xref: /linux/arch/x86/kvm/x86.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107 
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110 
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113 
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122 
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133 
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137 
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142 
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145 
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149 
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152 
153 #define KVM_NR_SHARED_MSRS 16
154 
155 struct kvm_shared_msrs_global {
156 	int nr;
157 	u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159 
160 struct kvm_shared_msrs {
161 	struct user_return_notifier urn;
162 	bool registered;
163 	struct kvm_shared_msr_values {
164 		u64 host;
165 		u64 curr;
166 	} values[KVM_NR_SHARED_MSRS];
167 };
168 
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171 
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
174 	{ "pf_guest", VCPU_STAT(pf_guest) },
175 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
176 	{ "invlpg", VCPU_STAT(invlpg) },
177 	{ "exits", VCPU_STAT(exits) },
178 	{ "io_exits", VCPU_STAT(io_exits) },
179 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
180 	{ "signal_exits", VCPU_STAT(signal_exits) },
181 	{ "irq_window", VCPU_STAT(irq_window_exits) },
182 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
183 	{ "halt_exits", VCPU_STAT(halt_exits) },
184 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
188 	{ "hypercalls", VCPU_STAT(hypercalls) },
189 	{ "request_irq", VCPU_STAT(request_irq_exits) },
190 	{ "irq_exits", VCPU_STAT(irq_exits) },
191 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
192 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
193 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
194 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195 	{ "irq_injections", VCPU_STAT(irq_injections) },
196 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
197 	{ "req_event", VCPU_STAT(req_event) },
198 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
199 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
201 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
204 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
205 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
207 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208 	{ "largepages", VM_STAT(lpages) },
209 	{ "max_mmu_page_hash_collisions",
210 		VM_STAT(max_mmu_page_hash_collisions) },
211 	{ NULL }
212 };
213 
214 u64 __read_mostly host_xcr0;
215 
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
217 
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
219 {
220 	int i;
221 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
222 		vcpu->arch.apf.gfns[i] = ~0;
223 }
224 
225 static void kvm_on_user_return(struct user_return_notifier *urn)
226 {
227 	unsigned slot;
228 	struct kvm_shared_msrs *locals
229 		= container_of(urn, struct kvm_shared_msrs, urn);
230 	struct kvm_shared_msr_values *values;
231 	unsigned long flags;
232 
233 	/*
234 	 * Disabling irqs at this point since the following code could be
235 	 * interrupted and executed through kvm_arch_hardware_disable()
236 	 */
237 	local_irq_save(flags);
238 	if (locals->registered) {
239 		locals->registered = false;
240 		user_return_notifier_unregister(urn);
241 	}
242 	local_irq_restore(flags);
243 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
244 		values = &locals->values[slot];
245 		if (values->host != values->curr) {
246 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
247 			values->curr = values->host;
248 		}
249 	}
250 }
251 
252 static void shared_msr_update(unsigned slot, u32 msr)
253 {
254 	u64 value;
255 	unsigned int cpu = smp_processor_id();
256 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
257 
258 	/* only read, and nobody should modify it at this time,
259 	 * so don't need lock */
260 	if (slot >= shared_msrs_global.nr) {
261 		printk(KERN_ERR "kvm: invalid MSR slot!");
262 		return;
263 	}
264 	rdmsrl_safe(msr, &value);
265 	smsr->values[slot].host = value;
266 	smsr->values[slot].curr = value;
267 }
268 
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
270 {
271 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272 	shared_msrs_global.msrs[slot] = msr;
273 	if (slot >= shared_msrs_global.nr)
274 		shared_msrs_global.nr = slot + 1;
275 }
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
277 
278 static void kvm_shared_msr_cpu_online(void)
279 {
280 	unsigned i;
281 
282 	for (i = 0; i < shared_msrs_global.nr; ++i)
283 		shared_msr_update(i, shared_msrs_global.msrs[i]);
284 }
285 
286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
287 {
288 	unsigned int cpu = smp_processor_id();
289 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
290 	int err;
291 
292 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
293 		return 0;
294 	smsr->values[slot].curr = value;
295 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
296 	if (err)
297 		return 1;
298 
299 	if (!smsr->registered) {
300 		smsr->urn.on_user_return = kvm_on_user_return;
301 		user_return_notifier_register(&smsr->urn);
302 		smsr->registered = true;
303 	}
304 	return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
307 
308 static void drop_user_return_notifiers(void)
309 {
310 	unsigned int cpu = smp_processor_id();
311 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
312 
313 	if (smsr->registered)
314 		kvm_on_user_return(&smsr->urn);
315 }
316 
317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
318 {
319 	return vcpu->arch.apic_base;
320 }
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
322 
323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
324 {
325 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
326 }
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
328 
329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
330 {
331 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
332 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
333 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
334 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
335 
336 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
337 		return 1;
338 	if (!msr_info->host_initiated) {
339 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
340 			return 1;
341 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
342 			return 1;
343 	}
344 
345 	kvm_lapic_set_base(vcpu, msr_info->data);
346 	return 0;
347 }
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
349 
350 asmlinkage __visible void kvm_spurious_fault(void)
351 {
352 	/* Fault while not rebooting.  We want the trace. */
353 	BUG();
354 }
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
356 
357 #define EXCPT_BENIGN		0
358 #define EXCPT_CONTRIBUTORY	1
359 #define EXCPT_PF		2
360 
361 static int exception_class(int vector)
362 {
363 	switch (vector) {
364 	case PF_VECTOR:
365 		return EXCPT_PF;
366 	case DE_VECTOR:
367 	case TS_VECTOR:
368 	case NP_VECTOR:
369 	case SS_VECTOR:
370 	case GP_VECTOR:
371 		return EXCPT_CONTRIBUTORY;
372 	default:
373 		break;
374 	}
375 	return EXCPT_BENIGN;
376 }
377 
378 #define EXCPT_FAULT		0
379 #define EXCPT_TRAP		1
380 #define EXCPT_ABORT		2
381 #define EXCPT_INTERRUPT		3
382 
383 static int exception_type(int vector)
384 {
385 	unsigned int mask;
386 
387 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
388 		return EXCPT_INTERRUPT;
389 
390 	mask = 1 << vector;
391 
392 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
393 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
394 		return EXCPT_TRAP;
395 
396 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
397 		return EXCPT_ABORT;
398 
399 	/* Reserved exceptions will result in fault */
400 	return EXCPT_FAULT;
401 }
402 
403 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
404 		unsigned nr, bool has_error, u32 error_code,
405 		bool reinject)
406 {
407 	u32 prev_nr;
408 	int class1, class2;
409 
410 	kvm_make_request(KVM_REQ_EVENT, vcpu);
411 
412 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
413 	queue:
414 		if (has_error && !is_protmode(vcpu))
415 			has_error = false;
416 		if (reinject) {
417 			/*
418 			 * On vmentry, vcpu->arch.exception.pending is only
419 			 * true if an event injection was blocked by
420 			 * nested_run_pending.  In that case, however,
421 			 * vcpu_enter_guest requests an immediate exit,
422 			 * and the guest shouldn't proceed far enough to
423 			 * need reinjection.
424 			 */
425 			WARN_ON_ONCE(vcpu->arch.exception.pending);
426 			vcpu->arch.exception.injected = true;
427 		} else {
428 			vcpu->arch.exception.pending = true;
429 			vcpu->arch.exception.injected = false;
430 		}
431 		vcpu->arch.exception.has_error_code = has_error;
432 		vcpu->arch.exception.nr = nr;
433 		vcpu->arch.exception.error_code = error_code;
434 		return;
435 	}
436 
437 	/* to check exception */
438 	prev_nr = vcpu->arch.exception.nr;
439 	if (prev_nr == DF_VECTOR) {
440 		/* triple fault -> shutdown */
441 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
442 		return;
443 	}
444 	class1 = exception_class(prev_nr);
445 	class2 = exception_class(nr);
446 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
447 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
448 		/*
449 		 * Generate double fault per SDM Table 5-5.  Set
450 		 * exception.pending = true so that the double fault
451 		 * can trigger a nested vmexit.
452 		 */
453 		vcpu->arch.exception.pending = true;
454 		vcpu->arch.exception.injected = false;
455 		vcpu->arch.exception.has_error_code = true;
456 		vcpu->arch.exception.nr = DF_VECTOR;
457 		vcpu->arch.exception.error_code = 0;
458 	} else
459 		/* replace previous exception with a new one in a hope
460 		   that instruction re-execution will regenerate lost
461 		   exception */
462 		goto queue;
463 }
464 
465 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
466 {
467 	kvm_multiple_exception(vcpu, nr, false, 0, false);
468 }
469 EXPORT_SYMBOL_GPL(kvm_queue_exception);
470 
471 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
472 {
473 	kvm_multiple_exception(vcpu, nr, false, 0, true);
474 }
475 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
476 
477 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
478 {
479 	if (err)
480 		kvm_inject_gp(vcpu, 0);
481 	else
482 		return kvm_skip_emulated_instruction(vcpu);
483 
484 	return 1;
485 }
486 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
487 
488 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
489 {
490 	++vcpu->stat.pf_guest;
491 	vcpu->arch.exception.nested_apf =
492 		is_guest_mode(vcpu) && fault->async_page_fault;
493 	if (vcpu->arch.exception.nested_apf)
494 		vcpu->arch.apf.nested_apf_token = fault->address;
495 	else
496 		vcpu->arch.cr2 = fault->address;
497 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
498 }
499 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
500 
501 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
502 {
503 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
504 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
505 	else
506 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
507 
508 	return fault->nested_page_fault;
509 }
510 
511 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
512 {
513 	atomic_inc(&vcpu->arch.nmi_queued);
514 	kvm_make_request(KVM_REQ_NMI, vcpu);
515 }
516 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
517 
518 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
519 {
520 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
521 }
522 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
523 
524 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
525 {
526 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
527 }
528 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
529 
530 /*
531  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
532  * a #GP and return false.
533  */
534 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
535 {
536 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
537 		return true;
538 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
539 	return false;
540 }
541 EXPORT_SYMBOL_GPL(kvm_require_cpl);
542 
543 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
544 {
545 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
546 		return true;
547 
548 	kvm_queue_exception(vcpu, UD_VECTOR);
549 	return false;
550 }
551 EXPORT_SYMBOL_GPL(kvm_require_dr);
552 
553 /*
554  * This function will be used to read from the physical memory of the currently
555  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
556  * can read from guest physical or from the guest's guest physical memory.
557  */
558 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
559 			    gfn_t ngfn, void *data, int offset, int len,
560 			    u32 access)
561 {
562 	struct x86_exception exception;
563 	gfn_t real_gfn;
564 	gpa_t ngpa;
565 
566 	ngpa     = gfn_to_gpa(ngfn);
567 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
568 	if (real_gfn == UNMAPPED_GVA)
569 		return -EFAULT;
570 
571 	real_gfn = gpa_to_gfn(real_gfn);
572 
573 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
574 }
575 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
576 
577 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
578 			       void *data, int offset, int len, u32 access)
579 {
580 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
581 				       data, offset, len, access);
582 }
583 
584 /*
585  * Load the pae pdptrs.  Return true is they are all valid.
586  */
587 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
588 {
589 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
590 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
591 	int i;
592 	int ret;
593 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
594 
595 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
596 				      offset * sizeof(u64), sizeof(pdpte),
597 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
598 	if (ret < 0) {
599 		ret = 0;
600 		goto out;
601 	}
602 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
603 		if ((pdpte[i] & PT_PRESENT_MASK) &&
604 		    (pdpte[i] &
605 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
606 			ret = 0;
607 			goto out;
608 		}
609 	}
610 	ret = 1;
611 
612 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
613 	__set_bit(VCPU_EXREG_PDPTR,
614 		  (unsigned long *)&vcpu->arch.regs_avail);
615 	__set_bit(VCPU_EXREG_PDPTR,
616 		  (unsigned long *)&vcpu->arch.regs_dirty);
617 out:
618 
619 	return ret;
620 }
621 EXPORT_SYMBOL_GPL(load_pdptrs);
622 
623 bool pdptrs_changed(struct kvm_vcpu *vcpu)
624 {
625 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
626 	bool changed = true;
627 	int offset;
628 	gfn_t gfn;
629 	int r;
630 
631 	if (is_long_mode(vcpu) || !is_pae(vcpu))
632 		return false;
633 
634 	if (!test_bit(VCPU_EXREG_PDPTR,
635 		      (unsigned long *)&vcpu->arch.regs_avail))
636 		return true;
637 
638 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
639 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
640 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
641 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
642 	if (r < 0)
643 		goto out;
644 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
645 out:
646 
647 	return changed;
648 }
649 EXPORT_SYMBOL_GPL(pdptrs_changed);
650 
651 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
652 {
653 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
654 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
655 
656 	cr0 |= X86_CR0_ET;
657 
658 #ifdef CONFIG_X86_64
659 	if (cr0 & 0xffffffff00000000UL)
660 		return 1;
661 #endif
662 
663 	cr0 &= ~CR0_RESERVED_BITS;
664 
665 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
666 		return 1;
667 
668 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
669 		return 1;
670 
671 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
672 #ifdef CONFIG_X86_64
673 		if ((vcpu->arch.efer & EFER_LME)) {
674 			int cs_db, cs_l;
675 
676 			if (!is_pae(vcpu))
677 				return 1;
678 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
679 			if (cs_l)
680 				return 1;
681 		} else
682 #endif
683 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
684 						 kvm_read_cr3(vcpu)))
685 			return 1;
686 	}
687 
688 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
689 		return 1;
690 
691 	kvm_x86_ops->set_cr0(vcpu, cr0);
692 
693 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
694 		kvm_clear_async_pf_completion_queue(vcpu);
695 		kvm_async_pf_hash_reset(vcpu);
696 	}
697 
698 	if ((cr0 ^ old_cr0) & update_bits)
699 		kvm_mmu_reset_context(vcpu);
700 
701 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
702 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
703 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
704 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
705 
706 	return 0;
707 }
708 EXPORT_SYMBOL_GPL(kvm_set_cr0);
709 
710 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
711 {
712 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
713 }
714 EXPORT_SYMBOL_GPL(kvm_lmsw);
715 
716 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
717 {
718 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
719 			!vcpu->guest_xcr0_loaded) {
720 		/* kvm_set_xcr() also depends on this */
721 		if (vcpu->arch.xcr0 != host_xcr0)
722 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
723 		vcpu->guest_xcr0_loaded = 1;
724 	}
725 }
726 
727 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
728 {
729 	if (vcpu->guest_xcr0_loaded) {
730 		if (vcpu->arch.xcr0 != host_xcr0)
731 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
732 		vcpu->guest_xcr0_loaded = 0;
733 	}
734 }
735 
736 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
737 {
738 	u64 xcr0 = xcr;
739 	u64 old_xcr0 = vcpu->arch.xcr0;
740 	u64 valid_bits;
741 
742 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
743 	if (index != XCR_XFEATURE_ENABLED_MASK)
744 		return 1;
745 	if (!(xcr0 & XFEATURE_MASK_FP))
746 		return 1;
747 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
748 		return 1;
749 
750 	/*
751 	 * Do not allow the guest to set bits that we do not support
752 	 * saving.  However, xcr0 bit 0 is always set, even if the
753 	 * emulated CPU does not support XSAVE (see fx_init).
754 	 */
755 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
756 	if (xcr0 & ~valid_bits)
757 		return 1;
758 
759 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
760 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
761 		return 1;
762 
763 	if (xcr0 & XFEATURE_MASK_AVX512) {
764 		if (!(xcr0 & XFEATURE_MASK_YMM))
765 			return 1;
766 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
767 			return 1;
768 	}
769 	vcpu->arch.xcr0 = xcr0;
770 
771 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
772 		kvm_update_cpuid(vcpu);
773 	return 0;
774 }
775 
776 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
777 {
778 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
779 	    __kvm_set_xcr(vcpu, index, xcr)) {
780 		kvm_inject_gp(vcpu, 0);
781 		return 1;
782 	}
783 	return 0;
784 }
785 EXPORT_SYMBOL_GPL(kvm_set_xcr);
786 
787 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
788 {
789 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
790 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
791 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
792 
793 	if (cr4 & CR4_RESERVED_BITS)
794 		return 1;
795 
796 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
797 		return 1;
798 
799 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
800 		return 1;
801 
802 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
803 		return 1;
804 
805 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
806 		return 1;
807 
808 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
809 		return 1;
810 
811 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
812 		return 1;
813 
814 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
815 		return 1;
816 
817 	if (is_long_mode(vcpu)) {
818 		if (!(cr4 & X86_CR4_PAE))
819 			return 1;
820 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
821 		   && ((cr4 ^ old_cr4) & pdptr_bits)
822 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
823 				   kvm_read_cr3(vcpu)))
824 		return 1;
825 
826 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
827 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
828 			return 1;
829 
830 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
831 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
832 			return 1;
833 	}
834 
835 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
836 		return 1;
837 
838 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
839 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
840 		kvm_mmu_reset_context(vcpu);
841 
842 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
843 		kvm_update_cpuid(vcpu);
844 
845 	return 0;
846 }
847 EXPORT_SYMBOL_GPL(kvm_set_cr4);
848 
849 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
850 {
851 #ifdef CONFIG_X86_64
852 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
853 
854 	if (pcid_enabled)
855 		cr3 &= ~CR3_PCID_INVD;
856 #endif
857 
858 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
859 		kvm_mmu_sync_roots(vcpu);
860 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
861 		return 0;
862 	}
863 
864 	if (is_long_mode(vcpu) &&
865 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
866 		return 1;
867 	else if (is_pae(vcpu) && is_paging(vcpu) &&
868 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
869 		return 1;
870 
871 	vcpu->arch.cr3 = cr3;
872 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
873 	kvm_mmu_new_cr3(vcpu);
874 	return 0;
875 }
876 EXPORT_SYMBOL_GPL(kvm_set_cr3);
877 
878 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
879 {
880 	if (cr8 & CR8_RESERVED_BITS)
881 		return 1;
882 	if (lapic_in_kernel(vcpu))
883 		kvm_lapic_set_tpr(vcpu, cr8);
884 	else
885 		vcpu->arch.cr8 = cr8;
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(kvm_set_cr8);
889 
890 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
891 {
892 	if (lapic_in_kernel(vcpu))
893 		return kvm_lapic_get_cr8(vcpu);
894 	else
895 		return vcpu->arch.cr8;
896 }
897 EXPORT_SYMBOL_GPL(kvm_get_cr8);
898 
899 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
900 {
901 	int i;
902 
903 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
904 		for (i = 0; i < KVM_NR_DB_REGS; i++)
905 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
906 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
907 	}
908 }
909 
910 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
911 {
912 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
913 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
914 }
915 
916 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
917 {
918 	unsigned long dr7;
919 
920 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
921 		dr7 = vcpu->arch.guest_debug_dr7;
922 	else
923 		dr7 = vcpu->arch.dr7;
924 	kvm_x86_ops->set_dr7(vcpu, dr7);
925 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
926 	if (dr7 & DR7_BP_EN_MASK)
927 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
928 }
929 
930 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
931 {
932 	u64 fixed = DR6_FIXED_1;
933 
934 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
935 		fixed |= DR6_RTM;
936 	return fixed;
937 }
938 
939 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
940 {
941 	switch (dr) {
942 	case 0 ... 3:
943 		vcpu->arch.db[dr] = val;
944 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
945 			vcpu->arch.eff_db[dr] = val;
946 		break;
947 	case 4:
948 		/* fall through */
949 	case 6:
950 		if (val & 0xffffffff00000000ULL)
951 			return -1; /* #GP */
952 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
953 		kvm_update_dr6(vcpu);
954 		break;
955 	case 5:
956 		/* fall through */
957 	default: /* 7 */
958 		if (val & 0xffffffff00000000ULL)
959 			return -1; /* #GP */
960 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
961 		kvm_update_dr7(vcpu);
962 		break;
963 	}
964 
965 	return 0;
966 }
967 
968 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
969 {
970 	if (__kvm_set_dr(vcpu, dr, val)) {
971 		kvm_inject_gp(vcpu, 0);
972 		return 1;
973 	}
974 	return 0;
975 }
976 EXPORT_SYMBOL_GPL(kvm_set_dr);
977 
978 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
979 {
980 	switch (dr) {
981 	case 0 ... 3:
982 		*val = vcpu->arch.db[dr];
983 		break;
984 	case 4:
985 		/* fall through */
986 	case 6:
987 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
988 			*val = vcpu->arch.dr6;
989 		else
990 			*val = kvm_x86_ops->get_dr6(vcpu);
991 		break;
992 	case 5:
993 		/* fall through */
994 	default: /* 7 */
995 		*val = vcpu->arch.dr7;
996 		break;
997 	}
998 	return 0;
999 }
1000 EXPORT_SYMBOL_GPL(kvm_get_dr);
1001 
1002 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1003 {
1004 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1005 	u64 data;
1006 	int err;
1007 
1008 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1009 	if (err)
1010 		return err;
1011 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1012 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1013 	return err;
1014 }
1015 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1016 
1017 /*
1018  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1019  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1020  *
1021  * This list is modified at module load time to reflect the
1022  * capabilities of the host cpu. This capabilities test skips MSRs that are
1023  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1024  * may depend on host virtualization features rather than host cpu features.
1025  */
1026 
1027 static u32 msrs_to_save[] = {
1028 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1029 	MSR_STAR,
1030 #ifdef CONFIG_X86_64
1031 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1032 #endif
1033 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1034 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1035 	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1036 };
1037 
1038 static unsigned num_msrs_to_save;
1039 
1040 static u32 emulated_msrs[] = {
1041 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1042 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1043 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1044 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1045 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1046 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1047 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1048 	HV_X64_MSR_RESET,
1049 	HV_X64_MSR_VP_INDEX,
1050 	HV_X64_MSR_VP_RUNTIME,
1051 	HV_X64_MSR_SCONTROL,
1052 	HV_X64_MSR_STIMER0_CONFIG,
1053 	HV_X64_MSR_VP_ASSIST_PAGE,
1054 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1055 	HV_X64_MSR_TSC_EMULATION_STATUS,
1056 
1057 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1058 	MSR_KVM_PV_EOI_EN,
1059 
1060 	MSR_IA32_TSC_ADJUST,
1061 	MSR_IA32_TSCDEADLINE,
1062 	MSR_IA32_MISC_ENABLE,
1063 	MSR_IA32_MCG_STATUS,
1064 	MSR_IA32_MCG_CTL,
1065 	MSR_IA32_MCG_EXT_CTL,
1066 	MSR_IA32_SMBASE,
1067 	MSR_SMI_COUNT,
1068 	MSR_PLATFORM_INFO,
1069 	MSR_MISC_FEATURES_ENABLES,
1070 	MSR_AMD64_VIRT_SPEC_CTRL,
1071 };
1072 
1073 static unsigned num_emulated_msrs;
1074 
1075 /*
1076  * List of msr numbers which are used to expose MSR-based features that
1077  * can be used by a hypervisor to validate requested CPU features.
1078  */
1079 static u32 msr_based_features[] = {
1080 	MSR_IA32_VMX_BASIC,
1081 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1082 	MSR_IA32_VMX_PINBASED_CTLS,
1083 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1084 	MSR_IA32_VMX_PROCBASED_CTLS,
1085 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1086 	MSR_IA32_VMX_EXIT_CTLS,
1087 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1088 	MSR_IA32_VMX_ENTRY_CTLS,
1089 	MSR_IA32_VMX_MISC,
1090 	MSR_IA32_VMX_CR0_FIXED0,
1091 	MSR_IA32_VMX_CR0_FIXED1,
1092 	MSR_IA32_VMX_CR4_FIXED0,
1093 	MSR_IA32_VMX_CR4_FIXED1,
1094 	MSR_IA32_VMX_VMCS_ENUM,
1095 	MSR_IA32_VMX_PROCBASED_CTLS2,
1096 	MSR_IA32_VMX_EPT_VPID_CAP,
1097 	MSR_IA32_VMX_VMFUNC,
1098 
1099 	MSR_F10H_DECFG,
1100 	MSR_IA32_UCODE_REV,
1101 	MSR_IA32_ARCH_CAPABILITIES,
1102 };
1103 
1104 static unsigned int num_msr_based_features;
1105 
1106 u64 kvm_get_arch_capabilities(void)
1107 {
1108 	u64 data;
1109 
1110 	rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1111 
1112 	/*
1113 	 * If we're doing cache flushes (either "always" or "cond")
1114 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1115 	 * If an outer hypervisor is doing the cache flush for us
1116 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1117 	 * capability to the guest too, and if EPT is disabled we're not
1118 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1119 	 * require a nested hypervisor to do a flush of its own.
1120 	 */
1121 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1122 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1123 
1124 	return data;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1127 
1128 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1129 {
1130 	switch (msr->index) {
1131 	case MSR_IA32_ARCH_CAPABILITIES:
1132 		msr->data = kvm_get_arch_capabilities();
1133 		break;
1134 	case MSR_IA32_UCODE_REV:
1135 		rdmsrl_safe(msr->index, &msr->data);
1136 		break;
1137 	default:
1138 		if (kvm_x86_ops->get_msr_feature(msr))
1139 			return 1;
1140 	}
1141 	return 0;
1142 }
1143 
1144 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1145 {
1146 	struct kvm_msr_entry msr;
1147 	int r;
1148 
1149 	msr.index = index;
1150 	r = kvm_get_msr_feature(&msr);
1151 	if (r)
1152 		return r;
1153 
1154 	*data = msr.data;
1155 
1156 	return 0;
1157 }
1158 
1159 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1160 {
1161 	if (efer & efer_reserved_bits)
1162 		return false;
1163 
1164 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1165 			return false;
1166 
1167 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1168 			return false;
1169 
1170 	return true;
1171 }
1172 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1173 
1174 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1175 {
1176 	u64 old_efer = vcpu->arch.efer;
1177 
1178 	if (!kvm_valid_efer(vcpu, efer))
1179 		return 1;
1180 
1181 	if (is_paging(vcpu)
1182 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1183 		return 1;
1184 
1185 	efer &= ~EFER_LMA;
1186 	efer |= vcpu->arch.efer & EFER_LMA;
1187 
1188 	kvm_x86_ops->set_efer(vcpu, efer);
1189 
1190 	/* Update reserved bits */
1191 	if ((efer ^ old_efer) & EFER_NX)
1192 		kvm_mmu_reset_context(vcpu);
1193 
1194 	return 0;
1195 }
1196 
1197 void kvm_enable_efer_bits(u64 mask)
1198 {
1199        efer_reserved_bits &= ~mask;
1200 }
1201 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1202 
1203 /*
1204  * Writes msr value into into the appropriate "register".
1205  * Returns 0 on success, non-0 otherwise.
1206  * Assumes vcpu_load() was already called.
1207  */
1208 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1209 {
1210 	switch (msr->index) {
1211 	case MSR_FS_BASE:
1212 	case MSR_GS_BASE:
1213 	case MSR_KERNEL_GS_BASE:
1214 	case MSR_CSTAR:
1215 	case MSR_LSTAR:
1216 		if (is_noncanonical_address(msr->data, vcpu))
1217 			return 1;
1218 		break;
1219 	case MSR_IA32_SYSENTER_EIP:
1220 	case MSR_IA32_SYSENTER_ESP:
1221 		/*
1222 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1223 		 * non-canonical address is written on Intel but not on
1224 		 * AMD (which ignores the top 32-bits, because it does
1225 		 * not implement 64-bit SYSENTER).
1226 		 *
1227 		 * 64-bit code should hence be able to write a non-canonical
1228 		 * value on AMD.  Making the address canonical ensures that
1229 		 * vmentry does not fail on Intel after writing a non-canonical
1230 		 * value, and that something deterministic happens if the guest
1231 		 * invokes 64-bit SYSENTER.
1232 		 */
1233 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1234 	}
1235 	return kvm_x86_ops->set_msr(vcpu, msr);
1236 }
1237 EXPORT_SYMBOL_GPL(kvm_set_msr);
1238 
1239 /*
1240  * Adapt set_msr() to msr_io()'s calling convention
1241  */
1242 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1243 {
1244 	struct msr_data msr;
1245 	int r;
1246 
1247 	msr.index = index;
1248 	msr.host_initiated = true;
1249 	r = kvm_get_msr(vcpu, &msr);
1250 	if (r)
1251 		return r;
1252 
1253 	*data = msr.data;
1254 	return 0;
1255 }
1256 
1257 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1258 {
1259 	struct msr_data msr;
1260 
1261 	msr.data = *data;
1262 	msr.index = index;
1263 	msr.host_initiated = true;
1264 	return kvm_set_msr(vcpu, &msr);
1265 }
1266 
1267 #ifdef CONFIG_X86_64
1268 struct pvclock_gtod_data {
1269 	seqcount_t	seq;
1270 
1271 	struct { /* extract of a clocksource struct */
1272 		int vclock_mode;
1273 		u64	cycle_last;
1274 		u64	mask;
1275 		u32	mult;
1276 		u32	shift;
1277 	} clock;
1278 
1279 	u64		boot_ns;
1280 	u64		nsec_base;
1281 	u64		wall_time_sec;
1282 };
1283 
1284 static struct pvclock_gtod_data pvclock_gtod_data;
1285 
1286 static void update_pvclock_gtod(struct timekeeper *tk)
1287 {
1288 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1289 	u64 boot_ns;
1290 
1291 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1292 
1293 	write_seqcount_begin(&vdata->seq);
1294 
1295 	/* copy pvclock gtod data */
1296 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1297 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1298 	vdata->clock.mask		= tk->tkr_mono.mask;
1299 	vdata->clock.mult		= tk->tkr_mono.mult;
1300 	vdata->clock.shift		= tk->tkr_mono.shift;
1301 
1302 	vdata->boot_ns			= boot_ns;
1303 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1304 
1305 	vdata->wall_time_sec            = tk->xtime_sec;
1306 
1307 	write_seqcount_end(&vdata->seq);
1308 }
1309 #endif
1310 
1311 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1312 {
1313 	/*
1314 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1315 	 * vcpu_enter_guest.  This function is only called from
1316 	 * the physical CPU that is running vcpu.
1317 	 */
1318 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1319 }
1320 
1321 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1322 {
1323 	int version;
1324 	int r;
1325 	struct pvclock_wall_clock wc;
1326 	struct timespec64 boot;
1327 
1328 	if (!wall_clock)
1329 		return;
1330 
1331 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1332 	if (r)
1333 		return;
1334 
1335 	if (version & 1)
1336 		++version;  /* first time write, random junk */
1337 
1338 	++version;
1339 
1340 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1341 		return;
1342 
1343 	/*
1344 	 * The guest calculates current wall clock time by adding
1345 	 * system time (updated by kvm_guest_time_update below) to the
1346 	 * wall clock specified here.  guest system time equals host
1347 	 * system time for us, thus we must fill in host boot time here.
1348 	 */
1349 	getboottime64(&boot);
1350 
1351 	if (kvm->arch.kvmclock_offset) {
1352 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1353 		boot = timespec64_sub(boot, ts);
1354 	}
1355 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1356 	wc.nsec = boot.tv_nsec;
1357 	wc.version = version;
1358 
1359 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1360 
1361 	version++;
1362 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1363 }
1364 
1365 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1366 {
1367 	do_shl32_div32(dividend, divisor);
1368 	return dividend;
1369 }
1370 
1371 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1372 			       s8 *pshift, u32 *pmultiplier)
1373 {
1374 	uint64_t scaled64;
1375 	int32_t  shift = 0;
1376 	uint64_t tps64;
1377 	uint32_t tps32;
1378 
1379 	tps64 = base_hz;
1380 	scaled64 = scaled_hz;
1381 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1382 		tps64 >>= 1;
1383 		shift--;
1384 	}
1385 
1386 	tps32 = (uint32_t)tps64;
1387 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1388 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1389 			scaled64 >>= 1;
1390 		else
1391 			tps32 <<= 1;
1392 		shift++;
1393 	}
1394 
1395 	*pshift = shift;
1396 	*pmultiplier = div_frac(scaled64, tps32);
1397 
1398 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1399 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1400 }
1401 
1402 #ifdef CONFIG_X86_64
1403 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1404 #endif
1405 
1406 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1407 static unsigned long max_tsc_khz;
1408 
1409 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1410 {
1411 	u64 v = (u64)khz * (1000000 + ppm);
1412 	do_div(v, 1000000);
1413 	return v;
1414 }
1415 
1416 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1417 {
1418 	u64 ratio;
1419 
1420 	/* Guest TSC same frequency as host TSC? */
1421 	if (!scale) {
1422 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1423 		return 0;
1424 	}
1425 
1426 	/* TSC scaling supported? */
1427 	if (!kvm_has_tsc_control) {
1428 		if (user_tsc_khz > tsc_khz) {
1429 			vcpu->arch.tsc_catchup = 1;
1430 			vcpu->arch.tsc_always_catchup = 1;
1431 			return 0;
1432 		} else {
1433 			WARN(1, "user requested TSC rate below hardware speed\n");
1434 			return -1;
1435 		}
1436 	}
1437 
1438 	/* TSC scaling required  - calculate ratio */
1439 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1440 				user_tsc_khz, tsc_khz);
1441 
1442 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1443 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1444 			  user_tsc_khz);
1445 		return -1;
1446 	}
1447 
1448 	vcpu->arch.tsc_scaling_ratio = ratio;
1449 	return 0;
1450 }
1451 
1452 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1453 {
1454 	u32 thresh_lo, thresh_hi;
1455 	int use_scaling = 0;
1456 
1457 	/* tsc_khz can be zero if TSC calibration fails */
1458 	if (user_tsc_khz == 0) {
1459 		/* set tsc_scaling_ratio to a safe value */
1460 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1461 		return -1;
1462 	}
1463 
1464 	/* Compute a scale to convert nanoseconds in TSC cycles */
1465 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1466 			   &vcpu->arch.virtual_tsc_shift,
1467 			   &vcpu->arch.virtual_tsc_mult);
1468 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1469 
1470 	/*
1471 	 * Compute the variation in TSC rate which is acceptable
1472 	 * within the range of tolerance and decide if the
1473 	 * rate being applied is within that bounds of the hardware
1474 	 * rate.  If so, no scaling or compensation need be done.
