1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/mem_encrypt.h> 58 59 #include <trace/events/kvm.h> 60 61 #include <asm/debugreg.h> 62 #include <asm/msr.h> 63 #include <asm/desc.h> 64 #include <asm/mce.h> 65 #include <linux/kernel_stat.h> 66 #include <asm/fpu/internal.h> /* Ugh! */ 67 #include <asm/pvclock.h> 68 #include <asm/div64.h> 69 #include <asm/irq_remapping.h> 70 #include <asm/mshyperv.h> 71 #include <asm/hypervisor.h> 72 73 #define CREATE_TRACE_POINTS 74 #include "trace.h" 75 76 #define MAX_IO_MSRS 256 77 #define KVM_MAX_MCE_BANKS 32 78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 80 81 #define emul_to_vcpu(ctxt) \ 82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 83 84 /* EFER defaults: 85 * - enable syscall per default because its emulated by KVM 86 * - enable LME and LMA per default on 64 bit KVM 87 */ 88 #ifdef CONFIG_X86_64 89 static 90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 91 #else 92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 93 #endif 94 95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 97 98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 100 101 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 102 static void process_nmi(struct kvm_vcpu *vcpu); 103 static void enter_smm(struct kvm_vcpu *vcpu); 104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 105 static void store_regs(struct kvm_vcpu *vcpu); 106 static int sync_regs(struct kvm_vcpu *vcpu); 107 108 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 109 EXPORT_SYMBOL_GPL(kvm_x86_ops); 110 111 static bool __read_mostly ignore_msrs = 0; 112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 113 114 static bool __read_mostly report_ignored_msrs = true; 115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 116 117 unsigned int min_timer_period_us = 200; 118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 119 120 static bool __read_mostly kvmclock_periodic_sync = true; 121 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 122 123 bool __read_mostly kvm_has_tsc_control; 124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 125 u32 __read_mostly kvm_max_guest_tsc_khz; 126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 127 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 129 u64 __read_mostly kvm_max_tsc_scaling_ratio; 130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 131 u64 __read_mostly kvm_default_tsc_scaling_ratio; 132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 133 134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 135 static u32 __read_mostly tsc_tolerance_ppm = 250; 136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 137 138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */ 139 unsigned int __read_mostly lapic_timer_advance_ns = 0; 140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); 141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns); 142 143 static bool __read_mostly vector_hashing = true; 144 module_param(vector_hashing, bool, S_IRUGO); 145 146 bool __read_mostly enable_vmware_backdoor = false; 147 module_param(enable_vmware_backdoor, bool, S_IRUGO); 148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 149 150 static bool __read_mostly force_emulation_prefix = false; 151 module_param(force_emulation_prefix, bool, S_IRUGO); 152 153 #define KVM_NR_SHARED_MSRS 16 154 155 struct kvm_shared_msrs_global { 156 int nr; 157 u32 msrs[KVM_NR_SHARED_MSRS]; 158 }; 159 160 struct kvm_shared_msrs { 161 struct user_return_notifier urn; 162 bool registered; 163 struct kvm_shared_msr_values { 164 u64 host; 165 u64 curr; 166 } values[KVM_NR_SHARED_MSRS]; 167 }; 168 169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 170 static struct kvm_shared_msrs __percpu *shared_msrs; 171 172 struct kvm_stats_debugfs_item debugfs_entries[] = { 173 { "pf_fixed", VCPU_STAT(pf_fixed) }, 174 { "pf_guest", VCPU_STAT(pf_guest) }, 175 { "tlb_flush", VCPU_STAT(tlb_flush) }, 176 { "invlpg", VCPU_STAT(invlpg) }, 177 { "exits", VCPU_STAT(exits) }, 178 { "io_exits", VCPU_STAT(io_exits) }, 179 { "mmio_exits", VCPU_STAT(mmio_exits) }, 180 { "signal_exits", VCPU_STAT(signal_exits) }, 181 { "irq_window", VCPU_STAT(irq_window_exits) }, 182 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 183 { "halt_exits", VCPU_STAT(halt_exits) }, 184 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 185 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 186 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 187 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 188 { "hypercalls", VCPU_STAT(hypercalls) }, 189 { "request_irq", VCPU_STAT(request_irq_exits) }, 190 { "irq_exits", VCPU_STAT(irq_exits) }, 191 { "host_state_reload", VCPU_STAT(host_state_reload) }, 192 { "fpu_reload", VCPU_STAT(fpu_reload) }, 193 { "insn_emulation", VCPU_STAT(insn_emulation) }, 194 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 195 { "irq_injections", VCPU_STAT(irq_injections) }, 196 { "nmi_injections", VCPU_STAT(nmi_injections) }, 197 { "req_event", VCPU_STAT(req_event) }, 198 { "l1d_flush", VCPU_STAT(l1d_flush) }, 199 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 200 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 201 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 202 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 203 { "mmu_flooded", VM_STAT(mmu_flooded) }, 204 { "mmu_recycled", VM_STAT(mmu_recycled) }, 205 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 206 { "mmu_unsync", VM_STAT(mmu_unsync) }, 207 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 208 { "largepages", VM_STAT(lpages) }, 209 { "max_mmu_page_hash_collisions", 210 VM_STAT(max_mmu_page_hash_collisions) }, 211 { NULL } 212 }; 213 214 u64 __read_mostly host_xcr0; 215 216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 217 218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 219 { 220 int i; 221 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 222 vcpu->arch.apf.gfns[i] = ~0; 223 } 224 225 static void kvm_on_user_return(struct user_return_notifier *urn) 226 { 227 unsigned slot; 228 struct kvm_shared_msrs *locals 229 = container_of(urn, struct kvm_shared_msrs, urn); 230 struct kvm_shared_msr_values *values; 231 unsigned long flags; 232 233 /* 234 * Disabling irqs at this point since the following code could be 235 * interrupted and executed through kvm_arch_hardware_disable() 236 */ 237 local_irq_save(flags); 238 if (locals->registered) { 239 locals->registered = false; 240 user_return_notifier_unregister(urn); 241 } 242 local_irq_restore(flags); 243 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 244 values = &locals->values[slot]; 245 if (values->host != values->curr) { 246 wrmsrl(shared_msrs_global.msrs[slot], values->host); 247 values->curr = values->host; 248 } 249 } 250 } 251 252 static void shared_msr_update(unsigned slot, u32 msr) 253 { 254 u64 value; 255 unsigned int cpu = smp_processor_id(); 256 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 257 258 /* only read, and nobody should modify it at this time, 259 * so don't need lock */ 260 if (slot >= shared_msrs_global.nr) { 261 printk(KERN_ERR "kvm: invalid MSR slot!"); 262 return; 263 } 264 rdmsrl_safe(msr, &value); 265 smsr->values[slot].host = value; 266 smsr->values[slot].curr = value; 267 } 268 269 void kvm_define_shared_msr(unsigned slot, u32 msr) 270 { 271 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 272 shared_msrs_global.msrs[slot] = msr; 273 if (slot >= shared_msrs_global.nr) 274 shared_msrs_global.nr = slot + 1; 275 } 276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 277 278 static void kvm_shared_msr_cpu_online(void) 279 { 280 unsigned i; 281 282 for (i = 0; i < shared_msrs_global.nr; ++i) 283 shared_msr_update(i, shared_msrs_global.msrs[i]); 284 } 285 286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 287 { 288 unsigned int cpu = smp_processor_id(); 289 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 290 int err; 291 292 if (((value ^ smsr->values[slot].curr) & mask) == 0) 293 return 0; 294 smsr->values[slot].curr = value; 295 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 296 if (err) 297 return 1; 298 299 if (!smsr->registered) { 300 smsr->urn.on_user_return = kvm_on_user_return; 301 user_return_notifier_register(&smsr->urn); 302 smsr->registered = true; 303 } 304 return 0; 305 } 306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 307 308 static void drop_user_return_notifiers(void) 309 { 310 unsigned int cpu = smp_processor_id(); 311 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 312 313 if (smsr->registered) 314 kvm_on_user_return(&smsr->urn); 315 } 316 317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 318 { 319 return vcpu->arch.apic_base; 320 } 321 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 322 323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 324 { 325 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 326 } 327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 328 329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 330 { 331 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 332 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 333 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 334 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 335 336 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 337 return 1; 338 if (!msr_info->host_initiated) { 339 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 340 return 1; 341 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 342 return 1; 343 } 344 345 kvm_lapic_set_base(vcpu, msr_info->data); 346 return 0; 347 } 348 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 349 350 asmlinkage __visible void kvm_spurious_fault(void) 351 { 352 /* Fault while not rebooting. We want the trace. */ 353 BUG(); 354 } 355 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 356 357 #define EXCPT_BENIGN 0 358 #define EXCPT_CONTRIBUTORY 1 359 #define EXCPT_PF 2 360 361 static int exception_class(int vector) 362 { 363 switch (vector) { 364 case PF_VECTOR: 365 return EXCPT_PF; 366 case DE_VECTOR: 367 case TS_VECTOR: 368 case NP_VECTOR: 369 case SS_VECTOR: 370 case GP_VECTOR: 371 return EXCPT_CONTRIBUTORY; 372 default: 373 break; 374 } 375 return EXCPT_BENIGN; 376 } 377 378 #define EXCPT_FAULT 0 379 #define EXCPT_TRAP 1 380 #define EXCPT_ABORT 2 381 #define EXCPT_INTERRUPT 3 382 383 static int exception_type(int vector) 384 { 385 unsigned int mask; 386 387 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 388 return EXCPT_INTERRUPT; 389 390 mask = 1 << vector; 391 392 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 393 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 394 return EXCPT_TRAP; 395 396 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 397 return EXCPT_ABORT; 398 399 /* Reserved exceptions will result in fault */ 400 return EXCPT_FAULT; 401 } 402 403 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 404 unsigned nr, bool has_error, u32 error_code, 405 bool reinject) 406 { 407 u32 prev_nr; 408 int class1, class2; 409 410 kvm_make_request(KVM_REQ_EVENT, vcpu); 411 412 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 413 queue: 414 if (has_error && !is_protmode(vcpu)) 415 has_error = false; 416 if (reinject) { 417 /* 418 * On vmentry, vcpu->arch.exception.pending is only 419 * true if an event injection was blocked by 420 * nested_run_pending. In that case, however, 421 * vcpu_enter_guest requests an immediate exit, 422 * and the guest shouldn't proceed far enough to 423 * need reinjection. 424 */ 425 WARN_ON_ONCE(vcpu->arch.exception.pending); 426 vcpu->arch.exception.injected = true; 427 } else { 428 vcpu->arch.exception.pending = true; 429 vcpu->arch.exception.injected = false; 430 } 431 vcpu->arch.exception.has_error_code = has_error; 432 vcpu->arch.exception.nr = nr; 433 vcpu->arch.exception.error_code = error_code; 434 return; 435 } 436 437 /* to check exception */ 438 prev_nr = vcpu->arch.exception.nr; 439 if (prev_nr == DF_VECTOR) { 440 /* triple fault -> shutdown */ 441 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 442 return; 443 } 444 class1 = exception_class(prev_nr); 445 class2 = exception_class(nr); 446 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 447 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 448 /* 449 * Generate double fault per SDM Table 5-5. Set 450 * exception.pending = true so that the double fault 451 * can trigger a nested vmexit. 452 */ 453 vcpu->arch.exception.pending = true; 454 vcpu->arch.exception.injected = false; 455 vcpu->arch.exception.has_error_code = true; 456 vcpu->arch.exception.nr = DF_VECTOR; 457 vcpu->arch.exception.error_code = 0; 458 } else 459 /* replace previous exception with a new one in a hope 460 that instruction re-execution will regenerate lost 461 exception */ 462 goto queue; 463 } 464 465 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 466 { 467 kvm_multiple_exception(vcpu, nr, false, 0, false); 468 } 469 EXPORT_SYMBOL_GPL(kvm_queue_exception); 470 471 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 472 { 473 kvm_multiple_exception(vcpu, nr, false, 0, true); 474 } 475 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 476 477 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 478 { 479 if (err) 480 kvm_inject_gp(vcpu, 0); 481 else 482 return kvm_skip_emulated_instruction(vcpu); 483 484 return 1; 485 } 486 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 487 488 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 489 { 490 ++vcpu->stat.pf_guest; 491 vcpu->arch.exception.nested_apf = 492 is_guest_mode(vcpu) && fault->async_page_fault; 493 if (vcpu->arch.exception.nested_apf) 494 vcpu->arch.apf.nested_apf_token = fault->address; 495 else 496 vcpu->arch.cr2 = fault->address; 497 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 498 } 499 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 500 501 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 502 { 503 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 504 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 505 else 506 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 507 508 return fault->nested_page_fault; 509 } 510 511 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 512 { 513 atomic_inc(&vcpu->arch.nmi_queued); 514 kvm_make_request(KVM_REQ_NMI, vcpu); 515 } 516 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 517 518 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 519 { 520 kvm_multiple_exception(vcpu, nr, true, error_code, false); 521 } 522 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 523 524 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 525 { 526 kvm_multiple_exception(vcpu, nr, true, error_code, true); 527 } 528 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 529 530 /* 531 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 532 * a #GP and return false. 533 */ 534 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 535 { 536 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 537 return true; 538 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 539 return false; 540 } 541 EXPORT_SYMBOL_GPL(kvm_require_cpl); 542 543 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 544 { 545 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 546 return true; 547 548 kvm_queue_exception(vcpu, UD_VECTOR); 549 return false; 550 } 551 EXPORT_SYMBOL_GPL(kvm_require_dr); 552 553 /* 554 * This function will be used to read from the physical memory of the currently 555 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 556 * can read from guest physical or from the guest's guest physical memory. 557 */ 558 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 559 gfn_t ngfn, void *data, int offset, int len, 560 u32 access) 561 { 562 struct x86_exception exception; 563 gfn_t real_gfn; 564 gpa_t ngpa; 565 566 ngpa = gfn_to_gpa(ngfn); 567 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 568 if (real_gfn == UNMAPPED_GVA) 569 return -EFAULT; 570 571 real_gfn = gpa_to_gfn(real_gfn); 572 573 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 574 } 575 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 576 577 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 578 void *data, int offset, int len, u32 access) 579 { 580 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 581 data, offset, len, access); 582 } 583 584 /* 585 * Load the pae pdptrs. Return true is they are all valid. 586 */ 587 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 588 { 589 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 590 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 591 int i; 592 int ret; 593 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 594 595 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 596 offset * sizeof(u64), sizeof(pdpte), 597 PFERR_USER_MASK|PFERR_WRITE_MASK); 598 if (ret < 0) { 599 ret = 0; 600 goto out; 601 } 602 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 603 if ((pdpte[i] & PT_PRESENT_MASK) && 604 (pdpte[i] & 605 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { 606 ret = 0; 607 goto out; 608 } 609 } 610 ret = 1; 611 612 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 613 __set_bit(VCPU_EXREG_PDPTR, 614 (unsigned long *)&vcpu->arch.regs_avail); 615 __set_bit(VCPU_EXREG_PDPTR, 616 (unsigned long *)&vcpu->arch.regs_dirty); 617 out: 618 619 return ret; 620 } 621 EXPORT_SYMBOL_GPL(load_pdptrs); 622 623 bool pdptrs_changed(struct kvm_vcpu *vcpu) 624 { 625 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 626 bool changed = true; 627 int offset; 628 gfn_t gfn; 629 int r; 630 631 if (is_long_mode(vcpu) || !is_pae(vcpu)) 632 return false; 633 634 if (!test_bit(VCPU_EXREG_PDPTR, 635 (unsigned long *)&vcpu->arch.regs_avail)) 636 return true; 637 638 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 639 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 640 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 641 PFERR_USER_MASK | PFERR_WRITE_MASK); 642 if (r < 0) 643 goto out; 644 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 645 out: 646 647 return changed; 648 } 649 EXPORT_SYMBOL_GPL(pdptrs_changed); 650 651 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 652 { 653 unsigned long old_cr0 = kvm_read_cr0(vcpu); 654 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 655 656 cr0 |= X86_CR0_ET; 657 658 #ifdef CONFIG_X86_64 659 if (cr0 & 0xffffffff00000000UL) 660 return 1; 661 #endif 662 663 cr0 &= ~CR0_RESERVED_BITS; 664 665 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 666 return 1; 667 668 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 669 return 1; 670 671 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 672 #ifdef CONFIG_X86_64 673 if ((vcpu->arch.efer & EFER_LME)) { 674 int cs_db, cs_l; 675 676 if (!is_pae(vcpu)) 677 return 1; 678 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 679 if (cs_l) 680 return 1; 681 } else 682 #endif 683 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 684 kvm_read_cr3(vcpu))) 685 return 1; 686 } 687 688 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 689 return 1; 690 691 kvm_x86_ops->set_cr0(vcpu, cr0); 692 693 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 694 kvm_clear_async_pf_completion_queue(vcpu); 695 kvm_async_pf_hash_reset(vcpu); 696 } 697 698 if ((cr0 ^ old_cr0) & update_bits) 699 kvm_mmu_reset_context(vcpu); 700 701 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 702 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 703 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 704 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 705 706 return 0; 707 } 708 EXPORT_SYMBOL_GPL(kvm_set_cr0); 709 710 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 711 { 712 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 713 } 714 EXPORT_SYMBOL_GPL(kvm_lmsw); 715 716 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 717 { 718 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 719 !vcpu->guest_xcr0_loaded) { 720 /* kvm_set_xcr() also depends on this */ 721 if (vcpu->arch.xcr0 != host_xcr0) 722 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 723 vcpu->guest_xcr0_loaded = 1; 724 } 725 } 726 727 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 728 { 729 if (vcpu->guest_xcr0_loaded) { 730 if (vcpu->arch.xcr0 != host_xcr0) 731 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 732 vcpu->guest_xcr0_loaded = 0; 733 } 734 } 735 736 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 737 { 738 u64 xcr0 = xcr; 739 u64 old_xcr0 = vcpu->arch.xcr0; 740 u64 valid_bits; 741 742 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 743 if (index != XCR_XFEATURE_ENABLED_MASK) 744 return 1; 745 if (!(xcr0 & XFEATURE_MASK_FP)) 746 return 1; 747 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 748 return 1; 749 750 /* 751 * Do not allow the guest to set bits that we do not support 752 * saving. However, xcr0 bit 0 is always set, even if the 753 * emulated CPU does not support XSAVE (see fx_init). 754 */ 755 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 756 if (xcr0 & ~valid_bits) 757 return 1; 758 759 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 760 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 761 return 1; 762 763 if (xcr0 & XFEATURE_MASK_AVX512) { 764 if (!(xcr0 & XFEATURE_MASK_YMM)) 765 return 1; 766 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 767 return 1; 768 } 769 vcpu->arch.xcr0 = xcr0; 770 771 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 772 kvm_update_cpuid(vcpu); 773 return 0; 774 } 775 776 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 777 { 778 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 779 __kvm_set_xcr(vcpu, index, xcr)) { 780 kvm_inject_gp(vcpu, 0); 781 return 1; 782 } 783 return 0; 784 } 785 EXPORT_SYMBOL_GPL(kvm_set_xcr); 786 787 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 788 { 789 unsigned long old_cr4 = kvm_read_cr4(vcpu); 790 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 791 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 792 793 if (cr4 & CR4_RESERVED_BITS) 794 return 1; 795 796 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE)) 797 return 1; 798 799 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP)) 800 return 1; 801 802 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP)) 803 return 1; 804 805 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE)) 806 return 1; 807 808 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE)) 809 return 1; 810 811 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57)) 812 return 1; 813 814 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP)) 815 return 1; 816 817 if (is_long_mode(vcpu)) { 818 if (!(cr4 & X86_CR4_PAE)) 819 return 1; 820 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 821 && ((cr4 ^ old_cr4) & pdptr_bits) 822 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 823 kvm_read_cr3(vcpu))) 824 return 1; 825 826 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 827 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 828 return 1; 829 830 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 831 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 832 return 1; 833 } 834 835 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 836 return 1; 837 838 if (((cr4 ^ old_cr4) & pdptr_bits) || 839 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 840 kvm_mmu_reset_context(vcpu); 841 842 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 843 kvm_update_cpuid(vcpu); 844 845 return 0; 846 } 847 EXPORT_SYMBOL_GPL(kvm_set_cr4); 848 849 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 850 { 851 #ifdef CONFIG_X86_64 852 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 853 854 if (pcid_enabled) 855 cr3 &= ~CR3_PCID_INVD; 856 #endif 857 858 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 859 kvm_mmu_sync_roots(vcpu); 860 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 861 return 0; 862 } 863 864 if (is_long_mode(vcpu) && 865 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) 866 return 1; 867 else if (is_pae(vcpu) && is_paging(vcpu) && 868 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 869 return 1; 870 871 vcpu->arch.cr3 = cr3; 872 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 873 kvm_mmu_new_cr3(vcpu); 874 return 0; 875 } 876 EXPORT_SYMBOL_GPL(kvm_set_cr3); 877 878 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 879 { 880 if (cr8 & CR8_RESERVED_BITS) 881 return 1; 882 if (lapic_in_kernel(vcpu)) 883 kvm_lapic_set_tpr(vcpu, cr8); 884 else 885 vcpu->arch.cr8 = cr8; 886 return 0; 887 } 888 EXPORT_SYMBOL_GPL(kvm_set_cr8); 889 890 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 891 { 892 if (lapic_in_kernel(vcpu)) 893 return kvm_lapic_get_cr8(vcpu); 894 else 895 return vcpu->arch.cr8; 896 } 897 EXPORT_SYMBOL_GPL(kvm_get_cr8); 898 899 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 900 { 901 int i; 902 903 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 904 for (i = 0; i < KVM_NR_DB_REGS; i++) 905 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 906 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 907 } 908 } 909 910 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 911 { 912 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 913 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 914 } 915 916 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 917 { 918 unsigned long dr7; 919 920 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 921 dr7 = vcpu->arch.guest_debug_dr7; 922 else 923 dr7 = vcpu->arch.dr7; 924 kvm_x86_ops->set_dr7(vcpu, dr7); 925 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 926 if (dr7 & DR7_BP_EN_MASK) 927 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 928 } 929 930 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 931 { 932 u64 fixed = DR6_FIXED_1; 933 934 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 935 fixed |= DR6_RTM; 936 return fixed; 937 } 938 939 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 940 { 941 switch (dr) { 942 case 0 ... 3: 943 vcpu->arch.db[dr] = val; 944 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 945 vcpu->arch.eff_db[dr] = val; 946 break; 947 case 4: 948 /* fall through */ 949 case 6: 950 if (val & 0xffffffff00000000ULL) 951 return -1; /* #GP */ 952 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 953 kvm_update_dr6(vcpu); 954 break; 955 case 5: 956 /* fall through */ 957 default: /* 7 */ 958 if (val & 0xffffffff00000000ULL) 959 return -1; /* #GP */ 960 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 961 kvm_update_dr7(vcpu); 962 break; 963 } 964 965 return 0; 966 } 967 968 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 969 { 970 if (__kvm_set_dr(vcpu, dr, val)) { 971 kvm_inject_gp(vcpu, 0); 972 return 1; 973 } 974 return 0; 975 } 976 EXPORT_SYMBOL_GPL(kvm_set_dr); 977 978 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 979 { 980 switch (dr) { 981 case 0 ... 3: 982 *val = vcpu->arch.db[dr]; 983 break; 984 case 4: 985 /* fall through */ 986 case 6: 987 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 988 *val = vcpu->arch.dr6; 989 else 990 *val = kvm_x86_ops->get_dr6(vcpu); 991 break; 992 case 5: 993 /* fall through */ 994 default: /* 7 */ 995 *val = vcpu->arch.dr7; 996 break; 997 } 998 return 0; 999 } 1000 EXPORT_SYMBOL_GPL(kvm_get_dr); 1001 1002 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1003 { 1004 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 1005 u64 data; 1006 int err; 1007 1008 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1009 if (err) 1010 return err; 1011 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 1012 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 1013 return err; 1014 } 1015 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1016 1017 /* 1018 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1019 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1020 * 1021 * This list is modified at module load time to reflect the 1022 * capabilities of the host cpu. This capabilities test skips MSRs that are 1023 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs 1024 * may depend on host virtualization features rather than host cpu features. 1025 */ 1026 1027 static u32 msrs_to_save[] = { 1028 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1029 MSR_STAR, 1030 #ifdef CONFIG_X86_64 1031 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1032 #endif 1033 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1034 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1035 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES 1036 }; 1037 1038 static unsigned num_msrs_to_save; 1039 1040 static u32 emulated_msrs[] = { 1041 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1042 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1043 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1044 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1045 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1046 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1047 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1048 HV_X64_MSR_RESET, 1049 HV_X64_MSR_VP_INDEX, 1050 HV_X64_MSR_VP_RUNTIME, 1051 HV_X64_MSR_SCONTROL, 1052 HV_X64_MSR_STIMER0_CONFIG, 1053 HV_X64_MSR_VP_ASSIST_PAGE, 1054 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1055 HV_X64_MSR_TSC_EMULATION_STATUS, 1056 1057 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1058 MSR_KVM_PV_EOI_EN, 1059 1060 MSR_IA32_TSC_ADJUST, 1061 MSR_IA32_TSCDEADLINE, 1062 MSR_IA32_MISC_ENABLE, 1063 MSR_IA32_MCG_STATUS, 1064 MSR_IA32_MCG_CTL, 1065 MSR_IA32_MCG_EXT_CTL, 1066 MSR_IA32_SMBASE, 1067 MSR_SMI_COUNT, 1068 MSR_PLATFORM_INFO, 1069 MSR_MISC_FEATURES_ENABLES, 1070 MSR_AMD64_VIRT_SPEC_CTRL, 1071 }; 1072 1073 static unsigned num_emulated_msrs; 1074 1075 /* 1076 * List of msr numbers which are used to expose MSR-based features that 1077 * can be used by a hypervisor to validate requested CPU features. 1078 */ 1079 static u32 msr_based_features[] = { 1080 MSR_IA32_VMX_BASIC, 1081 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1082 MSR_IA32_VMX_PINBASED_CTLS, 1083 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1084 MSR_IA32_VMX_PROCBASED_CTLS, 1085 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1086 MSR_IA32_VMX_EXIT_CTLS, 1087 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1088 MSR_IA32_VMX_ENTRY_CTLS, 1089 MSR_IA32_VMX_MISC, 1090 MSR_IA32_VMX_CR0_FIXED0, 1091 MSR_IA32_VMX_CR0_FIXED1, 1092 MSR_IA32_VMX_CR4_FIXED0, 1093 MSR_IA32_VMX_CR4_FIXED1, 1094 MSR_IA32_VMX_VMCS_ENUM, 1095 MSR_IA32_VMX_PROCBASED_CTLS2, 1096 MSR_IA32_VMX_EPT_VPID_CAP, 1097 MSR_IA32_VMX_VMFUNC, 1098 1099 MSR_F10H_DECFG, 1100 MSR_IA32_UCODE_REV, 1101 MSR_IA32_ARCH_CAPABILITIES, 1102 }; 1103 1104 static unsigned int num_msr_based_features; 1105 1106 u64 kvm_get_arch_capabilities(void) 1107 { 1108 u64 data; 1109 1110 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data); 1111 1112 /* 1113 * If we're doing cache flushes (either "always" or "cond") 1114 * we will do one whenever the guest does a vmlaunch/vmresume. 1115 * If an outer hypervisor is doing the cache flush for us 1116 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1117 * capability to the guest too, and if EPT is disabled we're not 1118 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1119 * require a nested hypervisor to do a flush of its own. 1120 */ 1121 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1122 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1123 1124 return data; 1125 } 1126 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities); 1127 1128 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1129 { 1130 switch (msr->index) { 1131 case MSR_IA32_ARCH_CAPABILITIES: 1132 msr->data = kvm_get_arch_capabilities(); 1133 break; 1134 case MSR_IA32_UCODE_REV: 1135 rdmsrl_safe(msr->index, &msr->data); 1136 break; 1137 default: 1138 if (kvm_x86_ops->get_msr_feature(msr)) 1139 return 1; 1140 } 1141 return 0; 1142 } 1143 1144 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1145 { 1146 struct kvm_msr_entry msr; 1147 int r; 1148 1149 msr.index = index; 1150 r = kvm_get_msr_feature(&msr); 1151 if (r) 1152 return r; 1153 1154 *data = msr.data; 1155 1156 return 0; 1157 } 1158 1159 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1160 { 1161 if (efer & efer_reserved_bits) 1162 return false; 1163 1164 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1165 return false; 1166 1167 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1168 return false; 1169 1170 return true; 1171 } 1172 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1173 1174 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 1175 { 1176 u64 old_efer = vcpu->arch.efer; 1177 1178 if (!kvm_valid_efer(vcpu, efer)) 1179 return 1; 1180 1181 if (is_paging(vcpu) 1182 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1183 return 1; 1184 1185 efer &= ~EFER_LMA; 1186 efer |= vcpu->arch.efer & EFER_LMA; 1187 1188 kvm_x86_ops->set_efer(vcpu, efer); 1189 1190 /* Update reserved bits */ 1191 if ((efer ^ old_efer) & EFER_NX) 1192 kvm_mmu_reset_context(vcpu); 1193 1194 return 0; 1195 } 1196 1197 void kvm_enable_efer_bits(u64 mask) 1198 { 1199 efer_reserved_bits &= ~mask; 1200 } 1201 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1202 1203 /* 1204 * Writes msr value into into the appropriate "register". 1205 * Returns 0 on success, non-0 otherwise. 1206 * Assumes vcpu_load() was already called. 1207 */ 1208 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 1209 { 1210 switch (msr->index) { 1211 case MSR_FS_BASE: 1212 case MSR_GS_BASE: 1213 case MSR_KERNEL_GS_BASE: 1214 case MSR_CSTAR: 1215 case MSR_LSTAR: 1216 if (is_noncanonical_address(msr->data, vcpu)) 1217 return 1; 1218 break; 1219 case MSR_IA32_SYSENTER_EIP: 1220 case MSR_IA32_SYSENTER_ESP: 1221 /* 1222 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1223 * non-canonical address is written on Intel but not on 1224 * AMD (which ignores the top 32-bits, because it does 1225 * not implement 64-bit SYSENTER). 1226 * 1227 * 64-bit code should hence be able to write a non-canonical 1228 * value on AMD. Making the address canonical ensures that 1229 * vmentry does not fail on Intel after writing a non-canonical 1230 * value, and that something deterministic happens if the guest 1231 * invokes 64-bit SYSENTER. 