xref: /linux/arch/x86/kvm/x86.c (revision b6459415b384cb829f0b2a4268f211c789f6cf0b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92 
93 #define emul_to_vcpu(ctxt) \
94 	((struct kvm_vcpu *)(ctxt)->vcpu)
95 
96 /* EFER defaults:
97  * - enable syscall per default because its emulated by KVM
98  * - enable LME and LMA per default on 64 bit KVM
99  */
100 #ifdef CONFIG_X86_64
101 static
102 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
103 #else
104 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
105 #endif
106 
107 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
108 
109 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
110 
111 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
112                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
113 
114 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
115 static void process_nmi(struct kvm_vcpu *vcpu);
116 static void process_smi(struct kvm_vcpu *vcpu);
117 static void enter_smm(struct kvm_vcpu *vcpu);
118 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
119 static void store_regs(struct kvm_vcpu *vcpu);
120 static int sync_regs(struct kvm_vcpu *vcpu);
121 
122 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
123 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
124 
125 struct kvm_x86_ops kvm_x86_ops __read_mostly;
126 EXPORT_SYMBOL_GPL(kvm_x86_ops);
127 
128 #define KVM_X86_OP(func)					     \
129 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
130 				*(((struct kvm_x86_ops *)0)->func));
131 #define KVM_X86_OP_NULL KVM_X86_OP
132 #include <asm/kvm-x86-ops.h>
133 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
134 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
135 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
136 
137 static bool __read_mostly ignore_msrs = 0;
138 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
139 
140 bool __read_mostly report_ignored_msrs = true;
141 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
142 EXPORT_SYMBOL_GPL(report_ignored_msrs);
143 
144 unsigned int min_timer_period_us = 200;
145 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
146 
147 static bool __read_mostly kvmclock_periodic_sync = true;
148 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
149 
150 bool __read_mostly kvm_has_tsc_control;
151 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
152 u32  __read_mostly kvm_max_guest_tsc_khz;
153 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
154 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
155 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
156 u64  __read_mostly kvm_max_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
158 u64 __read_mostly kvm_default_tsc_scaling_ratio;
159 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
160 bool __read_mostly kvm_has_bus_lock_exit;
161 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
162 
163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
164 static u32 __read_mostly tsc_tolerance_ppm = 250;
165 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
166 
167 /*
168  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
169  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
170  * advancement entirely.  Any other value is used as-is and disables adaptive
171  * tuning, i.e. allows privileged userspace to set an exact advancement time.
172  */
173 static int __read_mostly lapic_timer_advance_ns = -1;
174 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
175 
176 static bool __read_mostly vector_hashing = true;
177 module_param(vector_hashing, bool, S_IRUGO);
178 
179 bool __read_mostly enable_vmware_backdoor = false;
180 module_param(enable_vmware_backdoor, bool, S_IRUGO);
181 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
182 
183 static bool __read_mostly force_emulation_prefix = false;
184 module_param(force_emulation_prefix, bool, S_IRUGO);
185 
186 int __read_mostly pi_inject_timer = -1;
187 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
188 
189 /*
190  * Restoring the host value for MSRs that are only consumed when running in
191  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
192  * returns to userspace, i.e. the kernel can run with the guest's value.
193  */
194 #define KVM_MAX_NR_USER_RETURN_MSRS 16
195 
196 struct kvm_user_return_msrs {
197 	struct user_return_notifier urn;
198 	bool registered;
199 	struct kvm_user_return_msr_values {
200 		u64 host;
201 		u64 curr;
202 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
203 };
204 
205 u32 __read_mostly kvm_nr_uret_msrs;
206 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
207 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
208 static struct kvm_user_return_msrs __percpu *user_return_msrs;
209 
210 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
211 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
212 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
213 				| XFEATURE_MASK_PKRU)
214 
215 u64 __read_mostly host_efer;
216 EXPORT_SYMBOL_GPL(host_efer);
217 
218 bool __read_mostly allow_smaller_maxphyaddr = 0;
219 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
220 
221 bool __read_mostly enable_apicv = true;
222 EXPORT_SYMBOL_GPL(enable_apicv);
223 
224 u64 __read_mostly host_xss;
225 EXPORT_SYMBOL_GPL(host_xss);
226 u64 __read_mostly supported_xss;
227 EXPORT_SYMBOL_GPL(supported_xss);
228 
229 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
230 	KVM_GENERIC_VM_STATS(),
231 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
232 	STATS_DESC_COUNTER(VM, mmu_pte_write),
233 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
234 	STATS_DESC_COUNTER(VM, mmu_flooded),
235 	STATS_DESC_COUNTER(VM, mmu_recycled),
236 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
237 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
238 	STATS_DESC_ICOUNTER(VM, pages_4k),
239 	STATS_DESC_ICOUNTER(VM, pages_2m),
240 	STATS_DESC_ICOUNTER(VM, pages_1g),
241 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
242 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
243 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
244 };
245 
