1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 struct kvm_caps kvm_caps __read_mostly = { 96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 97 }; 98 EXPORT_SYMBOL_GPL(kvm_caps); 99 100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 101 102 #define emul_to_vcpu(ctxt) \ 103 ((struct kvm_vcpu *)(ctxt)->vcpu) 104 105 /* EFER defaults: 106 * - enable syscall per default because its emulated by KVM 107 * - enable LME and LMA per default on 64 bit KVM 108 */ 109 #ifdef CONFIG_X86_64 110 static 111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 112 #else 113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 114 #endif 115 116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 117 118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 119 120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 121 122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 124 125 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 126 static void process_nmi(struct kvm_vcpu *vcpu); 127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 128 static void store_regs(struct kvm_vcpu *vcpu); 129 static int sync_regs(struct kvm_vcpu *vcpu); 130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 131 132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 134 135 static DEFINE_MUTEX(vendor_module_lock); 136 struct kvm_x86_ops kvm_x86_ops __read_mostly; 137 138 #define KVM_X86_OP(func) \ 139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 140 *(((struct kvm_x86_ops *)0)->func)); 141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 143 #include <asm/kvm-x86-ops.h> 144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 146 147 static bool __read_mostly ignore_msrs = 0; 148 module_param(ignore_msrs, bool, 0644); 149 150 bool __read_mostly report_ignored_msrs = true; 151 module_param(report_ignored_msrs, bool, 0644); 152 EXPORT_SYMBOL_GPL(report_ignored_msrs); 153 154 unsigned int min_timer_period_us = 200; 155 module_param(min_timer_period_us, uint, 0644); 156 157 static bool __read_mostly kvmclock_periodic_sync = true; 158 module_param(kvmclock_periodic_sync, bool, 0444); 159 160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 161 static u32 __read_mostly tsc_tolerance_ppm = 250; 162 module_param(tsc_tolerance_ppm, uint, 0644); 163 164 /* 165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 166 * adaptive tuning starting from default advancement of 1000ns. '0' disables 167 * advancement entirely. Any other value is used as-is and disables adaptive 168 * tuning, i.e. allows privileged userspace to set an exact advancement time. 169 */ 170 static int __read_mostly lapic_timer_advance_ns = -1; 171 module_param(lapic_timer_advance_ns, int, 0644); 172 173 static bool __read_mostly vector_hashing = true; 174 module_param(vector_hashing, bool, 0444); 175 176 bool __read_mostly enable_vmware_backdoor = false; 177 module_param(enable_vmware_backdoor, bool, 0444); 178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 179 180 /* 181 * Flags to manipulate forced emulation behavior (any non-zero value will 182 * enable forced emulation). 183 */ 184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 185 static int __read_mostly force_emulation_prefix; 186 module_param(force_emulation_prefix, int, 0644); 187 188 int __read_mostly pi_inject_timer = -1; 189 module_param(pi_inject_timer, bint, 0644); 190 191 /* Enable/disable PMU virtualization */ 192 bool __read_mostly enable_pmu = true; 193 EXPORT_SYMBOL_GPL(enable_pmu); 194 module_param(enable_pmu, bool, 0444); 195 196 bool __read_mostly eager_page_split = true; 197 module_param(eager_page_split, bool, 0644); 198 199 /* Enable/disable SMT_RSB bug mitigation */ 200 static bool __read_mostly mitigate_smt_rsb; 201 module_param(mitigate_smt_rsb, bool, 0444); 202 203 /* 204 * Restoring the host value for MSRs that are only consumed when running in 205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 206 * returns to userspace, i.e. the kernel can run with the guest's value. 207 */ 208 #define KVM_MAX_NR_USER_RETURN_MSRS 16 209 210 struct kvm_user_return_msrs { 211 struct user_return_notifier urn; 212 bool registered; 213 struct kvm_user_return_msr_values { 214 u64 host; 215 u64 curr; 216 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 217 }; 218 219 u32 __read_mostly kvm_nr_uret_msrs; 220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 222 static struct kvm_user_return_msrs __percpu *user_return_msrs; 223 224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 228 229 u64 __read_mostly host_efer; 230 EXPORT_SYMBOL_GPL(host_efer); 231 232 bool __read_mostly allow_smaller_maxphyaddr = 0; 233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 234 235 bool __read_mostly enable_apicv = true; 236 EXPORT_SYMBOL_GPL(enable_apicv); 237 238 u64 __read_mostly host_xss; 239 EXPORT_SYMBOL_GPL(host_xss); 240 241 u64 __read_mostly host_arch_capabilities; 242 EXPORT_SYMBOL_GPL(host_arch_capabilities); 243 244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 245 KVM_GENERIC_VM_STATS(), 246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 247 STATS_DESC_COUNTER(VM, mmu_pte_write), 248 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 249 STATS_DESC_COUNTER(VM, mmu_flooded), 250 STATS_DESC_COUNTER(VM, mmu_recycled), 251 STATS_DESC_COUNTER(VM, mmu_cache_miss), 252 STATS_DESC_ICOUNTER(VM, mmu_unsync), 253 STATS_DESC_ICOUNTER(VM, pages_4k), 254 STATS_DESC_ICOUNTER(VM, pages_2m), 255 STATS_DESC_ICOUNTER(VM, pages_1g), 256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 259 }; 260 261 const struct kvm_stats_header kvm_vm_stats_header = { 262 .name_size = KVM_STATS_NAME_SIZE, 263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 264 .id_offset = sizeof(struct kvm_stats_header), 265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 267 sizeof(kvm_vm_stats_desc), 268 }; 269 270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 271 KVM_GENERIC_VCPU_STATS(), 272 STATS_DESC_COUNTER(VCPU, pf_taken), 273 STATS_DESC_COUNTER(VCPU, pf_fixed), 274 STATS_DESC_COUNTER(VCPU, pf_emulate), 275 STATS_DESC_COUNTER(VCPU, pf_spurious), 276 STATS_DESC_COUNTER(VCPU, pf_fast), 277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 278 STATS_DESC_COUNTER(VCPU, pf_guest), 279 STATS_DESC_COUNTER(VCPU, tlb_flush), 280 STATS_DESC_COUNTER(VCPU, invlpg), 281 STATS_DESC_COUNTER(VCPU, exits), 282 STATS_DESC_COUNTER(VCPU, io_exits), 283 STATS_DESC_COUNTER(VCPU, mmio_exits), 284 STATS_DESC_COUNTER(VCPU, signal_exits), 285 STATS_DESC_COUNTER(VCPU, irq_window_exits), 286 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 287 STATS_DESC_COUNTER(VCPU, l1d_flush), 288 STATS_DESC_COUNTER(VCPU, halt_exits), 289 STATS_DESC_COUNTER(VCPU, request_irq_exits), 290 STATS_DESC_COUNTER(VCPU, irq_exits), 291 STATS_DESC_COUNTER(VCPU, host_state_reload), 292 STATS_DESC_COUNTER(VCPU, fpu_reload), 293 STATS_DESC_COUNTER(VCPU, insn_emulation), 294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 295 STATS_DESC_COUNTER(VCPU, hypercalls), 296 STATS_DESC_COUNTER(VCPU, irq_injections), 297 STATS_DESC_COUNTER(VCPU, nmi_injections), 298 STATS_DESC_COUNTER(VCPU, req_event), 299 STATS_DESC_COUNTER(VCPU, nested_run), 300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 301 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 302 STATS_DESC_COUNTER(VCPU, preemption_reported), 303 STATS_DESC_COUNTER(VCPU, preemption_other), 304 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 305 STATS_DESC_COUNTER(VCPU, notify_window_exits), 306 }; 307 308 const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315 }; 316 317 u64 __read_mostly host_xcr0; 318 319 static struct kmem_cache *x86_emulator_cache; 320 321 /* 322 * When called, it means the previous get/set msr reached an invalid msr. 323 * Return true if we want to ignore/silent this failed msr access. 324 */ 325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 326 { 327 const char *op = write ? "wrmsr" : "rdmsr"; 328 329 if (ignore_msrs) { 330 if (report_ignored_msrs) 331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 332 op, msr, data); 333 /* Mask the error */ 334 return true; 335 } else { 336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 337 op, msr, data); 338 return false; 339 } 340 } 341 342 static struct kmem_cache *kvm_alloc_emulator_cache(void) 343 { 344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 345 unsigned int size = sizeof(struct x86_emulate_ctxt); 346 347 return kmem_cache_create_usercopy("x86_emulator", size, 348 __alignof__(struct x86_emulate_ctxt), 349 SLAB_ACCOUNT, useroffset, 350 size - useroffset, NULL); 351 } 352 353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 354 355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 356 { 357 int i; 358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 359 vcpu->arch.apf.gfns[i] = ~0; 360 } 361 362 static void kvm_on_user_return(struct user_return_notifier *urn) 363 { 364 unsigned slot; 365 struct kvm_user_return_msrs *msrs 366 = container_of(urn, struct kvm_user_return_msrs, urn); 367 struct kvm_user_return_msr_values *values; 368 unsigned long flags; 369 370 /* 371 * Disabling irqs at this point since the following code could be 372 * interrupted and executed through kvm_arch_hardware_disable() 373 */ 374 local_irq_save(flags); 375 if (msrs->registered) { 376 msrs->registered = false; 377 user_return_notifier_unregister(urn); 378 } 379 local_irq_restore(flags); 380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 381 values = &msrs->values[slot]; 382 if (values->host != values->curr) { 383 wrmsrl(kvm_uret_msrs_list[slot], values->host); 384 values->curr = values->host; 385 } 386 } 387 } 388 389 static int kvm_probe_user_return_msr(u32 msr) 390 { 391 u64 val; 392 int ret; 393 394 preempt_disable(); 395 ret = rdmsrl_safe(msr, &val); 396 if (ret) 397 goto out; 398 ret = wrmsrl_safe(msr, val); 399 out: 400 preempt_enable(); 401 return ret; 402 } 403 404 int kvm_add_user_return_msr(u32 msr) 405 { 406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 407 408 if (kvm_probe_user_return_msr(msr)) 409 return -1; 410 411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 412 return kvm_nr_uret_msrs++; 413 } 414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 415 416 int kvm_find_user_return_msr(u32 msr) 417 { 418 int i; 419 420 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 421 if (kvm_uret_msrs_list[i] == msr) 422 return i; 423 } 424 return -1; 425 } 426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 427 428 static void kvm_user_return_msr_cpu_online(void) 429 { 430 unsigned int cpu = smp_processor_id(); 431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 432 u64 value; 433 int i; 434 435 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 436 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 437 msrs->values[i].host = value; 438 msrs->values[i].curr = value; 439 } 440 } 441 442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 443 { 444 unsigned int cpu = smp_processor_id(); 445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 446 int err; 447 448 value = (value & mask) | (msrs->values[slot].host & ~mask); 449 if (value == msrs->values[slot].curr) 450 return 0; 451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 452 if (err) 453 return 1; 454 455 msrs->values[slot].curr = value; 456 if (!msrs->registered) { 457 msrs->urn.on_user_return = kvm_on_user_return; 458 user_return_notifier_register(&msrs->urn); 459 msrs->registered = true; 460 } 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 464 465 static void drop_user_return_notifiers(void) 466 { 467 unsigned int cpu = smp_processor_id(); 468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 469 470 if (msrs->registered) 471 kvm_on_user_return(&msrs->urn); 472 } 473 474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 475 { 476 return vcpu->arch.apic_base; 477 } 478 479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 480 { 481 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 482 } 483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 484 485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 486 { 487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 491 492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 493 return 1; 494 if (!msr_info->host_initiated) { 495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 496 return 1; 497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 498 return 1; 499 } 500 501 kvm_lapic_set_base(vcpu, msr_info->data); 502 kvm_recalculate_apic_map(vcpu->kvm); 503 return 0; 504 } 505 506 /* 507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 508 * 509 * Hardware virtualization extension instructions may fault if a reboot turns 510 * off virtualization while processes are running. Usually after catching the 511 * fault we just panic; during reboot instead the instruction is ignored. 512 */ 513 noinstr void kvm_spurious_fault(void) 514 { 515 /* Fault while not rebooting. We want the trace. */ 516 BUG_ON(!kvm_rebooting); 517 } 518 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 519 520 #define EXCPT_BENIGN 0 521 #define EXCPT_CONTRIBUTORY 1 522 #define EXCPT_PF 2 523 524 static int exception_class(int vector) 525 { 526 switch (vector) { 527 case PF_VECTOR: 528 return EXCPT_PF; 529 case DE_VECTOR: 530 case TS_VECTOR: 531 case NP_VECTOR: 532 case SS_VECTOR: 533 case GP_VECTOR: 534 return EXCPT_CONTRIBUTORY; 535 default: 536 break; 537 } 538 return EXCPT_BENIGN; 539 } 540 541 #define EXCPT_FAULT 0 542 #define EXCPT_TRAP 1 543 #define EXCPT_ABORT 2 544 #define EXCPT_INTERRUPT 3 545 #define EXCPT_DB 4 546 547 static int exception_type(int vector) 548 { 549 unsigned int mask; 550 551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 552 return EXCPT_INTERRUPT; 553 554 mask = 1 << vector; 555 556 /* 557 * #DBs can be trap-like or fault-like, the caller must check other CPU 558 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 559 */ 560 if (mask & (1 << DB_VECTOR)) 561 return EXCPT_DB; 562 563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 564 return EXCPT_TRAP; 565 566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 567 return EXCPT_ABORT; 568 569 /* Reserved exceptions will result in fault */ 570 return EXCPT_FAULT; 571 } 572 573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 574 struct kvm_queued_exception *ex) 575 { 576 if (!ex->has_payload) 577 return; 578 579 switch (ex->vector) { 580 case DB_VECTOR: 581 /* 582 * "Certain debug exceptions may clear bit 0-3. The 583 * remaining contents of the DR6 register are never 584 * cleared by the processor". 585 */ 586 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 587 /* 588 * In order to reflect the #DB exception payload in guest 589 * dr6, three components need to be considered: active low 590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 591 * DR6_BS and DR6_BT) 592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 593 * In the target guest dr6: 594 * FIXED_1 bits should always be set. 595 * Active low bits should be cleared if 1-setting in payload. 596 * Active high bits should be set if 1-setting in payload. 597 * 598 * Note, the payload is compatible with the pending debug 599 * exceptions/exit qualification under VMX, that active_low bits 600 * are active high in payload. 601 * So they need to be flipped for DR6. 602 */ 603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 604 vcpu->arch.dr6 |= ex->payload; 605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 606 607 /* 608 * The #DB payload is defined as compatible with the 'pending 609 * debug exceptions' field under VMX, not DR6. While bit 12 is 610 * defined in the 'pending debug exceptions' field (enabled 611 * breakpoint), it is reserved and must be zero in DR6. 612 */ 613 vcpu->arch.dr6 &= ~BIT(12); 614 break; 615 case PF_VECTOR: 616 vcpu->arch.cr2 = ex->payload; 617 break; 618 } 619 620 ex->has_payload = false; 621 ex->payload = 0; 622 } 623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 624 625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 626 bool has_error_code, u32 error_code, 627 bool has_payload, unsigned long payload) 628 { 629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 630 631 ex->vector = vector; 632 ex->injected = false; 633 ex->pending = true; 634 ex->has_error_code = has_error_code; 635 ex->error_code = error_code; 636 ex->has_payload = has_payload; 637 ex->payload = payload; 638 } 639 640 /* Forcibly leave the nested mode in cases like a vCPU reset */ 641 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 642 { 643 kvm_x86_ops.nested_ops->leave_nested(vcpu); 644 } 645 646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 647 unsigned nr, bool has_error, u32 error_code, 648 bool has_payload, unsigned long payload, bool reinject) 649 { 650 u32 prev_nr; 651 int class1, class2; 652 653 kvm_make_request(KVM_REQ_EVENT, vcpu); 654 655 /* 656 * If the exception is destined for L2 and isn't being reinjected, 657 * morph it to a VM-Exit if L1 wants to intercept the exception. A 658 * previously injected exception is not checked because it was checked 659 * when it was original queued, and re-checking is incorrect if _L1_ 660 * injected the exception, in which case it's exempt from interception. 661 */ 662 if (!reinject && is_guest_mode(vcpu) && 663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 665 has_payload, payload); 666 return; 667 } 668 669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 670 queue: 671 if (reinject) { 672 /* 673 * On VM-Entry, an exception can be pending if and only 674 * if event injection was blocked by nested_run_pending. 675 * In that case, however, vcpu_enter_guest() requests an 676 * immediate exit, and the guest shouldn't proceed far 677 * enough to need reinjection. 678 */ 679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 680 vcpu->arch.exception.injected = true; 681 if (WARN_ON_ONCE(has_payload)) { 682 /* 683 * A reinjected event has already 684 * delivered its payload. 685 */ 686 has_payload = false; 687 payload = 0; 688 } 689 } else { 690 vcpu->arch.exception.pending = true; 691 vcpu->arch.exception.injected = false; 692 } 693 vcpu->arch.exception.has_error_code = has_error; 694 vcpu->arch.exception.vector = nr; 695 vcpu->arch.exception.error_code = error_code; 696 vcpu->arch.exception.has_payload = has_payload; 697 vcpu->arch.exception.payload = payload; 698 if (!is_guest_mode(vcpu)) 699 kvm_deliver_exception_payload(vcpu, 700 &vcpu->arch.exception); 701 return; 702 } 703 704 /* to check exception */ 705 prev_nr = vcpu->arch.exception.vector; 706 if (prev_nr == DF_VECTOR) { 707 /* triple fault -> shutdown */ 708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 709 return; 710 } 711 class1 = exception_class(prev_nr); 712 class2 = exception_class(nr); 713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 715 /* 716 * Synthesize #DF. Clear the previously injected or pending 717 * exception so as not to incorrectly trigger shutdown. 718 */ 719 vcpu->arch.exception.injected = false; 720 vcpu->arch.exception.pending = false; 721 722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 723 } else { 724 /* replace previous exception with a new one in a hope 725 that instruction re-execution will regenerate lost 726 exception */ 727 goto queue; 728 } 729 } 730 731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 734 } 735 EXPORT_SYMBOL_GPL(kvm_queue_exception); 736 737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 738 { 739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 740 } 741 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 742 743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 744 unsigned long payload) 745 { 746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 747 } 748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 749 750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 751 u32 error_code, unsigned long payload) 752 { 753 kvm_multiple_exception(vcpu, nr, true, error_code, 754 true, payload, false); 755 } 756 757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 758 { 759 if (err) 760 kvm_inject_gp(vcpu, 0); 761 else 762 return kvm_skip_emulated_instruction(vcpu); 763 764 return 1; 765 } 766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 767 768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 769 { 770 if (err) { 771 kvm_inject_gp(vcpu, 0); 772 return 1; 773 } 774 775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 776 EMULTYPE_COMPLETE_USER_EXIT); 777 } 778 779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 780 { 781 ++vcpu->stat.pf_guest; 782 783 /* 784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 785 * whether or not L1 wants to intercept "regular" #PF. 786 */ 787 if (is_guest_mode(vcpu) && fault->async_page_fault) 788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 789 true, fault->error_code, 790 true, fault->address); 791 else 792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 793 fault->address); 794 } 795 796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 797 struct x86_exception *fault) 798 { 799 struct kvm_mmu *fault_mmu; 800 WARN_ON_ONCE(fault->vector != PF_VECTOR); 801 802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 803 vcpu->arch.walk_mmu; 804 805 /* 806 * Invalidate the TLB entry for the faulting address, if it exists, 807 * else the access will fault indefinitely (and to emulate hardware). 808 */ 809 if ((fault->error_code & PFERR_PRESENT_MASK) && 810 !(fault->error_code & PFERR_RSVD_MASK)) 811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 812 KVM_MMU_ROOT_CURRENT); 813 814 fault_mmu->inject_page_fault(vcpu, fault); 815 } 816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 817 818 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 819 { 820 atomic_inc(&vcpu->arch.nmi_queued); 821 kvm_make_request(KVM_REQ_NMI, vcpu); 822 } 823 824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 827 } 828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 829 830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 831 { 832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 833 } 834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 835 836 /* 837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 838 * a #GP and return false. 839 */ 840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 841 { 842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 843 return true; 844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 845 return false; 846 } 847 848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 849 { 850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 851 return true; 852 853 kvm_queue_exception(vcpu, UD_VECTOR); 854 return false; 855 } 856 EXPORT_SYMBOL_GPL(kvm_require_dr); 857 858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 859 { 860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 861 } 862 863 /* 864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 865 */ 866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 867 { 868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 870 gpa_t real_gpa; 871 int i; 872 int ret; 873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 874 875 /* 876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 877 * to an L1 GPA. 878 */ 879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 881 if (real_gpa == INVALID_GPA) 882 return 0; 883 884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 886 cr3 & GENMASK(11, 5), sizeof(pdpte)); 887 if (ret < 0) 888 return 0; 889 890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 891 if ((pdpte[i] & PT_PRESENT_MASK) && 892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 893 return 0; 894 } 895 } 896 897 /* 898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 899 * Shadow page roots need to be reconstructed instead. 900 */ 901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 903 904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 907 vcpu->arch.pdptrs_from_userspace = false; 908 909 return 1; 910 } 911 EXPORT_SYMBOL_GPL(load_pdptrs); 912 913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 914 { 915 #ifdef CONFIG_X86_64 916 if (cr0 & 0xffffffff00000000UL) 917 return false; 918 #endif 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return false; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return false; 925 926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 927 } 928 929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 930 { 931 /* 932 * CR0.WP is incorporated into the MMU role, but only for non-nested, 933 * indirect shadow MMUs. If paging is disabled, no updates are needed 934 * as there are no permission bits to emulate. If TDP is enabled, the 935 * MMU's metadata needs to be updated, e.g. so that emulating guest 936 * translations does the right thing, but there's no need to unload the 937 * root as CR0.WP doesn't affect SPTEs. 938 */ 939 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 940 if (!(cr0 & X86_CR0_PG)) 941 return; 942 943 if (tdp_enabled) { 944 kvm_init_mmu(vcpu); 945 return; 946 } 947 } 948 949 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 950 kvm_clear_async_pf_completion_queue(vcpu); 951 kvm_async_pf_hash_reset(vcpu); 952 953 /* 954 * Clearing CR0.PG is defined to flush the TLB from the guest's 955 * perspective. 956 */ 957 if (!(cr0 & X86_CR0_PG)) 958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 959 } 960 961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 962 kvm_mmu_reset_context(vcpu); 963 964 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 965 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) && 966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 968 } 969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 970 971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 972 { 973 unsigned long old_cr0 = kvm_read_cr0(vcpu); 974 975 if (!kvm_is_valid_cr0(vcpu, cr0)) 976 return 1; 977 978 cr0 |= X86_CR0_ET; 979 980 /* Write to CR0 reserved bits are ignored, even on Intel. */ 981 cr0 &= ~CR0_RESERVED_BITS; 982 983 #ifdef CONFIG_X86_64 984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 985 (cr0 & X86_CR0_PG)) { 986 int cs_db, cs_l; 987 988 if (!is_pae(vcpu)) 989 return 1; 990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 991 if (cs_l) 992 return 1; 993 } 994 #endif 995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if (!(cr0 & X86_CR0_PG) && 1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1002 return 1; 1003 1004 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1005 1006 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1007 1008 return 0; 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1011 1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1013 { 1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1015 } 1016 EXPORT_SYMBOL_GPL(kvm_lmsw); 1017 1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1019 { 1020 if (vcpu->arch.guest_state_protected) 1021 return; 1022 1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1027 1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1031 } 1032 1033 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1034 vcpu->arch.pkru != vcpu->arch.host_pkru && 1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1037 write_pkru(vcpu->arch.pkru); 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1040 1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1042 { 1043 if (vcpu->arch.guest_state_protected) 1044 return; 1045 1046 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1049 vcpu->arch.pkru = rdpkru(); 1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1051 write_pkru(vcpu->arch.host_pkru); 1052 } 1053 1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1055 1056 if (vcpu->arch.xcr0 != host_xcr0) 1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1058 1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1060 vcpu->arch.ia32_xss != host_xss) 1061 wrmsrl(MSR_IA32_XSS, host_xss); 1062 } 1063 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1066 1067 #ifdef CONFIG_X86_64 1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1069 { 1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1071 } 1072 #endif 1073 1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1075 { 1076 u64 xcr0 = xcr; 1077 u64 old_xcr0 = vcpu->arch.xcr0; 1078 u64 valid_bits; 1079 1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1081 if (index != XCR_XFEATURE_ENABLED_MASK) 1082 return 1; 1083 if (!(xcr0 & XFEATURE_MASK_FP)) 1084 return 1; 1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1086 return 1; 1087 1088 /* 1089 * Do not allow the guest to set bits that we do not support 1090 * saving. However, xcr0 bit 0 is always set, even if the 1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1092 */ 1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1094 if (xcr0 & ~valid_bits) 1095 return 1; 1096 1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1098 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1099 return 1; 1100 1101 if (xcr0 & XFEATURE_MASK_AVX512) { 1102 if (!(xcr0 & XFEATURE_MASK_YMM)) 1103 return 1; 1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1105 return 1; 1106 } 1107 1108 if ((xcr0 & XFEATURE_MASK_XTILE) && 1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1110 return 1; 1111 1112 vcpu->arch.xcr0 = xcr0; 1113 1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1115 kvm_update_cpuid_runtime(vcpu); 1116 return 0; 1117 } 1118 1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1120 { 1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 1128 return kvm_skip_emulated_instruction(vcpu); 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1131 1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1133 { 1134 if (cr4 & cr4_reserved_bits) 1135 return false; 1136 1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1138 return false; 1139 1140 return true; 1141 } 1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1143 1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1145 { 1146 return __kvm_is_valid_cr4(vcpu, cr4) && 1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1148 } 1149 1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1151 { 1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1153 kvm_mmu_reset_context(vcpu); 1154 1155 /* 1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1157 * according to the SDM; however, stale prev_roots could be reused 1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1161 * so fall through. 1162 */ 1163 if (!tdp_enabled && 1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1165 kvm_mmu_unload(vcpu); 1166 1167 /* 1168 * The TLB has to be flushed for all PCIDs if any of the following 1169 * (architecturally required) changes happen: 1170 * - CR4.PCIDE is changed from 1 to 0 1171 * - CR4.PGE is toggled 1172 * 1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1174 */ 1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1178 1179 /* 1180 * The TLB has to be flushed for the current PCID if any of the 1181 * following (architecturally required) changes happen: 1182 * - CR4.SMEP is changed from 0 to 1 1183 * - CR4.PAE is toggled 1184 */ 1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1188 1189 } 1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1191 1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1193 { 1194 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1195 1196 if (!kvm_is_valid_cr4(vcpu, cr4)) 1197 return 1; 1198 1199 if (is_long_mode(vcpu)) { 1200 if (!(cr4 & X86_CR4_PAE)) 1201 return 1; 1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1203 return 1; 1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1207 return 1; 1208 1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1212 return 1; 1213 } 1214 1215 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1216 1217 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1222 1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1224 { 1225 struct kvm_mmu *mmu = vcpu->arch.mmu; 1226 unsigned long roots_to_free = 0; 1227 int i; 1228 1229 /* 1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1232 * also via the emulator. KVM's TDP page tables are not in the scope of 1233 * the invalidation, but the guest's TLB entries need to be flushed as 1234 * the CPU may have cached entries in its TLB for the target PCID. 1235 */ 1236 if (unlikely(tdp_enabled)) { 1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1238 return; 1239 } 1240 1241 /* 1242 * If neither the current CR3 nor any of the prev_roots use the given 1243 * PCID, then nothing needs to be done here because a resync will 1244 * happen anyway before switching to any other CR3. 1245 */ 1246 if (kvm_get_active_pcid(vcpu) == pcid) { 1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1249 } 1250 1251 /* 1252 * If PCID is disabled, there is no need to free prev_roots even if the 1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1254 * with PCIDE=0. 1255 */ 1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1257 return; 1258 1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1262 1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1264 } 1265 1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1267 { 1268 bool skip_tlb_flush = false; 1269 unsigned long pcid = 0; 1270 #ifdef CONFIG_X86_64 1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1273 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1274 pcid = cr3 & X86_CR3_PCID_MASK; 1275 } 1276 #endif 1277 1278 /* PDPTRs are always reloaded for PAE paging. */ 1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1280 goto handle_tlb_flush; 1281 1282 /* 1283 * Do not condition the GPA check on long mode, this helper is used to 1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1285 * the current vCPU mode is accurate. 1286 */ 1287 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1288 return 1; 1289 1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1291 return 1; 1292 1293 if (cr3 != kvm_read_cr3(vcpu)) 1294 kvm_mmu_new_pgd(vcpu, cr3); 1295 1296 vcpu->arch.cr3 = cr3; 1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1299 1300 handle_tlb_flush: 1301 /* 1302 * A load of CR3 that flushes the TLB flushes only the current PCID, 1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1304 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1305 * and it's impossible to use a non-zero PCID when PCID is disabled, 1306 * i.e. only PCID=0 can be relevant. 1307 */ 1308 if (!skip_tlb_flush) 1309 kvm_invalidate_pcid(vcpu, pcid); 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1314 1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1316 { 1317 if (cr8 & CR8_RESERVED_BITS) 1318 return 1; 1319 if (lapic_in_kernel(vcpu)) 1320 kvm_lapic_set_tpr(vcpu, cr8); 1321 else 1322 vcpu->arch.cr8 = cr8; 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1326 1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1328 { 1329 if (lapic_in_kernel(vcpu)) 1330 return kvm_lapic_get_cr8(vcpu); 1331 else 1332 return vcpu->arch.cr8; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1335 1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1337 { 1338 int i; 1339 1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1341 for (i = 0; i < KVM_NR_DB_REGS; i++) 1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1343 } 1344 } 1345 1346 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1347 { 1348 unsigned long dr7; 1349 1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1351 dr7 = vcpu->arch.guest_debug_dr7; 1352 else 1353 dr7 = vcpu->arch.dr7; 1354 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1356 if (dr7 & DR7_BP_EN_MASK) 1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1358 } 1359 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1360 1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1362 { 1363 u64 fixed = DR6_FIXED_1; 1364 1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1366 fixed |= DR6_RTM; 1367 1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1369 fixed |= DR6_BUS_LOCK; 1370 return fixed; 1371 } 1372 1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1374 { 1375 size_t size = ARRAY_SIZE(vcpu->arch.db); 1376 1377 switch (dr) { 1378 case 0 ... 3: 1379 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1381 vcpu->arch.eff_db[dr] = val; 1382 break; 1383 case 4: 1384 case 6: 1385 if (!kvm_dr6_valid(val)) 1386 return 1; /* #GP */ 1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1388 break; 1389 case 5: 1390 default: /* 7 */ 1391 if (!kvm_dr7_valid(val)) 1392 return 1; /* #GP */ 1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1394 kvm_update_dr7(vcpu); 1395 break; 1396 } 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_set_dr); 1401 1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1403 { 1404 size_t size = ARRAY_SIZE(vcpu->arch.db); 1405 1406 switch (dr) { 1407 case 0 ... 3: 1408 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1409 break; 1410 case 4: 1411 case 6: 1412 *val = vcpu->arch.dr6; 1413 break; 1414 case 5: 1415 default: /* 7 */ 1416 *val = vcpu->arch.dr7; 1417 break; 1418 } 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_get_dr); 1421 1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1423 { 1424 u32 ecx = kvm_rcx_read(vcpu); 1425 u64 data; 1426 1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1428 kvm_inject_gp(vcpu, 0); 1429 return 1; 1430 } 1431 1432 kvm_rax_write(vcpu, (u32)data); 1433 kvm_rdx_write(vcpu, data >> 32); 1434 return kvm_skip_emulated_instruction(vcpu); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1437 1438 /* 1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1443 * MSRs that KVM emulates without strictly requiring host support. 1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1446 * msrs_to_save and emulated_msrs. 1447 */ 1448 1449 static const u32 msrs_to_save_base[] = { 1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1451 MSR_STAR, 1452 #ifdef CONFIG_X86_64 1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1454 #endif 1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1464 MSR_IA32_UMWAIT_CONTROL, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static const u32 msrs_to_save_pmu[] = { 1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1475 1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1485 1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1488 1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1494 1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1498 }; 1499 1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1501 ARRAY_SIZE(msrs_to_save_pmu)]; 1502 static unsigned num_msrs_to_save; 1503 1504 static const u32 emulated_msrs_all[] = { 1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1507 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1508 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1509 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1510 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1511 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1512 HV_X64_MSR_RESET, 1513 HV_X64_MSR_VP_INDEX, 1514 HV_X64_MSR_VP_RUNTIME, 1515 HV_X64_MSR_SCONTROL, 1516 HV_X64_MSR_STIMER0_CONFIG, 1517 HV_X64_MSR_VP_ASSIST_PAGE, 1518 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1519 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1520 HV_X64_MSR_SYNDBG_OPTIONS, 1521 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1522 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1523 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1524 1525 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1526 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1527 1528 MSR_IA32_TSC_ADJUST, 1529 MSR_IA32_TSC_DEADLINE, 1530 MSR_IA32_ARCH_CAPABILITIES, 1531 MSR_IA32_PERF_CAPABILITIES, 1532 MSR_IA32_MISC_ENABLE, 1533 MSR_IA32_MCG_STATUS, 1534 MSR_IA32_MCG_CTL, 1535 MSR_IA32_MCG_EXT_CTL, 1536 MSR_IA32_SMBASE, 1537 MSR_SMI_COUNT, 1538 MSR_PLATFORM_INFO, 1539 MSR_MISC_FEATURES_ENABLES, 1540 MSR_AMD64_VIRT_SPEC_CTRL, 1541 MSR_AMD64_TSC_RATIO, 1542 MSR_IA32_POWER_CTL, 1543 MSR_IA32_UCODE_REV, 1544 1545 /* 1546 * KVM always supports the "true" VMX control MSRs, even if the host 1547 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1548 * doesn't strictly require them to exist in the host (ignoring that 1549 * KVM would refuse to load in the first place if the core set of MSRs 1550 * aren't supported). 1551 */ 1552 MSR_IA32_VMX_BASIC, 1553 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1554 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1555 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1556 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1557 MSR_IA32_VMX_MISC, 1558 MSR_IA32_VMX_CR0_FIXED0, 1559 MSR_IA32_VMX_CR4_FIXED0, 1560 MSR_IA32_VMX_VMCS_ENUM, 1561 MSR_IA32_VMX_PROCBASED_CTLS2, 1562 MSR_IA32_VMX_EPT_VPID_CAP, 1563 MSR_IA32_VMX_VMFUNC, 1564 1565 MSR_K7_HWCR, 1566 MSR_KVM_POLL_CONTROL, 1567 }; 1568 1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1570 static unsigned num_emulated_msrs; 1571 1572 /* 1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1574 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1575 * feature MSRs, but are handled separately to allow expedited lookups. 1576 */ 1577 static const u32 msr_based_features_all_except_vmx[] = { 1578 MSR_AMD64_DE_CFG, 1579 MSR_IA32_UCODE_REV, 1580 MSR_IA32_ARCH_CAPABILITIES, 1581 MSR_IA32_PERF_CAPABILITIES, 1582 }; 1583 1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1585 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1586 static unsigned int num_msr_based_features; 1587 1588 /* 1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1590 * patch, are immutable once the vCPU model is defined. 1591 */ 1592 static bool kvm_is_immutable_feature_msr(u32 msr) 1593 { 1594 int i; 1595 1596 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1597 return true; 1598 1599 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1600 if (msr == msr_based_features_all_except_vmx[i]) 1601 return msr != MSR_IA32_UCODE_REV; 1602 } 1603 1604 return false; 1605 } 1606 1607 /* 1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1609 * does not yet virtualize. These include: 1610 * 10 - MISC_PACKAGE_CTRLS 1611 * 11 - ENERGY_FILTERING_CTL 1612 * 12 - DOITM 1613 * 18 - FB_CLEAR_CTRL 1614 * 21 - XAPIC_DISABLE_STATUS 1615 * 23 - OVERCLOCKING_STATUS 1616 */ 1617 1618 #define KVM_SUPPORTED_ARCH_CAP \ 1619 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1620 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1621 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1622 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1623 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO) 1624 1625 static u64 kvm_get_arch_capabilities(void) 1626 { 1627 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1628 1629 /* 1630 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1631 * the nested hypervisor runs with NX huge pages. If it is not, 1632 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1633 * L1 guests, so it need not worry about its own (L2) guests. 1634 */ 1635 data |= ARCH_CAP_PSCHANGE_MC_NO; 1636 1637 /* 1638 * If we're doing cache flushes (either "always" or "cond") 1639 * we will do one whenever the guest does a vmlaunch/vmresume. 1640 * If an outer hypervisor is doing the cache flush for us 1641 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1642 * capability to the guest too, and if EPT is disabled we're not 1643 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1644 * require a nested hypervisor to do a flush of its own. 1645 */ 1646 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1647 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1648 1649 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1650 data |= ARCH_CAP_RDCL_NO; 1651 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1652 data |= ARCH_CAP_SSB_NO; 1653 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1654 data |= ARCH_CAP_MDS_NO; 1655 1656 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1657 /* 1658 * If RTM=0 because the kernel has disabled TSX, the host might 1659 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1660 * and therefore knows that there cannot be TAA) but keep 1661 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1662 * and we want to allow migrating those guests to tsx=off hosts. 1663 */ 1664 data &= ~ARCH_CAP_TAA_NO; 1665 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1666 data |= ARCH_CAP_TAA_NO; 1667 } else { 1668 /* 1669 * Nothing to do here; we emulate TSX_CTRL if present on the 1670 * host so the guest can choose between disabling TSX or 1671 * using VERW to clear CPU buffers. 1672 */ 1673 } 1674 1675 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1676 data |= ARCH_CAP_GDS_NO; 1677 1678 return data; 1679 } 1680 1681 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1682 { 1683 switch (msr->index) { 1684 case MSR_IA32_ARCH_CAPABILITIES: 1685 msr->data = kvm_get_arch_capabilities(); 1686 break; 1687 case MSR_IA32_PERF_CAPABILITIES: 1688 msr->data = kvm_caps.supported_perf_cap; 1689 break; 1690 case MSR_IA32_UCODE_REV: 1691 rdmsrl_safe(msr->index, &msr->data); 1692 break; 1693 default: 1694 return static_call(kvm_x86_get_msr_feature)(msr); 1695 } 1696 return 0; 1697 } 1698 1699 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1700 { 1701 struct kvm_msr_entry msr; 1702 int r; 1703 1704 msr.index = index; 1705 r = kvm_get_msr_feature(&msr); 1706 1707 if (r == KVM_MSR_RET_INVALID) { 1708 /* Unconditionally clear the output for simplicity */ 1709 *data = 0; 1710 if (kvm_msr_ignored_check(index, 0, false)) 1711 r = 0; 1712 } 1713 1714 if (r) 1715 return r; 1716 1717 *data = msr.data; 1718 1719 return 0; 1720 } 1721 1722 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1723 { 1724 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1725 return false; 1726 1727 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1728 return false; 1729 1730 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1731 return false; 1732 1733 if (efer & (EFER_LME | EFER_LMA) && 1734 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1735 return false; 1736 1737 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1738 return false; 1739 1740 return true; 1741 1742 } 1743 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1744 { 1745 if (efer & efer_reserved_bits) 1746 return false; 1747 1748 return __kvm_valid_efer(vcpu, efer); 1749 } 1750 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1751 1752 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1753 { 1754 u64 old_efer = vcpu->arch.efer; 1755 u64 efer = msr_info->data; 1756 int r; 1757 1758 if (efer & efer_reserved_bits) 1759 return 1; 1760 1761 if (!msr_info->host_initiated) { 1762 if (!__kvm_valid_efer(vcpu, efer)) 1763 return 1; 1764 1765 if (is_paging(vcpu) && 1766 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1767 return 1; 1768 } 1769 1770 efer &= ~EFER_LMA; 1771 efer |= vcpu->arch.efer & EFER_LMA; 1772 1773 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1774 if (r) { 1775 WARN_ON(r > 0); 1776 return r; 1777 } 1778 1779 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1780 kvm_mmu_reset_context(vcpu); 1781 1782 return 0; 1783 } 1784 1785 void kvm_enable_efer_bits(u64 mask) 1786 { 1787 efer_reserved_bits &= ~mask; 1788 } 1789 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1790 1791 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1792 { 1793 struct kvm_x86_msr_filter *msr_filter; 1794 struct msr_bitmap_range *ranges; 1795 struct kvm *kvm = vcpu->kvm; 1796 bool allowed; 1797 int idx; 1798 u32 i; 1799 1800 /* x2APIC MSRs do not support filtering. */ 1801 if (index >= 0x800 && index <= 0x8ff) 1802 return true; 1803 1804 idx = srcu_read_lock(&kvm->srcu); 1805 1806 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1807 if (!msr_filter) { 1808 allowed = true; 1809 goto out; 1810 } 1811 1812 allowed = msr_filter->default_allow; 1813 ranges = msr_filter->ranges; 1814 1815 for (i = 0; i < msr_filter->count; i++) { 1816 u32 start = ranges[i].base; 1817 u32 end = start + ranges[i].nmsrs; 1818 u32 flags = ranges[i].flags; 1819 unsigned long *bitmap = ranges[i].bitmap; 1820 1821 if ((index >= start) && (index < end) && (flags & type)) { 1822 allowed = test_bit(index - start, bitmap); 1823 break; 1824 } 1825 } 1826 1827 out: 1828 srcu_read_unlock(&kvm->srcu, idx); 1829 1830 return allowed; 1831 } 1832 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1833 1834 /* 1835 * Write @data into the MSR specified by @index. Select MSR specific fault 1836 * checks are bypassed if @host_initiated is %true. 1837 * Returns 0 on success, non-0 otherwise. 1838 * Assumes vcpu_load() was already called. 1839 */ 1840 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1841 bool host_initiated) 1842 { 1843 struct msr_data msr; 1844 1845 switch (index) { 1846 case MSR_FS_BASE: 1847 case MSR_GS_BASE: 1848 case MSR_KERNEL_GS_BASE: 1849 case MSR_CSTAR: 1850 case MSR_LSTAR: 1851 if (is_noncanonical_address(data, vcpu)) 1852 return 1; 1853 break; 1854 case MSR_IA32_SYSENTER_EIP: 1855 case MSR_IA32_SYSENTER_ESP: 1856 /* 1857 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1858 * non-canonical address is written on Intel but not on 1859 * AMD (which ignores the top 32-bits, because it does 1860 * not implement 64-bit SYSENTER). 1861 * 1862 * 64-bit code should hence be able to write a non-canonical 1863 * value on AMD. Making the address canonical ensures that 1864 * vmentry does not fail on Intel after writing a non-canonical 1865 * value, and that something deterministic happens if the guest 1866 * invokes 64-bit SYSENTER. 1867 */ 1868 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1869 break; 1870 case MSR_TSC_AUX: 1871 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1872 return 1; 1873 1874 if (!host_initiated && 1875 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1876 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1877 return 1; 1878 1879 /* 1880 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1881 * incomplete and conflicting architectural behavior. Current 1882 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1883 * reserved and always read as zeros. Enforce Intel's reserved 1884 * bits check if and only if the guest CPU is Intel, and clear 1885 * the bits in all other cases. This ensures cross-vendor 1886 * migration will provide consistent behavior for the guest. 1887 */ 1888 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1889 return 1; 1890 1891 data = (u32)data; 1892 break; 1893 } 1894 1895 msr.data = data; 1896 msr.index = index; 1897 msr.host_initiated = host_initiated; 1898 1899 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1900 } 1901 1902 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1903 u32 index, u64 data, bool host_initiated) 1904 { 1905 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1906 1907 if (ret == KVM_MSR_RET_INVALID) 1908 if (kvm_msr_ignored_check(index, data, true)) 1909 ret = 0; 1910 1911 return ret; 1912 } 1913 1914 /* 1915 * Read the MSR specified by @index into @data. Select MSR specific fault 1916 * checks are bypassed if @host_initiated is %true. 1917 * Returns 0 on success, non-0 otherwise. 1918 * Assumes vcpu_load() was already called. 