1232 */ 1233 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu)); 1234 } 1235 return kvm_x86_ops->set_msr(vcpu, msr); 1236 } 1237 EXPORT_SYMBOL_GPL(kvm_set_msr); 1238 1239 /* 1240 * Adapt set_msr() to msr_io()'s calling convention 1241 */ 1242 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1243 { 1244 struct msr_data msr; 1245 int r; 1246 1247 msr.index = index; 1248 msr.host_initiated = true; 1249 r = kvm_get_msr(vcpu, &msr); 1250 if (r) 1251 return r; 1252 1253 *data = msr.data; 1254 return 0; 1255 } 1256 1257 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1258 { 1259 struct msr_data msr; 1260 1261 msr.data = *data; 1262 msr.index = index; 1263 msr.host_initiated = true; 1264 return kvm_set_msr(vcpu, &msr); 1265 } 1266 1267 #ifdef CONFIG_X86_64 1268 struct pvclock_gtod_data { 1269 seqcount_t seq; 1270 1271 struct { /* extract of a clocksource struct */ 1272 int vclock_mode; 1273 u64 cycle_last; 1274 u64 mask; 1275 u32 mult; 1276 u32 shift; 1277 } clock; 1278 1279 u64 boot_ns; 1280 u64 nsec_base; 1281 u64 wall_time_sec; 1282 }; 1283 1284 static struct pvclock_gtod_data pvclock_gtod_data; 1285 1286 static void update_pvclock_gtod(struct timekeeper *tk) 1287 { 1288 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1289 u64 boot_ns; 1290 1291 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); 1292 1293 write_seqcount_begin(&vdata->seq); 1294 1295 /* copy pvclock gtod data */ 1296 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; 1297 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1298 vdata->clock.mask = tk->tkr_mono.mask; 1299 vdata->clock.mult = tk->tkr_mono.mult; 1300 vdata->clock.shift = tk->tkr_mono.shift; 1301 1302 vdata->boot_ns = boot_ns; 1303 vdata->nsec_base = tk->tkr_mono.xtime_nsec; 1304 1305 vdata->wall_time_sec = tk->xtime_sec; 1306 1307 write_seqcount_end(&vdata->seq); 1308 } 1309 #endif 1310 1311 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1312 { 1313 /* 1314 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in 1315 * vcpu_enter_guest. This function is only called from 1316 * the physical CPU that is running vcpu. 1317 */ 1318 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1319 } 1320 1321 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1322 { 1323 int version; 1324 int r; 1325 struct pvclock_wall_clock wc; 1326 struct timespec64 boot; 1327 1328 if (!wall_clock) 1329 return; 1330 1331 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1332 if (r) 1333 return; 1334 1335 if (version & 1) 1336 ++version; /* first time write, random junk */ 1337 1338 ++version; 1339 1340 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1341 return; 1342 1343 /* 1344 * The guest calculates current wall clock time by adding 1345 * system time (updated by kvm_guest_time_update below) to the 1346 * wall clock specified here. guest system time equals host 1347 * system time for us, thus we must fill in host boot time here. 1348 */ 1349 getboottime64(&boot); 1350 1351 if (kvm->arch.kvmclock_offset) { 1352 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); 1353 boot = timespec64_sub(boot, ts); 1354 } 1355 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ 1356 wc.nsec = boot.tv_nsec; 1357 wc.version = version; 1358 1359 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1360 1361 version++; 1362 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1363 } 1364 1365 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1366 { 1367 do_shl32_div32(dividend, divisor); 1368 return dividend; 1369 } 1370 1371 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1372 s8 *pshift, u32 *pmultiplier) 1373 { 1374 uint64_t scaled64; 1375 int32_t shift = 0; 1376 uint64_t tps64; 1377 uint32_t tps32; 1378 1379 tps64 = base_hz; 1380 scaled64 = scaled_hz; 1381 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1382 tps64 >>= 1; 1383 shift--; 1384 } 1385 1386 tps32 = (uint32_t)tps64; 1387 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1388 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1389 scaled64 >>= 1; 1390 else 1391 tps32 <<= 1; 1392 shift++; 1393 } 1394 1395 *pshift = shift; 1396 *pmultiplier = div_frac(scaled64, tps32); 1397 1398 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", 1399 __func__, base_hz, scaled_hz, shift, *pmultiplier); 1400 } 1401 1402 #ifdef CONFIG_X86_64 1403 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1404 #endif 1405 1406 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1407 static unsigned long max_tsc_khz; 1408 1409 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1410 { 1411 u64 v = (u64)khz * (1000000 + ppm); 1412 do_div(v, 1000000); 1413 return v; 1414 } 1415 1416 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1417 { 1418 u64 ratio; 1419 1420 /* Guest TSC same frequency as host TSC? */ 1421 if (!scale) { 1422 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1423 return 0; 1424 } 1425 1426 /* TSC scaling supported? */ 1427 if (!kvm_has_tsc_control) { 1428 if (user_tsc_khz > tsc_khz) { 1429 vcpu->arch.tsc_catchup = 1; 1430 vcpu->arch.tsc_always_catchup = 1; 1431 return 0; 1432 } else { 1433 WARN(1, "user requested TSC rate below hardware speed\n"); 1434 return -1; 1435 } 1436 } 1437 1438 /* TSC scaling required - calculate ratio */ 1439 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1440 user_tsc_khz, tsc_khz); 1441 1442 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1443 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1444 user_tsc_khz); 1445 return -1; 1446 } 1447 1448 vcpu->arch.tsc_scaling_ratio = ratio; 1449 return 0; 1450 } 1451 1452 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1453 { 1454 u32 thresh_lo, thresh_hi; 1455 int use_scaling = 0; 1456 1457 /* tsc_khz can be zero if TSC calibration fails */ 1458 if (user_tsc_khz == 0) { 1459 /* set tsc_scaling_ratio to a safe value */ 1460 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1461 return -1; 1462 } 1463 1464 /* Compute a scale to convert nanoseconds in TSC cycles */ 1465 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1466 &vcpu->arch.virtual_tsc_shift, 1467 &vcpu->arch.virtual_tsc_mult); 1468 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1469 1470 /* 1471 * Compute the variation in TSC rate which is acceptable 1472 * within the range of tolerance and decide if the 1473 * rate being applied is within that bounds of the hardware 1474 * rate. If so, no scaling or compensation need be done. 1475 */ 1476 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1477 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1478 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1479 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1480 use_scaling = 1; 1481 } 1482 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1483 } 1484 1485 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1486 { 1487 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1488 vcpu->arch.virtual_tsc_mult, 1489 vcpu->arch.virtual_tsc_shift); 1490 tsc += vcpu->arch.this_tsc_write; 1491 return tsc; 1492 } 1493 1494 static inline int gtod_is_based_on_tsc(int mode) 1495 { 1496 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK; 1497 } 1498 1499 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1500 { 1501 #ifdef CONFIG_X86_64 1502 bool vcpus_matched; 1503 struct kvm_arch *ka = &vcpu->kvm->arch; 1504 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1505 1506 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1507 atomic_read(&vcpu->kvm->online_vcpus)); 1508 1509 /* 1510 * Once the masterclock is enabled, always perform request in 1511 * order to update it. 1512 * 1513 * In order to enable masterclock, the host clocksource must be TSC 1514 * and the vcpus need to have matched TSCs. When that happens, 1515 * perform request to enable masterclock. 1516 */ 1517 if (ka->use_master_clock || 1518 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 1519 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1520 1521 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1522 atomic_read(&vcpu->kvm->online_vcpus), 1523 ka->use_master_clock, gtod->clock.vclock_mode); 1524 #endif 1525 } 1526 1527 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1528 { 1529 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1530 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1531 } 1532 1533 /* 1534 * Multiply tsc by a fixed point number represented by ratio. 1535 * 1536 * The most significant 64-N bits (mult) of ratio represent the 1537 * integral part of the fixed point number; the remaining N bits 1538 * (frac) represent the fractional part, ie. ratio represents a fixed 1539 * point number (mult + frac * 2^(-N)). 1540 * 1541 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1542 */ 1543 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1544 { 1545 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1546 } 1547 1548 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1549 { 1550 u64 _tsc = tsc; 1551 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1552 1553 if (ratio != kvm_default_tsc_scaling_ratio) 1554 _tsc = __scale_tsc(ratio, tsc); 1555 1556 return _tsc; 1557 } 1558 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1559 1560 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1561 { 1562 u64 tsc; 1563 1564 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1565 1566 return target_tsc - tsc; 1567 } 1568 1569 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1570 { 1571 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1572 1573 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1574 } 1575 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1576 1577 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1578 { 1579 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1580 vcpu->arch.tsc_offset = offset; 1581 } 1582 1583 static inline bool kvm_check_tsc_unstable(void) 1584 { 1585 #ifdef CONFIG_X86_64 1586 /* 1587 * TSC is marked unstable when we're running on Hyper-V, 1588 * 'TSC page' clocksource is good. 1589 */ 1590 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK) 1591 return false; 1592 #endif 1593 return check_tsc_unstable(); 1594 } 1595 1596 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1597 { 1598 struct kvm *kvm = vcpu->kvm; 1599 u64 offset, ns, elapsed; 1600 unsigned long flags; 1601 bool matched; 1602 bool already_matched; 1603 u64 data = msr->data; 1604 bool synchronizing = false; 1605 1606 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1607 offset = kvm_compute_tsc_offset(vcpu, data); 1608 ns = ktime_get_boot_ns(); 1609 elapsed = ns - kvm->arch.last_tsc_nsec; 1610 1611 if (vcpu->arch.virtual_tsc_khz) { 1612 if (data == 0 && msr->host_initiated) { 1613 /* 1614 * detection of vcpu initialization -- need to sync 1615 * with other vCPUs. This particularly helps to keep 1616 * kvm_clock stable after CPU hotplug 1617 */ 1618 synchronizing = true; 1619 } else { 1620 u64 tsc_exp = kvm->arch.last_tsc_write + 1621 nsec_to_cycles(vcpu, elapsed); 1622 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 1623 /* 1624 * Special case: TSC write with a small delta (1 second) 1625 * of virtual cycle time against real time is 1626 * interpreted as an attempt to synchronize the CPU. 1627 */ 1628 synchronizing = data < tsc_exp + tsc_hz && 1629 data + tsc_hz > tsc_exp; 1630 } 1631 } 1632 1633 /* 1634 * For a reliable TSC, we can match TSC offsets, and for an unstable 1635 * TSC, we add elapsed time in this computation. We could let the 1636 * compensation code attempt to catch up if we fall behind, but 1637 * it's better to try to match offsets from the beginning. 1638 */ 1639 if (synchronizing && 1640 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1641 if (!kvm_check_tsc_unstable()) { 1642 offset = kvm->arch.cur_tsc_offset; 1643 pr_debug("kvm: matched tsc offset for %llu\n", data); 1644 } else { 1645 u64 delta = nsec_to_cycles(vcpu, elapsed); 1646 data += delta; 1647 offset = kvm_compute_tsc_offset(vcpu, data); 1648 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1649 } 1650 matched = true; 1651 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1652 } else { 1653 /* 1654 * We split periods of matched TSC writes into generations. 1655 * For each generation, we track the original measured 1656 * nanosecond time, offset, and write, so if TSCs are in 1657 * sync, we can match exact offset, and if not, we can match 1658 * exact software computation in compute_guest_tsc() 1659 * 1660 * These values are tracked in kvm->arch.cur_xxx variables. 1661 */ 1662 kvm->arch.cur_tsc_generation++; 1663 kvm->arch.cur_tsc_nsec = ns; 1664 kvm->arch.cur_tsc_write = data; 1665 kvm->arch.cur_tsc_offset = offset; 1666 matched = false; 1667 pr_debug("kvm: new tsc generation %llu, clock %llu\n", 1668 kvm->arch.cur_tsc_generation, data); 1669 } 1670 1671 /* 1672 * We also track th most recent recorded KHZ, write and time to 1673 * allow the matching interval to be extended at each write. 1674 */ 1675 kvm->arch.last_tsc_nsec = ns; 1676 kvm->arch.last_tsc_write = data; 1677 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1678 1679 vcpu->arch.last_guest_tsc = data; 1680 1681 /* Keep track of which generation this VCPU has synchronized to */ 1682 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1683 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1684 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1685 1686 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 1687 update_ia32_tsc_adjust_msr(vcpu, offset); 1688 1689 kvm_vcpu_write_tsc_offset(vcpu, offset); 1690 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1691 1692 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1693 if (!matched) { 1694 kvm->arch.nr_vcpus_matched_tsc = 0; 1695 } else if (!already_matched) { 1696 kvm->arch.nr_vcpus_matched_tsc++; 1697 } 1698 1699 kvm_track_tsc_matching(vcpu); 1700 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1701 } 1702 1703 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1704 1705 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 1706 s64 adjustment) 1707 { 1708 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment); 1709 } 1710 1711 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 1712 { 1713 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 1714 WARN_ON(adjustment < 0); 1715 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 1716 adjust_tsc_offset_guest(vcpu, adjustment); 1717 } 1718 1719 #ifdef CONFIG_X86_64 1720 1721 static u64 read_tsc(void) 1722 { 1723 u64 ret = (u64)rdtsc_ordered(); 1724 u64 last = pvclock_gtod_data.clock.cycle_last; 1725 1726 if (likely(ret >= last)) 1727 return ret; 1728 1729 /* 1730 * GCC likes to generate cmov here, but this branch is extremely 1731 * predictable (it's just a function of time and the likely is 1732 * very likely) and there's a data dependence, so force GCC 1733 * to generate a branch instead. I don't barrier() because 1734 * we don't actually need a barrier, and if this function 1735 * ever gets inlined it will generate worse code. 1736 */ 1737 asm volatile (""); 1738 return last; 1739 } 1740 1741 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode) 1742 { 1743 long v; 1744 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1745 u64 tsc_pg_val; 1746 1747 switch (gtod->clock.vclock_mode) { 1748 case VCLOCK_HVCLOCK: 1749 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 1750 tsc_timestamp); 1751 if (tsc_pg_val != U64_MAX) { 1752 /* TSC page valid */ 1753 *mode = VCLOCK_HVCLOCK; 1754 v = (tsc_pg_val - gtod->clock.cycle_last) & 1755 gtod->clock.mask; 1756 } else { 1757 /* TSC page invalid */ 1758 *mode = VCLOCK_NONE; 1759 } 1760 break; 1761 case VCLOCK_TSC: 1762 *mode = VCLOCK_TSC; 1763 *tsc_timestamp = read_tsc(); 1764 v = (*tsc_timestamp - gtod->clock.cycle_last) & 1765 gtod->clock.mask; 1766 break; 1767 default: 1768 *mode = VCLOCK_NONE; 1769 } 1770 1771 if (*mode == VCLOCK_NONE) 1772 *tsc_timestamp = v = 0; 1773 1774 return v * gtod->clock.mult; 1775 } 1776 1777 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp) 1778 { 1779 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1780 unsigned long seq; 1781 int mode; 1782 u64 ns; 1783 1784 do { 1785 seq = read_seqcount_begin(>od->seq); 1786 ns = gtod->nsec_base; 1787 ns += vgettsc(tsc_timestamp, &mode); 1788 ns >>= gtod->clock.shift; 1789 ns += gtod->boot_ns; 1790 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1791 *t = ns; 1792 1793 return mode; 1794 } 1795 1796 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 1797 { 1798 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1799 unsigned long seq; 1800 int mode; 1801 u64 ns; 1802 1803 do { 1804 seq = read_seqcount_begin(>od->seq); 1805 ts->tv_sec = gtod->wall_time_sec; 1806 ns = gtod->nsec_base; 1807 ns += vgettsc(tsc_timestamp, &mode); 1808 ns >>= gtod->clock.shift; 1809 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1810 1811 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 1812 ts->tv_nsec = ns; 1813 1814 return mode; 1815 } 1816 1817 /* returns true if host is using TSC based clocksource */ 1818 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 1819 { 1820 /* checked again under seqlock below */ 1821 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 1822 return false; 1823 1824 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns, 1825 tsc_timestamp)); 1826 } 1827 1828 /* returns true if host is using TSC based clocksource */ 1829 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 1830 u64 *tsc_timestamp) 1831 { 1832 /* checked again under seqlock below */ 1833 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 1834 return false; 1835 1836 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 1837 } 1838 #endif 1839 1840 /* 1841 * 1842 * Assuming a stable TSC across physical CPUS, and a stable TSC 1843 * across virtual CPUs, the following condition is possible. 1844 * Each numbered line represents an event visible to both 1845 * CPUs at the next numbered event. 1846 * 1847 * "timespecX" represents host monotonic time. "tscX" represents 1848 * RDTSC value. 1849 * 1850 * VCPU0 on CPU0 | VCPU1 on CPU1 1851 * 1852 * 1. read timespec0,tsc0 1853 * 2. | timespec1 = timespec0 + N 1854 * | tsc1 = tsc0 + M 1855 * 3. transition to guest | transition to guest 1856 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1857 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1858 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1859 * 1860 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1861 * 1862 * - ret0 < ret1 1863 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1864 * ... 1865 * - 0 < N - M => M < N 1866 * 1867 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1868 * always the case (the difference between two distinct xtime instances 1869 * might be smaller then the difference between corresponding TSC reads, 1870 * when updating guest vcpus pvclock areas). 1871 * 1872 * To avoid that problem, do not allow visibility of distinct 1873 * system_timestamp/tsc_timestamp values simultaneously: use a master 1874 * copy of host monotonic time values. Update that master copy 1875 * in lockstep. 1876 * 1877 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1878 * 1879 */ 1880 1881 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1882 { 1883 #ifdef CONFIG_X86_64 1884 struct kvm_arch *ka = &kvm->arch; 1885 int vclock_mode; 1886 bool host_tsc_clocksource, vcpus_matched; 1887 1888 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1889 atomic_read(&kvm->online_vcpus)); 1890 1891 /* 1892 * If the host uses TSC clock, then passthrough TSC as stable 1893 * to the guest. 1894 */ 1895 host_tsc_clocksource = kvm_get_time_and_clockread( 1896 &ka->master_kernel_ns, 1897 &ka->master_cycle_now); 1898 1899 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 1900 && !ka->backwards_tsc_observed 1901 && !ka->boot_vcpu_runs_old_kvmclock; 1902 1903 if (ka->use_master_clock) 1904 atomic_set(&kvm_guest_has_master_clock, 1); 1905 1906 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1907 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1908 vcpus_matched); 1909 #endif 1910 } 1911 1912 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 1913 { 1914 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 1915 } 1916 1917 static void kvm_gen_update_masterclock(struct kvm *kvm) 1918 { 1919 #ifdef CONFIG_X86_64 1920 int i; 1921 struct kvm_vcpu *vcpu; 1922 struct kvm_arch *ka = &kvm->arch; 1923 1924 spin_lock(&ka->pvclock_gtod_sync_lock); 1925 kvm_make_mclock_inprogress_request(kvm); 1926 /* no guest entries from this point */ 1927 pvclock_update_vm_gtod_copy(kvm); 1928 1929 kvm_for_each_vcpu(i, vcpu, kvm) 1930 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1931 1932 /* guest entries allowed */ 1933 kvm_for_each_vcpu(i, vcpu, kvm) 1934 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 1935 1936 spin_unlock(&ka->pvclock_gtod_sync_lock); 1937 #endif 1938 } 1939 1940 u64 get_kvmclock_ns(struct kvm *kvm) 1941 { 1942 struct kvm_arch *ka = &kvm->arch; 1943 struct pvclock_vcpu_time_info hv_clock; 1944 u64 ret; 1945 1946 spin_lock(&ka->pvclock_gtod_sync_lock); 1947 if (!ka->use_master_clock) { 1948 spin_unlock(&ka->pvclock_gtod_sync_lock); 1949 return ktime_get_boot_ns() + ka->kvmclock_offset; 1950 } 1951 1952 hv_clock.tsc_timestamp = ka->master_cycle_now; 1953 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 1954 spin_unlock(&ka->pvclock_gtod_sync_lock); 1955 1956 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 1957 get_cpu(); 1958 1959 if (__this_cpu_read(cpu_tsc_khz)) { 1960 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 1961 &hv_clock.tsc_shift, 1962 &hv_clock.tsc_to_system_mul); 1963 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 1964 } else 1965 ret = ktime_get_boot_ns() + ka->kvmclock_offset; 1966 1967 put_cpu(); 1968 1969 return ret; 1970 } 1971 1972 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 1973 { 1974 struct kvm_vcpu_arch *vcpu = &v->arch; 1975 struct pvclock_vcpu_time_info guest_hv_clock; 1976 1977 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1978 &guest_hv_clock, sizeof(guest_hv_clock)))) 1979 return; 1980 1981 /* This VCPU is paused, but it's legal for a guest to read another 1982 * VCPU's kvmclock, so we really have to follow the specification where 1983 * it says that version is odd if data is being modified, and even after 1984 * it is consistent. 1985 * 1986 * Version field updates must be kept separate. This is because 1987 * kvm_write_guest_cached might use a "rep movs" instruction, and 1988 * writes within a string instruction are weakly ordered. So there 1989 * are three writes overall. 1990 * 1991 * As a small optimization, only write the version field in the first 1992 * and third write. The vcpu->pv_time cache is still valid, because the 1993 * version field is the first in the struct. 1994 */ 1995 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 1996 1997 if (guest_hv_clock.version & 1) 1998 ++guest_hv_clock.version; /* first time write, random junk */ 1999 2000 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2001 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2002 &vcpu->hv_clock, 2003 sizeof(vcpu->hv_clock.version)); 2004 2005 smp_wmb(); 2006 2007 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2008 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2009 2010 if (vcpu->pvclock_set_guest_stopped_request) { 2011 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2012 vcpu->pvclock_set_guest_stopped_request = false; 2013 } 2014 2015 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2016 2017 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2018 &vcpu->hv_clock, 2019 sizeof(vcpu->hv_clock)); 2020 2021 smp_wmb(); 2022 2023 vcpu->hv_clock.version++; 2024 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2025 &vcpu->hv_clock, 2026 sizeof(vcpu->hv_clock.version)); 2027 } 2028 2029 static int kvm_guest_time_update(struct kvm_vcpu *v) 2030 { 2031 unsigned long flags, tgt_tsc_khz; 2032 struct kvm_vcpu_arch *vcpu = &v->arch; 2033 struct kvm_arch *ka = &v->kvm->arch; 2034 s64 kernel_ns; 2035 u64 tsc_timestamp, host_tsc; 2036 u8 pvclock_flags; 2037 bool use_master_clock; 2038 2039 kernel_ns = 0; 2040 host_tsc = 0; 2041 2042 /* 2043 * If the host uses TSC clock, then passthrough TSC as stable 2044 * to the guest. 2045 */ 2046 spin_lock(&ka->pvclock_gtod_sync_lock); 2047 use_master_clock = ka->use_master_clock; 2048 if (use_master_clock) { 2049 host_tsc = ka->master_cycle_now; 2050 kernel_ns = ka->master_kernel_ns; 2051 } 2052 spin_unlock(&ka->pvclock_gtod_sync_lock); 2053 2054 /* Keep irq disabled to prevent changes to the clock */ 2055 local_irq_save(flags); 2056 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2057 if (unlikely(tgt_tsc_khz == 0)) { 2058 local_irq_restore(flags); 2059 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2060 return 1; 2061 } 2062 if (!use_master_clock) { 2063 host_tsc = rdtsc(); 2064 kernel_ns = ktime_get_boot_ns(); 2065 } 2066 2067 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2068 2069 /* 2070 * We may have to catch up the TSC to match elapsed wall clock 2071 * time for two reasons, even if kvmclock is used. 2072 * 1) CPU could have been running below the maximum TSC rate 2073 * 2) Broken TSC compensation resets the base at each VCPU 2074 * entry to avoid unknown leaps of TSC even when running 2075 * again on the same CPU. This may cause apparent elapsed 2076 * time to disappear, and the guest to stand still or run 2077 * very slowly. 2078 */ 2079 if (vcpu->tsc_catchup) { 2080 u64 tsc = compute_guest_tsc(v, kernel_ns); 2081 if (tsc > tsc_timestamp) { 2082 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2083 tsc_timestamp = tsc; 2084 } 2085 } 2086 2087 local_irq_restore(flags); 2088 2089 /* With all the info we got, fill in the values */ 2090 2091 if (kvm_has_tsc_control) 2092 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2093 2094 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2095 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2096 &vcpu->hv_clock.tsc_shift, 2097 &vcpu->hv_clock.tsc_to_system_mul); 2098 vcpu->hw_tsc_khz = tgt_tsc_khz; 2099 } 2100 2101 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2102 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2103 vcpu->last_guest_tsc = tsc_timestamp; 2104 2105 /* If the host uses TSC clocksource, then it is stable */ 2106 pvclock_flags = 0; 2107 if (use_master_clock) 2108 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2109 2110 vcpu->hv_clock.flags = pvclock_flags; 2111 2112 if (vcpu->pv_time_enabled) 2113 kvm_setup_pvclock_page(v); 2114 if (v == kvm_get_vcpu(v->kvm, 0)) 2115 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2116 return 0; 2117 } 2118 2119 /* 2120 * kvmclock updates which are isolated to a given vcpu, such as 2121 * vcpu->cpu migration, should not allow system_timestamp from 2122 * the rest of the vcpus to remain static. Otherwise ntp frequency 2123 * correction applies to one vcpu's system_timestamp but not 2124 * the others. 2125 * 2126 * So in those cases, request a kvmclock update for all vcpus. 2127 * We need to rate-limit these requests though, as they can 2128 * considerably slow guests that have a large number of vcpus. 2129 * The time for a remote vcpu to update its kvmclock is bound 2130 * by the delay we use to rate-limit the updates. 2131 */ 2132 2133 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2134 2135 static void kvmclock_update_fn(struct work_struct *work) 2136 { 2137 int i; 2138 struct delayed_work *dwork = to_delayed_work(work); 2139 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2140 kvmclock_update_work); 2141 struct kvm *kvm = container_of(ka, struct kvm, arch); 2142 struct kvm_vcpu *vcpu; 2143 2144 kvm_for_each_vcpu(i, vcpu, kvm) { 2145 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2146 kvm_vcpu_kick(vcpu); 2147 } 2148 } 2149 2150 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2151 { 2152 struct kvm *kvm = v->kvm; 2153 2154 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2155 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2156 KVMCLOCK_UPDATE_DELAY); 2157 } 2158 2159 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2160 2161 static void kvmclock_sync_fn(struct work_struct *work) 2162 { 2163 struct delayed_work *dwork = to_delayed_work(work); 2164 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2165 kvmclock_sync_work); 2166 struct kvm *kvm = container_of(ka, struct kvm, arch); 2167 2168 if (!kvmclock_periodic_sync) 2169 return; 2170 2171 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2172 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2173 KVMCLOCK_SYNC_PERIOD); 2174 } 2175 2176 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2177 { 2178 u64 mcg_cap = vcpu->arch.mcg_cap; 2179 unsigned bank_num = mcg_cap & 0xff; 2180 u32 msr = msr_info->index; 2181 u64 data = msr_info->data; 2182 2183 switch (msr) { 2184 case MSR_IA32_MCG_STATUS: 2185 vcpu->arch.mcg_status = data; 2186 break; 2187 case MSR_IA32_MCG_CTL: 2188 if (!(mcg_cap & MCG_CTL_P)) 2189 return 1; 2190 if (data != 0 && data != ~(u64)0) 2191 return -1; 2192 vcpu->arch.mcg_ctl = data; 2193 break; 2194 default: 2195 if (msr >= MSR_IA32_MC0_CTL && 2196 msr < MSR_IA32_MCx_CTL(bank_num)) { 2197 u32 offset = msr - MSR_IA32_MC0_CTL; 2198 /* only 0 or all 1s can be written to IA32_MCi_CTL 2199 * some Linux kernels though clear bit 10 in bank 4 to 2200 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2201 * this to avoid an uncatched #GP in the guest 2202 */ 2203 if ((offset & 0x3) == 0 && 2204 data != 0 && (data | (1 << 10)) != ~(u64)0) 2205 return -1; 2206 if (!msr_info->host_initiated && 2207 (offset & 0x3) == 1 && data != 0) 2208 return -1; 2209 vcpu->arch.mce_banks[offset] = data; 2210 break; 2211 } 2212 return 1; 2213 } 2214 return 0; 2215 } 2216 2217 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2218 { 2219 struct kvm *kvm = vcpu->kvm; 2220 int lm = is_long_mode(vcpu); 2221 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2222 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2223 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2224 : kvm->arch.xen_hvm_config.blob_size_32; 2225 u32 page_num = data & ~PAGE_MASK; 2226 u64 page_addr = data & PAGE_MASK; 2227 u8 *page; 2228 int r; 2229 2230 r = -E2BIG; 2231 if (page_num >= blob_size) 2232 goto out; 2233 r = -ENOMEM; 2234 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2235 if (IS_ERR(page)) { 2236 r = PTR_ERR(page); 2237 goto out; 2238 } 2239 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2240 goto out_free; 2241 r = 0; 2242 out_free: 2243 kfree(page); 2244 out: 2245 return r; 2246 } 2247 2248 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2249 { 2250 gpa_t gpa = data & ~0x3f; 2251 2252 /* Bits 3:5 are reserved, Should be zero */ 2253 if (data & 0x38) 2254 return 1; 2255 2256 vcpu->arch.apf.msr_val = data; 2257 2258 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2259 kvm_clear_async_pf_completion_queue(vcpu); 2260 kvm_async_pf_hash_reset(vcpu); 2261 return 0; 2262 } 2263 2264 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2265 sizeof(u32))) 2266 return 1; 2267 2268 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2269 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2270 kvm_async_pf_wakeup_all(vcpu); 2271 return 0; 2272 } 2273 2274 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2275 { 2276 vcpu->arch.pv_time_enabled = false; 2277 } 2278 2279 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) 2280 { 2281 ++vcpu->stat.tlb_flush; 2282 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa); 2283 } 2284 2285 static void record_steal_time(struct kvm_vcpu *vcpu) 2286 { 2287 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2288 return; 2289 2290 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2291 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2292 return; 2293 2294 /* 2295 * Doing a TLB flush here, on the guest's behalf, can avoid 2296 * expensive IPIs. 2297 */ 2298 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB) 2299 kvm_vcpu_flush_tlb(vcpu, false); 2300 2301 if (vcpu->arch.st.steal.version & 1) 2302 vcpu->arch.st.steal.version += 1; /* first time write, random junk */ 2303 2304 vcpu->arch.st.steal.version += 1; 2305 2306 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2307 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2308 2309 smp_wmb(); 2310 2311 vcpu->arch.st.steal.steal += current->sched_info.run_delay - 2312 vcpu->arch.st.last_steal; 2313 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2314 2315 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2316 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2317 2318 smp_wmb(); 2319 2320 vcpu->arch.st.steal.version += 1; 2321 2322 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2323 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2324 } 2325 2326 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2327 { 2328 bool pr = false; 2329 u32 msr = msr_info->index; 2330 u64 data = msr_info->data; 2331 2332 switch (msr) { 2333 case MSR_AMD64_NB_CFG: 2334 case MSR_IA32_UCODE_WRITE: 2335 case MSR_VM_HSAVE_PA: 2336 case MSR_AMD64_PATCH_LOADER: 2337 case MSR_AMD64_BU_CFG2: 2338 case MSR_AMD64_DC_CFG: 2339 break; 2340 2341 case MSR_IA32_UCODE_REV: 2342 if (msr_info->host_initiated) 2343 vcpu->arch.microcode_version = data; 2344 break; 2345 case MSR_EFER: 2346 return set_efer(vcpu, data); 2347 case MSR_K7_HWCR: 2348 data &= ~(u64)0x40; /* ignore flush filter disable */ 2349 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2350 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2351 data &= ~(u64)0x40000; /* ignore Mc status write enable */ 2352 if (data != 0) { 2353 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2354 data); 2355 return 1; 2356 } 2357 break; 2358 case MSR_FAM10H_MMIO_CONF_BASE: 2359 if (data != 0) { 2360 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2361 "0x%llx\n", data); 2362 return 1; 2363 } 2364 break; 2365 case MSR_IA32_DEBUGCTLMSR: 2366 if (!data) { 2367 /* We support the non-activated case already */ 2368 break; 2369 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2370 /* Values other than LBR and BTF are vendor-specific, 2371 thus reserved and should throw a #GP */ 2372 return 1; 2373 } 2374 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2375 __func__, data); 2376 break; 2377 case 0x200 ... 