1475 	 */
1476 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1477 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1478 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1479 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1480 		use_scaling = 1;
1481 	}
1482 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1483 }
1484 
1485 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1486 {
1487 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1488 				      vcpu->arch.virtual_tsc_mult,
1489 				      vcpu->arch.virtual_tsc_shift);
1490 	tsc += vcpu->arch.this_tsc_write;
1491 	return tsc;
1492 }
1493 
1494 static inline int gtod_is_based_on_tsc(int mode)
1495 {
1496 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1497 }
1498 
1499 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1500 {
1501 #ifdef CONFIG_X86_64
1502 	bool vcpus_matched;
1503 	struct kvm_arch *ka = &vcpu->kvm->arch;
1504 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1505 
1506 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1507 			 atomic_read(&vcpu->kvm->online_vcpus));
1508 
1509 	/*
1510 	 * Once the masterclock is enabled, always perform request in
1511 	 * order to update it.
1512 	 *
1513 	 * In order to enable masterclock, the host clocksource must be TSC
1514 	 * and the vcpus need to have matched TSCs.  When that happens,
1515 	 * perform request to enable masterclock.
1516 	 */
1517 	if (ka->use_master_clock ||
1518 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1519 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1520 
1521 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1522 			    atomic_read(&vcpu->kvm->online_vcpus),
1523 		            ka->use_master_clock, gtod->clock.vclock_mode);
1524 #endif
1525 }
1526 
1527 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1528 {
1529 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1530 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1531 }
1532 
1533 /*
1534  * Multiply tsc by a fixed point number represented by ratio.
1535  *
1536  * The most significant 64-N bits (mult) of ratio represent the
1537  * integral part of the fixed point number; the remaining N bits
1538  * (frac) represent the fractional part, ie. ratio represents a fixed
1539  * point number (mult + frac * 2^(-N)).
1540  *
1541  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1542  */
1543 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1544 {
1545 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1546 }
1547 
1548 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1549 {
1550 	u64 _tsc = tsc;
1551 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1552 
1553 	if (ratio != kvm_default_tsc_scaling_ratio)
1554 		_tsc = __scale_tsc(ratio, tsc);
1555 
1556 	return _tsc;
1557 }
1558 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1559 
1560 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1561 {
1562 	u64 tsc;
1563 
1564 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1565 
1566 	return target_tsc - tsc;
1567 }
1568 
1569 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1570 {
1571 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1572 
1573 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1574 }
1575 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1576 
1577 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1578 {
1579 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1580 	vcpu->arch.tsc_offset = offset;
1581 }
1582 
1583 static inline bool kvm_check_tsc_unstable(void)
1584 {
1585 #ifdef CONFIG_X86_64
1586 	/*
1587 	 * TSC is marked unstable when we're running on Hyper-V,
1588 	 * 'TSC page' clocksource is good.
1589 	 */
1590 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1591 		return false;
1592 #endif
1593 	return check_tsc_unstable();
1594 }
1595 
1596 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1597 {
1598 	struct kvm *kvm = vcpu->kvm;
1599 	u64 offset, ns, elapsed;
1600 	unsigned long flags;
1601 	bool matched;
1602 	bool already_matched;
1603 	u64 data = msr->data;
1604 	bool synchronizing = false;
1605 
1606 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1607 	offset = kvm_compute_tsc_offset(vcpu, data);
1608 	ns = ktime_get_boot_ns();
1609 	elapsed = ns - kvm->arch.last_tsc_nsec;
1610 
1611 	if (vcpu->arch.virtual_tsc_khz) {
1612 		if (data == 0 && msr->host_initiated) {
1613 			/*
1614 			 * detection of vcpu initialization -- need to sync
1615 			 * with other vCPUs. This particularly helps to keep
1616 			 * kvm_clock stable after CPU hotplug
1617 			 */
1618 			synchronizing = true;
1619 		} else {
1620 			u64 tsc_exp = kvm->arch.last_tsc_write +
1621 						nsec_to_cycles(vcpu, elapsed);
1622 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1623 			/*
1624 			 * Special case: TSC write with a small delta (1 second)
1625 			 * of virtual cycle time against real time is
1626 			 * interpreted as an attempt to synchronize the CPU.
1627 			 */
1628 			synchronizing = data < tsc_exp + tsc_hz &&
1629 					data + tsc_hz > tsc_exp;
1630 		}
1631 	}
1632 
1633 	/*
1634 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1635 	 * TSC, we add elapsed time in this computation.  We could let the
1636 	 * compensation code attempt to catch up if we fall behind, but
1637 	 * it's better to try to match offsets from the beginning.
1638          */
1639 	if (synchronizing &&
1640 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1641 		if (!kvm_check_tsc_unstable()) {
1642 			offset = kvm->arch.cur_tsc_offset;
1643 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1644 		} else {
1645 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1646 			data += delta;
1647 			offset = kvm_compute_tsc_offset(vcpu, data);
1648 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1649 		}
1650 		matched = true;
1651 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1652 	} else {
1653 		/*
1654 		 * We split periods of matched TSC writes into generations.
1655 		 * For each generation, we track the original measured
1656 		 * nanosecond time, offset, and write, so if TSCs are in
1657 		 * sync, we can match exact offset, and if not, we can match
1658 		 * exact software computation in compute_guest_tsc()
1659 		 *
1660 		 * These values are tracked in kvm->arch.cur_xxx variables.
1661 		 */
1662 		kvm->arch.cur_tsc_generation++;
1663 		kvm->arch.cur_tsc_nsec = ns;
1664 		kvm->arch.cur_tsc_write = data;
1665 		kvm->arch.cur_tsc_offset = offset;
1666 		matched = false;
1667 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1668 			 kvm->arch.cur_tsc_generation, data);
1669 	}
1670 
1671 	/*
1672 	 * We also track th most recent recorded KHZ, write and time to
1673 	 * allow the matching interval to be extended at each write.
1674 	 */
1675 	kvm->arch.last_tsc_nsec = ns;
1676 	kvm->arch.last_tsc_write = data;
1677 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1678 
1679 	vcpu->arch.last_guest_tsc = data;
1680 
1681 	/* Keep track of which generation this VCPU has synchronized to */
1682 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1683 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1684 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1685 
1686 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1687 		update_ia32_tsc_adjust_msr(vcpu, offset);
1688 
1689 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1690 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1691 
1692 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1693 	if (!matched) {
1694 		kvm->arch.nr_vcpus_matched_tsc = 0;
1695 	} else if (!already_matched) {
1696 		kvm->arch.nr_vcpus_matched_tsc++;
1697 	}
1698 
1699 	kvm_track_tsc_matching(vcpu);
1700 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1701 }
1702 
1703 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1704 
1705 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1706 					   s64 adjustment)
1707 {
1708 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1709 }
1710 
1711 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1712 {
1713 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1714 		WARN_ON(adjustment < 0);
1715 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1716 	adjust_tsc_offset_guest(vcpu, adjustment);
1717 }
1718 
1719 #ifdef CONFIG_X86_64
1720 
1721 static u64 read_tsc(void)
1722 {
1723 	u64 ret = (u64)rdtsc_ordered();
1724 	u64 last = pvclock_gtod_data.clock.cycle_last;
1725 
1726 	if (likely(ret >= last))
1727 		return ret;
1728 
1729 	/*
1730 	 * GCC likes to generate cmov here, but this branch is extremely
1731 	 * predictable (it's just a function of time and the likely is
1732 	 * very likely) and there's a data dependence, so force GCC
1733 	 * to generate a branch instead.  I don't barrier() because
1734 	 * we don't actually need a barrier, and if this function
1735 	 * ever gets inlined it will generate worse code.
1736 	 */
1737 	asm volatile ("");
1738 	return last;
1739 }
1740 
1741 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1742 {
1743 	long v;
1744 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1745 	u64 tsc_pg_val;
1746 
1747 	switch (gtod->clock.vclock_mode) {
1748 	case VCLOCK_HVCLOCK:
1749 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1750 						  tsc_timestamp);
1751 		if (tsc_pg_val != U64_MAX) {
1752 			/* TSC page valid */
1753 			*mode = VCLOCK_HVCLOCK;
1754 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1755 				gtod->clock.mask;
1756 		} else {
1757 			/* TSC page invalid */
1758 			*mode = VCLOCK_NONE;
1759 		}
1760 		break;
1761 	case VCLOCK_TSC:
1762 		*mode = VCLOCK_TSC;
1763 		*tsc_timestamp = read_tsc();
1764 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1765 			gtod->clock.mask;
1766 		break;
1767 	default:
1768 		*mode = VCLOCK_NONE;
1769 	}
1770 
1771 	if (*mode == VCLOCK_NONE)
1772 		*tsc_timestamp = v = 0;
1773 
1774 	return v * gtod->clock.mult;
1775 }
1776 
1777 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1778 {
1779 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1780 	unsigned long seq;
1781 	int mode;
1782 	u64 ns;
1783 
1784 	do {
1785 		seq = read_seqcount_begin(&gtod->seq);
1786 		ns = gtod->nsec_base;
1787 		ns += vgettsc(tsc_timestamp, &mode);
1788 		ns >>= gtod->clock.shift;
1789 		ns += gtod->boot_ns;
1790 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1791 	*t = ns;
1792 
1793 	return mode;
1794 }
1795 
1796 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1797 {
1798 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1799 	unsigned long seq;
1800 	int mode;
1801 	u64 ns;
1802 
1803 	do {
1804 		seq = read_seqcount_begin(&gtod->seq);
1805 		ts->tv_sec = gtod->wall_time_sec;
1806 		ns = gtod->nsec_base;
1807 		ns += vgettsc(tsc_timestamp, &mode);
1808 		ns >>= gtod->clock.shift;
1809 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1810 
1811 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1812 	ts->tv_nsec = ns;
1813 
1814 	return mode;
1815 }
1816 
1817 /* returns true if host is using TSC based clocksource */
1818 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1819 {
1820 	/* checked again under seqlock below */
1821 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1822 		return false;
1823 
1824 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1825 						      tsc_timestamp));
1826 }
1827 
1828 /* returns true if host is using TSC based clocksource */
1829 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1830 					   u64 *tsc_timestamp)
1831 {
1832 	/* checked again under seqlock below */
1833 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1834 		return false;
1835 
1836 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1837 }
1838 #endif
1839 
1840 /*
1841  *
1842  * Assuming a stable TSC across physical CPUS, and a stable TSC
1843  * across virtual CPUs, the following condition is possible.
1844  * Each numbered line represents an event visible to both
1845  * CPUs at the next numbered event.
1846  *
1847  * "timespecX" represents host monotonic time. "tscX" represents
1848  * RDTSC value.
1849  *
1850  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1851  *
1852  * 1.  read timespec0,tsc0
1853  * 2.					| timespec1 = timespec0 + N
1854  * 					| tsc1 = tsc0 + M
1855  * 3. transition to guest		| transition to guest
1856  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1857  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1858  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1859  *
1860  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1861  *
1862  * 	- ret0 < ret1
1863  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1864  *		...
1865  *	- 0 < N - M => M < N
1866  *
1867  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1868  * always the case (the difference between two distinct xtime instances
1869  * might be smaller then the difference between corresponding TSC reads,
1870  * when updating guest vcpus pvclock areas).
1871  *
1872  * To avoid that problem, do not allow visibility of distinct
1873  * system_timestamp/tsc_timestamp values simultaneously: use a master
1874  * copy of host monotonic time values. Update that master copy
1875  * in lockstep.
1876  *
1877  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1878  *
1879  */
1880 
1881 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1882 {
1883 #ifdef CONFIG_X86_64
1884 	struct kvm_arch *ka = &kvm->arch;
1885 	int vclock_mode;
1886 	bool host_tsc_clocksource, vcpus_matched;
1887 
1888 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1889 			atomic_read(&kvm->online_vcpus));
1890 
1891 	/*
1892 	 * If the host uses TSC clock, then passthrough TSC as stable
1893 	 * to the guest.
1894 	 */
1895 	host_tsc_clocksource = kvm_get_time_and_clockread(
1896 					&ka->master_kernel_ns,
1897 					&ka->master_cycle_now);
1898 
1899 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1900 				&& !ka->backwards_tsc_observed
1901 				&& !ka->boot_vcpu_runs_old_kvmclock;
1902 
1903 	if (ka->use_master_clock)
1904 		atomic_set(&kvm_guest_has_master_clock, 1);
1905 
1906 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1907 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1908 					vcpus_matched);
1909 #endif
1910 }
1911 
1912 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1913 {
1914 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1915 }
1916 
1917 static void kvm_gen_update_masterclock(struct kvm *kvm)
1918 {
1919 #ifdef CONFIG_X86_64
1920 	int i;
1921 	struct kvm_vcpu *vcpu;
1922 	struct kvm_arch *ka = &kvm->arch;
1923 
1924 	spin_lock(&ka->pvclock_gtod_sync_lock);
1925 	kvm_make_mclock_inprogress_request(kvm);
1926 	/* no guest entries from this point */
1927 	pvclock_update_vm_gtod_copy(kvm);
1928 
1929 	kvm_for_each_vcpu(i, vcpu, kvm)
1930 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1931 
1932 	/* guest entries allowed */
1933 	kvm_for_each_vcpu(i, vcpu, kvm)
1934 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1935 
1936 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1937 #endif
1938 }
1939 
1940 u64 get_kvmclock_ns(struct kvm *kvm)
1941 {
1942 	struct kvm_arch *ka = &kvm->arch;
1943 	struct pvclock_vcpu_time_info hv_clock;
1944 	u64 ret;
1945 
1946 	spin_lock(&ka->pvclock_gtod_sync_lock);
1947 	if (!ka->use_master_clock) {
1948 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1949 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1950 	}
1951 
1952 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1953 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1954 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1955 
1956 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
1957 	get_cpu();
1958 
1959 	if (__this_cpu_read(cpu_tsc_khz)) {
1960 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1961 				   &hv_clock.tsc_shift,
1962 				   &hv_clock.tsc_to_system_mul);
1963 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1964 	} else
1965 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1966 
1967 	put_cpu();
1968 
1969 	return ret;
1970 }
1971 
1972 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1973 {
1974 	struct kvm_vcpu_arch *vcpu = &v->arch;
1975 	struct pvclock_vcpu_time_info guest_hv_clock;
1976 
1977 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1978 		&guest_hv_clock, sizeof(guest_hv_clock))))
1979 		return;
1980 
1981 	/* This VCPU is paused, but it's legal for a guest to read another
1982 	 * VCPU's kvmclock, so we really have to follow the specification where
1983 	 * it says that version is odd if data is being modified, and even after
1984 	 * it is consistent.
1985 	 *
1986 	 * Version field updates must be kept separate.  This is because
1987 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1988 	 * writes within a string instruction are weakly ordered.  So there
1989 	 * are three writes overall.
1990 	 *
1991 	 * As a small optimization, only write the version field in the first
1992 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1993 	 * version field is the first in the struct.
1994 	 */
1995 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1996 
1997 	if (guest_hv_clock.version & 1)
1998 		++guest_hv_clock.version;  /* first time write, random junk */
1999 
2000 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2001 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2002 				&vcpu->hv_clock,
2003 				sizeof(vcpu->hv_clock.version));
2004 
2005 	smp_wmb();
2006 
2007 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2008 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2009 
2010 	if (vcpu->pvclock_set_guest_stopped_request) {
2011 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2012 		vcpu->pvclock_set_guest_stopped_request = false;
2013 	}
2014 
2015 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2016 
2017 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2018 				&vcpu->hv_clock,
2019 				sizeof(vcpu->hv_clock));
2020 
2021 	smp_wmb();
2022 
2023 	vcpu->hv_clock.version++;
2024 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2025 				&vcpu->hv_clock,
2026 				sizeof(vcpu->hv_clock.version));
2027 }
2028 
2029 static int kvm_guest_time_update(struct kvm_vcpu *v)
2030 {
2031 	unsigned long flags, tgt_tsc_khz;
2032 	struct kvm_vcpu_arch *vcpu = &v->arch;
2033 	struct kvm_arch *ka = &v->kvm->arch;
2034 	s64 kernel_ns;
2035 	u64 tsc_timestamp, host_tsc;
2036 	u8 pvclock_flags;
2037 	bool use_master_clock;
2038 
2039 	kernel_ns = 0;
2040 	host_tsc = 0;
2041 
2042 	/*
2043 	 * If the host uses TSC clock, then passthrough TSC as stable
2044 	 * to the guest.
2045 	 */
2046 	spin_lock(&ka->pvclock_gtod_sync_lock);
2047 	use_master_clock = ka->use_master_clock;
2048 	if (use_master_clock) {
2049 		host_tsc = ka->master_cycle_now;
2050 		kernel_ns = ka->master_kernel_ns;
2051 	}
2052 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2053 
2054 	/* Keep irq disabled to prevent changes to the clock */
2055 	local_irq_save(flags);
2056 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2057 	if (unlikely(tgt_tsc_khz == 0)) {
2058 		local_irq_restore(flags);
2059 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2060 		return 1;
2061 	}
2062 	if (!use_master_clock) {
2063 		host_tsc = rdtsc();
2064 		kernel_ns = ktime_get_boot_ns();
2065 	}
2066 
2067 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2068 
2069 	/*
2070 	 * We may have to catch up the TSC to match elapsed wall clock
2071 	 * time for two reasons, even if kvmclock is used.
2072 	 *   1) CPU could have been running below the maximum TSC rate
2073 	 *   2) Broken TSC compensation resets the base at each VCPU
2074 	 *      entry to avoid unknown leaps of TSC even when running
2075 	 *      again on the same CPU.  This may cause apparent elapsed
2076 	 *      time to disappear, and the guest to stand still or run
2077 	 *	very slowly.
2078 	 */
2079 	if (vcpu->tsc_catchup) {
2080 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2081 		if (tsc > tsc_timestamp) {
2082 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2083 			tsc_timestamp = tsc;
2084 		}
2085 	}
2086 
2087 	local_irq_restore(flags);
2088 
2089 	/* With all the info we got, fill in the values */
2090 
2091 	if (kvm_has_tsc_control)
2092 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2093 
2094 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2095 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2096 				   &vcpu->hv_clock.tsc_shift,
2097 				   &vcpu->hv_clock.tsc_to_system_mul);
2098 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2099 	}
2100 
2101 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2102 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2103 	vcpu->last_guest_tsc = tsc_timestamp;
2104 
2105 	/* If the host uses TSC clocksource, then it is stable */
2106 	pvclock_flags = 0;
2107 	if (use_master_clock)
2108 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2109 
2110 	vcpu->hv_clock.flags = pvclock_flags;
2111 
2112 	if (vcpu->pv_time_enabled)
2113 		kvm_setup_pvclock_page(v);
2114 	if (v == kvm_get_vcpu(v->kvm, 0))
2115 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2116 	return 0;
2117 }
2118 
2119 /*
2120  * kvmclock updates which are isolated to a given vcpu, such as
2121  * vcpu->cpu migration, should not allow system_timestamp from
2122  * the rest of the vcpus to remain static. Otherwise ntp frequency
2123  * correction applies to one vcpu's system_timestamp but not
2124  * the others.
2125  *
2126  * So in those cases, request a kvmclock update for all vcpus.
2127  * We need to rate-limit these requests though, as they can
2128  * considerably slow guests that have a large number of vcpus.
2129  * The time for a remote vcpu to update its kvmclock is bound
2130  * by the delay we use to rate-limit the updates.
2131  */
2132 
2133 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2134 
2135 static void kvmclock_update_fn(struct work_struct *work)
2136 {
2137 	int i;
2138 	struct delayed_work *dwork = to_delayed_work(work);
2139 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2140 					   kvmclock_update_work);
2141 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2142 	struct kvm_vcpu *vcpu;
2143 
2144 	kvm_for_each_vcpu(i, vcpu, kvm) {
2145 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2146 		kvm_vcpu_kick(vcpu);
2147 	}
2148 }
2149 
2150 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2151 {
2152 	struct kvm *kvm = v->kvm;
2153 
2154 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2155 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2156 					KVMCLOCK_UPDATE_DELAY);
2157 }
2158 
2159 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2160 
2161 static void kvmclock_sync_fn(struct work_struct *work)
2162 {
2163 	struct delayed_work *dwork = to_delayed_work(work);
2164 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2165 					   kvmclock_sync_work);
2166 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2167 
2168 	if (!kvmclock_periodic_sync)
2169 		return;
2170 
2171 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2172 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2173 					KVMCLOCK_SYNC_PERIOD);
2174 }
2175 
2176 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2177 {
2178 	u64 mcg_cap = vcpu->arch.mcg_cap;
2179 	unsigned bank_num = mcg_cap & 0xff;
2180 	u32 msr = msr_info->index;
2181 	u64 data = msr_info->data;
2182 
2183 	switch (msr) {
2184 	case MSR_IA32_MCG_STATUS:
2185 		vcpu->arch.mcg_status = data;
2186 		break;
2187 	case MSR_IA32_MCG_CTL:
2188 		if (!(mcg_cap & MCG_CTL_P))
2189 			return 1;
2190 		if (data != 0 && data != ~(u64)0)
2191 			return -1;
2192 		vcpu->arch.mcg_ctl = data;
2193 		break;
2194 	default:
2195 		if (msr >= MSR_IA32_MC0_CTL &&
2196 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2197 			u32 offset = msr - MSR_IA32_MC0_CTL;
2198 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2199 			 * some Linux kernels though clear bit 10 in bank 4 to
2200 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2201 			 * this to avoid an uncatched #GP in the guest
2202 			 */
2203 			if ((offset & 0x3) == 0 &&
2204 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2205 				return -1;
2206 			if (!msr_info->host_initiated &&
2207 				(offset & 0x3) == 1 && data != 0)
2208 				return -1;
2209 			vcpu->arch.mce_banks[offset] = data;
2210 			break;
2211 		}
2212 		return 1;
2213 	}
2214 	return 0;
2215 }
2216 
2217 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2218 {
2219 	struct kvm *kvm = vcpu->kvm;
2220 	int lm = is_long_mode(vcpu);
2221 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2222 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2223 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2224 		: kvm->arch.xen_hvm_config.blob_size_32;
2225 	u32 page_num = data & ~PAGE_MASK;
2226 	u64 page_addr = data & PAGE_MASK;
2227 	u8 *page;
2228 	int r;
2229 
2230 	r = -E2BIG;
2231 	if (page_num >= blob_size)
2232 		goto out;
2233 	r = -ENOMEM;
2234 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2235 	if (IS_ERR(page)) {
2236 		r = PTR_ERR(page);
2237 		goto out;
2238 	}
2239 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2240 		goto out_free;
2241 	r = 0;
2242 out_free:
2243 	kfree(page);
2244 out:
2245 	return r;
2246 }
2247 
2248 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2249 {
2250 	gpa_t gpa = data & ~0x3f;
2251 
2252 	/* Bits 3:5 are reserved, Should be zero */
2253 	if (data & 0x38)
2254 		return 1;
2255 
2256 	vcpu->arch.apf.msr_val = data;
2257 
2258 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2259 		kvm_clear_async_pf_completion_queue(vcpu);
2260 		kvm_async_pf_hash_reset(vcpu);
2261 		return 0;
2262 	}
2263 
2264 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2265 					sizeof(u32)))
2266 		return 1;
2267 
2268 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2269 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2270 	kvm_async_pf_wakeup_all(vcpu);
2271 	return 0;
2272 }
2273 
2274 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2275 {
2276 	vcpu->arch.pv_time_enabled = false;
2277 }
2278 
2279 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2280 {
2281 	++vcpu->stat.tlb_flush;
2282 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2283 }
2284 
2285 static void record_steal_time(struct kvm_vcpu *vcpu)
2286 {
2287 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2288 		return;
2289 
2290 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2291 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2292 		return;
2293 
2294 	/*
2295 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2296 	 * expensive IPIs.
2297 	 */
2298 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2299 		kvm_vcpu_flush_tlb(vcpu, false);
2300 
2301 	if (vcpu->arch.st.steal.version & 1)
2302 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2303 
2304 	vcpu->arch.st.steal.version += 1;
2305 
2306 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2307 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2308 
2309 	smp_wmb();
2310 
2311 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2312 		vcpu->arch.st.last_steal;
2313 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2314 
2315 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2316 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2317 
2318 	smp_wmb();
2319 
2320 	vcpu->arch.st.steal.version += 1;
2321 
2322 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2323 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2324 }
2325 
2326 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2327 {
2328 	bool pr = false;
2329 	u32 msr = msr_info->index;
2330 	u64 data = msr_info->data;
2331 
2332 	switch (msr) {
2333 	case MSR_AMD64_NB_CFG:
2334 	case MSR_IA32_UCODE_WRITE:
2335 	case MSR_VM_HSAVE_PA:
2336 	case MSR_AMD64_PATCH_LOADER:
2337 	case MSR_AMD64_BU_CFG2:
2338 	case MSR_AMD64_DC_CFG:
2339 		break;
2340 
2341 	case MSR_IA32_UCODE_REV:
2342 		if (msr_info->host_initiated)
2343 			vcpu->arch.microcode_version = data;
2344 		break;
2345 	case MSR_EFER:
2346 		return set_efer(vcpu, data);
2347 	case MSR_K7_HWCR:
2348 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2349 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2350 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2351 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2352 		if (data != 0) {
2353 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2354 				    data);
2355 			return 1;
2356 		}
2357 		break;
2358 	case MSR_FAM10H_MMIO_CONF_BASE:
2359 		if (data != 0) {
2360 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2361 				    "0x%llx\n", data);
2362 			return 1;
2363 		}
2364 		break;
2365 	case MSR_IA32_DEBUGCTLMSR:
2366 		if (!data) {
2367 			/* We support the non-activated case already */
2368 			break;
2369 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2370 			/* Values other than LBR and BTF are vendor-specific,
2371 			   thus reserved and should throw a #GP */
2372 			return 1;
2373 		}
2374 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2375 			    __func__, data);
2376 		break;
2377 	case 0x200 ... 0x2ff:
2378 		return kvm_mtrr_set_msr(vcpu, msr, data);
2379 	case MSR_IA32_APICBASE:
2380 		return kvm_set_apic_base(vcpu, msr_info);
2381 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2382 		return kvm_x2apic_msr_write(vcpu, msr, data);
2383 	case MSR_IA32_TSCDEADLINE:
2384 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2385 		break;
2386 	case MSR_IA32_TSC_ADJUST:
2387 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2388 			if (!msr_info->host_initiated) {
2389 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2390 				adjust_tsc_offset_guest(vcpu, adj);
2391 			}
2392 			vcpu->arch.ia32_tsc_adjust_msr = data;
2393 		}
2394 		break;
2395 	case MSR_IA32_MISC_ENABLE:
2396 		vcpu->arch.ia32_misc_enable_msr = data;
2397 		break;
2398 	case MSR_IA32_SMBASE:
2399 		if (!msr_info->host_initiated)
2400 			return 1;
2401 		vcpu->arch.smbase = data;
2402 		break;
2403 	case MSR_IA32_TSC:
2404 		kvm_write_tsc(vcpu, msr_info);
2405 		break;
2406 	case MSR_SMI_COUNT:
2407 		if (!msr_info->host_initiated)
2408 			return 1;
2409 		vcpu->arch.smi_count = data;
2410 		break;
2411 	case MSR_KVM_WALL_CLOCK_NEW:
2412 	case MSR_KVM_WALL_CLOCK:
2413 		vcpu->kvm->arch.wall_clock = data;
2414 		kvm_write_wall_clock(vcpu->kvm, data);
2415 		break;
2416 	case MSR_KVM_SYSTEM_TIME_NEW:
2417 	case MSR_KVM_SYSTEM_TIME: {
2418 		struct kvm_arch *ka = &vcpu->kvm->arch;
2419 
2420 		kvmclock_reset(vcpu);
2421 
2422 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2423 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2424 
2425 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2426 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2427 
2428 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2429 		}
2430 
2431 		vcpu->arch.time = data;
2432 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2433 
2434 		/* we verify if the enable bit is set... */
2435 		if (!(data & 1))
2436 			break;
2437 
2438 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2439 		     &vcpu->arch.pv_time, data & ~1ULL,
2440 		     sizeof(struct pvclock_vcpu_time_info)))
2441 			vcpu->arch.pv_time_enabled = false;
2442 		else
2443 			vcpu->arch.pv_time_enabled = true;
2444 
2445 		break;
2446 	}
2447 	case MSR_KVM_ASYNC_PF_EN:
2448 		if (kvm_pv_enable_async_pf(vcpu, data))
2449 			return 1;
2450 		break;
2451 	case MSR_KVM_STEAL_TIME:
2452 
2453 		if (unlikely(!sched_info_on()))
2454 			return 1;
2455 
2456 		if (data & KVM_STEAL_RESERVED_MASK)
2457 			return 1;
2458 
2459 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2460 						data & KVM_STEAL_VALID_BITS,
2461 						sizeof(struct kvm_steal_time)))
2462 			return 1;
2463 
2464 		vcpu->arch.st.msr_val = data;
2465 
2466 		if (!(data & KVM_MSR_ENABLED))
2467 			break;
2468 
2469 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2470 
2471 		break;
2472 	case MSR_KVM_PV_EOI_EN:
2473 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2474 			return 1;
2475 		break;
2476 
2477 	case MSR_IA32_MCG_CTL:
2478 	case MSR_IA32_MCG_STATUS:
2479 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2480 		return set_msr_mce(vcpu, msr_info);
2481 
2482 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2483 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2484 		pr = true; /* fall through */
2485 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2486 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2487 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2488 			return kvm_pmu_set_msr(vcpu, msr_info);
2489 
2490 		if (pr || data != 0)
2491 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2492 				    "0x%x data 0x%llx\n", msr, data);
2493 		break;
2494 	case MSR_K7_CLK_CTL:
2495 		/*
2496 		 * Ignore all writes to this no longer documented MSR.
2497 		 * Writes are only relevant for old K7 processors,
2498 		 * all pre-dating SVM, but a recommended workaround from
2499 		 * AMD for these chips. It is possible to specify the
2500 		 * affected processor models on the command line, hence
2501 		 * the need to ignore the workaround.
2502 		 */
2503 		break;
2504 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2505 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2506 	case HV_X64_MSR_CRASH_CTL:
2507 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2508 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2509 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2510 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2511 		return kvm_hv_set_msr_common(vcpu, msr, data,
2512 					     msr_info->host_initiated);
2513 	case MSR_IA32_BBL_CR_CTL3:
2514 		/* Drop writes to this legacy MSR -- see rdmsr
2515 		 * counterpart for further detail.