1919 */ 1920 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1921 bool host_initiated) 1922 { 1923 struct msr_data msr; 1924 int ret; 1925 1926 switch (index) { 1927 case MSR_TSC_AUX: 1928 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1929 return 1; 1930 1931 if (!host_initiated && 1932 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1933 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1934 return 1; 1935 break; 1936 } 1937 1938 msr.index = index; 1939 msr.host_initiated = host_initiated; 1940 1941 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1942 if (!ret) 1943 *data = msr.data; 1944 return ret; 1945 } 1946 1947 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1948 u32 index, u64 *data, bool host_initiated) 1949 { 1950 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1951 1952 if (ret == KVM_MSR_RET_INVALID) { 1953 /* Unconditionally clear *data for simplicity */ 1954 *data = 0; 1955 if (kvm_msr_ignored_check(index, 0, false)) 1956 ret = 0; 1957 } 1958 1959 return ret; 1960 } 1961 1962 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1963 { 1964 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1965 return KVM_MSR_RET_FILTERED; 1966 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1967 } 1968 1969 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1970 { 1971 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1972 return KVM_MSR_RET_FILTERED; 1973 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1974 } 1975 1976 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1977 { 1978 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1979 } 1980 EXPORT_SYMBOL_GPL(kvm_get_msr); 1981 1982 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1983 { 1984 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1985 } 1986 EXPORT_SYMBOL_GPL(kvm_set_msr); 1987 1988 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1989 { 1990 if (!vcpu->run->msr.error) { 1991 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1992 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1993 } 1994 } 1995 1996 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1997 { 1998 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1999 } 2000 2001 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2002 { 2003 complete_userspace_rdmsr(vcpu); 2004 return complete_emulated_msr_access(vcpu); 2005 } 2006 2007 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2008 { 2009 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2010 } 2011 2012 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2013 { 2014 complete_userspace_rdmsr(vcpu); 2015 return complete_fast_msr_access(vcpu); 2016 } 2017 2018 static u64 kvm_msr_reason(int r) 2019 { 2020 switch (r) { 2021 case KVM_MSR_RET_INVALID: 2022 return KVM_MSR_EXIT_REASON_UNKNOWN; 2023 case KVM_MSR_RET_FILTERED: 2024 return KVM_MSR_EXIT_REASON_FILTER; 2025 default: 2026 return KVM_MSR_EXIT_REASON_INVAL; 2027 } 2028 } 2029 2030 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2031 u32 exit_reason, u64 data, 2032 int (*completion)(struct kvm_vcpu *vcpu), 2033 int r) 2034 { 2035 u64 msr_reason = kvm_msr_reason(r); 2036 2037 /* Check if the user wanted to know about this MSR fault */ 2038 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2039 return 0; 2040 2041 vcpu->run->exit_reason = exit_reason; 2042 vcpu->run->msr.error = 0; 2043 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2044 vcpu->run->msr.reason = msr_reason; 2045 vcpu->run->msr.index = index; 2046 vcpu->run->msr.data = data; 2047 vcpu->arch.complete_userspace_io = completion; 2048 2049 return 1; 2050 } 2051 2052 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2053 { 2054 u32 ecx = kvm_rcx_read(vcpu); 2055 u64 data; 2056 int r; 2057 2058 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2059 2060 if (!r) { 2061 trace_kvm_msr_read(ecx, data); 2062 2063 kvm_rax_write(vcpu, data & -1u); 2064 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2065 } else { 2066 /* MSR read failed? See if we should ask user space */ 2067 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2068 complete_fast_rdmsr, r)) 2069 return 0; 2070 trace_kvm_msr_read_ex(ecx); 2071 } 2072 2073 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2074 } 2075 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2076 2077 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2078 { 2079 u32 ecx = kvm_rcx_read(vcpu); 2080 u64 data = kvm_read_edx_eax(vcpu); 2081 int r; 2082 2083 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2084 2085 if (!r) { 2086 trace_kvm_msr_write(ecx, data); 2087 } else { 2088 /* MSR write failed? See if we should ask user space */ 2089 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2090 complete_fast_msr_access, r)) 2091 return 0; 2092 /* Signal all other negative errors to userspace */ 2093 if (r < 0) 2094 return r; 2095 trace_kvm_msr_write_ex(ecx, data); 2096 } 2097 2098 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2099 } 2100 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2101 2102 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2103 { 2104 return kvm_skip_emulated_instruction(vcpu); 2105 } 2106 2107 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2108 { 2109 /* Treat an INVD instruction as a NOP and just skip it. */ 2110 return kvm_emulate_as_nop(vcpu); 2111 } 2112 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2113 2114 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2115 { 2116 kvm_queue_exception(vcpu, UD_VECTOR); 2117 return 1; 2118 } 2119 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2120 2121 2122 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2123 { 2124 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2125 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2126 return kvm_handle_invalid_op(vcpu); 2127 2128 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2129 return kvm_emulate_as_nop(vcpu); 2130 } 2131 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2132 { 2133 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2134 } 2135 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2136 2137 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2138 { 2139 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2140 } 2141 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2142 2143 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2144 { 2145 xfer_to_guest_mode_prepare(); 2146 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2147 xfer_to_guest_mode_work_pending(); 2148 } 2149 2150 /* 2151 * The fast path for frequent and performance sensitive wrmsr emulation, 2152 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2153 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2154 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2155 * other cases which must be called after interrupts are enabled on the host. 2156 */ 2157 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2158 { 2159 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2160 return 1; 2161 2162 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2163 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2164 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2165 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2166 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2167 2168 return 1; 2169 } 2170 2171 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2172 { 2173 if (!kvm_can_use_hv_timer(vcpu)) 2174 return 1; 2175 2176 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2177 return 0; 2178 } 2179 2180 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2181 { 2182 u32 msr = kvm_rcx_read(vcpu); 2183 u64 data; 2184 fastpath_t ret = EXIT_FASTPATH_NONE; 2185 2186 kvm_vcpu_srcu_read_lock(vcpu); 2187 2188 switch (msr) { 2189 case APIC_BASE_MSR + (APIC_ICR >> 4): 2190 data = kvm_read_edx_eax(vcpu); 2191 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2192 kvm_skip_emulated_instruction(vcpu); 2193 ret = EXIT_FASTPATH_EXIT_HANDLED; 2194 } 2195 break; 2196 case MSR_IA32_TSC_DEADLINE: 2197 data = kvm_read_edx_eax(vcpu); 2198 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2199 kvm_skip_emulated_instruction(vcpu); 2200 ret = EXIT_FASTPATH_REENTER_GUEST; 2201 } 2202 break; 2203 default: 2204 break; 2205 } 2206 2207 if (ret != EXIT_FASTPATH_NONE) 2208 trace_kvm_msr_write(msr, data); 2209 2210 kvm_vcpu_srcu_read_unlock(vcpu); 2211 2212 return ret; 2213 } 2214 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2215 2216 /* 2217 * Adapt set_msr() to msr_io()'s calling convention 2218 */ 2219 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2220 { 2221 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2222 } 2223 2224 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2225 { 2226 u64 val; 2227 2228 /* 2229 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2230 * not support modifying the guest vCPU model on the fly, e.g. changing 2231 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2232 * writes of the same value, e.g. to allow userspace to blindly stuff 2233 * all MSRs when emulating RESET. 2234 */ 2235 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2236 if (do_get_msr(vcpu, index, &val) || *data != val) 2237 return -EINVAL; 2238 2239 return 0; 2240 } 2241 2242 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2243 } 2244 2245 #ifdef CONFIG_X86_64 2246 struct pvclock_clock { 2247 int vclock_mode; 2248 u64 cycle_last; 2249 u64 mask; 2250 u32 mult; 2251 u32 shift; 2252 u64 base_cycles; 2253 u64 offset; 2254 }; 2255 2256 struct pvclock_gtod_data { 2257 seqcount_t seq; 2258 2259 struct pvclock_clock clock; /* extract of a clocksource struct */ 2260 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2261 2262 ktime_t offs_boot; 2263 u64 wall_time_sec; 2264 }; 2265 2266 static struct pvclock_gtod_data pvclock_gtod_data; 2267 2268 static void update_pvclock_gtod(struct timekeeper *tk) 2269 { 2270 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2271 2272 write_seqcount_begin(&vdata->seq); 2273 2274 /* copy pvclock gtod data */ 2275 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2276 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2277 vdata->clock.mask = tk->tkr_mono.mask; 2278 vdata->clock.mult = tk->tkr_mono.mult; 2279 vdata->clock.shift = tk->tkr_mono.shift; 2280 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2281 vdata->clock.offset = tk->tkr_mono.base; 2282 2283 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2284 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2285 vdata->raw_clock.mask = tk->tkr_raw.mask; 2286 vdata->raw_clock.mult = tk->tkr_raw.mult; 2287 vdata->raw_clock.shift = tk->tkr_raw.shift; 2288 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2289 vdata->raw_clock.offset = tk->tkr_raw.base; 2290 2291 vdata->wall_time_sec = tk->xtime_sec; 2292 2293 vdata->offs_boot = tk->offs_boot; 2294 2295 write_seqcount_end(&vdata->seq); 2296 } 2297 2298 static s64 get_kvmclock_base_ns(void) 2299 { 2300 /* Count up from boot time, but with the frequency of the raw clock. */ 2301 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2302 } 2303 #else 2304 static s64 get_kvmclock_base_ns(void) 2305 { 2306 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2307 return ktime_get_boottime_ns(); 2308 } 2309 #endif 2310 2311 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2312 { 2313 int version; 2314 int r; 2315 struct pvclock_wall_clock wc; 2316 u32 wc_sec_hi; 2317 u64 wall_nsec; 2318 2319 if (!wall_clock) 2320 return; 2321 2322 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2323 if (r) 2324 return; 2325 2326 if (version & 1) 2327 ++version; /* first time write, random junk */ 2328 2329 ++version; 2330 2331 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2332 return; 2333 2334 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2335 2336 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2337 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2338 wc.version = version; 2339 2340 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2341 2342 if (sec_hi_ofs) { 2343 wc_sec_hi = wall_nsec >> 32; 2344 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2345 &wc_sec_hi, sizeof(wc_sec_hi)); 2346 } 2347 2348 version++; 2349 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2350 } 2351 2352 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2353 bool old_msr, bool host_initiated) 2354 { 2355 struct kvm_arch *ka = &vcpu->kvm->arch; 2356 2357 if (vcpu->vcpu_id == 0 && !host_initiated) { 2358 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2359 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2360 2361 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2362 } 2363 2364 vcpu->arch.time = system_time; 2365 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2366 2367 /* we verify if the enable bit is set... */ 2368 if (system_time & 1) 2369 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2370 sizeof(struct pvclock_vcpu_time_info)); 2371 else 2372 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2373 2374 return; 2375 } 2376 2377 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2378 { 2379 do_shl32_div32(dividend, divisor); 2380 return dividend; 2381 } 2382 2383 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2384 s8 *pshift, u32 *pmultiplier) 2385 { 2386 uint64_t scaled64; 2387 int32_t shift = 0; 2388 uint64_t tps64; 2389 uint32_t tps32; 2390 2391 tps64 = base_hz; 2392 scaled64 = scaled_hz; 2393 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2394 tps64 >>= 1; 2395 shift--; 2396 } 2397 2398 tps32 = (uint32_t)tps64; 2399 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2400 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2401 scaled64 >>= 1; 2402 else 2403 tps32 <<= 1; 2404 shift++; 2405 } 2406 2407 *pshift = shift; 2408 *pmultiplier = div_frac(scaled64, tps32); 2409 } 2410 2411 #ifdef CONFIG_X86_64 2412 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2413 #endif 2414 2415 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2416 static unsigned long max_tsc_khz; 2417 2418 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2419 { 2420 u64 v = (u64)khz * (1000000 + ppm); 2421 do_div(v, 1000000); 2422 return v; 2423 } 2424 2425 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2426 2427 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2428 { 2429 u64 ratio; 2430 2431 /* Guest TSC same frequency as host TSC? */ 2432 if (!scale) { 2433 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2434 return 0; 2435 } 2436 2437 /* TSC scaling supported? */ 2438 if (!kvm_caps.has_tsc_control) { 2439 if (user_tsc_khz > tsc_khz) { 2440 vcpu->arch.tsc_catchup = 1; 2441 vcpu->arch.tsc_always_catchup = 1; 2442 return 0; 2443 } else { 2444 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2445 return -1; 2446 } 2447 } 2448 2449 /* TSC scaling required - calculate ratio */ 2450 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2451 user_tsc_khz, tsc_khz); 2452 2453 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2454 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2455 user_tsc_khz); 2456 return -1; 2457 } 2458 2459 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2460 return 0; 2461 } 2462 2463 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2464 { 2465 u32 thresh_lo, thresh_hi; 2466 int use_scaling = 0; 2467 2468 /* tsc_khz can be zero if TSC calibration fails */ 2469 if (user_tsc_khz == 0) { 2470 /* set tsc_scaling_ratio to a safe value */ 2471 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2472 return -1; 2473 } 2474 2475 /* Compute a scale to convert nanoseconds in TSC cycles */ 2476 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2477 &vcpu->arch.virtual_tsc_shift, 2478 &vcpu->arch.virtual_tsc_mult); 2479 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2480 2481 /* 2482 * Compute the variation in TSC rate which is acceptable 2483 * within the range of tolerance and decide if the 2484 * rate being applied is within that bounds of the hardware 2485 * rate. If so, no scaling or compensation need be done. 2486 */ 2487 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2488 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2489 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2490 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2491 user_tsc_khz, thresh_lo, thresh_hi); 2492 use_scaling = 1; 2493 } 2494 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2495 } 2496 2497 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2498 { 2499 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2500 vcpu->arch.virtual_tsc_mult, 2501 vcpu->arch.virtual_tsc_shift); 2502 tsc += vcpu->arch.this_tsc_write; 2503 return tsc; 2504 } 2505 2506 #ifdef CONFIG_X86_64 2507 static inline int gtod_is_based_on_tsc(int mode) 2508 { 2509 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2510 } 2511 #endif 2512 2513 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2514 { 2515 #ifdef CONFIG_X86_64 2516 bool vcpus_matched; 2517 struct kvm_arch *ka = &vcpu->kvm->arch; 2518 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2519 2520 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2521 atomic_read(&vcpu->kvm->online_vcpus)); 2522 2523 /* 2524 * Once the masterclock is enabled, always perform request in 2525 * order to update it. 2526 * 2527 * In order to enable masterclock, the host clocksource must be TSC 2528 * and the vcpus need to have matched TSCs. When that happens, 2529 * perform request to enable masterclock. 2530 */ 2531 if (ka->use_master_clock || 2532 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2533 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2534 2535 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2536 atomic_read(&vcpu->kvm->online_vcpus), 2537 ka->use_master_clock, gtod->clock.vclock_mode); 2538 #endif 2539 } 2540 2541 /* 2542 * Multiply tsc by a fixed point number represented by ratio. 2543 * 2544 * The most significant 64-N bits (mult) of ratio represent the 2545 * integral part of the fixed point number; the remaining N bits 2546 * (frac) represent the fractional part, ie. ratio represents a fixed 2547 * point number (mult + frac * 2^(-N)). 2548 * 2549 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2550 */ 2551 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2552 { 2553 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2554 } 2555 2556 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2557 { 2558 u64 _tsc = tsc; 2559 2560 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2561 _tsc = __scale_tsc(ratio, tsc); 2562 2563 return _tsc; 2564 } 2565 2566 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2567 { 2568 u64 tsc; 2569 2570 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2571 2572 return target_tsc - tsc; 2573 } 2574 2575 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2576 { 2577 return vcpu->arch.l1_tsc_offset + 2578 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2579 } 2580 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2581 2582 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2583 { 2584 u64 nested_offset; 2585 2586 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2587 nested_offset = l1_offset; 2588 else 2589 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2590 kvm_caps.tsc_scaling_ratio_frac_bits); 2591 2592 nested_offset += l2_offset; 2593 return nested_offset; 2594 } 2595 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2596 2597 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2598 { 2599 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2600 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2601 kvm_caps.tsc_scaling_ratio_frac_bits); 2602 2603 return l1_multiplier; 2604 } 2605 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2606 2607 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2608 { 2609 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2610 vcpu->arch.l1_tsc_offset, 2611 l1_offset); 2612 2613 vcpu->arch.l1_tsc_offset = l1_offset; 2614 2615 /* 2616 * If we are here because L1 chose not to trap WRMSR to TSC then 2617 * according to the spec this should set L1's TSC (as opposed to 2618 * setting L1's offset for L2). 2619 */ 2620 if (is_guest_mode(vcpu)) 2621 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2622 l1_offset, 2623 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2624 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2625 else 2626 vcpu->arch.tsc_offset = l1_offset; 2627 2628 static_call(kvm_x86_write_tsc_offset)(vcpu); 2629 } 2630 2631 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2632 { 2633 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2634 2635 /* Userspace is changing the multiplier while L2 is active */ 2636 if (is_guest_mode(vcpu)) 2637 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2638 l1_multiplier, 2639 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2640 else 2641 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2642 2643 if (kvm_caps.has_tsc_control) 2644 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2645 } 2646 2647 static inline bool kvm_check_tsc_unstable(void) 2648 { 2649 #ifdef CONFIG_X86_64 2650 /* 2651 * TSC is marked unstable when we're running on Hyper-V, 2652 * 'TSC page' clocksource is good. 2653 */ 2654 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2655 return false; 2656 #endif 2657 return check_tsc_unstable(); 2658 } 2659 2660 /* 2661 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2662 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2663 * participates in. 2664 */ 2665 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2666 u64 ns, bool matched) 2667 { 2668 struct kvm *kvm = vcpu->kvm; 2669 2670 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2671 2672 /* 2673 * We also track th most recent recorded KHZ, write and time to 2674 * allow the matching interval to be extended at each write. 2675 */ 2676 kvm->arch.last_tsc_nsec = ns; 2677 kvm->arch.last_tsc_write = tsc; 2678 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2679 kvm->arch.last_tsc_offset = offset; 2680 2681 vcpu->arch.last_guest_tsc = tsc; 2682 2683 kvm_vcpu_write_tsc_offset(vcpu, offset); 2684 2685 if (!matched) { 2686 /* 2687 * We split periods of matched TSC writes into generations. 2688 * For each generation, we track the original measured 2689 * nanosecond time, offset, and write, so if TSCs are in 2690 * sync, we can match exact offset, and if not, we can match 2691 * exact software computation in compute_guest_tsc() 2692 * 2693 * These values are tracked in kvm->arch.cur_xxx variables. 2694 */ 2695 kvm->arch.cur_tsc_generation++; 2696 kvm->arch.cur_tsc_nsec = ns; 2697 kvm->arch.cur_tsc_write = tsc; 2698 kvm->arch.cur_tsc_offset = offset; 2699 kvm->arch.nr_vcpus_matched_tsc = 0; 2700 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2701 kvm->arch.nr_vcpus_matched_tsc++; 2702 } 2703 2704 /* Keep track of which generation this VCPU has synchronized to */ 2705 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2706 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2707 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2708 2709 kvm_track_tsc_matching(vcpu); 2710 } 2711 2712 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2713 { 2714 u64 data = user_value ? *user_value : 0; 2715 struct kvm *kvm = vcpu->kvm; 2716 u64 offset, ns, elapsed; 2717 unsigned long flags; 2718 bool matched = false; 2719 bool synchronizing = false; 2720 2721 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2722 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2723 ns = get_kvmclock_base_ns(); 2724 elapsed = ns - kvm->arch.last_tsc_nsec; 2725 2726 if (vcpu->arch.virtual_tsc_khz) { 2727 if (data == 0) { 2728 /* 2729 * Force synchronization when creating a vCPU, or when 2730 * userspace explicitly writes a zero value. 2731 */ 2732 synchronizing = true; 2733 } else if (kvm->arch.user_set_tsc) { 2734 u64 tsc_exp = kvm->arch.last_tsc_write + 2735 nsec_to_cycles(vcpu, elapsed); 2736 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2737 /* 2738 * Here lies UAPI baggage: when a user-initiated TSC write has 2739 * a small delta (1 second) of virtual cycle time against the 2740 * previously set vCPU, we assume that they were intended to be 2741 * in sync and the delta was only due to the racy nature of the 2742 * legacy API. 2743 * 2744 * This trick falls down when restoring a guest which genuinely 2745 * has been running for less time than the 1 second of imprecision 2746 * which we allow for in the legacy API. In this case, the first 2747 * value written by userspace (on any vCPU) should not be subject 2748 * to this 'correction' to make it sync up with values that only 2749 * come from the kernel's default vCPU creation. Make the 1-second 2750 * slop hack only trigger if the user_set_tsc flag is already set. 2751 */ 2752 synchronizing = data < tsc_exp + tsc_hz && 2753 data + tsc_hz > tsc_exp; 2754 } 2755 } 2756 2757 if (user_value) 2758 kvm->arch.user_set_tsc = true; 2759 2760 /* 2761 * For a reliable TSC, we can match TSC offsets, and for an unstable 2762 * TSC, we add elapsed time in this computation. We could let the 2763 * compensation code attempt to catch up if we fall behind, but 2764 * it's better to try to match offsets from the beginning. 2765 */ 2766 if (synchronizing && 2767 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2768 if (!kvm_check_tsc_unstable()) { 2769 offset = kvm->arch.cur_tsc_offset; 2770 } else { 2771 u64 delta = nsec_to_cycles(vcpu, elapsed); 2772 data += delta; 2773 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2774 } 2775 matched = true; 2776 } 2777 2778 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2779 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2780 } 2781 2782 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2783 s64 adjustment) 2784 { 2785 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2786 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2787 } 2788 2789 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2790 { 2791 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2792 WARN_ON(adjustment < 0); 2793 adjustment = kvm_scale_tsc((u64) adjustment, 2794 vcpu->arch.l1_tsc_scaling_ratio); 2795 adjust_tsc_offset_guest(vcpu, adjustment); 2796 } 2797 2798 #ifdef CONFIG_X86_64 2799 2800 static u64 read_tsc(void) 2801 { 2802 u64 ret = (u64)rdtsc_ordered(); 2803 u64 last = pvclock_gtod_data.clock.cycle_last; 2804 2805 if (likely(ret >= last)) 2806 return ret; 2807 2808 /* 2809 * GCC likes to generate cmov here, but this branch is extremely 2810 * predictable (it's just a function of time and the likely is 2811 * very likely) and there's a data dependence, so force GCC 2812 * to generate a branch instead. I don't barrier() because 2813 * we don't actually need a barrier, and if this function 2814 * ever gets inlined it will generate worse code. 2815 */ 2816 asm volatile (""); 2817 return last; 2818 } 2819 2820 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2821 int *mode) 2822 { 2823 u64 tsc_pg_val; 2824 long v; 2825 2826 switch (clock->vclock_mode) { 2827 case VDSO_CLOCKMODE_HVCLOCK: 2828 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2829 tsc_timestamp, &tsc_pg_val)) { 2830 /* TSC page valid */ 2831 *mode = VDSO_CLOCKMODE_HVCLOCK; 2832 v = (tsc_pg_val - clock->cycle_last) & 2833 clock->mask; 2834 } else { 2835 /* TSC page invalid */ 2836 *mode = VDSO_CLOCKMODE_NONE; 2837 } 2838 break; 2839 case VDSO_CLOCKMODE_TSC: 2840 *mode = VDSO_CLOCKMODE_TSC; 2841 *tsc_timestamp = read_tsc(); 2842 v = (*tsc_timestamp - clock->cycle_last) & 2843 clock->mask; 2844 break; 2845 default: 2846 *mode = VDSO_CLOCKMODE_NONE; 2847 } 2848 2849 if (*mode == VDSO_CLOCKMODE_NONE) 2850 *tsc_timestamp = v = 0; 2851 2852 return v * clock->mult; 2853 } 2854 2855 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2856 { 2857 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2858 unsigned long seq; 2859 int mode; 2860 u64 ns; 2861 2862 do { 2863 seq = read_seqcount_begin(>od->seq); 2864 ns = gtod->raw_clock.base_cycles; 2865 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2866 ns >>= gtod->raw_clock.shift; 2867 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2868 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2869 *t = ns; 2870 2871 return mode; 2872 } 2873 2874 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2875 { 2876 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2877 unsigned long seq; 2878 int mode; 2879 u64 ns; 2880 2881 do { 2882 seq = read_seqcount_begin(>od->seq); 2883 ts->tv_sec = gtod->wall_time_sec; 2884 ns = gtod->clock.base_cycles; 2885 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2886 ns >>= gtod->clock.shift; 2887 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2888 2889 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2890 ts->tv_nsec = ns; 2891 2892 return mode; 2893 } 2894 2895 /* returns true if host is using TSC based clocksource */ 2896 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2897 { 2898 /* checked again under seqlock below */ 2899 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2900 return false; 2901 2902 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2903 tsc_timestamp)); 2904 } 2905 2906 /* returns true if host is using TSC based clocksource */ 2907 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2908 u64 *tsc_timestamp) 2909 { 2910 /* checked again under seqlock below */ 2911 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2912 return false; 2913 2914 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2915 } 2916 #endif 2917 2918 /* 2919 * 2920 * Assuming a stable TSC across physical CPUS, and a stable TSC 2921 * across virtual CPUs, the following condition is possible. 2922 * Each numbered line represents an event visible to both 2923 * CPUs at the next numbered event. 2924 * 2925 * "timespecX" represents host monotonic time. "tscX" represents 2926 * RDTSC value. 2927 * 2928 * VCPU0 on CPU0 | VCPU1 on CPU1 2929 * 2930 * 1. read timespec0,tsc0 2931 * 2. | timespec1 = timespec0 + N 2932 * | tsc1 = tsc0 + M 2933 * 3. transition to guest | transition to guest 2934 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2935 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2936 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2937 * 2938 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2939 * 2940 * - ret0 < ret1 2941 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2942 * ... 2943 * - 0 < N - M => M < N 2944 * 2945 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2946 * always the case (the difference between two distinct xtime instances 2947 * might be smaller then the difference between corresponding TSC reads, 2948 * when updating guest vcpus pvclock areas). 2949 * 2950 * To avoid that problem, do not allow visibility of distinct 2951 * system_timestamp/tsc_timestamp values simultaneously: use a master 2952 * copy of host monotonic time values. Update that master copy 2953 * in lockstep. 2954 * 2955 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2956 * 2957 */ 2958 2959 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2960 { 2961 #ifdef CONFIG_X86_64 2962 struct kvm_arch *ka = &kvm->arch; 2963 int vclock_mode; 2964 bool host_tsc_clocksource, vcpus_matched; 2965 2966 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2967 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2968 atomic_read(&kvm->online_vcpus)); 2969 2970 /* 2971 * If the host uses TSC clock, then passthrough TSC as stable 2972 * to the guest. 2973 */ 2974 host_tsc_clocksource = kvm_get_time_and_clockread( 2975 &ka->master_kernel_ns, 2976 &ka->master_cycle_now); 2977 2978 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2979 && !ka->backwards_tsc_observed 2980 && !ka->boot_vcpu_runs_old_kvmclock; 2981 2982 if (ka->use_master_clock) 2983 atomic_set(&kvm_guest_has_master_clock, 1); 2984 2985 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2986 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2987 vcpus_matched); 2988 #endif 2989 } 2990 2991 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2992 { 2993 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2994 } 2995 2996 static void __kvm_start_pvclock_update(struct kvm *kvm) 2997 { 2998 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2999 write_seqcount_begin(&kvm->arch.pvclock_sc); 3000 } 3001 3002 static void kvm_start_pvclock_update(struct kvm *kvm) 3003 { 3004 kvm_make_mclock_inprogress_request(kvm); 3005 3006 /* no guest entries from this point */ 3007 __kvm_start_pvclock_update(kvm); 3008 } 3009 3010 static void kvm_end_pvclock_update(struct kvm *kvm) 3011 { 3012 struct kvm_arch *ka = &kvm->arch; 3013 struct kvm_vcpu *vcpu; 3014 unsigned long i; 3015 3016 write_seqcount_end(&ka->pvclock_sc); 3017 raw_spin_unlock_irq(&ka->tsc_write_lock); 3018 kvm_for_each_vcpu(i, vcpu, kvm) 3019 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3020 3021 /* guest entries allowed */ 3022 kvm_for_each_vcpu(i, vcpu, kvm) 3023 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3024 } 3025 3026 static void kvm_update_masterclock(struct kvm *kvm) 3027 { 3028 kvm_hv_request_tsc_page_update(kvm); 3029 kvm_start_pvclock_update(kvm); 3030 pvclock_update_vm_gtod_copy(kvm); 3031 kvm_end_pvclock_update(kvm); 3032 } 3033 3034 /* 3035 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3036 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3037 * can change during boot even if the TSC is constant, as it's possible for KVM 3038 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3039 * notification when calibration completes, but practically speaking calibration 3040 * will complete before userspace is alive enough to create VMs. 3041 */ 3042 static unsigned long get_cpu_tsc_khz(void) 3043 { 3044 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3045 return tsc_khz; 3046 else 3047 return __this_cpu_read(cpu_tsc_khz); 3048 } 3049 3050 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3051 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3052 { 3053 struct kvm_arch *ka = &kvm->arch; 3054 struct pvclock_vcpu_time_info hv_clock; 3055 3056 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3057 get_cpu(); 3058 3059 data->flags = 0; 3060 if (ka->use_master_clock && 3061 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3062 #ifdef CONFIG_X86_64 3063 struct timespec64 ts; 3064 3065 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3066 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3067 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3068 } else 3069 #endif 3070 data->host_tsc = rdtsc(); 3071 3072 data->flags |= KVM_CLOCK_TSC_STABLE; 3073 hv_clock.tsc_timestamp = ka->master_cycle_now; 3074 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3075 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3076 &hv_clock.tsc_shift, 3077 &hv_clock.tsc_to_system_mul); 3078 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3079 } else { 3080 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3081 } 3082 3083 put_cpu(); 3084 } 3085 3086 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3087 { 3088 struct kvm_arch *ka = &kvm->arch; 3089 unsigned seq; 3090 3091 do { 3092 seq = read_seqcount_begin(&ka->pvclock_sc); 3093 __get_kvmclock(kvm, data); 3094 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3095 } 3096 3097 u64 get_kvmclock_ns(struct kvm *kvm) 3098 { 3099 struct kvm_clock_data data; 3100 3101 get_kvmclock(kvm, &data); 3102 return data.clock; 3103 } 3104 3105 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3106 struct gfn_to_pfn_cache *gpc, 3107 unsigned int offset) 3108 { 3109 struct kvm_vcpu_arch *vcpu = &v->arch; 3110 struct pvclock_vcpu_time_info *guest_hv_clock; 3111 unsigned long flags; 3112 3113 read_lock_irqsave(&gpc->lock, flags); 3114 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3115 read_unlock_irqrestore(&gpc->lock, flags); 3116 3117 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3118 return; 3119 3120 read_lock_irqsave(&gpc->lock, flags); 3121 } 3122 3123 guest_hv_clock = (void *)(gpc->khva + offset); 3124 3125 /* 3126 * This VCPU is paused, but it's legal for a guest to read another 3127 * VCPU's kvmclock, so we really have to follow the specification where 3128 * it says that version is odd if data is being modified, and even after 3129 * it is consistent. 3130 */ 3131 3132 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3133 smp_wmb(); 3134 3135 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3136 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3137 3138 if (vcpu->pvclock_set_guest_stopped_request) { 3139 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3140 vcpu->pvclock_set_guest_stopped_request = false; 3141 } 3142 3143 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3144 smp_wmb(); 3145 3146 guest_hv_clock->version = ++vcpu->hv_clock.version; 3147 3148 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3149 read_unlock_irqrestore(&gpc->lock, flags); 3150 3151 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3152 } 3153 3154 static int kvm_guest_time_update(struct kvm_vcpu *v) 3155 { 3156 unsigned long flags, tgt_tsc_khz; 3157 unsigned seq; 3158 struct kvm_vcpu_arch *vcpu = &v->arch; 3159 struct kvm_arch *ka = &v->kvm->arch; 3160 s64 kernel_ns; 3161 u64 tsc_timestamp, host_tsc; 3162 u8 pvclock_flags; 3163 bool use_master_clock; 3164 3165 kernel_ns = 0; 3166 host_tsc = 0; 3167 3168 /* 3169 * If the host uses TSC clock, then passthrough TSC as stable 3170 * to the guest. 3171 */ 3172 do { 3173 seq = read_seqcount_begin(&ka->pvclock_sc); 3174 use_master_clock = ka->use_master_clock; 3175 if (use_master_clock) { 3176 host_tsc = ka->master_cycle_now; 3177 kernel_ns = ka->master_kernel_ns; 3178 } 3179 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3180 3181 /* Keep irq disabled to prevent changes to the clock */ 3182 local_irq_save(flags); 3183 tgt_tsc_khz = get_cpu_tsc_khz(); 3184 if (unlikely(tgt_tsc_khz == 0)) { 3185 local_irq_restore(flags); 3186 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3187 return 1; 3188 } 3189 if (!use_master_clock) { 3190 host_tsc = rdtsc(); 3191 kernel_ns = get_kvmclock_base_ns(); 3192 } 3193 3194 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3195 3196 /* 3197 * We may have to catch up the TSC to match elapsed wall clock 3198 * time for two reasons, even if kvmclock is used. 3199 * 1) CPU could have been running below the maximum TSC rate 3200 * 2) Broken TSC compensation resets the base at each VCPU 3201 * entry to avoid unknown leaps of TSC even when running 3202 * again on the same CPU. This may cause apparent elapsed 3203 * time to disappear, and the guest to stand still or run 3204 * very slowly. 3205 */ 3206 if (vcpu->tsc_catchup) { 3207 u64 tsc = compute_guest_tsc(v, kernel_ns); 3208 if (tsc > tsc_timestamp) { 3209 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3210 tsc_timestamp = tsc; 3211 } 3212 } 3213 3214 local_irq_restore(flags); 3215 3216 /* With all the info we got, fill in the values */ 3217 3218 if (kvm_caps.has_tsc_control) 3219 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3220 v->arch.l1_tsc_scaling_ratio); 3221 3222 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3223 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3224 &vcpu->hv_clock.tsc_shift, 3225 &vcpu->hv_clock.tsc_to_system_mul); 3226 vcpu->hw_tsc_khz = tgt_tsc_khz; 3227 kvm_xen_update_tsc_info(v); 3228 } 3229 3230 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3231 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3232 vcpu->last_guest_tsc = tsc_timestamp; 3233 3234 /* If the host uses TSC clocksource, then it is stable */ 3235 pvclock_flags = 0; 3236 if (use_master_clock) 3237 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3238 3239 vcpu->hv_clock.flags = pvclock_flags; 3240 3241 if (vcpu->pv_time.active) 3242 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3243 #ifdef CONFIG_KVM_XEN 3244 if (vcpu->xen.vcpu_info_cache.active) 3245 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3246 offsetof(struct compat_vcpu_info, time)); 3247 if (vcpu->xen.vcpu_time_info_cache.active) 3248 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3249 #endif 3250 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3251 return 0; 3252 } 3253 3254 /* 3255 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3256 * which it started (i.e. its epoch, when its kvmclock was zero). 3257 * 3258 * In fact those clocks are subtly different; wall clock frequency is 3259 * adjusted by NTP and has leap seconds, while the kvmclock is a 3260 * simple function of the TSC without any such adjustment. 3261 * 3262 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3263 * that and kvmclock, but even that would be subject to change over 3264 * time. 3265 * 3266 * Attempt to calculate the epoch at a given moment using the *same* 3267 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3268 * wallclock and kvmclock times, and subtracting one from the other. 3269 * 3270 * Fall back to using their values at slightly different moments by 3271 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3272 */ 3273 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3274 { 3275 #ifdef CONFIG_X86_64 3276 struct pvclock_vcpu_time_info hv_clock; 3277 struct kvm_arch *ka = &kvm->arch; 3278 unsigned long seq, local_tsc_khz; 3279 struct timespec64 ts; 3280 uint64_t host_tsc; 3281 3282 do { 3283 seq = read_seqcount_begin(&ka->pvclock_sc); 3284 3285 local_tsc_khz = 0; 3286 if (!ka->use_master_clock) 3287 break; 3288 3289 /* 3290 * The TSC read and the call to get_cpu_tsc_khz() must happen 3291 * on the same CPU. 3292 */ 3293 get_cpu(); 3294 3295 local_tsc_khz = get_cpu_tsc_khz(); 3296 3297 if (local_tsc_khz && 3298 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3299 local_tsc_khz = 0; /* Fall back to old method */ 3300 3301 put_cpu(); 3302 3303 /* 3304 * These values must be snapshotted within the seqcount loop. 3305 * After that, it's just mathematics which can happen on any 3306 * CPU at any time. 3307 */ 3308 hv_clock.tsc_timestamp = ka->master_cycle_now; 3309 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3310 3311 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3312 3313 /* 3314 * If the conditions were right, and obtaining the wallclock+TSC was 3315 * successful, calculate the KVM clock at the corresponding time and 3316 * subtract one from the other to get the guest's epoch in nanoseconds 3317 * since 1970-01-01. 3318 */ 3319 if (local_tsc_khz) { 3320 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3321 &hv_clock.tsc_shift, 3322 &hv_clock.tsc_to_system_mul); 3323 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3324 __pvclock_read_cycles(&hv_clock, host_tsc); 3325 } 3326 #endif 3327 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3328 } 3329 3330 /* 3331 * kvmclock updates which are isolated to a given vcpu, such as 3332 * vcpu->cpu migration, should not allow system_timestamp from 3333 * the rest of the vcpus to remain static. Otherwise ntp frequency 3334 * correction applies to one vcpu's system_timestamp but not 3335 * the others. 3336 * 3337 * So in those cases, request a kvmclock update for all vcpus. 3338 * We need to rate-limit these requests though, as they can 3339 * considerably slow guests that have a large number of vcpus. 3340 * The time for a remote vcpu to update its kvmclock is bound 3341 * by the delay we use to rate-limit the updates. 3342 */ 3343 3344 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3345 3346 static void kvmclock_update_fn(struct work_struct *work) 3347 { 3348 unsigned long i; 3349 struct delayed_work *dwork = to_delayed_work(work); 3350 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3351 kvmclock_update_work); 3352 struct kvm *kvm = container_of(ka, struct kvm, arch); 3353 struct kvm_vcpu *vcpu; 3354 3355 kvm_for_each_vcpu(i, vcpu, kvm) { 3356 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3357 kvm_vcpu_kick(vcpu); 3358 } 3359 } 3360 3361 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3362 { 3363 struct kvm *kvm = v->kvm; 3364 3365 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3366 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3367 KVMCLOCK_UPDATE_DELAY); 3368 } 3369 3370 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3371 3372 static void kvmclock_sync_fn(struct work_struct *work) 3373 { 3374 struct delayed_work *dwork = to_delayed_work(work); 3375 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3376 kvmclock_sync_work); 3377 struct kvm *kvm = container_of(ka, struct kvm, arch); 3378 3379 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3380 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3381 KVMCLOCK_SYNC_PERIOD); 3382 } 3383 3384 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3385 static bool is_mci_control_msr(u32 msr) 3386 { 3387 return (msr & 3) == 0; 3388 } 3389 static bool is_mci_status_msr(u32 msr) 3390 { 3391 return (msr & 3) == 1; 3392 } 3393 3394 /* 3395 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3396 */ 3397 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3398 { 3399 /* McStatusWrEn enabled? */ 3400 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3401 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3402 3403 return false; 3404 } 3405 3406 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3407 { 3408 u64 mcg_cap = vcpu->arch.mcg_cap; 3409 unsigned bank_num = mcg_cap & 0xff; 3410 u32 msr = msr_info->index; 3411 u64 data = msr_info->data; 3412 u32 offset, last_msr; 3413 3414 switch (msr) { 3415 case MSR_IA32_MCG_STATUS: 3416 vcpu->arch.mcg_status = data; 3417 break; 3418 case MSR_IA32_MCG_CTL: 3419 if (!(mcg_cap & MCG_CTL_P) && 3420 (data || !msr_info->host_initiated)) 3421 return 1; 3422 if (data != 0 && data != ~(u64)0) 3423 return 1; 3424 vcpu->arch.mcg_ctl = data; 3425 break; 3426 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3427 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3428 if (msr > last_msr) 3429 return 1; 3430 3431 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3432 return 1; 3433 /* An attempt to write a 1 to a reserved bit raises #GP */ 3434 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3435 return 1; 3436 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3437 last_msr + 1 - MSR_IA32_MC0_CTL2); 3438 vcpu->arch.mci_ctl2_banks[offset] = data; 3439 break; 3440 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3441 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3442 if (msr > last_msr) 3443 return 1; 3444 3445 /* 3446 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3447 * values are architecturally undefined. But, some Linux 3448 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3449 * issue on AMD K8s, allow bit 10 to be clear when setting all 3450 * other bits in order to avoid an uncaught #GP in the guest. 3451 * 3452 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3453 * single-bit ECC data errors. 3454 */ 3455 if (is_mci_control_msr(msr) && 3456 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3457 return 1; 3458 3459 /* 3460 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3461 * AMD-based CPUs allow non-zero values, but if and only if 3462 * HWCR[McStatusWrEn] is set. 3463 */ 3464 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3465 data != 0 && !can_set_mci_status(vcpu)) 3466 return 1; 3467 3468 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3469 last_msr + 1 - MSR_IA32_MC0_CTL); 3470 vcpu->arch.mce_banks[offset] = data; 3471 break; 3472 default: 3473 return 1; 3474 } 3475 return 0; 3476 } 3477 3478 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3479 { 3480 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3481 3482 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3483 } 3484 3485 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3486 { 3487 gpa_t gpa = data & ~0x3f; 3488 3489 /* Bits 4:5 are reserved, Should be zero */ 3490 if (data & 0x30) 3491 return 1; 3492 3493 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3494 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3495 return 1; 3496 3497 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3498 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3499 return 1; 3500 3501 if (!lapic_in_kernel(vcpu)) 3502 return data ? 1 : 0; 3503 3504 vcpu->arch.apf.msr_en_val = data; 3505 3506 if (!kvm_pv_async_pf_enabled(vcpu)) { 3507 kvm_clear_async_pf_completion_queue(vcpu); 3508 kvm_async_pf_hash_reset(vcpu); 3509 return 0; 3510 } 3511 3512 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3513 sizeof(u64))) 3514 return 1; 3515 3516 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3517 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3518 3519 kvm_async_pf_wakeup_all(vcpu); 3520 3521 return 0; 3522 } 3523 3524 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3525 { 3526 /* Bits 8-63 are reserved */ 3527 if (data >> 8) 3528 return 1; 3529 3530 if (!lapic_in_kernel(vcpu)) 3531 return 1; 3532 3533 vcpu->arch.apf.msr_int_val = data; 3534 3535 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3536 3537 return 0; 3538 } 3539 3540 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3541 { 3542 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3543 vcpu->arch.time = 0; 3544 } 3545 3546 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3547 { 3548 ++vcpu->stat.tlb_flush; 3549 static_call(kvm_x86_flush_tlb_all)(vcpu); 3550 3551 /* Flushing all ASIDs flushes the current ASID... */ 3552 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3553 } 3554 3555 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3556 { 3557 ++vcpu->stat.tlb_flush; 3558 3559 if (!tdp_enabled) { 3560 /* 3561 * A TLB flush on behalf of the guest is equivalent to 3562 * INVPCID(all), toggling CR4.PGE, etc., which requires 3563 * a forced sync of the shadow page tables. Ensure all the 3564 * roots are synced and the guest TLB in hardware is clean. 3565 */ 3566 kvm_mmu_sync_roots(vcpu); 3567 kvm_mmu_sync_prev_roots(vcpu); 3568 } 3569 3570 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3571 3572 /* 3573 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3574 * grained flushing. 