1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 #include <linux/entry-kvm.h> 60 #include <linux/suspend.h> 61 62 #include <trace/events/kvm.h> 63 64 #include <asm/debugreg.h> 65 #include <asm/msr.h> 66 #include <asm/desc.h> 67 #include <asm/mce.h> 68 #include <asm/pkru.h> 69 #include <linux/kernel_stat.h> 70 #include <asm/fpu/api.h> 71 #include <asm/fpu/xcr.h> 72 #include <asm/fpu/xstate.h> 73 #include <asm/pvclock.h> 74 #include <asm/div64.h> 75 #include <asm/irq_remapping.h> 76 #include <asm/mshyperv.h> 77 #include <asm/hypervisor.h> 78 #include <asm/tlbflush.h> 79 #include <asm/intel_pt.h> 80 #include <asm/emulate_prefix.h> 81 #include <asm/sgx.h> 82 #include <clocksource/hyperv_timer.h> 83 84 #define CREATE_TRACE_POINTS 85 #include "trace.h" 86 87 #define MAX_IO_MSRS 256 88 #define KVM_MAX_MCE_BANKS 32 89 90 struct kvm_caps kvm_caps __read_mostly = { 91 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 92 }; 93 EXPORT_SYMBOL_GPL(kvm_caps); 94 95 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 96 97 #define emul_to_vcpu(ctxt) \ 98 ((struct kvm_vcpu *)(ctxt)->vcpu) 99 100 /* EFER defaults: 101 * - enable syscall per default because its emulated by KVM 102 * - enable LME and LMA per default on 64 bit KVM 103 */ 104 #ifdef CONFIG_X86_64 105 static 106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 107 #else 108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 109 #endif 110 111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 112 113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 114 115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 116 117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 118 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 119 120 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 121 static void process_nmi(struct kvm_vcpu *vcpu); 122 static void process_smi(struct kvm_vcpu *vcpu); 123 static void enter_smm(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 struct kvm_x86_ops kvm_x86_ops __read_mostly; 133 134 #define KVM_X86_OP(func) \ 135 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 136 *(((struct kvm_x86_ops *)0)->func)); 137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 139 #include <asm/kvm-x86-ops.h> 140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 142 143 static bool __read_mostly ignore_msrs = 0; 144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 145 146 bool __read_mostly report_ignored_msrs = true; 147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 148 EXPORT_SYMBOL_GPL(report_ignored_msrs); 149 150 unsigned int min_timer_period_us = 200; 151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 152 153 static bool __read_mostly kvmclock_periodic_sync = true; 154 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 155 156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 157 static u32 __read_mostly tsc_tolerance_ppm = 250; 158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 159 160 /* 161 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 162 * adaptive tuning starting from default advancement of 1000ns. '0' disables 163 * advancement entirely. Any other value is used as-is and disables adaptive 164 * tuning, i.e. allows privileged userspace to set an exact advancement time. 165 */ 166 static int __read_mostly lapic_timer_advance_ns = -1; 167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 168 169 static bool __read_mostly vector_hashing = true; 170 module_param(vector_hashing, bool, S_IRUGO); 171 172 bool __read_mostly enable_vmware_backdoor = false; 173 module_param(enable_vmware_backdoor, bool, S_IRUGO); 174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 175 176 /* 177 * Flags to manipulate forced emulation behavior (any non-zero value will 178 * enable forced emulation). 179 */ 180 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 181 static int __read_mostly force_emulation_prefix; 182 module_param(force_emulation_prefix, int, 0644); 183 184 int __read_mostly pi_inject_timer = -1; 185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 186 187 /* Enable/disable PMU virtualization */ 188 bool __read_mostly enable_pmu = true; 189 EXPORT_SYMBOL_GPL(enable_pmu); 190 module_param(enable_pmu, bool, 0444); 191 192 bool __read_mostly eager_page_split = true; 193 module_param(eager_page_split, bool, 0644); 194 195 /* 196 * Restoring the host value for MSRs that are only consumed when running in 197 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 198 * returns to userspace, i.e. the kernel can run with the guest's value. 199 */ 200 #define KVM_MAX_NR_USER_RETURN_MSRS 16 201 202 struct kvm_user_return_msrs { 203 struct user_return_notifier urn; 204 bool registered; 205 struct kvm_user_return_msr_values { 206 u64 host; 207 u64 curr; 208 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 209 }; 210 211 u32 __read_mostly kvm_nr_uret_msrs; 212 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 213 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 214 static struct kvm_user_return_msrs __percpu *user_return_msrs; 215 216 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 217 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 218 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 219 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 220 221 u64 __read_mostly host_efer; 222 EXPORT_SYMBOL_GPL(host_efer); 223 224 bool __read_mostly allow_smaller_maxphyaddr = 0; 225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 226 227 bool __read_mostly enable_apicv = true; 228 EXPORT_SYMBOL_GPL(enable_apicv); 229 230 u64 __read_mostly host_xss; 231 EXPORT_SYMBOL_GPL(host_xss); 232 233 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 234 KVM_GENERIC_VM_STATS(), 235 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 236 STATS_DESC_COUNTER(VM, mmu_pte_write), 237 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 238 STATS_DESC_COUNTER(VM, mmu_flooded), 239 STATS_DESC_COUNTER(VM, mmu_recycled), 240 STATS_DESC_COUNTER(VM, mmu_cache_miss), 241 STATS_DESC_ICOUNTER(VM, mmu_unsync), 242 STATS_DESC_ICOUNTER(VM, pages_4k), 243 STATS_DESC_ICOUNTER(VM, pages_2m), 244 STATS_DESC_ICOUNTER(VM, pages_1g), 245 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 246 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 247 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 248 }; 249 250 const struct kvm_stats_header kvm_vm_stats_header = { 251 .name_size = KVM_STATS_NAME_SIZE, 252 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 253 .id_offset = sizeof(struct kvm_stats_header), 254 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 255 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 256 sizeof(kvm_vm_stats_desc), 257 }; 258 259 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 260 KVM_GENERIC_VCPU_STATS(), 261 STATS_DESC_COUNTER(VCPU, pf_taken), 262 STATS_DESC_COUNTER(VCPU, pf_fixed), 263 STATS_DESC_COUNTER(VCPU, pf_emulate), 264 STATS_DESC_COUNTER(VCPU, pf_spurious), 265 STATS_DESC_COUNTER(VCPU, pf_fast), 266 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 267 STATS_DESC_COUNTER(VCPU, pf_guest), 268 STATS_DESC_COUNTER(VCPU, tlb_flush), 269 STATS_DESC_COUNTER(VCPU, invlpg), 270 STATS_DESC_COUNTER(VCPU, exits), 271 STATS_DESC_COUNTER(VCPU, io_exits), 272 STATS_DESC_COUNTER(VCPU, mmio_exits), 273 STATS_DESC_COUNTER(VCPU, signal_exits), 274 STATS_DESC_COUNTER(VCPU, irq_window_exits), 275 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 276 STATS_DESC_COUNTER(VCPU, l1d_flush), 277 STATS_DESC_COUNTER(VCPU, halt_exits), 278 STATS_DESC_COUNTER(VCPU, request_irq_exits), 279 STATS_DESC_COUNTER(VCPU, irq_exits), 280 STATS_DESC_COUNTER(VCPU, host_state_reload), 281 STATS_DESC_COUNTER(VCPU, fpu_reload), 282 STATS_DESC_COUNTER(VCPU, insn_emulation), 283 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 284 STATS_DESC_COUNTER(VCPU, hypercalls), 285 STATS_DESC_COUNTER(VCPU, irq_injections), 286 STATS_DESC_COUNTER(VCPU, nmi_injections), 287 STATS_DESC_COUNTER(VCPU, req_event), 288 STATS_DESC_COUNTER(VCPU, nested_run), 289 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 290 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 291 STATS_DESC_COUNTER(VCPU, preemption_reported), 292 STATS_DESC_COUNTER(VCPU, preemption_other), 293 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 294 STATS_DESC_COUNTER(VCPU, notify_window_exits), 295 }; 296 297 const struct kvm_stats_header kvm_vcpu_stats_header = { 298 .name_size = KVM_STATS_NAME_SIZE, 299 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 300 .id_offset = sizeof(struct kvm_stats_header), 301 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 302 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 303 sizeof(kvm_vcpu_stats_desc), 304 }; 305 306 u64 __read_mostly host_xcr0; 307 308 static struct kmem_cache *x86_emulator_cache; 309 310 /* 311 * When called, it means the previous get/set msr reached an invalid msr. 312 * Return true if we want to ignore/silent this failed msr access. 313 */ 314 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 315 { 316 const char *op = write ? "wrmsr" : "rdmsr"; 317 318 if (ignore_msrs) { 319 if (report_ignored_msrs) 320 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 321 op, msr, data); 322 /* Mask the error */ 323 return true; 324 } else { 325 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 326 op, msr, data); 327 return false; 328 } 329 } 330 331 static struct kmem_cache *kvm_alloc_emulator_cache(void) 332 { 333 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 334 unsigned int size = sizeof(struct x86_emulate_ctxt); 335 336 return kmem_cache_create_usercopy("x86_emulator", size, 337 __alignof__(struct x86_emulate_ctxt), 338 SLAB_ACCOUNT, useroffset, 339 size - useroffset, NULL); 340 } 341 342 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 343 344 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 345 { 346 int i; 347 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 348 vcpu->arch.apf.gfns[i] = ~0; 349 } 350 351 static void kvm_on_user_return(struct user_return_notifier *urn) 352 { 353 unsigned slot; 354 struct kvm_user_return_msrs *msrs 355 = container_of(urn, struct kvm_user_return_msrs, urn); 356 struct kvm_user_return_msr_values *values; 357 unsigned long flags; 358 359 /* 360 * Disabling irqs at this point since the following code could be 361 * interrupted and executed through kvm_arch_hardware_disable() 362 */ 363 local_irq_save(flags); 364 if (msrs->registered) { 365 msrs->registered = false; 366 user_return_notifier_unregister(urn); 367 } 368 local_irq_restore(flags); 369 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 370 values = &msrs->values[slot]; 371 if (values->host != values->curr) { 372 wrmsrl(kvm_uret_msrs_list[slot], values->host); 373 values->curr = values->host; 374 } 375 } 376 } 377 378 static int kvm_probe_user_return_msr(u32 msr) 379 { 380 u64 val; 381 int ret; 382 383 preempt_disable(); 384 ret = rdmsrl_safe(msr, &val); 385 if (ret) 386 goto out; 387 ret = wrmsrl_safe(msr, val); 388 out: 389 preempt_enable(); 390 return ret; 391 } 392 393 int kvm_add_user_return_msr(u32 msr) 394 { 395 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 396 397 if (kvm_probe_user_return_msr(msr)) 398 return -1; 399 400 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 401 return kvm_nr_uret_msrs++; 402 } 403 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 404 405 int kvm_find_user_return_msr(u32 msr) 406 { 407 int i; 408 409 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 410 if (kvm_uret_msrs_list[i] == msr) 411 return i; 412 } 413 return -1; 414 } 415 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 416 417 static void kvm_user_return_msr_cpu_online(void) 418 { 419 unsigned int cpu = smp_processor_id(); 420 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 421 u64 value; 422 int i; 423 424 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 425 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 426 msrs->values[i].host = value; 427 msrs->values[i].curr = value; 428 } 429 } 430 431 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 432 { 433 unsigned int cpu = smp_processor_id(); 434 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 435 int err; 436 437 value = (value & mask) | (msrs->values[slot].host & ~mask); 438 if (value == msrs->values[slot].curr) 439 return 0; 440 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 441 if (err) 442 return 1; 443 444 msrs->values[slot].curr = value; 445 if (!msrs->registered) { 446 msrs->urn.on_user_return = kvm_on_user_return; 447 user_return_notifier_register(&msrs->urn); 448 msrs->registered = true; 449 } 450 return 0; 451 } 452 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 453 454 static void drop_user_return_notifiers(void) 455 { 456 unsigned int cpu = smp_processor_id(); 457 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 458 459 if (msrs->registered) 460 kvm_on_user_return(&msrs->urn); 461 } 462 463 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 464 { 465 return vcpu->arch.apic_base; 466 } 467 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 468 469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 470 { 471 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 472 } 473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 474 475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 476 { 477 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 478 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 479 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 480 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 481 482 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 483 return 1; 484 if (!msr_info->host_initiated) { 485 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 486 return 1; 487 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 488 return 1; 489 } 490 491 kvm_lapic_set_base(vcpu, msr_info->data); 492 kvm_recalculate_apic_map(vcpu->kvm); 493 return 0; 494 } 495 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 496 497 /* 498 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 499 * 500 * Hardware virtualization extension instructions may fault if a reboot turns 501 * off virtualization while processes are running. Usually after catching the 502 * fault we just panic; during reboot instead the instruction is ignored. 503 */ 504 noinstr void kvm_spurious_fault(void) 505 { 506 /* Fault while not rebooting. We want the trace. */ 507 BUG_ON(!kvm_rebooting); 508 } 509 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 510 511 #define EXCPT_BENIGN 0 512 #define EXCPT_CONTRIBUTORY 1 513 #define EXCPT_PF 2 514 515 static int exception_class(int vector) 516 { 517 switch (vector) { 518 case PF_VECTOR: 519 return EXCPT_PF; 520 case DE_VECTOR: 521 case TS_VECTOR: 522 case NP_VECTOR: 523 case SS_VECTOR: 524 case GP_VECTOR: 525 return EXCPT_CONTRIBUTORY; 526 default: 527 break; 528 } 529 return EXCPT_BENIGN; 530 } 531 532 #define EXCPT_FAULT 0 533 #define EXCPT_TRAP 1 534 #define EXCPT_ABORT 2 535 #define EXCPT_INTERRUPT 3 536 #define EXCPT_DB 4 537 538 static int exception_type(int vector) 539 { 540 unsigned int mask; 541 542 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 543 return EXCPT_INTERRUPT; 544 545 mask = 1 << vector; 546 547 /* 548 * #DBs can be trap-like or fault-like, the caller must check other CPU 549 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 550 */ 551 if (mask & (1 << DB_VECTOR)) 552 return EXCPT_DB; 553 554 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 555 return EXCPT_TRAP; 556 557 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 558 return EXCPT_ABORT; 559 560 /* Reserved exceptions will result in fault */ 561 return EXCPT_FAULT; 562 } 563 564 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 565 struct kvm_queued_exception *ex) 566 { 567 if (!ex->has_payload) 568 return; 569 570 switch (ex->vector) { 571 case DB_VECTOR: 572 /* 573 * "Certain debug exceptions may clear bit 0-3. The 574 * remaining contents of the DR6 register are never 575 * cleared by the processor". 576 */ 577 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 578 /* 579 * In order to reflect the #DB exception payload in guest 580 * dr6, three components need to be considered: active low 581 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 582 * DR6_BS and DR6_BT) 583 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 584 * In the target guest dr6: 585 * FIXED_1 bits should always be set. 586 * Active low bits should be cleared if 1-setting in payload. 587 * Active high bits should be set if 1-setting in payload. 588 * 589 * Note, the payload is compatible with the pending debug 590 * exceptions/exit qualification under VMX, that active_low bits 591 * are active high in payload. 592 * So they need to be flipped for DR6. 593 */ 594 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 595 vcpu->arch.dr6 |= ex->payload; 596 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 597 598 /* 599 * The #DB payload is defined as compatible with the 'pending 600 * debug exceptions' field under VMX, not DR6. While bit 12 is 601 * defined in the 'pending debug exceptions' field (enabled 602 * breakpoint), it is reserved and must be zero in DR6. 603 */ 604 vcpu->arch.dr6 &= ~BIT(12); 605 break; 606 case PF_VECTOR: 607 vcpu->arch.cr2 = ex->payload; 608 break; 609 } 610 611 ex->has_payload = false; 612 ex->payload = 0; 613 } 614 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 615 616 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 617 bool has_error_code, u32 error_code, 618 bool has_payload, unsigned long payload) 619 { 620 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 621 622 ex->vector = vector; 623 ex->injected = false; 624 ex->pending = true; 625 ex->has_error_code = has_error_code; 626 ex->error_code = error_code; 627 ex->has_payload = has_payload; 628 ex->payload = payload; 629 } 630 631 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 632 unsigned nr, bool has_error, u32 error_code, 633 bool has_payload, unsigned long payload, bool reinject) 634 { 635 u32 prev_nr; 636 int class1, class2; 637 638 kvm_make_request(KVM_REQ_EVENT, vcpu); 639 640 /* 641 * If the exception is destined for L2 and isn't being reinjected, 642 * morph it to a VM-Exit if L1 wants to intercept the exception. A 643 * previously injected exception is not checked because it was checked 644 * when it was original queued, and re-checking is incorrect if _L1_ 645 * injected the exception, in which case it's exempt from interception. 646 */ 647 if (!reinject && is_guest_mode(vcpu) && 648 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 649 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 650 has_payload, payload); 651 return; 652 } 653 654 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 655 queue: 656 if (reinject) { 657 /* 658 * On VM-Entry, an exception can be pending if and only 659 * if event injection was blocked by nested_run_pending. 660 * In that case, however, vcpu_enter_guest() requests an 661 * immediate exit, and the guest shouldn't proceed far 662 * enough to need reinjection. 663 */ 664 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 665 vcpu->arch.exception.injected = true; 666 if (WARN_ON_ONCE(has_payload)) { 667 /* 668 * A reinjected event has already 669 * delivered its payload. 670 */ 671 has_payload = false; 672 payload = 0; 673 } 674 } else { 675 vcpu->arch.exception.pending = true; 676 vcpu->arch.exception.injected = false; 677 } 678 vcpu->arch.exception.has_error_code = has_error; 679 vcpu->arch.exception.vector = nr; 680 vcpu->arch.exception.error_code = error_code; 681 vcpu->arch.exception.has_payload = has_payload; 682 vcpu->arch.exception.payload = payload; 683 if (!is_guest_mode(vcpu)) 684 kvm_deliver_exception_payload(vcpu, 685 &vcpu->arch.exception); 686 return; 687 } 688 689 /* to check exception */ 690 prev_nr = vcpu->arch.exception.vector; 691 if (prev_nr == DF_VECTOR) { 692 /* triple fault -> shutdown */ 693 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 694 return; 695 } 696 class1 = exception_class(prev_nr); 697 class2 = exception_class(nr); 698 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 699 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 700 /* 701 * Synthesize #DF. Clear the previously injected or pending 702 * exception so as not to incorrectly trigger shutdown. 703 */ 704 vcpu->arch.exception.injected = false; 705 vcpu->arch.exception.pending = false; 706 707 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 708 } else { 709 /* replace previous exception with a new one in a hope 710 that instruction re-execution will regenerate lost 711 exception */ 712 goto queue; 713 } 714 } 715 716 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 717 { 718 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 719 } 720 EXPORT_SYMBOL_GPL(kvm_queue_exception); 721 722 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 723 { 724 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 725 } 726 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 727 728 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 729 unsigned long payload) 730 { 731 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 732 } 733 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 734 735 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 736 u32 error_code, unsigned long payload) 737 { 738 kvm_multiple_exception(vcpu, nr, true, error_code, 739 true, payload, false); 740 } 741 742 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 743 { 744 if (err) 745 kvm_inject_gp(vcpu, 0); 746 else 747 return kvm_skip_emulated_instruction(vcpu); 748 749 return 1; 750 } 751 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 752 753 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 754 { 755 if (err) { 756 kvm_inject_gp(vcpu, 0); 757 return 1; 758 } 759 760 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 761 EMULTYPE_COMPLETE_USER_EXIT); 762 } 763 764 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 765 { 766 ++vcpu->stat.pf_guest; 767 768 /* 769 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 770 * whether or not L1 wants to intercept "regular" #PF. 771 */ 772 if (is_guest_mode(vcpu) && fault->async_page_fault) 773 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 774 true, fault->error_code, 775 true, fault->address); 776 else 777 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 778 fault->address); 779 } 780 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 781 782 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 783 struct x86_exception *fault) 784 { 785 struct kvm_mmu *fault_mmu; 786 WARN_ON_ONCE(fault->vector != PF_VECTOR); 787 788 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 789 vcpu->arch.walk_mmu; 790 791 /* 792 * Invalidate the TLB entry for the faulting address, if it exists, 793 * else the access will fault indefinitely (and to emulate hardware). 794 */ 795 if ((fault->error_code & PFERR_PRESENT_MASK) && 796 !(fault->error_code & PFERR_RSVD_MASK)) 797 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 798 fault_mmu->root.hpa); 799 800 fault_mmu->inject_page_fault(vcpu, fault); 801 } 802 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 803 804 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 805 { 806 atomic_inc(&vcpu->arch.nmi_queued); 807 kvm_make_request(KVM_REQ_NMI, vcpu); 808 } 809 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 810 811 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 812 { 813 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 814 } 815 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 816 817 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 818 { 819 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 820 } 821 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 822 823 /* 824 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 825 * a #GP and return false. 826 */ 827 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 828 { 829 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 830 return true; 831 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 832 return false; 833 } 834 EXPORT_SYMBOL_GPL(kvm_require_cpl); 835 836 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 837 { 838 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 839 return true; 840 841 kvm_queue_exception(vcpu, UD_VECTOR); 842 return false; 843 } 844 EXPORT_SYMBOL_GPL(kvm_require_dr); 845 846 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 847 { 848 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 849 } 850 851 /* 852 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 853 */ 854 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 855 { 856 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 857 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 858 gpa_t real_gpa; 859 int i; 860 int ret; 861 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 862 863 /* 864 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 865 * to an L1 GPA. 866 */ 867 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 868 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 869 if (real_gpa == INVALID_GPA) 870 return 0; 871 872 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 873 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 874 cr3 & GENMASK(11, 5), sizeof(pdpte)); 875 if (ret < 0) 876 return 0; 877 878 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 879 if ((pdpte[i] & PT_PRESENT_MASK) && 880 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 881 return 0; 882 } 883 } 884 885 /* 886 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 887 * Shadow page roots need to be reconstructed instead. 888 */ 889 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 890 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 891 892 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 893 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 894 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 895 vcpu->arch.pdptrs_from_userspace = false; 896 897 return 1; 898 } 899 EXPORT_SYMBOL_GPL(load_pdptrs); 900 901 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 902 { 903 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 904 kvm_clear_async_pf_completion_queue(vcpu); 905 kvm_async_pf_hash_reset(vcpu); 906 907 /* 908 * Clearing CR0.PG is defined to flush the TLB from the guest's 909 * perspective. 910 */ 911 if (!(cr0 & X86_CR0_PG)) 912 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 913 } 914 915 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 916 kvm_mmu_reset_context(vcpu); 917 918 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 919 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 920 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 921 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 922 } 923 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 924 925 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 926 { 927 unsigned long old_cr0 = kvm_read_cr0(vcpu); 928 929 cr0 |= X86_CR0_ET; 930 931 #ifdef CONFIG_X86_64 932 if (cr0 & 0xffffffff00000000UL) 933 return 1; 934 #endif 935 936 cr0 &= ~CR0_RESERVED_BITS; 937 938 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 939 return 1; 940 941 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 942 return 1; 943 944 #ifdef CONFIG_X86_64 945 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 946 (cr0 & X86_CR0_PG)) { 947 int cs_db, cs_l; 948 949 if (!is_pae(vcpu)) 950 return 1; 951 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 952 if (cs_l) 953 return 1; 954 } 955 #endif 956 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 957 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 958 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 959 return 1; 960 961 if (!(cr0 & X86_CR0_PG) && 962 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 963 return 1; 964 965 static_call(kvm_x86_set_cr0)(vcpu, cr0); 966 967 kvm_post_set_cr0(vcpu, old_cr0, cr0); 968 969 return 0; 970 } 971 EXPORT_SYMBOL_GPL(kvm_set_cr0); 972 973 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 974 { 975 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 976 } 977 EXPORT_SYMBOL_GPL(kvm_lmsw); 978 979 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 980 { 981 if (vcpu->arch.guest_state_protected) 982 return; 983 984 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 985 986 if (vcpu->arch.xcr0 != host_xcr0) 987 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 988 989 if (vcpu->arch.xsaves_enabled && 990 vcpu->arch.ia32_xss != host_xss) 991 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 992 } 993 994 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 995 if (static_cpu_has(X86_FEATURE_PKU) && 996 vcpu->arch.pkru != vcpu->arch.host_pkru && 997 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 998 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 999 write_pkru(vcpu->arch.pkru); 1000 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1001 } 1002 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1003 1004 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1005 { 1006 if (vcpu->arch.guest_state_protected) 1007 return; 1008 1009 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1010 if (static_cpu_has(X86_FEATURE_PKU) && 1011 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1012 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1013 vcpu->arch.pkru = rdpkru(); 1014 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1015 write_pkru(vcpu->arch.host_pkru); 1016 } 1017 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1018 1019 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1020 1021 if (vcpu->arch.xcr0 != host_xcr0) 1022 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1023 1024 if (vcpu->arch.xsaves_enabled && 1025 vcpu->arch.ia32_xss != host_xss) 1026 wrmsrl(MSR_IA32_XSS, host_xss); 1027 } 1028 1029 } 1030 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1031 1032 #ifdef CONFIG_X86_64 1033 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1034 { 1035 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1036 } 1037 #endif 1038 1039 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1040 { 1041 u64 xcr0 = xcr; 1042 u64 old_xcr0 = vcpu->arch.xcr0; 1043 u64 valid_bits; 1044 1045 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1046 if (index != XCR_XFEATURE_ENABLED_MASK) 1047 return 1; 1048 if (!(xcr0 & XFEATURE_MASK_FP)) 1049 return 1; 1050 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1051 return 1; 1052 1053 /* 1054 * Do not allow the guest to set bits that we do not support 1055 * saving. However, xcr0 bit 0 is always set, even if the 1056 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1057 */ 1058 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1059 if (xcr0 & ~valid_bits) 1060 return 1; 1061 1062 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1063 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1064 return 1; 1065 1066 if (xcr0 & XFEATURE_MASK_AVX512) { 1067 if (!(xcr0 & XFEATURE_MASK_YMM)) 1068 return 1; 1069 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1070 return 1; 1071 } 1072 1073 if ((xcr0 & XFEATURE_MASK_XTILE) && 1074 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1075 return 1; 1076 1077 vcpu->arch.xcr0 = xcr0; 1078 1079 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1080 kvm_update_cpuid_runtime(vcpu); 1081 return 0; 1082 } 1083 1084 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1085 { 1086 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1087 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1088 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1089 kvm_inject_gp(vcpu, 0); 1090 return 1; 1091 } 1092 1093 return kvm_skip_emulated_instruction(vcpu); 1094 } 1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1096 1097 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1098 { 1099 if (cr4 & cr4_reserved_bits) 1100 return false; 1101 1102 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1103 return false; 1104 1105 return true; 1106 } 1107 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1108 1109 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1110 { 1111 return __kvm_is_valid_cr4(vcpu, cr4) && 1112 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1113 } 1114 1115 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1116 { 1117 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1118 kvm_mmu_reset_context(vcpu); 1119 1120 /* 1121 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1122 * according to the SDM; however, stale prev_roots could be reused 1123 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1124 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1125 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1126 * so fall through. 1127 */ 1128 if (!tdp_enabled && 1129 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1130 kvm_mmu_unload(vcpu); 1131 1132 /* 1133 * The TLB has to be flushed for all PCIDs if any of the following 1134 * (architecturally required) changes happen: 1135 * - CR4.PCIDE is changed from 1 to 0 1136 * - CR4.PGE is toggled 1137 * 1138 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1139 */ 1140 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1141 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1142 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1143 1144 /* 1145 * The TLB has to be flushed for the current PCID if any of the 1146 * following (architecturally required) changes happen: 1147 * - CR4.SMEP is changed from 0 to 1 1148 * - CR4.PAE is toggled 1149 */ 1150 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1151 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1152 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1153 1154 } 1155 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1156 1157 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1158 { 1159 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1160 1161 if (!kvm_is_valid_cr4(vcpu, cr4)) 1162 return 1; 1163 1164 if (is_long_mode(vcpu)) { 1165 if (!(cr4 & X86_CR4_PAE)) 1166 return 1; 1167 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1168 return 1; 1169 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1170 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1171 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1172 return 1; 1173 1174 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1175 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1176 return 1; 1177 1178 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1179 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1180 return 1; 1181 } 1182 1183 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1184 1185 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1186 1187 return 0; 1188 } 1189 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1190 1191 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1192 { 1193 struct kvm_mmu *mmu = vcpu->arch.mmu; 1194 unsigned long roots_to_free = 0; 1195 int i; 1196 1197 /* 1198 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1199 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1200 * also via the emulator. KVM's TDP page tables are not in the scope of 1201 * the invalidation, but the guest's TLB entries need to be flushed as 1202 * the CPU may have cached entries in its TLB for the target PCID. 1203 */ 1204 if (unlikely(tdp_enabled)) { 1205 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1206 return; 1207 } 1208 1209 /* 1210 * If neither the current CR3 nor any of the prev_roots use the given 1211 * PCID, then nothing needs to be done here because a resync will 1212 * happen anyway before switching to any other CR3. 1213 */ 1214 if (kvm_get_active_pcid(vcpu) == pcid) { 1215 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1216 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1217 } 1218 1219 /* 1220 * If PCID is disabled, there is no need to free prev_roots even if the 1221 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1222 * with PCIDE=0. 1223 */ 1224 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1225 return; 1226 1227 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1228 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1229 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1230 1231 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1232 } 1233 1234 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1235 { 1236 bool skip_tlb_flush = false; 1237 unsigned long pcid = 0; 1238 #ifdef CONFIG_X86_64 1239 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1240 1241 if (pcid_enabled) { 1242 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1243 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1244 pcid = cr3 & X86_CR3_PCID_MASK; 1245 } 1246 #endif 1247 1248 /* PDPTRs are always reloaded for PAE paging. */ 1249 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1250 goto handle_tlb_flush; 1251 1252 /* 1253 * Do not condition the GPA check on long mode, this helper is used to 1254 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1255 * the current vCPU mode is accurate. 1256 */ 1257 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1258 return 1; 1259 1260 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1261 return 1; 1262 1263 if (cr3 != kvm_read_cr3(vcpu)) 1264 kvm_mmu_new_pgd(vcpu, cr3); 1265 1266 vcpu->arch.cr3 = cr3; 1267 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1268 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1269 1270 handle_tlb_flush: 1271 /* 1272 * A load of CR3 that flushes the TLB flushes only the current PCID, 1273 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1274 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1275 * and it's impossible to use a non-zero PCID when PCID is disabled, 1276 * i.e. only PCID=0 can be relevant. 1277 */ 1278 if (!skip_tlb_flush) 1279 kvm_invalidate_pcid(vcpu, pcid); 1280 1281 return 0; 1282 } 1283 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1284 1285 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1286 { 1287 if (cr8 & CR8_RESERVED_BITS) 1288 return 1; 1289 if (lapic_in_kernel(vcpu)) 1290 kvm_lapic_set_tpr(vcpu, cr8); 1291 else 1292 vcpu->arch.cr8 = cr8; 1293 return 0; 1294 } 1295 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1296 1297 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1298 { 1299 if (lapic_in_kernel(vcpu)) 1300 return kvm_lapic_get_cr8(vcpu); 1301 else 1302 return vcpu->arch.cr8; 1303 } 1304 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1305 1306 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1307 { 1308 int i; 1309 1310 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1311 for (i = 0; i < KVM_NR_DB_REGS; i++) 1312 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1313 } 1314 } 1315 1316 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1317 { 1318 unsigned long dr7; 1319 1320 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1321 dr7 = vcpu->arch.guest_debug_dr7; 1322 else 1323 dr7 = vcpu->arch.dr7; 1324 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1325 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1326 if (dr7 & DR7_BP_EN_MASK) 1327 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1328 } 1329 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1330 1331 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1332 { 1333 u64 fixed = DR6_FIXED_1; 1334 1335 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1336 fixed |= DR6_RTM; 1337 1338 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1339 fixed |= DR6_BUS_LOCK; 1340 return fixed; 1341 } 1342 1343 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1344 { 1345 size_t size = ARRAY_SIZE(vcpu->arch.db); 1346 1347 switch (dr) { 1348 case 0 ... 3: 1349 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1350 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1351 vcpu->arch.eff_db[dr] = val; 1352 break; 1353 case 4: 1354 case 6: 1355 if (!kvm_dr6_valid(val)) 1356 return 1; /* #GP */ 1357 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1358 break; 1359 case 5: 1360 default: /* 7 */ 1361 if (!kvm_dr7_valid(val)) 1362 return 1; /* #GP */ 1363 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1364 kvm_update_dr7(vcpu); 1365 break; 1366 } 1367 1368 return 0; 1369 } 1370 EXPORT_SYMBOL_GPL(kvm_set_dr); 1371 1372 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1373 { 1374 size_t size = ARRAY_SIZE(vcpu->arch.db); 1375 1376 switch (dr) { 1377 case 0 ... 3: 1378 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1379 break; 1380 case 4: 1381 case 6: 1382 *val = vcpu->arch.dr6; 1383 break; 1384 case 5: 1385 default: /* 7 */ 1386 *val = vcpu->arch.dr7; 1387 break; 1388 } 1389 } 1390 EXPORT_SYMBOL_GPL(kvm_get_dr); 1391 1392 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1393 { 1394 u32 ecx = kvm_rcx_read(vcpu); 1395 u64 data; 1396 1397 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1398 kvm_inject_gp(vcpu, 0); 1399 return 1; 1400 } 1401 1402 kvm_rax_write(vcpu, (u32)data); 1403 kvm_rdx_write(vcpu, data >> 32); 1404 return kvm_skip_emulated_instruction(vcpu); 1405 } 1406 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1407 1408 /* 1409 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1410 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1411 * 1412 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1413 * extract the supported MSRs from the related const lists. 1414 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1415 * capabilities of the host cpu. This capabilities test skips MSRs that are 1416 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1417 * may depend on host virtualization features rather than host cpu features. 1418 */ 1419 1420 static const u32 msrs_to_save_all[] = { 1421 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1422 MSR_STAR, 1423 #ifdef CONFIG_X86_64 1424 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1425 #endif 1426 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1427 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1428 MSR_IA32_SPEC_CTRL, 1429 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1430 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1431 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1432 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1433 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1434 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1435 MSR_IA32_UMWAIT_CONTROL, 1436 1437 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1438 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1439 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1440 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1441 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1442 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1443 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1444 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1445 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1446 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1447 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1448 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1449 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1450 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1451 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1452 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1453 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1454 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1455 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1456 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1457 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1458 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1459 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1460 1461 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1462 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1463 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1464 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1465 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1466 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1467 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1468 }; 1469 1470 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1471 static unsigned num_msrs_to_save; 1472 1473 static const u32 emulated_msrs_all[] = { 1474 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1475 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1476 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1477 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1478 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1479 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1480 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1481 HV_X64_MSR_RESET, 1482 HV_X64_MSR_VP_INDEX, 1483 HV_X64_MSR_VP_RUNTIME, 1484 HV_X64_MSR_SCONTROL, 1485 HV_X64_MSR_STIMER0_CONFIG, 1486 HV_X64_MSR_VP_ASSIST_PAGE, 1487 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1488 HV_X64_MSR_TSC_EMULATION_STATUS, 1489 HV_X64_MSR_SYNDBG_OPTIONS, 1490 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1491 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1492 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1493 1494 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1495 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1496 1497 MSR_IA32_TSC_ADJUST, 1498 MSR_IA32_TSC_DEADLINE, 1499 MSR_IA32_ARCH_CAPABILITIES, 1500 MSR_IA32_PERF_CAPABILITIES, 1501 MSR_IA32_MISC_ENABLE, 1502 MSR_IA32_MCG_STATUS, 1503 MSR_IA32_MCG_CTL, 1504 MSR_IA32_MCG_EXT_CTL, 1505 MSR_IA32_SMBASE, 1506 MSR_SMI_COUNT, 1507 MSR_PLATFORM_INFO, 1508 MSR_MISC_FEATURES_ENABLES, 1509 MSR_AMD64_VIRT_SPEC_CTRL, 1510 MSR_AMD64_TSC_RATIO, 1511 MSR_IA32_POWER_CTL, 1512 MSR_IA32_UCODE_REV, 1513 1514 /* 1515 * The following list leaves out MSRs whose values are determined 1516 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1517 * We always support the "true" VMX control MSRs, even if the host 1518 * processor does not, so I am putting these registers here rather 1519 * than in msrs_to_save_all. 1520 */ 1521 MSR_IA32_VMX_BASIC, 1522 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1523 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1524 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1525 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1526 MSR_IA32_VMX_MISC, 1527 MSR_IA32_VMX_CR0_FIXED0, 1528 MSR_IA32_VMX_CR4_FIXED0, 1529 MSR_IA32_VMX_VMCS_ENUM, 1530 MSR_IA32_VMX_PROCBASED_CTLS2, 1531 MSR_IA32_VMX_EPT_VPID_CAP, 1532 MSR_IA32_VMX_VMFUNC, 1533 1534 MSR_K7_HWCR, 1535 MSR_KVM_POLL_CONTROL, 1536 }; 1537 1538 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1539 static unsigned num_emulated_msrs; 1540 1541 /* 1542 * List of msr numbers which are used to expose MSR-based features that 1543 * can be used by a hypervisor to validate requested CPU features. 1544 */ 1545 static const u32 msr_based_features_all[] = { 1546 MSR_IA32_VMX_BASIC, 1547 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1548 MSR_IA32_VMX_PINBASED_CTLS, 1549 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1550 MSR_IA32_VMX_PROCBASED_CTLS, 1551 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1552 MSR_IA32_VMX_EXIT_CTLS, 1553 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1554 MSR_IA32_VMX_ENTRY_CTLS, 1555 MSR_IA32_VMX_MISC, 1556 MSR_IA32_VMX_CR0_FIXED0, 1557 MSR_IA32_VMX_CR0_FIXED1, 1558 MSR_IA32_VMX_CR4_FIXED0, 1559 MSR_IA32_VMX_CR4_FIXED1, 1560 MSR_IA32_VMX_VMCS_ENUM, 1561 MSR_IA32_VMX_PROCBASED_CTLS2, 1562 MSR_IA32_VMX_EPT_VPID_CAP, 1563 MSR_IA32_VMX_VMFUNC, 1564 1565 MSR_F10H_DECFG, 1566 MSR_IA32_UCODE_REV, 1567 MSR_IA32_ARCH_CAPABILITIES, 1568 MSR_IA32_PERF_CAPABILITIES, 1569 }; 1570 1571 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1572 static unsigned int num_msr_based_features; 1573 1574 /* 1575 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1576 * does not yet virtualize. These include: 1577 * 10 - MISC_PACKAGE_CTRLS 1578 * 11 - ENERGY_FILTERING_CTL 1579 * 12 - DOITM 1580 * 18 - FB_CLEAR_CTRL 1581 * 21 - XAPIC_DISABLE_STATUS 1582 * 23 - OVERCLOCKING_STATUS 1583 */ 1584 1585 #define KVM_SUPPORTED_ARCH_CAP \ 1586 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1587 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1588 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1589 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1590 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1591 1592 static u64 kvm_get_arch_capabilities(void) 1593 { 1594 u64 data = 0; 1595 1596 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1597 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1598 data &= KVM_SUPPORTED_ARCH_CAP; 1599 } 1600 1601 /* 1602 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1603 * the nested hypervisor runs with NX huge pages. If it is not, 1604 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1605 * L1 guests, so it need not worry about its own (L2) guests. 1606 */ 1607 data |= ARCH_CAP_PSCHANGE_MC_NO; 1608 1609 /* 1610 * If we're doing cache flushes (either "always" or "cond") 1611 * we will do one whenever the guest does a vmlaunch/vmresume. 1612 * If an outer hypervisor is doing the cache flush for us 1613 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1614 * capability to the guest too, and if EPT is disabled we're not 1615 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1616 * require a nested hypervisor to do a flush of its own. 1617 */ 1618 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1619 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1620 1621 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1622 data |= ARCH_CAP_RDCL_NO; 1623 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1624 data |= ARCH_CAP_SSB_NO; 1625 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1626 data |= ARCH_CAP_MDS_NO; 1627 1628 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1629 /* 1630 * If RTM=0 because the kernel has disabled TSX, the host might 1631 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1632 * and therefore knows that there cannot be TAA) but keep 1633 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1634 * and we want to allow migrating those guests to tsx=off hosts. 1635 */ 1636 data &= ~ARCH_CAP_TAA_NO; 1637 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1638 data |= ARCH_CAP_TAA_NO; 1639 } else { 1640 /* 1641 * Nothing to do here; we emulate TSX_CTRL if present on the 1642 * host so the guest can choose between disabling TSX or 1643 * using VERW to clear CPU buffers. 