2516 		 */
2517 		if (report_ignored_msrs)
2518 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2519 				msr, data);
2520 		break;
2521 	case MSR_AMD64_OSVW_ID_LENGTH:
2522 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2523 			return 1;
2524 		vcpu->arch.osvw.length = data;
2525 		break;
2526 	case MSR_AMD64_OSVW_STATUS:
2527 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2528 			return 1;
2529 		vcpu->arch.osvw.status = data;
2530 		break;
2531 	case MSR_PLATFORM_INFO:
2532 		if (!msr_info->host_initiated ||
2533 		    data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2534 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2535 		     cpuid_fault_enabled(vcpu)))
2536 			return 1;
2537 		vcpu->arch.msr_platform_info = data;
2538 		break;
2539 	case MSR_MISC_FEATURES_ENABLES:
2540 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2541 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2542 		     !supports_cpuid_fault(vcpu)))
2543 			return 1;
2544 		vcpu->arch.msr_misc_features_enables = data;
2545 		break;
2546 	default:
2547 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2548 			return xen_hvm_config(vcpu, data);
2549 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2550 			return kvm_pmu_set_msr(vcpu, msr_info);
2551 		if (!ignore_msrs) {
2552 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2553 				    msr, data);
2554 			return 1;
2555 		} else {
2556 			if (report_ignored_msrs)
2557 				vcpu_unimpl(vcpu,
2558 					"ignored wrmsr: 0x%x data 0x%llx\n",
2559 					msr, data);
2560 			break;
2561 		}
2562 	}
2563 	return 0;
2564 }
2565 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2566 
2567 
2568 /*
2569  * Reads an msr value (of 'msr_index') into 'pdata'.
2570  * Returns 0 on success, non-0 otherwise.
2571  * Assumes vcpu_load() was already called.
2572  */
2573 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2574 {
2575 	return kvm_x86_ops->get_msr(vcpu, msr);
2576 }
2577 EXPORT_SYMBOL_GPL(kvm_get_msr);
2578 
2579 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2580 {
2581 	u64 data;
2582 	u64 mcg_cap = vcpu->arch.mcg_cap;
2583 	unsigned bank_num = mcg_cap & 0xff;
2584 
2585 	switch (msr) {
2586 	case MSR_IA32_P5_MC_ADDR:
2587 	case MSR_IA32_P5_MC_TYPE:
2588 		data = 0;
2589 		break;
2590 	case MSR_IA32_MCG_CAP:
2591 		data = vcpu->arch.mcg_cap;
2592 		break;
2593 	case MSR_IA32_MCG_CTL:
2594 		if (!(mcg_cap & MCG_CTL_P))
2595 			return 1;
2596 		data = vcpu->arch.mcg_ctl;
2597 		break;
2598 	case MSR_IA32_MCG_STATUS:
2599 		data = vcpu->arch.mcg_status;
2600 		break;
2601 	default:
2602 		if (msr >= MSR_IA32_MC0_CTL &&
2603 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2604 			u32 offset = msr - MSR_IA32_MC0_CTL;
2605 			data = vcpu->arch.mce_banks[offset];
2606 			break;
2607 		}
2608 		return 1;
2609 	}
2610 	*pdata = data;
2611 	return 0;
2612 }
2613 
2614 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2615 {
2616 	switch (msr_info->index) {
2617 	case MSR_IA32_PLATFORM_ID:
2618 	case MSR_IA32_EBL_CR_POWERON:
2619 	case MSR_IA32_DEBUGCTLMSR:
2620 	case MSR_IA32_LASTBRANCHFROMIP:
2621 	case MSR_IA32_LASTBRANCHTOIP:
2622 	case MSR_IA32_LASTINTFROMIP:
2623 	case MSR_IA32_LASTINTTOIP:
2624 	case MSR_K8_SYSCFG:
2625 	case MSR_K8_TSEG_ADDR:
2626 	case MSR_K8_TSEG_MASK:
2627 	case MSR_K7_HWCR:
2628 	case MSR_VM_HSAVE_PA:
2629 	case MSR_K8_INT_PENDING_MSG:
2630 	case MSR_AMD64_NB_CFG:
2631 	case MSR_FAM10H_MMIO_CONF_BASE:
2632 	case MSR_AMD64_BU_CFG2:
2633 	case MSR_IA32_PERF_CTL:
2634 	case MSR_AMD64_DC_CFG:
2635 		msr_info->data = 0;
2636 		break;
2637 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2638 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2639 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2640 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2641 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2642 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2643 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2644 		msr_info->data = 0;
2645 		break;
2646 	case MSR_IA32_UCODE_REV:
2647 		msr_info->data = vcpu->arch.microcode_version;
2648 		break;
2649 	case MSR_IA32_TSC:
2650 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2651 		break;
2652 	case MSR_MTRRcap:
2653 	case 0x200 ... 0x2ff:
2654 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2655 	case 0xcd: /* fsb frequency */
2656 		msr_info->data = 3;
2657 		break;
2658 		/*
2659 		 * MSR_EBC_FREQUENCY_ID
2660 		 * Conservative value valid for even the basic CPU models.
2661 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2662 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2663 		 * and 266MHz for model 3, or 4. Set Core Clock
2664 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2665 		 * 31:24) even though these are only valid for CPU
2666 		 * models > 2, however guests may end up dividing or
2667 		 * multiplying by zero otherwise.
2668 		 */
2669 	case MSR_EBC_FREQUENCY_ID:
2670 		msr_info->data = 1 << 24;
2671 		break;
2672 	case MSR_IA32_APICBASE:
2673 		msr_info->data = kvm_get_apic_base(vcpu);
2674 		break;
2675 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2676 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2677 		break;
2678 	case MSR_IA32_TSCDEADLINE:
2679 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2680 		break;
2681 	case MSR_IA32_TSC_ADJUST:
2682 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2683 		break;
2684 	case MSR_IA32_MISC_ENABLE:
2685 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2686 		break;
2687 	case MSR_IA32_SMBASE:
2688 		if (!msr_info->host_initiated)
2689 			return 1;
2690 		msr_info->data = vcpu->arch.smbase;
2691 		break;
2692 	case MSR_SMI_COUNT:
2693 		msr_info->data = vcpu->arch.smi_count;
2694 		break;
2695 	case MSR_IA32_PERF_STATUS:
2696 		/* TSC increment by tick */
2697 		msr_info->data = 1000ULL;
2698 		/* CPU multiplier */
2699 		msr_info->data |= (((uint64_t)4ULL) << 40);
2700 		break;
2701 	case MSR_EFER:
2702 		msr_info->data = vcpu->arch.efer;
2703 		break;
2704 	case MSR_KVM_WALL_CLOCK:
2705 	case MSR_KVM_WALL_CLOCK_NEW:
2706 		msr_info->data = vcpu->kvm->arch.wall_clock;
2707 		break;
2708 	case MSR_KVM_SYSTEM_TIME:
2709 	case MSR_KVM_SYSTEM_TIME_NEW:
2710 		msr_info->data = vcpu->arch.time;
2711 		break;
2712 	case MSR_KVM_ASYNC_PF_EN:
2713 		msr_info->data = vcpu->arch.apf.msr_val;
2714 		break;
2715 	case MSR_KVM_STEAL_TIME:
2716 		msr_info->data = vcpu->arch.st.msr_val;
2717 		break;
2718 	case MSR_KVM_PV_EOI_EN:
2719 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2720 		break;
2721 	case MSR_IA32_P5_MC_ADDR:
2722 	case MSR_IA32_P5_MC_TYPE:
2723 	case MSR_IA32_MCG_CAP:
2724 	case MSR_IA32_MCG_CTL:
2725 	case MSR_IA32_MCG_STATUS:
2726 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2727 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2728 	case MSR_K7_CLK_CTL:
2729 		/*
2730 		 * Provide expected ramp-up count for K7. All other
2731 		 * are set to zero, indicating minimum divisors for
2732 		 * every field.
2733 		 *
2734 		 * This prevents guest kernels on AMD host with CPU
2735 		 * type 6, model 8 and higher from exploding due to
2736 		 * the rdmsr failing.
2737 		 */
2738 		msr_info->data = 0x20000000;
2739 		break;
2740 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2741 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2742 	case HV_X64_MSR_CRASH_CTL:
2743 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2744 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2745 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2746 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2747 		return kvm_hv_get_msr_common(vcpu,
2748 					     msr_info->index, &msr_info->data);
2749 		break;
2750 	case MSR_IA32_BBL_CR_CTL3:
2751 		/* This legacy MSR exists but isn't fully documented in current
2752 		 * silicon.  It is however accessed by winxp in very narrow
2753 		 * scenarios where it sets bit #19, itself documented as
2754 		 * a "reserved" bit.  Best effort attempt to source coherent
2755 		 * read data here should the balance of the register be
2756 		 * interpreted by the guest:
2757 		 *
2758 		 * L2 cache control register 3: 64GB range, 256KB size,
2759 		 * enabled, latency 0x1, configured
2760 		 */
2761 		msr_info->data = 0xbe702111;
2762 		break;
2763 	case MSR_AMD64_OSVW_ID_LENGTH:
2764 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2765 			return 1;
2766 		msr_info->data = vcpu->arch.osvw.length;
2767 		break;
2768 	case MSR_AMD64_OSVW_STATUS:
2769 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2770 			return 1;
2771 		msr_info->data = vcpu->arch.osvw.status;
2772 		break;
2773 	case MSR_PLATFORM_INFO:
2774 		msr_info->data = vcpu->arch.msr_platform_info;
2775 		break;
2776 	case MSR_MISC_FEATURES_ENABLES:
2777 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2778 		break;
2779 	default:
2780 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2781 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2782 		if (!ignore_msrs) {
2783 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2784 					       msr_info->index);
2785 			return 1;
2786 		} else {
2787 			if (report_ignored_msrs)
2788 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2789 					msr_info->index);
2790 			msr_info->data = 0;
2791 		}
2792 		break;
2793 	}
2794 	return 0;
2795 }
2796 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2797 
2798 /*
2799  * Read or write a bunch of msrs. All parameters are kernel addresses.
2800  *
2801  * @return number of msrs set successfully.
2802  */
2803 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2804 		    struct kvm_msr_entry *entries,
2805 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2806 				  unsigned index, u64 *data))
2807 {
2808 	int i;
2809 
2810 	for (i = 0; i < msrs->nmsrs; ++i)
2811 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2812 			break;
2813 
2814 	return i;
2815 }
2816 
2817 /*
2818  * Read or write a bunch of msrs. Parameters are user addresses.
2819  *
2820  * @return number of msrs set successfully.
2821  */
2822 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2823 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2824 				unsigned index, u64 *data),
2825 		  int writeback)
2826 {
2827 	struct kvm_msrs msrs;
2828 	struct kvm_msr_entry *entries;
2829 	int r, n;
2830 	unsigned size;
2831 
2832 	r = -EFAULT;
2833 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2834 		goto out;
2835 
2836 	r = -E2BIG;
2837 	if (msrs.nmsrs >= MAX_IO_MSRS)
2838 		goto out;
2839 
2840 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2841 	entries = memdup_user(user_msrs->entries, size);
2842 	if (IS_ERR(entries)) {
2843 		r = PTR_ERR(entries);
2844 		goto out;
2845 	}
2846 
2847 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2848 	if (r < 0)
2849 		goto out_free;
2850 
2851 	r = -EFAULT;
2852 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2853 		goto out_free;
2854 
2855 	r = n;
2856 
2857 out_free:
2858 	kfree(entries);
2859 out:
2860 	return r;
2861 }
2862 
2863 static inline bool kvm_can_mwait_in_guest(void)
2864 {
2865 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
2866 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
2867 		boot_cpu_has(X86_FEATURE_ARAT);
2868 }
2869 
2870 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2871 {
2872 	int r = 0;
2873 
2874 	switch (ext) {
2875 	case KVM_CAP_IRQCHIP:
2876 	case KVM_CAP_HLT:
2877 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2878 	case KVM_CAP_SET_TSS_ADDR:
2879 	case KVM_CAP_EXT_CPUID:
2880 	case KVM_CAP_EXT_EMUL_CPUID:
2881 	case KVM_CAP_CLOCKSOURCE:
2882 	case KVM_CAP_PIT:
2883 	case KVM_CAP_NOP_IO_DELAY:
2884 	case KVM_CAP_MP_STATE:
2885 	case KVM_CAP_SYNC_MMU:
2886 	case KVM_CAP_USER_NMI:
2887 	case KVM_CAP_REINJECT_CONTROL:
2888 	case KVM_CAP_IRQ_INJECT_STATUS:
2889 	case KVM_CAP_IOEVENTFD:
2890 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2891 	case KVM_CAP_PIT2:
2892 	case KVM_CAP_PIT_STATE2:
2893 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2894 	case KVM_CAP_XEN_HVM:
2895 	case KVM_CAP_VCPU_EVENTS:
2896 	case KVM_CAP_HYPERV:
2897 	case KVM_CAP_HYPERV_VAPIC:
2898 	case KVM_CAP_HYPERV_SPIN:
2899 	case KVM_CAP_HYPERV_SYNIC:
2900 	case KVM_CAP_HYPERV_SYNIC2:
2901 	case KVM_CAP_HYPERV_VP_INDEX:
2902 	case KVM_CAP_HYPERV_EVENTFD:
2903 	case KVM_CAP_HYPERV_TLBFLUSH:
2904 	case KVM_CAP_PCI_SEGMENT:
2905 	case KVM_CAP_DEBUGREGS:
2906 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2907 	case KVM_CAP_XSAVE:
2908 	case KVM_CAP_ASYNC_PF:
2909 	case KVM_CAP_GET_TSC_KHZ:
2910 	case KVM_CAP_KVMCLOCK_CTRL:
2911 	case KVM_CAP_READONLY_MEM:
2912 	case KVM_CAP_HYPERV_TIME:
2913 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2914 	case KVM_CAP_TSC_DEADLINE_TIMER:
2915 	case KVM_CAP_ENABLE_CAP_VM:
2916 	case KVM_CAP_DISABLE_QUIRKS:
2917 	case KVM_CAP_SET_BOOT_CPU_ID:
2918  	case KVM_CAP_SPLIT_IRQCHIP:
2919 	case KVM_CAP_IMMEDIATE_EXIT:
2920 	case KVM_CAP_GET_MSR_FEATURES:
2921 		r = 1;
2922 		break;
2923 	case KVM_CAP_SYNC_REGS:
2924 		r = KVM_SYNC_X86_VALID_FIELDS;
2925 		break;
2926 	case KVM_CAP_ADJUST_CLOCK:
2927 		r = KVM_CLOCK_TSC_STABLE;
2928 		break;
2929 	case KVM_CAP_X86_DISABLE_EXITS:
2930 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
2931 		if(kvm_can_mwait_in_guest())
2932 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
2933 		break;
2934 	case KVM_CAP_X86_SMM:
2935 		/* SMBASE is usually relocated above 1M on modern chipsets,
2936 		 * and SMM handlers might indeed rely on 4G segment limits,
2937 		 * so do not report SMM to be available if real mode is
2938 		 * emulated via vm86 mode.  Still, do not go to great lengths
2939 		 * to avoid userspace's usage of the feature, because it is a
2940 		 * fringe case that is not enabled except via specific settings
2941 		 * of the module parameters.
2942 		 */
2943 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2944 		break;
2945 	case KVM_CAP_VAPIC:
2946 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2947 		break;
2948 	case KVM_CAP_NR_VCPUS:
2949 		r = KVM_SOFT_MAX_VCPUS;
2950 		break;
2951 	case KVM_CAP_MAX_VCPUS:
2952 		r = KVM_MAX_VCPUS;
2953 		break;
2954 	case KVM_CAP_NR_MEMSLOTS:
2955 		r = KVM_USER_MEM_SLOTS;
2956 		break;
2957 	case KVM_CAP_PV_MMU:	/* obsolete */
2958 		r = 0;
2959 		break;
2960 	case KVM_CAP_MCE:
2961 		r = KVM_MAX_MCE_BANKS;
2962 		break;
2963 	case KVM_CAP_XCRS:
2964 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2965 		break;
2966 	case KVM_CAP_TSC_CONTROL:
2967 		r = kvm_has_tsc_control;
2968 		break;
2969 	case KVM_CAP_X2APIC_API:
2970 		r = KVM_X2APIC_API_VALID_FLAGS;
2971 		break;
2972 	default:
2973 		break;
2974 	}
2975 	return r;
2976 
2977 }
2978 
2979 long kvm_arch_dev_ioctl(struct file *filp,
2980 			unsigned int ioctl, unsigned long arg)
2981 {
2982 	void __user *argp = (void __user *)arg;
2983 	long r;
2984 
2985 	switch (ioctl) {
2986 	case KVM_GET_MSR_INDEX_LIST: {
2987 		struct kvm_msr_list __user *user_msr_list = argp;
2988 		struct kvm_msr_list msr_list;
2989 		unsigned n;
2990 
2991 		r = -EFAULT;
2992 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2993 			goto out;
2994 		n = msr_list.nmsrs;
2995 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2996 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2997 			goto out;
2998 		r = -E2BIG;
2999 		if (n < msr_list.nmsrs)
3000 			goto out;
3001 		r = -EFAULT;
3002 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3003 				 num_msrs_to_save * sizeof(u32)))
3004 			goto out;
3005 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3006 				 &emulated_msrs,
3007 				 num_emulated_msrs * sizeof(u32)))
3008 			goto out;
3009 		r = 0;
3010 		break;
3011 	}
3012 	case KVM_GET_SUPPORTED_CPUID:
3013 	case KVM_GET_EMULATED_CPUID: {
3014 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3015 		struct kvm_cpuid2 cpuid;
3016 
3017 		r = -EFAULT;
3018 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3019 			goto out;
3020 
3021 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3022 					    ioctl);
3023 		if (r)
3024 			goto out;
3025 
3026 		r = -EFAULT;
3027 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3028 			goto out;
3029 		r = 0;
3030 		break;
3031 	}
3032 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3033 		r = -EFAULT;
3034 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3035 				 sizeof(kvm_mce_cap_supported)))
3036 			goto out;
3037 		r = 0;
3038 		break;
3039 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3040 		struct kvm_msr_list __user *user_msr_list = argp;
3041 		struct kvm_msr_list msr_list;
3042 		unsigned int n;
3043 
3044 		r = -EFAULT;
3045 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3046 			goto out;
3047 		n = msr_list.nmsrs;
3048 		msr_list.nmsrs = num_msr_based_features;
3049 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3050 			goto out;
3051 		r = -E2BIG;
3052 		if (n < msr_list.nmsrs)
3053 			goto out;
3054 		r = -EFAULT;
3055 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3056 				 num_msr_based_features * sizeof(u32)))
3057 			goto out;
3058 		r = 0;
3059 		break;
3060 	}
3061 	case KVM_GET_MSRS:
3062 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3063 		break;
3064 	}
3065 	default:
3066 		r = -EINVAL;
3067 	}
3068 out:
3069 	return r;
3070 }
3071 
3072 static void wbinvd_ipi(void *garbage)
3073 {
3074 	wbinvd();
3075 }
3076 
3077 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3078 {
3079 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3080 }
3081 
3082 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3083 {
3084 	/* Address WBINVD may be executed by guest */
3085 	if (need_emulate_wbinvd(vcpu)) {
3086 		if (kvm_x86_ops->has_wbinvd_exit())
3087 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3088 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3089 			smp_call_function_single(vcpu->cpu,
3090 					wbinvd_ipi, NULL, 1);
3091 	}
3092 
3093 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3094 
3095 	/* Apply any externally detected TSC adjustments (due to suspend) */
3096 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3097 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3098 		vcpu->arch.tsc_offset_adjustment = 0;
3099 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3100 	}
3101 
3102 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3103 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3104 				rdtsc() - vcpu->arch.last_host_tsc;
3105 		if (tsc_delta < 0)
3106 			mark_tsc_unstable("KVM discovered backwards TSC");
3107 
3108 		if (kvm_check_tsc_unstable()) {
3109 			u64 offset = kvm_compute_tsc_offset(vcpu,
3110 						vcpu->arch.last_guest_tsc);
3111 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3112 			vcpu->arch.tsc_catchup = 1;
3113 		}
3114 
3115 		if (kvm_lapic_hv_timer_in_use(vcpu))
3116 			kvm_lapic_restart_hv_timer(vcpu);
3117 
3118 		/*
3119 		 * On a host with synchronized TSC, there is no need to update
3120 		 * kvmclock on vcpu->cpu migration
3121 		 */
3122 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3123 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3124 		if (vcpu->cpu != cpu)
3125 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3126 		vcpu->cpu = cpu;
3127 	}
3128 
3129 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3130 }
3131 
3132 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3133 {
3134 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3135 		return;
3136 
3137 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3138 
3139 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3140 			&vcpu->arch.st.steal.preempted,
3141 			offsetof(struct kvm_steal_time, preempted),
3142 			sizeof(vcpu->arch.st.steal.preempted));
3143 }
3144 
3145 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3146 {
3147 	int idx;
3148 
3149 	if (vcpu->preempted)
3150 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3151 
3152 	/*
3153 	 * Disable page faults because we're in atomic context here.
3154 	 * kvm_write_guest_offset_cached() would call might_fault()
3155 	 * that relies on pagefault_disable() to tell if there's a
3156 	 * bug. NOTE: the write to guest memory may not go through if
3157 	 * during postcopy live migration or if there's heavy guest
3158 	 * paging.
3159 	 */
3160 	pagefault_disable();
3161 	/*
3162 	 * kvm_memslots() will be called by
3163 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3164 	 */
3165 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3166 	kvm_steal_time_set_preempted(vcpu);
3167 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3168 	pagefault_enable();
3169 	kvm_x86_ops->vcpu_put(vcpu);
3170 	vcpu->arch.last_host_tsc = rdtsc();
3171 	/*
3172 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3173 	 * on every vmexit, but if not, we might have a stale dr6 from the
3174 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3175 	 */
3176 	set_debugreg(0, 6);
3177 }
3178 
3179 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3180 				    struct kvm_lapic_state *s)
3181 {
3182 	if (vcpu->arch.apicv_active)
3183 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3184 
3185 	return kvm_apic_get_state(vcpu, s);
3186 }
3187 
3188 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3189 				    struct kvm_lapic_state *s)
3190 {
3191 	int r;
3192 
3193 	r = kvm_apic_set_state(vcpu, s);
3194 	if (r)
3195 		return r;
3196 	update_cr8_intercept(vcpu);
3197 
3198 	return 0;
3199 }
3200 
3201 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3202 {
3203 	return (!lapic_in_kernel(vcpu) ||
3204 		kvm_apic_accept_pic_intr(vcpu));
3205 }
3206 
3207 /*
3208  * if userspace requested an interrupt window, check that the
3209  * interrupt window is open.
3210  *
3211  * No need to exit to userspace if we already have an interrupt queued.
3212  */
3213 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3214 {
3215 	return kvm_arch_interrupt_allowed(vcpu) &&
3216 		!kvm_cpu_has_interrupt(vcpu) &&
3217 		!kvm_event_needs_reinjection(vcpu) &&
3218 		kvm_cpu_accept_dm_intr(vcpu);
3219 }
3220 
3221 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3222 				    struct kvm_interrupt *irq)
3223 {
3224 	if (irq->irq >= KVM_NR_INTERRUPTS)
3225 		return -EINVAL;
3226 
3227 	if (!irqchip_in_kernel(vcpu->kvm)) {
3228 		kvm_queue_interrupt(vcpu, irq->irq, false);
3229 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3230 		return 0;
3231 	}
3232 
3233 	/*
3234 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3235 	 * fail for in-kernel 8259.
3236 	 */
3237 	if (pic_in_kernel(vcpu->kvm))
3238 		return -ENXIO;
3239 
3240 	if (vcpu->arch.pending_external_vector != -1)
3241 		return -EEXIST;
3242 
3243 	vcpu->arch.pending_external_vector = irq->irq;
3244 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3245 	return 0;
3246 }
3247 
3248 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3249 {
3250 	kvm_inject_nmi(vcpu);
3251 
3252 	return 0;
3253 }
3254 
3255 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3256 {
3257 	kvm_make_request(KVM_REQ_SMI, vcpu);
3258 
3259 	return 0;
3260 }
3261 
3262 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3263 					   struct kvm_tpr_access_ctl *tac)
3264 {
3265 	if (tac->flags)
3266 		return -EINVAL;
3267 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3268 	return 0;
3269 }
3270 
3271 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3272 					u64 mcg_cap)
3273 {
3274 	int r;
3275 	unsigned bank_num = mcg_cap & 0xff, bank;
3276 
3277 	r = -EINVAL;
3278 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3279 		goto out;
3280 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3281 		goto out;
3282 	r = 0;
3283 	vcpu->arch.mcg_cap = mcg_cap;
3284 	/* Init IA32_MCG_CTL to all 1s */
3285 	if (mcg_cap & MCG_CTL_P)
3286 		vcpu->arch.mcg_ctl = ~(u64)0;
3287 	/* Init IA32_MCi_CTL to all 1s */
3288 	for (bank = 0; bank < bank_num; bank++)
3289 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3290 
3291 	if (kvm_x86_ops->setup_mce)
3292 		kvm_x86_ops->setup_mce(vcpu);
3293 out:
3294 	return r;
3295 }
3296 
3297 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3298 				      struct kvm_x86_mce *mce)
3299 {
3300 	u64 mcg_cap = vcpu->arch.mcg_cap;
3301 	unsigned bank_num = mcg_cap & 0xff;
3302 	u64 *banks = vcpu->arch.mce_banks;
3303 
3304 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3305 		return -EINVAL;
3306 	/*
3307 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3308 	 * reporting is disabled
3309 	 */
3310 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3311 	    vcpu->arch.mcg_ctl != ~(u64)0)
3312 		return 0;
3313 	banks += 4 * mce->bank;
3314 	/*
3315 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3316 	 * reporting is disabled for the bank
3317 	 */
3318 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3319 		return 0;
3320 	if (mce->status & MCI_STATUS_UC) {
3321 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3322 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3323 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3324 			return 0;
3325 		}
3326 		if (banks[1] & MCI_STATUS_VAL)
3327 			mce->status |= MCI_STATUS_OVER;
3328 		banks[2] = mce->addr;
3329 		banks[3] = mce->misc;
3330 		vcpu->arch.mcg_status = mce->mcg_status;
3331 		banks[1] = mce->status;
3332 		kvm_queue_exception(vcpu, MC_VECTOR);
3333 	} else if (!(banks[1] & MCI_STATUS_VAL)
3334 		   || !(banks[1] & MCI_STATUS_UC)) {
3335 		if (banks[1] & MCI_STATUS_VAL)
3336 			mce->status |= MCI_STATUS_OVER;
3337 		banks[2] = mce->addr;
3338 		banks[3] = mce->misc;
3339 		banks[1] = mce->status;
3340 	} else
3341 		banks[1] |= MCI_STATUS_OVER;
3342 	return 0;
3343 }
3344 
3345 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3346 					       struct kvm_vcpu_events *events)
3347 {
3348 	process_nmi(vcpu);
3349 	/*
3350 	 * FIXME: pass injected and pending separately.  This is only
3351 	 * needed for nested virtualization, whose state cannot be
3352 	 * migrated yet.  For now we can combine them.
3353 	 */
3354 	events->exception.injected =
3355 		(vcpu->arch.exception.pending ||
3356 		 vcpu->arch.exception.injected) &&
3357 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3358 	events->exception.nr = vcpu->arch.exception.nr;
3359 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3360 	events->exception.pad = 0;
3361 	events->exception.error_code = vcpu->arch.exception.error_code;
3362 
3363 	events->interrupt.injected =
3364 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3365 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3366 	events->interrupt.soft = 0;
3367 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3368 
3369 	events->nmi.injected = vcpu->arch.nmi_injected;
3370 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3371 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3372 	events->nmi.pad = 0;
3373 
3374 	events->sipi_vector = 0; /* never valid when reporting to user space */
3375 
3376 	events->smi.smm = is_smm(vcpu);
3377 	events->smi.pending = vcpu->arch.smi_pending;
3378 	events->smi.smm_inside_nmi =
3379 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3380 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3381 
3382 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3383 			 | KVM_VCPUEVENT_VALID_SHADOW
3384 			 | KVM_VCPUEVENT_VALID_SMM);
3385 	memset(&events->reserved, 0, sizeof(events->reserved));
3386 }
3387 
3388 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3389 
3390 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3391 					      struct kvm_vcpu_events *events)
3392 {
3393 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3394 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3395 			      | KVM_VCPUEVENT_VALID_SHADOW
3396 			      | KVM_VCPUEVENT_VALID_SMM))
3397 		return -EINVAL;
3398 
3399 	if (events->exception.injected &&
3400 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3401 	     is_guest_mode(vcpu)))
3402 		return -EINVAL;
3403 
3404 	/* INITs are latched while in SMM */
3405 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3406 	    (events->smi.smm || events->smi.pending) &&
3407 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3408 		return -EINVAL;
3409 
3410 	process_nmi(vcpu);
3411 	vcpu->arch.exception.injected = false;
3412 	vcpu->arch.exception.pending = events->exception.injected;
3413 	vcpu->arch.exception.nr = events->exception.nr;
3414 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3415 	vcpu->arch.exception.error_code = events->exception.error_code;
3416 
3417 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3418 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3419 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3420 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3421 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3422 						  events->interrupt.shadow);
3423 
3424 	vcpu->arch.nmi_injected = events->nmi.injected;
3425 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3426 		vcpu->arch.nmi_pending = events->nmi.pending;
3427 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3428 
3429 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3430 	    lapic_in_kernel(vcpu))
3431 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3432 
3433 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3434 		u32 hflags = vcpu->arch.hflags;
3435 		if (events->smi.smm)
3436 			hflags |= HF_SMM_MASK;
3437 		else
3438 			hflags &= ~HF_SMM_MASK;
3439 		kvm_set_hflags(vcpu, hflags);
3440 
3441 		vcpu->arch.smi_pending = events->smi.pending;
3442 
3443 		if (events->smi.smm) {
3444 			if (events->smi.smm_inside_nmi)
3445 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3446 			else
3447 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3448 			if (lapic_in_kernel(vcpu)) {
3449 				if (events->smi.latched_init)
3450 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3451 				else
3452 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3453 			}
3454 		}
3455 	}
3456 
3457 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3458 
3459 	return 0;
3460 }
3461 
3462 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3463 					     struct kvm_debugregs *dbgregs)
3464 {
3465 	unsigned long val;
3466 
3467 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3468 	kvm_get_dr(vcpu, 6, &val);
3469 	dbgregs->dr6 = val;
3470 	dbgregs->dr7 = vcpu->arch.dr7;
3471 	dbgregs->flags = 0;
3472 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3473 }
3474 
3475 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3476 					    struct kvm_debugregs *dbgregs)
3477 {
3478 	if (dbgregs->flags)
3479 		return -EINVAL;
3480 
3481 	if (dbgregs->dr6 & ~0xffffffffull)
3482 		return -EINVAL;
3483 	if (dbgregs->dr7 & ~0xffffffffull)
3484 		return -EINVAL;
3485 
3486 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3487 	kvm_update_dr0123(vcpu);
3488 	vcpu->arch.dr6 = dbgregs->dr6;
3489 	kvm_update_dr6(vcpu);
3490 	vcpu->arch.dr7 = dbgregs->dr7;
3491 	kvm_update_dr7(vcpu);
3492 
3493 	return 0;
3494 }
3495 
3496 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3497 
3498 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3499 {
3500 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3501 	u64 xstate_bv = xsave->header.xfeatures;
3502 	u64 valid;
3503 
3504 	/*
3505 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3506 	 * leaves 0 and 1 in the loop below.
3507 	 */
3508 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3509 
3510 	/* Set XSTATE_BV */
3511 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3512 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3513 
3514 	/*
3515 	 * Copy each region from the possibly compacted offset to the
3516 	 * non-compacted offset.
3517 	 */
3518 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3519 	while (valid) {
3520 		u64 feature = valid & -valid;
3521 		int index = fls64(feature) - 1;
3522 		void *src = get_xsave_addr(xsave, feature);
3523 
3524 		if (src) {
3525 			u32 size, offset, ecx, edx;
3526 			cpuid_count(XSTATE_CPUID, index,
3527 				    &size, &offset, &ecx, &edx);
3528 			if (feature == XFEATURE_MASK_PKRU)
3529 				memcpy(dest + offset, &vcpu->arch.pkru,
3530 				       sizeof(vcpu->arch.pkru));
3531 			else
3532 				memcpy(dest + offset, src, size);
3533 
3534 		}
3535 
3536 		valid -= feature;
3537 	}
3538 }
3539 
3540 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3541 {
3542 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3543 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3544 	u64 valid;
3545 
3546 	/*
3547 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3548 	 * leaves 0 and 1 in the loop below.
3549 	 */
3550 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3551 
3552 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3553 	xsave->header.xfeatures = xstate_bv;
3554 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3555 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3556 
3557 	/*
3558 	 * Copy each region from the non-compacted offset to the
3559 	 * possibly compacted offset.