3575 */ 3576 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3577 } 3578 3579 3580 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3581 { 3582 ++vcpu->stat.tlb_flush; 3583 static_call(kvm_x86_flush_tlb_current)(vcpu); 3584 } 3585 3586 /* 3587 * Service "local" TLB flush requests, which are specific to the current MMU 3588 * context. In addition to the generic event handling in vcpu_enter_guest(), 3589 * TLB flushes that are targeted at an MMU context also need to be serviced 3590 * prior before nested VM-Enter/VM-Exit. 3591 */ 3592 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3593 { 3594 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3595 kvm_vcpu_flush_tlb_current(vcpu); 3596 3597 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3598 kvm_vcpu_flush_tlb_guest(vcpu); 3599 } 3600 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3601 3602 static void record_steal_time(struct kvm_vcpu *vcpu) 3603 { 3604 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3605 struct kvm_steal_time __user *st; 3606 struct kvm_memslots *slots; 3607 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3608 u64 steal; 3609 u32 version; 3610 3611 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3612 kvm_xen_runstate_set_running(vcpu); 3613 return; 3614 } 3615 3616 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3617 return; 3618 3619 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3620 return; 3621 3622 slots = kvm_memslots(vcpu->kvm); 3623 3624 if (unlikely(slots->generation != ghc->generation || 3625 gpa != ghc->gpa || 3626 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3627 /* We rely on the fact that it fits in a single page. */ 3628 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3629 3630 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3631 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3632 return; 3633 } 3634 3635 st = (struct kvm_steal_time __user *)ghc->hva; 3636 /* 3637 * Doing a TLB flush here, on the guest's behalf, can avoid 3638 * expensive IPIs. 3639 */ 3640 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3641 u8 st_preempted = 0; 3642 int err = -EFAULT; 3643 3644 if (!user_access_begin(st, sizeof(*st))) 3645 return; 3646 3647 asm volatile("1: xchgb %0, %2\n" 3648 "xor %1, %1\n" 3649 "2:\n" 3650 _ASM_EXTABLE_UA(1b, 2b) 3651 : "+q" (st_preempted), 3652 "+&r" (err), 3653 "+m" (st->preempted)); 3654 if (err) 3655 goto out; 3656 3657 user_access_end(); 3658 3659 vcpu->arch.st.preempted = 0; 3660 3661 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3662 st_preempted & KVM_VCPU_FLUSH_TLB); 3663 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3664 kvm_vcpu_flush_tlb_guest(vcpu); 3665 3666 if (!user_access_begin(st, sizeof(*st))) 3667 goto dirty; 3668 } else { 3669 if (!user_access_begin(st, sizeof(*st))) 3670 return; 3671 3672 unsafe_put_user(0, &st->preempted, out); 3673 vcpu->arch.st.preempted = 0; 3674 } 3675 3676 unsafe_get_user(version, &st->version, out); 3677 if (version & 1) 3678 version += 1; /* first time write, random junk */ 3679 3680 version += 1; 3681 unsafe_put_user(version, &st->version, out); 3682 3683 smp_wmb(); 3684 3685 unsafe_get_user(steal, &st->steal, out); 3686 steal += current->sched_info.run_delay - 3687 vcpu->arch.st.last_steal; 3688 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3689 unsafe_put_user(steal, &st->steal, out); 3690 3691 version += 1; 3692 unsafe_put_user(version, &st->version, out); 3693 3694 out: 3695 user_access_end(); 3696 dirty: 3697 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3698 } 3699 3700 static bool kvm_is_msr_to_save(u32 msr_index) 3701 { 3702 unsigned int i; 3703 3704 for (i = 0; i < num_msrs_to_save; i++) { 3705 if (msrs_to_save[i] == msr_index) 3706 return true; 3707 } 3708 3709 return false; 3710 } 3711 3712 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3713 { 3714 u32 msr = msr_info->index; 3715 u64 data = msr_info->data; 3716 3717 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3718 return kvm_xen_write_hypercall_page(vcpu, data); 3719 3720 switch (msr) { 3721 case MSR_AMD64_NB_CFG: 3722 case MSR_IA32_UCODE_WRITE: 3723 case MSR_VM_HSAVE_PA: 3724 case MSR_AMD64_PATCH_LOADER: 3725 case MSR_AMD64_BU_CFG2: 3726 case MSR_AMD64_DC_CFG: 3727 case MSR_AMD64_TW_CFG: 3728 case MSR_F15H_EX_CFG: 3729 break; 3730 3731 case MSR_IA32_UCODE_REV: 3732 if (msr_info->host_initiated) 3733 vcpu->arch.microcode_version = data; 3734 break; 3735 case MSR_IA32_ARCH_CAPABILITIES: 3736 if (!msr_info->host_initiated) 3737 return 1; 3738 vcpu->arch.arch_capabilities = data; 3739 break; 3740 case MSR_IA32_PERF_CAPABILITIES: 3741 if (!msr_info->host_initiated) 3742 return 1; 3743 if (data & ~kvm_caps.supported_perf_cap) 3744 return 1; 3745 3746 /* 3747 * Note, this is not just a performance optimization! KVM 3748 * disallows changing feature MSRs after the vCPU has run; PMU 3749 * refresh will bug the VM if called after the vCPU has run. 3750 */ 3751 if (vcpu->arch.perf_capabilities == data) 3752 break; 3753 3754 vcpu->arch.perf_capabilities = data; 3755 kvm_pmu_refresh(vcpu); 3756 break; 3757 case MSR_IA32_PRED_CMD: { 3758 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3759 3760 if (!msr_info->host_initiated) { 3761 if ((!guest_has_pred_cmd_msr(vcpu))) 3762 return 1; 3763 3764 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3765 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3766 reserved_bits |= PRED_CMD_IBPB; 3767 3768 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3769 reserved_bits |= PRED_CMD_SBPB; 3770 } 3771 3772 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3773 reserved_bits |= PRED_CMD_IBPB; 3774 3775 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3776 reserved_bits |= PRED_CMD_SBPB; 3777 3778 if (data & reserved_bits) 3779 return 1; 3780 3781 if (!data) 3782 break; 3783 3784 wrmsrl(MSR_IA32_PRED_CMD, data); 3785 break; 3786 } 3787 case MSR_IA32_FLUSH_CMD: 3788 if (!msr_info->host_initiated && 3789 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3790 return 1; 3791 3792 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3793 return 1; 3794 if (!data) 3795 break; 3796 3797 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3798 break; 3799 case MSR_EFER: 3800 return set_efer(vcpu, msr_info); 3801 case MSR_K7_HWCR: 3802 data &= ~(u64)0x40; /* ignore flush filter disable */ 3803 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3804 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3805 3806 /* 3807 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3808 * through at least v6.6 whine if TscFreqSel is clear, 3809 * depending on F/M/S. 3810 */ 3811 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3812 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3813 return 1; 3814 } 3815 vcpu->arch.msr_hwcr = data; 3816 break; 3817 case MSR_FAM10H_MMIO_CONF_BASE: 3818 if (data != 0) { 3819 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3820 return 1; 3821 } 3822 break; 3823 case MSR_IA32_CR_PAT: 3824 if (!kvm_pat_valid(data)) 3825 return 1; 3826 3827 vcpu->arch.pat = data; 3828 break; 3829 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3830 case MSR_MTRRdefType: 3831 return kvm_mtrr_set_msr(vcpu, msr, data); 3832 case MSR_IA32_APICBASE: 3833 return kvm_set_apic_base(vcpu, msr_info); 3834 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3835 return kvm_x2apic_msr_write(vcpu, msr, data); 3836 case MSR_IA32_TSC_DEADLINE: 3837 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3838 break; 3839 case MSR_IA32_TSC_ADJUST: 3840 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3841 if (!msr_info->host_initiated) { 3842 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3843 adjust_tsc_offset_guest(vcpu, adj); 3844 /* Before back to guest, tsc_timestamp must be adjusted 3845 * as well, otherwise guest's percpu pvclock time could jump. 3846 */ 3847 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3848 } 3849 vcpu->arch.ia32_tsc_adjust_msr = data; 3850 } 3851 break; 3852 case MSR_IA32_MISC_ENABLE: { 3853 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3854 3855 if (!msr_info->host_initiated) { 3856 /* RO bits */ 3857 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3858 return 1; 3859 3860 /* R bits, i.e. writes are ignored, but don't fault. */ 3861 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3862 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3863 } 3864 3865 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3866 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3867 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3868 return 1; 3869 vcpu->arch.ia32_misc_enable_msr = data; 3870 kvm_update_cpuid_runtime(vcpu); 3871 } else { 3872 vcpu->arch.ia32_misc_enable_msr = data; 3873 } 3874 break; 3875 } 3876 case MSR_IA32_SMBASE: 3877 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3878 return 1; 3879 vcpu->arch.smbase = data; 3880 break; 3881 case MSR_IA32_POWER_CTL: 3882 vcpu->arch.msr_ia32_power_ctl = data; 3883 break; 3884 case MSR_IA32_TSC: 3885 if (msr_info->host_initiated) { 3886 kvm_synchronize_tsc(vcpu, &data); 3887 } else { 3888 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3889 adjust_tsc_offset_guest(vcpu, adj); 3890 vcpu->arch.ia32_tsc_adjust_msr += adj; 3891 } 3892 break; 3893 case MSR_IA32_XSS: 3894 if (!msr_info->host_initiated && 3895 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3896 return 1; 3897 /* 3898 * KVM supports exposing PT to the guest, but does not support 3899 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3900 * XSAVES/XRSTORS to save/restore PT MSRs. 3901 */ 3902 if (data & ~kvm_caps.supported_xss) 3903 return 1; 3904 vcpu->arch.ia32_xss = data; 3905 kvm_update_cpuid_runtime(vcpu); 3906 break; 3907 case MSR_SMI_COUNT: 3908 if (!msr_info->host_initiated) 3909 return 1; 3910 vcpu->arch.smi_count = data; 3911 break; 3912 case MSR_KVM_WALL_CLOCK_NEW: 3913 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3914 return 1; 3915 3916 vcpu->kvm->arch.wall_clock = data; 3917 kvm_write_wall_clock(vcpu->kvm, data, 0); 3918 break; 3919 case MSR_KVM_WALL_CLOCK: 3920 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3921 return 1; 3922 3923 vcpu->kvm->arch.wall_clock = data; 3924 kvm_write_wall_clock(vcpu->kvm, data, 0); 3925 break; 3926 case MSR_KVM_SYSTEM_TIME_NEW: 3927 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3928 return 1; 3929 3930 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3931 break; 3932 case MSR_KVM_SYSTEM_TIME: 3933 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3934 return 1; 3935 3936 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3937 break; 3938 case MSR_KVM_ASYNC_PF_EN: 3939 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3940 return 1; 3941 3942 if (kvm_pv_enable_async_pf(vcpu, data)) 3943 return 1; 3944 break; 3945 case MSR_KVM_ASYNC_PF_INT: 3946 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3947 return 1; 3948 3949 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3950 return 1; 3951 break; 3952 case MSR_KVM_ASYNC_PF_ACK: 3953 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3954 return 1; 3955 if (data & 0x1) { 3956 vcpu->arch.apf.pageready_pending = false; 3957 kvm_check_async_pf_completion(vcpu); 3958 } 3959 break; 3960 case MSR_KVM_STEAL_TIME: 3961 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3962 return 1; 3963 3964 if (unlikely(!sched_info_on())) 3965 return 1; 3966 3967 if (data & KVM_STEAL_RESERVED_MASK) 3968 return 1; 3969 3970 vcpu->arch.st.msr_val = data; 3971 3972 if (!(data & KVM_MSR_ENABLED)) 3973 break; 3974 3975 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3976 3977 break; 3978 case MSR_KVM_PV_EOI_EN: 3979 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3980 return 1; 3981 3982 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3983 return 1; 3984 break; 3985 3986 case MSR_KVM_POLL_CONTROL: 3987 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3988 return 1; 3989 3990 /* only enable bit supported */ 3991 if (data & (-1ULL << 1)) 3992 return 1; 3993 3994 vcpu->arch.msr_kvm_poll_control = data; 3995 break; 3996 3997 case MSR_IA32_MCG_CTL: 3998 case MSR_IA32_MCG_STATUS: 3999 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4000 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4001 return set_msr_mce(vcpu, msr_info); 4002 4003 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4004 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4005 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4006 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4007 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4008 return kvm_pmu_set_msr(vcpu, msr_info); 4009 4010 if (data) 4011 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4012 break; 4013 case MSR_K7_CLK_CTL: 4014 /* 4015 * Ignore all writes to this no longer documented MSR. 4016 * Writes are only relevant for old K7 processors, 4017 * all pre-dating SVM, but a recommended workaround from 4018 * AMD for these chips. It is possible to specify the 4019 * affected processor models on the command line, hence 4020 * the need to ignore the workaround. 4021 */ 4022 break; 4023 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4024 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4025 case HV_X64_MSR_SYNDBG_OPTIONS: 4026 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4027 case HV_X64_MSR_CRASH_CTL: 4028 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4029 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4030 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4031 case HV_X64_MSR_TSC_EMULATION_STATUS: 4032 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4033 return kvm_hv_set_msr_common(vcpu, msr, data, 4034 msr_info->host_initiated); 4035 case MSR_IA32_BBL_CR_CTL3: 4036 /* Drop writes to this legacy MSR -- see rdmsr 4037 * counterpart for further detail. 4038 */ 4039 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4040 break; 4041 case MSR_AMD64_OSVW_ID_LENGTH: 4042 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4043 return 1; 4044 vcpu->arch.osvw.length = data; 4045 break; 4046 case MSR_AMD64_OSVW_STATUS: 4047 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4048 return 1; 4049 vcpu->arch.osvw.status = data; 4050 break; 4051 case MSR_PLATFORM_INFO: 4052 if (!msr_info->host_initiated || 4053 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 4054 cpuid_fault_enabled(vcpu))) 4055 return 1; 4056 vcpu->arch.msr_platform_info = data; 4057 break; 4058 case MSR_MISC_FEATURES_ENABLES: 4059 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4060 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4061 !supports_cpuid_fault(vcpu))) 4062 return 1; 4063 vcpu->arch.msr_misc_features_enables = data; 4064 break; 4065 #ifdef CONFIG_X86_64 4066 case MSR_IA32_XFD: 4067 if (!msr_info->host_initiated && 4068 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4069 return 1; 4070 4071 if (data & ~kvm_guest_supported_xfd(vcpu)) 4072 return 1; 4073 4074 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4075 break; 4076 case MSR_IA32_XFD_ERR: 4077 if (!msr_info->host_initiated && 4078 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4079 return 1; 4080 4081 if (data & ~kvm_guest_supported_xfd(vcpu)) 4082 return 1; 4083 4084 vcpu->arch.guest_fpu.xfd_err = data; 4085 break; 4086 #endif 4087 default: 4088 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4089 return kvm_pmu_set_msr(vcpu, msr_info); 4090 4091 /* 4092 * Userspace is allowed to write '0' to MSRs that KVM reports 4093 * as to-be-saved, even if an MSRs isn't fully supported. 4094 */ 4095 if (msr_info->host_initiated && !data && 4096 kvm_is_msr_to_save(msr)) 4097 break; 4098 4099 return KVM_MSR_RET_INVALID; 4100 } 4101 return 0; 4102 } 4103 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4104 4105 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4106 { 4107 u64 data; 4108 u64 mcg_cap = vcpu->arch.mcg_cap; 4109 unsigned bank_num = mcg_cap & 0xff; 4110 u32 offset, last_msr; 4111 4112 switch (msr) { 4113 case MSR_IA32_P5_MC_ADDR: 4114 case MSR_IA32_P5_MC_TYPE: 4115 data = 0; 4116 break; 4117 case MSR_IA32_MCG_CAP: 4118 data = vcpu->arch.mcg_cap; 4119 break; 4120 case MSR_IA32_MCG_CTL: 4121 if (!(mcg_cap & MCG_CTL_P) && !host) 4122 return 1; 4123 data = vcpu->arch.mcg_ctl; 4124 break; 4125 case MSR_IA32_MCG_STATUS: 4126 data = vcpu->arch.mcg_status; 4127 break; 4128 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4129 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4130 if (msr > last_msr) 4131 return 1; 4132 4133 if (!(mcg_cap & MCG_CMCI_P) && !host) 4134 return 1; 4135 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4136 last_msr + 1 - MSR_IA32_MC0_CTL2); 4137 data = vcpu->arch.mci_ctl2_banks[offset]; 4138 break; 4139 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4140 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4141 if (msr > last_msr) 4142 return 1; 4143 4144 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4145 last_msr + 1 - MSR_IA32_MC0_CTL); 4146 data = vcpu->arch.mce_banks[offset]; 4147 break; 4148 default: 4149 return 1; 4150 } 4151 *pdata = data; 4152 return 0; 4153 } 4154 4155 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4156 { 4157 switch (msr_info->index) { 4158 case MSR_IA32_PLATFORM_ID: 4159 case MSR_IA32_EBL_CR_POWERON: 4160 case MSR_IA32_LASTBRANCHFROMIP: 4161 case MSR_IA32_LASTBRANCHTOIP: 4162 case MSR_IA32_LASTINTFROMIP: 4163 case MSR_IA32_LASTINTTOIP: 4164 case MSR_AMD64_SYSCFG: 4165 case MSR_K8_TSEG_ADDR: 4166 case MSR_K8_TSEG_MASK: 4167 case MSR_VM_HSAVE_PA: 4168 case MSR_K8_INT_PENDING_MSG: 4169 case MSR_AMD64_NB_CFG: 4170 case MSR_FAM10H_MMIO_CONF_BASE: 4171 case MSR_AMD64_BU_CFG2: 4172 case MSR_IA32_PERF_CTL: 4173 case MSR_AMD64_DC_CFG: 4174 case MSR_AMD64_TW_CFG: 4175 case MSR_F15H_EX_CFG: 4176 /* 4177 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4178 * limit) MSRs. Just return 0, as we do not want to expose the host 4179 * data here. Do not conditionalize this on CPUID, as KVM does not do 4180 * so for existing CPU-specific MSRs. 4181 */ 4182 case MSR_RAPL_POWER_UNIT: 4183 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4184 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4185 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4186 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4187 msr_info->data = 0; 4188 break; 4189 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4190 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4191 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4192 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4193 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4194 return kvm_pmu_get_msr(vcpu, msr_info); 4195 msr_info->data = 0; 4196 break; 4197 case MSR_IA32_UCODE_REV: 4198 msr_info->data = vcpu->arch.microcode_version; 4199 break; 4200 case MSR_IA32_ARCH_CAPABILITIES: 4201 if (!msr_info->host_initiated && 4202 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4203 return 1; 4204 msr_info->data = vcpu->arch.arch_capabilities; 4205 break; 4206 case MSR_IA32_PERF_CAPABILITIES: 4207 if (!msr_info->host_initiated && 4208 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4209 return 1; 4210 msr_info->data = vcpu->arch.perf_capabilities; 4211 break; 4212 case MSR_IA32_POWER_CTL: 4213 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4214 break; 4215 case MSR_IA32_TSC: { 4216 /* 4217 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4218 * even when not intercepted. AMD manual doesn't explicitly 4219 * state this but appears to behave the same. 4220 * 4221 * On userspace reads and writes, however, we unconditionally 4222 * return L1's TSC value to ensure backwards-compatible 4223 * behavior for migration. 4224 */ 4225 u64 offset, ratio; 4226 4227 if (msr_info->host_initiated) { 4228 offset = vcpu->arch.l1_tsc_offset; 4229 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4230 } else { 4231 offset = vcpu->arch.tsc_offset; 4232 ratio = vcpu->arch.tsc_scaling_ratio; 4233 } 4234 4235 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4236 break; 4237 } 4238 case MSR_IA32_CR_PAT: 4239 msr_info->data = vcpu->arch.pat; 4240 break; 4241 case MSR_MTRRcap: 4242 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4243 case MSR_MTRRdefType: 4244 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4245 case 0xcd: /* fsb frequency */ 4246 msr_info->data = 3; 4247 break; 4248 /* 4249 * MSR_EBC_FREQUENCY_ID 4250 * Conservative value valid for even the basic CPU models. 4251 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4252 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4253 * and 266MHz for model 3, or 4. Set Core Clock 4254 * Frequency to System Bus Frequency Ratio to 1 (bits 4255 * 31:24) even though these are only valid for CPU 4256 * models > 2, however guests may end up dividing or 4257 * multiplying by zero otherwise. 4258 */ 4259 case MSR_EBC_FREQUENCY_ID: 4260 msr_info->data = 1 << 24; 4261 break; 4262 case MSR_IA32_APICBASE: 4263 msr_info->data = kvm_get_apic_base(vcpu); 4264 break; 4265 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4266 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4267 case MSR_IA32_TSC_DEADLINE: 4268 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4269 break; 4270 case MSR_IA32_TSC_ADJUST: 4271 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4272 break; 4273 case MSR_IA32_MISC_ENABLE: 4274 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4275 break; 4276 case MSR_IA32_SMBASE: 4277 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4278 return 1; 4279 msr_info->data = vcpu->arch.smbase; 4280 break; 4281 case MSR_SMI_COUNT: 4282 msr_info->data = vcpu->arch.smi_count; 4283 break; 4284 case MSR_IA32_PERF_STATUS: 4285 /* TSC increment by tick */ 4286 msr_info->data = 1000ULL; 4287 /* CPU multiplier */ 4288 msr_info->data |= (((uint64_t)4ULL) << 40); 4289 break; 4290 case MSR_EFER: 4291 msr_info->data = vcpu->arch.efer; 4292 break; 4293 case MSR_KVM_WALL_CLOCK: 4294 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4295 return 1; 4296 4297 msr_info->data = vcpu->kvm->arch.wall_clock; 4298 break; 4299 case MSR_KVM_WALL_CLOCK_NEW: 4300 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4301 return 1; 4302 4303 msr_info->data = vcpu->kvm->arch.wall_clock; 4304 break; 4305 case MSR_KVM_SYSTEM_TIME: 4306 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4307 return 1; 4308 4309 msr_info->data = vcpu->arch.time; 4310 break; 4311 case MSR_KVM_SYSTEM_TIME_NEW: 4312 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4313 return 1; 4314 4315 msr_info->data = vcpu->arch.time; 4316 break; 4317 case MSR_KVM_ASYNC_PF_EN: 4318 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4319 return 1; 4320 4321 msr_info->data = vcpu->arch.apf.msr_en_val; 4322 break; 4323 case MSR_KVM_ASYNC_PF_INT: 4324 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4325 return 1; 4326 4327 msr_info->data = vcpu->arch.apf.msr_int_val; 4328 break; 4329 case MSR_KVM_ASYNC_PF_ACK: 4330 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4331 return 1; 4332 4333 msr_info->data = 0; 4334 break; 4335 case MSR_KVM_STEAL_TIME: 4336 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4337 return 1; 4338 4339 msr_info->data = vcpu->arch.st.msr_val; 4340 break; 4341 case MSR_KVM_PV_EOI_EN: 4342 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4343 return 1; 4344 4345 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4346 break; 4347 case MSR_KVM_POLL_CONTROL: 4348 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4349 return 1; 4350 4351 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4352 break; 4353 case MSR_IA32_P5_MC_ADDR: 4354 case MSR_IA32_P5_MC_TYPE: 4355 case MSR_IA32_MCG_CAP: 4356 case MSR_IA32_MCG_CTL: 4357 case MSR_IA32_MCG_STATUS: 4358 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4359 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4360 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4361 msr_info->host_initiated); 4362 case MSR_IA32_XSS: 4363 if (!msr_info->host_initiated && 4364 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4365 return 1; 4366 msr_info->data = vcpu->arch.ia32_xss; 4367 break; 4368 case MSR_K7_CLK_CTL: 4369 /* 4370 * Provide expected ramp-up count for K7. All other 4371 * are set to zero, indicating minimum divisors for 4372 * every field. 4373 * 4374 * This prevents guest kernels on AMD host with CPU 4375 * type 6, model 8 and higher from exploding due to 4376 * the rdmsr failing. 4377 */ 4378 msr_info->data = 0x20000000; 4379 break; 4380 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4381 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4382 case HV_X64_MSR_SYNDBG_OPTIONS: 4383 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4384 case HV_X64_MSR_CRASH_CTL: 4385 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4386 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4387 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4388 case HV_X64_MSR_TSC_EMULATION_STATUS: 4389 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4390 return kvm_hv_get_msr_common(vcpu, 4391 msr_info->index, &msr_info->data, 4392 msr_info->host_initiated); 4393 case MSR_IA32_BBL_CR_CTL3: 4394 /* This legacy MSR exists but isn't fully documented in current 4395 * silicon. It is however accessed by winxp in very narrow 4396 * scenarios where it sets bit #19, itself documented as 4397 * a "reserved" bit. Best effort attempt to source coherent 4398 * read data here should the balance of the register be 4399 * interpreted by the guest: 4400 * 4401 * L2 cache control register 3: 64GB range, 256KB size, 4402 * enabled, latency 0x1, configured 4403 */ 4404 msr_info->data = 0xbe702111; 4405 break; 4406 case MSR_AMD64_OSVW_ID_LENGTH: 4407 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4408 return 1; 4409 msr_info->data = vcpu->arch.osvw.length; 4410 break; 4411 case MSR_AMD64_OSVW_STATUS: 4412 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4413 return 1; 4414 msr_info->data = vcpu->arch.osvw.status; 4415 break; 4416 case MSR_PLATFORM_INFO: 4417 if (!msr_info->host_initiated && 4418 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4419 return 1; 4420 msr_info->data = vcpu->arch.msr_platform_info; 4421 break; 4422 case MSR_MISC_FEATURES_ENABLES: 4423 msr_info->data = vcpu->arch.msr_misc_features_enables; 4424 break; 4425 case MSR_K7_HWCR: 4426 msr_info->data = vcpu->arch.msr_hwcr; 4427 break; 4428 #ifdef CONFIG_X86_64 4429 case MSR_IA32_XFD: 4430 if (!msr_info->host_initiated && 4431 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4432 return 1; 4433 4434 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4435 break; 4436 case MSR_IA32_XFD_ERR: 4437 if (!msr_info->host_initiated && 4438 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4439 return 1; 4440 4441 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4442 break; 4443 #endif 4444 default: 4445 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4446 return kvm_pmu_get_msr(vcpu, msr_info); 4447 4448 /* 4449 * Userspace is allowed to read MSRs that KVM reports as 4450 * to-be-saved, even if an MSR isn't fully supported. 4451 */ 4452 if (msr_info->host_initiated && 4453 kvm_is_msr_to_save(msr_info->index)) { 4454 msr_info->data = 0; 4455 break; 4456 } 4457 4458 return KVM_MSR_RET_INVALID; 4459 } 4460 return 0; 4461 } 4462 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4463 4464 /* 4465 * Read or write a bunch of msrs. All parameters are kernel addresses. 4466 * 4467 * @return number of msrs set successfully. 4468 */ 4469 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4470 struct kvm_msr_entry *entries, 4471 int (*do_msr)(struct kvm_vcpu *vcpu, 4472 unsigned index, u64 *data)) 4473 { 4474 int i; 4475 4476 for (i = 0; i < msrs->nmsrs; ++i) 4477 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4478 break; 4479 4480 return i; 4481 } 4482 4483 /* 4484 * Read or write a bunch of msrs. Parameters are user addresses. 4485 * 4486 * @return number of msrs set successfully. 4487 */ 4488 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4489 int (*do_msr)(struct kvm_vcpu *vcpu, 4490 unsigned index, u64 *data), 4491 int writeback) 4492 { 4493 struct kvm_msrs msrs; 4494 struct kvm_msr_entry *entries; 4495 unsigned size; 4496 int r; 4497 4498 r = -EFAULT; 4499 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4500 goto out; 4501 4502 r = -E2BIG; 4503 if (msrs.nmsrs >= MAX_IO_MSRS) 4504 goto out; 4505 4506 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4507 entries = memdup_user(user_msrs->entries, size); 4508 if (IS_ERR(entries)) { 4509 r = PTR_ERR(entries); 4510 goto out; 4511 } 4512 4513 r = __msr_io(vcpu, &msrs, entries, do_msr); 4514 4515 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4516 r = -EFAULT; 4517 4518 kfree(entries); 4519 out: 4520 return r; 4521 } 4522 4523 static inline bool kvm_can_mwait_in_guest(void) 4524 { 4525 return boot_cpu_has(X86_FEATURE_MWAIT) && 4526 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4527 boot_cpu_has(X86_FEATURE_ARAT); 4528 } 4529 4530 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4531 struct kvm_cpuid2 __user *cpuid_arg) 4532 { 4533 struct kvm_cpuid2 cpuid; 4534 int r; 4535 4536 r = -EFAULT; 4537 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4538 return r; 4539 4540 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4541 if (r) 4542 return r; 4543 4544 r = -EFAULT; 4545 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4546 return r; 4547 4548 return 0; 4549 } 4550 4551 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4552 { 4553 int r = 0; 4554 4555 switch (ext) { 4556 case KVM_CAP_IRQCHIP: 4557 case KVM_CAP_HLT: 4558 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4559 case KVM_CAP_SET_TSS_ADDR: 4560 case KVM_CAP_EXT_CPUID: 4561 case KVM_CAP_EXT_EMUL_CPUID: 4562 case KVM_CAP_CLOCKSOURCE: 4563 case KVM_CAP_PIT: 4564 case KVM_CAP_NOP_IO_DELAY: 4565 case KVM_CAP_MP_STATE: 4566 case KVM_CAP_SYNC_MMU: 4567 case KVM_CAP_USER_NMI: 4568 case KVM_CAP_REINJECT_CONTROL: 4569 case KVM_CAP_IRQ_INJECT_STATUS: 4570 case KVM_CAP_IOEVENTFD: 4571 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4572 case KVM_CAP_PIT2: 4573 case KVM_CAP_PIT_STATE2: 4574 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4575 case KVM_CAP_VCPU_EVENTS: 4576 case KVM_CAP_HYPERV: 4577 case KVM_CAP_HYPERV_VAPIC: 4578 case KVM_CAP_HYPERV_SPIN: 4579 case KVM_CAP_HYPERV_SYNIC: 4580 case KVM_CAP_HYPERV_SYNIC2: 4581 case KVM_CAP_HYPERV_VP_INDEX: 4582 case KVM_CAP_HYPERV_EVENTFD: 4583 case KVM_CAP_HYPERV_TLBFLUSH: 4584 case KVM_CAP_HYPERV_SEND_IPI: 4585 case KVM_CAP_HYPERV_CPUID: 4586 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4587 case KVM_CAP_SYS_HYPERV_CPUID: 4588 case KVM_CAP_PCI_SEGMENT: 4589 case KVM_CAP_DEBUGREGS: 4590 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4591 case KVM_CAP_XSAVE: 4592 case KVM_CAP_ASYNC_PF: 4593 case KVM_CAP_ASYNC_PF_INT: 4594 case KVM_CAP_GET_TSC_KHZ: 4595 case KVM_CAP_KVMCLOCK_CTRL: 4596 case KVM_CAP_READONLY_MEM: 4597 case KVM_CAP_HYPERV_TIME: 4598 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4599 case KVM_CAP_TSC_DEADLINE_TIMER: 4600 case KVM_CAP_DISABLE_QUIRKS: 4601 case KVM_CAP_SET_BOOT_CPU_ID: 4602 case KVM_CAP_SPLIT_IRQCHIP: 4603 case KVM_CAP_IMMEDIATE_EXIT: 4604 case KVM_CAP_PMU_EVENT_FILTER: 4605 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4606 case KVM_CAP_GET_MSR_FEATURES: 4607 case KVM_CAP_MSR_PLATFORM_INFO: 4608 case KVM_CAP_EXCEPTION_PAYLOAD: 4609 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4610 case KVM_CAP_SET_GUEST_DEBUG: 4611 case KVM_CAP_LAST_CPU: 4612 case KVM_CAP_X86_USER_SPACE_MSR: 4613 case KVM_CAP_X86_MSR_FILTER: 4614 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4615 #ifdef CONFIG_X86_SGX_KVM 4616 case KVM_CAP_SGX_ATTRIBUTE: 4617 #endif 4618 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4619 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4620 case KVM_CAP_SREGS2: 4621 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4622 case KVM_CAP_VCPU_ATTRIBUTES: 4623 case KVM_CAP_SYS_ATTRIBUTES: 4624 case KVM_CAP_VAPIC: 4625 case KVM_CAP_ENABLE_CAP: 4626 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4627 case KVM_CAP_IRQFD_RESAMPLE: 4628 r = 1; 4629 break; 4630 case KVM_CAP_EXIT_HYPERCALL: 4631 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4632 break; 4633 case KVM_CAP_SET_GUEST_DEBUG2: 4634 return KVM_GUESTDBG_VALID_MASK; 4635 #ifdef CONFIG_KVM_XEN 4636 case KVM_CAP_XEN_HVM: 4637 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4638 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4639 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4640 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4641 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4642 if (sched_info_on()) 4643 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4644 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4645 break; 4646 #endif 4647 case KVM_CAP_SYNC_REGS: 4648 r = KVM_SYNC_X86_VALID_FIELDS; 4649 break; 4650 case KVM_CAP_ADJUST_CLOCK: 4651 r = KVM_CLOCK_VALID_FLAGS; 4652 break; 4653 case KVM_CAP_X86_DISABLE_EXITS: 4654 r = KVM_X86_DISABLE_EXITS_PAUSE; 4655 4656 if (!mitigate_smt_rsb) { 4657 r |= KVM_X86_DISABLE_EXITS_HLT | 4658 KVM_X86_DISABLE_EXITS_CSTATE; 4659 4660 if (kvm_can_mwait_in_guest()) 4661 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4662 } 4663 break; 4664 case KVM_CAP_X86_SMM: 4665 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4666 break; 4667 4668 /* SMBASE is usually relocated above 1M on modern chipsets, 4669 * and SMM handlers might indeed rely on 4G segment limits, 4670 * so do not report SMM to be available if real mode is 4671 * emulated via vm86 mode. Still, do not go to great lengths 4672 * to avoid userspace's usage of the feature, because it is a 4673 * fringe case that is not enabled except via specific settings 4674 * of the module parameters. 4675 */ 4676 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4677 break; 4678 case KVM_CAP_NR_VCPUS: 4679 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4680 break; 4681 case KVM_CAP_MAX_VCPUS: 4682 r = KVM_MAX_VCPUS; 4683 break; 4684 case KVM_CAP_MAX_VCPU_ID: 4685 r = KVM_MAX_VCPU_IDS; 4686 break; 4687 case KVM_CAP_PV_MMU: /* obsolete */ 4688 r = 0; 4689 break; 4690 case KVM_CAP_MCE: 4691 r = KVM_MAX_MCE_BANKS; 4692 break; 4693 case KVM_CAP_XCRS: 4694 r = boot_cpu_has(X86_FEATURE_XSAVE); 4695 break; 4696 case KVM_CAP_TSC_CONTROL: 4697 case KVM_CAP_VM_TSC_CONTROL: 4698 r = kvm_caps.has_tsc_control; 4699 break; 4700 case KVM_CAP_X2APIC_API: 4701 r = KVM_X2APIC_API_VALID_FLAGS; 4702 break; 4703 case KVM_CAP_NESTED_STATE: 4704 r = kvm_x86_ops.nested_ops->get_state ? 4705 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4706 break; 4707 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4708 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4709 break; 4710 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4711 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4712 break; 4713 case KVM_CAP_SMALLER_MAXPHYADDR: 4714 r = (int) allow_smaller_maxphyaddr; 4715 break; 4716 case KVM_CAP_STEAL_TIME: 4717 r = sched_info_on(); 4718 break; 4719 case KVM_CAP_X86_BUS_LOCK_EXIT: 4720 if (kvm_caps.has_bus_lock_exit) 4721 r = KVM_BUS_LOCK_DETECTION_OFF | 4722 KVM_BUS_LOCK_DETECTION_EXIT; 4723 else 4724 r = 0; 4725 break; 4726 case KVM_CAP_XSAVE2: { 4727 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4728 if (r < sizeof(struct kvm_xsave)) 4729 r = sizeof(struct kvm_xsave); 4730 break; 4731 } 4732 case KVM_CAP_PMU_CAPABILITY: 4733 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4734 break; 4735 case KVM_CAP_DISABLE_QUIRKS2: 4736 r = KVM_X86_VALID_QUIRKS; 4737 break; 4738 case KVM_CAP_X86_NOTIFY_VMEXIT: 4739 r = kvm_caps.has_notify_vmexit; 4740 break; 4741 default: 4742 break; 4743 } 4744 return r; 4745 } 4746 4747 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4748 { 4749 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4750 4751 if ((u64)(unsigned long)uaddr != attr->addr) 4752 return ERR_PTR_USR(-EFAULT); 4753 return uaddr; 4754 } 4755 4756 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4757 { 4758 u64 __user *uaddr = kvm_get_attr_addr(attr); 4759 4760 if (attr->group) 4761 return -ENXIO; 4762 4763 if (IS_ERR(uaddr)) 4764 return PTR_ERR(uaddr); 4765 4766 switch (attr->attr) { 4767 case KVM_X86_XCOMP_GUEST_SUPP: 4768 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4769 return -EFAULT; 4770 return 0; 4771 default: 4772 return -ENXIO; 4773 } 4774 } 4775 4776 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4777 { 4778 if (attr->group) 4779 return -ENXIO; 4780 4781 switch (attr->attr) { 4782 case KVM_X86_XCOMP_GUEST_SUPP: 4783 return 0; 4784 default: 4785 return -ENXIO; 4786 } 4787 } 4788 4789 long kvm_arch_dev_ioctl(struct file *filp, 4790 unsigned int ioctl, unsigned long arg) 4791 { 4792 void __user *argp = (void __user *)arg; 4793 long r; 4794 4795 switch (ioctl) { 4796 case KVM_GET_MSR_INDEX_LIST: { 4797 struct kvm_msr_list __user *user_msr_list = argp; 4798 struct kvm_msr_list msr_list; 4799 unsigned n; 4800 4801 r = -EFAULT; 4802 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4803 goto out; 4804 n = msr_list.nmsrs; 4805 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4806 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4807 goto out; 4808 r = -E2BIG; 4809 if (n < msr_list.nmsrs) 4810 goto out; 4811 r = -EFAULT; 4812 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4813 num_msrs_to_save * sizeof(u32))) 4814 goto out; 4815 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4816 &emulated_msrs, 4817 num_emulated_msrs * sizeof(u32))) 4818 goto out; 4819 r = 0; 4820 break; 4821 } 4822 case KVM_GET_SUPPORTED_CPUID: 4823 case KVM_GET_EMULATED_CPUID: { 4824 struct kvm_cpuid2 __user *cpuid_arg = argp; 4825 struct kvm_cpuid2 cpuid; 4826 4827 r = -EFAULT; 4828 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4829 goto out; 4830 4831 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4832 ioctl); 4833 if (r) 4834 goto out; 4835 4836 r = -EFAULT; 4837 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4838 goto out; 4839 r = 0; 4840 break; 4841 } 4842 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4843 r = -EFAULT; 4844 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4845 sizeof(kvm_caps.supported_mce_cap))) 4846 goto out; 4847 r = 0; 4848 break; 4849 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4850 struct kvm_msr_list __user *user_msr_list = argp; 4851 struct kvm_msr_list msr_list; 4852 unsigned int n; 4853 4854 r = -EFAULT; 4855 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4856 goto out; 4857 n = msr_list.nmsrs; 4858 msr_list.nmsrs = num_msr_based_features; 4859 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4860 goto out; 4861 r = -E2BIG; 4862 if (n < msr_list.nmsrs) 4863 goto out; 4864 r = -EFAULT; 4865 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4866 num_msr_based_features * sizeof(u32))) 4867 goto out; 4868 r = 0; 4869 break; 4870 } 4871 case KVM_GET_MSRS: 4872 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4873 break; 4874 case KVM_GET_SUPPORTED_HV_CPUID: 4875 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4876 break; 4877 case KVM_GET_DEVICE_ATTR: { 4878 struct kvm_device_attr attr; 4879 r = -EFAULT; 4880 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4881 break; 4882 r = kvm_x86_dev_get_attr(&attr); 4883 break; 4884 } 4885 case KVM_HAS_DEVICE_ATTR: { 4886 struct kvm_device_attr attr; 4887 r = -EFAULT; 4888 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4889 break; 4890 r = kvm_x86_dev_has_attr(&attr); 4891 break; 4892 } 4893 default: 4894 r = -EINVAL; 4895 break; 4896 } 4897 out: 4898 return r; 4899 } 4900 4901 static void wbinvd_ipi(void *garbage) 4902 { 4903 wbinvd(); 4904 } 4905 4906 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4907 { 4908 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4909 } 4910 4911 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4912 { 4913 /* Address WBINVD may be executed by guest */ 4914 if (need_emulate_wbinvd(vcpu)) { 4915 if (static_call(kvm_x86_has_wbinvd_exit)()) 4916 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4917 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4918 smp_call_function_single(vcpu->cpu, 4919 wbinvd_ipi, NULL, 1); 4920 } 4921 4922 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4923 4924 /* Save host pkru register if supported */ 4925 vcpu->arch.host_pkru = read_pkru(); 4926 4927 /* Apply any externally detected TSC adjustments (due to suspend) */ 4928 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4929 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4930 vcpu->arch.tsc_offset_adjustment = 0; 4931 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4932 } 4933 4934 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4935 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4936 rdtsc() - vcpu->arch.last_host_tsc; 4937 if (tsc_delta < 0) 4938 mark_tsc_unstable("KVM discovered backwards TSC"); 4939 4940 if (kvm_check_tsc_unstable()) { 4941 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4942 vcpu->arch.last_guest_tsc); 4943 kvm_vcpu_write_tsc_offset(vcpu, offset); 4944 vcpu->arch.tsc_catchup = 1; 4945 } 4946 4947 if (kvm_lapic_hv_timer_in_use(vcpu)) 4948 kvm_lapic_restart_hv_timer(vcpu); 4949 4950 /* 4951 * On a host with synchronized TSC, there is no need to update 4952 * kvmclock on vcpu->cpu migration 4953 */ 4954 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4955 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4956 if (vcpu->cpu != cpu) 4957 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4958 vcpu->cpu = cpu; 4959 } 4960 4961 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4962 } 4963 4964 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4965 { 4966 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4967 struct kvm_steal_time __user *st; 4968 struct kvm_memslots *slots; 4969 static const u8 preempted = KVM_VCPU_PREEMPTED; 4970 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4971 4972 /* 4973 * The vCPU can be marked preempted if and only if the VM-Exit was on 4974 * an instruction boundary and will not trigger guest emulation of any 4975 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4976 * when this is true, for example allowing the vCPU to be marked 4977 * preempted if and only if the VM-Exit was due to a host interrupt. 4978 */ 4979 if (!vcpu->arch.at_instruction_boundary) { 4980 vcpu->stat.preemption_other++; 4981 return; 4982 } 4983 4984 vcpu->stat.preemption_reported++; 4985 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4986 return; 4987 4988 if (vcpu->arch.st.preempted) 4989 return; 4990 4991 /* This happens on process exit */ 4992 if (unlikely(current->mm != vcpu->kvm->mm)) 4993 return; 4994 4995 slots = kvm_memslots(vcpu->kvm); 4996 4997 if (unlikely(slots->generation != ghc->generation || 4998 gpa != ghc->gpa || 4999 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5000 return; 5001 5002 st = (struct kvm_steal_time __user *)ghc->hva; 5003 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5004 5005 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5006 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5007 5008 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5009 } 5010 5011 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5012 { 5013 int idx; 5014 5015 if (vcpu->preempted) { 5016 if (!vcpu->arch.guest_state_protected) 5017 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 5018 5019 /* 5020 * Take the srcu lock as memslots will be accessed to check the gfn 5021 * cache generation against the memslots generation. 5022 */ 5023 idx = srcu_read_lock(&vcpu->kvm->srcu); 5024 if (kvm_xen_msr_enabled(vcpu->kvm)) 5025 kvm_xen_runstate_set_preempted(vcpu); 5026 else 5027 kvm_steal_time_set_preempted(vcpu); 5028 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5029 } 5030 5031 static_call(kvm_x86_vcpu_put)(vcpu); 5032 vcpu->arch.last_host_tsc = rdtsc(); 5033 } 5034 5035 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5036 struct kvm_lapic_state *s) 5037 { 5038 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 5039 5040 return kvm_apic_get_state(vcpu, s); 5041 } 5042 5043 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5044 struct kvm_lapic_state *s) 5045 { 5046 int r; 5047 5048 r = kvm_apic_set_state(vcpu, s); 5049 if (r) 5050 return r; 5051 update_cr8_intercept(vcpu); 5052 5053 return 0; 5054 } 5055 5056 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5057 { 5058 /* 5059 * We can accept userspace's request for interrupt injection 5060 * as long as we have a place to store the interrupt number. 5061 * The actual injection will happen when the CPU is able to 5062 * deliver the interrupt. 5063 */ 5064 if (kvm_cpu_has_extint(vcpu)) 5065 return false; 5066 5067 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5068 return (!lapic_in_kernel(vcpu) || 5069 kvm_apic_accept_pic_intr(vcpu)); 5070 } 5071 5072 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5073 { 5074 /* 5075 * Do not cause an interrupt window exit if an exception 5076 * is pending or an event needs reinjection; userspace 5077 * might want to inject the interrupt manually using KVM_SET_REGS 5078 * or KVM_SET_SREGS. For that to work, we must be at an 5079 * instruction boundary and with no events half-injected. 5080 */ 5081 return (kvm_arch_interrupt_allowed(vcpu) && 5082 kvm_cpu_accept_dm_intr(vcpu) && 5083 !kvm_event_needs_reinjection(vcpu) && 5084 !kvm_is_exception_pending(vcpu)); 5085 } 5086 5087 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5088 struct kvm_interrupt *irq) 5089 { 5090 if (irq->irq >= KVM_NR_INTERRUPTS) 5091 return -EINVAL; 5092 5093 if (!irqchip_in_kernel(vcpu->kvm)) { 5094 kvm_queue_interrupt(vcpu, irq->irq, false); 5095 kvm_make_request(KVM_REQ_EVENT, vcpu); 5096 return 0; 5097 } 5098 5099 /* 5100 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5101 * fail for in-kernel 8259. 5102 */ 5103 if (pic_in_kernel(vcpu->kvm)) 5104 return -ENXIO; 5105 5106 if (vcpu->arch.pending_external_vector != -1) 5107 return -EEXIST; 5108 5109 vcpu->arch.pending_external_vector = irq->irq; 5110 kvm_make_request(KVM_REQ_EVENT, vcpu); 5111 return 0; 5112 } 5113 5114 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5115 { 5116 kvm_inject_nmi(vcpu); 5117 5118 return 0; 5119 } 5120 5121 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5122 struct kvm_tpr_access_ctl *tac) 5123 { 5124 if (tac->flags) 5125 return -EINVAL; 5126 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5127 return 0; 5128 } 5129 5130 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5131 u64 mcg_cap) 5132 { 5133 int r; 5134 unsigned bank_num = mcg_cap & 0xff, bank; 5135 5136 r = -EINVAL; 5137 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5138 goto out; 5139 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5140 goto out; 5141 r = 0; 5142 vcpu->arch.mcg_cap = mcg_cap; 5143 /* Init IA32_MCG_CTL to all 1s */ 5144 if (mcg_cap & MCG_CTL_P) 5145 vcpu->arch.mcg_ctl = ~(u64)0; 5146 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5147 for (bank = 0; bank < bank_num; bank++) { 5148 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5149 if (mcg_cap & MCG_CMCI_P) 5150 vcpu->arch.mci_ctl2_banks[bank] = 0; 5151 } 5152 5153 kvm_apic_after_set_mcg_cap(vcpu); 5154 5155 static_call(kvm_x86_setup_mce)(vcpu); 5156 out: 5157 return r; 5158 } 5159 5160 /* 5161 * Validate this is an UCNA (uncorrectable no action) error by checking the 5162 * MCG_STATUS and MCi_STATUS registers: 5163 * - none of the bits for Machine Check Exceptions are set 5164 * - both the VAL (valid) and UC (uncorrectable) bits are set 5165 * MCI_STATUS_PCC - Processor Context Corrupted 5166 * MCI_STATUS_S - Signaled as a Machine Check Exception 5167 * MCI_STATUS_AR - Software recoverable Action Required 5168 */ 5169 static bool is_ucna(struct kvm_x86_mce *mce) 5170 { 5171 return !mce->mcg_status && 5172 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5173 (mce->status & MCI_STATUS_VAL) && 5174 (mce->status & MCI_STATUS_UC); 5175 } 5176 5177 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5178 { 5179 u64 mcg_cap = vcpu->arch.mcg_cap; 5180 5181 banks[1] = mce->status; 5182 banks[2] = mce->addr; 5183 banks[3] = mce->misc; 5184 vcpu->arch.mcg_status = mce->mcg_status; 5185 5186 if (!(mcg_cap & MCG_CMCI_P) || 5187 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5188 return 0; 5189 5190 if (lapic_in_kernel(vcpu)) 5191 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5192 5193 return 0; 5194 } 5195 5196 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5197 struct kvm_x86_mce *mce) 5198 { 5199 u64 mcg_cap = vcpu->arch.mcg_cap; 5200 unsigned bank_num = mcg_cap & 0xff; 5201 u64 *banks = vcpu->arch.mce_banks; 5202 5203 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5204 return -EINVAL; 5205 5206 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5207 5208 if (is_ucna(mce)) 5209 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5210 5211 /* 5212 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5213 * reporting is disabled 5214 */ 5215 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5216 vcpu->arch.mcg_ctl != ~(u64)0) 5217 return 0; 5218 /* 5219 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5220 * reporting is disabled for the bank 5221 */ 5222 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5223 return 0; 5224 if (mce->status & MCI_STATUS_UC) { 5225 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5226 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5227 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5228 return 0; 5229 } 5230 if (banks[1] & MCI_STATUS_VAL) 5231 mce->status |= MCI_STATUS_OVER; 5232 banks[2] = mce->addr; 5233 banks[3] = mce->misc; 5234 vcpu->arch.mcg_status = mce->mcg_status; 5235 banks[1] = mce->status; 5236 kvm_queue_exception(vcpu, MC_VECTOR); 5237 } else if (!(banks[1] & MCI_STATUS_VAL) 5238 || !(banks[1] & MCI_STATUS_UC)) { 5239 if (banks[1] & MCI_STATUS_VAL) 5240 mce->status |= MCI_STATUS_OVER; 5241 banks[2] = mce->addr; 5242 banks[3] = mce->misc; 5243 banks[1] = mce->status; 5244 } else 5245 banks[1] |= MCI_STATUS_OVER; 5246 return 0; 5247 } 5248 5249 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5250 struct kvm_vcpu_events *events) 5251 { 5252 struct kvm_queued_exception *ex; 5253 5254 process_nmi(vcpu); 5255 5256 #ifdef CONFIG_KVM_SMM 5257 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5258 process_smi(vcpu); 5259 #endif 5260 5261 /* 5262 * KVM's ABI only allows for one exception to be migrated. Luckily, 5263 * the only time there can be two queued exceptions is if there's a 5264 * non-exiting _injected_ exception, and a pending exiting exception. 5265 * In that case, ignore the VM-Exiting exception as it's an extension 5266 * of the injected exception. 5267 */ 5268 if (vcpu->arch.exception_vmexit.pending && 5269 !vcpu->arch.exception.pending && 5270 !vcpu->arch.exception.injected) 5271 ex = &vcpu->arch.exception_vmexit; 5272 else 5273 ex = &vcpu->arch.exception; 5274 5275 /* 5276 * In guest mode, payload delivery should be deferred if the exception 5277 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5278 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5279 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5280 * propagate the payload and so it cannot be safely deferred. Deliver 5281 * the payload if the capability hasn't been requested. 5282 */ 5283 if (!vcpu->kvm->arch.exception_payload_enabled && 5284 ex->pending && ex->has_payload) 5285 kvm_deliver_exception_payload(vcpu, ex); 5286 5287 memset(events, 0, sizeof(*events)); 5288 5289 /* 5290 * The API doesn't provide the instruction length for software 5291 * exceptions, so don't report them. As long as the guest RIP 5292 * isn't advanced, we should expect to encounter the exception 5293 * again. 