1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 struct kvm_caps kvm_caps __read_mostly = { 96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 97 }; 98 EXPORT_SYMBOL_GPL(kvm_caps); 99 100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 101 102 #define emul_to_vcpu(ctxt) \ 103 ((struct kvm_vcpu *)(ctxt)->vcpu) 104 105 /* EFER defaults: 106 * - enable syscall per default because its emulated by KVM 107 * - enable LME and LMA per default on 64 bit KVM 108 */ 109 #ifdef CONFIG_X86_64 110 static 111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 112 #else 113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 114 #endif 115 116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 117 118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 119 120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 121 122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 124 125 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 126 static void process_nmi(struct kvm_vcpu *vcpu); 127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 128 static void store_regs(struct kvm_vcpu *vcpu); 129 static int sync_regs(struct kvm_vcpu *vcpu); 130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 131 132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 134 135 static DEFINE_MUTEX(vendor_module_lock); 136 struct kvm_x86_ops kvm_x86_ops __read_mostly; 137 138 #define KVM_X86_OP(func) \ 139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 140 *(((struct kvm_x86_ops *)0)->func)); 141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 143 #include <asm/kvm-x86-ops.h> 144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 146 147 static bool __read_mostly ignore_msrs = 0; 148 module_param(ignore_msrs, bool, 0644); 149 150 bool __read_mostly report_ignored_msrs = true; 151 module_param(report_ignored_msrs, bool, 0644); 152 EXPORT_SYMBOL_GPL(report_ignored_msrs); 153 154 unsigned int min_timer_period_us = 200; 155 module_param(min_timer_period_us, uint, 0644); 156 157 static bool __read_mostly kvmclock_periodic_sync = true; 158 module_param(kvmclock_periodic_sync, bool, 0444); 159 160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 161 static u32 __read_mostly tsc_tolerance_ppm = 250; 162 module_param(tsc_tolerance_ppm, uint, 0644); 163 164 /* 165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 166 * adaptive tuning starting from default advancement of 1000ns. '0' disables 167 * advancement entirely. Any other value is used as-is and disables adaptive 168 * tuning, i.e. allows privileged userspace to set an exact advancement time. 169 */ 170 static int __read_mostly lapic_timer_advance_ns = -1; 171 module_param(lapic_timer_advance_ns, int, 0644); 172 173 static bool __read_mostly vector_hashing = true; 174 module_param(vector_hashing, bool, 0444); 175 176 bool __read_mostly enable_vmware_backdoor = false; 177 module_param(enable_vmware_backdoor, bool, 0444); 178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 179 180 /* 181 * Flags to manipulate forced emulation behavior (any non-zero value will 182 * enable forced emulation). 183 */ 184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 185 static int __read_mostly force_emulation_prefix; 186 module_param(force_emulation_prefix, int, 0644); 187 188 int __read_mostly pi_inject_timer = -1; 189 module_param(pi_inject_timer, bint, 0644); 190 191 /* Enable/disable PMU virtualization */ 192 bool __read_mostly enable_pmu = true; 193 EXPORT_SYMBOL_GPL(enable_pmu); 194 module_param(enable_pmu, bool, 0444); 195 196 bool __read_mostly eager_page_split = true; 197 module_param(eager_page_split, bool, 0644); 198 199 /* Enable/disable SMT_RSB bug mitigation */ 200 static bool __read_mostly mitigate_smt_rsb; 201 module_param(mitigate_smt_rsb, bool, 0444); 202 203 /* 204 * Restoring the host value for MSRs that are only consumed when running in 205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 206 * returns to userspace, i.e. the kernel can run with the guest's value. 207 */ 208 #define KVM_MAX_NR_USER_RETURN_MSRS 16 209 210 struct kvm_user_return_msrs { 211 struct user_return_notifier urn; 212 bool registered; 213 struct kvm_user_return_msr_values { 214 u64 host; 215 u64 curr; 216 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 217 }; 218 219 u32 __read_mostly kvm_nr_uret_msrs; 220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 222 static struct kvm_user_return_msrs __percpu *user_return_msrs; 223 224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 228 229 u64 __read_mostly host_efer; 230 EXPORT_SYMBOL_GPL(host_efer); 231 232 bool __read_mostly allow_smaller_maxphyaddr = 0; 233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 234 235 bool __read_mostly enable_apicv = true; 236 EXPORT_SYMBOL_GPL(enable_apicv); 237 238 u64 __read_mostly host_xss; 239 EXPORT_SYMBOL_GPL(host_xss); 240 241 u64 __read_mostly host_arch_capabilities; 242 EXPORT_SYMBOL_GPL(host_arch_capabilities); 243 244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 245 KVM_GENERIC_VM_STATS(), 246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 247 STATS_DESC_COUNTER(VM, mmu_pte_write), 248 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 249 STATS_DESC_COUNTER(VM, mmu_flooded), 250 STATS_DESC_COUNTER(VM, mmu_recycled), 251 STATS_DESC_COUNTER(VM, mmu_cache_miss), 252 STATS_DESC_ICOUNTER(VM, mmu_unsync), 253 STATS_DESC_ICOUNTER(VM, pages_4k), 254 STATS_DESC_ICOUNTER(VM, pages_2m), 255 STATS_DESC_ICOUNTER(VM, pages_1g), 256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 259 }; 260 261 const struct kvm_stats_header kvm_vm_stats_header = { 262 .name_size = KVM_STATS_NAME_SIZE, 263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 264 .id_offset = sizeof(struct kvm_stats_header), 265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 267 sizeof(kvm_vm_stats_desc), 268 }; 269 270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 271 KVM_GENERIC_VCPU_STATS(), 272 STATS_DESC_COUNTER(VCPU, pf_taken), 273 STATS_DESC_COUNTER(VCPU, pf_fixed), 274 STATS_DESC_COUNTER(VCPU, pf_emulate), 275 STATS_DESC_COUNTER(VCPU, pf_spurious), 276 STATS_DESC_COUNTER(VCPU, pf_fast), 277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 278 STATS_DESC_COUNTER(VCPU, pf_guest), 279 STATS_DESC_COUNTER(VCPU, tlb_flush), 280 STATS_DESC_COUNTER(VCPU, invlpg), 281 STATS_DESC_COUNTER(VCPU, exits), 282 STATS_DESC_COUNTER(VCPU, io_exits), 283 STATS_DESC_COUNTER(VCPU, mmio_exits), 284 STATS_DESC_COUNTER(VCPU, signal_exits), 285 STATS_DESC_COUNTER(VCPU, irq_window_exits), 286 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 287 STATS_DESC_COUNTER(VCPU, l1d_flush), 288 STATS_DESC_COUNTER(VCPU, halt_exits), 289 STATS_DESC_COUNTER(VCPU, request_irq_exits), 290 STATS_DESC_COUNTER(VCPU, irq_exits), 291 STATS_DESC_COUNTER(VCPU, host_state_reload), 292 STATS_DESC_COUNTER(VCPU, fpu_reload), 293 STATS_DESC_COUNTER(VCPU, insn_emulation), 294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 295 STATS_DESC_COUNTER(VCPU, hypercalls), 296 STATS_DESC_COUNTER(VCPU, irq_injections), 297 STATS_DESC_COUNTER(VCPU, nmi_injections), 298 STATS_DESC_COUNTER(VCPU, req_event), 299 STATS_DESC_COUNTER(VCPU, nested_run), 300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 301 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 302 STATS_DESC_COUNTER(VCPU, preemption_reported), 303 STATS_DESC_COUNTER(VCPU, preemption_other), 304 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 305 STATS_DESC_COUNTER(VCPU, notify_window_exits), 306 }; 307 308 const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315 }; 316 317 u64 __read_mostly host_xcr0; 318 319 static struct kmem_cache *x86_emulator_cache; 320 321 /* 322 * When called, it means the previous get/set msr reached an invalid msr. 323 * Return true if we want to ignore/silent this failed msr access. 324 */ 325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 326 { 327 const char *op = write ? "wrmsr" : "rdmsr"; 328 329 if (ignore_msrs) { 330 if (report_ignored_msrs) 331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 332 op, msr, data); 333 /* Mask the error */ 334 return true; 335 } else { 336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 337 op, msr, data); 338 return false; 339 } 340 } 341 342 static struct kmem_cache *kvm_alloc_emulator_cache(void) 343 { 344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 345 unsigned int size = sizeof(struct x86_emulate_ctxt); 346 347 return kmem_cache_create_usercopy("x86_emulator", size, 348 __alignof__(struct x86_emulate_ctxt), 349 SLAB_ACCOUNT, useroffset, 350 size - useroffset, NULL); 351 } 352 353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 354 355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 356 { 357 int i; 358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 359 vcpu->arch.apf.gfns[i] = ~0; 360 } 361 362 static void kvm_on_user_return(struct user_return_notifier *urn) 363 { 364 unsigned slot; 365 struct kvm_user_return_msrs *msrs 366 = container_of(urn, struct kvm_user_return_msrs, urn); 367 struct kvm_user_return_msr_values *values; 368 unsigned long flags; 369 370 /* 371 * Disabling irqs at this point since the following code could be 372 * interrupted and executed through kvm_arch_hardware_disable() 373 */ 374 local_irq_save(flags); 375 if (msrs->registered) { 376 msrs->registered = false; 377 user_return_notifier_unregister(urn); 378 } 379 local_irq_restore(flags); 380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 381 values = &msrs->values[slot]; 382 if (values->host != values->curr) { 383 wrmsrl(kvm_uret_msrs_list[slot], values->host); 384 values->curr = values->host; 385 } 386 } 387 } 388 389 static int kvm_probe_user_return_msr(u32 msr) 390 { 391 u64 val; 392 int ret; 393 394 preempt_disable(); 395 ret = rdmsrl_safe(msr, &val); 396 if (ret) 397 goto out; 398 ret = wrmsrl_safe(msr, val); 399 out: 400 preempt_enable(); 401 return ret; 402 } 403 404 int kvm_add_user_return_msr(u32 msr) 405 { 406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 407 408 if (kvm_probe_user_return_msr(msr)) 409 return -1; 410 411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 412 return kvm_nr_uret_msrs++; 413 } 414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 415 416 int kvm_find_user_return_msr(u32 msr) 417 { 418 int i; 419 420 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 421 if (kvm_uret_msrs_list[i] == msr) 422 return i; 423 } 424 return -1; 425 } 426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 427 428 static void kvm_user_return_msr_cpu_online(void) 429 { 430 unsigned int cpu = smp_processor_id(); 431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 432 u64 value; 433 int i; 434 435 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 436 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 437 msrs->values[i].host = value; 438 msrs->values[i].curr = value; 439 } 440 } 441 442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 443 { 444 unsigned int cpu = smp_processor_id(); 445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 446 int err; 447 448 value = (value & mask) | (msrs->values[slot].host & ~mask); 449 if (value == msrs->values[slot].curr) 450 return 0; 451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 452 if (err) 453 return 1; 454 455 msrs->values[slot].curr = value; 456 if (!msrs->registered) { 457 msrs->urn.on_user_return = kvm_on_user_return; 458 user_return_notifier_register(&msrs->urn); 459 msrs->registered = true; 460 } 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 464 465 static void drop_user_return_notifiers(void) 466 { 467 unsigned int cpu = smp_processor_id(); 468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 469 470 if (msrs->registered) 471 kvm_on_user_return(&msrs->urn); 472 } 473 474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 475 { 476 return vcpu->arch.apic_base; 477 } 478 479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 480 { 481 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 482 } 483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 484 485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 486 { 487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 491 492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 493 return 1; 494 if (!msr_info->host_initiated) { 495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 496 return 1; 497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 498 return 1; 499 } 500 501 kvm_lapic_set_base(vcpu, msr_info->data); 502 kvm_recalculate_apic_map(vcpu->kvm); 503 return 0; 504 } 505 506 /* 507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 508 * 509 * Hardware virtualization extension instructions may fault if a reboot turns 510 * off virtualization while processes are running. Usually after catching the 511 * fault we just panic; during reboot instead the instruction is ignored. 512 */ 513 noinstr void kvm_spurious_fault(void) 514 { 515 /* Fault while not rebooting. We want the trace. */ 516 BUG_ON(!kvm_rebooting); 517 } 518 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 519 520 #define EXCPT_BENIGN 0 521 #define EXCPT_CONTRIBUTORY 1 522 #define EXCPT_PF 2 523 524 static int exception_class(int vector) 525 { 526 switch (vector) { 527 case PF_VECTOR: 528 return EXCPT_PF; 529 case DE_VECTOR: 530 case TS_VECTOR: 531 case NP_VECTOR: 532 case SS_VECTOR: 533 case GP_VECTOR: 534 return EXCPT_CONTRIBUTORY; 535 default: 536 break; 537 } 538 return EXCPT_BENIGN; 539 } 540 541 #define EXCPT_FAULT 0 542 #define EXCPT_TRAP 1 543 #define EXCPT_ABORT 2 544 #define EXCPT_INTERRUPT 3 545 #define EXCPT_DB 4 546 547 static int exception_type(int vector) 548 { 549 unsigned int mask; 550 551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 552 return EXCPT_INTERRUPT; 553 554 mask = 1 << vector; 555 556 /* 557 * #DBs can be trap-like or fault-like, the caller must check other CPU 558 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 559 */ 560 if (mask & (1 << DB_VECTOR)) 561 return EXCPT_DB; 562 563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 564 return EXCPT_TRAP; 565 566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 567 return EXCPT_ABORT; 568 569 /* Reserved exceptions will result in fault */ 570 return EXCPT_FAULT; 571 } 572 573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 574 struct kvm_queued_exception *ex) 575 { 576 if (!ex->has_payload) 577 return; 578 579 switch (ex->vector) { 580 case DB_VECTOR: 581 /* 582 * "Certain debug exceptions may clear bit 0-3. The 583 * remaining contents of the DR6 register are never 584 * cleared by the processor". 585 */ 586 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 587 /* 588 * In order to reflect the #DB exception payload in guest 589 * dr6, three components need to be considered: active low 590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 591 * DR6_BS and DR6_BT) 592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 593 * In the target guest dr6: 594 * FIXED_1 bits should always be set. 595 * Active low bits should be cleared if 1-setting in payload. 596 * Active high bits should be set if 1-setting in payload. 597 * 598 * Note, the payload is compatible with the pending debug 599 * exceptions/exit qualification under VMX, that active_low bits 600 * are active high in payload. 601 * So they need to be flipped for DR6. 602 */ 603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 604 vcpu->arch.dr6 |= ex->payload; 605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 606 607 /* 608 * The #DB payload is defined as compatible with the 'pending 609 * debug exceptions' field under VMX, not DR6. While bit 12 is 610 * defined in the 'pending debug exceptions' field (enabled 611 * breakpoint), it is reserved and must be zero in DR6. 612 */ 613 vcpu->arch.dr6 &= ~BIT(12); 614 break; 615 case PF_VECTOR: 616 vcpu->arch.cr2 = ex->payload; 617 break; 618 } 619 620 ex->has_payload = false; 621 ex->payload = 0; 622 } 623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 624 625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 626 bool has_error_code, u32 error_code, 627 bool has_payload, unsigned long payload) 628 { 629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 630 631 ex->vector = vector; 632 ex->injected = false; 633 ex->pending = true; 634 ex->has_error_code = has_error_code; 635 ex->error_code = error_code; 636 ex->has_payload = has_payload; 637 ex->payload = payload; 638 } 639 640 /* Forcibly leave the nested mode in cases like a vCPU reset */ 641 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 642 { 643 kvm_x86_ops.nested_ops->leave_nested(vcpu); 644 } 645 646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 647 unsigned nr, bool has_error, u32 error_code, 648 bool has_payload, unsigned long payload, bool reinject) 649 { 650 u32 prev_nr; 651 int class1, class2; 652 653 kvm_make_request(KVM_REQ_EVENT, vcpu); 654 655 /* 656 * If the exception is destined for L2 and isn't being reinjected, 657 * morph it to a VM-Exit if L1 wants to intercept the exception. A 658 * previously injected exception is not checked because it was checked 659 * when it was original queued, and re-checking is incorrect if _L1_ 660 * injected the exception, in which case it's exempt from interception. 661 */ 662 if (!reinject && is_guest_mode(vcpu) && 663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 665 has_payload, payload); 666 return; 667 } 668 669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 670 queue: 671 if (reinject) { 672 /* 673 * On VM-Entry, an exception can be pending if and only 674 * if event injection was blocked by nested_run_pending. 675 * In that case, however, vcpu_enter_guest() requests an 676 * immediate exit, and the guest shouldn't proceed far 677 * enough to need reinjection. 678 */ 679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 680 vcpu->arch.exception.injected = true; 681 if (WARN_ON_ONCE(has_payload)) { 682 /* 683 * A reinjected event has already 684 * delivered its payload. 685 */ 686 has_payload = false; 687 payload = 0; 688 } 689 } else { 690 vcpu->arch.exception.pending = true; 691 vcpu->arch.exception.injected = false; 692 } 693 vcpu->arch.exception.has_error_code = has_error; 694 vcpu->arch.exception.vector = nr; 695 vcpu->arch.exception.error_code = error_code; 696 vcpu->arch.exception.has_payload = has_payload; 697 vcpu->arch.exception.payload = payload; 698 if (!is_guest_mode(vcpu)) 699 kvm_deliver_exception_payload(vcpu, 700 &vcpu->arch.exception); 701 return; 702 } 703 704 /* to check exception */ 705 prev_nr = vcpu->arch.exception.vector; 706 if (prev_nr == DF_VECTOR) { 707 /* triple fault -> shutdown */ 708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 709 return; 710 } 711 class1 = exception_class(prev_nr); 712 class2 = exception_class(nr); 713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 715 /* 716 * Synthesize #DF. Clear the previously injected or pending 717 * exception so as not to incorrectly trigger shutdown. 718 */ 719 vcpu->arch.exception.injected = false; 720 vcpu->arch.exception.pending = false; 721 722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 723 } else { 724 /* replace previous exception with a new one in a hope 725 that instruction re-execution will regenerate lost 726 exception */ 727 goto queue; 728 } 729 } 730 731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 734 } 735 EXPORT_SYMBOL_GPL(kvm_queue_exception); 736 737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 738 { 739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 740 } 741 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 742 743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 744 unsigned long payload) 745 { 746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 747 } 748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 749 750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 751 u32 error_code, unsigned long payload) 752 { 753 kvm_multiple_exception(vcpu, nr, true, error_code, 754 true, payload, false); 755 } 756 757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 758 { 759 if (err) 760 kvm_inject_gp(vcpu, 0); 761 else 762 return kvm_skip_emulated_instruction(vcpu); 763 764 return 1; 765 } 766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 767 768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 769 { 770 if (err) { 771 kvm_inject_gp(vcpu, 0); 772 return 1; 773 } 774 775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 776 EMULTYPE_COMPLETE_USER_EXIT); 777 } 778 779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 780 { 781 ++vcpu->stat.pf_guest; 782 783 /* 784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 785 * whether or not L1 wants to intercept "regular" #PF. 786 */ 787 if (is_guest_mode(vcpu) && fault->async_page_fault) 788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 789 true, fault->error_code, 790 true, fault->address); 791 else 792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 793 fault->address); 794 } 795 796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 797 struct x86_exception *fault) 798 { 799 struct kvm_mmu *fault_mmu; 800 WARN_ON_ONCE(fault->vector != PF_VECTOR); 801 802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 803 vcpu->arch.walk_mmu; 804 805 /* 806 * Invalidate the TLB entry for the faulting address, if it exists, 807 * else the access will fault indefinitely (and to emulate hardware). 808 */ 809 if ((fault->error_code & PFERR_PRESENT_MASK) && 810 !(fault->error_code & PFERR_RSVD_MASK)) 811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 812 KVM_MMU_ROOT_CURRENT); 813 814 fault_mmu->inject_page_fault(vcpu, fault); 815 } 816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 817 818 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 819 { 820 atomic_inc(&vcpu->arch.nmi_queued); 821 kvm_make_request(KVM_REQ_NMI, vcpu); 822 } 823 824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 827 } 828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 829 830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 831 { 832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 833 } 834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 835 836 /* 837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 838 * a #GP and return false. 839 */ 840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 841 { 842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 843 return true; 844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 845 return false; 846 } 847 848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 849 { 850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 851 return true; 852 853 kvm_queue_exception(vcpu, UD_VECTOR); 854 return false; 855 } 856 EXPORT_SYMBOL_GPL(kvm_require_dr); 857 858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 859 { 860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 861 } 862 863 /* 864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 865 */ 866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 867 { 868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 870 gpa_t real_gpa; 871 int i; 872 int ret; 873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 874 875 /* 876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 877 * to an L1 GPA. 878 */ 879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 881 if (real_gpa == INVALID_GPA) 882 return 0; 883 884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 886 cr3 & GENMASK(11, 5), sizeof(pdpte)); 887 if (ret < 0) 888 return 0; 889 890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 891 if ((pdpte[i] & PT_PRESENT_MASK) && 892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 893 return 0; 894 } 895 } 896 897 /* 898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 899 * Shadow page roots need to be reconstructed instead. 900 */ 901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 903 904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 907 vcpu->arch.pdptrs_from_userspace = false; 908 909 return 1; 910 } 911 EXPORT_SYMBOL_GPL(load_pdptrs); 912 913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 914 { 915 #ifdef CONFIG_X86_64 916 if (cr0 & 0xffffffff00000000UL) 917 return false; 918 #endif 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return false; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return false; 925 926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 927 } 928 929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 930 { 931 /* 932 * CR0.WP is incorporated into the MMU role, but only for non-nested, 933 * indirect shadow MMUs. If paging is disabled, no updates are needed 934 * as there are no permission bits to emulate. If TDP is enabled, the 935 * MMU's metadata needs to be updated, e.g. so that emulating guest 936 * translations does the right thing, but there's no need to unload the 937 * root as CR0.WP doesn't affect SPTEs. 938 */ 939 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 940 if (!(cr0 & X86_CR0_PG)) 941 return; 942 943 if (tdp_enabled) { 944 kvm_init_mmu(vcpu); 945 return; 946 } 947 } 948 949 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 950 kvm_clear_async_pf_completion_queue(vcpu); 951 kvm_async_pf_hash_reset(vcpu); 952 953 /* 954 * Clearing CR0.PG is defined to flush the TLB from the guest's 955 * perspective. 956 */ 957 if (!(cr0 & X86_CR0_PG)) 958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 959 } 960 961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 962 kvm_mmu_reset_context(vcpu); 963 964 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 965 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) && 966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 968 } 969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 970 971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 972 { 973 unsigned long old_cr0 = kvm_read_cr0(vcpu); 974 975 if (!kvm_is_valid_cr0(vcpu, cr0)) 976 return 1; 977 978 cr0 |= X86_CR0_ET; 979 980 /* Write to CR0 reserved bits are ignored, even on Intel. */ 981 cr0 &= ~CR0_RESERVED_BITS; 982 983 #ifdef CONFIG_X86_64 984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 985 (cr0 & X86_CR0_PG)) { 986 int cs_db, cs_l; 987 988 if (!is_pae(vcpu)) 989 return 1; 990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 991 if (cs_l) 992 return 1; 993 } 994 #endif 995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if (!(cr0 & X86_CR0_PG) && 1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1002 return 1; 1003 1004 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1005 1006 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1007 1008 return 0; 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1011 1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1013 { 1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1015 } 1016 EXPORT_SYMBOL_GPL(kvm_lmsw); 1017 1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1019 { 1020 if (vcpu->arch.guest_state_protected) 1021 return; 1022 1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1027 1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1031 } 1032 1033 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1034 vcpu->arch.pkru != vcpu->arch.host_pkru && 1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1037 write_pkru(vcpu->arch.pkru); 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1040 1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1042 { 1043 if (vcpu->arch.guest_state_protected) 1044 return; 1045 1046 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1049 vcpu->arch.pkru = rdpkru(); 1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1051 write_pkru(vcpu->arch.host_pkru); 1052 } 1053 1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1055 1056 if (vcpu->arch.xcr0 != host_xcr0) 1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1058 1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1060 vcpu->arch.ia32_xss != host_xss) 1061 wrmsrl(MSR_IA32_XSS, host_xss); 1062 } 1063 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1066 1067 #ifdef CONFIG_X86_64 1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1069 { 1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1071 } 1072 #endif 1073 1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1075 { 1076 u64 xcr0 = xcr; 1077 u64 old_xcr0 = vcpu->arch.xcr0; 1078 u64 valid_bits; 1079 1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1081 if (index != XCR_XFEATURE_ENABLED_MASK) 1082 return 1; 1083 if (!(xcr0 & XFEATURE_MASK_FP)) 1084 return 1; 1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1086 return 1; 1087 1088 /* 1089 * Do not allow the guest to set bits that we do not support 1090 * saving. However, xcr0 bit 0 is always set, even if the 1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1092 */ 1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1094 if (xcr0 & ~valid_bits) 1095 return 1; 1096 1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1098 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1099 return 1; 1100 1101 if (xcr0 & XFEATURE_MASK_AVX512) { 1102 if (!(xcr0 & XFEATURE_MASK_YMM)) 1103 return 1; 1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1105 return 1; 1106 } 1107 1108 if ((xcr0 & XFEATURE_MASK_XTILE) && 1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1110 return 1; 1111 1112 vcpu->arch.xcr0 = xcr0; 1113 1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1115 kvm_update_cpuid_runtime(vcpu); 1116 return 0; 1117 } 1118 1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1120 { 1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 1128 return kvm_skip_emulated_instruction(vcpu); 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1131 1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1133 { 1134 if (cr4 & cr4_reserved_bits) 1135 return false; 1136 1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1138 return false; 1139 1140 return true; 1141 } 1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1143 1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1145 { 1146 return __kvm_is_valid_cr4(vcpu, cr4) && 1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1148 } 1149 1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1151 { 1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1153 kvm_mmu_reset_context(vcpu); 1154 1155 /* 1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1157 * according to the SDM; however, stale prev_roots could be reused 1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1161 * so fall through. 1162 */ 1163 if (!tdp_enabled && 1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1165 kvm_mmu_unload(vcpu); 1166 1167 /* 1168 * The TLB has to be flushed for all PCIDs if any of the following 1169 * (architecturally required) changes happen: 1170 * - CR4.PCIDE is changed from 1 to 0 1171 * - CR4.PGE is toggled 1172 * 1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1174 */ 1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1178 1179 /* 1180 * The TLB has to be flushed for the current PCID if any of the 1181 * following (architecturally required) changes happen: 1182 * - CR4.SMEP is changed from 0 to 1 1183 * - CR4.PAE is toggled 1184 */ 1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1188 1189 } 1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1191 1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1193 { 1194 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1195 1196 if (!kvm_is_valid_cr4(vcpu, cr4)) 1197 return 1; 1198 1199 if (is_long_mode(vcpu)) { 1200 if (!(cr4 & X86_CR4_PAE)) 1201 return 1; 1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1203 return 1; 1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1207 return 1; 1208 1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1212 return 1; 1213 } 1214 1215 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1216 1217 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1222 1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1224 { 1225 struct kvm_mmu *mmu = vcpu->arch.mmu; 1226 unsigned long roots_to_free = 0; 1227 int i; 1228 1229 /* 1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1232 * also via the emulator. KVM's TDP page tables are not in the scope of 1233 * the invalidation, but the guest's TLB entries need to be flushed as 1234 * the CPU may have cached entries in its TLB for the target PCID. 1235 */ 1236 if (unlikely(tdp_enabled)) { 1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1238 return; 1239 } 1240 1241 /* 1242 * If neither the current CR3 nor any of the prev_roots use the given 1243 * PCID, then nothing needs to be done here because a resync will 1244 * happen anyway before switching to any other CR3. 1245 */ 1246 if (kvm_get_active_pcid(vcpu) == pcid) { 1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1249 } 1250 1251 /* 1252 * If PCID is disabled, there is no need to free prev_roots even if the 1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1254 * with PCIDE=0. 1255 */ 1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1257 return; 1258 1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1262 1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1264 } 1265 1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1267 { 1268 bool skip_tlb_flush = false; 1269 unsigned long pcid = 0; 1270 #ifdef CONFIG_X86_64 1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1273 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1274 pcid = cr3 & X86_CR3_PCID_MASK; 1275 } 1276 #endif 1277 1278 /* PDPTRs are always reloaded for PAE paging. */ 1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1280 goto handle_tlb_flush; 1281 1282 /* 1283 * Do not condition the GPA check on long mode, this helper is used to 1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1285 * the current vCPU mode is accurate. 1286 */ 1287 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1288 return 1; 1289 1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1291 return 1; 1292 1293 if (cr3 != kvm_read_cr3(vcpu)) 1294 kvm_mmu_new_pgd(vcpu, cr3); 1295 1296 vcpu->arch.cr3 = cr3; 1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1299 1300 handle_tlb_flush: 1301 /* 1302 * A load of CR3 that flushes the TLB flushes only the current PCID, 1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1304 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1305 * and it's impossible to use a non-zero PCID when PCID is disabled, 1306 * i.e. only PCID=0 can be relevant. 1307 */ 1308 if (!skip_tlb_flush) 1309 kvm_invalidate_pcid(vcpu, pcid); 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1314 1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1316 { 1317 if (cr8 & CR8_RESERVED_BITS) 1318 return 1; 1319 if (lapic_in_kernel(vcpu)) 1320 kvm_lapic_set_tpr(vcpu, cr8); 1321 else 1322 vcpu->arch.cr8 = cr8; 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1326 1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1328 { 1329 if (lapic_in_kernel(vcpu)) 1330 return kvm_lapic_get_cr8(vcpu); 1331 else 1332 return vcpu->arch.cr8; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1335 1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1337 { 1338 int i; 1339 1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1341 for (i = 0; i < KVM_NR_DB_REGS; i++) 1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1343 } 1344 } 1345 1346 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1347 { 1348 unsigned long dr7; 1349 1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1351 dr7 = vcpu->arch.guest_debug_dr7; 1352 else 1353 dr7 = vcpu->arch.dr7; 1354 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1356 if (dr7 & DR7_BP_EN_MASK) 1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1358 } 1359 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1360 1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1362 { 1363 u64 fixed = DR6_FIXED_1; 1364 1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1366 fixed |= DR6_RTM; 1367 1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1369 fixed |= DR6_BUS_LOCK; 1370 return fixed; 1371 } 1372 1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1374 { 1375 size_t size = ARRAY_SIZE(vcpu->arch.db); 1376 1377 switch (dr) { 1378 case 0 ... 3: 1379 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1381 vcpu->arch.eff_db[dr] = val; 1382 break; 1383 case 4: 1384 case 6: 1385 if (!kvm_dr6_valid(val)) 1386 return 1; /* #GP */ 1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1388 break; 1389 case 5: 1390 default: /* 7 */ 1391 if (!kvm_dr7_valid(val)) 1392 return 1; /* #GP */ 1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1394 kvm_update_dr7(vcpu); 1395 break; 1396 } 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_set_dr); 1401 1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1403 { 1404 size_t size = ARRAY_SIZE(vcpu->arch.db); 1405 1406 switch (dr) { 1407 case 0 ... 3: 1408 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1409 break; 1410 case 4: 1411 case 6: 1412 *val = vcpu->arch.dr6; 1413 break; 1414 case 5: 1415 default: /* 7 */ 1416 *val = vcpu->arch.dr7; 1417 break; 1418 } 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_get_dr); 1421 1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1423 { 1424 u32 ecx = kvm_rcx_read(vcpu); 1425 u64 data; 1426 1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1428 kvm_inject_gp(vcpu, 0); 1429 return 1; 1430 } 1431 1432 kvm_rax_write(vcpu, (u32)data); 1433 kvm_rdx_write(vcpu, data >> 32); 1434 return kvm_skip_emulated_instruction(vcpu); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1437 1438 /* 1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1443 * MSRs that KVM emulates without strictly requiring host support. 1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1446 * msrs_to_save and emulated_msrs. 1447 */ 1448 1449 static const u32 msrs_to_save_base[] = { 1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1451 MSR_STAR, 1452 #ifdef CONFIG_X86_64 1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1454 #endif 1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1464 MSR_IA32_UMWAIT_CONTROL, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static const u32 msrs_to_save_pmu[] = { 1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1475 1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1485 1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1488 1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1494 1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1498 }; 1499 1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1501 ARRAY_SIZE(msrs_to_save_pmu)]; 1502 static unsigned num_msrs_to_save; 1503 1504 static const u32 emulated_msrs_all[] = { 1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1507 1508 #ifdef CONFIG_KVM_HYPERV 1509 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1510 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1511 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1512 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1513 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1514 HV_X64_MSR_RESET, 1515 HV_X64_MSR_VP_INDEX, 1516 HV_X64_MSR_VP_RUNTIME, 1517 HV_X64_MSR_SCONTROL, 1518 HV_X64_MSR_STIMER0_CONFIG, 1519 HV_X64_MSR_VP_ASSIST_PAGE, 1520 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1521 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1522 HV_X64_MSR_SYNDBG_OPTIONS, 1523 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1524 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1525 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1526 #endif 1527 1528 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1529 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1530 1531 MSR_IA32_TSC_ADJUST, 1532 MSR_IA32_TSC_DEADLINE, 1533 MSR_IA32_ARCH_CAPABILITIES, 1534 MSR_IA32_PERF_CAPABILITIES, 1535 MSR_IA32_MISC_ENABLE, 1536 MSR_IA32_MCG_STATUS, 1537 MSR_IA32_MCG_CTL, 1538 MSR_IA32_MCG_EXT_CTL, 1539 MSR_IA32_SMBASE, 1540 MSR_SMI_COUNT, 1541 MSR_PLATFORM_INFO, 1542 MSR_MISC_FEATURES_ENABLES, 1543 MSR_AMD64_VIRT_SPEC_CTRL, 1544 MSR_AMD64_TSC_RATIO, 1545 MSR_IA32_POWER_CTL, 1546 MSR_IA32_UCODE_REV, 1547 1548 /* 1549 * KVM always supports the "true" VMX control MSRs, even if the host 1550 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1551 * doesn't strictly require them to exist in the host (ignoring that 1552 * KVM would refuse to load in the first place if the core set of MSRs 1553 * aren't supported). 1554 */ 1555 MSR_IA32_VMX_BASIC, 1556 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1557 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1558 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1559 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1560 MSR_IA32_VMX_MISC, 1561 MSR_IA32_VMX_CR0_FIXED0, 1562 MSR_IA32_VMX_CR4_FIXED0, 1563 MSR_IA32_VMX_VMCS_ENUM, 1564 MSR_IA32_VMX_PROCBASED_CTLS2, 1565 MSR_IA32_VMX_EPT_VPID_CAP, 1566 MSR_IA32_VMX_VMFUNC, 1567 1568 MSR_K7_HWCR, 1569 MSR_KVM_POLL_CONTROL, 1570 }; 1571 1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1573 static unsigned num_emulated_msrs; 1574 1575 /* 1576 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1577 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1578 * feature MSRs, but are handled separately to allow expedited lookups. 1579 */ 1580 static const u32 msr_based_features_all_except_vmx[] = { 1581 MSR_AMD64_DE_CFG, 1582 MSR_IA32_UCODE_REV, 1583 MSR_IA32_ARCH_CAPABILITIES, 1584 MSR_IA32_PERF_CAPABILITIES, 1585 }; 1586 1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1588 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1589 static unsigned int num_msr_based_features; 1590 1591 /* 1592 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1593 * patch, are immutable once the vCPU model is defined. 1594 */ 1595 static bool kvm_is_immutable_feature_msr(u32 msr) 1596 { 1597 int i; 1598 1599 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1600 return true; 1601 1602 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1603 if (msr == msr_based_features_all_except_vmx[i]) 1604 return msr != MSR_IA32_UCODE_REV; 1605 } 1606 1607 return false; 1608 } 1609 1610 /* 1611 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1612 * does not yet virtualize. These include: 1613 * 10 - MISC_PACKAGE_CTRLS 1614 * 11 - ENERGY_FILTERING_CTL 1615 * 12 - DOITM 1616 * 18 - FB_CLEAR_CTRL 1617 * 21 - XAPIC_DISABLE_STATUS 1618 * 23 - OVERCLOCKING_STATUS 1619 */ 1620 1621 #define KVM_SUPPORTED_ARCH_CAP \ 1622 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1623 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1624 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1625 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1626 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO) 1627 1628 static u64 kvm_get_arch_capabilities(void) 1629 { 1630 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1631 1632 /* 1633 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1634 * the nested hypervisor runs with NX huge pages. If it is not, 1635 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1636 * L1 guests, so it need not worry about its own (L2) guests. 1637 */ 1638 data |= ARCH_CAP_PSCHANGE_MC_NO; 1639 1640 /* 1641 * If we're doing cache flushes (either "always" or "cond") 1642 * we will do one whenever the guest does a vmlaunch/vmresume. 1643 * If an outer hypervisor is doing the cache flush for us 1644 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1645 * capability to the guest too, and if EPT is disabled we're not 1646 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1647 * require a nested hypervisor to do a flush of its own. 1648 */ 1649 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1650 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1651 1652 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1653 data |= ARCH_CAP_RDCL_NO; 1654 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1655 data |= ARCH_CAP_SSB_NO; 1656 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1657 data |= ARCH_CAP_MDS_NO; 1658 1659 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1660 /* 1661 * If RTM=0 because the kernel has disabled TSX, the host might 1662 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1663 * and therefore knows that there cannot be TAA) but keep 1664 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1665 * and we want to allow migrating those guests to tsx=off hosts. 1666 */ 1667 data &= ~ARCH_CAP_TAA_NO; 1668 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1669 data |= ARCH_CAP_TAA_NO; 1670 } else { 1671 /* 1672 * Nothing to do here; we emulate TSX_CTRL if present on the 1673 * host so the guest can choose between disabling TSX or 1674 * using VERW to clear CPU buffers. 1675 */ 1676 } 1677 1678 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1679 data |= ARCH_CAP_GDS_NO; 1680 1681 return data; 1682 } 1683 1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1685 { 1686 switch (msr->index) { 1687 case MSR_IA32_ARCH_CAPABILITIES: 1688 msr->data = kvm_get_arch_capabilities(); 1689 break; 1690 case MSR_IA32_PERF_CAPABILITIES: 1691 msr->data = kvm_caps.supported_perf_cap; 1692 break; 1693 case MSR_IA32_UCODE_REV: 1694 rdmsrl_safe(msr->index, &msr->data); 1695 break; 1696 default: 1697 return static_call(kvm_x86_get_msr_feature)(msr); 1698 } 1699 return 0; 1700 } 1701 1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1703 { 1704 struct kvm_msr_entry msr; 1705 int r; 1706 1707 msr.index = index; 1708 r = kvm_get_msr_feature(&msr); 1709 1710 if (r == KVM_MSR_RET_INVALID) { 1711 /* Unconditionally clear the output for simplicity */ 1712 *data = 0; 1713 if (kvm_msr_ignored_check(index, 0, false)) 1714 r = 0; 1715 } 1716 1717 if (r) 1718 return r; 1719 1720 *data = msr.data; 1721 1722 return 0; 1723 } 1724 1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1726 { 1727 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1728 return false; 1729 1730 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1731 return false; 1732 1733 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1734 return false; 1735 1736 if (efer & (EFER_LME | EFER_LMA) && 1737 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1738 return false; 1739 1740 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1741 return false; 1742 1743 return true; 1744 1745 } 1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1747 { 1748 if (efer & efer_reserved_bits) 1749 return false; 1750 1751 return __kvm_valid_efer(vcpu, efer); 1752 } 1753 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1754 1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1756 { 1757 u64 old_efer = vcpu->arch.efer; 1758 u64 efer = msr_info->data; 1759 int r; 1760 1761 if (efer & efer_reserved_bits) 1762 return 1; 1763 1764 if (!msr_info->host_initiated) { 1765 if (!__kvm_valid_efer(vcpu, efer)) 1766 return 1; 1767 1768 if (is_paging(vcpu) && 1769 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1770 return 1; 1771 } 1772 1773 efer &= ~EFER_LMA; 1774 efer |= vcpu->arch.efer & EFER_LMA; 1775 1776 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1777 if (r) { 1778 WARN_ON(r > 0); 1779 return r; 1780 } 1781 1782 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1783 kvm_mmu_reset_context(vcpu); 1784 1785 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1786 (efer & EFER_SVME)) 1787 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1788 1789 return 0; 1790 } 1791 1792 void kvm_enable_efer_bits(u64 mask) 1793 { 1794 efer_reserved_bits &= ~mask; 1795 } 1796 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1797 1798 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1799 { 1800 struct kvm_x86_msr_filter *msr_filter; 1801 struct msr_bitmap_range *ranges; 1802 struct kvm *kvm = vcpu->kvm; 1803 bool allowed; 1804 int idx; 1805 u32 i; 1806 1807 /* x2APIC MSRs do not support filtering. */ 1808 if (index >= 0x800 && index <= 0x8ff) 1809 return true; 1810 1811 idx = srcu_read_lock(&kvm->srcu); 1812 1813 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1814 if (!msr_filter) { 1815 allowed = true; 1816 goto out; 1817 } 1818 1819 allowed = msr_filter->default_allow; 1820 ranges = msr_filter->ranges; 1821 1822 for (i = 0; i < msr_filter->count; i++) { 1823 u32 start = ranges[i].base; 1824 u32 end = start + ranges[i].nmsrs; 1825 u32 flags = ranges[i].flags; 1826 unsigned long *bitmap = ranges[i].bitmap; 1827 1828 if ((index >= start) && (index < end) && (flags & type)) { 1829 allowed = test_bit(index - start, bitmap); 1830 break; 1831 } 1832 } 1833 1834 out: 1835 srcu_read_unlock(&kvm->srcu, idx); 1836 1837 return allowed; 1838 } 1839 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1840 1841 /* 1842 * Write @data into the MSR specified by @index. Select MSR specific fault 1843 * checks are bypassed if @host_initiated is %true. 1844 * Returns 0 on success, non-0 otherwise. 1845 * Assumes vcpu_load() was already called. 1846 */ 1847 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1848 bool host_initiated) 1849 { 1850 struct msr_data msr; 1851 1852 switch (index) { 1853 case MSR_FS_BASE: 1854 case MSR_GS_BASE: 1855 case MSR_KERNEL_GS_BASE: 1856 case MSR_CSTAR: 1857 case MSR_LSTAR: 1858 if (is_noncanonical_address(data, vcpu)) 1859 return 1; 1860 break; 1861 case MSR_IA32_SYSENTER_EIP: 1862 case MSR_IA32_SYSENTER_ESP: 1863 /* 1864 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1865 * non-canonical address is written on Intel but not on 1866 * AMD (which ignores the top 32-bits, because it does 1867 * not implement 64-bit SYSENTER). 1868 * 1869 * 64-bit code should hence be able to write a non-canonical 1870 * value on AMD. Making the address canonical ensures that 1871 * vmentry does not fail on Intel after writing a non-canonical 1872 * value, and that something deterministic happens if the guest 1873 * invokes 64-bit SYSENTER. 1874 */ 1875 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1876 break; 1877 case MSR_TSC_AUX: 1878 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1879 return 1; 1880 1881 if (!host_initiated && 1882 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1883 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1884 return 1; 1885 1886 /* 1887 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1888 * incomplete and conflicting architectural behavior. Current 1889 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1890 * reserved and always read as zeros. Enforce Intel's reserved 1891 * bits check if and only if the guest CPU is Intel, and clear 1892 * the bits in all other cases. This ensures cross-vendor 1893 * migration will provide consistent behavior for the guest. 1894 */ 1895 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1896 return 1; 1897 1898 data = (u32)data; 1899 break; 1900 } 1901 1902 msr.data = data; 1903 msr.index = index; 1904 msr.host_initiated = host_initiated; 1905 1906 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1907 } 1908 1909 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1910 u32 index, u64 data, bool host_initiated) 1911 { 1912 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1913 1914 if (ret == KVM_MSR_RET_INVALID) 1915 if (kvm_msr_ignored_check(index, data, true)) 1916 ret = 0; 1917 1918 return ret; 1919 } 1920 1921 /* 1922 * Read the MSR specified by @index into @data. Select MSR specific fault 1923 * checks are bypassed if @host_initiated is %true. 1924 * Returns 0 on success, non-0 otherwise. 1925 * Assumes vcpu_load() was already called. 