTROL:
2541 	case KVM_CAP_IRQ_INJECT_STATUS:
2542 	case KVM_CAP_IOEVENTFD:
2543 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2544 	case KVM_CAP_PIT2:
2545 	case KVM_CAP_PIT_STATE2:
2546 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2547 	case KVM_CAP_XEN_HVM:
2548 	case KVM_CAP_ADJUST_CLOCK:
2549 	case KVM_CAP_VCPU_EVENTS:
2550 	case KVM_CAP_HYPERV:
2551 	case KVM_CAP_HYPERV_VAPIC:
2552 	case KVM_CAP_HYPERV_SPIN:
2553 	case KVM_CAP_HYPERV_SYNIC:
2554 	case KVM_CAP_PCI_SEGMENT:
2555 	case KVM_CAP_DEBUGREGS:
2556 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2557 	case KVM_CAP_XSAVE:
2558 	case KVM_CAP_ASYNC_PF:
2559 	case KVM_CAP_GET_TSC_KHZ:
2560 	case KVM_CAP_KVMCLOCK_CTRL:
2561 	case KVM_CAP_READONLY_MEM:
2562 	case KVM_CAP_HYPERV_TIME:
2563 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2564 	case KVM_CAP_TSC_DEADLINE_TIMER:
2565 	case KVM_CAP_ENABLE_CAP_VM:
2566 	case KVM_CAP_DISABLE_QUIRKS:
2567 	case KVM_CAP_SET_BOOT_CPU_ID:
2568  	case KVM_CAP_SPLIT_IRQCHIP:
2569 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2570 	case KVM_CAP_ASSIGN_DEV_IRQ:
2571 	case KVM_CAP_PCI_2_3:
2572 #endif
2573 		r = 1;
2574 		break;
2575 	case KVM_CAP_X86_SMM:
2576 		/* SMBASE is usually relocated above 1M on modern chipsets,
2577 		 * and SMM handlers might indeed rely on 4G segment limits,
2578 		 * so do not report SMM to be available if real mode is
2579 		 * emulated via vm86 mode.  Still, do not go to great lengths
2580 		 * to avoid userspace's usage of the feature, because it is a
2581 		 * fringe case that is not enabled except via specific settings
2582 		 * of the module parameters.
2583 		 */
2584 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2585 		break;
2586 	case KVM_CAP_COALESCED_MMIO:
2587 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2588 		break;
2589 	case KVM_CAP_VAPIC:
2590 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2591 		break;
2592 	case KVM_CAP_NR_VCPUS:
2593 		r = KVM_SOFT_MAX_VCPUS;
2594 		break;
2595 	case KVM_CAP_MAX_VCPUS:
2596 		r = KVM_MAX_VCPUS;
2597 		break;
2598 	case KVM_CAP_NR_MEMSLOTS:
2599 		r = KVM_USER_MEM_SLOTS;
2600 		break;
2601 	case KVM_CAP_PV_MMU:	/* obsolete */
2602 		r = 0;
2603 		break;
2604 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2605 	case KVM_CAP_IOMMU:
2606 		r = iommu_present(&pci_bus_type);
2607 		break;
2608 #endif
2609 	case KVM_CAP_MCE:
2610 		r = KVM_MAX_MCE_BANKS;
2611 		break;
2612 	case KVM_CAP_XCRS:
2613 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2614 		break;
2615 	case KVM_CAP_TSC_CONTROL:
2616 		r = kvm_has_tsc_control;
2617 		break;
2618 	default:
2619 		r = 0;
2620 		break;
2621 	}
2622 	return r;
2623 
2624 }
2625 
2626 long kvm_arch_dev_ioctl(struct file *filp,
2627 			unsigned int ioctl, unsigned long arg)
2628 {
2629 	void __user *argp = (void __user *)arg;
2630 	long r;
2631 
2632 	switch (ioctl) {
2633 	case KVM_GET_MSR_INDEX_LIST: {
2634 		struct kvm_msr_list __user *user_msr_list = argp;
2635 		struct kvm_msr_list msr_list;
2636 		unsigned n;
2637 
2638 		r = -EFAULT;
2639 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2640 			goto out;
2641 		n = msr_list.nmsrs;
2642 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2643 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2644 			goto out;
2645 		r = -E2BIG;
2646 		if (n < msr_list.nmsrs)
2647 			goto out;
2648 		r = -EFAULT;
2649 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2650 				 num_msrs_to_save * sizeof(u32)))
2651 			goto out;
2652 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2653 				 &emulated_msrs,
2654 				 num_emulated_msrs * sizeof(u32)))
2655 			goto out;
2656 		r = 0;
2657 		break;
2658 	}
2659 	case KVM_GET_SUPPORTED_CPUID:
2660 	case KVM_GET_EMULATED_CPUID: {
2661 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2662 		struct kvm_cpuid2 cpuid;
2663 
2664 		r = -EFAULT;
2665 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2666 			goto out;
2667 
2668 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2669 					    ioctl);
2670 		if (r)
2671 			goto out;
2672 
2673 		r = -EFAULT;
2674 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2675 			goto out;
2676 		r = 0;
2677 		break;
2678 	}
2679 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2680 		u64 mce_cap;
2681 
2682 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2683 		r = -EFAULT;
2684 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2685 			goto out;
2686 		r = 0;
2687 		break;
2688 	}
2689 	default:
2690 		r = -EINVAL;
2691 	}
2692 out:
2693 	return r;
2694 }
2695 
2696 static void wbinvd_ipi(void *garbage)
2697 {
2698 	wbinvd();
2699 }
2700 
2701 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2702 {
2703 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2704 }
2705 
2706 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2707 {
2708 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2709 }
2710 
2711 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2712 {
2713 	/* Address WBINVD may be executed by guest */
2714 	if (need_emulate_wbinvd(vcpu)) {
2715 		if (kvm_x86_ops->has_wbinvd_exit())
2716 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2717 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2718 			smp_call_function_single(vcpu->cpu,
2719 					wbinvd_ipi, NULL, 1);
2720 	}
2721 
2722 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2723 
2724 	/* Apply any externally detected TSC adjustments (due to suspend) */
2725 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2726 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2727 		vcpu->arch.tsc_offset_adjustment = 0;
2728 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2729 	}
2730 
2731 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2732 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2733 				rdtsc() - vcpu->arch.last_host_tsc;
2734 		if (tsc_delta < 0)
2735 			mark_tsc_unstable("KVM discovered backwards TSC");
2736 		if (check_tsc_unstable()) {
2737 			u64 offset = kvm_compute_tsc_offset(vcpu,
2738 						vcpu->arch.last_guest_tsc);
2739 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2740 			vcpu->arch.tsc_catchup = 1;
2741 		}
2742 		/*
2743 		 * On a host with synchronized TSC, there is no need to update
2744 		 * kvmclock on vcpu->cpu migration
2745 		 */
2746 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2747 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2748 		if (vcpu->cpu != cpu)
2749 			kvm_migrate_timers(vcpu);
2750 		vcpu->cpu = cpu;
2751 	}
2752 
2753 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2754 }
2755 
2756 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2757 {
2758 	kvm_x86_ops->vcpu_put(vcpu);
2759 	kvm_put_guest_fpu(vcpu);
2760 	vcpu->arch.last_host_tsc = rdtsc();
2761 }
2762 
2763 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2764 				    struct kvm_lapic_state *s)
2765 {
2766 	if (vcpu->arch.apicv_active)
2767 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2768 
2769 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2770 
2771 	return 0;
2772 }
2773 
2774 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2775 				    struct kvm_lapic_state *s)
2776 {
2777 	kvm_apic_post_state_restore(vcpu, s);
2778 	update_cr8_intercept(vcpu);
2779 
2780 	return 0;
2781 }
2782 
2783 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2784 {
2785 	return (!lapic_in_kernel(vcpu) ||
2786 		kvm_apic_accept_pic_intr(vcpu));
2787 }
2788 
2789 /*
2790  * if userspace requested an interrupt window, check that the
2791  * interrupt window is open.
2792  *
2793  * No need to exit to userspace if we already have an interrupt queued.
2794  */
2795 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2796 {
2797 	return kvm_arch_interrupt_allowed(vcpu) &&
2798 		!kvm_cpu_has_interrupt(vcpu) &&
2799 		!kvm_event_needs_reinjection(vcpu) &&
2800 		kvm_cpu_accept_dm_intr(vcpu);
2801 }
2802 
2803 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2804 				    struct kvm_interrupt *irq)
2805 {
2806 	if (irq->irq >= KVM_NR_INTERRUPTS)
2807 		return -EINVAL;
2808 
2809 	if (!irqchip_in_kernel(vcpu->kvm)) {
2810 		kvm_queue_interrupt(vcpu, irq->irq, false);
2811 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2812 		return 0;
2813 	}
2814 
2815 	/*
2816 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2817 	 * fail for in-kernel 8259.
2818 	 */
2819 	if (pic_in_kernel(vcpu->kvm))
2820 		return -ENXIO;
2821 
2822 	if (vcpu->arch.pending_external_vector != -1)
2823 		return -EEXIST;
2824 
2825 	vcpu->arch.pending_external_vector = irq->irq;
2826 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2827 	return 0;
2828 }
2829 
2830 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2831 {
2832 	kvm_inject_nmi(vcpu);
2833 
2834 	return 0;
2835 }
2836 
2837 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2838 {
2839 	kvm_make_request(KVM_REQ_SMI, vcpu);
2840 
2841 	return 0;
2842 }
2843 
2844 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2845 					   struct kvm_tpr_access_ctl *tac)
2846 {
2847 	if (tac->flags)
2848 		return -EINVAL;
2849 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2850 	return 0;
2851 }
2852 
2853 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2854 					u64 mcg_cap)
2855 {
2856 	int r;
2857 	unsigned bank_num = mcg_cap & 0xff, bank;
2858 
2859 	r = -EINVAL;
2860 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2861 		goto out;
2862 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2863 		goto out;
2864 	r = 0;
2865 	vcpu->arch.mcg_cap = mcg_cap;
2866 	/* Init IA32_MCG_CTL to all 1s */
2867 	if (mcg_cap & MCG_CTL_P)
2868 		vcpu->arch.mcg_ctl = ~(u64)0;
2869 	/* Init IA32_MCi_CTL to all 1s */
2870 	for (bank = 0; bank < bank_num; bank++)
2871 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2872 out:
2873 	return r;
2874 }
2875 
2876 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2877 				      struct kvm_x86_mce *mce)
2878 {
2879 	u64 mcg_cap = vcpu->arch.mcg_cap;
2880 	unsigned bank_num = mcg_cap & 0xff;
2881 	u64 *banks = vcpu->arch.mce_banks;
2882 
2883 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2884 		return -EINVAL;
2885 	/*
2886 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2887 	 * reporting is disabled
2888 	 */
2889 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2890 	    vcpu->arch.mcg_ctl != ~(u64)0)
2891 		return 0;
2892 	banks += 4 * mce->bank;
2893 	/*
2894 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2895 	 * reporting is disabled for the bank
2896 	 */
2897 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2898 		return 0;
2899 	if (mce->status & MCI_STATUS_UC) {
2900 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2901 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2902 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2903 			return 0;
2904 		}
2905 		if (banks[1] & MCI_STATUS_VAL)
2906 			mce->status |= MCI_STATUS_OVER;
2907 		banks[2] = mce->addr;
2908 		banks[3] = mce->misc;
2909 		vcpu->arch.mcg_status = mce->mcg_status;
2910 		banks[1] = mce->status;
2911 		kvm_queue_exception(vcpu, MC_VECTOR);
2912 	} else if (!(banks[1] & MCI_STATUS_VAL)
2913 		   || !(banks[1] & MCI_STATUS_UC)) {
2914 		if (banks[1] & MCI_STATUS_VAL)
2915 			mce->status |= MCI_STATUS_OVER;
2916 		banks[2] = mce->addr;
2917 		banks[3] = mce->misc;
2918 		banks[1] = mce->status;
2919 	} else
2920 		banks[1] |= MCI_STATUS_OVER;
2921 	return 0;
2922 }
2923 
2924 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2925 					       struct kvm_vcpu_events *events)
2926 {
2927 	process_nmi(vcpu);
2928 	events->exception.injected =
2929 		vcpu->arch.exception.pending &&
2930 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2931 	events->exception.nr = vcpu->arch.exception.nr;
2932 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2933 	events->exception.pad = 0;
2934 	events->exception.error_code = vcpu->arch.exception.error_code;
2935 
2936 	events->interrupt.injected =
2937 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2938 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2939 	events->interrupt.soft = 0;
2940 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2941 
2942 	events->nmi.injected = vcpu->arch.nmi_injected;
2943 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2944 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2945 	events->nmi.pad = 0;
2946 
2947 	events->sipi_vector = 0; /* never valid when reporting to user space */
2948 
2949 	events->smi.smm = is_smm(vcpu);
2950 	events->smi.pending = vcpu->arch.smi_pending;
2951 	events->smi.smm_inside_nmi =
2952 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2953 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2954 
2955 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2956 			 | KVM_VCPUEVENT_VALID_SHADOW
2957 			 | KVM_VCPUEVENT_VALID_SMM);
2958 	memset(&events->reserved, 0, sizeof(events->reserved));
2959 }
2960 
2961 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2962 					      struct kvm_vcpu_events *events)
2963 {
2964 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2965 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2966 			      | KVM_VCPUEVENT_VALID_SHADOW
2967 			      | KVM_VCPUEVENT_VALID_SMM))
2968 		return -EINVAL;
2969 
2970 	if (events->exception.injected &&
2971 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
2972 		return -EINVAL;
2973 
2974 	process_nmi(vcpu);
2975 	vcpu->arch.exception.pending = events->exception.injected;
2976 	vcpu->arch.exception.nr = events->exception.nr;
2977 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2978 	vcpu->arch.exception.error_code = events->exception.error_code;
2979 
2980 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2981 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2982 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2983 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2984 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2985 						  events->interrupt.shadow);
2986 
2987 	vcpu->arch.nmi_injected = events->nmi.injected;
2988 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2989 		vcpu->arch.nmi_pending = events->nmi.pending;
2990 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2991 
2992 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2993 	    lapic_in_kernel(vcpu))
2994 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2995 
2996 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2997 		if (events->smi.smm)
2998 			vcpu->arch.hflags |= HF_SMM_MASK;
2999 		else
3000 			vcpu->arch.hflags &= ~HF_SMM_MASK;
3001 		vcpu->arch.smi_pending = events->smi.pending;
3002 		if (events->smi.smm_inside_nmi)
3003 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3004 		else
3005 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3006 		if (lapic_in_kernel(vcpu)) {
3007 			if (events->smi.latched_init)
3008 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3009 			else
3010 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3011 		}
3012 	}
3013 
3014 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3015 
3016 	return 0;
3017 }
3018 
3019 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3020 					     struct kvm_debugregs *dbgregs)
3021 {
3022 	unsigned long val;
3023 
3024 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3025 	kvm_get_dr(vcpu, 6, &val);
3026 	dbgregs->dr6 = val;
3027 	dbgregs->dr7 = vcpu->arch.dr7;
3028 	dbgregs->flags = 0;
3029 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3030 }
3031 
3032 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3033 					    struct kvm_debugregs *dbgregs)
3034 {
3035 	if (dbgregs->flags)
3036 		return -EINVAL;
3037 
3038 	if (dbgregs->dr6 & ~0xffffffffull)
3039 		return -EINVAL;
3040 	if (dbgregs->dr7 & ~0xffffffffull)
3041 		return -EINVAL;
3042 
3043 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3044 	kvm_update_dr0123(vcpu);
3045 	vcpu->arch.dr6 = dbgregs->dr6;
3046 	kvm_update_dr6(vcpu);
3047 	vcpu->arch.dr7 = dbgregs->dr7;
3048 	kvm_update_dr7(vcpu);
3049 
3050 	return 0;
3051 }
3052 
3053 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3054 
3055 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3056 {
3057 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3058 	u64 xstate_bv = xsave->header.xfeatures;
3059 	u64 valid;
3060 
3061 	/*
3062 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3063 	 * leaves 0 and 1 in the loop below.
3064 	 */
3065 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3066 
3067 	/* Set XSTATE_BV */
3068 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3069 
3070 	/*
3071 	 * Copy each region from the possibly compacted offset to the
3072 	 * non-compacted offset.
3073 	 */
3074 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3075 	while (valid) {
3076 		u64 feature = valid & -valid;
3077 		int index = fls64(feature) - 1;
3078 		void *src = get_xsave_addr(xsave, feature);
3079 
3080 		if (src) {
3081 			u32 size, offset, ecx, edx;
3082 			cpuid_count(XSTATE_CPUID, index,
3083 				    &size, &offset, &ecx, &edx);
3084 			memcpy(dest + offset, src, size);
3085 		}
3086 
3087 		valid -= feature;
3088 	}
3089 }
3090 
3091 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3092 {
3093 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3094 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3095 	u64 valid;
3096 
3097 	/*
3098 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3099 	 * leaves 0 and 1 in the loop below.
3100 	 */
3101 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3102 
3103 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3104 	xsave->header.xfeatures = xstate_bv;
3105 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3106 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3107 
3108 	/*
3109 	 * Copy each region from the non-compacted offset to the
3110 	 * possibly compacted offset.
3111 	 */
3112 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3113 	while (valid) {
3114 		u64 feature = valid & -valid;
3115 		int index = fls64(feature) - 1;
3116 		void *dest = get_xsave_addr(xsave, feature);
3117 
3118 		if (dest) {
3119 			u32 size, offset, ecx, edx;
3120 			cpuid_count(XSTATE_CPUID, index,
3121 				    &size, &offset, &ecx, &edx);
3122 			memcpy(dest, src + offset, size);
3123 		}
3124 
3125 		valid -= feature;
3126 	}
3127 }
3128 
3129 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3130 					 struct kvm_xsave *guest_xsave)
3131 {
3132 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3133 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3134 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3135 	} else {
3136 		memcpy(guest_xsave->region,
3137 			&vcpu->arch.guest_fpu.state.fxsave,
3138 			sizeof(struct fxregs_state));
3139 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3140 			XFEATURE_MASK_FPSSE;
3141 	}
3142 }
3143 
3144 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3145 					struct kvm_xsave *guest_xsave)
3146 {
3147 	u64 xstate_bv =
3148 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3149 
3150 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3151 		/*
3152 		 * Here we allow setting states that are not present in
3153 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3154 		 * with old userspace.
3155 		 */
3156 		if (xstate_bv & ~kvm_supported_xcr0())
3157 			return -EINVAL;
3158 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3159 	} else {
3160 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3161 			return -EINVAL;
3162 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3163 			guest_xsave->region, sizeof(struct fxregs_state));
3164 	}
3165 	return 0;
3166 }
3167 
3168 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3169 					struct kvm_xcrs *guest_xcrs)
3170 {
3171 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3172 		guest_xcrs->nr_xcrs = 0;
3173 		return;
3174 	}
3175 
3176 	guest_xcrs->nr_xcrs = 1;
3177 	guest_xcrs->flags = 0;
3178 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3179 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3180 }
3181 
3182 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3183 				       struct kvm_xcrs *guest_xcrs)
3184 {
3185 	int i, r = 0;
3186 
3187 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3188 		return -EINVAL;
3189 
3190 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3191 		return -EINVAL;
3192 
3193 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3194 		/* Only support XCR0 currently */
3195 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3196 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3197 				guest_xcrs->xcrs[i].value);
3198 			break;
3199 		}
3200 	if (r)
3201 		r = -EINVAL;
3202 	return r;
3203 }
3204 
3205 /*
3206  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3207  * stopped by the hypervisor.  This function will be called from the host only.
3208  * EINVAL is returned when the host attempts to set the flag for a guest that
3209  * does not support pv clocks.