1644 */ 1645 } 1646 1647 return data; 1648 } 1649 1650 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1651 { 1652 switch (msr->index) { 1653 case MSR_IA32_ARCH_CAPABILITIES: 1654 msr->data = kvm_get_arch_capabilities(); 1655 break; 1656 case MSR_IA32_UCODE_REV: 1657 rdmsrl_safe(msr->index, &msr->data); 1658 break; 1659 default: 1660 return static_call(kvm_x86_get_msr_feature)(msr); 1661 } 1662 return 0; 1663 } 1664 1665 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1666 { 1667 struct kvm_msr_entry msr; 1668 int r; 1669 1670 msr.index = index; 1671 r = kvm_get_msr_feature(&msr); 1672 1673 if (r == KVM_MSR_RET_INVALID) { 1674 /* Unconditionally clear the output for simplicity */ 1675 *data = 0; 1676 if (kvm_msr_ignored_check(index, 0, false)) 1677 r = 0; 1678 } 1679 1680 if (r) 1681 return r; 1682 1683 *data = msr.data; 1684 1685 return 0; 1686 } 1687 1688 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1689 { 1690 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1691 return false; 1692 1693 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1694 return false; 1695 1696 if (efer & (EFER_LME | EFER_LMA) && 1697 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1698 return false; 1699 1700 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1701 return false; 1702 1703 return true; 1704 1705 } 1706 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1707 { 1708 if (efer & efer_reserved_bits) 1709 return false; 1710 1711 return __kvm_valid_efer(vcpu, efer); 1712 } 1713 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1714 1715 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1716 { 1717 u64 old_efer = vcpu->arch.efer; 1718 u64 efer = msr_info->data; 1719 int r; 1720 1721 if (efer & efer_reserved_bits) 1722 return 1; 1723 1724 if (!msr_info->host_initiated) { 1725 if (!__kvm_valid_efer(vcpu, efer)) 1726 return 1; 1727 1728 if (is_paging(vcpu) && 1729 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1730 return 1; 1731 } 1732 1733 efer &= ~EFER_LMA; 1734 efer |= vcpu->arch.efer & EFER_LMA; 1735 1736 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1737 if (r) { 1738 WARN_ON(r > 0); 1739 return r; 1740 } 1741 1742 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1743 kvm_mmu_reset_context(vcpu); 1744 1745 return 0; 1746 } 1747 1748 void kvm_enable_efer_bits(u64 mask) 1749 { 1750 efer_reserved_bits &= ~mask; 1751 } 1752 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1753 1754 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1755 { 1756 struct kvm_x86_msr_filter *msr_filter; 1757 struct msr_bitmap_range *ranges; 1758 struct kvm *kvm = vcpu->kvm; 1759 bool allowed; 1760 int idx; 1761 u32 i; 1762 1763 /* x2APIC MSRs do not support filtering. */ 1764 if (index >= 0x800 && index <= 0x8ff) 1765 return true; 1766 1767 idx = srcu_read_lock(&kvm->srcu); 1768 1769 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1770 if (!msr_filter) { 1771 allowed = true; 1772 goto out; 1773 } 1774 1775 allowed = msr_filter->default_allow; 1776 ranges = msr_filter->ranges; 1777 1778 for (i = 0; i < msr_filter->count; i++) { 1779 u32 start = ranges[i].base; 1780 u32 end = start + ranges[i].nmsrs; 1781 u32 flags = ranges[i].flags; 1782 unsigned long *bitmap = ranges[i].bitmap; 1783 1784 if ((index >= start) && (index < end) && (flags & type)) { 1785 allowed = !!test_bit(index - start, bitmap); 1786 break; 1787 } 1788 } 1789 1790 out: 1791 srcu_read_unlock(&kvm->srcu, idx); 1792 1793 return allowed; 1794 } 1795 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1796 1797 /* 1798 * Write @data into the MSR specified by @index. Select MSR specific fault 1799 * checks are bypassed if @host_initiated is %true. 1800 * Returns 0 on success, non-0 otherwise. 1801 * Assumes vcpu_load() was already called. 1802 */ 1803 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1804 bool host_initiated) 1805 { 1806 struct msr_data msr; 1807 1808 switch (index) { 1809 case MSR_FS_BASE: 1810 case MSR_GS_BASE: 1811 case MSR_KERNEL_GS_BASE: 1812 case MSR_CSTAR: 1813 case MSR_LSTAR: 1814 if (is_noncanonical_address(data, vcpu)) 1815 return 1; 1816 break; 1817 case MSR_IA32_SYSENTER_EIP: 1818 case MSR_IA32_SYSENTER_ESP: 1819 /* 1820 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1821 * non-canonical address is written on Intel but not on 1822 * AMD (which ignores the top 32-bits, because it does 1823 * not implement 64-bit SYSENTER). 1824 * 1825 * 64-bit code should hence be able to write a non-canonical 1826 * value on AMD. Making the address canonical ensures that 1827 * vmentry does not fail on Intel after writing a non-canonical 1828 * value, and that something deterministic happens if the guest 1829 * invokes 64-bit SYSENTER. 1830 */ 1831 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1832 break; 1833 case MSR_TSC_AUX: 1834 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1835 return 1; 1836 1837 if (!host_initiated && 1838 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1839 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1840 return 1; 1841 1842 /* 1843 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1844 * incomplete and conflicting architectural behavior. Current 1845 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1846 * reserved and always read as zeros. Enforce Intel's reserved 1847 * bits check if and only if the guest CPU is Intel, and clear 1848 * the bits in all other cases. This ensures cross-vendor 1849 * migration will provide consistent behavior for the guest. 1850 */ 1851 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1852 return 1; 1853 1854 data = (u32)data; 1855 break; 1856 } 1857 1858 msr.data = data; 1859 msr.index = index; 1860 msr.host_initiated = host_initiated; 1861 1862 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1863 } 1864 1865 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1866 u32 index, u64 data, bool host_initiated) 1867 { 1868 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1869 1870 if (ret == KVM_MSR_RET_INVALID) 1871 if (kvm_msr_ignored_check(index, data, true)) 1872 ret = 0; 1873 1874 return ret; 1875 } 1876 1877 /* 1878 * Read the MSR specified by @index into @data. Select MSR specific fault 1879 * checks are bypassed if @host_initiated is %true. 1880 * Returns 0 on success, non-0 otherwise. 1881 * Assumes vcpu_load() was already called. 1882 */ 1883 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1884 bool host_initiated) 1885 { 1886 struct msr_data msr; 1887 int ret; 1888 1889 switch (index) { 1890 case MSR_TSC_AUX: 1891 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1892 return 1; 1893 1894 if (!host_initiated && 1895 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1896 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1897 return 1; 1898 break; 1899 } 1900 1901 msr.index = index; 1902 msr.host_initiated = host_initiated; 1903 1904 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1905 if (!ret) 1906 *data = msr.data; 1907 return ret; 1908 } 1909 1910 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1911 u32 index, u64 *data, bool host_initiated) 1912 { 1913 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1914 1915 if (ret == KVM_MSR_RET_INVALID) { 1916 /* Unconditionally clear *data for simplicity */ 1917 *data = 0; 1918 if (kvm_msr_ignored_check(index, 0, false)) 1919 ret = 0; 1920 } 1921 1922 return ret; 1923 } 1924 1925 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1926 { 1927 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1928 return KVM_MSR_RET_FILTERED; 1929 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1930 } 1931 1932 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1933 { 1934 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1935 return KVM_MSR_RET_FILTERED; 1936 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1937 } 1938 1939 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1940 { 1941 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1942 } 1943 EXPORT_SYMBOL_GPL(kvm_get_msr); 1944 1945 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1946 { 1947 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1948 } 1949 EXPORT_SYMBOL_GPL(kvm_set_msr); 1950 1951 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1952 { 1953 if (!vcpu->run->msr.error) { 1954 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1955 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1956 } 1957 } 1958 1959 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1960 { 1961 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1962 } 1963 1964 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1965 { 1966 complete_userspace_rdmsr(vcpu); 1967 return complete_emulated_msr_access(vcpu); 1968 } 1969 1970 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1971 { 1972 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1973 } 1974 1975 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1976 { 1977 complete_userspace_rdmsr(vcpu); 1978 return complete_fast_msr_access(vcpu); 1979 } 1980 1981 static u64 kvm_msr_reason(int r) 1982 { 1983 switch (r) { 1984 case KVM_MSR_RET_INVALID: 1985 return KVM_MSR_EXIT_REASON_UNKNOWN; 1986 case KVM_MSR_RET_FILTERED: 1987 return KVM_MSR_EXIT_REASON_FILTER; 1988 default: 1989 return KVM_MSR_EXIT_REASON_INVAL; 1990 } 1991 } 1992 1993 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1994 u32 exit_reason, u64 data, 1995 int (*completion)(struct kvm_vcpu *vcpu), 1996 int r) 1997 { 1998 u64 msr_reason = kvm_msr_reason(r); 1999 2000 /* Check if the user wanted to know about this MSR fault */ 2001 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2002 return 0; 2003 2004 vcpu->run->exit_reason = exit_reason; 2005 vcpu->run->msr.error = 0; 2006 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2007 vcpu->run->msr.reason = msr_reason; 2008 vcpu->run->msr.index = index; 2009 vcpu->run->msr.data = data; 2010 vcpu->arch.complete_userspace_io = completion; 2011 2012 return 1; 2013 } 2014 2015 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2016 { 2017 u32 ecx = kvm_rcx_read(vcpu); 2018 u64 data; 2019 int r; 2020 2021 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2022 2023 if (!r) { 2024 trace_kvm_msr_read(ecx, data); 2025 2026 kvm_rax_write(vcpu, data & -1u); 2027 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2028 } else { 2029 /* MSR read failed? See if we should ask user space */ 2030 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2031 complete_fast_rdmsr, r)) 2032 return 0; 2033 trace_kvm_msr_read_ex(ecx); 2034 } 2035 2036 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2037 } 2038 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2039 2040 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2041 { 2042 u32 ecx = kvm_rcx_read(vcpu); 2043 u64 data = kvm_read_edx_eax(vcpu); 2044 int r; 2045 2046 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2047 2048 if (!r) { 2049 trace_kvm_msr_write(ecx, data); 2050 } else { 2051 /* MSR write failed? See if we should ask user space */ 2052 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2053 complete_fast_msr_access, r)) 2054 return 0; 2055 /* Signal all other negative errors to userspace */ 2056 if (r < 0) 2057 return r; 2058 trace_kvm_msr_write_ex(ecx, data); 2059 } 2060 2061 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2062 } 2063 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2064 2065 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2066 { 2067 return kvm_skip_emulated_instruction(vcpu); 2068 } 2069 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 2070 2071 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2072 { 2073 /* Treat an INVD instruction as a NOP and just skip it. */ 2074 return kvm_emulate_as_nop(vcpu); 2075 } 2076 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2077 2078 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2079 { 2080 kvm_queue_exception(vcpu, UD_VECTOR); 2081 return 1; 2082 } 2083 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2084 2085 2086 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2087 { 2088 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2089 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2090 return kvm_handle_invalid_op(vcpu); 2091 2092 pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn); 2093 return kvm_emulate_as_nop(vcpu); 2094 } 2095 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2096 { 2097 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2098 } 2099 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2100 2101 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2102 { 2103 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2104 } 2105 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2106 2107 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2108 { 2109 xfer_to_guest_mode_prepare(); 2110 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2111 xfer_to_guest_mode_work_pending(); 2112 } 2113 2114 /* 2115 * The fast path for frequent and performance sensitive wrmsr emulation, 2116 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2117 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2118 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2119 * other cases which must be called after interrupts are enabled on the host. 2120 */ 2121 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2122 { 2123 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2124 return 1; 2125 2126 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2127 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2128 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2129 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2130 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2131 2132 return 1; 2133 } 2134 2135 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2136 { 2137 if (!kvm_can_use_hv_timer(vcpu)) 2138 return 1; 2139 2140 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2141 return 0; 2142 } 2143 2144 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2145 { 2146 u32 msr = kvm_rcx_read(vcpu); 2147 u64 data; 2148 fastpath_t ret = EXIT_FASTPATH_NONE; 2149 2150 switch (msr) { 2151 case APIC_BASE_MSR + (APIC_ICR >> 4): 2152 data = kvm_read_edx_eax(vcpu); 2153 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2154 kvm_skip_emulated_instruction(vcpu); 2155 ret = EXIT_FASTPATH_EXIT_HANDLED; 2156 } 2157 break; 2158 case MSR_IA32_TSC_DEADLINE: 2159 data = kvm_read_edx_eax(vcpu); 2160 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2161 kvm_skip_emulated_instruction(vcpu); 2162 ret = EXIT_FASTPATH_REENTER_GUEST; 2163 } 2164 break; 2165 default: 2166 break; 2167 } 2168 2169 if (ret != EXIT_FASTPATH_NONE) 2170 trace_kvm_msr_write(msr, data); 2171 2172 return ret; 2173 } 2174 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2175 2176 /* 2177 * Adapt set_msr() to msr_io()'s calling convention 2178 */ 2179 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2180 { 2181 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2182 } 2183 2184 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2185 { 2186 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2187 } 2188 2189 #ifdef CONFIG_X86_64 2190 struct pvclock_clock { 2191 int vclock_mode; 2192 u64 cycle_last; 2193 u64 mask; 2194 u32 mult; 2195 u32 shift; 2196 u64 base_cycles; 2197 u64 offset; 2198 }; 2199 2200 struct pvclock_gtod_data { 2201 seqcount_t seq; 2202 2203 struct pvclock_clock clock; /* extract of a clocksource struct */ 2204 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2205 2206 ktime_t offs_boot; 2207 u64 wall_time_sec; 2208 }; 2209 2210 static struct pvclock_gtod_data pvclock_gtod_data; 2211 2212 static void update_pvclock_gtod(struct timekeeper *tk) 2213 { 2214 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2215 2216 write_seqcount_begin(&vdata->seq); 2217 2218 /* copy pvclock gtod data */ 2219 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2220 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2221 vdata->clock.mask = tk->tkr_mono.mask; 2222 vdata->clock.mult = tk->tkr_mono.mult; 2223 vdata->clock.shift = tk->tkr_mono.shift; 2224 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2225 vdata->clock.offset = tk->tkr_mono.base; 2226 2227 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2228 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2229 vdata->raw_clock.mask = tk->tkr_raw.mask; 2230 vdata->raw_clock.mult = tk->tkr_raw.mult; 2231 vdata->raw_clock.shift = tk->tkr_raw.shift; 2232 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2233 vdata->raw_clock.offset = tk->tkr_raw.base; 2234 2235 vdata->wall_time_sec = tk->xtime_sec; 2236 2237 vdata->offs_boot = tk->offs_boot; 2238 2239 write_seqcount_end(&vdata->seq); 2240 } 2241 2242 static s64 get_kvmclock_base_ns(void) 2243 { 2244 /* Count up from boot time, but with the frequency of the raw clock. */ 2245 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2246 } 2247 #else 2248 static s64 get_kvmclock_base_ns(void) 2249 { 2250 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2251 return ktime_get_boottime_ns(); 2252 } 2253 #endif 2254 2255 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2256 { 2257 int version; 2258 int r; 2259 struct pvclock_wall_clock wc; 2260 u32 wc_sec_hi; 2261 u64 wall_nsec; 2262 2263 if (!wall_clock) 2264 return; 2265 2266 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2267 if (r) 2268 return; 2269 2270 if (version & 1) 2271 ++version; /* first time write, random junk */ 2272 2273 ++version; 2274 2275 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2276 return; 2277 2278 /* 2279 * The guest calculates current wall clock time by adding 2280 * system time (updated by kvm_guest_time_update below) to the 2281 * wall clock specified here. We do the reverse here. 2282 */ 2283 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2284 2285 wc.nsec = do_div(wall_nsec, 1000000000); 2286 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2287 wc.version = version; 2288 2289 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2290 2291 if (sec_hi_ofs) { 2292 wc_sec_hi = wall_nsec >> 32; 2293 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2294 &wc_sec_hi, sizeof(wc_sec_hi)); 2295 } 2296 2297 version++; 2298 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2299 } 2300 2301 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2302 bool old_msr, bool host_initiated) 2303 { 2304 struct kvm_arch *ka = &vcpu->kvm->arch; 2305 2306 if (vcpu->vcpu_id == 0 && !host_initiated) { 2307 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2308 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2309 2310 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2311 } 2312 2313 vcpu->arch.time = system_time; 2314 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2315 2316 /* we verify if the enable bit is set... */ 2317 if (system_time & 1) { 2318 kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu, 2319 KVM_HOST_USES_PFN, system_time & ~1ULL, 2320 sizeof(struct pvclock_vcpu_time_info)); 2321 } else { 2322 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time); 2323 } 2324 2325 return; 2326 } 2327 2328 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2329 { 2330 do_shl32_div32(dividend, divisor); 2331 return dividend; 2332 } 2333 2334 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2335 s8 *pshift, u32 *pmultiplier) 2336 { 2337 uint64_t scaled64; 2338 int32_t shift = 0; 2339 uint64_t tps64; 2340 uint32_t tps32; 2341 2342 tps64 = base_hz; 2343 scaled64 = scaled_hz; 2344 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2345 tps64 >>= 1; 2346 shift--; 2347 } 2348 2349 tps32 = (uint32_t)tps64; 2350 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2351 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2352 scaled64 >>= 1; 2353 else 2354 tps32 <<= 1; 2355 shift++; 2356 } 2357 2358 *pshift = shift; 2359 *pmultiplier = div_frac(scaled64, tps32); 2360 } 2361 2362 #ifdef CONFIG_X86_64 2363 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2364 #endif 2365 2366 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2367 static unsigned long max_tsc_khz; 2368 2369 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2370 { 2371 u64 v = (u64)khz * (1000000 + ppm); 2372 do_div(v, 1000000); 2373 return v; 2374 } 2375 2376 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2377 2378 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2379 { 2380 u64 ratio; 2381 2382 /* Guest TSC same frequency as host TSC? */ 2383 if (!scale) { 2384 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2385 return 0; 2386 } 2387 2388 /* TSC scaling supported? */ 2389 if (!kvm_caps.has_tsc_control) { 2390 if (user_tsc_khz > tsc_khz) { 2391 vcpu->arch.tsc_catchup = 1; 2392 vcpu->arch.tsc_always_catchup = 1; 2393 return 0; 2394 } else { 2395 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2396 return -1; 2397 } 2398 } 2399 2400 /* TSC scaling required - calculate ratio */ 2401 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2402 user_tsc_khz, tsc_khz); 2403 2404 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2405 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2406 user_tsc_khz); 2407 return -1; 2408 } 2409 2410 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2411 return 0; 2412 } 2413 2414 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2415 { 2416 u32 thresh_lo, thresh_hi; 2417 int use_scaling = 0; 2418 2419 /* tsc_khz can be zero if TSC calibration fails */ 2420 if (user_tsc_khz == 0) { 2421 /* set tsc_scaling_ratio to a safe value */ 2422 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2423 return -1; 2424 } 2425 2426 /* Compute a scale to convert nanoseconds in TSC cycles */ 2427 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2428 &vcpu->arch.virtual_tsc_shift, 2429 &vcpu->arch.virtual_tsc_mult); 2430 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2431 2432 /* 2433 * Compute the variation in TSC rate which is acceptable 2434 * within the range of tolerance and decide if the 2435 * rate being applied is within that bounds of the hardware 2436 * rate. If so, no scaling or compensation need be done. 2437 */ 2438 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2439 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2440 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2441 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2442 use_scaling = 1; 2443 } 2444 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2445 } 2446 2447 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2448 { 2449 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2450 vcpu->arch.virtual_tsc_mult, 2451 vcpu->arch.virtual_tsc_shift); 2452 tsc += vcpu->arch.this_tsc_write; 2453 return tsc; 2454 } 2455 2456 #ifdef CONFIG_X86_64 2457 static inline int gtod_is_based_on_tsc(int mode) 2458 { 2459 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2460 } 2461 #endif 2462 2463 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2464 { 2465 #ifdef CONFIG_X86_64 2466 bool vcpus_matched; 2467 struct kvm_arch *ka = &vcpu->kvm->arch; 2468 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2469 2470 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2471 atomic_read(&vcpu->kvm->online_vcpus)); 2472 2473 /* 2474 * Once the masterclock is enabled, always perform request in 2475 * order to update it. 2476 * 2477 * In order to enable masterclock, the host clocksource must be TSC 2478 * and the vcpus need to have matched TSCs. When that happens, 2479 * perform request to enable masterclock. 2480 */ 2481 if (ka->use_master_clock || 2482 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2483 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2484 2485 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2486 atomic_read(&vcpu->kvm->online_vcpus), 2487 ka->use_master_clock, gtod->clock.vclock_mode); 2488 #endif 2489 } 2490 2491 /* 2492 * Multiply tsc by a fixed point number represented by ratio. 2493 * 2494 * The most significant 64-N bits (mult) of ratio represent the 2495 * integral part of the fixed point number; the remaining N bits 2496 * (frac) represent the fractional part, ie. ratio represents a fixed 2497 * point number (mult + frac * 2^(-N)). 2498 * 2499 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2500 */ 2501 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2502 { 2503 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2504 } 2505 2506 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2507 { 2508 u64 _tsc = tsc; 2509 2510 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2511 _tsc = __scale_tsc(ratio, tsc); 2512 2513 return _tsc; 2514 } 2515 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2516 2517 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2518 { 2519 u64 tsc; 2520 2521 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2522 2523 return target_tsc - tsc; 2524 } 2525 2526 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2527 { 2528 return vcpu->arch.l1_tsc_offset + 2529 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2530 } 2531 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2532 2533 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2534 { 2535 u64 nested_offset; 2536 2537 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2538 nested_offset = l1_offset; 2539 else 2540 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2541 kvm_caps.tsc_scaling_ratio_frac_bits); 2542 2543 nested_offset += l2_offset; 2544 return nested_offset; 2545 } 2546 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2547 2548 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2549 { 2550 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2551 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2552 kvm_caps.tsc_scaling_ratio_frac_bits); 2553 2554 return l1_multiplier; 2555 } 2556 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2557 2558 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2559 { 2560 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2561 vcpu->arch.l1_tsc_offset, 2562 l1_offset); 2563 2564 vcpu->arch.l1_tsc_offset = l1_offset; 2565 2566 /* 2567 * If we are here because L1 chose not to trap WRMSR to TSC then 2568 * according to the spec this should set L1's TSC (as opposed to 2569 * setting L1's offset for L2). 2570 */ 2571 if (is_guest_mode(vcpu)) 2572 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2573 l1_offset, 2574 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2575 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2576 else 2577 vcpu->arch.tsc_offset = l1_offset; 2578 2579 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2580 } 2581 2582 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2583 { 2584 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2585 2586 /* Userspace is changing the multiplier while L2 is active */ 2587 if (is_guest_mode(vcpu)) 2588 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2589 l1_multiplier, 2590 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2591 else 2592 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2593 2594 if (kvm_caps.has_tsc_control) 2595 static_call(kvm_x86_write_tsc_multiplier)( 2596 vcpu, vcpu->arch.tsc_scaling_ratio); 2597 } 2598 2599 static inline bool kvm_check_tsc_unstable(void) 2600 { 2601 #ifdef CONFIG_X86_64 2602 /* 2603 * TSC is marked unstable when we're running on Hyper-V, 2604 * 'TSC page' clocksource is good. 2605 */ 2606 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2607 return false; 2608 #endif 2609 return check_tsc_unstable(); 2610 } 2611 2612 /* 2613 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2614 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2615 * participates in. 2616 */ 2617 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2618 u64 ns, bool matched) 2619 { 2620 struct kvm *kvm = vcpu->kvm; 2621 2622 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2623 2624 /* 2625 * We also track th most recent recorded KHZ, write and time to 2626 * allow the matching interval to be extended at each write. 2627 */ 2628 kvm->arch.last_tsc_nsec = ns; 2629 kvm->arch.last_tsc_write = tsc; 2630 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2631 kvm->arch.last_tsc_offset = offset; 2632 2633 vcpu->arch.last_guest_tsc = tsc; 2634 2635 kvm_vcpu_write_tsc_offset(vcpu, offset); 2636 2637 if (!matched) { 2638 /* 2639 * We split periods of matched TSC writes into generations. 2640 * For each generation, we track the original measured 2641 * nanosecond time, offset, and write, so if TSCs are in 2642 * sync, we can match exact offset, and if not, we can match 2643 * exact software computation in compute_guest_tsc() 2644 * 2645 * These values are tracked in kvm->arch.cur_xxx variables. 2646 */ 2647 kvm->arch.cur_tsc_generation++; 2648 kvm->arch.cur_tsc_nsec = ns; 2649 kvm->arch.cur_tsc_write = tsc; 2650 kvm->arch.cur_tsc_offset = offset; 2651 kvm->arch.nr_vcpus_matched_tsc = 0; 2652 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2653 kvm->arch.nr_vcpus_matched_tsc++; 2654 } 2655 2656 /* Keep track of which generation this VCPU has synchronized to */ 2657 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2658 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2659 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2660 2661 kvm_track_tsc_matching(vcpu); 2662 } 2663 2664 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2665 { 2666 struct kvm *kvm = vcpu->kvm; 2667 u64 offset, ns, elapsed; 2668 unsigned long flags; 2669 bool matched = false; 2670 bool synchronizing = false; 2671 2672 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2673 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2674 ns = get_kvmclock_base_ns(); 2675 elapsed = ns - kvm->arch.last_tsc_nsec; 2676 2677 if (vcpu->arch.virtual_tsc_khz) { 2678 if (data == 0) { 2679 /* 2680 * detection of vcpu initialization -- need to sync 2681 * with other vCPUs. This particularly helps to keep 2682 * kvm_clock stable after CPU hotplug 2683 */ 2684 synchronizing = true; 2685 } else { 2686 u64 tsc_exp = kvm->arch.last_tsc_write + 2687 nsec_to_cycles(vcpu, elapsed); 2688 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2689 /* 2690 * Special case: TSC write with a small delta (1 second) 2691 * of virtual cycle time against real time is 2692 * interpreted as an attempt to synchronize the CPU. 2693 */ 2694 synchronizing = data < tsc_exp + tsc_hz && 2695 data + tsc_hz > tsc_exp; 2696 } 2697 } 2698 2699 /* 2700 * For a reliable TSC, we can match TSC offsets, and for an unstable 2701 * TSC, we add elapsed time in this computation. We could let the 2702 * compensation code attempt to catch up if we fall behind, but 2703 * it's better to try to match offsets from the beginning. 2704 */ 2705 if (synchronizing && 2706 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2707 if (!kvm_check_tsc_unstable()) { 2708 offset = kvm->arch.cur_tsc_offset; 2709 } else { 2710 u64 delta = nsec_to_cycles(vcpu, elapsed); 2711 data += delta; 2712 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2713 } 2714 matched = true; 2715 } 2716 2717 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2718 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2719 } 2720 2721 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2722 s64 adjustment) 2723 { 2724 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2725 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2726 } 2727 2728 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2729 { 2730 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2731 WARN_ON(adjustment < 0); 2732 adjustment = kvm_scale_tsc((u64) adjustment, 2733 vcpu->arch.l1_tsc_scaling_ratio); 2734 adjust_tsc_offset_guest(vcpu, adjustment); 2735 } 2736 2737 #ifdef CONFIG_X86_64 2738 2739 static u64 read_tsc(void) 2740 { 2741 u64 ret = (u64)rdtsc_ordered(); 2742 u64 last = pvclock_gtod_data.clock.cycle_last; 2743 2744 if (likely(ret >= last)) 2745 return ret; 2746 2747 /* 2748 * GCC likes to generate cmov here, but this branch is extremely 2749 * predictable (it's just a function of time and the likely is 2750 * very likely) and there's a data dependence, so force GCC 2751 * to generate a branch instead. I don't barrier() because 2752 * we don't actually need a barrier, and if this function 2753 * ever gets inlined it will generate worse code. 2754 */ 2755 asm volatile (""); 2756 return last; 2757 } 2758 2759 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2760 int *mode) 2761 { 2762 long v; 2763 u64 tsc_pg_val; 2764 2765 switch (clock->vclock_mode) { 2766 case VDSO_CLOCKMODE_HVCLOCK: 2767 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2768 tsc_timestamp); 2769 if (tsc_pg_val != U64_MAX) { 2770 /* TSC page valid */ 2771 *mode = VDSO_CLOCKMODE_HVCLOCK; 2772 v = (tsc_pg_val - clock->cycle_last) & 2773 clock->mask; 2774 } else { 2775 /* TSC page invalid */ 2776 *mode = VDSO_CLOCKMODE_NONE; 2777 } 2778 break; 2779 case VDSO_CLOCKMODE_TSC: 2780 *mode = VDSO_CLOCKMODE_TSC; 2781 *tsc_timestamp = read_tsc(); 2782 v = (*tsc_timestamp - clock->cycle_last) & 2783 clock->mask; 2784 break; 2785 default: 2786 *mode = VDSO_CLOCKMODE_NONE; 2787 } 2788 2789 if (*mode == VDSO_CLOCKMODE_NONE) 2790 *tsc_timestamp = v = 0; 2791 2792 return v * clock->mult; 2793 } 2794 2795 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2796 { 2797 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2798 unsigned long seq; 2799 int mode; 2800 u64 ns; 2801 2802 do { 2803 seq = read_seqcount_begin(>od->seq); 2804 ns = gtod->raw_clock.base_cycles; 2805 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2806 ns >>= gtod->raw_clock.shift; 2807 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2808 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2809 *t = ns; 2810 2811 return mode; 2812 } 2813 2814 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2815 { 2816 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2817 unsigned long seq; 2818 int mode; 2819 u64 ns; 2820 2821 do { 2822 seq = read_seqcount_begin(>od->seq); 2823 ts->tv_sec = gtod->wall_time_sec; 2824 ns = gtod->clock.base_cycles; 2825 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2826 ns >>= gtod->clock.shift; 2827 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2828 2829 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2830 ts->tv_nsec = ns; 2831 2832 return mode; 2833 } 2834 2835 /* returns true if host is using TSC based clocksource */ 2836 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2837 { 2838 /* checked again under seqlock below */ 2839 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2840 return false; 2841 2842 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2843 tsc_timestamp)); 2844 } 2845 2846 /* returns true if host is using TSC based clocksource */ 2847 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2848 u64 *tsc_timestamp) 2849 { 2850 /* checked again under seqlock below */ 2851 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2852 return false; 2853 2854 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2855 } 2856 #endif 2857 2858 /* 2859 * 2860 * Assuming a stable TSC across physical CPUS, and a stable TSC 2861 * across virtual CPUs, the following condition is possible. 2862 * Each numbered line represents an event visible to both 2863 * CPUs at the next numbered event. 2864 * 2865 * "timespecX" represents host monotonic time. "tscX" represents 2866 * RDTSC value. 2867 * 2868 * VCPU0 on CPU0 | VCPU1 on CPU1 2869 * 2870 * 1. read timespec0,tsc0 2871 * 2. | timespec1 = timespec0 + N 2872 * | tsc1 = tsc0 + M 2873 * 3. transition to guest | transition to guest 2874 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2875 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2876 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2877 * 2878 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2879 * 2880 * - ret0 < ret1 2881 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2882 * ... 2883 * - 0 < N - M => M < N 2884 * 2885 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2886 * always the case (the difference between two distinct xtime instances 2887 * might be smaller then the difference between corresponding TSC reads, 2888 * when updating guest vcpus pvclock areas). 2889 * 2890 * To avoid that problem, do not allow visibility of distinct 2891 * system_timestamp/tsc_timestamp values simultaneously: use a master 2892 * copy of host monotonic time values. Update that master copy 2893 * in lockstep. 2894 * 2895 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2896 * 2897 */ 2898 2899 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2900 { 2901 #ifdef CONFIG_X86_64 2902 struct kvm_arch *ka = &kvm->arch; 2903 int vclock_mode; 2904 bool host_tsc_clocksource, vcpus_matched; 2905 2906 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2907 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2908 atomic_read(&kvm->online_vcpus)); 2909 2910 /* 2911 * If the host uses TSC clock, then passthrough TSC as stable 2912 * to the guest. 2913 */ 2914 host_tsc_clocksource = kvm_get_time_and_clockread( 2915 &ka->master_kernel_ns, 2916 &ka->master_cycle_now); 2917 2918 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2919 && !ka->backwards_tsc_observed 2920 && !ka->boot_vcpu_runs_old_kvmclock; 2921 2922 if (ka->use_master_clock) 2923 atomic_set(&kvm_guest_has_master_clock, 1); 2924 2925 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2926 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2927 vcpus_matched); 2928 #endif 2929 } 2930 2931 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2932 { 2933 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2934 } 2935 2936 static void __kvm_start_pvclock_update(struct kvm *kvm) 2937 { 2938 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2939 write_seqcount_begin(&kvm->arch.pvclock_sc); 2940 } 2941 2942 static void kvm_start_pvclock_update(struct kvm *kvm) 2943 { 2944 kvm_make_mclock_inprogress_request(kvm); 2945 2946 /* no guest entries from this point */ 2947 __kvm_start_pvclock_update(kvm); 2948 } 2949 2950 static void kvm_end_pvclock_update(struct kvm *kvm) 2951 { 2952 struct kvm_arch *ka = &kvm->arch; 2953 struct kvm_vcpu *vcpu; 2954 unsigned long i; 2955 2956 write_seqcount_end(&ka->pvclock_sc); 2957 raw_spin_unlock_irq(&ka->tsc_write_lock); 2958 kvm_for_each_vcpu(i, vcpu, kvm) 2959 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2960 2961 /* guest entries allowed */ 2962 kvm_for_each_vcpu(i, vcpu, kvm) 2963 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2964 } 2965 2966 static void kvm_update_masterclock(struct kvm *kvm) 2967 { 2968 kvm_hv_request_tsc_page_update(kvm); 2969 kvm_start_pvclock_update(kvm); 2970 pvclock_update_vm_gtod_copy(kvm); 2971 kvm_end_pvclock_update(kvm); 2972 } 2973 2974 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2975 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2976 { 2977 struct kvm_arch *ka = &kvm->arch; 2978 struct pvclock_vcpu_time_info hv_clock; 2979 2980 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2981 get_cpu(); 2982 2983 data->flags = 0; 2984 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) { 2985 #ifdef CONFIG_X86_64 2986 struct timespec64 ts; 2987 2988 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 2989 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 2990 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 2991 } else 2992 #endif 2993 data->host_tsc = rdtsc(); 2994 2995 data->flags |= KVM_CLOCK_TSC_STABLE; 2996 hv_clock.tsc_timestamp = ka->master_cycle_now; 2997 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2998 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2999 &hv_clock.tsc_shift, 3000 &hv_clock.tsc_to_system_mul); 3001 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3002 } else { 3003 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3004 } 3005 3006 put_cpu(); 3007 } 3008 3009 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3010 { 3011 struct kvm_arch *ka = &kvm->arch; 3012 unsigned seq; 3013 3014 do { 3015 seq = read_seqcount_begin(&ka->pvclock_sc); 3016 __get_kvmclock(kvm, data); 3017 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3018 } 3019 3020 u64 get_kvmclock_ns(struct kvm *kvm) 3021 { 3022 struct kvm_clock_data data; 3023 3024 get_kvmclock(kvm, &data); 3025 return data.clock; 3026 } 3027 3028 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3029 struct gfn_to_pfn_cache *gpc, 3030 unsigned int offset) 3031 { 3032 struct kvm_vcpu_arch *vcpu = &v->arch; 3033 struct pvclock_vcpu_time_info *guest_hv_clock; 3034 unsigned long flags; 3035 3036 read_lock_irqsave(&gpc->lock, flags); 3037 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa, 3038 offset + sizeof(*guest_hv_clock))) { 3039 read_unlock_irqrestore(&gpc->lock, flags); 3040 3041 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, 3042 offset + sizeof(*guest_hv_clock))) 3043 return; 3044 3045 read_lock_irqsave(&gpc->lock, flags); 3046 } 3047 3048 guest_hv_clock = (void *)(gpc->khva + offset); 3049 3050 /* 3051 * This VCPU is paused, but it's legal for a guest to read another 3052 * VCPU's kvmclock, so we really have to follow the specification where 3053 * it says that version is odd if data is being modified, and even after 3054 * it is consistent. 3055 */ 3056 3057 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3058 smp_wmb(); 3059 3060 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3061 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3062 3063 if (vcpu->pvclock_set_guest_stopped_request) { 3064 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3065 vcpu->pvclock_set_guest_stopped_request = false; 3066 } 3067 3068 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3069 smp_wmb(); 3070 3071 guest_hv_clock->version = ++vcpu->hv_clock.version; 3072 3073 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3074 read_unlock_irqrestore(&gpc->lock, flags); 3075 3076 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3077 } 3078 3079 static int kvm_guest_time_update(struct kvm_vcpu *v) 3080 { 3081 unsigned long flags, tgt_tsc_khz; 3082 unsigned seq; 3083 struct kvm_vcpu_arch *vcpu = &v->arch; 3084 struct kvm_arch *ka = &v->kvm->arch; 3085 s64 kernel_ns; 3086 u64 tsc_timestamp, host_tsc; 3087 u8 pvclock_flags; 3088 bool use_master_clock; 3089 3090 kernel_ns = 0; 3091 host_tsc = 0; 3092 3093 /* 3094 * If the host uses TSC clock, then passthrough TSC as stable 3095 * to the guest. 3096 */ 3097 do { 3098 seq = read_seqcount_begin(&ka->pvclock_sc); 3099 use_master_clock = ka->use_master_clock; 3100 if (use_master_clock) { 3101 host_tsc = ka->master_cycle_now; 3102 kernel_ns = ka->master_kernel_ns; 3103 } 3104 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3105 3106 /* Keep irq disabled to prevent changes to the clock */ 3107 local_irq_save(flags); 3108 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 3109 if (unlikely(tgt_tsc_khz == 0)) { 3110 local_irq_restore(flags); 3111 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3112 return 1; 3113 } 3114 if (!use_master_clock) { 3115 host_tsc = rdtsc(); 3116 kernel_ns = get_kvmclock_base_ns(); 3117 } 3118 3119 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3120 3121 /* 3122 * We may have to catch up the TSC to match elapsed wall clock 3123 * time for two reasons, even if kvmclock is used. 3124 * 1) CPU could have been running below the maximum TSC rate 3125 * 2) Broken TSC compensation resets the base at each VCPU 3126 * entry to avoid unknown leaps of TSC even when running 3127 * again on the same CPU. This may cause apparent elapsed 3128 * time to disappear, and the guest to stand still or run 3129 * very slowly. 3130 */ 3131 if (vcpu->tsc_catchup) { 3132 u64 tsc = compute_guest_tsc(v, kernel_ns); 3133 if (tsc > tsc_timestamp) { 3134 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3135 tsc_timestamp = tsc; 3136 } 3137 } 3138 3139 local_irq_restore(flags); 3140 3141 /* With all the info we got, fill in the values */ 3142 3143 if (kvm_caps.has_tsc_control) 3144 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3145 v->arch.l1_tsc_scaling_ratio); 3146 3147 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3148 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3149 &vcpu->hv_clock.tsc_shift, 3150 &vcpu->hv_clock.tsc_to_system_mul); 3151 vcpu->hw_tsc_khz = tgt_tsc_khz; 3152 } 3153 3154 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3155 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3156 vcpu->last_guest_tsc = tsc_timestamp; 3157 3158 /* If the host uses TSC clocksource, then it is stable */ 3159 pvclock_flags = 0; 3160 if (use_master_clock) 3161 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3162 3163 vcpu->hv_clock.flags = pvclock_flags; 3164 3165 if (vcpu->pv_time.active) 3166 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3167 if (vcpu->xen.vcpu_info_cache.active) 3168 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3169 offsetof(struct compat_vcpu_info, time)); 3170 if (vcpu->xen.vcpu_time_info_cache.active) 3171 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3172 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3173 return 0; 3174 } 3175 3176 /* 3177 * kvmclock updates which are isolated to a given vcpu, such as 3178 * vcpu->cpu migration, should not allow system_timestamp from 3179 * the rest of the vcpus to remain static. Otherwise ntp frequency 3180 * correction applies to one vcpu's system_timestamp but not 3181 * the others. 3182 * 3183 * So in those cases, request a kvmclock update for all vcpus. 3184 * We need to rate-limit these requests though, as they can 3185 * considerably slow guests that have a large number of vcpus. 3186 * The time for a remote vcpu to update its kvmclock is bound 3187 * by the delay we use to rate-limit the updates. 3188 */ 3189 3190 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3191 3192 static void kvmclock_update_fn(struct work_struct *work) 3193 { 3194 unsigned long i; 3195 struct delayed_work *dwork = to_delayed_work(work); 3196 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3197 kvmclock_update_work); 3198 struct kvm *kvm = container_of(ka, struct kvm, arch); 3199 struct kvm_vcpu *vcpu; 3200 3201 kvm_for_each_vcpu(i, vcpu, kvm) { 3202 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3203 kvm_vcpu_kick(vcpu); 3204 } 3205 } 3206 3207 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3208 { 3209 struct kvm *kvm = v->kvm; 3210 3211 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3212 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3213 KVMCLOCK_UPDATE_DELAY); 3214 } 3215 3216 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3217 3218 static void kvmclock_sync_fn(struct work_struct *work) 3219 { 3220 struct delayed_work *dwork = to_delayed_work(work); 3221 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3222 kvmclock_sync_work); 3223 struct kvm *kvm = container_of(ka, struct kvm, arch); 3224 3225 if (!kvmclock_periodic_sync) 3226 return; 3227 3228 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3229 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3230 KVMCLOCK_SYNC_PERIOD); 3231 } 3232 3233 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3234 static bool is_mci_control_msr(u32 msr) 3235 { 3236 return (msr & 3) == 0; 3237 } 3238 static bool is_mci_status_msr(u32 msr) 3239 { 3240 return (msr & 3) == 1; 3241 } 3242 3243 /* 3244 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3245 */ 3246 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3247 { 3248 /* McStatusWrEn enabled? */ 3249 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3250 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3251 3252 return false; 3253 } 3254 3255 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3256 { 3257 u64 mcg_cap = vcpu->arch.mcg_cap; 3258 unsigned bank_num = mcg_cap & 0xff; 3259 u32 msr = msr_info->index; 3260 u64 data = msr_info->data; 3261 u32 offset, last_msr; 3262 3263 switch (msr) { 3264 case MSR_IA32_MCG_STATUS: 3265 vcpu->arch.mcg_status = data; 3266 break; 3267 case MSR_IA32_MCG_CTL: 3268 if (!(mcg_cap & MCG_CTL_P) && 3269 (data || !msr_info->host_initiated)) 3270 return 1; 3271 if (data != 0 && data != ~(u64)0) 3272 return 1; 3273 vcpu->arch.mcg_ctl = data; 3274 break; 3275 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3276 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3277 if (msr > last_msr) 3278 return 1; 3279 3280 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3281 return 1; 3282 /* An attempt to write a 1 to a reserved bit raises #GP */ 3283 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3284 return 1; 3285 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3286 last_msr + 1 - MSR_IA32_MC0_CTL2); 3287 vcpu->arch.mci_ctl2_banks[offset] = data; 3288 break; 3289 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3290 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3291 if (msr > last_msr) 3292 return 1; 3293 3294 /* 3295 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3296 * values are architecturally undefined. But, some Linux 3297 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3298 * issue on AMD K8s, allow bit 10 to be clear when setting all 3299 * other bits in order to avoid an uncaught #GP in the guest. 3300 * 3301 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3302 * single-bit ECC data errors. 3303 */ 3304 if (is_mci_control_msr(msr) && 3305 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3306 return 1; 3307 3308 /* 3309 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3310 * AMD-based CPUs allow non-zero values, but if and only if 3311 * HWCR[McStatusWrEn] is set. 3312 */ 3313 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3314 data != 0 && !can_set_mci_status(vcpu)) 3315 return 1; 3316 3317 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3318 last_msr + 1 - MSR_IA32_MC0_CTL); 3319 vcpu->arch.mce_banks[offset] = data; 3320 break; 3321 default: 3322 return 1; 3323 } 3324 return 0; 3325 } 3326 3327 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3328 { 3329 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3330 3331 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3332 } 3333 3334 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3335 { 3336 gpa_t gpa = data & ~0x3f; 3337 3338 /* Bits 4:5 are reserved, Should be zero */ 3339 if (data & 0x30) 3340 return 1; 3341 3342 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3343 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3344 return 1; 3345 3346 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3347 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3348 return 1; 3349 3350 if (!lapic_in_kernel(vcpu)) 3351 return data ? 1 : 0; 3352 3353 vcpu->arch.apf.msr_en_val = data; 3354 3355 if (!kvm_pv_async_pf_enabled(vcpu)) { 3356 kvm_clear_async_pf_completion_queue(vcpu); 3357 kvm_async_pf_hash_reset(vcpu); 3358 return 0; 3359 } 3360 3361 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3362 sizeof(u64))) 3363 return 1; 3364 3365 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3366 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3367 3368 kvm_async_pf_wakeup_all(vcpu); 3369 3370 return 0; 3371 } 3372 3373 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3374 { 3375 /* Bits 8-63 are reserved */ 3376 if (data >> 8) 3377 return 1; 3378 3379 if (!lapic_in_kernel(vcpu)) 3380 return 1; 3381 3382 vcpu->arch.apf.msr_int_val = data; 3383 3384 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3385 3386 return 0; 3387 } 3388 3389 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3390 { 3391 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time); 3392 vcpu->arch.time = 0; 3393 } 3394 3395 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3396 { 3397 ++vcpu->stat.tlb_flush; 3398 static_call(kvm_x86_flush_tlb_all)(vcpu); 3399 } 3400 3401 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3402 { 3403 ++vcpu->stat.tlb_flush; 3404 3405 if (!tdp_enabled) { 3406 /* 3407 * A TLB flush on behalf of the guest is equivalent to 3408 * INVPCID(all), toggling CR4.PGE, etc., which requires 3409 * a forced sync of the shadow page tables. Ensure all the 3410 * roots are synced and the guest TLB in hardware is clean. 