1926 */ 1927 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1928 bool host_initiated) 1929 { 1930 struct msr_data msr; 1931 int ret; 1932 1933 switch (index) { 1934 case MSR_TSC_AUX: 1935 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1936 return 1; 1937 1938 if (!host_initiated && 1939 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1940 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1941 return 1; 1942 break; 1943 } 1944 1945 msr.index = index; 1946 msr.host_initiated = host_initiated; 1947 1948 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1949 if (!ret) 1950 *data = msr.data; 1951 return ret; 1952 } 1953 1954 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1955 u32 index, u64 *data, bool host_initiated) 1956 { 1957 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1958 1959 if (ret == KVM_MSR_RET_INVALID) { 1960 /* Unconditionally clear *data for simplicity */ 1961 *data = 0; 1962 if (kvm_msr_ignored_check(index, 0, false)) 1963 ret = 0; 1964 } 1965 1966 return ret; 1967 } 1968 1969 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1970 { 1971 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1972 return KVM_MSR_RET_FILTERED; 1973 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1974 } 1975 1976 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1977 { 1978 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1979 return KVM_MSR_RET_FILTERED; 1980 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1981 } 1982 1983 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1984 { 1985 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1986 } 1987 EXPORT_SYMBOL_GPL(kvm_get_msr); 1988 1989 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1990 { 1991 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1992 } 1993 EXPORT_SYMBOL_GPL(kvm_set_msr); 1994 1995 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1996 { 1997 if (!vcpu->run->msr.error) { 1998 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1999 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 2000 } 2001 } 2002 2003 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 2004 { 2005 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2006 } 2007 2008 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2009 { 2010 complete_userspace_rdmsr(vcpu); 2011 return complete_emulated_msr_access(vcpu); 2012 } 2013 2014 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2015 { 2016 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2017 } 2018 2019 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2020 { 2021 complete_userspace_rdmsr(vcpu); 2022 return complete_fast_msr_access(vcpu); 2023 } 2024 2025 static u64 kvm_msr_reason(int r) 2026 { 2027 switch (r) { 2028 case KVM_MSR_RET_INVALID: 2029 return KVM_MSR_EXIT_REASON_UNKNOWN; 2030 case KVM_MSR_RET_FILTERED: 2031 return KVM_MSR_EXIT_REASON_FILTER; 2032 default: 2033 return KVM_MSR_EXIT_REASON_INVAL; 2034 } 2035 } 2036 2037 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2038 u32 exit_reason, u64 data, 2039 int (*completion)(struct kvm_vcpu *vcpu), 2040 int r) 2041 { 2042 u64 msr_reason = kvm_msr_reason(r); 2043 2044 /* Check if the user wanted to know about this MSR fault */ 2045 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2046 return 0; 2047 2048 vcpu->run->exit_reason = exit_reason; 2049 vcpu->run->msr.error = 0; 2050 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2051 vcpu->run->msr.reason = msr_reason; 2052 vcpu->run->msr.index = index; 2053 vcpu->run->msr.data = data; 2054 vcpu->arch.complete_userspace_io = completion; 2055 2056 return 1; 2057 } 2058 2059 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2060 { 2061 u32 ecx = kvm_rcx_read(vcpu); 2062 u64 data; 2063 int r; 2064 2065 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2066 2067 if (!r) { 2068 trace_kvm_msr_read(ecx, data); 2069 2070 kvm_rax_write(vcpu, data & -1u); 2071 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2072 } else { 2073 /* MSR read failed? See if we should ask user space */ 2074 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2075 complete_fast_rdmsr, r)) 2076 return 0; 2077 trace_kvm_msr_read_ex(ecx); 2078 } 2079 2080 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2081 } 2082 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2083 2084 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2085 { 2086 u32 ecx = kvm_rcx_read(vcpu); 2087 u64 data = kvm_read_edx_eax(vcpu); 2088 int r; 2089 2090 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2091 2092 if (!r) { 2093 trace_kvm_msr_write(ecx, data); 2094 } else { 2095 /* MSR write failed? See if we should ask user space */ 2096 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2097 complete_fast_msr_access, r)) 2098 return 0; 2099 /* Signal all other negative errors to userspace */ 2100 if (r < 0) 2101 return r; 2102 trace_kvm_msr_write_ex(ecx, data); 2103 } 2104 2105 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2106 } 2107 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2108 2109 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2110 { 2111 return kvm_skip_emulated_instruction(vcpu); 2112 } 2113 2114 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2115 { 2116 /* Treat an INVD instruction as a NOP and just skip it. */ 2117 return kvm_emulate_as_nop(vcpu); 2118 } 2119 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2120 2121 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2122 { 2123 kvm_queue_exception(vcpu, UD_VECTOR); 2124 return 1; 2125 } 2126 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2127 2128 2129 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2130 { 2131 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2132 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2133 return kvm_handle_invalid_op(vcpu); 2134 2135 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2136 return kvm_emulate_as_nop(vcpu); 2137 } 2138 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2139 { 2140 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2141 } 2142 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2143 2144 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2145 { 2146 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2147 } 2148 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2149 2150 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2151 { 2152 xfer_to_guest_mode_prepare(); 2153 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2154 xfer_to_guest_mode_work_pending(); 2155 } 2156 2157 /* 2158 * The fast path for frequent and performance sensitive wrmsr emulation, 2159 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2160 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2161 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2162 * other cases which must be called after interrupts are enabled on the host. 2163 */ 2164 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2165 { 2166 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2167 return 1; 2168 2169 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2170 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2171 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2172 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2173 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2174 2175 return 1; 2176 } 2177 2178 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2179 { 2180 if (!kvm_can_use_hv_timer(vcpu)) 2181 return 1; 2182 2183 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2184 return 0; 2185 } 2186 2187 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2188 { 2189 u32 msr = kvm_rcx_read(vcpu); 2190 u64 data; 2191 fastpath_t ret = EXIT_FASTPATH_NONE; 2192 2193 kvm_vcpu_srcu_read_lock(vcpu); 2194 2195 switch (msr) { 2196 case APIC_BASE_MSR + (APIC_ICR >> 4): 2197 data = kvm_read_edx_eax(vcpu); 2198 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2199 kvm_skip_emulated_instruction(vcpu); 2200 ret = EXIT_FASTPATH_EXIT_HANDLED; 2201 } 2202 break; 2203 case MSR_IA32_TSC_DEADLINE: 2204 data = kvm_read_edx_eax(vcpu); 2205 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2206 kvm_skip_emulated_instruction(vcpu); 2207 ret = EXIT_FASTPATH_REENTER_GUEST; 2208 } 2209 break; 2210 default: 2211 break; 2212 } 2213 2214 if (ret != EXIT_FASTPATH_NONE) 2215 trace_kvm_msr_write(msr, data); 2216 2217 kvm_vcpu_srcu_read_unlock(vcpu); 2218 2219 return ret; 2220 } 2221 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2222 2223 /* 2224 * Adapt set_msr() to msr_io()'s calling convention 2225 */ 2226 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2227 { 2228 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2229 } 2230 2231 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2232 { 2233 u64 val; 2234 2235 /* 2236 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2237 * not support modifying the guest vCPU model on the fly, e.g. changing 2238 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2239 * writes of the same value, e.g. to allow userspace to blindly stuff 2240 * all MSRs when emulating RESET. 2241 */ 2242 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2243 if (do_get_msr(vcpu, index, &val) || *data != val) 2244 return -EINVAL; 2245 2246 return 0; 2247 } 2248 2249 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2250 } 2251 2252 #ifdef CONFIG_X86_64 2253 struct pvclock_clock { 2254 int vclock_mode; 2255 u64 cycle_last; 2256 u64 mask; 2257 u32 mult; 2258 u32 shift; 2259 u64 base_cycles; 2260 u64 offset; 2261 }; 2262 2263 struct pvclock_gtod_data { 2264 seqcount_t seq; 2265 2266 struct pvclock_clock clock; /* extract of a clocksource struct */ 2267 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2268 2269 ktime_t offs_boot; 2270 u64 wall_time_sec; 2271 }; 2272 2273 static struct pvclock_gtod_data pvclock_gtod_data; 2274 2275 static void update_pvclock_gtod(struct timekeeper *tk) 2276 { 2277 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2278 2279 write_seqcount_begin(&vdata->seq); 2280 2281 /* copy pvclock gtod data */ 2282 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2283 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2284 vdata->clock.mask = tk->tkr_mono.mask; 2285 vdata->clock.mult = tk->tkr_mono.mult; 2286 vdata->clock.shift = tk->tkr_mono.shift; 2287 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2288 vdata->clock.offset = tk->tkr_mono.base; 2289 2290 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2291 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2292 vdata->raw_clock.mask = tk->tkr_raw.mask; 2293 vdata->raw_clock.mult = tk->tkr_raw.mult; 2294 vdata->raw_clock.shift = tk->tkr_raw.shift; 2295 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2296 vdata->raw_clock.offset = tk->tkr_raw.base; 2297 2298 vdata->wall_time_sec = tk->xtime_sec; 2299 2300 vdata->offs_boot = tk->offs_boot; 2301 2302 write_seqcount_end(&vdata->seq); 2303 } 2304 2305 static s64 get_kvmclock_base_ns(void) 2306 { 2307 /* Count up from boot time, but with the frequency of the raw clock. */ 2308 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2309 } 2310 #else 2311 static s64 get_kvmclock_base_ns(void) 2312 { 2313 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2314 return ktime_get_boottime_ns(); 2315 } 2316 #endif 2317 2318 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2319 { 2320 int version; 2321 int r; 2322 struct pvclock_wall_clock wc; 2323 u32 wc_sec_hi; 2324 u64 wall_nsec; 2325 2326 if (!wall_clock) 2327 return; 2328 2329 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2330 if (r) 2331 return; 2332 2333 if (version & 1) 2334 ++version; /* first time write, random junk */ 2335 2336 ++version; 2337 2338 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2339 return; 2340 2341 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2342 2343 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2344 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2345 wc.version = version; 2346 2347 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2348 2349 if (sec_hi_ofs) { 2350 wc_sec_hi = wall_nsec >> 32; 2351 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2352 &wc_sec_hi, sizeof(wc_sec_hi)); 2353 } 2354 2355 version++; 2356 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2357 } 2358 2359 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2360 bool old_msr, bool host_initiated) 2361 { 2362 struct kvm_arch *ka = &vcpu->kvm->arch; 2363 2364 if (vcpu->vcpu_id == 0 && !host_initiated) { 2365 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2366 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2367 2368 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2369 } 2370 2371 vcpu->arch.time = system_time; 2372 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2373 2374 /* we verify if the enable bit is set... */ 2375 if (system_time & 1) 2376 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2377 sizeof(struct pvclock_vcpu_time_info)); 2378 else 2379 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2380 2381 return; 2382 } 2383 2384 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2385 { 2386 do_shl32_div32(dividend, divisor); 2387 return dividend; 2388 } 2389 2390 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2391 s8 *pshift, u32 *pmultiplier) 2392 { 2393 uint64_t scaled64; 2394 int32_t shift = 0; 2395 uint64_t tps64; 2396 uint32_t tps32; 2397 2398 tps64 = base_hz; 2399 scaled64 = scaled_hz; 2400 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2401 tps64 >>= 1; 2402 shift--; 2403 } 2404 2405 tps32 = (uint32_t)tps64; 2406 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2407 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2408 scaled64 >>= 1; 2409 else 2410 tps32 <<= 1; 2411 shift++; 2412 } 2413 2414 *pshift = shift; 2415 *pmultiplier = div_frac(scaled64, tps32); 2416 } 2417 2418 #ifdef CONFIG_X86_64 2419 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2420 #endif 2421 2422 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2423 static unsigned long max_tsc_khz; 2424 2425 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2426 { 2427 u64 v = (u64)khz * (1000000 + ppm); 2428 do_div(v, 1000000); 2429 return v; 2430 } 2431 2432 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2433 2434 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2435 { 2436 u64 ratio; 2437 2438 /* Guest TSC same frequency as host TSC? */ 2439 if (!scale) { 2440 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2441 return 0; 2442 } 2443 2444 /* TSC scaling supported? */ 2445 if (!kvm_caps.has_tsc_control) { 2446 if (user_tsc_khz > tsc_khz) { 2447 vcpu->arch.tsc_catchup = 1; 2448 vcpu->arch.tsc_always_catchup = 1; 2449 return 0; 2450 } else { 2451 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2452 return -1; 2453 } 2454 } 2455 2456 /* TSC scaling required - calculate ratio */ 2457 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2458 user_tsc_khz, tsc_khz); 2459 2460 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2461 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2462 user_tsc_khz); 2463 return -1; 2464 } 2465 2466 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2467 return 0; 2468 } 2469 2470 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2471 { 2472 u32 thresh_lo, thresh_hi; 2473 int use_scaling = 0; 2474 2475 /* tsc_khz can be zero if TSC calibration fails */ 2476 if (user_tsc_khz == 0) { 2477 /* set tsc_scaling_ratio to a safe value */ 2478 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2479 return -1; 2480 } 2481 2482 /* Compute a scale to convert nanoseconds in TSC cycles */ 2483 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2484 &vcpu->arch.virtual_tsc_shift, 2485 &vcpu->arch.virtual_tsc_mult); 2486 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2487 2488 /* 2489 * Compute the variation in TSC rate which is acceptable 2490 * within the range of tolerance and decide if the 2491 * rate being applied is within that bounds of the hardware 2492 * rate. If so, no scaling or compensation need be done. 2493 */ 2494 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2495 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2496 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2497 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2498 user_tsc_khz, thresh_lo, thresh_hi); 2499 use_scaling = 1; 2500 } 2501 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2502 } 2503 2504 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2505 { 2506 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2507 vcpu->arch.virtual_tsc_mult, 2508 vcpu->arch.virtual_tsc_shift); 2509 tsc += vcpu->arch.this_tsc_write; 2510 return tsc; 2511 } 2512 2513 #ifdef CONFIG_X86_64 2514 static inline int gtod_is_based_on_tsc(int mode) 2515 { 2516 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2517 } 2518 #endif 2519 2520 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2521 { 2522 #ifdef CONFIG_X86_64 2523 struct kvm_arch *ka = &vcpu->kvm->arch; 2524 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2525 2526 /* 2527 * To use the masterclock, the host clocksource must be based on TSC 2528 * and all vCPUs must have matching TSCs. Note, the count for matching 2529 * vCPUs doesn't include the reference vCPU, hence "+1". 2530 */ 2531 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2532 atomic_read(&vcpu->kvm->online_vcpus)) && 2533 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2534 2535 /* 2536 * Request a masterclock update if the masterclock needs to be toggled 2537 * on/off, or when starting a new generation and the masterclock is 2538 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2539 * taken _after_ the new generation is created). 2540 */ 2541 if ((ka->use_master_clock && new_generation) || 2542 (ka->use_master_clock != use_master_clock)) 2543 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2544 2545 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2546 atomic_read(&vcpu->kvm->online_vcpus), 2547 ka->use_master_clock, gtod->clock.vclock_mode); 2548 #endif 2549 } 2550 2551 /* 2552 * Multiply tsc by a fixed point number represented by ratio. 2553 * 2554 * The most significant 64-N bits (mult) of ratio represent the 2555 * integral part of the fixed point number; the remaining N bits 2556 * (frac) represent the fractional part, ie. ratio represents a fixed 2557 * point number (mult + frac * 2^(-N)). 2558 * 2559 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2560 */ 2561 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2562 { 2563 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2564 } 2565 2566 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2567 { 2568 u64 _tsc = tsc; 2569 2570 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2571 _tsc = __scale_tsc(ratio, tsc); 2572 2573 return _tsc; 2574 } 2575 2576 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2577 { 2578 u64 tsc; 2579 2580 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2581 2582 return target_tsc - tsc; 2583 } 2584 2585 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2586 { 2587 return vcpu->arch.l1_tsc_offset + 2588 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2589 } 2590 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2591 2592 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2593 { 2594 u64 nested_offset; 2595 2596 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2597 nested_offset = l1_offset; 2598 else 2599 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2600 kvm_caps.tsc_scaling_ratio_frac_bits); 2601 2602 nested_offset += l2_offset; 2603 return nested_offset; 2604 } 2605 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2606 2607 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2608 { 2609 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2610 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2611 kvm_caps.tsc_scaling_ratio_frac_bits); 2612 2613 return l1_multiplier; 2614 } 2615 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2616 2617 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2618 { 2619 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2620 vcpu->arch.l1_tsc_offset, 2621 l1_offset); 2622 2623 vcpu->arch.l1_tsc_offset = l1_offset; 2624 2625 /* 2626 * If we are here because L1 chose not to trap WRMSR to TSC then 2627 * according to the spec this should set L1's TSC (as opposed to 2628 * setting L1's offset for L2). 2629 */ 2630 if (is_guest_mode(vcpu)) 2631 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2632 l1_offset, 2633 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2634 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2635 else 2636 vcpu->arch.tsc_offset = l1_offset; 2637 2638 static_call(kvm_x86_write_tsc_offset)(vcpu); 2639 } 2640 2641 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2642 { 2643 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2644 2645 /* Userspace is changing the multiplier while L2 is active */ 2646 if (is_guest_mode(vcpu)) 2647 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2648 l1_multiplier, 2649 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2650 else 2651 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2652 2653 if (kvm_caps.has_tsc_control) 2654 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2655 } 2656 2657 static inline bool kvm_check_tsc_unstable(void) 2658 { 2659 #ifdef CONFIG_X86_64 2660 /* 2661 * TSC is marked unstable when we're running on Hyper-V, 2662 * 'TSC page' clocksource is good. 2663 */ 2664 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2665 return false; 2666 #endif 2667 return check_tsc_unstable(); 2668 } 2669 2670 /* 2671 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2672 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2673 * participates in. 2674 */ 2675 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2676 u64 ns, bool matched) 2677 { 2678 struct kvm *kvm = vcpu->kvm; 2679 2680 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2681 2682 /* 2683 * We also track th most recent recorded KHZ, write and time to 2684 * allow the matching interval to be extended at each write. 2685 */ 2686 kvm->arch.last_tsc_nsec = ns; 2687 kvm->arch.last_tsc_write = tsc; 2688 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2689 kvm->arch.last_tsc_offset = offset; 2690 2691 vcpu->arch.last_guest_tsc = tsc; 2692 2693 kvm_vcpu_write_tsc_offset(vcpu, offset); 2694 2695 if (!matched) { 2696 /* 2697 * We split periods of matched TSC writes into generations. 2698 * For each generation, we track the original measured 2699 * nanosecond time, offset, and write, so if TSCs are in 2700 * sync, we can match exact offset, and if not, we can match 2701 * exact software computation in compute_guest_tsc() 2702 * 2703 * These values are tracked in kvm->arch.cur_xxx variables. 2704 */ 2705 kvm->arch.cur_tsc_generation++; 2706 kvm->arch.cur_tsc_nsec = ns; 2707 kvm->arch.cur_tsc_write = tsc; 2708 kvm->arch.cur_tsc_offset = offset; 2709 kvm->arch.nr_vcpus_matched_tsc = 0; 2710 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2711 kvm->arch.nr_vcpus_matched_tsc++; 2712 } 2713 2714 /* Keep track of which generation this VCPU has synchronized to */ 2715 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2716 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2717 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2718 2719 kvm_track_tsc_matching(vcpu, !matched); 2720 } 2721 2722 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2723 { 2724 u64 data = user_value ? *user_value : 0; 2725 struct kvm *kvm = vcpu->kvm; 2726 u64 offset, ns, elapsed; 2727 unsigned long flags; 2728 bool matched = false; 2729 bool synchronizing = false; 2730 2731 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2732 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2733 ns = get_kvmclock_base_ns(); 2734 elapsed = ns - kvm->arch.last_tsc_nsec; 2735 2736 if (vcpu->arch.virtual_tsc_khz) { 2737 if (data == 0) { 2738 /* 2739 * Force synchronization when creating a vCPU, or when 2740 * userspace explicitly writes a zero value. 2741 */ 2742 synchronizing = true; 2743 } else if (kvm->arch.user_set_tsc) { 2744 u64 tsc_exp = kvm->arch.last_tsc_write + 2745 nsec_to_cycles(vcpu, elapsed); 2746 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2747 /* 2748 * Here lies UAPI baggage: when a user-initiated TSC write has 2749 * a small delta (1 second) of virtual cycle time against the 2750 * previously set vCPU, we assume that they were intended to be 2751 * in sync and the delta was only due to the racy nature of the 2752 * legacy API. 2753 * 2754 * This trick falls down when restoring a guest which genuinely 2755 * has been running for less time than the 1 second of imprecision 2756 * which we allow for in the legacy API. In this case, the first 2757 * value written by userspace (on any vCPU) should not be subject 2758 * to this 'correction' to make it sync up with values that only 2759 * come from the kernel's default vCPU creation. Make the 1-second 2760 * slop hack only trigger if the user_set_tsc flag is already set. 2761 */ 2762 synchronizing = data < tsc_exp + tsc_hz && 2763 data + tsc_hz > tsc_exp; 2764 } 2765 } 2766 2767 if (user_value) 2768 kvm->arch.user_set_tsc = true; 2769 2770 /* 2771 * For a reliable TSC, we can match TSC offsets, and for an unstable 2772 * TSC, we add elapsed time in this computation. We could let the 2773 * compensation code attempt to catch up if we fall behind, but 2774 * it's better to try to match offsets from the beginning. 2775 */ 2776 if (synchronizing && 2777 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2778 if (!kvm_check_tsc_unstable()) { 2779 offset = kvm->arch.cur_tsc_offset; 2780 } else { 2781 u64 delta = nsec_to_cycles(vcpu, elapsed); 2782 data += delta; 2783 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2784 } 2785 matched = true; 2786 } 2787 2788 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2789 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2790 } 2791 2792 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2793 s64 adjustment) 2794 { 2795 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2796 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2797 } 2798 2799 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2800 { 2801 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2802 WARN_ON(adjustment < 0); 2803 adjustment = kvm_scale_tsc((u64) adjustment, 2804 vcpu->arch.l1_tsc_scaling_ratio); 2805 adjust_tsc_offset_guest(vcpu, adjustment); 2806 } 2807 2808 #ifdef CONFIG_X86_64 2809 2810 static u64 read_tsc(void) 2811 { 2812 u64 ret = (u64)rdtsc_ordered(); 2813 u64 last = pvclock_gtod_data.clock.cycle_last; 2814 2815 if (likely(ret >= last)) 2816 return ret; 2817 2818 /* 2819 * GCC likes to generate cmov here, but this branch is extremely 2820 * predictable (it's just a function of time and the likely is 2821 * very likely) and there's a data dependence, so force GCC 2822 * to generate a branch instead. I don't barrier() because 2823 * we don't actually need a barrier, and if this function 2824 * ever gets inlined it will generate worse code. 2825 */ 2826 asm volatile (""); 2827 return last; 2828 } 2829 2830 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2831 int *mode) 2832 { 2833 u64 tsc_pg_val; 2834 long v; 2835 2836 switch (clock->vclock_mode) { 2837 case VDSO_CLOCKMODE_HVCLOCK: 2838 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2839 tsc_timestamp, &tsc_pg_val)) { 2840 /* TSC page valid */ 2841 *mode = VDSO_CLOCKMODE_HVCLOCK; 2842 v = (tsc_pg_val - clock->cycle_last) & 2843 clock->mask; 2844 } else { 2845 /* TSC page invalid */ 2846 *mode = VDSO_CLOCKMODE_NONE; 2847 } 2848 break; 2849 case VDSO_CLOCKMODE_TSC: 2850 *mode = VDSO_CLOCKMODE_TSC; 2851 *tsc_timestamp = read_tsc(); 2852 v = (*tsc_timestamp - clock->cycle_last) & 2853 clock->mask; 2854 break; 2855 default: 2856 *mode = VDSO_CLOCKMODE_NONE; 2857 } 2858 2859 if (*mode == VDSO_CLOCKMODE_NONE) 2860 *tsc_timestamp = v = 0; 2861 2862 return v * clock->mult; 2863 } 2864 2865 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2866 { 2867 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2868 unsigned long seq; 2869 int mode; 2870 u64 ns; 2871 2872 do { 2873 seq = read_seqcount_begin(>od->seq); 2874 ns = gtod->raw_clock.base_cycles; 2875 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2876 ns >>= gtod->raw_clock.shift; 2877 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2878 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2879 *t = ns; 2880 2881 return mode; 2882 } 2883 2884 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2885 { 2886 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2887 unsigned long seq; 2888 int mode; 2889 u64 ns; 2890 2891 do { 2892 seq = read_seqcount_begin(>od->seq); 2893 ts->tv_sec = gtod->wall_time_sec; 2894 ns = gtod->clock.base_cycles; 2895 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2896 ns >>= gtod->clock.shift; 2897 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2898 2899 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2900 ts->tv_nsec = ns; 2901 2902 return mode; 2903 } 2904 2905 /* returns true if host is using TSC based clocksource */ 2906 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2907 { 2908 /* checked again under seqlock below */ 2909 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2910 return false; 2911 2912 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2913 tsc_timestamp)); 2914 } 2915 2916 /* returns true if host is using TSC based clocksource */ 2917 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2918 u64 *tsc_timestamp) 2919 { 2920 /* checked again under seqlock below */ 2921 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2922 return false; 2923 2924 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2925 } 2926 #endif 2927 2928 /* 2929 * 2930 * Assuming a stable TSC across physical CPUS, and a stable TSC 2931 * across virtual CPUs, the following condition is possible. 2932 * Each numbered line represents an event visible to both 2933 * CPUs at the next numbered event. 2934 * 2935 * "timespecX" represents host monotonic time. "tscX" represents 2936 * RDTSC value. 2937 * 2938 * VCPU0 on CPU0 | VCPU1 on CPU1 2939 * 2940 * 1. read timespec0,tsc0 2941 * 2. | timespec1 = timespec0 + N 2942 * | tsc1 = tsc0 + M 2943 * 3. transition to guest | transition to guest 2944 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2945 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2946 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2947 * 2948 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2949 * 2950 * - ret0 < ret1 2951 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2952 * ... 2953 * - 0 < N - M => M < N 2954 * 2955 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2956 * always the case (the difference between two distinct xtime instances 2957 * might be smaller then the difference between corresponding TSC reads, 2958 * when updating guest vcpus pvclock areas). 2959 * 2960 * To avoid that problem, do not allow visibility of distinct 2961 * system_timestamp/tsc_timestamp values simultaneously: use a master 2962 * copy of host monotonic time values. Update that master copy 2963 * in lockstep. 2964 * 2965 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2966 * 2967 */ 2968 2969 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2970 { 2971 #ifdef CONFIG_X86_64 2972 struct kvm_arch *ka = &kvm->arch; 2973 int vclock_mode; 2974 bool host_tsc_clocksource, vcpus_matched; 2975 2976 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2977 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2978 atomic_read(&kvm->online_vcpus)); 2979 2980 /* 2981 * If the host uses TSC clock, then passthrough TSC as stable 2982 * to the guest. 2983 */ 2984 host_tsc_clocksource = kvm_get_time_and_clockread( 2985 &ka->master_kernel_ns, 2986 &ka->master_cycle_now); 2987 2988 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2989 && !ka->backwards_tsc_observed 2990 && !ka->boot_vcpu_runs_old_kvmclock; 2991 2992 if (ka->use_master_clock) 2993 atomic_set(&kvm_guest_has_master_clock, 1); 2994 2995 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2996 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2997 vcpus_matched); 2998 #endif 2999 } 3000 3001 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3002 { 3003 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3004 } 3005 3006 static void __kvm_start_pvclock_update(struct kvm *kvm) 3007 { 3008 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3009 write_seqcount_begin(&kvm->arch.pvclock_sc); 3010 } 3011 3012 static void kvm_start_pvclock_update(struct kvm *kvm) 3013 { 3014 kvm_make_mclock_inprogress_request(kvm); 3015 3016 /* no guest entries from this point */ 3017 __kvm_start_pvclock_update(kvm); 3018 } 3019 3020 static void kvm_end_pvclock_update(struct kvm *kvm) 3021 { 3022 struct kvm_arch *ka = &kvm->arch; 3023 struct kvm_vcpu *vcpu; 3024 unsigned long i; 3025 3026 write_seqcount_end(&ka->pvclock_sc); 3027 raw_spin_unlock_irq(&ka->tsc_write_lock); 3028 kvm_for_each_vcpu(i, vcpu, kvm) 3029 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3030 3031 /* guest entries allowed */ 3032 kvm_for_each_vcpu(i, vcpu, kvm) 3033 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3034 } 3035 3036 static void kvm_update_masterclock(struct kvm *kvm) 3037 { 3038 kvm_hv_request_tsc_page_update(kvm); 3039 kvm_start_pvclock_update(kvm); 3040 pvclock_update_vm_gtod_copy(kvm); 3041 kvm_end_pvclock_update(kvm); 3042 } 3043 3044 /* 3045 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3046 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3047 * can change during boot even if the TSC is constant, as it's possible for KVM 3048 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3049 * notification when calibration completes, but practically speaking calibration 3050 * will complete before userspace is alive enough to create VMs. 3051 */ 3052 static unsigned long get_cpu_tsc_khz(void) 3053 { 3054 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3055 return tsc_khz; 3056 else 3057 return __this_cpu_read(cpu_tsc_khz); 3058 } 3059 3060 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3061 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3062 { 3063 struct kvm_arch *ka = &kvm->arch; 3064 struct pvclock_vcpu_time_info hv_clock; 3065 3066 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3067 get_cpu(); 3068 3069 data->flags = 0; 3070 if (ka->use_master_clock && 3071 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3072 #ifdef CONFIG_X86_64 3073 struct timespec64 ts; 3074 3075 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3076 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3077 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3078 } else 3079 #endif 3080 data->host_tsc = rdtsc(); 3081 3082 data->flags |= KVM_CLOCK_TSC_STABLE; 3083 hv_clock.tsc_timestamp = ka->master_cycle_now; 3084 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3085 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3086 &hv_clock.tsc_shift, 3087 &hv_clock.tsc_to_system_mul); 3088 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3089 } else { 3090 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3091 } 3092 3093 put_cpu(); 3094 } 3095 3096 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3097 { 3098 struct kvm_arch *ka = &kvm->arch; 3099 unsigned seq; 3100 3101 do { 3102 seq = read_seqcount_begin(&ka->pvclock_sc); 3103 __get_kvmclock(kvm, data); 3104 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3105 } 3106 3107 u64 get_kvmclock_ns(struct kvm *kvm) 3108 { 3109 struct kvm_clock_data data; 3110 3111 get_kvmclock(kvm, &data); 3112 return data.clock; 3113 } 3114 3115 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3116 struct gfn_to_pfn_cache *gpc, 3117 unsigned int offset, 3118 bool force_tsc_unstable) 3119 { 3120 struct kvm_vcpu_arch *vcpu = &v->arch; 3121 struct pvclock_vcpu_time_info *guest_hv_clock; 3122 unsigned long flags; 3123 3124 read_lock_irqsave(&gpc->lock, flags); 3125 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3126 read_unlock_irqrestore(&gpc->lock, flags); 3127 3128 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3129 return; 3130 3131 read_lock_irqsave(&gpc->lock, flags); 3132 } 3133 3134 guest_hv_clock = (void *)(gpc->khva + offset); 3135 3136 /* 3137 * This VCPU is paused, but it's legal for a guest to read another 3138 * VCPU's kvmclock, so we really have to follow the specification where 3139 * it says that version is odd if data is being modified, and even after 3140 * it is consistent. 3141 */ 3142 3143 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3144 smp_wmb(); 3145 3146 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3147 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3148 3149 if (vcpu->pvclock_set_guest_stopped_request) { 3150 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3151 vcpu->pvclock_set_guest_stopped_request = false; 3152 } 3153 3154 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3155 3156 if (force_tsc_unstable) 3157 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT; 3158 3159 smp_wmb(); 3160 3161 guest_hv_clock->version = ++vcpu->hv_clock.version; 3162 3163 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3164 read_unlock_irqrestore(&gpc->lock, flags); 3165 3166 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3167 } 3168 3169 static int kvm_guest_time_update(struct kvm_vcpu *v) 3170 { 3171 unsigned long flags, tgt_tsc_khz; 3172 unsigned seq; 3173 struct kvm_vcpu_arch *vcpu = &v->arch; 3174 struct kvm_arch *ka = &v->kvm->arch; 3175 s64 kernel_ns; 3176 u64 tsc_timestamp, host_tsc; 3177 u8 pvclock_flags; 3178 bool use_master_clock; 3179 #ifdef CONFIG_KVM_XEN 3180 /* 3181 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3182 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3183 * This default behaviour led to bugs in some guest kernels which cause 3184 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3185 */ 3186 bool xen_pvclock_tsc_unstable = 3187 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 3188 #endif 3189 3190 kernel_ns = 0; 3191 host_tsc = 0; 3192 3193 /* 3194 * If the host uses TSC clock, then passthrough TSC as stable 3195 * to the guest. 3196 */ 3197 do { 3198 seq = read_seqcount_begin(&ka->pvclock_sc); 3199 use_master_clock = ka->use_master_clock; 3200 if (use_master_clock) { 3201 host_tsc = ka->master_cycle_now; 3202 kernel_ns = ka->master_kernel_ns; 3203 } 3204 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3205 3206 /* Keep irq disabled to prevent changes to the clock */ 3207 local_irq_save(flags); 3208 tgt_tsc_khz = get_cpu_tsc_khz(); 3209 if (unlikely(tgt_tsc_khz == 0)) { 3210 local_irq_restore(flags); 3211 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3212 return 1; 3213 } 3214 if (!use_master_clock) { 3215 host_tsc = rdtsc(); 3216 kernel_ns = get_kvmclock_base_ns(); 3217 } 3218 3219 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3220 3221 /* 3222 * We may have to catch up the TSC to match elapsed wall clock 3223 * time for two reasons, even if kvmclock is used. 3224 * 1) CPU could have been running below the maximum TSC rate 3225 * 2) Broken TSC compensation resets the base at each VCPU 3226 * entry to avoid unknown leaps of TSC even when running 3227 * again on the same CPU. This may cause apparent elapsed 3228 * time to disappear, and the guest to stand still or run 3229 * very slowly. 3230 */ 3231 if (vcpu->tsc_catchup) { 3232 u64 tsc = compute_guest_tsc(v, kernel_ns); 3233 if (tsc > tsc_timestamp) { 3234 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3235 tsc_timestamp = tsc; 3236 } 3237 } 3238 3239 local_irq_restore(flags); 3240 3241 /* With all the info we got, fill in the values */ 3242 3243 if (kvm_caps.has_tsc_control) 3244 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3245 v->arch.l1_tsc_scaling_ratio); 3246 3247 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3248 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3249 &vcpu->hv_clock.tsc_shift, 3250 &vcpu->hv_clock.tsc_to_system_mul); 3251 vcpu->hw_tsc_khz = tgt_tsc_khz; 3252 kvm_xen_update_tsc_info(v); 3253 } 3254 3255 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3256 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3257 vcpu->last_guest_tsc = tsc_timestamp; 3258 3259 /* If the host uses TSC clocksource, then it is stable */ 3260 pvclock_flags = 0; 3261 if (use_master_clock) 3262 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3263 3264 vcpu->hv_clock.flags = pvclock_flags; 3265 3266 if (vcpu->pv_time.active) 3267 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false); 3268 #ifdef CONFIG_KVM_XEN 3269 if (vcpu->xen.vcpu_info_cache.active) 3270 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3271 offsetof(struct compat_vcpu_info, time), 3272 xen_pvclock_tsc_unstable); 3273 if (vcpu->xen.vcpu_time_info_cache.active) 3274 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0, 3275 xen_pvclock_tsc_unstable); 3276 #endif 3277 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3278 return 0; 3279 } 3280 3281 /* 3282 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3283 * which it started (i.e. its epoch, when its kvmclock was zero). 3284 * 3285 * In fact those clocks are subtly different; wall clock frequency is 3286 * adjusted by NTP and has leap seconds, while the kvmclock is a 3287 * simple function of the TSC without any such adjustment. 3288 * 3289 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3290 * that and kvmclock, but even that would be subject to change over 3291 * time. 3292 * 3293 * Attempt to calculate the epoch at a given moment using the *same* 3294 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3295 * wallclock and kvmclock times, and subtracting one from the other. 3296 * 3297 * Fall back to using their values at slightly different moments by 3298 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3299 */ 3300 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3301 { 3302 #ifdef CONFIG_X86_64 3303 struct pvclock_vcpu_time_info hv_clock; 3304 struct kvm_arch *ka = &kvm->arch; 3305 unsigned long seq, local_tsc_khz; 3306 struct timespec64 ts; 3307 uint64_t host_tsc; 3308 3309 do { 3310 seq = read_seqcount_begin(&ka->pvclock_sc); 3311 3312 local_tsc_khz = 0; 3313 if (!ka->use_master_clock) 3314 break; 3315 3316 /* 3317 * The TSC read and the call to get_cpu_tsc_khz() must happen 3318 * on the same CPU. 3319 */ 3320 get_cpu(); 3321 3322 local_tsc_khz = get_cpu_tsc_khz(); 3323 3324 if (local_tsc_khz && 3325 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3326 local_tsc_khz = 0; /* Fall back to old method */ 3327 3328 put_cpu(); 3329 3330 /* 3331 * These values must be snapshotted within the seqcount loop. 3332 * After that, it's just mathematics which can happen on any 3333 * CPU at any time. 3334 */ 3335 hv_clock.tsc_timestamp = ka->master_cycle_now; 3336 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3337 3338 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3339 3340 /* 3341 * If the conditions were right, and obtaining the wallclock+TSC was 3342 * successful, calculate the KVM clock at the corresponding time and 3343 * subtract one from the other to get the guest's epoch in nanoseconds 3344 * since 1970-01-01. 3345 */ 3346 if (local_tsc_khz) { 3347 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3348 &hv_clock.tsc_shift, 3349 &hv_clock.tsc_to_system_mul); 3350 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3351 __pvclock_read_cycles(&hv_clock, host_tsc); 3352 } 3353 #endif 3354 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3355 } 3356 3357 /* 3358 * kvmclock updates which are isolated to a given vcpu, such as 3359 * vcpu->cpu migration, should not allow system_timestamp from 3360 * the rest of the vcpus to remain static. Otherwise ntp frequency 3361 * correction applies to one vcpu's system_timestamp but not 3362 * the others. 3363 * 3364 * So in those cases, request a kvmclock update for all vcpus. 3365 * We need to rate-limit these requests though, as they can 3366 * considerably slow guests that have a large number of vcpus. 3367 * The time for a remote vcpu to update its kvmclock is bound 3368 * by the delay we use to rate-limit the updates. 3369 */ 3370 3371 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3372 3373 static void kvmclock_update_fn(struct work_struct *work) 3374 { 3375 unsigned long i; 3376 struct delayed_work *dwork = to_delayed_work(work); 3377 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3378 kvmclock_update_work); 3379 struct kvm *kvm = container_of(ka, struct kvm, arch); 3380 struct kvm_vcpu *vcpu; 3381 3382 kvm_for_each_vcpu(i, vcpu, kvm) { 3383 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3384 kvm_vcpu_kick(vcpu); 3385 } 3386 } 3387 3388 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3389 { 3390 struct kvm *kvm = v->kvm; 3391 3392 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3393 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3394 KVMCLOCK_UPDATE_DELAY); 3395 } 3396 3397 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3398 3399 static void kvmclock_sync_fn(struct work_struct *work) 3400 { 3401 struct delayed_work *dwork = to_delayed_work(work); 3402 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3403 kvmclock_sync_work); 3404 struct kvm *kvm = container_of(ka, struct kvm, arch); 3405 3406 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3407 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3408 KVMCLOCK_SYNC_PERIOD); 3409 } 3410 3411 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3412 static bool is_mci_control_msr(u32 msr) 3413 { 3414 return (msr & 3) == 0; 3415 } 3416 static bool is_mci_status_msr(u32 msr) 3417 { 3418 return (msr & 3) == 1; 3419 } 3420 3421 /* 3422 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3423 */ 3424 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3425 { 3426 /* McStatusWrEn enabled? */ 3427 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3428 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3429 3430 return false; 3431 } 3432 3433 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3434 { 3435 u64 mcg_cap = vcpu->arch.mcg_cap; 3436 unsigned bank_num = mcg_cap & 0xff; 3437 u32 msr = msr_info->index; 3438 u64 data = msr_info->data; 3439 u32 offset, last_msr; 3440 3441 switch (msr) { 3442 case MSR_IA32_MCG_STATUS: 3443 vcpu->arch.mcg_status = data; 3444 break; 3445 case MSR_IA32_MCG_CTL: 3446 if (!(mcg_cap & MCG_CTL_P) && 3447 (data || !msr_info->host_initiated)) 3448 return 1; 3449 if (data != 0 && data != ~(u64)0) 3450 return 1; 3451 vcpu->arch.mcg_ctl = data; 3452 break; 3453 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3454 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3455 if (msr > last_msr) 3456 return 1; 3457 3458 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3459 return 1; 3460 /* An attempt to write a 1 to a reserved bit raises #GP */ 3461 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3462 return 1; 3463 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3464 last_msr + 1 - MSR_IA32_MC0_CTL2); 3465 vcpu->arch.mci_ctl2_banks[offset] = data; 3466 break; 3467 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3468 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3469 if (msr > last_msr) 3470 return 1; 3471 3472 /* 3473 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3474 * values are architecturally undefined. But, some Linux 3475 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3476 * issue on AMD K8s, allow bit 10 to be clear when setting all 3477 * other bits in order to avoid an uncaught #GP in the guest. 3478 * 3479 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3480 * single-bit ECC data errors. 3481 */ 3482 if (is_mci_control_msr(msr) && 3483 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3484 return 1; 3485 3486 /* 3487 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3488 * AMD-based CPUs allow non-zero values, but if and only if 3489 * HWCR[McStatusWrEn] is set. 3490 */ 3491 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3492 data != 0 && !can_set_mci_status(vcpu)) 3493 return 1; 3494 3495 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3496 last_msr + 1 - MSR_IA32_MC0_CTL); 3497 vcpu->arch.mce_banks[offset] = data; 3498 break; 3499 default: 3500 return 1; 3501 } 3502 return 0; 3503 } 3504 3505 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3506 { 3507 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3508 3509 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3510 } 3511 3512 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3513 { 3514 gpa_t gpa = data & ~0x3f; 3515 3516 /* Bits 4:5 are reserved, Should be zero */ 3517 if (data & 0x30) 3518 return 1; 3519 3520 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3521 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3522 return 1; 3523 3524 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3525 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3526 return 1; 3527 3528 if (!lapic_in_kernel(vcpu)) 3529 return data ? 1 : 0; 3530 3531 vcpu->arch.apf.msr_en_val = data; 3532 3533 if (!kvm_pv_async_pf_enabled(vcpu)) { 3534 kvm_clear_async_pf_completion_queue(vcpu); 3535 kvm_async_pf_hash_reset(vcpu); 3536 return 0; 3537 } 3538 3539 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3540 sizeof(u64))) 3541 return 1; 3542 3543 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3544 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3545 3546 kvm_async_pf_wakeup_all(vcpu); 3547 3548 return 0; 3549 } 3550 3551 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3552 { 3553 /* Bits 8-63 are reserved */ 3554 if (data >> 8) 3555 return 1; 3556 3557 if (!lapic_in_kernel(vcpu)) 3558 return 1; 3559 3560 vcpu->arch.apf.msr_int_val = data; 3561 3562 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3563 3564 return 0; 3565 } 3566 3567 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3568 { 3569 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3570 vcpu->arch.time = 0; 3571 } 3572 3573 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3574 { 3575 ++vcpu->stat.tlb_flush; 3576 static_call(kvm_x86_flush_tlb_all)(vcpu); 3577 3578 /* Flushing all ASIDs flushes the current ASID... */ 3579 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3580 } 3581 3582 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3583 { 3584 ++vcpu->stat.tlb_flush; 3585 3586 if (!tdp_enabled) { 3587 /* 3588 * A TLB flush on behalf of the guest is equivalent to 3589 * INVPCID(all), toggling CR4.PGE, etc., which requires 3590 * a forced sync of the shadow page tables. Ensure all the 3591 * roots are synced and the guest TLB in hardware is clean. 3592 */ 3593 kvm_mmu_sync_roots(vcpu); 3594 kvm_mmu_sync_prev_roots(vcpu); 3595 } 3596 3597 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3598 3599 /* 3600 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3601 * grained flushing. 