3210  */
3211 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3212 {
3213 	if (!vcpu->arch.pv_time_enabled)
3214 		return -EINVAL;
3215 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3216 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3217 	return 0;
3218 }
3219 
3220 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3221 				     struct kvm_enable_cap *cap)
3222 {
3223 	if (cap->flags)
3224 		return -EINVAL;
3225 
3226 	switch (cap->cap) {
3227 	case KVM_CAP_HYPERV_SYNIC:
3228 		return kvm_hv_activate_synic(vcpu);
3229 	default:
3230 		return -EINVAL;
3231 	}
3232 }
3233 
3234 long kvm_arch_vcpu_ioctl(struct file *filp,
3235 			 unsigned int ioctl, unsigned long arg)
3236 {
3237 	struct kvm_vcpu *vcpu = filp->private_data;
3238 	void __user *argp = (void __user *)arg;
3239 	int r;
3240 	union {
3241 		struct kvm_lapic_state *lapic;
3242 		struct kvm_xsave *xsave;
3243 		struct kvm_xcrs *xcrs;
3244 		void *buffer;
3245 	} u;
3246 
3247 	u.buffer = NULL;
3248 	switch (ioctl) {
3249 	case KVM_GET_LAPIC: {
3250 		r = -EINVAL;
3251 		if (!lapic_in_kernel(vcpu))
3252 			goto out;
3253 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3254 
3255 		r = -ENOMEM;
3256 		if (!u.lapic)
3257 			goto out;
3258 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3259 		if (r)
3260 			goto out;
3261 		r = -EFAULT;
3262 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3263 			goto out;
3264 		r = 0;
3265 		break;
3266 	}
3267 	case KVM_SET_LAPIC: {
3268 		r = -EINVAL;
3269 		if (!lapic_in_kernel(vcpu))
3270 			goto out;
3271 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3272 		if (IS_ERR(u.lapic))
3273 			return PTR_ERR(u.lapic);
3274 
3275 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3276 		break;
3277 	}
3278 	case KVM_INTERRUPT: {
3279 		struct kvm_interrupt irq;
3280 
3281 		r = -EFAULT;
3282 		if (copy_from_user(&irq, argp, sizeof irq))
3283 			goto out;
3284 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3285 		break;
3286 	}
3287 	case KVM_NMI: {
3288 		r = kvm_vcpu_ioctl_nmi(vcpu);
3289 		break;
3290 	}
3291 	case KVM_SMI: {
3292 		r = kvm_vcpu_ioctl_smi(vcpu);
3293 		break;
3294 	}
3295 	case KVM_SET_CPUID: {
3296 		struct kvm_cpuid __user *cpuid_arg = argp;
3297 		struct kvm_cpuid cpuid;
3298 
3299 		r = -EFAULT;
3300 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3301 			goto out;
3302 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3303 		break;
3304 	}
3305 	case KVM_SET_CPUID2: {
3306 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3307 		struct kvm_cpuid2 cpuid;
3308 
3309 		r = -EFAULT;
3310 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3311 			goto out;
3312 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3313 					      cpuid_arg->entries);
3314 		break;
3315 	}
3316 	case KVM_GET_CPUID2: {
3317 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3318 		struct kvm_cpuid2 cpuid;
3319 
3320 		r = -EFAULT;
3321 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3322 			goto out;
3323 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3324 					      cpuid_arg->entries);
3325 		if (r)
3326 			goto out;
3327 		r = -EFAULT;
3328 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3329 			goto out;
3330 		r = 0;
3331 		break;
3332 	}
3333 	case KVM_GET_MSRS:
3334 		r = msr_io(vcpu, argp, do_get_msr, 1);
3335 		break;
3336 	case KVM_SET_MSRS:
3337 		r = msr_io(vcpu, argp, do_set_msr, 0);
3338 		break;
3339 	case KVM_TPR_ACCESS_REPORTING: {
3340 		struct kvm_tpr_access_ctl tac;
3341 
3342 		r = -EFAULT;
3343 		if (copy_from_user(&tac, argp, sizeof tac))
3344 			goto out;
3345 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3346 		if (r)
3347 			goto out;
3348 		r = -EFAULT;
3349 		if (copy_to_user(argp, &tac, sizeof tac))
3350 			goto out;
3351 		r = 0;
3352 		break;
3353 	};
3354 	case KVM_SET_VAPIC_ADDR: {
3355 		struct kvm_vapic_addr va;
3356 
3357 		r = -EINVAL;
3358 		if (!lapic_in_kernel(vcpu))
3359 			goto out;
3360 		r = -EFAULT;
3361 		if (copy_from_user(&va, argp, sizeof va))
3362 			goto out;
3363 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3364 		break;
3365 	}
3366 	case KVM_X86_SETUP_MCE: {
3367 		u64 mcg_cap;
3368 
3369 		r = -EFAULT;
3370 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3371 			goto out;
3372 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3373 		break;
3374 	}
3375 	case KVM_X86_SET_MCE: {
3376 		struct kvm_x86_mce mce;
3377 
3378 		r = -EFAULT;
3379 		if (copy_from_user(&mce, argp, sizeof mce))
3380 			goto out;
3381 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3382 		break;
3383 	}
3384 	case KVM_GET_VCPU_EVENTS: {
3385 		struct kvm_vcpu_events events;
3386 
3387 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3388 
3389 		r = -EFAULT;
3390 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3391 			break;
3392 		r = 0;
3393 		break;
3394 	}
3395 	case KVM_SET_VCPU_EVENTS: {
3396 		struct kvm_vcpu_events events;
3397 
3398 		r = -EFAULT;
3399 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3400 			break;
3401 
3402 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3403 		break;
3404 	}
3405 	case KVM_GET_DEBUGREGS: {
3406 		struct kvm_debugregs dbgregs;
3407 
3408 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3409 
3410 		r = -EFAULT;
3411 		if (copy_to_user(argp, &dbgregs,
3412 				 sizeof(struct kvm_debugregs)))
3413 			break;
3414 		r = 0;
3415 		break;
3416 	}
3417 	case KVM_SET_DEBUGREGS: {
3418 		struct kvm_debugregs dbgregs;
3419 
3420 		r = -EFAULT;
3421 		if (copy_from_user(&dbgregs, argp,
3422 				   sizeof(struct kvm_debugregs)))
3423 			break;
3424 
3425 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3426 		break;
3427 	}
3428 	case KVM_GET_XSAVE: {
3429 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3430 		r = -ENOMEM;
3431 		if (!u.xsave)
3432 			break;
3433 
3434 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3435 
3436 		r = -EFAULT;
3437 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3438 			break;
3439 		r = 0;
3440 		break;
3441 	}
3442 	case KVM_SET_XSAVE: {
3443 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3444 		if (IS_ERR(u.xsave))
3445 			return PTR_ERR(u.xsave);
3446 
3447 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3448 		break;
3449 	}
3450 	case KVM_GET_XCRS: {
3451 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3452 		r = -ENOMEM;
3453 		if (!u.xcrs)
3454 			break;
3455 
3456 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3457 
3458 		r = -EFAULT;
3459 		if (copy_to_user(argp, u.xcrs,
3460 				 sizeof(struct kvm_xcrs)))
3461 			break;
3462 		r = 0;
3463 		break;
3464 	}
3465 	case KVM_SET_XCRS: {
3466 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3467 		if (IS_ERR(u.xcrs))
3468 			return PTR_ERR(u.xcrs);
3469 
3470 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3471 		break;
3472 	}
3473 	case KVM_SET_TSC_KHZ: {
3474 		u32 user_tsc_khz;
3475 
3476 		r = -EINVAL;
3477 		user_tsc_khz = (u32)arg;
3478 
3479 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3480 			goto out;
3481 
3482 		if (user_tsc_khz == 0)
3483 			user_tsc_khz = tsc_khz;
3484 
3485 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3486 			r = 0;
3487 
3488 		goto out;
3489 	}
3490 	case KVM_GET_TSC_KHZ: {
3491 		r = vcpu->arch.virtual_tsc_khz;
3492 		goto out;
3493 	}
3494 	case KVM_KVMCLOCK_CTRL: {
3495 		r = kvm_set_guest_paused(vcpu);
3496 		goto out;
3497 	}
3498 	case KVM_ENABLE_CAP: {
3499 		struct kvm_enable_cap cap;
3500 
3501 		r = -EFAULT;
3502 		if (copy_from_user(&cap, argp, sizeof(cap)))
3503 			goto out;
3504 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3505 		break;
3506 	}
3507 	default:
3508 		r = -EINVAL;
3509 	}
3510 out:
3511 	kfree(u.buffer);
3512 	return r;
3513 }
3514 
3515 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3516 {
3517 	return VM_FAULT_SIGBUS;
3518 }
3519 
3520 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3521 {
3522 	int ret;
3523 
3524 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3525 		return -EINVAL;
3526 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3527 	return ret;
3528 }
3529 
3530 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3531 					      u64 ident_addr)
3532 {
3533 	kvm->arch.ept_identity_map_addr = ident_addr;
3534 	return 0;
3535 }
3536 
3537 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3538 					  u32 kvm_nr_mmu_pages)
3539 {
3540 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3541 		return -EINVAL;
3542 
3543 	mutex_lock(&kvm->slots_lock);
3544 
3545 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3546 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3547 
3548 	mutex_unlock(&kvm->slots_lock);
3549 	return 0;
3550 }
3551 
3552 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3553 {
3554 	return kvm->arch.n_max_mmu_pages;
3555 }
3556 
3557 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3558 {
3559 	int r;
3560 
3561 	r = 0;
3562 	switch (chip->chip_id) {
3563 	case KVM_IRQCHIP_PIC_MASTER:
3564 		memcpy(&chip->chip.pic,
3565 			&pic_irqchip(kvm)->pics[0],
3566 			sizeof(struct kvm_pic_state));
3567 		break;
3568 	case KVM_IRQCHIP_PIC_SLAVE:
3569 		memcpy(&chip->chip.pic,
3570 			&pic_irqchip(kvm)->pics[1],
3571 			sizeof(struct kvm_pic_state));
3572 		break;
3573 	case KVM_IRQCHIP_IOAPIC:
3574 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3575 		break;
3576 	default:
3577 		r = -EINVAL;
3578 		break;
3579 	}
3580 	return r;
3581 }
3582 
3583 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3584 {
3585 	int r;
3586 
3587 	r = 0;
3588 	switch (chip->chip_id) {
3589 	case KVM_IRQCHIP_PIC_MASTER:
3590 		spin_lock(&pic_irqchip(kvm)->lock);
3591 		memcpy(&pic_irqchip(kvm)->pics[0],
3592 			&chip->chip.pic,
3593 			sizeof(struct kvm_pic_state));
3594 		spin_unlock(&pic_irqchip(kvm)->lock);
3595 		break;
3596 	case KVM_IRQCHIP_PIC_SLAVE:
3597 		spin_lock(&pic_irqchip(kvm)->lock);
3598 		memcpy(&pic_irqchip(kvm)->pics[1],
3599 			&chip->chip.pic,
3600 			sizeof(struct kvm_pic_state));
3601 		spin_unlock(&pic_irqchip(kvm)->lock);
3602 		break;
3603 	case KVM_IRQCHIP_IOAPIC:
3604 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3605 		break;
3606 	default:
3607 		r = -EINVAL;
3608 		break;
3609 	}
3610 	kvm_pic_update_irq(pic_irqchip(kvm));
3611 	return r;
3612 }
3613 
3614 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3615 {
3616 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3617 
3618 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3619 
3620 	mutex_lock(&kps->lock);
3621 	memcpy(ps, &kps->channels, sizeof(*ps));
3622 	mutex_unlock(&kps->lock);
3623 	return 0;
3624 }
3625 
3626 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3627 {
3628 	int i;
3629 	struct kvm_pit *pit = kvm->arch.vpit;
3630 
3631 	mutex_lock(&pit->pit_state.lock);
3632 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3633 	for (i = 0; i < 3; i++)
3634 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3635 	mutex_unlock(&pit->pit_state.lock);
3636 	return 0;
3637 }
3638 
3639 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3640 {
3641 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3642 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3643 		sizeof(ps->channels));
3644 	ps->flags = kvm->arch.vpit->pit_state.flags;
3645 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3646 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3647 	return 0;
3648 }
3649 
3650 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3651 {
3652 	int start = 0;
3653 	int i;
3654 	u32 prev_legacy, cur_legacy;
3655 	struct kvm_pit *pit = kvm->arch.vpit;
3656 
3657 	mutex_lock(&pit->pit_state.lock);
3658 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3659 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3660 	if (!prev_legacy && cur_legacy)
3661 		start = 1;
3662 	memcpy(&pit->pit_state.channels, &ps->channels,
3663 	       sizeof(pit->pit_state.channels));
3664 	pit->pit_state.flags = ps->flags;
3665 	for (i = 0; i < 3; i++)
3666 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3667 				   start && i == 0);
3668 	mutex_unlock(&pit->pit_state.lock);
3669 	return 0;
3670 }
3671 
3672 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3673 				 struct kvm_reinject_control *control)
3674 {
3675 	struct kvm_pit *pit = kvm->arch.vpit;
3676 
3677 	if (!pit)
3678 		return -ENXIO;
3679 
3680 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3681 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3682 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3683 	 */
3684 	mutex_lock(&pit->pit_state.lock);
3685 	kvm_pit_set_reinject(pit, control->pit_reinject);
3686 	mutex_unlock(&pit->pit_state.lock);
3687 
3688 	return 0;
3689 }
3690 
3691 /**
3692  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3693  * @kvm: kvm instance
3694  * @log: slot id and address to which we copy the log
3695  *
3696  * Steps 1-4 below provide general overview of dirty page logging. See
3697  * kvm_get_dirty_log_protect() function description for additional details.
3698  *
3699  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3700  * always flush the TLB (step 4) even if previous step failed  and the dirty
3701  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3702  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3703  * writes will be marked dirty for next log read.
3704  *
3705  *   1. Take a snapshot of the bit and clear it if needed.
3706  *   2. Write protect the corresponding page.
3707  *   3. Copy the snapshot to the userspace.
3708  *   4. Flush TLB's if needed.
3709  */
3710 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3711 {
3712 	bool is_dirty = false;
3713 	int r;
3714 
3715 	mutex_lock(&kvm->slots_lock);
3716 
3717 	/*
3718 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3719 	 */
3720 	if (kvm_x86_ops->flush_log_dirty)
3721 		kvm_x86_ops->flush_log_dirty(kvm);
3722 
3723 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3724 
3725 	/*
3726 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3727 	 * kvm_mmu_slot_remove_write_access().
3728 	 */
3729 	lockdep_assert_held(&kvm->slots_lock);
3730 	if (is_dirty)
3731 		kvm_flush_remote_tlbs(kvm);
3732 
3733 	mutex_unlock(&kvm->slots_lock);
3734 	return r;
3735 }
3736 
3737 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3738 			bool line_status)
3739 {
3740 	if (!irqchip_in_kernel(kvm))
3741 		return -ENXIO;
3742 
3743 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3744 					irq_event->irq, irq_event->level,
3745 					line_status);
3746 	return 0;
3747 }
3748 
3749 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3750 				   struct kvm_enable_cap *cap)
3751 {
3752 	int r;
3753 
3754 	if (cap->flags)
3755 		return -EINVAL;
3756 
3757 	switch (cap->cap) {
3758 	case KVM_CAP_DISABLE_QUIRKS:
3759 		kvm->arch.disabled_quirks = cap->args[0];
3760 		r = 0;
3761 		break;
3762 	case KVM_CAP_SPLIT_IRQCHIP: {
3763 		mutex_lock(&kvm->lock);
3764 		r = -EINVAL;
3765 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3766 			goto split_irqchip_unlock;
3767 		r = -EEXIST;
3768 		if (irqchip_in_kernel(kvm))
3769 			goto split_irqchip_unlock;
3770 		if (atomic_read(&kvm->online_vcpus))
3771 			goto split_irqchip_unlock;
3772 		r = kvm_setup_empty_irq_routing(kvm);
3773 		if (r)
3774 			goto split_irqchip_unlock;
3775 		/* Pairs with irqchip_in_kernel. */
3776 		smp_wmb();
3777 		kvm->arch.irqchip_split = true;
3778 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3779 		r = 0;
3780 split_irqchip_unlock:
3781 		mutex_unlock(&kvm->lock);
3782 		break;
3783 	}
3784 	default:
3785 		r = -EINVAL;
3786 		break;
3787 	}
3788 	return r;
3789 }
3790 
3791 long kvm_arch_vm_ioctl(struct file *filp,
3792 		       unsigned int ioctl, unsigned long arg)
3793 {
3794 	struct kvm *kvm = filp->private_data;
3795 	void __user *argp = (void __user *)arg;
3796 	int r = -ENOTTY;
3797 	/*
3798 	 * This union makes it completely explicit to gcc-3.x
3799 	 * that these two variables' stack usage should be
3800 	 * combined, not added together.
3801 	 */
3802 	union {
3803 		struct kvm_pit_state ps;
3804 		struct kvm_pit_state2 ps2;
3805 		struct kvm_pit_config pit_config;
3806 	} u;
3807 
3808 	switch (ioctl) {
3809 	case KVM_SET_TSS_ADDR:
3810 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3811 		break;
3812 	case KVM_SET_IDENTITY_MAP_ADDR: {
3813 		u64 ident_addr;
3814 
3815 		r = -EFAULT;
3816 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3817 			goto out;
3818 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3819 		break;
3820 	}
3821 	case KVM_SET_NR_MMU_PAGES:
3822 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3823 		break;
3824 	case KVM_GET_NR_MMU_PAGES:
3825 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3826 		break;
3827 	case KVM_CREATE_IRQCHIP: {
3828 		struct kvm_pic *vpic;
3829 
3830 		mutex_lock(&kvm->lock);
3831 		r = -EEXIST;
3832 		if (kvm->arch.vpic)
3833 			goto create_irqchip_unlock;
3834 		r = -EINVAL;
3835 		if (atomic_read(&kvm->online_vcpus))
3836 			goto create_irqchip_unlock;
3837 		r = -ENOMEM;
3838 		vpic = kvm_create_pic(kvm);
3839 		if (vpic) {
3840 			r = kvm_ioapic_init(kvm);
3841 			if (r) {
3842 				mutex_lock(&kvm->slots_lock);
3843 				kvm_destroy_pic(vpic);
3844 				mutex_unlock(&kvm->slots_lock);
3845 				goto create_irqchip_unlock;
3846 			}
3847 		} else
3848 			goto create_irqchip_unlock;
3849 		r = kvm_setup_default_irq_routing(kvm);
3850 		if (r) {
3851 			mutex_lock(&kvm->slots_lock);
3852 			mutex_lock(&kvm->irq_lock);
3853 			kvm_ioapic_destroy(kvm);
3854 			kvm_destroy_pic(vpic);
3855 			mutex_unlock(&kvm->irq_lock);
3856 			mutex_unlock(&kvm->slots_lock);
3857 			goto create_irqchip_unlock;
3858 		}
3859 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3860 		smp_wmb();
3861 		kvm->arch.vpic = vpic;
3862 	create_irqchip_unlock:
3863 		mutex_unlock(&kvm->lock);
3864 		break;
3865 	}
3866 	case KVM_CREATE_PIT:
3867 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3868 		goto create_pit;
3869 	case KVM_CREATE_PIT2:
3870 		r = -EFAULT;
3871 		if (copy_from_user(&u.pit_config, argp,
3872 				   sizeof(struct kvm_pit_config)))
3873 			goto out;
3874 	create_pit:
3875 		mutex_lock(&kvm->slots_lock);
3876 		r = -EEXIST;
3877 		if (kvm->arch.vpit)
3878 			goto create_pit_unlock;
3879 		r = -ENOMEM;
3880 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3881 		if (kvm->arch.vpit)
3882 			r = 0;
3883 	create_pit_unlock:
3884 		mutex_unlock(&kvm->slots_lock);
3885 		break;
3886 	case KVM_GET_IRQCHIP: {
3887 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3888 		struct kvm_irqchip *chip;
3889 
3890 		chip = memdup_user(argp, sizeof(*chip));
3891 		if (IS_ERR(chip)) {
3892 			r = PTR_ERR(chip);
3893 			goto out;
3894 		}
3895 
3896 		r = -ENXIO;
3897 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3898 			goto get_irqchip_out;
3899 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3900 		if (r)
3901 			goto get_irqchip_out;
3902 		r = -EFAULT;
3903 		if (copy_to_user(argp, chip, sizeof *chip))
3904 			goto get_irqchip_out;
3905 		r = 0;
3906 	get_irqchip_out:
3907 		kfree(chip);
3908 		break;
3909 	}
3910 	case KVM_SET_IRQCHIP: {
3911 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3912 		struct kvm_irqchip *chip;
3913 
3914 		chip = memdup_user(argp, sizeof(*chip));
3915 		if (IS_ERR(chip)) {
3916 			r = PTR_ERR(chip);
3917 			goto out;
3918 		}
3919 
3920 		r = -ENXIO;
3921 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3922 			goto set_irqchip_out;
3923 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3924 		if (r)
3925 			goto set_irqchip_out;
3926 		r = 0;
3927 	set_irqchip_out:
3928 		kfree(chip);
3929 		break;
3930 	}
3931 	case KVM_GET_PIT: {
3932 		r = -EFAULT;
3933 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3934 			goto out;
3935 		r = -ENXIO;
3936 		if (!kvm->arch.vpit)
3937 			goto out;
3938 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3939 		if (r)
3940 			goto out;
3941 		r = -EFAULT;
3942 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3943 			goto out;
3944 		r = 0;
3945 		break;
3946 	}
3947 	case KVM_SET_PIT: {
3948 		r = -EFAULT;
3949 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3950 			goto out;
3951 		r = -ENXIO;
3952 		if (!kvm->arch.vpit)
3953 			goto out;
3954 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3955 		break;
3956 	}
3957 	case KVM_GET_PIT2: {
3958 		r = -ENXIO;
3959 		if (!kvm->arch.vpit)
3960 			goto out;
3961 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3962 		if (r)
3963 			goto out;
3964 		r = -EFAULT;
3965 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3966 			goto out;
3967 		r = 0;
3968 		break;
3969 	}
3970 	case KVM_SET_PIT2: {
3971 		r = -EFAULT;
3972 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3973 			goto out;
3974 		r = -ENXIO;
3975 		if (!kvm->arch.vpit)
3976 			goto out;
3977 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3978 		break;
3979 	}
3980 	case KVM_REINJECT_CONTROL: {
3981 		struct kvm_reinject_control control;
3982 		r =  -EFAULT;
3983 		if (copy_from_user(&control, argp, sizeof(control)))
3984 			goto out;
3985 		r = kvm_vm_ioctl_reinject(kvm, &control);
3986 		break;
3987 	}
3988 	case KVM_SET_BOOT_CPU_ID:
3989 		r = 0;
3990 		mutex_lock(&kvm->lock);
3991 		if (atomic_read(&kvm->online_vcpus) != 0)
3992 			r = -EBUSY;
3993 		else
3994 			kvm->arch.bsp_vcpu_id = arg;
3995 		mutex_unlock(&kvm->lock);
3996 		break;
3997 	case KVM_XEN_HVM_CONFIG: {
3998 		r = -EFAULT;
3999 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4000 				   sizeof(struct kvm_xen_hvm_config)))
4001 			goto out;
4002 		r = -EINVAL;
4003 		if (kvm->arch.xen_hvm_config.flags)
4004 			goto out;
4005 		r = 0;
4006 		break;
4007 	}
4008 	case KVM_SET_CLOCK: {
4009 		struct kvm_clock_data user_ns;
4010 		u64 now_ns;
4011 		s64 delta;
4012 
4013 		r = -EFAULT;
4014 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4015 			goto out;
4016 
4017 		r = -EINVAL;
4018 		if (user_ns.flags)
4019 			goto out;
4020 
4021 		r = 0;
4022 		local_irq_disable();
4023 		now_ns = get_kernel_ns();
4024 		delta = user_ns.clock - now_ns;
4025 		local_irq_enable();
4026 		kvm->arch.kvmclock_offset = delta;
4027 		kvm_gen_update_masterclock(kvm);
4028 		break;
4029 	}
4030 	case KVM_GET_CLOCK: {
4031 		struct kvm_clock_data user_ns;
4032 		u64 now_ns;
4033 
4034 		local_irq_disable();
4035 		now_ns = get_kernel_ns();
4036 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4037 		local_irq_enable();
4038 		user_ns.flags = 0;
4039 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4040 
4041 		r = -EFAULT;
4042 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4043 			goto out;
4044 		r = 0;
4045 		break;
4046 	}
4047 	case KVM_ENABLE_CAP: {
4048 		struct kvm_enable_cap cap;
4049 
4050 		r = -EFAULT;
4051 		if (copy_from_user(&cap, argp, sizeof(cap)))
4052 			goto out;
4053 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4054 		break;
4055 	}
4056 	default:
4057 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4058 	}
4059 out:
4060 	return r;
4061 }
4062 
4063 static void kvm_init_msr_list(void)
4064 {
4065 	u32 dummy[2];
4066 	unsigned i, j;
4067 
4068 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4069 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4070 			continue;
4071 
4072 		/*
4073 		 * Even MSRs that are valid in the host may not be exposed
4074 		 * to the guests in some cases.