5294 */ 5295 if (!kvm_exception_is_soft(ex->vector)) { 5296 events->exception.injected = ex->injected; 5297 events->exception.pending = ex->pending; 5298 /* 5299 * For ABI compatibility, deliberately conflate 5300 * pending and injected exceptions when 5301 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5302 */ 5303 if (!vcpu->kvm->arch.exception_payload_enabled) 5304 events->exception.injected |= ex->pending; 5305 } 5306 events->exception.nr = ex->vector; 5307 events->exception.has_error_code = ex->has_error_code; 5308 events->exception.error_code = ex->error_code; 5309 events->exception_has_payload = ex->has_payload; 5310 events->exception_payload = ex->payload; 5311 5312 events->interrupt.injected = 5313 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5314 events->interrupt.nr = vcpu->arch.interrupt.nr; 5315 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5316 5317 events->nmi.injected = vcpu->arch.nmi_injected; 5318 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5319 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5320 5321 /* events->sipi_vector is never valid when reporting to user space */ 5322 5323 #ifdef CONFIG_KVM_SMM 5324 events->smi.smm = is_smm(vcpu); 5325 events->smi.pending = vcpu->arch.smi_pending; 5326 events->smi.smm_inside_nmi = 5327 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5328 #endif 5329 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5330 5331 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5332 | KVM_VCPUEVENT_VALID_SHADOW 5333 | KVM_VCPUEVENT_VALID_SMM); 5334 if (vcpu->kvm->arch.exception_payload_enabled) 5335 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5336 if (vcpu->kvm->arch.triple_fault_event) { 5337 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5338 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5339 } 5340 } 5341 5342 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5343 struct kvm_vcpu_events *events) 5344 { 5345 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5346 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5347 | KVM_VCPUEVENT_VALID_SHADOW 5348 | KVM_VCPUEVENT_VALID_SMM 5349 | KVM_VCPUEVENT_VALID_PAYLOAD 5350 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5351 return -EINVAL; 5352 5353 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5354 if (!vcpu->kvm->arch.exception_payload_enabled) 5355 return -EINVAL; 5356 if (events->exception.pending) 5357 events->exception.injected = 0; 5358 else 5359 events->exception_has_payload = 0; 5360 } else { 5361 events->exception.pending = 0; 5362 events->exception_has_payload = 0; 5363 } 5364 5365 if ((events->exception.injected || events->exception.pending) && 5366 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5367 return -EINVAL; 5368 5369 /* INITs are latched while in SMM */ 5370 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5371 (events->smi.smm || events->smi.pending) && 5372 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5373 return -EINVAL; 5374 5375 process_nmi(vcpu); 5376 5377 /* 5378 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5379 * morph the exception to a VM-Exit if appropriate. Do this only for 5380 * pending exceptions, already-injected exceptions are not subject to 5381 * intercpetion. Note, userspace that conflates pending and injected 5382 * is hosed, and will incorrectly convert an injected exception into a 5383 * pending exception, which in turn may cause a spurious VM-Exit. 5384 */ 5385 vcpu->arch.exception_from_userspace = events->exception.pending; 5386 5387 vcpu->arch.exception_vmexit.pending = false; 5388 5389 vcpu->arch.exception.injected = events->exception.injected; 5390 vcpu->arch.exception.pending = events->exception.pending; 5391 vcpu->arch.exception.vector = events->exception.nr; 5392 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5393 vcpu->arch.exception.error_code = events->exception.error_code; 5394 vcpu->arch.exception.has_payload = events->exception_has_payload; 5395 vcpu->arch.exception.payload = events->exception_payload; 5396 5397 vcpu->arch.interrupt.injected = events->interrupt.injected; 5398 vcpu->arch.interrupt.nr = events->interrupt.nr; 5399 vcpu->arch.interrupt.soft = events->interrupt.soft; 5400 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5401 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5402 events->interrupt.shadow); 5403 5404 vcpu->arch.nmi_injected = events->nmi.injected; 5405 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5406 vcpu->arch.nmi_pending = 0; 5407 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5408 kvm_make_request(KVM_REQ_NMI, vcpu); 5409 } 5410 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5411 5412 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5413 lapic_in_kernel(vcpu)) 5414 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5415 5416 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5417 #ifdef CONFIG_KVM_SMM 5418 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5419 kvm_leave_nested(vcpu); 5420 kvm_smm_changed(vcpu, events->smi.smm); 5421 } 5422 5423 vcpu->arch.smi_pending = events->smi.pending; 5424 5425 if (events->smi.smm) { 5426 if (events->smi.smm_inside_nmi) 5427 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5428 else 5429 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5430 } 5431 5432 #else 5433 if (events->smi.smm || events->smi.pending || 5434 events->smi.smm_inside_nmi) 5435 return -EINVAL; 5436 #endif 5437 5438 if (lapic_in_kernel(vcpu)) { 5439 if (events->smi.latched_init) 5440 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5441 else 5442 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5443 } 5444 } 5445 5446 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5447 if (!vcpu->kvm->arch.triple_fault_event) 5448 return -EINVAL; 5449 if (events->triple_fault.pending) 5450 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5451 else 5452 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5453 } 5454 5455 kvm_make_request(KVM_REQ_EVENT, vcpu); 5456 5457 return 0; 5458 } 5459 5460 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5461 struct kvm_debugregs *dbgregs) 5462 { 5463 unsigned long val; 5464 5465 memset(dbgregs, 0, sizeof(*dbgregs)); 5466 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5467 kvm_get_dr(vcpu, 6, &val); 5468 dbgregs->dr6 = val; 5469 dbgregs->dr7 = vcpu->arch.dr7; 5470 } 5471 5472 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5473 struct kvm_debugregs *dbgregs) 5474 { 5475 if (dbgregs->flags) 5476 return -EINVAL; 5477 5478 if (!kvm_dr6_valid(dbgregs->dr6)) 5479 return -EINVAL; 5480 if (!kvm_dr7_valid(dbgregs->dr7)) 5481 return -EINVAL; 5482 5483 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5484 kvm_update_dr0123(vcpu); 5485 vcpu->arch.dr6 = dbgregs->dr6; 5486 vcpu->arch.dr7 = dbgregs->dr7; 5487 kvm_update_dr7(vcpu); 5488 5489 return 0; 5490 } 5491 5492 5493 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5494 u8 *state, unsigned int size) 5495 { 5496 /* 5497 * Only copy state for features that are enabled for the guest. The 5498 * state itself isn't problematic, but setting bits in the header for 5499 * features that are supported in *this* host but not exposed to the 5500 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5501 * compatible host without the features that are NOT exposed to the 5502 * guest. 5503 * 5504 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5505 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5506 * supported by the host. 5507 */ 5508 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5509 XFEATURE_MASK_FPSSE; 5510 5511 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5512 return; 5513 5514 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5515 supported_xcr0, vcpu->arch.pkru); 5516 } 5517 5518 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5519 struct kvm_xsave *guest_xsave) 5520 { 5521 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5522 sizeof(guest_xsave->region)); 5523 } 5524 5525 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5526 struct kvm_xsave *guest_xsave) 5527 { 5528 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5529 return 0; 5530 5531 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5532 guest_xsave->region, 5533 kvm_caps.supported_xcr0, 5534 &vcpu->arch.pkru); 5535 } 5536 5537 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5538 struct kvm_xcrs *guest_xcrs) 5539 { 5540 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5541 guest_xcrs->nr_xcrs = 0; 5542 return; 5543 } 5544 5545 guest_xcrs->nr_xcrs = 1; 5546 guest_xcrs->flags = 0; 5547 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5548 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5549 } 5550 5551 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5552 struct kvm_xcrs *guest_xcrs) 5553 { 5554 int i, r = 0; 5555 5556 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5557 return -EINVAL; 5558 5559 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5560 return -EINVAL; 5561 5562 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5563 /* Only support XCR0 currently */ 5564 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5565 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5566 guest_xcrs->xcrs[i].value); 5567 break; 5568 } 5569 if (r) 5570 r = -EINVAL; 5571 return r; 5572 } 5573 5574 /* 5575 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5576 * stopped by the hypervisor. This function will be called from the host only. 5577 * EINVAL is returned when the host attempts to set the flag for a guest that 5578 * does not support pv clocks. 5579 */ 5580 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5581 { 5582 if (!vcpu->arch.pv_time.active) 5583 return -EINVAL; 5584 vcpu->arch.pvclock_set_guest_stopped_request = true; 5585 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5586 return 0; 5587 } 5588 5589 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5590 struct kvm_device_attr *attr) 5591 { 5592 int r; 5593 5594 switch (attr->attr) { 5595 case KVM_VCPU_TSC_OFFSET: 5596 r = 0; 5597 break; 5598 default: 5599 r = -ENXIO; 5600 } 5601 5602 return r; 5603 } 5604 5605 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5606 struct kvm_device_attr *attr) 5607 { 5608 u64 __user *uaddr = kvm_get_attr_addr(attr); 5609 int r; 5610 5611 if (IS_ERR(uaddr)) 5612 return PTR_ERR(uaddr); 5613 5614 switch (attr->attr) { 5615 case KVM_VCPU_TSC_OFFSET: 5616 r = -EFAULT; 5617 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5618 break; 5619 r = 0; 5620 break; 5621 default: 5622 r = -ENXIO; 5623 } 5624 5625 return r; 5626 } 5627 5628 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5629 struct kvm_device_attr *attr) 5630 { 5631 u64 __user *uaddr = kvm_get_attr_addr(attr); 5632 struct kvm *kvm = vcpu->kvm; 5633 int r; 5634 5635 if (IS_ERR(uaddr)) 5636 return PTR_ERR(uaddr); 5637 5638 switch (attr->attr) { 5639 case KVM_VCPU_TSC_OFFSET: { 5640 u64 offset, tsc, ns; 5641 unsigned long flags; 5642 bool matched; 5643 5644 r = -EFAULT; 5645 if (get_user(offset, uaddr)) 5646 break; 5647 5648 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5649 5650 matched = (vcpu->arch.virtual_tsc_khz && 5651 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5652 kvm->arch.last_tsc_offset == offset); 5653 5654 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5655 ns = get_kvmclock_base_ns(); 5656 5657 kvm->arch.user_set_tsc = true; 5658 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5659 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5660 5661 r = 0; 5662 break; 5663 } 5664 default: 5665 r = -ENXIO; 5666 } 5667 5668 return r; 5669 } 5670 5671 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5672 unsigned int ioctl, 5673 void __user *argp) 5674 { 5675 struct kvm_device_attr attr; 5676 int r; 5677 5678 if (copy_from_user(&attr, argp, sizeof(attr))) 5679 return -EFAULT; 5680 5681 if (attr.group != KVM_VCPU_TSC_CTRL) 5682 return -ENXIO; 5683 5684 switch (ioctl) { 5685 case KVM_HAS_DEVICE_ATTR: 5686 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5687 break; 5688 case KVM_GET_DEVICE_ATTR: 5689 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5690 break; 5691 case KVM_SET_DEVICE_ATTR: 5692 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5693 break; 5694 } 5695 5696 return r; 5697 } 5698 5699 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5700 struct kvm_enable_cap *cap) 5701 { 5702 int r; 5703 uint16_t vmcs_version; 5704 void __user *user_ptr; 5705 5706 if (cap->flags) 5707 return -EINVAL; 5708 5709 switch (cap->cap) { 5710 case KVM_CAP_HYPERV_SYNIC2: 5711 if (cap->args[0]) 5712 return -EINVAL; 5713 fallthrough; 5714 5715 case KVM_CAP_HYPERV_SYNIC: 5716 if (!irqchip_in_kernel(vcpu->kvm)) 5717 return -EINVAL; 5718 return kvm_hv_activate_synic(vcpu, cap->cap == 5719 KVM_CAP_HYPERV_SYNIC2); 5720 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5721 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5722 return -ENOTTY; 5723 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5724 if (!r) { 5725 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5726 if (copy_to_user(user_ptr, &vmcs_version, 5727 sizeof(vmcs_version))) 5728 r = -EFAULT; 5729 } 5730 return r; 5731 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5732 if (!kvm_x86_ops.enable_l2_tlb_flush) 5733 return -ENOTTY; 5734 5735 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5736 5737 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5738 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5739 5740 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5741 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5742 if (vcpu->arch.pv_cpuid.enforce) 5743 kvm_update_pv_runtime(vcpu); 5744 5745 return 0; 5746 default: 5747 return -EINVAL; 5748 } 5749 } 5750 5751 long kvm_arch_vcpu_ioctl(struct file *filp, 5752 unsigned int ioctl, unsigned long arg) 5753 { 5754 struct kvm_vcpu *vcpu = filp->private_data; 5755 void __user *argp = (void __user *)arg; 5756 int r; 5757 union { 5758 struct kvm_sregs2 *sregs2; 5759 struct kvm_lapic_state *lapic; 5760 struct kvm_xsave *xsave; 5761 struct kvm_xcrs *xcrs; 5762 void *buffer; 5763 } u; 5764 5765 vcpu_load(vcpu); 5766 5767 u.buffer = NULL; 5768 switch (ioctl) { 5769 case KVM_GET_LAPIC: { 5770 r = -EINVAL; 5771 if (!lapic_in_kernel(vcpu)) 5772 goto out; 5773 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5774 GFP_KERNEL_ACCOUNT); 5775 5776 r = -ENOMEM; 5777 if (!u.lapic) 5778 goto out; 5779 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5780 if (r) 5781 goto out; 5782 r = -EFAULT; 5783 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5784 goto out; 5785 r = 0; 5786 break; 5787 } 5788 case KVM_SET_LAPIC: { 5789 r = -EINVAL; 5790 if (!lapic_in_kernel(vcpu)) 5791 goto out; 5792 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5793 if (IS_ERR(u.lapic)) { 5794 r = PTR_ERR(u.lapic); 5795 goto out_nofree; 5796 } 5797 5798 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5799 break; 5800 } 5801 case KVM_INTERRUPT: { 5802 struct kvm_interrupt irq; 5803 5804 r = -EFAULT; 5805 if (copy_from_user(&irq, argp, sizeof(irq))) 5806 goto out; 5807 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5808 break; 5809 } 5810 case KVM_NMI: { 5811 r = kvm_vcpu_ioctl_nmi(vcpu); 5812 break; 5813 } 5814 case KVM_SMI: { 5815 r = kvm_inject_smi(vcpu); 5816 break; 5817 } 5818 case KVM_SET_CPUID: { 5819 struct kvm_cpuid __user *cpuid_arg = argp; 5820 struct kvm_cpuid cpuid; 5821 5822 r = -EFAULT; 5823 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5824 goto out; 5825 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5826 break; 5827 } 5828 case KVM_SET_CPUID2: { 5829 struct kvm_cpuid2 __user *cpuid_arg = argp; 5830 struct kvm_cpuid2 cpuid; 5831 5832 r = -EFAULT; 5833 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5834 goto out; 5835 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5836 cpuid_arg->entries); 5837 break; 5838 } 5839 case KVM_GET_CPUID2: { 5840 struct kvm_cpuid2 __user *cpuid_arg = argp; 5841 struct kvm_cpuid2 cpuid; 5842 5843 r = -EFAULT; 5844 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5845 goto out; 5846 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5847 cpuid_arg->entries); 5848 if (r) 5849 goto out; 5850 r = -EFAULT; 5851 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5852 goto out; 5853 r = 0; 5854 break; 5855 } 5856 case KVM_GET_MSRS: { 5857 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5858 r = msr_io(vcpu, argp, do_get_msr, 1); 5859 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5860 break; 5861 } 5862 case KVM_SET_MSRS: { 5863 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5864 r = msr_io(vcpu, argp, do_set_msr, 0); 5865 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5866 break; 5867 } 5868 case KVM_TPR_ACCESS_REPORTING: { 5869 struct kvm_tpr_access_ctl tac; 5870 5871 r = -EFAULT; 5872 if (copy_from_user(&tac, argp, sizeof(tac))) 5873 goto out; 5874 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5875 if (r) 5876 goto out; 5877 r = -EFAULT; 5878 if (copy_to_user(argp, &tac, sizeof(tac))) 5879 goto out; 5880 r = 0; 5881 break; 5882 }; 5883 case KVM_SET_VAPIC_ADDR: { 5884 struct kvm_vapic_addr va; 5885 int idx; 5886 5887 r = -EINVAL; 5888 if (!lapic_in_kernel(vcpu)) 5889 goto out; 5890 r = -EFAULT; 5891 if (copy_from_user(&va, argp, sizeof(va))) 5892 goto out; 5893 idx = srcu_read_lock(&vcpu->kvm->srcu); 5894 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5895 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5896 break; 5897 } 5898 case KVM_X86_SETUP_MCE: { 5899 u64 mcg_cap; 5900 5901 r = -EFAULT; 5902 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5903 goto out; 5904 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5905 break; 5906 } 5907 case KVM_X86_SET_MCE: { 5908 struct kvm_x86_mce mce; 5909 5910 r = -EFAULT; 5911 if (copy_from_user(&mce, argp, sizeof(mce))) 5912 goto out; 5913 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5914 break; 5915 } 5916 case KVM_GET_VCPU_EVENTS: { 5917 struct kvm_vcpu_events events; 5918 5919 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5920 5921 r = -EFAULT; 5922 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5923 break; 5924 r = 0; 5925 break; 5926 } 5927 case KVM_SET_VCPU_EVENTS: { 5928 struct kvm_vcpu_events events; 5929 5930 r = -EFAULT; 5931 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5932 break; 5933 5934 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5935 break; 5936 } 5937 case KVM_GET_DEBUGREGS: { 5938 struct kvm_debugregs dbgregs; 5939 5940 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5941 5942 r = -EFAULT; 5943 if (copy_to_user(argp, &dbgregs, 5944 sizeof(struct kvm_debugregs))) 5945 break; 5946 r = 0; 5947 break; 5948 } 5949 case KVM_SET_DEBUGREGS: { 5950 struct kvm_debugregs dbgregs; 5951 5952 r = -EFAULT; 5953 if (copy_from_user(&dbgregs, argp, 5954 sizeof(struct kvm_debugregs))) 5955 break; 5956 5957 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5958 break; 5959 } 5960 case KVM_GET_XSAVE: { 5961 r = -EINVAL; 5962 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5963 break; 5964 5965 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5966 r = -ENOMEM; 5967 if (!u.xsave) 5968 break; 5969 5970 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5971 5972 r = -EFAULT; 5973 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5974 break; 5975 r = 0; 5976 break; 5977 } 5978 case KVM_SET_XSAVE: { 5979 int size = vcpu->arch.guest_fpu.uabi_size; 5980 5981 u.xsave = memdup_user(argp, size); 5982 if (IS_ERR(u.xsave)) { 5983 r = PTR_ERR(u.xsave); 5984 goto out_nofree; 5985 } 5986 5987 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5988 break; 5989 } 5990 5991 case KVM_GET_XSAVE2: { 5992 int size = vcpu->arch.guest_fpu.uabi_size; 5993 5994 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5995 r = -ENOMEM; 5996 if (!u.xsave) 5997 break; 5998 5999 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6000 6001 r = -EFAULT; 6002 if (copy_to_user(argp, u.xsave, size)) 6003 break; 6004 6005 r = 0; 6006 break; 6007 } 6008 6009 case KVM_GET_XCRS: { 6010 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 6011 r = -ENOMEM; 6012 if (!u.xcrs) 6013 break; 6014 6015 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6016 6017 r = -EFAULT; 6018 if (copy_to_user(argp, u.xcrs, 6019 sizeof(struct kvm_xcrs))) 6020 break; 6021 r = 0; 6022 break; 6023 } 6024 case KVM_SET_XCRS: { 6025 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6026 if (IS_ERR(u.xcrs)) { 6027 r = PTR_ERR(u.xcrs); 6028 goto out_nofree; 6029 } 6030 6031 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6032 break; 6033 } 6034 case KVM_SET_TSC_KHZ: { 6035 u32 user_tsc_khz; 6036 6037 r = -EINVAL; 6038 user_tsc_khz = (u32)arg; 6039 6040 if (kvm_caps.has_tsc_control && 6041 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6042 goto out; 6043 6044 if (user_tsc_khz == 0) 6045 user_tsc_khz = tsc_khz; 6046 6047 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6048 r = 0; 6049 6050 goto out; 6051 } 6052 case KVM_GET_TSC_KHZ: { 6053 r = vcpu->arch.virtual_tsc_khz; 6054 goto out; 6055 } 6056 case KVM_KVMCLOCK_CTRL: { 6057 r = kvm_set_guest_paused(vcpu); 6058 goto out; 6059 } 6060 case KVM_ENABLE_CAP: { 6061 struct kvm_enable_cap cap; 6062 6063 r = -EFAULT; 6064 if (copy_from_user(&cap, argp, sizeof(cap))) 6065 goto out; 6066 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6067 break; 6068 } 6069 case KVM_GET_NESTED_STATE: { 6070 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6071 u32 user_data_size; 6072 6073 r = -EINVAL; 6074 if (!kvm_x86_ops.nested_ops->get_state) 6075 break; 6076 6077 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6078 r = -EFAULT; 6079 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6080 break; 6081 6082 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6083 user_data_size); 6084 if (r < 0) 6085 break; 6086 6087 if (r > user_data_size) { 6088 if (put_user(r, &user_kvm_nested_state->size)) 6089 r = -EFAULT; 6090 else 6091 r = -E2BIG; 6092 break; 6093 } 6094 6095 r = 0; 6096 break; 6097 } 6098 case KVM_SET_NESTED_STATE: { 6099 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6100 struct kvm_nested_state kvm_state; 6101 int idx; 6102 6103 r = -EINVAL; 6104 if (!kvm_x86_ops.nested_ops->set_state) 6105 break; 6106 6107 r = -EFAULT; 6108 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6109 break; 6110 6111 r = -EINVAL; 6112 if (kvm_state.size < sizeof(kvm_state)) 6113 break; 6114 6115 if (kvm_state.flags & 6116 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6117 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6118 | KVM_STATE_NESTED_GIF_SET)) 6119 break; 6120 6121 /* nested_run_pending implies guest_mode. */ 6122 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6123 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6124 break; 6125 6126 idx = srcu_read_lock(&vcpu->kvm->srcu); 6127 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6128 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6129 break; 6130 } 6131 case KVM_GET_SUPPORTED_HV_CPUID: 6132 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6133 break; 6134 #ifdef CONFIG_KVM_XEN 6135 case KVM_XEN_VCPU_GET_ATTR: { 6136 struct kvm_xen_vcpu_attr xva; 6137 6138 r = -EFAULT; 6139 if (copy_from_user(&xva, argp, sizeof(xva))) 6140 goto out; 6141 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6142 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6143 r = -EFAULT; 6144 break; 6145 } 6146 case KVM_XEN_VCPU_SET_ATTR: { 6147 struct kvm_xen_vcpu_attr xva; 6148 6149 r = -EFAULT; 6150 if (copy_from_user(&xva, argp, sizeof(xva))) 6151 goto out; 6152 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6153 break; 6154 } 6155 #endif 6156 case KVM_GET_SREGS2: { 6157 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6158 r = -ENOMEM; 6159 if (!u.sregs2) 6160 goto out; 6161 __get_sregs2(vcpu, u.sregs2); 6162 r = -EFAULT; 6163 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6164 goto out; 6165 r = 0; 6166 break; 6167 } 6168 case KVM_SET_SREGS2: { 6169 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6170 if (IS_ERR(u.sregs2)) { 6171 r = PTR_ERR(u.sregs2); 6172 u.sregs2 = NULL; 6173 goto out; 6174 } 6175 r = __set_sregs2(vcpu, u.sregs2); 6176 break; 6177 } 6178 case KVM_HAS_DEVICE_ATTR: 6179 case KVM_GET_DEVICE_ATTR: 6180 case KVM_SET_DEVICE_ATTR: 6181 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6182 break; 6183 default: 6184 r = -EINVAL; 6185 } 6186 out: 6187 kfree(u.buffer); 6188 out_nofree: 6189 vcpu_put(vcpu); 6190 return r; 6191 } 6192 6193 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6194 { 6195 return VM_FAULT_SIGBUS; 6196 } 6197 6198 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6199 { 6200 int ret; 6201 6202 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6203 return -EINVAL; 6204 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6205 return ret; 6206 } 6207 6208 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6209 u64 ident_addr) 6210 { 6211 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6212 } 6213 6214 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6215 unsigned long kvm_nr_mmu_pages) 6216 { 6217 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6218 return -EINVAL; 6219 6220 mutex_lock(&kvm->slots_lock); 6221 6222 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6223 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6224 6225 mutex_unlock(&kvm->slots_lock); 6226 return 0; 6227 } 6228 6229 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6230 { 6231 struct kvm_pic *pic = kvm->arch.vpic; 6232 int r; 6233 6234 r = 0; 6235 switch (chip->chip_id) { 6236 case KVM_IRQCHIP_PIC_MASTER: 6237 memcpy(&chip->chip.pic, &pic->pics[0], 6238 sizeof(struct kvm_pic_state)); 6239 break; 6240 case KVM_IRQCHIP_PIC_SLAVE: 6241 memcpy(&chip->chip.pic, &pic->pics[1], 6242 sizeof(struct kvm_pic_state)); 6243 break; 6244 case KVM_IRQCHIP_IOAPIC: 6245 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6246 break; 6247 default: 6248 r = -EINVAL; 6249 break; 6250 } 6251 return r; 6252 } 6253 6254 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6255 { 6256 struct kvm_pic *pic = kvm->arch.vpic; 6257 int r; 6258 6259 r = 0; 6260 switch (chip->chip_id) { 6261 case KVM_IRQCHIP_PIC_MASTER: 6262 spin_lock(&pic->lock); 6263 memcpy(&pic->pics[0], &chip->chip.pic, 6264 sizeof(struct kvm_pic_state)); 6265 spin_unlock(&pic->lock); 6266 break; 6267 case KVM_IRQCHIP_PIC_SLAVE: 6268 spin_lock(&pic->lock); 6269 memcpy(&pic->pics[1], &chip->chip.pic, 6270 sizeof(struct kvm_pic_state)); 6271 spin_unlock(&pic->lock); 6272 break; 6273 case KVM_IRQCHIP_IOAPIC: 6274 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6275 break; 6276 default: 6277 r = -EINVAL; 6278 break; 6279 } 6280 kvm_pic_update_irq(pic); 6281 return r; 6282 } 6283 6284 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6285 { 6286 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6287 6288 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6289 6290 mutex_lock(&kps->lock); 6291 memcpy(ps, &kps->channels, sizeof(*ps)); 6292 mutex_unlock(&kps->lock); 6293 return 0; 6294 } 6295 6296 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6297 { 6298 int i; 6299 struct kvm_pit *pit = kvm->arch.vpit; 6300 6301 mutex_lock(&pit->pit_state.lock); 6302 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6303 for (i = 0; i < 3; i++) 6304 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6305 mutex_unlock(&pit->pit_state.lock); 6306 return 0; 6307 } 6308 6309 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6310 { 6311 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6312 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6313 sizeof(ps->channels)); 6314 ps->flags = kvm->arch.vpit->pit_state.flags; 6315 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6316 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6317 return 0; 6318 } 6319 6320 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6321 { 6322 int start = 0; 6323 int i; 6324 u32 prev_legacy, cur_legacy; 6325 struct kvm_pit *pit = kvm->arch.vpit; 6326 6327 mutex_lock(&pit->pit_state.lock); 6328 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6329 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6330 if (!prev_legacy && cur_legacy) 6331 start = 1; 6332 memcpy(&pit->pit_state.channels, &ps->channels, 6333 sizeof(pit->pit_state.channels)); 6334 pit->pit_state.flags = ps->flags; 6335 for (i = 0; i < 3; i++) 6336 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6337 start && i == 0); 6338 mutex_unlock(&pit->pit_state.lock); 6339 return 0; 6340 } 6341 6342 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6343 struct kvm_reinject_control *control) 6344 { 6345 struct kvm_pit *pit = kvm->arch.vpit; 6346 6347 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6348 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6349 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6350 */ 6351 mutex_lock(&pit->pit_state.lock); 6352 kvm_pit_set_reinject(pit, control->pit_reinject); 6353 mutex_unlock(&pit->pit_state.lock); 6354 6355 return 0; 6356 } 6357 6358 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6359 { 6360 6361 /* 6362 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6363 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6364 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6365 * VM-Exit. 6366 */ 6367 struct kvm_vcpu *vcpu; 6368 unsigned long i; 6369 6370 if (!kvm_x86_ops.cpu_dirty_log_size) 6371 return; 6372 6373 kvm_for_each_vcpu(i, vcpu, kvm) 6374 kvm_vcpu_kick(vcpu); 6375 } 6376 6377 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6378 bool line_status) 6379 { 6380 if (!irqchip_in_kernel(kvm)) 6381 return -ENXIO; 6382 6383 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6384 irq_event->irq, irq_event->level, 6385 line_status); 6386 return 0; 6387 } 6388 6389 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6390 struct kvm_enable_cap *cap) 6391 { 6392 int r; 6393 6394 if (cap->flags) 6395 return -EINVAL; 6396 6397 switch (cap->cap) { 6398 case KVM_CAP_DISABLE_QUIRKS2: 6399 r = -EINVAL; 6400 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6401 break; 6402 fallthrough; 6403 case KVM_CAP_DISABLE_QUIRKS: 6404 kvm->arch.disabled_quirks = cap->args[0]; 6405 r = 0; 6406 break; 6407 case KVM_CAP_SPLIT_IRQCHIP: { 6408 mutex_lock(&kvm->lock); 6409 r = -EINVAL; 6410 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6411 goto split_irqchip_unlock; 6412 r = -EEXIST; 6413 if (irqchip_in_kernel(kvm)) 6414 goto split_irqchip_unlock; 6415 if (kvm->created_vcpus) 6416 goto split_irqchip_unlock; 6417 r = kvm_setup_empty_irq_routing(kvm); 6418 if (r) 6419 goto split_irqchip_unlock; 6420 /* Pairs with irqchip_in_kernel. */ 6421 smp_wmb(); 6422 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6423 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6424 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6425 r = 0; 6426 split_irqchip_unlock: 6427 mutex_unlock(&kvm->lock); 6428 break; 6429 } 6430 case KVM_CAP_X2APIC_API: 6431 r = -EINVAL; 6432 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6433 break; 6434 6435 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6436 kvm->arch.x2apic_format = true; 6437 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6438 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6439 6440 r = 0; 6441 break; 6442 case KVM_CAP_X86_DISABLE_EXITS: 6443 r = -EINVAL; 6444 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6445 break; 6446 6447 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6448 kvm->arch.pause_in_guest = true; 6449 6450 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6451 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6452 6453 if (!mitigate_smt_rsb) { 6454 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6455 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6456 pr_warn_once(SMT_RSB_MSG); 6457 6458 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6459 kvm_can_mwait_in_guest()) 6460 kvm->arch.mwait_in_guest = true; 6461 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6462 kvm->arch.hlt_in_guest = true; 6463 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6464 kvm->arch.cstate_in_guest = true; 6465 } 6466 6467 r = 0; 6468 break; 6469 case KVM_CAP_MSR_PLATFORM_INFO: 6470 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6471 r = 0; 6472 break; 6473 case KVM_CAP_EXCEPTION_PAYLOAD: 6474 kvm->arch.exception_payload_enabled = cap->args[0]; 6475 r = 0; 6476 break; 6477 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6478 kvm->arch.triple_fault_event = cap->args[0]; 6479 r = 0; 6480 break; 6481 case KVM_CAP_X86_USER_SPACE_MSR: 6482 r = -EINVAL; 6483 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6484 break; 6485 kvm->arch.user_space_msr_mask = cap->args[0]; 6486 r = 0; 6487 break; 6488 case KVM_CAP_X86_BUS_LOCK_EXIT: 6489 r = -EINVAL; 6490 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6491 break; 6492 6493 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6494 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6495 break; 6496 6497 if (kvm_caps.has_bus_lock_exit && 6498 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6499 kvm->arch.bus_lock_detection_enabled = true; 6500 r = 0; 6501 break; 6502 #ifdef CONFIG_X86_SGX_KVM 6503 case KVM_CAP_SGX_ATTRIBUTE: { 6504 unsigned long allowed_attributes = 0; 6505 6506 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6507 if (r) 6508 break; 6509 6510 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6511 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6512 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6513 kvm->arch.sgx_provisioning_allowed = true; 6514 else 6515 r = -EINVAL; 6516 break; 6517 } 6518 #endif 6519 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6520 r = -EINVAL; 6521 if (!kvm_x86_ops.vm_copy_enc_context_from) 6522 break; 6523 6524 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6525 break; 6526 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6527 r = -EINVAL; 6528 if (!kvm_x86_ops.vm_move_enc_context_from) 6529 break; 6530 6531 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6532 break; 6533 case KVM_CAP_EXIT_HYPERCALL: 6534 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6535 r = -EINVAL; 6536 break; 6537 } 6538 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6539 r = 0; 6540 break; 6541 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6542 r = -EINVAL; 6543 if (cap->args[0] & ~1) 6544 break; 6545 kvm->arch.exit_on_emulation_error = cap->args[0]; 6546 r = 0; 6547 break; 6548 case KVM_CAP_PMU_CAPABILITY: 6549 r = -EINVAL; 6550 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6551 break; 6552 6553 mutex_lock(&kvm->lock); 6554 if (!kvm->created_vcpus) { 6555 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6556 r = 0; 6557 } 6558 mutex_unlock(&kvm->lock); 6559 break; 6560 case KVM_CAP_MAX_VCPU_ID: 6561 r = -EINVAL; 6562 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6563 break; 6564 6565 mutex_lock(&kvm->lock); 6566 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6567 r = 0; 6568 } else if (!kvm->arch.max_vcpu_ids) { 6569 kvm->arch.max_vcpu_ids = cap->args[0]; 6570 r = 0; 6571 } 6572 mutex_unlock(&kvm->lock); 6573 break; 6574 case KVM_CAP_X86_NOTIFY_VMEXIT: 6575 r = -EINVAL; 6576 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6577 break; 6578 if (!kvm_caps.has_notify_vmexit) 6579 break; 6580 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6581 break; 6582 mutex_lock(&kvm->lock); 6583 if (!kvm->created_vcpus) { 6584 kvm->arch.notify_window = cap->args[0] >> 32; 6585 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6586 r = 0; 6587 } 6588 mutex_unlock(&kvm->lock); 6589 break; 6590 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6591 r = -EINVAL; 6592 6593 /* 6594 * Since the risk of disabling NX hugepages is a guest crashing 6595 * the system, ensure the userspace process has permission to 6596 * reboot the system. 6597 * 6598 * Note that unlike the reboot() syscall, the process must have 6599 * this capability in the root namespace because exposing 6600 * /dev/kvm into a container does not limit the scope of the 6601 * iTLB multihit bug to that container. In other words, 6602 * this must use capable(), not ns_capable(). 6603 */ 6604 if (!capable(CAP_SYS_BOOT)) { 6605 r = -EPERM; 6606 break; 6607 } 6608 6609 if (cap->args[0]) 6610 break; 6611 6612 mutex_lock(&kvm->lock); 6613 if (!kvm->created_vcpus) { 6614 kvm->arch.disable_nx_huge_pages = true; 6615 r = 0; 6616 } 6617 mutex_unlock(&kvm->lock); 6618 break; 6619 default: 6620 r = -EINVAL; 6621 break; 6622 } 6623 return r; 6624 } 6625 6626 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6627 { 6628 struct kvm_x86_msr_filter *msr_filter; 6629 6630 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6631 if (!msr_filter) 6632 return NULL; 6633 6634 msr_filter->default_allow = default_allow; 6635 return msr_filter; 6636 } 6637 6638 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6639 { 6640 u32 i; 6641 6642 if (!msr_filter) 6643 return; 6644 6645 for (i = 0; i < msr_filter->count; i++) 6646 kfree(msr_filter->ranges[i].bitmap); 6647 6648 kfree(msr_filter); 6649 } 6650 6651 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6652 struct kvm_msr_filter_range *user_range) 6653 { 6654 unsigned long *bitmap; 6655 size_t bitmap_size; 6656 6657 if (!user_range->nmsrs) 6658 return 0; 6659 6660 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6661 return -EINVAL; 6662 6663 if (!user_range->flags) 6664 return -EINVAL; 6665 6666 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6667 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6668 return -EINVAL; 6669 6670 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6671 if (IS_ERR(bitmap)) 6672 return PTR_ERR(bitmap); 6673 6674 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6675 .flags = user_range->flags, 6676 .base = user_range->base, 6677 .nmsrs = user_range->nmsrs, 6678 .bitmap = bitmap, 6679 }; 6680 6681 msr_filter->count++; 6682 return 0; 6683 } 6684 6685 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6686 struct kvm_msr_filter *filter) 6687 { 6688 struct kvm_x86_msr_filter *new_filter, *old_filter; 6689 bool default_allow; 6690 bool empty = true; 6691 int r; 6692 u32 i; 6693 6694 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6695 return -EINVAL; 6696 6697 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6698 empty &= !filter->ranges[i].nmsrs; 6699 6700 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6701 if (empty && !default_allow) 6702 return -EINVAL; 6703 6704 new_filter = kvm_alloc_msr_filter(default_allow); 6705 if (!new_filter) 6706 return -ENOMEM; 6707 6708 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6709 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6710 if (r) { 6711 kvm_free_msr_filter(new_filter); 6712 return r; 6713 } 6714 } 6715 6716 mutex_lock(&kvm->lock); 6717 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6718 mutex_is_locked(&kvm->lock)); 6719 mutex_unlock(&kvm->lock); 6720 synchronize_srcu(&kvm->srcu); 6721 6722 kvm_free_msr_filter(old_filter); 6723 6724 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6725 6726 return 0; 6727 } 6728 6729 #ifdef CONFIG_KVM_COMPAT 6730 /* for KVM_X86_SET_MSR_FILTER */ 6731 struct kvm_msr_filter_range_compat { 6732 __u32 flags; 6733 __u32 nmsrs; 6734 __u32 base; 6735 __u32 bitmap; 6736 }; 6737 6738 struct kvm_msr_filter_compat { 6739 __u32 flags; 6740 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6741 }; 6742 6743 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6744 6745 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6746 unsigned long arg) 6747 { 6748 void __user *argp = (void __user *)arg; 6749 struct kvm *kvm = filp->private_data; 6750 long r = -ENOTTY; 6751 6752 switch (ioctl) { 6753 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6754 struct kvm_msr_filter __user *user_msr_filter = argp; 6755 struct kvm_msr_filter_compat filter_compat; 6756 struct kvm_msr_filter filter; 6757 int i; 6758 6759 if (copy_from_user(&filter_compat, user_msr_filter, 6760 sizeof(filter_compat))) 6761 return -EFAULT; 6762 6763 filter.flags = filter_compat.flags; 6764 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6765 struct kvm_msr_filter_range_compat *cr; 6766 6767 cr = &filter_compat.ranges[i]; 6768 filter.ranges[i] = (struct kvm_msr_filter_range) { 6769 .flags = cr->flags, 6770 .nmsrs = cr->nmsrs, 6771 .base = cr->base, 6772 .bitmap = (__u8 *)(ulong)cr->bitmap, 6773 }; 6774 } 6775 6776 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6777 break; 6778 } 6779 } 6780 6781 return r; 6782 } 6783 #endif 6784 6785 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6786 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6787 { 6788 struct kvm_vcpu *vcpu; 6789 unsigned long i; 6790 int ret = 0; 6791 6792 mutex_lock(&kvm->lock); 6793 kvm_for_each_vcpu(i, vcpu, kvm) { 6794 if (!vcpu->arch.pv_time.active) 6795 continue; 6796 6797 ret = kvm_set_guest_paused(vcpu); 6798 if (ret) { 6799 kvm_err("Failed to pause guest VCPU%d: %d\n", 6800 vcpu->vcpu_id, ret); 6801 break; 6802 } 6803 } 6804 mutex_unlock(&kvm->lock); 6805 6806 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6807 } 6808 6809 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6810 { 6811 switch (state) { 6812 case PM_HIBERNATION_PREPARE: 6813 case PM_SUSPEND_PREPARE: 6814 return kvm_arch_suspend_notifier(kvm); 6815 } 6816 6817 return NOTIFY_DONE; 6818 } 6819 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6820 6821 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6822 { 6823 struct kvm_clock_data data = { 0 }; 6824 6825 get_kvmclock(kvm, &data); 6826 if (copy_to_user(argp, &data, sizeof(data))) 6827 return -EFAULT; 6828 6829 return 0; 6830 } 6831 6832 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6833 { 6834 struct kvm_arch *ka = &kvm->arch; 6835 struct kvm_clock_data data; 6836 u64 now_raw_ns; 6837 6838 if (copy_from_user(&data, argp, sizeof(data))) 6839 return -EFAULT; 6840 6841 /* 6842 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6843 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6844 */ 6845 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6846 return -EINVAL; 6847 6848 kvm_hv_request_tsc_page_update(kvm); 6849 kvm_start_pvclock_update(kvm); 6850 pvclock_update_vm_gtod_copy(kvm); 6851 6852 /* 6853 * This pairs with kvm_guest_time_update(): when masterclock is 6854 * in use, we use master_kernel_ns + kvmclock_offset to set 6855 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6856 * is slightly ahead) here we risk going negative on unsigned 6857 * 'system_time' when 'data.clock' is very small. 6858 */ 6859 if (data.flags & KVM_CLOCK_REALTIME) { 6860 u64 now_real_ns = ktime_get_real_ns(); 6861 6862 /* 6863 * Avoid stepping the kvmclock backwards. 6864 */ 6865 if (now_real_ns > data.realtime) 6866 data.clock += now_real_ns - data.realtime; 6867 } 6868 6869 if (ka->use_master_clock) 6870 now_raw_ns = ka->master_kernel_ns; 6871 else 6872 now_raw_ns = get_kvmclock_base_ns(); 6873 ka->kvmclock_offset = data.clock - now_raw_ns; 6874 kvm_end_pvclock_update(kvm); 6875 return 0; 6876 } 6877 6878 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6879 { 6880 struct kvm *kvm = filp->private_data; 6881 void __user *argp = (void __user *)arg; 6882 int r = -ENOTTY; 6883 /* 6884 * This union makes it completely explicit to gcc-3.x 6885 * that these two variables' stack usage should be 6886 * combined, not added together. 6887 */ 6888 union { 6889 struct kvm_pit_state ps; 6890 struct kvm_pit_state2 ps2; 6891 struct kvm_pit_config pit_config; 6892 } u; 6893 6894 switch (ioctl) { 6895 case KVM_SET_TSS_ADDR: 6896 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6897 break; 6898 case KVM_SET_IDENTITY_MAP_ADDR: { 6899 u64 ident_addr; 6900 6901 mutex_lock(&kvm->lock); 6902 r = -EINVAL; 6903 if (kvm->created_vcpus) 6904 goto set_identity_unlock; 6905 r = -EFAULT; 6906 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6907 goto set_identity_unlock; 6908 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6909 set_identity_unlock: 6910 mutex_unlock(&kvm->lock); 6911 break; 6912 } 6913 case KVM_SET_NR_MMU_PAGES: 6914 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6915 break; 6916 case KVM_CREATE_IRQCHIP: { 6917 mutex_lock(&kvm->lock); 6918 6919 r = -EEXIST; 6920 if (irqchip_in_kernel(kvm)) 6921 goto create_irqchip_unlock; 6922 6923 r = -EINVAL; 6924 if (kvm->created_vcpus) 6925 goto create_irqchip_unlock; 6926 6927 r = kvm_pic_init(kvm); 6928 if (r) 6929 goto create_irqchip_unlock; 6930 6931 r = kvm_ioapic_init(kvm); 6932 if (r) { 6933 kvm_pic_destroy(kvm); 6934 goto create_irqchip_unlock; 6935 } 6936 6937 r = kvm_setup_default_irq_routing(kvm); 6938 if (r) { 6939 kvm_ioapic_destroy(kvm); 6940 kvm_pic_destroy(kvm); 6941 goto create_irqchip_unlock; 6942 } 6943 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6944 smp_wmb(); 6945 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6946 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6947 create_irqchip_unlock: 6948 mutex_unlock(&kvm->lock); 6949 break; 6950 } 6951 case KVM_CREATE_PIT: 6952 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6953 goto create_pit; 6954 case KVM_CREATE_PIT2: 6955 r = -EFAULT; 6956 if (copy_from_user(&u.pit_config, argp, 6957 sizeof(struct kvm_pit_config))) 6958 goto out; 6959 create_pit: 6960 mutex_lock(&kvm->lock); 6961 r = -EEXIST; 6962 if (kvm->arch.vpit) 6963 goto create_pit_unlock; 6964 r = -ENOMEM; 6965 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6966 if (kvm->arch.vpit) 6967 r = 0; 6968 create_pit_unlock: 6969 mutex_unlock(&kvm->lock); 6970 break; 6971 case KVM_GET_IRQCHIP: { 6972 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6973 struct kvm_irqchip *chip; 6974 6975 chip = memdup_user(argp, sizeof(*chip)); 6976 if (IS_ERR(chip)) { 6977 r = PTR_ERR(chip); 6978 goto out; 6979 } 6980 6981 r = -ENXIO; 6982 if (!irqchip_kernel(kvm)) 6983 goto get_irqchip_out; 6984 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6985 if (r) 6986 goto get_irqchip_out; 6987 r = -EFAULT; 6988 if (copy_to_user(argp, chip, sizeof(*chip))) 6989 goto get_irqchip_out; 6990 r = 0; 6991 get_irqchip_out: 6992 kfree(chip); 6993 break; 6994 } 6995 case KVM_SET_IRQCHIP: { 6996 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6997 struct kvm_irqchip *chip; 6998 6999 chip = memdup_user(argp, sizeof(*chip)); 7000 if (IS_ERR(chip)) { 7001 r = PTR_ERR(chip); 7002 goto out; 7003 } 7004 7005 r = -ENXIO; 7006 if (!irqchip_kernel(kvm)) 7007 goto set_irqchip_out; 7008 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7009 set_irqchip_out: 7010 kfree(chip); 7011 break; 7012 } 7013 case KVM_GET_PIT: { 7014 r = -EFAULT; 7015 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7016 goto out; 7017 r = -ENXIO; 7018 if (!kvm->arch.vpit) 7019 goto out; 7020 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7021 if (r) 7022 goto out; 7023 r = -EFAULT; 7024 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7025 goto out; 7026 r = 0; 7027 break; 7028 } 7029 case KVM_SET_PIT: { 7030 r = -EFAULT; 7031 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7032 goto out; 7033 mutex_lock(&kvm->lock); 7034 r = -ENXIO; 7035 if (!kvm->arch.vpit) 7036 goto set_pit_out; 7037 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7038 set_pit_out: 7039 mutex_unlock(&kvm->lock); 7040 break; 7041 } 7042 case KVM_GET_PIT2: { 7043 r = -ENXIO; 7044 if (!kvm->arch.vpit) 7045 goto out; 7046 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7047 if (r) 7048 goto out; 7049 r = -EFAULT; 7050 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7051 goto out; 7052 r = 0; 7053 break; 7054 } 7055 case KVM_SET_PIT2: { 7056 r = -EFAULT; 7057 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7058 goto out; 7059 mutex_lock(&kvm->lock); 7060 r = -ENXIO; 7061 if (!kvm->arch.vpit) 7062 goto set_pit2_out; 7063 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7064 set_pit2_out: 7065 mutex_unlock(&kvm->lock); 7066 break; 7067 } 7068 case KVM_REINJECT_CONTROL: { 7069 struct kvm_reinject_control control; 7070 r = -EFAULT; 7071 if (copy_from_user(&control, argp, sizeof(control))) 7072 goto out; 7073 r = -ENXIO; 7074 if (!kvm->arch.vpit) 7075 goto out; 7076 r = kvm_vm_ioctl_reinject(kvm, &control); 7077 break; 7078 } 7079 case KVM_SET_BOOT_CPU_ID: 7080 r = 0; 7081 mutex_lock(&kvm->lock); 7082 if (kvm->created_vcpus) 7083 r = -EBUSY; 7084 else 7085 kvm->arch.bsp_vcpu_id = arg; 7086 mutex_unlock(&kvm->lock); 7087 break; 7088 #ifdef CONFIG_KVM_XEN 7089 case KVM_XEN_HVM_CONFIG: { 7090 struct kvm_xen_hvm_config xhc; 7091 r = -EFAULT; 7092 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7093 goto out; 7094 r = kvm_xen_hvm_config(kvm, &xhc); 7095 break; 7096 } 7097 case KVM_XEN_HVM_GET_ATTR: { 7098 struct kvm_xen_hvm_attr xha; 7099 7100 r = -EFAULT; 7101 if (copy_from_user(&xha, argp, sizeof(xha))) 7102 goto out; 7103 r = kvm_xen_hvm_get_attr(kvm, &xha); 7104 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7105 r = -EFAULT; 7106 break; 7107 } 7108 case KVM_XEN_HVM_SET_ATTR: { 7109 struct kvm_xen_hvm_attr xha; 7110 7111 r = -EFAULT; 7112 if (copy_from_user(&xha, argp, sizeof(xha))) 7113 goto out; 7114 r = kvm_xen_hvm_set_attr(kvm, &xha); 7115 break; 7116 } 7117 case KVM_XEN_HVM_EVTCHN_SEND: { 7118 struct kvm_irq_routing_xen_evtchn uxe; 7119 7120 r = -EFAULT; 7121 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7122 goto out; 7123 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7124 break; 7125 } 7126 #endif 7127 case KVM_SET_CLOCK: 7128 r = kvm_vm_ioctl_set_clock(kvm, argp); 7129 break; 7130 case KVM_GET_CLOCK: 7131 r = kvm_vm_ioctl_get_clock(kvm, argp); 7132 break; 7133 case KVM_SET_TSC_KHZ: { 7134 u32 user_tsc_khz; 7135 7136 r = -EINVAL; 7137 user_tsc_khz = (u32)arg; 7138 7139 if (kvm_caps.has_tsc_control && 7140 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7141 goto out; 7142 7143 if (user_tsc_khz == 0) 7144 user_tsc_khz = tsc_khz; 7145 7146 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7147 r = 0; 7148 7149 goto out; 7150 } 7151 case KVM_GET_TSC_KHZ: { 7152 r = READ_ONCE(kvm->arch.default_tsc_khz); 7153 goto out; 7154 } 7155 case KVM_MEMORY_ENCRYPT_OP: { 7156 r = -ENOTTY; 7157 if (!kvm_x86_ops.mem_enc_ioctl) 7158 goto out; 7159 7160 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7161 break; 7162 } 7163 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7164 struct kvm_enc_region region; 7165 7166 r = -EFAULT; 7167 if (copy_from_user(®ion, argp, sizeof(region))) 7168 goto out; 7169 7170 r = -ENOTTY; 7171 if (!kvm_x86_ops.mem_enc_register_region) 7172 goto out; 7173 7174 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7175 break; 7176 } 7177 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7178 struct kvm_enc_region region; 7179 7180 r = -EFAULT; 7181 if (copy_from_user(®ion, argp, sizeof(region))) 7182 goto out; 7183 7184 r = -ENOTTY; 7185 if (!kvm_x86_ops.mem_enc_unregister_region) 7186 goto out; 7187 7188 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7189 break; 7190 } 7191 case KVM_HYPERV_EVENTFD: { 7192 struct kvm_hyperv_eventfd hvevfd; 7193 7194 r = -EFAULT; 7195 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7196 goto out; 7197 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7198 break; 7199 } 7200 case KVM_SET_PMU_EVENT_FILTER: 7201 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7202 break; 7203 case KVM_X86_SET_MSR_FILTER: { 7204 struct kvm_msr_filter __user *user_msr_filter = argp; 7205 struct kvm_msr_filter filter; 7206 7207 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7208 return -EFAULT; 7209 7210 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7211 break; 7212 } 7213 default: 7214 r = -ENOTTY; 7215 } 7216 out: 7217 return r; 7218 } 7219 7220 static void kvm_probe_feature_msr(u32 msr_index) 7221 { 7222 struct kvm_msr_entry msr = { 7223 .index = msr_index, 7224 }; 7225 7226 if (kvm_get_msr_feature(&msr)) 7227 return; 7228 7229 msr_based_features[num_msr_based_features++] = msr_index; 7230 } 7231 7232 static void kvm_probe_msr_to_save(u32 msr_index) 7233 { 7234 u32 dummy[2]; 7235 7236 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7237 return; 7238 7239 /* 7240 * Even MSRs that are valid in the host may not be exposed to guests in 7241 * some cases. 