3602 */ 3603 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3604 } 3605 3606 3607 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3608 { 3609 ++vcpu->stat.tlb_flush; 3610 static_call(kvm_x86_flush_tlb_current)(vcpu); 3611 } 3612 3613 /* 3614 * Service "local" TLB flush requests, which are specific to the current MMU 3615 * context. In addition to the generic event handling in vcpu_enter_guest(), 3616 * TLB flushes that are targeted at an MMU context also need to be serviced 3617 * prior before nested VM-Enter/VM-Exit. 3618 */ 3619 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3620 { 3621 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3622 kvm_vcpu_flush_tlb_current(vcpu); 3623 3624 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3625 kvm_vcpu_flush_tlb_guest(vcpu); 3626 } 3627 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3628 3629 static void record_steal_time(struct kvm_vcpu *vcpu) 3630 { 3631 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3632 struct kvm_steal_time __user *st; 3633 struct kvm_memslots *slots; 3634 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3635 u64 steal; 3636 u32 version; 3637 3638 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3639 kvm_xen_runstate_set_running(vcpu); 3640 return; 3641 } 3642 3643 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3644 return; 3645 3646 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3647 return; 3648 3649 slots = kvm_memslots(vcpu->kvm); 3650 3651 if (unlikely(slots->generation != ghc->generation || 3652 gpa != ghc->gpa || 3653 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3654 /* We rely on the fact that it fits in a single page. */ 3655 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3656 3657 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3658 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3659 return; 3660 } 3661 3662 st = (struct kvm_steal_time __user *)ghc->hva; 3663 /* 3664 * Doing a TLB flush here, on the guest's behalf, can avoid 3665 * expensive IPIs. 3666 */ 3667 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3668 u8 st_preempted = 0; 3669 int err = -EFAULT; 3670 3671 if (!user_access_begin(st, sizeof(*st))) 3672 return; 3673 3674 asm volatile("1: xchgb %0, %2\n" 3675 "xor %1, %1\n" 3676 "2:\n" 3677 _ASM_EXTABLE_UA(1b, 2b) 3678 : "+q" (st_preempted), 3679 "+&r" (err), 3680 "+m" (st->preempted)); 3681 if (err) 3682 goto out; 3683 3684 user_access_end(); 3685 3686 vcpu->arch.st.preempted = 0; 3687 3688 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3689 st_preempted & KVM_VCPU_FLUSH_TLB); 3690 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3691 kvm_vcpu_flush_tlb_guest(vcpu); 3692 3693 if (!user_access_begin(st, sizeof(*st))) 3694 goto dirty; 3695 } else { 3696 if (!user_access_begin(st, sizeof(*st))) 3697 return; 3698 3699 unsafe_put_user(0, &st->preempted, out); 3700 vcpu->arch.st.preempted = 0; 3701 } 3702 3703 unsafe_get_user(version, &st->version, out); 3704 if (version & 1) 3705 version += 1; /* first time write, random junk */ 3706 3707 version += 1; 3708 unsafe_put_user(version, &st->version, out); 3709 3710 smp_wmb(); 3711 3712 unsafe_get_user(steal, &st->steal, out); 3713 steal += current->sched_info.run_delay - 3714 vcpu->arch.st.last_steal; 3715 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3716 unsafe_put_user(steal, &st->steal, out); 3717 3718 version += 1; 3719 unsafe_put_user(version, &st->version, out); 3720 3721 out: 3722 user_access_end(); 3723 dirty: 3724 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3725 } 3726 3727 static bool kvm_is_msr_to_save(u32 msr_index) 3728 { 3729 unsigned int i; 3730 3731 for (i = 0; i < num_msrs_to_save; i++) { 3732 if (msrs_to_save[i] == msr_index) 3733 return true; 3734 } 3735 3736 return false; 3737 } 3738 3739 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3740 { 3741 u32 msr = msr_info->index; 3742 u64 data = msr_info->data; 3743 3744 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3745 return kvm_xen_write_hypercall_page(vcpu, data); 3746 3747 switch (msr) { 3748 case MSR_AMD64_NB_CFG: 3749 case MSR_IA32_UCODE_WRITE: 3750 case MSR_VM_HSAVE_PA: 3751 case MSR_AMD64_PATCH_LOADER: 3752 case MSR_AMD64_BU_CFG2: 3753 case MSR_AMD64_DC_CFG: 3754 case MSR_AMD64_TW_CFG: 3755 case MSR_F15H_EX_CFG: 3756 break; 3757 3758 case MSR_IA32_UCODE_REV: 3759 if (msr_info->host_initiated) 3760 vcpu->arch.microcode_version = data; 3761 break; 3762 case MSR_IA32_ARCH_CAPABILITIES: 3763 if (!msr_info->host_initiated) 3764 return 1; 3765 vcpu->arch.arch_capabilities = data; 3766 break; 3767 case MSR_IA32_PERF_CAPABILITIES: 3768 if (!msr_info->host_initiated) 3769 return 1; 3770 if (data & ~kvm_caps.supported_perf_cap) 3771 return 1; 3772 3773 /* 3774 * Note, this is not just a performance optimization! KVM 3775 * disallows changing feature MSRs after the vCPU has run; PMU 3776 * refresh will bug the VM if called after the vCPU has run. 3777 */ 3778 if (vcpu->arch.perf_capabilities == data) 3779 break; 3780 3781 vcpu->arch.perf_capabilities = data; 3782 kvm_pmu_refresh(vcpu); 3783 break; 3784 case MSR_IA32_PRED_CMD: { 3785 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3786 3787 if (!msr_info->host_initiated) { 3788 if ((!guest_has_pred_cmd_msr(vcpu))) 3789 return 1; 3790 3791 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3792 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3793 reserved_bits |= PRED_CMD_IBPB; 3794 3795 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3796 reserved_bits |= PRED_CMD_SBPB; 3797 } 3798 3799 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3800 reserved_bits |= PRED_CMD_IBPB; 3801 3802 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3803 reserved_bits |= PRED_CMD_SBPB; 3804 3805 if (data & reserved_bits) 3806 return 1; 3807 3808 if (!data) 3809 break; 3810 3811 wrmsrl(MSR_IA32_PRED_CMD, data); 3812 break; 3813 } 3814 case MSR_IA32_FLUSH_CMD: 3815 if (!msr_info->host_initiated && 3816 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3817 return 1; 3818 3819 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3820 return 1; 3821 if (!data) 3822 break; 3823 3824 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3825 break; 3826 case MSR_EFER: 3827 return set_efer(vcpu, msr_info); 3828 case MSR_K7_HWCR: 3829 data &= ~(u64)0x40; /* ignore flush filter disable */ 3830 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3831 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3832 3833 /* 3834 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3835 * through at least v6.6 whine if TscFreqSel is clear, 3836 * depending on F/M/S. 3837 */ 3838 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3839 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3840 return 1; 3841 } 3842 vcpu->arch.msr_hwcr = data; 3843 break; 3844 case MSR_FAM10H_MMIO_CONF_BASE: 3845 if (data != 0) { 3846 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3847 return 1; 3848 } 3849 break; 3850 case MSR_IA32_CR_PAT: 3851 if (!kvm_pat_valid(data)) 3852 return 1; 3853 3854 vcpu->arch.pat = data; 3855 break; 3856 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3857 case MSR_MTRRdefType: 3858 return kvm_mtrr_set_msr(vcpu, msr, data); 3859 case MSR_IA32_APICBASE: 3860 return kvm_set_apic_base(vcpu, msr_info); 3861 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3862 return kvm_x2apic_msr_write(vcpu, msr, data); 3863 case MSR_IA32_TSC_DEADLINE: 3864 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3865 break; 3866 case MSR_IA32_TSC_ADJUST: 3867 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3868 if (!msr_info->host_initiated) { 3869 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3870 adjust_tsc_offset_guest(vcpu, adj); 3871 /* Before back to guest, tsc_timestamp must be adjusted 3872 * as well, otherwise guest's percpu pvclock time could jump. 3873 */ 3874 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3875 } 3876 vcpu->arch.ia32_tsc_adjust_msr = data; 3877 } 3878 break; 3879 case MSR_IA32_MISC_ENABLE: { 3880 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3881 3882 if (!msr_info->host_initiated) { 3883 /* RO bits */ 3884 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3885 return 1; 3886 3887 /* R bits, i.e. writes are ignored, but don't fault. */ 3888 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3889 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3890 } 3891 3892 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3893 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3894 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3895 return 1; 3896 vcpu->arch.ia32_misc_enable_msr = data; 3897 kvm_update_cpuid_runtime(vcpu); 3898 } else { 3899 vcpu->arch.ia32_misc_enable_msr = data; 3900 } 3901 break; 3902 } 3903 case MSR_IA32_SMBASE: 3904 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3905 return 1; 3906 vcpu->arch.smbase = data; 3907 break; 3908 case MSR_IA32_POWER_CTL: 3909 vcpu->arch.msr_ia32_power_ctl = data; 3910 break; 3911 case MSR_IA32_TSC: 3912 if (msr_info->host_initiated) { 3913 kvm_synchronize_tsc(vcpu, &data); 3914 } else { 3915 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3916 adjust_tsc_offset_guest(vcpu, adj); 3917 vcpu->arch.ia32_tsc_adjust_msr += adj; 3918 } 3919 break; 3920 case MSR_IA32_XSS: 3921 if (!msr_info->host_initiated && 3922 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3923 return 1; 3924 /* 3925 * KVM supports exposing PT to the guest, but does not support 3926 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3927 * XSAVES/XRSTORS to save/restore PT MSRs. 3928 */ 3929 if (data & ~kvm_caps.supported_xss) 3930 return 1; 3931 vcpu->arch.ia32_xss = data; 3932 kvm_update_cpuid_runtime(vcpu); 3933 break; 3934 case MSR_SMI_COUNT: 3935 if (!msr_info->host_initiated) 3936 return 1; 3937 vcpu->arch.smi_count = data; 3938 break; 3939 case MSR_KVM_WALL_CLOCK_NEW: 3940 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3941 return 1; 3942 3943 vcpu->kvm->arch.wall_clock = data; 3944 kvm_write_wall_clock(vcpu->kvm, data, 0); 3945 break; 3946 case MSR_KVM_WALL_CLOCK: 3947 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3948 return 1; 3949 3950 vcpu->kvm->arch.wall_clock = data; 3951 kvm_write_wall_clock(vcpu->kvm, data, 0); 3952 break; 3953 case MSR_KVM_SYSTEM_TIME_NEW: 3954 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3955 return 1; 3956 3957 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3958 break; 3959 case MSR_KVM_SYSTEM_TIME: 3960 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3961 return 1; 3962 3963 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3964 break; 3965 case MSR_KVM_ASYNC_PF_EN: 3966 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3967 return 1; 3968 3969 if (kvm_pv_enable_async_pf(vcpu, data)) 3970 return 1; 3971 break; 3972 case MSR_KVM_ASYNC_PF_INT: 3973 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3974 return 1; 3975 3976 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3977 return 1; 3978 break; 3979 case MSR_KVM_ASYNC_PF_ACK: 3980 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3981 return 1; 3982 if (data & 0x1) { 3983 vcpu->arch.apf.pageready_pending = false; 3984 kvm_check_async_pf_completion(vcpu); 3985 } 3986 break; 3987 case MSR_KVM_STEAL_TIME: 3988 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3989 return 1; 3990 3991 if (unlikely(!sched_info_on())) 3992 return 1; 3993 3994 if (data & KVM_STEAL_RESERVED_MASK) 3995 return 1; 3996 3997 vcpu->arch.st.msr_val = data; 3998 3999 if (!(data & KVM_MSR_ENABLED)) 4000 break; 4001 4002 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4003 4004 break; 4005 case MSR_KVM_PV_EOI_EN: 4006 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4007 return 1; 4008 4009 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4010 return 1; 4011 break; 4012 4013 case MSR_KVM_POLL_CONTROL: 4014 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4015 return 1; 4016 4017 /* only enable bit supported */ 4018 if (data & (-1ULL << 1)) 4019 return 1; 4020 4021 vcpu->arch.msr_kvm_poll_control = data; 4022 break; 4023 4024 case MSR_IA32_MCG_CTL: 4025 case MSR_IA32_MCG_STATUS: 4026 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4027 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4028 return set_msr_mce(vcpu, msr_info); 4029 4030 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4031 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4032 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4033 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4034 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4035 return kvm_pmu_set_msr(vcpu, msr_info); 4036 4037 if (data) 4038 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4039 break; 4040 case MSR_K7_CLK_CTL: 4041 /* 4042 * Ignore all writes to this no longer documented MSR. 4043 * Writes are only relevant for old K7 processors, 4044 * all pre-dating SVM, but a recommended workaround from 4045 * AMD for these chips. It is possible to specify the 4046 * affected processor models on the command line, hence 4047 * the need to ignore the workaround. 4048 */ 4049 break; 4050 #ifdef CONFIG_KVM_HYPERV 4051 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4052 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4053 case HV_X64_MSR_SYNDBG_OPTIONS: 4054 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4055 case HV_X64_MSR_CRASH_CTL: 4056 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4057 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4058 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4059 case HV_X64_MSR_TSC_EMULATION_STATUS: 4060 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4061 return kvm_hv_set_msr_common(vcpu, msr, data, 4062 msr_info->host_initiated); 4063 #endif 4064 case MSR_IA32_BBL_CR_CTL3: 4065 /* Drop writes to this legacy MSR -- see rdmsr 4066 * counterpart for further detail. 4067 */ 4068 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4069 break; 4070 case MSR_AMD64_OSVW_ID_LENGTH: 4071 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4072 return 1; 4073 vcpu->arch.osvw.length = data; 4074 break; 4075 case MSR_AMD64_OSVW_STATUS: 4076 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4077 return 1; 4078 vcpu->arch.osvw.status = data; 4079 break; 4080 case MSR_PLATFORM_INFO: 4081 if (!msr_info->host_initiated || 4082 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 4083 cpuid_fault_enabled(vcpu))) 4084 return 1; 4085 vcpu->arch.msr_platform_info = data; 4086 break; 4087 case MSR_MISC_FEATURES_ENABLES: 4088 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4089 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4090 !supports_cpuid_fault(vcpu))) 4091 return 1; 4092 vcpu->arch.msr_misc_features_enables = data; 4093 break; 4094 #ifdef CONFIG_X86_64 4095 case MSR_IA32_XFD: 4096 if (!msr_info->host_initiated && 4097 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4098 return 1; 4099 4100 if (data & ~kvm_guest_supported_xfd(vcpu)) 4101 return 1; 4102 4103 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4104 break; 4105 case MSR_IA32_XFD_ERR: 4106 if (!msr_info->host_initiated && 4107 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4108 return 1; 4109 4110 if (data & ~kvm_guest_supported_xfd(vcpu)) 4111 return 1; 4112 4113 vcpu->arch.guest_fpu.xfd_err = data; 4114 break; 4115 #endif 4116 default: 4117 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4118 return kvm_pmu_set_msr(vcpu, msr_info); 4119 4120 /* 4121 * Userspace is allowed to write '0' to MSRs that KVM reports 4122 * as to-be-saved, even if an MSRs isn't fully supported. 4123 */ 4124 if (msr_info->host_initiated && !data && 4125 kvm_is_msr_to_save(msr)) 4126 break; 4127 4128 return KVM_MSR_RET_INVALID; 4129 } 4130 return 0; 4131 } 4132 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4133 4134 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4135 { 4136 u64 data; 4137 u64 mcg_cap = vcpu->arch.mcg_cap; 4138 unsigned bank_num = mcg_cap & 0xff; 4139 u32 offset, last_msr; 4140 4141 switch (msr) { 4142 case MSR_IA32_P5_MC_ADDR: 4143 case MSR_IA32_P5_MC_TYPE: 4144 data = 0; 4145 break; 4146 case MSR_IA32_MCG_CAP: 4147 data = vcpu->arch.mcg_cap; 4148 break; 4149 case MSR_IA32_MCG_CTL: 4150 if (!(mcg_cap & MCG_CTL_P) && !host) 4151 return 1; 4152 data = vcpu->arch.mcg_ctl; 4153 break; 4154 case MSR_IA32_MCG_STATUS: 4155 data = vcpu->arch.mcg_status; 4156 break; 4157 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4158 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4159 if (msr > last_msr) 4160 return 1; 4161 4162 if (!(mcg_cap & MCG_CMCI_P) && !host) 4163 return 1; 4164 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4165 last_msr + 1 - MSR_IA32_MC0_CTL2); 4166 data = vcpu->arch.mci_ctl2_banks[offset]; 4167 break; 4168 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4169 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4170 if (msr > last_msr) 4171 return 1; 4172 4173 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4174 last_msr + 1 - MSR_IA32_MC0_CTL); 4175 data = vcpu->arch.mce_banks[offset]; 4176 break; 4177 default: 4178 return 1; 4179 } 4180 *pdata = data; 4181 return 0; 4182 } 4183 4184 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4185 { 4186 switch (msr_info->index) { 4187 case MSR_IA32_PLATFORM_ID: 4188 case MSR_IA32_EBL_CR_POWERON: 4189 case MSR_IA32_LASTBRANCHFROMIP: 4190 case MSR_IA32_LASTBRANCHTOIP: 4191 case MSR_IA32_LASTINTFROMIP: 4192 case MSR_IA32_LASTINTTOIP: 4193 case MSR_AMD64_SYSCFG: 4194 case MSR_K8_TSEG_ADDR: 4195 case MSR_K8_TSEG_MASK: 4196 case MSR_VM_HSAVE_PA: 4197 case MSR_K8_INT_PENDING_MSG: 4198 case MSR_AMD64_NB_CFG: 4199 case MSR_FAM10H_MMIO_CONF_BASE: 4200 case MSR_AMD64_BU_CFG2: 4201 case MSR_IA32_PERF_CTL: 4202 case MSR_AMD64_DC_CFG: 4203 case MSR_AMD64_TW_CFG: 4204 case MSR_F15H_EX_CFG: 4205 /* 4206 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4207 * limit) MSRs. Just return 0, as we do not want to expose the host 4208 * data here. Do not conditionalize this on CPUID, as KVM does not do 4209 * so for existing CPU-specific MSRs. 4210 */ 4211 case MSR_RAPL_POWER_UNIT: 4212 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4213 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4214 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4215 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4216 msr_info->data = 0; 4217 break; 4218 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4219 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4220 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4221 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4222 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4223 return kvm_pmu_get_msr(vcpu, msr_info); 4224 msr_info->data = 0; 4225 break; 4226 case MSR_IA32_UCODE_REV: 4227 msr_info->data = vcpu->arch.microcode_version; 4228 break; 4229 case MSR_IA32_ARCH_CAPABILITIES: 4230 if (!msr_info->host_initiated && 4231 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4232 return 1; 4233 msr_info->data = vcpu->arch.arch_capabilities; 4234 break; 4235 case MSR_IA32_PERF_CAPABILITIES: 4236 if (!msr_info->host_initiated && 4237 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4238 return 1; 4239 msr_info->data = vcpu->arch.perf_capabilities; 4240 break; 4241 case MSR_IA32_POWER_CTL: 4242 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4243 break; 4244 case MSR_IA32_TSC: { 4245 /* 4246 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4247 * even when not intercepted. AMD manual doesn't explicitly 4248 * state this but appears to behave the same. 4249 * 4250 * On userspace reads and writes, however, we unconditionally 4251 * return L1's TSC value to ensure backwards-compatible 4252 * behavior for migration. 4253 */ 4254 u64 offset, ratio; 4255 4256 if (msr_info->host_initiated) { 4257 offset = vcpu->arch.l1_tsc_offset; 4258 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4259 } else { 4260 offset = vcpu->arch.tsc_offset; 4261 ratio = vcpu->arch.tsc_scaling_ratio; 4262 } 4263 4264 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4265 break; 4266 } 4267 case MSR_IA32_CR_PAT: 4268 msr_info->data = vcpu->arch.pat; 4269 break; 4270 case MSR_MTRRcap: 4271 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4272 case MSR_MTRRdefType: 4273 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4274 case 0xcd: /* fsb frequency */ 4275 msr_info->data = 3; 4276 break; 4277 /* 4278 * MSR_EBC_FREQUENCY_ID 4279 * Conservative value valid for even the basic CPU models. 4280 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4281 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4282 * and 266MHz for model 3, or 4. Set Core Clock 4283 * Frequency to System Bus Frequency Ratio to 1 (bits 4284 * 31:24) even though these are only valid for CPU 4285 * models > 2, however guests may end up dividing or 4286 * multiplying by zero otherwise. 4287 */ 4288 case MSR_EBC_FREQUENCY_ID: 4289 msr_info->data = 1 << 24; 4290 break; 4291 case MSR_IA32_APICBASE: 4292 msr_info->data = kvm_get_apic_base(vcpu); 4293 break; 4294 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4295 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4296 case MSR_IA32_TSC_DEADLINE: 4297 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4298 break; 4299 case MSR_IA32_TSC_ADJUST: 4300 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4301 break; 4302 case MSR_IA32_MISC_ENABLE: 4303 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4304 break; 4305 case MSR_IA32_SMBASE: 4306 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4307 return 1; 4308 msr_info->data = vcpu->arch.smbase; 4309 break; 4310 case MSR_SMI_COUNT: 4311 msr_info->data = vcpu->arch.smi_count; 4312 break; 4313 case MSR_IA32_PERF_STATUS: 4314 /* TSC increment by tick */ 4315 msr_info->data = 1000ULL; 4316 /* CPU multiplier */ 4317 msr_info->data |= (((uint64_t)4ULL) << 40); 4318 break; 4319 case MSR_EFER: 4320 msr_info->data = vcpu->arch.efer; 4321 break; 4322 case MSR_KVM_WALL_CLOCK: 4323 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4324 return 1; 4325 4326 msr_info->data = vcpu->kvm->arch.wall_clock; 4327 break; 4328 case MSR_KVM_WALL_CLOCK_NEW: 4329 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4330 return 1; 4331 4332 msr_info->data = vcpu->kvm->arch.wall_clock; 4333 break; 4334 case MSR_KVM_SYSTEM_TIME: 4335 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4336 return 1; 4337 4338 msr_info->data = vcpu->arch.time; 4339 break; 4340 case MSR_KVM_SYSTEM_TIME_NEW: 4341 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4342 return 1; 4343 4344 msr_info->data = vcpu->arch.time; 4345 break; 4346 case MSR_KVM_ASYNC_PF_EN: 4347 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4348 return 1; 4349 4350 msr_info->data = vcpu->arch.apf.msr_en_val; 4351 break; 4352 case MSR_KVM_ASYNC_PF_INT: 4353 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4354 return 1; 4355 4356 msr_info->data = vcpu->arch.apf.msr_int_val; 4357 break; 4358 case MSR_KVM_ASYNC_PF_ACK: 4359 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4360 return 1; 4361 4362 msr_info->data = 0; 4363 break; 4364 case MSR_KVM_STEAL_TIME: 4365 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4366 return 1; 4367 4368 msr_info->data = vcpu->arch.st.msr_val; 4369 break; 4370 case MSR_KVM_PV_EOI_EN: 4371 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4372 return 1; 4373 4374 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4375 break; 4376 case MSR_KVM_POLL_CONTROL: 4377 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4378 return 1; 4379 4380 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4381 break; 4382 case MSR_IA32_P5_MC_ADDR: 4383 case MSR_IA32_P5_MC_TYPE: 4384 case MSR_IA32_MCG_CAP: 4385 case MSR_IA32_MCG_CTL: 4386 case MSR_IA32_MCG_STATUS: 4387 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4388 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4389 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4390 msr_info->host_initiated); 4391 case MSR_IA32_XSS: 4392 if (!msr_info->host_initiated && 4393 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4394 return 1; 4395 msr_info->data = vcpu->arch.ia32_xss; 4396 break; 4397 case MSR_K7_CLK_CTL: 4398 /* 4399 * Provide expected ramp-up count for K7. All other 4400 * are set to zero, indicating minimum divisors for 4401 * every field. 4402 * 4403 * This prevents guest kernels on AMD host with CPU 4404 * type 6, model 8 and higher from exploding due to 4405 * the rdmsr failing. 4406 */ 4407 msr_info->data = 0x20000000; 4408 break; 4409 #ifdef CONFIG_KVM_HYPERV 4410 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4411 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4412 case HV_X64_MSR_SYNDBG_OPTIONS: 4413 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4414 case HV_X64_MSR_CRASH_CTL: 4415 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4416 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4417 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4418 case HV_X64_MSR_TSC_EMULATION_STATUS: 4419 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4420 return kvm_hv_get_msr_common(vcpu, 4421 msr_info->index, &msr_info->data, 4422 msr_info->host_initiated); 4423 #endif 4424 case MSR_IA32_BBL_CR_CTL3: 4425 /* This legacy MSR exists but isn't fully documented in current 4426 * silicon. It is however accessed by winxp in very narrow 4427 * scenarios where it sets bit #19, itself documented as 4428 * a "reserved" bit. Best effort attempt to source coherent 4429 * read data here should the balance of the register be 4430 * interpreted by the guest: 4431 * 4432 * L2 cache control register 3: 64GB range, 256KB size, 4433 * enabled, latency 0x1, configured 4434 */ 4435 msr_info->data = 0xbe702111; 4436 break; 4437 case MSR_AMD64_OSVW_ID_LENGTH: 4438 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4439 return 1; 4440 msr_info->data = vcpu->arch.osvw.length; 4441 break; 4442 case MSR_AMD64_OSVW_STATUS: 4443 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4444 return 1; 4445 msr_info->data = vcpu->arch.osvw.status; 4446 break; 4447 case MSR_PLATFORM_INFO: 4448 if (!msr_info->host_initiated && 4449 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4450 return 1; 4451 msr_info->data = vcpu->arch.msr_platform_info; 4452 break; 4453 case MSR_MISC_FEATURES_ENABLES: 4454 msr_info->data = vcpu->arch.msr_misc_features_enables; 4455 break; 4456 case MSR_K7_HWCR: 4457 msr_info->data = vcpu->arch.msr_hwcr; 4458 break; 4459 #ifdef CONFIG_X86_64 4460 case MSR_IA32_XFD: 4461 if (!msr_info->host_initiated && 4462 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4463 return 1; 4464 4465 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4466 break; 4467 case MSR_IA32_XFD_ERR: 4468 if (!msr_info->host_initiated && 4469 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4470 return 1; 4471 4472 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4473 break; 4474 #endif 4475 default: 4476 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4477 return kvm_pmu_get_msr(vcpu, msr_info); 4478 4479 /* 4480 * Userspace is allowed to read MSRs that KVM reports as 4481 * to-be-saved, even if an MSR isn't fully supported. 4482 */ 4483 if (msr_info->host_initiated && 4484 kvm_is_msr_to_save(msr_info->index)) { 4485 msr_info->data = 0; 4486 break; 4487 } 4488 4489 return KVM_MSR_RET_INVALID; 4490 } 4491 return 0; 4492 } 4493 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4494 4495 /* 4496 * Read or write a bunch of msrs. All parameters are kernel addresses. 4497 * 4498 * @return number of msrs set successfully. 4499 */ 4500 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4501 struct kvm_msr_entry *entries, 4502 int (*do_msr)(struct kvm_vcpu *vcpu, 4503 unsigned index, u64 *data)) 4504 { 4505 int i; 4506 4507 for (i = 0; i < msrs->nmsrs; ++i) 4508 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4509 break; 4510 4511 return i; 4512 } 4513 4514 /* 4515 * Read or write a bunch of msrs. Parameters are user addresses. 4516 * 4517 * @return number of msrs set successfully. 4518 */ 4519 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4520 int (*do_msr)(struct kvm_vcpu *vcpu, 4521 unsigned index, u64 *data), 4522 int writeback) 4523 { 4524 struct kvm_msrs msrs; 4525 struct kvm_msr_entry *entries; 4526 unsigned size; 4527 int r; 4528 4529 r = -EFAULT; 4530 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4531 goto out; 4532 4533 r = -E2BIG; 4534 if (msrs.nmsrs >= MAX_IO_MSRS) 4535 goto out; 4536 4537 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4538 entries = memdup_user(user_msrs->entries, size); 4539 if (IS_ERR(entries)) { 4540 r = PTR_ERR(entries); 4541 goto out; 4542 } 4543 4544 r = __msr_io(vcpu, &msrs, entries, do_msr); 4545 4546 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4547 r = -EFAULT; 4548 4549 kfree(entries); 4550 out: 4551 return r; 4552 } 4553 4554 static inline bool kvm_can_mwait_in_guest(void) 4555 { 4556 return boot_cpu_has(X86_FEATURE_MWAIT) && 4557 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4558 boot_cpu_has(X86_FEATURE_ARAT); 4559 } 4560 4561 #ifdef CONFIG_KVM_HYPERV 4562 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4563 struct kvm_cpuid2 __user *cpuid_arg) 4564 { 4565 struct kvm_cpuid2 cpuid; 4566 int r; 4567 4568 r = -EFAULT; 4569 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4570 return r; 4571 4572 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4573 if (r) 4574 return r; 4575 4576 r = -EFAULT; 4577 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4578 return r; 4579 4580 return 0; 4581 } 4582 #endif 4583 4584 static bool kvm_is_vm_type_supported(unsigned long type) 4585 { 4586 return type == KVM_X86_DEFAULT_VM || 4587 (type == KVM_X86_SW_PROTECTED_VM && 4588 IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_enabled); 4589 } 4590 4591 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4592 { 4593 int r = 0; 4594 4595 switch (ext) { 4596 case KVM_CAP_IRQCHIP: 4597 case KVM_CAP_HLT: 4598 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4599 case KVM_CAP_SET_TSS_ADDR: 4600 case KVM_CAP_EXT_CPUID: 4601 case KVM_CAP_EXT_EMUL_CPUID: 4602 case KVM_CAP_CLOCKSOURCE: 4603 case KVM_CAP_PIT: 4604 case KVM_CAP_NOP_IO_DELAY: 4605 case KVM_CAP_MP_STATE: 4606 case KVM_CAP_SYNC_MMU: 4607 case KVM_CAP_USER_NMI: 4608 case KVM_CAP_REINJECT_CONTROL: 4609 case KVM_CAP_IRQ_INJECT_STATUS: 4610 case KVM_CAP_IOEVENTFD: 4611 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4612 case KVM_CAP_PIT2: 4613 case KVM_CAP_PIT_STATE2: 4614 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4615 case KVM_CAP_VCPU_EVENTS: 4616 #ifdef CONFIG_KVM_HYPERV 4617 case KVM_CAP_HYPERV: 4618 case KVM_CAP_HYPERV_VAPIC: 4619 case KVM_CAP_HYPERV_SPIN: 4620 case KVM_CAP_HYPERV_TIME: 4621 case KVM_CAP_HYPERV_SYNIC: 4622 case KVM_CAP_HYPERV_SYNIC2: 4623 case KVM_CAP_HYPERV_VP_INDEX: 4624 case KVM_CAP_HYPERV_EVENTFD: 4625 case KVM_CAP_HYPERV_TLBFLUSH: 4626 case KVM_CAP_HYPERV_SEND_IPI: 4627 case KVM_CAP_HYPERV_CPUID: 4628 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4629 case KVM_CAP_SYS_HYPERV_CPUID: 4630 #endif 4631 case KVM_CAP_PCI_SEGMENT: 4632 case KVM_CAP_DEBUGREGS: 4633 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4634 case KVM_CAP_XSAVE: 4635 case KVM_CAP_ASYNC_PF: 4636 case KVM_CAP_ASYNC_PF_INT: 4637 case KVM_CAP_GET_TSC_KHZ: 4638 case KVM_CAP_KVMCLOCK_CTRL: 4639 case KVM_CAP_READONLY_MEM: 4640 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4641 case KVM_CAP_TSC_DEADLINE_TIMER: 4642 case KVM_CAP_DISABLE_QUIRKS: 4643 case KVM_CAP_SET_BOOT_CPU_ID: 4644 case KVM_CAP_SPLIT_IRQCHIP: 4645 case KVM_CAP_IMMEDIATE_EXIT: 4646 case KVM_CAP_PMU_EVENT_FILTER: 4647 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4648 case KVM_CAP_GET_MSR_FEATURES: 4649 case KVM_CAP_MSR_PLATFORM_INFO: 4650 case KVM_CAP_EXCEPTION_PAYLOAD: 4651 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4652 case KVM_CAP_SET_GUEST_DEBUG: 4653 case KVM_CAP_LAST_CPU: 4654 case KVM_CAP_X86_USER_SPACE_MSR: 4655 case KVM_CAP_X86_MSR_FILTER: 4656 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4657 #ifdef CONFIG_X86_SGX_KVM 4658 case KVM_CAP_SGX_ATTRIBUTE: 4659 #endif 4660 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4661 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4662 case KVM_CAP_SREGS2: 4663 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4664 case KVM_CAP_VCPU_ATTRIBUTES: 4665 case KVM_CAP_SYS_ATTRIBUTES: 4666 case KVM_CAP_VAPIC: 4667 case KVM_CAP_ENABLE_CAP: 4668 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4669 case KVM_CAP_IRQFD_RESAMPLE: 4670 case KVM_CAP_MEMORY_FAULT_INFO: 4671 r = 1; 4672 break; 4673 case KVM_CAP_EXIT_HYPERCALL: 4674 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4675 break; 4676 case KVM_CAP_SET_GUEST_DEBUG2: 4677 return KVM_GUESTDBG_VALID_MASK; 4678 #ifdef CONFIG_KVM_XEN 4679 case KVM_CAP_XEN_HVM: 4680 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4681 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4682 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4683 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4684 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4685 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 4686 if (sched_info_on()) 4687 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4688 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4689 break; 4690 #endif 4691 case KVM_CAP_SYNC_REGS: 4692 r = KVM_SYNC_X86_VALID_FIELDS; 4693 break; 4694 case KVM_CAP_ADJUST_CLOCK: 4695 r = KVM_CLOCK_VALID_FLAGS; 4696 break; 4697 case KVM_CAP_X86_DISABLE_EXITS: 4698 r = KVM_X86_DISABLE_EXITS_PAUSE; 4699 4700 if (!mitigate_smt_rsb) { 4701 r |= KVM_X86_DISABLE_EXITS_HLT | 4702 KVM_X86_DISABLE_EXITS_CSTATE; 4703 4704 if (kvm_can_mwait_in_guest()) 4705 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4706 } 4707 break; 4708 case KVM_CAP_X86_SMM: 4709 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4710 break; 4711 4712 /* SMBASE is usually relocated above 1M on modern chipsets, 4713 * and SMM handlers might indeed rely on 4G segment limits, 4714 * so do not report SMM to be available if real mode is 4715 * emulated via vm86 mode. Still, do not go to great lengths 4716 * to avoid userspace's usage of the feature, because it is a 4717 * fringe case that is not enabled except via specific settings 4718 * of the module parameters. 4719 */ 4720 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4721 break; 4722 case KVM_CAP_NR_VCPUS: 4723 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4724 break; 4725 case KVM_CAP_MAX_VCPUS: 4726 r = KVM_MAX_VCPUS; 4727 break; 4728 case KVM_CAP_MAX_VCPU_ID: 4729 r = KVM_MAX_VCPU_IDS; 4730 break; 4731 case KVM_CAP_PV_MMU: /* obsolete */ 4732 r = 0; 4733 break; 4734 case KVM_CAP_MCE: 4735 r = KVM_MAX_MCE_BANKS; 4736 break; 4737 case KVM_CAP_XCRS: 4738 r = boot_cpu_has(X86_FEATURE_XSAVE); 4739 break; 4740 case KVM_CAP_TSC_CONTROL: 4741 case KVM_CAP_VM_TSC_CONTROL: 4742 r = kvm_caps.has_tsc_control; 4743 break; 4744 case KVM_CAP_X2APIC_API: 4745 r = KVM_X2APIC_API_VALID_FLAGS; 4746 break; 4747 case KVM_CAP_NESTED_STATE: 4748 r = kvm_x86_ops.nested_ops->get_state ? 4749 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4750 break; 4751 #ifdef CONFIG_KVM_HYPERV 4752 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4753 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4754 break; 4755 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4756 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4757 break; 4758 #endif 4759 case KVM_CAP_SMALLER_MAXPHYADDR: 4760 r = (int) allow_smaller_maxphyaddr; 4761 break; 4762 case KVM_CAP_STEAL_TIME: 4763 r = sched_info_on(); 4764 break; 4765 case KVM_CAP_X86_BUS_LOCK_EXIT: 4766 if (kvm_caps.has_bus_lock_exit) 4767 r = KVM_BUS_LOCK_DETECTION_OFF | 4768 KVM_BUS_LOCK_DETECTION_EXIT; 4769 else 4770 r = 0; 4771 break; 4772 case KVM_CAP_XSAVE2: { 4773 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4774 if (r < sizeof(struct kvm_xsave)) 4775 r = sizeof(struct kvm_xsave); 4776 break; 4777 } 4778 case KVM_CAP_PMU_CAPABILITY: 4779 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4780 break; 4781 case KVM_CAP_DISABLE_QUIRKS2: 4782 r = KVM_X86_VALID_QUIRKS; 4783 break; 4784 case KVM_CAP_X86_NOTIFY_VMEXIT: 4785 r = kvm_caps.has_notify_vmexit; 4786 break; 4787 case KVM_CAP_VM_TYPES: 4788 r = BIT(KVM_X86_DEFAULT_VM); 4789 if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM)) 4790 r |= BIT(KVM_X86_SW_PROTECTED_VM); 4791 break; 4792 default: 4793 break; 4794 } 4795 return r; 4796 } 4797 4798 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4799 { 4800 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4801 4802 if ((u64)(unsigned long)uaddr != attr->addr) 4803 return ERR_PTR_USR(-EFAULT); 4804 return uaddr; 4805 } 4806 4807 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4808 { 4809 u64 __user *uaddr = kvm_get_attr_addr(attr); 4810 4811 if (attr->group) 4812 return -ENXIO; 4813 4814 if (IS_ERR(uaddr)) 4815 return PTR_ERR(uaddr); 4816 4817 switch (attr->attr) { 4818 case KVM_X86_XCOMP_GUEST_SUPP: 4819 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4820 return -EFAULT; 4821 return 0; 4822 default: 4823 return -ENXIO; 4824 } 4825 } 4826 4827 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4828 { 4829 if (attr->group) 4830 return -ENXIO; 4831 4832 switch (attr->attr) { 4833 case KVM_X86_XCOMP_GUEST_SUPP: 4834 return 0; 4835 default: 4836 return -ENXIO; 4837 } 4838 } 4839 4840 long kvm_arch_dev_ioctl(struct file *filp, 4841 unsigned int ioctl, unsigned long arg) 4842 { 4843 void __user *argp = (void __user *)arg; 4844 long r; 4845 4846 switch (ioctl) { 4847 case KVM_GET_MSR_INDEX_LIST: { 4848 struct kvm_msr_list __user *user_msr_list = argp; 4849 struct kvm_msr_list msr_list; 4850 unsigned n; 4851 4852 r = -EFAULT; 4853 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4854 goto out; 4855 n = msr_list.nmsrs; 4856 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4857 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4858 goto out; 4859 r = -E2BIG; 4860 if (n < msr_list.nmsrs) 4861 goto out; 4862 r = -EFAULT; 4863 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4864 num_msrs_to_save * sizeof(u32))) 4865 goto out; 4866 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4867 &emulated_msrs, 4868 num_emulated_msrs * sizeof(u32))) 4869 goto out; 4870 r = 0; 4871 break; 4872 } 4873 case KVM_GET_SUPPORTED_CPUID: 4874 case KVM_GET_EMULATED_CPUID: { 4875 struct kvm_cpuid2 __user *cpuid_arg = argp; 4876 struct kvm_cpuid2 cpuid; 4877 4878 r = -EFAULT; 4879 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4880 goto out; 4881 4882 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4883 ioctl); 4884 if (r) 4885 goto out; 4886 4887 r = -EFAULT; 4888 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4889 goto out; 4890 r = 0; 4891 break; 4892 } 4893 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4894 r = -EFAULT; 4895 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4896 sizeof(kvm_caps.supported_mce_cap))) 4897 goto out; 4898 r = 0; 4899 break; 4900 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4901 struct kvm_msr_list __user *user_msr_list = argp; 4902 struct kvm_msr_list msr_list; 4903 unsigned int n; 4904 4905 r = -EFAULT; 4906 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4907 goto out; 4908 n = msr_list.nmsrs; 4909 msr_list.nmsrs = num_msr_based_features; 4910 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4911 goto out; 4912 r = -E2BIG; 4913 if (n < msr_list.nmsrs) 4914 goto out; 4915 r = -EFAULT; 4916 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4917 num_msr_based_features * sizeof(u32))) 4918 goto out; 4919 r = 0; 4920 break; 4921 } 4922 case KVM_GET_MSRS: 4923 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4924 break; 4925 #ifdef CONFIG_KVM_HYPERV 4926 case KVM_GET_SUPPORTED_HV_CPUID: 4927 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4928 break; 4929 #endif 4930 case KVM_GET_DEVICE_ATTR: { 4931 struct kvm_device_attr attr; 4932 r = -EFAULT; 4933 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4934 break; 4935 r = kvm_x86_dev_get_attr(&attr); 4936 break; 4937 } 4938 case KVM_HAS_DEVICE_ATTR: { 4939 struct kvm_device_attr attr; 4940 r = -EFAULT; 4941 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4942 break; 4943 r = kvm_x86_dev_has_attr(&attr); 4944 break; 4945 } 4946 default: 4947 r = -EINVAL; 4948 break; 4949 } 4950 out: 4951 return r; 4952 } 4953 4954 static void wbinvd_ipi(void *garbage) 4955 { 4956 wbinvd(); 4957 } 4958 4959 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4960 { 4961 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4962 } 4963 4964 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4965 { 4966 /* Address WBINVD may be executed by guest */ 4967 if (need_emulate_wbinvd(vcpu)) { 4968 if (static_call(kvm_x86_has_wbinvd_exit)()) 4969 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4970 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4971 smp_call_function_single(vcpu->cpu, 4972 wbinvd_ipi, NULL, 1); 4973 } 4974 4975 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4976 4977 /* Save host pkru register if supported */ 4978 vcpu->arch.host_pkru = read_pkru(); 4979 4980 /* Apply any externally detected TSC adjustments (due to suspend) */ 4981 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4982 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4983 vcpu->arch.tsc_offset_adjustment = 0; 4984 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4985 } 4986 4987 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4988 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4989 rdtsc() - vcpu->arch.last_host_tsc; 4990 if (tsc_delta < 0) 4991 mark_tsc_unstable("KVM discovered backwards TSC"); 4992 4993 if (kvm_check_tsc_unstable()) { 4994 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4995 vcpu->arch.last_guest_tsc); 4996 kvm_vcpu_write_tsc_offset(vcpu, offset); 4997 vcpu->arch.tsc_catchup = 1; 4998 } 4999 5000 if (kvm_lapic_hv_timer_in_use(vcpu)) 5001 kvm_lapic_restart_hv_timer(vcpu); 5002 5003 /* 5004 * On a host with synchronized TSC, there is no need to update 5005 * kvmclock on vcpu->cpu migration 5006 */ 5007 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5008 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5009 if (vcpu->cpu != cpu) 5010 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5011 vcpu->cpu = cpu; 5012 } 5013 5014 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5015 } 5016 5017 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5018 { 5019 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5020 struct kvm_steal_time __user *st; 5021 struct kvm_memslots *slots; 5022 static const u8 preempted = KVM_VCPU_PREEMPTED; 5023 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5024 5025 /* 5026 * The vCPU can be marked preempted if and only if the VM-Exit was on 5027 * an instruction boundary and will not trigger guest emulation of any 5028 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5029 * when this is true, for example allowing the vCPU to be marked 5030 * preempted if and only if the VM-Exit was due to a host interrupt. 5031 */ 5032 if (!vcpu->arch.at_instruction_boundary) { 5033 vcpu->stat.preemption_other++; 5034 return; 5035 } 5036 5037 vcpu->stat.preemption_reported++; 5038 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5039 return; 5040 5041 if (vcpu->arch.st.preempted) 5042 return; 5043 5044 /* This happens on process exit */ 5045 if (unlikely(current->mm != vcpu->kvm->mm)) 5046 return; 5047 5048 slots = kvm_memslots(vcpu->kvm); 5049 5050 if (unlikely(slots->generation != ghc->generation || 5051 gpa != ghc->gpa || 5052 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5053 return; 5054 5055 st = (struct kvm_steal_time __user *)ghc->hva; 5056 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5057 5058 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5059 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5060 5061 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5062 } 5063 5064 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5065 { 5066 int idx; 5067 5068 if (vcpu->preempted) { 5069 if (!vcpu->arch.guest_state_protected) 5070 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 5071 5072 /* 5073 * Take the srcu lock as memslots will be accessed to check the gfn 5074 * cache generation against the memslots generation. 5075 */ 5076 idx = srcu_read_lock(&vcpu->kvm->srcu); 5077 if (kvm_xen_msr_enabled(vcpu->kvm)) 5078 kvm_xen_runstate_set_preempted(vcpu); 5079 else 5080 kvm_steal_time_set_preempted(vcpu); 5081 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5082 } 5083 5084 static_call(kvm_x86_vcpu_put)(vcpu); 5085 vcpu->arch.last_host_tsc = rdtsc(); 5086 } 5087 5088 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5089 struct kvm_lapic_state *s) 5090 { 5091 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 5092 5093 return kvm_apic_get_state(vcpu, s); 5094 } 5095 5096 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5097 struct kvm_lapic_state *s) 5098 { 5099 int r; 5100 5101 r = kvm_apic_set_state(vcpu, s); 5102 if (r) 5103 return r; 5104 update_cr8_intercept(vcpu); 5105 5106 return 0; 5107 } 5108 5109 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5110 { 5111 /* 5112 * We can accept userspace's request for interrupt injection 5113 * as long as we have a place to store the interrupt number. 5114 * The actual injection will happen when the CPU is able to 5115 * deliver the interrupt. 5116 */ 5117 if (kvm_cpu_has_extint(vcpu)) 5118 return false; 5119 5120 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5121 return (!lapic_in_kernel(vcpu) || 5122 kvm_apic_accept_pic_intr(vcpu)); 5123 } 5124 5125 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5126 { 5127 /* 5128 * Do not cause an interrupt window exit if an exception 5129 * is pending or an event needs reinjection; userspace 5130 * might want to inject the interrupt manually using KVM_SET_REGS 5131 * or KVM_SET_SREGS. For that to work, we must be at an 5132 * instruction boundary and with no events half-injected. 5133 */ 5134 return (kvm_arch_interrupt_allowed(vcpu) && 5135 kvm_cpu_accept_dm_intr(vcpu) && 5136 !kvm_event_needs_reinjection(vcpu) && 5137 !kvm_is_exception_pending(vcpu)); 5138 } 5139 5140 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5141 struct kvm_interrupt *irq) 5142 { 5143 if (irq->irq >= KVM_NR_INTERRUPTS) 5144 return -EINVAL; 5145 5146 if (!irqchip_in_kernel(vcpu->kvm)) { 5147 kvm_queue_interrupt(vcpu, irq->irq, false); 5148 kvm_make_request(KVM_REQ_EVENT, vcpu); 5149 return 0; 5150 } 5151 5152 /* 5153 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5154 * fail for in-kernel 8259. 5155 */ 5156 if (pic_in_kernel(vcpu->kvm)) 5157 return -ENXIO; 5158 5159 if (vcpu->arch.pending_external_vector != -1) 5160 return -EEXIST; 5161 5162 vcpu->arch.pending_external_vector = irq->irq; 5163 kvm_make_request(KVM_REQ_EVENT, vcpu); 5164 return 0; 5165 } 5166 5167 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5168 { 5169 kvm_inject_nmi(vcpu); 5170 5171 return 0; 5172 } 5173 5174 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5175 struct kvm_tpr_access_ctl *tac) 5176 { 5177 if (tac->flags) 5178 return -EINVAL; 5179 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5180 return 0; 5181 } 5182 5183 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5184 u64 mcg_cap) 5185 { 5186 int r; 5187 unsigned bank_num = mcg_cap & 0xff, bank; 5188 5189 r = -EINVAL; 5190 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5191 goto out; 5192 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5193 goto out; 5194 r = 0; 5195 vcpu->arch.mcg_cap = mcg_cap; 5196 /* Init IA32_MCG_CTL to all 1s */ 5197 if (mcg_cap & MCG_CTL_P) 5198 vcpu->arch.mcg_ctl = ~(u64)0; 5199 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5200 for (bank = 0; bank < bank_num; bank++) { 5201 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5202 if (mcg_cap & MCG_CMCI_P) 5203 vcpu->arch.mci_ctl2_banks[bank] = 0; 5204 } 5205 5206 kvm_apic_after_set_mcg_cap(vcpu); 5207 5208 static_call(kvm_x86_setup_mce)(vcpu); 5209 out: 5210 return r; 5211 } 5212 5213 /* 5214 * Validate this is an UCNA (uncorrectable no action) error by checking the 5215 * MCG_STATUS and MCi_STATUS registers: 5216 * - none of the bits for Machine Check Exceptions are set 5217 * - both the VAL (valid) and UC (uncorrectable) bits are set 5218 * MCI_STATUS_PCC - Processor Context Corrupted 5219 * MCI_STATUS_S - Signaled as a Machine Check Exception 5220 * MCI_STATUS_AR - Software recoverable Action Required 5221 */ 5222 static bool is_ucna(struct kvm_x86_mce *mce) 5223 { 5224 return !mce->mcg_status && 5225 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5226 (mce->status & MCI_STATUS_VAL) && 5227 (mce->status & MCI_STATUS_UC); 5228 } 5229 5230 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5231 { 5232 u64 mcg_cap = vcpu->arch.mcg_cap; 5233 5234 banks[1] = mce->status; 5235 banks[2] = mce->addr; 5236 banks[3] = mce->misc; 5237 vcpu->arch.mcg_status = mce->mcg_status; 5238 5239 if (!(mcg_cap & MCG_CMCI_P) || 5240 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5241 return 0; 5242 5243 if (lapic_in_kernel(vcpu)) 5244 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5245 5246 return 0; 5247 } 5248 5249 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5250 struct kvm_x86_mce *mce) 5251 { 5252 u64 mcg_cap = vcpu->arch.mcg_cap; 5253 unsigned bank_num = mcg_cap & 0xff; 5254 u64 *banks = vcpu->arch.mce_banks; 5255 5256 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5257 return -EINVAL; 5258 5259 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5260 5261 if (is_ucna(mce)) 5262 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5263 5264 /* 5265 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5266 * reporting is disabled 5267 */ 5268 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5269 vcpu->arch.mcg_ctl != ~(u64)0) 5270 return 0; 5271 /* 5272 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5273 * reporting is disabled for the bank 5274 */ 5275 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5276 return 0; 5277 if (mce->status & MCI_STATUS_UC) { 5278 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5279 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5280 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5281 return 0; 5282 } 5283 if (banks[1] & MCI_STATUS_VAL) 5284 mce->status |= MCI_STATUS_OVER; 5285 banks[2] = mce->addr; 5286 banks[3] = mce->misc; 5287 vcpu->arch.mcg_status = mce->mcg_status; 5288 banks[1] = mce->status; 5289 kvm_queue_exception(vcpu, MC_VECTOR); 5290 } else if (!(banks[1] & MCI_STATUS_VAL) 5291 || !(banks[1] & MCI_STATUS_UC)) { 5292 if (banks[1] & MCI_STATUS_VAL) 5293 mce->status |= MCI_STATUS_OVER; 5294 banks[2] = mce->addr; 5295 banks[3] = mce->misc; 5296 banks[1] = mce->status; 5297 } else 5298 banks[1] |= MCI_STATUS_OVER; 5299 return 0; 5300 } 5301 5302 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5303 struct kvm_vcpu_events *events) 5304 { 5305 struct kvm_queued_exception *ex; 5306 5307 process_nmi(vcpu); 5308 5309 #ifdef CONFIG_KVM_SMM 5310 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5311 process_smi(vcpu); 5312 #endif 5313 5314 /* 5315 * KVM's ABI only allows for one exception to be migrated. Luckily, 5316 * the only time there can be two queued exceptions is if there's a 5317 * non-exiting _injected_ exception, and a pending exiting exception. 5318 * In that case, ignore the VM-Exiting exception as it's an extension 5319 * of the injected exception. 5320 */ 5321 if (vcpu->arch.exception_vmexit.pending && 5322 !vcpu->arch.exception.pending && 5323 !vcpu->arch.exception.injected) 5324 ex = &vcpu->arch.exception_vmexit; 5325 else 5326 ex = &vcpu->arch.exception; 5327 5328 /* 5329 * In guest mode, payload delivery should be deferred if the exception 5330 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5331 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5332 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5333 * propagate the payload and so it cannot be safely deferred. Deliver 5334 * the payload if the capability hasn't been requested. 