3560 	 */
3561 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3562 	while (valid) {
3563 		u64 feature = valid & -valid;
3564 		int index = fls64(feature) - 1;
3565 		void *dest = get_xsave_addr(xsave, feature);
3566 
3567 		if (dest) {
3568 			u32 size, offset, ecx, edx;
3569 			cpuid_count(XSTATE_CPUID, index,
3570 				    &size, &offset, &ecx, &edx);
3571 			if (feature == XFEATURE_MASK_PKRU)
3572 				memcpy(&vcpu->arch.pkru, src + offset,
3573 				       sizeof(vcpu->arch.pkru));
3574 			else
3575 				memcpy(dest, src + offset, size);
3576 		}
3577 
3578 		valid -= feature;
3579 	}
3580 }
3581 
3582 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3583 					 struct kvm_xsave *guest_xsave)
3584 {
3585 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3586 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3587 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3588 	} else {
3589 		memcpy(guest_xsave->region,
3590 			&vcpu->arch.guest_fpu.state.fxsave,
3591 			sizeof(struct fxregs_state));
3592 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3593 			XFEATURE_MASK_FPSSE;
3594 	}
3595 }
3596 
3597 #define XSAVE_MXCSR_OFFSET 24
3598 
3599 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3600 					struct kvm_xsave *guest_xsave)
3601 {
3602 	u64 xstate_bv =
3603 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3604 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3605 
3606 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3607 		/*
3608 		 * Here we allow setting states that are not present in
3609 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3610 		 * with old userspace.
3611 		 */
3612 		if (xstate_bv & ~kvm_supported_xcr0() ||
3613 			mxcsr & ~mxcsr_feature_mask)
3614 			return -EINVAL;
3615 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3616 	} else {
3617 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3618 			mxcsr & ~mxcsr_feature_mask)
3619 			return -EINVAL;
3620 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3621 			guest_xsave->region, sizeof(struct fxregs_state));
3622 	}
3623 	return 0;
3624 }
3625 
3626 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3627 					struct kvm_xcrs *guest_xcrs)
3628 {
3629 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3630 		guest_xcrs->nr_xcrs = 0;
3631 		return;
3632 	}
3633 
3634 	guest_xcrs->nr_xcrs = 1;
3635 	guest_xcrs->flags = 0;
3636 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3637 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3638 }
3639 
3640 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3641 				       struct kvm_xcrs *guest_xcrs)
3642 {
3643 	int i, r = 0;
3644 
3645 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3646 		return -EINVAL;
3647 
3648 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3649 		return -EINVAL;
3650 
3651 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3652 		/* Only support XCR0 currently */
3653 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3654 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3655 				guest_xcrs->xcrs[i].value);
3656 			break;
3657 		}
3658 	if (r)
3659 		r = -EINVAL;
3660 	return r;
3661 }
3662 
3663 /*
3664  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3665  * stopped by the hypervisor.  This function will be called from the host only.
3666  * EINVAL is returned when the host attempts to set the flag for a guest that
3667  * does not support pv clocks.
3668  */
3669 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3670 {
3671 	if (!vcpu->arch.pv_time_enabled)
3672 		return -EINVAL;
3673 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3674 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3675 	return 0;
3676 }
3677 
3678 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3679 				     struct kvm_enable_cap *cap)
3680 {
3681 	if (cap->flags)
3682 		return -EINVAL;
3683 
3684 	switch (cap->cap) {
3685 	case KVM_CAP_HYPERV_SYNIC2:
3686 		if (cap->args[0])
3687 			return -EINVAL;
3688 	case KVM_CAP_HYPERV_SYNIC:
3689 		if (!irqchip_in_kernel(vcpu->kvm))
3690 			return -EINVAL;
3691 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3692 					     KVM_CAP_HYPERV_SYNIC2);
3693 	default:
3694 		return -EINVAL;
3695 	}
3696 }
3697 
3698 long kvm_arch_vcpu_ioctl(struct file *filp,
3699 			 unsigned int ioctl, unsigned long arg)
3700 {
3701 	struct kvm_vcpu *vcpu = filp->private_data;
3702 	void __user *argp = (void __user *)arg;
3703 	int r;
3704 	union {
3705 		struct kvm_lapic_state *lapic;
3706 		struct kvm_xsave *xsave;
3707 		struct kvm_xcrs *xcrs;
3708 		void *buffer;
3709 	} u;
3710 
3711 	vcpu_load(vcpu);
3712 
3713 	u.buffer = NULL;
3714 	switch (ioctl) {
3715 	case KVM_GET_LAPIC: {
3716 		r = -EINVAL;
3717 		if (!lapic_in_kernel(vcpu))
3718 			goto out;
3719 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3720 
3721 		r = -ENOMEM;
3722 		if (!u.lapic)
3723 			goto out;
3724 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3725 		if (r)
3726 			goto out;
3727 		r = -EFAULT;
3728 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3729 			goto out;
3730 		r = 0;
3731 		break;
3732 	}
3733 	case KVM_SET_LAPIC: {
3734 		r = -EINVAL;
3735 		if (!lapic_in_kernel(vcpu))
3736 			goto out;
3737 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3738 		if (IS_ERR(u.lapic)) {
3739 			r = PTR_ERR(u.lapic);
3740 			goto out_nofree;
3741 		}
3742 
3743 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3744 		break;
3745 	}
3746 	case KVM_INTERRUPT: {
3747 		struct kvm_interrupt irq;
3748 
3749 		r = -EFAULT;
3750 		if (copy_from_user(&irq, argp, sizeof irq))
3751 			goto out;
3752 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3753 		break;
3754 	}
3755 	case KVM_NMI: {
3756 		r = kvm_vcpu_ioctl_nmi(vcpu);
3757 		break;
3758 	}
3759 	case KVM_SMI: {
3760 		r = kvm_vcpu_ioctl_smi(vcpu);
3761 		break;
3762 	}
3763 	case KVM_SET_CPUID: {
3764 		struct kvm_cpuid __user *cpuid_arg = argp;
3765 		struct kvm_cpuid cpuid;
3766 
3767 		r = -EFAULT;
3768 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3769 			goto out;
3770 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3771 		break;
3772 	}
3773 	case KVM_SET_CPUID2: {
3774 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3775 		struct kvm_cpuid2 cpuid;
3776 
3777 		r = -EFAULT;
3778 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3779 			goto out;
3780 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3781 					      cpuid_arg->entries);
3782 		break;
3783 	}
3784 	case KVM_GET_CPUID2: {
3785 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3786 		struct kvm_cpuid2 cpuid;
3787 
3788 		r = -EFAULT;
3789 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3790 			goto out;
3791 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3792 					      cpuid_arg->entries);
3793 		if (r)
3794 			goto out;
3795 		r = -EFAULT;
3796 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3797 			goto out;
3798 		r = 0;
3799 		break;
3800 	}
3801 	case KVM_GET_MSRS: {
3802 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3803 		r = msr_io(vcpu, argp, do_get_msr, 1);
3804 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3805 		break;
3806 	}
3807 	case KVM_SET_MSRS: {
3808 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3809 		r = msr_io(vcpu, argp, do_set_msr, 0);
3810 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3811 		break;
3812 	}
3813 	case KVM_TPR_ACCESS_REPORTING: {
3814 		struct kvm_tpr_access_ctl tac;
3815 
3816 		r = -EFAULT;
3817 		if (copy_from_user(&tac, argp, sizeof tac))
3818 			goto out;
3819 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3820 		if (r)
3821 			goto out;
3822 		r = -EFAULT;
3823 		if (copy_to_user(argp, &tac, sizeof tac))
3824 			goto out;
3825 		r = 0;
3826 		break;
3827 	};
3828 	case KVM_SET_VAPIC_ADDR: {
3829 		struct kvm_vapic_addr va;
3830 		int idx;
3831 
3832 		r = -EINVAL;
3833 		if (!lapic_in_kernel(vcpu))
3834 			goto out;
3835 		r = -EFAULT;
3836 		if (copy_from_user(&va, argp, sizeof va))
3837 			goto out;
3838 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3839 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3840 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3841 		break;
3842 	}
3843 	case KVM_X86_SETUP_MCE: {
3844 		u64 mcg_cap;
3845 
3846 		r = -EFAULT;
3847 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3848 			goto out;
3849 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3850 		break;
3851 	}
3852 	case KVM_X86_SET_MCE: {
3853 		struct kvm_x86_mce mce;
3854 
3855 		r = -EFAULT;
3856 		if (copy_from_user(&mce, argp, sizeof mce))
3857 			goto out;
3858 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3859 		break;
3860 	}
3861 	case KVM_GET_VCPU_EVENTS: {
3862 		struct kvm_vcpu_events events;
3863 
3864 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3865 
3866 		r = -EFAULT;
3867 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3868 			break;
3869 		r = 0;
3870 		break;
3871 	}
3872 	case KVM_SET_VCPU_EVENTS: {
3873 		struct kvm_vcpu_events events;
3874 
3875 		r = -EFAULT;
3876 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3877 			break;
3878 
3879 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3880 		break;
3881 	}
3882 	case KVM_GET_DEBUGREGS: {
3883 		struct kvm_debugregs dbgregs;
3884 
3885 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3886 
3887 		r = -EFAULT;
3888 		if (copy_to_user(argp, &dbgregs,
3889 				 sizeof(struct kvm_debugregs)))
3890 			break;
3891 		r = 0;
3892 		break;
3893 	}
3894 	case KVM_SET_DEBUGREGS: {
3895 		struct kvm_debugregs dbgregs;
3896 
3897 		r = -EFAULT;
3898 		if (copy_from_user(&dbgregs, argp,
3899 				   sizeof(struct kvm_debugregs)))
3900 			break;
3901 
3902 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3903 		break;
3904 	}
3905 	case KVM_GET_XSAVE: {
3906 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3907 		r = -ENOMEM;
3908 		if (!u.xsave)
3909 			break;
3910 
3911 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3912 
3913 		r = -EFAULT;
3914 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3915 			break;
3916 		r = 0;
3917 		break;
3918 	}
3919 	case KVM_SET_XSAVE: {
3920 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3921 		if (IS_ERR(u.xsave)) {
3922 			r = PTR_ERR(u.xsave);
3923 			goto out_nofree;
3924 		}
3925 
3926 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3927 		break;
3928 	}
3929 	case KVM_GET_XCRS: {
3930 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3931 		r = -ENOMEM;
3932 		if (!u.xcrs)
3933 			break;
3934 
3935 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3936 
3937 		r = -EFAULT;
3938 		if (copy_to_user(argp, u.xcrs,
3939 				 sizeof(struct kvm_xcrs)))
3940 			break;
3941 		r = 0;
3942 		break;
3943 	}
3944 	case KVM_SET_XCRS: {
3945 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3946 		if (IS_ERR(u.xcrs)) {
3947 			r = PTR_ERR(u.xcrs);
3948 			goto out_nofree;
3949 		}
3950 
3951 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3952 		break;
3953 	}
3954 	case KVM_SET_TSC_KHZ: {
3955 		u32 user_tsc_khz;
3956 
3957 		r = -EINVAL;
3958 		user_tsc_khz = (u32)arg;
3959 
3960 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3961 			goto out;
3962 
3963 		if (user_tsc_khz == 0)
3964 			user_tsc_khz = tsc_khz;
3965 
3966 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3967 			r = 0;
3968 
3969 		goto out;
3970 	}
3971 	case KVM_GET_TSC_KHZ: {
3972 		r = vcpu->arch.virtual_tsc_khz;
3973 		goto out;
3974 	}
3975 	case KVM_KVMCLOCK_CTRL: {
3976 		r = kvm_set_guest_paused(vcpu);
3977 		goto out;
3978 	}
3979 	case KVM_ENABLE_CAP: {
3980 		struct kvm_enable_cap cap;
3981 
3982 		r = -EFAULT;
3983 		if (copy_from_user(&cap, argp, sizeof(cap)))
3984 			goto out;
3985 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3986 		break;
3987 	}
3988 	default:
3989 		r = -EINVAL;
3990 	}
3991 out:
3992 	kfree(u.buffer);
3993 out_nofree:
3994 	vcpu_put(vcpu);
3995 	return r;
3996 }
3997 
3998 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3999 {
4000 	return VM_FAULT_SIGBUS;
4001 }
4002 
4003 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4004 {
4005 	int ret;
4006 
4007 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4008 		return -EINVAL;
4009 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4010 	return ret;
4011 }
4012 
4013 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4014 					      u64 ident_addr)
4015 {
4016 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4017 }
4018 
4019 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4020 					  u32 kvm_nr_mmu_pages)
4021 {
4022 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4023 		return -EINVAL;
4024 
4025 	mutex_lock(&kvm->slots_lock);
4026 
4027 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4028 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4029 
4030 	mutex_unlock(&kvm->slots_lock);
4031 	return 0;
4032 }
4033 
4034 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4035 {
4036 	return kvm->arch.n_max_mmu_pages;
4037 }
4038 
4039 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4040 {
4041 	struct kvm_pic *pic = kvm->arch.vpic;
4042 	int r;
4043 
4044 	r = 0;
4045 	switch (chip->chip_id) {
4046 	case KVM_IRQCHIP_PIC_MASTER:
4047 		memcpy(&chip->chip.pic, &pic->pics[0],
4048 			sizeof(struct kvm_pic_state));
4049 		break;
4050 	case KVM_IRQCHIP_PIC_SLAVE:
4051 		memcpy(&chip->chip.pic, &pic->pics[1],
4052 			sizeof(struct kvm_pic_state));
4053 		break;
4054 	case KVM_IRQCHIP_IOAPIC:
4055 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4056 		break;
4057 	default:
4058 		r = -EINVAL;
4059 		break;
4060 	}
4061 	return r;
4062 }
4063 
4064 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4065 {
4066 	struct kvm_pic *pic = kvm->arch.vpic;
4067 	int r;
4068 
4069 	r = 0;
4070 	switch (chip->chip_id) {
4071 	case KVM_IRQCHIP_PIC_MASTER:
4072 		spin_lock(&pic->lock);
4073 		memcpy(&pic->pics[0], &chip->chip.pic,
4074 			sizeof(struct kvm_pic_state));
4075 		spin_unlock(&pic->lock);
4076 		break;
4077 	case KVM_IRQCHIP_PIC_SLAVE:
4078 		spin_lock(&pic->lock);
4079 		memcpy(&pic->pics[1], &chip->chip.pic,
4080 			sizeof(struct kvm_pic_state));
4081 		spin_unlock(&pic->lock);
4082 		break;
4083 	case KVM_IRQCHIP_IOAPIC:
4084 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4085 		break;
4086 	default:
4087 		r = -EINVAL;
4088 		break;
4089 	}
4090 	kvm_pic_update_irq(pic);
4091 	return r;
4092 }
4093 
4094 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4095 {
4096 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4097 
4098 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4099 
4100 	mutex_lock(&kps->lock);
4101 	memcpy(ps, &kps->channels, sizeof(*ps));
4102 	mutex_unlock(&kps->lock);
4103 	return 0;
4104 }
4105 
4106 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4107 {
4108 	int i;
4109 	struct kvm_pit *pit = kvm->arch.vpit;
4110 
4111 	mutex_lock(&pit->pit_state.lock);
4112 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4113 	for (i = 0; i < 3; i++)
4114 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4115 	mutex_unlock(&pit->pit_state.lock);
4116 	return 0;
4117 }
4118 
4119 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4120 {
4121 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4122 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4123 		sizeof(ps->channels));
4124 	ps->flags = kvm->arch.vpit->pit_state.flags;
4125 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4126 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4127 	return 0;
4128 }
4129 
4130 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4131 {
4132 	int start = 0;
4133 	int i;
4134 	u32 prev_legacy, cur_legacy;
4135 	struct kvm_pit *pit = kvm->arch.vpit;
4136 
4137 	mutex_lock(&pit->pit_state.lock);
4138 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4139 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4140 	if (!prev_legacy && cur_legacy)
4141 		start = 1;
4142 	memcpy(&pit->pit_state.channels, &ps->channels,
4143 	       sizeof(pit->pit_state.channels));
4144 	pit->pit_state.flags = ps->flags;
4145 	for (i = 0; i < 3; i++)
4146 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4147 				   start && i == 0);
4148 	mutex_unlock(&pit->pit_state.lock);
4149 	return 0;
4150 }
4151 
4152 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4153 				 struct kvm_reinject_control *control)
4154 {
4155 	struct kvm_pit *pit = kvm->arch.vpit;
4156 
4157 	if (!pit)
4158 		return -ENXIO;
4159 
4160 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4161 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4162 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4163 	 */
4164 	mutex_lock(&pit->pit_state.lock);
4165 	kvm_pit_set_reinject(pit, control->pit_reinject);
4166 	mutex_unlock(&pit->pit_state.lock);
4167 
4168 	return 0;
4169 }
4170 
4171 /**
4172  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4173  * @kvm: kvm instance
4174  * @log: slot id and address to which we copy the log
4175  *
4176  * Steps 1-4 below provide general overview of dirty page logging. See
4177  * kvm_get_dirty_log_protect() function description for additional details.
4178  *
4179  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4180  * always flush the TLB (step 4) even if previous step failed  and the dirty
4181  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4182  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4183  * writes will be marked dirty for next log read.
4184  *
4185  *   1. Take a snapshot of the bit and clear it if needed.
4186  *   2. Write protect the corresponding page.
4187  *   3. Copy the snapshot to the userspace.
4188  *   4. Flush TLB's if needed.
4189  */
4190 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4191 {
4192 	bool is_dirty = false;
4193 	int r;
4194 
4195 	mutex_lock(&kvm->slots_lock);
4196 
4197 	/*
4198 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4199 	 */
4200 	if (kvm_x86_ops->flush_log_dirty)
4201 		kvm_x86_ops->flush_log_dirty(kvm);
4202 
4203 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4204 
4205 	/*
4206 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4207 	 * kvm_mmu_slot_remove_write_access().
4208 	 */
4209 	lockdep_assert_held(&kvm->slots_lock);
4210 	if (is_dirty)
4211 		kvm_flush_remote_tlbs(kvm);
4212 
4213 	mutex_unlock(&kvm->slots_lock);
4214 	return r;
4215 }
4216 
4217 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4218 			bool line_status)
4219 {
4220 	if (!irqchip_in_kernel(kvm))
4221 		return -ENXIO;
4222 
4223 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4224 					irq_event->irq, irq_event->level,
4225 					line_status);
4226 	return 0;
4227 }
4228 
4229 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4230 				   struct kvm_enable_cap *cap)
4231 {
4232 	int r;
4233 
4234 	if (cap->flags)
4235 		return -EINVAL;
4236 
4237 	switch (cap->cap) {
4238 	case KVM_CAP_DISABLE_QUIRKS:
4239 		kvm->arch.disabled_quirks = cap->args[0];
4240 		r = 0;
4241 		break;
4242 	case KVM_CAP_SPLIT_IRQCHIP: {
4243 		mutex_lock(&kvm->lock);
4244 		r = -EINVAL;
4245 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4246 			goto split_irqchip_unlock;
4247 		r = -EEXIST;
4248 		if (irqchip_in_kernel(kvm))
4249 			goto split_irqchip_unlock;
4250 		if (kvm->created_vcpus)
4251 			goto split_irqchip_unlock;
4252 		r = kvm_setup_empty_irq_routing(kvm);
4253 		if (r)
4254 			goto split_irqchip_unlock;
4255 		/* Pairs with irqchip_in_kernel. */
4256 		smp_wmb();
4257 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4258 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4259 		r = 0;
4260 split_irqchip_unlock:
4261 		mutex_unlock(&kvm->lock);
4262 		break;
4263 	}
4264 	case KVM_CAP_X2APIC_API:
4265 		r = -EINVAL;
4266 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4267 			break;
4268 
4269 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4270 			kvm->arch.x2apic_format = true;
4271 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4272 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4273 
4274 		r = 0;
4275 		break;
4276 	case KVM_CAP_X86_DISABLE_EXITS:
4277 		r = -EINVAL;
4278 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4279 			break;
4280 
4281 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4282 			kvm_can_mwait_in_guest())
4283 			kvm->arch.mwait_in_guest = true;
4284 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4285 			kvm->arch.hlt_in_guest = true;
4286 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4287 			kvm->arch.pause_in_guest = true;
4288 		r = 0;
4289 		break;
4290 	default:
4291 		r = -EINVAL;
4292 		break;
4293 	}
4294 	return r;
4295 }
4296 
4297 long kvm_arch_vm_ioctl(struct file *filp,
4298 		       unsigned int ioctl, unsigned long arg)
4299 {
4300 	struct kvm *kvm = filp->private_data;
4301 	void __user *argp = (void __user *)arg;
4302 	int r = -ENOTTY;
4303 	/*
4304 	 * This union makes it completely explicit to gcc-3.x
4305 	 * that these two variables' stack usage should be
4306 	 * combined, not added together.
4307 	 */
4308 	union {
4309 		struct kvm_pit_state ps;
4310 		struct kvm_pit_state2 ps2;
4311 		struct kvm_pit_config pit_config;
4312 	} u;
4313 
4314 	switch (ioctl) {
4315 	case KVM_SET_TSS_ADDR:
4316 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4317 		break;
4318 	case KVM_SET_IDENTITY_MAP_ADDR: {
4319 		u64 ident_addr;
4320 
4321 		mutex_lock(&kvm->lock);
4322 		r = -EINVAL;
4323 		if (kvm->created_vcpus)
4324 			goto set_identity_unlock;
4325 		r = -EFAULT;
4326 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4327 			goto set_identity_unlock;
4328 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4329 set_identity_unlock:
4330 		mutex_unlock(&kvm->lock);
4331 		break;
4332 	}
4333 	case KVM_SET_NR_MMU_PAGES:
4334 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4335 		break;
4336 	case KVM_GET_NR_MMU_PAGES:
4337 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4338 		break;
4339 	case KVM_CREATE_IRQCHIP: {
4340 		mutex_lock(&kvm->lock);
4341 
4342 		r = -EEXIST;
4343 		if (irqchip_in_kernel(kvm))
4344 			goto create_irqchip_unlock;
4345 
4346 		r = -EINVAL;
4347 		if (kvm->created_vcpus)
4348 			goto create_irqchip_unlock;
4349 
4350 		r = kvm_pic_init(kvm);
4351 		if (r)
4352 			goto create_irqchip_unlock;
4353 
4354 		r = kvm_ioapic_init(kvm);
4355 		if (r) {
4356 			kvm_pic_destroy(kvm);
4357 			goto create_irqchip_unlock;
4358 		}
4359 
4360 		r = kvm_setup_default_irq_routing(kvm);
4361 		if (r) {
4362 			kvm_ioapic_destroy(kvm);
4363 			kvm_pic_destroy(kvm);
4364 			goto create_irqchip_unlock;
4365 		}
4366 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4367 		smp_wmb();
4368 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4369 	create_irqchip_unlock:
4370 		mutex_unlock(&kvm->lock);
4371 		break;
4372 	}
4373 	case KVM_CREATE_PIT:
4374 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4375 		goto create_pit;
4376 	case KVM_CREATE_PIT2:
4377 		r = -EFAULT;
4378 		if (copy_from_user(&u.pit_config, argp,
4379 				   sizeof(struct kvm_pit_config)))
4380 			goto out;
4381 	create_pit:
4382 		mutex_lock(&kvm->lock);
4383 		r = -EEXIST;
4384 		if (kvm->arch.vpit)
4385 			goto create_pit_unlock;
4386 		r = -ENOMEM;
4387 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4388 		if (kvm->arch.vpit)
4389 			r = 0;
4390 	create_pit_unlock:
4391 		mutex_unlock(&kvm->lock);
4392 		break;
4393 	case KVM_GET_IRQCHIP: {
4394 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4395 		struct kvm_irqchip *chip;
4396 
4397 		chip = memdup_user(argp, sizeof(*chip));
4398 		if (IS_ERR(chip)) {
4399 			r = PTR_ERR(chip);
4400 			goto out;
4401 		}
4402 
4403 		r = -ENXIO;
4404 		if (!irqchip_kernel(kvm))
4405 			goto get_irqchip_out;
4406 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4407 		if (r)
4408 			goto get_irqchip_out;
4409 		r = -EFAULT;
4410 		if (copy_to_user(argp, chip, sizeof *chip))
4411 			goto get_irqchip_out;
4412 		r = 0;
4413 	get_irqchip_out:
4414 		kfree(chip);
4415 		break;
4416 	}
4417 	case KVM_SET_IRQCHIP: {
4418 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4419 		struct kvm_irqchip *chip;
4420 
4421 		chip = memdup_user(argp, sizeof(*chip));
4422 		if (IS_ERR(chip)) {
4423 			r = PTR_ERR(chip);
4424 			goto out;
4425 		}
4426 
4427 		r = -ENXIO;
4428 		if (!irqchip_kernel(kvm))
4429 			goto set_irqchip_out;
4430 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4431 		if (r)
4432 			goto set_irqchip_out;
4433 		r = 0;
4434 	set_irqchip_out:
4435 		kfree(chip);
4436 		break;
4437 	}
4438 	case KVM_GET_PIT: {
4439 		r = -EFAULT;
4440 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4441 			goto out;
4442 		r = -ENXIO;
4443 		if (!kvm->arch.vpit)
4444 			goto out;
4445 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4446 		if (r)
4447 			goto out;
4448 		r = -EFAULT;
4449 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4450 			goto out;
4451 		r = 0;
4452 		break;
4453 	}
4454 	case KVM_SET_PIT: {
4455 		r = -EFAULT;
4456 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4457 			goto out;
4458 		r = -ENXIO;
4459 		if (!kvm->arch.vpit)
4460 			goto out;
4461 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4462 		break;
4463 	}
4464 	case KVM_GET_PIT2: {
4465 		r = -ENXIO;
4466 		if (!kvm->arch.vpit)
4467 			goto out;
4468 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4469 		if (r)
4470 			goto out;
4471 		r = -EFAULT;
4472 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4473 			goto out;
4474 		r = 0;
4475 		break;
4476 	}
4477 	case KVM_SET_PIT2: {
4478 		r = -EFAULT;
4479 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4480 			goto out;
4481 		r = -ENXIO;
4482 		if (!kvm->arch.vpit)
4483 			goto out;
4484 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4485 		break;
4486 	}
4487 	case KVM_REINJECT_CONTROL: {
4488 		struct kvm_reinject_control control;
4489 		r =  -EFAULT;
4490 		if (copy_from_user(&control, argp, sizeof(control)))
4491 			goto out;
4492 		r = kvm_vm_ioctl_reinject(kvm, &control);
4493 		break;
4494 	}
4495 	case KVM_SET_BOOT_CPU_ID:
4496 		r = 0;
4497 		mutex_lock(&kvm->lock);
4498 		if (kvm->created_vcpus)
4499 			r = -EBUSY;
4500 		else
4501 			kvm->arch.bsp_vcpu_id = arg;
4502 		mutex_unlock(&kvm->lock);
4503 		break;
4504 	case KVM_XEN_HVM_CONFIG: {
4505 		struct kvm_xen_hvm_config xhc;
4506 		r = -EFAULT;
4507 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4508 			goto out;
4509 		r = -EINVAL;
4510 		if (xhc.flags)
4511 			goto out;
4512 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4513 		r = 0;
4514 		break;
4515 	}
4516 	case KVM_SET_CLOCK: {
4517 		struct kvm_clock_data user_ns;
4518 		u64 now_ns;
4519 
4520 		r = -EFAULT;
4521 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4522 			goto out;
4523 
4524 		r = -EINVAL;
4525 		if (user_ns.flags)
4526 			goto out;
4527 
4528 		r = 0;
4529 		/*
4530 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4531 		 * kvm_gen_update_masterclock() can be cut down to locked
4532 		 * pvclock_update_vm_gtod_copy().
4533 		 */
4534 		kvm_gen_update_masterclock(kvm);
4535 		now_ns = get_kvmclock_ns(kvm);
4536 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4537 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4538 		break;
4539 	}
4540 	case KVM_GET_CLOCK: {
4541 		struct kvm_clock_data user_ns;
4542 		u64 now_ns;
4543 
4544 		now_ns = get_kvmclock_ns(kvm);
4545 		user_ns.clock = now_ns;
4546 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4547 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4548 
4549 		r = -EFAULT;
4550 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4551 			goto out;
4552 		r = 0;
4553 		break;
4554 	}
4555 	case KVM_ENABLE_CAP: {
4556 		struct kvm_enable_cap cap;
4557 
4558 		r = -EFAULT;
4559 		if (copy_from_user(&cap, argp, sizeof(cap)))
4560 			goto out;
4561 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4562 		break;
4563 	}
4564 	case KVM_MEMORY_ENCRYPT_OP: {
4565 		r = -ENOTTY;
4566 		if (kvm_x86_ops->mem_enc_op)
4567 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4568 		break;
4569 	}
4570 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4571 		struct kvm_enc_region region;
4572 
4573 		r = -EFAULT;
4574 		if (copy_from_user(&region, argp, sizeof(region)))
4575 			goto out;
4576 
4577 		r = -ENOTTY;
4578 		if (kvm_x86_ops->mem_enc_reg_region)
4579 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4580 		break;
4581 	}
4582 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4583 		struct kvm_enc_region region;
4584 
4585 		r = -EFAULT;
4586 		if (copy_from_user(&region, argp, sizeof(region)))
4587 			goto out;
4588 
4589 		r = -ENOTTY;
4590 		if (kvm_x86_ops->mem_enc_unreg_region)
4591 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4592 		break;
4593 	}
4594 	case KVM_HYPERV_EVENTFD: {
4595 		struct kvm_hyperv_eventfd hvevfd;
4596 
4597 		r = -EFAULT;
4598 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4599 			goto out;
4600 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4601 		break;
4602 	}
4603 	default:
4604 		r = -ENOTTY;
4605 	}
4606 out:
4607 	return r;
4608 }
4609 
4610 static void kvm_init_msr_list(void)
4611 {
4612 	u32 dummy[2];
4613 	unsigned i, j;
4614 
4615 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4616 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4617 			continue;
4618 
4619 		/*
4620 		 * Even MSRs that are valid in the host may not be exposed
4621 		 * to the guests in some cases.