7242 */ 7243 switch (msr_index) { 7244 case MSR_IA32_BNDCFGS: 7245 if (!kvm_mpx_supported()) 7246 return; 7247 break; 7248 case MSR_TSC_AUX: 7249 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7250 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7251 return; 7252 break; 7253 case MSR_IA32_UMWAIT_CONTROL: 7254 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7255 return; 7256 break; 7257 case MSR_IA32_RTIT_CTL: 7258 case MSR_IA32_RTIT_STATUS: 7259 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7260 return; 7261 break; 7262 case MSR_IA32_RTIT_CR3_MATCH: 7263 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7264 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7265 return; 7266 break; 7267 case MSR_IA32_RTIT_OUTPUT_BASE: 7268 case MSR_IA32_RTIT_OUTPUT_MASK: 7269 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7270 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7271 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7272 return; 7273 break; 7274 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7275 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7276 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7277 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7278 return; 7279 break; 7280 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7281 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7282 kvm_pmu_cap.num_counters_gp) 7283 return; 7284 break; 7285 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7286 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7287 kvm_pmu_cap.num_counters_gp) 7288 return; 7289 break; 7290 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7291 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7292 kvm_pmu_cap.num_counters_fixed) 7293 return; 7294 break; 7295 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7296 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7297 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7298 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7299 return; 7300 break; 7301 case MSR_IA32_XFD: 7302 case MSR_IA32_XFD_ERR: 7303 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7304 return; 7305 break; 7306 case MSR_IA32_TSX_CTRL: 7307 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7308 return; 7309 break; 7310 default: 7311 break; 7312 } 7313 7314 msrs_to_save[num_msrs_to_save++] = msr_index; 7315 } 7316 7317 static void kvm_init_msr_lists(void) 7318 { 7319 unsigned i; 7320 7321 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7322 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7323 7324 num_msrs_to_save = 0; 7325 num_emulated_msrs = 0; 7326 num_msr_based_features = 0; 7327 7328 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7329 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7330 7331 if (enable_pmu) { 7332 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7333 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7334 } 7335 7336 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7337 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7338 continue; 7339 7340 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7341 } 7342 7343 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7344 kvm_probe_feature_msr(i); 7345 7346 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7347 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7348 } 7349 7350 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7351 const void *v) 7352 { 7353 int handled = 0; 7354 int n; 7355 7356 do { 7357 n = min(len, 8); 7358 if (!(lapic_in_kernel(vcpu) && 7359 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7360 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7361 break; 7362 handled += n; 7363 addr += n; 7364 len -= n; 7365 v += n; 7366 } while (len); 7367 7368 return handled; 7369 } 7370 7371 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7372 { 7373 int handled = 0; 7374 int n; 7375 7376 do { 7377 n = min(len, 8); 7378 if (!(lapic_in_kernel(vcpu) && 7379 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7380 addr, n, v)) 7381 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7382 break; 7383 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7384 handled += n; 7385 addr += n; 7386 len -= n; 7387 v += n; 7388 } while (len); 7389 7390 return handled; 7391 } 7392 7393 void kvm_set_segment(struct kvm_vcpu *vcpu, 7394 struct kvm_segment *var, int seg) 7395 { 7396 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7397 } 7398 7399 void kvm_get_segment(struct kvm_vcpu *vcpu, 7400 struct kvm_segment *var, int seg) 7401 { 7402 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7403 } 7404 7405 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7406 struct x86_exception *exception) 7407 { 7408 struct kvm_mmu *mmu = vcpu->arch.mmu; 7409 gpa_t t_gpa; 7410 7411 BUG_ON(!mmu_is_nested(vcpu)); 7412 7413 /* NPT walks are always user-walks */ 7414 access |= PFERR_USER_MASK; 7415 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7416 7417 return t_gpa; 7418 } 7419 7420 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7421 struct x86_exception *exception) 7422 { 7423 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7424 7425 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7426 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7427 } 7428 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7429 7430 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7431 struct x86_exception *exception) 7432 { 7433 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7434 7435 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7436 access |= PFERR_WRITE_MASK; 7437 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7438 } 7439 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7440 7441 /* uses this to access any guest's mapped memory without checking CPL */ 7442 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7443 struct x86_exception *exception) 7444 { 7445 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7446 7447 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7448 } 7449 7450 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7451 struct kvm_vcpu *vcpu, u64 access, 7452 struct x86_exception *exception) 7453 { 7454 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7455 void *data = val; 7456 int r = X86EMUL_CONTINUE; 7457 7458 while (bytes) { 7459 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7460 unsigned offset = addr & (PAGE_SIZE-1); 7461 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7462 int ret; 7463 7464 if (gpa == INVALID_GPA) 7465 return X86EMUL_PROPAGATE_FAULT; 7466 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7467 offset, toread); 7468 if (ret < 0) { 7469 r = X86EMUL_IO_NEEDED; 7470 goto out; 7471 } 7472 7473 bytes -= toread; 7474 data += toread; 7475 addr += toread; 7476 } 7477 out: 7478 return r; 7479 } 7480 7481 /* used for instruction fetching */ 7482 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7483 gva_t addr, void *val, unsigned int bytes, 7484 struct x86_exception *exception) 7485 { 7486 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7487 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7488 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7489 unsigned offset; 7490 int ret; 7491 7492 /* Inline kvm_read_guest_virt_helper for speed. */ 7493 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7494 exception); 7495 if (unlikely(gpa == INVALID_GPA)) 7496 return X86EMUL_PROPAGATE_FAULT; 7497 7498 offset = addr & (PAGE_SIZE-1); 7499 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7500 bytes = (unsigned)PAGE_SIZE - offset; 7501 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7502 offset, bytes); 7503 if (unlikely(ret < 0)) 7504 return X86EMUL_IO_NEEDED; 7505 7506 return X86EMUL_CONTINUE; 7507 } 7508 7509 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7510 gva_t addr, void *val, unsigned int bytes, 7511 struct x86_exception *exception) 7512 { 7513 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7514 7515 /* 7516 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7517 * is returned, but our callers are not ready for that and they blindly 7518 * call kvm_inject_page_fault. Ensure that they at least do not leak 7519 * uninitialized kernel stack memory into cr2 and error code. 7520 */ 7521 memset(exception, 0, sizeof(*exception)); 7522 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7523 exception); 7524 } 7525 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7526 7527 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7528 gva_t addr, void *val, unsigned int bytes, 7529 struct x86_exception *exception, bool system) 7530 { 7531 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7532 u64 access = 0; 7533 7534 if (system) 7535 access |= PFERR_IMPLICIT_ACCESS; 7536 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7537 access |= PFERR_USER_MASK; 7538 7539 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7540 } 7541 7542 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7543 struct kvm_vcpu *vcpu, u64 access, 7544 struct x86_exception *exception) 7545 { 7546 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7547 void *data = val; 7548 int r = X86EMUL_CONTINUE; 7549 7550 while (bytes) { 7551 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7552 unsigned offset = addr & (PAGE_SIZE-1); 7553 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7554 int ret; 7555 7556 if (gpa == INVALID_GPA) 7557 return X86EMUL_PROPAGATE_FAULT; 7558 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7559 if (ret < 0) { 7560 r = X86EMUL_IO_NEEDED; 7561 goto out; 7562 } 7563 7564 bytes -= towrite; 7565 data += towrite; 7566 addr += towrite; 7567 } 7568 out: 7569 return r; 7570 } 7571 7572 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7573 unsigned int bytes, struct x86_exception *exception, 7574 bool system) 7575 { 7576 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7577 u64 access = PFERR_WRITE_MASK; 7578 7579 if (system) 7580 access |= PFERR_IMPLICIT_ACCESS; 7581 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7582 access |= PFERR_USER_MASK; 7583 7584 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7585 access, exception); 7586 } 7587 7588 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7589 unsigned int bytes, struct x86_exception *exception) 7590 { 7591 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7592 vcpu->arch.l1tf_flush_l1d = true; 7593 7594 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7595 PFERR_WRITE_MASK, exception); 7596 } 7597 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7598 7599 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7600 void *insn, int insn_len) 7601 { 7602 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type, 7603 insn, insn_len); 7604 } 7605 7606 int handle_ud(struct kvm_vcpu *vcpu) 7607 { 7608 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7609 int fep_flags = READ_ONCE(force_emulation_prefix); 7610 int emul_type = EMULTYPE_TRAP_UD; 7611 char sig[5]; /* ud2; .ascii "kvm" */ 7612 struct x86_exception e; 7613 int r; 7614 7615 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7616 if (r != X86EMUL_CONTINUE) 7617 return 1; 7618 7619 if (fep_flags && 7620 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7621 sig, sizeof(sig), &e) == 0 && 7622 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7623 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7624 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7625 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7626 emul_type = EMULTYPE_TRAP_UD_FORCED; 7627 } 7628 7629 return kvm_emulate_instruction(vcpu, emul_type); 7630 } 7631 EXPORT_SYMBOL_GPL(handle_ud); 7632 7633 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7634 gpa_t gpa, bool write) 7635 { 7636 /* For APIC access vmexit */ 7637 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7638 return 1; 7639 7640 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7641 trace_vcpu_match_mmio(gva, gpa, write, true); 7642 return 1; 7643 } 7644 7645 return 0; 7646 } 7647 7648 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7649 gpa_t *gpa, struct x86_exception *exception, 7650 bool write) 7651 { 7652 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7653 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7654 | (write ? PFERR_WRITE_MASK : 0); 7655 7656 /* 7657 * currently PKRU is only applied to ept enabled guest so 7658 * there is no pkey in EPT page table for L1 guest or EPT 7659 * shadow page table for L2 guest. 7660 */ 7661 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7662 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7663 vcpu->arch.mmio_access, 0, access))) { 7664 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7665 (gva & (PAGE_SIZE - 1)); 7666 trace_vcpu_match_mmio(gva, *gpa, write, false); 7667 return 1; 7668 } 7669 7670 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7671 7672 if (*gpa == INVALID_GPA) 7673 return -1; 7674 7675 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7676 } 7677 7678 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7679 const void *val, int bytes) 7680 { 7681 int ret; 7682 7683 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7684 if (ret < 0) 7685 return 0; 7686 kvm_page_track_write(vcpu, gpa, val, bytes); 7687 return 1; 7688 } 7689 7690 struct read_write_emulator_ops { 7691 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7692 int bytes); 7693 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7694 void *val, int bytes); 7695 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7696 int bytes, void *val); 7697 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7698 void *val, int bytes); 7699 bool write; 7700 }; 7701 7702 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7703 { 7704 if (vcpu->mmio_read_completed) { 7705 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7706 vcpu->mmio_fragments[0].gpa, val); 7707 vcpu->mmio_read_completed = 0; 7708 return 1; 7709 } 7710 7711 return 0; 7712 } 7713 7714 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7715 void *val, int bytes) 7716 { 7717 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7718 } 7719 7720 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7721 void *val, int bytes) 7722 { 7723 return emulator_write_phys(vcpu, gpa, val, bytes); 7724 } 7725 7726 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7727 { 7728 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7729 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7730 } 7731 7732 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7733 void *val, int bytes) 7734 { 7735 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7736 return X86EMUL_IO_NEEDED; 7737 } 7738 7739 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7740 void *val, int bytes) 7741 { 7742 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7743 7744 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7745 return X86EMUL_CONTINUE; 7746 } 7747 7748 static const struct read_write_emulator_ops read_emultor = { 7749 .read_write_prepare = read_prepare, 7750 .read_write_emulate = read_emulate, 7751 .read_write_mmio = vcpu_mmio_read, 7752 .read_write_exit_mmio = read_exit_mmio, 7753 }; 7754 7755 static const struct read_write_emulator_ops write_emultor = { 7756 .read_write_emulate = write_emulate, 7757 .read_write_mmio = write_mmio, 7758 .read_write_exit_mmio = write_exit_mmio, 7759 .write = true, 7760 }; 7761 7762 static int emulator_read_write_onepage(unsigned long addr, void *val, 7763 unsigned int bytes, 7764 struct x86_exception *exception, 7765 struct kvm_vcpu *vcpu, 7766 const struct read_write_emulator_ops *ops) 7767 { 7768 gpa_t gpa; 7769 int handled, ret; 7770 bool write = ops->write; 7771 struct kvm_mmio_fragment *frag; 7772 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7773 7774 /* 7775 * If the exit was due to a NPF we may already have a GPA. 7776 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7777 * Note, this cannot be used on string operations since string 7778 * operation using rep will only have the initial GPA from the NPF 7779 * occurred. 7780 */ 7781 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7782 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7783 gpa = ctxt->gpa_val; 7784 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7785 } else { 7786 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7787 if (ret < 0) 7788 return X86EMUL_PROPAGATE_FAULT; 7789 } 7790 7791 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7792 return X86EMUL_CONTINUE; 7793 7794 /* 7795 * Is this MMIO handled locally? 7796 */ 7797 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7798 if (handled == bytes) 7799 return X86EMUL_CONTINUE; 7800 7801 gpa += handled; 7802 bytes -= handled; 7803 val += handled; 7804 7805 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7806 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7807 frag->gpa = gpa; 7808 frag->data = val; 7809 frag->len = bytes; 7810 return X86EMUL_CONTINUE; 7811 } 7812 7813 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7814 unsigned long addr, 7815 void *val, unsigned int bytes, 7816 struct x86_exception *exception, 7817 const struct read_write_emulator_ops *ops) 7818 { 7819 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7820 gpa_t gpa; 7821 int rc; 7822 7823 if (ops->read_write_prepare && 7824 ops->read_write_prepare(vcpu, val, bytes)) 7825 return X86EMUL_CONTINUE; 7826 7827 vcpu->mmio_nr_fragments = 0; 7828 7829 /* Crossing a page boundary? */ 7830 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7831 int now; 7832 7833 now = -addr & ~PAGE_MASK; 7834 rc = emulator_read_write_onepage(addr, val, now, exception, 7835 vcpu, ops); 7836 7837 if (rc != X86EMUL_CONTINUE) 7838 return rc; 7839 addr += now; 7840 if (ctxt->mode != X86EMUL_MODE_PROT64) 7841 addr = (u32)addr; 7842 val += now; 7843 bytes -= now; 7844 } 7845 7846 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7847 vcpu, ops); 7848 if (rc != X86EMUL_CONTINUE) 7849 return rc; 7850 7851 if (!vcpu->mmio_nr_fragments) 7852 return rc; 7853 7854 gpa = vcpu->mmio_fragments[0].gpa; 7855 7856 vcpu->mmio_needed = 1; 7857 vcpu->mmio_cur_fragment = 0; 7858 7859 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7860 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7861 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7862 vcpu->run->mmio.phys_addr = gpa; 7863 7864 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7865 } 7866 7867 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7868 unsigned long addr, 7869 void *val, 7870 unsigned int bytes, 7871 struct x86_exception *exception) 7872 { 7873 return emulator_read_write(ctxt, addr, val, bytes, 7874 exception, &read_emultor); 7875 } 7876 7877 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7878 unsigned long addr, 7879 const void *val, 7880 unsigned int bytes, 7881 struct x86_exception *exception) 7882 { 7883 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7884 exception, &write_emultor); 7885 } 7886 7887 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7888 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7889 7890 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7891 unsigned long addr, 7892 const void *old, 7893 const void *new, 7894 unsigned int bytes, 7895 struct x86_exception *exception) 7896 { 7897 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7898 u64 page_line_mask; 7899 unsigned long hva; 7900 gpa_t gpa; 7901 int r; 7902 7903 /* guests cmpxchg8b have to be emulated atomically */ 7904 if (bytes > 8 || (bytes & (bytes - 1))) 7905 goto emul_write; 7906 7907 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7908 7909 if (gpa == INVALID_GPA || 7910 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7911 goto emul_write; 7912 7913 /* 7914 * Emulate the atomic as a straight write to avoid #AC if SLD is 7915 * enabled in the host and the access splits a cache line. 7916 */ 7917 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7918 page_line_mask = ~(cache_line_size() - 1); 7919 else 7920 page_line_mask = PAGE_MASK; 7921 7922 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7923 goto emul_write; 7924 7925 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7926 if (kvm_is_error_hva(hva)) 7927 goto emul_write; 7928 7929 hva += offset_in_page(gpa); 7930 7931 switch (bytes) { 7932 case 1: 7933 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7934 break; 7935 case 2: 7936 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7937 break; 7938 case 4: 7939 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7940 break; 7941 case 8: 7942 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7943 break; 7944 default: 7945 BUG(); 7946 } 7947 7948 if (r < 0) 7949 return X86EMUL_UNHANDLEABLE; 7950 if (r) 7951 return X86EMUL_CMPXCHG_FAILED; 7952 7953 kvm_page_track_write(vcpu, gpa, new, bytes); 7954 7955 return X86EMUL_CONTINUE; 7956 7957 emul_write: 7958 pr_warn_once("emulating exchange as write\n"); 7959 7960 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7961 } 7962 7963 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7964 unsigned short port, void *data, 7965 unsigned int count, bool in) 7966 { 7967 unsigned i; 7968 int r; 7969 7970 WARN_ON_ONCE(vcpu->arch.pio.count); 7971 for (i = 0; i < count; i++) { 7972 if (in) 7973 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7974 else 7975 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7976 7977 if (r) { 7978 if (i == 0) 7979 goto userspace_io; 7980 7981 /* 7982 * Userspace must have unregistered the device while PIO 7983 * was running. Drop writes / read as 0. 7984 */ 7985 if (in) 7986 memset(data, 0, size * (count - i)); 7987 break; 7988 } 7989 7990 data += size; 7991 } 7992 return 1; 7993 7994 userspace_io: 7995 vcpu->arch.pio.port = port; 7996 vcpu->arch.pio.in = in; 7997 vcpu->arch.pio.count = count; 7998 vcpu->arch.pio.size = size; 7999 8000 if (in) 8001 memset(vcpu->arch.pio_data, 0, size * count); 8002 else 8003 memcpy(vcpu->arch.pio_data, data, size * count); 8004 8005 vcpu->run->exit_reason = KVM_EXIT_IO; 8006 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8007 vcpu->run->io.size = size; 8008 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8009 vcpu->run->io.count = count; 8010 vcpu->run->io.port = port; 8011 return 0; 8012 } 8013 8014 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8015 unsigned short port, void *val, unsigned int count) 8016 { 8017 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8018 if (r) 8019 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8020 8021 return r; 8022 } 8023 8024 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8025 { 8026 int size = vcpu->arch.pio.size; 8027 unsigned int count = vcpu->arch.pio.count; 8028 memcpy(val, vcpu->arch.pio_data, size * count); 8029 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8030 vcpu->arch.pio.count = 0; 8031 } 8032 8033 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8034 int size, unsigned short port, void *val, 8035 unsigned int count) 8036 { 8037 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8038 if (vcpu->arch.pio.count) { 8039 /* 8040 * Complete a previous iteration that required userspace I/O. 8041 * Note, @count isn't guaranteed to match pio.count as userspace 8042 * can modify ECX before rerunning the vCPU. Ignore any such 8043 * shenanigans as KVM doesn't support modifying the rep count, 8044 * and the emulator ensures @count doesn't overflow the buffer. 8045 */ 8046 complete_emulator_pio_in(vcpu, val); 8047 return 1; 8048 } 8049 8050 return emulator_pio_in(vcpu, size, port, val, count); 8051 } 8052 8053 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8054 unsigned short port, const void *val, 8055 unsigned int count) 8056 { 8057 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8058 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8059 } 8060 8061 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8062 int size, unsigned short port, 8063 const void *val, unsigned int count) 8064 { 8065 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8066 } 8067 8068 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8069 { 8070 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 8071 } 8072 8073 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8074 { 8075 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8076 } 8077 8078 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8079 { 8080 if (!need_emulate_wbinvd(vcpu)) 8081 return X86EMUL_CONTINUE; 8082 8083 if (static_call(kvm_x86_has_wbinvd_exit)()) { 8084 int cpu = get_cpu(); 8085 8086 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8087 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8088 wbinvd_ipi, NULL, 1); 8089 put_cpu(); 8090 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8091 } else 8092 wbinvd(); 8093 return X86EMUL_CONTINUE; 8094 } 8095 8096 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8097 { 8098 kvm_emulate_wbinvd_noskip(vcpu); 8099 return kvm_skip_emulated_instruction(vcpu); 8100 } 8101 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8102 8103 8104 8105 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8106 { 8107 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8108 } 8109 8110 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 8111 unsigned long *dest) 8112 { 8113 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 8114 } 8115 8116 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8117 unsigned long value) 8118 { 8119 8120 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8121 } 8122 8123 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8124 { 8125 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8126 } 8127 8128 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8129 { 8130 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8131 unsigned long value; 8132 8133 switch (cr) { 8134 case 0: 8135 value = kvm_read_cr0(vcpu); 8136 break; 8137 case 2: 8138 value = vcpu->arch.cr2; 8139 break; 8140 case 3: 8141 value = kvm_read_cr3(vcpu); 8142 break; 8143 case 4: 8144 value = kvm_read_cr4(vcpu); 8145 break; 8146 case 8: 8147 value = kvm_get_cr8(vcpu); 8148 break; 8149 default: 8150 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8151 return 0; 8152 } 8153 8154 return value; 8155 } 8156 8157 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8158 { 8159 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8160 int res = 0; 8161 8162 switch (cr) { 8163 case 0: 8164 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8165 break; 8166 case 2: 8167 vcpu->arch.cr2 = val; 8168 break; 8169 case 3: 8170 res = kvm_set_cr3(vcpu, val); 8171 break; 8172 case 4: 8173 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8174 break; 8175 case 8: 8176 res = kvm_set_cr8(vcpu, val); 8177 break; 8178 default: 8179 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8180 res = -1; 8181 } 8182 8183 return res; 8184 } 8185 8186 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8187 { 8188 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8189 } 8190 8191 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8192 { 8193 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8194 } 8195 8196 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8197 { 8198 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8199 } 8200 8201 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8202 { 8203 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8204 } 8205 8206 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8207 { 8208 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8209 } 8210 8211 static unsigned long emulator_get_cached_segment_base( 8212 struct x86_emulate_ctxt *ctxt, int seg) 8213 { 8214 return get_segment_base(emul_to_vcpu(ctxt), seg); 8215 } 8216 8217 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8218 struct desc_struct *desc, u32 *base3, 8219 int seg) 8220 { 8221 struct kvm_segment var; 8222 8223 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8224 *selector = var.selector; 8225 8226 if (var.unusable) { 8227 memset(desc, 0, sizeof(*desc)); 8228 if (base3) 8229 *base3 = 0; 8230 return false; 8231 } 8232 8233 if (var.g) 8234 var.limit >>= 12; 8235 set_desc_limit(desc, var.limit); 8236 set_desc_base(desc, (unsigned long)var.base); 8237 #ifdef CONFIG_X86_64 8238 if (base3) 8239 *base3 = var.base >> 32; 8240 #endif 8241 desc->type = var.type; 8242 desc->s = var.s; 8243 desc->dpl = var.dpl; 8244 desc->p = var.present; 8245 desc->avl = var.avl; 8246 desc->l = var.l; 8247 desc->d = var.db; 8248 desc->g = var.g; 8249 8250 return true; 8251 } 8252 8253 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8254 struct desc_struct *desc, u32 base3, 8255 int seg) 8256 { 8257 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8258 struct kvm_segment var; 8259 8260 var.selector = selector; 8261 var.base = get_desc_base(desc); 8262 #ifdef CONFIG_X86_64 8263 var.base |= ((u64)base3) << 32; 8264 #endif 8265 var.limit = get_desc_limit(desc); 8266 if (desc->g) 8267 var.limit = (var.limit << 12) | 0xfff; 8268 var.type = desc->type; 8269 var.dpl = desc->dpl; 8270 var.db = desc->d; 8271 var.s = desc->s; 8272 var.l = desc->l; 8273 var.g = desc->g; 8274 var.avl = desc->avl; 8275 var.present = desc->p; 8276 var.unusable = !var.present; 8277 var.padding = 0; 8278 8279 kvm_set_segment(vcpu, &var, seg); 8280 return; 8281 } 8282 8283 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8284 u32 msr_index, u64 *pdata) 8285 { 8286 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8287 int r; 8288 8289 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8290 if (r < 0) 8291 return X86EMUL_UNHANDLEABLE; 8292 8293 if (r) { 8294 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8295 complete_emulated_rdmsr, r)) 8296 return X86EMUL_IO_NEEDED; 8297 8298 trace_kvm_msr_read_ex(msr_index); 8299 return X86EMUL_PROPAGATE_FAULT; 8300 } 8301 8302 trace_kvm_msr_read(msr_index, *pdata); 8303 return X86EMUL_CONTINUE; 8304 } 8305 8306 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8307 u32 msr_index, u64 data) 8308 { 8309 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8310 int r; 8311 8312 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8313 if (r < 0) 8314 return X86EMUL_UNHANDLEABLE; 8315 8316 if (r) { 8317 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8318 complete_emulated_msr_access, r)) 8319 return X86EMUL_IO_NEEDED; 8320 8321 trace_kvm_msr_write_ex(msr_index, data); 8322 return X86EMUL_PROPAGATE_FAULT; 8323 } 8324 8325 trace_kvm_msr_write(msr_index, data); 8326 return X86EMUL_CONTINUE; 8327 } 8328 8329 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8330 u32 msr_index, u64 *pdata) 8331 { 8332 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8333 } 8334 8335 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8336 u32 pmc) 8337 { 8338 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8339 return 0; 8340 return -EINVAL; 8341 } 8342 8343 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8344 u32 pmc, u64 *pdata) 8345 { 8346 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8347 } 8348 8349 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8350 { 8351 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8352 } 8353 8354 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8355 struct x86_instruction_info *info, 8356 enum x86_intercept_stage stage) 8357 { 8358 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8359 &ctxt->exception); 8360 } 8361 8362 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8363 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8364 bool exact_only) 8365 { 8366 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8367 } 8368 8369 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8370 { 8371 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8372 } 8373 8374 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8375 { 8376 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8377 } 8378 8379 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8380 { 8381 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8382 } 8383 8384 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8385 { 8386 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8387 } 8388 8389 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8390 { 8391 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8392 } 8393 8394 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8395 { 8396 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8397 } 8398 8399 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8400 { 8401 return is_smm(emul_to_vcpu(ctxt)); 8402 } 8403 8404 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8405 { 8406 return is_guest_mode(emul_to_vcpu(ctxt)); 8407 } 8408 8409 #ifndef CONFIG_KVM_SMM 8410 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8411 { 8412 WARN_ON_ONCE(1); 8413 return X86EMUL_UNHANDLEABLE; 8414 } 8415 #endif 8416 8417 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8418 { 8419 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8420 } 8421 8422 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8423 { 8424 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8425 } 8426 8427 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8428 { 8429 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8430 8431 if (!kvm->vm_bugged) 8432 kvm_vm_bugged(kvm); 8433 } 8434 8435 static const struct x86_emulate_ops emulate_ops = { 8436 .vm_bugged = emulator_vm_bugged, 8437 .read_gpr = emulator_read_gpr, 8438 .write_gpr = emulator_write_gpr, 8439 .read_std = emulator_read_std, 8440 .write_std = emulator_write_std, 8441 .fetch = kvm_fetch_guest_virt, 8442 .read_emulated = emulator_read_emulated, 8443 .write_emulated = emulator_write_emulated, 8444 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8445 .invlpg = emulator_invlpg, 8446 .pio_in_emulated = emulator_pio_in_emulated, 8447 .pio_out_emulated = emulator_pio_out_emulated, 8448 .get_segment = emulator_get_segment, 8449 .set_segment = emulator_set_segment, 8450 .get_cached_segment_base = emulator_get_cached_segment_base, 8451 .get_gdt = emulator_get_gdt, 8452 .get_idt = emulator_get_idt, 8453 .set_gdt = emulator_set_gdt, 8454 .set_idt = emulator_set_idt, 8455 .get_cr = emulator_get_cr, 8456 .set_cr = emulator_set_cr, 8457 .cpl = emulator_get_cpl, 8458 .get_dr = emulator_get_dr, 8459 .set_dr = emulator_set_dr, 8460 .set_msr_with_filter = emulator_set_msr_with_filter, 8461 .get_msr_with_filter = emulator_get_msr_with_filter, 8462 .get_msr = emulator_get_msr, 8463 .check_pmc = emulator_check_pmc, 8464 .read_pmc = emulator_read_pmc, 8465 .halt = emulator_halt, 8466 .wbinvd = emulator_wbinvd, 8467 .fix_hypercall = emulator_fix_hypercall, 8468 .intercept = emulator_intercept, 8469 .get_cpuid = emulator_get_cpuid, 8470 .guest_has_movbe = emulator_guest_has_movbe, 8471 .guest_has_fxsr = emulator_guest_has_fxsr, 8472 .guest_has_rdpid = emulator_guest_has_rdpid, 8473 .set_nmi_mask = emulator_set_nmi_mask, 8474 .is_smm = emulator_is_smm, 8475 .is_guest_mode = emulator_is_guest_mode, 8476 .leave_smm = emulator_leave_smm, 8477 .triple_fault = emulator_triple_fault, 8478 .set_xcr = emulator_set_xcr, 8479 }; 8480 8481 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8482 { 8483 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8484 /* 8485 * an sti; sti; sequence only disable interrupts for the first 8486 * instruction. So, if the last instruction, be it emulated or 8487 * not, left the system with the INT_STI flag enabled, it 8488 * means that the last instruction is an sti. We should not 8489 * leave the flag on in this case. The same goes for mov ss 8490 */ 8491 if (int_shadow & mask) 8492 mask = 0; 8493 if (unlikely(int_shadow || mask)) { 8494 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8495 if (!mask) 8496 kvm_make_request(KVM_REQ_EVENT, vcpu); 8497 } 8498 } 8499 8500 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8501 { 8502 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8503 8504 if (ctxt->exception.vector == PF_VECTOR) 8505 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8506 else if (ctxt->exception.error_code_valid) 8507 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8508 ctxt->exception.error_code); 8509 else 8510 kvm_queue_exception(vcpu, ctxt->exception.vector); 8511 } 8512 8513 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8514 { 8515 struct x86_emulate_ctxt *ctxt; 8516 8517 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8518 if (!ctxt) { 8519 pr_err("failed to allocate vcpu's emulator\n"); 8520 return NULL; 8521 } 8522 8523 ctxt->vcpu = vcpu; 8524 ctxt->ops = &emulate_ops; 8525 vcpu->arch.emulate_ctxt = ctxt; 8526 8527 return ctxt; 8528 } 8529 8530 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8531 { 8532 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8533 int cs_db, cs_l; 8534 8535 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8536 8537 ctxt->gpa_available = false; 8538 ctxt->eflags = kvm_get_rflags(vcpu); 8539 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8540 8541 ctxt->eip = kvm_rip_read(vcpu); 8542 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8543 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8544 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8545 cs_db ? X86EMUL_MODE_PROT32 : 8546 X86EMUL_MODE_PROT16; 8547 ctxt->interruptibility = 0; 8548 ctxt->have_exception = false; 8549 ctxt->exception.vector = -1; 8550 ctxt->perm_ok = false; 8551 8552 init_decode_cache(ctxt); 8553 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8554 } 8555 8556 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8557 { 8558 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8559 int ret; 8560 8561 init_emulate_ctxt(vcpu); 8562 8563 ctxt->op_bytes = 2; 8564 ctxt->ad_bytes = 2; 8565 ctxt->_eip = ctxt->eip + inc_eip; 8566 ret = emulate_int_real(ctxt, irq); 8567 8568 if (ret != X86EMUL_CONTINUE) { 8569 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8570 } else { 8571 ctxt->eip = ctxt->_eip; 8572 kvm_rip_write(vcpu, ctxt->eip); 8573 kvm_set_rflags(vcpu, ctxt->eflags); 8574 } 8575 } 8576 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8577 8578 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8579 u8 ndata, u8 *insn_bytes, u8 insn_size) 8580 { 8581 struct kvm_run *run = vcpu->run; 8582 u64 info[5]; 8583 u8 info_start; 8584 8585 /* 8586 * Zero the whole array used to retrieve the exit info, as casting to 8587 * u32 for select entries will leave some chunks uninitialized. 8588 */ 8589 memset(&info, 0, sizeof(info)); 8590 8591 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8592 &info[2], (u32 *)&info[3], 8593 (u32 *)&info[4]); 8594 8595 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8596 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8597 8598 /* 8599 * There's currently space for 13 entries, but 5 are used for the exit 8600 * reason and info. Restrict to 4 to reduce the maintenance burden 8601 * when expanding kvm_run.emulation_failure in the future. 8602 */ 8603 if (WARN_ON_ONCE(ndata > 4)) 8604 ndata = 4; 8605 8606 /* Always include the flags as a 'data' entry. */ 8607 info_start = 1; 8608 run->emulation_failure.flags = 0; 8609 8610 if (insn_size) { 8611 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8612 sizeof(run->emulation_failure.insn_bytes) != 16)); 8613 info_start += 2; 8614 run->emulation_failure.flags |= 8615 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8616 run->emulation_failure.insn_size = insn_size; 8617 memset(run->emulation_failure.insn_bytes, 0x90, 8618 sizeof(run->emulation_failure.insn_bytes)); 8619 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8620 } 8621 8622 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8623 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8624 ndata * sizeof(data[0])); 8625 8626 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8627 } 8628 8629 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8630 { 8631 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8632 8633 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8634 ctxt->fetch.end - ctxt->fetch.data); 8635 } 8636 8637 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8638 u8 ndata) 8639 { 8640 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8641 } 8642 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8643 8644 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8645 { 8646 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8647 } 8648 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8649 8650 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8651 { 8652 struct kvm *kvm = vcpu->kvm; 8653 8654 ++vcpu->stat.insn_emulation_fail; 8655 trace_kvm_emulate_insn_failed(vcpu); 8656 8657 if (emulation_type & EMULTYPE_VMWARE_GP) { 8658 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8659 return 1; 8660 } 8661 8662 if (kvm->arch.exit_on_emulation_error || 8663 (emulation_type & EMULTYPE_SKIP)) { 8664 prepare_emulation_ctxt_failure_exit(vcpu); 8665 return 0; 8666 } 8667 8668 kvm_queue_exception(vcpu, UD_VECTOR); 8669 8670 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8671 prepare_emulation_ctxt_failure_exit(vcpu); 8672 return 0; 8673 } 8674 8675 return 1; 8676 } 8677 8678 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8679 int emulation_type) 8680 { 8681 gpa_t gpa = cr2_or_gpa; 8682 kvm_pfn_t pfn; 8683 8684 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8685 return false; 8686 8687 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8688 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8689 return false; 8690 8691 if (!vcpu->arch.mmu->root_role.direct) { 8692 /* 8693 * Write permission should be allowed since only 8694 * write access need to be emulated. 8695 */ 8696 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8697 8698 /* 8699 * If the mapping is invalid in guest, let cpu retry 8700 * it to generate fault. 8701 */ 8702 if (gpa == INVALID_GPA) 8703 return true; 8704 } 8705 8706 /* 8707 * Do not retry the unhandleable instruction if it faults on the 8708 * readonly host memory, otherwise it will goto a infinite loop: 8709 * retry instruction -> write #PF -> emulation fail -> retry 8710 * instruction -> ... 8711 */ 8712 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8713 8714 /* 8715 * If the instruction failed on the error pfn, it can not be fixed, 8716 * report the error to userspace. 8717 */ 8718 if (is_error_noslot_pfn(pfn)) 8719 return false; 8720 8721 kvm_release_pfn_clean(pfn); 8722 8723 /* The instructions are well-emulated on direct mmu. */ 8724 if (vcpu->arch.mmu->root_role.direct) { 8725 unsigned int indirect_shadow_pages; 8726 8727 write_lock(&vcpu->kvm->mmu_lock); 8728 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8729 write_unlock(&vcpu->kvm->mmu_lock); 8730 8731 if (indirect_shadow_pages) 8732 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8733 8734 return true; 8735 } 8736 8737 /* 8738 * if emulation was due to access to shadowed page table 8739 * and it failed try to unshadow page and re-enter the 8740 * guest to let CPU execute the instruction. 8741 */ 8742 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8743 8744 /* 8745 * If the access faults on its page table, it can not 8746 * be fixed by unprotecting shadow page and it should 8747 * be reported to userspace. 8748 */ 8749 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8750 } 8751 8752 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8753 gpa_t cr2_or_gpa, int emulation_type) 8754 { 8755 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8756 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8757 8758 last_retry_eip = vcpu->arch.last_retry_eip; 8759 last_retry_addr = vcpu->arch.last_retry_addr; 8760 8761 /* 8762 * If the emulation is caused by #PF and it is non-page_table 8763 * writing instruction, it means the VM-EXIT is caused by shadow 8764 * page protected, we can zap the shadow page and retry this 8765 * instruction directly. 8766 * 8767 * Note: if the guest uses a non-page-table modifying instruction 8768 * on the PDE that points to the instruction, then we will unmap 8769 * the instruction and go to an infinite loop. So, we cache the 8770 * last retried eip and the last fault address, if we meet the eip 8771 * and the address again, we can break out of the potential infinite 8772 * loop. 8773 */ 8774 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8775 8776 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8777 return false; 8778 8779 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8780 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8781 return false; 8782 8783 if (x86_page_table_writing_insn(ctxt)) 8784 return false; 8785 8786 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8787 return false; 8788 8789 vcpu->arch.last_retry_eip = ctxt->eip; 8790 vcpu->arch.last_retry_addr = cr2_or_gpa; 8791 8792 if (!vcpu->arch.mmu->root_role.direct) 8793 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8794 8795 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8796 8797 return true; 8798 } 8799 8800 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8801 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8802 8803 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8804 unsigned long *db) 8805 { 8806 u32 dr6 = 0; 8807 int i; 8808 u32 enable, rwlen; 8809 8810 enable = dr7; 8811 rwlen = dr7 >> 16; 8812 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8813 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8814 dr6 |= (1 << i); 8815 return dr6; 8816 } 8817 8818 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8819 { 8820 struct kvm_run *kvm_run = vcpu->run; 8821 8822 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8823 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8824 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8825 kvm_run->debug.arch.exception = DB_VECTOR; 8826 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8827 return 0; 8828 } 8829 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8830 return 1; 8831 } 8832 8833 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8834 { 8835 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8836 int r; 8837 8838 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8839 if (unlikely(!r)) 8840 return 0; 8841 8842 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8843 8844 /* 8845 * rflags is the old, "raw" value of the flags. The new value has 8846 * not been saved yet. 8847 * 8848 * This is correct even for TF set by the guest, because "the 8849 * processor will not generate this exception after the instruction 8850 * that sets the TF flag". 8851 */ 8852 if (unlikely(rflags & X86_EFLAGS_TF)) 8853 r = kvm_vcpu_do_singlestep(vcpu); 8854 return r; 8855 } 8856 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8857 8858 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8859 { 8860 u32 shadow; 8861 8862 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8863 return true; 8864 8865 /* 8866 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8867 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8868 * to avoid the relatively expensive CPUID lookup. 8869 */ 8870 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8871 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8872 guest_cpuid_is_intel(vcpu); 8873 } 8874 8875 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8876 int emulation_type, int *r) 8877 { 8878 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8879 8880 /* 8881 * Do not check for code breakpoints if hardware has already done the 8882 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8883 * the instruction has passed all exception checks, and all intercepted 8884 * exceptions that trigger emulation have lower priority than code 8885 * breakpoints, i.e. the fact that the intercepted exception occurred 8886 * means any code breakpoints have already been serviced. 8887 * 8888 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8889 * hardware has checked the RIP of the magic prefix, but not the RIP of 8890 * the instruction being emulated. The intent of forced emulation is 8891 * to behave as if KVM intercepted the instruction without an exception 8892 * and without a prefix. 8893 */ 8894 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8895 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8896 return false; 8897 8898 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8899 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8900 struct kvm_run *kvm_run = vcpu->run; 8901 unsigned long eip = kvm_get_linear_rip(vcpu); 8902 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8903 vcpu->arch.guest_debug_dr7, 8904 vcpu->arch.eff_db); 8905 8906 if (dr6 != 0) { 8907 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8908 kvm_run->debug.arch.pc = eip; 8909 kvm_run->debug.arch.exception = DB_VECTOR; 8910 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8911 *r = 0; 8912 return true; 8913 } 8914 } 8915 8916 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8917 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8918 unsigned long eip = kvm_get_linear_rip(vcpu); 8919 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8920 vcpu->arch.dr7, 8921 vcpu->arch.db); 8922 8923 if (dr6 != 0) { 8924 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8925 *r = 1; 8926 return true; 8927 } 8928 } 8929 8930 return false; 8931 } 8932 8933 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8934 { 8935 switch (ctxt->opcode_len) { 8936 case 1: 8937 switch (ctxt->b) { 8938 case 0xe4: /* IN */ 8939 case 0xe5: 8940 case 0xec: 8941 case 0xed: 8942 case 0xe6: /* OUT */ 8943 case 0xe7: 8944 case 0xee: 8945 case 0xef: 8946 case 0x6c: /* INS */ 8947 case 0x6d: 8948 case 0x6e: /* OUTS */ 8949 case 0x6f: 8950 return true; 8951 } 8952 break; 8953 case 2: 8954 switch (ctxt->b) { 8955 case 0x33: /* RDPMC */ 8956 return true; 8957 } 8958 break; 8959 } 8960 8961 return false; 8962 } 8963 8964 /* 8965 * Decode an instruction for emulation. The caller is responsible for handling 8966 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8967 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8968 * code breakpoints have higher priority and thus have already been done by 8969 * hardware. 8970 * 8971 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8972 * response to a machine check. 