5335 */ 5336 if (!vcpu->kvm->arch.exception_payload_enabled && 5337 ex->pending && ex->has_payload) 5338 kvm_deliver_exception_payload(vcpu, ex); 5339 5340 memset(events, 0, sizeof(*events)); 5341 5342 /* 5343 * The API doesn't provide the instruction length for software 5344 * exceptions, so don't report them. As long as the guest RIP 5345 * isn't advanced, we should expect to encounter the exception 5346 * again. 5347 */ 5348 if (!kvm_exception_is_soft(ex->vector)) { 5349 events->exception.injected = ex->injected; 5350 events->exception.pending = ex->pending; 5351 /* 5352 * For ABI compatibility, deliberately conflate 5353 * pending and injected exceptions when 5354 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5355 */ 5356 if (!vcpu->kvm->arch.exception_payload_enabled) 5357 events->exception.injected |= ex->pending; 5358 } 5359 events->exception.nr = ex->vector; 5360 events->exception.has_error_code = ex->has_error_code; 5361 events->exception.error_code = ex->error_code; 5362 events->exception_has_payload = ex->has_payload; 5363 events->exception_payload = ex->payload; 5364 5365 events->interrupt.injected = 5366 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5367 events->interrupt.nr = vcpu->arch.interrupt.nr; 5368 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5369 5370 events->nmi.injected = vcpu->arch.nmi_injected; 5371 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5372 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5373 5374 /* events->sipi_vector is never valid when reporting to user space */ 5375 5376 #ifdef CONFIG_KVM_SMM 5377 events->smi.smm = is_smm(vcpu); 5378 events->smi.pending = vcpu->arch.smi_pending; 5379 events->smi.smm_inside_nmi = 5380 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5381 #endif 5382 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5383 5384 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5385 | KVM_VCPUEVENT_VALID_SHADOW 5386 | KVM_VCPUEVENT_VALID_SMM); 5387 if (vcpu->kvm->arch.exception_payload_enabled) 5388 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5389 if (vcpu->kvm->arch.triple_fault_event) { 5390 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5391 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5392 } 5393 } 5394 5395 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5396 struct kvm_vcpu_events *events) 5397 { 5398 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5399 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5400 | KVM_VCPUEVENT_VALID_SHADOW 5401 | KVM_VCPUEVENT_VALID_SMM 5402 | KVM_VCPUEVENT_VALID_PAYLOAD 5403 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5404 return -EINVAL; 5405 5406 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5407 if (!vcpu->kvm->arch.exception_payload_enabled) 5408 return -EINVAL; 5409 if (events->exception.pending) 5410 events->exception.injected = 0; 5411 else 5412 events->exception_has_payload = 0; 5413 } else { 5414 events->exception.pending = 0; 5415 events->exception_has_payload = 0; 5416 } 5417 5418 if ((events->exception.injected || events->exception.pending) && 5419 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5420 return -EINVAL; 5421 5422 /* INITs are latched while in SMM */ 5423 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5424 (events->smi.smm || events->smi.pending) && 5425 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5426 return -EINVAL; 5427 5428 process_nmi(vcpu); 5429 5430 /* 5431 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5432 * morph the exception to a VM-Exit if appropriate. Do this only for 5433 * pending exceptions, already-injected exceptions are not subject to 5434 * intercpetion. Note, userspace that conflates pending and injected 5435 * is hosed, and will incorrectly convert an injected exception into a 5436 * pending exception, which in turn may cause a spurious VM-Exit. 5437 */ 5438 vcpu->arch.exception_from_userspace = events->exception.pending; 5439 5440 vcpu->arch.exception_vmexit.pending = false; 5441 5442 vcpu->arch.exception.injected = events->exception.injected; 5443 vcpu->arch.exception.pending = events->exception.pending; 5444 vcpu->arch.exception.vector = events->exception.nr; 5445 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5446 vcpu->arch.exception.error_code = events->exception.error_code; 5447 vcpu->arch.exception.has_payload = events->exception_has_payload; 5448 vcpu->arch.exception.payload = events->exception_payload; 5449 5450 vcpu->arch.interrupt.injected = events->interrupt.injected; 5451 vcpu->arch.interrupt.nr = events->interrupt.nr; 5452 vcpu->arch.interrupt.soft = events->interrupt.soft; 5453 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5454 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5455 events->interrupt.shadow); 5456 5457 vcpu->arch.nmi_injected = events->nmi.injected; 5458 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5459 vcpu->arch.nmi_pending = 0; 5460 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5461 kvm_make_request(KVM_REQ_NMI, vcpu); 5462 } 5463 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5464 5465 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5466 lapic_in_kernel(vcpu)) 5467 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5468 5469 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5470 #ifdef CONFIG_KVM_SMM 5471 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5472 kvm_leave_nested(vcpu); 5473 kvm_smm_changed(vcpu, events->smi.smm); 5474 } 5475 5476 vcpu->arch.smi_pending = events->smi.pending; 5477 5478 if (events->smi.smm) { 5479 if (events->smi.smm_inside_nmi) 5480 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5481 else 5482 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5483 } 5484 5485 #else 5486 if (events->smi.smm || events->smi.pending || 5487 events->smi.smm_inside_nmi) 5488 return -EINVAL; 5489 #endif 5490 5491 if (lapic_in_kernel(vcpu)) { 5492 if (events->smi.latched_init) 5493 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5494 else 5495 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5496 } 5497 } 5498 5499 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5500 if (!vcpu->kvm->arch.triple_fault_event) 5501 return -EINVAL; 5502 if (events->triple_fault.pending) 5503 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5504 else 5505 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5506 } 5507 5508 kvm_make_request(KVM_REQ_EVENT, vcpu); 5509 5510 return 0; 5511 } 5512 5513 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5514 struct kvm_debugregs *dbgregs) 5515 { 5516 unsigned long val; 5517 5518 memset(dbgregs, 0, sizeof(*dbgregs)); 5519 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5520 kvm_get_dr(vcpu, 6, &val); 5521 dbgregs->dr6 = val; 5522 dbgregs->dr7 = vcpu->arch.dr7; 5523 } 5524 5525 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5526 struct kvm_debugregs *dbgregs) 5527 { 5528 if (dbgregs->flags) 5529 return -EINVAL; 5530 5531 if (!kvm_dr6_valid(dbgregs->dr6)) 5532 return -EINVAL; 5533 if (!kvm_dr7_valid(dbgregs->dr7)) 5534 return -EINVAL; 5535 5536 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5537 kvm_update_dr0123(vcpu); 5538 vcpu->arch.dr6 = dbgregs->dr6; 5539 vcpu->arch.dr7 = dbgregs->dr7; 5540 kvm_update_dr7(vcpu); 5541 5542 return 0; 5543 } 5544 5545 5546 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5547 u8 *state, unsigned int size) 5548 { 5549 /* 5550 * Only copy state for features that are enabled for the guest. The 5551 * state itself isn't problematic, but setting bits in the header for 5552 * features that are supported in *this* host but not exposed to the 5553 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5554 * compatible host without the features that are NOT exposed to the 5555 * guest. 5556 * 5557 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5558 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5559 * supported by the host. 5560 */ 5561 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5562 XFEATURE_MASK_FPSSE; 5563 5564 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5565 return; 5566 5567 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5568 supported_xcr0, vcpu->arch.pkru); 5569 } 5570 5571 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5572 struct kvm_xsave *guest_xsave) 5573 { 5574 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5575 sizeof(guest_xsave->region)); 5576 } 5577 5578 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5579 struct kvm_xsave *guest_xsave) 5580 { 5581 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5582 return 0; 5583 5584 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5585 guest_xsave->region, 5586 kvm_caps.supported_xcr0, 5587 &vcpu->arch.pkru); 5588 } 5589 5590 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5591 struct kvm_xcrs *guest_xcrs) 5592 { 5593 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5594 guest_xcrs->nr_xcrs = 0; 5595 return; 5596 } 5597 5598 guest_xcrs->nr_xcrs = 1; 5599 guest_xcrs->flags = 0; 5600 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5601 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5602 } 5603 5604 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5605 struct kvm_xcrs *guest_xcrs) 5606 { 5607 int i, r = 0; 5608 5609 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5610 return -EINVAL; 5611 5612 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5613 return -EINVAL; 5614 5615 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5616 /* Only support XCR0 currently */ 5617 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5618 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5619 guest_xcrs->xcrs[i].value); 5620 break; 5621 } 5622 if (r) 5623 r = -EINVAL; 5624 return r; 5625 } 5626 5627 /* 5628 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5629 * stopped by the hypervisor. This function will be called from the host only. 5630 * EINVAL is returned when the host attempts to set the flag for a guest that 5631 * does not support pv clocks. 5632 */ 5633 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5634 { 5635 if (!vcpu->arch.pv_time.active) 5636 return -EINVAL; 5637 vcpu->arch.pvclock_set_guest_stopped_request = true; 5638 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5639 return 0; 5640 } 5641 5642 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5643 struct kvm_device_attr *attr) 5644 { 5645 int r; 5646 5647 switch (attr->attr) { 5648 case KVM_VCPU_TSC_OFFSET: 5649 r = 0; 5650 break; 5651 default: 5652 r = -ENXIO; 5653 } 5654 5655 return r; 5656 } 5657 5658 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5659 struct kvm_device_attr *attr) 5660 { 5661 u64 __user *uaddr = kvm_get_attr_addr(attr); 5662 int r; 5663 5664 if (IS_ERR(uaddr)) 5665 return PTR_ERR(uaddr); 5666 5667 switch (attr->attr) { 5668 case KVM_VCPU_TSC_OFFSET: 5669 r = -EFAULT; 5670 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5671 break; 5672 r = 0; 5673 break; 5674 default: 5675 r = -ENXIO; 5676 } 5677 5678 return r; 5679 } 5680 5681 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5682 struct kvm_device_attr *attr) 5683 { 5684 u64 __user *uaddr = kvm_get_attr_addr(attr); 5685 struct kvm *kvm = vcpu->kvm; 5686 int r; 5687 5688 if (IS_ERR(uaddr)) 5689 return PTR_ERR(uaddr); 5690 5691 switch (attr->attr) { 5692 case KVM_VCPU_TSC_OFFSET: { 5693 u64 offset, tsc, ns; 5694 unsigned long flags; 5695 bool matched; 5696 5697 r = -EFAULT; 5698 if (get_user(offset, uaddr)) 5699 break; 5700 5701 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5702 5703 matched = (vcpu->arch.virtual_tsc_khz && 5704 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5705 kvm->arch.last_tsc_offset == offset); 5706 5707 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5708 ns = get_kvmclock_base_ns(); 5709 5710 kvm->arch.user_set_tsc = true; 5711 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5712 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5713 5714 r = 0; 5715 break; 5716 } 5717 default: 5718 r = -ENXIO; 5719 } 5720 5721 return r; 5722 } 5723 5724 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5725 unsigned int ioctl, 5726 void __user *argp) 5727 { 5728 struct kvm_device_attr attr; 5729 int r; 5730 5731 if (copy_from_user(&attr, argp, sizeof(attr))) 5732 return -EFAULT; 5733 5734 if (attr.group != KVM_VCPU_TSC_CTRL) 5735 return -ENXIO; 5736 5737 switch (ioctl) { 5738 case KVM_HAS_DEVICE_ATTR: 5739 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5740 break; 5741 case KVM_GET_DEVICE_ATTR: 5742 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5743 break; 5744 case KVM_SET_DEVICE_ATTR: 5745 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5746 break; 5747 } 5748 5749 return r; 5750 } 5751 5752 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5753 struct kvm_enable_cap *cap) 5754 { 5755 if (cap->flags) 5756 return -EINVAL; 5757 5758 switch (cap->cap) { 5759 #ifdef CONFIG_KVM_HYPERV 5760 case KVM_CAP_HYPERV_SYNIC2: 5761 if (cap->args[0]) 5762 return -EINVAL; 5763 fallthrough; 5764 5765 case KVM_CAP_HYPERV_SYNIC: 5766 if (!irqchip_in_kernel(vcpu->kvm)) 5767 return -EINVAL; 5768 return kvm_hv_activate_synic(vcpu, cap->cap == 5769 KVM_CAP_HYPERV_SYNIC2); 5770 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5771 { 5772 int r; 5773 uint16_t vmcs_version; 5774 void __user *user_ptr; 5775 5776 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5777 return -ENOTTY; 5778 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5779 if (!r) { 5780 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5781 if (copy_to_user(user_ptr, &vmcs_version, 5782 sizeof(vmcs_version))) 5783 r = -EFAULT; 5784 } 5785 return r; 5786 } 5787 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5788 if (!kvm_x86_ops.enable_l2_tlb_flush) 5789 return -ENOTTY; 5790 5791 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5792 5793 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5794 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5795 #endif 5796 5797 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5798 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5799 if (vcpu->arch.pv_cpuid.enforce) 5800 kvm_update_pv_runtime(vcpu); 5801 5802 return 0; 5803 default: 5804 return -EINVAL; 5805 } 5806 } 5807 5808 long kvm_arch_vcpu_ioctl(struct file *filp, 5809 unsigned int ioctl, unsigned long arg) 5810 { 5811 struct kvm_vcpu *vcpu = filp->private_data; 5812 void __user *argp = (void __user *)arg; 5813 int r; 5814 union { 5815 struct kvm_sregs2 *sregs2; 5816 struct kvm_lapic_state *lapic; 5817 struct kvm_xsave *xsave; 5818 struct kvm_xcrs *xcrs; 5819 void *buffer; 5820 } u; 5821 5822 vcpu_load(vcpu); 5823 5824 u.buffer = NULL; 5825 switch (ioctl) { 5826 case KVM_GET_LAPIC: { 5827 r = -EINVAL; 5828 if (!lapic_in_kernel(vcpu)) 5829 goto out; 5830 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5831 GFP_KERNEL_ACCOUNT); 5832 5833 r = -ENOMEM; 5834 if (!u.lapic) 5835 goto out; 5836 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5837 if (r) 5838 goto out; 5839 r = -EFAULT; 5840 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5841 goto out; 5842 r = 0; 5843 break; 5844 } 5845 case KVM_SET_LAPIC: { 5846 r = -EINVAL; 5847 if (!lapic_in_kernel(vcpu)) 5848 goto out; 5849 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5850 if (IS_ERR(u.lapic)) { 5851 r = PTR_ERR(u.lapic); 5852 goto out_nofree; 5853 } 5854 5855 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5856 break; 5857 } 5858 case KVM_INTERRUPT: { 5859 struct kvm_interrupt irq; 5860 5861 r = -EFAULT; 5862 if (copy_from_user(&irq, argp, sizeof(irq))) 5863 goto out; 5864 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5865 break; 5866 } 5867 case KVM_NMI: { 5868 r = kvm_vcpu_ioctl_nmi(vcpu); 5869 break; 5870 } 5871 case KVM_SMI: { 5872 r = kvm_inject_smi(vcpu); 5873 break; 5874 } 5875 case KVM_SET_CPUID: { 5876 struct kvm_cpuid __user *cpuid_arg = argp; 5877 struct kvm_cpuid cpuid; 5878 5879 r = -EFAULT; 5880 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5881 goto out; 5882 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5883 break; 5884 } 5885 case KVM_SET_CPUID2: { 5886 struct kvm_cpuid2 __user *cpuid_arg = argp; 5887 struct kvm_cpuid2 cpuid; 5888 5889 r = -EFAULT; 5890 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5891 goto out; 5892 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5893 cpuid_arg->entries); 5894 break; 5895 } 5896 case KVM_GET_CPUID2: { 5897 struct kvm_cpuid2 __user *cpuid_arg = argp; 5898 struct kvm_cpuid2 cpuid; 5899 5900 r = -EFAULT; 5901 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5902 goto out; 5903 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5904 cpuid_arg->entries); 5905 if (r) 5906 goto out; 5907 r = -EFAULT; 5908 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5909 goto out; 5910 r = 0; 5911 break; 5912 } 5913 case KVM_GET_MSRS: { 5914 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5915 r = msr_io(vcpu, argp, do_get_msr, 1); 5916 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5917 break; 5918 } 5919 case KVM_SET_MSRS: { 5920 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5921 r = msr_io(vcpu, argp, do_set_msr, 0); 5922 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5923 break; 5924 } 5925 case KVM_TPR_ACCESS_REPORTING: { 5926 struct kvm_tpr_access_ctl tac; 5927 5928 r = -EFAULT; 5929 if (copy_from_user(&tac, argp, sizeof(tac))) 5930 goto out; 5931 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5932 if (r) 5933 goto out; 5934 r = -EFAULT; 5935 if (copy_to_user(argp, &tac, sizeof(tac))) 5936 goto out; 5937 r = 0; 5938 break; 5939 }; 5940 case KVM_SET_VAPIC_ADDR: { 5941 struct kvm_vapic_addr va; 5942 int idx; 5943 5944 r = -EINVAL; 5945 if (!lapic_in_kernel(vcpu)) 5946 goto out; 5947 r = -EFAULT; 5948 if (copy_from_user(&va, argp, sizeof(va))) 5949 goto out; 5950 idx = srcu_read_lock(&vcpu->kvm->srcu); 5951 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5952 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5953 break; 5954 } 5955 case KVM_X86_SETUP_MCE: { 5956 u64 mcg_cap; 5957 5958 r = -EFAULT; 5959 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5960 goto out; 5961 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5962 break; 5963 } 5964 case KVM_X86_SET_MCE: { 5965 struct kvm_x86_mce mce; 5966 5967 r = -EFAULT; 5968 if (copy_from_user(&mce, argp, sizeof(mce))) 5969 goto out; 5970 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5971 break; 5972 } 5973 case KVM_GET_VCPU_EVENTS: { 5974 struct kvm_vcpu_events events; 5975 5976 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5977 5978 r = -EFAULT; 5979 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5980 break; 5981 r = 0; 5982 break; 5983 } 5984 case KVM_SET_VCPU_EVENTS: { 5985 struct kvm_vcpu_events events; 5986 5987 r = -EFAULT; 5988 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5989 break; 5990 5991 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5992 break; 5993 } 5994 case KVM_GET_DEBUGREGS: { 5995 struct kvm_debugregs dbgregs; 5996 5997 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5998 5999 r = -EFAULT; 6000 if (copy_to_user(argp, &dbgregs, 6001 sizeof(struct kvm_debugregs))) 6002 break; 6003 r = 0; 6004 break; 6005 } 6006 case KVM_SET_DEBUGREGS: { 6007 struct kvm_debugregs dbgregs; 6008 6009 r = -EFAULT; 6010 if (copy_from_user(&dbgregs, argp, 6011 sizeof(struct kvm_debugregs))) 6012 break; 6013 6014 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6015 break; 6016 } 6017 case KVM_GET_XSAVE: { 6018 r = -EINVAL; 6019 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6020 break; 6021 6022 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 6023 r = -ENOMEM; 6024 if (!u.xsave) 6025 break; 6026 6027 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6028 6029 r = -EFAULT; 6030 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6031 break; 6032 r = 0; 6033 break; 6034 } 6035 case KVM_SET_XSAVE: { 6036 int size = vcpu->arch.guest_fpu.uabi_size; 6037 6038 u.xsave = memdup_user(argp, size); 6039 if (IS_ERR(u.xsave)) { 6040 r = PTR_ERR(u.xsave); 6041 goto out_nofree; 6042 } 6043 6044 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6045 break; 6046 } 6047 6048 case KVM_GET_XSAVE2: { 6049 int size = vcpu->arch.guest_fpu.uabi_size; 6050 6051 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 6052 r = -ENOMEM; 6053 if (!u.xsave) 6054 break; 6055 6056 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6057 6058 r = -EFAULT; 6059 if (copy_to_user(argp, u.xsave, size)) 6060 break; 6061 6062 r = 0; 6063 break; 6064 } 6065 6066 case KVM_GET_XCRS: { 6067 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 6068 r = -ENOMEM; 6069 if (!u.xcrs) 6070 break; 6071 6072 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6073 6074 r = -EFAULT; 6075 if (copy_to_user(argp, u.xcrs, 6076 sizeof(struct kvm_xcrs))) 6077 break; 6078 r = 0; 6079 break; 6080 } 6081 case KVM_SET_XCRS: { 6082 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6083 if (IS_ERR(u.xcrs)) { 6084 r = PTR_ERR(u.xcrs); 6085 goto out_nofree; 6086 } 6087 6088 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6089 break; 6090 } 6091 case KVM_SET_TSC_KHZ: { 6092 u32 user_tsc_khz; 6093 6094 r = -EINVAL; 6095 user_tsc_khz = (u32)arg; 6096 6097 if (kvm_caps.has_tsc_control && 6098 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6099 goto out; 6100 6101 if (user_tsc_khz == 0) 6102 user_tsc_khz = tsc_khz; 6103 6104 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6105 r = 0; 6106 6107 goto out; 6108 } 6109 case KVM_GET_TSC_KHZ: { 6110 r = vcpu->arch.virtual_tsc_khz; 6111 goto out; 6112 } 6113 case KVM_KVMCLOCK_CTRL: { 6114 r = kvm_set_guest_paused(vcpu); 6115 goto out; 6116 } 6117 case KVM_ENABLE_CAP: { 6118 struct kvm_enable_cap cap; 6119 6120 r = -EFAULT; 6121 if (copy_from_user(&cap, argp, sizeof(cap))) 6122 goto out; 6123 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6124 break; 6125 } 6126 case KVM_GET_NESTED_STATE: { 6127 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6128 u32 user_data_size; 6129 6130 r = -EINVAL; 6131 if (!kvm_x86_ops.nested_ops->get_state) 6132 break; 6133 6134 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6135 r = -EFAULT; 6136 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6137 break; 6138 6139 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6140 user_data_size); 6141 if (r < 0) 6142 break; 6143 6144 if (r > user_data_size) { 6145 if (put_user(r, &user_kvm_nested_state->size)) 6146 r = -EFAULT; 6147 else 6148 r = -E2BIG; 6149 break; 6150 } 6151 6152 r = 0; 6153 break; 6154 } 6155 case KVM_SET_NESTED_STATE: { 6156 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6157 struct kvm_nested_state kvm_state; 6158 int idx; 6159 6160 r = -EINVAL; 6161 if (!kvm_x86_ops.nested_ops->set_state) 6162 break; 6163 6164 r = -EFAULT; 6165 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6166 break; 6167 6168 r = -EINVAL; 6169 if (kvm_state.size < sizeof(kvm_state)) 6170 break; 6171 6172 if (kvm_state.flags & 6173 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6174 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6175 | KVM_STATE_NESTED_GIF_SET)) 6176 break; 6177 6178 /* nested_run_pending implies guest_mode. */ 6179 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6180 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6181 break; 6182 6183 idx = srcu_read_lock(&vcpu->kvm->srcu); 6184 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6185 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6186 break; 6187 } 6188 #ifdef CONFIG_KVM_HYPERV 6189 case KVM_GET_SUPPORTED_HV_CPUID: 6190 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6191 break; 6192 #endif 6193 #ifdef CONFIG_KVM_XEN 6194 case KVM_XEN_VCPU_GET_ATTR: { 6195 struct kvm_xen_vcpu_attr xva; 6196 6197 r = -EFAULT; 6198 if (copy_from_user(&xva, argp, sizeof(xva))) 6199 goto out; 6200 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6201 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6202 r = -EFAULT; 6203 break; 6204 } 6205 case KVM_XEN_VCPU_SET_ATTR: { 6206 struct kvm_xen_vcpu_attr xva; 6207 6208 r = -EFAULT; 6209 if (copy_from_user(&xva, argp, sizeof(xva))) 6210 goto out; 6211 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6212 break; 6213 } 6214 #endif 6215 case KVM_GET_SREGS2: { 6216 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6217 r = -ENOMEM; 6218 if (!u.sregs2) 6219 goto out; 6220 __get_sregs2(vcpu, u.sregs2); 6221 r = -EFAULT; 6222 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6223 goto out; 6224 r = 0; 6225 break; 6226 } 6227 case KVM_SET_SREGS2: { 6228 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6229 if (IS_ERR(u.sregs2)) { 6230 r = PTR_ERR(u.sregs2); 6231 u.sregs2 = NULL; 6232 goto out; 6233 } 6234 r = __set_sregs2(vcpu, u.sregs2); 6235 break; 6236 } 6237 case KVM_HAS_DEVICE_ATTR: 6238 case KVM_GET_DEVICE_ATTR: 6239 case KVM_SET_DEVICE_ATTR: 6240 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6241 break; 6242 default: 6243 r = -EINVAL; 6244 } 6245 out: 6246 kfree(u.buffer); 6247 out_nofree: 6248 vcpu_put(vcpu); 6249 return r; 6250 } 6251 6252 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6253 { 6254 return VM_FAULT_SIGBUS; 6255 } 6256 6257 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6258 { 6259 int ret; 6260 6261 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6262 return -EINVAL; 6263 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6264 return ret; 6265 } 6266 6267 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6268 u64 ident_addr) 6269 { 6270 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6271 } 6272 6273 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6274 unsigned long kvm_nr_mmu_pages) 6275 { 6276 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6277 return -EINVAL; 6278 6279 mutex_lock(&kvm->slots_lock); 6280 6281 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6282 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6283 6284 mutex_unlock(&kvm->slots_lock); 6285 return 0; 6286 } 6287 6288 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6289 { 6290 struct kvm_pic *pic = kvm->arch.vpic; 6291 int r; 6292 6293 r = 0; 6294 switch (chip->chip_id) { 6295 case KVM_IRQCHIP_PIC_MASTER: 6296 memcpy(&chip->chip.pic, &pic->pics[0], 6297 sizeof(struct kvm_pic_state)); 6298 break; 6299 case KVM_IRQCHIP_PIC_SLAVE: 6300 memcpy(&chip->chip.pic, &pic->pics[1], 6301 sizeof(struct kvm_pic_state)); 6302 break; 6303 case KVM_IRQCHIP_IOAPIC: 6304 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6305 break; 6306 default: 6307 r = -EINVAL; 6308 break; 6309 } 6310 return r; 6311 } 6312 6313 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6314 { 6315 struct kvm_pic *pic = kvm->arch.vpic; 6316 int r; 6317 6318 r = 0; 6319 switch (chip->chip_id) { 6320 case KVM_IRQCHIP_PIC_MASTER: 6321 spin_lock(&pic->lock); 6322 memcpy(&pic->pics[0], &chip->chip.pic, 6323 sizeof(struct kvm_pic_state)); 6324 spin_unlock(&pic->lock); 6325 break; 6326 case KVM_IRQCHIP_PIC_SLAVE: 6327 spin_lock(&pic->lock); 6328 memcpy(&pic->pics[1], &chip->chip.pic, 6329 sizeof(struct kvm_pic_state)); 6330 spin_unlock(&pic->lock); 6331 break; 6332 case KVM_IRQCHIP_IOAPIC: 6333 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6334 break; 6335 default: 6336 r = -EINVAL; 6337 break; 6338 } 6339 kvm_pic_update_irq(pic); 6340 return r; 6341 } 6342 6343 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6344 { 6345 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6346 6347 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6348 6349 mutex_lock(&kps->lock); 6350 memcpy(ps, &kps->channels, sizeof(*ps)); 6351 mutex_unlock(&kps->lock); 6352 return 0; 6353 } 6354 6355 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6356 { 6357 int i; 6358 struct kvm_pit *pit = kvm->arch.vpit; 6359 6360 mutex_lock(&pit->pit_state.lock); 6361 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6362 for (i = 0; i < 3; i++) 6363 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6364 mutex_unlock(&pit->pit_state.lock); 6365 return 0; 6366 } 6367 6368 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6369 { 6370 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6371 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6372 sizeof(ps->channels)); 6373 ps->flags = kvm->arch.vpit->pit_state.flags; 6374 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6375 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6376 return 0; 6377 } 6378 6379 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6380 { 6381 int start = 0; 6382 int i; 6383 u32 prev_legacy, cur_legacy; 6384 struct kvm_pit *pit = kvm->arch.vpit; 6385 6386 mutex_lock(&pit->pit_state.lock); 6387 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6388 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6389 if (!prev_legacy && cur_legacy) 6390 start = 1; 6391 memcpy(&pit->pit_state.channels, &ps->channels, 6392 sizeof(pit->pit_state.channels)); 6393 pit->pit_state.flags = ps->flags; 6394 for (i = 0; i < 3; i++) 6395 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6396 start && i == 0); 6397 mutex_unlock(&pit->pit_state.lock); 6398 return 0; 6399 } 6400 6401 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6402 struct kvm_reinject_control *control) 6403 { 6404 struct kvm_pit *pit = kvm->arch.vpit; 6405 6406 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6407 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6408 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6409 */ 6410 mutex_lock(&pit->pit_state.lock); 6411 kvm_pit_set_reinject(pit, control->pit_reinject); 6412 mutex_unlock(&pit->pit_state.lock); 6413 6414 return 0; 6415 } 6416 6417 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6418 { 6419 6420 /* 6421 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6422 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6423 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6424 * VM-Exit. 6425 */ 6426 struct kvm_vcpu *vcpu; 6427 unsigned long i; 6428 6429 if (!kvm_x86_ops.cpu_dirty_log_size) 6430 return; 6431 6432 kvm_for_each_vcpu(i, vcpu, kvm) 6433 kvm_vcpu_kick(vcpu); 6434 } 6435 6436 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6437 bool line_status) 6438 { 6439 if (!irqchip_in_kernel(kvm)) 6440 return -ENXIO; 6441 6442 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6443 irq_event->irq, irq_event->level, 6444 line_status); 6445 return 0; 6446 } 6447 6448 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6449 struct kvm_enable_cap *cap) 6450 { 6451 int r; 6452 6453 if (cap->flags) 6454 return -EINVAL; 6455 6456 switch (cap->cap) { 6457 case KVM_CAP_DISABLE_QUIRKS2: 6458 r = -EINVAL; 6459 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6460 break; 6461 fallthrough; 6462 case KVM_CAP_DISABLE_QUIRKS: 6463 kvm->arch.disabled_quirks = cap->args[0]; 6464 r = 0; 6465 break; 6466 case KVM_CAP_SPLIT_IRQCHIP: { 6467 mutex_lock(&kvm->lock); 6468 r = -EINVAL; 6469 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6470 goto split_irqchip_unlock; 6471 r = -EEXIST; 6472 if (irqchip_in_kernel(kvm)) 6473 goto split_irqchip_unlock; 6474 if (kvm->created_vcpus) 6475 goto split_irqchip_unlock; 6476 r = kvm_setup_empty_irq_routing(kvm); 6477 if (r) 6478 goto split_irqchip_unlock; 6479 /* Pairs with irqchip_in_kernel. */ 6480 smp_wmb(); 6481 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6482 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6483 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6484 r = 0; 6485 split_irqchip_unlock: 6486 mutex_unlock(&kvm->lock); 6487 break; 6488 } 6489 case KVM_CAP_X2APIC_API: 6490 r = -EINVAL; 6491 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6492 break; 6493 6494 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6495 kvm->arch.x2apic_format = true; 6496 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6497 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6498 6499 r = 0; 6500 break; 6501 case KVM_CAP_X86_DISABLE_EXITS: 6502 r = -EINVAL; 6503 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6504 break; 6505 6506 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6507 kvm->arch.pause_in_guest = true; 6508 6509 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6510 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6511 6512 if (!mitigate_smt_rsb) { 6513 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6514 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6515 pr_warn_once(SMT_RSB_MSG); 6516 6517 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6518 kvm_can_mwait_in_guest()) 6519 kvm->arch.mwait_in_guest = true; 6520 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6521 kvm->arch.hlt_in_guest = true; 6522 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6523 kvm->arch.cstate_in_guest = true; 6524 } 6525 6526 r = 0; 6527 break; 6528 case KVM_CAP_MSR_PLATFORM_INFO: 6529 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6530 r = 0; 6531 break; 6532 case KVM_CAP_EXCEPTION_PAYLOAD: 6533 kvm->arch.exception_payload_enabled = cap->args[0]; 6534 r = 0; 6535 break; 6536 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6537 kvm->arch.triple_fault_event = cap->args[0]; 6538 r = 0; 6539 break; 6540 case KVM_CAP_X86_USER_SPACE_MSR: 6541 r = -EINVAL; 6542 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6543 break; 6544 kvm->arch.user_space_msr_mask = cap->args[0]; 6545 r = 0; 6546 break; 6547 case KVM_CAP_X86_BUS_LOCK_EXIT: 6548 r = -EINVAL; 6549 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6550 break; 6551 6552 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6553 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6554 break; 6555 6556 if (kvm_caps.has_bus_lock_exit && 6557 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6558 kvm->arch.bus_lock_detection_enabled = true; 6559 r = 0; 6560 break; 6561 #ifdef CONFIG_X86_SGX_KVM 6562 case KVM_CAP_SGX_ATTRIBUTE: { 6563 unsigned long allowed_attributes = 0; 6564 6565 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6566 if (r) 6567 break; 6568 6569 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6570 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6571 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6572 kvm->arch.sgx_provisioning_allowed = true; 6573 else 6574 r = -EINVAL; 6575 break; 6576 } 6577 #endif 6578 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6579 r = -EINVAL; 6580 if (!kvm_x86_ops.vm_copy_enc_context_from) 6581 break; 6582 6583 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6584 break; 6585 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6586 r = -EINVAL; 6587 if (!kvm_x86_ops.vm_move_enc_context_from) 6588 break; 6589 6590 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6591 break; 6592 case KVM_CAP_EXIT_HYPERCALL: 6593 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6594 r = -EINVAL; 6595 break; 6596 } 6597 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6598 r = 0; 6599 break; 6600 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6601 r = -EINVAL; 6602 if (cap->args[0] & ~1) 6603 break; 6604 kvm->arch.exit_on_emulation_error = cap->args[0]; 6605 r = 0; 6606 break; 6607 case KVM_CAP_PMU_CAPABILITY: 6608 r = -EINVAL; 6609 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6610 break; 6611 6612 mutex_lock(&kvm->lock); 6613 if (!kvm->created_vcpus) { 6614 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6615 r = 0; 6616 } 6617 mutex_unlock(&kvm->lock); 6618 break; 6619 case KVM_CAP_MAX_VCPU_ID: 6620 r = -EINVAL; 6621 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6622 break; 6623 6624 mutex_lock(&kvm->lock); 6625 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6626 r = 0; 6627 } else if (!kvm->arch.max_vcpu_ids) { 6628 kvm->arch.max_vcpu_ids = cap->args[0]; 6629 r = 0; 6630 } 6631 mutex_unlock(&kvm->lock); 6632 break; 6633 case KVM_CAP_X86_NOTIFY_VMEXIT: 6634 r = -EINVAL; 6635 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6636 break; 6637 if (!kvm_caps.has_notify_vmexit) 6638 break; 6639 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6640 break; 6641 mutex_lock(&kvm->lock); 6642 if (!kvm->created_vcpus) { 6643 kvm->arch.notify_window = cap->args[0] >> 32; 6644 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6645 r = 0; 6646 } 6647 mutex_unlock(&kvm->lock); 6648 break; 6649 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6650 r = -EINVAL; 6651 6652 /* 6653 * Since the risk of disabling NX hugepages is a guest crashing 6654 * the system, ensure the userspace process has permission to 6655 * reboot the system. 6656 * 6657 * Note that unlike the reboot() syscall, the process must have 6658 * this capability in the root namespace because exposing 6659 * /dev/kvm into a container does not limit the scope of the 6660 * iTLB multihit bug to that container. In other words, 6661 * this must use capable(), not ns_capable(). 6662 */ 6663 if (!capable(CAP_SYS_BOOT)) { 6664 r = -EPERM; 6665 break; 6666 } 6667 6668 if (cap->args[0]) 6669 break; 6670 6671 mutex_lock(&kvm->lock); 6672 if (!kvm->created_vcpus) { 6673 kvm->arch.disable_nx_huge_pages = true; 6674 r = 0; 6675 } 6676 mutex_unlock(&kvm->lock); 6677 break; 6678 default: 6679 r = -EINVAL; 6680 break; 6681 } 6682 return r; 6683 } 6684 6685 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6686 { 6687 struct kvm_x86_msr_filter *msr_filter; 6688 6689 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6690 if (!msr_filter) 6691 return NULL; 6692 6693 msr_filter->default_allow = default_allow; 6694 return msr_filter; 6695 } 6696 6697 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6698 { 6699 u32 i; 6700 6701 if (!msr_filter) 6702 return; 6703 6704 for (i = 0; i < msr_filter->count; i++) 6705 kfree(msr_filter->ranges[i].bitmap); 6706 6707 kfree(msr_filter); 6708 } 6709 6710 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6711 struct kvm_msr_filter_range *user_range) 6712 { 6713 unsigned long *bitmap; 6714 size_t bitmap_size; 6715 6716 if (!user_range->nmsrs) 6717 return 0; 6718 6719 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6720 return -EINVAL; 6721 6722 if (!user_range->flags) 6723 return -EINVAL; 6724 6725 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6726 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6727 return -EINVAL; 6728 6729 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6730 if (IS_ERR(bitmap)) 6731 return PTR_ERR(bitmap); 6732 6733 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6734 .flags = user_range->flags, 6735 .base = user_range->base, 6736 .nmsrs = user_range->nmsrs, 6737 .bitmap = bitmap, 6738 }; 6739 6740 msr_filter->count++; 6741 return 0; 6742 } 6743 6744 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6745 struct kvm_msr_filter *filter) 6746 { 6747 struct kvm_x86_msr_filter *new_filter, *old_filter; 6748 bool default_allow; 6749 bool empty = true; 6750 int r; 6751 u32 i; 6752 6753 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6754 return -EINVAL; 6755 6756 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6757 empty &= !filter->ranges[i].nmsrs; 6758 6759 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6760 if (empty && !default_allow) 6761 return -EINVAL; 6762 6763 new_filter = kvm_alloc_msr_filter(default_allow); 6764 if (!new_filter) 6765 return -ENOMEM; 6766 6767 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6768 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6769 if (r) { 6770 kvm_free_msr_filter(new_filter); 6771 return r; 6772 } 6773 } 6774 6775 mutex_lock(&kvm->lock); 6776 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6777 mutex_is_locked(&kvm->lock)); 6778 mutex_unlock(&kvm->lock); 6779 synchronize_srcu(&kvm->srcu); 6780 6781 kvm_free_msr_filter(old_filter); 6782 6783 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6784 6785 return 0; 6786 } 6787 6788 #ifdef CONFIG_KVM_COMPAT 6789 /* for KVM_X86_SET_MSR_FILTER */ 6790 struct kvm_msr_filter_range_compat { 6791 __u32 flags; 6792 __u32 nmsrs; 6793 __u32 base; 6794 __u32 bitmap; 6795 }; 6796 6797 struct kvm_msr_filter_compat { 6798 __u32 flags; 6799 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6800 }; 6801 6802 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6803 6804 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6805 unsigned long arg) 6806 { 6807 void __user *argp = (void __user *)arg; 6808 struct kvm *kvm = filp->private_data; 6809 long r = -ENOTTY; 6810 6811 switch (ioctl) { 6812 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6813 struct kvm_msr_filter __user *user_msr_filter = argp; 6814 struct kvm_msr_filter_compat filter_compat; 6815 struct kvm_msr_filter filter; 6816 int i; 6817 6818 if (copy_from_user(&filter_compat, user_msr_filter, 6819 sizeof(filter_compat))) 6820 return -EFAULT; 6821 6822 filter.flags = filter_compat.flags; 6823 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6824 struct kvm_msr_filter_range_compat *cr; 6825 6826 cr = &filter_compat.ranges[i]; 6827 filter.ranges[i] = (struct kvm_msr_filter_range) { 6828 .flags = cr->flags, 6829 .nmsrs = cr->nmsrs, 6830 .base = cr->base, 6831 .bitmap = (__u8 *)(ulong)cr->bitmap, 6832 }; 6833 } 6834 6835 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6836 break; 6837 } 6838 } 6839 6840 return r; 6841 } 6842 #endif 6843 6844 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6845 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6846 { 6847 struct kvm_vcpu *vcpu; 6848 unsigned long i; 6849 int ret = 0; 6850 6851 mutex_lock(&kvm->lock); 6852 kvm_for_each_vcpu(i, vcpu, kvm) { 6853 if (!vcpu->arch.pv_time.active) 6854 continue; 6855 6856 ret = kvm_set_guest_paused(vcpu); 6857 if (ret) { 6858 kvm_err("Failed to pause guest VCPU%d: %d\n", 6859 vcpu->vcpu_id, ret); 6860 break; 6861 } 6862 } 6863 mutex_unlock(&kvm->lock); 6864 6865 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6866 } 6867 6868 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6869 { 6870 switch (state) { 6871 case PM_HIBERNATION_PREPARE: 6872 case PM_SUSPEND_PREPARE: 6873 return kvm_arch_suspend_notifier(kvm); 6874 } 6875 6876 return NOTIFY_DONE; 6877 } 6878 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6879 6880 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6881 { 6882 struct kvm_clock_data data = { 0 }; 6883 6884 get_kvmclock(kvm, &data); 6885 if (copy_to_user(argp, &data, sizeof(data))) 6886 return -EFAULT; 6887 6888 return 0; 6889 } 6890 6891 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6892 { 6893 struct kvm_arch *ka = &kvm->arch; 6894 struct kvm_clock_data data; 6895 u64 now_raw_ns; 6896 6897 if (copy_from_user(&data, argp, sizeof(data))) 6898 return -EFAULT; 6899 6900 /* 6901 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6902 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6903 */ 6904 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6905 return -EINVAL; 6906 6907 kvm_hv_request_tsc_page_update(kvm); 6908 kvm_start_pvclock_update(kvm); 6909 pvclock_update_vm_gtod_copy(kvm); 6910 6911 /* 6912 * This pairs with kvm_guest_time_update(): when masterclock is 6913 * in use, we use master_kernel_ns + kvmclock_offset to set 6914 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6915 * is slightly ahead) here we risk going negative on unsigned 6916 * 'system_time' when 'data.clock' is very small. 6917 */ 6918 if (data.flags & KVM_CLOCK_REALTIME) { 6919 u64 now_real_ns = ktime_get_real_ns(); 6920 6921 /* 6922 * Avoid stepping the kvmclock backwards. 6923 */ 6924 if (now_real_ns > data.realtime) 6925 data.clock += now_real_ns - data.realtime; 6926 } 6927 6928 if (ka->use_master_clock) 6929 now_raw_ns = ka->master_kernel_ns; 6930 else 6931 now_raw_ns = get_kvmclock_base_ns(); 6932 ka->kvmclock_offset = data.clock - now_raw_ns; 6933 kvm_end_pvclock_update(kvm); 6934 return 0; 6935 } 6936 6937 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6938 { 6939 struct kvm *kvm = filp->private_data; 6940 void __user *argp = (void __user *)arg; 6941 int r = -ENOTTY; 6942 /* 6943 * This union makes it completely explicit to gcc-3.x 6944 * that these two variables' stack usage should be 6945 * combined, not added together. 6946 */ 6947 union { 6948 struct kvm_pit_state ps; 6949 struct kvm_pit_state2 ps2; 6950 struct kvm_pit_config pit_config; 6951 } u; 6952 6953 switch (ioctl) { 6954 case KVM_SET_TSS_ADDR: 6955 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6956 break; 6957 case KVM_SET_IDENTITY_MAP_ADDR: { 6958 u64 ident_addr; 6959 6960 mutex_lock(&kvm->lock); 6961 r = -EINVAL; 6962 if (kvm->created_vcpus) 6963 goto set_identity_unlock; 6964 r = -EFAULT; 6965 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6966 goto set_identity_unlock; 6967 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6968 set_identity_unlock: 6969 mutex_unlock(&kvm->lock); 6970 break; 6971 } 6972 case KVM_SET_NR_MMU_PAGES: 6973 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6974 break; 6975 case KVM_CREATE_IRQCHIP: { 6976 mutex_lock(&kvm->lock); 6977 6978 r = -EEXIST; 6979 if (irqchip_in_kernel(kvm)) 6980 goto create_irqchip_unlock; 6981 6982 r = -EINVAL; 6983 if (kvm->created_vcpus) 6984 goto create_irqchip_unlock; 6985 6986 r = kvm_pic_init(kvm); 6987 if (r) 6988 goto create_irqchip_unlock; 6989 6990 r = kvm_ioapic_init(kvm); 6991 if (r) { 6992 kvm_pic_destroy(kvm); 6993 goto create_irqchip_unlock; 6994 } 6995 6996 r = kvm_setup_default_irq_routing(kvm); 6997 if (r) { 6998 kvm_ioapic_destroy(kvm); 6999 kvm_pic_destroy(kvm); 7000 goto create_irqchip_unlock; 7001 } 7002 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 7003 smp_wmb(); 7004 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7005 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7006 create_irqchip_unlock: 7007 mutex_unlock(&kvm->lock); 7008 break; 7009 } 7010 case KVM_CREATE_PIT: 7011 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7012 goto create_pit; 7013 case KVM_CREATE_PIT2: 7014 r = -EFAULT; 7015 if (copy_from_user(&u.pit_config, argp, 7016 sizeof(struct kvm_pit_config))) 7017 goto out; 7018 create_pit: 7019 mutex_lock(&kvm->lock); 7020 r = -EEXIST; 7021 if (kvm->arch.vpit) 7022 goto create_pit_unlock; 7023 r = -ENOENT; 7024 if (!pic_in_kernel(kvm)) 7025 goto create_pit_unlock; 7026 r = -ENOMEM; 7027 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7028 if (kvm->arch.vpit) 7029 r = 0; 7030 create_pit_unlock: 7031 mutex_unlock(&kvm->lock); 7032 break; 7033 case KVM_GET_IRQCHIP: { 7034 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7035 struct kvm_irqchip *chip; 7036 7037 chip = memdup_user(argp, sizeof(*chip)); 7038 if (IS_ERR(chip)) { 7039 r = PTR_ERR(chip); 7040 goto out; 7041 } 7042 7043 r = -ENXIO; 7044 if (!irqchip_kernel(kvm)) 7045 goto get_irqchip_out; 7046 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7047 if (r) 7048 goto get_irqchip_out; 7049 r = -EFAULT; 7050 if (copy_to_user(argp, chip, sizeof(*chip))) 7051 goto get_irqchip_out; 7052 r = 0; 7053 get_irqchip_out: 7054 kfree(chip); 7055 break; 7056 } 7057 case KVM_SET_IRQCHIP: { 7058 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7059 struct kvm_irqchip *chip; 7060 7061 chip = memdup_user(argp, sizeof(*chip)); 7062 if (IS_ERR(chip)) { 7063 r = PTR_ERR(chip); 7064 goto out; 7065 } 7066 7067 r = -ENXIO; 7068 if (!irqchip_kernel(kvm)) 7069 goto set_irqchip_out; 7070 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7071 set_irqchip_out: 7072 kfree(chip); 7073 break; 7074 } 7075 case KVM_GET_PIT: { 7076 r = -EFAULT; 7077 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7078 goto out; 7079 r = -ENXIO; 7080 if (!kvm->arch.vpit) 7081 goto out; 7082 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7083 if (r) 7084 goto out; 7085 r = -EFAULT; 7086 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7087 goto out; 7088 r = 0; 7089 break; 7090 } 7091 case KVM_SET_PIT: { 7092 r = -EFAULT; 7093 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7094 goto out; 7095 mutex_lock(&kvm->lock); 7096 r = -ENXIO; 7097 if (!kvm->arch.vpit) 7098 goto set_pit_out; 7099 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7100 set_pit_out: 7101 mutex_unlock(&kvm->lock); 7102 break; 7103 } 7104 case KVM_GET_PIT2: { 7105 r = -ENXIO; 7106 if (!kvm->arch.vpit) 7107 goto out; 7108 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7109 if (r) 7110 goto out; 7111 r = -EFAULT; 7112 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7113 goto out; 7114 r = 0; 7115 break; 7116 } 7117 case KVM_SET_PIT2: { 7118 r = -EFAULT; 7119 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7120 goto out; 7121 mutex_lock(&kvm->lock); 7122 r = -ENXIO; 7123 if (!kvm->arch.vpit) 7124 goto set_pit2_out; 7125 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7126 set_pit2_out: 7127 mutex_unlock(&kvm->lock); 7128 break; 7129 } 7130 case KVM_REINJECT_CONTROL: { 7131 struct kvm_reinject_control control; 7132 r = -EFAULT; 7133 if (copy_from_user(&control, argp, sizeof(control))) 7134 goto out; 7135 r = -ENXIO; 7136 if (!kvm->arch.vpit) 7137 goto out; 7138 r = kvm_vm_ioctl_reinject(kvm, &control); 7139 break; 7140 } 7141 case KVM_SET_BOOT_CPU_ID: 7142 r = 0; 7143 mutex_lock(&kvm->lock); 7144 if (kvm->created_vcpus) 7145 r = -EBUSY; 7146 else 7147 kvm->arch.bsp_vcpu_id = arg; 7148 mutex_unlock(&kvm->lock); 7149 break; 7150 #ifdef CONFIG_KVM_XEN 7151 case KVM_XEN_HVM_CONFIG: { 7152 struct kvm_xen_hvm_config xhc; 7153 r = -EFAULT; 7154 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7155 goto out; 7156 r = kvm_xen_hvm_config(kvm, &xhc); 7157 break; 7158 } 7159 case KVM_XEN_HVM_GET_ATTR: { 7160 struct kvm_xen_hvm_attr xha; 7161 7162 r = -EFAULT; 7163 if (copy_from_user(&xha, argp, sizeof(xha))) 7164 goto out; 7165 r = kvm_xen_hvm_get_attr(kvm, &xha); 7166 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7167 r = -EFAULT; 7168 break; 7169 } 7170 case KVM_XEN_HVM_SET_ATTR: { 7171 struct kvm_xen_hvm_attr xha; 7172 7173 r = -EFAULT; 7174 if (copy_from_user(&xha, argp, sizeof(xha))) 7175 goto out; 7176 r = kvm_xen_hvm_set_attr(kvm, &xha); 7177 break; 7178 } 7179 case KVM_XEN_HVM_EVTCHN_SEND: { 7180 struct kvm_irq_routing_xen_evtchn uxe; 7181 7182 r = -EFAULT; 7183 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7184 goto out; 7185 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7186 break; 7187 } 7188 #endif 7189 case KVM_SET_CLOCK: 7190 r = kvm_vm_ioctl_set_clock(kvm, argp); 7191 break; 7192 case KVM_GET_CLOCK: 7193 r = kvm_vm_ioctl_get_clock(kvm, argp); 7194 break; 7195 case KVM_SET_TSC_KHZ: { 7196 u32 user_tsc_khz; 7197 7198 r = -EINVAL; 7199 user_tsc_khz = (u32)arg; 7200 7201 if (kvm_caps.has_tsc_control && 7202 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7203 goto out; 7204 7205 if (user_tsc_khz == 0) 7206 user_tsc_khz = tsc_khz; 7207 7208 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7209 r = 0; 7210 7211 goto out; 7212 } 7213 case KVM_GET_TSC_KHZ: { 7214 r = READ_ONCE(kvm->arch.default_tsc_khz); 7215 goto out; 7216 } 7217 case KVM_MEMORY_ENCRYPT_OP: { 7218 r = -ENOTTY; 7219 if (!kvm_x86_ops.mem_enc_ioctl) 7220 goto out; 7221 7222 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7223 break; 7224 } 7225 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7226 struct kvm_enc_region region; 7227 7228 r = -EFAULT; 7229 if (copy_from_user(®ion, argp, sizeof(region))) 7230 goto out; 7231 7232 r = -ENOTTY; 7233 if (!kvm_x86_ops.mem_enc_register_region) 7234 goto out; 7235 7236 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7237 break; 7238 } 7239 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7240 struct kvm_enc_region region; 7241 7242 r = -EFAULT; 7243 if (copy_from_user(®ion, argp, sizeof(region))) 7244 goto out; 7245 7246 r = -ENOTTY; 7247 if (!kvm_x86_ops.mem_enc_unregister_region) 7248 goto out; 7249 7250 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7251 break; 7252 } 7253 #ifdef CONFIG_KVM_HYPERV 7254 case KVM_HYPERV_EVENTFD: { 7255 struct kvm_hyperv_eventfd hvevfd; 7256 7257 r = -EFAULT; 7258 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7259 goto out; 7260 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7261 break; 7262 } 7263 #endif 7264 case KVM_SET_PMU_EVENT_FILTER: 7265 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7266 break; 7267 case KVM_X86_SET_MSR_FILTER: { 7268 struct kvm_msr_filter __user *user_msr_filter = argp; 7269 struct kvm_msr_filter filter; 7270 7271 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7272 return -EFAULT; 7273 7274 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7275 break; 7276 } 7277 default: 7278 r = -ENOTTY; 7279 } 7280 out: 7281 return r; 7282 } 7283 7284 static void kvm_probe_feature_msr(u32 msr_index) 7285 { 7286 struct kvm_msr_entry msr = { 7287 .index = msr_index, 7288 }; 7289 7290 if (kvm_get_msr_feature(&msr)) 7291 return; 7292 7293 msr_based_features[num_msr_based_features++] = msr_index; 7294 } 7295 7296 static void kvm_probe_msr_to_save(u32 msr_index) 7297 { 7298 u32 dummy[2]; 7299 7300 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7301 return; 7302 7303 /* 7304 * Even MSRs that are valid in the host may not be exposed to guests in 7305 * some cases. 