0x2ff: 2378 return kvm_mtrr_set_msr(vcpu, msr, data); 2379 case MSR_IA32_APICBASE: 2380 return kvm_set_apic_base(vcpu, msr_info); 2381 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2382 return kvm_x2apic_msr_write(vcpu, msr, data); 2383 case MSR_IA32_TSCDEADLINE: 2384 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2385 break; 2386 case MSR_IA32_TSC_ADJUST: 2387 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2388 if (!msr_info->host_initiated) { 2389 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2390 adjust_tsc_offset_guest(vcpu, adj); 2391 } 2392 vcpu->arch.ia32_tsc_adjust_msr = data; 2393 } 2394 break; 2395 case MSR_IA32_MISC_ENABLE: 2396 vcpu->arch.ia32_misc_enable_msr = data; 2397 break; 2398 case MSR_IA32_SMBASE: 2399 if (!msr_info->host_initiated) 2400 return 1; 2401 vcpu->arch.smbase = data; 2402 break; 2403 case MSR_IA32_TSC: 2404 kvm_write_tsc(vcpu, msr_info); 2405 break; 2406 case MSR_SMI_COUNT: 2407 if (!msr_info->host_initiated) 2408 return 1; 2409 vcpu->arch.smi_count = data; 2410 break; 2411 case MSR_KVM_WALL_CLOCK_NEW: 2412 case MSR_KVM_WALL_CLOCK: 2413 vcpu->kvm->arch.wall_clock = data; 2414 kvm_write_wall_clock(vcpu->kvm, data); 2415 break; 2416 case MSR_KVM_SYSTEM_TIME_NEW: 2417 case MSR_KVM_SYSTEM_TIME: { 2418 struct kvm_arch *ka = &vcpu->kvm->arch; 2419 2420 kvmclock_reset(vcpu); 2421 2422 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2423 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2424 2425 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2426 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2427 2428 ka->boot_vcpu_runs_old_kvmclock = tmp; 2429 } 2430 2431 vcpu->arch.time = data; 2432 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2433 2434 /* we verify if the enable bit is set... */ 2435 if (!(data & 1)) 2436 break; 2437 2438 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2439 &vcpu->arch.pv_time, data & ~1ULL, 2440 sizeof(struct pvclock_vcpu_time_info))) 2441 vcpu->arch.pv_time_enabled = false; 2442 else 2443 vcpu->arch.pv_time_enabled = true; 2444 2445 break; 2446 } 2447 case MSR_KVM_ASYNC_PF_EN: 2448 if (kvm_pv_enable_async_pf(vcpu, data)) 2449 return 1; 2450 break; 2451 case MSR_KVM_STEAL_TIME: 2452 2453 if (unlikely(!sched_info_on())) 2454 return 1; 2455 2456 if (data & KVM_STEAL_RESERVED_MASK) 2457 return 1; 2458 2459 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2460 data & KVM_STEAL_VALID_BITS, 2461 sizeof(struct kvm_steal_time))) 2462 return 1; 2463 2464 vcpu->arch.st.msr_val = data; 2465 2466 if (!(data & KVM_MSR_ENABLED)) 2467 break; 2468 2469 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2470 2471 break; 2472 case MSR_KVM_PV_EOI_EN: 2473 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2474 return 1; 2475 break; 2476 2477 case MSR_IA32_MCG_CTL: 2478 case MSR_IA32_MCG_STATUS: 2479 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2480 return set_msr_mce(vcpu, msr_info); 2481 2482 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2483 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2484 pr = true; /* fall through */ 2485 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2486 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2487 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2488 return kvm_pmu_set_msr(vcpu, msr_info); 2489 2490 if (pr || data != 0) 2491 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2492 "0x%x data 0x%llx\n", msr, data); 2493 break; 2494 case MSR_K7_CLK_CTL: 2495 /* 2496 * Ignore all writes to this no longer documented MSR. 2497 * Writes are only relevant for old K7 processors, 2498 * all pre-dating SVM, but a recommended workaround from 2499 * AMD for these chips. It is possible to specify the 2500 * affected processor models on the command line, hence 2501 * the need to ignore the workaround. 2502 */ 2503 break; 2504 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2505 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2506 case HV_X64_MSR_CRASH_CTL: 2507 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2508 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2509 case HV_X64_MSR_TSC_EMULATION_CONTROL: 2510 case HV_X64_MSR_TSC_EMULATION_STATUS: 2511 return kvm_hv_set_msr_common(vcpu, msr, data, 2512 msr_info->host_initiated); 2513 case MSR_IA32_BBL_CR_CTL3: 2514 /* Drop writes to this legacy MSR -- see rdmsr 2515 * counterpart for further detail. 2516 */ 2517 if (report_ignored_msrs) 2518 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2519 msr, data); 2520 break; 2521 case MSR_AMD64_OSVW_ID_LENGTH: 2522 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2523 return 1; 2524 vcpu->arch.osvw.length = data; 2525 break; 2526 case MSR_AMD64_OSVW_STATUS: 2527 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2528 return 1; 2529 vcpu->arch.osvw.status = data; 2530 break; 2531 case MSR_PLATFORM_INFO: 2532 if (!msr_info->host_initiated || 2533 data & ~MSR_PLATFORM_INFO_CPUID_FAULT || 2534 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 2535 cpuid_fault_enabled(vcpu))) 2536 return 1; 2537 vcpu->arch.msr_platform_info = data; 2538 break; 2539 case MSR_MISC_FEATURES_ENABLES: 2540 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 2541 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 2542 !supports_cpuid_fault(vcpu))) 2543 return 1; 2544 vcpu->arch.msr_misc_features_enables = data; 2545 break; 2546 default: 2547 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2548 return xen_hvm_config(vcpu, data); 2549 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2550 return kvm_pmu_set_msr(vcpu, msr_info); 2551 if (!ignore_msrs) { 2552 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2553 msr, data); 2554 return 1; 2555 } else { 2556 if (report_ignored_msrs) 2557 vcpu_unimpl(vcpu, 2558 "ignored wrmsr: 0x%x data 0x%llx\n", 2559 msr, data); 2560 break; 2561 } 2562 } 2563 return 0; 2564 } 2565 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2566 2567 2568 /* 2569 * Reads an msr value (of 'msr_index') into 'pdata'. 2570 * Returns 0 on success, non-0 otherwise. 2571 * Assumes vcpu_load() was already called. 2572 */ 2573 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2574 { 2575 return kvm_x86_ops->get_msr(vcpu, msr); 2576 } 2577 EXPORT_SYMBOL_GPL(kvm_get_msr); 2578 2579 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2580 { 2581 u64 data; 2582 u64 mcg_cap = vcpu->arch.mcg_cap; 2583 unsigned bank_num = mcg_cap & 0xff; 2584 2585 switch (msr) { 2586 case MSR_IA32_P5_MC_ADDR: 2587 case MSR_IA32_P5_MC_TYPE: 2588 data = 0; 2589 break; 2590 case MSR_IA32_MCG_CAP: 2591 data = vcpu->arch.mcg_cap; 2592 break; 2593 case MSR_IA32_MCG_CTL: 2594 if (!(mcg_cap & MCG_CTL_P)) 2595 return 1; 2596 data = vcpu->arch.mcg_ctl; 2597 break; 2598 case MSR_IA32_MCG_STATUS: 2599 data = vcpu->arch.mcg_status; 2600 break; 2601 default: 2602 if (msr >= MSR_IA32_MC0_CTL && 2603 msr < MSR_IA32_MCx_CTL(bank_num)) { 2604 u32 offset = msr - MSR_IA32_MC0_CTL; 2605 data = vcpu->arch.mce_banks[offset]; 2606 break; 2607 } 2608 return 1; 2609 } 2610 *pdata = data; 2611 return 0; 2612 } 2613 2614 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2615 { 2616 switch (msr_info->index) { 2617 case MSR_IA32_PLATFORM_ID: 2618 case MSR_IA32_EBL_CR_POWERON: 2619 case MSR_IA32_DEBUGCTLMSR: 2620 case MSR_IA32_LASTBRANCHFROMIP: 2621 case MSR_IA32_LASTBRANCHTOIP: 2622 case MSR_IA32_LASTINTFROMIP: 2623 case MSR_IA32_LASTINTTOIP: 2624 case MSR_K8_SYSCFG: 2625 case MSR_K8_TSEG_ADDR: 2626 case MSR_K8_TSEG_MASK: 2627 case MSR_K7_HWCR: 2628 case MSR_VM_HSAVE_PA: 2629 case MSR_K8_INT_PENDING_MSG: 2630 case MSR_AMD64_NB_CFG: 2631 case MSR_FAM10H_MMIO_CONF_BASE: 2632 case MSR_AMD64_BU_CFG2: 2633 case MSR_IA32_PERF_CTL: 2634 case MSR_AMD64_DC_CFG: 2635 msr_info->data = 0; 2636 break; 2637 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 2638 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2639 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2640 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2641 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2642 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2643 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2644 msr_info->data = 0; 2645 break; 2646 case MSR_IA32_UCODE_REV: 2647 msr_info->data = vcpu->arch.microcode_version; 2648 break; 2649 case MSR_IA32_TSC: 2650 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; 2651 break; 2652 case MSR_MTRRcap: 2653 case 0x200 ... 0x2ff: 2654 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 2655 case 0xcd: /* fsb frequency */ 2656 msr_info->data = 3; 2657 break; 2658 /* 2659 * MSR_EBC_FREQUENCY_ID 2660 * Conservative value valid for even the basic CPU models. 2661 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2662 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2663 * and 266MHz for model 3, or 4. Set Core Clock 2664 * Frequency to System Bus Frequency Ratio to 1 (bits 2665 * 31:24) even though these are only valid for CPU 2666 * models > 2, however guests may end up dividing or 2667 * multiplying by zero otherwise. 2668 */ 2669 case MSR_EBC_FREQUENCY_ID: 2670 msr_info->data = 1 << 24; 2671 break; 2672 case MSR_IA32_APICBASE: 2673 msr_info->data = kvm_get_apic_base(vcpu); 2674 break; 2675 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2676 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 2677 break; 2678 case MSR_IA32_TSCDEADLINE: 2679 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 2680 break; 2681 case MSR_IA32_TSC_ADJUST: 2682 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2683 break; 2684 case MSR_IA32_MISC_ENABLE: 2685 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 2686 break; 2687 case MSR_IA32_SMBASE: 2688 if (!msr_info->host_initiated) 2689 return 1; 2690 msr_info->data = vcpu->arch.smbase; 2691 break; 2692 case MSR_SMI_COUNT: 2693 msr_info->data = vcpu->arch.smi_count; 2694 break; 2695 case MSR_IA32_PERF_STATUS: 2696 /* TSC increment by tick */ 2697 msr_info->data = 1000ULL; 2698 /* CPU multiplier */ 2699 msr_info->data |= (((uint64_t)4ULL) << 40); 2700 break; 2701 case MSR_EFER: 2702 msr_info->data = vcpu->arch.efer; 2703 break; 2704 case MSR_KVM_WALL_CLOCK: 2705 case MSR_KVM_WALL_CLOCK_NEW: 2706 msr_info->data = vcpu->kvm->arch.wall_clock; 2707 break; 2708 case MSR_KVM_SYSTEM_TIME: 2709 case MSR_KVM_SYSTEM_TIME_NEW: 2710 msr_info->data = vcpu->arch.time; 2711 break; 2712 case MSR_KVM_ASYNC_PF_EN: 2713 msr_info->data = vcpu->arch.apf.msr_val; 2714 break; 2715 case MSR_KVM_STEAL_TIME: 2716 msr_info->data = vcpu->arch.st.msr_val; 2717 break; 2718 case MSR_KVM_PV_EOI_EN: 2719 msr_info->data = vcpu->arch.pv_eoi.msr_val; 2720 break; 2721 case MSR_IA32_P5_MC_ADDR: 2722 case MSR_IA32_P5_MC_TYPE: 2723 case MSR_IA32_MCG_CAP: 2724 case MSR_IA32_MCG_CTL: 2725 case MSR_IA32_MCG_STATUS: 2726 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2727 return get_msr_mce(vcpu, msr_info->index, &msr_info->data); 2728 case MSR_K7_CLK_CTL: 2729 /* 2730 * Provide expected ramp-up count for K7. All other 2731 * are set to zero, indicating minimum divisors for 2732 * every field. 2733 * 2734 * This prevents guest kernels on AMD host with CPU 2735 * type 6, model 8 and higher from exploding due to 2736 * the rdmsr failing. 2737 */ 2738 msr_info->data = 0x20000000; 2739 break; 2740 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2741 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2742 case HV_X64_MSR_CRASH_CTL: 2743 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2744 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2745 case HV_X64_MSR_TSC_EMULATION_CONTROL: 2746 case HV_X64_MSR_TSC_EMULATION_STATUS: 2747 return kvm_hv_get_msr_common(vcpu, 2748 msr_info->index, &msr_info->data); 2749 break; 2750 case MSR_IA32_BBL_CR_CTL3: 2751 /* This legacy MSR exists but isn't fully documented in current 2752 * silicon. It is however accessed by winxp in very narrow 2753 * scenarios where it sets bit #19, itself documented as 2754 * a "reserved" bit. Best effort attempt to source coherent 2755 * read data here should the balance of the register be 2756 * interpreted by the guest: 2757 * 2758 * L2 cache control register 3: 64GB range, 256KB size, 2759 * enabled, latency 0x1, configured 2760 */ 2761 msr_info->data = 0xbe702111; 2762 break; 2763 case MSR_AMD64_OSVW_ID_LENGTH: 2764 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2765 return 1; 2766 msr_info->data = vcpu->arch.osvw.length; 2767 break; 2768 case MSR_AMD64_OSVW_STATUS: 2769 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2770 return 1; 2771 msr_info->data = vcpu->arch.osvw.status; 2772 break; 2773 case MSR_PLATFORM_INFO: 2774 msr_info->data = vcpu->arch.msr_platform_info; 2775 break; 2776 case MSR_MISC_FEATURES_ENABLES: 2777 msr_info->data = vcpu->arch.msr_misc_features_enables; 2778 break; 2779 default: 2780 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2781 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2782 if (!ignore_msrs) { 2783 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 2784 msr_info->index); 2785 return 1; 2786 } else { 2787 if (report_ignored_msrs) 2788 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", 2789 msr_info->index); 2790 msr_info->data = 0; 2791 } 2792 break; 2793 } 2794 return 0; 2795 } 2796 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2797 2798 /* 2799 * Read or write a bunch of msrs. All parameters are kernel addresses. 2800 * 2801 * @return number of msrs set successfully. 2802 */ 2803 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2804 struct kvm_msr_entry *entries, 2805 int (*do_msr)(struct kvm_vcpu *vcpu, 2806 unsigned index, u64 *data)) 2807 { 2808 int i; 2809 2810 for (i = 0; i < msrs->nmsrs; ++i) 2811 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2812 break; 2813 2814 return i; 2815 } 2816 2817 /* 2818 * Read or write a bunch of msrs. Parameters are user addresses. 2819 * 2820 * @return number of msrs set successfully. 2821 */ 2822 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2823 int (*do_msr)(struct kvm_vcpu *vcpu, 2824 unsigned index, u64 *data), 2825 int writeback) 2826 { 2827 struct kvm_msrs msrs; 2828 struct kvm_msr_entry *entries; 2829 int r, n; 2830 unsigned size; 2831 2832 r = -EFAULT; 2833 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2834 goto out; 2835 2836 r = -E2BIG; 2837 if (msrs.nmsrs >= MAX_IO_MSRS) 2838 goto out; 2839 2840 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2841 entries = memdup_user(user_msrs->entries, size); 2842 if (IS_ERR(entries)) { 2843 r = PTR_ERR(entries); 2844 goto out; 2845 } 2846 2847 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2848 if (r < 0) 2849 goto out_free; 2850 2851 r = -EFAULT; 2852 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2853 goto out_free; 2854 2855 r = n; 2856 2857 out_free: 2858 kfree(entries); 2859 out: 2860 return r; 2861 } 2862 2863 static inline bool kvm_can_mwait_in_guest(void) 2864 { 2865 return boot_cpu_has(X86_FEATURE_MWAIT) && 2866 !boot_cpu_has_bug(X86_BUG_MONITOR) && 2867 boot_cpu_has(X86_FEATURE_ARAT); 2868 } 2869 2870 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 2871 { 2872 int r = 0; 2873 2874 switch (ext) { 2875 case KVM_CAP_IRQCHIP: 2876 case KVM_CAP_HLT: 2877 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2878 case KVM_CAP_SET_TSS_ADDR: 2879 case KVM_CAP_EXT_CPUID: 2880 case KVM_CAP_EXT_EMUL_CPUID: 2881 case KVM_CAP_CLOCKSOURCE: 2882 case KVM_CAP_PIT: 2883 case KVM_CAP_NOP_IO_DELAY: 2884 case KVM_CAP_MP_STATE: 2885 case KVM_CAP_SYNC_MMU: 2886 case KVM_CAP_USER_NMI: 2887 case KVM_CAP_REINJECT_CONTROL: 2888 case KVM_CAP_IRQ_INJECT_STATUS: 2889 case KVM_CAP_IOEVENTFD: 2890 case KVM_CAP_IOEVENTFD_NO_LENGTH: 2891 case KVM_CAP_PIT2: 2892 case KVM_CAP_PIT_STATE2: 2893 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2894 case KVM_CAP_XEN_HVM: 2895 case KVM_CAP_VCPU_EVENTS: 2896 case KVM_CAP_HYPERV: 2897 case KVM_CAP_HYPERV_VAPIC: 2898 case KVM_CAP_HYPERV_SPIN: 2899 case KVM_CAP_HYPERV_SYNIC: 2900 case KVM_CAP_HYPERV_SYNIC2: 2901 case KVM_CAP_HYPERV_VP_INDEX: 2902 case KVM_CAP_HYPERV_EVENTFD: 2903 case KVM_CAP_HYPERV_TLBFLUSH: 2904 case KVM_CAP_PCI_SEGMENT: 2905 case KVM_CAP_DEBUGREGS: 2906 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2907 case KVM_CAP_XSAVE: 2908 case KVM_CAP_ASYNC_PF: 2909 case KVM_CAP_GET_TSC_KHZ: 2910 case KVM_CAP_KVMCLOCK_CTRL: 2911 case KVM_CAP_READONLY_MEM: 2912 case KVM_CAP_HYPERV_TIME: 2913 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2914 case KVM_CAP_TSC_DEADLINE_TIMER: 2915 case KVM_CAP_ENABLE_CAP_VM: 2916 case KVM_CAP_DISABLE_QUIRKS: 2917 case KVM_CAP_SET_BOOT_CPU_ID: 2918 case KVM_CAP_SPLIT_IRQCHIP: 2919 case KVM_CAP_IMMEDIATE_EXIT: 2920 case KVM_CAP_GET_MSR_FEATURES: 2921 r = 1; 2922 break; 2923 case KVM_CAP_SYNC_REGS: 2924 r = KVM_SYNC_X86_VALID_FIELDS; 2925 break; 2926 case KVM_CAP_ADJUST_CLOCK: 2927 r = KVM_CLOCK_TSC_STABLE; 2928 break; 2929 case KVM_CAP_X86_DISABLE_EXITS: 2930 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE; 2931 if(kvm_can_mwait_in_guest()) 2932 r |= KVM_X86_DISABLE_EXITS_MWAIT; 2933 break; 2934 case KVM_CAP_X86_SMM: 2935 /* SMBASE is usually relocated above 1M on modern chipsets, 2936 * and SMM handlers might indeed rely on 4G segment limits, 2937 * so do not report SMM to be available if real mode is 2938 * emulated via vm86 mode. Still, do not go to great lengths 2939 * to avoid userspace's usage of the feature, because it is a 2940 * fringe case that is not enabled except via specific settings 2941 * of the module parameters. 2942 */ 2943 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE); 2944 break; 2945 case KVM_CAP_VAPIC: 2946 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2947 break; 2948 case KVM_CAP_NR_VCPUS: 2949 r = KVM_SOFT_MAX_VCPUS; 2950 break; 2951 case KVM_CAP_MAX_VCPUS: 2952 r = KVM_MAX_VCPUS; 2953 break; 2954 case KVM_CAP_NR_MEMSLOTS: 2955 r = KVM_USER_MEM_SLOTS; 2956 break; 2957 case KVM_CAP_PV_MMU: /* obsolete */ 2958 r = 0; 2959 break; 2960 case KVM_CAP_MCE: 2961 r = KVM_MAX_MCE_BANKS; 2962 break; 2963 case KVM_CAP_XCRS: 2964 r = boot_cpu_has(X86_FEATURE_XSAVE); 2965 break; 2966 case KVM_CAP_TSC_CONTROL: 2967 r = kvm_has_tsc_control; 2968 break; 2969 case KVM_CAP_X2APIC_API: 2970 r = KVM_X2APIC_API_VALID_FLAGS; 2971 break; 2972 default: 2973 break; 2974 } 2975 return r; 2976 2977 } 2978 2979 long kvm_arch_dev_ioctl(struct file *filp, 2980 unsigned int ioctl, unsigned long arg) 2981 { 2982 void __user *argp = (void __user *)arg; 2983 long r; 2984 2985 switch (ioctl) { 2986 case KVM_GET_MSR_INDEX_LIST: { 2987 struct kvm_msr_list __user *user_msr_list = argp; 2988 struct kvm_msr_list msr_list; 2989 unsigned n; 2990 2991 r = -EFAULT; 2992 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2993 goto out; 2994 n = msr_list.nmsrs; 2995 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 2996 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2997 goto out; 2998 r = -E2BIG; 2999 if (n < msr_list.nmsrs) 3000 goto out; 3001 r = -EFAULT; 3002 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3003 num_msrs_to_save * sizeof(u32))) 3004 goto out; 3005 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3006 &emulated_msrs, 3007 num_emulated_msrs * sizeof(u32))) 3008 goto out; 3009 r = 0; 3010 break; 3011 } 3012 case KVM_GET_SUPPORTED_CPUID: 3013 case KVM_GET_EMULATED_CPUID: { 3014 struct kvm_cpuid2 __user *cpuid_arg = argp; 3015 struct kvm_cpuid2 cpuid; 3016 3017 r = -EFAULT; 3018 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3019 goto out; 3020 3021 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3022 ioctl); 3023 if (r) 3024 goto out; 3025 3026 r = -EFAULT; 3027 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3028 goto out; 3029 r = 0; 3030 break; 3031 } 3032 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 3033 r = -EFAULT; 3034 if (copy_to_user(argp, &kvm_mce_cap_supported, 3035 sizeof(kvm_mce_cap_supported))) 3036 goto out; 3037 r = 0; 3038 break; 3039 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3040 struct kvm_msr_list __user *user_msr_list = argp; 3041 struct kvm_msr_list msr_list; 3042 unsigned int n; 3043 3044 r = -EFAULT; 3045 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3046 goto out; 3047 n = msr_list.nmsrs; 3048 msr_list.nmsrs = num_msr_based_features; 3049 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3050 goto out; 3051 r = -E2BIG; 3052 if (n < msr_list.nmsrs) 3053 goto out; 3054 r = -EFAULT; 3055 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3056 num_msr_based_features * sizeof(u32))) 3057 goto out; 3058 r = 0; 3059 break; 3060 } 3061 case KVM_GET_MSRS: 3062 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3063 break; 3064 } 3065 default: 3066 r = -EINVAL; 3067 } 3068 out: 3069 return r; 3070 } 3071 3072 static void wbinvd_ipi(void *garbage) 3073 { 3074 wbinvd(); 3075 } 3076 3077 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3078 { 3079 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3080 } 3081 3082 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3083 { 3084 /* Address WBINVD may be executed by guest */ 3085 if (need_emulate_wbinvd(vcpu)) { 3086 if (kvm_x86_ops->has_wbinvd_exit()) 3087 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3088 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3089 smp_call_function_single(vcpu->cpu, 3090 wbinvd_ipi, NULL, 1); 3091 } 3092 3093 kvm_x86_ops->vcpu_load(vcpu, cpu); 3094 3095 /* Apply any externally detected TSC adjustments (due to suspend) */ 3096 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3097 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3098 vcpu->arch.tsc_offset_adjustment = 0; 3099 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3100 } 3101 3102 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3103 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3104 rdtsc() - vcpu->arch.last_host_tsc; 3105 if (tsc_delta < 0) 3106 mark_tsc_unstable("KVM discovered backwards TSC"); 3107 3108 if (kvm_check_tsc_unstable()) { 3109 u64 offset = kvm_compute_tsc_offset(vcpu, 3110 vcpu->arch.last_guest_tsc); 3111 kvm_vcpu_write_tsc_offset(vcpu, offset); 3112 vcpu->arch.tsc_catchup = 1; 3113 } 3114 3115 if (kvm_lapic_hv_timer_in_use(vcpu)) 3116 kvm_lapic_restart_hv_timer(vcpu); 3117 3118 /* 3119 * On a host with synchronized TSC, there is no need to update 3120 * kvmclock on vcpu->cpu migration 3121 */ 3122 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3123 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3124 if (vcpu->cpu != cpu) 3125 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3126 vcpu->cpu = cpu; 3127 } 3128 3129 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3130 } 3131 3132 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3133 { 3134 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3135 return; 3136 3137 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED; 3138 3139 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, 3140 &vcpu->arch.st.steal.preempted, 3141 offsetof(struct kvm_steal_time, preempted), 3142 sizeof(vcpu->arch.st.steal.preempted)); 3143 } 3144 3145 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3146 { 3147 int idx; 3148 3149 if (vcpu->preempted) 3150 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu); 3151 3152 /* 3153 * Disable page faults because we're in atomic context here. 3154 * kvm_write_guest_offset_cached() would call might_fault() 3155 * that relies on pagefault_disable() to tell if there's a 3156 * bug. NOTE: the write to guest memory may not go through if 3157 * during postcopy live migration or if there's heavy guest 3158 * paging. 3159 */ 3160 pagefault_disable(); 3161 /* 3162 * kvm_memslots() will be called by 3163 * kvm_write_guest_offset_cached() so take the srcu lock. 3164 */ 3165 idx = srcu_read_lock(&vcpu->kvm->srcu); 3166 kvm_steal_time_set_preempted(vcpu); 3167 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3168 pagefault_enable(); 3169 kvm_x86_ops->vcpu_put(vcpu); 3170 vcpu->arch.last_host_tsc = rdtsc(); 3171 /* 3172 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3173 * on every vmexit, but if not, we might have a stale dr6 from the 3174 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3175 */ 3176 set_debugreg(0, 6); 3177 } 3178 3179 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3180 struct kvm_lapic_state *s) 3181 { 3182 if (vcpu->arch.apicv_active) 3183 kvm_x86_ops->sync_pir_to_irr(vcpu); 3184 3185 return kvm_apic_get_state(vcpu, s); 3186 } 3187 3188 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 3189 struct kvm_lapic_state *s) 3190 { 3191 int r; 3192 3193 r = kvm_apic_set_state(vcpu, s); 3194 if (r) 3195 return r; 3196 update_cr8_intercept(vcpu); 3197 3198 return 0; 3199 } 3200 3201 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 3202 { 3203 return (!lapic_in_kernel(vcpu) || 3204 kvm_apic_accept_pic_intr(vcpu)); 3205 } 3206 3207 /* 3208 * if userspace requested an interrupt window, check that the 3209 * interrupt window is open. 3210 * 3211 * No need to exit to userspace if we already have an interrupt queued. 3212 */ 3213 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 3214 { 3215 return kvm_arch_interrupt_allowed(vcpu) && 3216 !kvm_cpu_has_interrupt(vcpu) && 3217 !kvm_event_needs_reinjection(vcpu) && 3218 kvm_cpu_accept_dm_intr(vcpu); 3219 } 3220 3221 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 3222 struct kvm_interrupt *irq) 3223 { 3224 if (irq->irq >= KVM_NR_INTERRUPTS) 3225 return -EINVAL; 3226 3227 if (!irqchip_in_kernel(vcpu->kvm)) { 3228 kvm_queue_interrupt(vcpu, irq->irq, false); 3229 kvm_make_request(KVM_REQ_EVENT, vcpu); 3230 return 0; 3231 } 3232 3233 /* 3234 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3235 * fail for in-kernel 8259. 3236 */ 3237 if (pic_in_kernel(vcpu->kvm)) 3238 return -ENXIO; 3239 3240 if (vcpu->arch.pending_external_vector != -1) 3241 return -EEXIST; 3242 3243 vcpu->arch.pending_external_vector = irq->irq; 3244 kvm_make_request(KVM_REQ_EVENT, vcpu); 3245 return 0; 3246 } 3247 3248 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3249 { 3250 kvm_inject_nmi(vcpu); 3251 3252 return 0; 3253 } 3254 3255 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3256 { 3257 kvm_make_request(KVM_REQ_SMI, vcpu); 3258 3259 return 0; 3260 } 3261 3262 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3263 struct kvm_tpr_access_ctl *tac) 3264 { 3265 if (tac->flags) 3266 return -EINVAL; 3267 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3268 return 0; 3269 } 3270 3271 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3272 u64 mcg_cap) 3273 { 3274 int r; 3275 unsigned bank_num = mcg_cap & 0xff, bank; 3276 3277 r = -EINVAL; 3278 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3279 goto out; 3280 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3281 goto out; 3282 r = 0; 3283 vcpu->arch.mcg_cap = mcg_cap; 3284 /* Init IA32_MCG_CTL to all 1s */ 3285 if (mcg_cap & MCG_CTL_P) 3286 vcpu->arch.mcg_ctl = ~(u64)0; 3287 /* Init IA32_MCi_CTL to all 1s */ 3288 for (bank = 0; bank < bank_num; bank++) 3289 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3290 3291 if (kvm_x86_ops->setup_mce) 3292 kvm_x86_ops->setup_mce(vcpu); 3293 out: 3294 return r; 3295 } 3296 3297 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3298 struct kvm_x86_mce *mce) 3299 { 3300 u64 mcg_cap = vcpu->arch.mcg_cap; 3301 unsigned bank_num = mcg_cap & 0xff; 3302 u64 *banks = vcpu->arch.mce_banks; 3303 3304 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3305 return -EINVAL; 3306 /* 3307 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3308 * reporting is disabled 3309 */ 3310 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3311 vcpu->arch.mcg_ctl != ~(u64)0) 3312 return 0; 3313 banks += 4 * mce->bank; 3314 /* 3315 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3316 * reporting is disabled for the bank 3317 */ 3318 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3319 return 0; 3320 if (mce->status & MCI_STATUS_UC) { 3321 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3322 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3323 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3324 return 0; 3325 } 3326 if (banks[1] & MCI_STATUS_VAL) 3327 mce->status |= MCI_STATUS_OVER; 3328 banks[2] = mce->addr; 3329 banks[3] = mce->misc; 3330 vcpu->arch.mcg_status = mce->mcg_status; 3331 banks[1] = mce->status; 3332 kvm_queue_exception(vcpu, MC_VECTOR); 3333 } else if (!(banks[1] & MCI_STATUS_VAL) 3334 || !(banks[1] & MCI_STATUS_UC)) { 3335 if (banks[1] & MCI_STATUS_VAL) 3336 mce->status |= MCI_STATUS_OVER; 3337 banks[2] = mce->addr; 3338 banks[3] = mce->misc; 3339 banks[1] = mce->status; 3340 } else 3341 banks[1] |= MCI_STATUS_OVER; 3342 return 0; 3343 } 3344 3345 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3346 struct kvm_vcpu_events *events) 3347 { 3348 process_nmi(vcpu); 3349 /* 3350 * FIXME: pass injected and pending separately. This is only 3351 * needed for nested virtualization, whose state cannot be 3352 * migrated yet. For now we can combine them. 3353 */ 3354 events->exception.injected = 3355 (vcpu->arch.exception.pending || 3356 vcpu->arch.exception.injected) && 3357 !kvm_exception_is_soft(vcpu->arch.exception.nr); 3358 events->exception.nr = vcpu->arch.exception.nr; 3359 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3360 events->exception.pad = 0; 3361 events->exception.error_code = vcpu->arch.exception.error_code; 3362 3363 events->interrupt.injected = 3364 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 3365 events->interrupt.nr = vcpu->arch.interrupt.nr; 3366 events->interrupt.soft = 0; 3367 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3368 3369 events->nmi.injected = vcpu->arch.nmi_injected; 3370 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3371 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3372 events->nmi.pad = 0; 3373 3374 events->sipi_vector = 0; /* never valid when reporting to user space */ 3375 3376 events->smi.smm = is_smm(vcpu); 3377 events->smi.pending = vcpu->arch.smi_pending; 3378 events->smi.smm_inside_nmi = 3379 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3380 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3381 3382 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3383 | KVM_VCPUEVENT_VALID_SHADOW 3384 | KVM_VCPUEVENT_VALID_SMM); 3385 memset(&events->reserved, 0, sizeof(events->reserved)); 3386 } 3387 3388 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags); 3389 3390 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3391 struct kvm_vcpu_events *events) 3392 { 3393 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3394 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3395 | KVM_VCPUEVENT_VALID_SHADOW 3396 | KVM_VCPUEVENT_VALID_SMM)) 3397 return -EINVAL; 3398 3399 if (events->exception.injected && 3400 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR || 3401 is_guest_mode(vcpu))) 3402 return -EINVAL; 3403 3404 /* INITs are latched while in SMM */ 3405 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 3406 (events->smi.smm || events->smi.pending) && 3407 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 3408 return -EINVAL; 3409 3410 process_nmi(vcpu); 3411 vcpu->arch.exception.injected = false; 3412 vcpu->arch.exception.pending = events->exception.injected; 3413 vcpu->arch.exception.nr = events->exception.nr; 3414 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3415 vcpu->arch.exception.error_code = events->exception.error_code; 3416 3417 vcpu->arch.interrupt.injected = events->interrupt.injected; 3418 vcpu->arch.interrupt.nr = events->interrupt.nr; 3419 vcpu->arch.interrupt.soft = events->interrupt.soft; 3420 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3421 kvm_x86_ops->set_interrupt_shadow(vcpu, 3422 events->interrupt.shadow); 3423 3424 vcpu->arch.nmi_injected = events->nmi.injected; 3425 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3426 vcpu->arch.nmi_pending = events->nmi.pending; 3427 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3428 3429 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3430 lapic_in_kernel(vcpu)) 3431 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3432 3433 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3434 u32 hflags = vcpu->arch.hflags; 3435 if (events->smi.smm) 3436 hflags |= HF_SMM_MASK; 3437 else 3438 hflags &= ~HF_SMM_MASK; 3439 kvm_set_hflags(vcpu, hflags); 3440 3441 vcpu->arch.smi_pending = events->smi.pending; 3442 3443 if (events->smi.smm) { 3444 if (events->smi.smm_inside_nmi) 3445 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3446 else 3447 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3448 if (lapic_in_kernel(vcpu)) { 3449 if (events->smi.latched_init) 3450 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3451 else 3452 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3453 } 3454 } 3455 } 3456 3457 kvm_make_request(KVM_REQ_EVENT, vcpu); 3458 3459 return 0; 3460 } 3461 3462 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3463 struct kvm_debugregs *dbgregs) 3464 { 3465 unsigned long val; 3466 3467 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3468 kvm_get_dr(vcpu, 6, &val); 3469 dbgregs->dr6 = val; 3470 dbgregs->dr7 = vcpu->arch.dr7; 3471 dbgregs->flags = 0; 3472 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3473 } 3474 3475 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3476 struct kvm_debugregs *dbgregs) 3477 { 3478 if (dbgregs->flags) 3479 return -EINVAL; 3480 3481 if (dbgregs->dr6 & ~0xffffffffull) 3482 return -EINVAL; 3483 if (dbgregs->dr7 & ~0xffffffffull) 3484 return -EINVAL; 3485 3486 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3487 kvm_update_dr0123(vcpu); 3488 vcpu->arch.dr6 = dbgregs->dr6; 3489 kvm_update_dr6(vcpu); 3490 vcpu->arch.dr7 = dbgregs->dr7; 3491 kvm_update_dr7(vcpu); 3492 3493 return 0; 3494 } 3495 3496 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3497 3498 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3499 { 3500 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3501 u64 xstate_bv = xsave->header.xfeatures; 3502 u64 valid; 3503 3504 /* 3505 * Copy legacy XSAVE area, to avoid complications with CPUID 3506 * leaves 0 and 1 in the loop below. 3507 */ 3508 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 3509 3510 /* Set XSTATE_BV */ 3511 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 3512 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 3513 3514 /* 3515 * Copy each region from the possibly compacted offset to the 3516 * non-compacted offset. 