8973 */ 8974 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8975 void *insn, int insn_len) 8976 { 8977 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8978 int r; 8979 8980 init_emulate_ctxt(vcpu); 8981 8982 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8983 8984 trace_kvm_emulate_insn_start(vcpu); 8985 ++vcpu->stat.insn_emulation; 8986 8987 return r; 8988 } 8989 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8990 8991 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8992 int emulation_type, void *insn, int insn_len) 8993 { 8994 int r; 8995 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8996 bool writeback = true; 8997 8998 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 8999 if (r != X86EMUL_CONTINUE) { 9000 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9001 return 1; 9002 9003 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9004 return handle_emulation_failure(vcpu, emulation_type); 9005 } 9006 9007 vcpu->arch.l1tf_flush_l1d = true; 9008 9009 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9010 kvm_clear_exception_queue(vcpu); 9011 9012 /* 9013 * Return immediately if RIP hits a code breakpoint, such #DBs 9014 * are fault-like and are higher priority than any faults on 9015 * the code fetch itself. 9016 */ 9017 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9018 return r; 9019 9020 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9021 insn, insn_len); 9022 if (r != EMULATION_OK) { 9023 if ((emulation_type & EMULTYPE_TRAP_UD) || 9024 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9025 kvm_queue_exception(vcpu, UD_VECTOR); 9026 return 1; 9027 } 9028 if (reexecute_instruction(vcpu, cr2_or_gpa, 9029 emulation_type)) 9030 return 1; 9031 9032 if (ctxt->have_exception && 9033 !(emulation_type & EMULTYPE_SKIP)) { 9034 /* 9035 * #UD should result in just EMULATION_FAILED, and trap-like 9036 * exception should not be encountered during decode. 9037 */ 9038 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9039 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9040 inject_emulated_exception(vcpu); 9041 return 1; 9042 } 9043 return handle_emulation_failure(vcpu, emulation_type); 9044 } 9045 } 9046 9047 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9048 !is_vmware_backdoor_opcode(ctxt)) { 9049 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9050 return 1; 9051 } 9052 9053 /* 9054 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9055 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9056 * The caller is responsible for updating interruptibility state and 9057 * injecting single-step #DBs. 9058 */ 9059 if (emulation_type & EMULTYPE_SKIP) { 9060 if (ctxt->mode != X86EMUL_MODE_PROT64) 9061 ctxt->eip = (u32)ctxt->_eip; 9062 else 9063 ctxt->eip = ctxt->_eip; 9064 9065 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9066 r = 1; 9067 goto writeback; 9068 } 9069 9070 kvm_rip_write(vcpu, ctxt->eip); 9071 if (ctxt->eflags & X86_EFLAGS_RF) 9072 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9073 return 1; 9074 } 9075 9076 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 9077 return 1; 9078 9079 /* this is needed for vmware backdoor interface to work since it 9080 changes registers values during IO operation */ 9081 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9082 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9083 emulator_invalidate_register_cache(ctxt); 9084 } 9085 9086 restart: 9087 if (emulation_type & EMULTYPE_PF) { 9088 /* Save the faulting GPA (cr2) in the address field */ 9089 ctxt->exception.address = cr2_or_gpa; 9090 9091 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9092 if (vcpu->arch.mmu->root_role.direct) { 9093 ctxt->gpa_available = true; 9094 ctxt->gpa_val = cr2_or_gpa; 9095 } 9096 } else { 9097 /* Sanitize the address out of an abundance of paranoia. */ 9098 ctxt->exception.address = 0; 9099 } 9100 9101 r = x86_emulate_insn(ctxt); 9102 9103 if (r == EMULATION_INTERCEPTED) 9104 return 1; 9105 9106 if (r == EMULATION_FAILED) { 9107 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 9108 return 1; 9109 9110 return handle_emulation_failure(vcpu, emulation_type); 9111 } 9112 9113 if (ctxt->have_exception) { 9114 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9115 vcpu->mmio_needed = false; 9116 r = 1; 9117 inject_emulated_exception(vcpu); 9118 } else if (vcpu->arch.pio.count) { 9119 if (!vcpu->arch.pio.in) { 9120 /* FIXME: return into emulator if single-stepping. */ 9121 vcpu->arch.pio.count = 0; 9122 } else { 9123 writeback = false; 9124 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9125 } 9126 r = 0; 9127 } else if (vcpu->mmio_needed) { 9128 ++vcpu->stat.mmio_exits; 9129 9130 if (!vcpu->mmio_is_write) 9131 writeback = false; 9132 r = 0; 9133 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9134 } else if (vcpu->arch.complete_userspace_io) { 9135 writeback = false; 9136 r = 0; 9137 } else if (r == EMULATION_RESTART) 9138 goto restart; 9139 else 9140 r = 1; 9141 9142 writeback: 9143 if (writeback) { 9144 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9145 toggle_interruptibility(vcpu, ctxt->interruptibility); 9146 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9147 9148 /* 9149 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9150 * only supports code breakpoints and general detect #DB, both 9151 * of which are fault-like. 9152 */ 9153 if (!ctxt->have_exception || 9154 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9155 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9156 if (ctxt->is_branch) 9157 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9158 kvm_rip_write(vcpu, ctxt->eip); 9159 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9160 r = kvm_vcpu_do_singlestep(vcpu); 9161 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9162 __kvm_set_rflags(vcpu, ctxt->eflags); 9163 } 9164 9165 /* 9166 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9167 * do nothing, and it will be requested again as soon as 9168 * the shadow expires. But we still need to check here, 9169 * because POPF has no interrupt shadow. 9170 */ 9171 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9172 kvm_make_request(KVM_REQ_EVENT, vcpu); 9173 } else 9174 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9175 9176 return r; 9177 } 9178 9179 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9180 { 9181 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9182 } 9183 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9184 9185 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9186 void *insn, int insn_len) 9187 { 9188 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9189 } 9190 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9191 9192 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9193 { 9194 vcpu->arch.pio.count = 0; 9195 return 1; 9196 } 9197 9198 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9199 { 9200 vcpu->arch.pio.count = 0; 9201 9202 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9203 return 1; 9204 9205 return kvm_skip_emulated_instruction(vcpu); 9206 } 9207 9208 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9209 unsigned short port) 9210 { 9211 unsigned long val = kvm_rax_read(vcpu); 9212 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9213 9214 if (ret) 9215 return ret; 9216 9217 /* 9218 * Workaround userspace that relies on old KVM behavior of %rip being 9219 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9220 */ 9221 if (port == 0x7e && 9222 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9223 vcpu->arch.complete_userspace_io = 9224 complete_fast_pio_out_port_0x7e; 9225 kvm_skip_emulated_instruction(vcpu); 9226 } else { 9227 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9228 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9229 } 9230 return 0; 9231 } 9232 9233 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9234 { 9235 unsigned long val; 9236 9237 /* We should only ever be called with arch.pio.count equal to 1 */ 9238 BUG_ON(vcpu->arch.pio.count != 1); 9239 9240 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9241 vcpu->arch.pio.count = 0; 9242 return 1; 9243 } 9244 9245 /* For size less than 4 we merge, else we zero extend */ 9246 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9247 9248 complete_emulator_pio_in(vcpu, &val); 9249 kvm_rax_write(vcpu, val); 9250 9251 return kvm_skip_emulated_instruction(vcpu); 9252 } 9253 9254 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9255 unsigned short port) 9256 { 9257 unsigned long val; 9258 int ret; 9259 9260 /* For size less than 4 we merge, else we zero extend */ 9261 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9262 9263 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9264 if (ret) { 9265 kvm_rax_write(vcpu, val); 9266 return ret; 9267 } 9268 9269 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9270 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9271 9272 return 0; 9273 } 9274 9275 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9276 { 9277 int ret; 9278 9279 if (in) 9280 ret = kvm_fast_pio_in(vcpu, size, port); 9281 else 9282 ret = kvm_fast_pio_out(vcpu, size, port); 9283 return ret && kvm_skip_emulated_instruction(vcpu); 9284 } 9285 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9286 9287 static int kvmclock_cpu_down_prep(unsigned int cpu) 9288 { 9289 __this_cpu_write(cpu_tsc_khz, 0); 9290 return 0; 9291 } 9292 9293 static void tsc_khz_changed(void *data) 9294 { 9295 struct cpufreq_freqs *freq = data; 9296 unsigned long khz; 9297 9298 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9299 9300 if (data) 9301 khz = freq->new; 9302 else 9303 khz = cpufreq_quick_get(raw_smp_processor_id()); 9304 if (!khz) 9305 khz = tsc_khz; 9306 __this_cpu_write(cpu_tsc_khz, khz); 9307 } 9308 9309 #ifdef CONFIG_X86_64 9310 static void kvm_hyperv_tsc_notifier(void) 9311 { 9312 struct kvm *kvm; 9313 int cpu; 9314 9315 mutex_lock(&kvm_lock); 9316 list_for_each_entry(kvm, &vm_list, vm_list) 9317 kvm_make_mclock_inprogress_request(kvm); 9318 9319 /* no guest entries from this point */ 9320 hyperv_stop_tsc_emulation(); 9321 9322 /* TSC frequency always matches when on Hyper-V */ 9323 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9324 for_each_present_cpu(cpu) 9325 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9326 } 9327 kvm_caps.max_guest_tsc_khz = tsc_khz; 9328 9329 list_for_each_entry(kvm, &vm_list, vm_list) { 9330 __kvm_start_pvclock_update(kvm); 9331 pvclock_update_vm_gtod_copy(kvm); 9332 kvm_end_pvclock_update(kvm); 9333 } 9334 9335 mutex_unlock(&kvm_lock); 9336 } 9337 #endif 9338 9339 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9340 { 9341 struct kvm *kvm; 9342 struct kvm_vcpu *vcpu; 9343 int send_ipi = 0; 9344 unsigned long i; 9345 9346 /* 9347 * We allow guests to temporarily run on slowing clocks, 9348 * provided we notify them after, or to run on accelerating 9349 * clocks, provided we notify them before. Thus time never 9350 * goes backwards. 9351 * 9352 * However, we have a problem. We can't atomically update 9353 * the frequency of a given CPU from this function; it is 9354 * merely a notifier, which can be called from any CPU. 9355 * Changing the TSC frequency at arbitrary points in time 9356 * requires a recomputation of local variables related to 9357 * the TSC for each VCPU. We must flag these local variables 9358 * to be updated and be sure the update takes place with the 9359 * new frequency before any guests proceed. 9360 * 9361 * Unfortunately, the combination of hotplug CPU and frequency 9362 * change creates an intractable locking scenario; the order 9363 * of when these callouts happen is undefined with respect to 9364 * CPU hotplug, and they can race with each other. As such, 9365 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9366 * undefined; you can actually have a CPU frequency change take 9367 * place in between the computation of X and the setting of the 9368 * variable. To protect against this problem, all updates of 9369 * the per_cpu tsc_khz variable are done in an interrupt 9370 * protected IPI, and all callers wishing to update the value 9371 * must wait for a synchronous IPI to complete (which is trivial 9372 * if the caller is on the CPU already). This establishes the 9373 * necessary total order on variable updates. 9374 * 9375 * Note that because a guest time update may take place 9376 * anytime after the setting of the VCPU's request bit, the 9377 * correct TSC value must be set before the request. However, 9378 * to ensure the update actually makes it to any guest which 9379 * starts running in hardware virtualization between the set 9380 * and the acquisition of the spinlock, we must also ping the 9381 * CPU after setting the request bit. 9382 * 9383 */ 9384 9385 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9386 9387 mutex_lock(&kvm_lock); 9388 list_for_each_entry(kvm, &vm_list, vm_list) { 9389 kvm_for_each_vcpu(i, vcpu, kvm) { 9390 if (vcpu->cpu != cpu) 9391 continue; 9392 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9393 if (vcpu->cpu != raw_smp_processor_id()) 9394 send_ipi = 1; 9395 } 9396 } 9397 mutex_unlock(&kvm_lock); 9398 9399 if (freq->old < freq->new && send_ipi) { 9400 /* 9401 * We upscale the frequency. Must make the guest 9402 * doesn't see old kvmclock values while running with 9403 * the new frequency, otherwise we risk the guest sees 9404 * time go backwards. 9405 * 9406 * In case we update the frequency for another cpu 9407 * (which might be in guest context) send an interrupt 9408 * to kick the cpu out of guest context. Next time 9409 * guest context is entered kvmclock will be updated, 9410 * so the guest will not see stale values. 9411 */ 9412 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9413 } 9414 } 9415 9416 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9417 void *data) 9418 { 9419 struct cpufreq_freqs *freq = data; 9420 int cpu; 9421 9422 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9423 return 0; 9424 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9425 return 0; 9426 9427 for_each_cpu(cpu, freq->policy->cpus) 9428 __kvmclock_cpufreq_notifier(freq, cpu); 9429 9430 return 0; 9431 } 9432 9433 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9434 .notifier_call = kvmclock_cpufreq_notifier 9435 }; 9436 9437 static int kvmclock_cpu_online(unsigned int cpu) 9438 { 9439 tsc_khz_changed(NULL); 9440 return 0; 9441 } 9442 9443 static void kvm_timer_init(void) 9444 { 9445 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9446 max_tsc_khz = tsc_khz; 9447 9448 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9449 struct cpufreq_policy *policy; 9450 int cpu; 9451 9452 cpu = get_cpu(); 9453 policy = cpufreq_cpu_get(cpu); 9454 if (policy) { 9455 if (policy->cpuinfo.max_freq) 9456 max_tsc_khz = policy->cpuinfo.max_freq; 9457 cpufreq_cpu_put(policy); 9458 } 9459 put_cpu(); 9460 } 9461 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9462 CPUFREQ_TRANSITION_NOTIFIER); 9463 9464 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9465 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9466 } 9467 } 9468 9469 #ifdef CONFIG_X86_64 9470 static void pvclock_gtod_update_fn(struct work_struct *work) 9471 { 9472 struct kvm *kvm; 9473 struct kvm_vcpu *vcpu; 9474 unsigned long i; 9475 9476 mutex_lock(&kvm_lock); 9477 list_for_each_entry(kvm, &vm_list, vm_list) 9478 kvm_for_each_vcpu(i, vcpu, kvm) 9479 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9480 atomic_set(&kvm_guest_has_master_clock, 0); 9481 mutex_unlock(&kvm_lock); 9482 } 9483 9484 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9485 9486 /* 9487 * Indirection to move queue_work() out of the tk_core.seq write held 9488 * region to prevent possible deadlocks against time accessors which 9489 * are invoked with work related locks held. 9490 */ 9491 static void pvclock_irq_work_fn(struct irq_work *w) 9492 { 9493 queue_work(system_long_wq, &pvclock_gtod_work); 9494 } 9495 9496 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9497 9498 /* 9499 * Notification about pvclock gtod data update. 9500 */ 9501 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9502 void *priv) 9503 { 9504 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9505 struct timekeeper *tk = priv; 9506 9507 update_pvclock_gtod(tk); 9508 9509 /* 9510 * Disable master clock if host does not trust, or does not use, 9511 * TSC based clocksource. Delegate queue_work() to irq_work as 9512 * this is invoked with tk_core.seq write held. 9513 */ 9514 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9515 atomic_read(&kvm_guest_has_master_clock) != 0) 9516 irq_work_queue(&pvclock_irq_work); 9517 return 0; 9518 } 9519 9520 static struct notifier_block pvclock_gtod_notifier = { 9521 .notifier_call = pvclock_gtod_notify, 9522 }; 9523 #endif 9524 9525 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9526 { 9527 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9528 9529 #define __KVM_X86_OP(func) \ 9530 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9531 #define KVM_X86_OP(func) \ 9532 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9533 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9534 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9535 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9536 (void *)__static_call_return0); 9537 #include <asm/kvm-x86-ops.h> 9538 #undef __KVM_X86_OP 9539 9540 kvm_pmu_ops_update(ops->pmu_ops); 9541 } 9542 9543 static int kvm_x86_check_processor_compatibility(void) 9544 { 9545 int cpu = smp_processor_id(); 9546 struct cpuinfo_x86 *c = &cpu_data(cpu); 9547 9548 /* 9549 * Compatibility checks are done when loading KVM and when enabling 9550 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9551 * compatible, i.e. KVM should never perform a compatibility check on 9552 * an offline CPU. 9553 */ 9554 WARN_ON(!cpu_online(cpu)); 9555 9556 if (__cr4_reserved_bits(cpu_has, c) != 9557 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9558 return -EIO; 9559 9560 return static_call(kvm_x86_check_processor_compatibility)(); 9561 } 9562 9563 static void kvm_x86_check_cpu_compat(void *ret) 9564 { 9565 *(int *)ret = kvm_x86_check_processor_compatibility(); 9566 } 9567 9568 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9569 { 9570 u64 host_pat; 9571 int r, cpu; 9572 9573 if (kvm_x86_ops.hardware_enable) { 9574 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9575 return -EEXIST; 9576 } 9577 9578 /* 9579 * KVM explicitly assumes that the guest has an FPU and 9580 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9581 * vCPU's FPU state as a fxregs_state struct. 9582 */ 9583 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9584 pr_err("inadequate fpu\n"); 9585 return -EOPNOTSUPP; 9586 } 9587 9588 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9589 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9590 return -EOPNOTSUPP; 9591 } 9592 9593 /* 9594 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9595 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9596 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9597 * with an exception. PAT[0] is set to WB on RESET and also by the 9598 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9599 */ 9600 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9601 (host_pat & GENMASK(2, 0)) != 6) { 9602 pr_err("host PAT[0] is not WB\n"); 9603 return -EIO; 9604 } 9605 9606 x86_emulator_cache = kvm_alloc_emulator_cache(); 9607 if (!x86_emulator_cache) { 9608 pr_err("failed to allocate cache for x86 emulator\n"); 9609 return -ENOMEM; 9610 } 9611 9612 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9613 if (!user_return_msrs) { 9614 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9615 r = -ENOMEM; 9616 goto out_free_x86_emulator_cache; 9617 } 9618 kvm_nr_uret_msrs = 0; 9619 9620 r = kvm_mmu_vendor_module_init(); 9621 if (r) 9622 goto out_free_percpu; 9623 9624 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9625 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9626 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9627 } 9628 9629 rdmsrl_safe(MSR_EFER, &host_efer); 9630 9631 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9632 rdmsrl(MSR_IA32_XSS, host_xss); 9633 9634 kvm_init_pmu_capability(ops->pmu_ops); 9635 9636 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9637 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9638 9639 r = ops->hardware_setup(); 9640 if (r != 0) 9641 goto out_mmu_exit; 9642 9643 kvm_ops_update(ops); 9644 9645 for_each_online_cpu(cpu) { 9646 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9647 if (r < 0) 9648 goto out_unwind_ops; 9649 } 9650 9651 /* 9652 * Point of no return! DO NOT add error paths below this point unless 9653 * absolutely necessary, as most operations from this point forward 9654 * require unwinding. 9655 */ 9656 kvm_timer_init(); 9657 9658 if (pi_inject_timer == -1) 9659 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9660 #ifdef CONFIG_X86_64 9661 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9662 9663 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9664 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9665 #endif 9666 9667 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9668 9669 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9670 kvm_caps.supported_xss = 0; 9671 9672 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9673 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9674 #undef __kvm_cpu_cap_has 9675 9676 if (kvm_caps.has_tsc_control) { 9677 /* 9678 * Make sure the user can only configure tsc_khz values that 9679 * fit into a signed integer. 9680 * A min value is not calculated because it will always 9681 * be 1 on all machines. 9682 */ 9683 u64 max = min(0x7fffffffULL, 9684 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9685 kvm_caps.max_guest_tsc_khz = max; 9686 } 9687 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9688 kvm_init_msr_lists(); 9689 return 0; 9690 9691 out_unwind_ops: 9692 kvm_x86_ops.hardware_enable = NULL; 9693 static_call(kvm_x86_hardware_unsetup)(); 9694 out_mmu_exit: 9695 kvm_mmu_vendor_module_exit(); 9696 out_free_percpu: 9697 free_percpu(user_return_msrs); 9698 out_free_x86_emulator_cache: 9699 kmem_cache_destroy(x86_emulator_cache); 9700 return r; 9701 } 9702 9703 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9704 { 9705 int r; 9706 9707 mutex_lock(&vendor_module_lock); 9708 r = __kvm_x86_vendor_init(ops); 9709 mutex_unlock(&vendor_module_lock); 9710 9711 return r; 9712 } 9713 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9714 9715 void kvm_x86_vendor_exit(void) 9716 { 9717 kvm_unregister_perf_callbacks(); 9718 9719 #ifdef CONFIG_X86_64 9720 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9721 clear_hv_tscchange_cb(); 9722 #endif 9723 kvm_lapic_exit(); 9724 9725 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9726 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9727 CPUFREQ_TRANSITION_NOTIFIER); 9728 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9729 } 9730 #ifdef CONFIG_X86_64 9731 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9732 irq_work_sync(&pvclock_irq_work); 9733 cancel_work_sync(&pvclock_gtod_work); 9734 #endif 9735 static_call(kvm_x86_hardware_unsetup)(); 9736 kvm_mmu_vendor_module_exit(); 9737 free_percpu(user_return_msrs); 9738 kmem_cache_destroy(x86_emulator_cache); 9739 #ifdef CONFIG_KVM_XEN 9740 static_key_deferred_flush(&kvm_xen_enabled); 9741 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9742 #endif 9743 mutex_lock(&vendor_module_lock); 9744 kvm_x86_ops.hardware_enable = NULL; 9745 mutex_unlock(&vendor_module_lock); 9746 } 9747 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9748 9749 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9750 { 9751 /* 9752 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9753 * local APIC is in-kernel, the run loop will detect the non-runnable 9754 * state and halt the vCPU. Exit to userspace if the local APIC is 9755 * managed by userspace, in which case userspace is responsible for 9756 * handling wake events. 9757 */ 9758 ++vcpu->stat.halt_exits; 9759 if (lapic_in_kernel(vcpu)) { 9760 vcpu->arch.mp_state = state; 9761 return 1; 9762 } else { 9763 vcpu->run->exit_reason = reason; 9764 return 0; 9765 } 9766 } 9767 9768 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9769 { 9770 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9771 } 9772 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9773 9774 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9775 { 9776 int ret = kvm_skip_emulated_instruction(vcpu); 9777 /* 9778 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9779 * KVM_EXIT_DEBUG here. 9780 */ 9781 return kvm_emulate_halt_noskip(vcpu) && ret; 9782 } 9783 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9784 9785 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9786 { 9787 int ret = kvm_skip_emulated_instruction(vcpu); 9788 9789 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9790 KVM_EXIT_AP_RESET_HOLD) && ret; 9791 } 9792 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9793 9794 #ifdef CONFIG_X86_64 9795 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9796 unsigned long clock_type) 9797 { 9798 struct kvm_clock_pairing clock_pairing; 9799 struct timespec64 ts; 9800 u64 cycle; 9801 int ret; 9802 9803 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9804 return -KVM_EOPNOTSUPP; 9805 9806 /* 9807 * When tsc is in permanent catchup mode guests won't be able to use 9808 * pvclock_read_retry loop to get consistent view of pvclock 9809 */ 9810 if (vcpu->arch.tsc_always_catchup) 9811 return -KVM_EOPNOTSUPP; 9812 9813 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9814 return -KVM_EOPNOTSUPP; 9815 9816 clock_pairing.sec = ts.tv_sec; 9817 clock_pairing.nsec = ts.tv_nsec; 9818 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9819 clock_pairing.flags = 0; 9820 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9821 9822 ret = 0; 9823 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9824 sizeof(struct kvm_clock_pairing))) 9825 ret = -KVM_EFAULT; 9826 9827 return ret; 9828 } 9829 #endif 9830 9831 /* 9832 * kvm_pv_kick_cpu_op: Kick a vcpu. 9833 * 9834 * @apicid - apicid of vcpu to be kicked. 9835 */ 9836 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9837 { 9838 /* 9839 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9840 * common code, e.g. for tracing. Defer initialization to the compiler. 9841 */ 9842 struct kvm_lapic_irq lapic_irq = { 9843 .delivery_mode = APIC_DM_REMRD, 9844 .dest_mode = APIC_DEST_PHYSICAL, 9845 .shorthand = APIC_DEST_NOSHORT, 9846 .dest_id = apicid, 9847 }; 9848 9849 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9850 } 9851 9852 bool kvm_apicv_activated(struct kvm *kvm) 9853 { 9854 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9855 } 9856 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9857 9858 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9859 { 9860 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9861 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9862 9863 return (vm_reasons | vcpu_reasons) == 0; 9864 } 9865 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9866 9867 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9868 enum kvm_apicv_inhibit reason, bool set) 9869 { 9870 if (set) 9871 __set_bit(reason, inhibits); 9872 else 9873 __clear_bit(reason, inhibits); 9874 9875 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9876 } 9877 9878 static void kvm_apicv_init(struct kvm *kvm) 9879 { 9880 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9881 9882 init_rwsem(&kvm->arch.apicv_update_lock); 9883 9884 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9885 9886 if (!enable_apicv) 9887 set_or_clear_apicv_inhibit(inhibits, 9888 APICV_INHIBIT_REASON_DISABLE, true); 9889 } 9890 9891 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9892 { 9893 struct kvm_vcpu *target = NULL; 9894 struct kvm_apic_map *map; 9895 9896 vcpu->stat.directed_yield_attempted++; 9897 9898 if (single_task_running()) 9899 goto no_yield; 9900 9901 rcu_read_lock(); 9902 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9903 9904 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9905 target = map->phys_map[dest_id]->vcpu; 9906 9907 rcu_read_unlock(); 9908 9909 if (!target || !READ_ONCE(target->ready)) 9910 goto no_yield; 9911 9912 /* Ignore requests to yield to self */ 9913 if (vcpu == target) 9914 goto no_yield; 9915 9916 if (kvm_vcpu_yield_to(target) <= 0) 9917 goto no_yield; 9918 9919 vcpu->stat.directed_yield_successful++; 9920 9921 no_yield: 9922 return; 9923 } 9924 9925 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9926 { 9927 u64 ret = vcpu->run->hypercall.ret; 9928 9929 if (!is_64_bit_mode(vcpu)) 9930 ret = (u32)ret; 9931 kvm_rax_write(vcpu, ret); 9932 ++vcpu->stat.hypercalls; 9933 return kvm_skip_emulated_instruction(vcpu); 9934 } 9935 9936 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9937 { 9938 unsigned long nr, a0, a1, a2, a3, ret; 9939 int op_64_bit; 9940 9941 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9942 return kvm_xen_hypercall(vcpu); 9943 9944 if (kvm_hv_hypercall_enabled(vcpu)) 9945 return kvm_hv_hypercall(vcpu); 9946 9947 nr = kvm_rax_read(vcpu); 9948 a0 = kvm_rbx_read(vcpu); 9949 a1 = kvm_rcx_read(vcpu); 9950 a2 = kvm_rdx_read(vcpu); 9951 a3 = kvm_rsi_read(vcpu); 9952 9953 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9954 9955 op_64_bit = is_64_bit_hypercall(vcpu); 9956 if (!op_64_bit) { 9957 nr &= 0xFFFFFFFF; 9958 a0 &= 0xFFFFFFFF; 9959 a1 &= 0xFFFFFFFF; 9960 a2 &= 0xFFFFFFFF; 9961 a3 &= 0xFFFFFFFF; 9962 } 9963 9964 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9965 ret = -KVM_EPERM; 9966 goto out; 9967 } 9968 9969 ret = -KVM_ENOSYS; 9970 9971 switch (nr) { 9972 case KVM_HC_VAPIC_POLL_IRQ: 9973 ret = 0; 9974 break; 9975 case KVM_HC_KICK_CPU: 9976 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9977 break; 9978 9979 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9980 kvm_sched_yield(vcpu, a1); 9981 ret = 0; 9982 break; 9983 #ifdef CONFIG_X86_64 9984 case KVM_HC_CLOCK_PAIRING: 9985 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9986 break; 9987 #endif 9988 case KVM_HC_SEND_IPI: 9989 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9990 break; 9991 9992 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9993 break; 9994 case KVM_HC_SCHED_YIELD: 9995 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9996 break; 9997 9998 kvm_sched_yield(vcpu, a0); 9999 ret = 0; 10000 break; 10001 case KVM_HC_MAP_GPA_RANGE: { 10002 u64 gpa = a0, npages = a1, attrs = a2; 10003 10004 ret = -KVM_ENOSYS; 10005 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10006 break; 10007 10008 if (!PAGE_ALIGNED(gpa) || !npages || 10009 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10010 ret = -KVM_EINVAL; 10011 break; 10012 } 10013 10014 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10015 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10016 vcpu->run->hypercall.args[0] = gpa; 10017 vcpu->run->hypercall.args[1] = npages; 10018 vcpu->run->hypercall.args[2] = attrs; 10019 vcpu->run->hypercall.flags = 0; 10020 if (op_64_bit) 10021 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10022 10023 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10024 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10025 return 0; 10026 } 10027 default: 10028 ret = -KVM_ENOSYS; 10029 break; 10030 } 10031 out: 10032 if (!op_64_bit) 10033 ret = (u32)ret; 10034 kvm_rax_write(vcpu, ret); 10035 10036 ++vcpu->stat.hypercalls; 10037 return kvm_skip_emulated_instruction(vcpu); 10038 } 10039 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10040 10041 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10042 { 10043 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10044 char instruction[3]; 10045 unsigned long rip = kvm_rip_read(vcpu); 10046 10047 /* 10048 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10049 * the pieces. 10050 */ 10051 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10052 ctxt->exception.error_code_valid = false; 10053 ctxt->exception.vector = UD_VECTOR; 10054 ctxt->have_exception = true; 10055 return X86EMUL_PROPAGATE_FAULT; 10056 } 10057 10058 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 10059 10060 return emulator_write_emulated(ctxt, rip, instruction, 3, 10061 &ctxt->exception); 10062 } 10063 10064 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10065 { 10066 return vcpu->run->request_interrupt_window && 10067 likely(!pic_in_kernel(vcpu->kvm)); 10068 } 10069 10070 /* Called within kvm->srcu read side. */ 10071 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10072 { 10073 struct kvm_run *kvm_run = vcpu->run; 10074 10075 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 10076 kvm_run->cr8 = kvm_get_cr8(vcpu); 10077 kvm_run->apic_base = kvm_get_apic_base(vcpu); 10078 10079 kvm_run->ready_for_interrupt_injection = 10080 pic_in_kernel(vcpu->kvm) || 10081 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10082 10083 if (is_smm(vcpu)) 10084 kvm_run->flags |= KVM_RUN_X86_SMM; 10085 } 10086 10087 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10088 { 10089 int max_irr, tpr; 10090 10091 if (!kvm_x86_ops.update_cr8_intercept) 10092 return; 10093 10094 if (!lapic_in_kernel(vcpu)) 10095 return; 10096 10097 if (vcpu->arch.apic->apicv_active) 10098 return; 10099 10100 if (!vcpu->arch.apic->vapic_addr) 10101 max_irr = kvm_lapic_find_highest_irr(vcpu); 10102 else 10103 max_irr = -1; 10104 10105 if (max_irr != -1) 10106 max_irr >>= 4; 10107 10108 tpr = kvm_lapic_get_cr8(vcpu); 10109 10110 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 10111 } 10112 10113 10114 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10115 { 10116 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10117 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10118 return 1; 10119 } 10120 10121 return kvm_x86_ops.nested_ops->check_events(vcpu); 10122 } 10123 10124 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10125 { 10126 /* 10127 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10128 * exceptions don't report error codes. The presence of an error code 10129 * is carried with the exception and only stripped when the exception 10130 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10131 * report an error code despite the CPU being in Real Mode. 10132 */ 10133 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10134 10135 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10136 vcpu->arch.exception.has_error_code, 10137 vcpu->arch.exception.error_code, 10138 vcpu->arch.exception.injected); 10139 10140 static_call(kvm_x86_inject_exception)(vcpu); 10141 } 10142 10143 /* 10144 * Check for any event (interrupt or exception) that is ready to be injected, 10145 * and if there is at least one event, inject the event with the highest 10146 * priority. This handles both "pending" events, i.e. events that have never 10147 * been injected into the guest, and "injected" events, i.e. events that were 10148 * injected as part of a previous VM-Enter, but weren't successfully delivered 10149 * and need to be re-injected. 10150 * 10151 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10152 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10153 * be able to inject exceptions in the "middle" of an instruction, and so must 10154 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10155 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10156 * boundaries is necessary and correct. 10157 * 10158 * For simplicity, KVM uses a single path to inject all events (except events 10159 * that are injected directly from L1 to L2) and doesn't explicitly track 10160 * instruction boundaries for asynchronous events. However, because VM-Exits 10161 * that can occur during instruction execution typically result in KVM skipping 10162 * the instruction or injecting an exception, e.g. instruction and exception 10163 * intercepts, and because pending exceptions have higher priority than pending 10164 * interrupts, KVM still honors instruction boundaries in most scenarios. 10165 * 10166 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10167 * the instruction or inject an exception, then KVM can incorrecty inject a new 10168 * asynchronous event if the event became pending after the CPU fetched the 10169 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10170 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10171 * injected on the restarted instruction instead of being deferred until the 10172 * instruction completes. 10173 * 10174 * In practice, this virtualization hole is unlikely to be observed by the 10175 * guest, and even less likely to cause functional problems. To detect the 10176 * hole, the guest would have to trigger an event on a side effect of an early 10177 * phase of instruction execution, e.g. on the instruction fetch from memory. 10178 * And for it to be a functional problem, the guest would need to depend on the 10179 * ordering between that side effect, the instruction completing, _and_ the 10180 * delivery of the asynchronous event. 10181 */ 10182 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10183 bool *req_immediate_exit) 10184 { 10185 bool can_inject; 10186 int r; 10187 10188 /* 10189 * Process nested events first, as nested VM-Exit supersedes event 10190 * re-injection. If there's an event queued for re-injection, it will 10191 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10192 */ 10193 if (is_guest_mode(vcpu)) 10194 r = kvm_check_nested_events(vcpu); 10195 else 10196 r = 0; 10197 10198 /* 10199 * Re-inject exceptions and events *especially* if immediate entry+exit 10200 * to/from L2 is needed, as any event that has already been injected 10201 * into L2 needs to complete its lifecycle before injecting a new event. 10202 * 10203 * Don't re-inject an NMI or interrupt if there is a pending exception. 10204 * This collision arises if an exception occurred while vectoring the 10205 * injected event, KVM intercepted said exception, and KVM ultimately 10206 * determined the fault belongs to the guest and queues the exception 10207 * for injection back into the guest. 10208 * 10209 * "Injected" interrupts can also collide with pending exceptions if 10210 * userspace ignores the "ready for injection" flag and blindly queues 10211 * an interrupt. In that case, prioritizing the exception is correct, 10212 * as the exception "occurred" before the exit to userspace. Trap-like 10213 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10214 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10215 * priority, they're only generated (pended) during instruction 10216 * execution, and interrupts are recognized at instruction boundaries. 10217 * Thus a pending fault-like exception means the fault occurred on the 10218 * *previous* instruction and must be serviced prior to recognizing any 10219 * new events in order to fully complete the previous instruction. 10220 */ 10221 if (vcpu->arch.exception.injected) 10222 kvm_inject_exception(vcpu); 10223 else if (kvm_is_exception_pending(vcpu)) 10224 ; /* see above */ 10225 else if (vcpu->arch.nmi_injected) 10226 static_call(kvm_x86_inject_nmi)(vcpu); 10227 else if (vcpu->arch.interrupt.injected) 10228 static_call(kvm_x86_inject_irq)(vcpu, true); 10229 10230 /* 10231 * Exceptions that morph to VM-Exits are handled above, and pending 10232 * exceptions on top of injected exceptions that do not VM-Exit should 10233 * either morph to #DF or, sadly, override the injected exception. 10234 */ 10235 WARN_ON_ONCE(vcpu->arch.exception.injected && 10236 vcpu->arch.exception.pending); 10237 10238 /* 10239 * Bail if immediate entry+exit to/from the guest is needed to complete 10240 * nested VM-Enter or event re-injection so that a different pending 10241 * event can be serviced (or if KVM needs to exit to userspace). 10242 * 10243 * Otherwise, continue processing events even if VM-Exit occurred. The 10244 * VM-Exit will have cleared exceptions that were meant for L2, but 10245 * there may now be events that can be injected into L1. 10246 */ 10247 if (r < 0) 10248 goto out; 10249 10250 /* 10251 * A pending exception VM-Exit should either result in nested VM-Exit 10252 * or force an immediate re-entry and exit to/from L2, and exception 10253 * VM-Exits cannot be injected (flag should _never_ be set). 10254 */ 10255 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10256 vcpu->arch.exception_vmexit.pending); 10257 10258 /* 10259 * New events, other than exceptions, cannot be injected if KVM needs 10260 * to re-inject a previous event. See above comments on re-injecting 10261 * for why pending exceptions get priority. 10262 */ 10263 can_inject = !kvm_event_needs_reinjection(vcpu); 10264 10265 if (vcpu->arch.exception.pending) { 10266 /* 10267 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10268 * value pushed on the stack. Trap-like exception and all #DBs 10269 * leave RF as-is (KVM follows Intel's behavior in this regard; 10270 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10271 * 10272 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10273 * describe the behavior of General Detect #DBs, which are 10274 * fault-like. They do _not_ set RF, a la code breakpoints. 10275 */ 10276 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10277 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10278 X86_EFLAGS_RF); 10279 10280 if (vcpu->arch.exception.vector == DB_VECTOR) { 10281 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10282 if (vcpu->arch.dr7 & DR7_GD) { 10283 vcpu->arch.dr7 &= ~DR7_GD; 10284 kvm_update_dr7(vcpu); 10285 } 10286 } 10287 10288 kvm_inject_exception(vcpu); 10289 10290 vcpu->arch.exception.pending = false; 10291 vcpu->arch.exception.injected = true; 10292 10293 can_inject = false; 10294 } 10295 10296 /* Don't inject interrupts if the user asked to avoid doing so */ 10297 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10298 return 0; 10299 10300 /* 10301 * Finally, inject interrupt events. If an event cannot be injected 10302 * due to architectural conditions (e.g. IF=0) a window-open exit 10303 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10304 * and can architecturally be injected, but we cannot do it right now: 10305 * an interrupt could have arrived just now and we have to inject it 10306 * as a vmexit, or there could already an event in the queue, which is 10307 * indicated by can_inject. In that case we request an immediate exit 10308 * in order to make progress and get back here for another iteration. 10309 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10310 */ 10311 #ifdef CONFIG_KVM_SMM 10312 if (vcpu->arch.smi_pending) { 10313 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10314 if (r < 0) 10315 goto out; 10316 if (r) { 10317 vcpu->arch.smi_pending = false; 10318 ++vcpu->arch.smi_count; 10319 enter_smm(vcpu); 10320 can_inject = false; 10321 } else 10322 static_call(kvm_x86_enable_smi_window)(vcpu); 10323 } 10324 #endif 10325 10326 if (vcpu->arch.nmi_pending) { 10327 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10328 if (r < 0) 10329 goto out; 10330 if (r) { 10331 --vcpu->arch.nmi_pending; 10332 vcpu->arch.nmi_injected = true; 10333 static_call(kvm_x86_inject_nmi)(vcpu); 10334 can_inject = false; 10335 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10336 } 10337 if (vcpu->arch.nmi_pending) 10338 static_call(kvm_x86_enable_nmi_window)(vcpu); 10339 } 10340 10341 if (kvm_cpu_has_injectable_intr(vcpu)) { 10342 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10343 if (r < 0) 10344 goto out; 10345 if (r) { 10346 int irq = kvm_cpu_get_interrupt(vcpu); 10347 10348 if (!WARN_ON_ONCE(irq == -1)) { 10349 kvm_queue_interrupt(vcpu, irq, false); 10350 static_call(kvm_x86_inject_irq)(vcpu, false); 10351 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10352 } 10353 } 10354 if (kvm_cpu_has_injectable_intr(vcpu)) 10355 static_call(kvm_x86_enable_irq_window)(vcpu); 10356 } 10357 10358 if (is_guest_mode(vcpu) && 10359 kvm_x86_ops.nested_ops->has_events && 10360 kvm_x86_ops.nested_ops->has_events(vcpu)) 10361 *req_immediate_exit = true; 10362 10363 /* 10364 * KVM must never queue a new exception while injecting an event; KVM 10365 * is done emulating and should only propagate the to-be-injected event 10366 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10367 * infinite loop as KVM will bail from VM-Enter to inject the pending 10368 * exception and start the cycle all over. 10369 * 10370 * Exempt triple faults as they have special handling and won't put the 10371 * vCPU into an infinite loop. Triple fault can be queued when running 10372 * VMX without unrestricted guest, as that requires KVM to emulate Real 10373 * Mode events (see kvm_inject_realmode_interrupt()). 10374 */ 10375 WARN_ON_ONCE(vcpu->arch.exception.pending || 10376 vcpu->arch.exception_vmexit.pending); 10377 return 0; 10378 10379 out: 10380 if (r == -EBUSY) { 10381 *req_immediate_exit = true; 10382 r = 0; 10383 } 10384 return r; 10385 } 10386 10387 static void process_nmi(struct kvm_vcpu *vcpu) 10388 { 10389 unsigned int limit; 10390 10391 /* 10392 * x86 is limited to one NMI pending, but because KVM can't react to 10393 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10394 * scheduled out, KVM needs to play nice with two queued NMIs showing 10395 * up at the same time. To handle this scenario, allow two NMIs to be 10396 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10397 * waiting for a previous NMI injection to complete (which effectively 10398 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10399 * will request an NMI window to handle the second NMI. 10400 */ 10401 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10402 limit = 1; 10403 else 10404 limit = 2; 10405 10406 /* 10407 * Adjust the limit to account for pending virtual NMIs, which aren't 10408 * tracked in vcpu->arch.nmi_pending. 10409 */ 10410 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10411 limit--; 10412 10413 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10414 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10415 10416 if (vcpu->arch.nmi_pending && 10417 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10418 vcpu->arch.nmi_pending--; 10419 10420 if (vcpu->arch.nmi_pending) 10421 kvm_make_request(KVM_REQ_EVENT, vcpu); 10422 } 10423 10424 /* Return total number of NMIs pending injection to the VM */ 10425 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10426 { 10427 return vcpu->arch.nmi_pending + 10428 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10429 } 10430 10431 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10432 unsigned long *vcpu_bitmap) 10433 { 10434 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10435 } 10436 10437 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10438 { 10439 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10440 } 10441 10442 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10443 { 10444 struct kvm_lapic *apic = vcpu->arch.apic; 10445 bool activate; 10446 10447 if (!lapic_in_kernel(vcpu)) 10448 return; 10449 10450 down_read(&vcpu->kvm->arch.apicv_update_lock); 10451 preempt_disable(); 10452 10453 /* Do not activate APICV when APIC is disabled */ 10454 activate = kvm_vcpu_apicv_activated(vcpu) && 10455 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10456 10457 if (apic->apicv_active == activate) 10458 goto out; 10459 10460 apic->apicv_active = activate; 10461 kvm_apic_update_apicv(vcpu); 10462 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10463 10464 /* 10465 * When APICv gets disabled, we may still have injected interrupts 10466 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10467 * still active when the interrupt got accepted. Make sure 10468 * kvm_check_and_inject_events() is called to check for that. 10469 */ 10470 if (!apic->apicv_active) 10471 kvm_make_request(KVM_REQ_EVENT, vcpu); 10472 10473 out: 10474 preempt_enable(); 10475 up_read(&vcpu->kvm->arch.apicv_update_lock); 10476 } 10477 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10478 10479 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10480 { 10481 if (!lapic_in_kernel(vcpu)) 10482 return; 10483 10484 /* 10485 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10486 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10487 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10488 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10489 * this case so that KVM can the AVIC doorbell to inject interrupts to 10490 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10491 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10492 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10493 * access page is sticky. 10494 */ 10495 if (apic_x2apic_mode(vcpu->arch.apic) && 10496 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10497 kvm_inhibit_apic_access_page(vcpu); 10498 10499 __kvm_vcpu_update_apicv(vcpu); 10500 } 10501 10502 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10503 enum kvm_apicv_inhibit reason, bool set) 10504 { 10505 unsigned long old, new; 10506 10507 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10508 10509 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10510 return; 10511 10512 old = new = kvm->arch.apicv_inhibit_reasons; 10513 10514 set_or_clear_apicv_inhibit(&new, reason, set); 10515 10516 if (!!old != !!new) { 10517 /* 10518 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10519 * false positives in the sanity check WARN in svm_vcpu_run(). 10520 * This task will wait for all vCPUs to ack the kick IRQ before 10521 * updating apicv_inhibit_reasons, and all other vCPUs will 10522 * block on acquiring apicv_update_lock so that vCPUs can't 10523 * redo svm_vcpu_run() without seeing the new inhibit state. 10524 * 10525 * Note, holding apicv_update_lock and taking it in the read 10526 * side (handling the request) also prevents other vCPUs from 10527 * servicing the request with a stale apicv_inhibit_reasons. 10528 */ 10529 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10530 kvm->arch.apicv_inhibit_reasons = new; 10531 if (new) { 10532 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10533 int idx = srcu_read_lock(&kvm->srcu); 10534 10535 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10536 srcu_read_unlock(&kvm->srcu, idx); 10537 } 10538 } else { 10539 kvm->arch.apicv_inhibit_reasons = new; 10540 } 10541 } 10542 10543 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10544 enum kvm_apicv_inhibit reason, bool set) 10545 { 10546 if (!enable_apicv) 10547 return; 10548 10549 down_write(&kvm->arch.apicv_update_lock); 10550 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10551 up_write(&kvm->arch.apicv_update_lock); 10552 } 10553 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10554 10555 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10556 { 10557 if (!kvm_apic_present(vcpu)) 10558 return; 10559 10560 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10561 10562 if (irqchip_split(vcpu->kvm)) 10563 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10564 else { 10565 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10566 if (ioapic_in_kernel(vcpu->kvm)) 10567 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10568 } 10569 10570 if (is_guest_mode(vcpu)) 10571 vcpu->arch.load_eoi_exitmap_pending = true; 10572 else 10573 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10574 } 10575 10576 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10577 { 10578 u64 eoi_exit_bitmap[4]; 10579 10580 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10581 return; 10582 10583 if (to_hv_vcpu(vcpu)) { 10584 bitmap_or((ulong *)eoi_exit_bitmap, 10585 vcpu->arch.ioapic_handled_vectors, 10586 to_hv_synic(vcpu)->vec_bitmap, 256); 10587 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10588 return; 10589 } 10590 10591 static_call_cond(kvm_x86_load_eoi_exitmap)( 10592 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10593 } 10594 10595 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10596 { 10597 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10598 } 10599 10600 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10601 { 10602 if (!lapic_in_kernel(vcpu)) 10603 return; 10604 10605 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10606 } 10607 10608 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10609 { 10610 smp_send_reschedule(vcpu->cpu); 10611 } 10612 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10613 10614 /* 10615 * Called within kvm->srcu read side. 10616 * Returns 1 to let vcpu_run() continue the guest execution loop without 10617 * exiting to the userspace. Otherwise, the value will be returned to the 10618 * userspace. 