7306 */ 7307 switch (msr_index) { 7308 case MSR_IA32_BNDCFGS: 7309 if (!kvm_mpx_supported()) 7310 return; 7311 break; 7312 case MSR_TSC_AUX: 7313 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7314 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7315 return; 7316 break; 7317 case MSR_IA32_UMWAIT_CONTROL: 7318 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7319 return; 7320 break; 7321 case MSR_IA32_RTIT_CTL: 7322 case MSR_IA32_RTIT_STATUS: 7323 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7324 return; 7325 break; 7326 case MSR_IA32_RTIT_CR3_MATCH: 7327 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7328 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7329 return; 7330 break; 7331 case MSR_IA32_RTIT_OUTPUT_BASE: 7332 case MSR_IA32_RTIT_OUTPUT_MASK: 7333 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7334 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7335 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7336 return; 7337 break; 7338 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7339 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7340 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7341 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7342 return; 7343 break; 7344 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7345 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7346 kvm_pmu_cap.num_counters_gp) 7347 return; 7348 break; 7349 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7350 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7351 kvm_pmu_cap.num_counters_gp) 7352 return; 7353 break; 7354 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7355 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7356 kvm_pmu_cap.num_counters_fixed) 7357 return; 7358 break; 7359 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7360 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7361 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7362 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7363 return; 7364 break; 7365 case MSR_IA32_XFD: 7366 case MSR_IA32_XFD_ERR: 7367 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7368 return; 7369 break; 7370 case MSR_IA32_TSX_CTRL: 7371 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7372 return; 7373 break; 7374 default: 7375 break; 7376 } 7377 7378 msrs_to_save[num_msrs_to_save++] = msr_index; 7379 } 7380 7381 static void kvm_init_msr_lists(void) 7382 { 7383 unsigned i; 7384 7385 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7386 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7387 7388 num_msrs_to_save = 0; 7389 num_emulated_msrs = 0; 7390 num_msr_based_features = 0; 7391 7392 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7393 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7394 7395 if (enable_pmu) { 7396 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7397 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7398 } 7399 7400 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7401 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7402 continue; 7403 7404 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7405 } 7406 7407 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7408 kvm_probe_feature_msr(i); 7409 7410 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7411 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7412 } 7413 7414 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7415 const void *v) 7416 { 7417 int handled = 0; 7418 int n; 7419 7420 do { 7421 n = min(len, 8); 7422 if (!(lapic_in_kernel(vcpu) && 7423 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7424 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7425 break; 7426 handled += n; 7427 addr += n; 7428 len -= n; 7429 v += n; 7430 } while (len); 7431 7432 return handled; 7433 } 7434 7435 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7436 { 7437 int handled = 0; 7438 int n; 7439 7440 do { 7441 n = min(len, 8); 7442 if (!(lapic_in_kernel(vcpu) && 7443 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7444 addr, n, v)) 7445 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7446 break; 7447 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7448 handled += n; 7449 addr += n; 7450 len -= n; 7451 v += n; 7452 } while (len); 7453 7454 return handled; 7455 } 7456 7457 void kvm_set_segment(struct kvm_vcpu *vcpu, 7458 struct kvm_segment *var, int seg) 7459 { 7460 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7461 } 7462 7463 void kvm_get_segment(struct kvm_vcpu *vcpu, 7464 struct kvm_segment *var, int seg) 7465 { 7466 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7467 } 7468 7469 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7470 struct x86_exception *exception) 7471 { 7472 struct kvm_mmu *mmu = vcpu->arch.mmu; 7473 gpa_t t_gpa; 7474 7475 BUG_ON(!mmu_is_nested(vcpu)); 7476 7477 /* NPT walks are always user-walks */ 7478 access |= PFERR_USER_MASK; 7479 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7480 7481 return t_gpa; 7482 } 7483 7484 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7485 struct x86_exception *exception) 7486 { 7487 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7488 7489 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7490 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7491 } 7492 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7493 7494 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7495 struct x86_exception *exception) 7496 { 7497 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7498 7499 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7500 access |= PFERR_WRITE_MASK; 7501 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7502 } 7503 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7504 7505 /* uses this to access any guest's mapped memory without checking CPL */ 7506 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7507 struct x86_exception *exception) 7508 { 7509 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7510 7511 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7512 } 7513 7514 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7515 struct kvm_vcpu *vcpu, u64 access, 7516 struct x86_exception *exception) 7517 { 7518 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7519 void *data = val; 7520 int r = X86EMUL_CONTINUE; 7521 7522 while (bytes) { 7523 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7524 unsigned offset = addr & (PAGE_SIZE-1); 7525 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7526 int ret; 7527 7528 if (gpa == INVALID_GPA) 7529 return X86EMUL_PROPAGATE_FAULT; 7530 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7531 offset, toread); 7532 if (ret < 0) { 7533 r = X86EMUL_IO_NEEDED; 7534 goto out; 7535 } 7536 7537 bytes -= toread; 7538 data += toread; 7539 addr += toread; 7540 } 7541 out: 7542 return r; 7543 } 7544 7545 /* used for instruction fetching */ 7546 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7547 gva_t addr, void *val, unsigned int bytes, 7548 struct x86_exception *exception) 7549 { 7550 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7551 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7552 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7553 unsigned offset; 7554 int ret; 7555 7556 /* Inline kvm_read_guest_virt_helper for speed. */ 7557 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7558 exception); 7559 if (unlikely(gpa == INVALID_GPA)) 7560 return X86EMUL_PROPAGATE_FAULT; 7561 7562 offset = addr & (PAGE_SIZE-1); 7563 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7564 bytes = (unsigned)PAGE_SIZE - offset; 7565 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7566 offset, bytes); 7567 if (unlikely(ret < 0)) 7568 return X86EMUL_IO_NEEDED; 7569 7570 return X86EMUL_CONTINUE; 7571 } 7572 7573 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7574 gva_t addr, void *val, unsigned int bytes, 7575 struct x86_exception *exception) 7576 { 7577 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7578 7579 /* 7580 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7581 * is returned, but our callers are not ready for that and they blindly 7582 * call kvm_inject_page_fault. Ensure that they at least do not leak 7583 * uninitialized kernel stack memory into cr2 and error code. 7584 */ 7585 memset(exception, 0, sizeof(*exception)); 7586 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7587 exception); 7588 } 7589 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7590 7591 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7592 gva_t addr, void *val, unsigned int bytes, 7593 struct x86_exception *exception, bool system) 7594 { 7595 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7596 u64 access = 0; 7597 7598 if (system) 7599 access |= PFERR_IMPLICIT_ACCESS; 7600 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7601 access |= PFERR_USER_MASK; 7602 7603 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7604 } 7605 7606 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7607 struct kvm_vcpu *vcpu, u64 access, 7608 struct x86_exception *exception) 7609 { 7610 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7611 void *data = val; 7612 int r = X86EMUL_CONTINUE; 7613 7614 while (bytes) { 7615 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7616 unsigned offset = addr & (PAGE_SIZE-1); 7617 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7618 int ret; 7619 7620 if (gpa == INVALID_GPA) 7621 return X86EMUL_PROPAGATE_FAULT; 7622 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7623 if (ret < 0) { 7624 r = X86EMUL_IO_NEEDED; 7625 goto out; 7626 } 7627 7628 bytes -= towrite; 7629 data += towrite; 7630 addr += towrite; 7631 } 7632 out: 7633 return r; 7634 } 7635 7636 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7637 unsigned int bytes, struct x86_exception *exception, 7638 bool system) 7639 { 7640 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7641 u64 access = PFERR_WRITE_MASK; 7642 7643 if (system) 7644 access |= PFERR_IMPLICIT_ACCESS; 7645 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7646 access |= PFERR_USER_MASK; 7647 7648 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7649 access, exception); 7650 } 7651 7652 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7653 unsigned int bytes, struct x86_exception *exception) 7654 { 7655 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7656 vcpu->arch.l1tf_flush_l1d = true; 7657 7658 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7659 PFERR_WRITE_MASK, exception); 7660 } 7661 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7662 7663 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7664 void *insn, int insn_len) 7665 { 7666 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type, 7667 insn, insn_len); 7668 } 7669 7670 int handle_ud(struct kvm_vcpu *vcpu) 7671 { 7672 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7673 int fep_flags = READ_ONCE(force_emulation_prefix); 7674 int emul_type = EMULTYPE_TRAP_UD; 7675 char sig[5]; /* ud2; .ascii "kvm" */ 7676 struct x86_exception e; 7677 int r; 7678 7679 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7680 if (r != X86EMUL_CONTINUE) 7681 return 1; 7682 7683 if (fep_flags && 7684 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7685 sig, sizeof(sig), &e) == 0 && 7686 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7687 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7688 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7689 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7690 emul_type = EMULTYPE_TRAP_UD_FORCED; 7691 } 7692 7693 return kvm_emulate_instruction(vcpu, emul_type); 7694 } 7695 EXPORT_SYMBOL_GPL(handle_ud); 7696 7697 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7698 gpa_t gpa, bool write) 7699 { 7700 /* For APIC access vmexit */ 7701 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7702 return 1; 7703 7704 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7705 trace_vcpu_match_mmio(gva, gpa, write, true); 7706 return 1; 7707 } 7708 7709 return 0; 7710 } 7711 7712 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7713 gpa_t *gpa, struct x86_exception *exception, 7714 bool write) 7715 { 7716 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7717 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7718 | (write ? PFERR_WRITE_MASK : 0); 7719 7720 /* 7721 * currently PKRU is only applied to ept enabled guest so 7722 * there is no pkey in EPT page table for L1 guest or EPT 7723 * shadow page table for L2 guest. 7724 */ 7725 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7726 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7727 vcpu->arch.mmio_access, 0, access))) { 7728 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7729 (gva & (PAGE_SIZE - 1)); 7730 trace_vcpu_match_mmio(gva, *gpa, write, false); 7731 return 1; 7732 } 7733 7734 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7735 7736 if (*gpa == INVALID_GPA) 7737 return -1; 7738 7739 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7740 } 7741 7742 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7743 const void *val, int bytes) 7744 { 7745 int ret; 7746 7747 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7748 if (ret < 0) 7749 return 0; 7750 kvm_page_track_write(vcpu, gpa, val, bytes); 7751 return 1; 7752 } 7753 7754 struct read_write_emulator_ops { 7755 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7756 int bytes); 7757 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7758 void *val, int bytes); 7759 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7760 int bytes, void *val); 7761 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7762 void *val, int bytes); 7763 bool write; 7764 }; 7765 7766 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7767 { 7768 if (vcpu->mmio_read_completed) { 7769 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7770 vcpu->mmio_fragments[0].gpa, val); 7771 vcpu->mmio_read_completed = 0; 7772 return 1; 7773 } 7774 7775 return 0; 7776 } 7777 7778 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7779 void *val, int bytes) 7780 { 7781 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7782 } 7783 7784 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7785 void *val, int bytes) 7786 { 7787 return emulator_write_phys(vcpu, gpa, val, bytes); 7788 } 7789 7790 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7791 { 7792 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7793 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7794 } 7795 7796 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7797 void *val, int bytes) 7798 { 7799 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7800 return X86EMUL_IO_NEEDED; 7801 } 7802 7803 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7804 void *val, int bytes) 7805 { 7806 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7807 7808 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7809 return X86EMUL_CONTINUE; 7810 } 7811 7812 static const struct read_write_emulator_ops read_emultor = { 7813 .read_write_prepare = read_prepare, 7814 .read_write_emulate = read_emulate, 7815 .read_write_mmio = vcpu_mmio_read, 7816 .read_write_exit_mmio = read_exit_mmio, 7817 }; 7818 7819 static const struct read_write_emulator_ops write_emultor = { 7820 .read_write_emulate = write_emulate, 7821 .read_write_mmio = write_mmio, 7822 .read_write_exit_mmio = write_exit_mmio, 7823 .write = true, 7824 }; 7825 7826 static int emulator_read_write_onepage(unsigned long addr, void *val, 7827 unsigned int bytes, 7828 struct x86_exception *exception, 7829 struct kvm_vcpu *vcpu, 7830 const struct read_write_emulator_ops *ops) 7831 { 7832 gpa_t gpa; 7833 int handled, ret; 7834 bool write = ops->write; 7835 struct kvm_mmio_fragment *frag; 7836 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7837 7838 /* 7839 * If the exit was due to a NPF we may already have a GPA. 7840 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7841 * Note, this cannot be used on string operations since string 7842 * operation using rep will only have the initial GPA from the NPF 7843 * occurred. 7844 */ 7845 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7846 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7847 gpa = ctxt->gpa_val; 7848 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7849 } else { 7850 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7851 if (ret < 0) 7852 return X86EMUL_PROPAGATE_FAULT; 7853 } 7854 7855 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7856 return X86EMUL_CONTINUE; 7857 7858 /* 7859 * Is this MMIO handled locally? 7860 */ 7861 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7862 if (handled == bytes) 7863 return X86EMUL_CONTINUE; 7864 7865 gpa += handled; 7866 bytes -= handled; 7867 val += handled; 7868 7869 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7870 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7871 frag->gpa = gpa; 7872 frag->data = val; 7873 frag->len = bytes; 7874 return X86EMUL_CONTINUE; 7875 } 7876 7877 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7878 unsigned long addr, 7879 void *val, unsigned int bytes, 7880 struct x86_exception *exception, 7881 const struct read_write_emulator_ops *ops) 7882 { 7883 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7884 gpa_t gpa; 7885 int rc; 7886 7887 if (ops->read_write_prepare && 7888 ops->read_write_prepare(vcpu, val, bytes)) 7889 return X86EMUL_CONTINUE; 7890 7891 vcpu->mmio_nr_fragments = 0; 7892 7893 /* Crossing a page boundary? */ 7894 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7895 int now; 7896 7897 now = -addr & ~PAGE_MASK; 7898 rc = emulator_read_write_onepage(addr, val, now, exception, 7899 vcpu, ops); 7900 7901 if (rc != X86EMUL_CONTINUE) 7902 return rc; 7903 addr += now; 7904 if (ctxt->mode != X86EMUL_MODE_PROT64) 7905 addr = (u32)addr; 7906 val += now; 7907 bytes -= now; 7908 } 7909 7910 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7911 vcpu, ops); 7912 if (rc != X86EMUL_CONTINUE) 7913 return rc; 7914 7915 if (!vcpu->mmio_nr_fragments) 7916 return rc; 7917 7918 gpa = vcpu->mmio_fragments[0].gpa; 7919 7920 vcpu->mmio_needed = 1; 7921 vcpu->mmio_cur_fragment = 0; 7922 7923 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7924 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7925 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7926 vcpu->run->mmio.phys_addr = gpa; 7927 7928 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7929 } 7930 7931 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7932 unsigned long addr, 7933 void *val, 7934 unsigned int bytes, 7935 struct x86_exception *exception) 7936 { 7937 return emulator_read_write(ctxt, addr, val, bytes, 7938 exception, &read_emultor); 7939 } 7940 7941 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7942 unsigned long addr, 7943 const void *val, 7944 unsigned int bytes, 7945 struct x86_exception *exception) 7946 { 7947 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7948 exception, &write_emultor); 7949 } 7950 7951 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7952 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7953 7954 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7955 unsigned long addr, 7956 const void *old, 7957 const void *new, 7958 unsigned int bytes, 7959 struct x86_exception *exception) 7960 { 7961 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7962 u64 page_line_mask; 7963 unsigned long hva; 7964 gpa_t gpa; 7965 int r; 7966 7967 /* guests cmpxchg8b have to be emulated atomically */ 7968 if (bytes > 8 || (bytes & (bytes - 1))) 7969 goto emul_write; 7970 7971 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7972 7973 if (gpa == INVALID_GPA || 7974 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7975 goto emul_write; 7976 7977 /* 7978 * Emulate the atomic as a straight write to avoid #AC if SLD is 7979 * enabled in the host and the access splits a cache line. 7980 */ 7981 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7982 page_line_mask = ~(cache_line_size() - 1); 7983 else 7984 page_line_mask = PAGE_MASK; 7985 7986 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7987 goto emul_write; 7988 7989 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7990 if (kvm_is_error_hva(hva)) 7991 goto emul_write; 7992 7993 hva += offset_in_page(gpa); 7994 7995 switch (bytes) { 7996 case 1: 7997 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7998 break; 7999 case 2: 8000 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8001 break; 8002 case 4: 8003 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8004 break; 8005 case 8: 8006 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8007 break; 8008 default: 8009 BUG(); 8010 } 8011 8012 if (r < 0) 8013 return X86EMUL_UNHANDLEABLE; 8014 if (r) 8015 return X86EMUL_CMPXCHG_FAILED; 8016 8017 kvm_page_track_write(vcpu, gpa, new, bytes); 8018 8019 return X86EMUL_CONTINUE; 8020 8021 emul_write: 8022 pr_warn_once("emulating exchange as write\n"); 8023 8024 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8025 } 8026 8027 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8028 unsigned short port, void *data, 8029 unsigned int count, bool in) 8030 { 8031 unsigned i; 8032 int r; 8033 8034 WARN_ON_ONCE(vcpu->arch.pio.count); 8035 for (i = 0; i < count; i++) { 8036 if (in) 8037 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8038 else 8039 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8040 8041 if (r) { 8042 if (i == 0) 8043 goto userspace_io; 8044 8045 /* 8046 * Userspace must have unregistered the device while PIO 8047 * was running. Drop writes / read as 0. 8048 */ 8049 if (in) 8050 memset(data, 0, size * (count - i)); 8051 break; 8052 } 8053 8054 data += size; 8055 } 8056 return 1; 8057 8058 userspace_io: 8059 vcpu->arch.pio.port = port; 8060 vcpu->arch.pio.in = in; 8061 vcpu->arch.pio.count = count; 8062 vcpu->arch.pio.size = size; 8063 8064 if (in) 8065 memset(vcpu->arch.pio_data, 0, size * count); 8066 else 8067 memcpy(vcpu->arch.pio_data, data, size * count); 8068 8069 vcpu->run->exit_reason = KVM_EXIT_IO; 8070 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8071 vcpu->run->io.size = size; 8072 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8073 vcpu->run->io.count = count; 8074 vcpu->run->io.port = port; 8075 return 0; 8076 } 8077 8078 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8079 unsigned short port, void *val, unsigned int count) 8080 { 8081 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8082 if (r) 8083 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8084 8085 return r; 8086 } 8087 8088 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8089 { 8090 int size = vcpu->arch.pio.size; 8091 unsigned int count = vcpu->arch.pio.count; 8092 memcpy(val, vcpu->arch.pio_data, size * count); 8093 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8094 vcpu->arch.pio.count = 0; 8095 } 8096 8097 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8098 int size, unsigned short port, void *val, 8099 unsigned int count) 8100 { 8101 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8102 if (vcpu->arch.pio.count) { 8103 /* 8104 * Complete a previous iteration that required userspace I/O. 8105 * Note, @count isn't guaranteed to match pio.count as userspace 8106 * can modify ECX before rerunning the vCPU. Ignore any such 8107 * shenanigans as KVM doesn't support modifying the rep count, 8108 * and the emulator ensures @count doesn't overflow the buffer. 8109 */ 8110 complete_emulator_pio_in(vcpu, val); 8111 return 1; 8112 } 8113 8114 return emulator_pio_in(vcpu, size, port, val, count); 8115 } 8116 8117 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8118 unsigned short port, const void *val, 8119 unsigned int count) 8120 { 8121 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8122 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8123 } 8124 8125 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8126 int size, unsigned short port, 8127 const void *val, unsigned int count) 8128 { 8129 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8130 } 8131 8132 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8133 { 8134 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 8135 } 8136 8137 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8138 { 8139 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8140 } 8141 8142 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8143 { 8144 if (!need_emulate_wbinvd(vcpu)) 8145 return X86EMUL_CONTINUE; 8146 8147 if (static_call(kvm_x86_has_wbinvd_exit)()) { 8148 int cpu = get_cpu(); 8149 8150 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8151 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8152 wbinvd_ipi, NULL, 1); 8153 put_cpu(); 8154 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8155 } else 8156 wbinvd(); 8157 return X86EMUL_CONTINUE; 8158 } 8159 8160 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8161 { 8162 kvm_emulate_wbinvd_noskip(vcpu); 8163 return kvm_skip_emulated_instruction(vcpu); 8164 } 8165 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8166 8167 8168 8169 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8170 { 8171 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8172 } 8173 8174 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 8175 unsigned long *dest) 8176 { 8177 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 8178 } 8179 8180 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8181 unsigned long value) 8182 { 8183 8184 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8185 } 8186 8187 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8188 { 8189 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8190 } 8191 8192 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8193 { 8194 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8195 unsigned long value; 8196 8197 switch (cr) { 8198 case 0: 8199 value = kvm_read_cr0(vcpu); 8200 break; 8201 case 2: 8202 value = vcpu->arch.cr2; 8203 break; 8204 case 3: 8205 value = kvm_read_cr3(vcpu); 8206 break; 8207 case 4: 8208 value = kvm_read_cr4(vcpu); 8209 break; 8210 case 8: 8211 value = kvm_get_cr8(vcpu); 8212 break; 8213 default: 8214 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8215 return 0; 8216 } 8217 8218 return value; 8219 } 8220 8221 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8222 { 8223 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8224 int res = 0; 8225 8226 switch (cr) { 8227 case 0: 8228 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8229 break; 8230 case 2: 8231 vcpu->arch.cr2 = val; 8232 break; 8233 case 3: 8234 res = kvm_set_cr3(vcpu, val); 8235 break; 8236 case 4: 8237 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8238 break; 8239 case 8: 8240 res = kvm_set_cr8(vcpu, val); 8241 break; 8242 default: 8243 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8244 res = -1; 8245 } 8246 8247 return res; 8248 } 8249 8250 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8251 { 8252 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8253 } 8254 8255 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8256 { 8257 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8258 } 8259 8260 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8261 { 8262 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8263 } 8264 8265 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8266 { 8267 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8268 } 8269 8270 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8271 { 8272 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8273 } 8274 8275 static unsigned long emulator_get_cached_segment_base( 8276 struct x86_emulate_ctxt *ctxt, int seg) 8277 { 8278 return get_segment_base(emul_to_vcpu(ctxt), seg); 8279 } 8280 8281 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8282 struct desc_struct *desc, u32 *base3, 8283 int seg) 8284 { 8285 struct kvm_segment var; 8286 8287 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8288 *selector = var.selector; 8289 8290 if (var.unusable) { 8291 memset(desc, 0, sizeof(*desc)); 8292 if (base3) 8293 *base3 = 0; 8294 return false; 8295 } 8296 8297 if (var.g) 8298 var.limit >>= 12; 8299 set_desc_limit(desc, var.limit); 8300 set_desc_base(desc, (unsigned long)var.base); 8301 #ifdef CONFIG_X86_64 8302 if (base3) 8303 *base3 = var.base >> 32; 8304 #endif 8305 desc->type = var.type; 8306 desc->s = var.s; 8307 desc->dpl = var.dpl; 8308 desc->p = var.present; 8309 desc->avl = var.avl; 8310 desc->l = var.l; 8311 desc->d = var.db; 8312 desc->g = var.g; 8313 8314 return true; 8315 } 8316 8317 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8318 struct desc_struct *desc, u32 base3, 8319 int seg) 8320 { 8321 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8322 struct kvm_segment var; 8323 8324 var.selector = selector; 8325 var.base = get_desc_base(desc); 8326 #ifdef CONFIG_X86_64 8327 var.base |= ((u64)base3) << 32; 8328 #endif 8329 var.limit = get_desc_limit(desc); 8330 if (desc->g) 8331 var.limit = (var.limit << 12) | 0xfff; 8332 var.type = desc->type; 8333 var.dpl = desc->dpl; 8334 var.db = desc->d; 8335 var.s = desc->s; 8336 var.l = desc->l; 8337 var.g = desc->g; 8338 var.avl = desc->avl; 8339 var.present = desc->p; 8340 var.unusable = !var.present; 8341 var.padding = 0; 8342 8343 kvm_set_segment(vcpu, &var, seg); 8344 return; 8345 } 8346 8347 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8348 u32 msr_index, u64 *pdata) 8349 { 8350 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8351 int r; 8352 8353 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8354 if (r < 0) 8355 return X86EMUL_UNHANDLEABLE; 8356 8357 if (r) { 8358 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8359 complete_emulated_rdmsr, r)) 8360 return X86EMUL_IO_NEEDED; 8361 8362 trace_kvm_msr_read_ex(msr_index); 8363 return X86EMUL_PROPAGATE_FAULT; 8364 } 8365 8366 trace_kvm_msr_read(msr_index, *pdata); 8367 return X86EMUL_CONTINUE; 8368 } 8369 8370 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8371 u32 msr_index, u64 data) 8372 { 8373 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8374 int r; 8375 8376 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8377 if (r < 0) 8378 return X86EMUL_UNHANDLEABLE; 8379 8380 if (r) { 8381 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8382 complete_emulated_msr_access, r)) 8383 return X86EMUL_IO_NEEDED; 8384 8385 trace_kvm_msr_write_ex(msr_index, data); 8386 return X86EMUL_PROPAGATE_FAULT; 8387 } 8388 8389 trace_kvm_msr_write(msr_index, data); 8390 return X86EMUL_CONTINUE; 8391 } 8392 8393 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8394 u32 msr_index, u64 *pdata) 8395 { 8396 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8397 } 8398 8399 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8400 u32 pmc) 8401 { 8402 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8403 return 0; 8404 return -EINVAL; 8405 } 8406 8407 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8408 u32 pmc, u64 *pdata) 8409 { 8410 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8411 } 8412 8413 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8414 { 8415 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8416 } 8417 8418 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8419 struct x86_instruction_info *info, 8420 enum x86_intercept_stage stage) 8421 { 8422 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8423 &ctxt->exception); 8424 } 8425 8426 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8427 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8428 bool exact_only) 8429 { 8430 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8431 } 8432 8433 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8434 { 8435 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8436 } 8437 8438 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8439 { 8440 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8441 } 8442 8443 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8444 { 8445 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8446 } 8447 8448 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8449 { 8450 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8451 } 8452 8453 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8454 { 8455 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8456 } 8457 8458 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8459 { 8460 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8461 } 8462 8463 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8464 { 8465 return is_smm(emul_to_vcpu(ctxt)); 8466 } 8467 8468 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8469 { 8470 return is_guest_mode(emul_to_vcpu(ctxt)); 8471 } 8472 8473 #ifndef CONFIG_KVM_SMM 8474 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8475 { 8476 WARN_ON_ONCE(1); 8477 return X86EMUL_UNHANDLEABLE; 8478 } 8479 #endif 8480 8481 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8482 { 8483 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8484 } 8485 8486 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8487 { 8488 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8489 } 8490 8491 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8492 { 8493 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8494 8495 if (!kvm->vm_bugged) 8496 kvm_vm_bugged(kvm); 8497 } 8498 8499 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8500 gva_t addr, unsigned int flags) 8501 { 8502 if (!kvm_x86_ops.get_untagged_addr) 8503 return addr; 8504 8505 return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags); 8506 } 8507 8508 static const struct x86_emulate_ops emulate_ops = { 8509 .vm_bugged = emulator_vm_bugged, 8510 .read_gpr = emulator_read_gpr, 8511 .write_gpr = emulator_write_gpr, 8512 .read_std = emulator_read_std, 8513 .write_std = emulator_write_std, 8514 .fetch = kvm_fetch_guest_virt, 8515 .read_emulated = emulator_read_emulated, 8516 .write_emulated = emulator_write_emulated, 8517 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8518 .invlpg = emulator_invlpg, 8519 .pio_in_emulated = emulator_pio_in_emulated, 8520 .pio_out_emulated = emulator_pio_out_emulated, 8521 .get_segment = emulator_get_segment, 8522 .set_segment = emulator_set_segment, 8523 .get_cached_segment_base = emulator_get_cached_segment_base, 8524 .get_gdt = emulator_get_gdt, 8525 .get_idt = emulator_get_idt, 8526 .set_gdt = emulator_set_gdt, 8527 .set_idt = emulator_set_idt, 8528 .get_cr = emulator_get_cr, 8529 .set_cr = emulator_set_cr, 8530 .cpl = emulator_get_cpl, 8531 .get_dr = emulator_get_dr, 8532 .set_dr = emulator_set_dr, 8533 .set_msr_with_filter = emulator_set_msr_with_filter, 8534 .get_msr_with_filter = emulator_get_msr_with_filter, 8535 .get_msr = emulator_get_msr, 8536 .check_pmc = emulator_check_pmc, 8537 .read_pmc = emulator_read_pmc, 8538 .halt = emulator_halt, 8539 .wbinvd = emulator_wbinvd, 8540 .fix_hypercall = emulator_fix_hypercall, 8541 .intercept = emulator_intercept, 8542 .get_cpuid = emulator_get_cpuid, 8543 .guest_has_movbe = emulator_guest_has_movbe, 8544 .guest_has_fxsr = emulator_guest_has_fxsr, 8545 .guest_has_rdpid = emulator_guest_has_rdpid, 8546 .set_nmi_mask = emulator_set_nmi_mask, 8547 .is_smm = emulator_is_smm, 8548 .is_guest_mode = emulator_is_guest_mode, 8549 .leave_smm = emulator_leave_smm, 8550 .triple_fault = emulator_triple_fault, 8551 .set_xcr = emulator_set_xcr, 8552 .get_untagged_addr = emulator_get_untagged_addr, 8553 }; 8554 8555 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8556 { 8557 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8558 /* 8559 * an sti; sti; sequence only disable interrupts for the first 8560 * instruction. So, if the last instruction, be it emulated or 8561 * not, left the system with the INT_STI flag enabled, it 8562 * means that the last instruction is an sti. We should not 8563 * leave the flag on in this case. The same goes for mov ss 8564 */ 8565 if (int_shadow & mask) 8566 mask = 0; 8567 if (unlikely(int_shadow || mask)) { 8568 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8569 if (!mask) 8570 kvm_make_request(KVM_REQ_EVENT, vcpu); 8571 } 8572 } 8573 8574 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8575 { 8576 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8577 8578 if (ctxt->exception.vector == PF_VECTOR) 8579 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8580 else if (ctxt->exception.error_code_valid) 8581 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8582 ctxt->exception.error_code); 8583 else 8584 kvm_queue_exception(vcpu, ctxt->exception.vector); 8585 } 8586 8587 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8588 { 8589 struct x86_emulate_ctxt *ctxt; 8590 8591 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8592 if (!ctxt) { 8593 pr_err("failed to allocate vcpu's emulator\n"); 8594 return NULL; 8595 } 8596 8597 ctxt->vcpu = vcpu; 8598 ctxt->ops = &emulate_ops; 8599 vcpu->arch.emulate_ctxt = ctxt; 8600 8601 return ctxt; 8602 } 8603 8604 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8605 { 8606 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8607 int cs_db, cs_l; 8608 8609 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8610 8611 ctxt->gpa_available = false; 8612 ctxt->eflags = kvm_get_rflags(vcpu); 8613 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8614 8615 ctxt->eip = kvm_rip_read(vcpu); 8616 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8617 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8618 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8619 cs_db ? X86EMUL_MODE_PROT32 : 8620 X86EMUL_MODE_PROT16; 8621 ctxt->interruptibility = 0; 8622 ctxt->have_exception = false; 8623 ctxt->exception.vector = -1; 8624 ctxt->perm_ok = false; 8625 8626 init_decode_cache(ctxt); 8627 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8628 } 8629 8630 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8631 { 8632 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8633 int ret; 8634 8635 init_emulate_ctxt(vcpu); 8636 8637 ctxt->op_bytes = 2; 8638 ctxt->ad_bytes = 2; 8639 ctxt->_eip = ctxt->eip + inc_eip; 8640 ret = emulate_int_real(ctxt, irq); 8641 8642 if (ret != X86EMUL_CONTINUE) { 8643 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8644 } else { 8645 ctxt->eip = ctxt->_eip; 8646 kvm_rip_write(vcpu, ctxt->eip); 8647 kvm_set_rflags(vcpu, ctxt->eflags); 8648 } 8649 } 8650 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8651 8652 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8653 u8 ndata, u8 *insn_bytes, u8 insn_size) 8654 { 8655 struct kvm_run *run = vcpu->run; 8656 u64 info[5]; 8657 u8 info_start; 8658 8659 /* 8660 * Zero the whole array used to retrieve the exit info, as casting to 8661 * u32 for select entries will leave some chunks uninitialized. 8662 */ 8663 memset(&info, 0, sizeof(info)); 8664 8665 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8666 &info[2], (u32 *)&info[3], 8667 (u32 *)&info[4]); 8668 8669 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8670 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8671 8672 /* 8673 * There's currently space for 13 entries, but 5 are used for the exit 8674 * reason and info. Restrict to 4 to reduce the maintenance burden 8675 * when expanding kvm_run.emulation_failure in the future. 8676 */ 8677 if (WARN_ON_ONCE(ndata > 4)) 8678 ndata = 4; 8679 8680 /* Always include the flags as a 'data' entry. */ 8681 info_start = 1; 8682 run->emulation_failure.flags = 0; 8683 8684 if (insn_size) { 8685 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8686 sizeof(run->emulation_failure.insn_bytes) != 16)); 8687 info_start += 2; 8688 run->emulation_failure.flags |= 8689 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8690 run->emulation_failure.insn_size = insn_size; 8691 memset(run->emulation_failure.insn_bytes, 0x90, 8692 sizeof(run->emulation_failure.insn_bytes)); 8693 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8694 } 8695 8696 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8697 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8698 ndata * sizeof(data[0])); 8699 8700 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8701 } 8702 8703 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8704 { 8705 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8706 8707 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8708 ctxt->fetch.end - ctxt->fetch.data); 8709 } 8710 8711 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8712 u8 ndata) 8713 { 8714 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8715 } 8716 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8717 8718 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8719 { 8720 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8721 } 8722 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8723 8724 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8725 { 8726 struct kvm *kvm = vcpu->kvm; 8727 8728 ++vcpu->stat.insn_emulation_fail; 8729 trace_kvm_emulate_insn_failed(vcpu); 8730 8731 if (emulation_type & EMULTYPE_VMWARE_GP) { 8732 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8733 return 1; 8734 } 8735 8736 if (kvm->arch.exit_on_emulation_error || 8737 (emulation_type & EMULTYPE_SKIP)) { 8738 prepare_emulation_ctxt_failure_exit(vcpu); 8739 return 0; 8740 } 8741 8742 kvm_queue_exception(vcpu, UD_VECTOR); 8743 8744 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8745 prepare_emulation_ctxt_failure_exit(vcpu); 8746 return 0; 8747 } 8748 8749 return 1; 8750 } 8751 8752 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8753 int emulation_type) 8754 { 8755 gpa_t gpa = cr2_or_gpa; 8756 kvm_pfn_t pfn; 8757 8758 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8759 return false; 8760 8761 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8762 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8763 return false; 8764 8765 if (!vcpu->arch.mmu->root_role.direct) { 8766 /* 8767 * Write permission should be allowed since only 8768 * write access need to be emulated. 8769 */ 8770 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8771 8772 /* 8773 * If the mapping is invalid in guest, let cpu retry 8774 * it to generate fault. 8775 */ 8776 if (gpa == INVALID_GPA) 8777 return true; 8778 } 8779 8780 /* 8781 * Do not retry the unhandleable instruction if it faults on the 8782 * readonly host memory, otherwise it will goto a infinite loop: 8783 * retry instruction -> write #PF -> emulation fail -> retry 8784 * instruction -> ... 8785 */ 8786 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8787 8788 /* 8789 * If the instruction failed on the error pfn, it can not be fixed, 8790 * report the error to userspace. 8791 */ 8792 if (is_error_noslot_pfn(pfn)) 8793 return false; 8794 8795 kvm_release_pfn_clean(pfn); 8796 8797 /* The instructions are well-emulated on direct mmu. */ 8798 if (vcpu->arch.mmu->root_role.direct) { 8799 unsigned int indirect_shadow_pages; 8800 8801 write_lock(&vcpu->kvm->mmu_lock); 8802 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8803 write_unlock(&vcpu->kvm->mmu_lock); 8804 8805 if (indirect_shadow_pages) 8806 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8807 8808 return true; 8809 } 8810 8811 /* 8812 * if emulation was due to access to shadowed page table 8813 * and it failed try to unshadow page and re-enter the 8814 * guest to let CPU execute the instruction. 8815 */ 8816 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8817 8818 /* 8819 * If the access faults on its page table, it can not 8820 * be fixed by unprotecting shadow page and it should 8821 * be reported to userspace. 8822 */ 8823 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8824 } 8825 8826 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8827 gpa_t cr2_or_gpa, int emulation_type) 8828 { 8829 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8830 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8831 8832 last_retry_eip = vcpu->arch.last_retry_eip; 8833 last_retry_addr = vcpu->arch.last_retry_addr; 8834 8835 /* 8836 * If the emulation is caused by #PF and it is non-page_table 8837 * writing instruction, it means the VM-EXIT is caused by shadow 8838 * page protected, we can zap the shadow page and retry this 8839 * instruction directly. 8840 * 8841 * Note: if the guest uses a non-page-table modifying instruction 8842 * on the PDE that points to the instruction, then we will unmap 8843 * the instruction and go to an infinite loop. So, we cache the 8844 * last retried eip and the last fault address, if we meet the eip 8845 * and the address again, we can break out of the potential infinite 8846 * loop. 8847 */ 8848 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8849 8850 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8851 return false; 8852 8853 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8854 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8855 return false; 8856 8857 if (x86_page_table_writing_insn(ctxt)) 8858 return false; 8859 8860 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8861 return false; 8862 8863 vcpu->arch.last_retry_eip = ctxt->eip; 8864 vcpu->arch.last_retry_addr = cr2_or_gpa; 8865 8866 if (!vcpu->arch.mmu->root_role.direct) 8867 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8868 8869 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8870 8871 return true; 8872 } 8873 8874 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8875 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8876 8877 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8878 unsigned long *db) 8879 { 8880 u32 dr6 = 0; 8881 int i; 8882 u32 enable, rwlen; 8883 8884 enable = dr7; 8885 rwlen = dr7 >> 16; 8886 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8887 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8888 dr6 |= (1 << i); 8889 return dr6; 8890 } 8891 8892 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8893 { 8894 struct kvm_run *kvm_run = vcpu->run; 8895 8896 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8897 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8898 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8899 kvm_run->debug.arch.exception = DB_VECTOR; 8900 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8901 return 0; 8902 } 8903 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8904 return 1; 8905 } 8906 8907 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8908 { 8909 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8910 int r; 8911 8912 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8913 if (unlikely(!r)) 8914 return 0; 8915 8916 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8917 8918 /* 8919 * rflags is the old, "raw" value of the flags. The new value has 8920 * not been saved yet. 8921 * 8922 * This is correct even for TF set by the guest, because "the 8923 * processor will not generate this exception after the instruction 8924 * that sets the TF flag". 8925 */ 8926 if (unlikely(rflags & X86_EFLAGS_TF)) 8927 r = kvm_vcpu_do_singlestep(vcpu); 8928 return r; 8929 } 8930 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8931 8932 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8933 { 8934 u32 shadow; 8935 8936 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8937 return true; 8938 8939 /* 8940 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8941 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8942 * to avoid the relatively expensive CPUID lookup. 8943 */ 8944 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8945 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8946 guest_cpuid_is_intel(vcpu); 8947 } 8948 8949 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8950 int emulation_type, int *r) 8951 { 8952 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8953 8954 /* 8955 * Do not check for code breakpoints if hardware has already done the 8956 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8957 * the instruction has passed all exception checks, and all intercepted 8958 * exceptions that trigger emulation have lower priority than code 8959 * breakpoints, i.e. the fact that the intercepted exception occurred 8960 * means any code breakpoints have already been serviced. 8961 * 8962 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8963 * hardware has checked the RIP of the magic prefix, but not the RIP of 8964 * the instruction being emulated. The intent of forced emulation is 8965 * to behave as if KVM intercepted the instruction without an exception 8966 * and without a prefix. 8967 */ 8968 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8969 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8970 return false; 8971 8972 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8973 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8974 struct kvm_run *kvm_run = vcpu->run; 8975 unsigned long eip = kvm_get_linear_rip(vcpu); 8976 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8977 vcpu->arch.guest_debug_dr7, 8978 vcpu->arch.eff_db); 8979 8980 if (dr6 != 0) { 8981 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8982 kvm_run->debug.arch.pc = eip; 8983 kvm_run->debug.arch.exception = DB_VECTOR; 8984 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8985 *r = 0; 8986 return true; 8987 } 8988 } 8989 8990 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8991 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8992 unsigned long eip = kvm_get_linear_rip(vcpu); 8993 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8994 vcpu->arch.dr7, 8995 vcpu->arch.db); 8996 8997 if (dr6 != 0) { 8998 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8999 *r = 1; 9000 return true; 9001 } 9002 } 9003 9004 return false; 9005 } 9006 9007 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9008 { 9009 switch (ctxt->opcode_len) { 9010 case 1: 9011 switch (ctxt->b) { 9012 case 0xe4: /* IN */ 9013 case 0xe5: 9014 case 0xec: 9015 case 0xed: 9016 case 0xe6: /* OUT */ 9017 case 0xe7: 9018 case 0xee: 9019 case 0xef: 9020 case 0x6c: /* INS */ 9021 case 0x6d: 9022 case 0x6e: /* OUTS */ 9023 case 0x6f: 9024 return true; 9025 } 9026 break; 9027 case 2: 9028 switch (ctxt->b) { 9029 case 0x33: /* RDPMC */ 9030 return true; 9031 } 9032 break; 9033 } 9034 9035 return false; 9036 } 9037 9038 /* 9039 * Decode an instruction for emulation. The caller is responsible for handling 9040 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9041 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9042 * code breakpoints have higher priority and thus have already been done by 9043 * hardware. 