3517 */ 3518 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3519 while (valid) { 3520 u64 feature = valid & -valid; 3521 int index = fls64(feature) - 1; 3522 void *src = get_xsave_addr(xsave, feature); 3523 3524 if (src) { 3525 u32 size, offset, ecx, edx; 3526 cpuid_count(XSTATE_CPUID, index, 3527 &size, &offset, &ecx, &edx); 3528 if (feature == XFEATURE_MASK_PKRU) 3529 memcpy(dest + offset, &vcpu->arch.pkru, 3530 sizeof(vcpu->arch.pkru)); 3531 else 3532 memcpy(dest + offset, src, size); 3533 3534 } 3535 3536 valid -= feature; 3537 } 3538 } 3539 3540 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 3541 { 3542 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3543 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 3544 u64 valid; 3545 3546 /* 3547 * Copy legacy XSAVE area, to avoid complications with CPUID 3548 * leaves 0 and 1 in the loop below. 3549 */ 3550 memcpy(xsave, src, XSAVE_HDR_OFFSET); 3551 3552 /* Set XSTATE_BV and possibly XCOMP_BV. */ 3553 xsave->header.xfeatures = xstate_bv; 3554 if (boot_cpu_has(X86_FEATURE_XSAVES)) 3555 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 3556 3557 /* 3558 * Copy each region from the non-compacted offset to the 3559 * possibly compacted offset. 3560 */ 3561 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3562 while (valid) { 3563 u64 feature = valid & -valid; 3564 int index = fls64(feature) - 1; 3565 void *dest = get_xsave_addr(xsave, feature); 3566 3567 if (dest) { 3568 u32 size, offset, ecx, edx; 3569 cpuid_count(XSTATE_CPUID, index, 3570 &size, &offset, &ecx, &edx); 3571 if (feature == XFEATURE_MASK_PKRU) 3572 memcpy(&vcpu->arch.pkru, src + offset, 3573 sizeof(vcpu->arch.pkru)); 3574 else 3575 memcpy(dest, src + offset, size); 3576 } 3577 3578 valid -= feature; 3579 } 3580 } 3581 3582 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3583 struct kvm_xsave *guest_xsave) 3584 { 3585 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3586 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 3587 fill_xsave((u8 *) guest_xsave->region, vcpu); 3588 } else { 3589 memcpy(guest_xsave->region, 3590 &vcpu->arch.guest_fpu.state.fxsave, 3591 sizeof(struct fxregs_state)); 3592 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3593 XFEATURE_MASK_FPSSE; 3594 } 3595 } 3596 3597 #define XSAVE_MXCSR_OFFSET 24 3598 3599 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3600 struct kvm_xsave *guest_xsave) 3601 { 3602 u64 xstate_bv = 3603 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3604 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 3605 3606 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3607 /* 3608 * Here we allow setting states that are not present in 3609 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3610 * with old userspace. 3611 */ 3612 if (xstate_bv & ~kvm_supported_xcr0() || 3613 mxcsr & ~mxcsr_feature_mask) 3614 return -EINVAL; 3615 load_xsave(vcpu, (u8 *)guest_xsave->region); 3616 } else { 3617 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 3618 mxcsr & ~mxcsr_feature_mask) 3619 return -EINVAL; 3620 memcpy(&vcpu->arch.guest_fpu.state.fxsave, 3621 guest_xsave->region, sizeof(struct fxregs_state)); 3622 } 3623 return 0; 3624 } 3625 3626 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3627 struct kvm_xcrs *guest_xcrs) 3628 { 3629 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 3630 guest_xcrs->nr_xcrs = 0; 3631 return; 3632 } 3633 3634 guest_xcrs->nr_xcrs = 1; 3635 guest_xcrs->flags = 0; 3636 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3637 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3638 } 3639 3640 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3641 struct kvm_xcrs *guest_xcrs) 3642 { 3643 int i, r = 0; 3644 3645 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 3646 return -EINVAL; 3647 3648 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3649 return -EINVAL; 3650 3651 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3652 /* Only support XCR0 currently */ 3653 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3654 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3655 guest_xcrs->xcrs[i].value); 3656 break; 3657 } 3658 if (r) 3659 r = -EINVAL; 3660 return r; 3661 } 3662 3663 /* 3664 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3665 * stopped by the hypervisor. This function will be called from the host only. 3666 * EINVAL is returned when the host attempts to set the flag for a guest that 3667 * does not support pv clocks. 3668 */ 3669 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3670 { 3671 if (!vcpu->arch.pv_time_enabled) 3672 return -EINVAL; 3673 vcpu->arch.pvclock_set_guest_stopped_request = true; 3674 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3675 return 0; 3676 } 3677 3678 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3679 struct kvm_enable_cap *cap) 3680 { 3681 if (cap->flags) 3682 return -EINVAL; 3683 3684 switch (cap->cap) { 3685 case KVM_CAP_HYPERV_SYNIC2: 3686 if (cap->args[0]) 3687 return -EINVAL; 3688 case KVM_CAP_HYPERV_SYNIC: 3689 if (!irqchip_in_kernel(vcpu->kvm)) 3690 return -EINVAL; 3691 return kvm_hv_activate_synic(vcpu, cap->cap == 3692 KVM_CAP_HYPERV_SYNIC2); 3693 default: 3694 return -EINVAL; 3695 } 3696 } 3697 3698 long kvm_arch_vcpu_ioctl(struct file *filp, 3699 unsigned int ioctl, unsigned long arg) 3700 { 3701 struct kvm_vcpu *vcpu = filp->private_data; 3702 void __user *argp = (void __user *)arg; 3703 int r; 3704 union { 3705 struct kvm_lapic_state *lapic; 3706 struct kvm_xsave *xsave; 3707 struct kvm_xcrs *xcrs; 3708 void *buffer; 3709 } u; 3710 3711 vcpu_load(vcpu); 3712 3713 u.buffer = NULL; 3714 switch (ioctl) { 3715 case KVM_GET_LAPIC: { 3716 r = -EINVAL; 3717 if (!lapic_in_kernel(vcpu)) 3718 goto out; 3719 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3720 3721 r = -ENOMEM; 3722 if (!u.lapic) 3723 goto out; 3724 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3725 if (r) 3726 goto out; 3727 r = -EFAULT; 3728 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3729 goto out; 3730 r = 0; 3731 break; 3732 } 3733 case KVM_SET_LAPIC: { 3734 r = -EINVAL; 3735 if (!lapic_in_kernel(vcpu)) 3736 goto out; 3737 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3738 if (IS_ERR(u.lapic)) { 3739 r = PTR_ERR(u.lapic); 3740 goto out_nofree; 3741 } 3742 3743 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3744 break; 3745 } 3746 case KVM_INTERRUPT: { 3747 struct kvm_interrupt irq; 3748 3749 r = -EFAULT; 3750 if (copy_from_user(&irq, argp, sizeof irq)) 3751 goto out; 3752 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3753 break; 3754 } 3755 case KVM_NMI: { 3756 r = kvm_vcpu_ioctl_nmi(vcpu); 3757 break; 3758 } 3759 case KVM_SMI: { 3760 r = kvm_vcpu_ioctl_smi(vcpu); 3761 break; 3762 } 3763 case KVM_SET_CPUID: { 3764 struct kvm_cpuid __user *cpuid_arg = argp; 3765 struct kvm_cpuid cpuid; 3766 3767 r = -EFAULT; 3768 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3769 goto out; 3770 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3771 break; 3772 } 3773 case KVM_SET_CPUID2: { 3774 struct kvm_cpuid2 __user *cpuid_arg = argp; 3775 struct kvm_cpuid2 cpuid; 3776 3777 r = -EFAULT; 3778 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3779 goto out; 3780 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3781 cpuid_arg->entries); 3782 break; 3783 } 3784 case KVM_GET_CPUID2: { 3785 struct kvm_cpuid2 __user *cpuid_arg = argp; 3786 struct kvm_cpuid2 cpuid; 3787 3788 r = -EFAULT; 3789 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3790 goto out; 3791 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3792 cpuid_arg->entries); 3793 if (r) 3794 goto out; 3795 r = -EFAULT; 3796 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3797 goto out; 3798 r = 0; 3799 break; 3800 } 3801 case KVM_GET_MSRS: { 3802 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3803 r = msr_io(vcpu, argp, do_get_msr, 1); 3804 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3805 break; 3806 } 3807 case KVM_SET_MSRS: { 3808 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3809 r = msr_io(vcpu, argp, do_set_msr, 0); 3810 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3811 break; 3812 } 3813 case KVM_TPR_ACCESS_REPORTING: { 3814 struct kvm_tpr_access_ctl tac; 3815 3816 r = -EFAULT; 3817 if (copy_from_user(&tac, argp, sizeof tac)) 3818 goto out; 3819 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3820 if (r) 3821 goto out; 3822 r = -EFAULT; 3823 if (copy_to_user(argp, &tac, sizeof tac)) 3824 goto out; 3825 r = 0; 3826 break; 3827 }; 3828 case KVM_SET_VAPIC_ADDR: { 3829 struct kvm_vapic_addr va; 3830 int idx; 3831 3832 r = -EINVAL; 3833 if (!lapic_in_kernel(vcpu)) 3834 goto out; 3835 r = -EFAULT; 3836 if (copy_from_user(&va, argp, sizeof va)) 3837 goto out; 3838 idx = srcu_read_lock(&vcpu->kvm->srcu); 3839 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3840 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3841 break; 3842 } 3843 case KVM_X86_SETUP_MCE: { 3844 u64 mcg_cap; 3845 3846 r = -EFAULT; 3847 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3848 goto out; 3849 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3850 break; 3851 } 3852 case KVM_X86_SET_MCE: { 3853 struct kvm_x86_mce mce; 3854 3855 r = -EFAULT; 3856 if (copy_from_user(&mce, argp, sizeof mce)) 3857 goto out; 3858 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3859 break; 3860 } 3861 case KVM_GET_VCPU_EVENTS: { 3862 struct kvm_vcpu_events events; 3863 3864 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3865 3866 r = -EFAULT; 3867 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3868 break; 3869 r = 0; 3870 break; 3871 } 3872 case KVM_SET_VCPU_EVENTS: { 3873 struct kvm_vcpu_events events; 3874 3875 r = -EFAULT; 3876 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3877 break; 3878 3879 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3880 break; 3881 } 3882 case KVM_GET_DEBUGREGS: { 3883 struct kvm_debugregs dbgregs; 3884 3885 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3886 3887 r = -EFAULT; 3888 if (copy_to_user(argp, &dbgregs, 3889 sizeof(struct kvm_debugregs))) 3890 break; 3891 r = 0; 3892 break; 3893 } 3894 case KVM_SET_DEBUGREGS: { 3895 struct kvm_debugregs dbgregs; 3896 3897 r = -EFAULT; 3898 if (copy_from_user(&dbgregs, argp, 3899 sizeof(struct kvm_debugregs))) 3900 break; 3901 3902 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3903 break; 3904 } 3905 case KVM_GET_XSAVE: { 3906 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3907 r = -ENOMEM; 3908 if (!u.xsave) 3909 break; 3910 3911 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3912 3913 r = -EFAULT; 3914 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3915 break; 3916 r = 0; 3917 break; 3918 } 3919 case KVM_SET_XSAVE: { 3920 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3921 if (IS_ERR(u.xsave)) { 3922 r = PTR_ERR(u.xsave); 3923 goto out_nofree; 3924 } 3925 3926 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3927 break; 3928 } 3929 case KVM_GET_XCRS: { 3930 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3931 r = -ENOMEM; 3932 if (!u.xcrs) 3933 break; 3934 3935 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3936 3937 r = -EFAULT; 3938 if (copy_to_user(argp, u.xcrs, 3939 sizeof(struct kvm_xcrs))) 3940 break; 3941 r = 0; 3942 break; 3943 } 3944 case KVM_SET_XCRS: { 3945 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3946 if (IS_ERR(u.xcrs)) { 3947 r = PTR_ERR(u.xcrs); 3948 goto out_nofree; 3949 } 3950 3951 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3952 break; 3953 } 3954 case KVM_SET_TSC_KHZ: { 3955 u32 user_tsc_khz; 3956 3957 r = -EINVAL; 3958 user_tsc_khz = (u32)arg; 3959 3960 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3961 goto out; 3962 3963 if (user_tsc_khz == 0) 3964 user_tsc_khz = tsc_khz; 3965 3966 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 3967 r = 0; 3968 3969 goto out; 3970 } 3971 case KVM_GET_TSC_KHZ: { 3972 r = vcpu->arch.virtual_tsc_khz; 3973 goto out; 3974 } 3975 case KVM_KVMCLOCK_CTRL: { 3976 r = kvm_set_guest_paused(vcpu); 3977 goto out; 3978 } 3979 case KVM_ENABLE_CAP: { 3980 struct kvm_enable_cap cap; 3981 3982 r = -EFAULT; 3983 if (copy_from_user(&cap, argp, sizeof(cap))) 3984 goto out; 3985 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3986 break; 3987 } 3988 default: 3989 r = -EINVAL; 3990 } 3991 out: 3992 kfree(u.buffer); 3993 out_nofree: 3994 vcpu_put(vcpu); 3995 return r; 3996 } 3997 3998 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3999 { 4000 return VM_FAULT_SIGBUS; 4001 } 4002 4003 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 4004 { 4005 int ret; 4006 4007 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 4008 return -EINVAL; 4009 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 4010 return ret; 4011 } 4012 4013 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 4014 u64 ident_addr) 4015 { 4016 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr); 4017 } 4018 4019 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 4020 u32 kvm_nr_mmu_pages) 4021 { 4022 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 4023 return -EINVAL; 4024 4025 mutex_lock(&kvm->slots_lock); 4026 4027 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 4028 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 4029 4030 mutex_unlock(&kvm->slots_lock); 4031 return 0; 4032 } 4033 4034 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 4035 { 4036 return kvm->arch.n_max_mmu_pages; 4037 } 4038 4039 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4040 { 4041 struct kvm_pic *pic = kvm->arch.vpic; 4042 int r; 4043 4044 r = 0; 4045 switch (chip->chip_id) { 4046 case KVM_IRQCHIP_PIC_MASTER: 4047 memcpy(&chip->chip.pic, &pic->pics[0], 4048 sizeof(struct kvm_pic_state)); 4049 break; 4050 case KVM_IRQCHIP_PIC_SLAVE: 4051 memcpy(&chip->chip.pic, &pic->pics[1], 4052 sizeof(struct kvm_pic_state)); 4053 break; 4054 case KVM_IRQCHIP_IOAPIC: 4055 kvm_get_ioapic(kvm, &chip->chip.ioapic); 4056 break; 4057 default: 4058 r = -EINVAL; 4059 break; 4060 } 4061 return r; 4062 } 4063 4064 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4065 { 4066 struct kvm_pic *pic = kvm->arch.vpic; 4067 int r; 4068 4069 r = 0; 4070 switch (chip->chip_id) { 4071 case KVM_IRQCHIP_PIC_MASTER: 4072 spin_lock(&pic->lock); 4073 memcpy(&pic->pics[0], &chip->chip.pic, 4074 sizeof(struct kvm_pic_state)); 4075 spin_unlock(&pic->lock); 4076 break; 4077 case KVM_IRQCHIP_PIC_SLAVE: 4078 spin_lock(&pic->lock); 4079 memcpy(&pic->pics[1], &chip->chip.pic, 4080 sizeof(struct kvm_pic_state)); 4081 spin_unlock(&pic->lock); 4082 break; 4083 case KVM_IRQCHIP_IOAPIC: 4084 kvm_set_ioapic(kvm, &chip->chip.ioapic); 4085 break; 4086 default: 4087 r = -EINVAL; 4088 break; 4089 } 4090 kvm_pic_update_irq(pic); 4091 return r; 4092 } 4093 4094 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4095 { 4096 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 4097 4098 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 4099 4100 mutex_lock(&kps->lock); 4101 memcpy(ps, &kps->channels, sizeof(*ps)); 4102 mutex_unlock(&kps->lock); 4103 return 0; 4104 } 4105 4106 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4107 { 4108 int i; 4109 struct kvm_pit *pit = kvm->arch.vpit; 4110 4111 mutex_lock(&pit->pit_state.lock); 4112 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 4113 for (i = 0; i < 3; i++) 4114 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 4115 mutex_unlock(&pit->pit_state.lock); 4116 return 0; 4117 } 4118 4119 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4120 { 4121 mutex_lock(&kvm->arch.vpit->pit_state.lock); 4122 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 4123 sizeof(ps->channels)); 4124 ps->flags = kvm->arch.vpit->pit_state.flags; 4125 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 4126 memset(&ps->reserved, 0, sizeof(ps->reserved)); 4127 return 0; 4128 } 4129 4130 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4131 { 4132 int start = 0; 4133 int i; 4134 u32 prev_legacy, cur_legacy; 4135 struct kvm_pit *pit = kvm->arch.vpit; 4136 4137 mutex_lock(&pit->pit_state.lock); 4138 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 4139 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 4140 if (!prev_legacy && cur_legacy) 4141 start = 1; 4142 memcpy(&pit->pit_state.channels, &ps->channels, 4143 sizeof(pit->pit_state.channels)); 4144 pit->pit_state.flags = ps->flags; 4145 for (i = 0; i < 3; i++) 4146 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 4147 start && i == 0); 4148 mutex_unlock(&pit->pit_state.lock); 4149 return 0; 4150 } 4151 4152 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 4153 struct kvm_reinject_control *control) 4154 { 4155 struct kvm_pit *pit = kvm->arch.vpit; 4156 4157 if (!pit) 4158 return -ENXIO; 4159 4160 /* pit->pit_state.lock was overloaded to prevent userspace from getting 4161 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 4162 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 4163 */ 4164 mutex_lock(&pit->pit_state.lock); 4165 kvm_pit_set_reinject(pit, control->pit_reinject); 4166 mutex_unlock(&pit->pit_state.lock); 4167 4168 return 0; 4169 } 4170 4171 /** 4172 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 4173 * @kvm: kvm instance 4174 * @log: slot id and address to which we copy the log 4175 * 4176 * Steps 1-4 below provide general overview of dirty page logging. See 4177 * kvm_get_dirty_log_protect() function description for additional details. 4178 * 4179 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 4180 * always flush the TLB (step 4) even if previous step failed and the dirty 4181 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 4182 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 4183 * writes will be marked dirty for next log read. 4184 * 4185 * 1. Take a snapshot of the bit and clear it if needed. 4186 * 2. Write protect the corresponding page. 4187 * 3. Copy the snapshot to the userspace. 4188 * 4. Flush TLB's if needed. 4189 */ 4190 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 4191 { 4192 bool is_dirty = false; 4193 int r; 4194 4195 mutex_lock(&kvm->slots_lock); 4196 4197 /* 4198 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4199 */ 4200 if (kvm_x86_ops->flush_log_dirty) 4201 kvm_x86_ops->flush_log_dirty(kvm); 4202 4203 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 4204 4205 /* 4206 * All the TLBs can be flushed out of mmu lock, see the comments in 4207 * kvm_mmu_slot_remove_write_access(). 4208 */ 4209 lockdep_assert_held(&kvm->slots_lock); 4210 if (is_dirty) 4211 kvm_flush_remote_tlbs(kvm); 4212 4213 mutex_unlock(&kvm->slots_lock); 4214 return r; 4215 } 4216 4217 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 4218 bool line_status) 4219 { 4220 if (!irqchip_in_kernel(kvm)) 4221 return -ENXIO; 4222 4223 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 4224 irq_event->irq, irq_event->level, 4225 line_status); 4226 return 0; 4227 } 4228 4229 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4230 struct kvm_enable_cap *cap) 4231 { 4232 int r; 4233 4234 if (cap->flags) 4235 return -EINVAL; 4236 4237 switch (cap->cap) { 4238 case KVM_CAP_DISABLE_QUIRKS: 4239 kvm->arch.disabled_quirks = cap->args[0]; 4240 r = 0; 4241 break; 4242 case KVM_CAP_SPLIT_IRQCHIP: { 4243 mutex_lock(&kvm->lock); 4244 r = -EINVAL; 4245 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4246 goto split_irqchip_unlock; 4247 r = -EEXIST; 4248 if (irqchip_in_kernel(kvm)) 4249 goto split_irqchip_unlock; 4250 if (kvm->created_vcpus) 4251 goto split_irqchip_unlock; 4252 r = kvm_setup_empty_irq_routing(kvm); 4253 if (r) 4254 goto split_irqchip_unlock; 4255 /* Pairs with irqchip_in_kernel. */ 4256 smp_wmb(); 4257 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4258 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4259 r = 0; 4260 split_irqchip_unlock: 4261 mutex_unlock(&kvm->lock); 4262 break; 4263 } 4264 case KVM_CAP_X2APIC_API: 4265 r = -EINVAL; 4266 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 4267 break; 4268 4269 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 4270 kvm->arch.x2apic_format = true; 4271 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 4272 kvm->arch.x2apic_broadcast_quirk_disabled = true; 4273 4274 r = 0; 4275 break; 4276 case KVM_CAP_X86_DISABLE_EXITS: 4277 r = -EINVAL; 4278 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 4279 break; 4280 4281 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 4282 kvm_can_mwait_in_guest()) 4283 kvm->arch.mwait_in_guest = true; 4284 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 4285 kvm->arch.hlt_in_guest = true; 4286 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 4287 kvm->arch.pause_in_guest = true; 4288 r = 0; 4289 break; 4290 default: 4291 r = -EINVAL; 4292 break; 4293 } 4294 return r; 4295 } 4296 4297 long kvm_arch_vm_ioctl(struct file *filp, 4298 unsigned int ioctl, unsigned long arg) 4299 { 4300 struct kvm *kvm = filp->private_data; 4301 void __user *argp = (void __user *)arg; 4302 int r = -ENOTTY; 4303 /* 4304 * This union makes it completely explicit to gcc-3.x 4305 * that these two variables' stack usage should be 4306 * combined, not added together. 4307 */ 4308 union { 4309 struct kvm_pit_state ps; 4310 struct kvm_pit_state2 ps2; 4311 struct kvm_pit_config pit_config; 4312 } u; 4313 4314 switch (ioctl) { 4315 case KVM_SET_TSS_ADDR: 4316 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 4317 break; 4318 case KVM_SET_IDENTITY_MAP_ADDR: { 4319 u64 ident_addr; 4320 4321 mutex_lock(&kvm->lock); 4322 r = -EINVAL; 4323 if (kvm->created_vcpus) 4324 goto set_identity_unlock; 4325 r = -EFAULT; 4326 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 4327 goto set_identity_unlock; 4328 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 4329 set_identity_unlock: 4330 mutex_unlock(&kvm->lock); 4331 break; 4332 } 4333 case KVM_SET_NR_MMU_PAGES: 4334 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 4335 break; 4336 case KVM_GET_NR_MMU_PAGES: 4337 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4338 break; 4339 case KVM_CREATE_IRQCHIP: { 4340 mutex_lock(&kvm->lock); 4341 4342 r = -EEXIST; 4343 if (irqchip_in_kernel(kvm)) 4344 goto create_irqchip_unlock; 4345 4346 r = -EINVAL; 4347 if (kvm->created_vcpus) 4348 goto create_irqchip_unlock; 4349 4350 r = kvm_pic_init(kvm); 4351 if (r) 4352 goto create_irqchip_unlock; 4353 4354 r = kvm_ioapic_init(kvm); 4355 if (r) { 4356 kvm_pic_destroy(kvm); 4357 goto create_irqchip_unlock; 4358 } 4359 4360 r = kvm_setup_default_irq_routing(kvm); 4361 if (r) { 4362 kvm_ioapic_destroy(kvm); 4363 kvm_pic_destroy(kvm); 4364 goto create_irqchip_unlock; 4365 } 4366 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4367 smp_wmb(); 4368 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4369 create_irqchip_unlock: 4370 mutex_unlock(&kvm->lock); 4371 break; 4372 } 4373 case KVM_CREATE_PIT: 4374 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 4375 goto create_pit; 4376 case KVM_CREATE_PIT2: 4377 r = -EFAULT; 4378 if (copy_from_user(&u.pit_config, argp, 4379 sizeof(struct kvm_pit_config))) 4380 goto out; 4381 create_pit: 4382 mutex_lock(&kvm->lock); 4383 r = -EEXIST; 4384 if (kvm->arch.vpit) 4385 goto create_pit_unlock; 4386 r = -ENOMEM; 4387 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 4388 if (kvm->arch.vpit) 4389 r = 0; 4390 create_pit_unlock: 4391 mutex_unlock(&kvm->lock); 4392 break; 4393 case KVM_GET_IRQCHIP: { 4394 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4395 struct kvm_irqchip *chip; 4396 4397 chip = memdup_user(argp, sizeof(*chip)); 4398 if (IS_ERR(chip)) { 4399 r = PTR_ERR(chip); 4400 goto out; 4401 } 4402 4403 r = -ENXIO; 4404 if (!irqchip_kernel(kvm)) 4405 goto get_irqchip_out; 4406 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 4407 if (r) 4408 goto get_irqchip_out; 4409 r = -EFAULT; 4410 if (copy_to_user(argp, chip, sizeof *chip)) 4411 goto get_irqchip_out; 4412 r = 0; 4413 get_irqchip_out: 4414 kfree(chip); 4415 break; 4416 } 4417 case KVM_SET_IRQCHIP: { 4418 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4419 struct kvm_irqchip *chip; 4420 4421 chip = memdup_user(argp, sizeof(*chip)); 4422 if (IS_ERR(chip)) { 4423 r = PTR_ERR(chip); 4424 goto out; 4425 } 4426 4427 r = -ENXIO; 4428 if (!irqchip_kernel(kvm)) 4429 goto set_irqchip_out; 4430 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 4431 if (r) 4432 goto set_irqchip_out; 4433 r = 0; 4434 set_irqchip_out: 4435 kfree(chip); 4436 break; 4437 } 4438 case KVM_GET_PIT: { 4439 r = -EFAULT; 4440 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 4441 goto out; 4442 r = -ENXIO; 4443 if (!kvm->arch.vpit) 4444 goto out; 4445 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 4446 if (r) 4447 goto out; 4448 r = -EFAULT; 4449 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 4450 goto out; 4451 r = 0; 4452 break; 4453 } 4454 case KVM_SET_PIT: { 4455 r = -EFAULT; 4456 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 4457 goto out; 4458 r = -ENXIO; 4459 if (!kvm->arch.vpit) 4460 goto out; 4461 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 4462 break; 4463 } 4464 case KVM_GET_PIT2: { 4465 r = -ENXIO; 4466 if (!kvm->arch.vpit) 4467 goto out; 4468 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 4469 if (r) 4470 goto out; 4471 r = -EFAULT; 4472 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 4473 goto out; 4474 r = 0; 4475 break; 4476 } 4477 case KVM_SET_PIT2: { 4478 r = -EFAULT; 4479 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 4480 goto out; 4481 r = -ENXIO; 4482 if (!kvm->arch.vpit) 4483 goto out; 4484 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 4485 break; 4486 } 4487 case KVM_REINJECT_CONTROL: { 4488 struct kvm_reinject_control control; 4489 r = -EFAULT; 4490 if (copy_from_user(&control, argp, sizeof(control))) 4491 goto out; 4492 r = kvm_vm_ioctl_reinject(kvm, &control); 4493 break; 4494 } 4495 case KVM_SET_BOOT_CPU_ID: 4496 r = 0; 4497 mutex_lock(&kvm->lock); 4498 if (kvm->created_vcpus) 4499 r = -EBUSY; 4500 else 4501 kvm->arch.bsp_vcpu_id = arg; 4502 mutex_unlock(&kvm->lock); 4503 break; 4504 case KVM_XEN_HVM_CONFIG: { 4505 struct kvm_xen_hvm_config xhc; 4506 r = -EFAULT; 4507 if (copy_from_user(&xhc, argp, sizeof(xhc))) 4508 goto out; 4509 r = -EINVAL; 4510 if (xhc.flags) 4511 goto out; 4512 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 4513 r = 0; 4514 break; 4515 } 4516 case KVM_SET_CLOCK: { 4517 struct kvm_clock_data user_ns; 4518 u64 now_ns; 4519 4520 r = -EFAULT; 4521 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 4522 goto out; 4523 4524 r = -EINVAL; 4525 if (user_ns.flags) 4526 goto out; 4527 4528 r = 0; 4529 /* 4530 * TODO: userspace has to take care of races with VCPU_RUN, so 4531 * kvm_gen_update_masterclock() can be cut down to locked 4532 * pvclock_update_vm_gtod_copy(). 4533 */ 4534 kvm_gen_update_masterclock(kvm); 4535 now_ns = get_kvmclock_ns(kvm); 4536 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 4537 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 4538 break; 4539 } 4540 case KVM_GET_CLOCK: { 4541 struct kvm_clock_data user_ns; 4542 u64 now_ns; 4543 4544 now_ns = get_kvmclock_ns(kvm); 4545 user_ns.clock = now_ns; 4546 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 4547 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 4548 4549 r = -EFAULT; 4550 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 4551 goto out; 4552 r = 0; 4553 break; 4554 } 4555 case KVM_ENABLE_CAP: { 4556 struct kvm_enable_cap cap; 4557 4558 r = -EFAULT; 4559 if (copy_from_user(&cap, argp, sizeof(cap))) 4560 goto out; 4561 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 4562 break; 4563 } 4564 case KVM_MEMORY_ENCRYPT_OP: { 4565 r = -ENOTTY; 4566 if (kvm_x86_ops->mem_enc_op) 4567 r = kvm_x86_ops->mem_enc_op(kvm, argp); 4568 break; 4569 } 4570 case KVM_MEMORY_ENCRYPT_REG_REGION: { 4571 struct kvm_enc_region region; 4572 4573 r = -EFAULT; 4574 if (copy_from_user(®ion, argp, sizeof(region))) 4575 goto out; 4576 4577 r = -ENOTTY; 4578 if (kvm_x86_ops->mem_enc_reg_region) 4579 r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion); 4580 break; 4581 } 4582 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 4583 struct kvm_enc_region region; 4584 4585 r = -EFAULT; 4586 if (copy_from_user(®ion, argp, sizeof(region))) 4587 goto out; 4588 4589 r = -ENOTTY; 4590 if (kvm_x86_ops->mem_enc_unreg_region) 4591 r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion); 4592 break; 4593 } 4594 case KVM_HYPERV_EVENTFD: { 4595 struct kvm_hyperv_eventfd hvevfd; 4596 4597 r = -EFAULT; 4598 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 4599 goto out; 4600 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 4601 break; 4602 } 4603 default: 4604 r = -ENOTTY; 4605 } 4606 out: 4607 return r; 4608 } 4609 4610 static void kvm_init_msr_list(void) 4611 { 4612 u32 dummy[2]; 4613 unsigned i, j; 4614 4615 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { 4616 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 4617 continue; 4618 4619 /* 4620 * Even MSRs that are valid in the host may not be exposed 4621 * to the guests in some cases. 4622 */ 4623 switch (msrs_to_save[i]) { 4624 case MSR_IA32_BNDCFGS: 4625 if (!kvm_x86_ops->mpx_supported()) 4626 continue; 4627 break; 4628 case MSR_TSC_AUX: 4629 if (!kvm_x86_ops->rdtscp_supported()) 4630 continue; 4631 break; 4632 default: 4633 break; 4634 } 4635 4636 if (j < i) 4637 msrs_to_save[j] = msrs_to_save[i]; 4638 j++; 4639 } 4640 num_msrs_to_save = j; 4641 4642 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { 4643 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i])) 4644 continue; 4645 4646 if (j < i) 4647 emulated_msrs[j] = emulated_msrs[i]; 4648 j++; 4649 } 4650 num_emulated_msrs = j; 4651 4652 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) { 4653 struct kvm_msr_entry msr; 4654 4655 msr.index = msr_based_features[i]; 4656 if (kvm_get_msr_feature(&msr)) 4657 continue; 4658 4659 if (j < i) 4660 msr_based_features[j] = msr_based_features[i]; 4661 j++; 4662 } 4663 num_msr_based_features = j; 4664 } 4665 4666 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 4667 const void *v) 4668 { 4669 int handled = 0; 4670 int n; 4671 4672 do { 4673 n = min(len, 8); 4674 if (!(lapic_in_kernel(vcpu) && 4675 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 4676 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 4677 break; 4678 handled += n; 4679 addr += n; 4680 len -= n; 4681 v += n; 4682 } while (len); 4683 4684 return handled; 4685 } 4686 4687 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 4688 { 4689 int handled = 0; 4690 int n; 4691 4692 do { 4693 n = min(len, 8); 4694 if (!(lapic_in_kernel(vcpu) && 4695 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 4696 addr, n, v)) 4697 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 4698 break; 4699 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 4700 handled += n; 4701 addr += n; 4702 len -= n; 4703 v += n; 4704 } while (len); 4705 4706 return handled; 4707 } 4708 4709 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4710 struct kvm_segment *var, int seg) 4711 { 4712 kvm_x86_ops->set_segment(vcpu, var, seg); 4713 } 4714 4715 void kvm_get_segment(struct kvm_vcpu *vcpu, 4716 struct kvm_segment *var, int seg) 4717 { 4718 kvm_x86_ops->get_segment(vcpu, var, seg); 4719 } 4720 4721 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 4722 struct x86_exception *exception) 4723 { 4724 gpa_t t_gpa; 4725 4726 BUG_ON(!mmu_is_nested(vcpu)); 4727 4728 /* NPT walks are always user-walks */ 4729 access |= PFERR_USER_MASK; 4730 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); 4731 4732 return t_gpa; 4733 } 4734 4735 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4736 struct x86_exception *exception) 4737 { 4738 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4739 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4740 } 4741 4742 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4743 struct x86_exception *exception) 4744 { 4745 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4746 access |= PFERR_FETCH_MASK; 4747 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4748 } 4749 4750 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4751 struct x86_exception *exception) 4752 { 4753 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4754 access |= PFERR_WRITE_MASK; 4755 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4756 } 4757 4758 /* uses this to access any guest's mapped memory without checking CPL */ 4759 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4760 struct x86_exception *exception) 4761 { 4762 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4763 } 4764 4765 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4766 struct kvm_vcpu *vcpu, u32 access, 4767 struct x86_exception *exception) 4768 { 4769 void *data = val; 4770 int r = X86EMUL_CONTINUE; 4771 4772 while (bytes) { 4773 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4774 exception); 4775 unsigned offset = addr & (PAGE_SIZE-1); 4776 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4777 int ret; 4778 4779 if (gpa == UNMAPPED_GVA) 4780 return X86EMUL_PROPAGATE_FAULT; 4781 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 4782 offset, toread); 4783 if (ret < 0) { 4784 r = X86EMUL_IO_NEEDED; 4785 goto out; 4786 } 4787 4788 bytes -= toread; 4789 data += toread; 4790 addr += toread; 4791 } 4792 out: 4793 return r; 4794 } 4795 4796 /* used for instruction fetching */ 4797 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4798 gva_t addr, void *val, unsigned int bytes, 4799 struct x86_exception *exception) 4800 { 4801 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4802 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4803 unsigned offset; 4804 int ret; 4805 4806 /* Inline kvm_read_guest_virt_helper for speed. */ 4807 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 4808 exception); 4809 if (unlikely(gpa == UNMAPPED_GVA)) 4810 return X86EMUL_PROPAGATE_FAULT; 4811 4812 offset = addr & (PAGE_SIZE-1); 4813 if (WARN_ON(offset + bytes > PAGE_SIZE)) 4814 bytes = (unsigned)PAGE_SIZE - offset; 4815 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 4816 offset, bytes); 4817 if (unlikely(ret < 0)) 4818 return X86EMUL_IO_NEEDED; 4819 4820 return X86EMUL_CONTINUE; 4821 } 4822 4823 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 4824 gva_t addr, void *val, unsigned int bytes, 4825 struct x86_exception *exception) 4826 { 4827 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4828 4829 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4830 exception); 4831 } 4832 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4833 4834 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 4835 gva_t addr, void *val, unsigned int bytes, 4836 struct x86_exception *exception, bool system) 4837 { 4838 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4839 u32 access = 0; 4840 4841 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) 4842 access |= PFERR_USER_MASK; 4843 4844 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 4845 } 4846 4847 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 4848 unsigned long addr, void *val, unsigned int bytes) 4849 { 4850 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4851 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 4852 4853 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 4854 } 4855 4856 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4857 struct kvm_vcpu *vcpu, u32 access, 4858 struct x86_exception *exception) 4859 { 4860 void *data = val; 4861 int r = X86EMUL_CONTINUE; 4862 4863 while (bytes) { 4864 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4865 access, 4866 exception); 4867 unsigned offset = addr & (PAGE_SIZE-1); 4868 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4869 int ret; 4870 4871 if (gpa == UNMAPPED_GVA) 4872 return X86EMUL_PROPAGATE_FAULT; 4873 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 4874 if (ret < 0) { 4875 r = X86EMUL_IO_NEEDED; 4876 goto out; 4877 } 4878 4879 bytes -= towrite; 4880 data += towrite; 4881 addr += towrite; 4882 } 4883 out: 4884 return r; 4885 } 4886 4887 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 4888 unsigned int bytes, struct x86_exception *exception, 4889 bool system) 4890 { 4891 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4892 u32 access = PFERR_WRITE_MASK; 4893 4894 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) 4895 access |= PFERR_USER_MASK; 4896 4897 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 4898 access, exception); 4899 } 4900 4901 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 4902 unsigned int bytes, struct x86_exception *exception) 4903 { 4904 /* kvm_write_guest_virt_system can pull in tons of pages. */ 4905 vcpu->arch.l1tf_flush_l1d = true; 4906 4907 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 4908 PFERR_WRITE_MASK, exception); 4909 } 4910 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4911 4912 int handle_ud(struct kvm_vcpu *vcpu) 4913 { 4914 int emul_type = EMULTYPE_TRAP_UD; 4915 enum emulation_result er; 4916 char sig[5]; /* ud2; .ascii "kvm" */ 4917 struct x86_exception e; 4918 4919 if (force_emulation_prefix && 4920 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 4921 sig, sizeof(sig), &e) == 0 && 4922 memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) { 4923 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 4924 emul_type = 0; 4925 } 4926 4927 er = emulate_instruction(vcpu, emul_type); 4928 if (er == EMULATE_USER_EXIT) 4929 return 0; 4930 if (er != EMULATE_DONE) 4931 kvm_queue_exception(vcpu, UD_VECTOR); 4932 return 1; 4933 } 4934 EXPORT_SYMBOL_GPL(handle_ud); 4935 4936 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4937 gpa_t gpa, bool write) 4938 { 4939 /* For APIC access vmexit */ 4940 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4941 return 1; 4942 4943 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 4944 trace_vcpu_match_mmio(gva, gpa, write, true); 4945 return 1; 4946 } 4947 4948 return 0; 4949 } 4950 4951 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4952 gpa_t *gpa, struct x86_exception *exception, 4953 bool write) 4954 { 4955 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4956 | (write ? PFERR_WRITE_MASK : 0); 4957 4958 /* 4959 * currently PKRU is only applied to ept enabled guest so 4960 * there is no pkey in EPT page table for L1 guest or EPT 4961 * shadow page table for L2 guest. 