10619 */ 10620 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10621 { 10622 int r; 10623 bool req_int_win = 10624 dm_request_for_irq_injection(vcpu) && 10625 kvm_cpu_accept_dm_intr(vcpu); 10626 fastpath_t exit_fastpath; 10627 10628 bool req_immediate_exit = false; 10629 10630 if (kvm_request_pending(vcpu)) { 10631 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10632 r = -EIO; 10633 goto out; 10634 } 10635 10636 if (kvm_dirty_ring_check_request(vcpu)) { 10637 r = 0; 10638 goto out; 10639 } 10640 10641 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10642 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10643 r = 0; 10644 goto out; 10645 } 10646 } 10647 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10648 kvm_mmu_free_obsolete_roots(vcpu); 10649 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10650 __kvm_migrate_timers(vcpu); 10651 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10652 kvm_update_masterclock(vcpu->kvm); 10653 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10654 kvm_gen_kvmclock_update(vcpu); 10655 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10656 r = kvm_guest_time_update(vcpu); 10657 if (unlikely(r)) 10658 goto out; 10659 } 10660 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10661 kvm_mmu_sync_roots(vcpu); 10662 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10663 kvm_mmu_load_pgd(vcpu); 10664 10665 /* 10666 * Note, the order matters here, as flushing "all" TLB entries 10667 * also flushes the "current" TLB entries, i.e. servicing the 10668 * flush "all" will clear any request to flush "current". 10669 */ 10670 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10671 kvm_vcpu_flush_tlb_all(vcpu); 10672 10673 kvm_service_local_tlb_flush_requests(vcpu); 10674 10675 /* 10676 * Fall back to a "full" guest flush if Hyper-V's precise 10677 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10678 * the flushes are considered "remote" and not "local" because 10679 * the requests can be initiated from other vCPUs. 10680 */ 10681 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10682 kvm_hv_vcpu_flush_tlb(vcpu)) 10683 kvm_vcpu_flush_tlb_guest(vcpu); 10684 10685 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10686 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10687 r = 0; 10688 goto out; 10689 } 10690 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10691 if (is_guest_mode(vcpu)) 10692 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10693 10694 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10695 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10696 vcpu->mmio_needed = 0; 10697 r = 0; 10698 goto out; 10699 } 10700 } 10701 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10702 /* Page is swapped out. Do synthetic halt */ 10703 vcpu->arch.apf.halted = true; 10704 r = 1; 10705 goto out; 10706 } 10707 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10708 record_steal_time(vcpu); 10709 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10710 kvm_pmu_handle_event(vcpu); 10711 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10712 kvm_pmu_deliver_pmi(vcpu); 10713 #ifdef CONFIG_KVM_SMM 10714 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10715 process_smi(vcpu); 10716 #endif 10717 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10718 process_nmi(vcpu); 10719 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10720 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10721 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10722 vcpu->arch.ioapic_handled_vectors)) { 10723 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10724 vcpu->run->eoi.vector = 10725 vcpu->arch.pending_ioapic_eoi; 10726 r = 0; 10727 goto out; 10728 } 10729 } 10730 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10731 vcpu_scan_ioapic(vcpu); 10732 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10733 vcpu_load_eoi_exitmap(vcpu); 10734 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10735 kvm_vcpu_reload_apic_access_page(vcpu); 10736 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10737 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10738 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10739 vcpu->run->system_event.ndata = 0; 10740 r = 0; 10741 goto out; 10742 } 10743 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10744 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10745 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10746 vcpu->run->system_event.ndata = 0; 10747 r = 0; 10748 goto out; 10749 } 10750 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10751 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10752 10753 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10754 vcpu->run->hyperv = hv_vcpu->exit; 10755 r = 0; 10756 goto out; 10757 } 10758 10759 /* 10760 * KVM_REQ_HV_STIMER has to be processed after 10761 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10762 * depend on the guest clock being up-to-date 10763 */ 10764 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10765 kvm_hv_process_stimers(vcpu); 10766 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10767 kvm_vcpu_update_apicv(vcpu); 10768 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10769 kvm_check_async_pf_completion(vcpu); 10770 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10771 static_call(kvm_x86_msr_filter_changed)(vcpu); 10772 10773 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10774 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10775 } 10776 10777 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10778 kvm_xen_has_interrupt(vcpu)) { 10779 ++vcpu->stat.req_event; 10780 r = kvm_apic_accept_events(vcpu); 10781 if (r < 0) { 10782 r = 0; 10783 goto out; 10784 } 10785 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10786 r = 1; 10787 goto out; 10788 } 10789 10790 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10791 if (r < 0) { 10792 r = 0; 10793 goto out; 10794 } 10795 if (req_int_win) 10796 static_call(kvm_x86_enable_irq_window)(vcpu); 10797 10798 if (kvm_lapic_enabled(vcpu)) { 10799 update_cr8_intercept(vcpu); 10800 kvm_lapic_sync_to_vapic(vcpu); 10801 } 10802 } 10803 10804 r = kvm_mmu_reload(vcpu); 10805 if (unlikely(r)) { 10806 goto cancel_injection; 10807 } 10808 10809 preempt_disable(); 10810 10811 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10812 10813 /* 10814 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10815 * IPI are then delayed after guest entry, which ensures that they 10816 * result in virtual interrupt delivery. 10817 */ 10818 local_irq_disable(); 10819 10820 /* Store vcpu->apicv_active before vcpu->mode. */ 10821 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10822 10823 kvm_vcpu_srcu_read_unlock(vcpu); 10824 10825 /* 10826 * 1) We should set ->mode before checking ->requests. Please see 10827 * the comment in kvm_vcpu_exiting_guest_mode(). 10828 * 10829 * 2) For APICv, we should set ->mode before checking PID.ON. This 10830 * pairs with the memory barrier implicit in pi_test_and_set_on 10831 * (see vmx_deliver_posted_interrupt). 10832 * 10833 * 3) This also orders the write to mode from any reads to the page 10834 * tables done while the VCPU is running. Please see the comment 10835 * in kvm_flush_remote_tlbs. 10836 */ 10837 smp_mb__after_srcu_read_unlock(); 10838 10839 /* 10840 * Process pending posted interrupts to handle the case where the 10841 * notification IRQ arrived in the host, or was never sent (because the 10842 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10843 * status, KVM doesn't update assigned devices when APICv is inhibited, 10844 * i.e. they can post interrupts even if APICv is temporarily disabled. 10845 */ 10846 if (kvm_lapic_enabled(vcpu)) 10847 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10848 10849 if (kvm_vcpu_exit_request(vcpu)) { 10850 vcpu->mode = OUTSIDE_GUEST_MODE; 10851 smp_wmb(); 10852 local_irq_enable(); 10853 preempt_enable(); 10854 kvm_vcpu_srcu_read_lock(vcpu); 10855 r = 1; 10856 goto cancel_injection; 10857 } 10858 10859 if (req_immediate_exit) { 10860 kvm_make_request(KVM_REQ_EVENT, vcpu); 10861 static_call(kvm_x86_request_immediate_exit)(vcpu); 10862 } 10863 10864 fpregs_assert_state_consistent(); 10865 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10866 switch_fpu_return(); 10867 10868 if (vcpu->arch.guest_fpu.xfd_err) 10869 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10870 10871 if (unlikely(vcpu->arch.switch_db_regs)) { 10872 set_debugreg(0, 7); 10873 set_debugreg(vcpu->arch.eff_db[0], 0); 10874 set_debugreg(vcpu->arch.eff_db[1], 1); 10875 set_debugreg(vcpu->arch.eff_db[2], 2); 10876 set_debugreg(vcpu->arch.eff_db[3], 3); 10877 } else if (unlikely(hw_breakpoint_active())) { 10878 set_debugreg(0, 7); 10879 } 10880 10881 guest_timing_enter_irqoff(); 10882 10883 for (;;) { 10884 /* 10885 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10886 * update must kick and wait for all vCPUs before toggling the 10887 * per-VM state, and responding vCPUs must wait for the update 10888 * to complete before servicing KVM_REQ_APICV_UPDATE. 10889 */ 10890 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10891 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10892 10893 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10894 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10895 break; 10896 10897 if (kvm_lapic_enabled(vcpu)) 10898 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10899 10900 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10901 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10902 break; 10903 } 10904 10905 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10906 ++vcpu->stat.exits; 10907 } 10908 10909 /* 10910 * Do this here before restoring debug registers on the host. And 10911 * since we do this before handling the vmexit, a DR access vmexit 10912 * can (a) read the correct value of the debug registers, (b) set 10913 * KVM_DEBUGREG_WONT_EXIT again. 10914 */ 10915 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10916 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10917 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10918 kvm_update_dr0123(vcpu); 10919 kvm_update_dr7(vcpu); 10920 } 10921 10922 /* 10923 * If the guest has used debug registers, at least dr7 10924 * will be disabled while returning to the host. 10925 * If we don't have active breakpoints in the host, we don't 10926 * care about the messed up debug address registers. But if 10927 * we have some of them active, restore the old state. 10928 */ 10929 if (hw_breakpoint_active()) 10930 hw_breakpoint_restore(); 10931 10932 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10933 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10934 10935 vcpu->mode = OUTSIDE_GUEST_MODE; 10936 smp_wmb(); 10937 10938 /* 10939 * Sync xfd before calling handle_exit_irqoff() which may 10940 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10941 * in #NM irqoff handler). 10942 */ 10943 if (vcpu->arch.xfd_no_write_intercept) 10944 fpu_sync_guest_vmexit_xfd_state(); 10945 10946 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10947 10948 if (vcpu->arch.guest_fpu.xfd_err) 10949 wrmsrl(MSR_IA32_XFD_ERR, 0); 10950 10951 /* 10952 * Consume any pending interrupts, including the possible source of 10953 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10954 * An instruction is required after local_irq_enable() to fully unblock 10955 * interrupts on processors that implement an interrupt shadow, the 10956 * stat.exits increment will do nicely. 10957 */ 10958 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10959 local_irq_enable(); 10960 ++vcpu->stat.exits; 10961 local_irq_disable(); 10962 kvm_after_interrupt(vcpu); 10963 10964 /* 10965 * Wait until after servicing IRQs to account guest time so that any 10966 * ticks that occurred while running the guest are properly accounted 10967 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10968 * of accounting via context tracking, but the loss of accuracy is 10969 * acceptable for all known use cases. 10970 */ 10971 guest_timing_exit_irqoff(); 10972 10973 local_irq_enable(); 10974 preempt_enable(); 10975 10976 kvm_vcpu_srcu_read_lock(vcpu); 10977 10978 /* 10979 * Profile KVM exit RIPs: 10980 */ 10981 if (unlikely(prof_on == KVM_PROFILING)) { 10982 unsigned long rip = kvm_rip_read(vcpu); 10983 profile_hit(KVM_PROFILING, (void *)rip); 10984 } 10985 10986 if (unlikely(vcpu->arch.tsc_always_catchup)) 10987 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10988 10989 if (vcpu->arch.apic_attention) 10990 kvm_lapic_sync_from_vapic(vcpu); 10991 10992 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10993 return r; 10994 10995 cancel_injection: 10996 if (req_immediate_exit) 10997 kvm_make_request(KVM_REQ_EVENT, vcpu); 10998 static_call(kvm_x86_cancel_injection)(vcpu); 10999 if (unlikely(vcpu->arch.apic_attention)) 11000 kvm_lapic_sync_from_vapic(vcpu); 11001 out: 11002 return r; 11003 } 11004 11005 /* Called within kvm->srcu read side. */ 11006 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11007 { 11008 bool hv_timer; 11009 11010 if (!kvm_arch_vcpu_runnable(vcpu)) { 11011 /* 11012 * Switch to the software timer before halt-polling/blocking as 11013 * the guest's timer may be a break event for the vCPU, and the 11014 * hypervisor timer runs only when the CPU is in guest mode. 11015 * Switch before halt-polling so that KVM recognizes an expired 11016 * timer before blocking. 11017 */ 11018 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11019 if (hv_timer) 11020 kvm_lapic_switch_to_sw_timer(vcpu); 11021 11022 kvm_vcpu_srcu_read_unlock(vcpu); 11023 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11024 kvm_vcpu_halt(vcpu); 11025 else 11026 kvm_vcpu_block(vcpu); 11027 kvm_vcpu_srcu_read_lock(vcpu); 11028 11029 if (hv_timer) 11030 kvm_lapic_switch_to_hv_timer(vcpu); 11031 11032 /* 11033 * If the vCPU is not runnable, a signal or another host event 11034 * of some kind is pending; service it without changing the 11035 * vCPU's activity state. 11036 */ 11037 if (!kvm_arch_vcpu_runnable(vcpu)) 11038 return 1; 11039 } 11040 11041 /* 11042 * Evaluate nested events before exiting the halted state. This allows 11043 * the halt state to be recorded properly in the VMCS12's activity 11044 * state field (AMD does not have a similar field and a VM-Exit always 11045 * causes a spurious wakeup from HLT). 11046 */ 11047 if (is_guest_mode(vcpu)) { 11048 if (kvm_check_nested_events(vcpu) < 0) 11049 return 0; 11050 } 11051 11052 if (kvm_apic_accept_events(vcpu) < 0) 11053 return 0; 11054 switch(vcpu->arch.mp_state) { 11055 case KVM_MP_STATE_HALTED: 11056 case KVM_MP_STATE_AP_RESET_HOLD: 11057 vcpu->arch.pv.pv_unhalted = false; 11058 vcpu->arch.mp_state = 11059 KVM_MP_STATE_RUNNABLE; 11060 fallthrough; 11061 case KVM_MP_STATE_RUNNABLE: 11062 vcpu->arch.apf.halted = false; 11063 break; 11064 case KVM_MP_STATE_INIT_RECEIVED: 11065 break; 11066 default: 11067 WARN_ON_ONCE(1); 11068 break; 11069 } 11070 return 1; 11071 } 11072 11073 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11074 { 11075 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11076 !vcpu->arch.apf.halted); 11077 } 11078 11079 /* Called within kvm->srcu read side. */ 11080 static int vcpu_run(struct kvm_vcpu *vcpu) 11081 { 11082 int r; 11083 11084 vcpu->arch.l1tf_flush_l1d = true; 11085 11086 for (;;) { 11087 /* 11088 * If another guest vCPU requests a PV TLB flush in the middle 11089 * of instruction emulation, the rest of the emulation could 11090 * use a stale page translation. Assume that any code after 11091 * this point can start executing an instruction. 11092 */ 11093 vcpu->arch.at_instruction_boundary = false; 11094 if (kvm_vcpu_running(vcpu)) { 11095 r = vcpu_enter_guest(vcpu); 11096 } else { 11097 r = vcpu_block(vcpu); 11098 } 11099 11100 if (r <= 0) 11101 break; 11102 11103 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11104 if (kvm_xen_has_pending_events(vcpu)) 11105 kvm_xen_inject_pending_events(vcpu); 11106 11107 if (kvm_cpu_has_pending_timer(vcpu)) 11108 kvm_inject_pending_timer_irqs(vcpu); 11109 11110 if (dm_request_for_irq_injection(vcpu) && 11111 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11112 r = 0; 11113 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11114 ++vcpu->stat.request_irq_exits; 11115 break; 11116 } 11117 11118 if (__xfer_to_guest_mode_work_pending()) { 11119 kvm_vcpu_srcu_read_unlock(vcpu); 11120 r = xfer_to_guest_mode_handle_work(vcpu); 11121 kvm_vcpu_srcu_read_lock(vcpu); 11122 if (r) 11123 return r; 11124 } 11125 } 11126 11127 return r; 11128 } 11129 11130 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11131 { 11132 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11133 } 11134 11135 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11136 { 11137 BUG_ON(!vcpu->arch.pio.count); 11138 11139 return complete_emulated_io(vcpu); 11140 } 11141 11142 /* 11143 * Implements the following, as a state machine: 11144 * 11145 * read: 11146 * for each fragment 11147 * for each mmio piece in the fragment 11148 * write gpa, len 11149 * exit 11150 * copy data 11151 * execute insn 11152 * 11153 * write: 11154 * for each fragment 11155 * for each mmio piece in the fragment 11156 * write gpa, len 11157 * copy data 11158 * exit 11159 */ 11160 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11161 { 11162 struct kvm_run *run = vcpu->run; 11163 struct kvm_mmio_fragment *frag; 11164 unsigned len; 11165 11166 BUG_ON(!vcpu->mmio_needed); 11167 11168 /* Complete previous fragment */ 11169 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11170 len = min(8u, frag->len); 11171 if (!vcpu->mmio_is_write) 11172 memcpy(frag->data, run->mmio.data, len); 11173 11174 if (frag->len <= 8) { 11175 /* Switch to the next fragment. */ 11176 frag++; 11177 vcpu->mmio_cur_fragment++; 11178 } else { 11179 /* Go forward to the next mmio piece. */ 11180 frag->data += len; 11181 frag->gpa += len; 11182 frag->len -= len; 11183 } 11184 11185 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11186 vcpu->mmio_needed = 0; 11187 11188 /* FIXME: return into emulator if single-stepping. */ 11189 if (vcpu->mmio_is_write) 11190 return 1; 11191 vcpu->mmio_read_completed = 1; 11192 return complete_emulated_io(vcpu); 11193 } 11194 11195 run->exit_reason = KVM_EXIT_MMIO; 11196 run->mmio.phys_addr = frag->gpa; 11197 if (vcpu->mmio_is_write) 11198 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11199 run->mmio.len = min(8u, frag->len); 11200 run->mmio.is_write = vcpu->mmio_is_write; 11201 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11202 return 0; 11203 } 11204 11205 /* Swap (qemu) user FPU context for the guest FPU context. */ 11206 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11207 { 11208 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11209 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11210 trace_kvm_fpu(1); 11211 } 11212 11213 /* When vcpu_run ends, restore user space FPU context. */ 11214 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11215 { 11216 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11217 ++vcpu->stat.fpu_reload; 11218 trace_kvm_fpu(0); 11219 } 11220 11221 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11222 { 11223 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11224 struct kvm_run *kvm_run = vcpu->run; 11225 int r; 11226 11227 vcpu_load(vcpu); 11228 kvm_sigset_activate(vcpu); 11229 kvm_run->flags = 0; 11230 kvm_load_guest_fpu(vcpu); 11231 11232 kvm_vcpu_srcu_read_lock(vcpu); 11233 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11234 if (kvm_run->immediate_exit) { 11235 r = -EINTR; 11236 goto out; 11237 } 11238 11239 /* 11240 * Don't bother switching APIC timer emulation from the 11241 * hypervisor timer to the software timer, the only way for the 11242 * APIC timer to be active is if userspace stuffed vCPU state, 11243 * i.e. put the vCPU into a nonsensical state. Only an INIT 11244 * will transition the vCPU out of UNINITIALIZED (without more 11245 * state stuffing from userspace), which will reset the local 11246 * APIC and thus cancel the timer or drop the IRQ (if the timer 11247 * already expired). 11248 */ 11249 kvm_vcpu_srcu_read_unlock(vcpu); 11250 kvm_vcpu_block(vcpu); 11251 kvm_vcpu_srcu_read_lock(vcpu); 11252 11253 if (kvm_apic_accept_events(vcpu) < 0) { 11254 r = 0; 11255 goto out; 11256 } 11257 r = -EAGAIN; 11258 if (signal_pending(current)) { 11259 r = -EINTR; 11260 kvm_run->exit_reason = KVM_EXIT_INTR; 11261 ++vcpu->stat.signal_exits; 11262 } 11263 goto out; 11264 } 11265 11266 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11267 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11268 r = -EINVAL; 11269 goto out; 11270 } 11271 11272 if (kvm_run->kvm_dirty_regs) { 11273 r = sync_regs(vcpu); 11274 if (r != 0) 11275 goto out; 11276 } 11277 11278 /* re-sync apic's tpr */ 11279 if (!lapic_in_kernel(vcpu)) { 11280 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11281 r = -EINVAL; 11282 goto out; 11283 } 11284 } 11285 11286 /* 11287 * If userspace set a pending exception and L2 is active, convert it to 11288 * a pending VM-Exit if L1 wants to intercept the exception. 11289 */ 11290 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11291 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11292 ex->error_code)) { 11293 kvm_queue_exception_vmexit(vcpu, ex->vector, 11294 ex->has_error_code, ex->error_code, 11295 ex->has_payload, ex->payload); 11296 ex->injected = false; 11297 ex->pending = false; 11298 } 11299 vcpu->arch.exception_from_userspace = false; 11300 11301 if (unlikely(vcpu->arch.complete_userspace_io)) { 11302 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11303 vcpu->arch.complete_userspace_io = NULL; 11304 r = cui(vcpu); 11305 if (r <= 0) 11306 goto out; 11307 } else { 11308 WARN_ON_ONCE(vcpu->arch.pio.count); 11309 WARN_ON_ONCE(vcpu->mmio_needed); 11310 } 11311 11312 if (kvm_run->immediate_exit) { 11313 r = -EINTR; 11314 goto out; 11315 } 11316 11317 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11318 if (r <= 0) 11319 goto out; 11320 11321 r = vcpu_run(vcpu); 11322 11323 out: 11324 kvm_put_guest_fpu(vcpu); 11325 if (kvm_run->kvm_valid_regs) 11326 store_regs(vcpu); 11327 post_kvm_run_save(vcpu); 11328 kvm_vcpu_srcu_read_unlock(vcpu); 11329 11330 kvm_sigset_deactivate(vcpu); 11331 vcpu_put(vcpu); 11332 return r; 11333 } 11334 11335 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11336 { 11337 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11338 /* 11339 * We are here if userspace calls get_regs() in the middle of 11340 * instruction emulation. Registers state needs to be copied 11341 * back from emulation context to vcpu. Userspace shouldn't do 11342 * that usually, but some bad designed PV devices (vmware 11343 * backdoor interface) need this to work 11344 */ 11345 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11346 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11347 } 11348 regs->rax = kvm_rax_read(vcpu); 11349 regs->rbx = kvm_rbx_read(vcpu); 11350 regs->rcx = kvm_rcx_read(vcpu); 11351 regs->rdx = kvm_rdx_read(vcpu); 11352 regs->rsi = kvm_rsi_read(vcpu); 11353 regs->rdi = kvm_rdi_read(vcpu); 11354 regs->rsp = kvm_rsp_read(vcpu); 11355 regs->rbp = kvm_rbp_read(vcpu); 11356 #ifdef CONFIG_X86_64 11357 regs->r8 = kvm_r8_read(vcpu); 11358 regs->r9 = kvm_r9_read(vcpu); 11359 regs->r10 = kvm_r10_read(vcpu); 11360 regs->r11 = kvm_r11_read(vcpu); 11361 regs->r12 = kvm_r12_read(vcpu); 11362 regs->r13 = kvm_r13_read(vcpu); 11363 regs->r14 = kvm_r14_read(vcpu); 11364 regs->r15 = kvm_r15_read(vcpu); 11365 #endif 11366 11367 regs->rip = kvm_rip_read(vcpu); 11368 regs->rflags = kvm_get_rflags(vcpu); 11369 } 11370 11371 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11372 { 11373 vcpu_load(vcpu); 11374 __get_regs(vcpu, regs); 11375 vcpu_put(vcpu); 11376 return 0; 11377 } 11378 11379 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11380 { 11381 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11382 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11383 11384 kvm_rax_write(vcpu, regs->rax); 11385 kvm_rbx_write(vcpu, regs->rbx); 11386 kvm_rcx_write(vcpu, regs->rcx); 11387 kvm_rdx_write(vcpu, regs->rdx); 11388 kvm_rsi_write(vcpu, regs->rsi); 11389 kvm_rdi_write(vcpu, regs->rdi); 11390 kvm_rsp_write(vcpu, regs->rsp); 11391 kvm_rbp_write(vcpu, regs->rbp); 11392 #ifdef CONFIG_X86_64 11393 kvm_r8_write(vcpu, regs->r8); 11394 kvm_r9_write(vcpu, regs->r9); 11395 kvm_r10_write(vcpu, regs->r10); 11396 kvm_r11_write(vcpu, regs->r11); 11397 kvm_r12_write(vcpu, regs->r12); 11398 kvm_r13_write(vcpu, regs->r13); 11399 kvm_r14_write(vcpu, regs->r14); 11400 kvm_r15_write(vcpu, regs->r15); 11401 #endif 11402 11403 kvm_rip_write(vcpu, regs->rip); 11404 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11405 11406 vcpu->arch.exception.pending = false; 11407 vcpu->arch.exception_vmexit.pending = false; 11408 11409 kvm_make_request(KVM_REQ_EVENT, vcpu); 11410 } 11411 11412 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11413 { 11414 vcpu_load(vcpu); 11415 __set_regs(vcpu, regs); 11416 vcpu_put(vcpu); 11417 return 0; 11418 } 11419 11420 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11421 { 11422 struct desc_ptr dt; 11423 11424 if (vcpu->arch.guest_state_protected) 11425 goto skip_protected_regs; 11426 11427 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11428 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11429 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11430 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11431 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11432 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11433 11434 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11435 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11436 11437 static_call(kvm_x86_get_idt)(vcpu, &dt); 11438 sregs->idt.limit = dt.size; 11439 sregs->idt.base = dt.address; 11440 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11441 sregs->gdt.limit = dt.size; 11442 sregs->gdt.base = dt.address; 11443 11444 sregs->cr2 = vcpu->arch.cr2; 11445 sregs->cr3 = kvm_read_cr3(vcpu); 11446 11447 skip_protected_regs: 11448 sregs->cr0 = kvm_read_cr0(vcpu); 11449 sregs->cr4 = kvm_read_cr4(vcpu); 11450 sregs->cr8 = kvm_get_cr8(vcpu); 11451 sregs->efer = vcpu->arch.efer; 11452 sregs->apic_base = kvm_get_apic_base(vcpu); 11453 } 11454 11455 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11456 { 11457 __get_sregs_common(vcpu, sregs); 11458 11459 if (vcpu->arch.guest_state_protected) 11460 return; 11461 11462 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11463 set_bit(vcpu->arch.interrupt.nr, 11464 (unsigned long *)sregs->interrupt_bitmap); 11465 } 11466 11467 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11468 { 11469 int i; 11470 11471 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11472 11473 if (vcpu->arch.guest_state_protected) 11474 return; 11475 11476 if (is_pae_paging(vcpu)) { 11477 for (i = 0 ; i < 4 ; i++) 11478 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11479 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11480 } 11481 } 11482 11483 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11484 struct kvm_sregs *sregs) 11485 { 11486 vcpu_load(vcpu); 11487 __get_sregs(vcpu, sregs); 11488 vcpu_put(vcpu); 11489 return 0; 11490 } 11491 11492 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11493 struct kvm_mp_state *mp_state) 11494 { 11495 int r; 11496 11497 vcpu_load(vcpu); 11498 if (kvm_mpx_supported()) 11499 kvm_load_guest_fpu(vcpu); 11500 11501 r = kvm_apic_accept_events(vcpu); 11502 if (r < 0) 11503 goto out; 11504 r = 0; 11505 11506 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11507 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11508 vcpu->arch.pv.pv_unhalted) 11509 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11510 else 11511 mp_state->mp_state = vcpu->arch.mp_state; 11512 11513 out: 11514 if (kvm_mpx_supported()) 11515 kvm_put_guest_fpu(vcpu); 11516 vcpu_put(vcpu); 11517 return r; 11518 } 11519 11520 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11521 struct kvm_mp_state *mp_state) 11522 { 11523 int ret = -EINVAL; 11524 11525 vcpu_load(vcpu); 11526 11527 switch (mp_state->mp_state) { 11528 case KVM_MP_STATE_UNINITIALIZED: 11529 case KVM_MP_STATE_HALTED: 11530 case KVM_MP_STATE_AP_RESET_HOLD: 11531 case KVM_MP_STATE_INIT_RECEIVED: 11532 case KVM_MP_STATE_SIPI_RECEIVED: 11533 if (!lapic_in_kernel(vcpu)) 11534 goto out; 11535 break; 11536 11537 case KVM_MP_STATE_RUNNABLE: 11538 break; 11539 11540 default: 11541 goto out; 11542 } 11543 11544 /* 11545 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11546 * forcing the guest into INIT/SIPI if those events are supposed to be 11547 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11548 * if an SMI is pending as well. 11549 */ 11550 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11551 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11552 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11553 goto out; 11554 11555 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11556 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11557 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11558 } else 11559 vcpu->arch.mp_state = mp_state->mp_state; 11560 kvm_make_request(KVM_REQ_EVENT, vcpu); 11561 11562 ret = 0; 11563 out: 11564 vcpu_put(vcpu); 11565 return ret; 11566 } 11567 11568 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11569 int reason, bool has_error_code, u32 error_code) 11570 { 11571 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11572 int ret; 11573 11574 init_emulate_ctxt(vcpu); 11575 11576 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11577 has_error_code, error_code); 11578 if (ret) { 11579 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11580 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11581 vcpu->run->internal.ndata = 0; 11582 return 0; 11583 } 11584 11585 kvm_rip_write(vcpu, ctxt->eip); 11586 kvm_set_rflags(vcpu, ctxt->eflags); 11587 return 1; 11588 } 11589 EXPORT_SYMBOL_GPL(kvm_task_switch); 11590 11591 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11592 { 11593 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11594 /* 11595 * When EFER.LME and CR0.PG are set, the processor is in 11596 * 64-bit mode (though maybe in a 32-bit code segment). 11597 * CR4.PAE and EFER.LMA must be set. 11598 */ 11599 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11600 return false; 11601 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11602 return false; 11603 } else { 11604 /* 11605 * Not in 64-bit mode: EFER.LMA is clear and the code 11606 * segment cannot be 64-bit. 11607 */ 11608 if (sregs->efer & EFER_LMA || sregs->cs.l) 11609 return false; 11610 } 11611 11612 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11613 kvm_is_valid_cr0(vcpu, sregs->cr0); 11614 } 11615 11616 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11617 int *mmu_reset_needed, bool update_pdptrs) 11618 { 11619 struct msr_data apic_base_msr; 11620 int idx; 11621 struct desc_ptr dt; 11622 11623 if (!kvm_is_valid_sregs(vcpu, sregs)) 11624 return -EINVAL; 11625 11626 apic_base_msr.data = sregs->apic_base; 11627 apic_base_msr.host_initiated = true; 11628 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11629 return -EINVAL; 11630 11631 if (vcpu->arch.guest_state_protected) 11632 return 0; 11633 11634 dt.size = sregs->idt.limit; 11635 dt.address = sregs->idt.base; 11636 static_call(kvm_x86_set_idt)(vcpu, &dt); 11637 dt.size = sregs->gdt.limit; 11638 dt.address = sregs->gdt.base; 11639 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11640 11641 vcpu->arch.cr2 = sregs->cr2; 11642 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11643 vcpu->arch.cr3 = sregs->cr3; 11644 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11645 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11646 11647 kvm_set_cr8(vcpu, sregs->cr8); 11648 11649 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11650 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11651 11652 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11653 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11654 11655 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11656 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11657 11658 if (update_pdptrs) { 11659 idx = srcu_read_lock(&vcpu->kvm->srcu); 11660 if (is_pae_paging(vcpu)) { 11661 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11662 *mmu_reset_needed = 1; 11663 } 11664 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11665 } 11666 11667 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11668 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11669 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11670 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11671 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11672 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11673 11674 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11675 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11676 11677 update_cr8_intercept(vcpu); 11678 11679 /* Older userspace won't unhalt the vcpu on reset. */ 11680 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11681 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11682 !is_protmode(vcpu)) 11683 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11684 11685 return 0; 11686 } 11687 11688 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11689 { 11690 int pending_vec, max_bits; 11691 int mmu_reset_needed = 0; 11692 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11693 11694 if (ret) 11695 return ret; 11696 11697 if (mmu_reset_needed) { 11698 kvm_mmu_reset_context(vcpu); 11699 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11700 } 11701 11702 max_bits = KVM_NR_INTERRUPTS; 11703 pending_vec = find_first_bit( 11704 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11705 11706 if (pending_vec < max_bits) { 11707 kvm_queue_interrupt(vcpu, pending_vec, false); 11708 pr_debug("Set back pending irq %d\n", pending_vec); 11709 kvm_make_request(KVM_REQ_EVENT, vcpu); 11710 } 11711 return 0; 11712 } 11713 11714 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11715 { 11716 int mmu_reset_needed = 0; 11717 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11718 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11719 !(sregs2->efer & EFER_LMA); 11720 int i, ret; 11721 11722 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11723 return -EINVAL; 11724 11725 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11726 return -EINVAL; 11727 11728 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11729 &mmu_reset_needed, !valid_pdptrs); 11730 if (ret) 11731 return ret; 11732 11733 if (valid_pdptrs) { 11734 for (i = 0; i < 4 ; i++) 11735 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11736 11737 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11738 mmu_reset_needed = 1; 11739 vcpu->arch.pdptrs_from_userspace = true; 11740 } 11741 if (mmu_reset_needed) { 11742 kvm_mmu_reset_context(vcpu); 11743 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11744 } 11745 return 0; 11746 } 11747 11748 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11749 struct kvm_sregs *sregs) 11750 { 11751 int ret; 11752 11753 vcpu_load(vcpu); 11754 ret = __set_sregs(vcpu, sregs); 11755 vcpu_put(vcpu); 11756 return ret; 11757 } 11758 11759 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11760 { 11761 bool set = false; 11762 struct kvm_vcpu *vcpu; 11763 unsigned long i; 11764 11765 if (!enable_apicv) 11766 return; 11767 11768 down_write(&kvm->arch.apicv_update_lock); 11769 11770 kvm_for_each_vcpu(i, vcpu, kvm) { 11771 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11772 set = true; 11773 break; 11774 } 11775 } 11776 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11777 up_write(&kvm->arch.apicv_update_lock); 11778 } 11779 11780 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11781 struct kvm_guest_debug *dbg) 11782 { 11783 unsigned long rflags; 11784 int i, r; 11785 11786 if (vcpu->arch.guest_state_protected) 11787 return -EINVAL; 11788 11789 vcpu_load(vcpu); 11790 11791 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11792 r = -EBUSY; 11793 if (kvm_is_exception_pending(vcpu)) 11794 goto out; 11795 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11796 kvm_queue_exception(vcpu, DB_VECTOR); 11797 else 11798 kvm_queue_exception(vcpu, BP_VECTOR); 11799 } 11800 11801 /* 11802 * Read rflags as long as potentially injected trace flags are still 11803 * filtered out. 11804 */ 11805 rflags = kvm_get_rflags(vcpu); 11806 11807 vcpu->guest_debug = dbg->control; 11808 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11809 vcpu->guest_debug = 0; 11810 11811 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11812 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11813 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11814 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11815 } else { 11816 for (i = 0; i < KVM_NR_DB_REGS; i++) 11817 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11818 } 11819 kvm_update_dr7(vcpu); 11820 11821 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11822 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11823 11824 /* 11825 * Trigger an rflags update that will inject or remove the trace 11826 * flags. 11827 */ 11828 kvm_set_rflags(vcpu, rflags); 11829 11830 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11831 11832 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11833 11834 r = 0; 11835 11836 out: 11837 vcpu_put(vcpu); 11838 return r; 11839 } 11840 11841 /* 11842 * Translate a guest virtual address to a guest physical address. 11843 */ 11844 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11845 struct kvm_translation *tr) 11846 { 11847 unsigned long vaddr = tr->linear_address; 11848 gpa_t gpa; 11849 int idx; 11850 11851 vcpu_load(vcpu); 11852 11853 idx = srcu_read_lock(&vcpu->kvm->srcu); 11854 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11855 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11856 tr->physical_address = gpa; 11857 tr->valid = gpa != INVALID_GPA; 11858 tr->writeable = 1; 11859 tr->usermode = 0; 11860 11861 vcpu_put(vcpu); 11862 return 0; 11863 } 11864 11865 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11866 { 11867 struct fxregs_state *fxsave; 11868 11869 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11870 return 0; 11871 11872 vcpu_load(vcpu); 11873 11874 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11875 memcpy(fpu->fpr, fxsave->st_space, 128); 11876 fpu->fcw = fxsave->cwd; 11877 fpu->fsw = fxsave->swd; 11878 fpu->ftwx = fxsave->twd; 11879 fpu->last_opcode = fxsave->fop; 11880 fpu->last_ip = fxsave->rip; 11881 fpu->last_dp = fxsave->rdp; 11882 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11883 11884 vcpu_put(vcpu); 11885 return 0; 11886 } 11887 11888 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11889 { 11890 struct fxregs_state *fxsave; 11891 11892 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11893 return 0; 11894 11895 vcpu_load(vcpu); 11896 11897 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11898 11899 memcpy(fxsave->st_space, fpu->fpr, 128); 11900 fxsave->cwd = fpu->fcw; 11901 fxsave->swd = fpu->fsw; 11902 fxsave->twd = fpu->ftwx; 11903 fxsave->fop = fpu->last_opcode; 11904 fxsave->rip = fpu->last_ip; 11905 fxsave->rdp = fpu->last_dp; 11906 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11907 11908 vcpu_put(vcpu); 11909 return 0; 11910 } 11911 11912 static void store_regs(struct kvm_vcpu *vcpu) 11913 { 11914 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11915 11916 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11917 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11918 11919 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11920 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11921 11922 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11923 kvm_vcpu_ioctl_x86_get_vcpu_events( 11924 vcpu, &vcpu->run->s.regs.events); 11925 } 11926 11927 static int sync_regs(struct kvm_vcpu *vcpu) 11928 { 11929 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11930 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11931 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11932 } 11933 11934 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11935 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 11936 11937 if (__set_sregs(vcpu, &sregs)) 11938 return -EINVAL; 11939 11940 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11941 } 11942 11943 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11944 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 11945 11946 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 11947 return -EINVAL; 11948 11949 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11950 } 11951 11952 return 0; 11953 } 11954 11955 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11956 { 11957 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11958 pr_warn_once("SMP vm created on host with unstable TSC; " 11959 "guest TSC will not be reliable\n"); 11960 11961 if (!kvm->arch.max_vcpu_ids) 11962 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11963 11964 if (id >= kvm->arch.max_vcpu_ids) 11965 return -EINVAL; 11966 11967 return static_call(kvm_x86_vcpu_precreate)(kvm); 11968 } 11969 11970 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11971 { 11972 struct page *page; 11973 int r; 11974 11975 vcpu->arch.last_vmentry_cpu = -1; 11976 vcpu->arch.regs_avail = ~0; 11977 vcpu->arch.regs_dirty = ~0; 11978 11979 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11980 11981 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11982 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11983 else 11984 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11985 11986 r = kvm_mmu_create(vcpu); 11987 if (r < 0) 11988 return r; 11989 11990 if (irqchip_in_kernel(vcpu->kvm)) { 11991 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11992 if (r < 0) 11993 goto fail_mmu_destroy; 11994 11995 /* 11996 * Defer evaluating inhibits until the vCPU is first run, as 11997 * this vCPU will not get notified of any changes until this 11998 * vCPU is visible to other vCPUs (marked online and added to 11999 * the set of vCPUs). Opportunistically mark APICv active as 12000 * VMX in particularly is highly unlikely to have inhibits. 12001 * Ignore the current per-VM APICv state so that vCPU creation 12002 * is guaranteed to run with a deterministic value, the request 12003 * will ensure the vCPU gets the correct state before VM-Entry. 12004 */ 12005 if (enable_apicv) { 12006 vcpu->arch.apic->apicv_active = true; 12007 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 12008 } 12009 } else 12010 static_branch_inc(&kvm_has_noapic_vcpu); 12011 12012 r = -ENOMEM; 12013 12014 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12015 if (!page) 12016 goto fail_free_lapic; 12017 vcpu->arch.pio_data = page_address(page); 12018 12019 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12020 GFP_KERNEL_ACCOUNT); 12021 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12022 GFP_KERNEL_ACCOUNT); 12023 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12024 goto fail_free_mce_banks; 12025 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12026 12027 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12028 GFP_KERNEL_ACCOUNT)) 12029 goto fail_free_mce_banks; 12030 12031 if (!alloc_emulate_ctxt(vcpu)) 12032 goto free_wbinvd_dirty_mask; 12033 12034 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12035 pr_err("failed to allocate vcpu's fpu\n"); 12036 goto free_emulate_ctxt; 12037 } 12038 12039 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12040 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12041 12042 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12043 12044 kvm_async_pf_hash_reset(vcpu); 12045 12046 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12047 kvm_pmu_init(vcpu); 12048 12049 vcpu->arch.pending_external_vector = -1; 12050 vcpu->arch.preempted_in_kernel = false; 12051 12052 #if IS_ENABLED(CONFIG_HYPERV) 12053 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12054 #endif 12055 12056 r = static_call(kvm_x86_vcpu_create)(vcpu); 12057 if (r) 12058 goto free_guest_fpu; 12059 12060 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12061 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12062 kvm_xen_init_vcpu(vcpu); 12063 kvm_vcpu_mtrr_init(vcpu); 12064 vcpu_load(vcpu); 12065 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12066 kvm_vcpu_reset(vcpu, false); 12067 kvm_init_mmu(vcpu); 12068 vcpu_put(vcpu); 12069 return 0; 12070 12071 free_guest_fpu: 12072 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12073 free_emulate_ctxt: 12074 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12075 free_wbinvd_dirty_mask: 12076 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12077 fail_free_mce_banks: 12078 kfree(vcpu->arch.mce_banks); 12079 kfree(vcpu->arch.mci_ctl2_banks); 12080 free_page((unsigned long)vcpu->arch.pio_data); 12081 fail_free_lapic: 12082 kvm_free_lapic(vcpu); 12083 fail_mmu_destroy: 12084 kvm_mmu_destroy(vcpu); 12085 return r; 12086 } 12087 12088 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12089 { 12090 struct kvm *kvm = vcpu->kvm; 12091 12092 if (mutex_lock_killable(&vcpu->mutex)) 12093 return; 12094 vcpu_load(vcpu); 12095 kvm_synchronize_tsc(vcpu, NULL); 12096 vcpu_put(vcpu); 12097 12098 /* poll control enabled by default */ 12099 vcpu->arch.msr_kvm_poll_control = 1; 12100 12101 mutex_unlock(&vcpu->mutex); 12102 12103 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12104 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12105 KVMCLOCK_SYNC_PERIOD); 12106 } 12107 12108 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12109 { 12110 int idx; 12111 12112 kvmclock_reset(vcpu); 12113 12114 static_call(kvm_x86_vcpu_free)(vcpu); 12115 12116 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12117 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12118 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12119 12120 kvm_xen_destroy_vcpu(vcpu); 12121 kvm_hv_vcpu_uninit(vcpu); 12122 kvm_pmu_destroy(vcpu); 12123 kfree(vcpu->arch.mce_banks); 12124 kfree(vcpu->arch.mci_ctl2_banks); 12125 kvm_free_lapic(vcpu); 12126 idx = srcu_read_lock(&vcpu->kvm->srcu); 12127 kvm_mmu_destroy(vcpu); 12128 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12129 free_page((unsigned long)vcpu->arch.pio_data); 12130 kvfree(vcpu->arch.cpuid_entries); 12131 if (!lapic_in_kernel(vcpu)) 12132 static_branch_dec(&kvm_has_noapic_vcpu); 12133 } 12134 12135 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12136 { 12137 struct kvm_cpuid_entry2 *cpuid_0x1; 12138 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12139 unsigned long new_cr0; 12140 12141 /* 12142 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12143 * to handle side effects. RESET emulation hits those flows and relies 12144 * on emulated/virtualized registers, including those that are loaded 12145 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12146 * to detect improper or missing initialization. 12147 */ 12148 WARN_ON_ONCE(!init_event && 12149 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12150 12151 /* 12152 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12153 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12154 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12155 * bits), i.e. virtualization is disabled. 12156 */ 12157 if (is_guest_mode(vcpu)) 12158 kvm_leave_nested(vcpu); 12159 12160 kvm_lapic_reset(vcpu, init_event); 12161 12162 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12163 vcpu->arch.hflags = 0; 12164 12165 vcpu->arch.smi_pending = 0; 12166 vcpu->arch.smi_count = 0; 12167 atomic_set(&vcpu->arch.nmi_queued, 0); 12168 vcpu->arch.nmi_pending = 0; 12169 vcpu->arch.nmi_injected = false; 12170 kvm_clear_interrupt_queue(vcpu); 12171 kvm_clear_exception_queue(vcpu); 12172 12173 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12174 kvm_update_dr0123(vcpu); 12175 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12176 vcpu->arch.dr7 = DR7_FIXED_1; 12177 kvm_update_dr7(vcpu); 12178 12179 vcpu->arch.cr2 = 0; 12180 12181 kvm_make_request(KVM_REQ_EVENT, vcpu); 12182 vcpu->arch.apf.msr_en_val = 0; 12183 vcpu->arch.apf.msr_int_val = 0; 12184 vcpu->arch.st.msr_val = 0; 12185 12186 kvmclock_reset(vcpu); 12187 12188 kvm_clear_async_pf_completion_queue(vcpu); 12189 kvm_async_pf_hash_reset(vcpu); 12190 vcpu->arch.apf.halted = false; 12191 12192 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12193 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12194 12195 /* 12196 * All paths that lead to INIT are required to load the guest's 12197 * FPU state (because most paths are buried in KVM_RUN). 12198 */ 12199 if (init_event) 12200 kvm_put_guest_fpu(vcpu); 12201 12202 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12203 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12204 12205 if (init_event) 12206 kvm_load_guest_fpu(vcpu); 12207 } 12208 12209 if (!init_event) { 12210 kvm_pmu_reset(vcpu); 12211 vcpu->arch.smbase = 0x30000; 12212 12213 vcpu->arch.msr_misc_features_enables = 0; 12214 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12215 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12216 12217 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12218 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12219 } 12220 12221 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12222 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12223 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12224 12225 /* 12226 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12227 * if no CPUID match is found. Note, it's impossible to get a match at 12228 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12229 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12230 * on RESET. But, go through the motions in case that's ever remedied. 