3411 */ 3412 kvm_mmu_sync_roots(vcpu); 3413 kvm_mmu_sync_prev_roots(vcpu); 3414 } 3415 3416 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3417 } 3418 3419 3420 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3421 { 3422 ++vcpu->stat.tlb_flush; 3423 static_call(kvm_x86_flush_tlb_current)(vcpu); 3424 } 3425 3426 /* 3427 * Service "local" TLB flush requests, which are specific to the current MMU 3428 * context. In addition to the generic event handling in vcpu_enter_guest(), 3429 * TLB flushes that are targeted at an MMU context also need to be serviced 3430 * prior before nested VM-Enter/VM-Exit. 3431 */ 3432 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3433 { 3434 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3435 kvm_vcpu_flush_tlb_current(vcpu); 3436 3437 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3438 kvm_vcpu_flush_tlb_guest(vcpu); 3439 } 3440 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3441 3442 static void record_steal_time(struct kvm_vcpu *vcpu) 3443 { 3444 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3445 struct kvm_steal_time __user *st; 3446 struct kvm_memslots *slots; 3447 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3448 u64 steal; 3449 u32 version; 3450 3451 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3452 kvm_xen_runstate_set_running(vcpu); 3453 return; 3454 } 3455 3456 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3457 return; 3458 3459 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3460 return; 3461 3462 slots = kvm_memslots(vcpu->kvm); 3463 3464 if (unlikely(slots->generation != ghc->generation || 3465 gpa != ghc->gpa || 3466 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3467 /* We rely on the fact that it fits in a single page. */ 3468 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3469 3470 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3471 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3472 return; 3473 } 3474 3475 st = (struct kvm_steal_time __user *)ghc->hva; 3476 /* 3477 * Doing a TLB flush here, on the guest's behalf, can avoid 3478 * expensive IPIs. 3479 */ 3480 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3481 u8 st_preempted = 0; 3482 int err = -EFAULT; 3483 3484 if (!user_access_begin(st, sizeof(*st))) 3485 return; 3486 3487 asm volatile("1: xchgb %0, %2\n" 3488 "xor %1, %1\n" 3489 "2:\n" 3490 _ASM_EXTABLE_UA(1b, 2b) 3491 : "+q" (st_preempted), 3492 "+&r" (err), 3493 "+m" (st->preempted)); 3494 if (err) 3495 goto out; 3496 3497 user_access_end(); 3498 3499 vcpu->arch.st.preempted = 0; 3500 3501 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3502 st_preempted & KVM_VCPU_FLUSH_TLB); 3503 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3504 kvm_vcpu_flush_tlb_guest(vcpu); 3505 3506 if (!user_access_begin(st, sizeof(*st))) 3507 goto dirty; 3508 } else { 3509 if (!user_access_begin(st, sizeof(*st))) 3510 return; 3511 3512 unsafe_put_user(0, &st->preempted, out); 3513 vcpu->arch.st.preempted = 0; 3514 } 3515 3516 unsafe_get_user(version, &st->version, out); 3517 if (version & 1) 3518 version += 1; /* first time write, random junk */ 3519 3520 version += 1; 3521 unsafe_put_user(version, &st->version, out); 3522 3523 smp_wmb(); 3524 3525 unsafe_get_user(steal, &st->steal, out); 3526 steal += current->sched_info.run_delay - 3527 vcpu->arch.st.last_steal; 3528 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3529 unsafe_put_user(steal, &st->steal, out); 3530 3531 version += 1; 3532 unsafe_put_user(version, &st->version, out); 3533 3534 out: 3535 user_access_end(); 3536 dirty: 3537 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3538 } 3539 3540 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3541 { 3542 bool pr = false; 3543 u32 msr = msr_info->index; 3544 u64 data = msr_info->data; 3545 3546 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3547 return kvm_xen_write_hypercall_page(vcpu, data); 3548 3549 switch (msr) { 3550 case MSR_AMD64_NB_CFG: 3551 case MSR_IA32_UCODE_WRITE: 3552 case MSR_VM_HSAVE_PA: 3553 case MSR_AMD64_PATCH_LOADER: 3554 case MSR_AMD64_BU_CFG2: 3555 case MSR_AMD64_DC_CFG: 3556 case MSR_F15H_EX_CFG: 3557 break; 3558 3559 case MSR_IA32_UCODE_REV: 3560 if (msr_info->host_initiated) 3561 vcpu->arch.microcode_version = data; 3562 break; 3563 case MSR_IA32_ARCH_CAPABILITIES: 3564 if (!msr_info->host_initiated) 3565 return 1; 3566 vcpu->arch.arch_capabilities = data; 3567 break; 3568 case MSR_IA32_PERF_CAPABILITIES: { 3569 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3570 3571 if (!msr_info->host_initiated) 3572 return 1; 3573 if (kvm_get_msr_feature(&msr_ent)) 3574 return 1; 3575 if (data & ~msr_ent.data) 3576 return 1; 3577 3578 vcpu->arch.perf_capabilities = data; 3579 kvm_pmu_refresh(vcpu); 3580 return 0; 3581 } 3582 case MSR_EFER: 3583 return set_efer(vcpu, msr_info); 3584 case MSR_K7_HWCR: 3585 data &= ~(u64)0x40; /* ignore flush filter disable */ 3586 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3587 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3588 3589 /* Handle McStatusWrEn */ 3590 if (data == BIT_ULL(18)) { 3591 vcpu->arch.msr_hwcr = data; 3592 } else if (data != 0) { 3593 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3594 data); 3595 return 1; 3596 } 3597 break; 3598 case MSR_FAM10H_MMIO_CONF_BASE: 3599 if (data != 0) { 3600 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3601 "0x%llx\n", data); 3602 return 1; 3603 } 3604 break; 3605 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3606 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3607 return kvm_mtrr_set_msr(vcpu, msr, data); 3608 case MSR_IA32_APICBASE: 3609 return kvm_set_apic_base(vcpu, msr_info); 3610 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3611 return kvm_x2apic_msr_write(vcpu, msr, data); 3612 case MSR_IA32_TSC_DEADLINE: 3613 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3614 break; 3615 case MSR_IA32_TSC_ADJUST: 3616 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3617 if (!msr_info->host_initiated) { 3618 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3619 adjust_tsc_offset_guest(vcpu, adj); 3620 /* Before back to guest, tsc_timestamp must be adjusted 3621 * as well, otherwise guest's percpu pvclock time could jump. 3622 */ 3623 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3624 } 3625 vcpu->arch.ia32_tsc_adjust_msr = data; 3626 } 3627 break; 3628 case MSR_IA32_MISC_ENABLE: { 3629 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3630 3631 if (!msr_info->host_initiated) { 3632 /* RO bits */ 3633 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3634 return 1; 3635 3636 /* R bits, i.e. writes are ignored, but don't fault. */ 3637 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3638 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3639 } 3640 3641 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3642 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3643 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3644 return 1; 3645 vcpu->arch.ia32_misc_enable_msr = data; 3646 kvm_update_cpuid_runtime(vcpu); 3647 } else { 3648 vcpu->arch.ia32_misc_enable_msr = data; 3649 } 3650 break; 3651 } 3652 case MSR_IA32_SMBASE: 3653 if (!msr_info->host_initiated) 3654 return 1; 3655 vcpu->arch.smbase = data; 3656 break; 3657 case MSR_IA32_POWER_CTL: 3658 vcpu->arch.msr_ia32_power_ctl = data; 3659 break; 3660 case MSR_IA32_TSC: 3661 if (msr_info->host_initiated) { 3662 kvm_synchronize_tsc(vcpu, data); 3663 } else { 3664 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3665 adjust_tsc_offset_guest(vcpu, adj); 3666 vcpu->arch.ia32_tsc_adjust_msr += adj; 3667 } 3668 break; 3669 case MSR_IA32_XSS: 3670 if (!msr_info->host_initiated && 3671 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3672 return 1; 3673 /* 3674 * KVM supports exposing PT to the guest, but does not support 3675 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3676 * XSAVES/XRSTORS to save/restore PT MSRs. 3677 */ 3678 if (data & ~kvm_caps.supported_xss) 3679 return 1; 3680 vcpu->arch.ia32_xss = data; 3681 kvm_update_cpuid_runtime(vcpu); 3682 break; 3683 case MSR_SMI_COUNT: 3684 if (!msr_info->host_initiated) 3685 return 1; 3686 vcpu->arch.smi_count = data; 3687 break; 3688 case MSR_KVM_WALL_CLOCK_NEW: 3689 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3690 return 1; 3691 3692 vcpu->kvm->arch.wall_clock = data; 3693 kvm_write_wall_clock(vcpu->kvm, data, 0); 3694 break; 3695 case MSR_KVM_WALL_CLOCK: 3696 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3697 return 1; 3698 3699 vcpu->kvm->arch.wall_clock = data; 3700 kvm_write_wall_clock(vcpu->kvm, data, 0); 3701 break; 3702 case MSR_KVM_SYSTEM_TIME_NEW: 3703 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3704 return 1; 3705 3706 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3707 break; 3708 case MSR_KVM_SYSTEM_TIME: 3709 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3710 return 1; 3711 3712 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3713 break; 3714 case MSR_KVM_ASYNC_PF_EN: 3715 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3716 return 1; 3717 3718 if (kvm_pv_enable_async_pf(vcpu, data)) 3719 return 1; 3720 break; 3721 case MSR_KVM_ASYNC_PF_INT: 3722 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3723 return 1; 3724 3725 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3726 return 1; 3727 break; 3728 case MSR_KVM_ASYNC_PF_ACK: 3729 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3730 return 1; 3731 if (data & 0x1) { 3732 vcpu->arch.apf.pageready_pending = false; 3733 kvm_check_async_pf_completion(vcpu); 3734 } 3735 break; 3736 case MSR_KVM_STEAL_TIME: 3737 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3738 return 1; 3739 3740 if (unlikely(!sched_info_on())) 3741 return 1; 3742 3743 if (data & KVM_STEAL_RESERVED_MASK) 3744 return 1; 3745 3746 vcpu->arch.st.msr_val = data; 3747 3748 if (!(data & KVM_MSR_ENABLED)) 3749 break; 3750 3751 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3752 3753 break; 3754 case MSR_KVM_PV_EOI_EN: 3755 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3756 return 1; 3757 3758 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3759 return 1; 3760 break; 3761 3762 case MSR_KVM_POLL_CONTROL: 3763 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3764 return 1; 3765 3766 /* only enable bit supported */ 3767 if (data & (-1ULL << 1)) 3768 return 1; 3769 3770 vcpu->arch.msr_kvm_poll_control = data; 3771 break; 3772 3773 case MSR_IA32_MCG_CTL: 3774 case MSR_IA32_MCG_STATUS: 3775 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3776 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3777 return set_msr_mce(vcpu, msr_info); 3778 3779 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3780 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3781 pr = true; 3782 fallthrough; 3783 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3784 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3785 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3786 return kvm_pmu_set_msr(vcpu, msr_info); 3787 3788 if (pr || data != 0) 3789 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3790 "0x%x data 0x%llx\n", msr, data); 3791 break; 3792 case MSR_K7_CLK_CTL: 3793 /* 3794 * Ignore all writes to this no longer documented MSR. 3795 * Writes are only relevant for old K7 processors, 3796 * all pre-dating SVM, but a recommended workaround from 3797 * AMD for these chips. It is possible to specify the 3798 * affected processor models on the command line, hence 3799 * the need to ignore the workaround. 3800 */ 3801 break; 3802 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3803 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3804 case HV_X64_MSR_SYNDBG_OPTIONS: 3805 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3806 case HV_X64_MSR_CRASH_CTL: 3807 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3808 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3809 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3810 case HV_X64_MSR_TSC_EMULATION_STATUS: 3811 return kvm_hv_set_msr_common(vcpu, msr, data, 3812 msr_info->host_initiated); 3813 case MSR_IA32_BBL_CR_CTL3: 3814 /* Drop writes to this legacy MSR -- see rdmsr 3815 * counterpart for further detail. 3816 */ 3817 if (report_ignored_msrs) 3818 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3819 msr, data); 3820 break; 3821 case MSR_AMD64_OSVW_ID_LENGTH: 3822 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3823 return 1; 3824 vcpu->arch.osvw.length = data; 3825 break; 3826 case MSR_AMD64_OSVW_STATUS: 3827 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3828 return 1; 3829 vcpu->arch.osvw.status = data; 3830 break; 3831 case MSR_PLATFORM_INFO: 3832 if (!msr_info->host_initiated || 3833 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3834 cpuid_fault_enabled(vcpu))) 3835 return 1; 3836 vcpu->arch.msr_platform_info = data; 3837 break; 3838 case MSR_MISC_FEATURES_ENABLES: 3839 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3840 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3841 !supports_cpuid_fault(vcpu))) 3842 return 1; 3843 vcpu->arch.msr_misc_features_enables = data; 3844 break; 3845 #ifdef CONFIG_X86_64 3846 case MSR_IA32_XFD: 3847 if (!msr_info->host_initiated && 3848 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3849 return 1; 3850 3851 if (data & ~kvm_guest_supported_xfd(vcpu)) 3852 return 1; 3853 3854 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3855 break; 3856 case MSR_IA32_XFD_ERR: 3857 if (!msr_info->host_initiated && 3858 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3859 return 1; 3860 3861 if (data & ~kvm_guest_supported_xfd(vcpu)) 3862 return 1; 3863 3864 vcpu->arch.guest_fpu.xfd_err = data; 3865 break; 3866 #endif 3867 case MSR_IA32_PEBS_ENABLE: 3868 case MSR_IA32_DS_AREA: 3869 case MSR_PEBS_DATA_CFG: 3870 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3871 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3872 return kvm_pmu_set_msr(vcpu, msr_info); 3873 /* 3874 * Userspace is allowed to write '0' to MSRs that KVM reports 3875 * as to-be-saved, even if an MSRs isn't fully supported. 3876 */ 3877 return !msr_info->host_initiated || data; 3878 default: 3879 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3880 return kvm_pmu_set_msr(vcpu, msr_info); 3881 return KVM_MSR_RET_INVALID; 3882 } 3883 return 0; 3884 } 3885 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3886 3887 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3888 { 3889 u64 data; 3890 u64 mcg_cap = vcpu->arch.mcg_cap; 3891 unsigned bank_num = mcg_cap & 0xff; 3892 u32 offset, last_msr; 3893 3894 switch (msr) { 3895 case MSR_IA32_P5_MC_ADDR: 3896 case MSR_IA32_P5_MC_TYPE: 3897 data = 0; 3898 break; 3899 case MSR_IA32_MCG_CAP: 3900 data = vcpu->arch.mcg_cap; 3901 break; 3902 case MSR_IA32_MCG_CTL: 3903 if (!(mcg_cap & MCG_CTL_P) && !host) 3904 return 1; 3905 data = vcpu->arch.mcg_ctl; 3906 break; 3907 case MSR_IA32_MCG_STATUS: 3908 data = vcpu->arch.mcg_status; 3909 break; 3910 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3911 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3912 if (msr > last_msr) 3913 return 1; 3914 3915 if (!(mcg_cap & MCG_CMCI_P) && !host) 3916 return 1; 3917 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3918 last_msr + 1 - MSR_IA32_MC0_CTL2); 3919 data = vcpu->arch.mci_ctl2_banks[offset]; 3920 break; 3921 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3922 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3923 if (msr > last_msr) 3924 return 1; 3925 3926 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3927 last_msr + 1 - MSR_IA32_MC0_CTL); 3928 data = vcpu->arch.mce_banks[offset]; 3929 break; 3930 default: 3931 return 1; 3932 } 3933 *pdata = data; 3934 return 0; 3935 } 3936 3937 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3938 { 3939 switch (msr_info->index) { 3940 case MSR_IA32_PLATFORM_ID: 3941 case MSR_IA32_EBL_CR_POWERON: 3942 case MSR_IA32_LASTBRANCHFROMIP: 3943 case MSR_IA32_LASTBRANCHTOIP: 3944 case MSR_IA32_LASTINTFROMIP: 3945 case MSR_IA32_LASTINTTOIP: 3946 case MSR_AMD64_SYSCFG: 3947 case MSR_K8_TSEG_ADDR: 3948 case MSR_K8_TSEG_MASK: 3949 case MSR_VM_HSAVE_PA: 3950 case MSR_K8_INT_PENDING_MSG: 3951 case MSR_AMD64_NB_CFG: 3952 case MSR_FAM10H_MMIO_CONF_BASE: 3953 case MSR_AMD64_BU_CFG2: 3954 case MSR_IA32_PERF_CTL: 3955 case MSR_AMD64_DC_CFG: 3956 case MSR_F15H_EX_CFG: 3957 /* 3958 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3959 * limit) MSRs. Just return 0, as we do not want to expose the host 3960 * data here. Do not conditionalize this on CPUID, as KVM does not do 3961 * so for existing CPU-specific MSRs. 3962 */ 3963 case MSR_RAPL_POWER_UNIT: 3964 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3965 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3966 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3967 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3968 msr_info->data = 0; 3969 break; 3970 case MSR_IA32_PEBS_ENABLE: 3971 case MSR_IA32_DS_AREA: 3972 case MSR_PEBS_DATA_CFG: 3973 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3974 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3975 return kvm_pmu_get_msr(vcpu, msr_info); 3976 /* 3977 * Userspace is allowed to read MSRs that KVM reports as 3978 * to-be-saved, even if an MSR isn't fully supported. 3979 */ 3980 if (!msr_info->host_initiated) 3981 return 1; 3982 msr_info->data = 0; 3983 break; 3984 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3985 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3986 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3987 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3988 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3989 return kvm_pmu_get_msr(vcpu, msr_info); 3990 msr_info->data = 0; 3991 break; 3992 case MSR_IA32_UCODE_REV: 3993 msr_info->data = vcpu->arch.microcode_version; 3994 break; 3995 case MSR_IA32_ARCH_CAPABILITIES: 3996 if (!msr_info->host_initiated && 3997 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3998 return 1; 3999 msr_info->data = vcpu->arch.arch_capabilities; 4000 break; 4001 case MSR_IA32_PERF_CAPABILITIES: 4002 if (!msr_info->host_initiated && 4003 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4004 return 1; 4005 msr_info->data = vcpu->arch.perf_capabilities; 4006 break; 4007 case MSR_IA32_POWER_CTL: 4008 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4009 break; 4010 case MSR_IA32_TSC: { 4011 /* 4012 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4013 * even when not intercepted. AMD manual doesn't explicitly 4014 * state this but appears to behave the same. 4015 * 4016 * On userspace reads and writes, however, we unconditionally 4017 * return L1's TSC value to ensure backwards-compatible 4018 * behavior for migration. 4019 */ 4020 u64 offset, ratio; 4021 4022 if (msr_info->host_initiated) { 4023 offset = vcpu->arch.l1_tsc_offset; 4024 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4025 } else { 4026 offset = vcpu->arch.tsc_offset; 4027 ratio = vcpu->arch.tsc_scaling_ratio; 4028 } 4029 4030 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4031 break; 4032 } 4033 case MSR_MTRRcap: 4034 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4035 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4036 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4037 case 0xcd: /* fsb frequency */ 4038 msr_info->data = 3; 4039 break; 4040 /* 4041 * MSR_EBC_FREQUENCY_ID 4042 * Conservative value valid for even the basic CPU models. 4043 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4044 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4045 * and 266MHz for model 3, or 4. Set Core Clock 4046 * Frequency to System Bus Frequency Ratio to 1 (bits 4047 * 31:24) even though these are only valid for CPU 4048 * models > 2, however guests may end up dividing or 4049 * multiplying by zero otherwise. 4050 */ 4051 case MSR_EBC_FREQUENCY_ID: 4052 msr_info->data = 1 << 24; 4053 break; 4054 case MSR_IA32_APICBASE: 4055 msr_info->data = kvm_get_apic_base(vcpu); 4056 break; 4057 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4058 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4059 case MSR_IA32_TSC_DEADLINE: 4060 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4061 break; 4062 case MSR_IA32_TSC_ADJUST: 4063 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4064 break; 4065 case MSR_IA32_MISC_ENABLE: 4066 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4067 break; 4068 case MSR_IA32_SMBASE: 4069 if (!msr_info->host_initiated) 4070 return 1; 4071 msr_info->data = vcpu->arch.smbase; 4072 break; 4073 case MSR_SMI_COUNT: 4074 msr_info->data = vcpu->arch.smi_count; 4075 break; 4076 case MSR_IA32_PERF_STATUS: 4077 /* TSC increment by tick */ 4078 msr_info->data = 1000ULL; 4079 /* CPU multiplier */ 4080 msr_info->data |= (((uint64_t)4ULL) << 40); 4081 break; 4082 case MSR_EFER: 4083 msr_info->data = vcpu->arch.efer; 4084 break; 4085 case MSR_KVM_WALL_CLOCK: 4086 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4087 return 1; 4088 4089 msr_info->data = vcpu->kvm->arch.wall_clock; 4090 break; 4091 case MSR_KVM_WALL_CLOCK_NEW: 4092 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4093 return 1; 4094 4095 msr_info->data = vcpu->kvm->arch.wall_clock; 4096 break; 4097 case MSR_KVM_SYSTEM_TIME: 4098 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4099 return 1; 4100 4101 msr_info->data = vcpu->arch.time; 4102 break; 4103 case MSR_KVM_SYSTEM_TIME_NEW: 4104 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4105 return 1; 4106 4107 msr_info->data = vcpu->arch.time; 4108 break; 4109 case MSR_KVM_ASYNC_PF_EN: 4110 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4111 return 1; 4112 4113 msr_info->data = vcpu->arch.apf.msr_en_val; 4114 break; 4115 case MSR_KVM_ASYNC_PF_INT: 4116 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4117 return 1; 4118 4119 msr_info->data = vcpu->arch.apf.msr_int_val; 4120 break; 4121 case MSR_KVM_ASYNC_PF_ACK: 4122 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4123 return 1; 4124 4125 msr_info->data = 0; 4126 break; 4127 case MSR_KVM_STEAL_TIME: 4128 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4129 return 1; 4130 4131 msr_info->data = vcpu->arch.st.msr_val; 4132 break; 4133 case MSR_KVM_PV_EOI_EN: 4134 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4135 return 1; 4136 4137 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4138 break; 4139 case MSR_KVM_POLL_CONTROL: 4140 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4141 return 1; 4142 4143 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4144 break; 4145 case MSR_IA32_P5_MC_ADDR: 4146 case MSR_IA32_P5_MC_TYPE: 4147 case MSR_IA32_MCG_CAP: 4148 case MSR_IA32_MCG_CTL: 4149 case MSR_IA32_MCG_STATUS: 4150 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4151 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4152 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4153 msr_info->host_initiated); 4154 case MSR_IA32_XSS: 4155 if (!msr_info->host_initiated && 4156 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4157 return 1; 4158 msr_info->data = vcpu->arch.ia32_xss; 4159 break; 4160 case MSR_K7_CLK_CTL: 4161 /* 4162 * Provide expected ramp-up count for K7. All other 4163 * are set to zero, indicating minimum divisors for 4164 * every field. 4165 * 4166 * This prevents guest kernels on AMD host with CPU 4167 * type 6, model 8 and higher from exploding due to 4168 * the rdmsr failing. 4169 */ 4170 msr_info->data = 0x20000000; 4171 break; 4172 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4173 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4174 case HV_X64_MSR_SYNDBG_OPTIONS: 4175 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4176 case HV_X64_MSR_CRASH_CTL: 4177 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4178 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4179 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4180 case HV_X64_MSR_TSC_EMULATION_STATUS: 4181 return kvm_hv_get_msr_common(vcpu, 4182 msr_info->index, &msr_info->data, 4183 msr_info->host_initiated); 4184 case MSR_IA32_BBL_CR_CTL3: 4185 /* This legacy MSR exists but isn't fully documented in current 4186 * silicon. It is however accessed by winxp in very narrow 4187 * scenarios where it sets bit #19, itself documented as 4188 * a "reserved" bit. Best effort attempt to source coherent 4189 * read data here should the balance of the register be 4190 * interpreted by the guest: 4191 * 4192 * L2 cache control register 3: 64GB range, 256KB size, 4193 * enabled, latency 0x1, configured 4194 */ 4195 msr_info->data = 0xbe702111; 4196 break; 4197 case MSR_AMD64_OSVW_ID_LENGTH: 4198 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4199 return 1; 4200 msr_info->data = vcpu->arch.osvw.length; 4201 break; 4202 case MSR_AMD64_OSVW_STATUS: 4203 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4204 return 1; 4205 msr_info->data = vcpu->arch.osvw.status; 4206 break; 4207 case MSR_PLATFORM_INFO: 4208 if (!msr_info->host_initiated && 4209 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4210 return 1; 4211 msr_info->data = vcpu->arch.msr_platform_info; 4212 break; 4213 case MSR_MISC_FEATURES_ENABLES: 4214 msr_info->data = vcpu->arch.msr_misc_features_enables; 4215 break; 4216 case MSR_K7_HWCR: 4217 msr_info->data = vcpu->arch.msr_hwcr; 4218 break; 4219 #ifdef CONFIG_X86_64 4220 case MSR_IA32_XFD: 4221 if (!msr_info->host_initiated && 4222 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4223 return 1; 4224 4225 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4226 break; 4227 case MSR_IA32_XFD_ERR: 4228 if (!msr_info->host_initiated && 4229 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4230 return 1; 4231 4232 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4233 break; 4234 #endif 4235 default: 4236 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4237 return kvm_pmu_get_msr(vcpu, msr_info); 4238 return KVM_MSR_RET_INVALID; 4239 } 4240 return 0; 4241 } 4242 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4243 4244 /* 4245 * Read or write a bunch of msrs. All parameters are kernel addresses. 4246 * 4247 * @return number of msrs set successfully. 4248 */ 4249 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4250 struct kvm_msr_entry *entries, 4251 int (*do_msr)(struct kvm_vcpu *vcpu, 4252 unsigned index, u64 *data)) 4253 { 4254 int i; 4255 4256 for (i = 0; i < msrs->nmsrs; ++i) 4257 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4258 break; 4259 4260 return i; 4261 } 4262 4263 /* 4264 * Read or write a bunch of msrs. Parameters are user addresses. 4265 * 4266 * @return number of msrs set successfully. 4267 */ 4268 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4269 int (*do_msr)(struct kvm_vcpu *vcpu, 4270 unsigned index, u64 *data), 4271 int writeback) 4272 { 4273 struct kvm_msrs msrs; 4274 struct kvm_msr_entry *entries; 4275 int r, n; 4276 unsigned size; 4277 4278 r = -EFAULT; 4279 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4280 goto out; 4281 4282 r = -E2BIG; 4283 if (msrs.nmsrs >= MAX_IO_MSRS) 4284 goto out; 4285 4286 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4287 entries = memdup_user(user_msrs->entries, size); 4288 if (IS_ERR(entries)) { 4289 r = PTR_ERR(entries); 4290 goto out; 4291 } 4292 4293 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4294 if (r < 0) 4295 goto out_free; 4296 4297 r = -EFAULT; 4298 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4299 goto out_free; 4300 4301 r = n; 4302 4303 out_free: 4304 kfree(entries); 4305 out: 4306 return r; 4307 } 4308 4309 static inline bool kvm_can_mwait_in_guest(void) 4310 { 4311 return boot_cpu_has(X86_FEATURE_MWAIT) && 4312 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4313 boot_cpu_has(X86_FEATURE_ARAT); 4314 } 4315 4316 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4317 struct kvm_cpuid2 __user *cpuid_arg) 4318 { 4319 struct kvm_cpuid2 cpuid; 4320 int r; 4321 4322 r = -EFAULT; 4323 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4324 return r; 4325 4326 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4327 if (r) 4328 return r; 4329 4330 r = -EFAULT; 4331 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4332 return r; 4333 4334 return 0; 4335 } 4336 4337 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4338 { 4339 int r = 0; 4340 4341 switch (ext) { 4342 case KVM_CAP_IRQCHIP: 4343 case KVM_CAP_HLT: 4344 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4345 case KVM_CAP_SET_TSS_ADDR: 4346 case KVM_CAP_EXT_CPUID: 4347 case KVM_CAP_EXT_EMUL_CPUID: 4348 case KVM_CAP_CLOCKSOURCE: 4349 case KVM_CAP_PIT: 4350 case KVM_CAP_NOP_IO_DELAY: 4351 case KVM_CAP_MP_STATE: 4352 case KVM_CAP_SYNC_MMU: 4353 case KVM_CAP_USER_NMI: 4354 case KVM_CAP_REINJECT_CONTROL: 4355 case KVM_CAP_IRQ_INJECT_STATUS: 4356 case KVM_CAP_IOEVENTFD: 4357 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4358 case KVM_CAP_PIT2: 4359 case KVM_CAP_PIT_STATE2: 4360 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4361 case KVM_CAP_VCPU_EVENTS: 4362 case KVM_CAP_HYPERV: 4363 case KVM_CAP_HYPERV_VAPIC: 4364 case KVM_CAP_HYPERV_SPIN: 4365 case KVM_CAP_HYPERV_SYNIC: 4366 case KVM_CAP_HYPERV_SYNIC2: 4367 case KVM_CAP_HYPERV_VP_INDEX: 4368 case KVM_CAP_HYPERV_EVENTFD: 4369 case KVM_CAP_HYPERV_TLBFLUSH: 4370 case KVM_CAP_HYPERV_SEND_IPI: 4371 case KVM_CAP_HYPERV_CPUID: 4372 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4373 case KVM_CAP_SYS_HYPERV_CPUID: 4374 case KVM_CAP_PCI_SEGMENT: 4375 case KVM_CAP_DEBUGREGS: 4376 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4377 case KVM_CAP_XSAVE: 4378 case KVM_CAP_ASYNC_PF: 4379 case KVM_CAP_ASYNC_PF_INT: 4380 case KVM_CAP_GET_TSC_KHZ: 4381 case KVM_CAP_KVMCLOCK_CTRL: 4382 case KVM_CAP_READONLY_MEM: 4383 case KVM_CAP_HYPERV_TIME: 4384 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4385 case KVM_CAP_TSC_DEADLINE_TIMER: 4386 case KVM_CAP_DISABLE_QUIRKS: 4387 case KVM_CAP_SET_BOOT_CPU_ID: 4388 case KVM_CAP_SPLIT_IRQCHIP: 4389 case KVM_CAP_IMMEDIATE_EXIT: 4390 case KVM_CAP_PMU_EVENT_FILTER: 4391 case KVM_CAP_GET_MSR_FEATURES: 4392 case KVM_CAP_MSR_PLATFORM_INFO: 4393 case KVM_CAP_EXCEPTION_PAYLOAD: 4394 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4395 case KVM_CAP_SET_GUEST_DEBUG: 4396 case KVM_CAP_LAST_CPU: 4397 case KVM_CAP_X86_USER_SPACE_MSR: 4398 case KVM_CAP_X86_MSR_FILTER: 4399 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4400 #ifdef CONFIG_X86_SGX_KVM 4401 case KVM_CAP_SGX_ATTRIBUTE: 4402 #endif 4403 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4404 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4405 case KVM_CAP_SREGS2: 4406 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4407 case KVM_CAP_VCPU_ATTRIBUTES: 4408 case KVM_CAP_SYS_ATTRIBUTES: 4409 case KVM_CAP_VAPIC: 4410 case KVM_CAP_ENABLE_CAP: 4411 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4412 r = 1; 4413 break; 4414 case KVM_CAP_EXIT_HYPERCALL: 4415 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4416 break; 4417 case KVM_CAP_SET_GUEST_DEBUG2: 4418 return KVM_GUESTDBG_VALID_MASK; 4419 #ifdef CONFIG_KVM_XEN 4420 case KVM_CAP_XEN_HVM: 4421 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4422 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4423 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4424 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4425 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4426 if (sched_info_on()) 4427 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4428 break; 4429 #endif 4430 case KVM_CAP_SYNC_REGS: 4431 r = KVM_SYNC_X86_VALID_FIELDS; 4432 break; 4433 case KVM_CAP_ADJUST_CLOCK: 4434 r = KVM_CLOCK_VALID_FLAGS; 4435 break; 4436 case KVM_CAP_X86_DISABLE_EXITS: 4437 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4438 KVM_X86_DISABLE_EXITS_CSTATE; 4439 if(kvm_can_mwait_in_guest()) 4440 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4441 break; 4442 case KVM_CAP_X86_SMM: 4443 /* SMBASE is usually relocated above 1M on modern chipsets, 4444 * and SMM handlers might indeed rely on 4G segment limits, 4445 * so do not report SMM to be available if real mode is 4446 * emulated via vm86 mode. Still, do not go to great lengths 4447 * to avoid userspace's usage of the feature, because it is a 4448 * fringe case that is not enabled except via specific settings 4449 * of the module parameters. 4450 */ 4451 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4452 break; 4453 case KVM_CAP_NR_VCPUS: 4454 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4455 break; 4456 case KVM_CAP_MAX_VCPUS: 4457 r = KVM_MAX_VCPUS; 4458 break; 4459 case KVM_CAP_MAX_VCPU_ID: 4460 r = KVM_MAX_VCPU_IDS; 4461 break; 4462 case KVM_CAP_PV_MMU: /* obsolete */ 4463 r = 0; 4464 break; 4465 case KVM_CAP_MCE: 4466 r = KVM_MAX_MCE_BANKS; 4467 break; 4468 case KVM_CAP_XCRS: 4469 r = boot_cpu_has(X86_FEATURE_XSAVE); 4470 break; 4471 case KVM_CAP_TSC_CONTROL: 4472 case KVM_CAP_VM_TSC_CONTROL: 4473 r = kvm_caps.has_tsc_control; 4474 break; 4475 case KVM_CAP_X2APIC_API: 4476 r = KVM_X2APIC_API_VALID_FLAGS; 4477 break; 4478 case KVM_CAP_NESTED_STATE: 4479 r = kvm_x86_ops.nested_ops->get_state ? 4480 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4481 break; 4482 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4483 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4484 break; 4485 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4486 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4487 break; 4488 case KVM_CAP_SMALLER_MAXPHYADDR: 4489 r = (int) allow_smaller_maxphyaddr; 4490 break; 4491 case KVM_CAP_STEAL_TIME: 4492 r = sched_info_on(); 4493 break; 4494 case KVM_CAP_X86_BUS_LOCK_EXIT: 4495 if (kvm_caps.has_bus_lock_exit) 4496 r = KVM_BUS_LOCK_DETECTION_OFF | 4497 KVM_BUS_LOCK_DETECTION_EXIT; 4498 else 4499 r = 0; 4500 break; 4501 case KVM_CAP_XSAVE2: { 4502 u64 guest_perm = xstate_get_guest_group_perm(); 4503 4504 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4505 if (r < sizeof(struct kvm_xsave)) 4506 r = sizeof(struct kvm_xsave); 4507 break; 4508 } 4509 case KVM_CAP_PMU_CAPABILITY: 4510 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4511 break; 4512 case KVM_CAP_DISABLE_QUIRKS2: 4513 r = KVM_X86_VALID_QUIRKS; 4514 break; 4515 case KVM_CAP_X86_NOTIFY_VMEXIT: 4516 r = kvm_caps.has_notify_vmexit; 4517 break; 4518 default: 4519 break; 4520 } 4521 return r; 4522 } 4523 4524 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4525 { 4526 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4527 4528 if ((u64)(unsigned long)uaddr != attr->addr) 4529 return ERR_PTR_USR(-EFAULT); 4530 return uaddr; 4531 } 4532 4533 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4534 { 4535 u64 __user *uaddr = kvm_get_attr_addr(attr); 4536 4537 if (attr->group) 4538 return -ENXIO; 4539 4540 if (IS_ERR(uaddr)) 4541 return PTR_ERR(uaddr); 4542 4543 switch (attr->attr) { 4544 case KVM_X86_XCOMP_GUEST_SUPP: 4545 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4546 return -EFAULT; 4547 return 0; 4548 default: 4549 return -ENXIO; 4550 break; 4551 } 4552 } 4553 4554 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4555 { 4556 if (attr->group) 4557 return -ENXIO; 4558 4559 switch (attr->attr) { 4560 case KVM_X86_XCOMP_GUEST_SUPP: 4561 return 0; 4562 default: 4563 return -ENXIO; 4564 } 4565 } 4566 4567 long kvm_arch_dev_ioctl(struct file *filp, 4568 unsigned int ioctl, unsigned long arg) 4569 { 4570 void __user *argp = (void __user *)arg; 4571 long r; 4572 4573 switch (ioctl) { 4574 case KVM_GET_MSR_INDEX_LIST: { 4575 struct kvm_msr_list __user *user_msr_list = argp; 4576 struct kvm_msr_list msr_list; 4577 unsigned n; 4578 4579 r = -EFAULT; 4580 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4581 goto out; 4582 n = msr_list.nmsrs; 4583 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4584 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4585 goto out; 4586 r = -E2BIG; 4587 if (n < msr_list.nmsrs) 4588 goto out; 4589 r = -EFAULT; 4590 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4591 num_msrs_to_save * sizeof(u32))) 4592 goto out; 4593 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4594 &emulated_msrs, 4595 num_emulated_msrs * sizeof(u32))) 4596 goto out; 4597 r = 0; 4598 break; 4599 } 4600 case KVM_GET_SUPPORTED_CPUID: 4601 case KVM_GET_EMULATED_CPUID: { 4602 struct kvm_cpuid2 __user *cpuid_arg = argp; 4603 struct kvm_cpuid2 cpuid; 4604 4605 r = -EFAULT; 4606 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4607 goto out; 4608 4609 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4610 ioctl); 4611 if (r) 4612 goto out; 4613 4614 r = -EFAULT; 4615 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4616 goto out; 4617 r = 0; 4618 break; 4619 } 4620 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4621 r = -EFAULT; 4622 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4623 sizeof(kvm_caps.supported_mce_cap))) 4624 goto out; 4625 r = 0; 4626 break; 4627 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4628 struct kvm_msr_list __user *user_msr_list = argp; 4629 struct kvm_msr_list msr_list; 4630 unsigned int n; 4631 4632 r = -EFAULT; 4633 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4634 goto out; 4635 n = msr_list.nmsrs; 4636 msr_list.nmsrs = num_msr_based_features; 4637 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4638 goto out; 4639 r = -E2BIG; 4640 if (n < msr_list.nmsrs) 4641 goto out; 4642 r = -EFAULT; 4643 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4644 num_msr_based_features * sizeof(u32))) 4645 goto out; 4646 r = 0; 4647 break; 4648 } 4649 case KVM_GET_MSRS: 4650 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4651 break; 4652 case KVM_GET_SUPPORTED_HV_CPUID: 4653 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4654 break; 4655 case KVM_GET_DEVICE_ATTR: { 4656 struct kvm_device_attr attr; 4657 r = -EFAULT; 4658 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4659 break; 4660 r = kvm_x86_dev_get_attr(&attr); 4661 break; 4662 } 4663 case KVM_HAS_DEVICE_ATTR: { 4664 struct kvm_device_attr attr; 4665 r = -EFAULT; 4666 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4667 break; 4668 r = kvm_x86_dev_has_attr(&attr); 4669 break; 4670 } 4671 default: 4672 r = -EINVAL; 4673 break; 4674 } 4675 out: 4676 return r; 4677 } 4678 4679 static void wbinvd_ipi(void *garbage) 4680 { 4681 wbinvd(); 4682 } 4683 4684 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4685 { 4686 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4687 } 4688 4689 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4690 { 4691 /* Address WBINVD may be executed by guest */ 4692 if (need_emulate_wbinvd(vcpu)) { 4693 if (static_call(kvm_x86_has_wbinvd_exit)()) 4694 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4695 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4696 smp_call_function_single(vcpu->cpu, 4697 wbinvd_ipi, NULL, 1); 4698 } 4699 4700 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4701 4702 /* Save host pkru register if supported */ 4703 vcpu->arch.host_pkru = read_pkru(); 4704 4705 /* Apply any externally detected TSC adjustments (due to suspend) */ 4706 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4707 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4708 vcpu->arch.tsc_offset_adjustment = 0; 4709 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4710 } 4711 4712 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4713 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4714 rdtsc() - vcpu->arch.last_host_tsc; 4715 if (tsc_delta < 0) 4716 mark_tsc_unstable("KVM discovered backwards TSC"); 4717 4718 if (kvm_check_tsc_unstable()) { 4719 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4720 vcpu->arch.last_guest_tsc); 4721 kvm_vcpu_write_tsc_offset(vcpu, offset); 4722 vcpu->arch.tsc_catchup = 1; 4723 } 4724 4725 if (kvm_lapic_hv_timer_in_use(vcpu)) 4726 kvm_lapic_restart_hv_timer(vcpu); 4727 4728 /* 4729 * On a host with synchronized TSC, there is no need to update 4730 * kvmclock on vcpu->cpu migration 4731 */ 4732 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4733 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4734 if (vcpu->cpu != cpu) 4735 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4736 vcpu->cpu = cpu; 4737 } 4738 4739 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4740 } 4741 4742 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4743 { 4744 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4745 struct kvm_steal_time __user *st; 4746 struct kvm_memslots *slots; 4747 static const u8 preempted = KVM_VCPU_PREEMPTED; 4748 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4749 4750 /* 4751 * The vCPU can be marked preempted if and only if the VM-Exit was on 4752 * an instruction boundary and will not trigger guest emulation of any 4753 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4754 * when this is true, for example allowing the vCPU to be marked 4755 * preempted if and only if the VM-Exit was due to a host interrupt. 4756 */ 4757 if (!vcpu->arch.at_instruction_boundary) { 4758 vcpu->stat.preemption_other++; 4759 return; 4760 } 4761 4762 vcpu->stat.preemption_reported++; 4763 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4764 return; 4765 4766 if (vcpu->arch.st.preempted) 4767 return; 4768 4769 /* This happens on process exit */ 4770 if (unlikely(current->mm != vcpu->kvm->mm)) 4771 return; 4772 4773 slots = kvm_memslots(vcpu->kvm); 4774 4775 if (unlikely(slots->generation != ghc->generation || 4776 gpa != ghc->gpa || 4777 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4778 return; 4779 4780 st = (struct kvm_steal_time __user *)ghc->hva; 4781 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4782 4783 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4784 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4785 4786 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4787 } 4788 4789 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4790 { 4791 int idx; 4792 4793 if (vcpu->preempted) { 4794 if (!vcpu->arch.guest_state_protected) 4795 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4796 4797 /* 4798 * Take the srcu lock as memslots will be accessed to check the gfn 4799 * cache generation against the memslots generation. 4800 */ 4801 idx = srcu_read_lock(&vcpu->kvm->srcu); 4802 if (kvm_xen_msr_enabled(vcpu->kvm)) 4803 kvm_xen_runstate_set_preempted(vcpu); 4804 else 4805 kvm_steal_time_set_preempted(vcpu); 4806 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4807 } 4808 4809 static_call(kvm_x86_vcpu_put)(vcpu); 4810 vcpu->arch.last_host_tsc = rdtsc(); 4811 } 4812 4813 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4814 struct kvm_lapic_state *s) 4815 { 4816 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4817 4818 return kvm_apic_get_state(vcpu, s); 4819 } 4820 4821 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4822 struct kvm_lapic_state *s) 4823 { 4824 int r; 4825 4826 r = kvm_apic_set_state(vcpu, s); 4827 if (r) 4828 return r; 4829 update_cr8_intercept(vcpu); 4830 4831 return 0; 4832 } 4833 4834 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4835 { 4836 /* 4837 * We can accept userspace's request for interrupt injection 4838 * as long as we have a place to store the interrupt number. 4839 * The actual injection will happen when the CPU is able to 4840 * deliver the interrupt. 4841 */ 4842 if (kvm_cpu_has_extint(vcpu)) 4843 return false; 4844 4845 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4846 return (!lapic_in_kernel(vcpu) || 4847 kvm_apic_accept_pic_intr(vcpu)); 4848 } 4849 4850 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4851 { 4852 /* 4853 * Do not cause an interrupt window exit if an exception 4854 * is pending or an event needs reinjection; userspace 4855 * might want to inject the interrupt manually using KVM_SET_REGS 4856 * or KVM_SET_SREGS. For that to work, we must be at an 4857 * instruction boundary and with no events half-injected. 4858 */ 4859 return (kvm_arch_interrupt_allowed(vcpu) && 4860 kvm_cpu_accept_dm_intr(vcpu) && 4861 !kvm_event_needs_reinjection(vcpu) && 4862 !kvm_is_exception_pending(vcpu)); 4863 } 4864 4865 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4866 struct kvm_interrupt *irq) 4867 { 4868 if (irq->irq >= KVM_NR_INTERRUPTS) 4869 return -EINVAL; 4870 4871 if (!irqchip_in_kernel(vcpu->kvm)) { 4872 kvm_queue_interrupt(vcpu, irq->irq, false); 4873 kvm_make_request(KVM_REQ_EVENT, vcpu); 4874 return 0; 4875 } 4876 4877 /* 4878 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4879 * fail for in-kernel 8259. 4880 */ 4881 if (pic_in_kernel(vcpu->kvm)) 4882 return -ENXIO; 4883 4884 if (vcpu->arch.pending_external_vector != -1) 4885 return -EEXIST; 4886 4887 vcpu->arch.pending_external_vector = irq->irq; 4888 kvm_make_request(KVM_REQ_EVENT, vcpu); 4889 return 0; 4890 } 4891 4892 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4893 { 4894 kvm_inject_nmi(vcpu); 4895 4896 return 0; 4897 } 4898 4899 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4900 { 4901 kvm_make_request(KVM_REQ_SMI, vcpu); 4902 4903 return 0; 4904 } 4905 4906 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4907 struct kvm_tpr_access_ctl *tac) 4908 { 4909 if (tac->flags) 4910 return -EINVAL; 4911 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4912 return 0; 4913 } 4914 4915 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4916 u64 mcg_cap) 4917 { 4918 int r; 4919 unsigned bank_num = mcg_cap & 0xff, bank; 4920 4921 r = -EINVAL; 4922 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4923 goto out; 4924 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4925 goto out; 4926 r = 0; 4927 vcpu->arch.mcg_cap = mcg_cap; 4928 /* Init IA32_MCG_CTL to all 1s */ 4929 if (mcg_cap & MCG_CTL_P) 4930 vcpu->arch.mcg_ctl = ~(u64)0; 4931 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4932 for (bank = 0; bank < bank_num; bank++) { 4933 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4934 if (mcg_cap & MCG_CMCI_P) 4935 vcpu->arch.mci_ctl2_banks[bank] = 0; 4936 } 4937 4938 kvm_apic_after_set_mcg_cap(vcpu); 4939 4940 static_call(kvm_x86_setup_mce)(vcpu); 4941 out: 4942 return r; 4943 } 4944 4945 /* 4946 * Validate this is an UCNA (uncorrectable no action) error by checking the 4947 * MCG_STATUS and MCi_STATUS registers: 4948 * - none of the bits for Machine Check Exceptions are set 4949 * - both the VAL (valid) and UC (uncorrectable) bits are set 4950 * MCI_STATUS_PCC - Processor Context Corrupted 4951 * MCI_STATUS_S - Signaled as a Machine Check Exception 4952 * MCI_STATUS_AR - Software recoverable Action Required 4953 */ 4954 static bool is_ucna(struct kvm_x86_mce *mce) 4955 { 4956 return !mce->mcg_status && 4957 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4958 (mce->status & MCI_STATUS_VAL) && 4959 (mce->status & MCI_STATUS_UC); 4960 } 4961 4962 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4963 { 4964 u64 mcg_cap = vcpu->arch.mcg_cap; 4965 4966 banks[1] = mce->status; 4967 banks[2] = mce->addr; 4968 banks[3] = mce->misc; 4969 vcpu->arch.mcg_status = mce->mcg_status; 4970 4971 if (!(mcg_cap & MCG_CMCI_P) || 4972 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4973 return 0; 4974 4975 if (lapic_in_kernel(vcpu)) 4976 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4977 4978 return 0; 4979 } 4980 4981 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4982 struct kvm_x86_mce *mce) 4983 { 4984 u64 mcg_cap = vcpu->arch.mcg_cap; 4985 unsigned bank_num = mcg_cap & 0xff; 4986 u64 *banks = vcpu->arch.mce_banks; 4987 4988 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4989 return -EINVAL; 4990 4991 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 4992 4993 if (is_ucna(mce)) 4994 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 4995 4996 /* 4997 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4998 * reporting is disabled 4999 */ 5000 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5001 vcpu->arch.mcg_ctl != ~(u64)0) 5002 return 0; 5003 /* 5004 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5005 * reporting is disabled for the bank 5006 */ 5007 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5008 return 0; 5009 if (mce->status & MCI_STATUS_UC) { 5010 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5011 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5012 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5013 return 0; 5014 } 5015 if (banks[1] & MCI_STATUS_VAL) 5016 mce->status |= MCI_STATUS_OVER; 5017 banks[2] = mce->addr; 5018 banks[3] = mce->misc; 5019 vcpu->arch.mcg_status = mce->mcg_status; 5020 banks[1] = mce->status; 5021 kvm_queue_exception(vcpu, MC_VECTOR); 5022 } else if (!(banks[1] & MCI_STATUS_VAL) 5023 || !(banks[1] & MCI_STATUS_UC)) { 5024 if (banks[1] & MCI_STATUS_VAL) 5025 mce->status |= MCI_STATUS_OVER; 5026 banks[2] = mce->addr; 5027 banks[3] = mce->misc; 5028 banks[1] = mce->status; 5029 } else 5030 banks[1] |= MCI_STATUS_OVER; 5031 return 0; 5032 } 5033 5034 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5035 struct kvm_vcpu_events *events) 5036 { 5037 struct kvm_queued_exception *ex; 5038 5039 process_nmi(vcpu); 5040 5041 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5042 process_smi(vcpu); 5043 5044 /* 5045 * KVM's ABI only allows for one exception to be migrated. Luckily, 5046 * the only time there can be two queued exceptions is if there's a 5047 * non-exiting _injected_ exception, and a pending exiting exception. 5048 * In that case, ignore the VM-Exiting exception as it's an extension 5049 * of the injected exception. 5050 */ 5051 if (vcpu->arch.exception_vmexit.pending && 5052 !vcpu->arch.exception.pending && 5053 !vcpu->arch.exception.injected) 5054 ex = &vcpu->arch.exception_vmexit; 5055 else 5056 ex = &vcpu->arch.exception; 5057 5058 /* 5059 * In guest mode, payload delivery should be deferred if the exception 5060 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5061 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5062 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5063 * propagate the payload and so it cannot be safely deferred. Deliver 5064 * the payload if the capability hasn't been requested. 5065 */ 5066 if (!vcpu->kvm->arch.exception_payload_enabled && 5067 ex->pending && ex->has_payload) 5068 kvm_deliver_exception_payload(vcpu, ex); 5069 5070 /* 5071 * The API doesn't provide the instruction length for software 5072 * exceptions, so don't report them. As long as the guest RIP 5073 * isn't advanced, we should expect to encounter the exception 5074 * again. 