4962 */ 4963 if (vcpu_match_mmio_gva(vcpu, gva) 4964 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 4965 vcpu->arch.access, 0, access)) { 4966 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4967 (gva & (PAGE_SIZE - 1)); 4968 trace_vcpu_match_mmio(gva, *gpa, write, false); 4969 return 1; 4970 } 4971 4972 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4973 4974 if (*gpa == UNMAPPED_GVA) 4975 return -1; 4976 4977 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 4978 } 4979 4980 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4981 const void *val, int bytes) 4982 { 4983 int ret; 4984 4985 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 4986 if (ret < 0) 4987 return 0; 4988 kvm_page_track_write(vcpu, gpa, val, bytes); 4989 return 1; 4990 } 4991 4992 struct read_write_emulator_ops { 4993 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4994 int bytes); 4995 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4996 void *val, int bytes); 4997 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4998 int bytes, void *val); 4999 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5000 void *val, int bytes); 5001 bool write; 5002 }; 5003 5004 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 5005 { 5006 if (vcpu->mmio_read_completed) { 5007 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 5008 vcpu->mmio_fragments[0].gpa, val); 5009 vcpu->mmio_read_completed = 0; 5010 return 1; 5011 } 5012 5013 return 0; 5014 } 5015 5016 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5017 void *val, int bytes) 5018 { 5019 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 5020 } 5021 5022 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5023 void *val, int bytes) 5024 { 5025 return emulator_write_phys(vcpu, gpa, val, bytes); 5026 } 5027 5028 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 5029 { 5030 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 5031 return vcpu_mmio_write(vcpu, gpa, bytes, val); 5032 } 5033 5034 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5035 void *val, int bytes) 5036 { 5037 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 5038 return X86EMUL_IO_NEEDED; 5039 } 5040 5041 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5042 void *val, int bytes) 5043 { 5044 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 5045 5046 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 5047 return X86EMUL_CONTINUE; 5048 } 5049 5050 static const struct read_write_emulator_ops read_emultor = { 5051 .read_write_prepare = read_prepare, 5052 .read_write_emulate = read_emulate, 5053 .read_write_mmio = vcpu_mmio_read, 5054 .read_write_exit_mmio = read_exit_mmio, 5055 }; 5056 5057 static const struct read_write_emulator_ops write_emultor = { 5058 .read_write_emulate = write_emulate, 5059 .read_write_mmio = write_mmio, 5060 .read_write_exit_mmio = write_exit_mmio, 5061 .write = true, 5062 }; 5063 5064 static int emulator_read_write_onepage(unsigned long addr, void *val, 5065 unsigned int bytes, 5066 struct x86_exception *exception, 5067 struct kvm_vcpu *vcpu, 5068 const struct read_write_emulator_ops *ops) 5069 { 5070 gpa_t gpa; 5071 int handled, ret; 5072 bool write = ops->write; 5073 struct kvm_mmio_fragment *frag; 5074 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5075 5076 /* 5077 * If the exit was due to a NPF we may already have a GPA. 5078 * If the GPA is present, use it to avoid the GVA to GPA table walk. 5079 * Note, this cannot be used on string operations since string 5080 * operation using rep will only have the initial GPA from the NPF 5081 * occurred. 5082 */ 5083 if (vcpu->arch.gpa_available && 5084 emulator_can_use_gpa(ctxt) && 5085 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) { 5086 gpa = vcpu->arch.gpa_val; 5087 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 5088 } else { 5089 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 5090 if (ret < 0) 5091 return X86EMUL_PROPAGATE_FAULT; 5092 } 5093 5094 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 5095 return X86EMUL_CONTINUE; 5096 5097 /* 5098 * Is this MMIO handled locally? 5099 */ 5100 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 5101 if (handled == bytes) 5102 return X86EMUL_CONTINUE; 5103 5104 gpa += handled; 5105 bytes -= handled; 5106 val += handled; 5107 5108 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 5109 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 5110 frag->gpa = gpa; 5111 frag->data = val; 5112 frag->len = bytes; 5113 return X86EMUL_CONTINUE; 5114 } 5115 5116 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 5117 unsigned long addr, 5118 void *val, unsigned int bytes, 5119 struct x86_exception *exception, 5120 const struct read_write_emulator_ops *ops) 5121 { 5122 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5123 gpa_t gpa; 5124 int rc; 5125 5126 if (ops->read_write_prepare && 5127 ops->read_write_prepare(vcpu, val, bytes)) 5128 return X86EMUL_CONTINUE; 5129 5130 vcpu->mmio_nr_fragments = 0; 5131 5132 /* Crossing a page boundary? */ 5133 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 5134 int now; 5135 5136 now = -addr & ~PAGE_MASK; 5137 rc = emulator_read_write_onepage(addr, val, now, exception, 5138 vcpu, ops); 5139 5140 if (rc != X86EMUL_CONTINUE) 5141 return rc; 5142 addr += now; 5143 if (ctxt->mode != X86EMUL_MODE_PROT64) 5144 addr = (u32)addr; 5145 val += now; 5146 bytes -= now; 5147 } 5148 5149 rc = emulator_read_write_onepage(addr, val, bytes, exception, 5150 vcpu, ops); 5151 if (rc != X86EMUL_CONTINUE) 5152 return rc; 5153 5154 if (!vcpu->mmio_nr_fragments) 5155 return rc; 5156 5157 gpa = vcpu->mmio_fragments[0].gpa; 5158 5159 vcpu->mmio_needed = 1; 5160 vcpu->mmio_cur_fragment = 0; 5161 5162 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 5163 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 5164 vcpu->run->exit_reason = KVM_EXIT_MMIO; 5165 vcpu->run->mmio.phys_addr = gpa; 5166 5167 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 5168 } 5169 5170 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 5171 unsigned long addr, 5172 void *val, 5173 unsigned int bytes, 5174 struct x86_exception *exception) 5175 { 5176 return emulator_read_write(ctxt, addr, val, bytes, 5177 exception, &read_emultor); 5178 } 5179 5180 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 5181 unsigned long addr, 5182 const void *val, 5183 unsigned int bytes, 5184 struct x86_exception *exception) 5185 { 5186 return emulator_read_write(ctxt, addr, (void *)val, bytes, 5187 exception, &write_emultor); 5188 } 5189 5190 #define CMPXCHG_TYPE(t, ptr, old, new) \ 5191 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 5192 5193 #ifdef CONFIG_X86_64 5194 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 5195 #else 5196 # define CMPXCHG64(ptr, old, new) \ 5197 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 5198 #endif 5199 5200 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 5201 unsigned long addr, 5202 const void *old, 5203 const void *new, 5204 unsigned int bytes, 5205 struct x86_exception *exception) 5206 { 5207 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5208 gpa_t gpa; 5209 struct page *page; 5210 char *kaddr; 5211 bool exchanged; 5212 5213 /* guests cmpxchg8b have to be emulated atomically */ 5214 if (bytes > 8 || (bytes & (bytes - 1))) 5215 goto emul_write; 5216 5217 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 5218 5219 if (gpa == UNMAPPED_GVA || 5220 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5221 goto emul_write; 5222 5223 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 5224 goto emul_write; 5225 5226 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); 5227 if (is_error_page(page)) 5228 goto emul_write; 5229 5230 kaddr = kmap_atomic(page); 5231 kaddr += offset_in_page(gpa); 5232 switch (bytes) { 5233 case 1: 5234 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 5235 break; 5236 case 2: 5237 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 5238 break; 5239 case 4: 5240 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 5241 break; 5242 case 8: 5243 exchanged = CMPXCHG64(kaddr, old, new); 5244 break; 5245 default: 5246 BUG(); 5247 } 5248 kunmap_atomic(kaddr); 5249 kvm_release_page_dirty(page); 5250 5251 if (!exchanged) 5252 return X86EMUL_CMPXCHG_FAILED; 5253 5254 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5255 kvm_page_track_write(vcpu, gpa, new, bytes); 5256 5257 return X86EMUL_CONTINUE; 5258 5259 emul_write: 5260 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 5261 5262 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 5263 } 5264 5265 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 5266 { 5267 int r = 0, i; 5268 5269 for (i = 0; i < vcpu->arch.pio.count; i++) { 5270 if (vcpu->arch.pio.in) 5271 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 5272 vcpu->arch.pio.size, pd); 5273 else 5274 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 5275 vcpu->arch.pio.port, vcpu->arch.pio.size, 5276 pd); 5277 if (r) 5278 break; 5279 pd += vcpu->arch.pio.size; 5280 } 5281 return r; 5282 } 5283 5284 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 5285 unsigned short port, void *val, 5286 unsigned int count, bool in) 5287 { 5288 vcpu->arch.pio.port = port; 5289 vcpu->arch.pio.in = in; 5290 vcpu->arch.pio.count = count; 5291 vcpu->arch.pio.size = size; 5292 5293 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 5294 vcpu->arch.pio.count = 0; 5295 return 1; 5296 } 5297 5298 vcpu->run->exit_reason = KVM_EXIT_IO; 5299 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 5300 vcpu->run->io.size = size; 5301 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 5302 vcpu->run->io.count = count; 5303 vcpu->run->io.port = port; 5304 5305 return 0; 5306 } 5307 5308 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 5309 int size, unsigned short port, void *val, 5310 unsigned int count) 5311 { 5312 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5313 int ret; 5314 5315 if (vcpu->arch.pio.count) 5316 goto data_avail; 5317 5318 memset(vcpu->arch.pio_data, 0, size * count); 5319 5320 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 5321 if (ret) { 5322 data_avail: 5323 memcpy(val, vcpu->arch.pio_data, size * count); 5324 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 5325 vcpu->arch.pio.count = 0; 5326 return 1; 5327 } 5328 5329 return 0; 5330 } 5331 5332 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 5333 int size, unsigned short port, 5334 const void *val, unsigned int count) 5335 { 5336 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5337 5338 memcpy(vcpu->arch.pio_data, val, size * count); 5339 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 5340 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 5341 } 5342 5343 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 5344 { 5345 return kvm_x86_ops->get_segment_base(vcpu, seg); 5346 } 5347 5348 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 5349 { 5350 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 5351 } 5352 5353 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 5354 { 5355 if (!need_emulate_wbinvd(vcpu)) 5356 return X86EMUL_CONTINUE; 5357 5358 if (kvm_x86_ops->has_wbinvd_exit()) { 5359 int cpu = get_cpu(); 5360 5361 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5362 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 5363 wbinvd_ipi, NULL, 1); 5364 put_cpu(); 5365 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 5366 } else 5367 wbinvd(); 5368 return X86EMUL_CONTINUE; 5369 } 5370 5371 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 5372 { 5373 kvm_emulate_wbinvd_noskip(vcpu); 5374 return kvm_skip_emulated_instruction(vcpu); 5375 } 5376 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 5377 5378 5379 5380 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 5381 { 5382 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 5383 } 5384 5385 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 5386 unsigned long *dest) 5387 { 5388 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 5389 } 5390 5391 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 5392 unsigned long value) 5393 { 5394 5395 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 5396 } 5397 5398 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 5399 { 5400 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 5401 } 5402 5403 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 5404 { 5405 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5406 unsigned long value; 5407 5408 switch (cr) { 5409 case 0: 5410 value = kvm_read_cr0(vcpu); 5411 break; 5412 case 2: 5413 value = vcpu->arch.cr2; 5414 break; 5415 case 3: 5416 value = kvm_read_cr3(vcpu); 5417 break; 5418 case 4: 5419 value = kvm_read_cr4(vcpu); 5420 break; 5421 case 8: 5422 value = kvm_get_cr8(vcpu); 5423 break; 5424 default: 5425 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5426 return 0; 5427 } 5428 5429 return value; 5430 } 5431 5432 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 5433 { 5434 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5435 int res = 0; 5436 5437 switch (cr) { 5438 case 0: 5439 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 5440 break; 5441 case 2: 5442 vcpu->arch.cr2 = val; 5443 break; 5444 case 3: 5445 res = kvm_set_cr3(vcpu, val); 5446 break; 5447 case 4: 5448 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 5449 break; 5450 case 8: 5451 res = kvm_set_cr8(vcpu, val); 5452 break; 5453 default: 5454 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5455 res = -1; 5456 } 5457 5458 return res; 5459 } 5460 5461 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 5462 { 5463 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 5464 } 5465 5466 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5467 { 5468 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 5469 } 5470 5471 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5472 { 5473 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 5474 } 5475 5476 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5477 { 5478 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 5479 } 5480 5481 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5482 { 5483 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 5484 } 5485 5486 static unsigned long emulator_get_cached_segment_base( 5487 struct x86_emulate_ctxt *ctxt, int seg) 5488 { 5489 return get_segment_base(emul_to_vcpu(ctxt), seg); 5490 } 5491 5492 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 5493 struct desc_struct *desc, u32 *base3, 5494 int seg) 5495 { 5496 struct kvm_segment var; 5497 5498 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 5499 *selector = var.selector; 5500 5501 if (var.unusable) { 5502 memset(desc, 0, sizeof(*desc)); 5503 if (base3) 5504 *base3 = 0; 5505 return false; 5506 } 5507 5508 if (var.g) 5509 var.limit >>= 12; 5510 set_desc_limit(desc, var.limit); 5511 set_desc_base(desc, (unsigned long)var.base); 5512 #ifdef CONFIG_X86_64 5513 if (base3) 5514 *base3 = var.base >> 32; 5515 #endif 5516 desc->type = var.type; 5517 desc->s = var.s; 5518 desc->dpl = var.dpl; 5519 desc->p = var.present; 5520 desc->avl = var.avl; 5521 desc->l = var.l; 5522 desc->d = var.db; 5523 desc->g = var.g; 5524 5525 return true; 5526 } 5527 5528 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 5529 struct desc_struct *desc, u32 base3, 5530 int seg) 5531 { 5532 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5533 struct kvm_segment var; 5534 5535 var.selector = selector; 5536 var.base = get_desc_base(desc); 5537 #ifdef CONFIG_X86_64 5538 var.base |= ((u64)base3) << 32; 5539 #endif 5540 var.limit = get_desc_limit(desc); 5541 if (desc->g) 5542 var.limit = (var.limit << 12) | 0xfff; 5543 var.type = desc->type; 5544 var.dpl = desc->dpl; 5545 var.db = desc->d; 5546 var.s = desc->s; 5547 var.l = desc->l; 5548 var.g = desc->g; 5549 var.avl = desc->avl; 5550 var.present = desc->p; 5551 var.unusable = !var.present; 5552 var.padding = 0; 5553 5554 kvm_set_segment(vcpu, &var, seg); 5555 return; 5556 } 5557 5558 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 5559 u32 msr_index, u64 *pdata) 5560 { 5561 struct msr_data msr; 5562 int r; 5563 5564 msr.index = msr_index; 5565 msr.host_initiated = false; 5566 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); 5567 if (r) 5568 return r; 5569 5570 *pdata = msr.data; 5571 return 0; 5572 } 5573 5574 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 5575 u32 msr_index, u64 data) 5576 { 5577 struct msr_data msr; 5578 5579 msr.data = data; 5580 msr.index = msr_index; 5581 msr.host_initiated = false; 5582 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 5583 } 5584 5585 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 5586 { 5587 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5588 5589 return vcpu->arch.smbase; 5590 } 5591 5592 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 5593 { 5594 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5595 5596 vcpu->arch.smbase = smbase; 5597 } 5598 5599 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 5600 u32 pmc) 5601 { 5602 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); 5603 } 5604 5605 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 5606 u32 pmc, u64 *pdata) 5607 { 5608 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 5609 } 5610 5611 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 5612 { 5613 emul_to_vcpu(ctxt)->arch.halt_request = 1; 5614 } 5615 5616 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 5617 struct x86_instruction_info *info, 5618 enum x86_intercept_stage stage) 5619 { 5620 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 5621 } 5622 5623 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 5624 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit) 5625 { 5626 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit); 5627 } 5628 5629 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 5630 { 5631 return kvm_register_read(emul_to_vcpu(ctxt), reg); 5632 } 5633 5634 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 5635 { 5636 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 5637 } 5638 5639 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 5640 { 5641 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 5642 } 5643 5644 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 5645 { 5646 return emul_to_vcpu(ctxt)->arch.hflags; 5647 } 5648 5649 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 5650 { 5651 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags); 5652 } 5653 5654 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase) 5655 { 5656 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase); 5657 } 5658 5659 static const struct x86_emulate_ops emulate_ops = { 5660 .read_gpr = emulator_read_gpr, 5661 .write_gpr = emulator_write_gpr, 5662 .read_std = emulator_read_std, 5663 .write_std = emulator_write_std, 5664 .read_phys = kvm_read_guest_phys_system, 5665 .fetch = kvm_fetch_guest_virt, 5666 .read_emulated = emulator_read_emulated, 5667 .write_emulated = emulator_write_emulated, 5668 .cmpxchg_emulated = emulator_cmpxchg_emulated, 5669 .invlpg = emulator_invlpg, 5670 .pio_in_emulated = emulator_pio_in_emulated, 5671 .pio_out_emulated = emulator_pio_out_emulated, 5672 .get_segment = emulator_get_segment, 5673 .set_segment = emulator_set_segment, 5674 .get_cached_segment_base = emulator_get_cached_segment_base, 5675 .get_gdt = emulator_get_gdt, 5676 .get_idt = emulator_get_idt, 5677 .set_gdt = emulator_set_gdt, 5678 .set_idt = emulator_set_idt, 5679 .get_cr = emulator_get_cr, 5680 .set_cr = emulator_set_cr, 5681 .cpl = emulator_get_cpl, 5682 .get_dr = emulator_get_dr, 5683 .set_dr = emulator_set_dr, 5684 .get_smbase = emulator_get_smbase, 5685 .set_smbase = emulator_set_smbase, 5686 .set_msr = emulator_set_msr, 5687 .get_msr = emulator_get_msr, 5688 .check_pmc = emulator_check_pmc, 5689 .read_pmc = emulator_read_pmc, 5690 .halt = emulator_halt, 5691 .wbinvd = emulator_wbinvd, 5692 .fix_hypercall = emulator_fix_hypercall, 5693 .intercept = emulator_intercept, 5694 .get_cpuid = emulator_get_cpuid, 5695 .set_nmi_mask = emulator_set_nmi_mask, 5696 .get_hflags = emulator_get_hflags, 5697 .set_hflags = emulator_set_hflags, 5698 .pre_leave_smm = emulator_pre_leave_smm, 5699 }; 5700 5701 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 5702 { 5703 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 5704 /* 5705 * an sti; sti; sequence only disable interrupts for the first 5706 * instruction. So, if the last instruction, be it emulated or 5707 * not, left the system with the INT_STI flag enabled, it 5708 * means that the last instruction is an sti. We should not 5709 * leave the flag on in this case. The same goes for mov ss 5710 */ 5711 if (int_shadow & mask) 5712 mask = 0; 5713 if (unlikely(int_shadow || mask)) { 5714 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 5715 if (!mask) 5716 kvm_make_request(KVM_REQ_EVENT, vcpu); 5717 } 5718 } 5719 5720 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 5721 { 5722 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5723 if (ctxt->exception.vector == PF_VECTOR) 5724 return kvm_propagate_fault(vcpu, &ctxt->exception); 5725 5726 if (ctxt->exception.error_code_valid) 5727 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 5728 ctxt->exception.error_code); 5729 else 5730 kvm_queue_exception(vcpu, ctxt->exception.vector); 5731 return false; 5732 } 5733 5734 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 5735 { 5736 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5737 int cs_db, cs_l; 5738 5739 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5740 5741 ctxt->eflags = kvm_get_rflags(vcpu); 5742 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 5743 5744 ctxt->eip = kvm_rip_read(vcpu); 5745 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 5746 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 5747 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 5748 cs_db ? X86EMUL_MODE_PROT32 : 5749 X86EMUL_MODE_PROT16; 5750 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 5751 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 5752 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 5753 5754 init_decode_cache(ctxt); 5755 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5756 } 5757 5758 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 5759 { 5760 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5761 int ret; 5762 5763 init_emulate_ctxt(vcpu); 5764 5765 ctxt->op_bytes = 2; 5766 ctxt->ad_bytes = 2; 5767 ctxt->_eip = ctxt->eip + inc_eip; 5768 ret = emulate_int_real(ctxt, irq); 5769 5770 if (ret != X86EMUL_CONTINUE) 5771 return EMULATE_FAIL; 5772 5773 ctxt->eip = ctxt->_eip; 5774 kvm_rip_write(vcpu, ctxt->eip); 5775 kvm_set_rflags(vcpu, ctxt->eflags); 5776 5777 return EMULATE_DONE; 5778 } 5779 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 5780 5781 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 5782 { 5783 int r = EMULATE_DONE; 5784 5785 ++vcpu->stat.insn_emulation_fail; 5786 trace_kvm_emulate_insn_failed(vcpu); 5787 5788 if (emulation_type & EMULTYPE_NO_UD_ON_FAIL) 5789 return EMULATE_FAIL; 5790 5791 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 5792 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5793 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5794 vcpu->run->internal.ndata = 0; 5795 r = EMULATE_USER_EXIT; 5796 } 5797 5798 kvm_queue_exception(vcpu, UD_VECTOR); 5799 5800 return r; 5801 } 5802 5803 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 5804 bool write_fault_to_shadow_pgtable, 5805 int emulation_type) 5806 { 5807 gpa_t gpa = cr2; 5808 kvm_pfn_t pfn; 5809 5810 if (emulation_type & EMULTYPE_NO_REEXECUTE) 5811 return false; 5812 5813 if (!vcpu->arch.mmu.direct_map) { 5814 /* 5815 * Write permission should be allowed since only 5816 * write access need to be emulated. 5817 */ 5818 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5819 5820 /* 5821 * If the mapping is invalid in guest, let cpu retry 5822 * it to generate fault. 5823 */ 5824 if (gpa == UNMAPPED_GVA) 5825 return true; 5826 } 5827 5828 /* 5829 * Do not retry the unhandleable instruction if it faults on the 5830 * readonly host memory, otherwise it will goto a infinite loop: 5831 * retry instruction -> write #PF -> emulation fail -> retry 5832 * instruction -> ... 5833 */ 5834 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 5835 5836 /* 5837 * If the instruction failed on the error pfn, it can not be fixed, 5838 * report the error to userspace. 5839 */ 5840 if (is_error_noslot_pfn(pfn)) 5841 return false; 5842 5843 kvm_release_pfn_clean(pfn); 5844 5845 /* The instructions are well-emulated on direct mmu. */ 5846 if (vcpu->arch.mmu.direct_map) { 5847 unsigned int indirect_shadow_pages; 5848 5849 spin_lock(&vcpu->kvm->mmu_lock); 5850 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5851 spin_unlock(&vcpu->kvm->mmu_lock); 5852 5853 if (indirect_shadow_pages) 5854 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5855 5856 return true; 5857 } 5858 5859 /* 5860 * if emulation was due to access to shadowed page table 5861 * and it failed try to unshadow page and re-enter the 5862 * guest to let CPU execute the instruction. 5863 */ 5864 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5865 5866 /* 5867 * If the access faults on its page table, it can not 5868 * be fixed by unprotecting shadow page and it should 5869 * be reported to userspace. 5870 */ 5871 return !write_fault_to_shadow_pgtable; 5872 } 5873 5874 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5875 unsigned long cr2, int emulation_type) 5876 { 5877 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5878 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5879 5880 last_retry_eip = vcpu->arch.last_retry_eip; 5881 last_retry_addr = vcpu->arch.last_retry_addr; 5882 5883 /* 5884 * If the emulation is caused by #PF and it is non-page_table 5885 * writing instruction, it means the VM-EXIT is caused by shadow 5886 * page protected, we can zap the shadow page and retry this 5887 * instruction directly. 5888 * 5889 * Note: if the guest uses a non-page-table modifying instruction 5890 * on the PDE that points to the instruction, then we will unmap 5891 * the instruction and go to an infinite loop. So, we cache the 5892 * last retried eip and the last fault address, if we meet the eip 5893 * and the address again, we can break out of the potential infinite 5894 * loop. 5895 */ 5896 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5897 5898 if (!(emulation_type & EMULTYPE_RETRY)) 5899 return false; 5900 5901 if (x86_page_table_writing_insn(ctxt)) 5902 return false; 5903 5904 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5905 return false; 5906 5907 vcpu->arch.last_retry_eip = ctxt->eip; 5908 vcpu->arch.last_retry_addr = cr2; 5909 5910 if (!vcpu->arch.mmu.direct_map) 5911 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5912 5913 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5914 5915 return true; 5916 } 5917 5918 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5919 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5920 5921 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 5922 { 5923 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 5924 /* This is a good place to trace that we are exiting SMM. */ 5925 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 5926 5927 /* Process a latched INIT or SMI, if any. */ 5928 kvm_make_request(KVM_REQ_EVENT, vcpu); 5929 } 5930 5931 kvm_mmu_reset_context(vcpu); 5932 } 5933 5934 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) 5935 { 5936 unsigned changed = vcpu->arch.hflags ^ emul_flags; 5937 5938 vcpu->arch.hflags = emul_flags; 5939 5940 if (changed & HF_SMM_MASK) 5941 kvm_smm_changed(vcpu); 5942 } 5943 5944 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5945 unsigned long *db) 5946 { 5947 u32 dr6 = 0; 5948 int i; 5949 u32 enable, rwlen; 5950 5951 enable = dr7; 5952 rwlen = dr7 >> 16; 5953 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5954 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5955 dr6 |= (1 << i); 5956 return dr6; 5957 } 5958 5959 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r) 5960 { 5961 struct kvm_run *kvm_run = vcpu->run; 5962 5963 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5964 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 5965 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5966 kvm_run->debug.arch.exception = DB_VECTOR; 5967 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5968 *r = EMULATE_USER_EXIT; 5969 } else { 5970 /* 5971 * "Certain debug exceptions may clear bit 0-3. The 5972 * remaining contents of the DR6 register are never 5973 * cleared by the processor". 5974 */ 5975 vcpu->arch.dr6 &= ~15; 5976 vcpu->arch.dr6 |= DR6_BS | DR6_RTM; 5977 kvm_queue_exception(vcpu, DB_VECTOR); 5978 } 5979 } 5980 5981 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 5982 { 5983 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5984 int r = EMULATE_DONE; 5985 5986 kvm_x86_ops->skip_emulated_instruction(vcpu); 5987 5988 /* 5989 * rflags is the old, "raw" value of the flags. The new value has 5990 * not been saved yet. 5991 * 5992 * This is correct even for TF set by the guest, because "the 5993 * processor will not generate this exception after the instruction 5994 * that sets the TF flag". 5995 */ 5996 if (unlikely(rflags & X86_EFLAGS_TF)) 5997 kvm_vcpu_do_singlestep(vcpu, &r); 5998 return r == EMULATE_DONE; 5999 } 6000 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 6001 6002 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 6003 { 6004 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 6005 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 6006 struct kvm_run *kvm_run = vcpu->run; 6007 unsigned long eip = kvm_get_linear_rip(vcpu); 6008 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6009 vcpu->arch.guest_debug_dr7, 6010 vcpu->arch.eff_db); 6011 6012 if (dr6 != 0) { 6013 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 6014 kvm_run->debug.arch.pc = eip; 6015 kvm_run->debug.arch.exception = DB_VECTOR; 6016 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6017 *r = EMULATE_USER_EXIT; 6018 return true; 6019 } 6020 } 6021 6022 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 6023 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 6024 unsigned long eip = kvm_get_linear_rip(vcpu); 6025 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6026 vcpu->arch.dr7, 6027 vcpu->arch.db); 6028 6029 if (dr6 != 0) { 6030 vcpu->arch.dr6 &= ~15; 6031 vcpu->arch.dr6 |= dr6 | DR6_RTM; 6032 kvm_queue_exception(vcpu, DB_VECTOR); 6033 *r = EMULATE_DONE; 6034 return true; 6035 } 6036 } 6037 6038 return false; 6039 } 6040 6041 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 6042 { 6043 switch (ctxt->opcode_len) { 6044 case 1: 6045 switch (ctxt->b) { 6046 case 0xe4: /* IN */ 6047 case 0xe5: 6048 case 0xec: 6049 case 0xed: 6050 case 0xe6: /* OUT */ 6051 case 0xe7: 6052 case 0xee: 6053 case 0xef: 6054 case 0x6c: /* INS */ 6055 case 0x6d: 6056 case 0x6e: /* OUTS */ 6057 case 0x6f: 6058 return true; 6059 } 6060 break; 6061 case 2: 6062 switch (ctxt->b) { 6063 case 0x33: /* RDPMC */ 6064 return true; 6065 } 6066 break; 6067 } 6068 6069 return false; 6070 } 6071 6072 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 6073 unsigned long cr2, 6074 int emulation_type, 6075 void *insn, 6076 int insn_len) 6077 { 6078 int r; 6079 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6080 bool writeback = true; 6081 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 6082 6083 vcpu->arch.l1tf_flush_l1d = true; 6084 6085 /* 6086 * Clear write_fault_to_shadow_pgtable here to ensure it is 6087 * never reused. 