4075 		 */
4076 		switch (msrs_to_save[i]) {
4077 		case MSR_IA32_BNDCFGS:
4078 			if (!kvm_x86_ops->mpx_supported())
4079 				continue;
4080 			break;
4081 		case MSR_TSC_AUX:
4082 			if (!kvm_x86_ops->rdtscp_supported())
4083 				continue;
4084 			break;
4085 		default:
4086 			break;
4087 		}
4088 
4089 		if (j < i)
4090 			msrs_to_save[j] = msrs_to_save[i];
4091 		j++;
4092 	}
4093 	num_msrs_to_save = j;
4094 
4095 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4096 		switch (emulated_msrs[i]) {
4097 		case MSR_IA32_SMBASE:
4098 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4099 				continue;
4100 			break;
4101 		default:
4102 			break;
4103 		}
4104 
4105 		if (j < i)
4106 			emulated_msrs[j] = emulated_msrs[i];
4107 		j++;
4108 	}
4109 	num_emulated_msrs = j;
4110 }
4111 
4112 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4113 			   const void *v)
4114 {
4115 	int handled = 0;
4116 	int n;
4117 
4118 	do {
4119 		n = min(len, 8);
4120 		if (!(lapic_in_kernel(vcpu) &&
4121 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4122 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4123 			break;
4124 		handled += n;
4125 		addr += n;
4126 		len -= n;
4127 		v += n;
4128 	} while (len);
4129 
4130 	return handled;
4131 }
4132 
4133 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4134 {
4135 	int handled = 0;
4136 	int n;
4137 
4138 	do {
4139 		n = min(len, 8);
4140 		if (!(lapic_in_kernel(vcpu) &&
4141 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4142 					 addr, n, v))
4143 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4144 			break;
4145 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4146 		handled += n;
4147 		addr += n;
4148 		len -= n;
4149 		v += n;
4150 	} while (len);
4151 
4152 	return handled;
4153 }
4154 
4155 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4156 			struct kvm_segment *var, int seg)
4157 {
4158 	kvm_x86_ops->set_segment(vcpu, var, seg);
4159 }
4160 
4161 void kvm_get_segment(struct kvm_vcpu *vcpu,
4162 		     struct kvm_segment *var, int seg)
4163 {
4164 	kvm_x86_ops->get_segment(vcpu, var, seg);
4165 }
4166 
4167 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4168 			   struct x86_exception *exception)
4169 {
4170 	gpa_t t_gpa;
4171 
4172 	BUG_ON(!mmu_is_nested(vcpu));
4173 
4174 	/* NPT walks are always user-walks */
4175 	access |= PFERR_USER_MASK;
4176 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4177 
4178 	return t_gpa;
4179 }
4180 
4181 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4182 			      struct x86_exception *exception)
4183 {
4184 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4185 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4186 }
4187 
4188  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4189 				struct x86_exception *exception)
4190 {
4191 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4192 	access |= PFERR_FETCH_MASK;
4193 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4194 }
4195 
4196 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4197 			       struct x86_exception *exception)
4198 {
4199 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4200 	access |= PFERR_WRITE_MASK;
4201 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4202 }
4203 
4204 /* uses this to access any guest's mapped memory without checking CPL */
4205 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4206 				struct x86_exception *exception)
4207 {
4208 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4209 }
4210 
4211 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4212 				      struct kvm_vcpu *vcpu, u32 access,
4213 				      struct x86_exception *exception)
4214 {
4215 	void *data = val;
4216 	int r = X86EMUL_CONTINUE;
4217 
4218 	while (bytes) {
4219 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4220 							    exception);
4221 		unsigned offset = addr & (PAGE_SIZE-1);
4222 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4223 		int ret;
4224 
4225 		if (gpa == UNMAPPED_GVA)
4226 			return X86EMUL_PROPAGATE_FAULT;
4227 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4228 					       offset, toread);
4229 		if (ret < 0) {
4230 			r = X86EMUL_IO_NEEDED;
4231 			goto out;
4232 		}
4233 
4234 		bytes -= toread;
4235 		data += toread;
4236 		addr += toread;
4237 	}
4238 out:
4239 	return r;
4240 }
4241 
4242 /* used for instruction fetching */
4243 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4244 				gva_t addr, void *val, unsigned int bytes,
4245 				struct x86_exception *exception)
4246 {
4247 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4248 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4249 	unsigned offset;
4250 	int ret;
4251 
4252 	/* Inline kvm_read_guest_virt_helper for speed.  */
4253 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4254 						    exception);
4255 	if (unlikely(gpa == UNMAPPED_GVA))
4256 		return X86EMUL_PROPAGATE_FAULT;
4257 
4258 	offset = addr & (PAGE_SIZE-1);
4259 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4260 		bytes = (unsigned)PAGE_SIZE - offset;
4261 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4262 				       offset, bytes);
4263 	if (unlikely(ret < 0))
4264 		return X86EMUL_IO_NEEDED;
4265 
4266 	return X86EMUL_CONTINUE;
4267 }
4268 
4269 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4270 			       gva_t addr, void *val, unsigned int bytes,
4271 			       struct x86_exception *exception)
4272 {
4273 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4274 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4275 
4276 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4277 					  exception);
4278 }
4279 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4280 
4281 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4282 				      gva_t addr, void *val, unsigned int bytes,
4283 				      struct x86_exception *exception)
4284 {
4285 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4286 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4287 }
4288 
4289 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4290 		unsigned long addr, void *val, unsigned int bytes)
4291 {
4292 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4293 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4294 
4295 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4296 }
4297 
4298 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4299 				       gva_t addr, void *val,
4300 				       unsigned int bytes,
4301 				       struct x86_exception *exception)
4302 {
4303 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4304 	void *data = val;
4305 	int r = X86EMUL_CONTINUE;
4306 
4307 	while (bytes) {
4308 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4309 							     PFERR_WRITE_MASK,
4310 							     exception);
4311 		unsigned offset = addr & (PAGE_SIZE-1);
4312 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4313 		int ret;
4314 
4315 		if (gpa == UNMAPPED_GVA)
4316 			return X86EMUL_PROPAGATE_FAULT;
4317 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4318 		if (ret < 0) {
4319 			r = X86EMUL_IO_NEEDED;
4320 			goto out;
4321 		}
4322 
4323 		bytes -= towrite;
4324 		data += towrite;
4325 		addr += towrite;
4326 	}
4327 out:
4328 	return r;
4329 }
4330 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4331 
4332 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4333 				gpa_t *gpa, struct x86_exception *exception,
4334 				bool write)
4335 {
4336 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4337 		| (write ? PFERR_WRITE_MASK : 0);
4338 
4339 	/*
4340 	 * currently PKRU is only applied to ept enabled guest so
4341 	 * there is no pkey in EPT page table for L1 guest or EPT
4342 	 * shadow page table for L2 guest.
4343 	 */
4344 	if (vcpu_match_mmio_gva(vcpu, gva)
4345 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4346 				 vcpu->arch.access, 0, access)) {
4347 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4348 					(gva & (PAGE_SIZE - 1));
4349 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4350 		return 1;
4351 	}
4352 
4353 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4354 
4355 	if (*gpa == UNMAPPED_GVA)
4356 		return -1;
4357 
4358 	/* For APIC access vmexit */
4359 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4360 		return 1;
4361 
4362 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4363 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4364 		return 1;
4365 	}
4366 
4367 	return 0;
4368 }
4369 
4370 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4371 			const void *val, int bytes)
4372 {
4373 	int ret;
4374 
4375 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4376 	if (ret < 0)
4377 		return 0;
4378 	kvm_page_track_write(vcpu, gpa, val, bytes);
4379 	return 1;
4380 }
4381 
4382 struct read_write_emulator_ops {
4383 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4384 				  int bytes);
4385 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4386 				  void *val, int bytes);
4387 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4388 			       int bytes, void *val);
4389 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4390 				    void *val, int bytes);
4391 	bool write;
4392 };
4393 
4394 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4395 {
4396 	if (vcpu->mmio_read_completed) {
4397 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4398 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4399 		vcpu->mmio_read_completed = 0;
4400 		return 1;
4401 	}
4402 
4403 	return 0;
4404 }
4405 
4406 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4407 			void *val, int bytes)
4408 {
4409 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4410 }
4411 
4412 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4413 			 void *val, int bytes)
4414 {
4415 	return emulator_write_phys(vcpu, gpa, val, bytes);
4416 }
4417 
4418 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4419 {
4420 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4421 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4422 }
4423 
4424 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4425 			  void *val, int bytes)
4426 {
4427 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4428 	return X86EMUL_IO_NEEDED;
4429 }
4430 
4431 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4432 			   void *val, int bytes)
4433 {
4434 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4435 
4436 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4437 	return X86EMUL_CONTINUE;
4438 }
4439 
4440 static const struct read_write_emulator_ops read_emultor = {
4441 	.read_write_prepare = read_prepare,
4442 	.read_write_emulate = read_emulate,
4443 	.read_write_mmio = vcpu_mmio_read,
4444 	.read_write_exit_mmio = read_exit_mmio,
4445 };
4446 
4447 static const struct read_write_emulator_ops write_emultor = {
4448 	.read_write_emulate = write_emulate,
4449 	.read_write_mmio = write_mmio,
4450 	.read_write_exit_mmio = write_exit_mmio,
4451 	.write = true,
4452 };
4453 
4454 static int emulator_read_write_onepage(unsigned long addr, void *val,
4455 				       unsigned int bytes,
4456 				       struct x86_exception *exception,
4457 				       struct kvm_vcpu *vcpu,
4458 				       const struct read_write_emulator_ops *ops)
4459 {
4460 	gpa_t gpa;
4461 	int handled, ret;
4462 	bool write = ops->write;
4463 	struct kvm_mmio_fragment *frag;
4464 
4465 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4466 
4467 	if (ret < 0)
4468 		return X86EMUL_PROPAGATE_FAULT;
4469 
4470 	/* For APIC access vmexit */
4471 	if (ret)
4472 		goto mmio;
4473 
4474 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4475 		return X86EMUL_CONTINUE;
4476 
4477 mmio:
4478 	/*
4479 	 * Is this MMIO handled locally?
4480 	 */
4481 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4482 	if (handled == bytes)
4483 		return X86EMUL_CONTINUE;
4484 
4485 	gpa += handled;
4486 	bytes -= handled;
4487 	val += handled;
4488 
4489 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4490 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4491 	frag->gpa = gpa;
4492 	frag->data = val;
4493 	frag->len = bytes;
4494 	return X86EMUL_CONTINUE;
4495 }
4496 
4497 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4498 			unsigned long addr,
4499 			void *val, unsigned int bytes,
4500 			struct x86_exception *exception,
4501 			const struct read_write_emulator_ops *ops)
4502 {
4503 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4504 	gpa_t gpa;
4505 	int rc;
4506 
4507 	if (ops->read_write_prepare &&
4508 		  ops->read_write_prepare(vcpu, val, bytes))
4509 		return X86EMUL_CONTINUE;
4510 
4511 	vcpu->mmio_nr_fragments = 0;
4512 
4513 	/* Crossing a page boundary? */
4514 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4515 		int now;
4516 
4517 		now = -addr & ~PAGE_MASK;
4518 		rc = emulator_read_write_onepage(addr, val, now, exception,
4519 						 vcpu, ops);
4520 
4521 		if (rc != X86EMUL_CONTINUE)
4522 			return rc;
4523 		addr += now;
4524 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4525 			addr = (u32)addr;
4526 		val += now;
4527 		bytes -= now;
4528 	}
4529 
4530 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4531 					 vcpu, ops);
4532 	if (rc != X86EMUL_CONTINUE)
4533 		return rc;
4534 
4535 	if (!vcpu->mmio_nr_fragments)
4536 		return rc;
4537 
4538 	gpa = vcpu->mmio_fragments[0].gpa;
4539 
4540 	vcpu->mmio_needed = 1;
4541 	vcpu->mmio_cur_fragment = 0;
4542 
4543 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4544 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4545 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4546 	vcpu->run->mmio.phys_addr = gpa;
4547 
4548 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4549 }
4550 
4551 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4552 				  unsigned long addr,
4553 				  void *val,
4554 				  unsigned int bytes,
4555 				  struct x86_exception *exception)
4556 {
4557 	return emulator_read_write(ctxt, addr, val, bytes,
4558 				   exception, &read_emultor);
4559 }
4560 
4561 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4562 			    unsigned long addr,
4563 			    const void *val,
4564 			    unsigned int bytes,
4565 			    struct x86_exception *exception)
4566 {
4567 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4568 				   exception, &write_emultor);
4569 }
4570 
4571 #define CMPXCHG_TYPE(t, ptr, old, new) \
4572 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4573 
4574 #ifdef CONFIG_X86_64
4575 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4576 #else
4577 #  define CMPXCHG64(ptr, old, new) \
4578 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4579 #endif
4580 
4581 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4582 				     unsigned long addr,
4583 				     const void *old,
4584 				     const void *new,
4585 				     unsigned int bytes,
4586 				     struct x86_exception *exception)
4587 {
4588 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4589 	gpa_t gpa;
4590 	struct page *page;
4591 	char *kaddr;
4592 	bool exchanged;
4593 
4594 	/* guests cmpxchg8b have to be emulated atomically */
4595 	if (bytes > 8 || (bytes & (bytes - 1)))
4596 		goto emul_write;
4597 
4598 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4599 
4600 	if (gpa == UNMAPPED_GVA ||
4601 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4602 		goto emul_write;
4603 
4604 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4605 		goto emul_write;
4606 
4607 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4608 	if (is_error_page(page))
4609 		goto emul_write;
4610 
4611 	kaddr = kmap_atomic(page);
4612 	kaddr += offset_in_page(gpa);
4613 	switch (bytes) {
4614 	case 1:
4615 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4616 		break;
4617 	case 2:
4618 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4619 		break;
4620 	case 4:
4621 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4622 		break;
4623 	case 8:
4624 		exchanged = CMPXCHG64(kaddr, old, new);
4625 		break;
4626 	default:
4627 		BUG();
4628 	}
4629 	kunmap_atomic(kaddr);
4630 	kvm_release_page_dirty(page);
4631 
4632 	if (!exchanged)
4633 		return X86EMUL_CMPXCHG_FAILED;
4634 
4635 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4636 	kvm_page_track_write(vcpu, gpa, new, bytes);
4637 
4638 	return X86EMUL_CONTINUE;
4639 
4640 emul_write:
4641 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4642 
4643 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4644 }
4645 
4646 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4647 {
4648 	/* TODO: String I/O for in kernel device */
4649 	int r;
4650 
4651 	if (vcpu->arch.pio.in)
4652 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4653 				    vcpu->arch.pio.size, pd);
4654 	else
4655 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4656 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4657 				     pd);
4658 	return r;
4659 }
4660 
4661 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4662 			       unsigned short port, void *val,
4663 			       unsigned int count, bool in)
4664 {
4665 	vcpu->arch.pio.port = port;
4666 	vcpu->arch.pio.in = in;
4667 	vcpu->arch.pio.count  = count;
4668 	vcpu->arch.pio.size = size;
4669 
4670 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4671 		vcpu->arch.pio.count = 0;
4672 		return 1;
4673 	}
4674 
4675 	vcpu->run->exit_reason = KVM_EXIT_IO;
4676 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4677 	vcpu->run->io.size = size;
4678 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4679 	vcpu->run->io.count = count;
4680 	vcpu->run->io.port = port;
4681 
4682 	return 0;
4683 }
4684 
4685 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4686 				    int size, unsigned short port, void *val,
4687 				    unsigned int count)
4688 {
4689 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4690 	int ret;
4691 
4692 	if (vcpu->arch.pio.count)
4693 		goto data_avail;
4694 
4695 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4696 	if (ret) {
4697 data_avail:
4698 		memcpy(val, vcpu->arch.pio_data, size * count);
4699 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4700 		vcpu->arch.pio.count = 0;
4701 		return 1;
4702 	}
4703 
4704 	return 0;
4705 }
4706 
4707 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4708 				     int size, unsigned short port,
4709 				     const void *val, unsigned int count)
4710 {
4711 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4712 
4713 	memcpy(vcpu->arch.pio_data, val, size * count);
4714 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4715 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4716 }
4717 
4718 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4719 {
4720 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4721 }
4722 
4723 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4724 {
4725 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4726 }
4727 
4728 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4729 {
4730 	if (!need_emulate_wbinvd(vcpu))
4731 		return X86EMUL_CONTINUE;
4732 
4733 	if (kvm_x86_ops->has_wbinvd_exit()) {
4734 		int cpu = get_cpu();
4735 
4736 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4737 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4738 				wbinvd_ipi, NULL, 1);
4739 		put_cpu();
4740 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4741 	} else
4742 		wbinvd();
4743 	return X86EMUL_CONTINUE;
4744 }
4745 
4746 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4747 {
4748 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4749 	return kvm_emulate_wbinvd_noskip(vcpu);
4750 }
4751 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4752 
4753 
4754 
4755 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4756 {
4757 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4758 }
4759 
4760 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4761 			   unsigned long *dest)
4762 {
4763 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4764 }
4765 
4766 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4767 			   unsigned long value)
4768 {
4769 
4770 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4771 }
4772 
4773 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4774 {
4775 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4776 }
4777 
4778 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4779 {
4780 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4781 	unsigned long value;
4782 
4783 	switch (cr) {
4784 	case 0:
4785 		value = kvm_read_cr0(vcpu);
4786 		break;
4787 	case 2:
4788 		value = vcpu->arch.cr2;
4789 		break;
4790 	case 3:
4791 		value = kvm_read_cr3(vcpu);
4792 		break;
4793 	case 4:
4794 		value = kvm_read_cr4(vcpu);
4795 		break;
4796 	case 8:
4797 		value = kvm_get_cr8(vcpu);
4798 		break;
4799 	default:
4800 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4801 		return 0;
4802 	}
4803 
4804 	return value;
4805 }
4806 
4807 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4808 {
4809 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4810 	int res = 0;
4811 
4812 	switch (cr) {
4813 	case 0:
4814 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4815 		break;
4816 	case 2:
4817 		vcpu->arch.cr2 = val;
4818 		break;
4819 	case 3:
4820 		res = kvm_set_cr3(vcpu, val);
4821 		break;
4822 	case 4:
4823 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4824 		break;
4825 	case 8:
4826 		res = kvm_set_cr8(vcpu, val);
4827 		break;
4828 	default:
4829 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4830 		res = -1;
4831 	}
4832 
4833 	return res;
4834 }
4835 
4836 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4837 {
4838 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4839 }
4840 
4841 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4842 {
4843 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4844 }
4845 
4846 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4847 {
4848 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4849 }
4850 
4851 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4852 {
4853 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4854 }
4855 
4856 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4857 {
4858 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4859 }
4860 
4861 static unsigned long emulator_get_cached_segment_base(
4862 	struct x86_emulate_ctxt *ctxt, int seg)
4863 {
4864 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4865 }
4866 
4867 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4868 				 struct desc_struct *desc, u32 *base3,
4869 				 int seg)
4870 {
4871 	struct kvm_segment var;
4872 
4873 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4874 	*selector = var.selector;
4875 
4876 	if (var.unusable) {
4877 		memset(desc, 0, sizeof(*desc));
4878 		return false;
4879 	}
4880 
4881 	if (var.g)
4882 		var.limit >>= 12;
4883 	set_desc_limit(desc, var.limit);
4884 	set_desc_base(desc, (unsigned long)var.base);
4885 #ifdef CONFIG_X86_64
4886 	if (base3)
4887 		*base3 = var.base >> 32;
4888 #endif
4889 	desc->type = var.type;
4890 	desc->s = var.s;
4891 	desc->dpl = var.dpl;
4892 	desc->p = var.present;
4893 	desc->avl = var.avl;
4894 	desc->l = var.l;
4895 	desc->d = var.db;
4896 	desc->g = var.g;
4897 
4898 	return true;
4899 }
4900 
4901 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4902 				 struct desc_struct *desc, u32 base3,
4903 				 int seg)
4904 {
4905 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4906 	struct kvm_segment var;
4907 
4908 	var.selector = selector;
4909 	var.base = get_desc_base(desc);
4910 #ifdef CONFIG_X86_64
4911 	var.base |= ((u64)base3) << 32;
4912 #endif
4913 	var.limit = get_desc_limit(desc);
4914 	if (desc->g)
4915 		var.limit = (var.limit << 12) | 0xfff;
4916 	var.type = desc->type;
4917 	var.dpl = desc->dpl;
4918 	var.db = desc->d;
4919 	var.s = desc->s;
4920 	var.l = desc->l;
4921 	var.g = desc->g;
4922 	var.avl = desc->avl;
4923 	var.present = desc->p;
4924 	var.unusable = !var.present;
4925 	var.padding = 0;
4926 
4927 	kvm_set_segment(vcpu, &var, seg);
4928 	return;
4929 }
4930 
4931 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4932 			    u32 msr_index, u64 *pdata)
4933 {
4934 	struct msr_data msr;
4935 	int r;
4936 
4937 	msr.index = msr_index;
4938 	msr.host_initiated = false;
4939 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4940 	if (r)
4941 		return r;
4942 
4943 	*pdata = msr.data;
4944 	return 0;
4945 }
4946 
4947 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4948 			    u32 msr_index, u64 data)
4949 {
4950 	struct msr_data msr;
4951 
4952 	msr.data = data;
4953 	msr.index = msr_index;
4954 	msr.host_initiated = false;
4955 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4956 }
4957 
4958 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4959 {
4960 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4961 
4962 	return vcpu->arch.smbase;
4963 }
4964 
4965 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4966 {
4967 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4968 
4969 	vcpu->arch.smbase = smbase;
4970 }
4971 
4972 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4973 			      u32 pmc)
4974 {
4975 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4976 }
4977 
4978 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4979 			     u32 pmc, u64 *pdata)
4980 {
4981 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4982 }
4983 
4984 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4985 {
4986 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4987 }
4988 
4989 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4990 {
4991 	preempt_disable();
4992 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4993 	/*
4994 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4995 	 * so it may be clear at this point.