9044 * 9045 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9046 * response to a machine check. 9047 */ 9048 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9049 void *insn, int insn_len) 9050 { 9051 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9052 int r; 9053 9054 init_emulate_ctxt(vcpu); 9055 9056 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9057 9058 trace_kvm_emulate_insn_start(vcpu); 9059 ++vcpu->stat.insn_emulation; 9060 9061 return r; 9062 } 9063 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9064 9065 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9066 int emulation_type, void *insn, int insn_len) 9067 { 9068 int r; 9069 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9070 bool writeback = true; 9071 9072 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9073 if (r != X86EMUL_CONTINUE) { 9074 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9075 return 1; 9076 9077 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9078 return handle_emulation_failure(vcpu, emulation_type); 9079 } 9080 9081 vcpu->arch.l1tf_flush_l1d = true; 9082 9083 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9084 kvm_clear_exception_queue(vcpu); 9085 9086 /* 9087 * Return immediately if RIP hits a code breakpoint, such #DBs 9088 * are fault-like and are higher priority than any faults on 9089 * the code fetch itself. 9090 */ 9091 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9092 return r; 9093 9094 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9095 insn, insn_len); 9096 if (r != EMULATION_OK) { 9097 if ((emulation_type & EMULTYPE_TRAP_UD) || 9098 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9099 kvm_queue_exception(vcpu, UD_VECTOR); 9100 return 1; 9101 } 9102 if (reexecute_instruction(vcpu, cr2_or_gpa, 9103 emulation_type)) 9104 return 1; 9105 9106 if (ctxt->have_exception && 9107 !(emulation_type & EMULTYPE_SKIP)) { 9108 /* 9109 * #UD should result in just EMULATION_FAILED, and trap-like 9110 * exception should not be encountered during decode. 9111 */ 9112 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9113 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9114 inject_emulated_exception(vcpu); 9115 return 1; 9116 } 9117 return handle_emulation_failure(vcpu, emulation_type); 9118 } 9119 } 9120 9121 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9122 !is_vmware_backdoor_opcode(ctxt)) { 9123 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9124 return 1; 9125 } 9126 9127 /* 9128 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9129 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9130 * The caller is responsible for updating interruptibility state and 9131 * injecting single-step #DBs. 9132 */ 9133 if (emulation_type & EMULTYPE_SKIP) { 9134 if (ctxt->mode != X86EMUL_MODE_PROT64) 9135 ctxt->eip = (u32)ctxt->_eip; 9136 else 9137 ctxt->eip = ctxt->_eip; 9138 9139 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9140 r = 1; 9141 goto writeback; 9142 } 9143 9144 kvm_rip_write(vcpu, ctxt->eip); 9145 if (ctxt->eflags & X86_EFLAGS_RF) 9146 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9147 return 1; 9148 } 9149 9150 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 9151 return 1; 9152 9153 /* this is needed for vmware backdoor interface to work since it 9154 changes registers values during IO operation */ 9155 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9156 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9157 emulator_invalidate_register_cache(ctxt); 9158 } 9159 9160 restart: 9161 if (emulation_type & EMULTYPE_PF) { 9162 /* Save the faulting GPA (cr2) in the address field */ 9163 ctxt->exception.address = cr2_or_gpa; 9164 9165 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9166 if (vcpu->arch.mmu->root_role.direct) { 9167 ctxt->gpa_available = true; 9168 ctxt->gpa_val = cr2_or_gpa; 9169 } 9170 } else { 9171 /* Sanitize the address out of an abundance of paranoia. */ 9172 ctxt->exception.address = 0; 9173 } 9174 9175 r = x86_emulate_insn(ctxt); 9176 9177 if (r == EMULATION_INTERCEPTED) 9178 return 1; 9179 9180 if (r == EMULATION_FAILED) { 9181 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 9182 return 1; 9183 9184 return handle_emulation_failure(vcpu, emulation_type); 9185 } 9186 9187 if (ctxt->have_exception) { 9188 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9189 vcpu->mmio_needed = false; 9190 r = 1; 9191 inject_emulated_exception(vcpu); 9192 } else if (vcpu->arch.pio.count) { 9193 if (!vcpu->arch.pio.in) { 9194 /* FIXME: return into emulator if single-stepping. */ 9195 vcpu->arch.pio.count = 0; 9196 } else { 9197 writeback = false; 9198 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9199 } 9200 r = 0; 9201 } else if (vcpu->mmio_needed) { 9202 ++vcpu->stat.mmio_exits; 9203 9204 if (!vcpu->mmio_is_write) 9205 writeback = false; 9206 r = 0; 9207 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9208 } else if (vcpu->arch.complete_userspace_io) { 9209 writeback = false; 9210 r = 0; 9211 } else if (r == EMULATION_RESTART) 9212 goto restart; 9213 else 9214 r = 1; 9215 9216 writeback: 9217 if (writeback) { 9218 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9219 toggle_interruptibility(vcpu, ctxt->interruptibility); 9220 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9221 9222 /* 9223 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9224 * only supports code breakpoints and general detect #DB, both 9225 * of which are fault-like. 9226 */ 9227 if (!ctxt->have_exception || 9228 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9229 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9230 if (ctxt->is_branch) 9231 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9232 kvm_rip_write(vcpu, ctxt->eip); 9233 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9234 r = kvm_vcpu_do_singlestep(vcpu); 9235 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9236 __kvm_set_rflags(vcpu, ctxt->eflags); 9237 } 9238 9239 /* 9240 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9241 * do nothing, and it will be requested again as soon as 9242 * the shadow expires. But we still need to check here, 9243 * because POPF has no interrupt shadow. 9244 */ 9245 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9246 kvm_make_request(KVM_REQ_EVENT, vcpu); 9247 } else 9248 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9249 9250 return r; 9251 } 9252 9253 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9254 { 9255 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9256 } 9257 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9258 9259 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9260 void *insn, int insn_len) 9261 { 9262 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9263 } 9264 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9265 9266 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9267 { 9268 vcpu->arch.pio.count = 0; 9269 return 1; 9270 } 9271 9272 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9273 { 9274 vcpu->arch.pio.count = 0; 9275 9276 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9277 return 1; 9278 9279 return kvm_skip_emulated_instruction(vcpu); 9280 } 9281 9282 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9283 unsigned short port) 9284 { 9285 unsigned long val = kvm_rax_read(vcpu); 9286 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9287 9288 if (ret) 9289 return ret; 9290 9291 /* 9292 * Workaround userspace that relies on old KVM behavior of %rip being 9293 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9294 */ 9295 if (port == 0x7e && 9296 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9297 vcpu->arch.complete_userspace_io = 9298 complete_fast_pio_out_port_0x7e; 9299 kvm_skip_emulated_instruction(vcpu); 9300 } else { 9301 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9302 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9303 } 9304 return 0; 9305 } 9306 9307 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9308 { 9309 unsigned long val; 9310 9311 /* We should only ever be called with arch.pio.count equal to 1 */ 9312 BUG_ON(vcpu->arch.pio.count != 1); 9313 9314 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9315 vcpu->arch.pio.count = 0; 9316 return 1; 9317 } 9318 9319 /* For size less than 4 we merge, else we zero extend */ 9320 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9321 9322 complete_emulator_pio_in(vcpu, &val); 9323 kvm_rax_write(vcpu, val); 9324 9325 return kvm_skip_emulated_instruction(vcpu); 9326 } 9327 9328 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9329 unsigned short port) 9330 { 9331 unsigned long val; 9332 int ret; 9333 9334 /* For size less than 4 we merge, else we zero extend */ 9335 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9336 9337 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9338 if (ret) { 9339 kvm_rax_write(vcpu, val); 9340 return ret; 9341 } 9342 9343 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9344 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9345 9346 return 0; 9347 } 9348 9349 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9350 { 9351 int ret; 9352 9353 if (in) 9354 ret = kvm_fast_pio_in(vcpu, size, port); 9355 else 9356 ret = kvm_fast_pio_out(vcpu, size, port); 9357 return ret && kvm_skip_emulated_instruction(vcpu); 9358 } 9359 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9360 9361 static int kvmclock_cpu_down_prep(unsigned int cpu) 9362 { 9363 __this_cpu_write(cpu_tsc_khz, 0); 9364 return 0; 9365 } 9366 9367 static void tsc_khz_changed(void *data) 9368 { 9369 struct cpufreq_freqs *freq = data; 9370 unsigned long khz; 9371 9372 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9373 9374 if (data) 9375 khz = freq->new; 9376 else 9377 khz = cpufreq_quick_get(raw_smp_processor_id()); 9378 if (!khz) 9379 khz = tsc_khz; 9380 __this_cpu_write(cpu_tsc_khz, khz); 9381 } 9382 9383 #ifdef CONFIG_X86_64 9384 static void kvm_hyperv_tsc_notifier(void) 9385 { 9386 struct kvm *kvm; 9387 int cpu; 9388 9389 mutex_lock(&kvm_lock); 9390 list_for_each_entry(kvm, &vm_list, vm_list) 9391 kvm_make_mclock_inprogress_request(kvm); 9392 9393 /* no guest entries from this point */ 9394 hyperv_stop_tsc_emulation(); 9395 9396 /* TSC frequency always matches when on Hyper-V */ 9397 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9398 for_each_present_cpu(cpu) 9399 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9400 } 9401 kvm_caps.max_guest_tsc_khz = tsc_khz; 9402 9403 list_for_each_entry(kvm, &vm_list, vm_list) { 9404 __kvm_start_pvclock_update(kvm); 9405 pvclock_update_vm_gtod_copy(kvm); 9406 kvm_end_pvclock_update(kvm); 9407 } 9408 9409 mutex_unlock(&kvm_lock); 9410 } 9411 #endif 9412 9413 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9414 { 9415 struct kvm *kvm; 9416 struct kvm_vcpu *vcpu; 9417 int send_ipi = 0; 9418 unsigned long i; 9419 9420 /* 9421 * We allow guests to temporarily run on slowing clocks, 9422 * provided we notify them after, or to run on accelerating 9423 * clocks, provided we notify them before. Thus time never 9424 * goes backwards. 9425 * 9426 * However, we have a problem. We can't atomically update 9427 * the frequency of a given CPU from this function; it is 9428 * merely a notifier, which can be called from any CPU. 9429 * Changing the TSC frequency at arbitrary points in time 9430 * requires a recomputation of local variables related to 9431 * the TSC for each VCPU. We must flag these local variables 9432 * to be updated and be sure the update takes place with the 9433 * new frequency before any guests proceed. 9434 * 9435 * Unfortunately, the combination of hotplug CPU and frequency 9436 * change creates an intractable locking scenario; the order 9437 * of when these callouts happen is undefined with respect to 9438 * CPU hotplug, and they can race with each other. As such, 9439 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9440 * undefined; you can actually have a CPU frequency change take 9441 * place in between the computation of X and the setting of the 9442 * variable. To protect against this problem, all updates of 9443 * the per_cpu tsc_khz variable are done in an interrupt 9444 * protected IPI, and all callers wishing to update the value 9445 * must wait for a synchronous IPI to complete (which is trivial 9446 * if the caller is on the CPU already). This establishes the 9447 * necessary total order on variable updates. 9448 * 9449 * Note that because a guest time update may take place 9450 * anytime after the setting of the VCPU's request bit, the 9451 * correct TSC value must be set before the request. However, 9452 * to ensure the update actually makes it to any guest which 9453 * starts running in hardware virtualization between the set 9454 * and the acquisition of the spinlock, we must also ping the 9455 * CPU after setting the request bit. 9456 * 9457 */ 9458 9459 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9460 9461 mutex_lock(&kvm_lock); 9462 list_for_each_entry(kvm, &vm_list, vm_list) { 9463 kvm_for_each_vcpu(i, vcpu, kvm) { 9464 if (vcpu->cpu != cpu) 9465 continue; 9466 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9467 if (vcpu->cpu != raw_smp_processor_id()) 9468 send_ipi = 1; 9469 } 9470 } 9471 mutex_unlock(&kvm_lock); 9472 9473 if (freq->old < freq->new && send_ipi) { 9474 /* 9475 * We upscale the frequency. Must make the guest 9476 * doesn't see old kvmclock values while running with 9477 * the new frequency, otherwise we risk the guest sees 9478 * time go backwards. 9479 * 9480 * In case we update the frequency for another cpu 9481 * (which might be in guest context) send an interrupt 9482 * to kick the cpu out of guest context. Next time 9483 * guest context is entered kvmclock will be updated, 9484 * so the guest will not see stale values. 9485 */ 9486 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9487 } 9488 } 9489 9490 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9491 void *data) 9492 { 9493 struct cpufreq_freqs *freq = data; 9494 int cpu; 9495 9496 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9497 return 0; 9498 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9499 return 0; 9500 9501 for_each_cpu(cpu, freq->policy->cpus) 9502 __kvmclock_cpufreq_notifier(freq, cpu); 9503 9504 return 0; 9505 } 9506 9507 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9508 .notifier_call = kvmclock_cpufreq_notifier 9509 }; 9510 9511 static int kvmclock_cpu_online(unsigned int cpu) 9512 { 9513 tsc_khz_changed(NULL); 9514 return 0; 9515 } 9516 9517 static void kvm_timer_init(void) 9518 { 9519 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9520 max_tsc_khz = tsc_khz; 9521 9522 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9523 struct cpufreq_policy *policy; 9524 int cpu; 9525 9526 cpu = get_cpu(); 9527 policy = cpufreq_cpu_get(cpu); 9528 if (policy) { 9529 if (policy->cpuinfo.max_freq) 9530 max_tsc_khz = policy->cpuinfo.max_freq; 9531 cpufreq_cpu_put(policy); 9532 } 9533 put_cpu(); 9534 } 9535 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9536 CPUFREQ_TRANSITION_NOTIFIER); 9537 9538 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9539 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9540 } 9541 } 9542 9543 #ifdef CONFIG_X86_64 9544 static void pvclock_gtod_update_fn(struct work_struct *work) 9545 { 9546 struct kvm *kvm; 9547 struct kvm_vcpu *vcpu; 9548 unsigned long i; 9549 9550 mutex_lock(&kvm_lock); 9551 list_for_each_entry(kvm, &vm_list, vm_list) 9552 kvm_for_each_vcpu(i, vcpu, kvm) 9553 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9554 atomic_set(&kvm_guest_has_master_clock, 0); 9555 mutex_unlock(&kvm_lock); 9556 } 9557 9558 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9559 9560 /* 9561 * Indirection to move queue_work() out of the tk_core.seq write held 9562 * region to prevent possible deadlocks against time accessors which 9563 * are invoked with work related locks held. 9564 */ 9565 static void pvclock_irq_work_fn(struct irq_work *w) 9566 { 9567 queue_work(system_long_wq, &pvclock_gtod_work); 9568 } 9569 9570 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9571 9572 /* 9573 * Notification about pvclock gtod data update. 9574 */ 9575 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9576 void *priv) 9577 { 9578 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9579 struct timekeeper *tk = priv; 9580 9581 update_pvclock_gtod(tk); 9582 9583 /* 9584 * Disable master clock if host does not trust, or does not use, 9585 * TSC based clocksource. Delegate queue_work() to irq_work as 9586 * this is invoked with tk_core.seq write held. 9587 */ 9588 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9589 atomic_read(&kvm_guest_has_master_clock) != 0) 9590 irq_work_queue(&pvclock_irq_work); 9591 return 0; 9592 } 9593 9594 static struct notifier_block pvclock_gtod_notifier = { 9595 .notifier_call = pvclock_gtod_notify, 9596 }; 9597 #endif 9598 9599 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9600 { 9601 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9602 9603 #define __KVM_X86_OP(func) \ 9604 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9605 #define KVM_X86_OP(func) \ 9606 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9607 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9608 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9609 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9610 (void *)__static_call_return0); 9611 #include <asm/kvm-x86-ops.h> 9612 #undef __KVM_X86_OP 9613 9614 kvm_pmu_ops_update(ops->pmu_ops); 9615 } 9616 9617 static int kvm_x86_check_processor_compatibility(void) 9618 { 9619 int cpu = smp_processor_id(); 9620 struct cpuinfo_x86 *c = &cpu_data(cpu); 9621 9622 /* 9623 * Compatibility checks are done when loading KVM and when enabling 9624 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9625 * compatible, i.e. KVM should never perform a compatibility check on 9626 * an offline CPU. 9627 */ 9628 WARN_ON(!cpu_online(cpu)); 9629 9630 if (__cr4_reserved_bits(cpu_has, c) != 9631 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9632 return -EIO; 9633 9634 return static_call(kvm_x86_check_processor_compatibility)(); 9635 } 9636 9637 static void kvm_x86_check_cpu_compat(void *ret) 9638 { 9639 *(int *)ret = kvm_x86_check_processor_compatibility(); 9640 } 9641 9642 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9643 { 9644 u64 host_pat; 9645 int r, cpu; 9646 9647 if (kvm_x86_ops.hardware_enable) { 9648 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9649 return -EEXIST; 9650 } 9651 9652 /* 9653 * KVM explicitly assumes that the guest has an FPU and 9654 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9655 * vCPU's FPU state as a fxregs_state struct. 9656 */ 9657 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9658 pr_err("inadequate fpu\n"); 9659 return -EOPNOTSUPP; 9660 } 9661 9662 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9663 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9664 return -EOPNOTSUPP; 9665 } 9666 9667 /* 9668 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9669 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9670 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9671 * with an exception. PAT[0] is set to WB on RESET and also by the 9672 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9673 */ 9674 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9675 (host_pat & GENMASK(2, 0)) != 6) { 9676 pr_err("host PAT[0] is not WB\n"); 9677 return -EIO; 9678 } 9679 9680 x86_emulator_cache = kvm_alloc_emulator_cache(); 9681 if (!x86_emulator_cache) { 9682 pr_err("failed to allocate cache for x86 emulator\n"); 9683 return -ENOMEM; 9684 } 9685 9686 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9687 if (!user_return_msrs) { 9688 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9689 r = -ENOMEM; 9690 goto out_free_x86_emulator_cache; 9691 } 9692 kvm_nr_uret_msrs = 0; 9693 9694 r = kvm_mmu_vendor_module_init(); 9695 if (r) 9696 goto out_free_percpu; 9697 9698 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9699 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9700 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9701 } 9702 9703 rdmsrl_safe(MSR_EFER, &host_efer); 9704 9705 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9706 rdmsrl(MSR_IA32_XSS, host_xss); 9707 9708 kvm_init_pmu_capability(ops->pmu_ops); 9709 9710 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9711 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9712 9713 r = ops->hardware_setup(); 9714 if (r != 0) 9715 goto out_mmu_exit; 9716 9717 kvm_ops_update(ops); 9718 9719 for_each_online_cpu(cpu) { 9720 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9721 if (r < 0) 9722 goto out_unwind_ops; 9723 } 9724 9725 /* 9726 * Point of no return! DO NOT add error paths below this point unless 9727 * absolutely necessary, as most operations from this point forward 9728 * require unwinding. 9729 */ 9730 kvm_timer_init(); 9731 9732 if (pi_inject_timer == -1) 9733 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9734 #ifdef CONFIG_X86_64 9735 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9736 9737 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9738 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9739 #endif 9740 9741 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9742 9743 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9744 kvm_caps.supported_xss = 0; 9745 9746 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9747 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9748 #undef __kvm_cpu_cap_has 9749 9750 if (kvm_caps.has_tsc_control) { 9751 /* 9752 * Make sure the user can only configure tsc_khz values that 9753 * fit into a signed integer. 9754 * A min value is not calculated because it will always 9755 * be 1 on all machines. 9756 */ 9757 u64 max = min(0x7fffffffULL, 9758 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9759 kvm_caps.max_guest_tsc_khz = max; 9760 } 9761 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9762 kvm_init_msr_lists(); 9763 return 0; 9764 9765 out_unwind_ops: 9766 kvm_x86_ops.hardware_enable = NULL; 9767 static_call(kvm_x86_hardware_unsetup)(); 9768 out_mmu_exit: 9769 kvm_mmu_vendor_module_exit(); 9770 out_free_percpu: 9771 free_percpu(user_return_msrs); 9772 out_free_x86_emulator_cache: 9773 kmem_cache_destroy(x86_emulator_cache); 9774 return r; 9775 } 9776 9777 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9778 { 9779 int r; 9780 9781 mutex_lock(&vendor_module_lock); 9782 r = __kvm_x86_vendor_init(ops); 9783 mutex_unlock(&vendor_module_lock); 9784 9785 return r; 9786 } 9787 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9788 9789 void kvm_x86_vendor_exit(void) 9790 { 9791 kvm_unregister_perf_callbacks(); 9792 9793 #ifdef CONFIG_X86_64 9794 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9795 clear_hv_tscchange_cb(); 9796 #endif 9797 kvm_lapic_exit(); 9798 9799 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9800 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9801 CPUFREQ_TRANSITION_NOTIFIER); 9802 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9803 } 9804 #ifdef CONFIG_X86_64 9805 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9806 irq_work_sync(&pvclock_irq_work); 9807 cancel_work_sync(&pvclock_gtod_work); 9808 #endif 9809 static_call(kvm_x86_hardware_unsetup)(); 9810 kvm_mmu_vendor_module_exit(); 9811 free_percpu(user_return_msrs); 9812 kmem_cache_destroy(x86_emulator_cache); 9813 #ifdef CONFIG_KVM_XEN 9814 static_key_deferred_flush(&kvm_xen_enabled); 9815 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9816 #endif 9817 mutex_lock(&vendor_module_lock); 9818 kvm_x86_ops.hardware_enable = NULL; 9819 mutex_unlock(&vendor_module_lock); 9820 } 9821 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9822 9823 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9824 { 9825 /* 9826 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9827 * local APIC is in-kernel, the run loop will detect the non-runnable 9828 * state and halt the vCPU. Exit to userspace if the local APIC is 9829 * managed by userspace, in which case userspace is responsible for 9830 * handling wake events. 9831 */ 9832 ++vcpu->stat.halt_exits; 9833 if (lapic_in_kernel(vcpu)) { 9834 vcpu->arch.mp_state = state; 9835 return 1; 9836 } else { 9837 vcpu->run->exit_reason = reason; 9838 return 0; 9839 } 9840 } 9841 9842 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9843 { 9844 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9845 } 9846 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9847 9848 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9849 { 9850 int ret = kvm_skip_emulated_instruction(vcpu); 9851 /* 9852 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9853 * KVM_EXIT_DEBUG here. 9854 */ 9855 return kvm_emulate_halt_noskip(vcpu) && ret; 9856 } 9857 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9858 9859 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9860 { 9861 int ret = kvm_skip_emulated_instruction(vcpu); 9862 9863 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9864 KVM_EXIT_AP_RESET_HOLD) && ret; 9865 } 9866 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9867 9868 #ifdef CONFIG_X86_64 9869 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9870 unsigned long clock_type) 9871 { 9872 struct kvm_clock_pairing clock_pairing; 9873 struct timespec64 ts; 9874 u64 cycle; 9875 int ret; 9876 9877 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9878 return -KVM_EOPNOTSUPP; 9879 9880 /* 9881 * When tsc is in permanent catchup mode guests won't be able to use 9882 * pvclock_read_retry loop to get consistent view of pvclock 9883 */ 9884 if (vcpu->arch.tsc_always_catchup) 9885 return -KVM_EOPNOTSUPP; 9886 9887 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9888 return -KVM_EOPNOTSUPP; 9889 9890 clock_pairing.sec = ts.tv_sec; 9891 clock_pairing.nsec = ts.tv_nsec; 9892 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9893 clock_pairing.flags = 0; 9894 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9895 9896 ret = 0; 9897 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9898 sizeof(struct kvm_clock_pairing))) 9899 ret = -KVM_EFAULT; 9900 9901 return ret; 9902 } 9903 #endif 9904 9905 /* 9906 * kvm_pv_kick_cpu_op: Kick a vcpu. 9907 * 9908 * @apicid - apicid of vcpu to be kicked. 9909 */ 9910 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9911 { 9912 /* 9913 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9914 * common code, e.g. for tracing. Defer initialization to the compiler. 9915 */ 9916 struct kvm_lapic_irq lapic_irq = { 9917 .delivery_mode = APIC_DM_REMRD, 9918 .dest_mode = APIC_DEST_PHYSICAL, 9919 .shorthand = APIC_DEST_NOSHORT, 9920 .dest_id = apicid, 9921 }; 9922 9923 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9924 } 9925 9926 bool kvm_apicv_activated(struct kvm *kvm) 9927 { 9928 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9929 } 9930 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9931 9932 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9933 { 9934 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9935 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9936 9937 return (vm_reasons | vcpu_reasons) == 0; 9938 } 9939 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9940 9941 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9942 enum kvm_apicv_inhibit reason, bool set) 9943 { 9944 if (set) 9945 __set_bit(reason, inhibits); 9946 else 9947 __clear_bit(reason, inhibits); 9948 9949 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9950 } 9951 9952 static void kvm_apicv_init(struct kvm *kvm) 9953 { 9954 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9955 9956 init_rwsem(&kvm->arch.apicv_update_lock); 9957 9958 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9959 9960 if (!enable_apicv) 9961 set_or_clear_apicv_inhibit(inhibits, 9962 APICV_INHIBIT_REASON_DISABLE, true); 9963 } 9964 9965 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9966 { 9967 struct kvm_vcpu *target = NULL; 9968 struct kvm_apic_map *map; 9969 9970 vcpu->stat.directed_yield_attempted++; 9971 9972 if (single_task_running()) 9973 goto no_yield; 9974 9975 rcu_read_lock(); 9976 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9977 9978 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9979 target = map->phys_map[dest_id]->vcpu; 9980 9981 rcu_read_unlock(); 9982 9983 if (!target || !READ_ONCE(target->ready)) 9984 goto no_yield; 9985 9986 /* Ignore requests to yield to self */ 9987 if (vcpu == target) 9988 goto no_yield; 9989 9990 if (kvm_vcpu_yield_to(target) <= 0) 9991 goto no_yield; 9992 9993 vcpu->stat.directed_yield_successful++; 9994 9995 no_yield: 9996 return; 9997 } 9998 9999 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 10000 { 10001 u64 ret = vcpu->run->hypercall.ret; 10002 10003 if (!is_64_bit_mode(vcpu)) 10004 ret = (u32)ret; 10005 kvm_rax_write(vcpu, ret); 10006 ++vcpu->stat.hypercalls; 10007 return kvm_skip_emulated_instruction(vcpu); 10008 } 10009 10010 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10011 { 10012 unsigned long nr, a0, a1, a2, a3, ret; 10013 int op_64_bit; 10014 10015 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10016 return kvm_xen_hypercall(vcpu); 10017 10018 if (kvm_hv_hypercall_enabled(vcpu)) 10019 return kvm_hv_hypercall(vcpu); 10020 10021 nr = kvm_rax_read(vcpu); 10022 a0 = kvm_rbx_read(vcpu); 10023 a1 = kvm_rcx_read(vcpu); 10024 a2 = kvm_rdx_read(vcpu); 10025 a3 = kvm_rsi_read(vcpu); 10026 10027 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10028 10029 op_64_bit = is_64_bit_hypercall(vcpu); 10030 if (!op_64_bit) { 10031 nr &= 0xFFFFFFFF; 10032 a0 &= 0xFFFFFFFF; 10033 a1 &= 0xFFFFFFFF; 10034 a2 &= 0xFFFFFFFF; 10035 a3 &= 0xFFFFFFFF; 10036 } 10037 10038 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 10039 ret = -KVM_EPERM; 10040 goto out; 10041 } 10042 10043 ret = -KVM_ENOSYS; 10044 10045 switch (nr) { 10046 case KVM_HC_VAPIC_POLL_IRQ: 10047 ret = 0; 10048 break; 10049 case KVM_HC_KICK_CPU: 10050 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10051 break; 10052 10053 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10054 kvm_sched_yield(vcpu, a1); 10055 ret = 0; 10056 break; 10057 #ifdef CONFIG_X86_64 10058 case KVM_HC_CLOCK_PAIRING: 10059 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10060 break; 10061 #endif 10062 case KVM_HC_SEND_IPI: 10063 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10064 break; 10065 10066 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10067 break; 10068 case KVM_HC_SCHED_YIELD: 10069 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10070 break; 10071 10072 kvm_sched_yield(vcpu, a0); 10073 ret = 0; 10074 break; 10075 case KVM_HC_MAP_GPA_RANGE: { 10076 u64 gpa = a0, npages = a1, attrs = a2; 10077 10078 ret = -KVM_ENOSYS; 10079 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10080 break; 10081 10082 if (!PAGE_ALIGNED(gpa) || !npages || 10083 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10084 ret = -KVM_EINVAL; 10085 break; 10086 } 10087 10088 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10089 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10090 vcpu->run->hypercall.args[0] = gpa; 10091 vcpu->run->hypercall.args[1] = npages; 10092 vcpu->run->hypercall.args[2] = attrs; 10093 vcpu->run->hypercall.flags = 0; 10094 if (op_64_bit) 10095 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10096 10097 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10098 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10099 return 0; 10100 } 10101 default: 10102 ret = -KVM_ENOSYS; 10103 break; 10104 } 10105 out: 10106 if (!op_64_bit) 10107 ret = (u32)ret; 10108 kvm_rax_write(vcpu, ret); 10109 10110 ++vcpu->stat.hypercalls; 10111 return kvm_skip_emulated_instruction(vcpu); 10112 } 10113 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10114 10115 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10116 { 10117 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10118 char instruction[3]; 10119 unsigned long rip = kvm_rip_read(vcpu); 10120 10121 /* 10122 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10123 * the pieces. 10124 */ 10125 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10126 ctxt->exception.error_code_valid = false; 10127 ctxt->exception.vector = UD_VECTOR; 10128 ctxt->have_exception = true; 10129 return X86EMUL_PROPAGATE_FAULT; 10130 } 10131 10132 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 10133 10134 return emulator_write_emulated(ctxt, rip, instruction, 3, 10135 &ctxt->exception); 10136 } 10137 10138 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10139 { 10140 return vcpu->run->request_interrupt_window && 10141 likely(!pic_in_kernel(vcpu->kvm)); 10142 } 10143 10144 /* Called within kvm->srcu read side. */ 10145 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10146 { 10147 struct kvm_run *kvm_run = vcpu->run; 10148 10149 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 10150 kvm_run->cr8 = kvm_get_cr8(vcpu); 10151 kvm_run->apic_base = kvm_get_apic_base(vcpu); 10152 10153 kvm_run->ready_for_interrupt_injection = 10154 pic_in_kernel(vcpu->kvm) || 10155 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10156 10157 if (is_smm(vcpu)) 10158 kvm_run->flags |= KVM_RUN_X86_SMM; 10159 } 10160 10161 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10162 { 10163 int max_irr, tpr; 10164 10165 if (!kvm_x86_ops.update_cr8_intercept) 10166 return; 10167 10168 if (!lapic_in_kernel(vcpu)) 10169 return; 10170 10171 if (vcpu->arch.apic->apicv_active) 10172 return; 10173 10174 if (!vcpu->arch.apic->vapic_addr) 10175 max_irr = kvm_lapic_find_highest_irr(vcpu); 10176 else 10177 max_irr = -1; 10178 10179 if (max_irr != -1) 10180 max_irr >>= 4; 10181 10182 tpr = kvm_lapic_get_cr8(vcpu); 10183 10184 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 10185 } 10186 10187 10188 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10189 { 10190 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10191 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10192 return 1; 10193 } 10194 10195 return kvm_x86_ops.nested_ops->check_events(vcpu); 10196 } 10197 10198 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10199 { 10200 /* 10201 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10202 * exceptions don't report error codes. The presence of an error code 10203 * is carried with the exception and only stripped when the exception 10204 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10205 * report an error code despite the CPU being in Real Mode. 10206 */ 10207 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10208 10209 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10210 vcpu->arch.exception.has_error_code, 10211 vcpu->arch.exception.error_code, 10212 vcpu->arch.exception.injected); 10213 10214 static_call(kvm_x86_inject_exception)(vcpu); 10215 } 10216 10217 /* 10218 * Check for any event (interrupt or exception) that is ready to be injected, 10219 * and if there is at least one event, inject the event with the highest 10220 * priority. This handles both "pending" events, i.e. events that have never 10221 * been injected into the guest, and "injected" events, i.e. events that were 10222 * injected as part of a previous VM-Enter, but weren't successfully delivered 10223 * and need to be re-injected. 10224 * 10225 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10226 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10227 * be able to inject exceptions in the "middle" of an instruction, and so must 10228 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10229 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10230 * boundaries is necessary and correct. 10231 * 10232 * For simplicity, KVM uses a single path to inject all events (except events 10233 * that are injected directly from L1 to L2) and doesn't explicitly track 10234 * instruction boundaries for asynchronous events. However, because VM-Exits 10235 * that can occur during instruction execution typically result in KVM skipping 10236 * the instruction or injecting an exception, e.g. instruction and exception 10237 * intercepts, and because pending exceptions have higher priority than pending 10238 * interrupts, KVM still honors instruction boundaries in most scenarios. 10239 * 10240 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10241 * the instruction or inject an exception, then KVM can incorrecty inject a new 10242 * asynchronous event if the event became pending after the CPU fetched the 10243 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10244 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10245 * injected on the restarted instruction instead of being deferred until the 10246 * instruction completes. 10247 * 10248 * In practice, this virtualization hole is unlikely to be observed by the 10249 * guest, and even less likely to cause functional problems. To detect the 10250 * hole, the guest would have to trigger an event on a side effect of an early 10251 * phase of instruction execution, e.g. on the instruction fetch from memory. 10252 * And for it to be a functional problem, the guest would need to depend on the 10253 * ordering between that side effect, the instruction completing, _and_ the 10254 * delivery of the asynchronous event. 10255 */ 10256 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10257 bool *req_immediate_exit) 10258 { 10259 bool can_inject; 10260 int r; 10261 10262 /* 10263 * Process nested events first, as nested VM-Exit supersedes event 10264 * re-injection. If there's an event queued for re-injection, it will 10265 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10266 */ 10267 if (is_guest_mode(vcpu)) 10268 r = kvm_check_nested_events(vcpu); 10269 else 10270 r = 0; 10271 10272 /* 10273 * Re-inject exceptions and events *especially* if immediate entry+exit 10274 * to/from L2 is needed, as any event that has already been injected 10275 * into L2 needs to complete its lifecycle before injecting a new event. 10276 * 10277 * Don't re-inject an NMI or interrupt if there is a pending exception. 10278 * This collision arises if an exception occurred while vectoring the 10279 * injected event, KVM intercepted said exception, and KVM ultimately 10280 * determined the fault belongs to the guest and queues the exception 10281 * for injection back into the guest. 10282 * 10283 * "Injected" interrupts can also collide with pending exceptions if 10284 * userspace ignores the "ready for injection" flag and blindly queues 10285 * an interrupt. In that case, prioritizing the exception is correct, 10286 * as the exception "occurred" before the exit to userspace. Trap-like 10287 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10288 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10289 * priority, they're only generated (pended) during instruction 10290 * execution, and interrupts are recognized at instruction boundaries. 10291 * Thus a pending fault-like exception means the fault occurred on the 10292 * *previous* instruction and must be serviced prior to recognizing any 10293 * new events in order to fully complete the previous instruction. 10294 */ 10295 if (vcpu->arch.exception.injected) 10296 kvm_inject_exception(vcpu); 10297 else if (kvm_is_exception_pending(vcpu)) 10298 ; /* see above */ 10299 else if (vcpu->arch.nmi_injected) 10300 static_call(kvm_x86_inject_nmi)(vcpu); 10301 else if (vcpu->arch.interrupt.injected) 10302 static_call(kvm_x86_inject_irq)(vcpu, true); 10303 10304 /* 10305 * Exceptions that morph to VM-Exits are handled above, and pending 10306 * exceptions on top of injected exceptions that do not VM-Exit should 10307 * either morph to #DF or, sadly, override the injected exception. 10308 */ 10309 WARN_ON_ONCE(vcpu->arch.exception.injected && 10310 vcpu->arch.exception.pending); 10311 10312 /* 10313 * Bail if immediate entry+exit to/from the guest is needed to complete 10314 * nested VM-Enter or event re-injection so that a different pending 10315 * event can be serviced (or if KVM needs to exit to userspace). 10316 * 10317 * Otherwise, continue processing events even if VM-Exit occurred. The 10318 * VM-Exit will have cleared exceptions that were meant for L2, but 10319 * there may now be events that can be injected into L1. 10320 */ 10321 if (r < 0) 10322 goto out; 10323 10324 /* 10325 * A pending exception VM-Exit should either result in nested VM-Exit 10326 * or force an immediate re-entry and exit to/from L2, and exception 10327 * VM-Exits cannot be injected (flag should _never_ be set). 10328 */ 10329 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10330 vcpu->arch.exception_vmexit.pending); 10331 10332 /* 10333 * New events, other than exceptions, cannot be injected if KVM needs 10334 * to re-inject a previous event. See above comments on re-injecting 10335 * for why pending exceptions get priority. 10336 */ 10337 can_inject = !kvm_event_needs_reinjection(vcpu); 10338 10339 if (vcpu->arch.exception.pending) { 10340 /* 10341 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10342 * value pushed on the stack. Trap-like exception and all #DBs 10343 * leave RF as-is (KVM follows Intel's behavior in this regard; 10344 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10345 * 10346 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10347 * describe the behavior of General Detect #DBs, which are 10348 * fault-like. They do _not_ set RF, a la code breakpoints. 10349 */ 10350 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10351 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10352 X86_EFLAGS_RF); 10353 10354 if (vcpu->arch.exception.vector == DB_VECTOR) { 10355 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10356 if (vcpu->arch.dr7 & DR7_GD) { 10357 vcpu->arch.dr7 &= ~DR7_GD; 10358 kvm_update_dr7(vcpu); 10359 } 10360 } 10361 10362 kvm_inject_exception(vcpu); 10363 10364 vcpu->arch.exception.pending = false; 10365 vcpu->arch.exception.injected = true; 10366 10367 can_inject = false; 10368 } 10369 10370 /* Don't inject interrupts if the user asked to avoid doing so */ 10371 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10372 return 0; 10373 10374 /* 10375 * Finally, inject interrupt events. If an event cannot be injected 10376 * due to architectural conditions (e.g. IF=0) a window-open exit 10377 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10378 * and can architecturally be injected, but we cannot do it right now: 10379 * an interrupt could have arrived just now and we have to inject it 10380 * as a vmexit, or there could already an event in the queue, which is 10381 * indicated by can_inject. In that case we request an immediate exit 10382 * in order to make progress and get back here for another iteration. 10383 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10384 */ 10385 #ifdef CONFIG_KVM_SMM 10386 if (vcpu->arch.smi_pending) { 10387 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10388 if (r < 0) 10389 goto out; 10390 if (r) { 10391 vcpu->arch.smi_pending = false; 10392 ++vcpu->arch.smi_count; 10393 enter_smm(vcpu); 10394 can_inject = false; 10395 } else 10396 static_call(kvm_x86_enable_smi_window)(vcpu); 10397 } 10398 #endif 10399 10400 if (vcpu->arch.nmi_pending) { 10401 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10402 if (r < 0) 10403 goto out; 10404 if (r) { 10405 --vcpu->arch.nmi_pending; 10406 vcpu->arch.nmi_injected = true; 10407 static_call(kvm_x86_inject_nmi)(vcpu); 10408 can_inject = false; 10409 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10410 } 10411 if (vcpu->arch.nmi_pending) 10412 static_call(kvm_x86_enable_nmi_window)(vcpu); 10413 } 10414 10415 if (kvm_cpu_has_injectable_intr(vcpu)) { 10416 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10417 if (r < 0) 10418 goto out; 10419 if (r) { 10420 int irq = kvm_cpu_get_interrupt(vcpu); 10421 10422 if (!WARN_ON_ONCE(irq == -1)) { 10423 kvm_queue_interrupt(vcpu, irq, false); 10424 static_call(kvm_x86_inject_irq)(vcpu, false); 10425 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10426 } 10427 } 10428 if (kvm_cpu_has_injectable_intr(vcpu)) 10429 static_call(kvm_x86_enable_irq_window)(vcpu); 10430 } 10431 10432 if (is_guest_mode(vcpu) && 10433 kvm_x86_ops.nested_ops->has_events && 10434 kvm_x86_ops.nested_ops->has_events(vcpu)) 10435 *req_immediate_exit = true; 10436 10437 /* 10438 * KVM must never queue a new exception while injecting an event; KVM 10439 * is done emulating and should only propagate the to-be-injected event 10440 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10441 * infinite loop as KVM will bail from VM-Enter to inject the pending 10442 * exception and start the cycle all over. 10443 * 10444 * Exempt triple faults as they have special handling and won't put the 10445 * vCPU into an infinite loop. Triple fault can be queued when running 10446 * VMX without unrestricted guest, as that requires KVM to emulate Real 10447 * Mode events (see kvm_inject_realmode_interrupt()). 10448 */ 10449 WARN_ON_ONCE(vcpu->arch.exception.pending || 10450 vcpu->arch.exception_vmexit.pending); 10451 return 0; 10452 10453 out: 10454 if (r == -EBUSY) { 10455 *req_immediate_exit = true; 10456 r = 0; 10457 } 10458 return r; 10459 } 10460 10461 static void process_nmi(struct kvm_vcpu *vcpu) 10462 { 10463 unsigned int limit; 10464 10465 /* 10466 * x86 is limited to one NMI pending, but because KVM can't react to 10467 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10468 * scheduled out, KVM needs to play nice with two queued NMIs showing 10469 * up at the same time. To handle this scenario, allow two NMIs to be 10470 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10471 * waiting for a previous NMI injection to complete (which effectively 10472 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10473 * will request an NMI window to handle the second NMI. 10474 */ 10475 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10476 limit = 1; 10477 else 10478 limit = 2; 10479 10480 /* 10481 * Adjust the limit to account for pending virtual NMIs, which aren't 10482 * tracked in vcpu->arch.nmi_pending. 10483 */ 10484 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10485 limit--; 10486 10487 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10488 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10489 10490 if (vcpu->arch.nmi_pending && 10491 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10492 vcpu->arch.nmi_pending--; 10493 10494 if (vcpu->arch.nmi_pending) 10495 kvm_make_request(KVM_REQ_EVENT, vcpu); 10496 } 10497 10498 /* Return total number of NMIs pending injection to the VM */ 10499 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10500 { 10501 return vcpu->arch.nmi_pending + 10502 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10503 } 10504 10505 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10506 unsigned long *vcpu_bitmap) 10507 { 10508 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10509 } 10510 10511 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10512 { 10513 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10514 } 10515 10516 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10517 { 10518 struct kvm_lapic *apic = vcpu->arch.apic; 10519 bool activate; 10520 10521 if (!lapic_in_kernel(vcpu)) 10522 return; 10523 10524 down_read(&vcpu->kvm->arch.apicv_update_lock); 10525 preempt_disable(); 10526 10527 /* Do not activate APICV when APIC is disabled */ 10528 activate = kvm_vcpu_apicv_activated(vcpu) && 10529 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10530 10531 if (apic->apicv_active == activate) 10532 goto out; 10533 10534 apic->apicv_active = activate; 10535 kvm_apic_update_apicv(vcpu); 10536 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10537 10538 /* 10539 * When APICv gets disabled, we may still have injected interrupts 10540 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10541 * still active when the interrupt got accepted. Make sure 10542 * kvm_check_and_inject_events() is called to check for that. 10543 */ 10544 if (!apic->apicv_active) 10545 kvm_make_request(KVM_REQ_EVENT, vcpu); 10546 10547 out: 10548 preempt_enable(); 10549 up_read(&vcpu->kvm->arch.apicv_update_lock); 10550 } 10551 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10552 10553 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10554 { 10555 if (!lapic_in_kernel(vcpu)) 10556 return; 10557 10558 /* 10559 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10560 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10561 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10562 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10563 * this case so that KVM can the AVIC doorbell to inject interrupts to 10564 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10565 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10566 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10567 * access page is sticky. 10568 */ 10569 if (apic_x2apic_mode(vcpu->arch.apic) && 10570 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10571 kvm_inhibit_apic_access_page(vcpu); 10572 10573 __kvm_vcpu_update_apicv(vcpu); 10574 } 10575 10576 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10577 enum kvm_apicv_inhibit reason, bool set) 10578 { 10579 unsigned long old, new; 10580 10581 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10582 10583 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10584 return; 10585 10586 old = new = kvm->arch.apicv_inhibit_reasons; 10587 10588 set_or_clear_apicv_inhibit(&new, reason, set); 10589 10590 if (!!old != !!new) { 10591 /* 10592 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10593 * false positives in the sanity check WARN in svm_vcpu_run(). 10594 * This task will wait for all vCPUs to ack the kick IRQ before 10595 * updating apicv_inhibit_reasons, and all other vCPUs will 10596 * block on acquiring apicv_update_lock so that vCPUs can't 10597 * redo svm_vcpu_run() without seeing the new inhibit state. 10598 * 10599 * Note, holding apicv_update_lock and taking it in the read 10600 * side (handling the request) also prevents other vCPUs from 10601 * servicing the request with a stale apicv_inhibit_reasons. 