6088 */ 6089 vcpu->arch.write_fault_to_shadow_pgtable = false; 6090 kvm_clear_exception_queue(vcpu); 6091 6092 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 6093 init_emulate_ctxt(vcpu); 6094 6095 /* 6096 * We will reenter on the same instruction since 6097 * we do not set complete_userspace_io. This does not 6098 * handle watchpoints yet, those would be handled in 6099 * the emulate_ops. 6100 */ 6101 if (!(emulation_type & EMULTYPE_SKIP) && 6102 kvm_vcpu_check_breakpoint(vcpu, &r)) 6103 return r; 6104 6105 ctxt->interruptibility = 0; 6106 ctxt->have_exception = false; 6107 ctxt->exception.vector = -1; 6108 ctxt->perm_ok = false; 6109 6110 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 6111 6112 r = x86_decode_insn(ctxt, insn, insn_len); 6113 6114 trace_kvm_emulate_insn_start(vcpu); 6115 ++vcpu->stat.insn_emulation; 6116 if (r != EMULATION_OK) { 6117 if (emulation_type & EMULTYPE_TRAP_UD) 6118 return EMULATE_FAIL; 6119 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 6120 emulation_type)) 6121 return EMULATE_DONE; 6122 if (ctxt->have_exception && inject_emulated_exception(vcpu)) 6123 return EMULATE_DONE; 6124 if (emulation_type & EMULTYPE_SKIP) 6125 return EMULATE_FAIL; 6126 return handle_emulation_failure(vcpu, emulation_type); 6127 } 6128 } 6129 6130 if ((emulation_type & EMULTYPE_VMWARE) && 6131 !is_vmware_backdoor_opcode(ctxt)) 6132 return EMULATE_FAIL; 6133 6134 if (emulation_type & EMULTYPE_SKIP) { 6135 kvm_rip_write(vcpu, ctxt->_eip); 6136 if (ctxt->eflags & X86_EFLAGS_RF) 6137 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 6138 return EMULATE_DONE; 6139 } 6140 6141 if (retry_instruction(ctxt, cr2, emulation_type)) 6142 return EMULATE_DONE; 6143 6144 /* this is needed for vmware backdoor interface to work since it 6145 changes registers values during IO operation */ 6146 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 6147 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6148 emulator_invalidate_register_cache(ctxt); 6149 } 6150 6151 restart: 6152 /* Save the faulting GPA (cr2) in the address field */ 6153 ctxt->exception.address = cr2; 6154 6155 r = x86_emulate_insn(ctxt); 6156 6157 if (r == EMULATION_INTERCEPTED) 6158 return EMULATE_DONE; 6159 6160 if (r == EMULATION_FAILED) { 6161 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 6162 emulation_type)) 6163 return EMULATE_DONE; 6164 6165 return handle_emulation_failure(vcpu, emulation_type); 6166 } 6167 6168 if (ctxt->have_exception) { 6169 r = EMULATE_DONE; 6170 if (inject_emulated_exception(vcpu)) 6171 return r; 6172 } else if (vcpu->arch.pio.count) { 6173 if (!vcpu->arch.pio.in) { 6174 /* FIXME: return into emulator if single-stepping. */ 6175 vcpu->arch.pio.count = 0; 6176 } else { 6177 writeback = false; 6178 vcpu->arch.complete_userspace_io = complete_emulated_pio; 6179 } 6180 r = EMULATE_USER_EXIT; 6181 } else if (vcpu->mmio_needed) { 6182 if (!vcpu->mmio_is_write) 6183 writeback = false; 6184 r = EMULATE_USER_EXIT; 6185 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6186 } else if (r == EMULATION_RESTART) 6187 goto restart; 6188 else 6189 r = EMULATE_DONE; 6190 6191 if (writeback) { 6192 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 6193 toggle_interruptibility(vcpu, ctxt->interruptibility); 6194 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6195 kvm_rip_write(vcpu, ctxt->eip); 6196 if (r == EMULATE_DONE && 6197 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 6198 kvm_vcpu_do_singlestep(vcpu, &r); 6199 if (!ctxt->have_exception || 6200 exception_type(ctxt->exception.vector) == EXCPT_TRAP) 6201 __kvm_set_rflags(vcpu, ctxt->eflags); 6202 6203 /* 6204 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 6205 * do nothing, and it will be requested again as soon as 6206 * the shadow expires. But we still need to check here, 6207 * because POPF has no interrupt shadow. 6208 */ 6209 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 6210 kvm_make_request(KVM_REQ_EVENT, vcpu); 6211 } else 6212 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 6213 6214 return r; 6215 } 6216 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 6217 6218 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 6219 unsigned short port) 6220 { 6221 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 6222 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 6223 size, port, &val, 1); 6224 /* do not return to emulator after return from userspace */ 6225 vcpu->arch.pio.count = 0; 6226 return ret; 6227 } 6228 6229 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 6230 { 6231 unsigned long val; 6232 6233 /* We should only ever be called with arch.pio.count equal to 1 */ 6234 BUG_ON(vcpu->arch.pio.count != 1); 6235 6236 /* For size less than 4 we merge, else we zero extend */ 6237 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) 6238 : 0; 6239 6240 /* 6241 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform 6242 * the copy and tracing 6243 */ 6244 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, 6245 vcpu->arch.pio.port, &val, 1); 6246 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 6247 6248 return 1; 6249 } 6250 6251 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 6252 unsigned short port) 6253 { 6254 unsigned long val; 6255 int ret; 6256 6257 /* For size less than 4 we merge, else we zero extend */ 6258 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; 6259 6260 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, 6261 &val, 1); 6262 if (ret) { 6263 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 6264 return ret; 6265 } 6266 6267 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 6268 6269 return 0; 6270 } 6271 6272 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 6273 { 6274 int ret = kvm_skip_emulated_instruction(vcpu); 6275 6276 /* 6277 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered 6278 * KVM_EXIT_DEBUG here. 6279 */ 6280 if (in) 6281 return kvm_fast_pio_in(vcpu, size, port) && ret; 6282 else 6283 return kvm_fast_pio_out(vcpu, size, port) && ret; 6284 } 6285 EXPORT_SYMBOL_GPL(kvm_fast_pio); 6286 6287 static int kvmclock_cpu_down_prep(unsigned int cpu) 6288 { 6289 __this_cpu_write(cpu_tsc_khz, 0); 6290 return 0; 6291 } 6292 6293 static void tsc_khz_changed(void *data) 6294 { 6295 struct cpufreq_freqs *freq = data; 6296 unsigned long khz = 0; 6297 6298 if (data) 6299 khz = freq->new; 6300 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 6301 khz = cpufreq_quick_get(raw_smp_processor_id()); 6302 if (!khz) 6303 khz = tsc_khz; 6304 __this_cpu_write(cpu_tsc_khz, khz); 6305 } 6306 6307 #ifdef CONFIG_X86_64 6308 static void kvm_hyperv_tsc_notifier(void) 6309 { 6310 struct kvm *kvm; 6311 struct kvm_vcpu *vcpu; 6312 int cpu; 6313 6314 spin_lock(&kvm_lock); 6315 list_for_each_entry(kvm, &vm_list, vm_list) 6316 kvm_make_mclock_inprogress_request(kvm); 6317 6318 hyperv_stop_tsc_emulation(); 6319 6320 /* TSC frequency always matches when on Hyper-V */ 6321 for_each_present_cpu(cpu) 6322 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 6323 kvm_max_guest_tsc_khz = tsc_khz; 6324 6325 list_for_each_entry(kvm, &vm_list, vm_list) { 6326 struct kvm_arch *ka = &kvm->arch; 6327 6328 spin_lock(&ka->pvclock_gtod_sync_lock); 6329 6330 pvclock_update_vm_gtod_copy(kvm); 6331 6332 kvm_for_each_vcpu(cpu, vcpu, kvm) 6333 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6334 6335 kvm_for_each_vcpu(cpu, vcpu, kvm) 6336 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 6337 6338 spin_unlock(&ka->pvclock_gtod_sync_lock); 6339 } 6340 spin_unlock(&kvm_lock); 6341 } 6342 #endif 6343 6344 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 6345 void *data) 6346 { 6347 struct cpufreq_freqs *freq = data; 6348 struct kvm *kvm; 6349 struct kvm_vcpu *vcpu; 6350 int i, send_ipi = 0; 6351 6352 /* 6353 * We allow guests to temporarily run on slowing clocks, 6354 * provided we notify them after, or to run on accelerating 6355 * clocks, provided we notify them before. Thus time never 6356 * goes backwards. 6357 * 6358 * However, we have a problem. We can't atomically update 6359 * the frequency of a given CPU from this function; it is 6360 * merely a notifier, which can be called from any CPU. 6361 * Changing the TSC frequency at arbitrary points in time 6362 * requires a recomputation of local variables related to 6363 * the TSC for each VCPU. We must flag these local variables 6364 * to be updated and be sure the update takes place with the 6365 * new frequency before any guests proceed. 6366 * 6367 * Unfortunately, the combination of hotplug CPU and frequency 6368 * change creates an intractable locking scenario; the order 6369 * of when these callouts happen is undefined with respect to 6370 * CPU hotplug, and they can race with each other. As such, 6371 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 6372 * undefined; you can actually have a CPU frequency change take 6373 * place in between the computation of X and the setting of the 6374 * variable. To protect against this problem, all updates of 6375 * the per_cpu tsc_khz variable are done in an interrupt 6376 * protected IPI, and all callers wishing to update the value 6377 * must wait for a synchronous IPI to complete (which is trivial 6378 * if the caller is on the CPU already). This establishes the 6379 * necessary total order on variable updates. 6380 * 6381 * Note that because a guest time update may take place 6382 * anytime after the setting of the VCPU's request bit, the 6383 * correct TSC value must be set before the request. However, 6384 * to ensure the update actually makes it to any guest which 6385 * starts running in hardware virtualization between the set 6386 * and the acquisition of the spinlock, we must also ping the 6387 * CPU after setting the request bit. 6388 * 6389 */ 6390 6391 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 6392 return 0; 6393 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 6394 return 0; 6395 6396 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 6397 6398 spin_lock(&kvm_lock); 6399 list_for_each_entry(kvm, &vm_list, vm_list) { 6400 kvm_for_each_vcpu(i, vcpu, kvm) { 6401 if (vcpu->cpu != freq->cpu) 6402 continue; 6403 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6404 if (vcpu->cpu != smp_processor_id()) 6405 send_ipi = 1; 6406 } 6407 } 6408 spin_unlock(&kvm_lock); 6409 6410 if (freq->old < freq->new && send_ipi) { 6411 /* 6412 * We upscale the frequency. Must make the guest 6413 * doesn't see old kvmclock values while running with 6414 * the new frequency, otherwise we risk the guest sees 6415 * time go backwards. 6416 * 6417 * In case we update the frequency for another cpu 6418 * (which might be in guest context) send an interrupt 6419 * to kick the cpu out of guest context. Next time 6420 * guest context is entered kvmclock will be updated, 6421 * so the guest will not see stale values. 6422 */ 6423 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 6424 } 6425 return 0; 6426 } 6427 6428 static struct notifier_block kvmclock_cpufreq_notifier_block = { 6429 .notifier_call = kvmclock_cpufreq_notifier 6430 }; 6431 6432 static int kvmclock_cpu_online(unsigned int cpu) 6433 { 6434 tsc_khz_changed(NULL); 6435 return 0; 6436 } 6437 6438 static void kvm_timer_init(void) 6439 { 6440 max_tsc_khz = tsc_khz; 6441 6442 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 6443 #ifdef CONFIG_CPU_FREQ 6444 struct cpufreq_policy policy; 6445 int cpu; 6446 6447 memset(&policy, 0, sizeof(policy)); 6448 cpu = get_cpu(); 6449 cpufreq_get_policy(&policy, cpu); 6450 if (policy.cpuinfo.max_freq) 6451 max_tsc_khz = policy.cpuinfo.max_freq; 6452 put_cpu(); 6453 #endif 6454 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 6455 CPUFREQ_TRANSITION_NOTIFIER); 6456 } 6457 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 6458 6459 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 6460 kvmclock_cpu_online, kvmclock_cpu_down_prep); 6461 } 6462 6463 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 6464 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 6465 6466 int kvm_is_in_guest(void) 6467 { 6468 return __this_cpu_read(current_vcpu) != NULL; 6469 } 6470 6471 static int kvm_is_user_mode(void) 6472 { 6473 int user_mode = 3; 6474 6475 if (__this_cpu_read(current_vcpu)) 6476 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 6477 6478 return user_mode != 0; 6479 } 6480 6481 static unsigned long kvm_get_guest_ip(void) 6482 { 6483 unsigned long ip = 0; 6484 6485 if (__this_cpu_read(current_vcpu)) 6486 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 6487 6488 return ip; 6489 } 6490 6491 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6492 .is_in_guest = kvm_is_in_guest, 6493 .is_user_mode = kvm_is_user_mode, 6494 .get_guest_ip = kvm_get_guest_ip, 6495 }; 6496 6497 static void kvm_set_mmio_spte_mask(void) 6498 { 6499 u64 mask; 6500 int maxphyaddr = boot_cpu_data.x86_phys_bits; 6501 6502 /* 6503 * Set the reserved bits and the present bit of an paging-structure 6504 * entry to generate page fault with PFER.RSV = 1. 6505 */ 6506 /* Mask the reserved physical address bits. */ 6507 mask = rsvd_bits(maxphyaddr, 51); 6508 6509 /* Set the present bit. */ 6510 mask |= 1ull; 6511 6512 #ifdef CONFIG_X86_64 6513 /* 6514 * If reserved bit is not supported, clear the present bit to disable 6515 * mmio page fault. 6516 */ 6517 if (maxphyaddr == 52) 6518 mask &= ~1ull; 6519 #endif 6520 6521 kvm_mmu_set_mmio_spte_mask(mask, mask); 6522 } 6523 6524 #ifdef CONFIG_X86_64 6525 static void pvclock_gtod_update_fn(struct work_struct *work) 6526 { 6527 struct kvm *kvm; 6528 6529 struct kvm_vcpu *vcpu; 6530 int i; 6531 6532 spin_lock(&kvm_lock); 6533 list_for_each_entry(kvm, &vm_list, vm_list) 6534 kvm_for_each_vcpu(i, vcpu, kvm) 6535 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 6536 atomic_set(&kvm_guest_has_master_clock, 0); 6537 spin_unlock(&kvm_lock); 6538 } 6539 6540 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 6541 6542 /* 6543 * Notification about pvclock gtod data update. 6544 */ 6545 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 6546 void *priv) 6547 { 6548 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 6549 struct timekeeper *tk = priv; 6550 6551 update_pvclock_gtod(tk); 6552 6553 /* disable master clock if host does not trust, or does not 6554 * use, TSC based clocksource. 6555 */ 6556 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 6557 atomic_read(&kvm_guest_has_master_clock) != 0) 6558 queue_work(system_long_wq, &pvclock_gtod_work); 6559 6560 return 0; 6561 } 6562 6563 static struct notifier_block pvclock_gtod_notifier = { 6564 .notifier_call = pvclock_gtod_notify, 6565 }; 6566 #endif 6567 6568 int kvm_arch_init(void *opaque) 6569 { 6570 int r; 6571 struct kvm_x86_ops *ops = opaque; 6572 6573 if (kvm_x86_ops) { 6574 printk(KERN_ERR "kvm: already loaded the other module\n"); 6575 r = -EEXIST; 6576 goto out; 6577 } 6578 6579 if (!ops->cpu_has_kvm_support()) { 6580 printk(KERN_ERR "kvm: no hardware support\n"); 6581 r = -EOPNOTSUPP; 6582 goto out; 6583 } 6584 if (ops->disabled_by_bios()) { 6585 printk(KERN_ERR "kvm: disabled by bios\n"); 6586 r = -EOPNOTSUPP; 6587 goto out; 6588 } 6589 6590 r = -ENOMEM; 6591 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 6592 if (!shared_msrs) { 6593 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 6594 goto out; 6595 } 6596 6597 r = kvm_mmu_module_init(); 6598 if (r) 6599 goto out_free_percpu; 6600 6601 kvm_set_mmio_spte_mask(); 6602 6603 kvm_x86_ops = ops; 6604 6605 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 6606 PT_DIRTY_MASK, PT64_NX_MASK, 0, 6607 PT_PRESENT_MASK, 0, sme_me_mask); 6608 kvm_timer_init(); 6609 6610 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6611 6612 if (boot_cpu_has(X86_FEATURE_XSAVE)) 6613 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 6614 6615 kvm_lapic_init(); 6616 #ifdef CONFIG_X86_64 6617 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 6618 6619 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 6620 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 6621 #endif 6622 6623 return 0; 6624 6625 out_free_percpu: 6626 free_percpu(shared_msrs); 6627 out: 6628 return r; 6629 } 6630 6631 void kvm_arch_exit(void) 6632 { 6633 #ifdef CONFIG_X86_64 6634 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 6635 clear_hv_tscchange_cb(); 6636 #endif 6637 kvm_lapic_exit(); 6638 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6639 6640 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 6641 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 6642 CPUFREQ_TRANSITION_NOTIFIER); 6643 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 6644 #ifdef CONFIG_X86_64 6645 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 6646 #endif 6647 kvm_x86_ops = NULL; 6648 kvm_mmu_module_exit(); 6649 free_percpu(shared_msrs); 6650 } 6651 6652 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 6653 { 6654 ++vcpu->stat.halt_exits; 6655 if (lapic_in_kernel(vcpu)) { 6656 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 6657 return 1; 6658 } else { 6659 vcpu->run->exit_reason = KVM_EXIT_HLT; 6660 return 0; 6661 } 6662 } 6663 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 6664 6665 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 6666 { 6667 int ret = kvm_skip_emulated_instruction(vcpu); 6668 /* 6669 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 6670 * KVM_EXIT_DEBUG here. 6671 */ 6672 return kvm_vcpu_halt(vcpu) && ret; 6673 } 6674 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 6675 6676 #ifdef CONFIG_X86_64 6677 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 6678 unsigned long clock_type) 6679 { 6680 struct kvm_clock_pairing clock_pairing; 6681 struct timespec64 ts; 6682 u64 cycle; 6683 int ret; 6684 6685 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 6686 return -KVM_EOPNOTSUPP; 6687 6688 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 6689 return -KVM_EOPNOTSUPP; 6690 6691 clock_pairing.sec = ts.tv_sec; 6692 clock_pairing.nsec = ts.tv_nsec; 6693 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 6694 clock_pairing.flags = 0; 6695 6696 ret = 0; 6697 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 6698 sizeof(struct kvm_clock_pairing))) 6699 ret = -KVM_EFAULT; 6700 6701 return ret; 6702 } 6703 #endif 6704 6705 /* 6706 * kvm_pv_kick_cpu_op: Kick a vcpu. 6707 * 6708 * @apicid - apicid of vcpu to be kicked. 6709 */ 6710 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 6711 { 6712 struct kvm_lapic_irq lapic_irq; 6713 6714 lapic_irq.shorthand = 0; 6715 lapic_irq.dest_mode = 0; 6716 lapic_irq.level = 0; 6717 lapic_irq.dest_id = apicid; 6718 lapic_irq.msi_redir_hint = false; 6719 6720 lapic_irq.delivery_mode = APIC_DM_REMRD; 6721 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 6722 } 6723 6724 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) 6725 { 6726 vcpu->arch.apicv_active = false; 6727 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); 6728 } 6729 6730 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 6731 { 6732 unsigned long nr, a0, a1, a2, a3, ret; 6733 int op_64_bit; 6734 6735 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 6736 return kvm_hv_hypercall(vcpu); 6737 6738 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 6739 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 6740 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 6741 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 6742 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 6743 6744 trace_kvm_hypercall(nr, a0, a1, a2, a3); 6745 6746 op_64_bit = is_64_bit_mode(vcpu); 6747 if (!op_64_bit) { 6748 nr &= 0xFFFFFFFF; 6749 a0 &= 0xFFFFFFFF; 6750 a1 &= 0xFFFFFFFF; 6751 a2 &= 0xFFFFFFFF; 6752 a3 &= 0xFFFFFFFF; 6753 } 6754 6755 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 6756 ret = -KVM_EPERM; 6757 goto out; 6758 } 6759 6760 switch (nr) { 6761 case KVM_HC_VAPIC_POLL_IRQ: 6762 ret = 0; 6763 break; 6764 case KVM_HC_KICK_CPU: 6765 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 6766 ret = 0; 6767 break; 6768 #ifdef CONFIG_X86_64 6769 case KVM_HC_CLOCK_PAIRING: 6770 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 6771 break; 6772 #endif 6773 default: 6774 ret = -KVM_ENOSYS; 6775 break; 6776 } 6777 out: 6778 if (!op_64_bit) 6779 ret = (u32)ret; 6780 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 6781 6782 ++vcpu->stat.hypercalls; 6783 return kvm_skip_emulated_instruction(vcpu); 6784 } 6785 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 6786 6787 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 6788 { 6789 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6790 char instruction[3]; 6791 unsigned long rip = kvm_rip_read(vcpu); 6792 6793 kvm_x86_ops->patch_hypercall(vcpu, instruction); 6794 6795 return emulator_write_emulated(ctxt, rip, instruction, 3, 6796 &ctxt->exception); 6797 } 6798 6799 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 6800 { 6801 return vcpu->run->request_interrupt_window && 6802 likely(!pic_in_kernel(vcpu->kvm)); 6803 } 6804 6805 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 6806 { 6807 struct kvm_run *kvm_run = vcpu->run; 6808 6809 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 6810 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 6811 kvm_run->cr8 = kvm_get_cr8(vcpu); 6812 kvm_run->apic_base = kvm_get_apic_base(vcpu); 6813 kvm_run->ready_for_interrupt_injection = 6814 pic_in_kernel(vcpu->kvm) || 6815 kvm_vcpu_ready_for_interrupt_injection(vcpu); 6816 } 6817 6818 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 6819 { 6820 int max_irr, tpr; 6821 6822 if (!kvm_x86_ops->update_cr8_intercept) 6823 return; 6824 6825 if (!lapic_in_kernel(vcpu)) 6826 return; 6827 6828 if (vcpu->arch.apicv_active) 6829 return; 6830 6831 if (!vcpu->arch.apic->vapic_addr) 6832 max_irr = kvm_lapic_find_highest_irr(vcpu); 6833 else 6834 max_irr = -1; 6835 6836 if (max_irr != -1) 6837 max_irr >>= 4; 6838 6839 tpr = kvm_lapic_get_cr8(vcpu); 6840 6841 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 6842 } 6843 6844 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 6845 { 6846 int r; 6847 6848 /* try to reinject previous events if any */ 6849 6850 if (vcpu->arch.exception.injected) 6851 kvm_x86_ops->queue_exception(vcpu); 6852 /* 6853 * Do not inject an NMI or interrupt if there is a pending 6854 * exception. Exceptions and interrupts are recognized at 6855 * instruction boundaries, i.e. the start of an instruction. 6856 * Trap-like exceptions, e.g. #DB, have higher priority than 6857 * NMIs and interrupts, i.e. traps are recognized before an 6858 * NMI/interrupt that's pending on the same instruction. 6859 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 6860 * priority, but are only generated (pended) during instruction 6861 * execution, i.e. a pending fault-like exception means the 6862 * fault occurred on the *previous* instruction and must be 6863 * serviced prior to recognizing any new events in order to 6864 * fully complete the previous instruction. 6865 */ 6866 else if (!vcpu->arch.exception.pending) { 6867 if (vcpu->arch.nmi_injected) 6868 kvm_x86_ops->set_nmi(vcpu); 6869 else if (vcpu->arch.interrupt.injected) 6870 kvm_x86_ops->set_irq(vcpu); 6871 } 6872 6873 /* 6874 * Call check_nested_events() even if we reinjected a previous event 6875 * in order for caller to determine if it should require immediate-exit 6876 * from L2 to L1 due to pending L1 events which require exit 6877 * from L2 to L1. 6878 */ 6879 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6880 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6881 if (r != 0) 6882 return r; 6883 } 6884 6885 /* try to inject new event if pending */ 6886 if (vcpu->arch.exception.pending) { 6887 trace_kvm_inj_exception(vcpu->arch.exception.nr, 6888 vcpu->arch.exception.has_error_code, 6889 vcpu->arch.exception.error_code); 6890 6891 WARN_ON_ONCE(vcpu->arch.exception.injected); 6892 vcpu->arch.exception.pending = false; 6893 vcpu->arch.exception.injected = true; 6894 6895 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 6896 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 6897 X86_EFLAGS_RF); 6898 6899 if (vcpu->arch.exception.nr == DB_VECTOR && 6900 (vcpu->arch.dr7 & DR7_GD)) { 6901 vcpu->arch.dr7 &= ~DR7_GD; 6902 kvm_update_dr7(vcpu); 6903 } 6904 6905 kvm_x86_ops->queue_exception(vcpu); 6906 } 6907 6908 /* Don't consider new event if we re-injected an event */ 6909 if (kvm_event_needs_reinjection(vcpu)) 6910 return 0; 6911 6912 if (vcpu->arch.smi_pending && !is_smm(vcpu) && 6913 kvm_x86_ops->smi_allowed(vcpu)) { 6914 vcpu->arch.smi_pending = false; 6915 ++vcpu->arch.smi_count; 6916 enter_smm(vcpu); 6917 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { 6918 --vcpu->arch.nmi_pending; 6919 vcpu->arch.nmi_injected = true; 6920 kvm_x86_ops->set_nmi(vcpu); 6921 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 6922 /* 6923 * Because interrupts can be injected asynchronously, we are 6924 * calling check_nested_events again here to avoid a race condition. 6925 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 6926 * proposal and current concerns. Perhaps we should be setting 6927 * KVM_REQ_EVENT only on certain events and not unconditionally? 6928 */ 6929 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6930 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6931 if (r != 0) 6932 return r; 6933 } 6934 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 6935 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 6936 false); 6937 kvm_x86_ops->set_irq(vcpu); 6938 } 6939 } 6940 6941 return 0; 6942 } 6943 6944 static void process_nmi(struct kvm_vcpu *vcpu) 6945 { 6946 unsigned limit = 2; 6947 6948 /* 6949 * x86 is limited to one NMI running, and one NMI pending after it. 6950 * If an NMI is already in progress, limit further NMIs to just one. 6951 * Otherwise, allow two (and we'll inject the first one immediately). 6952 */ 6953 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 6954 limit = 1; 6955 6956 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 6957 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 6958 kvm_make_request(KVM_REQ_EVENT, vcpu); 6959 } 6960 6961 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 6962 { 6963 u32 flags = 0; 6964 flags |= seg->g << 23; 6965 flags |= seg->db << 22; 6966 flags |= seg->l << 21; 6967 flags |= seg->avl << 20; 6968 flags |= seg->present << 15; 6969 flags |= seg->dpl << 13; 6970 flags |= seg->s << 12; 6971 flags |= seg->type << 8; 6972 return flags; 6973 } 6974 6975 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 6976 { 6977 struct kvm_segment seg; 6978 int offset; 6979 6980 kvm_get_segment(vcpu, &seg, n); 6981 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 6982 6983 if (n < 3) 6984 offset = 0x7f84 + n * 12; 6985 else 6986 offset = 0x7f2c + (n - 3) * 12; 6987 6988 put_smstate(u32, buf, offset + 8, seg.base); 6989 put_smstate(u32, buf, offset + 4, seg.limit); 6990 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 6991 } 6992 6993 #ifdef CONFIG_X86_64 6994 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 6995 { 6996 struct kvm_segment seg; 6997 int offset; 6998 u16 flags; 6999 7000 kvm_get_segment(vcpu, &seg, n); 7001 offset = 0x7e00 + n * 16; 7002 7003 flags = enter_smm_get_segment_flags(&seg) >> 8; 7004 put_smstate(u16, buf, offset, seg.selector); 7005 put_smstate(u16, buf, offset + 2, flags); 7006 put_smstate(u32, buf, offset + 4, seg.limit); 7007 put_smstate(u64, buf, offset + 8, seg.base); 7008 } 7009 #endif 7010 7011 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 7012 { 7013 struct desc_ptr dt; 7014 struct kvm_segment seg; 7015 unsigned long val; 7016 int i; 7017 7018 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 7019 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 7020 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 7021 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 7022 7023 for (i = 0; i < 8; i++) 7024 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 7025 7026 kvm_get_dr(vcpu, 6, &val); 7027 put_smstate(u32, buf, 0x7fcc, (u32)val); 7028 kvm_get_dr(vcpu, 7, &val); 7029 put_smstate(u32, buf, 0x7fc8, (u32)val); 7030 7031 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7032 put_smstate(u32, buf, 0x7fc4, seg.selector); 7033 put_smstate(u32, buf, 0x7f64, seg.base); 7034 put_smstate(u32, buf, 0x7f60, seg.limit); 7035 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 7036 7037 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7038 put_smstate(u32, buf, 0x7fc0, seg.selector); 7039 put_smstate(u32, buf, 0x7f80, seg.base); 7040 put_smstate(u32, buf, 0x7f7c, seg.limit); 7041 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 7042 7043 kvm_x86_ops->get_gdt(vcpu, &dt); 7044 put_smstate(u32, buf, 0x7f74, dt.address); 7045 put_smstate(u32, buf, 0x7f70, dt.size); 7046 7047 kvm_x86_ops->get_idt(vcpu, &dt); 7048 put_smstate(u32, buf, 0x7f58, dt.address); 7049 put_smstate(u32, buf, 0x7f54, dt.size); 7050 7051 for (i = 0; i < 6; i++) 7052 enter_smm_save_seg_32(vcpu, buf, i); 7053 7054 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 7055 7056 /* revision id */ 7057 put_smstate(u32, buf, 0x7efc, 0x00020000); 7058 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 7059 } 7060 7061 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 7062 { 7063 #ifdef CONFIG_X86_64 7064 struct desc_ptr dt; 7065 struct kvm_segment seg; 7066 unsigned long val; 7067 int i; 7068 7069 for (i = 0; i < 16; i++) 7070 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 7071 7072 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 7073 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 7074 7075 kvm_get_dr(vcpu, 6, &val); 7076 put_smstate(u64, buf, 0x7f68, val); 7077 kvm_get_dr(vcpu, 7, &val); 7078 put_smstate(u64, buf, 0x7f60, val); 7079 7080 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 7081 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 7082 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 7083 7084 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 7085 7086 /* revision id */ 7087 put_smstate(u32, buf, 0x7efc, 0x00020064); 7088 7089 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 7090 7091 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7092 put_smstate(u16, buf, 0x7e90, seg.selector); 7093 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 7094 put_smstate(u32, buf, 0x7e94, seg.limit); 7095 put_smstate(u64, buf, 0x7e98, seg.base); 7096 7097 kvm_x86_ops->get_idt(vcpu, &dt); 7098 put_smstate(u32, buf, 0x7e84, dt.size); 7099 put_smstate(u64, buf, 0x7e88, dt.address); 7100 7101 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7102 put_smstate(u16, buf, 0x7e70, seg.selector); 7103 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 7104 put_smstate(u32, buf, 0x7e74, seg.limit); 7105 put_smstate(u64, buf, 0x7e78, seg.base); 7106 7107 kvm_x86_ops->get_gdt(vcpu, &dt); 7108 put_smstate(u32, buf, 0x7e64, dt.size); 7109 put_smstate(u64, buf, 0x7e68, dt.address); 7110 7111 for (i = 0; i < 6; i++) 7112 enter_smm_save_seg_64(vcpu, buf, i); 7113 #else 7114 WARN_ON_ONCE(1); 7115 #endif 7116 } 7117 7118 static void enter_smm(struct kvm_vcpu *vcpu) 7119 { 7120 struct kvm_segment cs, ds; 7121 struct desc_ptr dt; 7122 char buf[512]; 7123 u32 cr0; 7124 7125 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 7126 memset(buf, 0, 512); 7127 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 7128 enter_smm_save_state_64(vcpu, buf); 7129 else 7130 enter_smm_save_state_32(vcpu, buf); 7131 7132 /* 7133 * Give pre_enter_smm() a chance to make ISA-specific changes to the 7134 * vCPU state (e.g. leave guest mode) after we've saved the state into 7135 * the SMM state-save area. 7136 */ 7137 kvm_x86_ops->pre_enter_smm(vcpu, buf); 7138 7139 vcpu->arch.hflags |= HF_SMM_MASK; 7140 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 7141 7142 if (kvm_x86_ops->get_nmi_mask(vcpu)) 7143 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 7144 else 7145 kvm_x86_ops->set_nmi_mask(vcpu, true); 7146 7147 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 7148 kvm_rip_write(vcpu, 0x8000); 7149 7150 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 7151 kvm_x86_ops->set_cr0(vcpu, cr0); 7152 vcpu->arch.cr0 = cr0; 7153 7154 kvm_x86_ops->set_cr4(vcpu, 0); 7155 7156 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 7157 dt.address = dt.size = 0; 7158 kvm_x86_ops->set_idt(vcpu, &dt); 7159 7160 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 7161 7162 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 7163 cs.base = vcpu->arch.smbase; 7164 7165 ds.selector = 0; 7166 ds.base = 0; 7167 7168 cs.limit = ds.limit = 0xffffffff; 7169 cs.type = ds.type = 0x3; 7170 cs.dpl = ds.dpl = 0; 7171 cs.db = ds.db = 0; 7172 cs.s = ds.s = 1; 7173 cs.l = ds.l = 0; 7174 cs.g = ds.g = 1; 7175 cs.avl = ds.avl = 0; 7176 cs.present = ds.present = 1; 7177 cs.unusable = ds.unusable = 0; 7178 cs.padding = ds.padding = 0; 7179 7180 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 7181 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 7182 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 7183 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 7184 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 7185 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 7186 7187 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 7188 kvm_x86_ops->set_efer(vcpu, 0); 7189 7190 kvm_update_cpuid(vcpu); 7191 kvm_mmu_reset_context(vcpu); 7192 } 7193 7194 static void process_smi(struct kvm_vcpu *vcpu) 7195 { 7196 vcpu->arch.smi_pending = true; 7197 kvm_make_request(KVM_REQ_EVENT, vcpu); 7198 } 7199 7200 void kvm_make_scan_ioapic_request(struct kvm *kvm) 7201 { 7202 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 7203 } 7204 7205 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 7206 { 7207 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 7208 return; 7209 7210 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 7211 7212 if (irqchip_split(vcpu->kvm)) 7213 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 7214 else { 7215 if (vcpu->arch.apicv_active) 7216 kvm_x86_ops->sync_pir_to_irr(vcpu); 7217 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 7218 } 7219 7220 if (is_guest_mode(vcpu)) 7221 vcpu->arch.load_eoi_exitmap_pending = true; 7222 else 7223 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 7224 } 7225 7226 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 7227 { 7228 u64 eoi_exit_bitmap[4]; 7229 7230 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 7231 return; 7232 7233 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 7234 vcpu_to_synic(vcpu)->vec_bitmap, 256); 7235 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 7236 } 7237 7238 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 7239 unsigned long start, unsigned long end) 7240 { 7241 unsigned long apic_address; 7242 7243 /* 7244 * The physical address of apic access page is stored in the VMCS. 7245 * Update it when it becomes invalid. 