4622 		 */
4623 		switch (msrs_to_save[i]) {
4624 		case MSR_IA32_BNDCFGS:
4625 			if (!kvm_x86_ops->mpx_supported())
4626 				continue;
4627 			break;
4628 		case MSR_TSC_AUX:
4629 			if (!kvm_x86_ops->rdtscp_supported())
4630 				continue;
4631 			break;
4632 		default:
4633 			break;
4634 		}
4635 
4636 		if (j < i)
4637 			msrs_to_save[j] = msrs_to_save[i];
4638 		j++;
4639 	}
4640 	num_msrs_to_save = j;
4641 
4642 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4643 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4644 			continue;
4645 
4646 		if (j < i)
4647 			emulated_msrs[j] = emulated_msrs[i];
4648 		j++;
4649 	}
4650 	num_emulated_msrs = j;
4651 
4652 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4653 		struct kvm_msr_entry msr;
4654 
4655 		msr.index = msr_based_features[i];
4656 		if (kvm_get_msr_feature(&msr))
4657 			continue;
4658 
4659 		if (j < i)
4660 			msr_based_features[j] = msr_based_features[i];
4661 		j++;
4662 	}
4663 	num_msr_based_features = j;
4664 }
4665 
4666 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4667 			   const void *v)
4668 {
4669 	int handled = 0;
4670 	int n;
4671 
4672 	do {
4673 		n = min(len, 8);
4674 		if (!(lapic_in_kernel(vcpu) &&
4675 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4676 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4677 			break;
4678 		handled += n;
4679 		addr += n;
4680 		len -= n;
4681 		v += n;
4682 	} while (len);
4683 
4684 	return handled;
4685 }
4686 
4687 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4688 {
4689 	int handled = 0;
4690 	int n;
4691 
4692 	do {
4693 		n = min(len, 8);
4694 		if (!(lapic_in_kernel(vcpu) &&
4695 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4696 					 addr, n, v))
4697 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4698 			break;
4699 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4700 		handled += n;
4701 		addr += n;
4702 		len -= n;
4703 		v += n;
4704 	} while (len);
4705 
4706 	return handled;
4707 }
4708 
4709 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4710 			struct kvm_segment *var, int seg)
4711 {
4712 	kvm_x86_ops->set_segment(vcpu, var, seg);
4713 }
4714 
4715 void kvm_get_segment(struct kvm_vcpu *vcpu,
4716 		     struct kvm_segment *var, int seg)
4717 {
4718 	kvm_x86_ops->get_segment(vcpu, var, seg);
4719 }
4720 
4721 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4722 			   struct x86_exception *exception)
4723 {
4724 	gpa_t t_gpa;
4725 
4726 	BUG_ON(!mmu_is_nested(vcpu));
4727 
4728 	/* NPT walks are always user-walks */
4729 	access |= PFERR_USER_MASK;
4730 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4731 
4732 	return t_gpa;
4733 }
4734 
4735 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4736 			      struct x86_exception *exception)
4737 {
4738 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4739 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4740 }
4741 
4742  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4743 				struct x86_exception *exception)
4744 {
4745 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4746 	access |= PFERR_FETCH_MASK;
4747 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4748 }
4749 
4750 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4751 			       struct x86_exception *exception)
4752 {
4753 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4754 	access |= PFERR_WRITE_MASK;
4755 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4756 }
4757 
4758 /* uses this to access any guest's mapped memory without checking CPL */
4759 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4760 				struct x86_exception *exception)
4761 {
4762 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4763 }
4764 
4765 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4766 				      struct kvm_vcpu *vcpu, u32 access,
4767 				      struct x86_exception *exception)
4768 {
4769 	void *data = val;
4770 	int r = X86EMUL_CONTINUE;
4771 
4772 	while (bytes) {
4773 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4774 							    exception);
4775 		unsigned offset = addr & (PAGE_SIZE-1);
4776 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4777 		int ret;
4778 
4779 		if (gpa == UNMAPPED_GVA)
4780 			return X86EMUL_PROPAGATE_FAULT;
4781 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4782 					       offset, toread);
4783 		if (ret < 0) {
4784 			r = X86EMUL_IO_NEEDED;
4785 			goto out;
4786 		}
4787 
4788 		bytes -= toread;
4789 		data += toread;
4790 		addr += toread;
4791 	}
4792 out:
4793 	return r;
4794 }
4795 
4796 /* used for instruction fetching */
4797 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4798 				gva_t addr, void *val, unsigned int bytes,
4799 				struct x86_exception *exception)
4800 {
4801 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4802 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4803 	unsigned offset;
4804 	int ret;
4805 
4806 	/* Inline kvm_read_guest_virt_helper for speed.  */
4807 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4808 						    exception);
4809 	if (unlikely(gpa == UNMAPPED_GVA))
4810 		return X86EMUL_PROPAGATE_FAULT;
4811 
4812 	offset = addr & (PAGE_SIZE-1);
4813 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4814 		bytes = (unsigned)PAGE_SIZE - offset;
4815 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4816 				       offset, bytes);
4817 	if (unlikely(ret < 0))
4818 		return X86EMUL_IO_NEEDED;
4819 
4820 	return X86EMUL_CONTINUE;
4821 }
4822 
4823 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4824 			       gva_t addr, void *val, unsigned int bytes,
4825 			       struct x86_exception *exception)
4826 {
4827 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4828 
4829 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4830 					  exception);
4831 }
4832 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4833 
4834 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4835 			     gva_t addr, void *val, unsigned int bytes,
4836 			     struct x86_exception *exception, bool system)
4837 {
4838 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4839 	u32 access = 0;
4840 
4841 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4842 		access |= PFERR_USER_MASK;
4843 
4844 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4845 }
4846 
4847 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4848 		unsigned long addr, void *val, unsigned int bytes)
4849 {
4850 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4851 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4852 
4853 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4854 }
4855 
4856 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4857 				      struct kvm_vcpu *vcpu, u32 access,
4858 				      struct x86_exception *exception)
4859 {
4860 	void *data = val;
4861 	int r = X86EMUL_CONTINUE;
4862 
4863 	while (bytes) {
4864 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4865 							     access,
4866 							     exception);
4867 		unsigned offset = addr & (PAGE_SIZE-1);
4868 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4869 		int ret;
4870 
4871 		if (gpa == UNMAPPED_GVA)
4872 			return X86EMUL_PROPAGATE_FAULT;
4873 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4874 		if (ret < 0) {
4875 			r = X86EMUL_IO_NEEDED;
4876 			goto out;
4877 		}
4878 
4879 		bytes -= towrite;
4880 		data += towrite;
4881 		addr += towrite;
4882 	}
4883 out:
4884 	return r;
4885 }
4886 
4887 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4888 			      unsigned int bytes, struct x86_exception *exception,
4889 			      bool system)
4890 {
4891 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4892 	u32 access = PFERR_WRITE_MASK;
4893 
4894 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4895 		access |= PFERR_USER_MASK;
4896 
4897 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4898 					   access, exception);
4899 }
4900 
4901 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4902 				unsigned int bytes, struct x86_exception *exception)
4903 {
4904 	/* kvm_write_guest_virt_system can pull in tons of pages. */
4905 	vcpu->arch.l1tf_flush_l1d = true;
4906 
4907 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4908 					   PFERR_WRITE_MASK, exception);
4909 }
4910 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4911 
4912 int handle_ud(struct kvm_vcpu *vcpu)
4913 {
4914 	int emul_type = EMULTYPE_TRAP_UD;
4915 	enum emulation_result er;
4916 	char sig[5]; /* ud2; .ascii "kvm" */
4917 	struct x86_exception e;
4918 
4919 	if (force_emulation_prefix &&
4920 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
4921 				sig, sizeof(sig), &e) == 0 &&
4922 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4923 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
4924 		emul_type = 0;
4925 	}
4926 
4927 	er = emulate_instruction(vcpu, emul_type);
4928 	if (er == EMULATE_USER_EXIT)
4929 		return 0;
4930 	if (er != EMULATE_DONE)
4931 		kvm_queue_exception(vcpu, UD_VECTOR);
4932 	return 1;
4933 }
4934 EXPORT_SYMBOL_GPL(handle_ud);
4935 
4936 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4937 			    gpa_t gpa, bool write)
4938 {
4939 	/* For APIC access vmexit */
4940 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4941 		return 1;
4942 
4943 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4944 		trace_vcpu_match_mmio(gva, gpa, write, true);
4945 		return 1;
4946 	}
4947 
4948 	return 0;
4949 }
4950 
4951 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4952 				gpa_t *gpa, struct x86_exception *exception,
4953 				bool write)
4954 {
4955 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4956 		| (write ? PFERR_WRITE_MASK : 0);
4957 
4958 	/*
4959 	 * currently PKRU is only applied to ept enabled guest so
4960 	 * there is no pkey in EPT page table for L1 guest or EPT
4961 	 * shadow page table for L2 guest.
4962 	 */
4963 	if (vcpu_match_mmio_gva(vcpu, gva)
4964 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4965 				 vcpu->arch.access, 0, access)) {
4966 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4967 					(gva & (PAGE_SIZE - 1));
4968 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4969 		return 1;
4970 	}
4971 
4972 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4973 
4974 	if (*gpa == UNMAPPED_GVA)
4975 		return -1;
4976 
4977 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4978 }
4979 
4980 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4981 			const void *val, int bytes)
4982 {
4983 	int ret;
4984 
4985 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4986 	if (ret < 0)
4987 		return 0;
4988 	kvm_page_track_write(vcpu, gpa, val, bytes);
4989 	return 1;
4990 }
4991 
4992 struct read_write_emulator_ops {
4993 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4994 				  int bytes);
4995 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4996 				  void *val, int bytes);
4997 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4998 			       int bytes, void *val);
4999 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5000 				    void *val, int bytes);
5001 	bool write;
5002 };
5003 
5004 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5005 {
5006 	if (vcpu->mmio_read_completed) {
5007 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5008 			       vcpu->mmio_fragments[0].gpa, val);
5009 		vcpu->mmio_read_completed = 0;
5010 		return 1;
5011 	}
5012 
5013 	return 0;
5014 }
5015 
5016 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5017 			void *val, int bytes)
5018 {
5019 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5020 }
5021 
5022 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5023 			 void *val, int bytes)
5024 {
5025 	return emulator_write_phys(vcpu, gpa, val, bytes);
5026 }
5027 
5028 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5029 {
5030 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5031 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5032 }
5033 
5034 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5035 			  void *val, int bytes)
5036 {
5037 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5038 	return X86EMUL_IO_NEEDED;
5039 }
5040 
5041 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5042 			   void *val, int bytes)
5043 {
5044 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5045 
5046 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5047 	return X86EMUL_CONTINUE;
5048 }
5049 
5050 static const struct read_write_emulator_ops read_emultor = {
5051 	.read_write_prepare = read_prepare,
5052 	.read_write_emulate = read_emulate,
5053 	.read_write_mmio = vcpu_mmio_read,
5054 	.read_write_exit_mmio = read_exit_mmio,
5055 };
5056 
5057 static const struct read_write_emulator_ops write_emultor = {
5058 	.read_write_emulate = write_emulate,
5059 	.read_write_mmio = write_mmio,
5060 	.read_write_exit_mmio = write_exit_mmio,
5061 	.write = true,
5062 };
5063 
5064 static int emulator_read_write_onepage(unsigned long addr, void *val,
5065 				       unsigned int bytes,
5066 				       struct x86_exception *exception,
5067 				       struct kvm_vcpu *vcpu,
5068 				       const struct read_write_emulator_ops *ops)
5069 {
5070 	gpa_t gpa;
5071 	int handled, ret;
5072 	bool write = ops->write;
5073 	struct kvm_mmio_fragment *frag;
5074 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5075 
5076 	/*
5077 	 * If the exit was due to a NPF we may already have a GPA.
5078 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5079 	 * Note, this cannot be used on string operations since string
5080 	 * operation using rep will only have the initial GPA from the NPF
5081 	 * occurred.
5082 	 */
5083 	if (vcpu->arch.gpa_available &&
5084 	    emulator_can_use_gpa(ctxt) &&
5085 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5086 		gpa = vcpu->arch.gpa_val;
5087 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5088 	} else {
5089 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5090 		if (ret < 0)
5091 			return X86EMUL_PROPAGATE_FAULT;
5092 	}
5093 
5094 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5095 		return X86EMUL_CONTINUE;
5096 
5097 	/*
5098 	 * Is this MMIO handled locally?
5099 	 */
5100 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5101 	if (handled == bytes)
5102 		return X86EMUL_CONTINUE;
5103 
5104 	gpa += handled;
5105 	bytes -= handled;
5106 	val += handled;
5107 
5108 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5109 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5110 	frag->gpa = gpa;
5111 	frag->data = val;
5112 	frag->len = bytes;
5113 	return X86EMUL_CONTINUE;
5114 }
5115 
5116 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5117 			unsigned long addr,
5118 			void *val, unsigned int bytes,
5119 			struct x86_exception *exception,
5120 			const struct read_write_emulator_ops *ops)
5121 {
5122 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5123 	gpa_t gpa;
5124 	int rc;
5125 
5126 	if (ops->read_write_prepare &&
5127 		  ops->read_write_prepare(vcpu, val, bytes))
5128 		return X86EMUL_CONTINUE;
5129 
5130 	vcpu->mmio_nr_fragments = 0;
5131 
5132 	/* Crossing a page boundary? */
5133 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5134 		int now;
5135 
5136 		now = -addr & ~PAGE_MASK;
5137 		rc = emulator_read_write_onepage(addr, val, now, exception,
5138 						 vcpu, ops);
5139 
5140 		if (rc != X86EMUL_CONTINUE)
5141 			return rc;
5142 		addr += now;
5143 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5144 			addr = (u32)addr;
5145 		val += now;
5146 		bytes -= now;
5147 	}
5148 
5149 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5150 					 vcpu, ops);
5151 	if (rc != X86EMUL_CONTINUE)
5152 		return rc;
5153 
5154 	if (!vcpu->mmio_nr_fragments)
5155 		return rc;
5156 
5157 	gpa = vcpu->mmio_fragments[0].gpa;
5158 
5159 	vcpu->mmio_needed = 1;
5160 	vcpu->mmio_cur_fragment = 0;
5161 
5162 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5163 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5164 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5165 	vcpu->run->mmio.phys_addr = gpa;
5166 
5167 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5168 }
5169 
5170 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5171 				  unsigned long addr,
5172 				  void *val,
5173 				  unsigned int bytes,
5174 				  struct x86_exception *exception)
5175 {
5176 	return emulator_read_write(ctxt, addr, val, bytes,
5177 				   exception, &read_emultor);
5178 }
5179 
5180 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5181 			    unsigned long addr,
5182 			    const void *val,
5183 			    unsigned int bytes,
5184 			    struct x86_exception *exception)
5185 {
5186 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5187 				   exception, &write_emultor);
5188 }
5189 
5190 #define CMPXCHG_TYPE(t, ptr, old, new) \
5191 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5192 
5193 #ifdef CONFIG_X86_64
5194 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5195 #else
5196 #  define CMPXCHG64(ptr, old, new) \
5197 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5198 #endif
5199 
5200 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5201 				     unsigned long addr,
5202 				     const void *old,
5203 				     const void *new,
5204 				     unsigned int bytes,
5205 				     struct x86_exception *exception)
5206 {
5207 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5208 	gpa_t gpa;
5209 	struct page *page;
5210 	char *kaddr;
5211 	bool exchanged;
5212 
5213 	/* guests cmpxchg8b have to be emulated atomically */
5214 	if (bytes > 8 || (bytes & (bytes - 1)))
5215 		goto emul_write;
5216 
5217 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5218 
5219 	if (gpa == UNMAPPED_GVA ||
5220 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5221 		goto emul_write;
5222 
5223 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5224 		goto emul_write;
5225 
5226 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5227 	if (is_error_page(page))
5228 		goto emul_write;
5229 
5230 	kaddr = kmap_atomic(page);
5231 	kaddr += offset_in_page(gpa);
5232 	switch (bytes) {
5233 	case 1:
5234 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5235 		break;
5236 	case 2:
5237 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5238 		break;
5239 	case 4:
5240 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5241 		break;
5242 	case 8:
5243 		exchanged = CMPXCHG64(kaddr, old, new);
5244 		break;
5245 	default:
5246 		BUG();
5247 	}
5248 	kunmap_atomic(kaddr);
5249 	kvm_release_page_dirty(page);
5250 
5251 	if (!exchanged)
5252 		return X86EMUL_CMPXCHG_FAILED;
5253 
5254 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5255 	kvm_page_track_write(vcpu, gpa, new, bytes);
5256 
5257 	return X86EMUL_CONTINUE;
5258 
5259 emul_write:
5260 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5261 
5262 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5263 }
5264 
5265 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5266 {
5267 	int r = 0, i;
5268 
5269 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5270 		if (vcpu->arch.pio.in)
5271 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5272 					    vcpu->arch.pio.size, pd);
5273 		else
5274 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5275 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5276 					     pd);
5277 		if (r)
5278 			break;
5279 		pd += vcpu->arch.pio.size;
5280 	}
5281 	return r;
5282 }
5283 
5284 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5285 			       unsigned short port, void *val,
5286 			       unsigned int count, bool in)
5287 {
5288 	vcpu->arch.pio.port = port;
5289 	vcpu->arch.pio.in = in;
5290 	vcpu->arch.pio.count  = count;
5291 	vcpu->arch.pio.size = size;
5292 
5293 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5294 		vcpu->arch.pio.count = 0;
5295 		return 1;
5296 	}
5297 
5298 	vcpu->run->exit_reason = KVM_EXIT_IO;
5299 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5300 	vcpu->run->io.size = size;
5301 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5302 	vcpu->run->io.count = count;
5303 	vcpu->run->io.port = port;
5304 
5305 	return 0;
5306 }
5307 
5308 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5309 				    int size, unsigned short port, void *val,
5310 				    unsigned int count)
5311 {
5312 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5313 	int ret;
5314 
5315 	if (vcpu->arch.pio.count)
5316 		goto data_avail;
5317 
5318 	memset(vcpu->arch.pio_data, 0, size * count);
5319 
5320 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5321 	if (ret) {
5322 data_avail:
5323 		memcpy(val, vcpu->arch.pio_data, size * count);
5324 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5325 		vcpu->arch.pio.count = 0;
5326 		return 1;
5327 	}
5328 
5329 	return 0;
5330 }
5331 
5332 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5333 				     int size, unsigned short port,
5334 				     const void *val, unsigned int count)
5335 {
5336 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5337 
5338 	memcpy(vcpu->arch.pio_data, val, size * count);
5339 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5340 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5341 }
5342 
5343 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5344 {
5345 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5346 }
5347 
5348 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5349 {
5350 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5351 }
5352 
5353 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5354 {
5355 	if (!need_emulate_wbinvd(vcpu))
5356 		return X86EMUL_CONTINUE;
5357 
5358 	if (kvm_x86_ops->has_wbinvd_exit()) {
5359 		int cpu = get_cpu();
5360 
5361 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5362 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5363 				wbinvd_ipi, NULL, 1);
5364 		put_cpu();
5365 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5366 	} else
5367 		wbinvd();
5368 	return X86EMUL_CONTINUE;
5369 }
5370 
5371 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5372 {
5373 	kvm_emulate_wbinvd_noskip(vcpu);
5374 	return kvm_skip_emulated_instruction(vcpu);
5375 }
5376 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5377 
5378 
5379 
5380 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5381 {
5382 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5383 }
5384 
5385 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5386 			   unsigned long *dest)
5387 {
5388 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5389 }
5390 
5391 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5392 			   unsigned long value)
5393 {
5394 
5395 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5396 }
5397 
5398 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5399 {
5400 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5401 }
5402 
5403 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5404 {
5405 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5406 	unsigned long value;
5407 
5408 	switch (cr) {
5409 	case 0:
5410 		value = kvm_read_cr0(vcpu);
5411 		break;
5412 	case 2:
5413 		value = vcpu->arch.cr2;
5414 		break;
5415 	case 3:
5416 		value = kvm_read_cr3(vcpu);
5417 		break;
5418 	case 4:
5419 		value = kvm_read_cr4(vcpu);
5420 		break;
5421 	case 8:
5422 		value = kvm_get_cr8(vcpu);
5423 		break;
5424 	default:
5425 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5426 		return 0;
5427 	}
5428 
5429 	return value;
5430 }
5431 
5432 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5433 {
5434 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5435 	int res = 0;
5436 
5437 	switch (cr) {
5438 	case 0:
5439 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5440 		break;
5441 	case 2:
5442 		vcpu->arch.cr2 = val;
5443 		break;
5444 	case 3:
5445 		res = kvm_set_cr3(vcpu, val);
5446 		break;
5447 	case 4:
5448 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5449 		break;
5450 	case 8:
5451 		res = kvm_set_cr8(vcpu, val);
5452 		break;
5453 	default:
5454 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5455 		res = -1;
5456 	}
5457 
5458 	return res;
5459 }
5460 
5461 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5462 {
5463 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5464 }
5465 
5466 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5467 {
5468 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5469 }
5470 
5471 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5472 {
5473 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5474 }
5475 
5476 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5477 {
5478 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5479 }
5480 
5481 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5482 {
5483 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5484 }
5485 
5486 static unsigned long emulator_get_cached_segment_base(
5487 	struct x86_emulate_ctxt *ctxt, int seg)
5488 {
5489 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5490 }
5491 
5492 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5493 				 struct desc_struct *desc, u32 *base3,
5494 				 int seg)
5495 {
5496 	struct kvm_segment var;
5497 
5498 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5499 	*selector = var.selector;
5500 
5501 	if (var.unusable) {
5502 		memset(desc, 0, sizeof(*desc));
5503 		if (base3)
5504 			*base3 = 0;
5505 		return false;
5506 	}
5507 
5508 	if (var.g)
5509 		var.limit >>= 12;
5510 	set_desc_limit(desc, var.limit);
5511 	set_desc_base(desc, (unsigned long)var.base);
5512 #ifdef CONFIG_X86_64
5513 	if (base3)
5514 		*base3 = var.base >> 32;
5515 #endif
5516 	desc->type = var.type;
5517 	desc->s = var.s;
5518 	desc->dpl = var.dpl;
5519 	desc->p = var.present;
5520 	desc->avl = var.avl;
5521 	desc->l = var.l;
5522 	desc->d = var.db;
5523 	desc->g = var.g;
5524 
5525 	return true;
5526 }
5527 
5528 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5529 				 struct desc_struct *desc, u32 base3,
5530 				 int seg)
5531 {
5532 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5533 	struct kvm_segment var;
5534 
5535 	var.selector = selector;
5536 	var.base = get_desc_base(desc);
5537 #ifdef CONFIG_X86_64
5538 	var.base |= ((u64)base3) << 32;
5539 #endif
5540 	var.limit = get_desc_limit(desc);
5541 	if (desc->g)
5542 		var.limit = (var.limit << 12) | 0xfff;
5543 	var.type = desc->type;
5544 	var.dpl = desc->dpl;
5545 	var.db = desc->d;
5546 	var.s = desc->s;
5547 	var.l = desc->l;
5548 	var.g = desc->g;
5549 	var.avl = desc->avl;
5550 	var.present = desc->p;
5551 	var.unusable = !var.present;
5552 	var.padding = 0;
5553 
5554 	kvm_set_segment(vcpu, &var, seg);
5555 	return;
5556 }
5557 
5558 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5559 			    u32 msr_index, u64 *pdata)
5560 {
5561 	struct msr_data msr;
5562 	int r;
5563 
5564 	msr.index = msr_index;
5565 	msr.host_initiated = false;
5566 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5567 	if (r)
5568 		return r;
5569 
5570 	*pdata = msr.data;
5571 	return 0;
5572 }
5573 
5574 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5575 			    u32 msr_index, u64 data)
5576 {
5577 	struct msr_data msr;
5578 
5579 	msr.data = data;
5580 	msr.index = msr_index;
5581 	msr.host_initiated = false;
5582 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5583 }
5584 
5585 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5586 {
5587 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5588 
5589 	return vcpu->arch.smbase;
5590 }
5591 
5592 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5593 {
5594 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5595 
5596 	vcpu->arch.smbase = smbase;
5597 }
5598 
5599 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5600 			      u32 pmc)
5601 {
5602 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5603 }
5604 
5605 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5606 			     u32 pmc, u64 *pdata)
5607 {
5608 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5609 }
5610 
5611 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5612 {
5613 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5614 }
5615 
5616 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5617 			      struct x86_instruction_info *info,
5618 			      enum x86_intercept_stage stage)
5619 {
5620 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5621 }
5622 
5623 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5624 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5625 {
5626 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5627 }
5628 
5629 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5630 {
5631 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5632 }
5633 
5634 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5635 {
5636 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5637 }
5638 
5639 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5640 {
5641 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5642 }
5643 
5644 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5645 {
5646 	return emul_to_vcpu(ctxt)->arch.hflags;
5647 }
5648 
5649 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5650 {
5651 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5652 }
5653 
5654 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5655 {
5656 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5657 }
5658 
5659 static const struct x86_emulate_ops emulate_ops = {
5660 	.read_gpr            = emulator_read_gpr,
5661 	.write_gpr           = emulator_write_gpr,
5662 	.read_std            = emulator_read_std,
5663 	.write_std           = emulator_write_std,
5664 	.read_phys           = kvm_read_guest_phys_system,
5665 	.fetch               = kvm_fetch_guest_virt,
5666 	.read_emulated       = emulator_read_emulated,
5667 	.write_emulated      = emulator_write_emulated,
5668 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5669 	.invlpg              = emulator_invlpg,
5670 	.pio_in_emulated     = emulator_pio_in_emulated,
5671 	.pio_out_emulated    = emulator_pio_out_emulated,
5672 	.get_segment         = emulator_get_segment,
5673 	.set_segment         = emulator_set_segment,
5674 	.get_cached_segment_base = emulator_get_cached_segment_base,
5675 	.get_gdt             = emulator_get_gdt,
5676 	.get_idt	     = emulator_get_idt,
5677 	.set_gdt             = emulator_set_gdt,
5678 	.set_idt	     = emulator_set_idt,
5679 	.get_cr              = emulator_get_cr,
5680 	.set_cr              = emulator_set_cr,
5681 	.cpl                 = emulator_get_cpl,
5682 	.get_dr              = emulator_get_dr,
5683 	.set_dr              = emulator_set_dr,
5684 	.get_smbase          = emulator_get_smbase,
5685 	.set_smbase          = emulator_set_smbase,
5686 	.set_msr             = emulator_set_msr,
5687 	.get_msr             = emulator_get_msr,
5688 	.check_pmc	     = emulator_check_pmc,
5689 	.read_pmc            = emulator_read_pmc,
5690 	.halt                = emulator_halt,
5691 	.wbinvd              = emulator_wbinvd,
5692 	.fix_hypercall       = emulator_fix_hypercall,
5693 	.intercept           = emulator_intercept,
5694 	.get_cpuid           = emulator_get_cpuid,
5695 	.set_nmi_mask        = emulator_set_nmi_mask,
5696 	.get_hflags          = emulator_get_hflags,
5697 	.set_hflags          = emulator_set_hflags,
5698 	.pre_leave_smm       = emulator_pre_leave_smm,
5699 };
5700 
5701 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5702 {
5703 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5704 	/*
5705 	 * an sti; sti; sequence only disable interrupts for the first
5706 	 * instruction. So, if the last instruction, be it emulated or
5707 	 * not, left the system with the INT_STI flag enabled, it
5708 	 * means that the last instruction is an sti. We should not
5709 	 * leave the flag on in this case. The same goes for mov ss
5710 	 */
5711 	if (int_shadow & mask)
5712 		mask = 0;
5713 	if (unlikely(int_shadow || mask)) {
5714 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5715 		if (!mask)
5716 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5717 	}
5718 }
5719 
5720 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5721 {
5722 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5723 	if (ctxt->exception.vector == PF_VECTOR)
5724 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5725 
5726 	if (ctxt->exception.error_code_valid)
5727 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5728 				      ctxt->exception.error_code);
5729 	else
5730 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5731 	return false;
5732 }
5733 
5734 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5735 {
5736 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5737 	int cs_db, cs_l;
5738 
5739 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5740 
5741 	ctxt->eflags = kvm_get_rflags(vcpu);
5742 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5743 
5744 	ctxt->eip = kvm_rip_read(vcpu);
5745 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5746 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5747 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5748 		     cs_db				? X86EMUL_MODE_PROT32 :
5749 							  X86EMUL_MODE_PROT16;
5750 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5751 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5752 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5753 
5754 	init_decode_cache(ctxt);
5755 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5756 }
5757 
5758 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5759 {
5760 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5761 	int ret;
5762 
5763 	init_emulate_ctxt(vcpu);
5764 
5765 	ctxt->op_bytes = 2;
5766 	ctxt->ad_bytes = 2;
5767 	ctxt->_eip = ctxt->eip + inc_eip;
5768 	ret = emulate_int_real(ctxt, irq);
5769 
5770 	if (ret != X86EMUL_CONTINUE)
5771 		return EMULATE_FAIL;
5772 
5773 	ctxt->eip = ctxt->_eip;
5774 	kvm_rip_write(vcpu, ctxt->eip);
5775 	kvm_set_rflags(vcpu, ctxt->eflags);
5776 
5777 	return EMULATE_DONE;
5778 }
5779 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5780 
5781 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5782 {
5783 	int r = EMULATE_DONE;
5784 
5785 	++vcpu->stat.insn_emulation_fail;
5786 	trace_kvm_emulate_insn_failed(vcpu);
5787 
5788 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5789 		return EMULATE_FAIL;
5790 
5791 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5792 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5793 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5794 		vcpu->run->internal.ndata = 0;
5795 		r = EMULATE_USER_EXIT;
5796 	}
5797 
5798 	kvm_queue_exception(vcpu, UD_VECTOR);
5799 
5800 	return r;
5801 }
5802 
5803 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5804 				  bool write_fault_to_shadow_pgtable,
5805 				  int emulation_type)
5806 {
5807 	gpa_t gpa = cr2;
5808 	kvm_pfn_t pfn;
5809 
5810 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5811 		return false;
5812 
5813 	if (!vcpu->arch.mmu.direct_map) {
5814 		/*
5815 		 * Write permission should be allowed since only
5816 		 * write access need to be emulated.
5817 		 */
5818 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5819 
5820 		/*
5821 		 * If the mapping is invalid in guest, let cpu retry
5822 		 * it to generate fault.
5823 		 */
5824 		if (gpa == UNMAPPED_GVA)
5825 			return true;
5826 	}
5827 
5828 	/*
5829 	 * Do not retry the unhandleable instruction if it faults on the
5830 	 * readonly host memory, otherwise it will goto a infinite loop:
5831 	 * retry instruction -> write #PF -> emulation fail -> retry
5832 	 * instruction -> ...
5833 	 */
5834 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5835 
5836 	/*
5837 	 * If the instruction failed on the error pfn, it can not be fixed,
5838 	 * report the error to userspace.
5839 	 */
5840 	if (is_error_noslot_pfn(pfn))
5841 		return false;
5842 
5843 	kvm_release_pfn_clean(pfn);
5844 
5845 	/* The instructions are well-emulated on direct mmu. */
5846 	if (vcpu->arch.mmu.direct_map) {
5847 		unsigned int indirect_shadow_pages;
5848 
5849 		spin_lock(&vcpu->kvm->mmu_lock);
5850 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5851 		spin_unlock(&vcpu->kvm->mmu_lock);
5852 
5853 		if (indirect_shadow_pages)
5854 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5855 
5856 		return true;
5857 	}
5858 
5859 	/*
5860 	 * if emulation was due to access to shadowed page table
5861 	 * and it failed try to unshadow page and re-enter the
5862 	 * guest to let CPU execute the instruction.
5863 	 */
5864 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5865 
5866 	/*
5867 	 * If the access faults on its page table, it can not
5868 	 * be fixed by unprotecting shadow page and it should
5869 	 * be reported to userspace.
5870 	 */
5871 	return !write_fault_to_shadow_pgtable;
5872 }
5873 
5874 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5875 			      unsigned long cr2,  int emulation_type)
5876 {
5877 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5878 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5879 
5880 	last_retry_eip = vcpu->arch.last_retry_eip;
5881 	last_retry_addr = vcpu->arch.last_retry_addr;
5882 
5883 	/*
5884 	 * If the emulation is caused by #PF and it is non-page_table
5885 	 * writing instruction, it means the VM-EXIT is caused by shadow
5886 	 * page protected, we can zap the shadow page and retry this
5887 	 * instruction directly.
5888 	 *
5889 	 * Note: if the guest uses a non-page-table modifying instruction
5890 	 * on the PDE that points to the instruction, then we will unmap
5891 	 * the instruction and go to an infinite loop. So, we cache the
5892 	 * last retried eip and the last fault address, if we meet the eip
5893 	 * and the address again, we can break out of the potential infinite
5894 	 * loop.
5895 	 */
5896 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5897 
5898 	if (!(emulation_type & EMULTYPE_RETRY))
5899 		return false;
5900 
5901 	if (x86_page_table_writing_insn(ctxt))
5902 		return false;
5903 
5904 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5905 		return false;
5906 
5907 	vcpu->arch.last_retry_eip = ctxt->eip;
5908 	vcpu->arch.last_retry_addr = cr2;
5909 
5910 	if (!vcpu->arch.mmu.direct_map)
5911 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5912 
5913 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5914 
5915 	return true;
5916 }
5917 
5918 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5919 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5920 
5921 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5922 {
5923 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5924 		/* This is a good place to trace that we are exiting SMM.  */
5925 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5926 
5927 		/* Process a latched INIT or SMI, if any.  */
5928 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5929 	}
5930 
5931 	kvm_mmu_reset_context(vcpu);
5932 }
5933 
5934 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5935 {
5936 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5937 
5938 	vcpu->arch.hflags = emul_flags;
5939 
5940 	if (changed & HF_SMM_MASK)
5941 		kvm_smm_changed(vcpu);
5942 }
5943 
5944 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5945 				unsigned long *db)
5946 {
5947 	u32 dr6 = 0;
5948 	int i;
5949 	u32 enable, rwlen;
5950 
5951 	enable = dr7;
5952 	rwlen = dr7 >> 16;
5953 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5954 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5955 			dr6 |= (1 << i);
5956 	return dr6;
5957 }
5958 
5959 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5960 {
5961 	struct kvm_run *kvm_run = vcpu->run;
5962 
5963 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5964 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5965 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5966 		kvm_run->debug.arch.exception = DB_VECTOR;
5967 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5968 		*r = EMULATE_USER_EXIT;
5969 	} else {
5970 		/*
5971 		 * "Certain debug exceptions may clear bit 0-3.  The
5972 		 * remaining contents of the DR6 register are never
5973 		 * cleared by the processor".
5974 		 */
5975 		vcpu->arch.dr6 &= ~15;
5976 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5977 		kvm_queue_exception(vcpu, DB_VECTOR);
5978 	}
5979 }
5980 
5981 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5982 {
5983 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5984 	int r = EMULATE_DONE;
5985 
5986 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5987 
5988 	/*
5989 	 * rflags is the old, "raw" value of the flags.  The new value has
5990 	 * not been saved yet.
5991 	 *
5992 	 * This is correct even for TF set by the guest, because "the
5993 	 * processor will not generate this exception after the instruction
5994 	 * that sets the TF flag".