10602 */ 10603 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10604 kvm->arch.apicv_inhibit_reasons = new; 10605 if (new) { 10606 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10607 int idx = srcu_read_lock(&kvm->srcu); 10608 10609 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10610 srcu_read_unlock(&kvm->srcu, idx); 10611 } 10612 } else { 10613 kvm->arch.apicv_inhibit_reasons = new; 10614 } 10615 } 10616 10617 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10618 enum kvm_apicv_inhibit reason, bool set) 10619 { 10620 if (!enable_apicv) 10621 return; 10622 10623 down_write(&kvm->arch.apicv_update_lock); 10624 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10625 up_write(&kvm->arch.apicv_update_lock); 10626 } 10627 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10628 10629 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10630 { 10631 if (!kvm_apic_present(vcpu)) 10632 return; 10633 10634 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10635 10636 if (irqchip_split(vcpu->kvm)) 10637 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10638 else { 10639 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10640 if (ioapic_in_kernel(vcpu->kvm)) 10641 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10642 } 10643 10644 if (is_guest_mode(vcpu)) 10645 vcpu->arch.load_eoi_exitmap_pending = true; 10646 else 10647 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10648 } 10649 10650 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10651 { 10652 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10653 return; 10654 10655 #ifdef CONFIG_KVM_HYPERV 10656 if (to_hv_vcpu(vcpu)) { 10657 u64 eoi_exit_bitmap[4]; 10658 10659 bitmap_or((ulong *)eoi_exit_bitmap, 10660 vcpu->arch.ioapic_handled_vectors, 10661 to_hv_synic(vcpu)->vec_bitmap, 256); 10662 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10663 return; 10664 } 10665 #endif 10666 static_call_cond(kvm_x86_load_eoi_exitmap)( 10667 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10668 } 10669 10670 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10671 { 10672 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10673 } 10674 10675 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10676 { 10677 if (!lapic_in_kernel(vcpu)) 10678 return; 10679 10680 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10681 } 10682 10683 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10684 { 10685 smp_send_reschedule(vcpu->cpu); 10686 } 10687 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10688 10689 /* 10690 * Called within kvm->srcu read side. 10691 * Returns 1 to let vcpu_run() continue the guest execution loop without 10692 * exiting to the userspace. Otherwise, the value will be returned to the 10693 * userspace. 10694 */ 10695 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10696 { 10697 int r; 10698 bool req_int_win = 10699 dm_request_for_irq_injection(vcpu) && 10700 kvm_cpu_accept_dm_intr(vcpu); 10701 fastpath_t exit_fastpath; 10702 10703 bool req_immediate_exit = false; 10704 10705 if (kvm_request_pending(vcpu)) { 10706 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10707 r = -EIO; 10708 goto out; 10709 } 10710 10711 if (kvm_dirty_ring_check_request(vcpu)) { 10712 r = 0; 10713 goto out; 10714 } 10715 10716 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10717 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10718 r = 0; 10719 goto out; 10720 } 10721 } 10722 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10723 kvm_mmu_free_obsolete_roots(vcpu); 10724 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10725 __kvm_migrate_timers(vcpu); 10726 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10727 kvm_update_masterclock(vcpu->kvm); 10728 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10729 kvm_gen_kvmclock_update(vcpu); 10730 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10731 r = kvm_guest_time_update(vcpu); 10732 if (unlikely(r)) 10733 goto out; 10734 } 10735 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10736 kvm_mmu_sync_roots(vcpu); 10737 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10738 kvm_mmu_load_pgd(vcpu); 10739 10740 /* 10741 * Note, the order matters here, as flushing "all" TLB entries 10742 * also flushes the "current" TLB entries, i.e. servicing the 10743 * flush "all" will clear any request to flush "current". 10744 */ 10745 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10746 kvm_vcpu_flush_tlb_all(vcpu); 10747 10748 kvm_service_local_tlb_flush_requests(vcpu); 10749 10750 /* 10751 * Fall back to a "full" guest flush if Hyper-V's precise 10752 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10753 * the flushes are considered "remote" and not "local" because 10754 * the requests can be initiated from other vCPUs. 10755 */ 10756 #ifdef CONFIG_KVM_HYPERV 10757 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10758 kvm_hv_vcpu_flush_tlb(vcpu)) 10759 kvm_vcpu_flush_tlb_guest(vcpu); 10760 #endif 10761 10762 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10763 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10764 r = 0; 10765 goto out; 10766 } 10767 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10768 if (is_guest_mode(vcpu)) 10769 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10770 10771 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10772 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10773 vcpu->mmio_needed = 0; 10774 r = 0; 10775 goto out; 10776 } 10777 } 10778 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10779 /* Page is swapped out. Do synthetic halt */ 10780 vcpu->arch.apf.halted = true; 10781 r = 1; 10782 goto out; 10783 } 10784 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10785 record_steal_time(vcpu); 10786 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10787 kvm_pmu_handle_event(vcpu); 10788 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10789 kvm_pmu_deliver_pmi(vcpu); 10790 #ifdef CONFIG_KVM_SMM 10791 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10792 process_smi(vcpu); 10793 #endif 10794 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10795 process_nmi(vcpu); 10796 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10797 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10798 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10799 vcpu->arch.ioapic_handled_vectors)) { 10800 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10801 vcpu->run->eoi.vector = 10802 vcpu->arch.pending_ioapic_eoi; 10803 r = 0; 10804 goto out; 10805 } 10806 } 10807 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10808 vcpu_scan_ioapic(vcpu); 10809 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10810 vcpu_load_eoi_exitmap(vcpu); 10811 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10812 kvm_vcpu_reload_apic_access_page(vcpu); 10813 #ifdef CONFIG_KVM_HYPERV 10814 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10815 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10816 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10817 vcpu->run->system_event.ndata = 0; 10818 r = 0; 10819 goto out; 10820 } 10821 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10822 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10823 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10824 vcpu->run->system_event.ndata = 0; 10825 r = 0; 10826 goto out; 10827 } 10828 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10829 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10830 10831 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10832 vcpu->run->hyperv = hv_vcpu->exit; 10833 r = 0; 10834 goto out; 10835 } 10836 10837 /* 10838 * KVM_REQ_HV_STIMER has to be processed after 10839 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10840 * depend on the guest clock being up-to-date 10841 */ 10842 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10843 kvm_hv_process_stimers(vcpu); 10844 #endif 10845 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10846 kvm_vcpu_update_apicv(vcpu); 10847 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10848 kvm_check_async_pf_completion(vcpu); 10849 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10850 static_call(kvm_x86_msr_filter_changed)(vcpu); 10851 10852 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10853 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10854 } 10855 10856 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10857 kvm_xen_has_interrupt(vcpu)) { 10858 ++vcpu->stat.req_event; 10859 r = kvm_apic_accept_events(vcpu); 10860 if (r < 0) { 10861 r = 0; 10862 goto out; 10863 } 10864 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10865 r = 1; 10866 goto out; 10867 } 10868 10869 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10870 if (r < 0) { 10871 r = 0; 10872 goto out; 10873 } 10874 if (req_int_win) 10875 static_call(kvm_x86_enable_irq_window)(vcpu); 10876 10877 if (kvm_lapic_enabled(vcpu)) { 10878 update_cr8_intercept(vcpu); 10879 kvm_lapic_sync_to_vapic(vcpu); 10880 } 10881 } 10882 10883 r = kvm_mmu_reload(vcpu); 10884 if (unlikely(r)) { 10885 goto cancel_injection; 10886 } 10887 10888 preempt_disable(); 10889 10890 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10891 10892 /* 10893 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10894 * IPI are then delayed after guest entry, which ensures that they 10895 * result in virtual interrupt delivery. 10896 */ 10897 local_irq_disable(); 10898 10899 /* Store vcpu->apicv_active before vcpu->mode. */ 10900 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10901 10902 kvm_vcpu_srcu_read_unlock(vcpu); 10903 10904 /* 10905 * 1) We should set ->mode before checking ->requests. Please see 10906 * the comment in kvm_vcpu_exiting_guest_mode(). 10907 * 10908 * 2) For APICv, we should set ->mode before checking PID.ON. This 10909 * pairs with the memory barrier implicit in pi_test_and_set_on 10910 * (see vmx_deliver_posted_interrupt). 10911 * 10912 * 3) This also orders the write to mode from any reads to the page 10913 * tables done while the VCPU is running. Please see the comment 10914 * in kvm_flush_remote_tlbs. 10915 */ 10916 smp_mb__after_srcu_read_unlock(); 10917 10918 /* 10919 * Process pending posted interrupts to handle the case where the 10920 * notification IRQ arrived in the host, or was never sent (because the 10921 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10922 * status, KVM doesn't update assigned devices when APICv is inhibited, 10923 * i.e. they can post interrupts even if APICv is temporarily disabled. 10924 */ 10925 if (kvm_lapic_enabled(vcpu)) 10926 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10927 10928 if (kvm_vcpu_exit_request(vcpu)) { 10929 vcpu->mode = OUTSIDE_GUEST_MODE; 10930 smp_wmb(); 10931 local_irq_enable(); 10932 preempt_enable(); 10933 kvm_vcpu_srcu_read_lock(vcpu); 10934 r = 1; 10935 goto cancel_injection; 10936 } 10937 10938 if (req_immediate_exit) { 10939 kvm_make_request(KVM_REQ_EVENT, vcpu); 10940 static_call(kvm_x86_request_immediate_exit)(vcpu); 10941 } 10942 10943 fpregs_assert_state_consistent(); 10944 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10945 switch_fpu_return(); 10946 10947 if (vcpu->arch.guest_fpu.xfd_err) 10948 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10949 10950 if (unlikely(vcpu->arch.switch_db_regs)) { 10951 set_debugreg(0, 7); 10952 set_debugreg(vcpu->arch.eff_db[0], 0); 10953 set_debugreg(vcpu->arch.eff_db[1], 1); 10954 set_debugreg(vcpu->arch.eff_db[2], 2); 10955 set_debugreg(vcpu->arch.eff_db[3], 3); 10956 } else if (unlikely(hw_breakpoint_active())) { 10957 set_debugreg(0, 7); 10958 } 10959 10960 guest_timing_enter_irqoff(); 10961 10962 for (;;) { 10963 /* 10964 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10965 * update must kick and wait for all vCPUs before toggling the 10966 * per-VM state, and responding vCPUs must wait for the update 10967 * to complete before servicing KVM_REQ_APICV_UPDATE. 10968 */ 10969 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10970 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10971 10972 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10973 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10974 break; 10975 10976 if (kvm_lapic_enabled(vcpu)) 10977 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10978 10979 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10980 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10981 break; 10982 } 10983 10984 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10985 ++vcpu->stat.exits; 10986 } 10987 10988 /* 10989 * Do this here before restoring debug registers on the host. And 10990 * since we do this before handling the vmexit, a DR access vmexit 10991 * can (a) read the correct value of the debug registers, (b) set 10992 * KVM_DEBUGREG_WONT_EXIT again. 10993 */ 10994 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10995 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10996 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10997 kvm_update_dr0123(vcpu); 10998 kvm_update_dr7(vcpu); 10999 } 11000 11001 /* 11002 * If the guest has used debug registers, at least dr7 11003 * will be disabled while returning to the host. 11004 * If we don't have active breakpoints in the host, we don't 11005 * care about the messed up debug address registers. But if 11006 * we have some of them active, restore the old state. 11007 */ 11008 if (hw_breakpoint_active()) 11009 hw_breakpoint_restore(); 11010 11011 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11012 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11013 11014 vcpu->mode = OUTSIDE_GUEST_MODE; 11015 smp_wmb(); 11016 11017 /* 11018 * Sync xfd before calling handle_exit_irqoff() which may 11019 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11020 * in #NM irqoff handler). 11021 */ 11022 if (vcpu->arch.xfd_no_write_intercept) 11023 fpu_sync_guest_vmexit_xfd_state(); 11024 11025 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 11026 11027 if (vcpu->arch.guest_fpu.xfd_err) 11028 wrmsrl(MSR_IA32_XFD_ERR, 0); 11029 11030 /* 11031 * Consume any pending interrupts, including the possible source of 11032 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11033 * An instruction is required after local_irq_enable() to fully unblock 11034 * interrupts on processors that implement an interrupt shadow, the 11035 * stat.exits increment will do nicely. 11036 */ 11037 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11038 local_irq_enable(); 11039 ++vcpu->stat.exits; 11040 local_irq_disable(); 11041 kvm_after_interrupt(vcpu); 11042 11043 /* 11044 * Wait until after servicing IRQs to account guest time so that any 11045 * ticks that occurred while running the guest are properly accounted 11046 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11047 * of accounting via context tracking, but the loss of accuracy is 11048 * acceptable for all known use cases. 11049 */ 11050 guest_timing_exit_irqoff(); 11051 11052 local_irq_enable(); 11053 preempt_enable(); 11054 11055 kvm_vcpu_srcu_read_lock(vcpu); 11056 11057 /* 11058 * Profile KVM exit RIPs: 11059 */ 11060 if (unlikely(prof_on == KVM_PROFILING)) { 11061 unsigned long rip = kvm_rip_read(vcpu); 11062 profile_hit(KVM_PROFILING, (void *)rip); 11063 } 11064 11065 if (unlikely(vcpu->arch.tsc_always_catchup)) 11066 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11067 11068 if (vcpu->arch.apic_attention) 11069 kvm_lapic_sync_from_vapic(vcpu); 11070 11071 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 11072 return r; 11073 11074 cancel_injection: 11075 if (req_immediate_exit) 11076 kvm_make_request(KVM_REQ_EVENT, vcpu); 11077 static_call(kvm_x86_cancel_injection)(vcpu); 11078 if (unlikely(vcpu->arch.apic_attention)) 11079 kvm_lapic_sync_from_vapic(vcpu); 11080 out: 11081 return r; 11082 } 11083 11084 /* Called within kvm->srcu read side. */ 11085 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11086 { 11087 bool hv_timer; 11088 11089 if (!kvm_arch_vcpu_runnable(vcpu)) { 11090 /* 11091 * Switch to the software timer before halt-polling/blocking as 11092 * the guest's timer may be a break event for the vCPU, and the 11093 * hypervisor timer runs only when the CPU is in guest mode. 11094 * Switch before halt-polling so that KVM recognizes an expired 11095 * timer before blocking. 11096 */ 11097 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11098 if (hv_timer) 11099 kvm_lapic_switch_to_sw_timer(vcpu); 11100 11101 kvm_vcpu_srcu_read_unlock(vcpu); 11102 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11103 kvm_vcpu_halt(vcpu); 11104 else 11105 kvm_vcpu_block(vcpu); 11106 kvm_vcpu_srcu_read_lock(vcpu); 11107 11108 if (hv_timer) 11109 kvm_lapic_switch_to_hv_timer(vcpu); 11110 11111 /* 11112 * If the vCPU is not runnable, a signal or another host event 11113 * of some kind is pending; service it without changing the 11114 * vCPU's activity state. 11115 */ 11116 if (!kvm_arch_vcpu_runnable(vcpu)) 11117 return 1; 11118 } 11119 11120 /* 11121 * Evaluate nested events before exiting the halted state. This allows 11122 * the halt state to be recorded properly in the VMCS12's activity 11123 * state field (AMD does not have a similar field and a VM-Exit always 11124 * causes a spurious wakeup from HLT). 11125 */ 11126 if (is_guest_mode(vcpu)) { 11127 if (kvm_check_nested_events(vcpu) < 0) 11128 return 0; 11129 } 11130 11131 if (kvm_apic_accept_events(vcpu) < 0) 11132 return 0; 11133 switch(vcpu->arch.mp_state) { 11134 case KVM_MP_STATE_HALTED: 11135 case KVM_MP_STATE_AP_RESET_HOLD: 11136 vcpu->arch.pv.pv_unhalted = false; 11137 vcpu->arch.mp_state = 11138 KVM_MP_STATE_RUNNABLE; 11139 fallthrough; 11140 case KVM_MP_STATE_RUNNABLE: 11141 vcpu->arch.apf.halted = false; 11142 break; 11143 case KVM_MP_STATE_INIT_RECEIVED: 11144 break; 11145 default: 11146 WARN_ON_ONCE(1); 11147 break; 11148 } 11149 return 1; 11150 } 11151 11152 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11153 { 11154 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11155 !vcpu->arch.apf.halted); 11156 } 11157 11158 /* Called within kvm->srcu read side. */ 11159 static int vcpu_run(struct kvm_vcpu *vcpu) 11160 { 11161 int r; 11162 11163 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11164 vcpu->arch.l1tf_flush_l1d = true; 11165 11166 for (;;) { 11167 /* 11168 * If another guest vCPU requests a PV TLB flush in the middle 11169 * of instruction emulation, the rest of the emulation could 11170 * use a stale page translation. Assume that any code after 11171 * this point can start executing an instruction. 11172 */ 11173 vcpu->arch.at_instruction_boundary = false; 11174 if (kvm_vcpu_running(vcpu)) { 11175 r = vcpu_enter_guest(vcpu); 11176 } else { 11177 r = vcpu_block(vcpu); 11178 } 11179 11180 if (r <= 0) 11181 break; 11182 11183 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11184 if (kvm_xen_has_pending_events(vcpu)) 11185 kvm_xen_inject_pending_events(vcpu); 11186 11187 if (kvm_cpu_has_pending_timer(vcpu)) 11188 kvm_inject_pending_timer_irqs(vcpu); 11189 11190 if (dm_request_for_irq_injection(vcpu) && 11191 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11192 r = 0; 11193 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11194 ++vcpu->stat.request_irq_exits; 11195 break; 11196 } 11197 11198 if (__xfer_to_guest_mode_work_pending()) { 11199 kvm_vcpu_srcu_read_unlock(vcpu); 11200 r = xfer_to_guest_mode_handle_work(vcpu); 11201 kvm_vcpu_srcu_read_lock(vcpu); 11202 if (r) 11203 return r; 11204 } 11205 } 11206 11207 return r; 11208 } 11209 11210 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11211 { 11212 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11213 } 11214 11215 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11216 { 11217 BUG_ON(!vcpu->arch.pio.count); 11218 11219 return complete_emulated_io(vcpu); 11220 } 11221 11222 /* 11223 * Implements the following, as a state machine: 11224 * 11225 * read: 11226 * for each fragment 11227 * for each mmio piece in the fragment 11228 * write gpa, len 11229 * exit 11230 * copy data 11231 * execute insn 11232 * 11233 * write: 11234 * for each fragment 11235 * for each mmio piece in the fragment 11236 * write gpa, len 11237 * copy data 11238 * exit 11239 */ 11240 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11241 { 11242 struct kvm_run *run = vcpu->run; 11243 struct kvm_mmio_fragment *frag; 11244 unsigned len; 11245 11246 BUG_ON(!vcpu->mmio_needed); 11247 11248 /* Complete previous fragment */ 11249 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11250 len = min(8u, frag->len); 11251 if (!vcpu->mmio_is_write) 11252 memcpy(frag->data, run->mmio.data, len); 11253 11254 if (frag->len <= 8) { 11255 /* Switch to the next fragment. */ 11256 frag++; 11257 vcpu->mmio_cur_fragment++; 11258 } else { 11259 /* Go forward to the next mmio piece. */ 11260 frag->data += len; 11261 frag->gpa += len; 11262 frag->len -= len; 11263 } 11264 11265 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11266 vcpu->mmio_needed = 0; 11267 11268 /* FIXME: return into emulator if single-stepping. */ 11269 if (vcpu->mmio_is_write) 11270 return 1; 11271 vcpu->mmio_read_completed = 1; 11272 return complete_emulated_io(vcpu); 11273 } 11274 11275 run->exit_reason = KVM_EXIT_MMIO; 11276 run->mmio.phys_addr = frag->gpa; 11277 if (vcpu->mmio_is_write) 11278 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11279 run->mmio.len = min(8u, frag->len); 11280 run->mmio.is_write = vcpu->mmio_is_write; 11281 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11282 return 0; 11283 } 11284 11285 /* Swap (qemu) user FPU context for the guest FPU context. */ 11286 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11287 { 11288 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11289 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11290 trace_kvm_fpu(1); 11291 } 11292 11293 /* When vcpu_run ends, restore user space FPU context. */ 11294 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11295 { 11296 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11297 ++vcpu->stat.fpu_reload; 11298 trace_kvm_fpu(0); 11299 } 11300 11301 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11302 { 11303 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11304 struct kvm_run *kvm_run = vcpu->run; 11305 int r; 11306 11307 vcpu_load(vcpu); 11308 kvm_sigset_activate(vcpu); 11309 kvm_run->flags = 0; 11310 kvm_load_guest_fpu(vcpu); 11311 11312 kvm_vcpu_srcu_read_lock(vcpu); 11313 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11314 if (kvm_run->immediate_exit) { 11315 r = -EINTR; 11316 goto out; 11317 } 11318 11319 /* 11320 * Don't bother switching APIC timer emulation from the 11321 * hypervisor timer to the software timer, the only way for the 11322 * APIC timer to be active is if userspace stuffed vCPU state, 11323 * i.e. put the vCPU into a nonsensical state. Only an INIT 11324 * will transition the vCPU out of UNINITIALIZED (without more 11325 * state stuffing from userspace), which will reset the local 11326 * APIC and thus cancel the timer or drop the IRQ (if the timer 11327 * already expired). 11328 */ 11329 kvm_vcpu_srcu_read_unlock(vcpu); 11330 kvm_vcpu_block(vcpu); 11331 kvm_vcpu_srcu_read_lock(vcpu); 11332 11333 if (kvm_apic_accept_events(vcpu) < 0) { 11334 r = 0; 11335 goto out; 11336 } 11337 r = -EAGAIN; 11338 if (signal_pending(current)) { 11339 r = -EINTR; 11340 kvm_run->exit_reason = KVM_EXIT_INTR; 11341 ++vcpu->stat.signal_exits; 11342 } 11343 goto out; 11344 } 11345 11346 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11347 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11348 r = -EINVAL; 11349 goto out; 11350 } 11351 11352 if (kvm_run->kvm_dirty_regs) { 11353 r = sync_regs(vcpu); 11354 if (r != 0) 11355 goto out; 11356 } 11357 11358 /* re-sync apic's tpr */ 11359 if (!lapic_in_kernel(vcpu)) { 11360 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11361 r = -EINVAL; 11362 goto out; 11363 } 11364 } 11365 11366 /* 11367 * If userspace set a pending exception and L2 is active, convert it to 11368 * a pending VM-Exit if L1 wants to intercept the exception. 11369 */ 11370 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11371 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11372 ex->error_code)) { 11373 kvm_queue_exception_vmexit(vcpu, ex->vector, 11374 ex->has_error_code, ex->error_code, 11375 ex->has_payload, ex->payload); 11376 ex->injected = false; 11377 ex->pending = false; 11378 } 11379 vcpu->arch.exception_from_userspace = false; 11380 11381 if (unlikely(vcpu->arch.complete_userspace_io)) { 11382 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11383 vcpu->arch.complete_userspace_io = NULL; 11384 r = cui(vcpu); 11385 if (r <= 0) 11386 goto out; 11387 } else { 11388 WARN_ON_ONCE(vcpu->arch.pio.count); 11389 WARN_ON_ONCE(vcpu->mmio_needed); 11390 } 11391 11392 if (kvm_run->immediate_exit) { 11393 r = -EINTR; 11394 goto out; 11395 } 11396 11397 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11398 if (r <= 0) 11399 goto out; 11400 11401 r = vcpu_run(vcpu); 11402 11403 out: 11404 kvm_put_guest_fpu(vcpu); 11405 if (kvm_run->kvm_valid_regs) 11406 store_regs(vcpu); 11407 post_kvm_run_save(vcpu); 11408 kvm_vcpu_srcu_read_unlock(vcpu); 11409 11410 kvm_sigset_deactivate(vcpu); 11411 vcpu_put(vcpu); 11412 return r; 11413 } 11414 11415 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11416 { 11417 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11418 /* 11419 * We are here if userspace calls get_regs() in the middle of 11420 * instruction emulation. Registers state needs to be copied 11421 * back from emulation context to vcpu. Userspace shouldn't do 11422 * that usually, but some bad designed PV devices (vmware 11423 * backdoor interface) need this to work 11424 */ 11425 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11426 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11427 } 11428 regs->rax = kvm_rax_read(vcpu); 11429 regs->rbx = kvm_rbx_read(vcpu); 11430 regs->rcx = kvm_rcx_read(vcpu); 11431 regs->rdx = kvm_rdx_read(vcpu); 11432 regs->rsi = kvm_rsi_read(vcpu); 11433 regs->rdi = kvm_rdi_read(vcpu); 11434 regs->rsp = kvm_rsp_read(vcpu); 11435 regs->rbp = kvm_rbp_read(vcpu); 11436 #ifdef CONFIG_X86_64 11437 regs->r8 = kvm_r8_read(vcpu); 11438 regs->r9 = kvm_r9_read(vcpu); 11439 regs->r10 = kvm_r10_read(vcpu); 11440 regs->r11 = kvm_r11_read(vcpu); 11441 regs->r12 = kvm_r12_read(vcpu); 11442 regs->r13 = kvm_r13_read(vcpu); 11443 regs->r14 = kvm_r14_read(vcpu); 11444 regs->r15 = kvm_r15_read(vcpu); 11445 #endif 11446 11447 regs->rip = kvm_rip_read(vcpu); 11448 regs->rflags = kvm_get_rflags(vcpu); 11449 } 11450 11451 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11452 { 11453 vcpu_load(vcpu); 11454 __get_regs(vcpu, regs); 11455 vcpu_put(vcpu); 11456 return 0; 11457 } 11458 11459 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11460 { 11461 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11462 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11463 11464 kvm_rax_write(vcpu, regs->rax); 11465 kvm_rbx_write(vcpu, regs->rbx); 11466 kvm_rcx_write(vcpu, regs->rcx); 11467 kvm_rdx_write(vcpu, regs->rdx); 11468 kvm_rsi_write(vcpu, regs->rsi); 11469 kvm_rdi_write(vcpu, regs->rdi); 11470 kvm_rsp_write(vcpu, regs->rsp); 11471 kvm_rbp_write(vcpu, regs->rbp); 11472 #ifdef CONFIG_X86_64 11473 kvm_r8_write(vcpu, regs->r8); 11474 kvm_r9_write(vcpu, regs->r9); 11475 kvm_r10_write(vcpu, regs->r10); 11476 kvm_r11_write(vcpu, regs->r11); 11477 kvm_r12_write(vcpu, regs->r12); 11478 kvm_r13_write(vcpu, regs->r13); 11479 kvm_r14_write(vcpu, regs->r14); 11480 kvm_r15_write(vcpu, regs->r15); 11481 #endif 11482 11483 kvm_rip_write(vcpu, regs->rip); 11484 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11485 11486 vcpu->arch.exception.pending = false; 11487 vcpu->arch.exception_vmexit.pending = false; 11488 11489 kvm_make_request(KVM_REQ_EVENT, vcpu); 11490 } 11491 11492 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11493 { 11494 vcpu_load(vcpu); 11495 __set_regs(vcpu, regs); 11496 vcpu_put(vcpu); 11497 return 0; 11498 } 11499 11500 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11501 { 11502 struct desc_ptr dt; 11503 11504 if (vcpu->arch.guest_state_protected) 11505 goto skip_protected_regs; 11506 11507 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11508 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11509 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11510 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11511 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11512 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11513 11514 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11515 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11516 11517 static_call(kvm_x86_get_idt)(vcpu, &dt); 11518 sregs->idt.limit = dt.size; 11519 sregs->idt.base = dt.address; 11520 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11521 sregs->gdt.limit = dt.size; 11522 sregs->gdt.base = dt.address; 11523 11524 sregs->cr2 = vcpu->arch.cr2; 11525 sregs->cr3 = kvm_read_cr3(vcpu); 11526 11527 skip_protected_regs: 11528 sregs->cr0 = kvm_read_cr0(vcpu); 11529 sregs->cr4 = kvm_read_cr4(vcpu); 11530 sregs->cr8 = kvm_get_cr8(vcpu); 11531 sregs->efer = vcpu->arch.efer; 11532 sregs->apic_base = kvm_get_apic_base(vcpu); 11533 } 11534 11535 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11536 { 11537 __get_sregs_common(vcpu, sregs); 11538 11539 if (vcpu->arch.guest_state_protected) 11540 return; 11541 11542 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11543 set_bit(vcpu->arch.interrupt.nr, 11544 (unsigned long *)sregs->interrupt_bitmap); 11545 } 11546 11547 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11548 { 11549 int i; 11550 11551 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11552 11553 if (vcpu->arch.guest_state_protected) 11554 return; 11555 11556 if (is_pae_paging(vcpu)) { 11557 for (i = 0 ; i < 4 ; i++) 11558 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11559 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11560 } 11561 } 11562 11563 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11564 struct kvm_sregs *sregs) 11565 { 11566 vcpu_load(vcpu); 11567 __get_sregs(vcpu, sregs); 11568 vcpu_put(vcpu); 11569 return 0; 11570 } 11571 11572 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11573 struct kvm_mp_state *mp_state) 11574 { 11575 int r; 11576 11577 vcpu_load(vcpu); 11578 if (kvm_mpx_supported()) 11579 kvm_load_guest_fpu(vcpu); 11580 11581 r = kvm_apic_accept_events(vcpu); 11582 if (r < 0) 11583 goto out; 11584 r = 0; 11585 11586 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11587 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11588 vcpu->arch.pv.pv_unhalted) 11589 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11590 else 11591 mp_state->mp_state = vcpu->arch.mp_state; 11592 11593 out: 11594 if (kvm_mpx_supported()) 11595 kvm_put_guest_fpu(vcpu); 11596 vcpu_put(vcpu); 11597 return r; 11598 } 11599 11600 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11601 struct kvm_mp_state *mp_state) 11602 { 11603 int ret = -EINVAL; 11604 11605 vcpu_load(vcpu); 11606 11607 switch (mp_state->mp_state) { 11608 case KVM_MP_STATE_UNINITIALIZED: 11609 case KVM_MP_STATE_HALTED: 11610 case KVM_MP_STATE_AP_RESET_HOLD: 11611 case KVM_MP_STATE_INIT_RECEIVED: 11612 case KVM_MP_STATE_SIPI_RECEIVED: 11613 if (!lapic_in_kernel(vcpu)) 11614 goto out; 11615 break; 11616 11617 case KVM_MP_STATE_RUNNABLE: 11618 break; 11619 11620 default: 11621 goto out; 11622 } 11623 11624 /* 11625 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11626 * forcing the guest into INIT/SIPI if those events are supposed to be 11627 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11628 * if an SMI is pending as well. 11629 */ 11630 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11631 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11632 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11633 goto out; 11634 11635 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11636 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11637 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11638 } else 11639 vcpu->arch.mp_state = mp_state->mp_state; 11640 kvm_make_request(KVM_REQ_EVENT, vcpu); 11641 11642 ret = 0; 11643 out: 11644 vcpu_put(vcpu); 11645 return ret; 11646 } 11647 11648 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11649 int reason, bool has_error_code, u32 error_code) 11650 { 11651 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11652 int ret; 11653 11654 init_emulate_ctxt(vcpu); 11655 11656 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11657 has_error_code, error_code); 11658 if (ret) { 11659 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11660 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11661 vcpu->run->internal.ndata = 0; 11662 return 0; 11663 } 11664 11665 kvm_rip_write(vcpu, ctxt->eip); 11666 kvm_set_rflags(vcpu, ctxt->eflags); 11667 return 1; 11668 } 11669 EXPORT_SYMBOL_GPL(kvm_task_switch); 11670 11671 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11672 { 11673 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11674 /* 11675 * When EFER.LME and CR0.PG are set, the processor is in 11676 * 64-bit mode (though maybe in a 32-bit code segment). 11677 * CR4.PAE and EFER.LMA must be set. 11678 */ 11679 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11680 return false; 11681 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11682 return false; 11683 } else { 11684 /* 11685 * Not in 64-bit mode: EFER.LMA is clear and the code 11686 * segment cannot be 64-bit. 11687 */ 11688 if (sregs->efer & EFER_LMA || sregs->cs.l) 11689 return false; 11690 } 11691 11692 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11693 kvm_is_valid_cr0(vcpu, sregs->cr0); 11694 } 11695 11696 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11697 int *mmu_reset_needed, bool update_pdptrs) 11698 { 11699 struct msr_data apic_base_msr; 11700 int idx; 11701 struct desc_ptr dt; 11702 11703 if (!kvm_is_valid_sregs(vcpu, sregs)) 11704 return -EINVAL; 11705 11706 apic_base_msr.data = sregs->apic_base; 11707 apic_base_msr.host_initiated = true; 11708 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11709 return -EINVAL; 11710 11711 if (vcpu->arch.guest_state_protected) 11712 return 0; 11713 11714 dt.size = sregs->idt.limit; 11715 dt.address = sregs->idt.base; 11716 static_call(kvm_x86_set_idt)(vcpu, &dt); 11717 dt.size = sregs->gdt.limit; 11718 dt.address = sregs->gdt.base; 11719 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11720 11721 vcpu->arch.cr2 = sregs->cr2; 11722 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11723 vcpu->arch.cr3 = sregs->cr3; 11724 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11725 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11726 11727 kvm_set_cr8(vcpu, sregs->cr8); 11728 11729 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11730 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11731 11732 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11733 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11734 11735 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11736 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11737 11738 if (update_pdptrs) { 11739 idx = srcu_read_lock(&vcpu->kvm->srcu); 11740 if (is_pae_paging(vcpu)) { 11741 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11742 *mmu_reset_needed = 1; 11743 } 11744 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11745 } 11746 11747 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11748 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11749 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11750 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11751 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11752 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11753 11754 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11755 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11756 11757 update_cr8_intercept(vcpu); 11758 11759 /* Older userspace won't unhalt the vcpu on reset. */ 11760 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11761 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11762 !is_protmode(vcpu)) 11763 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11764 11765 return 0; 11766 } 11767 11768 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11769 { 11770 int pending_vec, max_bits; 11771 int mmu_reset_needed = 0; 11772 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11773 11774 if (ret) 11775 return ret; 11776 11777 if (mmu_reset_needed) { 11778 kvm_mmu_reset_context(vcpu); 11779 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11780 } 11781 11782 max_bits = KVM_NR_INTERRUPTS; 11783 pending_vec = find_first_bit( 11784 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11785 11786 if (pending_vec < max_bits) { 11787 kvm_queue_interrupt(vcpu, pending_vec, false); 11788 pr_debug("Set back pending irq %d\n", pending_vec); 11789 kvm_make_request(KVM_REQ_EVENT, vcpu); 11790 } 11791 return 0; 11792 } 11793 11794 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11795 { 11796 int mmu_reset_needed = 0; 11797 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11798 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11799 !(sregs2->efer & EFER_LMA); 11800 int i, ret; 11801 11802 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11803 return -EINVAL; 11804 11805 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11806 return -EINVAL; 11807 11808 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11809 &mmu_reset_needed, !valid_pdptrs); 11810 if (ret) 11811 return ret; 11812 11813 if (valid_pdptrs) { 11814 for (i = 0; i < 4 ; i++) 11815 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11816 11817 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11818 mmu_reset_needed = 1; 11819 vcpu->arch.pdptrs_from_userspace = true; 11820 } 11821 if (mmu_reset_needed) { 11822 kvm_mmu_reset_context(vcpu); 11823 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11824 } 11825 return 0; 11826 } 11827 11828 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11829 struct kvm_sregs *sregs) 11830 { 11831 int ret; 11832 11833 vcpu_load(vcpu); 11834 ret = __set_sregs(vcpu, sregs); 11835 vcpu_put(vcpu); 11836 return ret; 11837 } 11838 11839 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11840 { 11841 bool set = false; 11842 struct kvm_vcpu *vcpu; 11843 unsigned long i; 11844 11845 if (!enable_apicv) 11846 return; 11847 11848 down_write(&kvm->arch.apicv_update_lock); 11849 11850 kvm_for_each_vcpu(i, vcpu, kvm) { 11851 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11852 set = true; 11853 break; 11854 } 11855 } 11856 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11857 up_write(&kvm->arch.apicv_update_lock); 11858 } 11859 11860 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11861 struct kvm_guest_debug *dbg) 11862 { 11863 unsigned long rflags; 11864 int i, r; 11865 11866 if (vcpu->arch.guest_state_protected) 11867 return -EINVAL; 11868 11869 vcpu_load(vcpu); 11870 11871 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11872 r = -EBUSY; 11873 if (kvm_is_exception_pending(vcpu)) 11874 goto out; 11875 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11876 kvm_queue_exception(vcpu, DB_VECTOR); 11877 else 11878 kvm_queue_exception(vcpu, BP_VECTOR); 11879 } 11880 11881 /* 11882 * Read rflags as long as potentially injected trace flags are still 11883 * filtered out. 11884 */ 11885 rflags = kvm_get_rflags(vcpu); 11886 11887 vcpu->guest_debug = dbg->control; 11888 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11889 vcpu->guest_debug = 0; 11890 11891 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11892 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11893 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11894 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11895 } else { 11896 for (i = 0; i < KVM_NR_DB_REGS; i++) 11897 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11898 } 11899 kvm_update_dr7(vcpu); 11900 11901 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11902 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11903 11904 /* 11905 * Trigger an rflags update that will inject or remove the trace 11906 * flags. 11907 */ 11908 kvm_set_rflags(vcpu, rflags); 11909 11910 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11911 11912 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11913 11914 r = 0; 11915 11916 out: 11917 vcpu_put(vcpu); 11918 return r; 11919 } 11920 11921 /* 11922 * Translate a guest virtual address to a guest physical address. 11923 */ 11924 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11925 struct kvm_translation *tr) 11926 { 11927 unsigned long vaddr = tr->linear_address; 11928 gpa_t gpa; 11929 int idx; 11930 11931 vcpu_load(vcpu); 11932 11933 idx = srcu_read_lock(&vcpu->kvm->srcu); 11934 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11935 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11936 tr->physical_address = gpa; 11937 tr->valid = gpa != INVALID_GPA; 11938 tr->writeable = 1; 11939 tr->usermode = 0; 11940 11941 vcpu_put(vcpu); 11942 return 0; 11943 } 11944 11945 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11946 { 11947 struct fxregs_state *fxsave; 11948 11949 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11950 return 0; 11951 11952 vcpu_load(vcpu); 11953 11954 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11955 memcpy(fpu->fpr, fxsave->st_space, 128); 11956 fpu->fcw = fxsave->cwd; 11957 fpu->fsw = fxsave->swd; 11958 fpu->ftwx = fxsave->twd; 11959 fpu->last_opcode = fxsave->fop; 11960 fpu->last_ip = fxsave->rip; 11961 fpu->last_dp = fxsave->rdp; 11962 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11963 11964 vcpu_put(vcpu); 11965 return 0; 11966 } 11967 11968 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11969 { 11970 struct fxregs_state *fxsave; 11971 11972 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11973 return 0; 11974 11975 vcpu_load(vcpu); 11976 11977 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11978 11979 memcpy(fxsave->st_space, fpu->fpr, 128); 11980 fxsave->cwd = fpu->fcw; 11981 fxsave->swd = fpu->fsw; 11982 fxsave->twd = fpu->ftwx; 11983 fxsave->fop = fpu->last_opcode; 11984 fxsave->rip = fpu->last_ip; 11985 fxsave->rdp = fpu->last_dp; 11986 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11987 11988 vcpu_put(vcpu); 11989 return 0; 11990 } 11991 11992 static void store_regs(struct kvm_vcpu *vcpu) 11993 { 11994 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11995 11996 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11997 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11998 11999 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12000 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12001 12002 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12003 kvm_vcpu_ioctl_x86_get_vcpu_events( 12004 vcpu, &vcpu->run->s.regs.events); 12005 } 12006 12007 static int sync_regs(struct kvm_vcpu *vcpu) 12008 { 12009 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12010 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12011 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12012 } 12013 12014 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12015 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12016 12017 if (__set_sregs(vcpu, &sregs)) 12018 return -EINVAL; 12019 12020 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12021 } 12022 12023 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12024 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12025 12026 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12027 return -EINVAL; 12028 12029 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12030 } 12031 12032 return 0; 12033 } 12034 12035 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12036 { 12037 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12038 pr_warn_once("SMP vm created on host with unstable TSC; " 12039 "guest TSC will not be reliable\n"); 12040 12041 if (!kvm->arch.max_vcpu_ids) 12042 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12043 12044 if (id >= kvm->arch.max_vcpu_ids) 12045 return -EINVAL; 12046 12047 return static_call(kvm_x86_vcpu_precreate)(kvm); 12048 } 12049 12050 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12051 { 12052 struct page *page; 12053 int r; 12054 12055 vcpu->arch.last_vmentry_cpu = -1; 12056 vcpu->arch.regs_avail = ~0; 12057 vcpu->arch.regs_dirty = ~0; 12058 12059 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 12060 12061 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12062 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12063 else 12064 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 12065 12066 r = kvm_mmu_create(vcpu); 12067 if (r < 0) 12068 return r; 12069 12070 if (irqchip_in_kernel(vcpu->kvm)) { 12071 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 12072 if (r < 0) 12073 goto fail_mmu_destroy; 12074 12075 /* 12076 * Defer evaluating inhibits until the vCPU is first run, as 12077 * this vCPU will not get notified of any changes until this 12078 * vCPU is visible to other vCPUs (marked online and added to 12079 * the set of vCPUs). Opportunistically mark APICv active as 12080 * VMX in particularly is highly unlikely to have inhibits. 12081 * Ignore the current per-VM APICv state so that vCPU creation 12082 * is guaranteed to run with a deterministic value, the request 12083 * will ensure the vCPU gets the correct state before VM-Entry. 12084 */ 12085 if (enable_apicv) { 12086 vcpu->arch.apic->apicv_active = true; 12087 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 12088 } 12089 } else 12090 static_branch_inc(&kvm_has_noapic_vcpu); 12091 12092 r = -ENOMEM; 12093 12094 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12095 if (!page) 12096 goto fail_free_lapic; 12097 vcpu->arch.pio_data = page_address(page); 12098 12099 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12100 GFP_KERNEL_ACCOUNT); 12101 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12102 GFP_KERNEL_ACCOUNT); 12103 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12104 goto fail_free_mce_banks; 12105 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12106 12107 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12108 GFP_KERNEL_ACCOUNT)) 12109 goto fail_free_mce_banks; 12110 12111 if (!alloc_emulate_ctxt(vcpu)) 12112 goto free_wbinvd_dirty_mask; 12113 12114 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12115 pr_err("failed to allocate vcpu's fpu\n"); 12116 goto free_emulate_ctxt; 12117 } 12118 12119 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12120 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12121 12122 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12123 12124 kvm_async_pf_hash_reset(vcpu); 12125 12126 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12127 kvm_pmu_init(vcpu); 12128 12129 vcpu->arch.pending_external_vector = -1; 12130 vcpu->arch.preempted_in_kernel = false; 12131 12132 #if IS_ENABLED(CONFIG_HYPERV) 12133 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12134 #endif 12135 12136 r = static_call(kvm_x86_vcpu_create)(vcpu); 12137 if (r) 12138 goto free_guest_fpu; 12139 12140 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12141 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12142 kvm_xen_init_vcpu(vcpu); 12143 kvm_vcpu_mtrr_init(vcpu); 12144 vcpu_load(vcpu); 12145 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12146 kvm_vcpu_reset(vcpu, false); 12147 kvm_init_mmu(vcpu); 12148 vcpu_put(vcpu); 12149 return 0; 12150 12151 free_guest_fpu: 12152 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12153 free_emulate_ctxt: 12154 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12155 free_wbinvd_dirty_mask: 12156 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12157 fail_free_mce_banks: 12158 kfree(vcpu->arch.mce_banks); 12159 kfree(vcpu->arch.mci_ctl2_banks); 12160 free_page((unsigned long)vcpu->arch.pio_data); 12161 fail_free_lapic: 12162 kvm_free_lapic(vcpu); 12163 fail_mmu_destroy: 12164 kvm_mmu_destroy(vcpu); 12165 return r; 12166 } 12167 12168 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12169 { 12170 struct kvm *kvm = vcpu->kvm; 12171 12172 if (mutex_lock_killable(&vcpu->mutex)) 12173 return; 12174 vcpu_load(vcpu); 12175 kvm_synchronize_tsc(vcpu, NULL); 12176 vcpu_put(vcpu); 12177 12178 /* poll control enabled by default */ 12179 vcpu->arch.msr_kvm_poll_control = 1; 12180 12181 mutex_unlock(&vcpu->mutex); 12182 12183 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12184 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12185 KVMCLOCK_SYNC_PERIOD); 12186 } 12187 12188 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12189 { 12190 int idx; 12191 12192 kvmclock_reset(vcpu); 12193 12194 static_call(kvm_x86_vcpu_free)(vcpu); 12195 12196 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12197 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12198 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12199 12200 kvm_xen_destroy_vcpu(vcpu); 12201 kvm_hv_vcpu_uninit(vcpu); 12202 kvm_pmu_destroy(vcpu); 12203 kfree(vcpu->arch.mce_banks); 12204 kfree(vcpu->arch.mci_ctl2_banks); 12205 kvm_free_lapic(vcpu); 12206 idx = srcu_read_lock(&vcpu->kvm->srcu); 12207 kvm_mmu_destroy(vcpu); 12208 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12209 free_page((unsigned long)vcpu->arch.pio_data); 12210 kvfree(vcpu->arch.cpuid_entries); 12211 if (!lapic_in_kernel(vcpu)) 12212 static_branch_dec(&kvm_has_noapic_vcpu); 12213 } 12214 12215 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12216 { 12217 struct kvm_cpuid_entry2 *cpuid_0x1; 12218 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12219 unsigned long new_cr0; 12220 12221 /* 12222 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12223 * to handle side effects. RESET emulation hits those flows and relies 12224 * on emulated/virtualized registers, including those that are loaded 12225 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12226 * to detect improper or missing initialization. 12227 */ 12228 WARN_ON_ONCE(!init_event && 12229 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12230 12231 /* 12232 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12233 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12234 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12235 * bits), i.e. virtualization is disabled. 12236 */ 12237 if (is_guest_mode(vcpu)) 12238 kvm_leave_nested(vcpu); 12239 12240 kvm_lapic_reset(vcpu, init_event); 12241 12242 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12243 vcpu->arch.hflags = 0; 12244 12245 vcpu->arch.smi_pending = 0; 12246 vcpu->arch.smi_count = 0; 12247 atomic_set(&vcpu->arch.nmi_queued, 0); 12248 vcpu->arch.nmi_pending = 0; 12249 vcpu->arch.nmi_injected = false; 12250 kvm_clear_interrupt_queue(vcpu); 12251 kvm_clear_exception_queue(vcpu); 12252 12253 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12254 kvm_update_dr0123(vcpu); 12255 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12256 vcpu->arch.dr7 = DR7_FIXED_1; 12257 kvm_update_dr7(vcpu); 12258 12259 vcpu->arch.cr2 = 0; 12260 12261 kvm_make_request(KVM_REQ_EVENT, vcpu); 12262 vcpu->arch.apf.msr_en_val = 0; 12263 vcpu->arch.apf.msr_int_val = 0; 12264 vcpu->arch.st.msr_val = 0; 12265 12266 kvmclock_reset(vcpu); 12267 12268 kvm_clear_async_pf_completion_queue(vcpu); 12269 kvm_async_pf_hash_reset(vcpu); 12270 vcpu->arch.apf.halted = false; 12271 12272 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12273 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12274 12275 /* 12276 * All paths that lead to INIT are required to load the guest's 12277 * FPU state (because most paths are buried in KVM_RUN). 