4996 	 */
4997 	clts();
4998 }
4999 
5000 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5001 {
5002 	preempt_enable();
5003 }
5004 
5005 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5006 			      struct x86_instruction_info *info,
5007 			      enum x86_intercept_stage stage)
5008 {
5009 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5010 }
5011 
5012 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5013 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5014 {
5015 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5016 }
5017 
5018 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5019 {
5020 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5021 }
5022 
5023 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5024 {
5025 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5026 }
5027 
5028 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5029 {
5030 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5031 }
5032 
5033 static const struct x86_emulate_ops emulate_ops = {
5034 	.read_gpr            = emulator_read_gpr,
5035 	.write_gpr           = emulator_write_gpr,
5036 	.read_std            = kvm_read_guest_virt_system,
5037 	.write_std           = kvm_write_guest_virt_system,
5038 	.read_phys           = kvm_read_guest_phys_system,
5039 	.fetch               = kvm_fetch_guest_virt,
5040 	.read_emulated       = emulator_read_emulated,
5041 	.write_emulated      = emulator_write_emulated,
5042 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5043 	.invlpg              = emulator_invlpg,
5044 	.pio_in_emulated     = emulator_pio_in_emulated,
5045 	.pio_out_emulated    = emulator_pio_out_emulated,
5046 	.get_segment         = emulator_get_segment,
5047 	.set_segment         = emulator_set_segment,
5048 	.get_cached_segment_base = emulator_get_cached_segment_base,
5049 	.get_gdt             = emulator_get_gdt,
5050 	.get_idt	     = emulator_get_idt,
5051 	.set_gdt             = emulator_set_gdt,
5052 	.set_idt	     = emulator_set_idt,
5053 	.get_cr              = emulator_get_cr,
5054 	.set_cr              = emulator_set_cr,
5055 	.cpl                 = emulator_get_cpl,
5056 	.get_dr              = emulator_get_dr,
5057 	.set_dr              = emulator_set_dr,
5058 	.get_smbase          = emulator_get_smbase,
5059 	.set_smbase          = emulator_set_smbase,
5060 	.set_msr             = emulator_set_msr,
5061 	.get_msr             = emulator_get_msr,
5062 	.check_pmc	     = emulator_check_pmc,
5063 	.read_pmc            = emulator_read_pmc,
5064 	.halt                = emulator_halt,
5065 	.wbinvd              = emulator_wbinvd,
5066 	.fix_hypercall       = emulator_fix_hypercall,
5067 	.get_fpu             = emulator_get_fpu,
5068 	.put_fpu             = emulator_put_fpu,
5069 	.intercept           = emulator_intercept,
5070 	.get_cpuid           = emulator_get_cpuid,
5071 	.set_nmi_mask        = emulator_set_nmi_mask,
5072 };
5073 
5074 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5075 {
5076 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5077 	/*
5078 	 * an sti; sti; sequence only disable interrupts for the first
5079 	 * instruction. So, if the last instruction, be it emulated or
5080 	 * not, left the system with the INT_STI flag enabled, it
5081 	 * means that the last instruction is an sti. We should not
5082 	 * leave the flag on in this case. The same goes for mov ss
5083 	 */
5084 	if (int_shadow & mask)
5085 		mask = 0;
5086 	if (unlikely(int_shadow || mask)) {
5087 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5088 		if (!mask)
5089 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5090 	}
5091 }
5092 
5093 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5094 {
5095 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5096 	if (ctxt->exception.vector == PF_VECTOR)
5097 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5098 
5099 	if (ctxt->exception.error_code_valid)
5100 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5101 				      ctxt->exception.error_code);
5102 	else
5103 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5104 	return false;
5105 }
5106 
5107 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5108 {
5109 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5110 	int cs_db, cs_l;
5111 
5112 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5113 
5114 	ctxt->eflags = kvm_get_rflags(vcpu);
5115 	ctxt->eip = kvm_rip_read(vcpu);
5116 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5117 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5118 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5119 		     cs_db				? X86EMUL_MODE_PROT32 :
5120 							  X86EMUL_MODE_PROT16;
5121 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5122 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5123 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5124 	ctxt->emul_flags = vcpu->arch.hflags;
5125 
5126 	init_decode_cache(ctxt);
5127 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5128 }
5129 
5130 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5131 {
5132 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5133 	int ret;
5134 
5135 	init_emulate_ctxt(vcpu);
5136 
5137 	ctxt->op_bytes = 2;
5138 	ctxt->ad_bytes = 2;
5139 	ctxt->_eip = ctxt->eip + inc_eip;
5140 	ret = emulate_int_real(ctxt, irq);
5141 
5142 	if (ret != X86EMUL_CONTINUE)
5143 		return EMULATE_FAIL;
5144 
5145 	ctxt->eip = ctxt->_eip;
5146 	kvm_rip_write(vcpu, ctxt->eip);
5147 	kvm_set_rflags(vcpu, ctxt->eflags);
5148 
5149 	if (irq == NMI_VECTOR)
5150 		vcpu->arch.nmi_pending = 0;
5151 	else
5152 		vcpu->arch.interrupt.pending = false;
5153 
5154 	return EMULATE_DONE;
5155 }
5156 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5157 
5158 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5159 {
5160 	int r = EMULATE_DONE;
5161 
5162 	++vcpu->stat.insn_emulation_fail;
5163 	trace_kvm_emulate_insn_failed(vcpu);
5164 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5165 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5166 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5167 		vcpu->run->internal.ndata = 0;
5168 		r = EMULATE_FAIL;
5169 	}
5170 	kvm_queue_exception(vcpu, UD_VECTOR);
5171 
5172 	return r;
5173 }
5174 
5175 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5176 				  bool write_fault_to_shadow_pgtable,
5177 				  int emulation_type)
5178 {
5179 	gpa_t gpa = cr2;
5180 	kvm_pfn_t pfn;
5181 
5182 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5183 		return false;
5184 
5185 	if (!vcpu->arch.mmu.direct_map) {
5186 		/*
5187 		 * Write permission should be allowed since only
5188 		 * write access need to be emulated.
5189 		 */
5190 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5191 
5192 		/*
5193 		 * If the mapping is invalid in guest, let cpu retry
5194 		 * it to generate fault.
5195 		 */
5196 		if (gpa == UNMAPPED_GVA)
5197 			return true;
5198 	}
5199 
5200 	/*
5201 	 * Do not retry the unhandleable instruction if it faults on the
5202 	 * readonly host memory, otherwise it will goto a infinite loop:
5203 	 * retry instruction -> write #PF -> emulation fail -> retry
5204 	 * instruction -> ...
5205 	 */
5206 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5207 
5208 	/*
5209 	 * If the instruction failed on the error pfn, it can not be fixed,
5210 	 * report the error to userspace.
5211 	 */
5212 	if (is_error_noslot_pfn(pfn))
5213 		return false;
5214 
5215 	kvm_release_pfn_clean(pfn);
5216 
5217 	/* The instructions are well-emulated on direct mmu. */
5218 	if (vcpu->arch.mmu.direct_map) {
5219 		unsigned int indirect_shadow_pages;
5220 
5221 		spin_lock(&vcpu->kvm->mmu_lock);
5222 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5223 		spin_unlock(&vcpu->kvm->mmu_lock);
5224 
5225 		if (indirect_shadow_pages)
5226 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5227 
5228 		return true;
5229 	}
5230 
5231 	/*
5232 	 * if emulation was due to access to shadowed page table
5233 	 * and it failed try to unshadow page and re-enter the
5234 	 * guest to let CPU execute the instruction.
5235 	 */
5236 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5237 
5238 	/*
5239 	 * If the access faults on its page table, it can not
5240 	 * be fixed by unprotecting shadow page and it should
5241 	 * be reported to userspace.
5242 	 */
5243 	return !write_fault_to_shadow_pgtable;
5244 }
5245 
5246 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5247 			      unsigned long cr2,  int emulation_type)
5248 {
5249 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5250 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5251 
5252 	last_retry_eip = vcpu->arch.last_retry_eip;
5253 	last_retry_addr = vcpu->arch.last_retry_addr;
5254 
5255 	/*
5256 	 * If the emulation is caused by #PF and it is non-page_table
5257 	 * writing instruction, it means the VM-EXIT is caused by shadow
5258 	 * page protected, we can zap the shadow page and retry this
5259 	 * instruction directly.
5260 	 *
5261 	 * Note: if the guest uses a non-page-table modifying instruction
5262 	 * on the PDE that points to the instruction, then we will unmap
5263 	 * the instruction and go to an infinite loop. So, we cache the
5264 	 * last retried eip and the last fault address, if we meet the eip
5265 	 * and the address again, we can break out of the potential infinite
5266 	 * loop.
5267 	 */
5268 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5269 
5270 	if (!(emulation_type & EMULTYPE_RETRY))
5271 		return false;
5272 
5273 	if (x86_page_table_writing_insn(ctxt))
5274 		return false;
5275 
5276 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5277 		return false;
5278 
5279 	vcpu->arch.last_retry_eip = ctxt->eip;
5280 	vcpu->arch.last_retry_addr = cr2;
5281 
5282 	if (!vcpu->arch.mmu.direct_map)
5283 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5284 
5285 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5286 
5287 	return true;
5288 }
5289 
5290 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5291 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5292 
5293 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5294 {
5295 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5296 		/* This is a good place to trace that we are exiting SMM.  */
5297 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5298 
5299 		if (unlikely(vcpu->arch.smi_pending)) {
5300 			kvm_make_request(KVM_REQ_SMI, vcpu);
5301 			vcpu->arch.smi_pending = 0;
5302 		} else {
5303 			/* Process a latched INIT, if any.  */
5304 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5305 		}
5306 	}
5307 
5308 	kvm_mmu_reset_context(vcpu);
5309 }
5310 
5311 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5312 {
5313 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5314 
5315 	vcpu->arch.hflags = emul_flags;
5316 
5317 	if (changed & HF_SMM_MASK)
5318 		kvm_smm_changed(vcpu);
5319 }
5320 
5321 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5322 				unsigned long *db)
5323 {
5324 	u32 dr6 = 0;
5325 	int i;
5326 	u32 enable, rwlen;
5327 
5328 	enable = dr7;
5329 	rwlen = dr7 >> 16;
5330 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5331 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5332 			dr6 |= (1 << i);
5333 	return dr6;
5334 }
5335 
5336 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5337 {
5338 	struct kvm_run *kvm_run = vcpu->run;
5339 
5340 	/*
5341 	 * rflags is the old, "raw" value of the flags.  The new value has
5342 	 * not been saved yet.
5343 	 *
5344 	 * This is correct even for TF set by the guest, because "the
5345 	 * processor will not generate this exception after the instruction
5346 	 * that sets the TF flag".
5347 	 */
5348 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5349 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5350 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5351 						  DR6_RTM;
5352 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5353 			kvm_run->debug.arch.exception = DB_VECTOR;
5354 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5355 			*r = EMULATE_USER_EXIT;
5356 		} else {
5357 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5358 			/*
5359 			 * "Certain debug exceptions may clear bit 0-3.  The
5360 			 * remaining contents of the DR6 register are never
5361 			 * cleared by the processor".
5362 			 */
5363 			vcpu->arch.dr6 &= ~15;
5364 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5365 			kvm_queue_exception(vcpu, DB_VECTOR);
5366 		}
5367 	}
5368 }
5369 
5370 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5371 {
5372 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5373 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5374 		struct kvm_run *kvm_run = vcpu->run;
5375 		unsigned long eip = kvm_get_linear_rip(vcpu);
5376 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5377 					   vcpu->arch.guest_debug_dr7,
5378 					   vcpu->arch.eff_db);
5379 
5380 		if (dr6 != 0) {
5381 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5382 			kvm_run->debug.arch.pc = eip;
5383 			kvm_run->debug.arch.exception = DB_VECTOR;
5384 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5385 			*r = EMULATE_USER_EXIT;
5386 			return true;
5387 		}
5388 	}
5389 
5390 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5391 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5392 		unsigned long eip = kvm_get_linear_rip(vcpu);
5393 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5394 					   vcpu->arch.dr7,
5395 					   vcpu->arch.db);
5396 
5397 		if (dr6 != 0) {
5398 			vcpu->arch.dr6 &= ~15;
5399 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5400 			kvm_queue_exception(vcpu, DB_VECTOR);
5401 			*r = EMULATE_DONE;
5402 			return true;
5403 		}
5404 	}
5405 
5406 	return false;
5407 }
5408 
5409 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5410 			    unsigned long cr2,
5411 			    int emulation_type,
5412 			    void *insn,
5413 			    int insn_len)
5414 {
5415 	int r;
5416 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5417 	bool writeback = true;
5418 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5419 
5420 	/*
5421 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5422 	 * never reused.
5423 	 */
5424 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5425 	kvm_clear_exception_queue(vcpu);
5426 
5427 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5428 		init_emulate_ctxt(vcpu);
5429 
5430 		/*
5431 		 * We will reenter on the same instruction since
5432 		 * we do not set complete_userspace_io.  This does not
5433 		 * handle watchpoints yet, those would be handled in
5434 		 * the emulate_ops.
5435 		 */
5436 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5437 			return r;
5438 
5439 		ctxt->interruptibility = 0;
5440 		ctxt->have_exception = false;
5441 		ctxt->exception.vector = -1;
5442 		ctxt->perm_ok = false;
5443 
5444 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5445 
5446 		r = x86_decode_insn(ctxt, insn, insn_len);
5447 
5448 		trace_kvm_emulate_insn_start(vcpu);
5449 		++vcpu->stat.insn_emulation;
5450 		if (r != EMULATION_OK)  {
5451 			if (emulation_type & EMULTYPE_TRAP_UD)
5452 				return EMULATE_FAIL;
5453 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5454 						emulation_type))
5455 				return EMULATE_DONE;
5456 			if (emulation_type & EMULTYPE_SKIP)
5457 				return EMULATE_FAIL;
5458 			return handle_emulation_failure(vcpu);
5459 		}
5460 	}
5461 
5462 	if (emulation_type & EMULTYPE_SKIP) {
5463 		kvm_rip_write(vcpu, ctxt->_eip);
5464 		if (ctxt->eflags & X86_EFLAGS_RF)
5465 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5466 		return EMULATE_DONE;
5467 	}
5468 
5469 	if (retry_instruction(ctxt, cr2, emulation_type))
5470 		return EMULATE_DONE;
5471 
5472 	/* this is needed for vmware backdoor interface to work since it
5473 	   changes registers values  during IO operation */
5474 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5475 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5476 		emulator_invalidate_register_cache(ctxt);
5477 	}
5478 
5479 restart:
5480 	r = x86_emulate_insn(ctxt);
5481 
5482 	if (r == EMULATION_INTERCEPTED)
5483 		return EMULATE_DONE;
5484 
5485 	if (r == EMULATION_FAILED) {
5486 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5487 					emulation_type))
5488 			return EMULATE_DONE;
5489 
5490 		return handle_emulation_failure(vcpu);
5491 	}
5492 
5493 	if (ctxt->have_exception) {
5494 		r = EMULATE_DONE;
5495 		if (inject_emulated_exception(vcpu))
5496 			return r;
5497 	} else if (vcpu->arch.pio.count) {
5498 		if (!vcpu->arch.pio.in) {
5499 			/* FIXME: return into emulator if single-stepping.  */
5500 			vcpu->arch.pio.count = 0;
5501 		} else {
5502 			writeback = false;
5503 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5504 		}
5505 		r = EMULATE_USER_EXIT;
5506 	} else if (vcpu->mmio_needed) {
5507 		if (!vcpu->mmio_is_write)
5508 			writeback = false;
5509 		r = EMULATE_USER_EXIT;
5510 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5511 	} else if (r == EMULATION_RESTART)
5512 		goto restart;
5513 	else
5514 		r = EMULATE_DONE;
5515 
5516 	if (writeback) {
5517 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5518 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5519 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5520 		if (vcpu->arch.hflags != ctxt->emul_flags)
5521 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5522 		kvm_rip_write(vcpu, ctxt->eip);
5523 		if (r == EMULATE_DONE)
5524 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5525 		if (!ctxt->have_exception ||
5526 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5527 			__kvm_set_rflags(vcpu, ctxt->eflags);
5528 
5529 		/*
5530 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5531 		 * do nothing, and it will be requested again as soon as
5532 		 * the shadow expires.  But we still need to check here,
5533 		 * because POPF has no interrupt shadow.