5995 	 */
5996 	if (unlikely(rflags & X86_EFLAGS_TF))
5997 		kvm_vcpu_do_singlestep(vcpu, &r);
5998 	return r == EMULATE_DONE;
5999 }
6000 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6001 
6002 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6003 {
6004 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6005 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6006 		struct kvm_run *kvm_run = vcpu->run;
6007 		unsigned long eip = kvm_get_linear_rip(vcpu);
6008 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6009 					   vcpu->arch.guest_debug_dr7,
6010 					   vcpu->arch.eff_db);
6011 
6012 		if (dr6 != 0) {
6013 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6014 			kvm_run->debug.arch.pc = eip;
6015 			kvm_run->debug.arch.exception = DB_VECTOR;
6016 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6017 			*r = EMULATE_USER_EXIT;
6018 			return true;
6019 		}
6020 	}
6021 
6022 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6023 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6024 		unsigned long eip = kvm_get_linear_rip(vcpu);
6025 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6026 					   vcpu->arch.dr7,
6027 					   vcpu->arch.db);
6028 
6029 		if (dr6 != 0) {
6030 			vcpu->arch.dr6 &= ~15;
6031 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6032 			kvm_queue_exception(vcpu, DB_VECTOR);
6033 			*r = EMULATE_DONE;
6034 			return true;
6035 		}
6036 	}
6037 
6038 	return false;
6039 }
6040 
6041 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6042 {
6043 	switch (ctxt->opcode_len) {
6044 	case 1:
6045 		switch (ctxt->b) {
6046 		case 0xe4:	/* IN */
6047 		case 0xe5:
6048 		case 0xec:
6049 		case 0xed:
6050 		case 0xe6:	/* OUT */
6051 		case 0xe7:
6052 		case 0xee:
6053 		case 0xef:
6054 		case 0x6c:	/* INS */
6055 		case 0x6d:
6056 		case 0x6e:	/* OUTS */
6057 		case 0x6f:
6058 			return true;
6059 		}
6060 		break;
6061 	case 2:
6062 		switch (ctxt->b) {
6063 		case 0x33:	/* RDPMC */
6064 			return true;
6065 		}
6066 		break;
6067 	}
6068 
6069 	return false;
6070 }
6071 
6072 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6073 			    unsigned long cr2,
6074 			    int emulation_type,
6075 			    void *insn,
6076 			    int insn_len)
6077 {
6078 	int r;
6079 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6080 	bool writeback = true;
6081 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6082 
6083 	vcpu->arch.l1tf_flush_l1d = true;
6084 
6085 	/*
6086 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6087 	 * never reused.
6088 	 */
6089 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6090 	kvm_clear_exception_queue(vcpu);
6091 
6092 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6093 		init_emulate_ctxt(vcpu);
6094 
6095 		/*
6096 		 * We will reenter on the same instruction since
6097 		 * we do not set complete_userspace_io.  This does not
6098 		 * handle watchpoints yet, those would be handled in
6099 		 * the emulate_ops.
6100 		 */
6101 		if (!(emulation_type & EMULTYPE_SKIP) &&
6102 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6103 			return r;
6104 
6105 		ctxt->interruptibility = 0;
6106 		ctxt->have_exception = false;
6107 		ctxt->exception.vector = -1;
6108 		ctxt->perm_ok = false;
6109 
6110 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6111 
6112 		r = x86_decode_insn(ctxt, insn, insn_len);
6113 
6114 		trace_kvm_emulate_insn_start(vcpu);
6115 		++vcpu->stat.insn_emulation;
6116 		if (r != EMULATION_OK)  {
6117 			if (emulation_type & EMULTYPE_TRAP_UD)
6118 				return EMULATE_FAIL;
6119 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6120 						emulation_type))
6121 				return EMULATE_DONE;
6122 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
6123 				return EMULATE_DONE;
6124 			if (emulation_type & EMULTYPE_SKIP)
6125 				return EMULATE_FAIL;
6126 			return handle_emulation_failure(vcpu, emulation_type);
6127 		}
6128 	}
6129 
6130 	if ((emulation_type & EMULTYPE_VMWARE) &&
6131 	    !is_vmware_backdoor_opcode(ctxt))
6132 		return EMULATE_FAIL;
6133 
6134 	if (emulation_type & EMULTYPE_SKIP) {
6135 		kvm_rip_write(vcpu, ctxt->_eip);
6136 		if (ctxt->eflags & X86_EFLAGS_RF)
6137 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6138 		return EMULATE_DONE;
6139 	}
6140 
6141 	if (retry_instruction(ctxt, cr2, emulation_type))
6142 		return EMULATE_DONE;
6143 
6144 	/* this is needed for vmware backdoor interface to work since it
6145 	   changes registers values  during IO operation */
6146 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6147 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6148 		emulator_invalidate_register_cache(ctxt);
6149 	}
6150 
6151 restart:
6152 	/* Save the faulting GPA (cr2) in the address field */
6153 	ctxt->exception.address = cr2;
6154 
6155 	r = x86_emulate_insn(ctxt);
6156 
6157 	if (r == EMULATION_INTERCEPTED)
6158 		return EMULATE_DONE;
6159 
6160 	if (r == EMULATION_FAILED) {
6161 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6162 					emulation_type))
6163 			return EMULATE_DONE;
6164 
6165 		return handle_emulation_failure(vcpu, emulation_type);
6166 	}
6167 
6168 	if (ctxt->have_exception) {
6169 		r = EMULATE_DONE;
6170 		if (inject_emulated_exception(vcpu))
6171 			return r;
6172 	} else if (vcpu->arch.pio.count) {
6173 		if (!vcpu->arch.pio.in) {
6174 			/* FIXME: return into emulator if single-stepping.  */
6175 			vcpu->arch.pio.count = 0;
6176 		} else {
6177 			writeback = false;
6178 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6179 		}
6180 		r = EMULATE_USER_EXIT;
6181 	} else if (vcpu->mmio_needed) {
6182 		if (!vcpu->mmio_is_write)
6183 			writeback = false;
6184 		r = EMULATE_USER_EXIT;
6185 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6186 	} else if (r == EMULATION_RESTART)
6187 		goto restart;
6188 	else
6189 		r = EMULATE_DONE;
6190 
6191 	if (writeback) {
6192 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6193 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6194 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6195 		kvm_rip_write(vcpu, ctxt->eip);
6196 		if (r == EMULATE_DONE &&
6197 		    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6198 			kvm_vcpu_do_singlestep(vcpu, &r);
6199 		if (!ctxt->have_exception ||
6200 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6201 			__kvm_set_rflags(vcpu, ctxt->eflags);
6202 
6203 		/*
6204 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6205 		 * do nothing, and it will be requested again as soon as
6206 		 * the shadow expires.  But we still need to check here,
6207 		 * because POPF has no interrupt shadow.
6208 		 */
6209 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6210 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6211 	} else
6212 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6213 
6214 	return r;
6215 }
6216 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6217 
6218 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6219 			    unsigned short port)
6220 {
6221 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6222 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6223 					    size, port, &val, 1);
6224 	/* do not return to emulator after return from userspace */
6225 	vcpu->arch.pio.count = 0;
6226 	return ret;
6227 }
6228 
6229 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6230 {
6231 	unsigned long val;
6232 
6233 	/* We should only ever be called with arch.pio.count equal to 1 */
6234 	BUG_ON(vcpu->arch.pio.count != 1);
6235 
6236 	/* For size less than 4 we merge, else we zero extend */
6237 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6238 					: 0;
6239 
6240 	/*
6241 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6242 	 * the copy and tracing
6243 	 */
6244 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6245 				 vcpu->arch.pio.port, &val, 1);
6246 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6247 
6248 	return 1;
6249 }
6250 
6251 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6252 			   unsigned short port)
6253 {
6254 	unsigned long val;
6255 	int ret;
6256 
6257 	/* For size less than 4 we merge, else we zero extend */
6258 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6259 
6260 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6261 				       &val, 1);
6262 	if (ret) {
6263 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6264 		return ret;
6265 	}
6266 
6267 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6268 
6269 	return 0;
6270 }
6271 
6272 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6273 {
6274 	int ret = kvm_skip_emulated_instruction(vcpu);
6275 
6276 	/*
6277 	 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6278 	 * KVM_EXIT_DEBUG here.
6279 	 */
6280 	if (in)
6281 		return kvm_fast_pio_in(vcpu, size, port) && ret;
6282 	else
6283 		return kvm_fast_pio_out(vcpu, size, port) && ret;
6284 }
6285 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6286 
6287 static int kvmclock_cpu_down_prep(unsigned int cpu)
6288 {
6289 	__this_cpu_write(cpu_tsc_khz, 0);
6290 	return 0;
6291 }
6292 
6293 static void tsc_khz_changed(void *data)
6294 {
6295 	struct cpufreq_freqs *freq = data;
6296 	unsigned long khz = 0;
6297 
6298 	if (data)
6299 		khz = freq->new;
6300 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6301 		khz = cpufreq_quick_get(raw_smp_processor_id());
6302 	if (!khz)
6303 		khz = tsc_khz;
6304 	__this_cpu_write(cpu_tsc_khz, khz);
6305 }
6306 
6307 #ifdef CONFIG_X86_64
6308 static void kvm_hyperv_tsc_notifier(void)
6309 {
6310 	struct kvm *kvm;
6311 	struct kvm_vcpu *vcpu;
6312 	int cpu;
6313 
6314 	spin_lock(&kvm_lock);
6315 	list_for_each_entry(kvm, &vm_list, vm_list)
6316 		kvm_make_mclock_inprogress_request(kvm);
6317 
6318 	hyperv_stop_tsc_emulation();
6319 
6320 	/* TSC frequency always matches when on Hyper-V */
6321 	for_each_present_cpu(cpu)
6322 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6323 	kvm_max_guest_tsc_khz = tsc_khz;
6324 
6325 	list_for_each_entry(kvm, &vm_list, vm_list) {
6326 		struct kvm_arch *ka = &kvm->arch;
6327 
6328 		spin_lock(&ka->pvclock_gtod_sync_lock);
6329 
6330 		pvclock_update_vm_gtod_copy(kvm);
6331 
6332 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6333 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6334 
6335 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6336 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6337 
6338 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6339 	}
6340 	spin_unlock(&kvm_lock);
6341 }
6342 #endif
6343 
6344 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6345 				     void *data)
6346 {
6347 	struct cpufreq_freqs *freq = data;
6348 	struct kvm *kvm;
6349 	struct kvm_vcpu *vcpu;
6350 	int i, send_ipi = 0;
6351 
6352 	/*
6353 	 * We allow guests to temporarily run on slowing clocks,
6354 	 * provided we notify them after, or to run on accelerating
6355 	 * clocks, provided we notify them before.  Thus time never
6356 	 * goes backwards.
6357 	 *
6358 	 * However, we have a problem.  We can't atomically update
6359 	 * the frequency of a given CPU from this function; it is
6360 	 * merely a notifier, which can be called from any CPU.
6361 	 * Changing the TSC frequency at arbitrary points in time
6362 	 * requires a recomputation of local variables related to
6363 	 * the TSC for each VCPU.  We must flag these local variables
6364 	 * to be updated and be sure the update takes place with the
6365 	 * new frequency before any guests proceed.
6366 	 *
6367 	 * Unfortunately, the combination of hotplug CPU and frequency
6368 	 * change creates an intractable locking scenario; the order
6369 	 * of when these callouts happen is undefined with respect to
6370 	 * CPU hotplug, and they can race with each other.  As such,
6371 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6372 	 * undefined; you can actually have a CPU frequency change take
6373 	 * place in between the computation of X and the setting of the
6374 	 * variable.  To protect against this problem, all updates of
6375 	 * the per_cpu tsc_khz variable are done in an interrupt
6376 	 * protected IPI, and all callers wishing to update the value
6377 	 * must wait for a synchronous IPI to complete (which is trivial
6378 	 * if the caller is on the CPU already).  This establishes the
6379 	 * necessary total order on variable updates.
6380 	 *
6381 	 * Note that because a guest time update may take place
6382 	 * anytime after the setting of the VCPU's request bit, the
6383 	 * correct TSC value must be set before the request.  However,
6384 	 * to ensure the update actually makes it to any guest which
6385 	 * starts running in hardware virtualization between the set
6386 	 * and the acquisition of the spinlock, we must also ping the
6387 	 * CPU after setting the request bit.
6388 	 *
6389 	 */
6390 
6391 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6392 		return 0;
6393 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6394 		return 0;
6395 
6396 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6397 
6398 	spin_lock(&kvm_lock);
6399 	list_for_each_entry(kvm, &vm_list, vm_list) {
6400 		kvm_for_each_vcpu(i, vcpu, kvm) {
6401 			if (vcpu->cpu != freq->cpu)
6402 				continue;
6403 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6404 			if (vcpu->cpu != smp_processor_id())
6405 				send_ipi = 1;
6406 		}
6407 	}
6408 	spin_unlock(&kvm_lock);
6409 
6410 	if (freq->old < freq->new && send_ipi) {
6411 		/*
6412 		 * We upscale the frequency.  Must make the guest
6413 		 * doesn't see old kvmclock values while running with
6414 		 * the new frequency, otherwise we risk the guest sees
6415 		 * time go backwards.
6416 		 *
6417 		 * In case we update the frequency for another cpu
6418 		 * (which might be in guest context) send an interrupt
6419 		 * to kick the cpu out of guest context.  Next time
6420 		 * guest context is entered kvmclock will be updated,
6421 		 * so the guest will not see stale values.
6422 		 */
6423 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6424 	}
6425 	return 0;
6426 }
6427 
6428 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6429 	.notifier_call  = kvmclock_cpufreq_notifier
6430 };
6431 
6432 static int kvmclock_cpu_online(unsigned int cpu)
6433 {
6434 	tsc_khz_changed(NULL);
6435 	return 0;
6436 }
6437 
6438 static void kvm_timer_init(void)
6439 {
6440 	max_tsc_khz = tsc_khz;
6441 
6442 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6443 #ifdef CONFIG_CPU_FREQ
6444 		struct cpufreq_policy policy;
6445 		int cpu;
6446 
6447 		memset(&policy, 0, sizeof(policy));
6448 		cpu = get_cpu();
6449 		cpufreq_get_policy(&policy, cpu);
6450 		if (policy.cpuinfo.max_freq)
6451 			max_tsc_khz = policy.cpuinfo.max_freq;
6452 		put_cpu();
6453 #endif
6454 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6455 					  CPUFREQ_TRANSITION_NOTIFIER);
6456 	}
6457 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6458 
6459 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6460 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6461 }
6462 
6463 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6464 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6465 
6466 int kvm_is_in_guest(void)
6467 {
6468 	return __this_cpu_read(current_vcpu) != NULL;
6469 }
6470 
6471 static int kvm_is_user_mode(void)
6472 {
6473 	int user_mode = 3;
6474 
6475 	if (__this_cpu_read(current_vcpu))
6476 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6477 
6478 	return user_mode != 0;
6479 }
6480 
6481 static unsigned long kvm_get_guest_ip(void)
6482 {
6483 	unsigned long ip = 0;
6484 
6485 	if (__this_cpu_read(current_vcpu))
6486 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6487 
6488 	return ip;
6489 }
6490 
6491 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6492 	.is_in_guest		= kvm_is_in_guest,
6493 	.is_user_mode		= kvm_is_user_mode,
6494 	.get_guest_ip		= kvm_get_guest_ip,
6495 };
6496 
6497 static void kvm_set_mmio_spte_mask(void)
6498 {
6499 	u64 mask;
6500 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6501 
6502 	/*
6503 	 * Set the reserved bits and the present bit of an paging-structure
6504 	 * entry to generate page fault with PFER.RSV = 1.
6505 	 */
6506 	 /* Mask the reserved physical address bits. */
6507 	mask = rsvd_bits(maxphyaddr, 51);
6508 
6509 	/* Set the present bit. */
6510 	mask |= 1ull;
6511 
6512 #ifdef CONFIG_X86_64
6513 	/*
6514 	 * If reserved bit is not supported, clear the present bit to disable
6515 	 * mmio page fault.
6516 	 */
6517 	if (maxphyaddr == 52)
6518 		mask &= ~1ull;
6519 #endif
6520 
6521 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6522 }
6523 
6524 #ifdef CONFIG_X86_64
6525 static void pvclock_gtod_update_fn(struct work_struct *work)
6526 {
6527 	struct kvm *kvm;
6528 
6529 	struct kvm_vcpu *vcpu;
6530 	int i;
6531 
6532 	spin_lock(&kvm_lock);
6533 	list_for_each_entry(kvm, &vm_list, vm_list)
6534 		kvm_for_each_vcpu(i, vcpu, kvm)
6535 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6536 	atomic_set(&kvm_guest_has_master_clock, 0);
6537 	spin_unlock(&kvm_lock);
6538 }
6539 
6540 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6541 
6542 /*
6543  * Notification about pvclock gtod data update.
6544  */
6545 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6546 			       void *priv)
6547 {
6548 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6549 	struct timekeeper *tk = priv;
6550 
6551 	update_pvclock_gtod(tk);
6552 
6553 	/* disable master clock if host does not trust, or does not
6554 	 * use, TSC based clocksource.
6555 	 */
6556 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6557 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6558 		queue_work(system_long_wq, &pvclock_gtod_work);
6559 
6560 	return 0;
6561 }
6562 
6563 static struct notifier_block pvclock_gtod_notifier = {
6564 	.notifier_call = pvclock_gtod_notify,
6565 };
6566 #endif
6567 
6568 int kvm_arch_init(void *opaque)
6569 {
6570 	int r;
6571 	struct kvm_x86_ops *ops = opaque;
6572 
6573 	if (kvm_x86_ops) {
6574 		printk(KERN_ERR "kvm: already loaded the other module\n");
6575 		r = -EEXIST;
6576 		goto out;
6577 	}
6578 
6579 	if (!ops->cpu_has_kvm_support()) {
6580 		printk(KERN_ERR "kvm: no hardware support\n");
6581 		r = -EOPNOTSUPP;
6582 		goto out;
6583 	}
6584 	if (ops->disabled_by_bios()) {
6585 		printk(KERN_ERR "kvm: disabled by bios\n");
6586 		r = -EOPNOTSUPP;
6587 		goto out;
6588 	}
6589 
6590 	r = -ENOMEM;
6591 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6592 	if (!shared_msrs) {
6593 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6594 		goto out;
6595 	}
6596 
6597 	r = kvm_mmu_module_init();
6598 	if (r)
6599 		goto out_free_percpu;
6600 
6601 	kvm_set_mmio_spte_mask();
6602 
6603 	kvm_x86_ops = ops;
6604 
6605 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6606 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6607 			PT_PRESENT_MASK, 0, sme_me_mask);
6608 	kvm_timer_init();
6609 
6610 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6611 
6612 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6613 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6614 
6615 	kvm_lapic_init();
6616 #ifdef CONFIG_X86_64
6617 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6618 
6619 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6620 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6621 #endif
6622 
6623 	return 0;
6624 
6625 out_free_percpu:
6626 	free_percpu(shared_msrs);
6627 out:
6628 	return r;
6629 }
6630 
6631 void kvm_arch_exit(void)
6632 {
6633 #ifdef CONFIG_X86_64
6634 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6635 		clear_hv_tscchange_cb();
6636 #endif
6637 	kvm_lapic_exit();
6638 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6639 
6640 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6641 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6642 					    CPUFREQ_TRANSITION_NOTIFIER);
6643 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6644 #ifdef CONFIG_X86_64
6645 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6646 #endif
6647 	kvm_x86_ops = NULL;
6648 	kvm_mmu_module_exit();
6649 	free_percpu(shared_msrs);
6650 }
6651 
6652 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6653 {
6654 	++vcpu->stat.halt_exits;
6655 	if (lapic_in_kernel(vcpu)) {
6656 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6657 		return 1;
6658 	} else {
6659 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6660 		return 0;
6661 	}
6662 }
6663 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6664 
6665 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6666 {
6667 	int ret = kvm_skip_emulated_instruction(vcpu);
6668 	/*
6669 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6670 	 * KVM_EXIT_DEBUG here.
6671 	 */
6672 	return kvm_vcpu_halt(vcpu) && ret;
6673 }
6674 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6675 
6676 #ifdef CONFIG_X86_64
6677 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6678 			        unsigned long clock_type)
6679 {
6680 	struct kvm_clock_pairing clock_pairing;
6681 	struct timespec64 ts;
6682 	u64 cycle;
6683 	int ret;
6684 
6685 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6686 		return -KVM_EOPNOTSUPP;
6687 
6688 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6689 		return -KVM_EOPNOTSUPP;
6690 
6691 	clock_pairing.sec = ts.tv_sec;
6692 	clock_pairing.nsec = ts.tv_nsec;
6693 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6694 	clock_pairing.flags = 0;
6695 
6696 	ret = 0;
6697 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6698 			    sizeof(struct kvm_clock_pairing)))
6699 		ret = -KVM_EFAULT;
6700 
6701 	return ret;
6702 }
6703 #endif
6704 
6705 /*
6706  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6707  *
6708  * @apicid - apicid of vcpu to be kicked.
6709  */
6710 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6711 {
6712 	struct kvm_lapic_irq lapic_irq;
6713 
6714 	lapic_irq.shorthand = 0;
6715 	lapic_irq.dest_mode = 0;
6716 	lapic_irq.level = 0;
6717 	lapic_irq.dest_id = apicid;
6718 	lapic_irq.msi_redir_hint = false;
6719 
6720 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6721 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6722 }
6723 
6724 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6725 {
6726 	vcpu->arch.apicv_active = false;
6727 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6728 }
6729 
6730 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6731 {
6732 	unsigned long nr, a0, a1, a2, a3, ret;
6733 	int op_64_bit;
6734 
6735 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6736 		return kvm_hv_hypercall(vcpu);
6737 
6738 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6739 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6740 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6741 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6742 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6743 
6744 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6745 
6746 	op_64_bit = is_64_bit_mode(vcpu);
6747 	if (!op_64_bit) {
6748 		nr &= 0xFFFFFFFF;
6749 		a0 &= 0xFFFFFFFF;
6750 		a1 &= 0xFFFFFFFF;
6751 		a2 &= 0xFFFFFFFF;
6752 		a3 &= 0xFFFFFFFF;
6753 	}
6754 
6755 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6756 		ret = -KVM_EPERM;
6757 		goto out;
6758 	}
6759 
6760 	switch (nr) {
6761 	case KVM_HC_VAPIC_POLL_IRQ:
6762 		ret = 0;
6763 		break;
6764 	case KVM_HC_KICK_CPU:
6765 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6766 		ret = 0;
6767 		break;
6768 #ifdef CONFIG_X86_64
6769 	case KVM_HC_CLOCK_PAIRING:
6770 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6771 		break;
6772 #endif
6773 	default:
6774 		ret = -KVM_ENOSYS;
6775 		break;
6776 	}
6777 out:
6778 	if (!op_64_bit)
6779 		ret = (u32)ret;
6780 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6781 
6782 	++vcpu->stat.hypercalls;
6783 	return kvm_skip_emulated_instruction(vcpu);
6784 }
6785 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6786 
6787 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6788 {
6789 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6790 	char instruction[3];
6791 	unsigned long rip = kvm_rip_read(vcpu);
6792 
6793 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6794 
6795 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6796 		&ctxt->exception);
6797 }
6798 
6799 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6800 {
6801 	return vcpu->run->request_interrupt_window &&
6802 		likely(!pic_in_kernel(vcpu->kvm));
6803 }
6804 
6805 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6806 {
6807 	struct kvm_run *kvm_run = vcpu->run;
6808 
6809 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6810 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6811 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6812 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6813 	kvm_run->ready_for_interrupt_injection =
6814 		pic_in_kernel(vcpu->kvm) ||
6815 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6816 }
6817 
6818 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6819 {
6820 	int max_irr, tpr;
6821 
6822 	if (!kvm_x86_ops->update_cr8_intercept)
6823 		return;
6824 
6825 	if (!lapic_in_kernel(vcpu))
6826 		return;
6827 
6828 	if (vcpu->arch.apicv_active)
6829 		return;
6830 
6831 	if (!vcpu->arch.apic->vapic_addr)
6832 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6833 	else
6834 		max_irr = -1;
6835 
6836 	if (max_irr != -1)
6837 		max_irr >>= 4;
6838 
6839 	tpr = kvm_lapic_get_cr8(vcpu);
6840 
6841 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6842 }
6843 
6844 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6845 {
6846 	int r;
6847 
6848 	/* try to reinject previous events if any */
6849 
6850 	if (vcpu->arch.exception.injected)
6851 		kvm_x86_ops->queue_exception(vcpu);
6852 	/*
6853 	 * Do not inject an NMI or interrupt if there is a pending
6854 	 * exception.  Exceptions and interrupts are recognized at
6855 	 * instruction boundaries, i.e. the start of an instruction.
6856 	 * Trap-like exceptions, e.g. #DB, have higher priority than
6857 	 * NMIs and interrupts, i.e. traps are recognized before an
6858 	 * NMI/interrupt that's pending on the same instruction.
6859 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6860 	 * priority, but are only generated (pended) during instruction
6861 	 * execution, i.e. a pending fault-like exception means the
6862 	 * fault occurred on the *previous* instruction and must be
6863 	 * serviced prior to recognizing any new events in order to
6864 	 * fully complete the previous instruction.
6865 	 */
6866 	else if (!vcpu->arch.exception.pending) {
6867 		if (vcpu->arch.nmi_injected)
6868 			kvm_x86_ops->set_nmi(vcpu);
6869 		else if (vcpu->arch.interrupt.injected)
6870 			kvm_x86_ops->set_irq(vcpu);
6871 	}
6872 
6873 	/*
6874 	 * Call check_nested_events() even if we reinjected a previous event
6875 	 * in order for caller to determine if it should require immediate-exit
6876 	 * from L2 to L1 due to pending L1 events which require exit
6877 	 * from L2 to L1.
6878 	 */
6879 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6880 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6881 		if (r != 0)
6882 			return r;
6883 	}
6884 
6885 	/* try to inject new event if pending */
6886 	if (vcpu->arch.exception.pending) {
6887 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6888 					vcpu->arch.exception.has_error_code,
6889 					vcpu->arch.exception.error_code);
6890 
6891 		WARN_ON_ONCE(vcpu->arch.exception.injected);
6892 		vcpu->arch.exception.pending = false;
6893 		vcpu->arch.exception.injected = true;
6894 
6895 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6896 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6897 					     X86_EFLAGS_RF);
6898 
6899 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6900 		    (vcpu->arch.dr7 & DR7_GD)) {
6901 			vcpu->arch.dr7 &= ~DR7_GD;
6902 			kvm_update_dr7(vcpu);
6903 		}
6904 
6905 		kvm_x86_ops->queue_exception(vcpu);
6906 	}
6907 
6908 	/* Don't consider new event if we re-injected an event */
6909 	if (kvm_event_needs_reinjection(vcpu))
6910 		return 0;
6911 
6912 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
6913 	    kvm_x86_ops->smi_allowed(vcpu)) {
6914 		vcpu->arch.smi_pending = false;
6915 		++vcpu->arch.smi_count;
6916 		enter_smm(vcpu);
6917 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6918 		--vcpu->arch.nmi_pending;
6919 		vcpu->arch.nmi_injected = true;
6920 		kvm_x86_ops->set_nmi(vcpu);
6921 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6922 		/*
6923 		 * Because interrupts can be injected asynchronously, we are
6924 		 * calling check_nested_events again here to avoid a race condition.
6925 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6926 		 * proposal and current concerns.  Perhaps we should be setting
6927 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6928 		 */
6929 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6930 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6931 			if (r != 0)
6932 				return r;
6933 		}
6934 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6935 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6936 					    false);
6937 			kvm_x86_ops->set_irq(vcpu);
6938 		}
6939 	}
6940 
6941 	return 0;
6942 }
6943 
6944 static void process_nmi(struct kvm_vcpu *vcpu)
6945 {
6946 	unsigned limit = 2;
6947 
6948 	/*
6949 	 * x86 is limited to one NMI running, and one NMI pending after it.
6950 	 * If an NMI is already in progress, limit further NMIs to just one.
6951 	 * Otherwise, allow two (and we'll inject the first one immediately).
6952 	 */
6953 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6954 		limit = 1;
6955 
6956 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6957 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6958 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6959 }
6960 
6961 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6962 {
6963 	u32 flags = 0;
6964 	flags |= seg->g       << 23;
6965 	flags |= seg->db      << 22;
6966 	flags |= seg->l       << 21;
6967 	flags |= seg->avl     << 20;
6968 	flags |= seg->present << 15;
6969 	flags |= seg->dpl     << 13;
6970 	flags |= seg->s       << 12;
6971 	flags |= seg->type    << 8;
6972 	return flags;
6973 }
6974 
6975 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6976 {
6977 	struct kvm_segment seg;
6978 	int offset;
6979 
6980 	kvm_get_segment(vcpu, &seg, n);
6981 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6982 
6983 	if (n < 3)
6984 		offset = 0x7f84 + n * 12;
6985 	else
6986 		offset = 0x7f2c + (n - 3) * 12;
6987 
6988 	put_smstate(u32, buf, offset + 8, seg.base);
6989 	put_smstate(u32, buf, offset + 4, seg.limit);
6990 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6991 }
6992 
6993 #ifdef CONFIG_X86_64
6994 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6995 {
6996 	struct kvm_segment seg;
6997 	int offset;
6998 	u16 flags;
6999 
7000 	kvm_get_segment(vcpu, &seg, n);
7001 	offset = 0x7e00 + n * 16;
7002 
7003 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7004 	put_smstate(u16, buf, offset, seg.selector);
7005 	put_smstate(u16, buf, offset + 2, flags);
7006 	put_smstate(u32, buf, offset + 4, seg.limit);
7007 	put_smstate(u64, buf, offset + 8, seg.base);
7008 }
7009 #endif
7010 
7011 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7012 {
7013 	struct desc_ptr dt;
7014 	struct kvm_segment seg;
7015 	unsigned long val;
7016 	int i;
7017 
7018 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7019 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7020 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7021 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7022 
7023 	for (i = 0; i < 8; i++)
7024 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7025 
7026 	kvm_get_dr(vcpu, 6, &val);
7027 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7028 	kvm_get_dr(vcpu, 7, &val);
7029 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7030 
7031 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7032 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7033 	put_smstate(u32, buf, 0x7f64, seg.base);
7034 	put_smstate(u32, buf, 0x7f60, seg.limit);
7035 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7036 
7037 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7038 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7039 	put_smstate(u32, buf, 0x7f80, seg.base);
7040 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7041 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7042 
7043 	kvm_x86_ops->get_gdt(vcpu, &dt);
7044 	put_smstate(u32, buf, 0x7f74, dt.address);
7045 	put_smstate(u32, buf, 0x7f70, dt.size);
7046 
7047 	kvm_x86_ops->get_idt(vcpu, &dt);
7048 	put_smstate(u32, buf, 0x7f58, dt.address);
7049 	put_smstate(u32, buf, 0x7f54, dt.size);
7050 
7051 	for (i = 0; i < 6; i++)
7052 		enter_smm_save_seg_32(vcpu, buf, i);
7053 
7054 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7055 
7056 	/* revision id */
7057 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7058 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7059 }
7060 
7061 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7062 {
7063 #ifdef CONFIG_X86_64
7064 	struct desc_ptr dt;
7065 	struct kvm_segment seg;
7066 	unsigned long val;
7067 	int i;
7068 
7069 	for (i = 0; i < 16; i++)
7070 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7071 
7072 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7073 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7074 
7075 	kvm_get_dr(vcpu, 6, &val);
7076 	put_smstate(u64, buf, 0x7f68, val);
7077 	kvm_get_dr(vcpu, 7, &val);
7078 	put_smstate(u64, buf, 0x7f60, val);
7079 
7080 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7081 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7082 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7083 
7084 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7085 
7086 	/* revision id */
7087 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7088 
7089 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7090 
7091 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7092 	put_smstate(u16, buf, 0x7e90, seg.selector);
7093 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7094 	put_smstate(u32, buf, 0x7e94, seg.limit);
7095 	put_smstate(u64, buf, 0x7e98, seg.base);
7096 
7097 	kvm_x86_ops->get_idt(vcpu, &dt);
7098 	put_smstate(u32, buf, 0x7e84, dt.size);
7099 	put_smstate(u64, buf, 0x7e88, dt.address);
7100 
7101 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7102 	put_smstate(u16, buf, 0x7e70, seg.selector);
7103 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7104 	put_smstate(u32, buf, 0x7e74, seg.limit);
7105 	put_smstate(u64, buf, 0x7e78, seg.base);
7106 
7107 	kvm_x86_ops->get_gdt(vcpu, &dt);
7108 	put_smstate(u32, buf, 0x7e64, dt.size);
7109 	put_smstate(u64, buf, 0x7e68, dt.address);
7110 
7111 	for (i = 0; i < 6; i++)
7112 		enter_smm_save_seg_64(vcpu, buf, i);
7113 #else
7114 	WARN_ON_ONCE(1);
7115 #endif
7116 }
7117 
7118 static void enter_smm(struct kvm_vcpu *vcpu)
7119 {
7120 	struct kvm_segment cs, ds;
7121 	struct desc_ptr dt;
7122 	char buf[512];
7123 	u32 cr0;
7124 
7125 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7126 	memset(buf, 0, 512);
7127 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7128 		enter_smm_save_state_64(vcpu, buf);
7129 	else
7130 		enter_smm_save_state_32(vcpu, buf);
7131 
7132 	/*
7133 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7134 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7135 	 * the SMM state-save area.