5075 */ 5076 if (kvm_exception_is_soft(ex->vector)) { 5077 events->exception.injected = 0; 5078 events->exception.pending = 0; 5079 } else { 5080 events->exception.injected = ex->injected; 5081 events->exception.pending = ex->pending; 5082 /* 5083 * For ABI compatibility, deliberately conflate 5084 * pending and injected exceptions when 5085 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5086 */ 5087 if (!vcpu->kvm->arch.exception_payload_enabled) 5088 events->exception.injected |= ex->pending; 5089 } 5090 events->exception.nr = ex->vector; 5091 events->exception.has_error_code = ex->has_error_code; 5092 events->exception.error_code = ex->error_code; 5093 events->exception_has_payload = ex->has_payload; 5094 events->exception_payload = ex->payload; 5095 5096 events->interrupt.injected = 5097 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5098 events->interrupt.nr = vcpu->arch.interrupt.nr; 5099 events->interrupt.soft = 0; 5100 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5101 5102 events->nmi.injected = vcpu->arch.nmi_injected; 5103 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5104 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5105 events->nmi.pad = 0; 5106 5107 events->sipi_vector = 0; /* never valid when reporting to user space */ 5108 5109 events->smi.smm = is_smm(vcpu); 5110 events->smi.pending = vcpu->arch.smi_pending; 5111 events->smi.smm_inside_nmi = 5112 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5113 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5114 5115 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5116 | KVM_VCPUEVENT_VALID_SHADOW 5117 | KVM_VCPUEVENT_VALID_SMM); 5118 if (vcpu->kvm->arch.exception_payload_enabled) 5119 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5120 if (vcpu->kvm->arch.triple_fault_event) { 5121 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5122 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5123 } 5124 5125 memset(&events->reserved, 0, sizeof(events->reserved)); 5126 } 5127 5128 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 5129 5130 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5131 struct kvm_vcpu_events *events) 5132 { 5133 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5134 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5135 | KVM_VCPUEVENT_VALID_SHADOW 5136 | KVM_VCPUEVENT_VALID_SMM 5137 | KVM_VCPUEVENT_VALID_PAYLOAD 5138 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5139 return -EINVAL; 5140 5141 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5142 if (!vcpu->kvm->arch.exception_payload_enabled) 5143 return -EINVAL; 5144 if (events->exception.pending) 5145 events->exception.injected = 0; 5146 else 5147 events->exception_has_payload = 0; 5148 } else { 5149 events->exception.pending = 0; 5150 events->exception_has_payload = 0; 5151 } 5152 5153 if ((events->exception.injected || events->exception.pending) && 5154 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5155 return -EINVAL; 5156 5157 /* INITs are latched while in SMM */ 5158 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5159 (events->smi.smm || events->smi.pending) && 5160 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5161 return -EINVAL; 5162 5163 process_nmi(vcpu); 5164 5165 /* 5166 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5167 * morph the exception to a VM-Exit if appropriate. Do this only for 5168 * pending exceptions, already-injected exceptions are not subject to 5169 * intercpetion. Note, userspace that conflates pending and injected 5170 * is hosed, and will incorrectly convert an injected exception into a 5171 * pending exception, which in turn may cause a spurious VM-Exit. 5172 */ 5173 vcpu->arch.exception_from_userspace = events->exception.pending; 5174 5175 vcpu->arch.exception_vmexit.pending = false; 5176 5177 vcpu->arch.exception.injected = events->exception.injected; 5178 vcpu->arch.exception.pending = events->exception.pending; 5179 vcpu->arch.exception.vector = events->exception.nr; 5180 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5181 vcpu->arch.exception.error_code = events->exception.error_code; 5182 vcpu->arch.exception.has_payload = events->exception_has_payload; 5183 vcpu->arch.exception.payload = events->exception_payload; 5184 5185 vcpu->arch.interrupt.injected = events->interrupt.injected; 5186 vcpu->arch.interrupt.nr = events->interrupt.nr; 5187 vcpu->arch.interrupt.soft = events->interrupt.soft; 5188 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5189 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5190 events->interrupt.shadow); 5191 5192 vcpu->arch.nmi_injected = events->nmi.injected; 5193 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5194 vcpu->arch.nmi_pending = events->nmi.pending; 5195 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5196 5197 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5198 lapic_in_kernel(vcpu)) 5199 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5200 5201 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5202 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5203 kvm_x86_ops.nested_ops->leave_nested(vcpu); 5204 kvm_smm_changed(vcpu, events->smi.smm); 5205 } 5206 5207 vcpu->arch.smi_pending = events->smi.pending; 5208 5209 if (events->smi.smm) { 5210 if (events->smi.smm_inside_nmi) 5211 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5212 else 5213 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5214 } 5215 5216 if (lapic_in_kernel(vcpu)) { 5217 if (events->smi.latched_init) 5218 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5219 else 5220 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5221 } 5222 } 5223 5224 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5225 if (!vcpu->kvm->arch.triple_fault_event) 5226 return -EINVAL; 5227 if (events->triple_fault.pending) 5228 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5229 else 5230 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5231 } 5232 5233 kvm_make_request(KVM_REQ_EVENT, vcpu); 5234 5235 return 0; 5236 } 5237 5238 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5239 struct kvm_debugregs *dbgregs) 5240 { 5241 unsigned long val; 5242 5243 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5244 kvm_get_dr(vcpu, 6, &val); 5245 dbgregs->dr6 = val; 5246 dbgregs->dr7 = vcpu->arch.dr7; 5247 dbgregs->flags = 0; 5248 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5249 } 5250 5251 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5252 struct kvm_debugregs *dbgregs) 5253 { 5254 if (dbgregs->flags) 5255 return -EINVAL; 5256 5257 if (!kvm_dr6_valid(dbgregs->dr6)) 5258 return -EINVAL; 5259 if (!kvm_dr7_valid(dbgregs->dr7)) 5260 return -EINVAL; 5261 5262 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5263 kvm_update_dr0123(vcpu); 5264 vcpu->arch.dr6 = dbgregs->dr6; 5265 vcpu->arch.dr7 = dbgregs->dr7; 5266 kvm_update_dr7(vcpu); 5267 5268 return 0; 5269 } 5270 5271 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5272 struct kvm_xsave *guest_xsave) 5273 { 5274 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5275 return; 5276 5277 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5278 guest_xsave->region, 5279 sizeof(guest_xsave->region), 5280 vcpu->arch.pkru); 5281 } 5282 5283 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5284 u8 *state, unsigned int size) 5285 { 5286 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5287 return; 5288 5289 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5290 state, size, vcpu->arch.pkru); 5291 } 5292 5293 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5294 struct kvm_xsave *guest_xsave) 5295 { 5296 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5297 return 0; 5298 5299 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5300 guest_xsave->region, 5301 kvm_caps.supported_xcr0, 5302 &vcpu->arch.pkru); 5303 } 5304 5305 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5306 struct kvm_xcrs *guest_xcrs) 5307 { 5308 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5309 guest_xcrs->nr_xcrs = 0; 5310 return; 5311 } 5312 5313 guest_xcrs->nr_xcrs = 1; 5314 guest_xcrs->flags = 0; 5315 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5316 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5317 } 5318 5319 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5320 struct kvm_xcrs *guest_xcrs) 5321 { 5322 int i, r = 0; 5323 5324 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5325 return -EINVAL; 5326 5327 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5328 return -EINVAL; 5329 5330 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5331 /* Only support XCR0 currently */ 5332 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5333 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5334 guest_xcrs->xcrs[i].value); 5335 break; 5336 } 5337 if (r) 5338 r = -EINVAL; 5339 return r; 5340 } 5341 5342 /* 5343 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5344 * stopped by the hypervisor. This function will be called from the host only. 5345 * EINVAL is returned when the host attempts to set the flag for a guest that 5346 * does not support pv clocks. 5347 */ 5348 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5349 { 5350 if (!vcpu->arch.pv_time.active) 5351 return -EINVAL; 5352 vcpu->arch.pvclock_set_guest_stopped_request = true; 5353 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5354 return 0; 5355 } 5356 5357 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5358 struct kvm_device_attr *attr) 5359 { 5360 int r; 5361 5362 switch (attr->attr) { 5363 case KVM_VCPU_TSC_OFFSET: 5364 r = 0; 5365 break; 5366 default: 5367 r = -ENXIO; 5368 } 5369 5370 return r; 5371 } 5372 5373 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5374 struct kvm_device_attr *attr) 5375 { 5376 u64 __user *uaddr = kvm_get_attr_addr(attr); 5377 int r; 5378 5379 if (IS_ERR(uaddr)) 5380 return PTR_ERR(uaddr); 5381 5382 switch (attr->attr) { 5383 case KVM_VCPU_TSC_OFFSET: 5384 r = -EFAULT; 5385 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5386 break; 5387 r = 0; 5388 break; 5389 default: 5390 r = -ENXIO; 5391 } 5392 5393 return r; 5394 } 5395 5396 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5397 struct kvm_device_attr *attr) 5398 { 5399 u64 __user *uaddr = kvm_get_attr_addr(attr); 5400 struct kvm *kvm = vcpu->kvm; 5401 int r; 5402 5403 if (IS_ERR(uaddr)) 5404 return PTR_ERR(uaddr); 5405 5406 switch (attr->attr) { 5407 case KVM_VCPU_TSC_OFFSET: { 5408 u64 offset, tsc, ns; 5409 unsigned long flags; 5410 bool matched; 5411 5412 r = -EFAULT; 5413 if (get_user(offset, uaddr)) 5414 break; 5415 5416 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5417 5418 matched = (vcpu->arch.virtual_tsc_khz && 5419 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5420 kvm->arch.last_tsc_offset == offset); 5421 5422 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5423 ns = get_kvmclock_base_ns(); 5424 5425 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5426 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5427 5428 r = 0; 5429 break; 5430 } 5431 default: 5432 r = -ENXIO; 5433 } 5434 5435 return r; 5436 } 5437 5438 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5439 unsigned int ioctl, 5440 void __user *argp) 5441 { 5442 struct kvm_device_attr attr; 5443 int r; 5444 5445 if (copy_from_user(&attr, argp, sizeof(attr))) 5446 return -EFAULT; 5447 5448 if (attr.group != KVM_VCPU_TSC_CTRL) 5449 return -ENXIO; 5450 5451 switch (ioctl) { 5452 case KVM_HAS_DEVICE_ATTR: 5453 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5454 break; 5455 case KVM_GET_DEVICE_ATTR: 5456 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5457 break; 5458 case KVM_SET_DEVICE_ATTR: 5459 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5460 break; 5461 } 5462 5463 return r; 5464 } 5465 5466 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5467 struct kvm_enable_cap *cap) 5468 { 5469 int r; 5470 uint16_t vmcs_version; 5471 void __user *user_ptr; 5472 5473 if (cap->flags) 5474 return -EINVAL; 5475 5476 switch (cap->cap) { 5477 case KVM_CAP_HYPERV_SYNIC2: 5478 if (cap->args[0]) 5479 return -EINVAL; 5480 fallthrough; 5481 5482 case KVM_CAP_HYPERV_SYNIC: 5483 if (!irqchip_in_kernel(vcpu->kvm)) 5484 return -EINVAL; 5485 return kvm_hv_activate_synic(vcpu, cap->cap == 5486 KVM_CAP_HYPERV_SYNIC2); 5487 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5488 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5489 return -ENOTTY; 5490 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5491 if (!r) { 5492 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5493 if (copy_to_user(user_ptr, &vmcs_version, 5494 sizeof(vmcs_version))) 5495 r = -EFAULT; 5496 } 5497 return r; 5498 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5499 if (!kvm_x86_ops.enable_direct_tlbflush) 5500 return -ENOTTY; 5501 5502 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 5503 5504 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5505 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5506 5507 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5508 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5509 if (vcpu->arch.pv_cpuid.enforce) 5510 kvm_update_pv_runtime(vcpu); 5511 5512 return 0; 5513 default: 5514 return -EINVAL; 5515 } 5516 } 5517 5518 long kvm_arch_vcpu_ioctl(struct file *filp, 5519 unsigned int ioctl, unsigned long arg) 5520 { 5521 struct kvm_vcpu *vcpu = filp->private_data; 5522 void __user *argp = (void __user *)arg; 5523 int r; 5524 union { 5525 struct kvm_sregs2 *sregs2; 5526 struct kvm_lapic_state *lapic; 5527 struct kvm_xsave *xsave; 5528 struct kvm_xcrs *xcrs; 5529 void *buffer; 5530 } u; 5531 5532 vcpu_load(vcpu); 5533 5534 u.buffer = NULL; 5535 switch (ioctl) { 5536 case KVM_GET_LAPIC: { 5537 r = -EINVAL; 5538 if (!lapic_in_kernel(vcpu)) 5539 goto out; 5540 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5541 GFP_KERNEL_ACCOUNT); 5542 5543 r = -ENOMEM; 5544 if (!u.lapic) 5545 goto out; 5546 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5547 if (r) 5548 goto out; 5549 r = -EFAULT; 5550 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5551 goto out; 5552 r = 0; 5553 break; 5554 } 5555 case KVM_SET_LAPIC: { 5556 r = -EINVAL; 5557 if (!lapic_in_kernel(vcpu)) 5558 goto out; 5559 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5560 if (IS_ERR(u.lapic)) { 5561 r = PTR_ERR(u.lapic); 5562 goto out_nofree; 5563 } 5564 5565 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5566 break; 5567 } 5568 case KVM_INTERRUPT: { 5569 struct kvm_interrupt irq; 5570 5571 r = -EFAULT; 5572 if (copy_from_user(&irq, argp, sizeof(irq))) 5573 goto out; 5574 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5575 break; 5576 } 5577 case KVM_NMI: { 5578 r = kvm_vcpu_ioctl_nmi(vcpu); 5579 break; 5580 } 5581 case KVM_SMI: { 5582 r = kvm_vcpu_ioctl_smi(vcpu); 5583 break; 5584 } 5585 case KVM_SET_CPUID: { 5586 struct kvm_cpuid __user *cpuid_arg = argp; 5587 struct kvm_cpuid cpuid; 5588 5589 r = -EFAULT; 5590 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5591 goto out; 5592 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5593 break; 5594 } 5595 case KVM_SET_CPUID2: { 5596 struct kvm_cpuid2 __user *cpuid_arg = argp; 5597 struct kvm_cpuid2 cpuid; 5598 5599 r = -EFAULT; 5600 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5601 goto out; 5602 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5603 cpuid_arg->entries); 5604 break; 5605 } 5606 case KVM_GET_CPUID2: { 5607 struct kvm_cpuid2 __user *cpuid_arg = argp; 5608 struct kvm_cpuid2 cpuid; 5609 5610 r = -EFAULT; 5611 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5612 goto out; 5613 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5614 cpuid_arg->entries); 5615 if (r) 5616 goto out; 5617 r = -EFAULT; 5618 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5619 goto out; 5620 r = 0; 5621 break; 5622 } 5623 case KVM_GET_MSRS: { 5624 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5625 r = msr_io(vcpu, argp, do_get_msr, 1); 5626 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5627 break; 5628 } 5629 case KVM_SET_MSRS: { 5630 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5631 r = msr_io(vcpu, argp, do_set_msr, 0); 5632 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5633 break; 5634 } 5635 case KVM_TPR_ACCESS_REPORTING: { 5636 struct kvm_tpr_access_ctl tac; 5637 5638 r = -EFAULT; 5639 if (copy_from_user(&tac, argp, sizeof(tac))) 5640 goto out; 5641 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5642 if (r) 5643 goto out; 5644 r = -EFAULT; 5645 if (copy_to_user(argp, &tac, sizeof(tac))) 5646 goto out; 5647 r = 0; 5648 break; 5649 }; 5650 case KVM_SET_VAPIC_ADDR: { 5651 struct kvm_vapic_addr va; 5652 int idx; 5653 5654 r = -EINVAL; 5655 if (!lapic_in_kernel(vcpu)) 5656 goto out; 5657 r = -EFAULT; 5658 if (copy_from_user(&va, argp, sizeof(va))) 5659 goto out; 5660 idx = srcu_read_lock(&vcpu->kvm->srcu); 5661 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5662 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5663 break; 5664 } 5665 case KVM_X86_SETUP_MCE: { 5666 u64 mcg_cap; 5667 5668 r = -EFAULT; 5669 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5670 goto out; 5671 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5672 break; 5673 } 5674 case KVM_X86_SET_MCE: { 5675 struct kvm_x86_mce mce; 5676 5677 r = -EFAULT; 5678 if (copy_from_user(&mce, argp, sizeof(mce))) 5679 goto out; 5680 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5681 break; 5682 } 5683 case KVM_GET_VCPU_EVENTS: { 5684 struct kvm_vcpu_events events; 5685 5686 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5687 5688 r = -EFAULT; 5689 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5690 break; 5691 r = 0; 5692 break; 5693 } 5694 case KVM_SET_VCPU_EVENTS: { 5695 struct kvm_vcpu_events events; 5696 5697 r = -EFAULT; 5698 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5699 break; 5700 5701 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5702 break; 5703 } 5704 case KVM_GET_DEBUGREGS: { 5705 struct kvm_debugregs dbgregs; 5706 5707 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5708 5709 r = -EFAULT; 5710 if (copy_to_user(argp, &dbgregs, 5711 sizeof(struct kvm_debugregs))) 5712 break; 5713 r = 0; 5714 break; 5715 } 5716 case KVM_SET_DEBUGREGS: { 5717 struct kvm_debugregs dbgregs; 5718 5719 r = -EFAULT; 5720 if (copy_from_user(&dbgregs, argp, 5721 sizeof(struct kvm_debugregs))) 5722 break; 5723 5724 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5725 break; 5726 } 5727 case KVM_GET_XSAVE: { 5728 r = -EINVAL; 5729 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5730 break; 5731 5732 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5733 r = -ENOMEM; 5734 if (!u.xsave) 5735 break; 5736 5737 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5738 5739 r = -EFAULT; 5740 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5741 break; 5742 r = 0; 5743 break; 5744 } 5745 case KVM_SET_XSAVE: { 5746 int size = vcpu->arch.guest_fpu.uabi_size; 5747 5748 u.xsave = memdup_user(argp, size); 5749 if (IS_ERR(u.xsave)) { 5750 r = PTR_ERR(u.xsave); 5751 goto out_nofree; 5752 } 5753 5754 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5755 break; 5756 } 5757 5758 case KVM_GET_XSAVE2: { 5759 int size = vcpu->arch.guest_fpu.uabi_size; 5760 5761 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5762 r = -ENOMEM; 5763 if (!u.xsave) 5764 break; 5765 5766 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5767 5768 r = -EFAULT; 5769 if (copy_to_user(argp, u.xsave, size)) 5770 break; 5771 5772 r = 0; 5773 break; 5774 } 5775 5776 case KVM_GET_XCRS: { 5777 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5778 r = -ENOMEM; 5779 if (!u.xcrs) 5780 break; 5781 5782 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5783 5784 r = -EFAULT; 5785 if (copy_to_user(argp, u.xcrs, 5786 sizeof(struct kvm_xcrs))) 5787 break; 5788 r = 0; 5789 break; 5790 } 5791 case KVM_SET_XCRS: { 5792 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5793 if (IS_ERR(u.xcrs)) { 5794 r = PTR_ERR(u.xcrs); 5795 goto out_nofree; 5796 } 5797 5798 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5799 break; 5800 } 5801 case KVM_SET_TSC_KHZ: { 5802 u32 user_tsc_khz; 5803 5804 r = -EINVAL; 5805 user_tsc_khz = (u32)arg; 5806 5807 if (kvm_caps.has_tsc_control && 5808 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5809 goto out; 5810 5811 if (user_tsc_khz == 0) 5812 user_tsc_khz = tsc_khz; 5813 5814 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5815 r = 0; 5816 5817 goto out; 5818 } 5819 case KVM_GET_TSC_KHZ: { 5820 r = vcpu->arch.virtual_tsc_khz; 5821 goto out; 5822 } 5823 case KVM_KVMCLOCK_CTRL: { 5824 r = kvm_set_guest_paused(vcpu); 5825 goto out; 5826 } 5827 case KVM_ENABLE_CAP: { 5828 struct kvm_enable_cap cap; 5829 5830 r = -EFAULT; 5831 if (copy_from_user(&cap, argp, sizeof(cap))) 5832 goto out; 5833 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5834 break; 5835 } 5836 case KVM_GET_NESTED_STATE: { 5837 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5838 u32 user_data_size; 5839 5840 r = -EINVAL; 5841 if (!kvm_x86_ops.nested_ops->get_state) 5842 break; 5843 5844 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5845 r = -EFAULT; 5846 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5847 break; 5848 5849 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5850 user_data_size); 5851 if (r < 0) 5852 break; 5853 5854 if (r > user_data_size) { 5855 if (put_user(r, &user_kvm_nested_state->size)) 5856 r = -EFAULT; 5857 else 5858 r = -E2BIG; 5859 break; 5860 } 5861 5862 r = 0; 5863 break; 5864 } 5865 case KVM_SET_NESTED_STATE: { 5866 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5867 struct kvm_nested_state kvm_state; 5868 int idx; 5869 5870 r = -EINVAL; 5871 if (!kvm_x86_ops.nested_ops->set_state) 5872 break; 5873 5874 r = -EFAULT; 5875 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5876 break; 5877 5878 r = -EINVAL; 5879 if (kvm_state.size < sizeof(kvm_state)) 5880 break; 5881 5882 if (kvm_state.flags & 5883 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5884 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5885 | KVM_STATE_NESTED_GIF_SET)) 5886 break; 5887 5888 /* nested_run_pending implies guest_mode. */ 5889 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5890 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5891 break; 5892 5893 idx = srcu_read_lock(&vcpu->kvm->srcu); 5894 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5895 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5896 break; 5897 } 5898 case KVM_GET_SUPPORTED_HV_CPUID: 5899 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5900 break; 5901 #ifdef CONFIG_KVM_XEN 5902 case KVM_XEN_VCPU_GET_ATTR: { 5903 struct kvm_xen_vcpu_attr xva; 5904 5905 r = -EFAULT; 5906 if (copy_from_user(&xva, argp, sizeof(xva))) 5907 goto out; 5908 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5909 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5910 r = -EFAULT; 5911 break; 5912 } 5913 case KVM_XEN_VCPU_SET_ATTR: { 5914 struct kvm_xen_vcpu_attr xva; 5915 5916 r = -EFAULT; 5917 if (copy_from_user(&xva, argp, sizeof(xva))) 5918 goto out; 5919 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5920 break; 5921 } 5922 #endif 5923 case KVM_GET_SREGS2: { 5924 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5925 r = -ENOMEM; 5926 if (!u.sregs2) 5927 goto out; 5928 __get_sregs2(vcpu, u.sregs2); 5929 r = -EFAULT; 5930 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5931 goto out; 5932 r = 0; 5933 break; 5934 } 5935 case KVM_SET_SREGS2: { 5936 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5937 if (IS_ERR(u.sregs2)) { 5938 r = PTR_ERR(u.sregs2); 5939 u.sregs2 = NULL; 5940 goto out; 5941 } 5942 r = __set_sregs2(vcpu, u.sregs2); 5943 break; 5944 } 5945 case KVM_HAS_DEVICE_ATTR: 5946 case KVM_GET_DEVICE_ATTR: 5947 case KVM_SET_DEVICE_ATTR: 5948 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5949 break; 5950 default: 5951 r = -EINVAL; 5952 } 5953 out: 5954 kfree(u.buffer); 5955 out_nofree: 5956 vcpu_put(vcpu); 5957 return r; 5958 } 5959 5960 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5961 { 5962 return VM_FAULT_SIGBUS; 5963 } 5964 5965 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5966 { 5967 int ret; 5968 5969 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5970 return -EINVAL; 5971 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5972 return ret; 5973 } 5974 5975 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5976 u64 ident_addr) 5977 { 5978 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5979 } 5980 5981 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5982 unsigned long kvm_nr_mmu_pages) 5983 { 5984 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5985 return -EINVAL; 5986 5987 mutex_lock(&kvm->slots_lock); 5988 5989 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5990 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5991 5992 mutex_unlock(&kvm->slots_lock); 5993 return 0; 5994 } 5995 5996 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5997 { 5998 return kvm->arch.n_max_mmu_pages; 5999 } 6000 6001 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6002 { 6003 struct kvm_pic *pic = kvm->arch.vpic; 6004 int r; 6005 6006 r = 0; 6007 switch (chip->chip_id) { 6008 case KVM_IRQCHIP_PIC_MASTER: 6009 memcpy(&chip->chip.pic, &pic->pics[0], 6010 sizeof(struct kvm_pic_state)); 6011 break; 6012 case KVM_IRQCHIP_PIC_SLAVE: 6013 memcpy(&chip->chip.pic, &pic->pics[1], 6014 sizeof(struct kvm_pic_state)); 6015 break; 6016 case KVM_IRQCHIP_IOAPIC: 6017 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6018 break; 6019 default: 6020 r = -EINVAL; 6021 break; 6022 } 6023 return r; 6024 } 6025 6026 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6027 { 6028 struct kvm_pic *pic = kvm->arch.vpic; 6029 int r; 6030 6031 r = 0; 6032 switch (chip->chip_id) { 6033 case KVM_IRQCHIP_PIC_MASTER: 6034 spin_lock(&pic->lock); 6035 memcpy(&pic->pics[0], &chip->chip.pic, 6036 sizeof(struct kvm_pic_state)); 6037 spin_unlock(&pic->lock); 6038 break; 6039 case KVM_IRQCHIP_PIC_SLAVE: 6040 spin_lock(&pic->lock); 6041 memcpy(&pic->pics[1], &chip->chip.pic, 6042 sizeof(struct kvm_pic_state)); 6043 spin_unlock(&pic->lock); 6044 break; 6045 case KVM_IRQCHIP_IOAPIC: 6046 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6047 break; 6048 default: 6049 r = -EINVAL; 6050 break; 6051 } 6052 kvm_pic_update_irq(pic); 6053 return r; 6054 } 6055 6056 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6057 { 6058 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6059 6060 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6061 6062 mutex_lock(&kps->lock); 6063 memcpy(ps, &kps->channels, sizeof(*ps)); 6064 mutex_unlock(&kps->lock); 6065 return 0; 6066 } 6067 6068 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6069 { 6070 int i; 6071 struct kvm_pit *pit = kvm->arch.vpit; 6072 6073 mutex_lock(&pit->pit_state.lock); 6074 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6075 for (i = 0; i < 3; i++) 6076 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6077 mutex_unlock(&pit->pit_state.lock); 6078 return 0; 6079 } 6080 6081 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6082 { 6083 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6084 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6085 sizeof(ps->channels)); 6086 ps->flags = kvm->arch.vpit->pit_state.flags; 6087 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6088 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6089 return 0; 6090 } 6091 6092 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6093 { 6094 int start = 0; 6095 int i; 6096 u32 prev_legacy, cur_legacy; 6097 struct kvm_pit *pit = kvm->arch.vpit; 6098 6099 mutex_lock(&pit->pit_state.lock); 6100 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6101 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6102 if (!prev_legacy && cur_legacy) 6103 start = 1; 6104 memcpy(&pit->pit_state.channels, &ps->channels, 6105 sizeof(pit->pit_state.channels)); 6106 pit->pit_state.flags = ps->flags; 6107 for (i = 0; i < 3; i++) 6108 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6109 start && i == 0); 6110 mutex_unlock(&pit->pit_state.lock); 6111 return 0; 6112 } 6113 6114 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6115 struct kvm_reinject_control *control) 6116 { 6117 struct kvm_pit *pit = kvm->arch.vpit; 6118 6119 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6120 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6121 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6122 */ 6123 mutex_lock(&pit->pit_state.lock); 6124 kvm_pit_set_reinject(pit, control->pit_reinject); 6125 mutex_unlock(&pit->pit_state.lock); 6126 6127 return 0; 6128 } 6129 6130 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6131 { 6132 6133 /* 6134 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6135 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6136 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6137 * VM-Exit. 6138 */ 6139 struct kvm_vcpu *vcpu; 6140 unsigned long i; 6141 6142 kvm_for_each_vcpu(i, vcpu, kvm) 6143 kvm_vcpu_kick(vcpu); 6144 } 6145 6146 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6147 bool line_status) 6148 { 6149 if (!irqchip_in_kernel(kvm)) 6150 return -ENXIO; 6151 6152 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6153 irq_event->irq, irq_event->level, 6154 line_status); 6155 return 0; 6156 } 6157 6158 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6159 struct kvm_enable_cap *cap) 6160 { 6161 int r; 6162 6163 if (cap->flags) 6164 return -EINVAL; 6165 6166 switch (cap->cap) { 6167 case KVM_CAP_DISABLE_QUIRKS2: 6168 r = -EINVAL; 6169 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6170 break; 6171 fallthrough; 6172 case KVM_CAP_DISABLE_QUIRKS: 6173 kvm->arch.disabled_quirks = cap->args[0]; 6174 r = 0; 6175 break; 6176 case KVM_CAP_SPLIT_IRQCHIP: { 6177 mutex_lock(&kvm->lock); 6178 r = -EINVAL; 6179 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6180 goto split_irqchip_unlock; 6181 r = -EEXIST; 6182 if (irqchip_in_kernel(kvm)) 6183 goto split_irqchip_unlock; 6184 if (kvm->created_vcpus) 6185 goto split_irqchip_unlock; 6186 r = kvm_setup_empty_irq_routing(kvm); 6187 if (r) 6188 goto split_irqchip_unlock; 6189 /* Pairs with irqchip_in_kernel. */ 6190 smp_wmb(); 6191 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6192 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6193 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6194 r = 0; 6195 split_irqchip_unlock: 6196 mutex_unlock(&kvm->lock); 6197 break; 6198 } 6199 case KVM_CAP_X2APIC_API: 6200 r = -EINVAL; 6201 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6202 break; 6203 6204 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6205 kvm->arch.x2apic_format = true; 6206 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6207 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6208 6209 r = 0; 6210 break; 6211 case KVM_CAP_X86_DISABLE_EXITS: 6212 r = -EINVAL; 6213 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6214 break; 6215 6216 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6217 kvm_can_mwait_in_guest()) 6218 kvm->arch.mwait_in_guest = true; 6219 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6220 kvm->arch.hlt_in_guest = true; 6221 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6222 kvm->arch.pause_in_guest = true; 6223 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6224 kvm->arch.cstate_in_guest = true; 6225 r = 0; 6226 break; 6227 case KVM_CAP_MSR_PLATFORM_INFO: 6228 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6229 r = 0; 6230 break; 6231 case KVM_CAP_EXCEPTION_PAYLOAD: 6232 kvm->arch.exception_payload_enabled = cap->args[0]; 6233 r = 0; 6234 break; 6235 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6236 kvm->arch.triple_fault_event = cap->args[0]; 6237 r = 0; 6238 break; 6239 case KVM_CAP_X86_USER_SPACE_MSR: 6240 r = -EINVAL; 6241 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL | 6242 KVM_MSR_EXIT_REASON_UNKNOWN | 6243 KVM_MSR_EXIT_REASON_FILTER)) 6244 break; 6245 kvm->arch.user_space_msr_mask = cap->args[0]; 6246 r = 0; 6247 break; 6248 case KVM_CAP_X86_BUS_LOCK_EXIT: 6249 r = -EINVAL; 6250 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6251 break; 6252 6253 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6254 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6255 break; 6256 6257 if (kvm_caps.has_bus_lock_exit && 6258 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6259 kvm->arch.bus_lock_detection_enabled = true; 6260 r = 0; 6261 break; 6262 #ifdef CONFIG_X86_SGX_KVM 6263 case KVM_CAP_SGX_ATTRIBUTE: { 6264 unsigned long allowed_attributes = 0; 6265 6266 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6267 if (r) 6268 break; 6269 6270 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6271 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6272 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6273 kvm->arch.sgx_provisioning_allowed = true; 6274 else 6275 r = -EINVAL; 6276 break; 6277 } 6278 #endif 6279 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6280 r = -EINVAL; 6281 if (!kvm_x86_ops.vm_copy_enc_context_from) 6282 break; 6283 6284 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6285 break; 6286 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6287 r = -EINVAL; 6288 if (!kvm_x86_ops.vm_move_enc_context_from) 6289 break; 6290 6291 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6292 break; 6293 case KVM_CAP_EXIT_HYPERCALL: 6294 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6295 r = -EINVAL; 6296 break; 6297 } 6298 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6299 r = 0; 6300 break; 6301 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6302 r = -EINVAL; 6303 if (cap->args[0] & ~1) 6304 break; 6305 kvm->arch.exit_on_emulation_error = cap->args[0]; 6306 r = 0; 6307 break; 6308 case KVM_CAP_PMU_CAPABILITY: 6309 r = -EINVAL; 6310 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6311 break; 6312 6313 mutex_lock(&kvm->lock); 6314 if (!kvm->created_vcpus) { 6315 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6316 r = 0; 6317 } 6318 mutex_unlock(&kvm->lock); 6319 break; 6320 case KVM_CAP_MAX_VCPU_ID: 6321 r = -EINVAL; 6322 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6323 break; 6324 6325 mutex_lock(&kvm->lock); 6326 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6327 r = 0; 6328 } else if (!kvm->arch.max_vcpu_ids) { 6329 kvm->arch.max_vcpu_ids = cap->args[0]; 6330 r = 0; 6331 } 6332 mutex_unlock(&kvm->lock); 6333 break; 6334 case KVM_CAP_X86_NOTIFY_VMEXIT: 6335 r = -EINVAL; 6336 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6337 break; 6338 if (!kvm_caps.has_notify_vmexit) 6339 break; 6340 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6341 break; 6342 mutex_lock(&kvm->lock); 6343 if (!kvm->created_vcpus) { 6344 kvm->arch.notify_window = cap->args[0] >> 32; 6345 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6346 r = 0; 6347 } 6348 mutex_unlock(&kvm->lock); 6349 break; 6350 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6351 r = -EINVAL; 6352 6353 /* 6354 * Since the risk of disabling NX hugepages is a guest crashing 6355 * the system, ensure the userspace process has permission to 6356 * reboot the system. 6357 * 6358 * Note that unlike the reboot() syscall, the process must have 6359 * this capability in the root namespace because exposing 6360 * /dev/kvm into a container does not limit the scope of the 6361 * iTLB multihit bug to that container. In other words, 6362 * this must use capable(), not ns_capable(). 6363 */ 6364 if (!capable(CAP_SYS_BOOT)) { 6365 r = -EPERM; 6366 break; 6367 } 6368 6369 if (cap->args[0]) 6370 break; 6371 6372 mutex_lock(&kvm->lock); 6373 if (!kvm->created_vcpus) { 6374 kvm->arch.disable_nx_huge_pages = true; 6375 r = 0; 6376 } 6377 mutex_unlock(&kvm->lock); 6378 break; 6379 default: 6380 r = -EINVAL; 6381 break; 6382 } 6383 return r; 6384 } 6385 6386 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6387 { 6388 struct kvm_x86_msr_filter *msr_filter; 6389 6390 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6391 if (!msr_filter) 6392 return NULL; 6393 6394 msr_filter->default_allow = default_allow; 6395 return msr_filter; 6396 } 6397 6398 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6399 { 6400 u32 i; 6401 6402 if (!msr_filter) 6403 return; 6404 6405 for (i = 0; i < msr_filter->count; i++) 6406 kfree(msr_filter->ranges[i].bitmap); 6407 6408 kfree(msr_filter); 6409 } 6410 6411 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6412 struct kvm_msr_filter_range *user_range) 6413 { 6414 unsigned long *bitmap = NULL; 6415 size_t bitmap_size; 6416 6417 if (!user_range->nmsrs) 6418 return 0; 6419 6420 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 6421 return -EINVAL; 6422 6423 if (!user_range->flags) 6424 return -EINVAL; 6425 6426 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6427 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6428 return -EINVAL; 6429 6430 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6431 if (IS_ERR(bitmap)) 6432 return PTR_ERR(bitmap); 6433 6434 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6435 .flags = user_range->flags, 6436 .base = user_range->base, 6437 .nmsrs = user_range->nmsrs, 6438 .bitmap = bitmap, 6439 }; 6440 6441 msr_filter->count++; 6442 return 0; 6443 } 6444 6445 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 6446 { 6447 struct kvm_msr_filter __user *user_msr_filter = argp; 6448 struct kvm_x86_msr_filter *new_filter, *old_filter; 6449 struct kvm_msr_filter filter; 6450 bool default_allow; 6451 bool empty = true; 6452 int r = 0; 6453 u32 i; 6454 6455 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6456 return -EFAULT; 6457 6458 if (filter.flags & ~KVM_MSR_FILTER_DEFAULT_DENY) 6459 return -EINVAL; 6460 6461 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 6462 empty &= !filter.ranges[i].nmsrs; 6463 6464 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 6465 if (empty && !default_allow) 6466 return -EINVAL; 6467 6468 new_filter = kvm_alloc_msr_filter(default_allow); 6469 if (!new_filter) 6470 return -ENOMEM; 6471 6472 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6473 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]); 6474 if (r) { 6475 kvm_free_msr_filter(new_filter); 6476 return r; 6477 } 6478 } 6479 6480 mutex_lock(&kvm->lock); 6481 6482 /* The per-VM filter is protected by kvm->lock... */ 6483 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6484 6485 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6486 synchronize_srcu(&kvm->srcu); 6487 6488 kvm_free_msr_filter(old_filter); 6489 6490 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6491 mutex_unlock(&kvm->lock); 6492 6493 return 0; 6494 } 6495 6496 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6497 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6498 { 6499 struct kvm_vcpu *vcpu; 6500 unsigned long i; 6501 int ret = 0; 6502 6503 mutex_lock(&kvm->lock); 6504 kvm_for_each_vcpu(i, vcpu, kvm) { 6505 if (!vcpu->arch.pv_time.active) 6506 continue; 6507 6508 ret = kvm_set_guest_paused(vcpu); 6509 if (ret) { 6510 kvm_err("Failed to pause guest VCPU%d: %d\n", 6511 vcpu->vcpu_id, ret); 6512 break; 6513 } 6514 } 6515 mutex_unlock(&kvm->lock); 6516 6517 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6518 } 6519 6520 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6521 { 6522 switch (state) { 6523 case PM_HIBERNATION_PREPARE: 6524 case PM_SUSPEND_PREPARE: 6525 return kvm_arch_suspend_notifier(kvm); 6526 } 6527 6528 return NOTIFY_DONE; 6529 } 6530 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6531 6532 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6533 { 6534 struct kvm_clock_data data = { 0 }; 6535 6536 get_kvmclock(kvm, &data); 6537 if (copy_to_user(argp, &data, sizeof(data))) 6538 return -EFAULT; 6539 6540 return 0; 6541 } 6542 6543 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6544 { 6545 struct kvm_arch *ka = &kvm->arch; 6546 struct kvm_clock_data data; 6547 u64 now_raw_ns; 6548 6549 if (copy_from_user(&data, argp, sizeof(data))) 6550 return -EFAULT; 6551 6552 /* 6553 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6554 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6555 */ 6556 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6557 return -EINVAL; 6558 6559 kvm_hv_request_tsc_page_update(kvm); 6560 kvm_start_pvclock_update(kvm); 6561 pvclock_update_vm_gtod_copy(kvm); 6562 6563 /* 6564 * This pairs with kvm_guest_time_update(): when masterclock is 6565 * in use, we use master_kernel_ns + kvmclock_offset to set 6566 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6567 * is slightly ahead) here we risk going negative on unsigned 6568 * 'system_time' when 'data.clock' is very small. 6569 */ 6570 if (data.flags & KVM_CLOCK_REALTIME) { 6571 u64 now_real_ns = ktime_get_real_ns(); 6572 6573 /* 6574 * Avoid stepping the kvmclock backwards. 6575 */ 6576 if (now_real_ns > data.realtime) 6577 data.clock += now_real_ns - data.realtime; 6578 } 6579 6580 if (ka->use_master_clock) 6581 now_raw_ns = ka->master_kernel_ns; 6582 else 6583 now_raw_ns = get_kvmclock_base_ns(); 6584 ka->kvmclock_offset = data.clock - now_raw_ns; 6585 kvm_end_pvclock_update(kvm); 6586 return 0; 6587 } 6588 6589 long kvm_arch_vm_ioctl(struct file *filp, 6590 unsigned int ioctl, unsigned long arg) 6591 { 6592 struct kvm *kvm = filp->private_data; 6593 void __user *argp = (void __user *)arg; 6594 int r = -ENOTTY; 6595 /* 6596 * This union makes it completely explicit to gcc-3.x 6597 * that these two variables' stack usage should be 6598 * combined, not added together. 6599 */ 6600 union { 6601 struct kvm_pit_state ps; 6602 struct kvm_pit_state2 ps2; 6603 struct kvm_pit_config pit_config; 6604 } u; 6605 6606 switch (ioctl) { 6607 case KVM_SET_TSS_ADDR: 6608 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6609 break; 6610 case KVM_SET_IDENTITY_MAP_ADDR: { 6611 u64 ident_addr; 6612 6613 mutex_lock(&kvm->lock); 6614 r = -EINVAL; 6615 if (kvm->created_vcpus) 6616 goto set_identity_unlock; 6617 r = -EFAULT; 6618 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6619 goto set_identity_unlock; 6620 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6621 set_identity_unlock: 6622 mutex_unlock(&kvm->lock); 6623 break; 6624 } 6625 case KVM_SET_NR_MMU_PAGES: 6626 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6627 break; 6628 case KVM_GET_NR_MMU_PAGES: 6629 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6630 break; 6631 case KVM_CREATE_IRQCHIP: { 6632 mutex_lock(&kvm->lock); 6633 6634 r = -EEXIST; 6635 if (irqchip_in_kernel(kvm)) 6636 goto create_irqchip_unlock; 6637 6638 r = -EINVAL; 6639 if (kvm->created_vcpus) 6640 goto create_irqchip_unlock; 6641 6642 r = kvm_pic_init(kvm); 6643 if (r) 6644 goto create_irqchip_unlock; 6645 6646 r = kvm_ioapic_init(kvm); 6647 if (r) { 6648 kvm_pic_destroy(kvm); 6649 goto create_irqchip_unlock; 6650 } 6651 6652 r = kvm_setup_default_irq_routing(kvm); 6653 if (r) { 6654 kvm_ioapic_destroy(kvm); 6655 kvm_pic_destroy(kvm); 6656 goto create_irqchip_unlock; 6657 } 6658 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6659 smp_wmb(); 6660 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6661 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6662 create_irqchip_unlock: 6663 mutex_unlock(&kvm->lock); 6664 break; 6665 } 6666 case KVM_CREATE_PIT: 6667 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6668 goto create_pit; 6669 case KVM_CREATE_PIT2: 6670 r = -EFAULT; 6671 if (copy_from_user(&u.pit_config, argp, 6672 sizeof(struct kvm_pit_config))) 6673 goto out; 6674 create_pit: 6675 mutex_lock(&kvm->lock); 6676 r = -EEXIST; 6677 if (kvm->arch.vpit) 6678 goto create_pit_unlock; 6679 r = -ENOMEM; 6680 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6681 if (kvm->arch.vpit) 6682 r = 0; 6683 create_pit_unlock: 6684 mutex_unlock(&kvm->lock); 6685 break; 6686 case KVM_GET_IRQCHIP: { 6687 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6688 struct kvm_irqchip *chip; 6689 6690 chip = memdup_user(argp, sizeof(*chip)); 6691 if (IS_ERR(chip)) { 6692 r = PTR_ERR(chip); 6693 goto out; 6694 } 6695 6696 r = -ENXIO; 6697 if (!irqchip_kernel(kvm)) 6698 goto get_irqchip_out; 6699 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6700 if (r) 6701 goto get_irqchip_out; 6702 r = -EFAULT; 6703 if (copy_to_user(argp, chip, sizeof(*chip))) 6704 goto get_irqchip_out; 6705 r = 0; 6706 get_irqchip_out: 6707 kfree(chip); 6708 break; 6709 } 6710 case KVM_SET_IRQCHIP: { 6711 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6712 struct kvm_irqchip *chip; 6713 6714 chip = memdup_user(argp, sizeof(*chip)); 6715 if (IS_ERR(chip)) { 6716 r = PTR_ERR(chip); 6717 goto out; 6718 } 6719 6720 r = -ENXIO; 6721 if (!irqchip_kernel(kvm)) 6722 goto set_irqchip_out; 6723 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6724 set_irqchip_out: 6725 kfree(chip); 6726 break; 6727 } 6728 case KVM_GET_PIT: { 6729 r = -EFAULT; 6730 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6731 goto out; 6732 r = -ENXIO; 6733 if (!kvm->arch.vpit) 6734 goto out; 6735 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6736 if (r) 6737 goto out; 6738 r = -EFAULT; 6739 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6740 goto out; 6741 r = 0; 6742 break; 6743 } 6744 case KVM_SET_PIT: { 6745 r = -EFAULT; 6746 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6747 goto out; 6748 mutex_lock(&kvm->lock); 6749 r = -ENXIO; 6750 if (!kvm->arch.vpit) 6751 goto set_pit_out; 6752 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6753 set_pit_out: 6754 mutex_unlock(&kvm->lock); 6755 break; 6756 } 6757 case KVM_GET_PIT2: { 6758 r = -ENXIO; 6759 if (!kvm->arch.vpit) 6760 goto out; 6761 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6762 if (r) 6763 goto out; 6764 r = -EFAULT; 6765 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6766 goto out; 6767 r = 0; 6768 break; 6769 } 6770 case KVM_SET_PIT2: { 6771 r = -EFAULT; 6772 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6773 goto out; 6774 mutex_lock(&kvm->lock); 6775 r = -ENXIO; 6776 if (!kvm->arch.vpit) 6777 goto set_pit2_out; 6778 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6779 set_pit2_out: 6780 mutex_unlock(&kvm->lock); 6781 break; 6782 } 6783 case KVM_REINJECT_CONTROL: { 6784 struct kvm_reinject_control control; 6785 r = -EFAULT; 6786 if (copy_from_user(&control, argp, sizeof(control))) 6787 goto out; 6788 r = -ENXIO; 6789 if (!kvm->arch.vpit) 6790 goto out; 6791 r = kvm_vm_ioctl_reinject(kvm, &control); 6792 break; 6793 } 6794 case KVM_SET_BOOT_CPU_ID: 6795 r = 0; 6796 mutex_lock(&kvm->lock); 6797 if (kvm->created_vcpus) 6798 r = -EBUSY; 6799 else 6800 kvm->arch.bsp_vcpu_id = arg; 6801 mutex_unlock(&kvm->lock); 6802 break; 6803 #ifdef CONFIG_KVM_XEN 6804 case KVM_XEN_HVM_CONFIG: { 6805 struct kvm_xen_hvm_config xhc; 6806 r = -EFAULT; 6807 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6808 goto out; 6809 r = kvm_xen_hvm_config(kvm, &xhc); 6810 break; 6811 } 6812 case KVM_XEN_HVM_GET_ATTR: { 6813 struct kvm_xen_hvm_attr xha; 6814 6815 r = -EFAULT; 6816 if (copy_from_user(&xha, argp, sizeof(xha))) 6817 goto out; 6818 r = kvm_xen_hvm_get_attr(kvm, &xha); 6819 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6820 r = -EFAULT; 6821 break; 6822 } 6823 case KVM_XEN_HVM_SET_ATTR: { 6824 struct kvm_xen_hvm_attr xha; 6825 6826 r = -EFAULT; 6827 if (copy_from_user(&xha, argp, sizeof(xha))) 6828 goto out; 6829 r = kvm_xen_hvm_set_attr(kvm, &xha); 6830 break; 6831 } 6832 case KVM_XEN_HVM_EVTCHN_SEND: { 6833 struct kvm_irq_routing_xen_evtchn uxe; 6834 6835 r = -EFAULT; 6836 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6837 goto out; 6838 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6839 break; 6840 } 6841 #endif 6842 case KVM_SET_CLOCK: 6843 r = kvm_vm_ioctl_set_clock(kvm, argp); 6844 break; 6845 case KVM_GET_CLOCK: 6846 r = kvm_vm_ioctl_get_clock(kvm, argp); 6847 break; 6848 case KVM_SET_TSC_KHZ: { 6849 u32 user_tsc_khz; 6850 6851 r = -EINVAL; 6852 user_tsc_khz = (u32)arg; 6853 6854 if (kvm_caps.has_tsc_control && 6855 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6856 goto out; 6857 6858 if (user_tsc_khz == 0) 6859 user_tsc_khz = tsc_khz; 6860 6861 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6862 r = 0; 6863 6864 goto out; 6865 } 6866 case KVM_GET_TSC_KHZ: { 6867 r = READ_ONCE(kvm->arch.default_tsc_khz); 6868 goto out; 6869 } 6870 case KVM_MEMORY_ENCRYPT_OP: { 6871 r = -ENOTTY; 6872 if (!kvm_x86_ops.mem_enc_ioctl) 6873 goto out; 6874 6875 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6876 break; 6877 } 6878 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6879 struct kvm_enc_region region; 6880 6881 r = -EFAULT; 6882 if (copy_from_user(®ion, argp, sizeof(region))) 6883 goto out; 6884 6885 r = -ENOTTY; 6886 if (!kvm_x86_ops.mem_enc_register_region) 6887 goto out; 6888 6889 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6890 break; 6891 } 6892 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6893 struct kvm_enc_region region; 6894 6895 r = -EFAULT; 6896 if (copy_from_user(®ion, argp, sizeof(region))) 6897 goto out; 6898 6899 r = -ENOTTY; 6900 if (!kvm_x86_ops.mem_enc_unregister_region) 6901 goto out; 6902 6903 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6904 break; 6905 } 6906 case KVM_HYPERV_EVENTFD: { 6907 struct kvm_hyperv_eventfd hvevfd; 6908 6909 r = -EFAULT; 6910 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6911 goto out; 6912 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6913 break; 6914 } 6915 case KVM_SET_PMU_EVENT_FILTER: 6916 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6917 break; 6918 case KVM_X86_SET_MSR_FILTER: 6919 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 6920 break; 6921 default: 6922 r = -ENOTTY; 6923 } 6924 out: 6925 return r; 6926 } 6927 6928 static void kvm_init_msr_list(void) 6929 { 6930 u32 dummy[2]; 6931 unsigned i; 6932 6933 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 6934 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6935 6936 num_msrs_to_save = 0; 6937 num_emulated_msrs = 0; 6938 num_msr_based_features = 0; 6939 6940 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 6941 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 6942 continue; 6943 6944 /* 6945 * Even MSRs that are valid in the host may not be exposed 6946 * to the guests in some cases. 