7246 */ 7247 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 7248 if (start <= apic_address && apic_address < end) 7249 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 7250 } 7251 7252 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 7253 { 7254 struct page *page = NULL; 7255 7256 if (!lapic_in_kernel(vcpu)) 7257 return; 7258 7259 if (!kvm_x86_ops->set_apic_access_page_addr) 7260 return; 7261 7262 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 7263 if (is_error_page(page)) 7264 return; 7265 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 7266 7267 /* 7268 * Do not pin apic access page in memory, the MMU notifier 7269 * will call us again if it is migrated or swapped out. 7270 */ 7271 put_page(page); 7272 } 7273 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); 7274 7275 /* 7276 * Returns 1 to let vcpu_run() continue the guest execution loop without 7277 * exiting to the userspace. Otherwise, the value will be returned to the 7278 * userspace. 7279 */ 7280 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 7281 { 7282 int r; 7283 bool req_int_win = 7284 dm_request_for_irq_injection(vcpu) && 7285 kvm_cpu_accept_dm_intr(vcpu); 7286 7287 bool req_immediate_exit = false; 7288 7289 if (kvm_request_pending(vcpu)) { 7290 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 7291 kvm_mmu_unload(vcpu); 7292 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 7293 __kvm_migrate_timers(vcpu); 7294 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 7295 kvm_gen_update_masterclock(vcpu->kvm); 7296 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 7297 kvm_gen_kvmclock_update(vcpu); 7298 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 7299 r = kvm_guest_time_update(vcpu); 7300 if (unlikely(r)) 7301 goto out; 7302 } 7303 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 7304 kvm_mmu_sync_roots(vcpu); 7305 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 7306 kvm_vcpu_flush_tlb(vcpu, true); 7307 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 7308 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 7309 r = 0; 7310 goto out; 7311 } 7312 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 7313 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 7314 vcpu->mmio_needed = 0; 7315 r = 0; 7316 goto out; 7317 } 7318 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 7319 /* Page is swapped out. Do synthetic halt */ 7320 vcpu->arch.apf.halted = true; 7321 r = 1; 7322 goto out; 7323 } 7324 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 7325 record_steal_time(vcpu); 7326 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 7327 process_smi(vcpu); 7328 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 7329 process_nmi(vcpu); 7330 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 7331 kvm_pmu_handle_event(vcpu); 7332 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 7333 kvm_pmu_deliver_pmi(vcpu); 7334 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 7335 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 7336 if (test_bit(vcpu->arch.pending_ioapic_eoi, 7337 vcpu->arch.ioapic_handled_vectors)) { 7338 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 7339 vcpu->run->eoi.vector = 7340 vcpu->arch.pending_ioapic_eoi; 7341 r = 0; 7342 goto out; 7343 } 7344 } 7345 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 7346 vcpu_scan_ioapic(vcpu); 7347 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 7348 vcpu_load_eoi_exitmap(vcpu); 7349 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 7350 kvm_vcpu_reload_apic_access_page(vcpu); 7351 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 7352 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 7353 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 7354 r = 0; 7355 goto out; 7356 } 7357 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 7358 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 7359 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 7360 r = 0; 7361 goto out; 7362 } 7363 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 7364 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 7365 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 7366 r = 0; 7367 goto out; 7368 } 7369 7370 /* 7371 * KVM_REQ_HV_STIMER has to be processed after 7372 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 7373 * depend on the guest clock being up-to-date 7374 */ 7375 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 7376 kvm_hv_process_stimers(vcpu); 7377 } 7378 7379 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 7380 ++vcpu->stat.req_event; 7381 kvm_apic_accept_events(vcpu); 7382 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 7383 r = 1; 7384 goto out; 7385 } 7386 7387 if (inject_pending_event(vcpu, req_int_win) != 0) 7388 req_immediate_exit = true; 7389 else { 7390 /* Enable SMI/NMI/IRQ window open exits if needed. 7391 * 7392 * SMIs have three cases: 7393 * 1) They can be nested, and then there is nothing to 7394 * do here because RSM will cause a vmexit anyway. 7395 * 2) There is an ISA-specific reason why SMI cannot be 7396 * injected, and the moment when this changes can be 7397 * intercepted. 7398 * 3) Or the SMI can be pending because 7399 * inject_pending_event has completed the injection 7400 * of an IRQ or NMI from the previous vmexit, and 7401 * then we request an immediate exit to inject the 7402 * SMI. 7403 */ 7404 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 7405 if (!kvm_x86_ops->enable_smi_window(vcpu)) 7406 req_immediate_exit = true; 7407 if (vcpu->arch.nmi_pending) 7408 kvm_x86_ops->enable_nmi_window(vcpu); 7409 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 7410 kvm_x86_ops->enable_irq_window(vcpu); 7411 WARN_ON(vcpu->arch.exception.pending); 7412 } 7413 7414 if (kvm_lapic_enabled(vcpu)) { 7415 update_cr8_intercept(vcpu); 7416 kvm_lapic_sync_to_vapic(vcpu); 7417 } 7418 } 7419 7420 r = kvm_mmu_reload(vcpu); 7421 if (unlikely(r)) { 7422 goto cancel_injection; 7423 } 7424 7425 preempt_disable(); 7426 7427 kvm_x86_ops->prepare_guest_switch(vcpu); 7428 7429 /* 7430 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 7431 * IPI are then delayed after guest entry, which ensures that they 7432 * result in virtual interrupt delivery. 7433 */ 7434 local_irq_disable(); 7435 vcpu->mode = IN_GUEST_MODE; 7436 7437 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 7438 7439 /* 7440 * 1) We should set ->mode before checking ->requests. Please see 7441 * the comment in kvm_vcpu_exiting_guest_mode(). 7442 * 7443 * 2) For APICv, we should set ->mode before checking PIR.ON. This 7444 * pairs with the memory barrier implicit in pi_test_and_set_on 7445 * (see vmx_deliver_posted_interrupt). 7446 * 7447 * 3) This also orders the write to mode from any reads to the page 7448 * tables done while the VCPU is running. Please see the comment 7449 * in kvm_flush_remote_tlbs. 7450 */ 7451 smp_mb__after_srcu_read_unlock(); 7452 7453 /* 7454 * This handles the case where a posted interrupt was 7455 * notified with kvm_vcpu_kick. 7456 */ 7457 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 7458 kvm_x86_ops->sync_pir_to_irr(vcpu); 7459 7460 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) 7461 || need_resched() || signal_pending(current)) { 7462 vcpu->mode = OUTSIDE_GUEST_MODE; 7463 smp_wmb(); 7464 local_irq_enable(); 7465 preempt_enable(); 7466 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 7467 r = 1; 7468 goto cancel_injection; 7469 } 7470 7471 kvm_load_guest_xcr0(vcpu); 7472 7473 if (req_immediate_exit) { 7474 kvm_make_request(KVM_REQ_EVENT, vcpu); 7475 smp_send_reschedule(vcpu->cpu); 7476 } 7477 7478 trace_kvm_entry(vcpu->vcpu_id); 7479 if (lapic_timer_advance_ns) 7480 wait_lapic_expire(vcpu); 7481 guest_enter_irqoff(); 7482 7483 if (unlikely(vcpu->arch.switch_db_regs)) { 7484 set_debugreg(0, 7); 7485 set_debugreg(vcpu->arch.eff_db[0], 0); 7486 set_debugreg(vcpu->arch.eff_db[1], 1); 7487 set_debugreg(vcpu->arch.eff_db[2], 2); 7488 set_debugreg(vcpu->arch.eff_db[3], 3); 7489 set_debugreg(vcpu->arch.dr6, 6); 7490 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 7491 } 7492 7493 kvm_x86_ops->run(vcpu); 7494 7495 /* 7496 * Do this here before restoring debug registers on the host. And 7497 * since we do this before handling the vmexit, a DR access vmexit 7498 * can (a) read the correct value of the debug registers, (b) set 7499 * KVM_DEBUGREG_WONT_EXIT again. 7500 */ 7501 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 7502 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 7503 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 7504 kvm_update_dr0123(vcpu); 7505 kvm_update_dr6(vcpu); 7506 kvm_update_dr7(vcpu); 7507 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 7508 } 7509 7510 /* 7511 * If the guest has used debug registers, at least dr7 7512 * will be disabled while returning to the host. 7513 * If we don't have active breakpoints in the host, we don't 7514 * care about the messed up debug address registers. But if 7515 * we have some of them active, restore the old state. 7516 */ 7517 if (hw_breakpoint_active()) 7518 hw_breakpoint_restore(); 7519 7520 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 7521 7522 vcpu->mode = OUTSIDE_GUEST_MODE; 7523 smp_wmb(); 7524 7525 kvm_put_guest_xcr0(vcpu); 7526 7527 kvm_before_interrupt(vcpu); 7528 kvm_x86_ops->handle_external_intr(vcpu); 7529 kvm_after_interrupt(vcpu); 7530 7531 ++vcpu->stat.exits; 7532 7533 guest_exit_irqoff(); 7534 7535 local_irq_enable(); 7536 preempt_enable(); 7537 7538 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 7539 7540 /* 7541 * Profile KVM exit RIPs: 7542 */ 7543 if (unlikely(prof_on == KVM_PROFILING)) { 7544 unsigned long rip = kvm_rip_read(vcpu); 7545 profile_hit(KVM_PROFILING, (void *)rip); 7546 } 7547 7548 if (unlikely(vcpu->arch.tsc_always_catchup)) 7549 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7550 7551 if (vcpu->arch.apic_attention) 7552 kvm_lapic_sync_from_vapic(vcpu); 7553 7554 vcpu->arch.gpa_available = false; 7555 r = kvm_x86_ops->handle_exit(vcpu); 7556 return r; 7557 7558 cancel_injection: 7559 kvm_x86_ops->cancel_injection(vcpu); 7560 if (unlikely(vcpu->arch.apic_attention)) 7561 kvm_lapic_sync_from_vapic(vcpu); 7562 out: 7563 return r; 7564 } 7565 7566 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 7567 { 7568 if (!kvm_arch_vcpu_runnable(vcpu) && 7569 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { 7570 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7571 kvm_vcpu_block(vcpu); 7572 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7573 7574 if (kvm_x86_ops->post_block) 7575 kvm_x86_ops->post_block(vcpu); 7576 7577 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 7578 return 1; 7579 } 7580 7581 kvm_apic_accept_events(vcpu); 7582 switch(vcpu->arch.mp_state) { 7583 case KVM_MP_STATE_HALTED: 7584 vcpu->arch.pv.pv_unhalted = false; 7585 vcpu->arch.mp_state = 7586 KVM_MP_STATE_RUNNABLE; 7587 case KVM_MP_STATE_RUNNABLE: 7588 vcpu->arch.apf.halted = false; 7589 break; 7590 case KVM_MP_STATE_INIT_RECEIVED: 7591 break; 7592 default: 7593 return -EINTR; 7594 break; 7595 } 7596 return 1; 7597 } 7598 7599 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 7600 { 7601 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 7602 kvm_x86_ops->check_nested_events(vcpu, false); 7603 7604 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7605 !vcpu->arch.apf.halted); 7606 } 7607 7608 static int vcpu_run(struct kvm_vcpu *vcpu) 7609 { 7610 int r; 7611 struct kvm *kvm = vcpu->kvm; 7612 7613 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7614 vcpu->arch.l1tf_flush_l1d = true; 7615 7616 for (;;) { 7617 if (kvm_vcpu_running(vcpu)) { 7618 r = vcpu_enter_guest(vcpu); 7619 } else { 7620 r = vcpu_block(kvm, vcpu); 7621 } 7622 7623 if (r <= 0) 7624 break; 7625 7626 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 7627 if (kvm_cpu_has_pending_timer(vcpu)) 7628 kvm_inject_pending_timer_irqs(vcpu); 7629 7630 if (dm_request_for_irq_injection(vcpu) && 7631 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 7632 r = 0; 7633 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 7634 ++vcpu->stat.request_irq_exits; 7635 break; 7636 } 7637 7638 kvm_check_async_pf_completion(vcpu); 7639 7640 if (signal_pending(current)) { 7641 r = -EINTR; 7642 vcpu->run->exit_reason = KVM_EXIT_INTR; 7643 ++vcpu->stat.signal_exits; 7644 break; 7645 } 7646 if (need_resched()) { 7647 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7648 cond_resched(); 7649 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7650 } 7651 } 7652 7653 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7654 7655 return r; 7656 } 7657 7658 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 7659 { 7660 int r; 7661 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 7662 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 7663 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 7664 if (r != EMULATE_DONE) 7665 return 0; 7666 return 1; 7667 } 7668 7669 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 7670 { 7671 BUG_ON(!vcpu->arch.pio.count); 7672 7673 return complete_emulated_io(vcpu); 7674 } 7675 7676 /* 7677 * Implements the following, as a state machine: 7678 * 7679 * read: 7680 * for each fragment 7681 * for each mmio piece in the fragment 7682 * write gpa, len 7683 * exit 7684 * copy data 7685 * execute insn 7686 * 7687 * write: 7688 * for each fragment 7689 * for each mmio piece in the fragment 7690 * write gpa, len 7691 * copy data 7692 * exit 7693 */ 7694 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 7695 { 7696 struct kvm_run *run = vcpu->run; 7697 struct kvm_mmio_fragment *frag; 7698 unsigned len; 7699 7700 BUG_ON(!vcpu->mmio_needed); 7701 7702 /* Complete previous fragment */ 7703 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 7704 len = min(8u, frag->len); 7705 if (!vcpu->mmio_is_write) 7706 memcpy(frag->data, run->mmio.data, len); 7707 7708 if (frag->len <= 8) { 7709 /* Switch to the next fragment. */ 7710 frag++; 7711 vcpu->mmio_cur_fragment++; 7712 } else { 7713 /* Go forward to the next mmio piece. */ 7714 frag->data += len; 7715 frag->gpa += len; 7716 frag->len -= len; 7717 } 7718 7719 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 7720 vcpu->mmio_needed = 0; 7721 7722 /* FIXME: return into emulator if single-stepping. */ 7723 if (vcpu->mmio_is_write) 7724 return 1; 7725 vcpu->mmio_read_completed = 1; 7726 return complete_emulated_io(vcpu); 7727 } 7728 7729 run->exit_reason = KVM_EXIT_MMIO; 7730 run->mmio.phys_addr = frag->gpa; 7731 if (vcpu->mmio_is_write) 7732 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 7733 run->mmio.len = min(8u, frag->len); 7734 run->mmio.is_write = vcpu->mmio_is_write; 7735 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7736 return 0; 7737 } 7738 7739 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 7740 { 7741 int r; 7742 7743 vcpu_load(vcpu); 7744 kvm_sigset_activate(vcpu); 7745 kvm_load_guest_fpu(vcpu); 7746 7747 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 7748 if (kvm_run->immediate_exit) { 7749 r = -EINTR; 7750 goto out; 7751 } 7752 kvm_vcpu_block(vcpu); 7753 kvm_apic_accept_events(vcpu); 7754 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 7755 r = -EAGAIN; 7756 if (signal_pending(current)) { 7757 r = -EINTR; 7758 vcpu->run->exit_reason = KVM_EXIT_INTR; 7759 ++vcpu->stat.signal_exits; 7760 } 7761 goto out; 7762 } 7763 7764 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 7765 r = -EINVAL; 7766 goto out; 7767 } 7768 7769 if (vcpu->run->kvm_dirty_regs) { 7770 r = sync_regs(vcpu); 7771 if (r != 0) 7772 goto out; 7773 } 7774 7775 /* re-sync apic's tpr */ 7776 if (!lapic_in_kernel(vcpu)) { 7777 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 7778 r = -EINVAL; 7779 goto out; 7780 } 7781 } 7782 7783 if (unlikely(vcpu->arch.complete_userspace_io)) { 7784 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 7785 vcpu->arch.complete_userspace_io = NULL; 7786 r = cui(vcpu); 7787 if (r <= 0) 7788 goto out; 7789 } else 7790 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 7791 7792 if (kvm_run->immediate_exit) 7793 r = -EINTR; 7794 else 7795 r = vcpu_run(vcpu); 7796 7797 out: 7798 kvm_put_guest_fpu(vcpu); 7799 if (vcpu->run->kvm_valid_regs) 7800 store_regs(vcpu); 7801 post_kvm_run_save(vcpu); 7802 kvm_sigset_deactivate(vcpu); 7803 7804 vcpu_put(vcpu); 7805 return r; 7806 } 7807 7808 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7809 { 7810 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 7811 /* 7812 * We are here if userspace calls get_regs() in the middle of 7813 * instruction emulation. Registers state needs to be copied 7814 * back from emulation context to vcpu. Userspace shouldn't do 7815 * that usually, but some bad designed PV devices (vmware 7816 * backdoor interface) need this to work 7817 */ 7818 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 7819 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7820 } 7821 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 7822 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 7823 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 7824 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 7825 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 7826 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 7827 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 7828 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 7829 #ifdef CONFIG_X86_64 7830 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 7831 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 7832 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 7833 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 7834 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 7835 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 7836 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 7837 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 7838 #endif 7839 7840 regs->rip = kvm_rip_read(vcpu); 7841 regs->rflags = kvm_get_rflags(vcpu); 7842 } 7843 7844 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7845 { 7846 vcpu_load(vcpu); 7847 __get_regs(vcpu, regs); 7848 vcpu_put(vcpu); 7849 return 0; 7850 } 7851 7852 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7853 { 7854 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 7855 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7856 7857 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 7858 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 7859 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 7860 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 7861 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 7862 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 7863 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 7864 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 7865 #ifdef CONFIG_X86_64 7866 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 7867 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 7868 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 7869 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 7870 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 7871 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 7872 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 7873 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 7874 #endif 7875 7876 kvm_rip_write(vcpu, regs->rip); 7877 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 7878 7879 vcpu->arch.exception.pending = false; 7880 7881 kvm_make_request(KVM_REQ_EVENT, vcpu); 7882 } 7883 7884 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7885 { 7886 vcpu_load(vcpu); 7887 __set_regs(vcpu, regs); 7888 vcpu_put(vcpu); 7889 return 0; 7890 } 7891 7892 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 7893 { 7894 struct kvm_segment cs; 7895 7896 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7897 *db = cs.db; 7898 *l = cs.l; 7899 } 7900 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 7901 7902 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 7903 { 7904 struct desc_ptr dt; 7905 7906 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7907 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7908 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7909 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7910 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7911 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7912 7913 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7914 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7915 7916 kvm_x86_ops->get_idt(vcpu, &dt); 7917 sregs->idt.limit = dt.size; 7918 sregs->idt.base = dt.address; 7919 kvm_x86_ops->get_gdt(vcpu, &dt); 7920 sregs->gdt.limit = dt.size; 7921 sregs->gdt.base = dt.address; 7922 7923 sregs->cr0 = kvm_read_cr0(vcpu); 7924 sregs->cr2 = vcpu->arch.cr2; 7925 sregs->cr3 = kvm_read_cr3(vcpu); 7926 sregs->cr4 = kvm_read_cr4(vcpu); 7927 sregs->cr8 = kvm_get_cr8(vcpu); 7928 sregs->efer = vcpu->arch.efer; 7929 sregs->apic_base = kvm_get_apic_base(vcpu); 7930 7931 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 7932 7933 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 7934 set_bit(vcpu->arch.interrupt.nr, 7935 (unsigned long *)sregs->interrupt_bitmap); 7936 } 7937 7938 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 7939 struct kvm_sregs *sregs) 7940 { 7941 vcpu_load(vcpu); 7942 __get_sregs(vcpu, sregs); 7943 vcpu_put(vcpu); 7944 return 0; 7945 } 7946 7947 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 7948 struct kvm_mp_state *mp_state) 7949 { 7950 vcpu_load(vcpu); 7951 7952 kvm_apic_accept_events(vcpu); 7953 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 7954 vcpu->arch.pv.pv_unhalted) 7955 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 7956 else 7957 mp_state->mp_state = vcpu->arch.mp_state; 7958 7959 vcpu_put(vcpu); 7960 return 0; 7961 } 7962 7963 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 7964 struct kvm_mp_state *mp_state) 7965 { 7966 int ret = -EINVAL; 7967 7968 vcpu_load(vcpu); 7969 7970 if (!lapic_in_kernel(vcpu) && 7971 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 7972 goto out; 7973 7974 /* INITs are latched while in SMM */ 7975 if ((is_smm(vcpu) || vcpu->arch.smi_pending) && 7976 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 7977 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 7978 goto out; 7979 7980 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 7981 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 7982 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 7983 } else 7984 vcpu->arch.mp_state = mp_state->mp_state; 7985 kvm_make_request(KVM_REQ_EVENT, vcpu); 7986 7987 ret = 0; 7988 out: 7989 vcpu_put(vcpu); 7990 return ret; 7991 } 7992 7993 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 7994 int reason, bool has_error_code, u32 error_code) 7995 { 7996 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 7997 int ret; 7998 7999 init_emulate_ctxt(vcpu); 8000 8001 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 8002 has_error_code, error_code); 8003 8004 if (ret) 8005 return EMULATE_FAIL; 8006 8007 kvm_rip_write(vcpu, ctxt->eip); 8008 kvm_set_rflags(vcpu, ctxt->eflags); 8009 kvm_make_request(KVM_REQ_EVENT, vcpu); 8010 return EMULATE_DONE; 8011 } 8012 EXPORT_SYMBOL_GPL(kvm_task_switch); 8013 8014 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8015 { 8016 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 8017 /* 8018 * When EFER.LME and CR0.PG are set, the processor is in 8019 * 64-bit mode (though maybe in a 32-bit code segment). 8020 * CR4.PAE and EFER.LMA must be set. 8021 */ 8022 if (!(sregs->cr4 & X86_CR4_PAE) 8023 || !(sregs->efer & EFER_LMA)) 8024 return -EINVAL; 8025 } else { 8026 /* 8027 * Not in 64-bit mode: EFER.LMA is clear and the code 8028 * segment cannot be 64-bit. 8029 */ 8030 if (sregs->efer & EFER_LMA || sregs->cs.l) 8031 return -EINVAL; 8032 } 8033 8034 return 0; 8035 } 8036 8037 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8038 { 8039 struct msr_data apic_base_msr; 8040 int mmu_reset_needed = 0; 8041 int cpuid_update_needed = 0; 8042 int pending_vec, max_bits, idx; 8043 struct desc_ptr dt; 8044 int ret = -EINVAL; 8045 8046 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 8047 (sregs->cr4 & X86_CR4_OSXSAVE)) 8048 goto out; 8049 8050 if (kvm_valid_sregs(vcpu, sregs)) 8051 goto out; 8052 8053 apic_base_msr.data = sregs->apic_base; 8054 apic_base_msr.host_initiated = true; 8055 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 8056 goto out; 8057 8058 dt.size = sregs->idt.limit; 8059 dt.address = sregs->idt.base; 8060 kvm_x86_ops->set_idt(vcpu, &dt); 8061 dt.size = sregs->gdt.limit; 8062 dt.address = sregs->gdt.base; 8063 kvm_x86_ops->set_gdt(vcpu, &dt); 8064 8065 vcpu->arch.cr2 = sregs->cr2; 8066 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 8067 vcpu->arch.cr3 = sregs->cr3; 8068 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 8069 8070 kvm_set_cr8(vcpu, sregs->cr8); 8071 8072 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 8073 kvm_x86_ops->set_efer(vcpu, sregs->efer); 8074 8075 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 8076 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 8077 vcpu->arch.cr0 = sregs->cr0; 8078 8079 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 8080 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 8081 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 8082 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 8083 if (cpuid_update_needed) 8084 kvm_update_cpuid(vcpu); 8085 8086 idx = srcu_read_lock(&vcpu->kvm->srcu); 8087 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 8088 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 8089 mmu_reset_needed = 1; 8090 } 8091 srcu_read_unlock(&vcpu->kvm->srcu, idx); 8092 8093 if (mmu_reset_needed) 8094 kvm_mmu_reset_context(vcpu); 8095 8096 max_bits = KVM_NR_INTERRUPTS; 8097 pending_vec = find_first_bit( 8098 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 8099 if (pending_vec < max_bits) { 8100 kvm_queue_interrupt(vcpu, pending_vec, false); 8101 pr_debug("Set back pending irq %d\n", pending_vec); 8102 } 8103 8104 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8105 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8106 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8107 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 8108 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 8109 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 8110 8111 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 8112 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 8113 8114 update_cr8_intercept(vcpu); 8115 8116 /* Older userspace won't unhalt the vcpu on reset. */ 8117 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 8118 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 8119 !is_protmode(vcpu)) 8120 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 8121 8122 kvm_make_request(KVM_REQ_EVENT, vcpu); 8123 8124 ret = 0; 8125 out: 8126 return ret; 8127 } 8128 8129 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 8130 struct kvm_sregs *sregs) 8131 { 8132 int ret; 8133 8134 vcpu_load(vcpu); 8135 ret = __set_sregs(vcpu, sregs); 8136 vcpu_put(vcpu); 8137 return ret; 8138 } 8139 8140 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 8141 struct kvm_guest_debug *dbg) 8142 { 8143 unsigned long rflags; 8144 int i, r; 8145 8146 vcpu_load(vcpu); 8147 8148 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 8149 r = -EBUSY; 8150 if (vcpu->arch.exception.pending) 8151 goto out; 8152 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 8153 kvm_queue_exception(vcpu, DB_VECTOR); 8154 else 8155 kvm_queue_exception(vcpu, BP_VECTOR); 8156 } 8157 8158 /* 8159 * Read rflags as long as potentially injected trace flags are still 8160 * filtered out. 8161 */ 8162 rflags = kvm_get_rflags(vcpu); 8163 8164 vcpu->guest_debug = dbg->control; 8165 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 8166 vcpu->guest_debug = 0; 8167 8168 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 8169 for (i = 0; i < KVM_NR_DB_REGS; ++i) 8170 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 8171 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 8172 } else { 8173 for (i = 0; i < KVM_NR_DB_REGS; i++) 8174 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 8175 } 8176 kvm_update_dr7(vcpu); 8177 8178 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 8179 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 8180 get_segment_base(vcpu, VCPU_SREG_CS); 8181 8182 /* 8183 * Trigger an rflags update that will inject or remove the trace 8184 * flags. 8185 */ 8186 kvm_set_rflags(vcpu, rflags); 8187 8188 kvm_x86_ops->update_bp_intercept(vcpu); 8189 8190 r = 0; 8191 8192 out: 8193 vcpu_put(vcpu); 8194 return r; 8195 } 8196 8197 /* 8198 * Translate a guest virtual address to a guest physical address. 8199 */ 8200 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 8201 struct kvm_translation *tr) 8202 { 8203 unsigned long vaddr = tr->linear_address; 8204 gpa_t gpa; 8205 int idx; 8206 8207 vcpu_load(vcpu); 8208 8209 idx = srcu_read_lock(&vcpu->kvm->srcu); 8210 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 8211 srcu_read_unlock(&vcpu->kvm->srcu, idx); 8212 tr->physical_address = gpa; 8213 tr->valid = gpa != UNMAPPED_GVA; 8214 tr->writeable = 1; 8215 tr->usermode = 0; 8216 8217 vcpu_put(vcpu); 8218 return 0; 8219 } 8220 8221 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 8222 { 8223 struct fxregs_state *fxsave; 8224 8225 vcpu_load(vcpu); 8226 8227 fxsave = &vcpu->arch.guest_fpu.state.fxsave; 8228 memcpy(fpu->fpr, fxsave->st_space, 128); 8229 fpu->fcw = fxsave->cwd; 8230 fpu->fsw = fxsave->swd; 8231 fpu->ftwx = fxsave->twd; 8232 fpu->last_opcode = fxsave->fop; 8233 fpu->last_ip = fxsave->rip; 8234 fpu->last_dp = fxsave->rdp; 8235 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 8236 8237 vcpu_put(vcpu); 8238 return 0; 8239 } 8240 8241 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 8242 { 8243 struct fxregs_state *fxsave; 8244 8245 vcpu_load(vcpu); 8246 8247 fxsave = &vcpu->arch.guest_fpu.state.fxsave; 8248 8249 memcpy(fxsave->st_space, fpu->fpr, 128); 8250 fxsave->cwd = fpu->fcw; 8251 fxsave->swd = fpu->fsw; 8252 fxsave->twd = fpu->ftwx; 8253 fxsave->fop = fpu->last_opcode; 8254 fxsave->rip = fpu->last_ip; 8255 fxsave->rdp = fpu->last_dp; 8256 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 8257 8258 vcpu_put(vcpu); 8259 return 0; 8260 } 8261 8262 static void store_regs(struct kvm_vcpu *vcpu) 8263 { 8264 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 8265 8266 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 8267 __get_regs(vcpu, &vcpu->run->s.regs.regs); 8268 8269 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 8270 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 8271 8272 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 8273 kvm_vcpu_ioctl_x86_get_vcpu_events( 8274 vcpu, &vcpu->run->s.regs.events); 8275 } 8276 8277 static int sync_regs(struct kvm_vcpu *vcpu) 8278 { 8279 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 8280 return -EINVAL; 8281 8282 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 8283 __set_regs(vcpu, &vcpu->run->s.regs.regs); 8284 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 8285 } 8286 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 8287 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 8288 return -EINVAL; 8289 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 8290 } 8291 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 8292 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 8293 vcpu, &vcpu->run->s.regs.events)) 8294 return -EINVAL; 8295 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 8296 } 8297 8298 return 0; 8299 } 8300 8301 static void fx_init(struct kvm_vcpu *vcpu) 8302 { 8303 fpstate_init(&vcpu->arch.guest_fpu.state); 8304 if (boot_cpu_has(X86_FEATURE_XSAVES)) 8305 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = 8306 host_xcr0 | XSTATE_COMPACTION_ENABLED; 8307 8308 /* 8309 * Ensure guest xcr0 is valid for loading 8310 */ 8311 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 8312 8313 vcpu->arch.cr0 |= X86_CR0_ET; 8314 } 8315 8316 /* Swap (qemu) user FPU context for the guest FPU context. */ 8317 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 8318 { 8319 preempt_disable(); 8320 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu); 8321 /* PKRU is separately restored in kvm_x86_ops->run. */ 8322 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state, 8323 ~XFEATURE_MASK_PKRU); 8324 preempt_enable(); 8325 trace_kvm_fpu(1); 8326 } 8327 8328 /* When vcpu_run ends, restore user space FPU context. */ 8329 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 8330 { 8331 preempt_disable(); 8332 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); 8333 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state); 8334 preempt_enable(); 8335 ++vcpu->stat.fpu_reload; 8336 trace_kvm_fpu(0); 8337 } 8338 8339 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 8340 { 8341 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; 8342 8343 kvmclock_reset(vcpu); 8344 8345 kvm_x86_ops->vcpu_free(vcpu); 8346 free_cpumask_var(wbinvd_dirty_mask); 8347 } 8348 8349 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 8350 unsigned int id) 8351 { 8352 struct kvm_vcpu *vcpu; 8353 8354 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 8355 printk_once(KERN_WARNING 8356 "kvm: SMP vm created on host with unstable TSC; " 8357 "guest TSC will not be reliable\n"); 8358 8359 vcpu = kvm_x86_ops->vcpu_create(kvm, id); 8360 8361 return vcpu; 8362 } 8363 8364 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 8365 { 8366 kvm_vcpu_mtrr_init(vcpu); 8367 vcpu_load(vcpu); 8368 kvm_vcpu_reset(vcpu, false); 8369 kvm_mmu_setup(vcpu); 8370 vcpu_put(vcpu); 8371 return 0; 8372 } 8373 8374 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 8375 { 8376 struct msr_data msr; 8377 struct kvm *kvm = vcpu->kvm; 8378 8379 kvm_hv_vcpu_postcreate(vcpu); 8380 8381 if (mutex_lock_killable(&vcpu->mutex)) 8382 return; 8383 vcpu_load(vcpu); 8384 msr.data = 0x0; 8385 msr.index = MSR_IA32_TSC; 8386 msr.host_initiated = true; 8387 kvm_write_tsc(vcpu, &msr); 8388 vcpu_put(vcpu); 8389 mutex_unlock(&vcpu->mutex); 8390 8391 if (!kvmclock_periodic_sync) 8392 return; 8393 8394 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 8395 KVMCLOCK_SYNC_PERIOD); 8396 } 8397 8398 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 8399 { 8400 vcpu->arch.apf.msr_val = 0; 8401 8402 vcpu_load(vcpu); 8403 kvm_mmu_unload(vcpu); 8404 vcpu_put(vcpu); 8405 8406 kvm_x86_ops->vcpu_free(vcpu); 8407 } 8408 8409 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 8410 { 8411 kvm_lapic_reset(vcpu, init_event); 8412 8413 vcpu->arch.hflags = 0; 8414 8415 vcpu->arch.smi_pending = 0; 8416 vcpu->arch.smi_count = 0; 8417 atomic_set(&vcpu->arch.nmi_queued, 0); 8418 vcpu->arch.nmi_pending = 0; 8419 vcpu->arch.nmi_injected = false; 8420 kvm_clear_interrupt_queue(vcpu); 8421 kvm_clear_exception_queue(vcpu); 8422 vcpu->arch.exception.pending = false; 8423 8424 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 8425 kvm_update_dr0123(vcpu); 8426 vcpu->arch.dr6 = DR6_INIT; 8427 kvm_update_dr6(vcpu); 8428 vcpu->arch.dr7 = DR7_FIXED_1; 8429 kvm_update_dr7(vcpu); 8430 8431 vcpu->arch.cr2 = 0; 8432 8433 kvm_make_request(KVM_REQ_EVENT, vcpu); 8434 vcpu->arch.apf.msr_val = 0; 8435 vcpu->arch.st.msr_val = 0; 8436 8437 kvmclock_reset(vcpu); 8438 8439 kvm_clear_async_pf_completion_queue(vcpu); 8440 kvm_async_pf_hash_reset(vcpu); 8441 vcpu->arch.apf.halted = false; 8442 8443 if (kvm_mpx_supported()) { 8444 void *mpx_state_buffer; 8445 8446 /* 8447 * To avoid have the INIT path from kvm_apic_has_events() that be 8448 * called with loaded FPU and does not let userspace fix the state. 