7136 	 */
7137 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7138 
7139 	vcpu->arch.hflags |= HF_SMM_MASK;
7140 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7141 
7142 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7143 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7144 	else
7145 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7146 
7147 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7148 	kvm_rip_write(vcpu, 0x8000);
7149 
7150 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7151 	kvm_x86_ops->set_cr0(vcpu, cr0);
7152 	vcpu->arch.cr0 = cr0;
7153 
7154 	kvm_x86_ops->set_cr4(vcpu, 0);
7155 
7156 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7157 	dt.address = dt.size = 0;
7158 	kvm_x86_ops->set_idt(vcpu, &dt);
7159 
7160 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7161 
7162 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7163 	cs.base = vcpu->arch.smbase;
7164 
7165 	ds.selector = 0;
7166 	ds.base = 0;
7167 
7168 	cs.limit    = ds.limit = 0xffffffff;
7169 	cs.type     = ds.type = 0x3;
7170 	cs.dpl      = ds.dpl = 0;
7171 	cs.db       = ds.db = 0;
7172 	cs.s        = ds.s = 1;
7173 	cs.l        = ds.l = 0;
7174 	cs.g        = ds.g = 1;
7175 	cs.avl      = ds.avl = 0;
7176 	cs.present  = ds.present = 1;
7177 	cs.unusable = ds.unusable = 0;
7178 	cs.padding  = ds.padding = 0;
7179 
7180 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7181 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7182 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7183 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7184 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7185 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7186 
7187 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7188 		kvm_x86_ops->set_efer(vcpu, 0);
7189 
7190 	kvm_update_cpuid(vcpu);
7191 	kvm_mmu_reset_context(vcpu);
7192 }
7193 
7194 static void process_smi(struct kvm_vcpu *vcpu)
7195 {
7196 	vcpu->arch.smi_pending = true;
7197 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7198 }
7199 
7200 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7201 {
7202 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7203 }
7204 
7205 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7206 {
7207 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7208 		return;
7209 
7210 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7211 
7212 	if (irqchip_split(vcpu->kvm))
7213 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7214 	else {
7215 		if (vcpu->arch.apicv_active)
7216 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7217 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7218 	}
7219 
7220 	if (is_guest_mode(vcpu))
7221 		vcpu->arch.load_eoi_exitmap_pending = true;
7222 	else
7223 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7224 }
7225 
7226 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7227 {
7228 	u64 eoi_exit_bitmap[4];
7229 
7230 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7231 		return;
7232 
7233 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7234 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7235 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7236 }
7237 
7238 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7239 		unsigned long start, unsigned long end)
7240 {
7241 	unsigned long apic_address;
7242 
7243 	/*
7244 	 * The physical address of apic access page is stored in the VMCS.
7245 	 * Update it when it becomes invalid.
7246 	 */
7247 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7248 	if (start <= apic_address && apic_address < end)
7249 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7250 }
7251 
7252 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7253 {
7254 	struct page *page = NULL;
7255 
7256 	if (!lapic_in_kernel(vcpu))
7257 		return;
7258 
7259 	if (!kvm_x86_ops->set_apic_access_page_addr)
7260 		return;
7261 
7262 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7263 	if (is_error_page(page))
7264 		return;
7265 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7266 
7267 	/*
7268 	 * Do not pin apic access page in memory, the MMU notifier
7269 	 * will call us again if it is migrated or swapped out.
7270 	 */
7271 	put_page(page);
7272 }
7273 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7274 
7275 /*
7276  * Returns 1 to let vcpu_run() continue the guest execution loop without
7277  * exiting to the userspace.  Otherwise, the value will be returned to the
7278  * userspace.
7279  */
7280 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7281 {
7282 	int r;
7283 	bool req_int_win =
7284 		dm_request_for_irq_injection(vcpu) &&
7285 		kvm_cpu_accept_dm_intr(vcpu);
7286 
7287 	bool req_immediate_exit = false;
7288 
7289 	if (kvm_request_pending(vcpu)) {
7290 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7291 			kvm_mmu_unload(vcpu);
7292 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7293 			__kvm_migrate_timers(vcpu);
7294 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7295 			kvm_gen_update_masterclock(vcpu->kvm);
7296 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7297 			kvm_gen_kvmclock_update(vcpu);
7298 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7299 			r = kvm_guest_time_update(vcpu);
7300 			if (unlikely(r))
7301 				goto out;
7302 		}
7303 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7304 			kvm_mmu_sync_roots(vcpu);
7305 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7306 			kvm_vcpu_flush_tlb(vcpu, true);
7307 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7308 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7309 			r = 0;
7310 			goto out;
7311 		}
7312 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7313 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7314 			vcpu->mmio_needed = 0;
7315 			r = 0;
7316 			goto out;
7317 		}
7318 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7319 			/* Page is swapped out. Do synthetic halt */
7320 			vcpu->arch.apf.halted = true;
7321 			r = 1;
7322 			goto out;
7323 		}
7324 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7325 			record_steal_time(vcpu);
7326 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7327 			process_smi(vcpu);
7328 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7329 			process_nmi(vcpu);
7330 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7331 			kvm_pmu_handle_event(vcpu);
7332 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7333 			kvm_pmu_deliver_pmi(vcpu);
7334 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7335 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7336 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7337 				     vcpu->arch.ioapic_handled_vectors)) {
7338 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7339 				vcpu->run->eoi.vector =
7340 						vcpu->arch.pending_ioapic_eoi;
7341 				r = 0;
7342 				goto out;
7343 			}
7344 		}
7345 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7346 			vcpu_scan_ioapic(vcpu);
7347 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7348 			vcpu_load_eoi_exitmap(vcpu);
7349 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7350 			kvm_vcpu_reload_apic_access_page(vcpu);
7351 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7352 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7353 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7354 			r = 0;
7355 			goto out;
7356 		}
7357 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7358 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7359 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7360 			r = 0;
7361 			goto out;
7362 		}
7363 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7364 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7365 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7366 			r = 0;
7367 			goto out;
7368 		}
7369 
7370 		/*
7371 		 * KVM_REQ_HV_STIMER has to be processed after
7372 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7373 		 * depend on the guest clock being up-to-date
7374 		 */
7375 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7376 			kvm_hv_process_stimers(vcpu);
7377 	}
7378 
7379 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7380 		++vcpu->stat.req_event;
7381 		kvm_apic_accept_events(vcpu);
7382 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7383 			r = 1;
7384 			goto out;
7385 		}
7386 
7387 		if (inject_pending_event(vcpu, req_int_win) != 0)
7388 			req_immediate_exit = true;
7389 		else {
7390 			/* Enable SMI/NMI/IRQ window open exits if needed.
7391 			 *
7392 			 * SMIs have three cases:
7393 			 * 1) They can be nested, and then there is nothing to
7394 			 *    do here because RSM will cause a vmexit anyway.
7395 			 * 2) There is an ISA-specific reason why SMI cannot be
7396 			 *    injected, and the moment when this changes can be
7397 			 *    intercepted.
7398 			 * 3) Or the SMI can be pending because
7399 			 *    inject_pending_event has completed the injection
7400 			 *    of an IRQ or NMI from the previous vmexit, and
7401 			 *    then we request an immediate exit to inject the
7402 			 *    SMI.
7403 			 */
7404 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7405 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7406 					req_immediate_exit = true;
7407 			if (vcpu->arch.nmi_pending)
7408 				kvm_x86_ops->enable_nmi_window(vcpu);
7409 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7410 				kvm_x86_ops->enable_irq_window(vcpu);
7411 			WARN_ON(vcpu->arch.exception.pending);
7412 		}
7413 
7414 		if (kvm_lapic_enabled(vcpu)) {
7415 			update_cr8_intercept(vcpu);
7416 			kvm_lapic_sync_to_vapic(vcpu);
7417 		}
7418 	}
7419 
7420 	r = kvm_mmu_reload(vcpu);
7421 	if (unlikely(r)) {
7422 		goto cancel_injection;
7423 	}
7424 
7425 	preempt_disable();
7426 
7427 	kvm_x86_ops->prepare_guest_switch(vcpu);
7428 
7429 	/*
7430 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7431 	 * IPI are then delayed after guest entry, which ensures that they
7432 	 * result in virtual interrupt delivery.
7433 	 */
7434 	local_irq_disable();
7435 	vcpu->mode = IN_GUEST_MODE;
7436 
7437 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7438 
7439 	/*
7440 	 * 1) We should set ->mode before checking ->requests.  Please see
7441 	 * the comment in kvm_vcpu_exiting_guest_mode().
7442 	 *
7443 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7444 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7445 	 * (see vmx_deliver_posted_interrupt).
7446 	 *
7447 	 * 3) This also orders the write to mode from any reads to the page
7448 	 * tables done while the VCPU is running.  Please see the comment
7449 	 * in kvm_flush_remote_tlbs.
7450 	 */
7451 	smp_mb__after_srcu_read_unlock();
7452 
7453 	/*
7454 	 * This handles the case where a posted interrupt was
7455 	 * notified with kvm_vcpu_kick.
7456 	 */
7457 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7458 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7459 
7460 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7461 	    || need_resched() || signal_pending(current)) {
7462 		vcpu->mode = OUTSIDE_GUEST_MODE;
7463 		smp_wmb();
7464 		local_irq_enable();
7465 		preempt_enable();
7466 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7467 		r = 1;
7468 		goto cancel_injection;
7469 	}
7470 
7471 	kvm_load_guest_xcr0(vcpu);
7472 
7473 	if (req_immediate_exit) {
7474 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7475 		smp_send_reschedule(vcpu->cpu);
7476 	}
7477 
7478 	trace_kvm_entry(vcpu->vcpu_id);
7479 	if (lapic_timer_advance_ns)
7480 		wait_lapic_expire(vcpu);
7481 	guest_enter_irqoff();
7482 
7483 	if (unlikely(vcpu->arch.switch_db_regs)) {
7484 		set_debugreg(0, 7);
7485 		set_debugreg(vcpu->arch.eff_db[0], 0);
7486 		set_debugreg(vcpu->arch.eff_db[1], 1);
7487 		set_debugreg(vcpu->arch.eff_db[2], 2);
7488 		set_debugreg(vcpu->arch.eff_db[3], 3);
7489 		set_debugreg(vcpu->arch.dr6, 6);
7490 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7491 	}
7492 
7493 	kvm_x86_ops->run(vcpu);
7494 
7495 	/*
7496 	 * Do this here before restoring debug registers on the host.  And
7497 	 * since we do this before handling the vmexit, a DR access vmexit
7498 	 * can (a) read the correct value of the debug registers, (b) set
7499 	 * KVM_DEBUGREG_WONT_EXIT again.
7500 	 */
7501 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7502 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7503 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7504 		kvm_update_dr0123(vcpu);
7505 		kvm_update_dr6(vcpu);
7506 		kvm_update_dr7(vcpu);
7507 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7508 	}
7509 
7510 	/*
7511 	 * If the guest has used debug registers, at least dr7
7512 	 * will be disabled while returning to the host.
7513 	 * If we don't have active breakpoints in the host, we don't
7514 	 * care about the messed up debug address registers. But if
7515 	 * we have some of them active, restore the old state.
7516 	 */
7517 	if (hw_breakpoint_active())
7518 		hw_breakpoint_restore();
7519 
7520 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7521 
7522 	vcpu->mode = OUTSIDE_GUEST_MODE;
7523 	smp_wmb();
7524 
7525 	kvm_put_guest_xcr0(vcpu);
7526 
7527 	kvm_before_interrupt(vcpu);
7528 	kvm_x86_ops->handle_external_intr(vcpu);
7529 	kvm_after_interrupt(vcpu);
7530 
7531 	++vcpu->stat.exits;
7532 
7533 	guest_exit_irqoff();
7534 
7535 	local_irq_enable();
7536 	preempt_enable();
7537 
7538 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7539 
7540 	/*
7541 	 * Profile KVM exit RIPs:
7542 	 */
7543 	if (unlikely(prof_on == KVM_PROFILING)) {
7544 		unsigned long rip = kvm_rip_read(vcpu);
7545 		profile_hit(KVM_PROFILING, (void *)rip);
7546 	}
7547 
7548 	if (unlikely(vcpu->arch.tsc_always_catchup))
7549 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7550 
7551 	if (vcpu->arch.apic_attention)
7552 		kvm_lapic_sync_from_vapic(vcpu);
7553 
7554 	vcpu->arch.gpa_available = false;
7555 	r = kvm_x86_ops->handle_exit(vcpu);
7556 	return r;
7557 
7558 cancel_injection:
7559 	kvm_x86_ops->cancel_injection(vcpu);
7560 	if (unlikely(vcpu->arch.apic_attention))
7561 		kvm_lapic_sync_from_vapic(vcpu);
7562 out:
7563 	return r;
7564 }
7565 
7566 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7567 {
7568 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7569 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7570 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7571 		kvm_vcpu_block(vcpu);
7572 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7573 
7574 		if (kvm_x86_ops->post_block)
7575 			kvm_x86_ops->post_block(vcpu);
7576 
7577 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7578 			return 1;
7579 	}
7580 
7581 	kvm_apic_accept_events(vcpu);
7582 	switch(vcpu->arch.mp_state) {
7583 	case KVM_MP_STATE_HALTED:
7584 		vcpu->arch.pv.pv_unhalted = false;
7585 		vcpu->arch.mp_state =
7586 			KVM_MP_STATE_RUNNABLE;
7587 	case KVM_MP_STATE_RUNNABLE:
7588 		vcpu->arch.apf.halted = false;
7589 		break;
7590 	case KVM_MP_STATE_INIT_RECEIVED:
7591 		break;
7592 	default:
7593 		return -EINTR;
7594 		break;
7595 	}
7596 	return 1;
7597 }
7598 
7599 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7600 {
7601 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7602 		kvm_x86_ops->check_nested_events(vcpu, false);
7603 
7604 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7605 		!vcpu->arch.apf.halted);
7606 }
7607 
7608 static int vcpu_run(struct kvm_vcpu *vcpu)
7609 {
7610 	int r;
7611 	struct kvm *kvm = vcpu->kvm;
7612 
7613 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7614 	vcpu->arch.l1tf_flush_l1d = true;
7615 
7616 	for (;;) {
7617 		if (kvm_vcpu_running(vcpu)) {
7618 			r = vcpu_enter_guest(vcpu);
7619 		} else {
7620 			r = vcpu_block(kvm, vcpu);
7621 		}
7622 
7623 		if (r <= 0)
7624 			break;
7625 
7626 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7627 		if (kvm_cpu_has_pending_timer(vcpu))
7628 			kvm_inject_pending_timer_irqs(vcpu);
7629 
7630 		if (dm_request_for_irq_injection(vcpu) &&
7631 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7632 			r = 0;
7633 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7634 			++vcpu->stat.request_irq_exits;
7635 			break;
7636 		}
7637 
7638 		kvm_check_async_pf_completion(vcpu);
7639 
7640 		if (signal_pending(current)) {
7641 			r = -EINTR;
7642 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7643 			++vcpu->stat.signal_exits;
7644 			break;
7645 		}
7646 		if (need_resched()) {
7647 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7648 			cond_resched();
7649 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7650 		}
7651 	}
7652 
7653 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7654 
7655 	return r;
7656 }
7657 
7658 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7659 {
7660 	int r;
7661 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7662 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7663 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7664 	if (r != EMULATE_DONE)
7665 		return 0;
7666 	return 1;
7667 }
7668 
7669 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7670 {
7671 	BUG_ON(!vcpu->arch.pio.count);
7672 
7673 	return complete_emulated_io(vcpu);
7674 }
7675 
7676 /*
7677  * Implements the following, as a state machine:
7678  *
7679  * read:
7680  *   for each fragment
7681  *     for each mmio piece in the fragment
7682  *       write gpa, len
7683  *       exit
7684  *       copy data
7685  *   execute insn
7686  *
7687  * write:
7688  *   for each fragment
7689  *     for each mmio piece in the fragment
7690  *       write gpa, len
7691  *       copy data
7692  *       exit
7693  */
7694 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7695 {
7696 	struct kvm_run *run = vcpu->run;
7697 	struct kvm_mmio_fragment *frag;
7698 	unsigned len;
7699 
7700 	BUG_ON(!vcpu->mmio_needed);
7701 
7702 	/* Complete previous fragment */
7703 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7704 	len = min(8u, frag->len);
7705 	if (!vcpu->mmio_is_write)
7706 		memcpy(frag->data, run->mmio.data, len);
7707 
7708 	if (frag->len <= 8) {
7709 		/* Switch to the next fragment. */
7710 		frag++;
7711 		vcpu->mmio_cur_fragment++;
7712 	} else {
7713 		/* Go forward to the next mmio piece. */
7714 		frag->data += len;
7715 		frag->gpa += len;
7716 		frag->len -= len;
7717 	}
7718 
7719 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7720 		vcpu->mmio_needed = 0;
7721 
7722 		/* FIXME: return into emulator if single-stepping.  */
7723 		if (vcpu->mmio_is_write)
7724 			return 1;
7725 		vcpu->mmio_read_completed = 1;
7726 		return complete_emulated_io(vcpu);
7727 	}
7728 
7729 	run->exit_reason = KVM_EXIT_MMIO;
7730 	run->mmio.phys_addr = frag->gpa;
7731 	if (vcpu->mmio_is_write)
7732 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7733 	run->mmio.len = min(8u, frag->len);
7734 	run->mmio.is_write = vcpu->mmio_is_write;
7735 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7736 	return 0;
7737 }
7738 
7739 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7740 {
7741 	int r;
7742 
7743 	vcpu_load(vcpu);
7744 	kvm_sigset_activate(vcpu);
7745 	kvm_load_guest_fpu(vcpu);
7746 
7747 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7748 		if (kvm_run->immediate_exit) {
7749 			r = -EINTR;
7750 			goto out;
7751 		}
7752 		kvm_vcpu_block(vcpu);
7753 		kvm_apic_accept_events(vcpu);
7754 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7755 		r = -EAGAIN;
7756 		if (signal_pending(current)) {
7757 			r = -EINTR;
7758 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7759 			++vcpu->stat.signal_exits;
7760 		}
7761 		goto out;
7762 	}
7763 
7764 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7765 		r = -EINVAL;
7766 		goto out;
7767 	}
7768 
7769 	if (vcpu->run->kvm_dirty_regs) {
7770 		r = sync_regs(vcpu);
7771 		if (r != 0)
7772 			goto out;
7773 	}
7774 
7775 	/* re-sync apic's tpr */
7776 	if (!lapic_in_kernel(vcpu)) {
7777 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7778 			r = -EINVAL;
7779 			goto out;
7780 		}
7781 	}
7782 
7783 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7784 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7785 		vcpu->arch.complete_userspace_io = NULL;
7786 		r = cui(vcpu);
7787 		if (r <= 0)
7788 			goto out;
7789 	} else
7790 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7791 
7792 	if (kvm_run->immediate_exit)
7793 		r = -EINTR;
7794 	else
7795 		r = vcpu_run(vcpu);
7796 
7797 out:
7798 	kvm_put_guest_fpu(vcpu);
7799 	if (vcpu->run->kvm_valid_regs)
7800 		store_regs(vcpu);
7801 	post_kvm_run_save(vcpu);
7802 	kvm_sigset_deactivate(vcpu);
7803 
7804 	vcpu_put(vcpu);
7805 	return r;
7806 }
7807 
7808 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7809 {
7810 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7811 		/*
7812 		 * We are here if userspace calls get_regs() in the middle of
7813 		 * instruction emulation. Registers state needs to be copied
7814 		 * back from emulation context to vcpu. Userspace shouldn't do
7815 		 * that usually, but some bad designed PV devices (vmware
7816 		 * backdoor interface) need this to work
7817 		 */
7818 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7819 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7820 	}
7821 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7822 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7823 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7824 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7825 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7826 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7827 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7828 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7829 #ifdef CONFIG_X86_64
7830 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7831 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7832 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7833 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7834 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7835 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7836 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7837 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7838 #endif
7839 
7840 	regs->rip = kvm_rip_read(vcpu);
7841 	regs->rflags = kvm_get_rflags(vcpu);
7842 }
7843 
7844 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7845 {
7846 	vcpu_load(vcpu);
7847 	__get_regs(vcpu, regs);
7848 	vcpu_put(vcpu);
7849 	return 0;
7850 }
7851 
7852 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7853 {
7854 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7855 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7856 
7857 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7858 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7859 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7860 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7861 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7862 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7863 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7864 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7865 #ifdef CONFIG_X86_64
7866 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7867 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7868 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7869 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7870 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7871 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7872 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7873 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7874 #endif
7875 
7876 	kvm_rip_write(vcpu, regs->rip);
7877 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7878 
7879 	vcpu->arch.exception.pending = false;
7880 
7881 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7882 }
7883 
7884 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7885 {
7886 	vcpu_load(vcpu);
7887 	__set_regs(vcpu, regs);
7888 	vcpu_put(vcpu);
7889 	return 0;
7890 }
7891 
7892 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7893 {
7894 	struct kvm_segment cs;
7895 
7896 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7897 	*db = cs.db;
7898 	*l = cs.l;
7899 }
7900 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7901 
7902 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7903 {
7904 	struct desc_ptr dt;
7905 
7906 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7907 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7908 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7909 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7910 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7911 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7912 
7913 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7914 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7915 
7916 	kvm_x86_ops->get_idt(vcpu, &dt);
7917 	sregs->idt.limit = dt.size;
7918 	sregs->idt.base = dt.address;
7919 	kvm_x86_ops->get_gdt(vcpu, &dt);
7920 	sregs->gdt.limit = dt.size;
7921 	sregs->gdt.base = dt.address;
7922 
7923 	sregs->cr0 = kvm_read_cr0(vcpu);
7924 	sregs->cr2 = vcpu->arch.cr2;
7925 	sregs->cr3 = kvm_read_cr3(vcpu);
7926 	sregs->cr4 = kvm_read_cr4(vcpu);
7927 	sregs->cr8 = kvm_get_cr8(vcpu);
7928 	sregs->efer = vcpu->arch.efer;
7929 	sregs->apic_base = kvm_get_apic_base(vcpu);
7930 
7931 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7932 
7933 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
7934 		set_bit(vcpu->arch.interrupt.nr,
7935 			(unsigned long *)sregs->interrupt_bitmap);
7936 }
7937 
7938 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7939 				  struct kvm_sregs *sregs)
7940 {
7941 	vcpu_load(vcpu);
7942 	__get_sregs(vcpu, sregs);
7943 	vcpu_put(vcpu);
7944 	return 0;
7945 }
7946 
7947 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7948 				    struct kvm_mp_state *mp_state)
7949 {
7950 	vcpu_load(vcpu);
7951 
7952 	kvm_apic_accept_events(vcpu);
7953 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7954 					vcpu->arch.pv.pv_unhalted)
7955 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7956 	else
7957 		mp_state->mp_state = vcpu->arch.mp_state;
7958 
7959 	vcpu_put(vcpu);
7960 	return 0;
7961 }
7962 
7963 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7964 				    struct kvm_mp_state *mp_state)
7965 {
7966 	int ret = -EINVAL;
7967 
7968 	vcpu_load(vcpu);
7969 
7970 	if (!lapic_in_kernel(vcpu) &&
7971 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7972 		goto out;
7973 
7974 	/* INITs are latched while in SMM */
7975 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7976 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7977 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7978 		goto out;
7979 
7980 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7981 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7982 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7983 	} else
7984 		vcpu->arch.mp_state = mp_state->mp_state;
7985 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7986 
7987 	ret = 0;
7988 out:
7989 	vcpu_put(vcpu);
7990 	return ret;
7991 }
7992 
7993 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7994 		    int reason, bool has_error_code, u32 error_code)
7995 {
7996 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7997 	int ret;
7998 
7999 	init_emulate_ctxt(vcpu);
8000 
8001 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8002 				   has_error_code, error_code);
8003 
8004 	if (ret)
8005 		return EMULATE_FAIL;
8006 
8007 	kvm_rip_write(vcpu, ctxt->eip);
8008 	kvm_set_rflags(vcpu, ctxt->eflags);
8009 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8010 	return EMULATE_DONE;
8011 }
8012 EXPORT_SYMBOL_GPL(kvm_task_switch);
8013 
8014 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8015 {
8016 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8017 		/*
8018 		 * When EFER.LME and CR0.PG are set, the processor is in
8019 		 * 64-bit mode (though maybe in a 32-bit code segment).
8020 		 * CR4.PAE and EFER.LMA must be set.
8021 		 */
8022 		if (!(sregs->cr4 & X86_CR4_PAE)
8023 		    || !(sregs->efer & EFER_LMA))
8024 			return -EINVAL;
8025 	} else {
8026 		/*
8027 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8028 		 * segment cannot be 64-bit.
8029 		 */
8030 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8031 			return -EINVAL;
8032 	}
8033 
8034 	return 0;
8035 }
8036 
8037 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8038 {
8039 	struct msr_data apic_base_msr;
8040 	int mmu_reset_needed = 0;
8041 	int cpuid_update_needed = 0;
8042 	int pending_vec, max_bits, idx;
8043 	struct desc_ptr dt;
8044 	int ret = -EINVAL;
8045 
8046 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8047 			(sregs->cr4 & X86_CR4_OSXSAVE))
8048 		goto out;
8049 
8050 	if (kvm_valid_sregs(vcpu, sregs))
8051 		goto out;
8052 
8053 	apic_base_msr.data = sregs->apic_base;
8054 	apic_base_msr.host_initiated = true;
8055 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8056 		goto out;
8057 
8058 	dt.size = sregs->idt.limit;
8059 	dt.address = sregs->idt.base;
8060 	kvm_x86_ops->set_idt(vcpu, &dt);
8061 	dt.size = sregs->gdt.limit;
8062 	dt.address = sregs->gdt.base;
8063 	kvm_x86_ops->set_gdt(vcpu, &dt);
8064 
8065 	vcpu->arch.cr2 = sregs->cr2;
8066 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8067 	vcpu->arch.cr3 = sregs->cr3;
8068 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8069 
8070 	kvm_set_cr8(vcpu, sregs->cr8);
8071 
8072 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8073 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8074 
8075 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8076 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8077 	vcpu->arch.cr0 = sregs->cr0;
8078 
8079 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8080 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8081 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8082 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8083 	if (cpuid_update_needed)
8084 		kvm_update_cpuid(vcpu);
8085 
8086 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8087 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
8088 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8089 		mmu_reset_needed = 1;
8090 	}
8091 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8092 
8093 	if (mmu_reset_needed)
8094 		kvm_mmu_reset_context(vcpu);
8095 
8096 	max_bits = KVM_NR_INTERRUPTS;
8097 	pending_vec = find_first_bit(
8098 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8099 	if (pending_vec < max_bits) {
8100 		kvm_queue_interrupt(vcpu, pending_vec, false);
8101 		pr_debug("Set back pending irq %d\n", pending_vec);
8102 	}
8103 
8104 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8105 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8106 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8107 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8108 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8109 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8110 
8111 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8112 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8113 
8114 	update_cr8_intercept(vcpu);
8115 
8116 	/* Older userspace won't unhalt the vcpu on reset. */
8117 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8118 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8119 	    !is_protmode(vcpu))
8120 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8121 
8122 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8123 
8124 	ret = 0;
8125 out:
8126 	return ret;
8127 }
8128 
8129 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8130 				  struct kvm_sregs *sregs)
8131 {
8132 	int ret;
8133 
8134 	vcpu_load(vcpu);
8135 	ret = __set_sregs(vcpu, sregs);
8136 	vcpu_put(vcpu);
8137 	return ret;
8138 }
8139 
8140 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8141 					struct kvm_guest_debug *dbg)
8142 {
8143 	unsigned long rflags;
8144 	int i, r;
8145 
8146 	vcpu_load(vcpu);
8147 
8148 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8149 		r = -EBUSY;
8150 		if (vcpu->arch.exception.pending)
8151 			goto out;
8152 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8153 			kvm_queue_exception(vcpu, DB_VECTOR);
8154 		else
8155 			kvm_queue_exception(vcpu, BP_VECTOR);
8156 	}
8157 
8158 	/*
8159 	 * Read rflags as long as potentially injected trace flags are still
8160 	 * filtered out.
8161 	 */
8162 	rflags = kvm_get_rflags(vcpu);
8163 
8164 	vcpu->guest_debug = dbg->control;
8165 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8166 		vcpu->guest_debug = 0;
8167 
8168 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8169 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8170 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8171 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8172 	} else {
8173 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8174 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8175 	}
8176 	kvm_update_dr7(vcpu);
8177 
8178 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8179 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8180 			get_segment_base(vcpu, VCPU_SREG_CS);
8181 
8182 	/*
8183 	 * Trigger an rflags update that will inject or remove the trace
8184 	 * flags.
8185 	 */
8186 	kvm_set_rflags(vcpu, rflags);
8187 
8188 	kvm_x86_ops->update_bp_intercept(vcpu);
8189 
8190 	r = 0;
8191 
8192 out:
8193 	vcpu_put(vcpu);
8194 	return r;
8195 }
8196 
8197 /*
8198  * Translate a guest virtual address to a guest physical address.