12231 */ 12232 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12233 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12234 12235 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12236 12237 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12238 kvm_rip_write(vcpu, 0xfff0); 12239 12240 vcpu->arch.cr3 = 0; 12241 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12242 12243 /* 12244 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12245 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12246 * (or qualify) that with a footnote stating that CD/NW are preserved. 12247 */ 12248 new_cr0 = X86_CR0_ET; 12249 if (init_event) 12250 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12251 else 12252 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12253 12254 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12255 static_call(kvm_x86_set_cr4)(vcpu, 0); 12256 static_call(kvm_x86_set_efer)(vcpu, 0); 12257 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12258 12259 /* 12260 * On the standard CR0/CR4/EFER modification paths, there are several 12261 * complex conditions determining whether the MMU has to be reset and/or 12262 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12263 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12264 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12265 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12266 */ 12267 if (old_cr0 & X86_CR0_PG) { 12268 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12269 kvm_mmu_reset_context(vcpu); 12270 } 12271 12272 /* 12273 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12274 * APM states the TLBs are untouched by INIT, but it also states that 12275 * the TLBs are flushed on "External initialization of the processor." 12276 * Flush the guest TLB regardless of vendor, there is no meaningful 12277 * benefit in relying on the guest to flush the TLB immediately after 12278 * INIT. A spurious TLB flush is benign and likely negligible from a 12279 * performance perspective. 12280 */ 12281 if (init_event) 12282 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12283 } 12284 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12285 12286 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12287 { 12288 struct kvm_segment cs; 12289 12290 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12291 cs.selector = vector << 8; 12292 cs.base = vector << 12; 12293 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12294 kvm_rip_write(vcpu, 0); 12295 } 12296 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12297 12298 int kvm_arch_hardware_enable(void) 12299 { 12300 struct kvm *kvm; 12301 struct kvm_vcpu *vcpu; 12302 unsigned long i; 12303 int ret; 12304 u64 local_tsc; 12305 u64 max_tsc = 0; 12306 bool stable, backwards_tsc = false; 12307 12308 kvm_user_return_msr_cpu_online(); 12309 12310 ret = kvm_x86_check_processor_compatibility(); 12311 if (ret) 12312 return ret; 12313 12314 ret = static_call(kvm_x86_hardware_enable)(); 12315 if (ret != 0) 12316 return ret; 12317 12318 local_tsc = rdtsc(); 12319 stable = !kvm_check_tsc_unstable(); 12320 list_for_each_entry(kvm, &vm_list, vm_list) { 12321 kvm_for_each_vcpu(i, vcpu, kvm) { 12322 if (!stable && vcpu->cpu == smp_processor_id()) 12323 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12324 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12325 backwards_tsc = true; 12326 if (vcpu->arch.last_host_tsc > max_tsc) 12327 max_tsc = vcpu->arch.last_host_tsc; 12328 } 12329 } 12330 } 12331 12332 /* 12333 * Sometimes, even reliable TSCs go backwards. This happens on 12334 * platforms that reset TSC during suspend or hibernate actions, but 12335 * maintain synchronization. We must compensate. Fortunately, we can 12336 * detect that condition here, which happens early in CPU bringup, 12337 * before any KVM threads can be running. Unfortunately, we can't 12338 * bring the TSCs fully up to date with real time, as we aren't yet far 12339 * enough into CPU bringup that we know how much real time has actually 12340 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12341 * variables that haven't been updated yet. 12342 * 12343 * So we simply find the maximum observed TSC above, then record the 12344 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12345 * the adjustment will be applied. Note that we accumulate 12346 * adjustments, in case multiple suspend cycles happen before some VCPU 12347 * gets a chance to run again. In the event that no KVM threads get a 12348 * chance to run, we will miss the entire elapsed period, as we'll have 12349 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12350 * loose cycle time. This isn't too big a deal, since the loss will be 12351 * uniform across all VCPUs (not to mention the scenario is extremely 12352 * unlikely). It is possible that a second hibernate recovery happens 12353 * much faster than a first, causing the observed TSC here to be 12354 * smaller; this would require additional padding adjustment, which is 12355 * why we set last_host_tsc to the local tsc observed here. 12356 * 12357 * N.B. - this code below runs only on platforms with reliable TSC, 12358 * as that is the only way backwards_tsc is set above. Also note 12359 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12360 * have the same delta_cyc adjustment applied if backwards_tsc 12361 * is detected. Note further, this adjustment is only done once, 12362 * as we reset last_host_tsc on all VCPUs to stop this from being 12363 * called multiple times (one for each physical CPU bringup). 12364 * 12365 * Platforms with unreliable TSCs don't have to deal with this, they 12366 * will be compensated by the logic in vcpu_load, which sets the TSC to 12367 * catchup mode. This will catchup all VCPUs to real time, but cannot 12368 * guarantee that they stay in perfect synchronization. 12369 */ 12370 if (backwards_tsc) { 12371 u64 delta_cyc = max_tsc - local_tsc; 12372 list_for_each_entry(kvm, &vm_list, vm_list) { 12373 kvm->arch.backwards_tsc_observed = true; 12374 kvm_for_each_vcpu(i, vcpu, kvm) { 12375 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12376 vcpu->arch.last_host_tsc = local_tsc; 12377 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12378 } 12379 12380 /* 12381 * We have to disable TSC offset matching.. if you were 12382 * booting a VM while issuing an S4 host suspend.... 12383 * you may have some problem. Solving this issue is 12384 * left as an exercise to the reader. 12385 */ 12386 kvm->arch.last_tsc_nsec = 0; 12387 kvm->arch.last_tsc_write = 0; 12388 } 12389 12390 } 12391 return 0; 12392 } 12393 12394 void kvm_arch_hardware_disable(void) 12395 { 12396 static_call(kvm_x86_hardware_disable)(); 12397 drop_user_return_notifiers(); 12398 } 12399 12400 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12401 { 12402 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12403 } 12404 12405 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12406 { 12407 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12408 } 12409 12410 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12411 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12412 12413 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12414 { 12415 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12416 12417 vcpu->arch.l1tf_flush_l1d = true; 12418 if (pmu->version && unlikely(pmu->event_count)) { 12419 pmu->need_cleanup = true; 12420 kvm_make_request(KVM_REQ_PMU, vcpu); 12421 } 12422 static_call(kvm_x86_sched_in)(vcpu, cpu); 12423 } 12424 12425 void kvm_arch_free_vm(struct kvm *kvm) 12426 { 12427 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12428 __kvm_arch_free_vm(kvm); 12429 } 12430 12431 12432 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12433 { 12434 int ret; 12435 unsigned long flags; 12436 12437 if (type) 12438 return -EINVAL; 12439 12440 ret = kvm_page_track_init(kvm); 12441 if (ret) 12442 goto out; 12443 12444 kvm_mmu_init_vm(kvm); 12445 12446 ret = static_call(kvm_x86_vm_init)(kvm); 12447 if (ret) 12448 goto out_uninit_mmu; 12449 12450 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12451 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12452 12453 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12454 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12455 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12456 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12457 &kvm->arch.irq_sources_bitmap); 12458 12459 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12460 mutex_init(&kvm->arch.apic_map_lock); 12461 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12462 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12463 12464 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12465 pvclock_update_vm_gtod_copy(kvm); 12466 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12467 12468 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12469 kvm->arch.guest_can_read_msr_platform_info = true; 12470 kvm->arch.enable_pmu = enable_pmu; 12471 12472 #if IS_ENABLED(CONFIG_HYPERV) 12473 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12474 kvm->arch.hv_root_tdp = INVALID_PAGE; 12475 #endif 12476 12477 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12478 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12479 12480 kvm_apicv_init(kvm); 12481 kvm_hv_init_vm(kvm); 12482 kvm_xen_init_vm(kvm); 12483 12484 return 0; 12485 12486 out_uninit_mmu: 12487 kvm_mmu_uninit_vm(kvm); 12488 kvm_page_track_cleanup(kvm); 12489 out: 12490 return ret; 12491 } 12492 12493 int kvm_arch_post_init_vm(struct kvm *kvm) 12494 { 12495 return kvm_mmu_post_init_vm(kvm); 12496 } 12497 12498 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12499 { 12500 vcpu_load(vcpu); 12501 kvm_mmu_unload(vcpu); 12502 vcpu_put(vcpu); 12503 } 12504 12505 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12506 { 12507 unsigned long i; 12508 struct kvm_vcpu *vcpu; 12509 12510 kvm_for_each_vcpu(i, vcpu, kvm) { 12511 kvm_clear_async_pf_completion_queue(vcpu); 12512 kvm_unload_vcpu_mmu(vcpu); 12513 } 12514 } 12515 12516 void kvm_arch_sync_events(struct kvm *kvm) 12517 { 12518 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12519 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12520 kvm_free_pit(kvm); 12521 } 12522 12523 /** 12524 * __x86_set_memory_region: Setup KVM internal memory slot 12525 * 12526 * @kvm: the kvm pointer to the VM. 12527 * @id: the slot ID to setup. 12528 * @gpa: the GPA to install the slot (unused when @size == 0). 12529 * @size: the size of the slot. Set to zero to uninstall a slot. 12530 * 12531 * This function helps to setup a KVM internal memory slot. Specify 12532 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12533 * slot. The return code can be one of the following: 12534 * 12535 * HVA: on success (uninstall will return a bogus HVA) 12536 * -errno: on error 12537 * 12538 * The caller should always use IS_ERR() to check the return value 12539 * before use. Note, the KVM internal memory slots are guaranteed to 12540 * remain valid and unchanged until the VM is destroyed, i.e., the 12541 * GPA->HVA translation will not change. However, the HVA is a user 12542 * address, i.e. its accessibility is not guaranteed, and must be 12543 * accessed via __copy_{to,from}_user(). 12544 */ 12545 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12546 u32 size) 12547 { 12548 int i, r; 12549 unsigned long hva, old_npages; 12550 struct kvm_memslots *slots = kvm_memslots(kvm); 12551 struct kvm_memory_slot *slot; 12552 12553 /* Called with kvm->slots_lock held. */ 12554 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12555 return ERR_PTR_USR(-EINVAL); 12556 12557 slot = id_to_memslot(slots, id); 12558 if (size) { 12559 if (slot && slot->npages) 12560 return ERR_PTR_USR(-EEXIST); 12561 12562 /* 12563 * MAP_SHARED to prevent internal slot pages from being moved 12564 * by fork()/COW. 12565 */ 12566 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12567 MAP_SHARED | MAP_ANONYMOUS, 0); 12568 if (IS_ERR_VALUE(hva)) 12569 return (void __user *)hva; 12570 } else { 12571 if (!slot || !slot->npages) 12572 return NULL; 12573 12574 old_npages = slot->npages; 12575 hva = slot->userspace_addr; 12576 } 12577 12578 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12579 struct kvm_userspace_memory_region m; 12580 12581 m.slot = id | (i << 16); 12582 m.flags = 0; 12583 m.guest_phys_addr = gpa; 12584 m.userspace_addr = hva; 12585 m.memory_size = size; 12586 r = __kvm_set_memory_region(kvm, &m); 12587 if (r < 0) 12588 return ERR_PTR_USR(r); 12589 } 12590 12591 if (!size) 12592 vm_munmap(hva, old_npages * PAGE_SIZE); 12593 12594 return (void __user *)hva; 12595 } 12596 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12597 12598 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12599 { 12600 kvm_mmu_pre_destroy_vm(kvm); 12601 } 12602 12603 void kvm_arch_destroy_vm(struct kvm *kvm) 12604 { 12605 if (current->mm == kvm->mm) { 12606 /* 12607 * Free memory regions allocated on behalf of userspace, 12608 * unless the memory map has changed due to process exit 12609 * or fd copying. 12610 */ 12611 mutex_lock(&kvm->slots_lock); 12612 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12613 0, 0); 12614 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12615 0, 0); 12616 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12617 mutex_unlock(&kvm->slots_lock); 12618 } 12619 kvm_unload_vcpu_mmus(kvm); 12620 static_call_cond(kvm_x86_vm_destroy)(kvm); 12621 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12622 kvm_pic_destroy(kvm); 12623 kvm_ioapic_destroy(kvm); 12624 kvm_destroy_vcpus(kvm); 12625 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12626 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12627 kvm_mmu_uninit_vm(kvm); 12628 kvm_page_track_cleanup(kvm); 12629 kvm_xen_destroy_vm(kvm); 12630 kvm_hv_destroy_vm(kvm); 12631 } 12632 12633 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12634 { 12635 int i; 12636 12637 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12638 kvfree(slot->arch.rmap[i]); 12639 slot->arch.rmap[i] = NULL; 12640 } 12641 } 12642 12643 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12644 { 12645 int i; 12646 12647 memslot_rmap_free(slot); 12648 12649 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12650 kvfree(slot->arch.lpage_info[i - 1]); 12651 slot->arch.lpage_info[i - 1] = NULL; 12652 } 12653 12654 kvm_page_track_free_memslot(slot); 12655 } 12656 12657 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12658 { 12659 const int sz = sizeof(*slot->arch.rmap[0]); 12660 int i; 12661 12662 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12663 int level = i + 1; 12664 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12665 12666 if (slot->arch.rmap[i]) 12667 continue; 12668 12669 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12670 if (!slot->arch.rmap[i]) { 12671 memslot_rmap_free(slot); 12672 return -ENOMEM; 12673 } 12674 } 12675 12676 return 0; 12677 } 12678 12679 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12680 struct kvm_memory_slot *slot) 12681 { 12682 unsigned long npages = slot->npages; 12683 int i, r; 12684 12685 /* 12686 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12687 * old arrays will be freed by __kvm_set_memory_region() if installing 12688 * the new memslot is successful. 12689 */ 12690 memset(&slot->arch, 0, sizeof(slot->arch)); 12691 12692 if (kvm_memslots_have_rmaps(kvm)) { 12693 r = memslot_rmap_alloc(slot, npages); 12694 if (r) 12695 return r; 12696 } 12697 12698 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12699 struct kvm_lpage_info *linfo; 12700 unsigned long ugfn; 12701 int lpages; 12702 int level = i + 1; 12703 12704 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12705 12706 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12707 if (!linfo) 12708 goto out_free; 12709 12710 slot->arch.lpage_info[i - 1] = linfo; 12711 12712 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12713 linfo[0].disallow_lpage = 1; 12714 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12715 linfo[lpages - 1].disallow_lpage = 1; 12716 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12717 /* 12718 * If the gfn and userspace address are not aligned wrt each 12719 * other, disable large page support for this slot. 12720 */ 12721 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12722 unsigned long j; 12723 12724 for (j = 0; j < lpages; ++j) 12725 linfo[j].disallow_lpage = 1; 12726 } 12727 } 12728 12729 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12730 goto out_free; 12731 12732 return 0; 12733 12734 out_free: 12735 memslot_rmap_free(slot); 12736 12737 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12738 kvfree(slot->arch.lpage_info[i - 1]); 12739 slot->arch.lpage_info[i - 1] = NULL; 12740 } 12741 return -ENOMEM; 12742 } 12743 12744 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12745 { 12746 struct kvm_vcpu *vcpu; 12747 unsigned long i; 12748 12749 /* 12750 * memslots->generation has been incremented. 12751 * mmio generation may have reached its maximum value. 12752 */ 12753 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12754 12755 /* Force re-initialization of steal_time cache */ 12756 kvm_for_each_vcpu(i, vcpu, kvm) 12757 kvm_vcpu_kick(vcpu); 12758 } 12759 12760 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12761 const struct kvm_memory_slot *old, 12762 struct kvm_memory_slot *new, 12763 enum kvm_mr_change change) 12764 { 12765 /* 12766 * KVM doesn't support moving memslots when there are external page 12767 * trackers attached to the VM, i.e. if KVMGT is in use. 12768 */ 12769 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12770 return -EINVAL; 12771 12772 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12773 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12774 return -EINVAL; 12775 12776 return kvm_alloc_memslot_metadata(kvm, new); 12777 } 12778 12779 if (change == KVM_MR_FLAGS_ONLY) 12780 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12781 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12782 return -EIO; 12783 12784 return 0; 12785 } 12786 12787 12788 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12789 { 12790 int nr_slots; 12791 12792 if (!kvm_x86_ops.cpu_dirty_log_size) 12793 return; 12794 12795 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12796 if ((enable && nr_slots == 1) || !nr_slots) 12797 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12798 } 12799 12800 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12801 struct kvm_memory_slot *old, 12802 const struct kvm_memory_slot *new, 12803 enum kvm_mr_change change) 12804 { 12805 u32 old_flags = old ? old->flags : 0; 12806 u32 new_flags = new ? new->flags : 0; 12807 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12808 12809 /* 12810 * Update CPU dirty logging if dirty logging is being toggled. This 12811 * applies to all operations. 12812 */ 12813 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12814 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12815 12816 /* 12817 * Nothing more to do for RO slots (which can't be dirtied and can't be 12818 * made writable) or CREATE/MOVE/DELETE of a slot. 12819 * 12820 * For a memslot with dirty logging disabled: 12821 * CREATE: No dirty mappings will already exist. 12822 * MOVE/DELETE: The old mappings will already have been cleaned up by 12823 * kvm_arch_flush_shadow_memslot() 12824 * 12825 * For a memslot with dirty logging enabled: 12826 * CREATE: No shadow pages exist, thus nothing to write-protect 12827 * and no dirty bits to clear. 12828 * MOVE/DELETE: The old mappings will already have been cleaned up by 12829 * kvm_arch_flush_shadow_memslot(). 12830 */ 12831 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12832 return; 12833 12834 /* 12835 * READONLY and non-flags changes were filtered out above, and the only 12836 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12837 * logging isn't being toggled on or off. 12838 */ 12839 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12840 return; 12841 12842 if (!log_dirty_pages) { 12843 /* 12844 * Dirty logging tracks sptes in 4k granularity, meaning that 12845 * large sptes have to be split. If live migration succeeds, 12846 * the guest in the source machine will be destroyed and large 12847 * sptes will be created in the destination. However, if the 12848 * guest continues to run in the source machine (for example if 12849 * live migration fails), small sptes will remain around and 12850 * cause bad performance. 12851 * 12852 * Scan sptes if dirty logging has been stopped, dropping those 12853 * which can be collapsed into a single large-page spte. Later 12854 * page faults will create the large-page sptes. 12855 */ 12856 kvm_mmu_zap_collapsible_sptes(kvm, new); 12857 } else { 12858 /* 12859 * Initially-all-set does not require write protecting any page, 12860 * because they're all assumed to be dirty. 12861 */ 12862 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12863 return; 12864 12865 if (READ_ONCE(eager_page_split)) 12866 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12867 12868 if (kvm_x86_ops.cpu_dirty_log_size) { 12869 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12870 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12871 } else { 12872 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12873 } 12874 12875 /* 12876 * Unconditionally flush the TLBs after enabling dirty logging. 12877 * A flush is almost always going to be necessary (see below), 12878 * and unconditionally flushing allows the helpers to omit 12879 * the subtly complex checks when removing write access. 12880 * 12881 * Do the flush outside of mmu_lock to reduce the amount of 12882 * time mmu_lock is held. Flushing after dropping mmu_lock is 12883 * safe as KVM only needs to guarantee the slot is fully 12884 * write-protected before returning to userspace, i.e. before 12885 * userspace can consume the dirty status. 12886 * 12887 * Flushing outside of mmu_lock requires KVM to be careful when 12888 * making decisions based on writable status of an SPTE, e.g. a 12889 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12890 * 12891 * Specifically, KVM also write-protects guest page tables to 12892 * monitor changes when using shadow paging, and must guarantee 12893 * no CPUs can write to those page before mmu_lock is dropped. 12894 * Because CPUs may have stale TLB entries at this point, a 12895 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12896 * 12897 * KVM also allows making SPTES writable outside of mmu_lock, 12898 * e.g. to allow dirty logging without taking mmu_lock. 12899 * 12900 * To handle these scenarios, KVM uses a separate software-only 12901 * bit (MMU-writable) to track if a SPTE is !writable due to 12902 * a guest page table being write-protected (KVM clears the 12903 * MMU-writable flag when write-protecting for shadow paging). 12904 * 12905 * The use of MMU-writable is also the primary motivation for 12906 * the unconditional flush. Because KVM must guarantee that a 12907 * CPU doesn't contain stale, writable TLB entries for a 12908 * !MMU-writable SPTE, KVM must flush if it encounters any 12909 * MMU-writable SPTE regardless of whether the actual hardware 12910 * writable bit was set. I.e. KVM is almost guaranteed to need 12911 * to flush, while unconditionally flushing allows the "remove 12912 * write access" helpers to ignore MMU-writable entirely. 12913 * 12914 * See is_writable_pte() for more details (the case involving 12915 * access-tracked SPTEs is particularly relevant). 12916 */ 12917 kvm_flush_remote_tlbs_memslot(kvm, new); 12918 } 12919 } 12920 12921 void kvm_arch_commit_memory_region(struct kvm *kvm, 12922 struct kvm_memory_slot *old, 12923 const struct kvm_memory_slot *new, 12924 enum kvm_mr_change change) 12925 { 12926 if (change == KVM_MR_DELETE) 12927 kvm_page_track_delete_slot(kvm, old); 12928 12929 if (!kvm->arch.n_requested_mmu_pages && 12930 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12931 unsigned long nr_mmu_pages; 12932 12933 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12934 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12935 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12936 } 12937 12938 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12939 12940 /* Free the arrays associated with the old memslot. */ 12941 if (change == KVM_MR_MOVE) 12942 kvm_arch_free_memslot(kvm, old); 12943 } 12944 12945 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12946 { 12947 return (is_guest_mode(vcpu) && 12948 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12949 } 12950 12951 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12952 { 12953 if (!list_empty_careful(&vcpu->async_pf.done)) 12954 return true; 12955 12956 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12957 kvm_apic_init_sipi_allowed(vcpu)) 12958 return true; 12959 12960 if (vcpu->arch.pv.pv_unhalted) 12961 return true; 12962 12963 if (kvm_is_exception_pending(vcpu)) 12964 return true; 12965 12966 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12967 (vcpu->arch.nmi_pending && 12968 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12969 return true; 12970 12971 #ifdef CONFIG_KVM_SMM 12972 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12973 (vcpu->arch.smi_pending && 12974 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12975 return true; 12976 #endif 12977 12978 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 12979 return true; 12980 12981 if (kvm_arch_interrupt_allowed(vcpu) && 12982 (kvm_cpu_has_interrupt(vcpu) || 12983 kvm_guest_apic_has_interrupt(vcpu))) 12984 return true; 12985 12986 if (kvm_hv_has_stimer_pending(vcpu)) 12987 return true; 12988 12989 if (is_guest_mode(vcpu) && 12990 kvm_x86_ops.nested_ops->has_events && 12991 kvm_x86_ops.nested_ops->has_events(vcpu)) 12992 return true; 12993 12994 if (kvm_xen_has_pending_events(vcpu)) 12995 return true; 12996 12997 return false; 12998 } 12999 13000 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 13001 { 13002 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 13003 } 13004 13005 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 13006 { 13007 if (kvm_vcpu_apicv_active(vcpu) && 13008 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 13009 return true; 13010 13011 return false; 13012 } 13013 13014 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 13015 { 13016 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 13017 return true; 13018 13019 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13020 #ifdef CONFIG_KVM_SMM 13021 kvm_test_request(KVM_REQ_SMI, vcpu) || 13022 #endif 13023 kvm_test_request(KVM_REQ_EVENT, vcpu)) 13024 return true; 13025 13026 return kvm_arch_dy_has_pending_interrupt(vcpu); 13027 } 13028 13029 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13030 { 13031 if (vcpu->arch.guest_state_protected) 13032 return true; 13033 13034 if (vcpu != kvm_get_running_vcpu()) 13035 return vcpu->arch.preempted_in_kernel; 13036 13037 return static_call(kvm_x86_get_cpl)(vcpu) == 0; 13038 } 13039 13040 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13041 { 13042 return kvm_rip_read(vcpu); 13043 } 13044 13045 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13046 { 13047 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13048 } 13049 13050 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13051 { 13052 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 13053 } 13054 13055 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13056 { 13057 /* Can't read the RIP when guest state is protected, just return 0 */ 13058 if (vcpu->arch.guest_state_protected) 13059 return 0; 13060 13061 if (is_64_bit_mode(vcpu)) 13062 return kvm_rip_read(vcpu); 13063 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13064 kvm_rip_read(vcpu)); 13065 } 13066 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13067 13068 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13069 { 13070 return kvm_get_linear_rip(vcpu) == linear_rip; 13071 } 13072 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13073 13074 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13075 { 13076 unsigned long rflags; 13077 13078 rflags = static_call(kvm_x86_get_rflags)(vcpu); 13079 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13080 rflags &= ~X86_EFLAGS_TF; 13081 return rflags; 13082 } 13083 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13084 13085 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13086 { 13087 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13088 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13089 rflags |= X86_EFLAGS_TF; 13090 static_call(kvm_x86_set_rflags)(vcpu, rflags); 13091 } 13092 13093 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13094 { 13095 __kvm_set_rflags(vcpu, rflags); 13096 kvm_make_request(KVM_REQ_EVENT, vcpu); 13097 } 13098 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13099 13100 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13101 { 13102 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13103 13104 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13105 } 13106 13107 static inline u32 kvm_async_pf_next_probe(u32 key) 13108 { 13109 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13110 } 13111 13112 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13113 { 13114 u32 key = kvm_async_pf_hash_fn(gfn); 13115 13116 while (vcpu->arch.apf.gfns[key] != ~0) 13117 key = kvm_async_pf_next_probe(key); 13118 13119 vcpu->arch.apf.gfns[key] = gfn; 13120 } 13121 13122 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13123 { 13124 int i; 13125 u32 key = kvm_async_pf_hash_fn(gfn); 13126 13127 for (i = 0; i < ASYNC_PF_PER_VCPU && 13128 (vcpu->arch.apf.gfns[key] != gfn && 13129 vcpu->arch.apf.gfns[key] != ~0); i++) 13130 key = kvm_async_pf_next_probe(key); 13131 13132 return key; 13133 } 13134 13135 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13136 { 13137 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13138 } 13139 13140 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13141 { 13142 u32 i, j, k; 13143 13144 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13145 13146 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13147 return; 13148 13149 while (true) { 13150 vcpu->arch.apf.gfns[i] = ~0; 13151 do { 13152 j = kvm_async_pf_next_probe(j); 13153 if (vcpu->arch.apf.gfns[j] == ~0) 13154 return; 13155 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13156 /* 13157 * k lies cyclically in ]i,j] 13158 * | i.k.j | 13159 * |....j i.k.| or |.k..j i...| 13160 */ 13161 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13162 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13163 i = j; 13164 } 13165 } 13166 13167 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13168 { 13169 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13170 13171 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13172 sizeof(reason)); 13173 } 13174 13175 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13176 { 13177 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13178 13179 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13180 &token, offset, sizeof(token)); 13181 } 13182 13183 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13184 { 13185 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13186 u32 val; 13187 13188 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13189 &val, offset, sizeof(val))) 13190 return false; 13191 13192 return !val; 13193 } 13194 13195 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13196 { 13197 13198 if (!kvm_pv_async_pf_enabled(vcpu)) 13199 return false; 13200 13201 if (vcpu->arch.apf.send_user_only && 13202 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13203 return false; 13204 13205 if (is_guest_mode(vcpu)) { 13206 /* 13207 * L1 needs to opt into the special #PF vmexits that are 13208 * used to deliver async page faults. 13209 */ 13210 return vcpu->arch.apf.delivery_as_pf_vmexit; 13211 } else { 13212 /* 13213 * Play it safe in case the guest temporarily disables paging. 13214 * The real mode IDT in particular is unlikely to have a #PF 13215 * exception setup. 13216 */ 13217 return is_paging(vcpu); 13218 } 13219 } 13220 13221 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13222 { 13223 if (unlikely(!lapic_in_kernel(vcpu) || 13224 kvm_event_needs_reinjection(vcpu) || 13225 kvm_is_exception_pending(vcpu))) 13226 return false; 13227 13228 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13229 return false; 13230 13231 /* 13232 * If interrupts are off we cannot even use an artificial 13233 * halt state. 13234 */ 13235 return kvm_arch_interrupt_allowed(vcpu); 13236 } 13237 13238 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13239 struct kvm_async_pf *work) 13240 { 13241 struct x86_exception fault; 13242 13243 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13244 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13245 13246 if (kvm_can_deliver_async_pf(vcpu) && 13247 !apf_put_user_notpresent(vcpu)) { 13248 fault.vector = PF_VECTOR; 13249 fault.error_code_valid = true; 13250 fault.error_code = 0; 13251 fault.nested_page_fault = false; 13252 fault.address = work->arch.token; 13253 fault.async_page_fault = true; 13254 kvm_inject_page_fault(vcpu, &fault); 13255 return true; 13256 } else { 13257 /* 13258 * It is not possible to deliver a paravirtualized asynchronous 13259 * page fault, but putting the guest in an artificial halt state 13260 * can be beneficial nevertheless: if an interrupt arrives, we 13261 * can deliver it timely and perhaps the guest will schedule 13262 * another process. When the instruction that triggered a page 13263 * fault is retried, hopefully the page will be ready in the host. 13264 */ 13265 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13266 return false; 13267 } 13268 } 13269 13270 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13271 struct kvm_async_pf *work) 13272 { 13273 struct kvm_lapic_irq irq = { 13274 .delivery_mode = APIC_DM_FIXED, 13275 .vector = vcpu->arch.apf.vec 13276 }; 13277 13278 if (work->wakeup_all) 13279 work->arch.token = ~0; /* broadcast wakeup */ 13280 else 13281 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13282 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13283 13284 if ((work->wakeup_all || work->notpresent_injected) && 13285 kvm_pv_async_pf_enabled(vcpu) && 13286 !apf_put_user_ready(vcpu, work->arch.token)) { 13287 vcpu->arch.apf.pageready_pending = true; 13288 kvm_apic_set_irq(vcpu, &irq, NULL); 13289 } 13290 13291 vcpu->arch.apf.halted = false; 13292 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13293 } 13294 13295 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13296 { 13297 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13298 if (!vcpu->arch.apf.pageready_pending) 13299 kvm_vcpu_kick(vcpu); 13300 } 13301 13302 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13303 { 13304 if (!kvm_pv_async_pf_enabled(vcpu)) 13305 return true; 13306 else 13307 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13308 } 13309 13310 void kvm_arch_start_assignment(struct kvm *kvm) 13311 { 13312 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13313 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13314 } 13315 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13316 13317 void kvm_arch_end_assignment(struct kvm *kvm) 13318 { 13319 atomic_dec(&kvm->arch.assigned_device_count); 13320 } 13321 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13322 13323 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13324 { 13325 return raw_atomic_read(&kvm->arch.assigned_device_count); 13326 } 13327 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13328 13329 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13330 { 13331 /* 13332 * Non-coherent DMA assignment and de-assignment will affect 13333 * whether KVM honors guest MTRRs and cause changes in memtypes 13334 * in TDP. 13335 * So, pass %true unconditionally to indicate non-coherent DMA was, 13336 * or will be involved, and that zapping SPTEs might be necessary. 13337 */ 13338 if (__kvm_mmu_honors_guest_mtrrs(true)) 13339 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13340 } 13341 13342 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13343 { 13344 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13345 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13346 } 13347 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13348 13349 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13350 { 13351 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13352 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13353 } 13354 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13355 13356 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13357 { 13358 return atomic_read(&kvm->arch.noncoherent_dma_count); 13359 } 13360 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13361 13362 bool kvm_arch_has_irq_bypass(void) 13363 { 13364 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13365 } 13366 13367 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13368 struct irq_bypass_producer *prod) 13369 { 13370 struct kvm_kernel_irqfd *irqfd = 13371 container_of(cons, struct kvm_kernel_irqfd, consumer); 13372 int ret; 13373 13374 irqfd->producer = prod; 13375 kvm_arch_start_assignment(irqfd->kvm); 13376 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13377 prod->irq, irqfd->gsi, 1); 13378 13379 if (ret) 13380 kvm_arch_end_assignment(irqfd->kvm); 13381 13382 return ret; 13383 } 13384 13385 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13386 struct irq_bypass_producer *prod) 13387 { 13388 int ret; 13389 struct kvm_kernel_irqfd *irqfd = 13390 container_of(cons, struct kvm_kernel_irqfd, consumer); 13391 13392 WARN_ON(irqfd->producer != prod); 13393 irqfd->producer = NULL; 13394 13395 /* 13396 * When producer of consumer is unregistered, we change back to 13397 * remapped mode, so we can re-use the current implementation 13398 * when the irq is masked/disabled or the consumer side (KVM 13399 * int this case doesn't want to receive the interrupts. 13400 */ 13401 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13402 if (ret) 13403 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13404 " fails: %d\n", irqfd->consumer.token, ret); 13405 13406 kvm_arch_end_assignment(irqfd->kvm); 13407 } 13408 13409 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13410 uint32_t guest_irq, bool set) 13411 { 13412 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13413 } 13414 13415 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13416 struct kvm_kernel_irq_routing_entry *new) 13417 { 13418 if (new->type != KVM_IRQ_ROUTING_MSI) 13419 return true; 13420 13421 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13422 } 13423 13424 bool kvm_vector_hashing_enabled(void) 13425 { 13426 return vector_hashing; 13427 } 13428 13429 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13430 { 13431 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13432 } 13433 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13434 13435 13436 int kvm_spec_ctrl_test_value(u64 value) 13437 { 13438 /* 13439 * test that setting IA32_SPEC_CTRL to given value 13440 * is allowed by the host processor 13441 */ 13442 13443 u64 saved_value; 13444 unsigned long flags; 13445 int ret = 0; 13446 13447 local_irq_save(flags); 13448 13449 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13450 ret = 1; 13451 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13452 ret = 1; 13453 else 13454 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13455 13456 local_irq_restore(flags); 13457 13458 return ret; 13459 } 13460 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13461 13462 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13463 { 13464 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13465 struct x86_exception fault; 13466 u64 access = error_code & 13467 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13468 13469 if (!(error_code & PFERR_PRESENT_MASK) || 13470 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13471 /* 13472 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13473 * tables probably do not match the TLB. Just proceed 13474 * with the error code that the processor gave. 13475 */ 13476 fault.vector = PF_VECTOR; 13477 fault.error_code_valid = true; 13478 fault.error_code = error_code; 13479 fault.nested_page_fault = false; 13480 fault.address = gva; 13481 fault.async_page_fault = false; 13482 } 13483 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13484 } 13485 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13486 13487 /* 13488 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13489 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13490 * indicates whether exit to userspace is needed. 13491 */ 13492 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13493 struct x86_exception *e) 13494 { 13495 if (r == X86EMUL_PROPAGATE_FAULT) { 13496 if (KVM_BUG_ON(!e, vcpu->kvm)) 13497 return -EIO; 13498 13499 kvm_inject_emulated_page_fault(vcpu, e); 13500 return 1; 13501 } 13502 13503 /* 13504 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13505 * while handling a VMX instruction KVM could've handled the request 13506 * correctly by exiting to userspace and performing I/O but there 13507 * doesn't seem to be a real use-case behind such requests, just return 13508 * KVM_EXIT_INTERNAL_ERROR for now. 13509 */ 13510 kvm_prepare_emulation_failure_exit(vcpu); 13511 13512 return 0; 13513 } 13514 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13515 13516 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13517 { 13518 bool pcid_enabled; 13519 struct x86_exception e; 13520 struct { 13521 u64 pcid; 13522 u64 gla; 13523 } operand; 13524 int r; 13525 13526 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13527 if (r != X86EMUL_CONTINUE) 13528 return kvm_handle_memory_failure(vcpu, r, &e); 13529 13530 if (operand.pcid >> 12 != 0) { 13531 kvm_inject_gp(vcpu, 0); 13532 return 1; 13533 } 13534 13535 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13536 13537 switch (type) { 13538 case INVPCID_TYPE_INDIV_ADDR: 13539 if ((!pcid_enabled && (operand.pcid != 0)) || 13540 is_noncanonical_address(operand.gla, vcpu)) { 13541 kvm_inject_gp(vcpu, 0); 13542 return 1; 13543 } 13544 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13545 return kvm_skip_emulated_instruction(vcpu); 13546 13547 case INVPCID_TYPE_SINGLE_CTXT: 13548 if (!pcid_enabled && (operand.pcid != 0)) { 13549 kvm_inject_gp(vcpu, 0); 13550 return 1; 13551 } 13552 13553 kvm_invalidate_pcid(vcpu, operand.pcid); 13554 return kvm_skip_emulated_instruction(vcpu); 13555 13556 case INVPCID_TYPE_ALL_NON_GLOBAL: 13557 /* 13558 * Currently, KVM doesn't mark global entries in the shadow 13559 * page tables, so a non-global flush just degenerates to a 13560 * global flush. If needed, we could optimize this later by 13561 * keeping track of global entries in shadow page tables. 13562 */ 13563 13564 fallthrough; 13565 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13566 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13567 return kvm_skip_emulated_instruction(vcpu); 13568 13569 default: 13570 kvm_inject_gp(vcpu, 0); 13571 return 1; 13572 } 13573 } 13574 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13575 13576 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13577 { 13578 struct kvm_run *run = vcpu->run; 13579 struct kvm_mmio_fragment *frag; 13580 unsigned int len; 13581 13582 BUG_ON(!vcpu->mmio_needed); 13583 13584 /* Complete previous fragment */ 13585 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13586 len = min(8u, frag->len); 13587 if (!vcpu->mmio_is_write) 13588 memcpy(frag->data, run->mmio.data, len); 13589 13590 if (frag->len <= 8) { 13591 /* Switch to the next fragment. */ 13592 frag++; 13593 vcpu->mmio_cur_fragment++; 13594 } else { 13595 /* Go forward to the next mmio piece. */ 13596 frag->data += len; 13597 frag->gpa += len; 13598 frag->len -= len; 13599 } 13600 13601 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13602 vcpu->mmio_needed = 0; 13603 13604 // VMG change, at this point, we're always done 13605 // RIP has already been advanced 13606 return 1; 13607 } 13608 13609 // More MMIO is needed 13610 run->mmio.phys_addr = frag->gpa; 13611 run->mmio.len = min(8u, frag->len); 13612 run->mmio.is_write = vcpu->mmio_is_write; 13613 if (run->mmio.is_write) 13614 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13615 run->exit_reason = KVM_EXIT_MMIO; 13616 13617 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13618 13619 return 0; 13620 } 13621 13622 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13623 void *data) 13624 { 13625 int handled; 13626 struct kvm_mmio_fragment *frag; 13627 13628 if (!data) 13629 return -EINVAL; 13630 13631 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13632 if (handled == bytes) 13633 return 1; 13634 13635 bytes -= handled; 13636 gpa += handled; 13637 data += handled; 13638 13639 /*TODO: Check if need to increment number of frags */ 13640 frag = vcpu->mmio_fragments; 13641 vcpu->mmio_nr_fragments = 1; 13642 frag->len = bytes; 13643 frag->gpa = gpa; 13644 frag->data = data; 13645 13646 vcpu->mmio_needed = 1; 13647 vcpu->mmio_cur_fragment = 0; 13648 13649 vcpu->run->mmio.phys_addr = gpa; 13650 vcpu->run->mmio.len = min(8u, frag->len); 13651 vcpu->run->mmio.is_write = 1; 13652 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13653 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13654 13655 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13656 13657 return 0; 13658 } 13659 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13660 13661 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13662 void *data) 13663 { 13664 int handled; 13665 struct kvm_mmio_fragment *frag; 13666 13667 if (!data) 13668 return -EINVAL; 13669 13670 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13671 if (handled == bytes) 13672 return 1; 13673 13674 bytes -= handled; 13675 gpa += handled; 13676 data += handled; 13677 13678 /*TODO: Check if need to increment number of frags */ 13679 frag = vcpu->mmio_fragments; 13680 vcpu->mmio_nr_fragments = 1; 13681 frag->len = bytes; 13682 frag->gpa = gpa; 13683 frag->data = data; 13684 13685 vcpu->mmio_needed = 1; 13686 vcpu->mmio_cur_fragment = 0; 13687 13688 vcpu->run->mmio.phys_addr = gpa; 13689 vcpu->run->mmio.len = min(8u, frag->len); 13690 vcpu->run->mmio.is_write = 0; 13691 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13692 13693 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13694 13695 return 0; 13696 } 13697 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13698 13699 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13700 { 13701 vcpu->arch.sev_pio_count -= count; 13702 vcpu->arch.sev_pio_data += count * size; 13703 } 13704 13705 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13706 unsigned int port); 13707 13708 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13709 { 13710 int size = vcpu->arch.pio.size; 13711 int port = vcpu->arch.pio.port; 13712 13713 vcpu->arch.pio.count = 0; 13714 if (vcpu->arch.sev_pio_count) 13715 return kvm_sev_es_outs(vcpu, size, port); 13716 return 1; 13717 } 13718 13719 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13720 unsigned int port) 13721 { 13722 for (;;) { 13723 unsigned int count = 13724 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13725 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13726 13727 /* memcpy done already by emulator_pio_out. */ 13728 advance_sev_es_emulated_pio(vcpu, count, size); 13729 if (!ret) 13730 break; 13731 13732 /* Emulation done by the kernel. */ 13733 if (!vcpu->arch.sev_pio_count) 13734 return 1; 13735 } 13736 13737 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13738 return 0; 13739 } 13740 13741 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13742 unsigned int port); 13743 13744 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13745 { 13746 unsigned count = vcpu->arch.pio.count; 13747 int size = vcpu->arch.pio.size; 13748 int port = vcpu->arch.pio.port; 13749 13750 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13751 advance_sev_es_emulated_pio(vcpu, count, size); 13752 if (vcpu->arch.sev_pio_count) 13753 return kvm_sev_es_ins(vcpu, size, port); 13754 return 1; 13755 } 13756 13757 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13758 unsigned int port) 13759 { 13760 for (;;) { 13761 unsigned int count = 13762 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13763 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13764 break; 13765 13766 /* Emulation done by the kernel. */ 13767 advance_sev_es_emulated_pio(vcpu, count, size); 13768 if (!vcpu->arch.sev_pio_count) 13769 return 1; 13770 } 13771 13772 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13773 return 0; 13774 } 13775 13776 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13777 unsigned int port, void *data, unsigned int count, 13778 int in) 13779 { 13780 vcpu->arch.sev_pio_data = data; 13781 vcpu->arch.sev_pio_count = count; 13782 return in ? kvm_sev_es_ins(vcpu, size, port) 13783 : kvm_sev_es_outs(vcpu, size, port); 13784 } 13785 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13786 13787 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13788 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13789 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13790 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13791 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13792 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13793 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13794 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13795 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13796 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13797 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13798 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13799 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13800 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13801 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13802 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13803 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13804 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13805 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13806 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13807 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13808 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13809 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13810 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13811 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13812 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13813 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13814 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13815 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13816 13817 static int __init kvm_x86_init(void) 13818 { 13819 kvm_mmu_x86_module_init(); 13820 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13821 return 0; 13822 } 13823 module_init(kvm_x86_init); 13824 13825 static void __exit kvm_x86_exit(void) 13826 { 13827 /* 13828 * If module_init() is implemented, module_exit() must also be 13829 * implemented to allow module unload. 13830 */ 13831 } 13832 module_exit(kvm_x86_exit); 13833