6947 */ 6948 switch (msrs_to_save_all[i]) { 6949 case MSR_IA32_BNDCFGS: 6950 if (!kvm_mpx_supported()) 6951 continue; 6952 break; 6953 case MSR_TSC_AUX: 6954 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 6955 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 6956 continue; 6957 break; 6958 case MSR_IA32_UMWAIT_CONTROL: 6959 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 6960 continue; 6961 break; 6962 case MSR_IA32_RTIT_CTL: 6963 case MSR_IA32_RTIT_STATUS: 6964 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 6965 continue; 6966 break; 6967 case MSR_IA32_RTIT_CR3_MATCH: 6968 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6969 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 6970 continue; 6971 break; 6972 case MSR_IA32_RTIT_OUTPUT_BASE: 6973 case MSR_IA32_RTIT_OUTPUT_MASK: 6974 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6975 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 6976 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 6977 continue; 6978 break; 6979 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 6980 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6981 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 6982 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 6983 continue; 6984 break; 6985 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 6986 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 6987 min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 6988 continue; 6989 break; 6990 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 6991 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 6992 min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 6993 continue; 6994 break; 6995 case MSR_IA32_XFD: 6996 case MSR_IA32_XFD_ERR: 6997 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 6998 continue; 6999 break; 7000 default: 7001 break; 7002 } 7003 7004 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 7005 } 7006 7007 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7008 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7009 continue; 7010 7011 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7012 } 7013 7014 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7015 struct kvm_msr_entry msr; 7016 7017 msr.index = msr_based_features_all[i]; 7018 if (kvm_get_msr_feature(&msr)) 7019 continue; 7020 7021 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7022 } 7023 } 7024 7025 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7026 const void *v) 7027 { 7028 int handled = 0; 7029 int n; 7030 7031 do { 7032 n = min(len, 8); 7033 if (!(lapic_in_kernel(vcpu) && 7034 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7035 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7036 break; 7037 handled += n; 7038 addr += n; 7039 len -= n; 7040 v += n; 7041 } while (len); 7042 7043 return handled; 7044 } 7045 7046 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7047 { 7048 int handled = 0; 7049 int n; 7050 7051 do { 7052 n = min(len, 8); 7053 if (!(lapic_in_kernel(vcpu) && 7054 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7055 addr, n, v)) 7056 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7057 break; 7058 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7059 handled += n; 7060 addr += n; 7061 len -= n; 7062 v += n; 7063 } while (len); 7064 7065 return handled; 7066 } 7067 7068 static void kvm_set_segment(struct kvm_vcpu *vcpu, 7069 struct kvm_segment *var, int seg) 7070 { 7071 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7072 } 7073 7074 void kvm_get_segment(struct kvm_vcpu *vcpu, 7075 struct kvm_segment *var, int seg) 7076 { 7077 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7078 } 7079 7080 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7081 struct x86_exception *exception) 7082 { 7083 struct kvm_mmu *mmu = vcpu->arch.mmu; 7084 gpa_t t_gpa; 7085 7086 BUG_ON(!mmu_is_nested(vcpu)); 7087 7088 /* NPT walks are always user-walks */ 7089 access |= PFERR_USER_MASK; 7090 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7091 7092 return t_gpa; 7093 } 7094 7095 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7096 struct x86_exception *exception) 7097 { 7098 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7099 7100 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7101 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7102 } 7103 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7104 7105 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 7106 struct x86_exception *exception) 7107 { 7108 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7109 7110 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7111 access |= PFERR_FETCH_MASK; 7112 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7113 } 7114 7115 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7116 struct x86_exception *exception) 7117 { 7118 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7119 7120 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7121 access |= PFERR_WRITE_MASK; 7122 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7123 } 7124 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7125 7126 /* uses this to access any guest's mapped memory without checking CPL */ 7127 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7128 struct x86_exception *exception) 7129 { 7130 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7131 7132 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7133 } 7134 7135 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7136 struct kvm_vcpu *vcpu, u64 access, 7137 struct x86_exception *exception) 7138 { 7139 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7140 void *data = val; 7141 int r = X86EMUL_CONTINUE; 7142 7143 while (bytes) { 7144 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7145 unsigned offset = addr & (PAGE_SIZE-1); 7146 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7147 int ret; 7148 7149 if (gpa == INVALID_GPA) 7150 return X86EMUL_PROPAGATE_FAULT; 7151 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7152 offset, toread); 7153 if (ret < 0) { 7154 r = X86EMUL_IO_NEEDED; 7155 goto out; 7156 } 7157 7158 bytes -= toread; 7159 data += toread; 7160 addr += toread; 7161 } 7162 out: 7163 return r; 7164 } 7165 7166 /* used for instruction fetching */ 7167 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7168 gva_t addr, void *val, unsigned int bytes, 7169 struct x86_exception *exception) 7170 { 7171 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7172 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7173 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7174 unsigned offset; 7175 int ret; 7176 7177 /* Inline kvm_read_guest_virt_helper for speed. */ 7178 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7179 exception); 7180 if (unlikely(gpa == INVALID_GPA)) 7181 return X86EMUL_PROPAGATE_FAULT; 7182 7183 offset = addr & (PAGE_SIZE-1); 7184 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7185 bytes = (unsigned)PAGE_SIZE - offset; 7186 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7187 offset, bytes); 7188 if (unlikely(ret < 0)) 7189 return X86EMUL_IO_NEEDED; 7190 7191 return X86EMUL_CONTINUE; 7192 } 7193 7194 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7195 gva_t addr, void *val, unsigned int bytes, 7196 struct x86_exception *exception) 7197 { 7198 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7199 7200 /* 7201 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7202 * is returned, but our callers are not ready for that and they blindly 7203 * call kvm_inject_page_fault. Ensure that they at least do not leak 7204 * uninitialized kernel stack memory into cr2 and error code. 7205 */ 7206 memset(exception, 0, sizeof(*exception)); 7207 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7208 exception); 7209 } 7210 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7211 7212 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7213 gva_t addr, void *val, unsigned int bytes, 7214 struct x86_exception *exception, bool system) 7215 { 7216 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7217 u64 access = 0; 7218 7219 if (system) 7220 access |= PFERR_IMPLICIT_ACCESS; 7221 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7222 access |= PFERR_USER_MASK; 7223 7224 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7225 } 7226 7227 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 7228 unsigned long addr, void *val, unsigned int bytes) 7229 { 7230 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7231 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 7232 7233 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 7234 } 7235 7236 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7237 struct kvm_vcpu *vcpu, u64 access, 7238 struct x86_exception *exception) 7239 { 7240 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7241 void *data = val; 7242 int r = X86EMUL_CONTINUE; 7243 7244 while (bytes) { 7245 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7246 unsigned offset = addr & (PAGE_SIZE-1); 7247 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7248 int ret; 7249 7250 if (gpa == INVALID_GPA) 7251 return X86EMUL_PROPAGATE_FAULT; 7252 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7253 if (ret < 0) { 7254 r = X86EMUL_IO_NEEDED; 7255 goto out; 7256 } 7257 7258 bytes -= towrite; 7259 data += towrite; 7260 addr += towrite; 7261 } 7262 out: 7263 return r; 7264 } 7265 7266 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7267 unsigned int bytes, struct x86_exception *exception, 7268 bool system) 7269 { 7270 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7271 u64 access = PFERR_WRITE_MASK; 7272 7273 if (system) 7274 access |= PFERR_IMPLICIT_ACCESS; 7275 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7276 access |= PFERR_USER_MASK; 7277 7278 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7279 access, exception); 7280 } 7281 7282 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7283 unsigned int bytes, struct x86_exception *exception) 7284 { 7285 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7286 vcpu->arch.l1tf_flush_l1d = true; 7287 7288 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7289 PFERR_WRITE_MASK, exception); 7290 } 7291 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7292 7293 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7294 void *insn, int insn_len) 7295 { 7296 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7297 insn, insn_len); 7298 } 7299 7300 int handle_ud(struct kvm_vcpu *vcpu) 7301 { 7302 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7303 int fep_flags = READ_ONCE(force_emulation_prefix); 7304 int emul_type = EMULTYPE_TRAP_UD; 7305 char sig[5]; /* ud2; .ascii "kvm" */ 7306 struct x86_exception e; 7307 7308 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7309 return 1; 7310 7311 if (fep_flags && 7312 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7313 sig, sizeof(sig), &e) == 0 && 7314 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7315 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7316 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7317 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7318 emul_type = EMULTYPE_TRAP_UD_FORCED; 7319 } 7320 7321 return kvm_emulate_instruction(vcpu, emul_type); 7322 } 7323 EXPORT_SYMBOL_GPL(handle_ud); 7324 7325 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7326 gpa_t gpa, bool write) 7327 { 7328 /* For APIC access vmexit */ 7329 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7330 return 1; 7331 7332 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7333 trace_vcpu_match_mmio(gva, gpa, write, true); 7334 return 1; 7335 } 7336 7337 return 0; 7338 } 7339 7340 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7341 gpa_t *gpa, struct x86_exception *exception, 7342 bool write) 7343 { 7344 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7345 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7346 | (write ? PFERR_WRITE_MASK : 0); 7347 7348 /* 7349 * currently PKRU is only applied to ept enabled guest so 7350 * there is no pkey in EPT page table for L1 guest or EPT 7351 * shadow page table for L2 guest. 7352 */ 7353 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7354 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7355 vcpu->arch.mmio_access, 0, access))) { 7356 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7357 (gva & (PAGE_SIZE - 1)); 7358 trace_vcpu_match_mmio(gva, *gpa, write, false); 7359 return 1; 7360 } 7361 7362 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7363 7364 if (*gpa == INVALID_GPA) 7365 return -1; 7366 7367 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7368 } 7369 7370 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7371 const void *val, int bytes) 7372 { 7373 int ret; 7374 7375 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7376 if (ret < 0) 7377 return 0; 7378 kvm_page_track_write(vcpu, gpa, val, bytes); 7379 return 1; 7380 } 7381 7382 struct read_write_emulator_ops { 7383 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7384 int bytes); 7385 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7386 void *val, int bytes); 7387 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7388 int bytes, void *val); 7389 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7390 void *val, int bytes); 7391 bool write; 7392 }; 7393 7394 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7395 { 7396 if (vcpu->mmio_read_completed) { 7397 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7398 vcpu->mmio_fragments[0].gpa, val); 7399 vcpu->mmio_read_completed = 0; 7400 return 1; 7401 } 7402 7403 return 0; 7404 } 7405 7406 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7407 void *val, int bytes) 7408 { 7409 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7410 } 7411 7412 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7413 void *val, int bytes) 7414 { 7415 return emulator_write_phys(vcpu, gpa, val, bytes); 7416 } 7417 7418 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7419 { 7420 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7421 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7422 } 7423 7424 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7425 void *val, int bytes) 7426 { 7427 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7428 return X86EMUL_IO_NEEDED; 7429 } 7430 7431 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7432 void *val, int bytes) 7433 { 7434 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7435 7436 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7437 return X86EMUL_CONTINUE; 7438 } 7439 7440 static const struct read_write_emulator_ops read_emultor = { 7441 .read_write_prepare = read_prepare, 7442 .read_write_emulate = read_emulate, 7443 .read_write_mmio = vcpu_mmio_read, 7444 .read_write_exit_mmio = read_exit_mmio, 7445 }; 7446 7447 static const struct read_write_emulator_ops write_emultor = { 7448 .read_write_emulate = write_emulate, 7449 .read_write_mmio = write_mmio, 7450 .read_write_exit_mmio = write_exit_mmio, 7451 .write = true, 7452 }; 7453 7454 static int emulator_read_write_onepage(unsigned long addr, void *val, 7455 unsigned int bytes, 7456 struct x86_exception *exception, 7457 struct kvm_vcpu *vcpu, 7458 const struct read_write_emulator_ops *ops) 7459 { 7460 gpa_t gpa; 7461 int handled, ret; 7462 bool write = ops->write; 7463 struct kvm_mmio_fragment *frag; 7464 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7465 7466 /* 7467 * If the exit was due to a NPF we may already have a GPA. 7468 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7469 * Note, this cannot be used on string operations since string 7470 * operation using rep will only have the initial GPA from the NPF 7471 * occurred. 7472 */ 7473 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7474 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7475 gpa = ctxt->gpa_val; 7476 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7477 } else { 7478 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7479 if (ret < 0) 7480 return X86EMUL_PROPAGATE_FAULT; 7481 } 7482 7483 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7484 return X86EMUL_CONTINUE; 7485 7486 /* 7487 * Is this MMIO handled locally? 7488 */ 7489 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7490 if (handled == bytes) 7491 return X86EMUL_CONTINUE; 7492 7493 gpa += handled; 7494 bytes -= handled; 7495 val += handled; 7496 7497 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7498 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7499 frag->gpa = gpa; 7500 frag->data = val; 7501 frag->len = bytes; 7502 return X86EMUL_CONTINUE; 7503 } 7504 7505 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7506 unsigned long addr, 7507 void *val, unsigned int bytes, 7508 struct x86_exception *exception, 7509 const struct read_write_emulator_ops *ops) 7510 { 7511 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7512 gpa_t gpa; 7513 int rc; 7514 7515 if (ops->read_write_prepare && 7516 ops->read_write_prepare(vcpu, val, bytes)) 7517 return X86EMUL_CONTINUE; 7518 7519 vcpu->mmio_nr_fragments = 0; 7520 7521 /* Crossing a page boundary? */ 7522 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7523 int now; 7524 7525 now = -addr & ~PAGE_MASK; 7526 rc = emulator_read_write_onepage(addr, val, now, exception, 7527 vcpu, ops); 7528 7529 if (rc != X86EMUL_CONTINUE) 7530 return rc; 7531 addr += now; 7532 if (ctxt->mode != X86EMUL_MODE_PROT64) 7533 addr = (u32)addr; 7534 val += now; 7535 bytes -= now; 7536 } 7537 7538 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7539 vcpu, ops); 7540 if (rc != X86EMUL_CONTINUE) 7541 return rc; 7542 7543 if (!vcpu->mmio_nr_fragments) 7544 return rc; 7545 7546 gpa = vcpu->mmio_fragments[0].gpa; 7547 7548 vcpu->mmio_needed = 1; 7549 vcpu->mmio_cur_fragment = 0; 7550 7551 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7552 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7553 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7554 vcpu->run->mmio.phys_addr = gpa; 7555 7556 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7557 } 7558 7559 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7560 unsigned long addr, 7561 void *val, 7562 unsigned int bytes, 7563 struct x86_exception *exception) 7564 { 7565 return emulator_read_write(ctxt, addr, val, bytes, 7566 exception, &read_emultor); 7567 } 7568 7569 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7570 unsigned long addr, 7571 const void *val, 7572 unsigned int bytes, 7573 struct x86_exception *exception) 7574 { 7575 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7576 exception, &write_emultor); 7577 } 7578 7579 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7580 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7581 7582 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7583 unsigned long addr, 7584 const void *old, 7585 const void *new, 7586 unsigned int bytes, 7587 struct x86_exception *exception) 7588 { 7589 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7590 u64 page_line_mask; 7591 unsigned long hva; 7592 gpa_t gpa; 7593 int r; 7594 7595 /* guests cmpxchg8b have to be emulated atomically */ 7596 if (bytes > 8 || (bytes & (bytes - 1))) 7597 goto emul_write; 7598 7599 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7600 7601 if (gpa == INVALID_GPA || 7602 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7603 goto emul_write; 7604 7605 /* 7606 * Emulate the atomic as a straight write to avoid #AC if SLD is 7607 * enabled in the host and the access splits a cache line. 7608 */ 7609 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7610 page_line_mask = ~(cache_line_size() - 1); 7611 else 7612 page_line_mask = PAGE_MASK; 7613 7614 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7615 goto emul_write; 7616 7617 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7618 if (kvm_is_error_hva(hva)) 7619 goto emul_write; 7620 7621 hva += offset_in_page(gpa); 7622 7623 switch (bytes) { 7624 case 1: 7625 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7626 break; 7627 case 2: 7628 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7629 break; 7630 case 4: 7631 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7632 break; 7633 case 8: 7634 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7635 break; 7636 default: 7637 BUG(); 7638 } 7639 7640 if (r < 0) 7641 return X86EMUL_UNHANDLEABLE; 7642 if (r) 7643 return X86EMUL_CMPXCHG_FAILED; 7644 7645 kvm_page_track_write(vcpu, gpa, new, bytes); 7646 7647 return X86EMUL_CONTINUE; 7648 7649 emul_write: 7650 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7651 7652 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7653 } 7654 7655 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7656 unsigned short port, void *data, 7657 unsigned int count, bool in) 7658 { 7659 unsigned i; 7660 int r; 7661 7662 WARN_ON_ONCE(vcpu->arch.pio.count); 7663 for (i = 0; i < count; i++) { 7664 if (in) 7665 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7666 else 7667 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7668 7669 if (r) { 7670 if (i == 0) 7671 goto userspace_io; 7672 7673 /* 7674 * Userspace must have unregistered the device while PIO 7675 * was running. Drop writes / read as 0. 7676 */ 7677 if (in) 7678 memset(data, 0, size * (count - i)); 7679 break; 7680 } 7681 7682 data += size; 7683 } 7684 return 1; 7685 7686 userspace_io: 7687 vcpu->arch.pio.port = port; 7688 vcpu->arch.pio.in = in; 7689 vcpu->arch.pio.count = count; 7690 vcpu->arch.pio.size = size; 7691 7692 if (in) 7693 memset(vcpu->arch.pio_data, 0, size * count); 7694 else 7695 memcpy(vcpu->arch.pio_data, data, size * count); 7696 7697 vcpu->run->exit_reason = KVM_EXIT_IO; 7698 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7699 vcpu->run->io.size = size; 7700 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7701 vcpu->run->io.count = count; 7702 vcpu->run->io.port = port; 7703 return 0; 7704 } 7705 7706 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7707 unsigned short port, void *val, unsigned int count) 7708 { 7709 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7710 if (r) 7711 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7712 7713 return r; 7714 } 7715 7716 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7717 { 7718 int size = vcpu->arch.pio.size; 7719 unsigned int count = vcpu->arch.pio.count; 7720 memcpy(val, vcpu->arch.pio_data, size * count); 7721 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7722 vcpu->arch.pio.count = 0; 7723 } 7724 7725 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7726 int size, unsigned short port, void *val, 7727 unsigned int count) 7728 { 7729 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7730 if (vcpu->arch.pio.count) { 7731 /* 7732 * Complete a previous iteration that required userspace I/O. 7733 * Note, @count isn't guaranteed to match pio.count as userspace 7734 * can modify ECX before rerunning the vCPU. Ignore any such 7735 * shenanigans as KVM doesn't support modifying the rep count, 7736 * and the emulator ensures @count doesn't overflow the buffer. 7737 */ 7738 complete_emulator_pio_in(vcpu, val); 7739 return 1; 7740 } 7741 7742 return emulator_pio_in(vcpu, size, port, val, count); 7743 } 7744 7745 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7746 unsigned short port, const void *val, 7747 unsigned int count) 7748 { 7749 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7750 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7751 } 7752 7753 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7754 int size, unsigned short port, 7755 const void *val, unsigned int count) 7756 { 7757 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7758 } 7759 7760 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7761 { 7762 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7763 } 7764 7765 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7766 { 7767 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7768 } 7769 7770 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7771 { 7772 if (!need_emulate_wbinvd(vcpu)) 7773 return X86EMUL_CONTINUE; 7774 7775 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7776 int cpu = get_cpu(); 7777 7778 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7779 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7780 wbinvd_ipi, NULL, 1); 7781 put_cpu(); 7782 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7783 } else 7784 wbinvd(); 7785 return X86EMUL_CONTINUE; 7786 } 7787 7788 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7789 { 7790 kvm_emulate_wbinvd_noskip(vcpu); 7791 return kvm_skip_emulated_instruction(vcpu); 7792 } 7793 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7794 7795 7796 7797 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7798 { 7799 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7800 } 7801 7802 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7803 unsigned long *dest) 7804 { 7805 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7806 } 7807 7808 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7809 unsigned long value) 7810 { 7811 7812 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7813 } 7814 7815 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7816 { 7817 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7818 } 7819 7820 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7821 { 7822 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7823 unsigned long value; 7824 7825 switch (cr) { 7826 case 0: 7827 value = kvm_read_cr0(vcpu); 7828 break; 7829 case 2: 7830 value = vcpu->arch.cr2; 7831 break; 7832 case 3: 7833 value = kvm_read_cr3(vcpu); 7834 break; 7835 case 4: 7836 value = kvm_read_cr4(vcpu); 7837 break; 7838 case 8: 7839 value = kvm_get_cr8(vcpu); 7840 break; 7841 default: 7842 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7843 return 0; 7844 } 7845 7846 return value; 7847 } 7848 7849 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7850 { 7851 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7852 int res = 0; 7853 7854 switch (cr) { 7855 case 0: 7856 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7857 break; 7858 case 2: 7859 vcpu->arch.cr2 = val; 7860 break; 7861 case 3: 7862 res = kvm_set_cr3(vcpu, val); 7863 break; 7864 case 4: 7865 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7866 break; 7867 case 8: 7868 res = kvm_set_cr8(vcpu, val); 7869 break; 7870 default: 7871 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7872 res = -1; 7873 } 7874 7875 return res; 7876 } 7877 7878 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7879 { 7880 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7881 } 7882 7883 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7884 { 7885 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7886 } 7887 7888 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7889 { 7890 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7891 } 7892 7893 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7894 { 7895 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7896 } 7897 7898 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7899 { 7900 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7901 } 7902 7903 static unsigned long emulator_get_cached_segment_base( 7904 struct x86_emulate_ctxt *ctxt, int seg) 7905 { 7906 return get_segment_base(emul_to_vcpu(ctxt), seg); 7907 } 7908 7909 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7910 struct desc_struct *desc, u32 *base3, 7911 int seg) 7912 { 7913 struct kvm_segment var; 7914 7915 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7916 *selector = var.selector; 7917 7918 if (var.unusable) { 7919 memset(desc, 0, sizeof(*desc)); 7920 if (base3) 7921 *base3 = 0; 7922 return false; 7923 } 7924 7925 if (var.g) 7926 var.limit >>= 12; 7927 set_desc_limit(desc, var.limit); 7928 set_desc_base(desc, (unsigned long)var.base); 7929 #ifdef CONFIG_X86_64 7930 if (base3) 7931 *base3 = var.base >> 32; 7932 #endif 7933 desc->type = var.type; 7934 desc->s = var.s; 7935 desc->dpl = var.dpl; 7936 desc->p = var.present; 7937 desc->avl = var.avl; 7938 desc->l = var.l; 7939 desc->d = var.db; 7940 desc->g = var.g; 7941 7942 return true; 7943 } 7944 7945 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7946 struct desc_struct *desc, u32 base3, 7947 int seg) 7948 { 7949 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7950 struct kvm_segment var; 7951 7952 var.selector = selector; 7953 var.base = get_desc_base(desc); 7954 #ifdef CONFIG_X86_64 7955 var.base |= ((u64)base3) << 32; 7956 #endif 7957 var.limit = get_desc_limit(desc); 7958 if (desc->g) 7959 var.limit = (var.limit << 12) | 0xfff; 7960 var.type = desc->type; 7961 var.dpl = desc->dpl; 7962 var.db = desc->d; 7963 var.s = desc->s; 7964 var.l = desc->l; 7965 var.g = desc->g; 7966 var.avl = desc->avl; 7967 var.present = desc->p; 7968 var.unusable = !var.present; 7969 var.padding = 0; 7970 7971 kvm_set_segment(vcpu, &var, seg); 7972 return; 7973 } 7974 7975 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7976 u32 msr_index, u64 *pdata) 7977 { 7978 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7979 int r; 7980 7981 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 7982 if (r < 0) 7983 return X86EMUL_UNHANDLEABLE; 7984 7985 if (r) { 7986 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 7987 complete_emulated_rdmsr, r)) 7988 return X86EMUL_IO_NEEDED; 7989 7990 trace_kvm_msr_read_ex(msr_index); 7991 return X86EMUL_PROPAGATE_FAULT; 7992 } 7993 7994 trace_kvm_msr_read(msr_index, *pdata); 7995 return X86EMUL_CONTINUE; 7996 } 7997 7998 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7999 u32 msr_index, u64 data) 8000 { 8001 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8002 int r; 8003 8004 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8005 if (r < 0) 8006 return X86EMUL_UNHANDLEABLE; 8007 8008 if (r) { 8009 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8010 complete_emulated_msr_access, r)) 8011 return X86EMUL_IO_NEEDED; 8012 8013 trace_kvm_msr_write_ex(msr_index, data); 8014 return X86EMUL_PROPAGATE_FAULT; 8015 } 8016 8017 trace_kvm_msr_write(msr_index, data); 8018 return X86EMUL_CONTINUE; 8019 } 8020 8021 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8022 u32 msr_index, u64 *pdata) 8023 { 8024 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8025 } 8026 8027 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 8028 u32 msr_index, u64 data) 8029 { 8030 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 8031 } 8032 8033 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 8034 { 8035 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8036 8037 return vcpu->arch.smbase; 8038 } 8039 8040 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 8041 { 8042 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8043 8044 vcpu->arch.smbase = smbase; 8045 } 8046 8047 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8048 u32 pmc) 8049 { 8050 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8051 return 0; 8052 return -EINVAL; 8053 } 8054 8055 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8056 u32 pmc, u64 *pdata) 8057 { 8058 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8059 } 8060 8061 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8062 { 8063 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8064 } 8065 8066 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8067 struct x86_instruction_info *info, 8068 enum x86_intercept_stage stage) 8069 { 8070 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8071 &ctxt->exception); 8072 } 8073 8074 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8075 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8076 bool exact_only) 8077 { 8078 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8079 } 8080 8081 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8082 { 8083 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8084 } 8085 8086 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8087 { 8088 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8089 } 8090 8091 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8092 { 8093 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8094 } 8095 8096 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8097 { 8098 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8099 } 8100 8101 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8102 { 8103 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8104 } 8105 8106 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8107 { 8108 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8109 } 8110 8111 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8112 { 8113 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8114 } 8115 8116 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8117 { 8118 return emul_to_vcpu(ctxt)->arch.hflags; 8119 } 8120 8121 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 8122 { 8123 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8124 8125 kvm_smm_changed(vcpu, false); 8126 } 8127 8128 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 8129 const char *smstate) 8130 { 8131 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 8132 } 8133 8134 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8135 { 8136 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8137 } 8138 8139 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8140 { 8141 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8142 } 8143 8144 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8145 { 8146 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8147 8148 if (!kvm->vm_bugged) 8149 kvm_vm_bugged(kvm); 8150 } 8151 8152 static const struct x86_emulate_ops emulate_ops = { 8153 .vm_bugged = emulator_vm_bugged, 8154 .read_gpr = emulator_read_gpr, 8155 .write_gpr = emulator_write_gpr, 8156 .read_std = emulator_read_std, 8157 .write_std = emulator_write_std, 8158 .read_phys = kvm_read_guest_phys_system, 8159 .fetch = kvm_fetch_guest_virt, 8160 .read_emulated = emulator_read_emulated, 8161 .write_emulated = emulator_write_emulated, 8162 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8163 .invlpg = emulator_invlpg, 8164 .pio_in_emulated = emulator_pio_in_emulated, 8165 .pio_out_emulated = emulator_pio_out_emulated, 8166 .get_segment = emulator_get_segment, 8167 .set_segment = emulator_set_segment, 8168 .get_cached_segment_base = emulator_get_cached_segment_base, 8169 .get_gdt = emulator_get_gdt, 8170 .get_idt = emulator_get_idt, 8171 .set_gdt = emulator_set_gdt, 8172 .set_idt = emulator_set_idt, 8173 .get_cr = emulator_get_cr, 8174 .set_cr = emulator_set_cr, 8175 .cpl = emulator_get_cpl, 8176 .get_dr = emulator_get_dr, 8177 .set_dr = emulator_set_dr, 8178 .get_smbase = emulator_get_smbase, 8179 .set_smbase = emulator_set_smbase, 8180 .set_msr_with_filter = emulator_set_msr_with_filter, 8181 .get_msr_with_filter = emulator_get_msr_with_filter, 8182 .set_msr = emulator_set_msr, 8183 .get_msr = emulator_get_msr, 8184 .check_pmc = emulator_check_pmc, 8185 .read_pmc = emulator_read_pmc, 8186 .halt = emulator_halt, 8187 .wbinvd = emulator_wbinvd, 8188 .fix_hypercall = emulator_fix_hypercall, 8189 .intercept = emulator_intercept, 8190 .get_cpuid = emulator_get_cpuid, 8191 .guest_has_long_mode = emulator_guest_has_long_mode, 8192 .guest_has_movbe = emulator_guest_has_movbe, 8193 .guest_has_fxsr = emulator_guest_has_fxsr, 8194 .guest_has_rdpid = emulator_guest_has_rdpid, 8195 .set_nmi_mask = emulator_set_nmi_mask, 8196 .get_hflags = emulator_get_hflags, 8197 .exiting_smm = emulator_exiting_smm, 8198 .leave_smm = emulator_leave_smm, 8199 .triple_fault = emulator_triple_fault, 8200 .set_xcr = emulator_set_xcr, 8201 }; 8202 8203 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8204 { 8205 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8206 /* 8207 * an sti; sti; sequence only disable interrupts for the first 8208 * instruction. So, if the last instruction, be it emulated or 8209 * not, left the system with the INT_STI flag enabled, it 8210 * means that the last instruction is an sti. We should not 8211 * leave the flag on in this case. The same goes for mov ss 8212 */ 8213 if (int_shadow & mask) 8214 mask = 0; 8215 if (unlikely(int_shadow || mask)) { 8216 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8217 if (!mask) 8218 kvm_make_request(KVM_REQ_EVENT, vcpu); 8219 } 8220 } 8221 8222 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8223 { 8224 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8225 8226 if (ctxt->exception.vector == PF_VECTOR) 8227 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8228 else if (ctxt->exception.error_code_valid) 8229 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8230 ctxt->exception.error_code); 8231 else 8232 kvm_queue_exception(vcpu, ctxt->exception.vector); 8233 } 8234 8235 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8236 { 8237 struct x86_emulate_ctxt *ctxt; 8238 8239 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8240 if (!ctxt) { 8241 pr_err("kvm: failed to allocate vcpu's emulator\n"); 8242 return NULL; 8243 } 8244 8245 ctxt->vcpu = vcpu; 8246 ctxt->ops = &emulate_ops; 8247 vcpu->arch.emulate_ctxt = ctxt; 8248 8249 return ctxt; 8250 } 8251 8252 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8253 { 8254 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8255 int cs_db, cs_l; 8256 8257 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8258 8259 ctxt->gpa_available = false; 8260 ctxt->eflags = kvm_get_rflags(vcpu); 8261 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8262 8263 ctxt->eip = kvm_rip_read(vcpu); 8264 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8265 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8266 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8267 cs_db ? X86EMUL_MODE_PROT32 : 8268 X86EMUL_MODE_PROT16; 8269 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8270 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 8271 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 8272 8273 ctxt->interruptibility = 0; 8274 ctxt->have_exception = false; 8275 ctxt->exception.vector = -1; 8276 ctxt->perm_ok = false; 8277 8278 init_decode_cache(ctxt); 8279 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8280 } 8281 8282 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8283 { 8284 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8285 int ret; 8286 8287 init_emulate_ctxt(vcpu); 8288 8289 ctxt->op_bytes = 2; 8290 ctxt->ad_bytes = 2; 8291 ctxt->_eip = ctxt->eip + inc_eip; 8292 ret = emulate_int_real(ctxt, irq); 8293 8294 if (ret != X86EMUL_CONTINUE) { 8295 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8296 } else { 8297 ctxt->eip = ctxt->_eip; 8298 kvm_rip_write(vcpu, ctxt->eip); 8299 kvm_set_rflags(vcpu, ctxt->eflags); 8300 } 8301 } 8302 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8303 8304 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8305 u8 ndata, u8 *insn_bytes, u8 insn_size) 8306 { 8307 struct kvm_run *run = vcpu->run; 8308 u64 info[5]; 8309 u8 info_start; 8310 8311 /* 8312 * Zero the whole array used to retrieve the exit info, as casting to 8313 * u32 for select entries will leave some chunks uninitialized. 8314 */ 8315 memset(&info, 0, sizeof(info)); 8316 8317 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8318 &info[2], (u32 *)&info[3], 8319 (u32 *)&info[4]); 8320 8321 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8322 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8323 8324 /* 8325 * There's currently space for 13 entries, but 5 are used for the exit 8326 * reason and info. Restrict to 4 to reduce the maintenance burden 8327 * when expanding kvm_run.emulation_failure in the future. 8328 */ 8329 if (WARN_ON_ONCE(ndata > 4)) 8330 ndata = 4; 8331 8332 /* Always include the flags as a 'data' entry. */ 8333 info_start = 1; 8334 run->emulation_failure.flags = 0; 8335 8336 if (insn_size) { 8337 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8338 sizeof(run->emulation_failure.insn_bytes) != 16)); 8339 info_start += 2; 8340 run->emulation_failure.flags |= 8341 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8342 run->emulation_failure.insn_size = insn_size; 8343 memset(run->emulation_failure.insn_bytes, 0x90, 8344 sizeof(run->emulation_failure.insn_bytes)); 8345 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8346 } 8347 8348 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8349 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8350 ndata * sizeof(data[0])); 8351 8352 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8353 } 8354 8355 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8356 { 8357 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8358 8359 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8360 ctxt->fetch.end - ctxt->fetch.data); 8361 } 8362 8363 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8364 u8 ndata) 8365 { 8366 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8367 } 8368 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8369 8370 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8371 { 8372 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8373 } 8374 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8375 8376 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8377 { 8378 struct kvm *kvm = vcpu->kvm; 8379 8380 ++vcpu->stat.insn_emulation_fail; 8381 trace_kvm_emulate_insn_failed(vcpu); 8382 8383 if (emulation_type & EMULTYPE_VMWARE_GP) { 8384 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8385 return 1; 8386 } 8387 8388 if (kvm->arch.exit_on_emulation_error || 8389 (emulation_type & EMULTYPE_SKIP)) { 8390 prepare_emulation_ctxt_failure_exit(vcpu); 8391 return 0; 8392 } 8393 8394 kvm_queue_exception(vcpu, UD_VECTOR); 8395 8396 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8397 prepare_emulation_ctxt_failure_exit(vcpu); 8398 return 0; 8399 } 8400 8401 return 1; 8402 } 8403 8404 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8405 bool write_fault_to_shadow_pgtable, 8406 int emulation_type) 8407 { 8408 gpa_t gpa = cr2_or_gpa; 8409 kvm_pfn_t pfn; 8410 8411 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8412 return false; 8413 8414 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8415 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8416 return false; 8417 8418 if (!vcpu->arch.mmu->root_role.direct) { 8419 /* 8420 * Write permission should be allowed since only 8421 * write access need to be emulated. 8422 */ 8423 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8424 8425 /* 8426 * If the mapping is invalid in guest, let cpu retry 8427 * it to generate fault. 8428 */ 8429 if (gpa == INVALID_GPA) 8430 return true; 8431 } 8432 8433 /* 8434 * Do not retry the unhandleable instruction if it faults on the 8435 * readonly host memory, otherwise it will goto a infinite loop: 8436 * retry instruction -> write #PF -> emulation fail -> retry 8437 * instruction -> ... 8438 */ 8439 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8440 8441 /* 8442 * If the instruction failed on the error pfn, it can not be fixed, 8443 * report the error to userspace. 8444 */ 8445 if (is_error_noslot_pfn(pfn)) 8446 return false; 8447 8448 kvm_release_pfn_clean(pfn); 8449 8450 /* The instructions are well-emulated on direct mmu. */ 8451 if (vcpu->arch.mmu->root_role.direct) { 8452 unsigned int indirect_shadow_pages; 8453 8454 write_lock(&vcpu->kvm->mmu_lock); 8455 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8456 write_unlock(&vcpu->kvm->mmu_lock); 8457 8458 if (indirect_shadow_pages) 8459 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8460 8461 return true; 8462 } 8463 8464 /* 8465 * if emulation was due to access to shadowed page table 8466 * and it failed try to unshadow page and re-enter the 8467 * guest to let CPU execute the instruction. 8468 */ 8469 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8470 8471 /* 8472 * If the access faults on its page table, it can not 8473 * be fixed by unprotecting shadow page and it should 8474 * be reported to userspace. 8475 */ 8476 return !write_fault_to_shadow_pgtable; 8477 } 8478 8479 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8480 gpa_t cr2_or_gpa, int emulation_type) 8481 { 8482 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8483 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8484 8485 last_retry_eip = vcpu->arch.last_retry_eip; 8486 last_retry_addr = vcpu->arch.last_retry_addr; 8487 8488 /* 8489 * If the emulation is caused by #PF and it is non-page_table 8490 * writing instruction, it means the VM-EXIT is caused by shadow 8491 * page protected, we can zap the shadow page and retry this 8492 * instruction directly. 8493 * 8494 * Note: if the guest uses a non-page-table modifying instruction 8495 * on the PDE that points to the instruction, then we will unmap 8496 * the instruction and go to an infinite loop. So, we cache the 8497 * last retried eip and the last fault address, if we meet the eip 8498 * and the address again, we can break out of the potential infinite 8499 * loop. 8500 */ 8501 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8502 8503 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8504 return false; 8505 8506 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8507 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8508 return false; 8509 8510 if (x86_page_table_writing_insn(ctxt)) 8511 return false; 8512 8513 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8514 return false; 8515 8516 vcpu->arch.last_retry_eip = ctxt->eip; 8517 vcpu->arch.last_retry_addr = cr2_or_gpa; 8518 8519 if (!vcpu->arch.mmu->root_role.direct) 8520 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8521 8522 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8523 8524 return true; 8525 } 8526 8527 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8528 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8529 8530 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 8531 { 8532 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 8533 8534 if (entering_smm) { 8535 vcpu->arch.hflags |= HF_SMM_MASK; 8536 } else { 8537 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 8538 8539 /* Process a latched INIT or SMI, if any. */ 8540 kvm_make_request(KVM_REQ_EVENT, vcpu); 8541 8542 /* 8543 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band, 8544 * on SMM exit we still need to reload them from 8545 * guest memory 8546 */ 8547 vcpu->arch.pdptrs_from_userspace = false; 8548 } 8549 8550 kvm_mmu_reset_context(vcpu); 8551 } 8552 8553 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8554 unsigned long *db) 8555 { 8556 u32 dr6 = 0; 8557 int i; 8558 u32 enable, rwlen; 8559 8560 enable = dr7; 8561 rwlen = dr7 >> 16; 8562 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8563 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8564 dr6 |= (1 << i); 8565 return dr6; 8566 } 8567 8568 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8569 { 8570 struct kvm_run *kvm_run = vcpu->run; 8571 8572 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8573 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8574 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8575 kvm_run->debug.arch.exception = DB_VECTOR; 8576 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8577 return 0; 8578 } 8579 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8580 return 1; 8581 } 8582 8583 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8584 { 8585 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8586 int r; 8587 8588 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8589 if (unlikely(!r)) 8590 return 0; 8591 8592 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8593 8594 /* 8595 * rflags is the old, "raw" value of the flags. The new value has 8596 * not been saved yet. 8597 * 8598 * This is correct even for TF set by the guest, because "the 8599 * processor will not generate this exception after the instruction 8600 * that sets the TF flag". 8601 */ 8602 if (unlikely(rflags & X86_EFLAGS_TF)) 8603 r = kvm_vcpu_do_singlestep(vcpu); 8604 return r; 8605 } 8606 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8607 8608 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8609 { 8610 u32 shadow; 8611 8612 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8613 return true; 8614 8615 /* 8616 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8617 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8618 * to avoid the relatively expensive CPUID lookup. 8619 */ 8620 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8621 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8622 guest_cpuid_is_intel(vcpu); 8623 } 8624 8625 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8626 int emulation_type, int *r) 8627 { 8628 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8629 8630 /* 8631 * Do not check for code breakpoints if hardware has already done the 8632 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8633 * the instruction has passed all exception checks, and all intercepted 8634 * exceptions that trigger emulation have lower priority than code 8635 * breakpoints, i.e. the fact that the intercepted exception occurred 8636 * means any code breakpoints have already been serviced. 8637 * 8638 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8639 * hardware has checked the RIP of the magic prefix, but not the RIP of 8640 * the instruction being emulated. The intent of forced emulation is 8641 * to behave as if KVM intercepted the instruction without an exception 8642 * and without a prefix. 8643 */ 8644 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8645 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8646 return false; 8647 8648 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8649 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8650 struct kvm_run *kvm_run = vcpu->run; 8651 unsigned long eip = kvm_get_linear_rip(vcpu); 8652 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8653 vcpu->arch.guest_debug_dr7, 8654 vcpu->arch.eff_db); 8655 8656 if (dr6 != 0) { 8657 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8658 kvm_run->debug.arch.pc = eip; 8659 kvm_run->debug.arch.exception = DB_VECTOR; 8660 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8661 *r = 0; 8662 return true; 8663 } 8664 } 8665 8666 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8667 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8668 unsigned long eip = kvm_get_linear_rip(vcpu); 8669 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8670 vcpu->arch.dr7, 8671 vcpu->arch.db); 8672 8673 if (dr6 != 0) { 8674 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8675 *r = 1; 8676 return true; 8677 } 8678 } 8679 8680 return false; 8681 } 8682 8683 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8684 { 8685 switch (ctxt->opcode_len) { 8686 case 1: 8687 switch (ctxt->b) { 8688 case 0xe4: /* IN */ 8689 case 0xe5: 8690 case 0xec: 8691 case 0xed: 8692 case 0xe6: /* OUT */ 8693 case 0xe7: 8694 case 0xee: 8695 case 0xef: 8696 case 0x6c: /* INS */ 8697 case 0x6d: 8698 case 0x6e: /* OUTS */ 8699 case 0x6f: 8700 return true; 8701 } 8702 break; 8703 case 2: 8704 switch (ctxt->b) { 8705 case 0x33: /* RDPMC */ 8706 return true; 8707 } 8708 break; 8709 } 8710 8711 return false; 8712 } 8713 8714 /* 8715 * Decode an instruction for emulation. The caller is responsible for handling 8716 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8717 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8718 * code breakpoints have higher priority and thus have already been done by 8719 * hardware. 8720 * 8721 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8722 * response to a machine check. 8723 */ 8724 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8725 void *insn, int insn_len) 8726 { 8727 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8728 int r; 8729 8730 init_emulate_ctxt(vcpu); 8731 8732 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8733 8734 trace_kvm_emulate_insn_start(vcpu); 8735 ++vcpu->stat.insn_emulation; 8736 8737 return r; 8738 } 8739 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8740 8741 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8742 int emulation_type, void *insn, int insn_len) 8743 { 8744 int r; 8745 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8746 bool writeback = true; 8747 bool write_fault_to_spt; 8748 8749 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8750 return 1; 8751 8752 vcpu->arch.l1tf_flush_l1d = true; 8753 8754 /* 8755 * Clear write_fault_to_shadow_pgtable here to ensure it is 8756 * never reused. 