8449 */ 8450 if (init_event) 8451 kvm_put_guest_fpu(vcpu); 8452 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, 8453 XFEATURE_MASK_BNDREGS); 8454 if (mpx_state_buffer) 8455 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 8456 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, 8457 XFEATURE_MASK_BNDCSR); 8458 if (mpx_state_buffer) 8459 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 8460 if (init_event) 8461 kvm_load_guest_fpu(vcpu); 8462 } 8463 8464 if (!init_event) { 8465 kvm_pmu_reset(vcpu); 8466 vcpu->arch.smbase = 0x30000; 8467 8468 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 8469 vcpu->arch.msr_misc_features_enables = 0; 8470 8471 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 8472 } 8473 8474 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 8475 vcpu->arch.regs_avail = ~0; 8476 vcpu->arch.regs_dirty = ~0; 8477 8478 vcpu->arch.ia32_xss = 0; 8479 8480 kvm_x86_ops->vcpu_reset(vcpu, init_event); 8481 } 8482 8483 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 8484 { 8485 struct kvm_segment cs; 8486 8487 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 8488 cs.selector = vector << 8; 8489 cs.base = vector << 12; 8490 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8491 kvm_rip_write(vcpu, 0); 8492 } 8493 8494 int kvm_arch_hardware_enable(void) 8495 { 8496 struct kvm *kvm; 8497 struct kvm_vcpu *vcpu; 8498 int i; 8499 int ret; 8500 u64 local_tsc; 8501 u64 max_tsc = 0; 8502 bool stable, backwards_tsc = false; 8503 8504 kvm_shared_msr_cpu_online(); 8505 ret = kvm_x86_ops->hardware_enable(); 8506 if (ret != 0) 8507 return ret; 8508 8509 local_tsc = rdtsc(); 8510 stable = !kvm_check_tsc_unstable(); 8511 list_for_each_entry(kvm, &vm_list, vm_list) { 8512 kvm_for_each_vcpu(i, vcpu, kvm) { 8513 if (!stable && vcpu->cpu == smp_processor_id()) 8514 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8515 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 8516 backwards_tsc = true; 8517 if (vcpu->arch.last_host_tsc > max_tsc) 8518 max_tsc = vcpu->arch.last_host_tsc; 8519 } 8520 } 8521 } 8522 8523 /* 8524 * Sometimes, even reliable TSCs go backwards. This happens on 8525 * platforms that reset TSC during suspend or hibernate actions, but 8526 * maintain synchronization. We must compensate. Fortunately, we can 8527 * detect that condition here, which happens early in CPU bringup, 8528 * before any KVM threads can be running. Unfortunately, we can't 8529 * bring the TSCs fully up to date with real time, as we aren't yet far 8530 * enough into CPU bringup that we know how much real time has actually 8531 * elapsed; our helper function, ktime_get_boot_ns() will be using boot 8532 * variables that haven't been updated yet. 8533 * 8534 * So we simply find the maximum observed TSC above, then record the 8535 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 8536 * the adjustment will be applied. Note that we accumulate 8537 * adjustments, in case multiple suspend cycles happen before some VCPU 8538 * gets a chance to run again. In the event that no KVM threads get a 8539 * chance to run, we will miss the entire elapsed period, as we'll have 8540 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 8541 * loose cycle time. This isn't too big a deal, since the loss will be 8542 * uniform across all VCPUs (not to mention the scenario is extremely 8543 * unlikely). It is possible that a second hibernate recovery happens 8544 * much faster than a first, causing the observed TSC here to be 8545 * smaller; this would require additional padding adjustment, which is 8546 * why we set last_host_tsc to the local tsc observed here. 8547 * 8548 * N.B. - this code below runs only on platforms with reliable TSC, 8549 * as that is the only way backwards_tsc is set above. Also note 8550 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 8551 * have the same delta_cyc adjustment applied if backwards_tsc 8552 * is detected. Note further, this adjustment is only done once, 8553 * as we reset last_host_tsc on all VCPUs to stop this from being 8554 * called multiple times (one for each physical CPU bringup). 8555 * 8556 * Platforms with unreliable TSCs don't have to deal with this, they 8557 * will be compensated by the logic in vcpu_load, which sets the TSC to 8558 * catchup mode. This will catchup all VCPUs to real time, but cannot 8559 * guarantee that they stay in perfect synchronization. 8560 */ 8561 if (backwards_tsc) { 8562 u64 delta_cyc = max_tsc - local_tsc; 8563 list_for_each_entry(kvm, &vm_list, vm_list) { 8564 kvm->arch.backwards_tsc_observed = true; 8565 kvm_for_each_vcpu(i, vcpu, kvm) { 8566 vcpu->arch.tsc_offset_adjustment += delta_cyc; 8567 vcpu->arch.last_host_tsc = local_tsc; 8568 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 8569 } 8570 8571 /* 8572 * We have to disable TSC offset matching.. if you were 8573 * booting a VM while issuing an S4 host suspend.... 8574 * you may have some problem. Solving this issue is 8575 * left as an exercise to the reader. 8576 */ 8577 kvm->arch.last_tsc_nsec = 0; 8578 kvm->arch.last_tsc_write = 0; 8579 } 8580 8581 } 8582 return 0; 8583 } 8584 8585 void kvm_arch_hardware_disable(void) 8586 { 8587 kvm_x86_ops->hardware_disable(); 8588 drop_user_return_notifiers(); 8589 } 8590 8591 int kvm_arch_hardware_setup(void) 8592 { 8593 int r; 8594 8595 r = kvm_x86_ops->hardware_setup(); 8596 if (r != 0) 8597 return r; 8598 8599 if (kvm_has_tsc_control) { 8600 /* 8601 * Make sure the user can only configure tsc_khz values that 8602 * fit into a signed integer. 8603 * A min value is not calculated because it will always 8604 * be 1 on all machines. 8605 */ 8606 u64 max = min(0x7fffffffULL, 8607 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 8608 kvm_max_guest_tsc_khz = max; 8609 8610 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 8611 } 8612 8613 kvm_init_msr_list(); 8614 return 0; 8615 } 8616 8617 void kvm_arch_hardware_unsetup(void) 8618 { 8619 kvm_x86_ops->hardware_unsetup(); 8620 } 8621 8622 void kvm_arch_check_processor_compat(void *rtn) 8623 { 8624 kvm_x86_ops->check_processor_compatibility(rtn); 8625 } 8626 8627 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 8628 { 8629 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 8630 } 8631 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 8632 8633 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 8634 { 8635 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 8636 } 8637 8638 struct static_key kvm_no_apic_vcpu __read_mostly; 8639 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 8640 8641 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 8642 { 8643 struct page *page; 8644 int r; 8645 8646 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu); 8647 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 8648 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 8649 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 8650 else 8651 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 8652 8653 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 8654 if (!page) { 8655 r = -ENOMEM; 8656 goto fail; 8657 } 8658 vcpu->arch.pio_data = page_address(page); 8659 8660 kvm_set_tsc_khz(vcpu, max_tsc_khz); 8661 8662 r = kvm_mmu_create(vcpu); 8663 if (r < 0) 8664 goto fail_free_pio_data; 8665 8666 if (irqchip_in_kernel(vcpu->kvm)) { 8667 r = kvm_create_lapic(vcpu); 8668 if (r < 0) 8669 goto fail_mmu_destroy; 8670 } else 8671 static_key_slow_inc(&kvm_no_apic_vcpu); 8672 8673 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 8674 GFP_KERNEL); 8675 if (!vcpu->arch.mce_banks) { 8676 r = -ENOMEM; 8677 goto fail_free_lapic; 8678 } 8679 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 8680 8681 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 8682 r = -ENOMEM; 8683 goto fail_free_mce_banks; 8684 } 8685 8686 fx_init(vcpu); 8687 8688 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 8689 8690 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 8691 8692 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 8693 8694 kvm_async_pf_hash_reset(vcpu); 8695 kvm_pmu_init(vcpu); 8696 8697 vcpu->arch.pending_external_vector = -1; 8698 vcpu->arch.preempted_in_kernel = false; 8699 8700 kvm_hv_vcpu_init(vcpu); 8701 8702 return 0; 8703 8704 fail_free_mce_banks: 8705 kfree(vcpu->arch.mce_banks); 8706 fail_free_lapic: 8707 kvm_free_lapic(vcpu); 8708 fail_mmu_destroy: 8709 kvm_mmu_destroy(vcpu); 8710 fail_free_pio_data: 8711 free_page((unsigned long)vcpu->arch.pio_data); 8712 fail: 8713 return r; 8714 } 8715 8716 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 8717 { 8718 int idx; 8719 8720 kvm_hv_vcpu_uninit(vcpu); 8721 kvm_pmu_destroy(vcpu); 8722 kfree(vcpu->arch.mce_banks); 8723 kvm_free_lapic(vcpu); 8724 idx = srcu_read_lock(&vcpu->kvm->srcu); 8725 kvm_mmu_destroy(vcpu); 8726 srcu_read_unlock(&vcpu->kvm->srcu, idx); 8727 free_page((unsigned long)vcpu->arch.pio_data); 8728 if (!lapic_in_kernel(vcpu)) 8729 static_key_slow_dec(&kvm_no_apic_vcpu); 8730 } 8731 8732 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 8733 { 8734 vcpu->arch.l1tf_flush_l1d = true; 8735 kvm_x86_ops->sched_in(vcpu, cpu); 8736 } 8737 8738 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 8739 { 8740 if (type) 8741 return -EINVAL; 8742 8743 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 8744 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 8745 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 8746 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 8747 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 8748 8749 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 8750 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 8751 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 8752 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 8753 &kvm->arch.irq_sources_bitmap); 8754 8755 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 8756 mutex_init(&kvm->arch.apic_map_lock); 8757 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 8758 8759 kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); 8760 pvclock_update_vm_gtod_copy(kvm); 8761 8762 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 8763 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 8764 8765 kvm_hv_init_vm(kvm); 8766 kvm_page_track_init(kvm); 8767 kvm_mmu_init_vm(kvm); 8768 8769 if (kvm_x86_ops->vm_init) 8770 return kvm_x86_ops->vm_init(kvm); 8771 8772 return 0; 8773 } 8774 8775 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 8776 { 8777 vcpu_load(vcpu); 8778 kvm_mmu_unload(vcpu); 8779 vcpu_put(vcpu); 8780 } 8781 8782 static void kvm_free_vcpus(struct kvm *kvm) 8783 { 8784 unsigned int i; 8785 struct kvm_vcpu *vcpu; 8786 8787 /* 8788 * Unpin any mmu pages first. 8789 */ 8790 kvm_for_each_vcpu(i, vcpu, kvm) { 8791 kvm_clear_async_pf_completion_queue(vcpu); 8792 kvm_unload_vcpu_mmu(vcpu); 8793 } 8794 kvm_for_each_vcpu(i, vcpu, kvm) 8795 kvm_arch_vcpu_free(vcpu); 8796 8797 mutex_lock(&kvm->lock); 8798 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 8799 kvm->vcpus[i] = NULL; 8800 8801 atomic_set(&kvm->online_vcpus, 0); 8802 mutex_unlock(&kvm->lock); 8803 } 8804 8805 void kvm_arch_sync_events(struct kvm *kvm) 8806 { 8807 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 8808 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 8809 kvm_free_pit(kvm); 8810 } 8811 8812 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 8813 { 8814 int i, r; 8815 unsigned long hva; 8816 struct kvm_memslots *slots = kvm_memslots(kvm); 8817 struct kvm_memory_slot *slot, old; 8818 8819 /* Called with kvm->slots_lock held. */ 8820 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 8821 return -EINVAL; 8822 8823 slot = id_to_memslot(slots, id); 8824 if (size) { 8825 if (slot->npages) 8826 return -EEXIST; 8827 8828 /* 8829 * MAP_SHARED to prevent internal slot pages from being moved 8830 * by fork()/COW. 8831 */ 8832 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 8833 MAP_SHARED | MAP_ANONYMOUS, 0); 8834 if (IS_ERR((void *)hva)) 8835 return PTR_ERR((void *)hva); 8836 } else { 8837 if (!slot->npages) 8838 return 0; 8839 8840 hva = 0; 8841 } 8842 8843 old = *slot; 8844 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 8845 struct kvm_userspace_memory_region m; 8846 8847 m.slot = id | (i << 16); 8848 m.flags = 0; 8849 m.guest_phys_addr = gpa; 8850 m.userspace_addr = hva; 8851 m.memory_size = size; 8852 r = __kvm_set_memory_region(kvm, &m); 8853 if (r < 0) 8854 return r; 8855 } 8856 8857 if (!size) 8858 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); 8859 8860 return 0; 8861 } 8862 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 8863 8864 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 8865 { 8866 int r; 8867 8868 mutex_lock(&kvm->slots_lock); 8869 r = __x86_set_memory_region(kvm, id, gpa, size); 8870 mutex_unlock(&kvm->slots_lock); 8871 8872 return r; 8873 } 8874 EXPORT_SYMBOL_GPL(x86_set_memory_region); 8875 8876 void kvm_arch_destroy_vm(struct kvm *kvm) 8877 { 8878 if (current->mm == kvm->mm) { 8879 /* 8880 * Free memory regions allocated on behalf of userspace, 8881 * unless the the memory map has changed due to process exit 8882 * or fd copying. 8883 */ 8884 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 8885 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); 8886 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 8887 } 8888 if (kvm_x86_ops->vm_destroy) 8889 kvm_x86_ops->vm_destroy(kvm); 8890 kvm_pic_destroy(kvm); 8891 kvm_ioapic_destroy(kvm); 8892 kvm_free_vcpus(kvm); 8893 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 8894 kvm_mmu_uninit_vm(kvm); 8895 kvm_page_track_cleanup(kvm); 8896 kvm_hv_destroy_vm(kvm); 8897 } 8898 8899 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 8900 struct kvm_memory_slot *dont) 8901 { 8902 int i; 8903 8904 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8905 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 8906 kvfree(free->arch.rmap[i]); 8907 free->arch.rmap[i] = NULL; 8908 } 8909 if (i == 0) 8910 continue; 8911 8912 if (!dont || free->arch.lpage_info[i - 1] != 8913 dont->arch.lpage_info[i - 1]) { 8914 kvfree(free->arch.lpage_info[i - 1]); 8915 free->arch.lpage_info[i - 1] = NULL; 8916 } 8917 } 8918 8919 kvm_page_track_free_memslot(free, dont); 8920 } 8921 8922 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 8923 unsigned long npages) 8924 { 8925 int i; 8926 8927 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8928 struct kvm_lpage_info *linfo; 8929 unsigned long ugfn; 8930 int lpages; 8931 int level = i + 1; 8932 8933 lpages = gfn_to_index(slot->base_gfn + npages - 1, 8934 slot->base_gfn, level) + 1; 8935 8936 slot->arch.rmap[i] = 8937 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 8938 GFP_KERNEL); 8939 if (!slot->arch.rmap[i]) 8940 goto out_free; 8941 if (i == 0) 8942 continue; 8943 8944 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL); 8945 if (!linfo) 8946 goto out_free; 8947 8948 slot->arch.lpage_info[i - 1] = linfo; 8949 8950 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 8951 linfo[0].disallow_lpage = 1; 8952 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 8953 linfo[lpages - 1].disallow_lpage = 1; 8954 ugfn = slot->userspace_addr >> PAGE_SHIFT; 8955 /* 8956 * If the gfn and userspace address are not aligned wrt each 8957 * other, or if explicitly asked to, disable large page 8958 * support for this slot 8959 */ 8960 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 8961 !kvm_largepages_enabled()) { 8962 unsigned long j; 8963 8964 for (j = 0; j < lpages; ++j) 8965 linfo[j].disallow_lpage = 1; 8966 } 8967 } 8968 8969 if (kvm_page_track_create_memslot(slot, npages)) 8970 goto out_free; 8971 8972 return 0; 8973 8974 out_free: 8975 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8976 kvfree(slot->arch.rmap[i]); 8977 slot->arch.rmap[i] = NULL; 8978 if (i == 0) 8979 continue; 8980 8981 kvfree(slot->arch.lpage_info[i - 1]); 8982 slot->arch.lpage_info[i - 1] = NULL; 8983 } 8984 return -ENOMEM; 8985 } 8986 8987 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) 8988 { 8989 /* 8990 * memslots->generation has been incremented. 8991 * mmio generation may have reached its maximum value. 8992 */ 8993 kvm_mmu_invalidate_mmio_sptes(kvm, slots); 8994 } 8995 8996 int kvm_arch_prepare_memory_region(struct kvm *kvm, 8997 struct kvm_memory_slot *memslot, 8998 const struct kvm_userspace_memory_region *mem, 8999 enum kvm_mr_change change) 9000 { 9001 return 0; 9002 } 9003 9004 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 9005 struct kvm_memory_slot *new) 9006 { 9007 /* Still write protect RO slot */ 9008 if (new->flags & KVM_MEM_READONLY) { 9009 kvm_mmu_slot_remove_write_access(kvm, new); 9010 return; 9011 } 9012 9013 /* 9014 * Call kvm_x86_ops dirty logging hooks when they are valid. 9015 * 9016 * kvm_x86_ops->slot_disable_log_dirty is called when: 9017 * 9018 * - KVM_MR_CREATE with dirty logging is disabled 9019 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 9020 * 9021 * The reason is, in case of PML, we need to set D-bit for any slots 9022 * with dirty logging disabled in order to eliminate unnecessary GPA 9023 * logging in PML buffer (and potential PML buffer full VMEXT). This 9024 * guarantees leaving PML enabled during guest's lifetime won't have 9025 * any additonal overhead from PML when guest is running with dirty 9026 * logging disabled for memory slots. 9027 * 9028 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot 9029 * to dirty logging mode. 9030 * 9031 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 9032 * 9033 * In case of write protect: 9034 * 9035 * Write protect all pages for dirty logging. 9036 * 9037 * All the sptes including the large sptes which point to this 9038 * slot are set to readonly. We can not create any new large 9039 * spte on this slot until the end of the logging. 9040 * 9041 * See the comments in fast_page_fault(). 9042 */ 9043 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 9044 if (kvm_x86_ops->slot_enable_log_dirty) 9045 kvm_x86_ops->slot_enable_log_dirty(kvm, new); 9046 else 9047 kvm_mmu_slot_remove_write_access(kvm, new); 9048 } else { 9049 if (kvm_x86_ops->slot_disable_log_dirty) 9050 kvm_x86_ops->slot_disable_log_dirty(kvm, new); 9051 } 9052 } 9053 9054 void kvm_arch_commit_memory_region(struct kvm *kvm, 9055 const struct kvm_userspace_memory_region *mem, 9056 const struct kvm_memory_slot *old, 9057 const struct kvm_memory_slot *new, 9058 enum kvm_mr_change change) 9059 { 9060 int nr_mmu_pages = 0; 9061 9062 if (!kvm->arch.n_requested_mmu_pages) 9063 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 9064 9065 if (nr_mmu_pages) 9066 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 9067 9068 /* 9069 * Dirty logging tracks sptes in 4k granularity, meaning that large 9070 * sptes have to be split. If live migration is successful, the guest 9071 * in the source machine will be destroyed and large sptes will be 9072 * created in the destination. However, if the guest continues to run 9073 * in the source machine (for example if live migration fails), small 9074 * sptes will remain around and cause bad performance. 9075 * 9076 * Scan sptes if dirty logging has been stopped, dropping those 9077 * which can be collapsed into a single large-page spte. Later 9078 * page faults will create the large-page sptes. 9079 */ 9080 if ((change != KVM_MR_DELETE) && 9081 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 9082 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 9083 kvm_mmu_zap_collapsible_sptes(kvm, new); 9084 9085 /* 9086 * Set up write protection and/or dirty logging for the new slot. 9087 * 9088 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 9089 * been zapped so no dirty logging staff is needed for old slot. For 9090 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 9091 * new and it's also covered when dealing with the new slot. 9092 * 9093 * FIXME: const-ify all uses of struct kvm_memory_slot. 9094 */ 9095 if (change != KVM_MR_DELETE) 9096 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 9097 } 9098 9099 void kvm_arch_flush_shadow_all(struct kvm *kvm) 9100 { 9101 kvm_mmu_invalidate_zap_all_pages(kvm); 9102 } 9103 9104 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 9105 struct kvm_memory_slot *slot) 9106 { 9107 kvm_page_track_flush_slot(kvm, slot); 9108 } 9109 9110 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 9111 { 9112 if (!list_empty_careful(&vcpu->async_pf.done)) 9113 return true; 9114 9115 if (kvm_apic_has_events(vcpu)) 9116 return true; 9117 9118 if (vcpu->arch.pv.pv_unhalted) 9119 return true; 9120 9121 if (vcpu->arch.exception.pending) 9122 return true; 9123 9124 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 9125 (vcpu->arch.nmi_pending && 9126 kvm_x86_ops->nmi_allowed(vcpu))) 9127 return true; 9128 9129 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 9130 (vcpu->arch.smi_pending && !is_smm(vcpu))) 9131 return true; 9132 9133 if (kvm_arch_interrupt_allowed(vcpu) && 9134 kvm_cpu_has_interrupt(vcpu)) 9135 return true; 9136 9137 if (kvm_hv_has_stimer_pending(vcpu)) 9138 return true; 9139 9140 return false; 9141 } 9142 9143 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 9144 { 9145 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 9146 } 9147 9148 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 9149 { 9150 return vcpu->arch.preempted_in_kernel; 9151 } 9152 9153 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 9154 { 9155 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 9156 } 9157 9158 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 9159 { 9160 return kvm_x86_ops->interrupt_allowed(vcpu); 9161 } 9162 9163 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 9164 { 9165 if (is_64_bit_mode(vcpu)) 9166 return kvm_rip_read(vcpu); 9167 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 9168 kvm_rip_read(vcpu)); 9169 } 9170 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 9171 9172 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 9173 { 9174 return kvm_get_linear_rip(vcpu) == linear_rip; 9175 } 9176 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 9177 9178 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 9179 { 9180 unsigned long rflags; 9181 9182 rflags = kvm_x86_ops->get_rflags(vcpu); 9183 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9184 rflags &= ~X86_EFLAGS_TF; 9185 return rflags; 9186 } 9187 EXPORT_SYMBOL_GPL(kvm_get_rflags); 9188 9189 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 9190 { 9191 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 9192 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 9193 rflags |= X86_EFLAGS_TF; 9194 kvm_x86_ops->set_rflags(vcpu, rflags); 9195 } 9196 9197 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 9198 { 9199 __kvm_set_rflags(vcpu, rflags); 9200 kvm_make_request(KVM_REQ_EVENT, vcpu); 9201 } 9202 EXPORT_SYMBOL_GPL(kvm_set_rflags); 9203 9204 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 9205 { 9206 int r; 9207 9208 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 9209 work->wakeup_all) 9210 return; 9211 9212 r = kvm_mmu_reload(vcpu); 9213 if (unlikely(r)) 9214 return; 9215 9216 if (!vcpu->arch.mmu.direct_map && 9217 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 9218 return; 9219 9220 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 9221 } 9222 9223 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 9224 { 9225 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 9226 } 9227 9228 static inline u32 kvm_async_pf_next_probe(u32 key) 9229 { 9230 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 9231 } 9232 9233 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 9234 { 9235 u32 key = kvm_async_pf_hash_fn(gfn); 9236 9237 while (vcpu->arch.apf.gfns[key] != ~0) 9238 key = kvm_async_pf_next_probe(key); 9239 9240 vcpu->arch.apf.gfns[key] = gfn; 9241 } 9242 9243 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 9244 { 9245 int i; 9246 u32 key = kvm_async_pf_hash_fn(gfn); 9247 9248 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 9249 (vcpu->arch.apf.gfns[key] != gfn && 9250 vcpu->arch.apf.gfns[key] != ~0); i++) 9251 key = kvm_async_pf_next_probe(key); 9252 9253 return key; 9254 } 9255 9256 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 9257 { 9258 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 9259 } 9260 9261 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 9262 { 9263 u32 i, j, k; 9264 9265 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 9266 while (true) { 9267 vcpu->arch.apf.gfns[i] = ~0; 9268 do { 9269 j = kvm_async_pf_next_probe(j); 9270 if (vcpu->arch.apf.gfns[j] == ~0) 9271 return; 9272 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 9273 /* 9274 * k lies cyclically in ]i,j] 9275 * | i.k.j | 9276 * |....j i.k.| or |.k..j i...| 9277 */ 9278 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 9279 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 9280 i = j; 9281 } 9282 } 9283 9284 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 9285 { 9286 9287 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 9288 sizeof(val)); 9289 } 9290 9291 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val) 9292 { 9293 9294 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val, 9295 sizeof(u32)); 9296 } 9297 9298 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 9299 struct kvm_async_pf *work) 9300 { 9301 struct x86_exception fault; 9302 9303 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 9304 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 9305 9306 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 9307 (vcpu->arch.apf.send_user_only && 9308 kvm_x86_ops->get_cpl(vcpu) == 0)) 9309 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 9310 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 9311 fault.vector = PF_VECTOR; 9312 fault.error_code_valid = true; 9313 fault.error_code = 0; 9314 fault.nested_page_fault = false; 9315 fault.address = work->arch.token; 9316 fault.async_page_fault = true; 9317 kvm_inject_page_fault(vcpu, &fault); 9318 } 9319 } 9320 9321 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 9322 struct kvm_async_pf *work) 9323 { 9324 struct x86_exception fault; 9325 u32 val; 9326 9327 if (work->wakeup_all) 9328 work->arch.token = ~0; /* broadcast wakeup */ 9329 else 9330 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 9331 trace_kvm_async_pf_ready(work->arch.token, work->gva); 9332 9333 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED && 9334 !apf_get_user(vcpu, &val)) { 9335 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT && 9336 vcpu->arch.exception.pending && 9337 vcpu->arch.exception.nr == PF_VECTOR && 9338 !apf_put_user(vcpu, 0)) { 9339 vcpu->arch.exception.injected = false; 9340 vcpu->arch.exception.pending = false; 9341 vcpu->arch.exception.nr = 0; 9342 vcpu->arch.exception.has_error_code = false; 9343 vcpu->arch.exception.error_code = 0; 9344 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 9345 fault.vector = PF_VECTOR; 9346 fault.error_code_valid = true; 9347 fault.error_code = 0; 9348 fault.nested_page_fault = false; 9349 fault.address = work->arch.token; 9350 fault.async_page_fault = true; 9351 kvm_inject_page_fault(vcpu, &fault); 9352 } 9353 } 9354 vcpu->arch.apf.halted = false; 9355 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9356 } 9357 9358 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 9359 { 9360 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 9361 return true; 9362 else 9363 return kvm_can_do_async_pf(vcpu); 9364 } 9365 9366 void kvm_arch_start_assignment(struct kvm *kvm) 9367 { 9368 atomic_inc(&kvm->arch.assigned_device_count); 9369 } 9370 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 9371 9372 void kvm_arch_end_assignment(struct kvm *kvm) 9373 { 9374 atomic_dec(&kvm->arch.assigned_device_count); 9375 } 9376 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 9377 9378 bool kvm_arch_has_assigned_device(struct kvm *kvm) 9379 { 9380 return atomic_read(&kvm->arch.assigned_device_count); 9381 } 9382 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 9383 9384 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 9385 { 9386 atomic_inc(&kvm->arch.noncoherent_dma_count); 9387 } 9388 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 9389 9390 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 9391 { 9392 atomic_dec(&kvm->arch.noncoherent_dma_count); 9393 } 9394 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 9395 9396 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 9397 { 9398 return atomic_read(&kvm->arch.noncoherent_dma_count); 9399 } 9400 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 9401 9402 bool kvm_arch_has_irq_bypass(void) 9403 { 9404 return kvm_x86_ops->update_pi_irte != NULL; 9405 } 9406 9407 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 9408 struct irq_bypass_producer *prod) 9409 { 9410 struct kvm_kernel_irqfd *irqfd = 9411 container_of(cons, struct kvm_kernel_irqfd, consumer); 9412 9413 irqfd->producer = prod; 9414 9415 return kvm_x86_ops->update_pi_irte(irqfd->kvm, 9416 prod->irq, irqfd->gsi, 1); 9417 } 9418 9419 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 9420 struct irq_bypass_producer *prod) 9421 { 9422 int ret; 9423 struct kvm_kernel_irqfd *irqfd = 9424 container_of(cons, struct kvm_kernel_irqfd, consumer); 9425 9426 WARN_ON(irqfd->producer != prod); 9427 irqfd->producer = NULL; 9428 9429 /* 9430 * When producer of consumer is unregistered, we change back to 9431 * remapped mode, so we can re-use the current implementation 9432 * when the irq is masked/disabled or the consumer side (KVM 9433 * int this case doesn't want to receive the interrupts. 9434 */ 9435 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 9436 if (ret) 9437 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 9438 " fails: %d\n", irqfd->consumer.token, ret); 9439 } 9440 9441 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 9442 uint32_t guest_irq, bool set) 9443 { 9444 if (!kvm_x86_ops->update_pi_irte) 9445 return -EINVAL; 9446 9447 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); 9448 } 9449 9450 bool kvm_vector_hashing_enabled(void) 9451 { 9452 return vector_hashing; 9453 } 9454 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); 9455 9456 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 9457 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 9458 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 9459 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 9460 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 9461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 9462 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 9463 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 9464 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 9465 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 9466 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 9467 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 9468 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 9469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 9470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); 9471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 9472 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 9473 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 9474 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 9475