5534 		 */
5535 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5536 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5537 	} else
5538 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5539 
5540 	return r;
5541 }
5542 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5543 
5544 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5545 {
5546 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5547 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5548 					    size, port, &val, 1);
5549 	/* do not return to emulator after return from userspace */
5550 	vcpu->arch.pio.count = 0;
5551 	return ret;
5552 }
5553 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5554 
5555 static void tsc_bad(void *info)
5556 {
5557 	__this_cpu_write(cpu_tsc_khz, 0);
5558 }
5559 
5560 static void tsc_khz_changed(void *data)
5561 {
5562 	struct cpufreq_freqs *freq = data;
5563 	unsigned long khz = 0;
5564 
5565 	if (data)
5566 		khz = freq->new;
5567 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5568 		khz = cpufreq_quick_get(raw_smp_processor_id());
5569 	if (!khz)
5570 		khz = tsc_khz;
5571 	__this_cpu_write(cpu_tsc_khz, khz);
5572 }
5573 
5574 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5575 				     void *data)
5576 {
5577 	struct cpufreq_freqs *freq = data;
5578 	struct kvm *kvm;
5579 	struct kvm_vcpu *vcpu;
5580 	int i, send_ipi = 0;
5581 
5582 	/*
5583 	 * We allow guests to temporarily run on slowing clocks,
5584 	 * provided we notify them after, or to run on accelerating
5585 	 * clocks, provided we notify them before.  Thus time never
5586 	 * goes backwards.
5587 	 *
5588 	 * However, we have a problem.  We can't atomically update
5589 	 * the frequency of a given CPU from this function; it is
5590 	 * merely a notifier, which can be called from any CPU.
5591 	 * Changing the TSC frequency at arbitrary points in time
5592 	 * requires a recomputation of local variables related to
5593 	 * the TSC for each VCPU.  We must flag these local variables
5594 	 * to be updated and be sure the update takes place with the
5595 	 * new frequency before any guests proceed.
5596 	 *
5597 	 * Unfortunately, the combination of hotplug CPU and frequency
5598 	 * change creates an intractable locking scenario; the order
5599 	 * of when these callouts happen is undefined with respect to
5600 	 * CPU hotplug, and they can race with each other.  As such,
5601 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5602 	 * undefined; you can actually have a CPU frequency change take
5603 	 * place in between the computation of X and the setting of the
5604 	 * variable.  To protect against this problem, all updates of
5605 	 * the per_cpu tsc_khz variable are done in an interrupt
5606 	 * protected IPI, and all callers wishing to update the value
5607 	 * must wait for a synchronous IPI to complete (which is trivial
5608 	 * if the caller is on the CPU already).  This establishes the
5609 	 * necessary total order on variable updates.
5610 	 *
5611 	 * Note that because a guest time update may take place
5612 	 * anytime after the setting of the VCPU's request bit, the
5613 	 * correct TSC value must be set before the request.  However,
5614 	 * to ensure the update actually makes it to any guest which
5615 	 * starts running in hardware virtualization between the set
5616 	 * and the acquisition of the spinlock, we must also ping the
5617 	 * CPU after setting the request bit.
5618 	 *
5619 	 */
5620 
5621 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5622 		return 0;
5623 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5624 		return 0;
5625 
5626 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5627 
5628 	spin_lock(&kvm_lock);
5629 	list_for_each_entry(kvm, &vm_list, vm_list) {
5630 		kvm_for_each_vcpu(i, vcpu, kvm) {
5631 			if (vcpu->cpu != freq->cpu)
5632 				continue;
5633 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5634 			if (vcpu->cpu != smp_processor_id())
5635 				send_ipi = 1;
5636 		}
5637 	}
5638 	spin_unlock(&kvm_lock);
5639 
5640 	if (freq->old < freq->new && send_ipi) {
5641 		/*
5642 		 * We upscale the frequency.  Must make the guest
5643 		 * doesn't see old kvmclock values while running with
5644 		 * the new frequency, otherwise we risk the guest sees
5645 		 * time go backwards.
5646 		 *
5647 		 * In case we update the frequency for another cpu
5648 		 * (which might be in guest context) send an interrupt
5649 		 * to kick the cpu out of guest context.  Next time
5650 		 * guest context is entered kvmclock will be updated,
5651 		 * so the guest will not see stale values.
5652 		 */
5653 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5654 	}
5655 	return 0;
5656 }
5657 
5658 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5659 	.notifier_call  = kvmclock_cpufreq_notifier
5660 };
5661 
5662 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5663 					unsigned long action, void *hcpu)
5664 {
5665 	unsigned int cpu = (unsigned long)hcpu;
5666 
5667 	switch (action) {
5668 		case CPU_ONLINE:
5669 		case CPU_DOWN_FAILED:
5670 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5671 			break;
5672 		case CPU_DOWN_PREPARE:
5673 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5674 			break;
5675 	}
5676 	return NOTIFY_OK;
5677 }
5678 
5679 static struct notifier_block kvmclock_cpu_notifier_block = {
5680 	.notifier_call  = kvmclock_cpu_notifier,
5681 	.priority = -INT_MAX
5682 };
5683 
5684 static void kvm_timer_init(void)
5685 {
5686 	int cpu;
5687 
5688 	max_tsc_khz = tsc_khz;
5689 
5690 	cpu_notifier_register_begin();
5691 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5692 #ifdef CONFIG_CPU_FREQ
5693 		struct cpufreq_policy policy;
5694 		memset(&policy, 0, sizeof(policy));
5695 		cpu = get_cpu();
5696 		cpufreq_get_policy(&policy, cpu);
5697 		if (policy.cpuinfo.max_freq)
5698 			max_tsc_khz = policy.cpuinfo.max_freq;
5699 		put_cpu();
5700 #endif
5701 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5702 					  CPUFREQ_TRANSITION_NOTIFIER);
5703 	}
5704 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5705 	for_each_online_cpu(cpu)
5706 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5707 
5708 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5709 	cpu_notifier_register_done();
5710 
5711 }
5712 
5713 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5714 
5715 int kvm_is_in_guest(void)
5716 {
5717 	return __this_cpu_read(current_vcpu) != NULL;
5718 }
5719 
5720 static int kvm_is_user_mode(void)
5721 {
5722 	int user_mode = 3;
5723 
5724 	if (__this_cpu_read(current_vcpu))
5725 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5726 
5727 	return user_mode != 0;
5728 }
5729 
5730 static unsigned long kvm_get_guest_ip(void)
5731 {
5732 	unsigned long ip = 0;
5733 
5734 	if (__this_cpu_read(current_vcpu))
5735 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5736 
5737 	return ip;
5738 }
5739 
5740 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5741 	.is_in_guest		= kvm_is_in_guest,
5742 	.is_user_mode		= kvm_is_user_mode,
5743 	.get_guest_ip		= kvm_get_guest_ip,
5744 };
5745 
5746 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5747 {
5748 	__this_cpu_write(current_vcpu, vcpu);
5749 }
5750 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5751 
5752 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5753 {
5754 	__this_cpu_write(current_vcpu, NULL);
5755 }
5756 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5757 
5758 static void kvm_set_mmio_spte_mask(void)
5759 {
5760 	u64 mask;
5761 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5762 
5763 	/*
5764 	 * Set the reserved bits and the present bit of an paging-structure
5765 	 * entry to generate page fault with PFER.RSV = 1.
5766 	 */
5767 	 /* Mask the reserved physical address bits. */
5768 	mask = rsvd_bits(maxphyaddr, 51);
5769 
5770 	/* Bit 62 is always reserved for 32bit host. */
5771 	mask |= 0x3ull << 62;
5772 
5773 	/* Set the present bit. */
5774 	mask |= 1ull;
5775 
5776 #ifdef CONFIG_X86_64
5777 	/*
5778 	 * If reserved bit is not supported, clear the present bit to disable
5779 	 * mmio page fault.
5780 	 */
5781 	if (maxphyaddr == 52)
5782 		mask &= ~1ull;
5783 #endif
5784 
5785 	kvm_mmu_set_mmio_spte_mask(mask);
5786 }
5787 
5788 #ifdef CONFIG_X86_64
5789 static void pvclock_gtod_update_fn(struct work_struct *work)
5790 {
5791 	struct kvm *kvm;
5792 
5793 	struct kvm_vcpu *vcpu;
5794 	int i;
5795 
5796 	spin_lock(&kvm_lock);
5797 	list_for_each_entry(kvm, &vm_list, vm_list)
5798 		kvm_for_each_vcpu(i, vcpu, kvm)
5799 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5800 	atomic_set(&kvm_guest_has_master_clock, 0);
5801 	spin_unlock(&kvm_lock);
5802 }
5803 
5804 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5805 
5806 /*
5807  * Notification about pvclock gtod data update.
5808  */
5809 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5810 			       void *priv)
5811 {
5812 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5813 	struct timekeeper *tk = priv;
5814 
5815 	update_pvclock_gtod(tk);
5816 
5817 	/* disable master clock if host does not trust, or does not
5818 	 * use, TSC clocksource
5819 	 */
5820 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5821 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5822 		queue_work(system_long_wq, &pvclock_gtod_work);
5823 
5824 	return 0;
5825 }
5826 
5827 static struct notifier_block pvclock_gtod_notifier = {
5828 	.notifier_call = pvclock_gtod_notify,
5829 };
5830 #endif
5831 
5832 int kvm_arch_init(void *opaque)
5833 {
5834 	int r;
5835 	struct kvm_x86_ops *ops = opaque;
5836 
5837 	if (kvm_x86_ops) {
5838 		printk(KERN_ERR "kvm: already loaded the other module\n");
5839 		r = -EEXIST;
5840 		goto out;
5841 	}
5842 
5843 	if (!ops->cpu_has_kvm_support()) {
5844 		printk(KERN_ERR "kvm: no hardware support\n");
5845 		r = -EOPNOTSUPP;
5846 		goto out;
5847 	}
5848 	if (ops->disabled_by_bios()) {
5849 		printk(KERN_ERR "kvm: disabled by bios\n");
5850 		r = -EOPNOTSUPP;
5851 		goto out;
5852 	}
5853 
5854 	r = -ENOMEM;
5855 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5856 	if (!shared_msrs) {
5857 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5858 		goto out;
5859 	}
5860 
5861 	r = kvm_mmu_module_init();
5862 	if (r)
5863 		goto out_free_percpu;
5864 
5865 	kvm_set_mmio_spte_mask();
5866 
5867 	kvm_x86_ops = ops;
5868 
5869 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5870 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5871 
5872 	kvm_timer_init();
5873 
5874 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5875 
5876 	if (boot_cpu_has(X86_FEATURE_XSAVE))
5877 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5878 
5879 	kvm_lapic_init();
5880 #ifdef CONFIG_X86_64
5881 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5882 #endif
5883 
5884 	return 0;
5885 
5886 out_free_percpu:
5887 	free_percpu(shared_msrs);
5888 out:
5889 	return r;
5890 }
5891 
5892 void kvm_arch_exit(void)
5893 {
5894 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5895 
5896 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5897 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5898 					    CPUFREQ_TRANSITION_NOTIFIER);
5899 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5900 #ifdef CONFIG_X86_64
5901 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5902 #endif
5903 	kvm_x86_ops = NULL;
5904 	kvm_mmu_module_exit();
5905 	free_percpu(shared_msrs);
5906 }
5907 
5908 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5909 {
5910 	++vcpu->stat.halt_exits;
5911 	if (lapic_in_kernel(vcpu)) {
5912 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5913 		return 1;
5914 	} else {
5915 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5916 		return 0;
5917 	}
5918 }
5919 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5920 
5921 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5922 {
5923 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5924 	return kvm_vcpu_halt(vcpu);
5925 }
5926 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5927 
5928 /*
5929  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5930  *
5931  * @apicid - apicid of vcpu to be kicked.
5932  */
5933 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5934 {
5935 	struct kvm_lapic_irq lapic_irq;
5936 
5937 	lapic_irq.shorthand = 0;
5938 	lapic_irq.dest_mode = 0;
5939 	lapic_irq.dest_id = apicid;
5940 	lapic_irq.msi_redir_hint = false;
5941 
5942 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5943 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5944 }
5945 
5946 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5947 {
5948 	vcpu->arch.apicv_active = false;
5949 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5950 }
5951 
5952 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5953 {
5954 	unsigned long nr, a0, a1, a2, a3, ret;
5955 	int op_64_bit, r = 1;
5956 
5957 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5958 
5959 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5960 		return kvm_hv_hypercall(vcpu);
5961 
5962 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5963 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5964 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5965 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5966 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5967 
5968 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5969 
5970 	op_64_bit = is_64_bit_mode(vcpu);
5971 	if (!op_64_bit) {
5972 		nr &= 0xFFFFFFFF;
5973 		a0 &= 0xFFFFFFFF;
5974 		a1 &= 0xFFFFFFFF;
5975 		a2 &= 0xFFFFFFFF;
5976 		a3 &= 0xFFFFFFFF;
5977 	}
5978 
5979 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5980 		ret = -KVM_EPERM;
5981 		goto out;
5982 	}
5983 
5984 	switch (nr) {
5985 	case KVM_HC_VAPIC_POLL_IRQ:
5986 		ret = 0;
5987 		break;
5988 	case KVM_HC_KICK_CPU:
5989 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5990 		ret = 0;
5991 		break;
5992 	default:
5993 		ret = -KVM_ENOSYS;
5994 		break;
5995 	}
5996 out:
5997 	if (!op_64_bit)
5998 		ret = (u32)ret;
5999 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6000 	++vcpu->stat.hypercalls;
6001 	return r;
6002 }
6003 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6004 
6005 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6006 {
6007 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6008 	char instruction[3];
6009 	unsigned long rip = kvm_rip_read(vcpu);
6010 
6011 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6012 
6013 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6014 }
6015 
6016 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6017 {
6018 	return vcpu->run->request_interrupt_window &&
6019 		likely(!pic_in_kernel(vcpu->kvm));
6020 }
6021 
6022 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6023 {
6024 	struct kvm_run *kvm_run = vcpu->run;
6025 
6026 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6027 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6028 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6029 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6030 	kvm_run->ready_for_interrupt_injection =
6031 		pic_in_kernel(vcpu->kvm) ||
6032 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6033 }
6034 
6035 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6036 {
6037 	int max_irr, tpr;
6038 
6039 	if (!kvm_x86_ops->update_cr8_intercept)
6040 		return;
6041 
6042 	if (!lapic_in_kernel(vcpu))
6043 		return;
6044 
6045 	if (vcpu->arch.apicv_active)
6046 		return;
6047 
6048 	if (!vcpu->arch.apic->vapic_addr)
6049 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6050 	else
6051 		max_irr = -1;
6052 
6053 	if (max_irr != -1)
6054 		max_irr >>= 4;
6055 
6056 	tpr = kvm_lapic_get_cr8(vcpu);
6057 
6058 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6059 }
6060 
6061 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6062 {
6063 	int r;
6064 
6065 	/* try to reinject previous events if any */
6066 	if (vcpu->arch.exception.pending) {
6067 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6068 					vcpu->arch.exception.has_error_code,
6069 					vcpu->arch.exception.error_code);
6070 
6071 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6072 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6073 					     X86_EFLAGS_RF);
6074 
6075 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6076 		    (vcpu->arch.dr7 & DR7_GD)) {
6077 			vcpu->arch.dr7 &= ~DR7_GD;
6078 			kvm_update_dr7(vcpu);
6079 		}
6080 
6081 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6082 					  vcpu->arch.exception.has_error_code,
6083 					  vcpu->arch.exception.error_code,
6084 					  vcpu->arch.exception.reinject);
6085 		return 0;
6086 	}
6087 
6088 	if (vcpu->arch.nmi_injected) {
6089 		kvm_x86_ops->set_nmi(vcpu);
6090 		return 0;
6091 	}
6092 
6093 	if (vcpu->arch.interrupt.pending) {
6094 		kvm_x86_ops->set_irq(vcpu);
6095 		return 0;
6096 	}
6097 
6098 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6099 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6100 		if (r != 0)
6101 			return r;
6102 	}
6103 
6104 	/* try to inject new event if pending */
6105 	if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6106 		--vcpu->arch.nmi_pending;
6107 		vcpu->arch.nmi_injected = true;
6108 		kvm_x86_ops->set_nmi(vcpu);
6109 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6110 		/*
6111 		 * Because interrupts can be injected asynchronously, we are
6112 		 * calling check_nested_events again here to avoid a race condition.
6113 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6114 		 * proposal and current concerns.  Perhaps we should be setting
6115 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6116 		 */
6117 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6118 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6119 			if (r != 0)
6120 				return r;
6121 		}
6122 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6123 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6124 					    false);
6125 			kvm_x86_ops->set_irq(vcpu);
6126 		}
6127 	}
6128 	return 0;
6129 }
6130 
6131 static void process_nmi(struct kvm_vcpu *vcpu)
6132 {
6133 	unsigned limit = 2;
6134 
6135 	/*
6136 	 * x86 is limited to one NMI running, and one NMI pending after it.
6137 	 * If an NMI is already in progress, limit further NMIs to just one.
6138 	 * Otherwise, allow two (and we'll inject the first one immediately).