8757 */ 8758 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8759 vcpu->arch.write_fault_to_shadow_pgtable = false; 8760 8761 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8762 kvm_clear_exception_queue(vcpu); 8763 8764 /* 8765 * Return immediately if RIP hits a code breakpoint, such #DBs 8766 * are fault-like and are higher priority than any faults on 8767 * the code fetch itself. 8768 */ 8769 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8770 return r; 8771 8772 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8773 insn, insn_len); 8774 if (r != EMULATION_OK) { 8775 if ((emulation_type & EMULTYPE_TRAP_UD) || 8776 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8777 kvm_queue_exception(vcpu, UD_VECTOR); 8778 return 1; 8779 } 8780 if (reexecute_instruction(vcpu, cr2_or_gpa, 8781 write_fault_to_spt, 8782 emulation_type)) 8783 return 1; 8784 if (ctxt->have_exception) { 8785 /* 8786 * #UD should result in just EMULATION_FAILED, and trap-like 8787 * exception should not be encountered during decode. 8788 */ 8789 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8790 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8791 inject_emulated_exception(vcpu); 8792 return 1; 8793 } 8794 return handle_emulation_failure(vcpu, emulation_type); 8795 } 8796 } 8797 8798 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8799 !is_vmware_backdoor_opcode(ctxt)) { 8800 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8801 return 1; 8802 } 8803 8804 /* 8805 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8806 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8807 * The caller is responsible for updating interruptibility state and 8808 * injecting single-step #DBs. 8809 */ 8810 if (emulation_type & EMULTYPE_SKIP) { 8811 if (ctxt->mode != X86EMUL_MODE_PROT64) 8812 ctxt->eip = (u32)ctxt->_eip; 8813 else 8814 ctxt->eip = ctxt->_eip; 8815 8816 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8817 r = 1; 8818 goto writeback; 8819 } 8820 8821 kvm_rip_write(vcpu, ctxt->eip); 8822 if (ctxt->eflags & X86_EFLAGS_RF) 8823 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8824 return 1; 8825 } 8826 8827 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8828 return 1; 8829 8830 /* this is needed for vmware backdoor interface to work since it 8831 changes registers values during IO operation */ 8832 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8833 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8834 emulator_invalidate_register_cache(ctxt); 8835 } 8836 8837 restart: 8838 if (emulation_type & EMULTYPE_PF) { 8839 /* Save the faulting GPA (cr2) in the address field */ 8840 ctxt->exception.address = cr2_or_gpa; 8841 8842 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8843 if (vcpu->arch.mmu->root_role.direct) { 8844 ctxt->gpa_available = true; 8845 ctxt->gpa_val = cr2_or_gpa; 8846 } 8847 } else { 8848 /* Sanitize the address out of an abundance of paranoia. */ 8849 ctxt->exception.address = 0; 8850 } 8851 8852 r = x86_emulate_insn(ctxt); 8853 8854 if (r == EMULATION_INTERCEPTED) 8855 return 1; 8856 8857 if (r == EMULATION_FAILED) { 8858 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8859 emulation_type)) 8860 return 1; 8861 8862 return handle_emulation_failure(vcpu, emulation_type); 8863 } 8864 8865 if (ctxt->have_exception) { 8866 r = 1; 8867 inject_emulated_exception(vcpu); 8868 } else if (vcpu->arch.pio.count) { 8869 if (!vcpu->arch.pio.in) { 8870 /* FIXME: return into emulator if single-stepping. */ 8871 vcpu->arch.pio.count = 0; 8872 } else { 8873 writeback = false; 8874 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8875 } 8876 r = 0; 8877 } else if (vcpu->mmio_needed) { 8878 ++vcpu->stat.mmio_exits; 8879 8880 if (!vcpu->mmio_is_write) 8881 writeback = false; 8882 r = 0; 8883 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8884 } else if (vcpu->arch.complete_userspace_io) { 8885 writeback = false; 8886 r = 0; 8887 } else if (r == EMULATION_RESTART) 8888 goto restart; 8889 else 8890 r = 1; 8891 8892 writeback: 8893 if (writeback) { 8894 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8895 toggle_interruptibility(vcpu, ctxt->interruptibility); 8896 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8897 8898 /* 8899 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8900 * only supports code breakpoints and general detect #DB, both 8901 * of which are fault-like. 8902 */ 8903 if (!ctxt->have_exception || 8904 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8905 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8906 if (ctxt->is_branch) 8907 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8908 kvm_rip_write(vcpu, ctxt->eip); 8909 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8910 r = kvm_vcpu_do_singlestep(vcpu); 8911 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8912 __kvm_set_rflags(vcpu, ctxt->eflags); 8913 } 8914 8915 /* 8916 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8917 * do nothing, and it will be requested again as soon as 8918 * the shadow expires. But we still need to check here, 8919 * because POPF has no interrupt shadow. 8920 */ 8921 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8922 kvm_make_request(KVM_REQ_EVENT, vcpu); 8923 } else 8924 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8925 8926 return r; 8927 } 8928 8929 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8930 { 8931 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8932 } 8933 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8934 8935 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8936 void *insn, int insn_len) 8937 { 8938 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8939 } 8940 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8941 8942 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8943 { 8944 vcpu->arch.pio.count = 0; 8945 return 1; 8946 } 8947 8948 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8949 { 8950 vcpu->arch.pio.count = 0; 8951 8952 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8953 return 1; 8954 8955 return kvm_skip_emulated_instruction(vcpu); 8956 } 8957 8958 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8959 unsigned short port) 8960 { 8961 unsigned long val = kvm_rax_read(vcpu); 8962 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8963 8964 if (ret) 8965 return ret; 8966 8967 /* 8968 * Workaround userspace that relies on old KVM behavior of %rip being 8969 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8970 */ 8971 if (port == 0x7e && 8972 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8973 vcpu->arch.complete_userspace_io = 8974 complete_fast_pio_out_port_0x7e; 8975 kvm_skip_emulated_instruction(vcpu); 8976 } else { 8977 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8978 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8979 } 8980 return 0; 8981 } 8982 8983 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8984 { 8985 unsigned long val; 8986 8987 /* We should only ever be called with arch.pio.count equal to 1 */ 8988 BUG_ON(vcpu->arch.pio.count != 1); 8989 8990 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8991 vcpu->arch.pio.count = 0; 8992 return 1; 8993 } 8994 8995 /* For size less than 4 we merge, else we zero extend */ 8996 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8997 8998 complete_emulator_pio_in(vcpu, &val); 8999 kvm_rax_write(vcpu, val); 9000 9001 return kvm_skip_emulated_instruction(vcpu); 9002 } 9003 9004 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9005 unsigned short port) 9006 { 9007 unsigned long val; 9008 int ret; 9009 9010 /* For size less than 4 we merge, else we zero extend */ 9011 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9012 9013 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9014 if (ret) { 9015 kvm_rax_write(vcpu, val); 9016 return ret; 9017 } 9018 9019 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9020 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9021 9022 return 0; 9023 } 9024 9025 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9026 { 9027 int ret; 9028 9029 if (in) 9030 ret = kvm_fast_pio_in(vcpu, size, port); 9031 else 9032 ret = kvm_fast_pio_out(vcpu, size, port); 9033 return ret && kvm_skip_emulated_instruction(vcpu); 9034 } 9035 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9036 9037 static int kvmclock_cpu_down_prep(unsigned int cpu) 9038 { 9039 __this_cpu_write(cpu_tsc_khz, 0); 9040 return 0; 9041 } 9042 9043 static void tsc_khz_changed(void *data) 9044 { 9045 struct cpufreq_freqs *freq = data; 9046 unsigned long khz = 0; 9047 9048 if (data) 9049 khz = freq->new; 9050 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 9051 khz = cpufreq_quick_get(raw_smp_processor_id()); 9052 if (!khz) 9053 khz = tsc_khz; 9054 __this_cpu_write(cpu_tsc_khz, khz); 9055 } 9056 9057 #ifdef CONFIG_X86_64 9058 static void kvm_hyperv_tsc_notifier(void) 9059 { 9060 struct kvm *kvm; 9061 int cpu; 9062 9063 mutex_lock(&kvm_lock); 9064 list_for_each_entry(kvm, &vm_list, vm_list) 9065 kvm_make_mclock_inprogress_request(kvm); 9066 9067 /* no guest entries from this point */ 9068 hyperv_stop_tsc_emulation(); 9069 9070 /* TSC frequency always matches when on Hyper-V */ 9071 for_each_present_cpu(cpu) 9072 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9073 kvm_caps.max_guest_tsc_khz = tsc_khz; 9074 9075 list_for_each_entry(kvm, &vm_list, vm_list) { 9076 __kvm_start_pvclock_update(kvm); 9077 pvclock_update_vm_gtod_copy(kvm); 9078 kvm_end_pvclock_update(kvm); 9079 } 9080 9081 mutex_unlock(&kvm_lock); 9082 } 9083 #endif 9084 9085 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9086 { 9087 struct kvm *kvm; 9088 struct kvm_vcpu *vcpu; 9089 int send_ipi = 0; 9090 unsigned long i; 9091 9092 /* 9093 * We allow guests to temporarily run on slowing clocks, 9094 * provided we notify them after, or to run on accelerating 9095 * clocks, provided we notify them before. Thus time never 9096 * goes backwards. 9097 * 9098 * However, we have a problem. We can't atomically update 9099 * the frequency of a given CPU from this function; it is 9100 * merely a notifier, which can be called from any CPU. 9101 * Changing the TSC frequency at arbitrary points in time 9102 * requires a recomputation of local variables related to 9103 * the TSC for each VCPU. We must flag these local variables 9104 * to be updated and be sure the update takes place with the 9105 * new frequency before any guests proceed. 9106 * 9107 * Unfortunately, the combination of hotplug CPU and frequency 9108 * change creates an intractable locking scenario; the order 9109 * of when these callouts happen is undefined with respect to 9110 * CPU hotplug, and they can race with each other. As such, 9111 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9112 * undefined; you can actually have a CPU frequency change take 9113 * place in between the computation of X and the setting of the 9114 * variable. To protect against this problem, all updates of 9115 * the per_cpu tsc_khz variable are done in an interrupt 9116 * protected IPI, and all callers wishing to update the value 9117 * must wait for a synchronous IPI to complete (which is trivial 9118 * if the caller is on the CPU already). This establishes the 9119 * necessary total order on variable updates. 9120 * 9121 * Note that because a guest time update may take place 9122 * anytime after the setting of the VCPU's request bit, the 9123 * correct TSC value must be set before the request. However, 9124 * to ensure the update actually makes it to any guest which 9125 * starts running in hardware virtualization between the set 9126 * and the acquisition of the spinlock, we must also ping the 9127 * CPU after setting the request bit. 9128 * 9129 */ 9130 9131 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9132 9133 mutex_lock(&kvm_lock); 9134 list_for_each_entry(kvm, &vm_list, vm_list) { 9135 kvm_for_each_vcpu(i, vcpu, kvm) { 9136 if (vcpu->cpu != cpu) 9137 continue; 9138 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9139 if (vcpu->cpu != raw_smp_processor_id()) 9140 send_ipi = 1; 9141 } 9142 } 9143 mutex_unlock(&kvm_lock); 9144 9145 if (freq->old < freq->new && send_ipi) { 9146 /* 9147 * We upscale the frequency. Must make the guest 9148 * doesn't see old kvmclock values while running with 9149 * the new frequency, otherwise we risk the guest sees 9150 * time go backwards. 9151 * 9152 * In case we update the frequency for another cpu 9153 * (which might be in guest context) send an interrupt 9154 * to kick the cpu out of guest context. Next time 9155 * guest context is entered kvmclock will be updated, 9156 * so the guest will not see stale values. 9157 */ 9158 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9159 } 9160 } 9161 9162 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9163 void *data) 9164 { 9165 struct cpufreq_freqs *freq = data; 9166 int cpu; 9167 9168 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9169 return 0; 9170 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9171 return 0; 9172 9173 for_each_cpu(cpu, freq->policy->cpus) 9174 __kvmclock_cpufreq_notifier(freq, cpu); 9175 9176 return 0; 9177 } 9178 9179 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9180 .notifier_call = kvmclock_cpufreq_notifier 9181 }; 9182 9183 static int kvmclock_cpu_online(unsigned int cpu) 9184 { 9185 tsc_khz_changed(NULL); 9186 return 0; 9187 } 9188 9189 static void kvm_timer_init(void) 9190 { 9191 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9192 max_tsc_khz = tsc_khz; 9193 9194 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9195 struct cpufreq_policy *policy; 9196 int cpu; 9197 9198 cpu = get_cpu(); 9199 policy = cpufreq_cpu_get(cpu); 9200 if (policy) { 9201 if (policy->cpuinfo.max_freq) 9202 max_tsc_khz = policy->cpuinfo.max_freq; 9203 cpufreq_cpu_put(policy); 9204 } 9205 put_cpu(); 9206 } 9207 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9208 CPUFREQ_TRANSITION_NOTIFIER); 9209 } 9210 9211 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9212 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9213 } 9214 9215 #ifdef CONFIG_X86_64 9216 static void pvclock_gtod_update_fn(struct work_struct *work) 9217 { 9218 struct kvm *kvm; 9219 struct kvm_vcpu *vcpu; 9220 unsigned long i; 9221 9222 mutex_lock(&kvm_lock); 9223 list_for_each_entry(kvm, &vm_list, vm_list) 9224 kvm_for_each_vcpu(i, vcpu, kvm) 9225 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9226 atomic_set(&kvm_guest_has_master_clock, 0); 9227 mutex_unlock(&kvm_lock); 9228 } 9229 9230 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9231 9232 /* 9233 * Indirection to move queue_work() out of the tk_core.seq write held 9234 * region to prevent possible deadlocks against time accessors which 9235 * are invoked with work related locks held. 9236 */ 9237 static void pvclock_irq_work_fn(struct irq_work *w) 9238 { 9239 queue_work(system_long_wq, &pvclock_gtod_work); 9240 } 9241 9242 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9243 9244 /* 9245 * Notification about pvclock gtod data update. 9246 */ 9247 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9248 void *priv) 9249 { 9250 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9251 struct timekeeper *tk = priv; 9252 9253 update_pvclock_gtod(tk); 9254 9255 /* 9256 * Disable master clock if host does not trust, or does not use, 9257 * TSC based clocksource. Delegate queue_work() to irq_work as 9258 * this is invoked with tk_core.seq write held. 9259 */ 9260 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9261 atomic_read(&kvm_guest_has_master_clock) != 0) 9262 irq_work_queue(&pvclock_irq_work); 9263 return 0; 9264 } 9265 9266 static struct notifier_block pvclock_gtod_notifier = { 9267 .notifier_call = pvclock_gtod_notify, 9268 }; 9269 #endif 9270 9271 int kvm_arch_init(void *opaque) 9272 { 9273 struct kvm_x86_init_ops *ops = opaque; 9274 u64 host_pat; 9275 int r; 9276 9277 if (kvm_x86_ops.hardware_enable) { 9278 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 9279 return -EEXIST; 9280 } 9281 9282 if (!ops->cpu_has_kvm_support()) { 9283 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 9284 ops->runtime_ops->name); 9285 return -EOPNOTSUPP; 9286 } 9287 if (ops->disabled_by_bios()) { 9288 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 9289 ops->runtime_ops->name); 9290 return -EOPNOTSUPP; 9291 } 9292 9293 /* 9294 * KVM explicitly assumes that the guest has an FPU and 9295 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9296 * vCPU's FPU state as a fxregs_state struct. 9297 */ 9298 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9299 printk(KERN_ERR "kvm: inadequate fpu\n"); 9300 return -EOPNOTSUPP; 9301 } 9302 9303 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9304 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9305 return -EOPNOTSUPP; 9306 } 9307 9308 /* 9309 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9310 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9311 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9312 * with an exception. PAT[0] is set to WB on RESET and also by the 9313 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9314 */ 9315 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9316 (host_pat & GENMASK(2, 0)) != 6) { 9317 pr_err("kvm: host PAT[0] is not WB\n"); 9318 return -EIO; 9319 } 9320 9321 x86_emulator_cache = kvm_alloc_emulator_cache(); 9322 if (!x86_emulator_cache) { 9323 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 9324 return -ENOMEM; 9325 } 9326 9327 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9328 if (!user_return_msrs) { 9329 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 9330 r = -ENOMEM; 9331 goto out_free_x86_emulator_cache; 9332 } 9333 kvm_nr_uret_msrs = 0; 9334 9335 r = kvm_mmu_vendor_module_init(); 9336 if (r) 9337 goto out_free_percpu; 9338 9339 kvm_timer_init(); 9340 9341 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9342 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9343 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9344 } 9345 9346 if (pi_inject_timer == -1) 9347 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9348 #ifdef CONFIG_X86_64 9349 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9350 9351 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9352 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9353 #endif 9354 9355 return 0; 9356 9357 out_free_percpu: 9358 free_percpu(user_return_msrs); 9359 out_free_x86_emulator_cache: 9360 kmem_cache_destroy(x86_emulator_cache); 9361 return r; 9362 } 9363 9364 void kvm_arch_exit(void) 9365 { 9366 #ifdef CONFIG_X86_64 9367 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9368 clear_hv_tscchange_cb(); 9369 #endif 9370 kvm_lapic_exit(); 9371 9372 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 9373 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9374 CPUFREQ_TRANSITION_NOTIFIER); 9375 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9376 #ifdef CONFIG_X86_64 9377 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9378 irq_work_sync(&pvclock_irq_work); 9379 cancel_work_sync(&pvclock_gtod_work); 9380 #endif 9381 kvm_x86_ops.hardware_enable = NULL; 9382 kvm_mmu_vendor_module_exit(); 9383 free_percpu(user_return_msrs); 9384 kmem_cache_destroy(x86_emulator_cache); 9385 #ifdef CONFIG_KVM_XEN 9386 static_key_deferred_flush(&kvm_xen_enabled); 9387 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9388 #endif 9389 } 9390 9391 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9392 { 9393 /* 9394 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9395 * local APIC is in-kernel, the run loop will detect the non-runnable 9396 * state and halt the vCPU. Exit to userspace if the local APIC is 9397 * managed by userspace, in which case userspace is responsible for 9398 * handling wake events. 9399 */ 9400 ++vcpu->stat.halt_exits; 9401 if (lapic_in_kernel(vcpu)) { 9402 vcpu->arch.mp_state = state; 9403 return 1; 9404 } else { 9405 vcpu->run->exit_reason = reason; 9406 return 0; 9407 } 9408 } 9409 9410 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9411 { 9412 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9413 } 9414 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9415 9416 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9417 { 9418 int ret = kvm_skip_emulated_instruction(vcpu); 9419 /* 9420 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9421 * KVM_EXIT_DEBUG here. 9422 */ 9423 return kvm_emulate_halt_noskip(vcpu) && ret; 9424 } 9425 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9426 9427 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9428 { 9429 int ret = kvm_skip_emulated_instruction(vcpu); 9430 9431 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9432 KVM_EXIT_AP_RESET_HOLD) && ret; 9433 } 9434 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9435 9436 #ifdef CONFIG_X86_64 9437 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9438 unsigned long clock_type) 9439 { 9440 struct kvm_clock_pairing clock_pairing; 9441 struct timespec64 ts; 9442 u64 cycle; 9443 int ret; 9444 9445 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9446 return -KVM_EOPNOTSUPP; 9447 9448 /* 9449 * When tsc is in permanent catchup mode guests won't be able to use 9450 * pvclock_read_retry loop to get consistent view of pvclock 9451 */ 9452 if (vcpu->arch.tsc_always_catchup) 9453 return -KVM_EOPNOTSUPP; 9454 9455 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9456 return -KVM_EOPNOTSUPP; 9457 9458 clock_pairing.sec = ts.tv_sec; 9459 clock_pairing.nsec = ts.tv_nsec; 9460 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9461 clock_pairing.flags = 0; 9462 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9463 9464 ret = 0; 9465 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9466 sizeof(struct kvm_clock_pairing))) 9467 ret = -KVM_EFAULT; 9468 9469 return ret; 9470 } 9471 #endif 9472 9473 /* 9474 * kvm_pv_kick_cpu_op: Kick a vcpu. 9475 * 9476 * @apicid - apicid of vcpu to be kicked. 9477 */ 9478 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9479 { 9480 /* 9481 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9482 * common code, e.g. for tracing. Defer initialization to the compiler. 9483 */ 9484 struct kvm_lapic_irq lapic_irq = { 9485 .delivery_mode = APIC_DM_REMRD, 9486 .dest_mode = APIC_DEST_PHYSICAL, 9487 .shorthand = APIC_DEST_NOSHORT, 9488 .dest_id = apicid, 9489 }; 9490 9491 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9492 } 9493 9494 bool kvm_apicv_activated(struct kvm *kvm) 9495 { 9496 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9497 } 9498 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9499 9500 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9501 { 9502 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9503 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9504 9505 return (vm_reasons | vcpu_reasons) == 0; 9506 } 9507 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9508 9509 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9510 enum kvm_apicv_inhibit reason, bool set) 9511 { 9512 if (set) 9513 __set_bit(reason, inhibits); 9514 else 9515 __clear_bit(reason, inhibits); 9516 9517 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9518 } 9519 9520 static void kvm_apicv_init(struct kvm *kvm) 9521 { 9522 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9523 9524 init_rwsem(&kvm->arch.apicv_update_lock); 9525 9526 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9527 9528 if (!enable_apicv) 9529 set_or_clear_apicv_inhibit(inhibits, 9530 APICV_INHIBIT_REASON_DISABLE, true); 9531 } 9532 9533 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9534 { 9535 struct kvm_vcpu *target = NULL; 9536 struct kvm_apic_map *map; 9537 9538 vcpu->stat.directed_yield_attempted++; 9539 9540 if (single_task_running()) 9541 goto no_yield; 9542 9543 rcu_read_lock(); 9544 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9545 9546 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9547 target = map->phys_map[dest_id]->vcpu; 9548 9549 rcu_read_unlock(); 9550 9551 if (!target || !READ_ONCE(target->ready)) 9552 goto no_yield; 9553 9554 /* Ignore requests to yield to self */ 9555 if (vcpu == target) 9556 goto no_yield; 9557 9558 if (kvm_vcpu_yield_to(target) <= 0) 9559 goto no_yield; 9560 9561 vcpu->stat.directed_yield_successful++; 9562 9563 no_yield: 9564 return; 9565 } 9566 9567 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9568 { 9569 u64 ret = vcpu->run->hypercall.ret; 9570 9571 if (!is_64_bit_mode(vcpu)) 9572 ret = (u32)ret; 9573 kvm_rax_write(vcpu, ret); 9574 ++vcpu->stat.hypercalls; 9575 return kvm_skip_emulated_instruction(vcpu); 9576 } 9577 9578 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9579 { 9580 unsigned long nr, a0, a1, a2, a3, ret; 9581 int op_64_bit; 9582 9583 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9584 return kvm_xen_hypercall(vcpu); 9585 9586 if (kvm_hv_hypercall_enabled(vcpu)) 9587 return kvm_hv_hypercall(vcpu); 9588 9589 nr = kvm_rax_read(vcpu); 9590 a0 = kvm_rbx_read(vcpu); 9591 a1 = kvm_rcx_read(vcpu); 9592 a2 = kvm_rdx_read(vcpu); 9593 a3 = kvm_rsi_read(vcpu); 9594 9595 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9596 9597 op_64_bit = is_64_bit_hypercall(vcpu); 9598 if (!op_64_bit) { 9599 nr &= 0xFFFFFFFF; 9600 a0 &= 0xFFFFFFFF; 9601 a1 &= 0xFFFFFFFF; 9602 a2 &= 0xFFFFFFFF; 9603 a3 &= 0xFFFFFFFF; 9604 } 9605 9606 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9607 ret = -KVM_EPERM; 9608 goto out; 9609 } 9610 9611 ret = -KVM_ENOSYS; 9612 9613 switch (nr) { 9614 case KVM_HC_VAPIC_POLL_IRQ: 9615 ret = 0; 9616 break; 9617 case KVM_HC_KICK_CPU: 9618 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9619 break; 9620 9621 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9622 kvm_sched_yield(vcpu, a1); 9623 ret = 0; 9624 break; 9625 #ifdef CONFIG_X86_64 9626 case KVM_HC_CLOCK_PAIRING: 9627 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9628 break; 9629 #endif 9630 case KVM_HC_SEND_IPI: 9631 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9632 break; 9633 9634 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9635 break; 9636 case KVM_HC_SCHED_YIELD: 9637 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9638 break; 9639 9640 kvm_sched_yield(vcpu, a0); 9641 ret = 0; 9642 break; 9643 case KVM_HC_MAP_GPA_RANGE: { 9644 u64 gpa = a0, npages = a1, attrs = a2; 9645 9646 ret = -KVM_ENOSYS; 9647 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9648 break; 9649 9650 if (!PAGE_ALIGNED(gpa) || !npages || 9651 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9652 ret = -KVM_EINVAL; 9653 break; 9654 } 9655 9656 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9657 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9658 vcpu->run->hypercall.args[0] = gpa; 9659 vcpu->run->hypercall.args[1] = npages; 9660 vcpu->run->hypercall.args[2] = attrs; 9661 vcpu->run->hypercall.longmode = op_64_bit; 9662 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9663 return 0; 9664 } 9665 default: 9666 ret = -KVM_ENOSYS; 9667 break; 9668 } 9669 out: 9670 if (!op_64_bit) 9671 ret = (u32)ret; 9672 kvm_rax_write(vcpu, ret); 9673 9674 ++vcpu->stat.hypercalls; 9675 return kvm_skip_emulated_instruction(vcpu); 9676 } 9677 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9678 9679 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9680 { 9681 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9682 char instruction[3]; 9683 unsigned long rip = kvm_rip_read(vcpu); 9684 9685 /* 9686 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9687 * the pieces. 9688 */ 9689 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9690 ctxt->exception.error_code_valid = false; 9691 ctxt->exception.vector = UD_VECTOR; 9692 ctxt->have_exception = true; 9693 return X86EMUL_PROPAGATE_FAULT; 9694 } 9695 9696 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9697 9698 return emulator_write_emulated(ctxt, rip, instruction, 3, 9699 &ctxt->exception); 9700 } 9701 9702 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9703 { 9704 return vcpu->run->request_interrupt_window && 9705 likely(!pic_in_kernel(vcpu->kvm)); 9706 } 9707 9708 /* Called within kvm->srcu read side. */ 9709 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9710 { 9711 struct kvm_run *kvm_run = vcpu->run; 9712 9713 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9714 kvm_run->cr8 = kvm_get_cr8(vcpu); 9715 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9716 9717 kvm_run->ready_for_interrupt_injection = 9718 pic_in_kernel(vcpu->kvm) || 9719 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9720 9721 if (is_smm(vcpu)) 9722 kvm_run->flags |= KVM_RUN_X86_SMM; 9723 } 9724 9725 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9726 { 9727 int max_irr, tpr; 9728 9729 if (!kvm_x86_ops.update_cr8_intercept) 9730 return; 9731 9732 if (!lapic_in_kernel(vcpu)) 9733 return; 9734 9735 if (vcpu->arch.apic->apicv_active) 9736 return; 9737 9738 if (!vcpu->arch.apic->vapic_addr) 9739 max_irr = kvm_lapic_find_highest_irr(vcpu); 9740 else 9741 max_irr = -1; 9742 9743 if (max_irr != -1) 9744 max_irr >>= 4; 9745 9746 tpr = kvm_lapic_get_cr8(vcpu); 9747 9748 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9749 } 9750 9751 9752 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9753 { 9754 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9755 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9756 return 1; 9757 } 9758 9759 return kvm_x86_ops.nested_ops->check_events(vcpu); 9760 } 9761 9762 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9763 { 9764 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9765 vcpu->arch.exception.has_error_code, 9766 vcpu->arch.exception.error_code, 9767 vcpu->arch.exception.injected); 9768 9769 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9770 vcpu->arch.exception.error_code = false; 9771 static_call(kvm_x86_inject_exception)(vcpu); 9772 } 9773 9774 /* 9775 * Check for any event (interrupt or exception) that is ready to be injected, 9776 * and if there is at least one event, inject the event with the highest 9777 * priority. This handles both "pending" events, i.e. events that have never 9778 * been injected into the guest, and "injected" events, i.e. events that were 9779 * injected as part of a previous VM-Enter, but weren't successfully delivered 9780 * and need to be re-injected. 9781 * 9782 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9783 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9784 * be able to inject exceptions in the "middle" of an instruction, and so must 9785 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9786 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9787 * boundaries is necessary and correct. 9788 * 9789 * For simplicity, KVM uses a single path to inject all events (except events 9790 * that are injected directly from L1 to L2) and doesn't explicitly track 9791 * instruction boundaries for asynchronous events. However, because VM-Exits 9792 * that can occur during instruction execution typically result in KVM skipping 9793 * the instruction or injecting an exception, e.g. instruction and exception 9794 * intercepts, and because pending exceptions have higher priority than pending 9795 * interrupts, KVM still honors instruction boundaries in most scenarios. 9796 * 9797 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9798 * the instruction or inject an exception, then KVM can incorrecty inject a new 9799 * asynchrounous event if the event became pending after the CPU fetched the 9800 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9801 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9802 * injected on the restarted instruction instead of being deferred until the 9803 * instruction completes. 9804 * 9805 * In practice, this virtualization hole is unlikely to be observed by the 9806 * guest, and even less likely to cause functional problems. To detect the 9807 * hole, the guest would have to trigger an event on a side effect of an early 9808 * phase of instruction execution, e.g. on the instruction fetch from memory. 9809 * And for it to be a functional problem, the guest would need to depend on the 9810 * ordering between that side effect, the instruction completing, _and_ the 9811 * delivery of the asynchronous event. 9812 */ 9813 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9814 bool *req_immediate_exit) 9815 { 9816 bool can_inject; 9817 int r; 9818 9819 /* 9820 * Process nested events first, as nested VM-Exit supercedes event 9821 * re-injection. If there's an event queued for re-injection, it will 9822 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9823 */ 9824 if (is_guest_mode(vcpu)) 9825 r = kvm_check_nested_events(vcpu); 9826 else 9827 r = 0; 9828 9829 /* 9830 * Re-inject exceptions and events *especially* if immediate entry+exit 9831 * to/from L2 is needed, as any event that has already been injected 9832 * into L2 needs to complete its lifecycle before injecting a new event. 9833 * 9834 * Don't re-inject an NMI or interrupt if there is a pending exception. 9835 * This collision arises if an exception occurred while vectoring the 9836 * injected event, KVM intercepted said exception, and KVM ultimately 9837 * determined the fault belongs to the guest and queues the exception 9838 * for injection back into the guest. 9839 * 9840 * "Injected" interrupts can also collide with pending exceptions if 9841 * userspace ignores the "ready for injection" flag and blindly queues 9842 * an interrupt. In that case, prioritizing the exception is correct, 9843 * as the exception "occurred" before the exit to userspace. Trap-like 9844 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9845 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9846 * priority, they're only generated (pended) during instruction 9847 * execution, and interrupts are recognized at instruction boundaries. 9848 * Thus a pending fault-like exception means the fault occurred on the 9849 * *previous* instruction and must be serviced prior to recognizing any 9850 * new events in order to fully complete the previous instruction. 9851 */ 9852 if (vcpu->arch.exception.injected) 9853 kvm_inject_exception(vcpu); 9854 else if (kvm_is_exception_pending(vcpu)) 9855 ; /* see above */ 9856 else if (vcpu->arch.nmi_injected) 9857 static_call(kvm_x86_inject_nmi)(vcpu); 9858 else if (vcpu->arch.interrupt.injected) 9859 static_call(kvm_x86_inject_irq)(vcpu, true); 9860 9861 /* 9862 * Exceptions that morph to VM-Exits are handled above, and pending 9863 * exceptions on top of injected exceptions that do not VM-Exit should 9864 * either morph to #DF or, sadly, override the injected exception. 9865 */ 9866 WARN_ON_ONCE(vcpu->arch.exception.injected && 9867 vcpu->arch.exception.pending); 9868 9869 /* 9870 * Bail if immediate entry+exit to/from the guest is needed to complete 9871 * nested VM-Enter or event re-injection so that a different pending 9872 * event can be serviced (or if KVM needs to exit to userspace). 9873 * 9874 * Otherwise, continue processing events even if VM-Exit occurred. The 9875 * VM-Exit will have cleared exceptions that were meant for L2, but 9876 * there may now be events that can be injected into L1. 9877 */ 9878 if (r < 0) 9879 goto out; 9880 9881 /* 9882 * A pending exception VM-Exit should either result in nested VM-Exit 9883 * or force an immediate re-entry and exit to/from L2, and exception 9884 * VM-Exits cannot be injected (flag should _never_ be set). 9885 */ 9886 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 9887 vcpu->arch.exception_vmexit.pending); 9888 9889 /* 9890 * New events, other than exceptions, cannot be injected if KVM needs 9891 * to re-inject a previous event. See above comments on re-injecting 9892 * for why pending exceptions get priority. 9893 */ 9894 can_inject = !kvm_event_needs_reinjection(vcpu); 9895 9896 if (vcpu->arch.exception.pending) { 9897 /* 9898 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 9899 * value pushed on the stack. Trap-like exception and all #DBs 9900 * leave RF as-is (KVM follows Intel's behavior in this regard; 9901 * AMD states that code breakpoint #DBs excplitly clear RF=0). 9902 * 9903 * Note, most versions of Intel's SDM and AMD's APM incorrectly 9904 * describe the behavior of General Detect #DBs, which are 9905 * fault-like. They do _not_ set RF, a la code breakpoints. 9906 */ 9907 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 9908 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9909 X86_EFLAGS_RF); 9910 9911 if (vcpu->arch.exception.vector == DB_VECTOR) { 9912 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 9913 if (vcpu->arch.dr7 & DR7_GD) { 9914 vcpu->arch.dr7 &= ~DR7_GD; 9915 kvm_update_dr7(vcpu); 9916 } 9917 } 9918 9919 kvm_inject_exception(vcpu); 9920 9921 vcpu->arch.exception.pending = false; 9922 vcpu->arch.exception.injected = true; 9923 9924 can_inject = false; 9925 } 9926 9927 /* Don't inject interrupts if the user asked to avoid doing so */ 9928 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9929 return 0; 9930 9931 /* 9932 * Finally, inject interrupt events. If an event cannot be injected 9933 * due to architectural conditions (e.g. IF=0) a window-open exit 9934 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9935 * and can architecturally be injected, but we cannot do it right now: 9936 * an interrupt could have arrived just now and we have to inject it 9937 * as a vmexit, or there could already an event in the queue, which is 9938 * indicated by can_inject. In that case we request an immediate exit 9939 * in order to make progress and get back here for another iteration. 9940 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9941 */ 9942 if (vcpu->arch.smi_pending) { 9943 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9944 if (r < 0) 9945 goto out; 9946 if (r) { 9947 vcpu->arch.smi_pending = false; 9948 ++vcpu->arch.smi_count; 9949 enter_smm(vcpu); 9950 can_inject = false; 9951 } else 9952 static_call(kvm_x86_enable_smi_window)(vcpu); 9953 } 9954 9955 if (vcpu->arch.nmi_pending) { 9956 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9957 if (r < 0) 9958 goto out; 9959 if (r) { 9960 --vcpu->arch.nmi_pending; 9961 vcpu->arch.nmi_injected = true; 9962 static_call(kvm_x86_inject_nmi)(vcpu); 9963 can_inject = false; 9964 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9965 } 9966 if (vcpu->arch.nmi_pending) 9967 static_call(kvm_x86_enable_nmi_window)(vcpu); 9968 } 9969 9970 if (kvm_cpu_has_injectable_intr(vcpu)) { 9971 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9972 if (r < 0) 9973 goto out; 9974 if (r) { 9975 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9976 static_call(kvm_x86_inject_irq)(vcpu, false); 9977 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9978 } 9979 if (kvm_cpu_has_injectable_intr(vcpu)) 9980 static_call(kvm_x86_enable_irq_window)(vcpu); 9981 } 9982 9983 if (is_guest_mode(vcpu) && 9984 kvm_x86_ops.nested_ops->has_events && 9985 kvm_x86_ops.nested_ops->has_events(vcpu)) 9986 *req_immediate_exit = true; 9987 9988 WARN_ON(kvm_is_exception_pending(vcpu)); 9989 return 0; 9990 9991 out: 9992 if (r == -EBUSY) { 9993 *req_immediate_exit = true; 9994 r = 0; 9995 } 9996 return r; 9997 } 9998 9999 static void process_nmi(struct kvm_vcpu *vcpu) 10000 { 10001 unsigned limit = 2; 10002 10003 /* 10004 * x86 is limited to one NMI running, and one NMI pending after it. 10005 * If an NMI is already in progress, limit further NMIs to just one. 10006 * Otherwise, allow two (and we'll inject the first one immediately). 10007 */ 10008 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10009 limit = 1; 10010 10011 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10012 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10013 kvm_make_request(KVM_REQ_EVENT, vcpu); 10014 } 10015 10016 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 10017 { 10018 u32 flags = 0; 10019 flags |= seg->g << 23; 10020 flags |= seg->db << 22; 10021 flags |= seg->l << 21; 10022 flags |= seg->avl << 20; 10023 flags |= seg->present << 15; 10024 flags |= seg->dpl << 13; 10025 flags |= seg->s << 12; 10026 flags |= seg->type << 8; 10027 return flags; 10028 } 10029 10030 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 10031 { 10032 struct kvm_segment seg; 10033 int offset; 10034 10035 kvm_get_segment(vcpu, &seg, n); 10036 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 10037 10038 if (n < 3) 10039 offset = 0x7f84 + n * 12; 10040 else 10041 offset = 0x7f2c + (n - 3) * 12; 10042 10043 put_smstate(u32, buf, offset + 8, seg.base); 10044 put_smstate(u32, buf, offset + 4, seg.limit); 10045 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 10046 } 10047 10048 #ifdef CONFIG_X86_64 10049 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 10050 { 10051 struct kvm_segment seg; 10052 int offset; 10053 u16 flags; 10054 10055 kvm_get_segment(vcpu, &seg, n); 10056 offset = 0x7e00 + n * 16; 10057 10058 flags = enter_smm_get_segment_flags(&seg) >> 8; 10059 put_smstate(u16, buf, offset, seg.selector); 10060 put_smstate(u16, buf, offset + 2, flags); 10061 put_smstate(u32, buf, offset + 4, seg.limit); 10062 put_smstate(u64, buf, offset + 8, seg.base); 10063 } 10064 #endif 10065 10066 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 10067 { 10068 struct desc_ptr dt; 10069 struct kvm_segment seg; 10070 unsigned long val; 10071 int i; 10072 10073 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 10074 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 10075 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 10076 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 10077 10078 for (i = 0; i < 8; i++) 10079 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 10080 10081 kvm_get_dr(vcpu, 6, &val); 10082 put_smstate(u32, buf, 0x7fcc, (u32)val); 10083 kvm_get_dr(vcpu, 7, &val); 10084 put_smstate(u32, buf, 0x7fc8, (u32)val); 10085 10086 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 10087 put_smstate(u32, buf, 0x7fc4, seg.selector); 10088 put_smstate(u32, buf, 0x7f64, seg.base); 10089 put_smstate(u32, buf, 0x7f60, seg.limit); 10090 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 10091 10092 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 10093 put_smstate(u32, buf, 0x7fc0, seg.selector); 10094 put_smstate(u32, buf, 0x7f80, seg.base); 10095 put_smstate(u32, buf, 0x7f7c, seg.limit); 10096 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 10097 10098 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10099 put_smstate(u32, buf, 0x7f74, dt.address); 10100 put_smstate(u32, buf, 0x7f70, dt.size); 10101 10102 static_call(kvm_x86_get_idt)(vcpu, &dt); 10103 put_smstate(u32, buf, 0x7f58, dt.address); 10104 put_smstate(u32, buf, 0x7f54, dt.size); 10105 10106 for (i = 0; i < 6; i++) 10107 enter_smm_save_seg_32(vcpu, buf, i); 10108 10109 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 10110 10111 /* revision id */ 10112 put_smstate(u32, buf, 0x7efc, 0x00020000); 10113 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 10114 } 10115 10116 #ifdef CONFIG_X86_64 10117 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 10118 { 10119 struct desc_ptr dt; 10120 struct kvm_segment seg; 10121 unsigned long val; 10122 int i; 10123 10124 for (i = 0; i < 16; i++) 10125 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 10126 10127 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 10128 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 10129 10130 kvm_get_dr(vcpu, 6, &val); 10131 put_smstate(u64, buf, 0x7f68, val); 10132 kvm_get_dr(vcpu, 7, &val); 10133 put_smstate(u64, buf, 0x7f60, val); 10134 10135 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 10136 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 10137 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 10138 10139 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 10140 10141 /* revision id */ 10142 put_smstate(u32, buf, 0x7efc, 0x00020064); 10143 10144 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 10145 10146 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 10147 put_smstate(u16, buf, 0x7e90, seg.selector); 10148 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 10149 put_smstate(u32, buf, 0x7e94, seg.limit); 10150 put_smstate(u64, buf, 0x7e98, seg.base); 10151 10152 static_call(kvm_x86_get_idt)(vcpu, &dt); 10153 put_smstate(u32, buf, 0x7e84, dt.size); 10154 put_smstate(u64, buf, 0x7e88, dt.address); 10155 10156 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 10157 put_smstate(u16, buf, 0x7e70, seg.selector); 10158 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 10159 put_smstate(u32, buf, 0x7e74, seg.limit); 10160 put_smstate(u64, buf, 0x7e78, seg.base); 10161 10162 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10163 put_smstate(u32, buf, 0x7e64, dt.size); 10164 put_smstate(u64, buf, 0x7e68, dt.address); 10165 10166 for (i = 0; i < 6; i++) 10167 enter_smm_save_seg_64(vcpu, buf, i); 10168 } 10169 #endif 10170 10171 static void enter_smm(struct kvm_vcpu *vcpu) 10172 { 10173 struct kvm_segment cs, ds; 10174 struct desc_ptr dt; 10175 unsigned long cr0; 10176 char buf[512]; 10177 10178 memset(buf, 0, 512); 10179 #ifdef CONFIG_X86_64 10180 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 10181 enter_smm_save_state_64(vcpu, buf); 10182 else 10183 #endif 10184 enter_smm_save_state_32(vcpu, buf); 10185 10186 /* 10187 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 10188 * state (e.g. leave guest mode) after we've saved the state into the 10189 * SMM state-save area. 10190 */ 10191 static_call(kvm_x86_enter_smm)(vcpu, buf); 10192 10193 kvm_smm_changed(vcpu, true); 10194 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 10195 10196 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 10197 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 10198 else 10199 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 10200 10201 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 10202 kvm_rip_write(vcpu, 0x8000); 10203 10204 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 10205 static_call(kvm_x86_set_cr0)(vcpu, cr0); 10206 vcpu->arch.cr0 = cr0; 10207 10208 static_call(kvm_x86_set_cr4)(vcpu, 0); 10209 10210 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 10211 dt.address = dt.size = 0; 10212 static_call(kvm_x86_set_idt)(vcpu, &dt); 10213 10214 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 10215 10216 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 10217 cs.base = vcpu->arch.smbase; 10218 10219 ds.selector = 0; 10220 ds.base = 0; 10221 10222 cs.limit = ds.limit = 0xffffffff; 10223 cs.type = ds.type = 0x3; 10224 cs.dpl = ds.dpl = 0; 10225 cs.db = ds.db = 0; 10226 cs.s = ds.s = 1; 10227 cs.l = ds.l = 0; 10228 cs.g = ds.g = 1; 10229 cs.avl = ds.avl = 0; 10230 cs.present = ds.present = 1; 10231 cs.unusable = ds.unusable = 0; 10232 cs.padding = ds.padding = 0; 10233 10234 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 10235 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 10236 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 10237 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 10238 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 10239 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 10240 10241 #ifdef CONFIG_X86_64 10242 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 10243 static_call(kvm_x86_set_efer)(vcpu, 0); 10244 #endif 10245 10246 kvm_update_cpuid_runtime(vcpu); 10247 kvm_mmu_reset_context(vcpu); 10248 } 10249 10250 static void process_smi(struct kvm_vcpu *vcpu) 10251 { 10252 vcpu->arch.smi_pending = true; 10253 kvm_make_request(KVM_REQ_EVENT, vcpu); 10254 } 10255 10256 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10257 unsigned long *vcpu_bitmap) 10258 { 10259 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10260 } 10261 10262 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10263 { 10264 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10265 } 10266 10267 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10268 { 10269 struct kvm_lapic *apic = vcpu->arch.apic; 10270 bool activate; 10271 10272 if (!lapic_in_kernel(vcpu)) 10273 return; 10274 10275 down_read(&vcpu->kvm->arch.apicv_update_lock); 10276 preempt_disable(); 10277 10278 /* Do not activate APICV when APIC is disabled */ 10279 activate = kvm_vcpu_apicv_activated(vcpu) && 10280 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10281 10282 if (apic->apicv_active == activate) 10283 goto out; 10284 10285 apic->apicv_active = activate; 10286 kvm_apic_update_apicv(vcpu); 10287 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10288 10289 /* 10290 * When APICv gets disabled, we may still have injected interrupts 10291 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10292 * still active when the interrupt got accepted. Make sure 10293 * kvm_check_and_inject_events() is called to check for that. 10294 */ 10295 if (!apic->apicv_active) 10296 kvm_make_request(KVM_REQ_EVENT, vcpu); 10297 10298 out: 10299 preempt_enable(); 10300 up_read(&vcpu->kvm->arch.apicv_update_lock); 10301 } 10302 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 10303 10304 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10305 enum kvm_apicv_inhibit reason, bool set) 10306 { 10307 unsigned long old, new; 10308 10309 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10310 10311 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 10312 return; 10313 10314 old = new = kvm->arch.apicv_inhibit_reasons; 10315 10316 set_or_clear_apicv_inhibit(&new, reason, set); 10317 10318 if (!!old != !!new) { 10319 /* 10320 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10321 * false positives in the sanity check WARN in svm_vcpu_run(). 10322 * This task will wait for all vCPUs to ack the kick IRQ before 10323 * updating apicv_inhibit_reasons, and all other vCPUs will 10324 * block on acquiring apicv_update_lock so that vCPUs can't 10325 * redo svm_vcpu_run() without seeing the new inhibit state. 10326 * 10327 * Note, holding apicv_update_lock and taking it in the read 10328 * side (handling the request) also prevents other vCPUs from 10329 * servicing the request with a stale apicv_inhibit_reasons. 