12278 */ 12279 if (init_event) 12280 kvm_put_guest_fpu(vcpu); 12281 12282 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12283 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12284 12285 if (init_event) 12286 kvm_load_guest_fpu(vcpu); 12287 } 12288 12289 if (!init_event) { 12290 vcpu->arch.smbase = 0x30000; 12291 12292 vcpu->arch.msr_misc_features_enables = 0; 12293 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12294 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12295 12296 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12297 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12298 } 12299 12300 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12301 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12302 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12303 12304 /* 12305 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12306 * if no CPUID match is found. Note, it's impossible to get a match at 12307 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12308 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12309 * on RESET. But, go through the motions in case that's ever remedied. 12310 */ 12311 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12312 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12313 12314 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12315 12316 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12317 kvm_rip_write(vcpu, 0xfff0); 12318 12319 vcpu->arch.cr3 = 0; 12320 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12321 12322 /* 12323 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12324 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12325 * (or qualify) that with a footnote stating that CD/NW are preserved. 12326 */ 12327 new_cr0 = X86_CR0_ET; 12328 if (init_event) 12329 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12330 else 12331 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12332 12333 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12334 static_call(kvm_x86_set_cr4)(vcpu, 0); 12335 static_call(kvm_x86_set_efer)(vcpu, 0); 12336 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12337 12338 /* 12339 * On the standard CR0/CR4/EFER modification paths, there are several 12340 * complex conditions determining whether the MMU has to be reset and/or 12341 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12342 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12343 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12344 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12345 */ 12346 if (old_cr0 & X86_CR0_PG) { 12347 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12348 kvm_mmu_reset_context(vcpu); 12349 } 12350 12351 /* 12352 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12353 * APM states the TLBs are untouched by INIT, but it also states that 12354 * the TLBs are flushed on "External initialization of the processor." 12355 * Flush the guest TLB regardless of vendor, there is no meaningful 12356 * benefit in relying on the guest to flush the TLB immediately after 12357 * INIT. A spurious TLB flush is benign and likely negligible from a 12358 * performance perspective. 12359 */ 12360 if (init_event) 12361 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12362 } 12363 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12364 12365 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12366 { 12367 struct kvm_segment cs; 12368 12369 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12370 cs.selector = vector << 8; 12371 cs.base = vector << 12; 12372 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12373 kvm_rip_write(vcpu, 0); 12374 } 12375 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12376 12377 int kvm_arch_hardware_enable(void) 12378 { 12379 struct kvm *kvm; 12380 struct kvm_vcpu *vcpu; 12381 unsigned long i; 12382 int ret; 12383 u64 local_tsc; 12384 u64 max_tsc = 0; 12385 bool stable, backwards_tsc = false; 12386 12387 kvm_user_return_msr_cpu_online(); 12388 12389 ret = kvm_x86_check_processor_compatibility(); 12390 if (ret) 12391 return ret; 12392 12393 ret = static_call(kvm_x86_hardware_enable)(); 12394 if (ret != 0) 12395 return ret; 12396 12397 local_tsc = rdtsc(); 12398 stable = !kvm_check_tsc_unstable(); 12399 list_for_each_entry(kvm, &vm_list, vm_list) { 12400 kvm_for_each_vcpu(i, vcpu, kvm) { 12401 if (!stable && vcpu->cpu == smp_processor_id()) 12402 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12403 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12404 backwards_tsc = true; 12405 if (vcpu->arch.last_host_tsc > max_tsc) 12406 max_tsc = vcpu->arch.last_host_tsc; 12407 } 12408 } 12409 } 12410 12411 /* 12412 * Sometimes, even reliable TSCs go backwards. This happens on 12413 * platforms that reset TSC during suspend or hibernate actions, but 12414 * maintain synchronization. We must compensate. Fortunately, we can 12415 * detect that condition here, which happens early in CPU bringup, 12416 * before any KVM threads can be running. Unfortunately, we can't 12417 * bring the TSCs fully up to date with real time, as we aren't yet far 12418 * enough into CPU bringup that we know how much real time has actually 12419 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12420 * variables that haven't been updated yet. 12421 * 12422 * So we simply find the maximum observed TSC above, then record the 12423 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12424 * the adjustment will be applied. Note that we accumulate 12425 * adjustments, in case multiple suspend cycles happen before some VCPU 12426 * gets a chance to run again. In the event that no KVM threads get a 12427 * chance to run, we will miss the entire elapsed period, as we'll have 12428 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12429 * loose cycle time. This isn't too big a deal, since the loss will be 12430 * uniform across all VCPUs (not to mention the scenario is extremely 12431 * unlikely). It is possible that a second hibernate recovery happens 12432 * much faster than a first, causing the observed TSC here to be 12433 * smaller; this would require additional padding adjustment, which is 12434 * why we set last_host_tsc to the local tsc observed here. 12435 * 12436 * N.B. - this code below runs only on platforms with reliable TSC, 12437 * as that is the only way backwards_tsc is set above. Also note 12438 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12439 * have the same delta_cyc adjustment applied if backwards_tsc 12440 * is detected. Note further, this adjustment is only done once, 12441 * as we reset last_host_tsc on all VCPUs to stop this from being 12442 * called multiple times (one for each physical CPU bringup). 12443 * 12444 * Platforms with unreliable TSCs don't have to deal with this, they 12445 * will be compensated by the logic in vcpu_load, which sets the TSC to 12446 * catchup mode. This will catchup all VCPUs to real time, but cannot 12447 * guarantee that they stay in perfect synchronization. 12448 */ 12449 if (backwards_tsc) { 12450 u64 delta_cyc = max_tsc - local_tsc; 12451 list_for_each_entry(kvm, &vm_list, vm_list) { 12452 kvm->arch.backwards_tsc_observed = true; 12453 kvm_for_each_vcpu(i, vcpu, kvm) { 12454 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12455 vcpu->arch.last_host_tsc = local_tsc; 12456 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12457 } 12458 12459 /* 12460 * We have to disable TSC offset matching.. if you were 12461 * booting a VM while issuing an S4 host suspend.... 12462 * you may have some problem. Solving this issue is 12463 * left as an exercise to the reader. 12464 */ 12465 kvm->arch.last_tsc_nsec = 0; 12466 kvm->arch.last_tsc_write = 0; 12467 } 12468 12469 } 12470 return 0; 12471 } 12472 12473 void kvm_arch_hardware_disable(void) 12474 { 12475 static_call(kvm_x86_hardware_disable)(); 12476 drop_user_return_notifiers(); 12477 } 12478 12479 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12480 { 12481 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12482 } 12483 12484 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12485 { 12486 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12487 } 12488 12489 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12490 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12491 12492 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12493 { 12494 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12495 12496 vcpu->arch.l1tf_flush_l1d = true; 12497 if (pmu->version && unlikely(pmu->event_count)) { 12498 pmu->need_cleanup = true; 12499 kvm_make_request(KVM_REQ_PMU, vcpu); 12500 } 12501 static_call(kvm_x86_sched_in)(vcpu, cpu); 12502 } 12503 12504 void kvm_arch_free_vm(struct kvm *kvm) 12505 { 12506 #if IS_ENABLED(CONFIG_HYPERV) 12507 kfree(kvm->arch.hv_pa_pg); 12508 #endif 12509 __kvm_arch_free_vm(kvm); 12510 } 12511 12512 12513 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12514 { 12515 int ret; 12516 unsigned long flags; 12517 12518 if (!kvm_is_vm_type_supported(type)) 12519 return -EINVAL; 12520 12521 kvm->arch.vm_type = type; 12522 12523 ret = kvm_page_track_init(kvm); 12524 if (ret) 12525 goto out; 12526 12527 kvm_mmu_init_vm(kvm); 12528 12529 ret = static_call(kvm_x86_vm_init)(kvm); 12530 if (ret) 12531 goto out_uninit_mmu; 12532 12533 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12534 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12535 12536 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12537 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12538 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12539 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12540 &kvm->arch.irq_sources_bitmap); 12541 12542 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12543 mutex_init(&kvm->arch.apic_map_lock); 12544 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12545 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12546 12547 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12548 pvclock_update_vm_gtod_copy(kvm); 12549 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12550 12551 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12552 kvm->arch.guest_can_read_msr_platform_info = true; 12553 kvm->arch.enable_pmu = enable_pmu; 12554 12555 #if IS_ENABLED(CONFIG_HYPERV) 12556 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12557 kvm->arch.hv_root_tdp = INVALID_PAGE; 12558 #endif 12559 12560 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12561 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12562 12563 kvm_apicv_init(kvm); 12564 kvm_hv_init_vm(kvm); 12565 kvm_xen_init_vm(kvm); 12566 12567 return 0; 12568 12569 out_uninit_mmu: 12570 kvm_mmu_uninit_vm(kvm); 12571 kvm_page_track_cleanup(kvm); 12572 out: 12573 return ret; 12574 } 12575 12576 int kvm_arch_post_init_vm(struct kvm *kvm) 12577 { 12578 return kvm_mmu_post_init_vm(kvm); 12579 } 12580 12581 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12582 { 12583 vcpu_load(vcpu); 12584 kvm_mmu_unload(vcpu); 12585 vcpu_put(vcpu); 12586 } 12587 12588 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12589 { 12590 unsigned long i; 12591 struct kvm_vcpu *vcpu; 12592 12593 kvm_for_each_vcpu(i, vcpu, kvm) { 12594 kvm_clear_async_pf_completion_queue(vcpu); 12595 kvm_unload_vcpu_mmu(vcpu); 12596 } 12597 } 12598 12599 void kvm_arch_sync_events(struct kvm *kvm) 12600 { 12601 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12602 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12603 kvm_free_pit(kvm); 12604 } 12605 12606 /** 12607 * __x86_set_memory_region: Setup KVM internal memory slot 12608 * 12609 * @kvm: the kvm pointer to the VM. 12610 * @id: the slot ID to setup. 12611 * @gpa: the GPA to install the slot (unused when @size == 0). 12612 * @size: the size of the slot. Set to zero to uninstall a slot. 12613 * 12614 * This function helps to setup a KVM internal memory slot. Specify 12615 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12616 * slot. The return code can be one of the following: 12617 * 12618 * HVA: on success (uninstall will return a bogus HVA) 12619 * -errno: on error 12620 * 12621 * The caller should always use IS_ERR() to check the return value 12622 * before use. Note, the KVM internal memory slots are guaranteed to 12623 * remain valid and unchanged until the VM is destroyed, i.e., the 12624 * GPA->HVA translation will not change. However, the HVA is a user 12625 * address, i.e. its accessibility is not guaranteed, and must be 12626 * accessed via __copy_{to,from}_user(). 12627 */ 12628 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12629 u32 size) 12630 { 12631 int i, r; 12632 unsigned long hva, old_npages; 12633 struct kvm_memslots *slots = kvm_memslots(kvm); 12634 struct kvm_memory_slot *slot; 12635 12636 /* Called with kvm->slots_lock held. */ 12637 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12638 return ERR_PTR_USR(-EINVAL); 12639 12640 slot = id_to_memslot(slots, id); 12641 if (size) { 12642 if (slot && slot->npages) 12643 return ERR_PTR_USR(-EEXIST); 12644 12645 /* 12646 * MAP_SHARED to prevent internal slot pages from being moved 12647 * by fork()/COW. 12648 */ 12649 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12650 MAP_SHARED | MAP_ANONYMOUS, 0); 12651 if (IS_ERR_VALUE(hva)) 12652 return (void __user *)hva; 12653 } else { 12654 if (!slot || !slot->npages) 12655 return NULL; 12656 12657 old_npages = slot->npages; 12658 hva = slot->userspace_addr; 12659 } 12660 12661 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12662 struct kvm_userspace_memory_region2 m; 12663 12664 m.slot = id | (i << 16); 12665 m.flags = 0; 12666 m.guest_phys_addr = gpa; 12667 m.userspace_addr = hva; 12668 m.memory_size = size; 12669 r = __kvm_set_memory_region(kvm, &m); 12670 if (r < 0) 12671 return ERR_PTR_USR(r); 12672 } 12673 12674 if (!size) 12675 vm_munmap(hva, old_npages * PAGE_SIZE); 12676 12677 return (void __user *)hva; 12678 } 12679 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12680 12681 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12682 { 12683 kvm_mmu_pre_destroy_vm(kvm); 12684 } 12685 12686 void kvm_arch_destroy_vm(struct kvm *kvm) 12687 { 12688 if (current->mm == kvm->mm) { 12689 /* 12690 * Free memory regions allocated on behalf of userspace, 12691 * unless the memory map has changed due to process exit 12692 * or fd copying. 12693 */ 12694 mutex_lock(&kvm->slots_lock); 12695 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12696 0, 0); 12697 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12698 0, 0); 12699 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12700 mutex_unlock(&kvm->slots_lock); 12701 } 12702 kvm_unload_vcpu_mmus(kvm); 12703 static_call_cond(kvm_x86_vm_destroy)(kvm); 12704 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12705 kvm_pic_destroy(kvm); 12706 kvm_ioapic_destroy(kvm); 12707 kvm_destroy_vcpus(kvm); 12708 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12709 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12710 kvm_mmu_uninit_vm(kvm); 12711 kvm_page_track_cleanup(kvm); 12712 kvm_xen_destroy_vm(kvm); 12713 kvm_hv_destroy_vm(kvm); 12714 } 12715 12716 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12717 { 12718 int i; 12719 12720 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12721 kvfree(slot->arch.rmap[i]); 12722 slot->arch.rmap[i] = NULL; 12723 } 12724 } 12725 12726 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12727 { 12728 int i; 12729 12730 memslot_rmap_free(slot); 12731 12732 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12733 kvfree(slot->arch.lpage_info[i - 1]); 12734 slot->arch.lpage_info[i - 1] = NULL; 12735 } 12736 12737 kvm_page_track_free_memslot(slot); 12738 } 12739 12740 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12741 { 12742 const int sz = sizeof(*slot->arch.rmap[0]); 12743 int i; 12744 12745 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12746 int level = i + 1; 12747 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12748 12749 if (slot->arch.rmap[i]) 12750 continue; 12751 12752 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12753 if (!slot->arch.rmap[i]) { 12754 memslot_rmap_free(slot); 12755 return -ENOMEM; 12756 } 12757 } 12758 12759 return 0; 12760 } 12761 12762 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12763 struct kvm_memory_slot *slot) 12764 { 12765 unsigned long npages = slot->npages; 12766 int i, r; 12767 12768 /* 12769 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12770 * old arrays will be freed by __kvm_set_memory_region() if installing 12771 * the new memslot is successful. 12772 */ 12773 memset(&slot->arch, 0, sizeof(slot->arch)); 12774 12775 if (kvm_memslots_have_rmaps(kvm)) { 12776 r = memslot_rmap_alloc(slot, npages); 12777 if (r) 12778 return r; 12779 } 12780 12781 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12782 struct kvm_lpage_info *linfo; 12783 unsigned long ugfn; 12784 int lpages; 12785 int level = i + 1; 12786 12787 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12788 12789 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12790 if (!linfo) 12791 goto out_free; 12792 12793 slot->arch.lpage_info[i - 1] = linfo; 12794 12795 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12796 linfo[0].disallow_lpage = 1; 12797 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12798 linfo[lpages - 1].disallow_lpage = 1; 12799 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12800 /* 12801 * If the gfn and userspace address are not aligned wrt each 12802 * other, disable large page support for this slot. 12803 */ 12804 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12805 unsigned long j; 12806 12807 for (j = 0; j < lpages; ++j) 12808 linfo[j].disallow_lpage = 1; 12809 } 12810 } 12811 12812 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12813 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12814 #endif 12815 12816 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12817 goto out_free; 12818 12819 return 0; 12820 12821 out_free: 12822 memslot_rmap_free(slot); 12823 12824 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12825 kvfree(slot->arch.lpage_info[i - 1]); 12826 slot->arch.lpage_info[i - 1] = NULL; 12827 } 12828 return -ENOMEM; 12829 } 12830 12831 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12832 { 12833 struct kvm_vcpu *vcpu; 12834 unsigned long i; 12835 12836 /* 12837 * memslots->generation has been incremented. 12838 * mmio generation may have reached its maximum value. 12839 */ 12840 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12841 12842 /* Force re-initialization of steal_time cache */ 12843 kvm_for_each_vcpu(i, vcpu, kvm) 12844 kvm_vcpu_kick(vcpu); 12845 } 12846 12847 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12848 const struct kvm_memory_slot *old, 12849 struct kvm_memory_slot *new, 12850 enum kvm_mr_change change) 12851 { 12852 /* 12853 * KVM doesn't support moving memslots when there are external page 12854 * trackers attached to the VM, i.e. if KVMGT is in use. 12855 */ 12856 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12857 return -EINVAL; 12858 12859 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12860 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12861 return -EINVAL; 12862 12863 return kvm_alloc_memslot_metadata(kvm, new); 12864 } 12865 12866 if (change == KVM_MR_FLAGS_ONLY) 12867 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12868 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12869 return -EIO; 12870 12871 return 0; 12872 } 12873 12874 12875 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12876 { 12877 int nr_slots; 12878 12879 if (!kvm_x86_ops.cpu_dirty_log_size) 12880 return; 12881 12882 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12883 if ((enable && nr_slots == 1) || !nr_slots) 12884 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12885 } 12886 12887 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12888 struct kvm_memory_slot *old, 12889 const struct kvm_memory_slot *new, 12890 enum kvm_mr_change change) 12891 { 12892 u32 old_flags = old ? old->flags : 0; 12893 u32 new_flags = new ? new->flags : 0; 12894 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12895 12896 /* 12897 * Update CPU dirty logging if dirty logging is being toggled. This 12898 * applies to all operations. 12899 */ 12900 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12901 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12902 12903 /* 12904 * Nothing more to do for RO slots (which can't be dirtied and can't be 12905 * made writable) or CREATE/MOVE/DELETE of a slot. 12906 * 12907 * For a memslot with dirty logging disabled: 12908 * CREATE: No dirty mappings will already exist. 12909 * MOVE/DELETE: The old mappings will already have been cleaned up by 12910 * kvm_arch_flush_shadow_memslot() 12911 * 12912 * For a memslot with dirty logging enabled: 12913 * CREATE: No shadow pages exist, thus nothing to write-protect 12914 * and no dirty bits to clear. 12915 * MOVE/DELETE: The old mappings will already have been cleaned up by 12916 * kvm_arch_flush_shadow_memslot(). 12917 */ 12918 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12919 return; 12920 12921 /* 12922 * READONLY and non-flags changes were filtered out above, and the only 12923 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12924 * logging isn't being toggled on or off. 12925 */ 12926 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12927 return; 12928 12929 if (!log_dirty_pages) { 12930 /* 12931 * Dirty logging tracks sptes in 4k granularity, meaning that 12932 * large sptes have to be split. If live migration succeeds, 12933 * the guest in the source machine will be destroyed and large 12934 * sptes will be created in the destination. However, if the 12935 * guest continues to run in the source machine (for example if 12936 * live migration fails), small sptes will remain around and 12937 * cause bad performance. 12938 * 12939 * Scan sptes if dirty logging has been stopped, dropping those 12940 * which can be collapsed into a single large-page spte. Later 12941 * page faults will create the large-page sptes. 12942 */ 12943 kvm_mmu_zap_collapsible_sptes(kvm, new); 12944 } else { 12945 /* 12946 * Initially-all-set does not require write protecting any page, 12947 * because they're all assumed to be dirty. 12948 */ 12949 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12950 return; 12951 12952 if (READ_ONCE(eager_page_split)) 12953 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12954 12955 if (kvm_x86_ops.cpu_dirty_log_size) { 12956 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12957 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12958 } else { 12959 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12960 } 12961 12962 /* 12963 * Unconditionally flush the TLBs after enabling dirty logging. 12964 * A flush is almost always going to be necessary (see below), 12965 * and unconditionally flushing allows the helpers to omit 12966 * the subtly complex checks when removing write access. 12967 * 12968 * Do the flush outside of mmu_lock to reduce the amount of 12969 * time mmu_lock is held. Flushing after dropping mmu_lock is 12970 * safe as KVM only needs to guarantee the slot is fully 12971 * write-protected before returning to userspace, i.e. before 12972 * userspace can consume the dirty status. 12973 * 12974 * Flushing outside of mmu_lock requires KVM to be careful when 12975 * making decisions based on writable status of an SPTE, e.g. a 12976 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12977 * 12978 * Specifically, KVM also write-protects guest page tables to 12979 * monitor changes when using shadow paging, and must guarantee 12980 * no CPUs can write to those page before mmu_lock is dropped. 12981 * Because CPUs may have stale TLB entries at this point, a 12982 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12983 * 12984 * KVM also allows making SPTES writable outside of mmu_lock, 12985 * e.g. to allow dirty logging without taking mmu_lock. 12986 * 12987 * To handle these scenarios, KVM uses a separate software-only 12988 * bit (MMU-writable) to track if a SPTE is !writable due to 12989 * a guest page table being write-protected (KVM clears the 12990 * MMU-writable flag when write-protecting for shadow paging). 12991 * 12992 * The use of MMU-writable is also the primary motivation for 12993 * the unconditional flush. Because KVM must guarantee that a 12994 * CPU doesn't contain stale, writable TLB entries for a 12995 * !MMU-writable SPTE, KVM must flush if it encounters any 12996 * MMU-writable SPTE regardless of whether the actual hardware 12997 * writable bit was set. I.e. KVM is almost guaranteed to need 12998 * to flush, while unconditionally flushing allows the "remove 12999 * write access" helpers to ignore MMU-writable entirely. 13000 * 13001 * See is_writable_pte() for more details (the case involving 13002 * access-tracked SPTEs is particularly relevant). 13003 */ 13004 kvm_flush_remote_tlbs_memslot(kvm, new); 13005 } 13006 } 13007 13008 void kvm_arch_commit_memory_region(struct kvm *kvm, 13009 struct kvm_memory_slot *old, 13010 const struct kvm_memory_slot *new, 13011 enum kvm_mr_change change) 13012 { 13013 if (change == KVM_MR_DELETE) 13014 kvm_page_track_delete_slot(kvm, old); 13015 13016 if (!kvm->arch.n_requested_mmu_pages && 13017 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13018 unsigned long nr_mmu_pages; 13019 13020 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13021 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13022 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13023 } 13024 13025 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13026 13027 /* Free the arrays associated with the old memslot. */ 13028 if (change == KVM_MR_MOVE) 13029 kvm_arch_free_memslot(kvm, old); 13030 } 13031 13032 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 13033 { 13034 return (is_guest_mode(vcpu) && 13035 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 13036 } 13037 13038 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 13039 { 13040 if (!list_empty_careful(&vcpu->async_pf.done)) 13041 return true; 13042 13043 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 13044 kvm_apic_init_sipi_allowed(vcpu)) 13045 return true; 13046 13047 if (vcpu->arch.pv.pv_unhalted) 13048 return true; 13049 13050 if (kvm_is_exception_pending(vcpu)) 13051 return true; 13052 13053 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13054 (vcpu->arch.nmi_pending && 13055 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 13056 return true; 13057 13058 #ifdef CONFIG_KVM_SMM 13059 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 13060 (vcpu->arch.smi_pending && 13061 static_call(kvm_x86_smi_allowed)(vcpu, false))) 13062 return true; 13063 #endif 13064 13065 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 13066 return true; 13067 13068 if (kvm_arch_interrupt_allowed(vcpu) && 13069 (kvm_cpu_has_interrupt(vcpu) || 13070 kvm_guest_apic_has_interrupt(vcpu))) 13071 return true; 13072 13073 if (kvm_hv_has_stimer_pending(vcpu)) 13074 return true; 13075 13076 if (is_guest_mode(vcpu) && 13077 kvm_x86_ops.nested_ops->has_events && 13078 kvm_x86_ops.nested_ops->has_events(vcpu)) 13079 return true; 13080 13081 if (kvm_xen_has_pending_events(vcpu)) 13082 return true; 13083 13084 return false; 13085 } 13086 13087 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 13088 { 13089 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 13090 } 13091 13092 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 13093 { 13094 if (kvm_vcpu_apicv_active(vcpu) && 13095 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 13096 return true; 13097 13098 return false; 13099 } 13100 13101 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 13102 { 13103 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 13104 return true; 13105 13106 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13107 #ifdef CONFIG_KVM_SMM 13108 kvm_test_request(KVM_REQ_SMI, vcpu) || 13109 #endif 13110 kvm_test_request(KVM_REQ_EVENT, vcpu)) 13111 return true; 13112 13113 return kvm_arch_dy_has_pending_interrupt(vcpu); 13114 } 13115 13116 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13117 { 13118 if (vcpu->arch.guest_state_protected) 13119 return true; 13120 13121 if (vcpu != kvm_get_running_vcpu()) 13122 return vcpu->arch.preempted_in_kernel; 13123 13124 return static_call(kvm_x86_get_cpl)(vcpu) == 0; 13125 } 13126 13127 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13128 { 13129 return kvm_rip_read(vcpu); 13130 } 13131 13132 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13133 { 13134 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13135 } 13136 13137 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13138 { 13139 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 13140 } 13141 13142 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13143 { 13144 /* Can't read the RIP when guest state is protected, just return 0 */ 13145 if (vcpu->arch.guest_state_protected) 13146 return 0; 13147 13148 if (is_64_bit_mode(vcpu)) 13149 return kvm_rip_read(vcpu); 13150 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13151 kvm_rip_read(vcpu)); 13152 } 13153 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13154 13155 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13156 { 13157 return kvm_get_linear_rip(vcpu) == linear_rip; 13158 } 13159 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13160 13161 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13162 { 13163 unsigned long rflags; 13164 13165 rflags = static_call(kvm_x86_get_rflags)(vcpu); 13166 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13167 rflags &= ~X86_EFLAGS_TF; 13168 return rflags; 13169 } 13170 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13171 13172 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13173 { 13174 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13175 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13176 rflags |= X86_EFLAGS_TF; 13177 static_call(kvm_x86_set_rflags)(vcpu, rflags); 13178 } 13179 13180 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13181 { 13182 __kvm_set_rflags(vcpu, rflags); 13183 kvm_make_request(KVM_REQ_EVENT, vcpu); 13184 } 13185 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13186 13187 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13188 { 13189 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13190 13191 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13192 } 13193 13194 static inline u32 kvm_async_pf_next_probe(u32 key) 13195 { 13196 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13197 } 13198 13199 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13200 { 13201 u32 key = kvm_async_pf_hash_fn(gfn); 13202 13203 while (vcpu->arch.apf.gfns[key] != ~0) 13204 key = kvm_async_pf_next_probe(key); 13205 13206 vcpu->arch.apf.gfns[key] = gfn; 13207 } 13208 13209 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13210 { 13211 int i; 13212 u32 key = kvm_async_pf_hash_fn(gfn); 13213 13214 for (i = 0; i < ASYNC_PF_PER_VCPU && 13215 (vcpu->arch.apf.gfns[key] != gfn && 13216 vcpu->arch.apf.gfns[key] != ~0); i++) 13217 key = kvm_async_pf_next_probe(key); 13218 13219 return key; 13220 } 13221 13222 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13223 { 13224 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13225 } 13226 13227 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13228 { 13229 u32 i, j, k; 13230 13231 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13232 13233 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13234 return; 13235 13236 while (true) { 13237 vcpu->arch.apf.gfns[i] = ~0; 13238 do { 13239 j = kvm_async_pf_next_probe(j); 13240 if (vcpu->arch.apf.gfns[j] == ~0) 13241 return; 13242 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13243 /* 13244 * k lies cyclically in ]i,j] 13245 * | i.k.j | 13246 * |....j i.k.| or |.k..j i...| 13247 */ 13248 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13249 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13250 i = j; 13251 } 13252 } 13253 13254 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13255 { 13256 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13257 13258 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13259 sizeof(reason)); 13260 } 13261 13262 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13263 { 13264 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13265 13266 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13267 &token, offset, sizeof(token)); 13268 } 13269 13270 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13271 { 13272 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13273 u32 val; 13274 13275 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13276 &val, offset, sizeof(val))) 13277 return false; 13278 13279 return !val; 13280 } 13281 13282 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13283 { 13284 13285 if (!kvm_pv_async_pf_enabled(vcpu)) 13286 return false; 13287 13288 if (vcpu->arch.apf.send_user_only && 13289 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13290 return false; 13291 13292 if (is_guest_mode(vcpu)) { 13293 /* 13294 * L1 needs to opt into the special #PF vmexits that are 13295 * used to deliver async page faults. 13296 */ 13297 return vcpu->arch.apf.delivery_as_pf_vmexit; 13298 } else { 13299 /* 13300 * Play it safe in case the guest temporarily disables paging. 13301 * The real mode IDT in particular is unlikely to have a #PF 13302 * exception setup. 13303 */ 13304 return is_paging(vcpu); 13305 } 13306 } 13307 13308 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13309 { 13310 if (unlikely(!lapic_in_kernel(vcpu) || 13311 kvm_event_needs_reinjection(vcpu) || 13312 kvm_is_exception_pending(vcpu))) 13313 return false; 13314 13315 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13316 return false; 13317 13318 /* 13319 * If interrupts are off we cannot even use an artificial 13320 * halt state. 13321 */ 13322 return kvm_arch_interrupt_allowed(vcpu); 13323 } 13324 13325 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13326 struct kvm_async_pf *work) 13327 { 13328 struct x86_exception fault; 13329 13330 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13331 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13332 13333 if (kvm_can_deliver_async_pf(vcpu) && 13334 !apf_put_user_notpresent(vcpu)) { 13335 fault.vector = PF_VECTOR; 13336 fault.error_code_valid = true; 13337 fault.error_code = 0; 13338 fault.nested_page_fault = false; 13339 fault.address = work->arch.token; 13340 fault.async_page_fault = true; 13341 kvm_inject_page_fault(vcpu, &fault); 13342 return true; 13343 } else { 13344 /* 13345 * It is not possible to deliver a paravirtualized asynchronous 13346 * page fault, but putting the guest in an artificial halt state 13347 * can be beneficial nevertheless: if an interrupt arrives, we 13348 * can deliver it timely and perhaps the guest will schedule 13349 * another process. When the instruction that triggered a page 13350 * fault is retried, hopefully the page will be ready in the host. 13351 */ 13352 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13353 return false; 13354 } 13355 } 13356 13357 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13358 struct kvm_async_pf *work) 13359 { 13360 struct kvm_lapic_irq irq = { 13361 .delivery_mode = APIC_DM_FIXED, 13362 .vector = vcpu->arch.apf.vec 13363 }; 13364 13365 if (work->wakeup_all) 13366 work->arch.token = ~0; /* broadcast wakeup */ 13367 else 13368 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13369 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13370 13371 if ((work->wakeup_all || work->notpresent_injected) && 13372 kvm_pv_async_pf_enabled(vcpu) && 13373 !apf_put_user_ready(vcpu, work->arch.token)) { 13374 vcpu->arch.apf.pageready_pending = true; 13375 kvm_apic_set_irq(vcpu, &irq, NULL); 13376 } 13377 13378 vcpu->arch.apf.halted = false; 13379 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13380 } 13381 13382 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13383 { 13384 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13385 if (!vcpu->arch.apf.pageready_pending) 13386 kvm_vcpu_kick(vcpu); 13387 } 13388 13389 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13390 { 13391 if (!kvm_pv_async_pf_enabled(vcpu)) 13392 return true; 13393 else 13394 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13395 } 13396 13397 void kvm_arch_start_assignment(struct kvm *kvm) 13398 { 13399 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13400 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13401 } 13402 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13403 13404 void kvm_arch_end_assignment(struct kvm *kvm) 13405 { 13406 atomic_dec(&kvm->arch.assigned_device_count); 13407 } 13408 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13409 13410 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13411 { 13412 return raw_atomic_read(&kvm->arch.assigned_device_count); 13413 } 13414 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13415 13416 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13417 { 13418 /* 13419 * Non-coherent DMA assignment and de-assignment will affect 13420 * whether KVM honors guest MTRRs and cause changes in memtypes 13421 * in TDP. 13422 * So, pass %true unconditionally to indicate non-coherent DMA was, 13423 * or will be involved, and that zapping SPTEs might be necessary. 13424 */ 13425 if (__kvm_mmu_honors_guest_mtrrs(true)) 13426 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13427 } 13428 13429 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13430 { 13431 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13432 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13433 } 13434 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13435 13436 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13437 { 13438 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13439 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13440 } 13441 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13442 13443 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13444 { 13445 return atomic_read(&kvm->arch.noncoherent_dma_count); 13446 } 13447 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13448 13449 bool kvm_arch_has_irq_bypass(void) 13450 { 13451 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13452 } 13453 13454 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13455 struct irq_bypass_producer *prod) 13456 { 13457 struct kvm_kernel_irqfd *irqfd = 13458 container_of(cons, struct kvm_kernel_irqfd, consumer); 13459 int ret; 13460 13461 irqfd->producer = prod; 13462 kvm_arch_start_assignment(irqfd->kvm); 13463 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13464 prod->irq, irqfd->gsi, 1); 13465 13466 if (ret) 13467 kvm_arch_end_assignment(irqfd->kvm); 13468 13469 return ret; 13470 } 13471 13472 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13473 struct irq_bypass_producer *prod) 13474 { 13475 int ret; 13476 struct kvm_kernel_irqfd *irqfd = 13477 container_of(cons, struct kvm_kernel_irqfd, consumer); 13478 13479 WARN_ON(irqfd->producer != prod); 13480 irqfd->producer = NULL; 13481 13482 /* 13483 * When producer of consumer is unregistered, we change back to 13484 * remapped mode, so we can re-use the current implementation 13485 * when the irq is masked/disabled or the consumer side (KVM 13486 * int this case doesn't want to receive the interrupts. 13487 */ 13488 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13489 if (ret) 13490 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13491 " fails: %d\n", irqfd->consumer.token, ret); 13492 13493 kvm_arch_end_assignment(irqfd->kvm); 13494 } 13495 13496 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13497 uint32_t guest_irq, bool set) 13498 { 13499 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13500 } 13501 13502 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13503 struct kvm_kernel_irq_routing_entry *new) 13504 { 13505 if (new->type != KVM_IRQ_ROUTING_MSI) 13506 return true; 13507 13508 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13509 } 13510 13511 bool kvm_vector_hashing_enabled(void) 13512 { 13513 return vector_hashing; 13514 } 13515 13516 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13517 { 13518 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13519 } 13520 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13521 13522 13523 int kvm_spec_ctrl_test_value(u64 value) 13524 { 13525 /* 13526 * test that setting IA32_SPEC_CTRL to given value 13527 * is allowed by the host processor 13528 */ 13529 13530 u64 saved_value; 13531 unsigned long flags; 13532 int ret = 0; 13533 13534 local_irq_save(flags); 13535 13536 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13537 ret = 1; 13538 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13539 ret = 1; 13540 else 13541 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13542 13543 local_irq_restore(flags); 13544 13545 return ret; 13546 } 13547 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13548 13549 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13550 { 13551 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13552 struct x86_exception fault; 13553 u64 access = error_code & 13554 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13555 13556 if (!(error_code & PFERR_PRESENT_MASK) || 13557 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13558 /* 13559 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13560 * tables probably do not match the TLB. Just proceed 13561 * with the error code that the processor gave. 13562 */ 13563 fault.vector = PF_VECTOR; 13564 fault.error_code_valid = true; 13565 fault.error_code = error_code; 13566 fault.nested_page_fault = false; 13567 fault.address = gva; 13568 fault.async_page_fault = false; 13569 } 13570 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13571 } 13572 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13573 13574 /* 13575 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13576 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13577 * indicates whether exit to userspace is needed. 13578 */ 13579 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13580 struct x86_exception *e) 13581 { 13582 if (r == X86EMUL_PROPAGATE_FAULT) { 13583 if (KVM_BUG_ON(!e, vcpu->kvm)) 13584 return -EIO; 13585 13586 kvm_inject_emulated_page_fault(vcpu, e); 13587 return 1; 13588 } 13589 13590 /* 13591 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13592 * while handling a VMX instruction KVM could've handled the request 13593 * correctly by exiting to userspace and performing I/O but there 13594 * doesn't seem to be a real use-case behind such requests, just return 13595 * KVM_EXIT_INTERNAL_ERROR for now. 13596 */ 13597 kvm_prepare_emulation_failure_exit(vcpu); 13598 13599 return 0; 13600 } 13601 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13602 13603 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13604 { 13605 bool pcid_enabled; 13606 struct x86_exception e; 13607 struct { 13608 u64 pcid; 13609 u64 gla; 13610 } operand; 13611 int r; 13612 13613 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13614 if (r != X86EMUL_CONTINUE) 13615 return kvm_handle_memory_failure(vcpu, r, &e); 13616 13617 if (operand.pcid >> 12 != 0) { 13618 kvm_inject_gp(vcpu, 0); 13619 return 1; 13620 } 13621 13622 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13623 13624 switch (type) { 13625 case INVPCID_TYPE_INDIV_ADDR: 13626 /* 13627 * LAM doesn't apply to addresses that are inputs to TLB 13628 * invalidation. 13629 */ 13630 if ((!pcid_enabled && (operand.pcid != 0)) || 13631 is_noncanonical_address(operand.gla, vcpu)) { 13632 kvm_inject_gp(vcpu, 0); 13633 return 1; 13634 } 13635 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13636 return kvm_skip_emulated_instruction(vcpu); 13637 13638 case INVPCID_TYPE_SINGLE_CTXT: 13639 if (!pcid_enabled && (operand.pcid != 0)) { 13640 kvm_inject_gp(vcpu, 0); 13641 return 1; 13642 } 13643 13644 kvm_invalidate_pcid(vcpu, operand.pcid); 13645 return kvm_skip_emulated_instruction(vcpu); 13646 13647 case INVPCID_TYPE_ALL_NON_GLOBAL: 13648 /* 13649 * Currently, KVM doesn't mark global entries in the shadow 13650 * page tables, so a non-global flush just degenerates to a 13651 * global flush. If needed, we could optimize this later by 13652 * keeping track of global entries in shadow page tables. 13653 */ 13654 13655 fallthrough; 13656 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13657 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13658 return kvm_skip_emulated_instruction(vcpu); 13659 13660 default: 13661 kvm_inject_gp(vcpu, 0); 13662 return 1; 13663 } 13664 } 13665 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13666 13667 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13668 { 13669 struct kvm_run *run = vcpu->run; 13670 struct kvm_mmio_fragment *frag; 13671 unsigned int len; 13672 13673 BUG_ON(!vcpu->mmio_needed); 13674 13675 /* Complete previous fragment */ 13676 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13677 len = min(8u, frag->len); 13678 if (!vcpu->mmio_is_write) 13679 memcpy(frag->data, run->mmio.data, len); 13680 13681 if (frag->len <= 8) { 13682 /* Switch to the next fragment. */ 13683 frag++; 13684 vcpu->mmio_cur_fragment++; 13685 } else { 13686 /* Go forward to the next mmio piece. */ 13687 frag->data += len; 13688 frag->gpa += len; 13689 frag->len -= len; 13690 } 13691 13692 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13693 vcpu->mmio_needed = 0; 13694 13695 // VMG change, at this point, we're always done 13696 // RIP has already been advanced 13697 return 1; 13698 } 13699 13700 // More MMIO is needed 13701 run->mmio.phys_addr = frag->gpa; 13702 run->mmio.len = min(8u, frag->len); 13703 run->mmio.is_write = vcpu->mmio_is_write; 13704 if (run->mmio.is_write) 13705 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13706 run->exit_reason = KVM_EXIT_MMIO; 13707 13708 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13709 13710 return 0; 13711 } 13712 13713 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13714 void *data) 13715 { 13716 int handled; 13717 struct kvm_mmio_fragment *frag; 13718 13719 if (!data) 13720 return -EINVAL; 13721 13722 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13723 if (handled == bytes) 13724 return 1; 13725 13726 bytes -= handled; 13727 gpa += handled; 13728 data += handled; 13729 13730 /*TODO: Check if need to increment number of frags */ 13731 frag = vcpu->mmio_fragments; 13732 vcpu->mmio_nr_fragments = 1; 13733 frag->len = bytes; 13734 frag->gpa = gpa; 13735 frag->data = data; 13736 13737 vcpu->mmio_needed = 1; 13738 vcpu->mmio_cur_fragment = 0; 13739 13740 vcpu->run->mmio.phys_addr = gpa; 13741 vcpu->run->mmio.len = min(8u, frag->len); 13742 vcpu->run->mmio.is_write = 1; 13743 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13744 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13745 13746 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13747 13748 return 0; 13749 } 13750 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13751 13752 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13753 void *data) 13754 { 13755 int handled; 13756 struct kvm_mmio_fragment *frag; 13757 13758 if (!data) 13759 return -EINVAL; 13760 13761 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13762 if (handled == bytes) 13763 return 1; 13764 13765 bytes -= handled; 13766 gpa += handled; 13767 data += handled; 13768 13769 /*TODO: Check if need to increment number of frags */ 13770 frag = vcpu->mmio_fragments; 13771 vcpu->mmio_nr_fragments = 1; 13772 frag->len = bytes; 13773 frag->gpa = gpa; 13774 frag->data = data; 13775 13776 vcpu->mmio_needed = 1; 13777 vcpu->mmio_cur_fragment = 0; 13778 13779 vcpu->run->mmio.phys_addr = gpa; 13780 vcpu->run->mmio.len = min(8u, frag->len); 13781 vcpu->run->mmio.is_write = 0; 13782 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13783 13784 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13785 13786 return 0; 13787 } 13788 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13789 13790 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13791 { 13792 vcpu->arch.sev_pio_count -= count; 13793 vcpu->arch.sev_pio_data += count * size; 13794 } 13795 13796 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13797 unsigned int port); 13798 13799 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13800 { 13801 int size = vcpu->arch.pio.size; 13802 int port = vcpu->arch.pio.port; 13803 13804 vcpu->arch.pio.count = 0; 13805 if (vcpu->arch.sev_pio_count) 13806 return kvm_sev_es_outs(vcpu, size, port); 13807 return 1; 13808 } 13809 13810 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13811 unsigned int port) 13812 { 13813 for (;;) { 13814 unsigned int count = 13815 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13816 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13817 13818 /* memcpy done already by emulator_pio_out. */ 13819 advance_sev_es_emulated_pio(vcpu, count, size); 13820 if (!ret) 13821 break; 13822 13823 /* Emulation done by the kernel. */ 13824 if (!vcpu->arch.sev_pio_count) 13825 return 1; 13826 } 13827 13828 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13829 return 0; 13830 } 13831 13832 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13833 unsigned int port); 13834 13835 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13836 { 13837 unsigned count = vcpu->arch.pio.count; 13838 int size = vcpu->arch.pio.size; 13839 int port = vcpu->arch.pio.port; 13840 13841 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13842 advance_sev_es_emulated_pio(vcpu, count, size); 13843 if (vcpu->arch.sev_pio_count) 13844 return kvm_sev_es_ins(vcpu, size, port); 13845 return 1; 13846 } 13847 13848 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13849 unsigned int port) 13850 { 13851 for (;;) { 13852 unsigned int count = 13853 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13854 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13855 break; 13856 13857 /* Emulation done by the kernel. */ 13858 advance_sev_es_emulated_pio(vcpu, count, size); 13859 if (!vcpu->arch.sev_pio_count) 13860 return 1; 13861 } 13862 13863 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13864 return 0; 13865 } 13866 13867 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13868 unsigned int port, void *data, unsigned int count, 13869 int in) 13870 { 13871 vcpu->arch.sev_pio_data = data; 13872 vcpu->arch.sev_pio_count = count; 13873 return in ? kvm_sev_es_ins(vcpu, size, port) 13874 : kvm_sev_es_outs(vcpu, size, port); 13875 } 13876 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13877 13878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13906 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13907 13908 static int __init kvm_x86_init(void) 13909 { 13910 kvm_mmu_x86_module_init(); 13911 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13912 return 0; 13913 } 13914 module_init(kvm_x86_init); 13915 13916 static void __exit kvm_x86_exit(void) 13917 { 13918 /* 13919 * If module_init() is implemented, module_exit() must also be 13920 * implemented to allow module unload. 13921 */ 13922 } 13923 module_exit(kvm_x86_exit); 13924