8199  */
8200 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8201 				    struct kvm_translation *tr)
8202 {
8203 	unsigned long vaddr = tr->linear_address;
8204 	gpa_t gpa;
8205 	int idx;
8206 
8207 	vcpu_load(vcpu);
8208 
8209 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8210 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8211 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8212 	tr->physical_address = gpa;
8213 	tr->valid = gpa != UNMAPPED_GVA;
8214 	tr->writeable = 1;
8215 	tr->usermode = 0;
8216 
8217 	vcpu_put(vcpu);
8218 	return 0;
8219 }
8220 
8221 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8222 {
8223 	struct fxregs_state *fxsave;
8224 
8225 	vcpu_load(vcpu);
8226 
8227 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8228 	memcpy(fpu->fpr, fxsave->st_space, 128);
8229 	fpu->fcw = fxsave->cwd;
8230 	fpu->fsw = fxsave->swd;
8231 	fpu->ftwx = fxsave->twd;
8232 	fpu->last_opcode = fxsave->fop;
8233 	fpu->last_ip = fxsave->rip;
8234 	fpu->last_dp = fxsave->rdp;
8235 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8236 
8237 	vcpu_put(vcpu);
8238 	return 0;
8239 }
8240 
8241 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8242 {
8243 	struct fxregs_state *fxsave;
8244 
8245 	vcpu_load(vcpu);
8246 
8247 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8248 
8249 	memcpy(fxsave->st_space, fpu->fpr, 128);
8250 	fxsave->cwd = fpu->fcw;
8251 	fxsave->swd = fpu->fsw;
8252 	fxsave->twd = fpu->ftwx;
8253 	fxsave->fop = fpu->last_opcode;
8254 	fxsave->rip = fpu->last_ip;
8255 	fxsave->rdp = fpu->last_dp;
8256 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8257 
8258 	vcpu_put(vcpu);
8259 	return 0;
8260 }
8261 
8262 static void store_regs(struct kvm_vcpu *vcpu)
8263 {
8264 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8265 
8266 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8267 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8268 
8269 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8270 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8271 
8272 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8273 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8274 				vcpu, &vcpu->run->s.regs.events);
8275 }
8276 
8277 static int sync_regs(struct kvm_vcpu *vcpu)
8278 {
8279 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8280 		return -EINVAL;
8281 
8282 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8283 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8284 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8285 	}
8286 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8287 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8288 			return -EINVAL;
8289 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8290 	}
8291 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8292 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8293 				vcpu, &vcpu->run->s.regs.events))
8294 			return -EINVAL;
8295 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8296 	}
8297 
8298 	return 0;
8299 }
8300 
8301 static void fx_init(struct kvm_vcpu *vcpu)
8302 {
8303 	fpstate_init(&vcpu->arch.guest_fpu.state);
8304 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8305 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8306 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8307 
8308 	/*
8309 	 * Ensure guest xcr0 is valid for loading
8310 	 */
8311 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8312 
8313 	vcpu->arch.cr0 |= X86_CR0_ET;
8314 }
8315 
8316 /* Swap (qemu) user FPU context for the guest FPU context. */
8317 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8318 {
8319 	preempt_disable();
8320 	copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8321 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8322 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8323 				~XFEATURE_MASK_PKRU);
8324 	preempt_enable();
8325 	trace_kvm_fpu(1);
8326 }
8327 
8328 /* When vcpu_run ends, restore user space FPU context. */
8329 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8330 {
8331 	preempt_disable();
8332 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8333 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8334 	preempt_enable();
8335 	++vcpu->stat.fpu_reload;
8336 	trace_kvm_fpu(0);
8337 }
8338 
8339 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8340 {
8341 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8342 
8343 	kvmclock_reset(vcpu);
8344 
8345 	kvm_x86_ops->vcpu_free(vcpu);
8346 	free_cpumask_var(wbinvd_dirty_mask);
8347 }
8348 
8349 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8350 						unsigned int id)
8351 {
8352 	struct kvm_vcpu *vcpu;
8353 
8354 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8355 		printk_once(KERN_WARNING
8356 		"kvm: SMP vm created on host with unstable TSC; "
8357 		"guest TSC will not be reliable\n");
8358 
8359 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8360 
8361 	return vcpu;
8362 }
8363 
8364 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8365 {
8366 	kvm_vcpu_mtrr_init(vcpu);
8367 	vcpu_load(vcpu);
8368 	kvm_vcpu_reset(vcpu, false);
8369 	kvm_mmu_setup(vcpu);
8370 	vcpu_put(vcpu);
8371 	return 0;
8372 }
8373 
8374 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8375 {
8376 	struct msr_data msr;
8377 	struct kvm *kvm = vcpu->kvm;
8378 
8379 	kvm_hv_vcpu_postcreate(vcpu);
8380 
8381 	if (mutex_lock_killable(&vcpu->mutex))
8382 		return;
8383 	vcpu_load(vcpu);
8384 	msr.data = 0x0;
8385 	msr.index = MSR_IA32_TSC;
8386 	msr.host_initiated = true;
8387 	kvm_write_tsc(vcpu, &msr);
8388 	vcpu_put(vcpu);
8389 	mutex_unlock(&vcpu->mutex);
8390 
8391 	if (!kvmclock_periodic_sync)
8392 		return;
8393 
8394 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8395 					KVMCLOCK_SYNC_PERIOD);
8396 }
8397 
8398 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8399 {
8400 	vcpu->arch.apf.msr_val = 0;
8401 
8402 	vcpu_load(vcpu);
8403 	kvm_mmu_unload(vcpu);
8404 	vcpu_put(vcpu);
8405 
8406 	kvm_x86_ops->vcpu_free(vcpu);
8407 }
8408 
8409 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8410 {
8411 	kvm_lapic_reset(vcpu, init_event);
8412 
8413 	vcpu->arch.hflags = 0;
8414 
8415 	vcpu->arch.smi_pending = 0;
8416 	vcpu->arch.smi_count = 0;
8417 	atomic_set(&vcpu->arch.nmi_queued, 0);
8418 	vcpu->arch.nmi_pending = 0;
8419 	vcpu->arch.nmi_injected = false;
8420 	kvm_clear_interrupt_queue(vcpu);
8421 	kvm_clear_exception_queue(vcpu);
8422 	vcpu->arch.exception.pending = false;
8423 
8424 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8425 	kvm_update_dr0123(vcpu);
8426 	vcpu->arch.dr6 = DR6_INIT;
8427 	kvm_update_dr6(vcpu);
8428 	vcpu->arch.dr7 = DR7_FIXED_1;
8429 	kvm_update_dr7(vcpu);
8430 
8431 	vcpu->arch.cr2 = 0;
8432 
8433 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8434 	vcpu->arch.apf.msr_val = 0;
8435 	vcpu->arch.st.msr_val = 0;
8436 
8437 	kvmclock_reset(vcpu);
8438 
8439 	kvm_clear_async_pf_completion_queue(vcpu);
8440 	kvm_async_pf_hash_reset(vcpu);
8441 	vcpu->arch.apf.halted = false;
8442 
8443 	if (kvm_mpx_supported()) {
8444 		void *mpx_state_buffer;
8445 
8446 		/*
8447 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8448 		 * called with loaded FPU and does not let userspace fix the state.
8449 		 */
8450 		if (init_event)
8451 			kvm_put_guest_fpu(vcpu);
8452 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8453 					XFEATURE_MASK_BNDREGS);
8454 		if (mpx_state_buffer)
8455 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8456 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8457 					XFEATURE_MASK_BNDCSR);
8458 		if (mpx_state_buffer)
8459 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8460 		if (init_event)
8461 			kvm_load_guest_fpu(vcpu);
8462 	}
8463 
8464 	if (!init_event) {
8465 		kvm_pmu_reset(vcpu);
8466 		vcpu->arch.smbase = 0x30000;
8467 
8468 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8469 		vcpu->arch.msr_misc_features_enables = 0;
8470 
8471 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8472 	}
8473 
8474 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8475 	vcpu->arch.regs_avail = ~0;
8476 	vcpu->arch.regs_dirty = ~0;
8477 
8478 	vcpu->arch.ia32_xss = 0;
8479 
8480 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
8481 }
8482 
8483 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8484 {
8485 	struct kvm_segment cs;
8486 
8487 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8488 	cs.selector = vector << 8;
8489 	cs.base = vector << 12;
8490 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8491 	kvm_rip_write(vcpu, 0);
8492 }
8493 
8494 int kvm_arch_hardware_enable(void)
8495 {
8496 	struct kvm *kvm;
8497 	struct kvm_vcpu *vcpu;
8498 	int i;
8499 	int ret;
8500 	u64 local_tsc;
8501 	u64 max_tsc = 0;
8502 	bool stable, backwards_tsc = false;
8503 
8504 	kvm_shared_msr_cpu_online();
8505 	ret = kvm_x86_ops->hardware_enable();
8506 	if (ret != 0)
8507 		return ret;
8508 
8509 	local_tsc = rdtsc();
8510 	stable = !kvm_check_tsc_unstable();
8511 	list_for_each_entry(kvm, &vm_list, vm_list) {
8512 		kvm_for_each_vcpu(i, vcpu, kvm) {
8513 			if (!stable && vcpu->cpu == smp_processor_id())
8514 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8515 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8516 				backwards_tsc = true;
8517 				if (vcpu->arch.last_host_tsc > max_tsc)
8518 					max_tsc = vcpu->arch.last_host_tsc;
8519 			}
8520 		}
8521 	}
8522 
8523 	/*
8524 	 * Sometimes, even reliable TSCs go backwards.  This happens on
8525 	 * platforms that reset TSC during suspend or hibernate actions, but
8526 	 * maintain synchronization.  We must compensate.  Fortunately, we can
8527 	 * detect that condition here, which happens early in CPU bringup,
8528 	 * before any KVM threads can be running.  Unfortunately, we can't
8529 	 * bring the TSCs fully up to date with real time, as we aren't yet far
8530 	 * enough into CPU bringup that we know how much real time has actually
8531 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8532 	 * variables that haven't been updated yet.
8533 	 *
8534 	 * So we simply find the maximum observed TSC above, then record the
8535 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8536 	 * the adjustment will be applied.  Note that we accumulate
8537 	 * adjustments, in case multiple suspend cycles happen before some VCPU
8538 	 * gets a chance to run again.  In the event that no KVM threads get a
8539 	 * chance to run, we will miss the entire elapsed period, as we'll have
8540 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8541 	 * loose cycle time.  This isn't too big a deal, since the loss will be
8542 	 * uniform across all VCPUs (not to mention the scenario is extremely
8543 	 * unlikely). It is possible that a second hibernate recovery happens
8544 	 * much faster than a first, causing the observed TSC here to be
8545 	 * smaller; this would require additional padding adjustment, which is
8546 	 * why we set last_host_tsc to the local tsc observed here.
8547 	 *
8548 	 * N.B. - this code below runs only on platforms with reliable TSC,
8549 	 * as that is the only way backwards_tsc is set above.  Also note
8550 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8551 	 * have the same delta_cyc adjustment applied if backwards_tsc
8552 	 * is detected.  Note further, this adjustment is only done once,
8553 	 * as we reset last_host_tsc on all VCPUs to stop this from being
8554 	 * called multiple times (one for each physical CPU bringup).
8555 	 *
8556 	 * Platforms with unreliable TSCs don't have to deal with this, they
8557 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
8558 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
8559 	 * guarantee that they stay in perfect synchronization.
8560 	 */
8561 	if (backwards_tsc) {
8562 		u64 delta_cyc = max_tsc - local_tsc;
8563 		list_for_each_entry(kvm, &vm_list, vm_list) {
8564 			kvm->arch.backwards_tsc_observed = true;
8565 			kvm_for_each_vcpu(i, vcpu, kvm) {
8566 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
8567 				vcpu->arch.last_host_tsc = local_tsc;
8568 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8569 			}
8570 
8571 			/*
8572 			 * We have to disable TSC offset matching.. if you were
8573 			 * booting a VM while issuing an S4 host suspend....
8574 			 * you may have some problem.  Solving this issue is
8575 			 * left as an exercise to the reader.
8576 			 */
8577 			kvm->arch.last_tsc_nsec = 0;
8578 			kvm->arch.last_tsc_write = 0;
8579 		}
8580 
8581 	}
8582 	return 0;
8583 }
8584 
8585 void kvm_arch_hardware_disable(void)
8586 {
8587 	kvm_x86_ops->hardware_disable();
8588 	drop_user_return_notifiers();
8589 }
8590 
8591 int kvm_arch_hardware_setup(void)
8592 {
8593 	int r;
8594 
8595 	r = kvm_x86_ops->hardware_setup();
8596 	if (r != 0)
8597 		return r;
8598 
8599 	if (kvm_has_tsc_control) {
8600 		/*
8601 		 * Make sure the user can only configure tsc_khz values that
8602 		 * fit into a signed integer.
8603 		 * A min value is not calculated because it will always
8604 		 * be 1 on all machines.
8605 		 */
8606 		u64 max = min(0x7fffffffULL,
8607 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8608 		kvm_max_guest_tsc_khz = max;
8609 
8610 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8611 	}
8612 
8613 	kvm_init_msr_list();
8614 	return 0;
8615 }
8616 
8617 void kvm_arch_hardware_unsetup(void)
8618 {
8619 	kvm_x86_ops->hardware_unsetup();
8620 }
8621 
8622 void kvm_arch_check_processor_compat(void *rtn)
8623 {
8624 	kvm_x86_ops->check_processor_compatibility(rtn);
8625 }
8626 
8627 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8628 {
8629 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8630 }
8631 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8632 
8633 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8634 {
8635 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8636 }
8637 
8638 struct static_key kvm_no_apic_vcpu __read_mostly;
8639 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8640 
8641 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8642 {
8643 	struct page *page;
8644 	int r;
8645 
8646 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8647 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8648 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8649 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8650 	else
8651 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8652 
8653 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8654 	if (!page) {
8655 		r = -ENOMEM;
8656 		goto fail;
8657 	}
8658 	vcpu->arch.pio_data = page_address(page);
8659 
8660 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
8661 
8662 	r = kvm_mmu_create(vcpu);
8663 	if (r < 0)
8664 		goto fail_free_pio_data;
8665 
8666 	if (irqchip_in_kernel(vcpu->kvm)) {
8667 		r = kvm_create_lapic(vcpu);
8668 		if (r < 0)
8669 			goto fail_mmu_destroy;
8670 	} else
8671 		static_key_slow_inc(&kvm_no_apic_vcpu);
8672 
8673 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8674 				       GFP_KERNEL);
8675 	if (!vcpu->arch.mce_banks) {
8676 		r = -ENOMEM;
8677 		goto fail_free_lapic;
8678 	}
8679 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8680 
8681 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8682 		r = -ENOMEM;
8683 		goto fail_free_mce_banks;
8684 	}
8685 
8686 	fx_init(vcpu);
8687 
8688 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8689 
8690 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8691 
8692 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8693 
8694 	kvm_async_pf_hash_reset(vcpu);
8695 	kvm_pmu_init(vcpu);
8696 
8697 	vcpu->arch.pending_external_vector = -1;
8698 	vcpu->arch.preempted_in_kernel = false;
8699 
8700 	kvm_hv_vcpu_init(vcpu);
8701 
8702 	return 0;
8703 
8704 fail_free_mce_banks:
8705 	kfree(vcpu->arch.mce_banks);
8706 fail_free_lapic:
8707 	kvm_free_lapic(vcpu);
8708 fail_mmu_destroy:
8709 	kvm_mmu_destroy(vcpu);
8710 fail_free_pio_data:
8711 	free_page((unsigned long)vcpu->arch.pio_data);
8712 fail:
8713 	return r;
8714 }
8715 
8716 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8717 {
8718 	int idx;
8719 
8720 	kvm_hv_vcpu_uninit(vcpu);
8721 	kvm_pmu_destroy(vcpu);
8722 	kfree(vcpu->arch.mce_banks);
8723 	kvm_free_lapic(vcpu);
8724 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8725 	kvm_mmu_destroy(vcpu);
8726 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8727 	free_page((unsigned long)vcpu->arch.pio_data);
8728 	if (!lapic_in_kernel(vcpu))
8729 		static_key_slow_dec(&kvm_no_apic_vcpu);
8730 }
8731 
8732 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8733 {
8734 	vcpu->arch.l1tf_flush_l1d = true;
8735 	kvm_x86_ops->sched_in(vcpu, cpu);
8736 }
8737 
8738 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8739 {
8740 	if (type)
8741 		return -EINVAL;
8742 
8743 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8744 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8745 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8746 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8747 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8748 
8749 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8750 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8751 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8752 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8753 		&kvm->arch.irq_sources_bitmap);
8754 
8755 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8756 	mutex_init(&kvm->arch.apic_map_lock);
8757 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8758 
8759 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8760 	pvclock_update_vm_gtod_copy(kvm);
8761 
8762 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8763 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8764 
8765 	kvm_hv_init_vm(kvm);
8766 	kvm_page_track_init(kvm);
8767 	kvm_mmu_init_vm(kvm);
8768 
8769 	if (kvm_x86_ops->vm_init)
8770 		return kvm_x86_ops->vm_init(kvm);
8771 
8772 	return 0;
8773 }
8774 
8775 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8776 {
8777 	vcpu_load(vcpu);
8778 	kvm_mmu_unload(vcpu);
8779 	vcpu_put(vcpu);
8780 }
8781 
8782 static void kvm_free_vcpus(struct kvm *kvm)
8783 {
8784 	unsigned int i;
8785 	struct kvm_vcpu *vcpu;
8786 
8787 	/*
8788 	 * Unpin any mmu pages first.
8789 	 */
8790 	kvm_for_each_vcpu(i, vcpu, kvm) {
8791 		kvm_clear_async_pf_completion_queue(vcpu);
8792 		kvm_unload_vcpu_mmu(vcpu);
8793 	}
8794 	kvm_for_each_vcpu(i, vcpu, kvm)
8795 		kvm_arch_vcpu_free(vcpu);
8796 
8797 	mutex_lock(&kvm->lock);
8798 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8799 		kvm->vcpus[i] = NULL;
8800 
8801 	atomic_set(&kvm->online_vcpus, 0);
8802 	mutex_unlock(&kvm->lock);
8803 }
8804 
8805 void kvm_arch_sync_events(struct kvm *kvm)
8806 {
8807 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8808 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8809 	kvm_free_pit(kvm);
8810 }
8811 
8812 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8813 {
8814 	int i, r;
8815 	unsigned long hva;
8816 	struct kvm_memslots *slots = kvm_memslots(kvm);
8817 	struct kvm_memory_slot *slot, old;
8818 
8819 	/* Called with kvm->slots_lock held.  */
8820 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8821 		return -EINVAL;
8822 
8823 	slot = id_to_memslot(slots, id);
8824 	if (size) {
8825 		if (slot->npages)
8826 			return -EEXIST;
8827 
8828 		/*
8829 		 * MAP_SHARED to prevent internal slot pages from being moved
8830 		 * by fork()/COW.
8831 		 */
8832 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8833 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8834 		if (IS_ERR((void *)hva))
8835 			return PTR_ERR((void *)hva);
8836 	} else {
8837 		if (!slot->npages)
8838 			return 0;
8839 
8840 		hva = 0;
8841 	}
8842 
8843 	old = *slot;
8844 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8845 		struct kvm_userspace_memory_region m;
8846 
8847 		m.slot = id | (i << 16);
8848 		m.flags = 0;
8849 		m.guest_phys_addr = gpa;
8850 		m.userspace_addr = hva;
8851 		m.memory_size = size;
8852 		r = __kvm_set_memory_region(kvm, &m);
8853 		if (r < 0)
8854 			return r;
8855 	}
8856 
8857 	if (!size)
8858 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8859 
8860 	return 0;
8861 }
8862 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8863 
8864 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8865 {
8866 	int r;
8867 
8868 	mutex_lock(&kvm->slots_lock);
8869 	r = __x86_set_memory_region(kvm, id, gpa, size);
8870 	mutex_unlock(&kvm->slots_lock);
8871 
8872 	return r;
8873 }
8874 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8875 
8876 void kvm_arch_destroy_vm(struct kvm *kvm)
8877 {
8878 	if (current->mm == kvm->mm) {
8879 		/*
8880 		 * Free memory regions allocated on behalf of userspace,
8881 		 * unless the the memory map has changed due to process exit
8882 		 * or fd copying.
8883 		 */
8884 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8885 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8886 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8887 	}
8888 	if (kvm_x86_ops->vm_destroy)
8889 		kvm_x86_ops->vm_destroy(kvm);
8890 	kvm_pic_destroy(kvm);
8891 	kvm_ioapic_destroy(kvm);
8892 	kvm_free_vcpus(kvm);
8893 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8894 	kvm_mmu_uninit_vm(kvm);
8895 	kvm_page_track_cleanup(kvm);
8896 	kvm_hv_destroy_vm(kvm);
8897 }
8898 
8899 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8900 			   struct kvm_memory_slot *dont)
8901 {
8902 	int i;
8903 
8904 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8905 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8906 			kvfree(free->arch.rmap[i]);
8907 			free->arch.rmap[i] = NULL;
8908 		}
8909 		if (i == 0)
8910 			continue;
8911 
8912 		if (!dont || free->arch.lpage_info[i - 1] !=
8913 			     dont->arch.lpage_info[i - 1]) {
8914 			kvfree(free->arch.lpage_info[i - 1]);
8915 			free->arch.lpage_info[i - 1] = NULL;
8916 		}
8917 	}
8918 
8919 	kvm_page_track_free_memslot(free, dont);
8920 }
8921 
8922 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8923 			    unsigned long npages)
8924 {
8925 	int i;
8926 
8927 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8928 		struct kvm_lpage_info *linfo;
8929 		unsigned long ugfn;
8930 		int lpages;
8931 		int level = i + 1;
8932 
8933 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8934 				      slot->base_gfn, level) + 1;
8935 
8936 		slot->arch.rmap[i] =
8937 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
8938 				 GFP_KERNEL);
8939 		if (!slot->arch.rmap[i])
8940 			goto out_free;
8941 		if (i == 0)
8942 			continue;
8943 
8944 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
8945 		if (!linfo)
8946 			goto out_free;
8947 
8948 		slot->arch.lpage_info[i - 1] = linfo;
8949 
8950 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8951 			linfo[0].disallow_lpage = 1;
8952 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8953 			linfo[lpages - 1].disallow_lpage = 1;
8954 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8955 		/*
8956 		 * If the gfn and userspace address are not aligned wrt each
8957 		 * other, or if explicitly asked to, disable large page
8958 		 * support for this slot
8959 		 */
8960 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8961 		    !kvm_largepages_enabled()) {
8962 			unsigned long j;
8963 
8964 			for (j = 0; j < lpages; ++j)
8965 				linfo[j].disallow_lpage = 1;
8966 		}
8967 	}
8968 
8969 	if (kvm_page_track_create_memslot(slot, npages))
8970 		goto out_free;
8971 
8972 	return 0;
8973 
8974 out_free:
8975 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8976 		kvfree(slot->arch.rmap[i]);
8977 		slot->arch.rmap[i] = NULL;
8978 		if (i == 0)
8979 			continue;
8980 
8981 		kvfree(slot->arch.lpage_info[i - 1]);
8982 		slot->arch.lpage_info[i - 1] = NULL;
8983 	}
8984 	return -ENOMEM;
8985 }
8986 
8987 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8988 {
8989 	/*
8990 	 * memslots->generation has been incremented.
8991 	 * mmio generation may have reached its maximum value.
8992 	 */
8993 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8994 }
8995 
8996 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8997 				struct kvm_memory_slot *memslot,
8998 				const struct kvm_userspace_memory_region *mem,
8999 				enum kvm_mr_change change)
9000 {
9001 	return 0;
9002 }
9003 
9004 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9005 				     struct kvm_memory_slot *new)
9006 {
9007 	/* Still write protect RO slot */
9008 	if (new->flags & KVM_MEM_READONLY) {
9009 		kvm_mmu_slot_remove_write_access(kvm, new);
9010 		return;
9011 	}
9012 
9013 	/*
9014 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9015 	 *
9016 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9017 	 *
9018 	 *  - KVM_MR_CREATE with dirty logging is disabled
9019 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9020 	 *
9021 	 * The reason is, in case of PML, we need to set D-bit for any slots
9022 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9023 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9024 	 * guarantees leaving PML enabled during guest's lifetime won't have
9025 	 * any additonal overhead from PML when guest is running with dirty
9026 	 * logging disabled for memory slots.
9027 	 *
9028 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9029 	 * to dirty logging mode.
9030 	 *
9031 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9032 	 *
9033 	 * In case of write protect:
9034 	 *
9035 	 * Write protect all pages for dirty logging.
9036 	 *
9037 	 * All the sptes including the large sptes which point to this
9038 	 * slot are set to readonly. We can not create any new large
9039 	 * spte on this slot until the end of the logging.
9040 	 *
9041 	 * See the comments in fast_page_fault().
9042 	 */
9043 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9044 		if (kvm_x86_ops->slot_enable_log_dirty)
9045 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9046 		else
9047 			kvm_mmu_slot_remove_write_access(kvm, new);
9048 	} else {
9049 		if (kvm_x86_ops->slot_disable_log_dirty)
9050 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9051 	}
9052 }
9053 
9054 void kvm_arch_commit_memory_region(struct kvm *kvm,
9055 				const struct kvm_userspace_memory_region *mem,
9056 				const struct kvm_memory_slot *old,
9057 				const struct kvm_memory_slot *new,
9058 				enum kvm_mr_change change)
9059 {
9060 	int nr_mmu_pages = 0;
9061 
9062 	if (!kvm->arch.n_requested_mmu_pages)
9063 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9064 
9065 	if (nr_mmu_pages)
9066 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9067 
9068 	/*
9069 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9070 	 * sptes have to be split.  If live migration is successful, the guest
9071 	 * in the source machine will be destroyed and large sptes will be
9072 	 * created in the destination. However, if the guest continues to run
9073 	 * in the source machine (for example if live migration fails), small
9074 	 * sptes will remain around and cause bad performance.
9075 	 *
9076 	 * Scan sptes if dirty logging has been stopped, dropping those
9077 	 * which can be collapsed into a single large-page spte.  Later
9078 	 * page faults will create the large-page sptes.
9079 	 */
9080 	if ((change != KVM_MR_DELETE) &&
9081 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9082 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9083 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9084 
9085 	/*
9086 	 * Set up write protection and/or dirty logging for the new slot.
9087 	 *
9088 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9089 	 * been zapped so no dirty logging staff is needed for old slot. For
9090 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9091 	 * new and it's also covered when dealing with the new slot.
9092 	 *
9093 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9094 	 */
9095 	if (change != KVM_MR_DELETE)
9096 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9097 }
9098 
9099 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9100 {
9101 	kvm_mmu_invalidate_zap_all_pages(kvm);
9102 }
9103 
9104 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9105 				   struct kvm_memory_slot *slot)
9106 {
9107 	kvm_page_track_flush_slot(kvm, slot);
9108 }
9109 
9110 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9111 {
9112 	if (!list_empty_careful(&vcpu->async_pf.done))
9113 		return true;
9114 
9115 	if (kvm_apic_has_events(vcpu))
9116 		return true;
9117 
9118 	if (vcpu->arch.pv.pv_unhalted)
9119 		return true;
9120 
9121 	if (vcpu->arch.exception.pending)
9122 		return true;
9123 
9124 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9125 	    (vcpu->arch.nmi_pending &&
9126 	     kvm_x86_ops->nmi_allowed(vcpu)))
9127 		return true;
9128 
9129 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9130 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9131 		return true;
9132 
9133 	if (kvm_arch_interrupt_allowed(vcpu) &&
9134 	    kvm_cpu_has_interrupt(vcpu))
9135 		return true;
9136 
9137 	if (kvm_hv_has_stimer_pending(vcpu))
9138 		return true;
9139 
9140 	return false;
9141 }
9142 
9143 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9144 {
9145 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9146 }
9147 
9148 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9149 {
9150 	return vcpu->arch.preempted_in_kernel;
9151 }
9152 
9153 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9154 {
9155 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9156 }
9157 
9158 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9159 {
9160 	return kvm_x86_ops->interrupt_allowed(vcpu);
9161 }
9162 
9163 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9164 {
9165 	if (is_64_bit_mode(vcpu))
9166 		return kvm_rip_read(vcpu);
9167 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9168 		     kvm_rip_read(vcpu));
9169 }
9170 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9171 
9172 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9173 {
9174 	return kvm_get_linear_rip(vcpu) == linear_rip;
9175 }
9176 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9177 
9178 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9179 {
9180 	unsigned long rflags;
9181 
9182 	rflags = kvm_x86_ops->get_rflags(vcpu);
9183 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9184 		rflags &= ~X86_EFLAGS_TF;
9185 	return rflags;
9186 }
9187 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9188 
9189 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9190 {
9191 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9192 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9193 		rflags |= X86_EFLAGS_TF;
9194 	kvm_x86_ops->set_rflags(vcpu, rflags);
9195 }
9196 
9197 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9198 {
9199 	__kvm_set_rflags(vcpu, rflags);
9200 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9201 }
9202 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9203 
9204 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9205 {
9206 	int r;
9207 
9208 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9209 	      work->wakeup_all)
9210 		return;
9211 
9212 	r = kvm_mmu_reload(vcpu);
9213 	if (unlikely(r))
9214 		return;
9215 
9216 	if (!vcpu->arch.mmu.direct_map &&
9217 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9218 		return;
9219 
9220 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9221 }
9222 
9223 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9224 {
9225 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9226 }
9227 
9228 static inline u32 kvm_async_pf_next_probe(u32 key)
9229 {
9230 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9231 }
9232 
9233 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9234 {
9235 	u32 key = kvm_async_pf_hash_fn(gfn);
9236 
9237 	while (vcpu->arch.apf.gfns[key] != ~0)
9238 		key = kvm_async_pf_next_probe(key);
9239 
9240 	vcpu->arch.apf.gfns[key] = gfn;
9241 }
9242 
9243 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9244 {
9245 	int i;
9246 	u32 key = kvm_async_pf_hash_fn(gfn);
9247 
9248 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9249 		     (vcpu->arch.apf.gfns[key] != gfn &&
9250 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9251 		key = kvm_async_pf_next_probe(key);
9252 
9253 	return key;
9254 }
9255 
9256 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9257 {
9258 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9259 }
9260 
9261 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9262 {
9263 	u32 i, j, k;
9264 
9265 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9266 	while (true) {
9267 		vcpu->arch.apf.gfns[i] = ~0;
9268 		do {
9269 			j = kvm_async_pf_next_probe(j);
9270 			if (vcpu->arch.apf.gfns[j] == ~0)
9271 				return;
9272 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9273 			/*
9274 			 * k lies cyclically in ]i,j]
9275 			 * |    i.k.j |
9276 			 * |....j i.k.| or  |.k..j i...|
9277 			 */
9278 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9279 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9280 		i = j;
9281 	}
9282 }
9283 
9284 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9285 {
9286 
9287 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9288 				      sizeof(val));
9289 }
9290 
9291 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9292 {
9293 
9294 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9295 				      sizeof(u32));
9296 }
9297 
9298 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9299 				     struct kvm_async_pf *work)
9300 {
9301 	struct x86_exception fault;
9302 
9303 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9304 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9305 
9306 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9307 	    (vcpu->arch.apf.send_user_only &&
9308 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9309 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9310 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9311 		fault.vector = PF_VECTOR;
9312 		fault.error_code_valid = true;
9313 		fault.error_code = 0;
9314 		fault.nested_page_fault = false;
9315 		fault.address = work->arch.token;
9316 		fault.async_page_fault = true;
9317 		kvm_inject_page_fault(vcpu, &fault);
9318 	}
9319 }
9320 
9321 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9322 				 struct kvm_async_pf *work)
9323 {
9324 	struct x86_exception fault;
9325 	u32 val;
9326 
9327 	if (work->wakeup_all)
9328 		work->arch.token = ~0; /* broadcast wakeup */
9329 	else
9330 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9331 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
9332 
9333 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9334 	    !apf_get_user(vcpu, &val)) {
9335 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9336 		    vcpu->arch.exception.pending &&
9337 		    vcpu->arch.exception.nr == PF_VECTOR &&
9338 		    !apf_put_user(vcpu, 0)) {
9339 			vcpu->arch.exception.injected = false;
9340 			vcpu->arch.exception.pending = false;
9341 			vcpu->arch.exception.nr = 0;
9342 			vcpu->arch.exception.has_error_code = false;
9343 			vcpu->arch.exception.error_code = 0;
9344 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9345 			fault.vector = PF_VECTOR;
9346 			fault.error_code_valid = true;
9347 			fault.error_code = 0;
9348 			fault.nested_page_fault = false;
9349 			fault.address = work->arch.token;
9350 			fault.async_page_fault = true;
9351 			kvm_inject_page_fault(vcpu, &fault);
9352 		}
9353 	}
9354 	vcpu->arch.apf.halted = false;
9355 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9356 }
9357 
9358 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9359 {
9360 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9361 		return true;
9362 	else
9363 		return kvm_can_do_async_pf(vcpu);
9364 }
9365 
9366 void kvm_arch_start_assignment(struct kvm *kvm)
9367 {
9368 	atomic_inc(&kvm->arch.assigned_device_count);
9369 }
9370 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9371 
9372 void kvm_arch_end_assignment(struct kvm *kvm)
9373 {
9374 	atomic_dec(&kvm->arch.assigned_device_count);
9375 }
9376 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9377 
9378 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9379 {
9380 	return atomic_read(&kvm->arch.assigned_device_count);
9381 }
9382 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9383 
9384 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9385 {
9386 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9387 }
9388 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9389 
9390 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9391 {
9392 	atomic_dec(&kvm->arch.noncoherent_dma_count);
9393 }
9394 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9395 
9396 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9397 {
9398 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9399 }
9400 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9401 
9402 bool kvm_arch_has_irq_bypass(void)
9403 {
9404 	return kvm_x86_ops->update_pi_irte != NULL;
9405 }
9406 
9407 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9408 				      struct irq_bypass_producer *prod)
9409 {
9410 	struct kvm_kernel_irqfd *irqfd =
9411 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9412 
9413 	irqfd->producer = prod;
9414 
9415 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9416 					   prod->irq, irqfd->gsi, 1);
9417 }
9418 
9419 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9420 				      struct irq_bypass_producer *prod)
9421 {
9422 	int ret;
9423 	struct kvm_kernel_irqfd *irqfd =
9424 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9425 
9426 	WARN_ON(irqfd->producer != prod);
9427 	irqfd->producer = NULL;
9428 
9429 	/*
9430 	 * When producer of consumer is unregistered, we change back to
9431 	 * remapped mode, so we can re-use the current implementation
9432 	 * when the irq is masked/disabled or the consumer side (KVM
9433 	 * int this case doesn't want to receive the interrupts.
9434 	*/
9435 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9436 	if (ret)
9437 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9438 		       " fails: %d\n", irqfd->consumer.token, ret);
9439 }
9440 
9441 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9442 				   uint32_t guest_irq, bool set)
9443 {
9444 	if (!kvm_x86_ops->update_pi_irte)
9445 		return -EINVAL;
9446 
9447 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9448 }
9449 
9450 bool kvm_vector_hashing_enabled(void)
9451 {
9452 	return vector_hashing;
9453 }
9454 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9455 
9456 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9457 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9458 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9459 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9460 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9462 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9463 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9464 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9465 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9466 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9467 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9468 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9472 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9473 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9474 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9475