6139 	 */
6140 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6141 		limit = 1;
6142 
6143 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6144 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6145 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6146 }
6147 
6148 #define put_smstate(type, buf, offset, val)			  \
6149 	*(type *)((buf) + (offset) - 0x7e00) = val
6150 
6151 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6152 {
6153 	u32 flags = 0;
6154 	flags |= seg->g       << 23;
6155 	flags |= seg->db      << 22;
6156 	flags |= seg->l       << 21;
6157 	flags |= seg->avl     << 20;
6158 	flags |= seg->present << 15;
6159 	flags |= seg->dpl     << 13;
6160 	flags |= seg->s       << 12;
6161 	flags |= seg->type    << 8;
6162 	return flags;
6163 }
6164 
6165 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6166 {
6167 	struct kvm_segment seg;
6168 	int offset;
6169 
6170 	kvm_get_segment(vcpu, &seg, n);
6171 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6172 
6173 	if (n < 3)
6174 		offset = 0x7f84 + n * 12;
6175 	else
6176 		offset = 0x7f2c + (n - 3) * 12;
6177 
6178 	put_smstate(u32, buf, offset + 8, seg.base);
6179 	put_smstate(u32, buf, offset + 4, seg.limit);
6180 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6181 }
6182 
6183 #ifdef CONFIG_X86_64
6184 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6185 {
6186 	struct kvm_segment seg;
6187 	int offset;
6188 	u16 flags;
6189 
6190 	kvm_get_segment(vcpu, &seg, n);
6191 	offset = 0x7e00 + n * 16;
6192 
6193 	flags = process_smi_get_segment_flags(&seg) >> 8;
6194 	put_smstate(u16, buf, offset, seg.selector);
6195 	put_smstate(u16, buf, offset + 2, flags);
6196 	put_smstate(u32, buf, offset + 4, seg.limit);
6197 	put_smstate(u64, buf, offset + 8, seg.base);
6198 }
6199 #endif
6200 
6201 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6202 {
6203 	struct desc_ptr dt;
6204 	struct kvm_segment seg;
6205 	unsigned long val;
6206 	int i;
6207 
6208 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6209 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6210 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6211 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6212 
6213 	for (i = 0; i < 8; i++)
6214 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6215 
6216 	kvm_get_dr(vcpu, 6, &val);
6217 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6218 	kvm_get_dr(vcpu, 7, &val);
6219 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6220 
6221 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6222 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6223 	put_smstate(u32, buf, 0x7f64, seg.base);
6224 	put_smstate(u32, buf, 0x7f60, seg.limit);
6225 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6226 
6227 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6228 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6229 	put_smstate(u32, buf, 0x7f80, seg.base);
6230 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6231 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6232 
6233 	kvm_x86_ops->get_gdt(vcpu, &dt);
6234 	put_smstate(u32, buf, 0x7f74, dt.address);
6235 	put_smstate(u32, buf, 0x7f70, dt.size);
6236 
6237 	kvm_x86_ops->get_idt(vcpu, &dt);
6238 	put_smstate(u32, buf, 0x7f58, dt.address);
6239 	put_smstate(u32, buf, 0x7f54, dt.size);
6240 
6241 	for (i = 0; i < 6; i++)
6242 		process_smi_save_seg_32(vcpu, buf, i);
6243 
6244 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6245 
6246 	/* revision id */
6247 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6248 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6249 }
6250 
6251 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6252 {
6253 #ifdef CONFIG_X86_64
6254 	struct desc_ptr dt;
6255 	struct kvm_segment seg;
6256 	unsigned long val;
6257 	int i;
6258 
6259 	for (i = 0; i < 16; i++)
6260 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6261 
6262 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6263 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6264 
6265 	kvm_get_dr(vcpu, 6, &val);
6266 	put_smstate(u64, buf, 0x7f68, val);
6267 	kvm_get_dr(vcpu, 7, &val);
6268 	put_smstate(u64, buf, 0x7f60, val);
6269 
6270 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6271 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6272 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6273 
6274 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6275 
6276 	/* revision id */
6277 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6278 
6279 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6280 
6281 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6282 	put_smstate(u16, buf, 0x7e90, seg.selector);
6283 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6284 	put_smstate(u32, buf, 0x7e94, seg.limit);
6285 	put_smstate(u64, buf, 0x7e98, seg.base);
6286 
6287 	kvm_x86_ops->get_idt(vcpu, &dt);
6288 	put_smstate(u32, buf, 0x7e84, dt.size);
6289 	put_smstate(u64, buf, 0x7e88, dt.address);
6290 
6291 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6292 	put_smstate(u16, buf, 0x7e70, seg.selector);
6293 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6294 	put_smstate(u32, buf, 0x7e74, seg.limit);
6295 	put_smstate(u64, buf, 0x7e78, seg.base);
6296 
6297 	kvm_x86_ops->get_gdt(vcpu, &dt);
6298 	put_smstate(u32, buf, 0x7e64, dt.size);
6299 	put_smstate(u64, buf, 0x7e68, dt.address);
6300 
6301 	for (i = 0; i < 6; i++)
6302 		process_smi_save_seg_64(vcpu, buf, i);
6303 #else
6304 	WARN_ON_ONCE(1);
6305 #endif
6306 }
6307 
6308 static void process_smi(struct kvm_vcpu *vcpu)
6309 {
6310 	struct kvm_segment cs, ds;
6311 	struct desc_ptr dt;
6312 	char buf[512];
6313 	u32 cr0;
6314 
6315 	if (is_smm(vcpu)) {
6316 		vcpu->arch.smi_pending = true;
6317 		return;
6318 	}
6319 
6320 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6321 	vcpu->arch.hflags |= HF_SMM_MASK;
6322 	memset(buf, 0, 512);
6323 	if (guest_cpuid_has_longmode(vcpu))
6324 		process_smi_save_state_64(vcpu, buf);
6325 	else
6326 		process_smi_save_state_32(vcpu, buf);
6327 
6328 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6329 
6330 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6331 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6332 	else
6333 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6334 
6335 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6336 	kvm_rip_write(vcpu, 0x8000);
6337 
6338 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6339 	kvm_x86_ops->set_cr0(vcpu, cr0);
6340 	vcpu->arch.cr0 = cr0;
6341 
6342 	kvm_x86_ops->set_cr4(vcpu, 0);
6343 
6344 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6345 	dt.address = dt.size = 0;
6346 	kvm_x86_ops->set_idt(vcpu, &dt);
6347 
6348 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6349 
6350 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6351 	cs.base = vcpu->arch.smbase;
6352 
6353 	ds.selector = 0;
6354 	ds.base = 0;
6355 
6356 	cs.limit    = ds.limit = 0xffffffff;
6357 	cs.type     = ds.type = 0x3;
6358 	cs.dpl      = ds.dpl = 0;
6359 	cs.db       = ds.db = 0;
6360 	cs.s        = ds.s = 1;
6361 	cs.l        = ds.l = 0;
6362 	cs.g        = ds.g = 1;
6363 	cs.avl      = ds.avl = 0;
6364 	cs.present  = ds.present = 1;
6365 	cs.unusable = ds.unusable = 0;
6366 	cs.padding  = ds.padding = 0;
6367 
6368 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6369 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6370 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6371 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6372 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6373 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6374 
6375 	if (guest_cpuid_has_longmode(vcpu))
6376 		kvm_x86_ops->set_efer(vcpu, 0);
6377 
6378 	kvm_update_cpuid(vcpu);
6379 	kvm_mmu_reset_context(vcpu);
6380 }
6381 
6382 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6383 {
6384 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6385 }
6386 
6387 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6388 {
6389 	u64 eoi_exit_bitmap[4];
6390 
6391 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6392 		return;
6393 
6394 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6395 
6396 	if (irqchip_split(vcpu->kvm))
6397 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6398 	else {
6399 		if (vcpu->arch.apicv_active)
6400 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6401 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6402 	}
6403 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6404 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6405 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6406 }
6407 
6408 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6409 {
6410 	++vcpu->stat.tlb_flush;
6411 	kvm_x86_ops->tlb_flush(vcpu);
6412 }
6413 
6414 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6415 {
6416 	struct page *page = NULL;
6417 
6418 	if (!lapic_in_kernel(vcpu))
6419 		return;
6420 
6421 	if (!kvm_x86_ops->set_apic_access_page_addr)
6422 		return;
6423 
6424 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6425 	if (is_error_page(page))
6426 		return;
6427 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6428 
6429 	/*
6430 	 * Do not pin apic access page in memory, the MMU notifier
6431 	 * will call us again if it is migrated or swapped out.
6432 	 */
6433 	put_page(page);
6434 }
6435 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6436 
6437 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6438 					   unsigned long address)
6439 {
6440 	/*
6441 	 * The physical address of apic access page is stored in the VMCS.
6442 	 * Update it when it becomes invalid.
6443 	 */
6444 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6445 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6446 }
6447 
6448 /*
6449  * Returns 1 to let vcpu_run() continue the guest execution loop without
6450  * exiting to the userspace.  Otherwise, the value will be returned to the
6451  * userspace.
6452  */
6453 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6454 {
6455 	int r;
6456 	bool req_int_win =
6457 		dm_request_for_irq_injection(vcpu) &&
6458 		kvm_cpu_accept_dm_intr(vcpu);
6459 
6460 	bool req_immediate_exit = false;
6461 
6462 	if (vcpu->requests) {
6463 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6464 			kvm_mmu_unload(vcpu);
6465 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6466 			__kvm_migrate_timers(vcpu);
6467 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6468 			kvm_gen_update_masterclock(vcpu->kvm);
6469 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6470 			kvm_gen_kvmclock_update(vcpu);
6471 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6472 			r = kvm_guest_time_update(vcpu);
6473 			if (unlikely(r))
6474 				goto out;
6475 		}
6476 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6477 			kvm_mmu_sync_roots(vcpu);
6478 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6479 			kvm_vcpu_flush_tlb(vcpu);
6480 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6481 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6482 			r = 0;
6483 			goto out;
6484 		}
6485 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6486 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6487 			r = 0;
6488 			goto out;
6489 		}
6490 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6491 			vcpu->fpu_active = 0;
6492 			kvm_x86_ops->fpu_deactivate(vcpu);
6493 		}
6494 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6495 			/* Page is swapped out. Do synthetic halt */
6496 			vcpu->arch.apf.halted = true;
6497 			r = 1;
6498 			goto out;
6499 		}
6500 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6501 			record_steal_time(vcpu);
6502 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6503 			process_smi(vcpu);
6504 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6505 			process_nmi(vcpu);
6506 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6507 			kvm_pmu_handle_event(vcpu);
6508 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6509 			kvm_pmu_deliver_pmi(vcpu);
6510 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6511 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6512 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6513 				     vcpu->arch.ioapic_handled_vectors)) {
6514 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6515 				vcpu->run->eoi.vector =
6516 						vcpu->arch.pending_ioapic_eoi;
6517 				r = 0;
6518 				goto out;
6519 			}
6520 		}
6521 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6522 			vcpu_scan_ioapic(vcpu);
6523 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6524 			kvm_vcpu_reload_apic_access_page(vcpu);
6525 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6526 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6527 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6528 			r = 0;
6529 			goto out;
6530 		}
6531 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6532 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6533 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6534 			r = 0;
6535 			goto out;
6536 		}
6537 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6538 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6539 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6540 			r = 0;
6541 			goto out;
6542 		}
6543 
6544 		/*
6545 		 * KVM_REQ_HV_STIMER has to be processed after
6546 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6547 		 * depend on the guest clock being up-to-date
6548 		 */
6549 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6550 			kvm_hv_process_stimers(vcpu);
6551 	}
6552 
6553 	/*
6554 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6555 	 * VT-d hardware, so we have to update RVI unconditionally.
6556 	 */
6557 	if (kvm_lapic_enabled(vcpu)) {
6558 		/*
6559 		 * Update architecture specific hints for APIC
6560 		 * virtual interrupt delivery.
6561 		 */
6562 		if (vcpu->arch.apicv_active)
6563 			kvm_x86_ops->hwapic_irr_update(vcpu,
6564 				kvm_lapic_find_highest_irr(vcpu));
6565 	}
6566 
6567 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6568 		kvm_apic_accept_events(vcpu);
6569 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6570 			r = 1;
6571 			goto out;
6572 		}
6573 
6574 		if (inject_pending_event(vcpu, req_int_win) != 0)
6575 			req_immediate_exit = true;
6576 		/* enable NMI/IRQ window open exits if needed */
6577 		else {
6578 			if (vcpu->arch.nmi_pending)
6579 				kvm_x86_ops->enable_nmi_window(vcpu);
6580 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6581 				kvm_x86_ops->enable_irq_window(vcpu);
6582 		}
6583 
6584 		if (kvm_lapic_enabled(vcpu)) {
6585 			update_cr8_intercept(vcpu);
6586 			kvm_lapic_sync_to_vapic(vcpu);
6587 		}
6588 	}
6589 
6590 	r = kvm_mmu_reload(vcpu);
6591 	if (unlikely(r)) {
6592 		goto cancel_injection;
6593 	}
6594 
6595 	preempt_disable();
6596 
6597 	kvm_x86_ops->prepare_guest_switch(vcpu);
6598 	if (vcpu->fpu_active)
6599 		kvm_load_guest_fpu(vcpu);
6600 	vcpu->mode = IN_GUEST_MODE;
6601 
6602 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6603 
6604 	/*
6605 	 * We should set ->mode before check ->requests,
6606 	 * Please see the comment in kvm_make_all_cpus_request.
6607 	 * This also orders the write to mode from any reads
6608 	 * to the page tables done while the VCPU is running.
6609 	 * Please see the comment in kvm_flush_remote_tlbs.
6610 	 */
6611 	smp_mb__after_srcu_read_unlock();
6612 
6613 	local_irq_disable();
6614 
6615 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6616 	    || need_resched() || signal_pending(current)) {
6617 		vcpu->mode = OUTSIDE_GUEST_MODE;
6618 		smp_wmb();
6619 		local_irq_enable();
6620 		preempt_enable();
6621 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6622 		r = 1;
6623 		goto cancel_injection;
6624 	}
6625 
6626 	kvm_load_guest_xcr0(vcpu);
6627 
6628 	if (req_immediate_exit)
6629 		smp_send_reschedule(vcpu->cpu);
6630 
6631 	trace_kvm_entry(vcpu->vcpu_id);
6632 	wait_lapic_expire(vcpu);
6633 	__kvm_guest_enter();
6634 
6635 	if (unlikely(vcpu->arch.switch_db_regs)) {
6636 		set_debugreg(0, 7);
6637 		set_debugreg(vcpu->arch.eff_db[0], 0);
6638 		set_debugreg(vcpu->arch.eff_db[1], 1);
6639 		set_debugreg(vcpu->arch.eff_db[2], 2);
6640 		set_debugreg(vcpu->arch.eff_db[3], 3);
6641 		set_debugreg(vcpu->arch.dr6, 6);
6642 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6643 	}
6644 
6645 	kvm_x86_ops->run(vcpu);
6646 
6647 	/*
6648 	 * Do this here before restoring debug registers on the host.  And
6649 	 * since we do this before handling the vmexit, a DR access vmexit
6650 	 * can (a) read the correct value of the debug registers, (b) set
6651 	 * KVM_DEBUGREG_WONT_EXIT again.
6652 	 */
6653 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6654 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6655 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6656 		kvm_update_dr0123(vcpu);
6657 		kvm_update_dr6(vcpu);
6658 		kvm_update_dr7(vcpu);
6659 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6660 	}
6661 
6662 	/*
6663 	 * If the guest has used debug registers, at least dr7
6664 	 * will be disabled while returning to the host.
6665 	 * If we don't have active breakpoints in the host, we don't
6666 	 * care about the messed up debug address registers. But if
6667 	 * we have some of them active, restore the old state.
6668 	 */
6669 	if (hw_breakpoint_active())
6670 		hw_breakpoint_restore();
6671 
6672 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6673 
6674 	vcpu->mode = OUTSIDE_GUEST_MODE;
6675 	smp_wmb();
6676 
6677 	kvm_put_guest_xcr0(vcpu);
6678 
6679 	/* Interrupt is enabled by handle_external_intr() */
6680 	kvm_x86_ops->handle_external_intr(vcpu);
6681 
6682 	++vcpu->stat.exits;
6683 
6684 	/*
6685 	 * We must have an instruction between local_irq_enable() and
6686 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6687 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6688 	 * But we need to prevent reordering, hence this barrier():
6689 	 */
6690 	barrier();
6691 
6692 	kvm_guest_exit();
6693 
6694 	preempt_enable();
6695 
6696 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6697 
6698 	/*
6699 	 * Profile KVM exit RIPs:
6700 	 */
6701 	if (unlikely(prof_on == KVM_PROFILING)) {
6702 		unsigned long rip = kvm_rip_read(vcpu);
6703 		profile_hit(KVM_PROFILING, (void *)rip);
6704 	}
6705 
6706 	if (unlikely(vcpu->arch.tsc_always_catchup))
6707 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6708 
6709 	if (vcpu->arch.apic_attention)
6710 		kvm_lapic_sync_from_vapic(vcpu);
6711 
6712 	r = kvm_x86_ops->handle_exit(vcpu);
6713 	return r;
6714 
6715 cancel_injection:
6716 	kvm_x86_ops->cancel_injection(vcpu);
6717 	if (unlikely(vcpu->arch.apic_attention))
6718 		kvm_lapic_sync_from_vapic(vcpu);
6719 out:
6720 	return r;
6721 }
6722 
6723 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6724 {
6725 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6726 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6727 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6728 		kvm_vcpu_block(vcpu);
6729 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6730 
6731 		if (kvm_x86_ops->post_block)
6732 			kvm_x86_ops->post_block(vcpu);
6733 
6734 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6735 			return 1;
6736 	}
6737 
6738 	kvm_apic_accept_events(vcpu);
6739 	switch(vcpu->arch.mp_state) {
6740 	case KVM_MP_STATE_HALTED:
6741 		vcpu->arch.pv.pv_unhalted = false;
6742 		vcpu->arch.mp_state =
6743 			KVM_MP_STATE_RUNNABLE;
6744 	case KVM_MP_STATE_RUNNABLE:
6745 		vcpu->arch.apf.halted = false;
6746 		break;
6747 	case KVM_MP_STATE_INIT_RECEIVED:
6748 		break;
6749 	default:
6750 		return -EINTR;
6751 		break;
6752 	}
6753 	return 1;
6754 }
6755 
6756 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6757 {
6758 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6759 		!vcpu->arch.apf.halted);
6760 }
6761 
6762 static int vcpu_run(struct kvm_vcpu *vcpu)
6763 {
6764 	int r;
6765 	struct kvm *kvm = vcpu->kvm;
6766 
6767 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6768 
6769 	for (;;) {
6770 		if (kvm_vcpu_running(vcpu)) {
6771 			r = vcpu_enter_guest(vcpu);
6772 		} else {
6773 			r = vcpu_block(kvm, vcpu);
6774 		}
6775 
6776 		if (r <= 0)
6777 			break;
6778 
6779 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6780 		if (kvm_cpu_has_pending_timer(vcpu))
6781 			kvm_inject_pending_timer_irqs(vcpu);
6782 
6783 		if (dm_request_for_irq_injection(vcpu) &&
6784 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6785 			r = 0;
6786 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6787 			++vcpu->stat.request_irq_exits;
6788 			break;
6789 		}
6790 
6791 		kvm_check_async_pf_completion(vcpu);
6792 
6793 		if (signal_pending(current)) {
6794 			r = -EINTR;
6795 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6796 			++vcpu->stat.signal_exits;
6797 			break;
6798 		}
6799 		if (need_resched()) {
6800 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6801 			cond_resched();
6802 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6803 		}
6804 	}
6805 
6806 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6807 
6808 	return r;
6809 }
6810 
6811 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6812 {
6813 	int r;
6814 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6815 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6816 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6817 	if (r != EMULATE_DONE)
6818 		return 0;
6819 	return 1;
6820 }
6821 
6822 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6823 {
6824 	BUG_ON(!vcpu->arch.pio.count);
6825 
6826 	return complete_emulated_io(vcpu);
6827 }
6828 
6829 /*
6830  * Implements the following, as a state machine:
6831  *
6832  * read:
6833  *   for each fragment
6834  *     for each mmio piece in the fragment
6835  *       write gpa, len
6836  *       exit
6837  *       copy data
6838  *   execute insn
6839  *
6840  * write:
6841  *   for each fragment
6842  *     for each mmio piece in the fragment
6843  *       write gpa, len
6844  *       copy data
6845  *       exit
6846  */
6847 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6848 {
6849 	struct kvm_run *run = vcpu->run;
6850 	struct kvm_mmio_fragment *frag;
6851 	unsigned len;
6852 
6853 	BUG_ON(!vcpu->mmio_needed);
6854 
6855 	/* Complete previous fragment */
6856 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6857 	len = min(8u, frag->len);
6858 	if (!vcpu->mmio_is_write)
6859 		memcpy(frag->data, run->mmio.data, len);
6860 
6861 	if (frag->len <= 8) {
6862 		/* Switch to the next fragment. */
6863 		frag++;
6864 		vcpu->mmio_cur_fragment++;
6865 	} else {
6866 		/* Go forward to the next mmio piece. */
6867 		frag->data += len;
6868 		frag->gpa += len;
6869 		frag->len -= len;
6870 	}
6871 
6872 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6873 		vcpu->mmio_needed = 0;
6874 
6875 		/* FIXME: return into emulator if single-stepping.  */
6876 		if (vcpu->mmio_is_write)
6877 			return 1;
6878 		vcpu->mmio_read_completed = 1;