10330 */ 10331 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10332 kvm->arch.apicv_inhibit_reasons = new; 10333 if (new) { 10334 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10335 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10336 } 10337 } else { 10338 kvm->arch.apicv_inhibit_reasons = new; 10339 } 10340 } 10341 10342 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10343 enum kvm_apicv_inhibit reason, bool set) 10344 { 10345 if (!enable_apicv) 10346 return; 10347 10348 down_write(&kvm->arch.apicv_update_lock); 10349 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10350 up_write(&kvm->arch.apicv_update_lock); 10351 } 10352 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10353 10354 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10355 { 10356 if (!kvm_apic_present(vcpu)) 10357 return; 10358 10359 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10360 10361 if (irqchip_split(vcpu->kvm)) 10362 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10363 else { 10364 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10365 if (ioapic_in_kernel(vcpu->kvm)) 10366 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10367 } 10368 10369 if (is_guest_mode(vcpu)) 10370 vcpu->arch.load_eoi_exitmap_pending = true; 10371 else 10372 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10373 } 10374 10375 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10376 { 10377 u64 eoi_exit_bitmap[4]; 10378 10379 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10380 return; 10381 10382 if (to_hv_vcpu(vcpu)) { 10383 bitmap_or((ulong *)eoi_exit_bitmap, 10384 vcpu->arch.ioapic_handled_vectors, 10385 to_hv_synic(vcpu)->vec_bitmap, 256); 10386 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10387 return; 10388 } 10389 10390 static_call_cond(kvm_x86_load_eoi_exitmap)( 10391 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10392 } 10393 10394 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10395 unsigned long start, unsigned long end) 10396 { 10397 unsigned long apic_address; 10398 10399 /* 10400 * The physical address of apic access page is stored in the VMCS. 10401 * Update it when it becomes invalid. 10402 */ 10403 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10404 if (start <= apic_address && apic_address < end) 10405 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10406 } 10407 10408 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10409 { 10410 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10411 } 10412 10413 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10414 { 10415 if (!lapic_in_kernel(vcpu)) 10416 return; 10417 10418 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10419 } 10420 10421 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10422 { 10423 smp_send_reschedule(vcpu->cpu); 10424 } 10425 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10426 10427 /* 10428 * Called within kvm->srcu read side. 10429 * Returns 1 to let vcpu_run() continue the guest execution loop without 10430 * exiting to the userspace. Otherwise, the value will be returned to the 10431 * userspace. 10432 */ 10433 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10434 { 10435 int r; 10436 bool req_int_win = 10437 dm_request_for_irq_injection(vcpu) && 10438 kvm_cpu_accept_dm_intr(vcpu); 10439 fastpath_t exit_fastpath; 10440 10441 bool req_immediate_exit = false; 10442 10443 /* Forbid vmenter if vcpu dirty ring is soft-full */ 10444 if (unlikely(vcpu->kvm->dirty_ring_size && 10445 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 10446 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 10447 trace_kvm_dirty_ring_exit(vcpu); 10448 r = 0; 10449 goto out; 10450 } 10451 10452 if (kvm_request_pending(vcpu)) { 10453 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10454 r = -EIO; 10455 goto out; 10456 } 10457 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10458 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10459 r = 0; 10460 goto out; 10461 } 10462 } 10463 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10464 kvm_mmu_free_obsolete_roots(vcpu); 10465 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10466 __kvm_migrate_timers(vcpu); 10467 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10468 kvm_update_masterclock(vcpu->kvm); 10469 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10470 kvm_gen_kvmclock_update(vcpu); 10471 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10472 r = kvm_guest_time_update(vcpu); 10473 if (unlikely(r)) 10474 goto out; 10475 } 10476 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10477 kvm_mmu_sync_roots(vcpu); 10478 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10479 kvm_mmu_load_pgd(vcpu); 10480 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 10481 kvm_vcpu_flush_tlb_all(vcpu); 10482 10483 /* Flushing all ASIDs flushes the current ASID... */ 10484 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 10485 } 10486 kvm_service_local_tlb_flush_requests(vcpu); 10487 10488 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10489 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10490 r = 0; 10491 goto out; 10492 } 10493 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10494 if (is_guest_mode(vcpu)) { 10495 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10496 } else { 10497 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10498 vcpu->mmio_needed = 0; 10499 r = 0; 10500 goto out; 10501 } 10502 } 10503 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10504 /* Page is swapped out. Do synthetic halt */ 10505 vcpu->arch.apf.halted = true; 10506 r = 1; 10507 goto out; 10508 } 10509 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10510 record_steal_time(vcpu); 10511 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10512 process_smi(vcpu); 10513 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10514 process_nmi(vcpu); 10515 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10516 kvm_pmu_handle_event(vcpu); 10517 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10518 kvm_pmu_deliver_pmi(vcpu); 10519 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10520 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10521 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10522 vcpu->arch.ioapic_handled_vectors)) { 10523 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10524 vcpu->run->eoi.vector = 10525 vcpu->arch.pending_ioapic_eoi; 10526 r = 0; 10527 goto out; 10528 } 10529 } 10530 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10531 vcpu_scan_ioapic(vcpu); 10532 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10533 vcpu_load_eoi_exitmap(vcpu); 10534 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10535 kvm_vcpu_reload_apic_access_page(vcpu); 10536 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10537 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10538 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10539 vcpu->run->system_event.ndata = 0; 10540 r = 0; 10541 goto out; 10542 } 10543 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10544 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10545 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10546 vcpu->run->system_event.ndata = 0; 10547 r = 0; 10548 goto out; 10549 } 10550 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10551 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10552 10553 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10554 vcpu->run->hyperv = hv_vcpu->exit; 10555 r = 0; 10556 goto out; 10557 } 10558 10559 /* 10560 * KVM_REQ_HV_STIMER has to be processed after 10561 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10562 * depend on the guest clock being up-to-date 10563 */ 10564 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10565 kvm_hv_process_stimers(vcpu); 10566 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10567 kvm_vcpu_update_apicv(vcpu); 10568 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10569 kvm_check_async_pf_completion(vcpu); 10570 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10571 static_call(kvm_x86_msr_filter_changed)(vcpu); 10572 10573 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10574 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10575 } 10576 10577 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10578 kvm_xen_has_interrupt(vcpu)) { 10579 ++vcpu->stat.req_event; 10580 r = kvm_apic_accept_events(vcpu); 10581 if (r < 0) { 10582 r = 0; 10583 goto out; 10584 } 10585 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10586 r = 1; 10587 goto out; 10588 } 10589 10590 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10591 if (r < 0) { 10592 r = 0; 10593 goto out; 10594 } 10595 if (req_int_win) 10596 static_call(kvm_x86_enable_irq_window)(vcpu); 10597 10598 if (kvm_lapic_enabled(vcpu)) { 10599 update_cr8_intercept(vcpu); 10600 kvm_lapic_sync_to_vapic(vcpu); 10601 } 10602 } 10603 10604 r = kvm_mmu_reload(vcpu); 10605 if (unlikely(r)) { 10606 goto cancel_injection; 10607 } 10608 10609 preempt_disable(); 10610 10611 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10612 10613 /* 10614 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10615 * IPI are then delayed after guest entry, which ensures that they 10616 * result in virtual interrupt delivery. 10617 */ 10618 local_irq_disable(); 10619 10620 /* Store vcpu->apicv_active before vcpu->mode. */ 10621 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10622 10623 kvm_vcpu_srcu_read_unlock(vcpu); 10624 10625 /* 10626 * 1) We should set ->mode before checking ->requests. Please see 10627 * the comment in kvm_vcpu_exiting_guest_mode(). 10628 * 10629 * 2) For APICv, we should set ->mode before checking PID.ON. This 10630 * pairs with the memory barrier implicit in pi_test_and_set_on 10631 * (see vmx_deliver_posted_interrupt). 10632 * 10633 * 3) This also orders the write to mode from any reads to the page 10634 * tables done while the VCPU is running. Please see the comment 10635 * in kvm_flush_remote_tlbs. 10636 */ 10637 smp_mb__after_srcu_read_unlock(); 10638 10639 /* 10640 * Process pending posted interrupts to handle the case where the 10641 * notification IRQ arrived in the host, or was never sent (because the 10642 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10643 * status, KVM doesn't update assigned devices when APICv is inhibited, 10644 * i.e. they can post interrupts even if APICv is temporarily disabled. 10645 */ 10646 if (kvm_lapic_enabled(vcpu)) 10647 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10648 10649 if (kvm_vcpu_exit_request(vcpu)) { 10650 vcpu->mode = OUTSIDE_GUEST_MODE; 10651 smp_wmb(); 10652 local_irq_enable(); 10653 preempt_enable(); 10654 kvm_vcpu_srcu_read_lock(vcpu); 10655 r = 1; 10656 goto cancel_injection; 10657 } 10658 10659 if (req_immediate_exit) { 10660 kvm_make_request(KVM_REQ_EVENT, vcpu); 10661 static_call(kvm_x86_request_immediate_exit)(vcpu); 10662 } 10663 10664 fpregs_assert_state_consistent(); 10665 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10666 switch_fpu_return(); 10667 10668 if (vcpu->arch.guest_fpu.xfd_err) 10669 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10670 10671 if (unlikely(vcpu->arch.switch_db_regs)) { 10672 set_debugreg(0, 7); 10673 set_debugreg(vcpu->arch.eff_db[0], 0); 10674 set_debugreg(vcpu->arch.eff_db[1], 1); 10675 set_debugreg(vcpu->arch.eff_db[2], 2); 10676 set_debugreg(vcpu->arch.eff_db[3], 3); 10677 } else if (unlikely(hw_breakpoint_active())) { 10678 set_debugreg(0, 7); 10679 } 10680 10681 guest_timing_enter_irqoff(); 10682 10683 for (;;) { 10684 /* 10685 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10686 * update must kick and wait for all vCPUs before toggling the 10687 * per-VM state, and responsing vCPUs must wait for the update 10688 * to complete before servicing KVM_REQ_APICV_UPDATE. 10689 */ 10690 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10691 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10692 10693 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10694 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10695 break; 10696 10697 if (kvm_lapic_enabled(vcpu)) 10698 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10699 10700 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10701 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10702 break; 10703 } 10704 } 10705 10706 /* 10707 * Do this here before restoring debug registers on the host. And 10708 * since we do this before handling the vmexit, a DR access vmexit 10709 * can (a) read the correct value of the debug registers, (b) set 10710 * KVM_DEBUGREG_WONT_EXIT again. 10711 */ 10712 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10713 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10714 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10715 kvm_update_dr0123(vcpu); 10716 kvm_update_dr7(vcpu); 10717 } 10718 10719 /* 10720 * If the guest has used debug registers, at least dr7 10721 * will be disabled while returning to the host. 10722 * If we don't have active breakpoints in the host, we don't 10723 * care about the messed up debug address registers. But if 10724 * we have some of them active, restore the old state. 10725 */ 10726 if (hw_breakpoint_active()) 10727 hw_breakpoint_restore(); 10728 10729 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10730 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10731 10732 vcpu->mode = OUTSIDE_GUEST_MODE; 10733 smp_wmb(); 10734 10735 /* 10736 * Sync xfd before calling handle_exit_irqoff() which may 10737 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10738 * in #NM irqoff handler). 10739 */ 10740 if (vcpu->arch.xfd_no_write_intercept) 10741 fpu_sync_guest_vmexit_xfd_state(); 10742 10743 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10744 10745 if (vcpu->arch.guest_fpu.xfd_err) 10746 wrmsrl(MSR_IA32_XFD_ERR, 0); 10747 10748 /* 10749 * Consume any pending interrupts, including the possible source of 10750 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10751 * An instruction is required after local_irq_enable() to fully unblock 10752 * interrupts on processors that implement an interrupt shadow, the 10753 * stat.exits increment will do nicely. 10754 */ 10755 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10756 local_irq_enable(); 10757 ++vcpu->stat.exits; 10758 local_irq_disable(); 10759 kvm_after_interrupt(vcpu); 10760 10761 /* 10762 * Wait until after servicing IRQs to account guest time so that any 10763 * ticks that occurred while running the guest are properly accounted 10764 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10765 * of accounting via context tracking, but the loss of accuracy is 10766 * acceptable for all known use cases. 10767 */ 10768 guest_timing_exit_irqoff(); 10769 10770 local_irq_enable(); 10771 preempt_enable(); 10772 10773 kvm_vcpu_srcu_read_lock(vcpu); 10774 10775 /* 10776 * Profile KVM exit RIPs: 10777 */ 10778 if (unlikely(prof_on == KVM_PROFILING)) { 10779 unsigned long rip = kvm_rip_read(vcpu); 10780 profile_hit(KVM_PROFILING, (void *)rip); 10781 } 10782 10783 if (unlikely(vcpu->arch.tsc_always_catchup)) 10784 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10785 10786 if (vcpu->arch.apic_attention) 10787 kvm_lapic_sync_from_vapic(vcpu); 10788 10789 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10790 return r; 10791 10792 cancel_injection: 10793 if (req_immediate_exit) 10794 kvm_make_request(KVM_REQ_EVENT, vcpu); 10795 static_call(kvm_x86_cancel_injection)(vcpu); 10796 if (unlikely(vcpu->arch.apic_attention)) 10797 kvm_lapic_sync_from_vapic(vcpu); 10798 out: 10799 return r; 10800 } 10801 10802 /* Called within kvm->srcu read side. */ 10803 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10804 { 10805 bool hv_timer; 10806 10807 if (!kvm_arch_vcpu_runnable(vcpu)) { 10808 /* 10809 * Switch to the software timer before halt-polling/blocking as 10810 * the guest's timer may be a break event for the vCPU, and the 10811 * hypervisor timer runs only when the CPU is in guest mode. 10812 * Switch before halt-polling so that KVM recognizes an expired 10813 * timer before blocking. 10814 */ 10815 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10816 if (hv_timer) 10817 kvm_lapic_switch_to_sw_timer(vcpu); 10818 10819 kvm_vcpu_srcu_read_unlock(vcpu); 10820 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10821 kvm_vcpu_halt(vcpu); 10822 else 10823 kvm_vcpu_block(vcpu); 10824 kvm_vcpu_srcu_read_lock(vcpu); 10825 10826 if (hv_timer) 10827 kvm_lapic_switch_to_hv_timer(vcpu); 10828 10829 /* 10830 * If the vCPU is not runnable, a signal or another host event 10831 * of some kind is pending; service it without changing the 10832 * vCPU's activity state. 10833 */ 10834 if (!kvm_arch_vcpu_runnable(vcpu)) 10835 return 1; 10836 } 10837 10838 /* 10839 * Evaluate nested events before exiting the halted state. This allows 10840 * the halt state to be recorded properly in the VMCS12's activity 10841 * state field (AMD does not have a similar field and a VM-Exit always 10842 * causes a spurious wakeup from HLT). 10843 */ 10844 if (is_guest_mode(vcpu)) { 10845 if (kvm_check_nested_events(vcpu) < 0) 10846 return 0; 10847 } 10848 10849 if (kvm_apic_accept_events(vcpu) < 0) 10850 return 0; 10851 switch(vcpu->arch.mp_state) { 10852 case KVM_MP_STATE_HALTED: 10853 case KVM_MP_STATE_AP_RESET_HOLD: 10854 vcpu->arch.pv.pv_unhalted = false; 10855 vcpu->arch.mp_state = 10856 KVM_MP_STATE_RUNNABLE; 10857 fallthrough; 10858 case KVM_MP_STATE_RUNNABLE: 10859 vcpu->arch.apf.halted = false; 10860 break; 10861 case KVM_MP_STATE_INIT_RECEIVED: 10862 break; 10863 default: 10864 WARN_ON_ONCE(1); 10865 break; 10866 } 10867 return 1; 10868 } 10869 10870 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10871 { 10872 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10873 !vcpu->arch.apf.halted); 10874 } 10875 10876 /* Called within kvm->srcu read side. */ 10877 static int vcpu_run(struct kvm_vcpu *vcpu) 10878 { 10879 int r; 10880 10881 vcpu->arch.l1tf_flush_l1d = true; 10882 10883 for (;;) { 10884 /* 10885 * If another guest vCPU requests a PV TLB flush in the middle 10886 * of instruction emulation, the rest of the emulation could 10887 * use a stale page translation. Assume that any code after 10888 * this point can start executing an instruction. 10889 */ 10890 vcpu->arch.at_instruction_boundary = false; 10891 if (kvm_vcpu_running(vcpu)) { 10892 r = vcpu_enter_guest(vcpu); 10893 } else { 10894 r = vcpu_block(vcpu); 10895 } 10896 10897 if (r <= 0) 10898 break; 10899 10900 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10901 if (kvm_xen_has_pending_events(vcpu)) 10902 kvm_xen_inject_pending_events(vcpu); 10903 10904 if (kvm_cpu_has_pending_timer(vcpu)) 10905 kvm_inject_pending_timer_irqs(vcpu); 10906 10907 if (dm_request_for_irq_injection(vcpu) && 10908 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10909 r = 0; 10910 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10911 ++vcpu->stat.request_irq_exits; 10912 break; 10913 } 10914 10915 if (__xfer_to_guest_mode_work_pending()) { 10916 kvm_vcpu_srcu_read_unlock(vcpu); 10917 r = xfer_to_guest_mode_handle_work(vcpu); 10918 kvm_vcpu_srcu_read_lock(vcpu); 10919 if (r) 10920 return r; 10921 } 10922 } 10923 10924 return r; 10925 } 10926 10927 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10928 { 10929 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10930 } 10931 10932 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10933 { 10934 BUG_ON(!vcpu->arch.pio.count); 10935 10936 return complete_emulated_io(vcpu); 10937 } 10938 10939 /* 10940 * Implements the following, as a state machine: 10941 * 10942 * read: 10943 * for each fragment 10944 * for each mmio piece in the fragment 10945 * write gpa, len 10946 * exit 10947 * copy data 10948 * execute insn 10949 * 10950 * write: 10951 * for each fragment 10952 * for each mmio piece in the fragment 10953 * write gpa, len 10954 * copy data 10955 * exit 10956 */ 10957 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10958 { 10959 struct kvm_run *run = vcpu->run; 10960 struct kvm_mmio_fragment *frag; 10961 unsigned len; 10962 10963 BUG_ON(!vcpu->mmio_needed); 10964 10965 /* Complete previous fragment */ 10966 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10967 len = min(8u, frag->len); 10968 if (!vcpu->mmio_is_write) 10969 memcpy(frag->data, run->mmio.data, len); 10970 10971 if (frag->len <= 8) { 10972 /* Switch to the next fragment. */ 10973 frag++; 10974 vcpu->mmio_cur_fragment++; 10975 } else { 10976 /* Go forward to the next mmio piece. */ 10977 frag->data += len; 10978 frag->gpa += len; 10979 frag->len -= len; 10980 } 10981 10982 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10983 vcpu->mmio_needed = 0; 10984 10985 /* FIXME: return into emulator if single-stepping. */ 10986 if (vcpu->mmio_is_write) 10987 return 1; 10988 vcpu->mmio_read_completed = 1; 10989 return complete_emulated_io(vcpu); 10990 } 10991 10992 run->exit_reason = KVM_EXIT_MMIO; 10993 run->mmio.phys_addr = frag->gpa; 10994 if (vcpu->mmio_is_write) 10995 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10996 run->mmio.len = min(8u, frag->len); 10997 run->mmio.is_write = vcpu->mmio_is_write; 10998 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10999 return 0; 11000 } 11001 11002 /* Swap (qemu) user FPU context for the guest FPU context. */ 11003 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11004 { 11005 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11006 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11007 trace_kvm_fpu(1); 11008 } 11009 11010 /* When vcpu_run ends, restore user space FPU context. */ 11011 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11012 { 11013 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11014 ++vcpu->stat.fpu_reload; 11015 trace_kvm_fpu(0); 11016 } 11017 11018 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11019 { 11020 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11021 struct kvm_run *kvm_run = vcpu->run; 11022 int r; 11023 11024 vcpu_load(vcpu); 11025 kvm_sigset_activate(vcpu); 11026 kvm_run->flags = 0; 11027 kvm_load_guest_fpu(vcpu); 11028 11029 kvm_vcpu_srcu_read_lock(vcpu); 11030 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11031 if (kvm_run->immediate_exit) { 11032 r = -EINTR; 11033 goto out; 11034 } 11035 /* 11036 * It should be impossible for the hypervisor timer to be in 11037 * use before KVM has ever run the vCPU. 11038 */ 11039 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 11040 11041 kvm_vcpu_srcu_read_unlock(vcpu); 11042 kvm_vcpu_block(vcpu); 11043 kvm_vcpu_srcu_read_lock(vcpu); 11044 11045 if (kvm_apic_accept_events(vcpu) < 0) { 11046 r = 0; 11047 goto out; 11048 } 11049 r = -EAGAIN; 11050 if (signal_pending(current)) { 11051 r = -EINTR; 11052 kvm_run->exit_reason = KVM_EXIT_INTR; 11053 ++vcpu->stat.signal_exits; 11054 } 11055 goto out; 11056 } 11057 11058 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11059 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11060 r = -EINVAL; 11061 goto out; 11062 } 11063 11064 if (kvm_run->kvm_dirty_regs) { 11065 r = sync_regs(vcpu); 11066 if (r != 0) 11067 goto out; 11068 } 11069 11070 /* re-sync apic's tpr */ 11071 if (!lapic_in_kernel(vcpu)) { 11072 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11073 r = -EINVAL; 11074 goto out; 11075 } 11076 } 11077 11078 /* 11079 * If userspace set a pending exception and L2 is active, convert it to 11080 * a pending VM-Exit if L1 wants to intercept the exception. 11081 */ 11082 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11083 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11084 ex->error_code)) { 11085 kvm_queue_exception_vmexit(vcpu, ex->vector, 11086 ex->has_error_code, ex->error_code, 11087 ex->has_payload, ex->payload); 11088 ex->injected = false; 11089 ex->pending = false; 11090 } 11091 vcpu->arch.exception_from_userspace = false; 11092 11093 if (unlikely(vcpu->arch.complete_userspace_io)) { 11094 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11095 vcpu->arch.complete_userspace_io = NULL; 11096 r = cui(vcpu); 11097 if (r <= 0) 11098 goto out; 11099 } else { 11100 WARN_ON_ONCE(vcpu->arch.pio.count); 11101 WARN_ON_ONCE(vcpu->mmio_needed); 11102 } 11103 11104 if (kvm_run->immediate_exit) { 11105 r = -EINTR; 11106 goto out; 11107 } 11108 11109 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11110 if (r <= 0) 11111 goto out; 11112 11113 r = vcpu_run(vcpu); 11114 11115 out: 11116 kvm_put_guest_fpu(vcpu); 11117 if (kvm_run->kvm_valid_regs) 11118 store_regs(vcpu); 11119 post_kvm_run_save(vcpu); 11120 kvm_vcpu_srcu_read_unlock(vcpu); 11121 11122 kvm_sigset_deactivate(vcpu); 11123 vcpu_put(vcpu); 11124 return r; 11125 } 11126 11127 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11128 { 11129 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11130 /* 11131 * We are here if userspace calls get_regs() in the middle of 11132 * instruction emulation. Registers state needs to be copied 11133 * back from emulation context to vcpu. Userspace shouldn't do 11134 * that usually, but some bad designed PV devices (vmware 11135 * backdoor interface) need this to work 11136 */ 11137 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11138 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11139 } 11140 regs->rax = kvm_rax_read(vcpu); 11141 regs->rbx = kvm_rbx_read(vcpu); 11142 regs->rcx = kvm_rcx_read(vcpu); 11143 regs->rdx = kvm_rdx_read(vcpu); 11144 regs->rsi = kvm_rsi_read(vcpu); 11145 regs->rdi = kvm_rdi_read(vcpu); 11146 regs->rsp = kvm_rsp_read(vcpu); 11147 regs->rbp = kvm_rbp_read(vcpu); 11148 #ifdef CONFIG_X86_64 11149 regs->r8 = kvm_r8_read(vcpu); 11150 regs->r9 = kvm_r9_read(vcpu); 11151 regs->r10 = kvm_r10_read(vcpu); 11152 regs->r11 = kvm_r11_read(vcpu); 11153 regs->r12 = kvm_r12_read(vcpu); 11154 regs->r13 = kvm_r13_read(vcpu); 11155 regs->r14 = kvm_r14_read(vcpu); 11156 regs->r15 = kvm_r15_read(vcpu); 11157 #endif 11158 11159 regs->rip = kvm_rip_read(vcpu); 11160 regs->rflags = kvm_get_rflags(vcpu); 11161 } 11162 11163 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11164 { 11165 vcpu_load(vcpu); 11166 __get_regs(vcpu, regs); 11167 vcpu_put(vcpu); 11168 return 0; 11169 } 11170 11171 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11172 { 11173 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11174 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11175 11176 kvm_rax_write(vcpu, regs->rax); 11177 kvm_rbx_write(vcpu, regs->rbx); 11178 kvm_rcx_write(vcpu, regs->rcx); 11179 kvm_rdx_write(vcpu, regs->rdx); 11180 kvm_rsi_write(vcpu, regs->rsi); 11181 kvm_rdi_write(vcpu, regs->rdi); 11182 kvm_rsp_write(vcpu, regs->rsp); 11183 kvm_rbp_write(vcpu, regs->rbp); 11184 #ifdef CONFIG_X86_64 11185 kvm_r8_write(vcpu, regs->r8); 11186 kvm_r9_write(vcpu, regs->r9); 11187 kvm_r10_write(vcpu, regs->r10); 11188 kvm_r11_write(vcpu, regs->r11); 11189 kvm_r12_write(vcpu, regs->r12); 11190 kvm_r13_write(vcpu, regs->r13); 11191 kvm_r14_write(vcpu, regs->r14); 11192 kvm_r15_write(vcpu, regs->r15); 11193 #endif 11194 11195 kvm_rip_write(vcpu, regs->rip); 11196 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11197 11198 vcpu->arch.exception.pending = false; 11199 vcpu->arch.exception_vmexit.pending = false; 11200 11201 kvm_make_request(KVM_REQ_EVENT, vcpu); 11202 } 11203 11204 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11205 { 11206 vcpu_load(vcpu); 11207 __set_regs(vcpu, regs); 11208 vcpu_put(vcpu); 11209 return 0; 11210 } 11211 11212 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11213 { 11214 struct desc_ptr dt; 11215 11216 if (vcpu->arch.guest_state_protected) 11217 goto skip_protected_regs; 11218 11219 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11220 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11221 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11222 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11223 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11224 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11225 11226 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11227 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11228 11229 static_call(kvm_x86_get_idt)(vcpu, &dt); 11230 sregs->idt.limit = dt.size; 11231 sregs->idt.base = dt.address; 11232 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11233 sregs->gdt.limit = dt.size; 11234 sregs->gdt.base = dt.address; 11235 11236 sregs->cr2 = vcpu->arch.cr2; 11237 sregs->cr3 = kvm_read_cr3(vcpu); 11238 11239 skip_protected_regs: 11240 sregs->cr0 = kvm_read_cr0(vcpu); 11241 sregs->cr4 = kvm_read_cr4(vcpu); 11242 sregs->cr8 = kvm_get_cr8(vcpu); 11243 sregs->efer = vcpu->arch.efer; 11244 sregs->apic_base = kvm_get_apic_base(vcpu); 11245 } 11246 11247 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11248 { 11249 __get_sregs_common(vcpu, sregs); 11250 11251 if (vcpu->arch.guest_state_protected) 11252 return; 11253 11254 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11255 set_bit(vcpu->arch.interrupt.nr, 11256 (unsigned long *)sregs->interrupt_bitmap); 11257 } 11258 11259 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11260 { 11261 int i; 11262 11263 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11264 11265 if (vcpu->arch.guest_state_protected) 11266 return; 11267 11268 if (is_pae_paging(vcpu)) { 11269 for (i = 0 ; i < 4 ; i++) 11270 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11271 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11272 } 11273 } 11274 11275 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11276 struct kvm_sregs *sregs) 11277 { 11278 vcpu_load(vcpu); 11279 __get_sregs(vcpu, sregs); 11280 vcpu_put(vcpu); 11281 return 0; 11282 } 11283 11284 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11285 struct kvm_mp_state *mp_state) 11286 { 11287 int r; 11288 11289 vcpu_load(vcpu); 11290 if (kvm_mpx_supported()) 11291 kvm_load_guest_fpu(vcpu); 11292 11293 r = kvm_apic_accept_events(vcpu); 11294 if (r < 0) 11295 goto out; 11296 r = 0; 11297 11298 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11299 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11300 vcpu->arch.pv.pv_unhalted) 11301 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11302 else 11303 mp_state->mp_state = vcpu->arch.mp_state; 11304 11305 out: 11306 if (kvm_mpx_supported()) 11307 kvm_put_guest_fpu(vcpu); 11308 vcpu_put(vcpu); 11309 return r; 11310 } 11311 11312 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11313 struct kvm_mp_state *mp_state) 11314 { 11315 int ret = -EINVAL; 11316 11317 vcpu_load(vcpu); 11318 11319 switch (mp_state->mp_state) { 11320 case KVM_MP_STATE_UNINITIALIZED: 11321 case KVM_MP_STATE_HALTED: 11322 case KVM_MP_STATE_AP_RESET_HOLD: 11323 case KVM_MP_STATE_INIT_RECEIVED: 11324 case KVM_MP_STATE_SIPI_RECEIVED: 11325 if (!lapic_in_kernel(vcpu)) 11326 goto out; 11327 break; 11328 11329 case KVM_MP_STATE_RUNNABLE: 11330 break; 11331 11332 default: 11333 goto out; 11334 } 11335 11336 /* 11337 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11338 * forcing the guest into INIT/SIPI if those events are supposed to be 11339 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11340 * if an SMI is pending as well. 11341 */ 11342 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11343 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11344 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11345 goto out; 11346 11347 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11348 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11349 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11350 } else 11351 vcpu->arch.mp_state = mp_state->mp_state; 11352 kvm_make_request(KVM_REQ_EVENT, vcpu); 11353 11354 ret = 0; 11355 out: 11356 vcpu_put(vcpu); 11357 return ret; 11358 } 11359 11360 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11361 int reason, bool has_error_code, u32 error_code) 11362 { 11363 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11364 int ret; 11365 11366 init_emulate_ctxt(vcpu); 11367 11368 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11369 has_error_code, error_code); 11370 if (ret) { 11371 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11372 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11373 vcpu->run->internal.ndata = 0; 11374 return 0; 11375 } 11376 11377 kvm_rip_write(vcpu, ctxt->eip); 11378 kvm_set_rflags(vcpu, ctxt->eflags); 11379 return 1; 11380 } 11381 EXPORT_SYMBOL_GPL(kvm_task_switch); 11382 11383 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11384 { 11385 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11386 /* 11387 * When EFER.LME and CR0.PG are set, the processor is in 11388 * 64-bit mode (though maybe in a 32-bit code segment). 11389 * CR4.PAE and EFER.LMA must be set. 11390 */ 11391 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11392 return false; 11393 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11394 return false; 11395 } else { 11396 /* 11397 * Not in 64-bit mode: EFER.LMA is clear and the code 11398 * segment cannot be 64-bit. 11399 */ 11400 if (sregs->efer & EFER_LMA || sregs->cs.l) 11401 return false; 11402 } 11403 11404 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11405 } 11406 11407 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11408 int *mmu_reset_needed, bool update_pdptrs) 11409 { 11410 struct msr_data apic_base_msr; 11411 int idx; 11412 struct desc_ptr dt; 11413 11414 if (!kvm_is_valid_sregs(vcpu, sregs)) 11415 return -EINVAL; 11416 11417 apic_base_msr.data = sregs->apic_base; 11418 apic_base_msr.host_initiated = true; 11419 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11420 return -EINVAL; 11421 11422 if (vcpu->arch.guest_state_protected) 11423 return 0; 11424 11425 dt.size = sregs->idt.limit; 11426 dt.address = sregs->idt.base; 11427 static_call(kvm_x86_set_idt)(vcpu, &dt); 11428 dt.size = sregs->gdt.limit; 11429 dt.address = sregs->gdt.base; 11430 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11431 11432 vcpu->arch.cr2 = sregs->cr2; 11433 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11434 vcpu->arch.cr3 = sregs->cr3; 11435 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11436 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11437 11438 kvm_set_cr8(vcpu, sregs->cr8); 11439 11440 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11441 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11442 11443 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11444 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11445 vcpu->arch.cr0 = sregs->cr0; 11446 11447 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11448 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11449 11450 if (update_pdptrs) { 11451 idx = srcu_read_lock(&vcpu->kvm->srcu); 11452 if (is_pae_paging(vcpu)) { 11453 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11454 *mmu_reset_needed = 1; 11455 } 11456 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11457 } 11458 11459 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11460 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11461 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11462 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11463 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11464 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11465 11466 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11467 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11468 11469 update_cr8_intercept(vcpu); 11470 11471 /* Older userspace won't unhalt the vcpu on reset. */ 11472 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11473 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11474 !is_protmode(vcpu)) 11475 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11476 11477 return 0; 11478 } 11479 11480 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11481 { 11482 int pending_vec, max_bits; 11483 int mmu_reset_needed = 0; 11484 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11485 11486 if (ret) 11487 return ret; 11488 11489 if (mmu_reset_needed) 11490 kvm_mmu_reset_context(vcpu); 11491 11492 max_bits = KVM_NR_INTERRUPTS; 11493 pending_vec = find_first_bit( 11494 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11495 11496 if (pending_vec < max_bits) { 11497 kvm_queue_interrupt(vcpu, pending_vec, false); 11498 pr_debug("Set back pending irq %d\n", pending_vec); 11499 kvm_make_request(KVM_REQ_EVENT, vcpu); 11500 } 11501 return 0; 11502 } 11503 11504 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11505 { 11506 int mmu_reset_needed = 0; 11507 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11508 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11509 !(sregs2->efer & EFER_LMA); 11510 int i, ret; 11511 11512 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11513 return -EINVAL; 11514 11515 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11516 return -EINVAL; 11517 11518 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11519 &mmu_reset_needed, !valid_pdptrs); 11520 if (ret) 11521 return ret; 11522 11523 if (valid_pdptrs) { 11524 for (i = 0; i < 4 ; i++) 11525 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11526 11527 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11528 mmu_reset_needed = 1; 11529 vcpu->arch.pdptrs_from_userspace = true; 11530 } 11531 if (mmu_reset_needed) 11532 kvm_mmu_reset_context(vcpu); 11533 return 0; 11534 } 11535 11536 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11537 struct kvm_sregs *sregs) 11538 { 11539 int ret; 11540 11541 vcpu_load(vcpu); 11542 ret = __set_sregs(vcpu, sregs); 11543 vcpu_put(vcpu); 11544 return ret; 11545 } 11546 11547 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11548 { 11549 bool set = false; 11550 struct kvm_vcpu *vcpu; 11551 unsigned long i; 11552 11553 if (!enable_apicv) 11554 return; 11555 11556 down_write(&kvm->arch.apicv_update_lock); 11557 11558 kvm_for_each_vcpu(i, vcpu, kvm) { 11559 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11560 set = true; 11561 break; 11562 } 11563 } 11564 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11565 up_write(&kvm->arch.apicv_update_lock); 11566 } 11567 11568 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11569 struct kvm_guest_debug *dbg) 11570 { 11571 unsigned long rflags; 11572 int i, r; 11573 11574 if (vcpu->arch.guest_state_protected) 11575 return -EINVAL; 11576 11577 vcpu_load(vcpu); 11578 11579 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11580 r = -EBUSY; 11581 if (kvm_is_exception_pending(vcpu)) 11582 goto out; 11583 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11584 kvm_queue_exception(vcpu, DB_VECTOR); 11585 else 11586 kvm_queue_exception(vcpu, BP_VECTOR); 11587 } 11588 11589 /* 11590 * Read rflags as long as potentially injected trace flags are still 11591 * filtered out. 11592 */ 11593 rflags = kvm_get_rflags(vcpu); 11594 11595 vcpu->guest_debug = dbg->control; 11596 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11597 vcpu->guest_debug = 0; 11598 11599 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11600 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11601 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11602 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11603 } else { 11604 for (i = 0; i < KVM_NR_DB_REGS; i++) 11605 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11606 } 11607 kvm_update_dr7(vcpu); 11608 11609 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11610 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11611 11612 /* 11613 * Trigger an rflags update that will inject or remove the trace 11614 * flags. 11615 */ 11616 kvm_set_rflags(vcpu, rflags); 11617 11618 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11619 11620 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11621 11622 r = 0; 11623 11624 out: 11625 vcpu_put(vcpu); 11626 return r; 11627 } 11628 11629 /* 11630 * Translate a guest virtual address to a guest physical address. 11631 */ 11632 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11633 struct kvm_translation *tr) 11634 { 11635 unsigned long vaddr = tr->linear_address; 11636 gpa_t gpa; 11637 int idx; 11638 11639 vcpu_load(vcpu); 11640 11641 idx = srcu_read_lock(&vcpu->kvm->srcu); 11642 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11643 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11644 tr->physical_address = gpa; 11645 tr->valid = gpa != INVALID_GPA; 11646 tr->writeable = 1; 11647 tr->usermode = 0; 11648 11649 vcpu_put(vcpu); 11650 return 0; 11651 } 11652 11653 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11654 { 11655 struct fxregs_state *fxsave; 11656 11657 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11658 return 0; 11659 11660 vcpu_load(vcpu); 11661 11662 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11663 memcpy(fpu->fpr, fxsave->st_space, 128); 11664 fpu->fcw = fxsave->cwd; 11665 fpu->fsw = fxsave->swd; 11666 fpu->ftwx = fxsave->twd; 11667 fpu->last_opcode = fxsave->fop; 11668 fpu->last_ip = fxsave->rip; 11669 fpu->last_dp = fxsave->rdp; 11670 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11671 11672 vcpu_put(vcpu); 11673 return 0; 11674 } 11675 11676 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11677 { 11678 struct fxregs_state *fxsave; 11679 11680 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11681 return 0; 11682 11683 vcpu_load(vcpu); 11684 11685 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11686 11687 memcpy(fxsave->st_space, fpu->fpr, 128); 11688 fxsave->cwd = fpu->fcw; 11689 fxsave->swd = fpu->fsw; 11690 fxsave->twd = fpu->ftwx; 11691 fxsave->fop = fpu->last_opcode; 11692 fxsave->rip = fpu->last_ip; 11693 fxsave->rdp = fpu->last_dp; 11694 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11695 11696 vcpu_put(vcpu); 11697 return 0; 11698 } 11699 11700 static void store_regs(struct kvm_vcpu *vcpu) 11701 { 11702 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11703 11704 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11705 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11706 11707 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11708 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11709 11710 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11711 kvm_vcpu_ioctl_x86_get_vcpu_events( 11712 vcpu, &vcpu->run->s.regs.events); 11713 } 11714 11715 static int sync_regs(struct kvm_vcpu *vcpu) 11716 { 11717 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11718 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11719 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11720 } 11721 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11722 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11723 return -EINVAL; 11724 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11725 } 11726 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11727 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11728 vcpu, &vcpu->run->s.regs.events)) 11729 return -EINVAL; 11730 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11731 } 11732 11733 return 0; 11734 } 11735 11736 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11737 { 11738 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11739 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11740 "guest TSC will not be reliable\n"); 11741 11742 if (!kvm->arch.max_vcpu_ids) 11743 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11744 11745 if (id >= kvm->arch.max_vcpu_ids) 11746 return -EINVAL; 11747 11748 return static_call(kvm_x86_vcpu_precreate)(kvm); 11749 } 11750 11751 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11752 { 11753 struct page *page; 11754 int r; 11755 11756 vcpu->arch.last_vmentry_cpu = -1; 11757 vcpu->arch.regs_avail = ~0; 11758 vcpu->arch.regs_dirty = ~0; 11759 11760 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11761 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11762 else 11763 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11764 11765 r = kvm_mmu_create(vcpu); 11766 if (r < 0) 11767 return r; 11768 11769 if (irqchip_in_kernel(vcpu->kvm)) { 11770 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11771 if (r < 0) 11772 goto fail_mmu_destroy; 11773 11774 /* 11775 * Defer evaluating inhibits until the vCPU is first run, as 11776 * this vCPU will not get notified of any changes until this 11777 * vCPU is visible to other vCPUs (marked online and added to 11778 * the set of vCPUs). Opportunistically mark APICv active as 11779 * VMX in particularly is highly unlikely to have inhibits. 11780 * Ignore the current per-VM APICv state so that vCPU creation 11781 * is guaranteed to run with a deterministic value, the request 11782 * will ensure the vCPU gets the correct state before VM-Entry. 11783 */ 11784 if (enable_apicv) { 11785 vcpu->arch.apic->apicv_active = true; 11786 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11787 } 11788 } else 11789 static_branch_inc(&kvm_has_noapic_vcpu); 11790 11791 r = -ENOMEM; 11792 11793 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11794 if (!page) 11795 goto fail_free_lapic; 11796 vcpu->arch.pio_data = page_address(page); 11797 11798 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11799 GFP_KERNEL_ACCOUNT); 11800 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11801 GFP_KERNEL_ACCOUNT); 11802 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11803 goto fail_free_mce_banks; 11804 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11805 11806 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11807 GFP_KERNEL_ACCOUNT)) 11808 goto fail_free_mce_banks; 11809 11810 if (!alloc_emulate_ctxt(vcpu)) 11811 goto free_wbinvd_dirty_mask; 11812 11813 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11814 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11815 goto free_emulate_ctxt; 11816 } 11817 11818 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11819 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11820 11821 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11822 11823 kvm_async_pf_hash_reset(vcpu); 11824 kvm_pmu_init(vcpu); 11825 11826 vcpu->arch.pending_external_vector = -1; 11827 vcpu->arch.preempted_in_kernel = false; 11828 11829 #if IS_ENABLED(CONFIG_HYPERV) 11830 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11831 #endif 11832 11833 r = static_call(kvm_x86_vcpu_create)(vcpu); 11834 if (r) 11835 goto free_guest_fpu; 11836 11837 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11838 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11839 kvm_xen_init_vcpu(vcpu); 11840 kvm_vcpu_mtrr_init(vcpu); 11841 vcpu_load(vcpu); 11842 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11843 kvm_vcpu_reset(vcpu, false); 11844 kvm_init_mmu(vcpu); 11845 vcpu_put(vcpu); 11846 return 0; 11847 11848 free_guest_fpu: 11849 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11850 free_emulate_ctxt: 11851 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11852 free_wbinvd_dirty_mask: 11853 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11854 fail_free_mce_banks: 11855 kfree(vcpu->arch.mce_banks); 11856 kfree(vcpu->arch.mci_ctl2_banks); 11857 free_page((unsigned long)vcpu->arch.pio_data); 11858 fail_free_lapic: 11859 kvm_free_lapic(vcpu); 11860 fail_mmu_destroy: 11861 kvm_mmu_destroy(vcpu); 11862 return r; 11863 } 11864 11865 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11866 { 11867 struct kvm *kvm = vcpu->kvm; 11868 11869 if (mutex_lock_killable(&vcpu->mutex)) 11870 return; 11871 vcpu_load(vcpu); 11872 kvm_synchronize_tsc(vcpu, 0); 11873 vcpu_put(vcpu); 11874 11875 /* poll control enabled by default */ 11876 vcpu->arch.msr_kvm_poll_control = 1; 11877 11878 mutex_unlock(&vcpu->mutex); 11879 11880 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11881 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11882 KVMCLOCK_SYNC_PERIOD); 11883 } 11884 11885 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11886 { 11887 int idx; 11888 11889 kvmclock_reset(vcpu); 11890 11891 static_call(kvm_x86_vcpu_free)(vcpu); 11892 11893 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11894 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11895 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11896 11897 kvm_xen_destroy_vcpu(vcpu); 11898 kvm_hv_vcpu_uninit(vcpu); 11899 kvm_pmu_destroy(vcpu); 11900 kfree(vcpu->arch.mce_banks); 11901 kfree(vcpu->arch.mci_ctl2_banks); 11902 kvm_free_lapic(vcpu); 11903 idx = srcu_read_lock(&vcpu->kvm->srcu); 11904 kvm_mmu_destroy(vcpu); 11905 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11906 free_page((unsigned long)vcpu->arch.pio_data); 11907 kvfree(vcpu->arch.cpuid_entries); 11908 if (!lapic_in_kernel(vcpu)) 11909 static_branch_dec(&kvm_has_noapic_vcpu); 11910 } 11911 11912 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11913 { 11914 struct kvm_cpuid_entry2 *cpuid_0x1; 11915 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11916 unsigned long new_cr0; 11917 11918 /* 11919 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11920 * to handle side effects. RESET emulation hits those flows and relies 11921 * on emulated/virtualized registers, including those that are loaded 11922 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11923 * to detect improper or missing initialization. 11924 */ 11925 WARN_ON_ONCE(!init_event && 11926 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11927 11928 kvm_lapic_reset(vcpu, init_event); 11929 11930 vcpu->arch.hflags = 0; 11931 11932 vcpu->arch.smi_pending = 0; 11933 vcpu->arch.smi_count = 0; 11934 atomic_set(&vcpu->arch.nmi_queued, 0); 11935 vcpu->arch.nmi_pending = 0; 11936 vcpu->arch.nmi_injected = false; 11937 kvm_clear_interrupt_queue(vcpu); 11938 kvm_clear_exception_queue(vcpu); 11939 11940 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11941 kvm_update_dr0123(vcpu); 11942 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11943 vcpu->arch.dr7 = DR7_FIXED_1; 11944 kvm_update_dr7(vcpu); 11945 11946 vcpu->arch.cr2 = 0; 11947 11948 kvm_make_request(KVM_REQ_EVENT, vcpu); 11949 vcpu->arch.apf.msr_en_val = 0; 11950 vcpu->arch.apf.msr_int_val = 0; 11951 vcpu->arch.st.msr_val = 0; 11952 11953 kvmclock_reset(vcpu); 11954 11955 kvm_clear_async_pf_completion_queue(vcpu); 11956 kvm_async_pf_hash_reset(vcpu); 11957 vcpu->arch.apf.halted = false; 11958 11959 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11960 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11961 11962 /* 11963 * All paths that lead to INIT are required to load the guest's 11964 * FPU state (because most paths are buried in KVM_RUN). 11965 */ 11966 if (init_event) 11967 kvm_put_guest_fpu(vcpu); 11968 11969 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11970 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11971 11972 if (init_event) 11973 kvm_load_guest_fpu(vcpu); 11974 } 11975 11976 if (!init_event) { 11977 kvm_pmu_reset(vcpu); 11978 vcpu->arch.smbase = 0x30000; 11979 11980 vcpu->arch.msr_misc_features_enables = 0; 11981 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11982 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11983 11984 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11985 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11986 } 11987 11988 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11989 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11990 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11991 11992 /* 11993 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11994 * if no CPUID match is found. Note, it's impossible to get a match at 11995 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11996 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11997 * on RESET. But, go through the motions in case that's ever remedied. 11998 */ 11999 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12000 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12001 12002 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12003 12004 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12005 kvm_rip_write(vcpu, 0xfff0); 12006 12007 vcpu->arch.cr3 = 0; 12008 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12009 12010 /* 12011 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12012 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12013 * (or qualify) that with a footnote stating that CD/NW are preserved. 12014 */ 12015 new_cr0 = X86_CR0_ET; 12016 if (init_event) 12017 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12018 else 12019 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12020 12021 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12022 static_call(kvm_x86_set_cr4)(vcpu, 0); 12023 static_call(kvm_x86_set_efer)(vcpu, 0); 12024 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12025 12026 /* 12027 * On the standard CR0/CR4/EFER modification paths, there are several 12028 * complex conditions determining whether the MMU has to be reset and/or 12029 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12030 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12031 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12032 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12033 */ 12034 if (old_cr0 & X86_CR0_PG) { 12035 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12036 kvm_mmu_reset_context(vcpu); 12037 } 12038 12039 /* 12040 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12041 * APM states the TLBs are untouched by INIT, but it also states that 12042 * the TLBs are flushed on "External initialization of the processor." 12043 * Flush the guest TLB regardless of vendor, there is no meaningful 12044 * benefit in relying on the guest to flush the TLB immediately after 12045 * INIT. A spurious TLB flush is benign and likely negligible from a 12046 * performance perspective. 12047 */ 12048 if (init_event) 12049 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12050 } 12051 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12052 12053 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12054 { 12055 struct kvm_segment cs; 12056 12057 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12058 cs.selector = vector << 8; 12059 cs.base = vector << 12; 12060 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12061 kvm_rip_write(vcpu, 0); 12062 } 12063 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12064 12065 int kvm_arch_hardware_enable(void) 12066 { 12067 struct kvm *kvm; 12068 struct kvm_vcpu *vcpu; 12069 unsigned long i; 12070 int ret; 12071 u64 local_tsc; 12072 u64 max_tsc = 0; 12073 bool stable, backwards_tsc = false; 12074 12075 kvm_user_return_msr_cpu_online(); 12076 ret = static_call(kvm_x86_hardware_enable)(); 12077 if (ret != 0) 12078 return ret; 12079 12080 local_tsc = rdtsc(); 12081 stable = !kvm_check_tsc_unstable(); 12082 list_for_each_entry(kvm, &vm_list, vm_list) { 12083 kvm_for_each_vcpu(i, vcpu, kvm) { 12084 if (!stable && vcpu->cpu == smp_processor_id()) 12085 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12086 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12087 backwards_tsc = true; 12088 if (vcpu->arch.last_host_tsc > max_tsc) 12089 max_tsc = vcpu->arch.last_host_tsc; 12090 } 12091 } 12092 } 12093 12094 /* 12095 * Sometimes, even reliable TSCs go backwards. This happens on 12096 * platforms that reset TSC during suspend or hibernate actions, but 12097 * maintain synchronization. We must compensate. Fortunately, we can 12098 * detect that condition here, which happens early in CPU bringup, 12099 * before any KVM threads can be running. Unfortunately, we can't 12100 * bring the TSCs fully up to date with real time, as we aren't yet far 12101 * enough into CPU bringup that we know how much real time has actually 12102 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12103 * variables that haven't been updated yet. 12104 * 12105 * So we simply find the maximum observed TSC above, then record the 12106 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12107 * the adjustment will be applied. Note that we accumulate 12108 * adjustments, in case multiple suspend cycles happen before some VCPU 12109 * gets a chance to run again. In the event that no KVM threads get a 12110 * chance to run, we will miss the entire elapsed period, as we'll have 12111 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12112 * loose cycle time. This isn't too big a deal, since the loss will be 12113 * uniform across all VCPUs (not to mention the scenario is extremely 12114 * unlikely). It is possible that a second hibernate recovery happens 12115 * much faster than a first, causing the observed TSC here to be 12116 * smaller; this would require additional padding adjustment, which is 12117 * why we set last_host_tsc to the local tsc observed here. 12118 * 12119 * N.B. - this code below runs only on platforms with reliable TSC, 12120 * as that is the only way backwards_tsc is set above. Also note 12121 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12122 * have the same delta_cyc adjustment applied if backwards_tsc 12123 * is detected. Note further, this adjustment is only done once, 12124 * as we reset last_host_tsc on all VCPUs to stop this from being 12125 * called multiple times (one for each physical CPU bringup). 12126 * 12127 * Platforms with unreliable TSCs don't have to deal with this, they 12128 * will be compensated by the logic in vcpu_load, which sets the TSC to 12129 * catchup mode. This will catchup all VCPUs to real time, but cannot 12130 * guarantee that they stay in perfect synchronization. 12131 */ 12132 if (backwards_tsc) { 12133 u64 delta_cyc = max_tsc - local_tsc; 12134 list_for_each_entry(kvm, &vm_list, vm_list) { 12135 kvm->arch.backwards_tsc_observed = true; 12136 kvm_for_each_vcpu(i, vcpu, kvm) { 12137 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12138 vcpu->arch.last_host_tsc = local_tsc; 12139 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12140 } 12141 12142 /* 12143 * We have to disable TSC offset matching.. if you were 12144 * booting a VM while issuing an S4 host suspend.... 12145 * you may have some problem. Solving this issue is 12146 * left as an exercise to the reader. 12147 */ 12148 kvm->arch.last_tsc_nsec = 0; 12149 kvm->arch.last_tsc_write = 0; 12150 } 12151 12152 } 12153 return 0; 12154 } 12155 12156 void kvm_arch_hardware_disable(void) 12157 { 12158 static_call(kvm_x86_hardware_disable)(); 12159 drop_user_return_notifiers(); 12160 } 12161 12162 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 12163 { 12164 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 12165 12166 #define __KVM_X86_OP(func) \ 12167 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 12168 #define KVM_X86_OP(func) \ 12169 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 12170 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 12171 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 12172 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 12173 (void *)__static_call_return0); 12174 #include <asm/kvm-x86-ops.h> 12175 #undef __KVM_X86_OP 12176 12177 kvm_pmu_ops_update(ops->pmu_ops); 12178 } 12179 12180 int kvm_arch_hardware_setup(void *opaque) 12181 { 12182 struct kvm_x86_init_ops *ops = opaque; 12183 int r; 12184 12185 rdmsrl_safe(MSR_EFER, &host_efer); 12186 12187 if (boot_cpu_has(X86_FEATURE_XSAVES)) 12188 rdmsrl(MSR_IA32_XSS, host_xss); 12189 12190 kvm_init_pmu_capability(); 12191 12192 r = ops->hardware_setup(); 12193 if (r != 0) 12194 return r; 12195 12196 kvm_ops_update(ops); 12197 12198 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 12199 12200 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 12201 kvm_caps.supported_xss = 0; 12202 12203 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 12204 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 12205 #undef __kvm_cpu_cap_has 12206 12207 if (kvm_caps.has_tsc_control) { 12208 /* 12209 * Make sure the user can only configure tsc_khz values that 12210 * fit into a signed integer. 12211 * A min value is not calculated because it will always 12212 * be 1 on all machines. 12213 */ 12214 u64 max = min(0x7fffffffULL, 12215 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 12216 kvm_caps.max_guest_tsc_khz = max; 12217 } 12218 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 12219 kvm_init_msr_list(); 12220 return 0; 12221 } 12222 12223 void kvm_arch_hardware_unsetup(void) 12224 { 12225 kvm_unregister_perf_callbacks(); 12226 12227 static_call(kvm_x86_hardware_unsetup)(); 12228 } 12229 12230 int kvm_arch_check_processor_compat(void *opaque) 12231 { 12232 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 12233 struct kvm_x86_init_ops *ops = opaque; 12234 12235 WARN_ON(!irqs_disabled()); 12236 12237 if (__cr4_reserved_bits(cpu_has, c) != 12238 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 12239 return -EIO; 12240 12241 return ops->check_processor_compatibility(); 12242 } 12243 12244 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12245 { 12246 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12247 } 12248 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 12249 12250 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12251 { 12252 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12253 } 12254 12255 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12256 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12257 12258 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12259 { 12260 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12261 12262 vcpu->arch.l1tf_flush_l1d = true; 12263 if (pmu->version && unlikely(pmu->event_count)) { 12264 pmu->need_cleanup = true; 12265 kvm_make_request(KVM_REQ_PMU, vcpu); 12266 } 12267 static_call(kvm_x86_sched_in)(vcpu, cpu); 12268 } 12269 12270 void kvm_arch_free_vm(struct kvm *kvm) 12271 { 12272 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12273 __kvm_arch_free_vm(kvm); 12274 } 12275 12276 12277 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12278 { 12279 int ret; 12280 unsigned long flags; 12281 12282 if (type) 12283 return -EINVAL; 12284 12285 ret = kvm_page_track_init(kvm); 12286 if (ret) 12287 goto out; 12288 12289 ret = kvm_mmu_init_vm(kvm); 12290 if (ret) 12291 goto out_page_track; 12292 12293 ret = static_call(kvm_x86_vm_init)(kvm); 12294 if (ret) 12295 goto out_uninit_mmu; 12296 12297 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12298 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12299 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12300 12301 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12302 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12303 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12304 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12305 &kvm->arch.irq_sources_bitmap); 12306 12307 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12308 mutex_init(&kvm->arch.apic_map_lock); 12309 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12310 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12311 12312 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12313 pvclock_update_vm_gtod_copy(kvm); 12314 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12315 12316 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12317 kvm->arch.guest_can_read_msr_platform_info = true; 12318 kvm->arch.enable_pmu = enable_pmu; 12319 12320 #if IS_ENABLED(CONFIG_HYPERV) 12321 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12322 kvm->arch.hv_root_tdp = INVALID_PAGE; 12323 #endif 12324 12325 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12326 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12327 12328 kvm_apicv_init(kvm); 12329 kvm_hv_init_vm(kvm); 12330 kvm_xen_init_vm(kvm); 12331 12332 return 0; 12333 12334 out_uninit_mmu: 12335 kvm_mmu_uninit_vm(kvm); 12336 out_page_track: 12337 kvm_page_track_cleanup(kvm); 12338 out: 12339 return ret; 12340 } 12341 12342 int kvm_arch_post_init_vm(struct kvm *kvm) 12343 { 12344 return kvm_mmu_post_init_vm(kvm); 12345 } 12346 12347 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12348 { 12349 vcpu_load(vcpu); 12350 kvm_mmu_unload(vcpu); 12351 vcpu_put(vcpu); 12352 } 12353 12354 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12355 { 12356 unsigned long i; 12357 struct kvm_vcpu *vcpu; 12358 12359 kvm_for_each_vcpu(i, vcpu, kvm) { 12360 kvm_clear_async_pf_completion_queue(vcpu); 12361 kvm_unload_vcpu_mmu(vcpu); 12362 } 12363 } 12364 12365 void kvm_arch_sync_events(struct kvm *kvm) 12366 { 12367 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12368 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12369 kvm_free_pit(kvm); 12370 } 12371 12372 /** 12373 * __x86_set_memory_region: Setup KVM internal memory slot 12374 * 12375 * @kvm: the kvm pointer to the VM. 12376 * @id: the slot ID to setup. 12377 * @gpa: the GPA to install the slot (unused when @size == 0). 12378 * @size: the size of the slot. Set to zero to uninstall a slot. 12379 * 12380 * This function helps to setup a KVM internal memory slot. Specify 12381 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12382 * slot. The return code can be one of the following: 12383 * 12384 * HVA: on success (uninstall will return a bogus HVA) 12385 * -errno: on error 12386 * 12387 * The caller should always use IS_ERR() to check the return value 12388 * before use. Note, the KVM internal memory slots are guaranteed to 12389 * remain valid and unchanged until the VM is destroyed, i.e., the 12390 * GPA->HVA translation will not change. However, the HVA is a user 12391 * address, i.e. its accessibility is not guaranteed, and must be 12392 * accessed via __copy_{to,from}_user(). 12393 */ 12394 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12395 u32 size) 12396 { 12397 int i, r; 12398 unsigned long hva, old_npages; 12399 struct kvm_memslots *slots = kvm_memslots(kvm); 12400 struct kvm_memory_slot *slot; 12401 12402 /* Called with kvm->slots_lock held. */ 12403 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12404 return ERR_PTR_USR(-EINVAL); 12405 12406 slot = id_to_memslot(slots, id); 12407 if (size) { 12408 if (slot && slot->npages) 12409 return ERR_PTR_USR(-EEXIST); 12410 12411 /* 12412 * MAP_SHARED to prevent internal slot pages from being moved 12413 * by fork()/COW. 12414 */ 12415 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12416 MAP_SHARED | MAP_ANONYMOUS, 0); 12417 if (IS_ERR((void *)hva)) 12418 return (void __user *)hva; 12419 } else { 12420 if (!slot || !slot->npages) 12421 return NULL; 12422 12423 old_npages = slot->npages; 12424 hva = slot->userspace_addr; 12425 } 12426 12427 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12428 struct kvm_userspace_memory_region m; 12429 12430 m.slot = id | (i << 16); 12431 m.flags = 0; 12432 m.guest_phys_addr = gpa; 12433 m.userspace_addr = hva; 12434 m.memory_size = size; 12435 r = __kvm_set_memory_region(kvm, &m); 12436 if (r < 0) 12437 return ERR_PTR_USR(r); 12438 } 12439 12440 if (!size) 12441 vm_munmap(hva, old_npages * PAGE_SIZE); 12442 12443 return (void __user *)hva; 12444 } 12445 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12446 12447 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12448 { 12449 kvm_mmu_pre_destroy_vm(kvm); 12450 } 12451 12452 void kvm_arch_destroy_vm(struct kvm *kvm) 12453 { 12454 if (current->mm == kvm->mm) { 12455 /* 12456 * Free memory regions allocated on behalf of userspace, 12457 * unless the memory map has changed due to process exit 12458 * or fd copying. 12459 */ 12460 mutex_lock(&kvm->slots_lock); 12461 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12462 0, 0); 12463 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12464 0, 0); 12465 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12466 mutex_unlock(&kvm->slots_lock); 12467 } 12468 kvm_unload_vcpu_mmus(kvm); 12469 static_call_cond(kvm_x86_vm_destroy)(kvm); 12470 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12471 kvm_pic_destroy(kvm); 12472 kvm_ioapic_destroy(kvm); 12473 kvm_destroy_vcpus(kvm); 12474 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12475 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12476 kvm_mmu_uninit_vm(kvm); 12477 kvm_page_track_cleanup(kvm); 12478 kvm_xen_destroy_vm(kvm); 12479 kvm_hv_destroy_vm(kvm); 12480 } 12481 12482 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12483 { 12484 int i; 12485 12486 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12487 kvfree(slot->arch.rmap[i]); 12488 slot->arch.rmap[i] = NULL; 12489 } 12490 } 12491 12492 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12493 { 12494 int i; 12495 12496 memslot_rmap_free(slot); 12497 12498 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12499 kvfree(slot->arch.lpage_info[i - 1]); 12500 slot->arch.lpage_info[i - 1] = NULL; 12501 } 12502 12503 kvm_page_track_free_memslot(slot); 12504 } 12505 12506 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12507 { 12508 const int sz = sizeof(*slot->arch.rmap[0]); 12509 int i; 12510 12511 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12512 int level = i + 1; 12513 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12514 12515 if (slot->arch.rmap[i]) 12516 continue; 12517 12518 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12519 if (!slot->arch.rmap[i]) { 12520 memslot_rmap_free(slot); 12521 return -ENOMEM; 12522 } 12523 } 12524 12525 return 0; 12526 } 12527 12528 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12529 struct kvm_memory_slot *slot) 12530 { 12531 unsigned long npages = slot->npages; 12532 int i, r; 12533 12534 /* 12535 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12536 * old arrays will be freed by __kvm_set_memory_region() if installing 12537 * the new memslot is successful. 12538 */ 12539 memset(&slot->arch, 0, sizeof(slot->arch)); 12540 12541 if (kvm_memslots_have_rmaps(kvm)) { 12542 r = memslot_rmap_alloc(slot, npages); 12543 if (r) 12544 return r; 12545 } 12546 12547 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12548 struct kvm_lpage_info *linfo; 12549 unsigned long ugfn; 12550 int lpages; 12551 int level = i + 1; 12552 12553 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12554 12555 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12556 if (!linfo) 12557 goto out_free; 12558 12559 slot->arch.lpage_info[i - 1] = linfo; 12560 12561 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12562 linfo[0].disallow_lpage = 1; 12563 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12564 linfo[lpages - 1].disallow_lpage = 1; 12565 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12566 /* 12567 * If the gfn and userspace address are not aligned wrt each 12568 * other, disable large page support for this slot. 12569 */ 12570 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12571 unsigned long j; 12572 12573 for (j = 0; j < lpages; ++j) 12574 linfo[j].disallow_lpage = 1; 12575 } 12576 } 12577 12578 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12579 goto out_free; 12580 12581 return 0; 12582 12583 out_free: 12584 memslot_rmap_free(slot); 12585 12586 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12587 kvfree(slot->arch.lpage_info[i - 1]); 12588 slot->arch.lpage_info[i - 1] = NULL; 12589 } 12590 return -ENOMEM; 12591 } 12592 12593 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12594 { 12595 struct kvm_vcpu *vcpu; 12596 unsigned long i; 12597 12598 /* 12599 * memslots->generation has been incremented. 12600 * mmio generation may have reached its maximum value. 12601 */ 12602 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12603 12604 /* Force re-initialization of steal_time cache */ 12605 kvm_for_each_vcpu(i, vcpu, kvm) 12606 kvm_vcpu_kick(vcpu); 12607 } 12608 12609 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12610 const struct kvm_memory_slot *old, 12611 struct kvm_memory_slot *new, 12612 enum kvm_mr_change change) 12613 { 12614 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12615 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12616 return -EINVAL; 12617 12618 return kvm_alloc_memslot_metadata(kvm, new); 12619 } 12620 12621 if (change == KVM_MR_FLAGS_ONLY) 12622 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12623 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12624 return -EIO; 12625 12626 return 0; 12627 } 12628 12629 12630 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12631 { 12632 struct kvm_arch *ka = &kvm->arch; 12633 12634 if (!kvm_x86_ops.cpu_dirty_log_size) 12635 return; 12636 12637 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12638 (!enable && --ka->cpu_dirty_logging_count == 0)) 12639 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12640 12641 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12642 } 12643 12644 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12645 struct kvm_memory_slot *old, 12646 const struct kvm_memory_slot *new, 12647 enum kvm_mr_change change) 12648 { 12649 u32 old_flags = old ? old->flags : 0; 12650 u32 new_flags = new ? new->flags : 0; 12651 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12652 12653 /* 12654 * Update CPU dirty logging if dirty logging is being toggled. This 12655 * applies to all operations. 12656 */ 12657 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12658 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12659 12660 /* 12661 * Nothing more to do for RO slots (which can't be dirtied and can't be 12662 * made writable) or CREATE/MOVE/DELETE of a slot. 12663 * 12664 * For a memslot with dirty logging disabled: 12665 * CREATE: No dirty mappings will already exist. 12666 * MOVE/DELETE: The old mappings will already have been cleaned up by 12667 * kvm_arch_flush_shadow_memslot() 12668 * 12669 * For a memslot with dirty logging enabled: 12670 * CREATE: No shadow pages exist, thus nothing to write-protect 12671 * and no dirty bits to clear. 12672 * MOVE/DELETE: The old mappings will already have been cleaned up by 12673 * kvm_arch_flush_shadow_memslot(). 12674 */ 12675 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12676 return; 12677 12678 /* 12679 * READONLY and non-flags changes were filtered out above, and the only 12680 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12681 * logging isn't being toggled on or off. 12682 */ 12683 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12684 return; 12685 12686 if (!log_dirty_pages) { 12687 /* 12688 * Dirty logging tracks sptes in 4k granularity, meaning that 12689 * large sptes have to be split. If live migration succeeds, 12690 * the guest in the source machine will be destroyed and large 12691 * sptes will be created in the destination. However, if the 12692 * guest continues to run in the source machine (for example if 12693 * live migration fails), small sptes will remain around and 12694 * cause bad performance. 12695 * 12696 * Scan sptes if dirty logging has been stopped, dropping those 12697 * which can be collapsed into a single large-page spte. Later 12698 * page faults will create the large-page sptes. 12699 */ 12700 kvm_mmu_zap_collapsible_sptes(kvm, new); 12701 } else { 12702 /* 12703 * Initially-all-set does not require write protecting any page, 12704 * because they're all assumed to be dirty. 12705 */ 12706 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12707 return; 12708 12709 if (READ_ONCE(eager_page_split)) 12710 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12711 12712 if (kvm_x86_ops.cpu_dirty_log_size) { 12713 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12714 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12715 } else { 12716 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12717 } 12718 12719 /* 12720 * Unconditionally flush the TLBs after enabling dirty logging. 12721 * A flush is almost always going to be necessary (see below), 12722 * and unconditionally flushing allows the helpers to omit 12723 * the subtly complex checks when removing write access. 12724 * 12725 * Do the flush outside of mmu_lock to reduce the amount of 12726 * time mmu_lock is held. Flushing after dropping mmu_lock is 12727 * safe as KVM only needs to guarantee the slot is fully 12728 * write-protected before returning to userspace, i.e. before 12729 * userspace can consume the dirty status. 12730 * 12731 * Flushing outside of mmu_lock requires KVM to be careful when 12732 * making decisions based on writable status of an SPTE, e.g. a 12733 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12734 * 12735 * Specifically, KVM also write-protects guest page tables to 12736 * monitor changes when using shadow paging, and must guarantee 12737 * no CPUs can write to those page before mmu_lock is dropped. 12738 * Because CPUs may have stale TLB entries at this point, a 12739 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12740 * 12741 * KVM also allows making SPTES writable outside of mmu_lock, 12742 * e.g. to allow dirty logging without taking mmu_lock. 12743 * 12744 * To handle these scenarios, KVM uses a separate software-only 12745 * bit (MMU-writable) to track if a SPTE is !writable due to 12746 * a guest page table being write-protected (KVM clears the 12747 * MMU-writable flag when write-protecting for shadow paging). 12748 * 12749 * The use of MMU-writable is also the primary motivation for 12750 * the unconditional flush. Because KVM must guarantee that a 12751 * CPU doesn't contain stale, writable TLB entries for a 12752 * !MMU-writable SPTE, KVM must flush if it encounters any 12753 * MMU-writable SPTE regardless of whether the actual hardware 12754 * writable bit was set. I.e. KVM is almost guaranteed to need 12755 * to flush, while unconditionally flushing allows the "remove 12756 * write access" helpers to ignore MMU-writable entirely. 12757 * 12758 * See is_writable_pte() for more details (the case involving 12759 * access-tracked SPTEs is particularly relevant). 12760 */ 12761 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12762 } 12763 } 12764 12765 void kvm_arch_commit_memory_region(struct kvm *kvm, 12766 struct kvm_memory_slot *old, 12767 const struct kvm_memory_slot *new, 12768 enum kvm_mr_change change) 12769 { 12770 if (!kvm->arch.n_requested_mmu_pages && 12771 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12772 unsigned long nr_mmu_pages; 12773 12774 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12775 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12776 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12777 } 12778 12779 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12780 12781 /* Free the arrays associated with the old memslot. */ 12782 if (change == KVM_MR_MOVE) 12783 kvm_arch_free_memslot(kvm, old); 12784 } 12785 12786 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12787 { 12788 kvm_mmu_zap_all(kvm); 12789 } 12790 12791 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12792 struct kvm_memory_slot *slot) 12793 { 12794 kvm_page_track_flush_slot(kvm, slot); 12795 } 12796 12797 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12798 { 12799 return (is_guest_mode(vcpu) && 12800 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12801 } 12802 12803 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12804 { 12805 if (!list_empty_careful(&vcpu->async_pf.done)) 12806 return true; 12807 12808 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12809 kvm_apic_init_sipi_allowed(vcpu)) 12810 return true; 12811 12812 if (vcpu->arch.pv.pv_unhalted) 12813 return true; 12814 12815 if (kvm_is_exception_pending(vcpu)) 12816 return true; 12817 12818 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12819 (vcpu->arch.nmi_pending && 12820 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12821 return true; 12822 12823 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12824 (vcpu->arch.smi_pending && 12825 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12826 return true; 12827 12828 if (kvm_arch_interrupt_allowed(vcpu) && 12829 (kvm_cpu_has_interrupt(vcpu) || 12830 kvm_guest_apic_has_interrupt(vcpu))) 12831 return true; 12832 12833 if (kvm_hv_has_stimer_pending(vcpu)) 12834 return true; 12835 12836 if (is_guest_mode(vcpu) && 12837 kvm_x86_ops.nested_ops->has_events && 12838 kvm_x86_ops.nested_ops->has_events(vcpu)) 12839 return true; 12840 12841 if (kvm_xen_has_pending_events(vcpu)) 12842 return true; 12843 12844 return false; 12845 } 12846 12847 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12848 { 12849 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12850 } 12851 12852 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12853 { 12854 if (kvm_vcpu_apicv_active(vcpu) && 12855 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12856 return true; 12857 12858 return false; 12859 } 12860 12861 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12862 { 12863 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12864 return true; 12865 12866 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12867 kvm_test_request(KVM_REQ_SMI, vcpu) || 12868 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12869 return true; 12870 12871 return kvm_arch_dy_has_pending_interrupt(vcpu); 12872 } 12873 12874 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12875 { 12876 if (vcpu->arch.guest_state_protected) 12877 return true; 12878 12879 return vcpu->arch.preempted_in_kernel; 12880 } 12881 12882 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12883 { 12884 return kvm_rip_read(vcpu); 12885 } 12886 12887 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12888 { 12889 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12890 } 12891 12892 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12893 { 12894 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12895 } 12896 12897 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12898 { 12899 /* Can't read the RIP when guest state is protected, just return 0 */ 12900 if (vcpu->arch.guest_state_protected) 12901 return 0; 12902 12903 if (is_64_bit_mode(vcpu)) 12904 return kvm_rip_read(vcpu); 12905 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12906 kvm_rip_read(vcpu)); 12907 } 12908 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12909 12910 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12911 { 12912 return kvm_get_linear_rip(vcpu) == linear_rip; 12913 } 12914 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12915 12916 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12917 { 12918 unsigned long rflags; 12919 12920 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12921 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12922 rflags &= ~X86_EFLAGS_TF; 12923 return rflags; 12924 } 12925 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12926 12927 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12928 { 12929 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12930 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12931 rflags |= X86_EFLAGS_TF; 12932 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12933 } 12934 12935 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12936 { 12937 __kvm_set_rflags(vcpu, rflags); 12938 kvm_make_request(KVM_REQ_EVENT, vcpu); 12939 } 12940 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12941 12942 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12943 { 12944 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12945 12946 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12947 } 12948 12949 static inline u32 kvm_async_pf_next_probe(u32 key) 12950 { 12951 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12952 } 12953 12954 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12955 { 12956 u32 key = kvm_async_pf_hash_fn(gfn); 12957 12958 while (vcpu->arch.apf.gfns[key] != ~0) 12959 key = kvm_async_pf_next_probe(key); 12960 12961 vcpu->arch.apf.gfns[key] = gfn; 12962 } 12963 12964 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12965 { 12966 int i; 12967 u32 key = kvm_async_pf_hash_fn(gfn); 12968 12969 for (i = 0; i < ASYNC_PF_PER_VCPU && 12970 (vcpu->arch.apf.gfns[key] != gfn && 12971 vcpu->arch.apf.gfns[key] != ~0); i++) 12972 key = kvm_async_pf_next_probe(key); 12973 12974 return key; 12975 } 12976 12977 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12978 { 12979 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12980 } 12981 12982 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12983 { 12984 u32 i, j, k; 12985 12986 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12987 12988 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12989 return; 12990 12991 while (true) { 12992 vcpu->arch.apf.gfns[i] = ~0; 12993 do { 12994 j = kvm_async_pf_next_probe(j); 12995 if (vcpu->arch.apf.gfns[j] == ~0) 12996 return; 12997 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12998 /* 12999 * k lies cyclically in ]i,j] 13000 * | i.k.j | 13001 * |....j i.k.| or |.k..j i...| 13002 */ 13003 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13004 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13005 i = j; 13006 } 13007 } 13008 13009 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13010 { 13011 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13012 13013 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13014 sizeof(reason)); 13015 } 13016 13017 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13018 { 13019 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13020 13021 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13022 &token, offset, sizeof(token)); 13023 } 13024 13025 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13026 { 13027 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13028 u32 val; 13029 13030 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13031 &val, offset, sizeof(val))) 13032 return false; 13033 13034 return !val; 13035 } 13036 13037 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13038 { 13039 13040 if (!kvm_pv_async_pf_enabled(vcpu)) 13041 return false; 13042 13043 if (vcpu->arch.apf.send_user_only && 13044 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13045 return false; 13046 13047 if (is_guest_mode(vcpu)) { 13048 /* 13049 * L1 needs to opt into the special #PF vmexits that are 13050 * used to deliver async page faults. 13051 */ 13052 return vcpu->arch.apf.delivery_as_pf_vmexit; 13053 } else { 13054 /* 13055 * Play it safe in case the guest temporarily disables paging. 13056 * The real mode IDT in particular is unlikely to have a #PF 13057 * exception setup. 13058 */ 13059 return is_paging(vcpu); 13060 } 13061 } 13062 13063 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13064 { 13065 if (unlikely(!lapic_in_kernel(vcpu) || 13066 kvm_event_needs_reinjection(vcpu) || 13067 kvm_is_exception_pending(vcpu))) 13068 return false; 13069 13070 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13071 return false; 13072 13073 /* 13074 * If interrupts are off we cannot even use an artificial 13075 * halt state. 13076 */ 13077 return kvm_arch_interrupt_allowed(vcpu); 13078 } 13079 13080 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13081 struct kvm_async_pf *work) 13082 { 13083 struct x86_exception fault; 13084 13085 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13086 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13087 13088 if (kvm_can_deliver_async_pf(vcpu) && 13089 !apf_put_user_notpresent(vcpu)) { 13090 fault.vector = PF_VECTOR; 13091 fault.error_code_valid = true; 13092 fault.error_code = 0; 13093 fault.nested_page_fault = false; 13094 fault.address = work->arch.token; 13095 fault.async_page_fault = true; 13096 kvm_inject_page_fault(vcpu, &fault); 13097 return true; 13098 } else { 13099 /* 13100 * It is not possible to deliver a paravirtualized asynchronous 13101 * page fault, but putting the guest in an artificial halt state 13102 * can be beneficial nevertheless: if an interrupt arrives, we 13103 * can deliver it timely and perhaps the guest will schedule 13104 * another process. When the instruction that triggered a page 13105 * fault is retried, hopefully the page will be ready in the host. 13106 */ 13107 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13108 return false; 13109 } 13110 } 13111 13112 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13113 struct kvm_async_pf *work) 13114 { 13115 struct kvm_lapic_irq irq = { 13116 .delivery_mode = APIC_DM_FIXED, 13117 .vector = vcpu->arch.apf.vec 13118 }; 13119 13120 if (work->wakeup_all) 13121 work->arch.token = ~0; /* broadcast wakeup */ 13122 else 13123 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13124 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13125 13126 if ((work->wakeup_all || work->notpresent_injected) && 13127 kvm_pv_async_pf_enabled(vcpu) && 13128 !apf_put_user_ready(vcpu, work->arch.token)) { 13129 vcpu->arch.apf.pageready_pending = true; 13130 kvm_apic_set_irq(vcpu, &irq, NULL); 13131 } 13132 13133 vcpu->arch.apf.halted = false; 13134 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13135 } 13136 13137 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13138 { 13139 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13140 if (!vcpu->arch.apf.pageready_pending) 13141 kvm_vcpu_kick(vcpu); 13142 } 13143 13144 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13145 { 13146 if (!kvm_pv_async_pf_enabled(vcpu)) 13147 return true; 13148 else 13149 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13150 } 13151 13152 void kvm_arch_start_assignment(struct kvm *kvm) 13153 { 13154 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13155 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13156 } 13157 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13158 13159 void kvm_arch_end_assignment(struct kvm *kvm) 13160 { 13161 atomic_dec(&kvm->arch.assigned_device_count); 13162 } 13163 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13164 13165 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13166 { 13167 return arch_atomic_read(&kvm->arch.assigned_device_count); 13168 } 13169 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13170 13171 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13172 { 13173 atomic_inc(&kvm->arch.noncoherent_dma_count); 13174 } 13175 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13176 13177 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13178 { 13179 atomic_dec(&kvm->arch.noncoherent_dma_count); 13180 } 13181 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13182 13183 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13184 { 13185 return atomic_read(&kvm->arch.noncoherent_dma_count); 13186 } 13187 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13188 13189 bool kvm_arch_has_irq_bypass(void) 13190 { 13191 return true; 13192 } 13193 13194 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13195 struct irq_bypass_producer *prod) 13196 { 13197 struct kvm_kernel_irqfd *irqfd = 13198 container_of(cons, struct kvm_kernel_irqfd, consumer); 13199 int ret; 13200 13201 irqfd->producer = prod; 13202 kvm_arch_start_assignment(irqfd->kvm); 13203 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13204 prod->irq, irqfd->gsi, 1); 13205 13206 if (ret) 13207 kvm_arch_end_assignment(irqfd->kvm); 13208 13209 return ret; 13210 } 13211 13212 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13213 struct irq_bypass_producer *prod) 13214 { 13215 int ret; 13216 struct kvm_kernel_irqfd *irqfd = 13217 container_of(cons, struct kvm_kernel_irqfd, consumer); 13218 13219 WARN_ON(irqfd->producer != prod); 13220 irqfd->producer = NULL; 13221 13222 /* 13223 * When producer of consumer is unregistered, we change back to 13224 * remapped mode, so we can re-use the current implementation 13225 * when the irq is masked/disabled or the consumer side (KVM 13226 * int this case doesn't want to receive the interrupts. 13227 */ 13228 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13229 if (ret) 13230 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13231 " fails: %d\n", irqfd->consumer.token, ret); 13232 13233 kvm_arch_end_assignment(irqfd->kvm); 13234 } 13235 13236 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13237 uint32_t guest_irq, bool set) 13238 { 13239 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13240 } 13241 13242 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13243 struct kvm_kernel_irq_routing_entry *new) 13244 { 13245 if (new->type != KVM_IRQ_ROUTING_MSI) 13246 return true; 13247 13248 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13249 } 13250 13251 bool kvm_vector_hashing_enabled(void) 13252 { 13253 return vector_hashing; 13254 } 13255 13256 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13257 { 13258 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13259 } 13260 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13261 13262 13263 int kvm_spec_ctrl_test_value(u64 value) 13264 { 13265 /* 13266 * test that setting IA32_SPEC_CTRL to given value 13267 * is allowed by the host processor 13268 */ 13269 13270 u64 saved_value; 13271 unsigned long flags; 13272 int ret = 0; 13273 13274 local_irq_save(flags); 13275 13276 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13277 ret = 1; 13278 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13279 ret = 1; 13280 else 13281 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13282 13283 local_irq_restore(flags); 13284 13285 return ret; 13286 } 13287 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13288 13289 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13290 { 13291 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13292 struct x86_exception fault; 13293 u64 access = error_code & 13294 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13295 13296 if (!(error_code & PFERR_PRESENT_MASK) || 13297 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13298 /* 13299 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13300 * tables probably do not match the TLB. Just proceed 13301 * with the error code that the processor gave. 13302 */ 13303 fault.vector = PF_VECTOR; 13304 fault.error_code_valid = true; 13305 fault.error_code = error_code; 13306 fault.nested_page_fault = false; 13307 fault.address = gva; 13308 fault.async_page_fault = false; 13309 } 13310 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13311 } 13312 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13313 13314 /* 13315 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13316 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13317 * indicates whether exit to userspace is needed. 13318 */ 13319 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13320 struct x86_exception *e) 13321 { 13322 if (r == X86EMUL_PROPAGATE_FAULT) { 13323 kvm_inject_emulated_page_fault(vcpu, e); 13324 return 1; 13325 } 13326 13327 /* 13328 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13329 * while handling a VMX instruction KVM could've handled the request 13330 * correctly by exiting to userspace and performing I/O but there 13331 * doesn't seem to be a real use-case behind such requests, just return 13332 * KVM_EXIT_INTERNAL_ERROR for now. 13333 */ 13334 kvm_prepare_emulation_failure_exit(vcpu); 13335 13336 return 0; 13337 } 13338 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13339 13340 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13341 { 13342 bool pcid_enabled; 13343 struct x86_exception e; 13344 struct { 13345 u64 pcid; 13346 u64 gla; 13347 } operand; 13348 int r; 13349 13350 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13351 if (r != X86EMUL_CONTINUE) 13352 return kvm_handle_memory_failure(vcpu, r, &e); 13353 13354 if (operand.pcid >> 12 != 0) { 13355 kvm_inject_gp(vcpu, 0); 13356 return 1; 13357 } 13358 13359 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13360 13361 switch (type) { 13362 case INVPCID_TYPE_INDIV_ADDR: 13363 if ((!pcid_enabled && (operand.pcid != 0)) || 13364 is_noncanonical_address(operand.gla, vcpu)) { 13365 kvm_inject_gp(vcpu, 0); 13366 return 1; 13367 } 13368 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13369 return kvm_skip_emulated_instruction(vcpu); 13370 13371 case INVPCID_TYPE_SINGLE_CTXT: 13372 if (!pcid_enabled && (operand.pcid != 0)) { 13373 kvm_inject_gp(vcpu, 0); 13374 return 1; 13375 } 13376 13377 kvm_invalidate_pcid(vcpu, operand.pcid); 13378 return kvm_skip_emulated_instruction(vcpu); 13379 13380 case INVPCID_TYPE_ALL_NON_GLOBAL: 13381 /* 13382 * Currently, KVM doesn't mark global entries in the shadow 13383 * page tables, so a non-global flush just degenerates to a 13384 * global flush. If needed, we could optimize this later by 13385 * keeping track of global entries in shadow page tables. 13386 */ 13387 13388 fallthrough; 13389 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13390 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13391 return kvm_skip_emulated_instruction(vcpu); 13392 13393 default: 13394 kvm_inject_gp(vcpu, 0); 13395 return 1; 13396 } 13397 } 13398 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13399 13400 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13401 { 13402 struct kvm_run *run = vcpu->run; 13403 struct kvm_mmio_fragment *frag; 13404 unsigned int len; 13405 13406 BUG_ON(!vcpu->mmio_needed); 13407 13408 /* Complete previous fragment */ 13409 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13410 len = min(8u, frag->len); 13411 if (!vcpu->mmio_is_write) 13412 memcpy(frag->data, run->mmio.data, len); 13413 13414 if (frag->len <= 8) { 13415 /* Switch to the next fragment. */ 13416 frag++; 13417 vcpu->mmio_cur_fragment++; 13418 } else { 13419 /* Go forward to the next mmio piece. */ 13420 frag->data += len; 13421 frag->gpa += len; 13422 frag->len -= len; 13423 } 13424 13425 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13426 vcpu->mmio_needed = 0; 13427 13428 // VMG change, at this point, we're always done 13429 // RIP has already been advanced 13430 return 1; 13431 } 13432 13433 // More MMIO is needed 13434 run->mmio.phys_addr = frag->gpa; 13435 run->mmio.len = min(8u, frag->len); 13436 run->mmio.is_write = vcpu->mmio_is_write; 13437 if (run->mmio.is_write) 13438 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13439 run->exit_reason = KVM_EXIT_MMIO; 13440 13441 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13442 13443 return 0; 13444 } 13445 13446 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13447 void *data) 13448 { 13449 int handled; 13450 struct kvm_mmio_fragment *frag; 13451 13452 if (!data) 13453 return -EINVAL; 13454 13455 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13456 if (handled == bytes) 13457 return 1; 13458 13459 bytes -= handled; 13460 gpa += handled; 13461 data += handled; 13462 13463 /*TODO: Check if need to increment number of frags */ 13464 frag = vcpu->mmio_fragments; 13465 vcpu->mmio_nr_fragments = 1; 13466 frag->len = bytes; 13467 frag->gpa = gpa; 13468 frag->data = data; 13469 13470 vcpu->mmio_needed = 1; 13471 vcpu->mmio_cur_fragment = 0; 13472 13473 vcpu->run->mmio.phys_addr = gpa; 13474 vcpu->run->mmio.len = min(8u, frag->len); 13475 vcpu->run->mmio.is_write = 1; 13476 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13477 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13478 13479 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13480 13481 return 0; 13482 } 13483 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13484 13485 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13486 void *data) 13487 { 13488 int handled; 13489 struct kvm_mmio_fragment *frag; 13490 13491 if (!data) 13492 return -EINVAL; 13493 13494 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13495 if (handled == bytes) 13496 return 1; 13497 13498 bytes -= handled; 13499 gpa += handled; 13500 data += handled; 13501 13502 /*TODO: Check if need to increment number of frags */ 13503 frag = vcpu->mmio_fragments; 13504 vcpu->mmio_nr_fragments = 1; 13505 frag->len = bytes; 13506 frag->gpa = gpa; 13507 frag->data = data; 13508 13509 vcpu->mmio_needed = 1; 13510 vcpu->mmio_cur_fragment = 0; 13511 13512 vcpu->run->mmio.phys_addr = gpa; 13513 vcpu->run->mmio.len = min(8u, frag->len); 13514 vcpu->run->mmio.is_write = 0; 13515 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13516 13517 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13518 13519 return 0; 13520 } 13521 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13522 13523 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13524 { 13525 vcpu->arch.sev_pio_count -= count; 13526 vcpu->arch.sev_pio_data += count * size; 13527 } 13528 13529 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13530 unsigned int port); 13531 13532 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13533 { 13534 int size = vcpu->arch.pio.size; 13535 int port = vcpu->arch.pio.port; 13536 13537 vcpu->arch.pio.count = 0; 13538 if (vcpu->arch.sev_pio_count) 13539 return kvm_sev_es_outs(vcpu, size, port); 13540 return 1; 13541 } 13542 13543 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13544 unsigned int port) 13545 { 13546 for (;;) { 13547 unsigned int count = 13548 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13549 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13550 13551 /* memcpy done already by emulator_pio_out. */ 13552 advance_sev_es_emulated_pio(vcpu, count, size); 13553 if (!ret) 13554 break; 13555 13556 /* Emulation done by the kernel. */ 13557 if (!vcpu->arch.sev_pio_count) 13558 return 1; 13559 } 13560 13561 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13562 return 0; 13563 } 13564 13565 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13566 unsigned int port); 13567 13568 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13569 { 13570 unsigned count = vcpu->arch.pio.count; 13571 int size = vcpu->arch.pio.size; 13572 int port = vcpu->arch.pio.port; 13573 13574 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13575 advance_sev_es_emulated_pio(vcpu, count, size); 13576 if (vcpu->arch.sev_pio_count) 13577 return kvm_sev_es_ins(vcpu, size, port); 13578 return 1; 13579 } 13580 13581 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13582 unsigned int port) 13583 { 13584 for (;;) { 13585 unsigned int count = 13586 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13587 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13588 break; 13589 13590 /* Emulation done by the kernel. */ 13591 advance_sev_es_emulated_pio(vcpu, count, size); 13592 if (!vcpu->arch.sev_pio_count) 13593 return 1; 13594 } 13595 13596 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13597 return 0; 13598 } 13599 13600 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13601 unsigned int port, void *data, unsigned int count, 13602 int in) 13603 { 13604 vcpu->arch.sev_pio_data = data; 13605 vcpu->arch.sev_pio_count = count; 13606 return in ? kvm_sev_es_ins(vcpu, size, port) 13607 : kvm_sev_es_outs(vcpu, size, port); 13608 } 13609 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13610 13611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13613 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13614 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13640 13641 static int __init kvm_x86_init(void) 13642 { 13643 kvm_mmu_x86_module_init(); 13644 return 0; 13645 } 13646 module_init(kvm_x86_init); 13647 13648 static void __exit kvm_x86_exit(void) 13649 { 13650 /* 13651 * If module_init() is implemented, module_exit() must also be 13652 * implemented to allow module unload. 13653 */ 13654 } 13655 module_exit(kvm_x86_exit); 13656