6879 		return complete_emulated_io(vcpu);
6880 	}
6881 
6882 	run->exit_reason = KVM_EXIT_MMIO;
6883 	run->mmio.phys_addr = frag->gpa;
6884 	if (vcpu->mmio_is_write)
6885 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6886 	run->mmio.len = min(8u, frag->len);
6887 	run->mmio.is_write = vcpu->mmio_is_write;
6888 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6889 	return 0;
6890 }
6891 
6892 
6893 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6894 {
6895 	struct fpu *fpu = &current->thread.fpu;
6896 	int r;
6897 	sigset_t sigsaved;
6898 
6899 	fpu__activate_curr(fpu);
6900 
6901 	if (vcpu->sigset_active)
6902 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6903 
6904 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6905 		kvm_vcpu_block(vcpu);
6906 		kvm_apic_accept_events(vcpu);
6907 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6908 		r = -EAGAIN;
6909 		goto out;
6910 	}
6911 
6912 	/* re-sync apic's tpr */
6913 	if (!lapic_in_kernel(vcpu)) {
6914 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6915 			r = -EINVAL;
6916 			goto out;
6917 		}
6918 	}
6919 
6920 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6921 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6922 		vcpu->arch.complete_userspace_io = NULL;
6923 		r = cui(vcpu);
6924 		if (r <= 0)
6925 			goto out;
6926 	} else
6927 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6928 
6929 	r = vcpu_run(vcpu);
6930 
6931 out:
6932 	post_kvm_run_save(vcpu);
6933 	if (vcpu->sigset_active)
6934 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6935 
6936 	return r;
6937 }
6938 
6939 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6940 {
6941 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6942 		/*
6943 		 * We are here if userspace calls get_regs() in the middle of
6944 		 * instruction emulation. Registers state needs to be copied
6945 		 * back from emulation context to vcpu. Userspace shouldn't do
6946 		 * that usually, but some bad designed PV devices (vmware
6947 		 * backdoor interface) need this to work
6948 		 */
6949 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6950 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6951 	}
6952 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6953 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6954 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6955 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6956 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6957 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6958 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6959 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6960 #ifdef CONFIG_X86_64
6961 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6962 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6963 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6964 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6965 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6966 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6967 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6968 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6969 #endif
6970 
6971 	regs->rip = kvm_rip_read(vcpu);
6972 	regs->rflags = kvm_get_rflags(vcpu);
6973 
6974 	return 0;
6975 }
6976 
6977 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6978 {
6979 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6980 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6981 
6982 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6983 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6984 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6985 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6986 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6987 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6988 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6989 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6990 #ifdef CONFIG_X86_64
6991 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6992 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6993 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6994 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6995 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6996 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6997 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6998 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6999 #endif
7000 
7001 	kvm_rip_write(vcpu, regs->rip);
7002 	kvm_set_rflags(vcpu, regs->rflags);
7003 
7004 	vcpu->arch.exception.pending = false;
7005 
7006 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7007 
7008 	return 0;
7009 }
7010 
7011 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7012 {
7013 	struct kvm_segment cs;
7014 
7015 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7016 	*db = cs.db;
7017 	*l = cs.l;
7018 }
7019 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7020 
7021 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7022 				  struct kvm_sregs *sregs)
7023 {
7024 	struct desc_ptr dt;
7025 
7026 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7027 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7028 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7029 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7030 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7031 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7032 
7033 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7034 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7035 
7036 	kvm_x86_ops->get_idt(vcpu, &dt);
7037 	sregs->idt.limit = dt.size;
7038 	sregs->idt.base = dt.address;
7039 	kvm_x86_ops->get_gdt(vcpu, &dt);
7040 	sregs->gdt.limit = dt.size;
7041 	sregs->gdt.base = dt.address;
7042 
7043 	sregs->cr0 = kvm_read_cr0(vcpu);
7044 	sregs->cr2 = vcpu->arch.cr2;
7045 	sregs->cr3 = kvm_read_cr3(vcpu);
7046 	sregs->cr4 = kvm_read_cr4(vcpu);
7047 	sregs->cr8 = kvm_get_cr8(vcpu);
7048 	sregs->efer = vcpu->arch.efer;
7049 	sregs->apic_base = kvm_get_apic_base(vcpu);
7050 
7051 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7052 
7053 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7054 		set_bit(vcpu->arch.interrupt.nr,
7055 			(unsigned long *)sregs->interrupt_bitmap);
7056 
7057 	return 0;
7058 }
7059 
7060 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7061 				    struct kvm_mp_state *mp_state)
7062 {
7063 	kvm_apic_accept_events(vcpu);
7064 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7065 					vcpu->arch.pv.pv_unhalted)
7066 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7067 	else
7068 		mp_state->mp_state = vcpu->arch.mp_state;
7069 
7070 	return 0;
7071 }
7072 
7073 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7074 				    struct kvm_mp_state *mp_state)
7075 {
7076 	if (!lapic_in_kernel(vcpu) &&
7077 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7078 		return -EINVAL;
7079 
7080 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7081 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7082 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7083 	} else
7084 		vcpu->arch.mp_state = mp_state->mp_state;
7085 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7086 	return 0;
7087 }
7088 
7089 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7090 		    int reason, bool has_error_code, u32 error_code)
7091 {
7092 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7093 	int ret;
7094 
7095 	init_emulate_ctxt(vcpu);
7096 
7097 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7098 				   has_error_code, error_code);
7099 
7100 	if (ret)
7101 		return EMULATE_FAIL;
7102 
7103 	kvm_rip_write(vcpu, ctxt->eip);
7104 	kvm_set_rflags(vcpu, ctxt->eflags);
7105 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7106 	return EMULATE_DONE;
7107 }
7108 EXPORT_SYMBOL_GPL(kvm_task_switch);
7109 
7110 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7111 				  struct kvm_sregs *sregs)
7112 {
7113 	struct msr_data apic_base_msr;
7114 	int mmu_reset_needed = 0;
7115 	int pending_vec, max_bits, idx;
7116 	struct desc_ptr dt;
7117 
7118 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7119 		return -EINVAL;
7120 
7121 	dt.size = sregs->idt.limit;
7122 	dt.address = sregs->idt.base;
7123 	kvm_x86_ops->set_idt(vcpu, &dt);
7124 	dt.size = sregs->gdt.limit;
7125 	dt.address = sregs->gdt.base;
7126 	kvm_x86_ops->set_gdt(vcpu, &dt);
7127 
7128 	vcpu->arch.cr2 = sregs->cr2;
7129 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7130 	vcpu->arch.cr3 = sregs->cr3;
7131 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7132 
7133 	kvm_set_cr8(vcpu, sregs->cr8);
7134 
7135 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7136 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7137 	apic_base_msr.data = sregs->apic_base;
7138 	apic_base_msr.host_initiated = true;
7139 	kvm_set_apic_base(vcpu, &apic_base_msr);
7140 
7141 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7142 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7143 	vcpu->arch.cr0 = sregs->cr0;
7144 
7145 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7146 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7147 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7148 		kvm_update_cpuid(vcpu);
7149 
7150 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7151 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7152 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7153 		mmu_reset_needed = 1;
7154 	}
7155 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7156 
7157 	if (mmu_reset_needed)
7158 		kvm_mmu_reset_context(vcpu);
7159 
7160 	max_bits = KVM_NR_INTERRUPTS;
7161 	pending_vec = find_first_bit(
7162 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7163 	if (pending_vec < max_bits) {
7164 		kvm_queue_interrupt(vcpu, pending_vec, false);
7165 		pr_debug("Set back pending irq %d\n", pending_vec);
7166 	}
7167 
7168 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7169 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7170 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7171 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7172 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7173 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7174 
7175 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7176 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7177 
7178 	update_cr8_intercept(vcpu);
7179 
7180 	/* Older userspace won't unhalt the vcpu on reset. */
7181 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7182 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7183 	    !is_protmode(vcpu))
7184 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7185 
7186 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7187 
7188 	return 0;
7189 }
7190 
7191 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7192 					struct kvm_guest_debug *dbg)
7193 {
7194 	unsigned long rflags;
7195 	int i, r;
7196 
7197 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7198 		r = -EBUSY;
7199 		if (vcpu->arch.exception.pending)
7200 			goto out;
7201 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7202 			kvm_queue_exception(vcpu, DB_VECTOR);
7203 		else
7204 			kvm_queue_exception(vcpu, BP_VECTOR);
7205 	}
7206 
7207 	/*
7208 	 * Read rflags as long as potentially injected trace flags are still
7209 	 * filtered out.
7210 	 */
7211 	rflags = kvm_get_rflags(vcpu);
7212 
7213 	vcpu->guest_debug = dbg->control;
7214 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7215 		vcpu->guest_debug = 0;
7216 
7217 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7218 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7219 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7220 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7221 	} else {
7222 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7223 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7224 	}
7225 	kvm_update_dr7(vcpu);
7226 
7227 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7228 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7229 			get_segment_base(vcpu, VCPU_SREG_CS);
7230 
7231 	/*
7232 	 * Trigger an rflags update that will inject or remove the trace
7233 	 * flags.
7234 	 */
7235 	kvm_set_rflags(vcpu, rflags);
7236 
7237 	kvm_x86_ops->update_bp_intercept(vcpu);
7238 
7239 	r = 0;
7240 
7241 out:
7242 
7243 	return r;
7244 }
7245 
7246 /*
7247  * Translate a guest virtual address to a guest physical address.
7248  */
7249 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7250 				    struct kvm_translation *tr)
7251 {
7252 	unsigned long vaddr = tr->linear_address;
7253 	gpa_t gpa;
7254 	int idx;
7255 
7256 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7257 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7258 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7259 	tr->physical_address = gpa;
7260 	tr->valid = gpa != UNMAPPED_GVA;
7261 	tr->writeable = 1;
7262 	tr->usermode = 0;
7263 
7264 	return 0;
7265 }
7266 
7267 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7268 {
7269 	struct fxregs_state *fxsave =
7270 			&vcpu->arch.guest_fpu.state.fxsave;
7271 
7272 	memcpy(fpu->fpr, fxsave->st_space, 128);
7273 	fpu->fcw = fxsave->cwd;
7274 	fpu->fsw = fxsave->swd;
7275 	fpu->ftwx = fxsave->twd;
7276 	fpu->last_opcode = fxsave->fop;
7277 	fpu->last_ip = fxsave->rip;
7278 	fpu->last_dp = fxsave->rdp;
7279 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7280 
7281 	return 0;
7282 }
7283 
7284 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7285 {
7286 	struct fxregs_state *fxsave =
7287 			&vcpu->arch.guest_fpu.state.fxsave;
7288 
7289 	memcpy(fxsave->st_space, fpu->fpr, 128);
7290 	fxsave->cwd = fpu->fcw;
7291 	fxsave->swd = fpu->fsw;
7292 	fxsave->twd = fpu->ftwx;
7293 	fxsave->fop = fpu->last_opcode;
7294 	fxsave->rip = fpu->last_ip;
7295 	fxsave->rdp = fpu->last_dp;
7296 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7297 
7298 	return 0;
7299 }
7300 
7301 static void fx_init(struct kvm_vcpu *vcpu)
7302 {
7303 	fpstate_init(&vcpu->arch.guest_fpu.state);
7304 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7305 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7306 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7307 
7308 	/*
7309 	 * Ensure guest xcr0 is valid for loading
7310 	 */
7311 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7312 
7313 	vcpu->arch.cr0 |= X86_CR0_ET;
7314 }
7315 
7316 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7317 {
7318 	if (vcpu->guest_fpu_loaded)
7319 		return;
7320 
7321 	/*
7322 	 * Restore all possible states in the guest,
7323 	 * and assume host would use all available bits.
7324 	 * Guest xcr0 would be loaded later.
7325 	 */
7326 	vcpu->guest_fpu_loaded = 1;
7327 	__kernel_fpu_begin();
7328 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7329 	trace_kvm_fpu(1);
7330 }
7331 
7332 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7333 {
7334 	if (!vcpu->guest_fpu_loaded) {
7335 		vcpu->fpu_counter = 0;
7336 		return;
7337 	}
7338 
7339 	vcpu->guest_fpu_loaded = 0;
7340 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7341 	__kernel_fpu_end();
7342 	++vcpu->stat.fpu_reload;
7343 	/*
7344 	 * If using eager FPU mode, or if the guest is a frequent user
7345 	 * of the FPU, just leave the FPU active for next time.
7346 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7347 	 * the FPU in bursts will revert to loading it on demand.
7348 	 */
7349 	if (!use_eager_fpu()) {
7350 		if (++vcpu->fpu_counter < 5)
7351 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7352 	}
7353 	trace_kvm_fpu(0);
7354 }
7355 
7356 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7357 {
7358 	kvmclock_reset(vcpu);
7359 
7360 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7361 	kvm_x86_ops->vcpu_free(vcpu);
7362 }
7363 
7364 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7365 						unsigned int id)
7366 {
7367 	struct kvm_vcpu *vcpu;
7368 
7369 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7370 		printk_once(KERN_WARNING
7371 		"kvm: SMP vm created on host with unstable TSC; "
7372 		"guest TSC will not be reliable\n");
7373 
7374 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7375 
7376 	return vcpu;
7377 }
7378 
7379 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7380 {
7381 	int r;
7382 
7383 	kvm_vcpu_mtrr_init(vcpu);
7384 	r = vcpu_load(vcpu);
7385 	if (r)
7386 		return r;
7387 	kvm_vcpu_reset(vcpu, false);
7388 	kvm_mmu_setup(vcpu);
7389 	vcpu_put(vcpu);
7390 	return r;
7391 }
7392 
7393 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7394 {
7395 	struct msr_data msr;
7396 	struct kvm *kvm = vcpu->kvm;
7397 
7398 	if (vcpu_load(vcpu))
7399 		return;
7400 	msr.data = 0x0;
7401 	msr.index = MSR_IA32_TSC;
7402 	msr.host_initiated = true;
7403 	kvm_write_tsc(vcpu, &msr);
7404 	vcpu_put(vcpu);
7405 
7406 	if (!kvmclock_periodic_sync)
7407 		return;
7408 
7409 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7410 					KVMCLOCK_SYNC_PERIOD);
7411 }
7412 
7413 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7414 {
7415 	int r;
7416 	vcpu->arch.apf.msr_val = 0;
7417 
7418 	r = vcpu_load(vcpu);
7419 	BUG_ON(r);
7420 	kvm_mmu_unload(vcpu);
7421 	vcpu_put(vcpu);
7422 
7423 	kvm_x86_ops->vcpu_free(vcpu);
7424 }
7425 
7426 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7427 {
7428 	vcpu->arch.hflags = 0;
7429 
7430 	atomic_set(&vcpu->arch.nmi_queued, 0);
7431 	vcpu->arch.nmi_pending = 0;
7432 	vcpu->arch.nmi_injected = false;
7433 	kvm_clear_interrupt_queue(vcpu);
7434 	kvm_clear_exception_queue(vcpu);
7435 
7436 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7437 	kvm_update_dr0123(vcpu);
7438 	vcpu->arch.dr6 = DR6_INIT;
7439 	kvm_update_dr6(vcpu);
7440 	vcpu->arch.dr7 = DR7_FIXED_1;
7441 	kvm_update_dr7(vcpu);
7442 
7443 	vcpu->arch.cr2 = 0;
7444 
7445 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7446 	vcpu->arch.apf.msr_val = 0;
7447 	vcpu->arch.st.msr_val = 0;
7448 
7449 	kvmclock_reset(vcpu);
7450 
7451 	kvm_clear_async_pf_completion_queue(vcpu);
7452 	kvm_async_pf_hash_reset(vcpu);
7453 	vcpu->arch.apf.halted = false;
7454 
7455 	if (!init_event) {
7456 		kvm_pmu_reset(vcpu);
7457 		vcpu->arch.smbase = 0x30000;
7458 	}
7459 
7460 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7461 	vcpu->arch.regs_avail = ~0;
7462 	vcpu->arch.regs_dirty = ~0;
7463 
7464 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7465 }
7466 
7467 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7468 {
7469 	struct kvm_segment cs;
7470 
7471 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7472 	cs.selector = vector << 8;
7473 	cs.base = vector << 12;
7474 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7475 	kvm_rip_write(vcpu, 0);
7476 }
7477 
7478 int kvm_arch_hardware_enable(void)
7479 {
7480 	struct kvm *kvm;
7481 	struct kvm_vcpu *vcpu;
7482 	int i;
7483 	int ret;
7484 	u64 local_tsc;
7485 	u64 max_tsc = 0;
7486 	bool stable, backwards_tsc = false;
7487 
7488 	kvm_shared_msr_cpu_online();
7489 	ret = kvm_x86_ops->hardware_enable();
7490 	if (ret != 0)
7491 		return ret;
7492 
7493 	local_tsc = rdtsc();
7494 	stable = !check_tsc_unstable();
7495 	list_for_each_entry(kvm, &vm_list, vm_list) {
7496 		kvm_for_each_vcpu(i, vcpu, kvm) {
7497 			if (!stable && vcpu->cpu == smp_processor_id())
7498 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7499 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7500 				backwards_tsc = true;
7501 				if (vcpu->arch.last_host_tsc > max_tsc)
7502 					max_tsc = vcpu->arch.last_host_tsc;
7503 			}
7504 		}
7505 	}
7506 
7507 	/*
7508 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7509 	 * platforms that reset TSC during suspend or hibernate actions, but
7510 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7511 	 * detect that condition here, which happens early in CPU bringup,
7512 	 * before any KVM threads can be running.  Unfortunately, we can't
7513 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7514 	 * enough into CPU bringup that we know how much real time has actually
7515 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7516 	 * variables that haven't been updated yet.
7517 	 *
7518 	 * So we simply find the maximum observed TSC above, then record the
7519 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7520 	 * the adjustment will be applied.  Note that we accumulate
7521 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7522 	 * gets a chance to run again.  In the event that no KVM threads get a
7523 	 * chance to run, we will miss the entire elapsed period, as we'll have
7524 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7525 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7526 	 * uniform across all VCPUs (not to mention the scenario is extremely
7527 	 * unlikely). It is possible that a second hibernate recovery happens
7528 	 * much faster than a first, causing the observed TSC here to be
7529 	 * smaller; this would require additional padding adjustment, which is
7530 	 * why we set last_host_tsc to the local tsc observed here.
7531 	 *
7532 	 * N.B. - this code below runs only on platforms with reliable TSC,
7533 	 * as that is the only way backwards_tsc is set above.  Also note
7534 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7535 	 * have the same delta_cyc adjustment applied if backwards_tsc
7536 	 * is detected.  Note further, this adjustment is only done once,
7537 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7538 	 * called multiple times (one for each physical CPU bringup).
7539 	 *
7540 	 * Platforms with unreliable TSCs don't have to deal with this, they
7541 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7542 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7543 	 * guarantee that they stay in perfect synchronization.
7544 	 */
7545 	if (backwards_tsc) {
7546 		u64 delta_cyc = max_tsc - local_tsc;
7547 		backwards_tsc_observed = true;
7548 		list_for_each_entry(kvm, &vm_list, vm_list) {
7549 			kvm_for_each_vcpu(i, vcpu, kvm) {
7550 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7551 				vcpu->arch.last_host_tsc = local_tsc;
7552 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7553 			}
7554 
7555 			/*
7556 			 * We have to disable TSC offset matching.. if you were
7557 			 * booting a VM while issuing an S4 host suspend....
7558 			 * you may have some problem.  Solving this issue is
7559 			 * left as an exercise to the reader.
7560 			 */
7561 			kvm->arch.last_tsc_nsec = 0;
7562 			kvm->arch.last_tsc_write = 0;
7563 		}
7564 
7565 	}
7566 	return 0;
7567 }
7568 
7569 void kvm_arch_hardware_disable(void)
7570 {
7571 	kvm_x86_ops->hardware_disable();
7572 	drop_user_return_notifiers();
7573 }
7574 
7575 int kvm_arch_hardware_setup(void)
7576 {
7577 	int r;
7578 
7579 	r = kvm_x86_ops->hardware_setup();
7580 	if (r != 0)
7581 		return r;
7582 
7583 	if (kvm_has_tsc_control) {
7584 		/*
7585 		 * Make sure the user can only configure tsc_khz values that
7586 		 * fit into a signed integer.
7587 		 * A min value is not calculated needed because it will always
7588 		 * be 1 on all machines.
7589 		 */
7590 		u64 max = min(0x7fffffffULL,
7591 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7592 		kvm_max_guest_tsc_khz = max;
7593 
7594 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7595 	}
7596 
7597 	kvm_init_msr_list();
7598 	return 0;
7599 }
7600 
7601 void kvm_arch_hardware_unsetup(void)
7602 {
7603 	kvm_x86_ops->hardware_unsetup();
7604 }
7605 
7606 void kvm_arch_check_processor_compat(void *rtn)
7607 {
7608 	kvm_x86_ops->check_processor_compatibility(rtn);
7609 }
7610 
7611 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7612 {
7613 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7614 }
7615 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7616 
7617 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7618 {
7619 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7620 }
7621 
7622 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7623 {
7624 	return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7625 }
7626 
7627 struct static_key kvm_no_apic_vcpu __read_mostly;
7628 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7629 
7630 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7631 {
7632 	struct page *page;
7633 	struct kvm *kvm;
7634 	int r;
7635 
7636 	BUG_ON(vcpu->kvm == NULL);
7637 	kvm = vcpu->kvm;
7638 
7639 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7640 	vcpu->arch.pv.pv_unhalted = false;
7641 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7642 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7643 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7644 	else
7645 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7646 
7647 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7648 	if (!page) {
7649 		r = -ENOMEM;
7650 		goto fail;
7651 	}
7652 	vcpu->arch.pio_data = page_address(page);
7653 
7654 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7655 
7656 	r = kvm_mmu_create(vcpu);
7657 	if (r < 0)
7658 		goto fail_free_pio_data;
7659 
7660 	if (irqchip_in_kernel(kvm)) {
7661 		r = kvm_create_lapic(vcpu);
7662 		if (r < 0)
7663 			goto fail_mmu_destroy;
7664 	} else
7665 		static_key_slow_inc(&kvm_no_apic_vcpu);
7666 
7667 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7668 				       GFP_KERNEL);
7669 	if (!vcpu->arch.mce_banks) {
7670 		r = -ENOMEM;
7671 		goto fail_free_lapic;
7672 	}
7673 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7674 
7675 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7676 		r = -ENOMEM;
7677 		goto fail_free_mce_banks;
7678 	}
7679 
7680 	fx_init(vcpu);
7681 
7682 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7683 	vcpu->arch.pv_time_enabled = false;
7684 
7685 	vcpu->arch.guest_supported_xcr0 = 0;
7686 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7687 
7688 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7689 
7690 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7691 
7692 	kvm_async_pf_hash_reset(vcpu);
7693 	kvm_pmu_init(vcpu);
7694 
7695 	vcpu->arch.pending_external_vector = -1;
7696 
7697 	kvm_hv_vcpu_init(vcpu);
7698 
7699 	return 0;
7700 
7701 fail_free_mce_banks:
7702 	kfree(vcpu->arch.mce_banks);
7703 fail_free_lapic:
7704 	kvm_free_lapic(vcpu);
7705 fail_mmu_destroy:
7706 	kvm_mmu_destroy(vcpu);
7707 fail_free_pio_data:
7708 	free_page((unsigned long)vcpu->arch.pio_data);
7709 fail:
7710 	return r;
7711 }
7712 
7713 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7714 {
7715 	int idx;
7716 
7717 	kvm_hv_vcpu_uninit(vcpu);
7718 	kvm_pmu_destroy(vcpu);
7719 	kfree(vcpu->arch.mce_banks);
7720 	kvm_free_lapic(vcpu);
7721 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7722 	kvm_mmu_destroy(vcpu);
7723 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7724 	free_page((unsigned long)vcpu->arch.pio_data);
7725 	if (!lapic_in_kernel(vcpu))
7726 		static_key_slow_dec(&kvm_no_apic_vcpu);
7727 }
7728 
7729 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7730 {
7731 	kvm_x86_ops->sched_in(vcpu, cpu);
7732 }
7733 
7734 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7735 {
7736 	if (type)
7737 		return -EINVAL;
7738 
7739 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7740 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7741 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7742 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7743 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7744 
7745 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7746 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7747 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7748 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7749 		&kvm->arch.irq_sources_bitmap);
7750 
7751 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7752 	mutex_init(&kvm->arch.apic_map_lock);
7753 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7754 
7755 	pvclock_update_vm_gtod_copy(kvm);
7756 
7757 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7758 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7759 
7760 	kvm_page_track_init(kvm);
7761 	kvm_mmu_init_vm(kvm);
7762 
7763 	if (kvm_x86_ops->vm_init)
7764 		return kvm_x86_ops->vm_init(kvm);
7765 
7766 	return 0;
7767 }
7768 
7769 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7770 {
7771 	int r;
7772 	r = vcpu_load(vcpu);
7773 	BUG_ON(r);
7774 	kvm_mmu_unload(vcpu);
7775 	vcpu_put(vcpu);
7776 }
7777 
7778 static void kvm_free_vcpus(struct kvm *kvm)
7779 {
7780 	unsigned int i;
7781 	struct kvm_vcpu *vcpu;
7782 
7783 	/*
7784 	 * Unpin any mmu pages first.
7785 	 */
7786 	kvm_for_each_vcpu(i, vcpu, kvm) {
7787 		kvm_clear_async_pf_completion_queue(vcpu);
7788 		kvm_unload_vcpu_mmu(vcpu);
7789 	}
7790 	kvm_for_each_vcpu(i, vcpu, kvm)
7791 		kvm_arch_vcpu_free(vcpu);
7792 
7793 	mutex_lock(&kvm->lock);
7794 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7795 		kvm->vcpus[i] = NULL;
7796 
7797 	atomic_set(&kvm->online_vcpus, 0);
7798 	mutex_unlock(&kvm->lock);
7799 }
7800 
7801 void kvm_arch_sync_events(struct kvm *kvm)
7802 {
7803 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7804 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7805 	kvm_free_all_assigned_devices(kvm);
7806 	kvm_free_pit(kvm);
7807 }
7808 
7809 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7810 {
7811 	int i, r;
7812 	unsigned long hva;
7813 	struct kvm_memslots *slots = kvm_memslots(kvm);
7814 	struct kvm_memory_slot *slot, old;
7815 
7816 	/* Called with kvm->slots_lock held.  */
7817 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7818 		return -EINVAL;
7819 
7820 	slot = id_to_memslot(slots, id);
7821 	if (size) {
7822 		if (slot->npages)
7823 			return -EEXIST;
7824 
7825 		/*
7826 		 * MAP_SHARED to prevent internal slot pages from being moved
7827 		 * by fork()/COW.
7828 		 */
7829 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7830 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7831 		if (IS_ERR((void *)hva))
7832 			return PTR_ERR((void *)hva);
7833 	} else {
7834 		if (!slot->npages)
7835 			return 0;
7836 
7837 		hva = 0;
7838 	}
7839 
7840 	old = *slot;
7841 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7842 		struct kvm_userspace_memory_region m;
7843 
7844 		m.slot = id | (i << 16);
7845 		m.flags = 0;
7846 		m.guest_phys_addr = gpa;
7847 		m.userspace_addr = hva;
7848 		m.memory_size = size;
7849 		r = __kvm_set_memory_region(kvm, &m);
7850 		if (r < 0)
7851 			return r;
7852 	}
7853 
7854 	if (!size) {
7855 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7856 		WARN_ON(r < 0);
7857 	}
7858 
7859 	return 0;
7860 }
7861 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7862 
7863 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7864 {
7865 	int r;
7866 
7867 	mutex_lock(&kvm->slots_lock);
7868 	r = __x86_set_memory_region(kvm, id, gpa, size);
7869 	mutex_unlock(&kvm->slots_lock);
7870 
7871 	return r;
7872 }
7873 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7874 
7875 void kvm_arch_destroy_vm(struct kvm *kvm)
7876 {
7877 	if (current->mm == kvm->mm) {
7878 		/*
7879 		 * Free memory regions allocated on behalf of userspace,
7880 		 * unless the the memory map has changed due to process exit
7881 		 * or fd copying.
7882 		 */
7883 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7884 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7885 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7886 	}
7887 	if (kvm_x86_ops->vm_destroy)
7888 		kvm_x86_ops->vm_destroy(kvm);
7889 	kvm_iommu_unmap_guest(kvm);
7890 	kfree(kvm->arch.vpic);
7891 	kfree(kvm->arch.vioapic);
7892 	kvm_free_vcpus(kvm);
7893 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7894 	kvm_mmu_uninit_vm(kvm);
7895 }
7896 
7897 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7898 			   struct kvm_memory_slot *dont)
7899 {
7900 	int i;
7901 
7902 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7903 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7904 			kvfree(free->arch.rmap[i]);
7905 			free->arch.rmap[i] = NULL;
7906 		}
7907 		if (i == 0)
7908 			continue;
7909 
7910 		if (!dont || free->arch.lpage_info[i - 1] !=
7911 			     dont->arch.lpage_info[i - 1]) {
7912 			kvfree(free->arch.lpage_info[i - 1]);
7913 			free->arch.lpage_info[i - 1] = NULL;
7914 		}
7915 	}
7916 
7917 	kvm_page_track_free_memslot(free, dont);
7918 }
7919 
7920 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7921 			    unsigned long npages)
7922 {
7923 	int i;
7924 
7925 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7926 		struct kvm_lpage_info *linfo;
7927 		unsigned long ugfn;
7928 		int lpages;
7929 		int level = i + 1;
7930 
7931 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7932 				      slot->base_gfn, level) + 1;
7933 
7934 		slot->arch.rmap[i] =
7935 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7936 		if (!slot->arch.rmap[i])
7937 			goto out_free;
7938 		if (i == 0)
7939 			continue;
7940 
7941 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7942 		if (!linfo)
7943 			goto out_free;
7944 
7945 		slot->arch.lpage_info[i - 1] = linfo;
7946 
7947 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7948 			linfo[0].disallow_lpage = 1;
7949 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7950 			linfo[lpages - 1].disallow_lpage = 1;
7951 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7952 		/*
7953 		 * If the gfn and userspace address are not aligned wrt each
7954 		 * other, or if explicitly asked to, disable large page
7955 		 * support for this slot
7956 		 */
7957 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7958 		    !kvm_largepages_enabled()) {
7959 			unsigned long j;
7960 
7961 			for (j = 0; j < lpages; ++j)
7962 				linfo[j].disallow_lpage = 1;
7963 		}
7964 	}
7965 
7966 	if (kvm_page_track_create_memslot(slot, npages))
7967 		goto out_free;
7968 
7969 	return 0;
7970 
7971 out_free:
7972 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7973 		kvfree(slot->arch.rmap[i]);
7974 		slot->arch.rmap[i] = NULL;
7975 		if (i == 0)
7976 			continue;
7977 
7978 		kvfree(slot->arch.lpage_info[i - 1]);
7979 		slot->arch.lpage_info[i - 1] = NULL;
7980 	}
7981 	return -ENOMEM;
7982 }
7983 
7984 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7985 {
7986 	/*
7987 	 * memslots->generation has been incremented.
7988 	 * mmio generation may have reached its maximum value.
7989 	 */
7990 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7991 }
7992 
7993 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7994 				struct kvm_memory_slot *memslot,
7995 				const struct kvm_userspace_memory_region *mem,
7996 				enum kvm_mr_change change)
7997 {
7998 	return 0;
7999 }
8000 
8001 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8002 				     struct kvm_memory_slot *new)
8003 {
8004 	/* Still write protect RO slot */
8005 	if (new->flags & KVM_MEM_READONLY) {
8006 		kvm_mmu_slot_remove_write_access(kvm, new);
8007 		return;
8008 	}
8009 
8010 	/*
8011 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8012 	 *
8013 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8014 	 *
8015 	 *  - KVM_MR_CREATE with dirty logging is disabled
8016 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8017 	 *
8018 	 * The reason is, in case of PML, we need to set D-bit for any slots
8019 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8020 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8021 	 * guarantees leaving PML enabled during guest's lifetime won't have
8022 	 * any additonal overhead from PML when guest is running with dirty
8023 	 * logging disabled for memory slots.
8024 	 *
8025 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8026 	 * to dirty logging mode.
8027 	 *
8028 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8029 	 *
8030 	 * In case of write protect:
8031 	 *
8032 	 * Write protect all pages for dirty logging.
8033 	 *
8034 	 * All the sptes including the large sptes which point to this
8035 	 * slot are set to readonly. We can not create any new large
8036 	 * spte on this slot until the end of the logging.
8037 	 *
8038 	 * See the comments in fast_page_fault().
8039 	 */
8040 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8041 		if (kvm_x86_ops->slot_enable_log_dirty)
8042 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8043 		else
8044 			kvm_mmu_slot_remove_write_access(kvm, new);
8045 	} else {
8046 		if (kvm_x86_ops->slot_disable_log_dirty)
8047 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8048 	}
8049 }
8050 
8051 void kvm_arch_commit_memory_region(struct kvm *kvm,
8052 				const struct kvm_userspace_memory_region *mem,
8053 				const struct kvm_memory_slot *old,
8054 				const struct kvm_memory_slot *new,
8055 				enum kvm_mr_change change)
8056 {
8057 	int nr_mmu_pages = 0;
8058 
8059 	if (!kvm->arch.n_requested_mmu_pages)
8060 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8061 
8062 	if (nr_mmu_pages)
8063 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8064 
8065 	/*
8066 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8067 	 * sptes have to be split.  If live migration is successful, the guest
8068 	 * in the source machine will be destroyed and large sptes will be
8069 	 * created in the destination. However, if the guest continues to run
8070 	 * in the source machine (for example if live migration fails), small
8071 	 * sptes will remain around and cause bad performance.
8072 	 *
8073 	 * Scan sptes if dirty logging has been stopped, dropping those
8074 	 * which can be collapsed into a single large-page spte.  Later
8075 	 * page faults will create the large-page sptes.
8076 	 */
8077 	if ((change != KVM_MR_DELETE) &&
8078 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8079 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8080 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8081 
8082 	/*
8083 	 * Set up write protection and/or dirty logging for the new slot.
8084 	 *
8085 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8086 	 * been zapped so no dirty logging staff is needed for old slot. For
8087 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8088 	 * new and it's also covered when dealing with the new slot.
8089 	 *
8090 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8091 	 */
8092 	if (change != KVM_MR_DELETE)
8093 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8094 }
8095 
8096 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8097 {
8098 	kvm_mmu_invalidate_zap_all_pages(kvm);
8099 }
8100 
8101 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8102 				   struct kvm_memory_slot *slot)
8103 {
8104 	kvm_mmu_invalidate_zap_all_pages(kvm);
8105 }
8106 
8107 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8108 {
8109 	if (!list_empty_careful(&vcpu->async_pf.done))
8110 		return true;
8111 
8112 	if (kvm_apic_has_events(vcpu))
8113 		return true;
8114 
8115 	if (vcpu->arch.pv.pv_unhalted)
8116 		return true;
8117 
8118 	if (atomic_read(&vcpu->arch.nmi_queued))
8119 		return true;
8120 
8121 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8122 		return true;
8123 
8124 	if (kvm_arch_interrupt_allowed(vcpu) &&
8125 	    kvm_cpu_has_interrupt(vcpu))
8126 		return true;
8127 
8128 	if (kvm_hv_has_stimer_pending(vcpu))
8129 		return true;
8130 
8131 	return false;
8132 }
8133 
8134 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8135 {
8136 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8137 		kvm_x86_ops->check_nested_events(vcpu, false);
8138 
8139 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8140 }
8141 
8142 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8143 {
8144 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8145 }
8146 
8147 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8148 {
8149 	return kvm_x86_ops->interrupt_allowed(vcpu);
8150 }
8151 
8152 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8153 {
8154 	if (is_64_bit_mode(vcpu))
8155 		return kvm_rip_read(vcpu);
8156 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8157 		     kvm_rip_read(vcpu));
8158 }
8159 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8160 
8161 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8162 {
8163 	return kvm_get_linear_rip(vcpu) == linear_rip;
8164 }
8165 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8166 
8167 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8168 {
8169 	unsigned long rflags;
8170 
8171 	rflags = kvm_x86_ops->get_rflags(vcpu);
8172 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8173 		rflags &= ~X86_EFLAGS_TF;
8174 	return rflags;
8175 }
8176 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8177 
8178 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8179 {
8180 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8181 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8182 		rflags |= X86_EFLAGS_TF;
8183 	kvm_x86_ops->set_rflags(vcpu, rflags);
8184 }
8185 
8186 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8187 {
8188 	__kvm_set_rflags(vcpu, rflags);
8189 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8190 }
8191 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8192 
8193 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8194 {
8195 	int r;
8196 
8197 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8198 	      work->wakeup_all)
8199 		return;
8200 
8201 	r = kvm_mmu_reload(vcpu);
8202 	if (unlikely(r))
8203 		return;
8204 
8205 	if (!vcpu->arch.mmu.direct_map &&
8206 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8207 		return;
8208 
8209 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8210 }
8211 
8212 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8213 {
8214 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8215 }
8216 
8217 static inline u32 kvm_async_pf_next_probe(u32 key)
8218 {
8219 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8220 }
8221 
8222 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8223 {
8224 	u32 key = kvm_async_pf_hash_fn(gfn);
8225 
8226 	while (vcpu->arch.apf.gfns[key] != ~0)
8227 		key = kvm_async_pf_next_probe(key);
8228 
8229 	vcpu->arch.apf.gfns[key] = gfn;
8230 }
8231 
8232 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8233 {
8234 	int i;
8235 	u32 key = kvm_async_pf_hash_fn(gfn);
8236 
8237 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8238 		     (vcpu->arch.apf.gfns[key] != gfn &&
8239 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8240 		key = kvm_async_pf_next_probe(key);
8241 
8242 	return key;
8243 }
8244 
8245 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8246 {
8247 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8248 }
8249 
8250 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8251 {
8252 	u32 i, j, k;
8253 
8254 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8255 	while (true) {
8256 		vcpu->arch.apf.gfns[i] = ~0;
8257 		do {
8258 			j = kvm_async_pf_next_probe(j);
8259 			if (vcpu->arch.apf.gfns[j] == ~0)
8260 				return;
8261 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8262 			/*
8263 			 * k lies cyclically in ]i,j]
8264 			 * |    i.k.j |
8265 			 * |....j i.k.| or  |.k..j i...|
8266 			 */
8267 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8268 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8269 		i = j;
8270 	}
8271 }
8272 
8273 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8274 {
8275 
8276 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8277 				      sizeof(val));
8278 }
8279 
8280 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8281 				     struct kvm_async_pf *work)
8282 {
8283 	struct x86_exception fault;
8284 
8285 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8286 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8287 
8288 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8289 	    (vcpu->arch.apf.send_user_only &&
8290 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8291 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8292 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8293 		fault.vector = PF_VECTOR;
8294 		fault.error_code_valid = true;
8295 		fault.error_code = 0;
8296 		fault.nested_page_fault = false;
8297 		fault.address = work->arch.token;
8298 		kvm_inject_page_fault(vcpu, &fault);
8299 	}
8300 }
8301 
8302 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8303 				 struct kvm_async_pf *work)
8304 {
8305 	struct x86_exception fault;
8306 
8307 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8308 	if (work->wakeup_all)
8309 		work->arch.token = ~0; /* broadcast wakeup */
8310 	else
8311 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8312 
8313 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8314 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8315 		fault.vector = PF_VECTOR;
8316 		fault.error_code_valid = true;
8317 		fault.error_code = 0;
8318 		fault.nested_page_fault = false;
8319 		fault.address = work->arch.token;
8320 		kvm_inject_page_fault(vcpu, &fault);
8321 	}
8322 	vcpu->arch.apf.halted = false;
8323 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8324 }
8325 
8326 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8327 {
8328 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8329 		return true;
8330 	else
8331 		return !kvm_event_needs_reinjection(vcpu) &&
8332 			kvm_x86_ops->interrupt_allowed(vcpu);
8333 }
8334 
8335 void kvm_arch_start_assignment(struct kvm *kvm)
8336 {
8337 	atomic_inc(&kvm->arch.assigned_device_count);
8338 }
8339 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8340 
8341 void kvm_arch_end_assignment(struct kvm *kvm)
8342 {
8343 	atomic_dec(&kvm->arch.assigned_device_count);
8344 }
8345 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8346 
8347 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8348 {
8349 	return atomic_read(&kvm->arch.assigned_device_count);
8350 }
8351 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8352 
8353 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8354 {
8355 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8356 }
8357 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8358 
8359 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8360 {
8361 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8362 }
8363 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8364 
8365 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8366 {
8367 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8368 }
8369 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8370 
8371 bool kvm_arch_has_irq_bypass(void)
8372 {
8373 	return kvm_x86_ops->update_pi_irte != NULL;
8374 }
8375 
8376 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8377 				      struct irq_bypass_producer *prod)
8378 {
8379 	struct kvm_kernel_irqfd *irqfd =
8380 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8381 
8382 	irqfd->producer = prod;
8383 
8384 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8385 					   prod->irq, irqfd->gsi, 1);
8386 }
8387 
8388 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8389 				      struct irq_bypass_producer *prod)
8390 {
8391 	int ret;
8392 	struct kvm_kernel_irqfd *irqfd =
8393 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8394 
8395 	WARN_ON(irqfd->producer != prod);
8396 	irqfd->producer = NULL;
8397 
8398 	/*
8399 	 * When producer of consumer is unregistered, we change back to
8400 	 * remapped mode, so we can re-use the current implementation
8401 	 * when the irq is masked/disabed or the consumer side (KVM
8402 	 * int this case doesn't want to receive the interrupts.
8403 	*/
8404 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8405 	if (ret)
8406 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8407 		       " fails: %d\n", irqfd->consumer.token, ret);
8408 }
8409 
8410 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8411 				   uint32_t guest_irq, bool set)
8412 {
8413 	if (!kvm_x86_ops->update_pi_irte)
8414 		return -EINVAL;
8415 
8416 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8417 }
8418 
8419 bool kvm_vector_hashing_enabled(void)
8420 {
8421 	return vector_hashing;
8422 }
8423 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8424 
8425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8444