246 const struct kvm_stats_header kvm_vm_stats_header = {
247 	.name_size = KVM_STATS_NAME_SIZE,
248 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
249 	.id_offset = sizeof(struct kvm_stats_header),
250 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
251 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
252 		       sizeof(kvm_vm_stats_desc),
253 };
254 
255 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
256 	KVM_GENERIC_VCPU_STATS(),
257 	STATS_DESC_COUNTER(VCPU, pf_fixed),
258 	STATS_DESC_COUNTER(VCPU, pf_guest),
259 	STATS_DESC_COUNTER(VCPU, tlb_flush),
260 	STATS_DESC_COUNTER(VCPU, invlpg),
261 	STATS_DESC_COUNTER(VCPU, exits),
262 	STATS_DESC_COUNTER(VCPU, io_exits),
263 	STATS_DESC_COUNTER(VCPU, mmio_exits),
264 	STATS_DESC_COUNTER(VCPU, signal_exits),
265 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
266 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
267 	STATS_DESC_COUNTER(VCPU, l1d_flush),
268 	STATS_DESC_COUNTER(VCPU, halt_exits),
269 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
270 	STATS_DESC_COUNTER(VCPU, irq_exits),
271 	STATS_DESC_COUNTER(VCPU, host_state_reload),
272 	STATS_DESC_COUNTER(VCPU, fpu_reload),
273 	STATS_DESC_COUNTER(VCPU, insn_emulation),
274 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
275 	STATS_DESC_COUNTER(VCPU, hypercalls),
276 	STATS_DESC_COUNTER(VCPU, irq_injections),
277 	STATS_DESC_COUNTER(VCPU, nmi_injections),
278 	STATS_DESC_COUNTER(VCPU, req_event),
279 	STATS_DESC_COUNTER(VCPU, nested_run),
280 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
281 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
282 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
283 };
284 
285 const struct kvm_stats_header kvm_vcpu_stats_header = {
286 	.name_size = KVM_STATS_NAME_SIZE,
287 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
288 	.id_offset = sizeof(struct kvm_stats_header),
289 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
290 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
291 		       sizeof(kvm_vcpu_stats_desc),
292 };
293 
294 u64 __read_mostly host_xcr0;
295 u64 __read_mostly supported_xcr0;
296 EXPORT_SYMBOL_GPL(supported_xcr0);
297 
298 static struct kmem_cache *x86_emulator_cache;
299 
300 /*
301  * When called, it means the previous get/set msr reached an invalid msr.
302  * Return true if we want to ignore/silent this failed msr access.
303  */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306 	const char *op = write ? "wrmsr" : "rdmsr";
307 
308 	if (ignore_msrs) {
309 		if (report_ignored_msrs)
310 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311 				      op, msr, data);
312 		/* Mask the error */
313 		return true;
314 	} else {
315 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316 				      op, msr, data);
317 		return false;
318 	}
319 }
320 
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324 	unsigned int size = sizeof(struct x86_emulate_ctxt);
325 
326 	return kmem_cache_create_usercopy("x86_emulator", size,
327 					  __alignof__(struct x86_emulate_ctxt),
328 					  SLAB_ACCOUNT, useroffset,
329 					  size - useroffset, NULL);
330 }
331 
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333 
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336 	int i;
337 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338 		vcpu->arch.apf.gfns[i] = ~0;
339 }
340 
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343 	unsigned slot;
344 	struct kvm_user_return_msrs *msrs
345 		= container_of(urn, struct kvm_user_return_msrs, urn);
346 	struct kvm_user_return_msr_values *values;
347 	unsigned long flags;
348 
349 	/*
350 	 * Disabling irqs at this point since the following code could be
351 	 * interrupted and executed through kvm_arch_hardware_disable()
352 	 */
353 	local_irq_save(flags);
354 	if (msrs->registered) {
355 		msrs->registered = false;
356 		user_return_notifier_unregister(urn);
357 	}
358 	local_irq_restore(flags);
359 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360 		values = &msrs->values[slot];
361 		if (values->host != values->curr) {
362 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
363 			values->curr = values->host;
364 		}
365 	}
366 }
367 
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370 	u64 val;
371 	int ret;
372 
373 	preempt_disable();
374 	ret = rdmsrl_safe(msr, &val);
375 	if (ret)
376 		goto out;
377 	ret = wrmsrl_safe(msr, val);
378 out:
379 	preempt_enable();
380 	return ret;
381 }
382 
383 int kvm_add_user_return_msr(u32 msr)
384 {
385 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386 
387 	if (kvm_probe_user_return_msr(msr))
388 		return -1;
389 
390 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391 	return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394 
395 int kvm_find_user_return_msr(u32 msr)
396 {
397 	int i;
398 
399 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400 		if (kvm_uret_msrs_list[i] == msr)
401 			return i;
402 	}
403 	return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406 
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409 	unsigned int cpu = smp_processor_id();
410 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411 	u64 value;
412 	int i;
413 
414 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416 		msrs->values[i].host = value;
417 		msrs->values[i].curr = value;
418 	}
419 }
420 
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423 	unsigned int cpu = smp_processor_id();
424 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425 	int err;
426 
427 	value = (value & mask) | (msrs->values[slot].host & ~mask);
428 	if (value == msrs->values[slot].curr)
429 		return 0;
430 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431 	if (err)
432 		return 1;
433 
434 	msrs->values[slot].curr = value;
435 	if (!msrs->registered) {
436 		msrs->urn.on_user_return = kvm_on_user_return;
437 		user_return_notifier_register(&msrs->urn);
438 		msrs->registered = true;
439 	}
440 	return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443 
444 static void drop_user_return_notifiers(void)
445 {
446 	unsigned int cpu = smp_processor_id();
447 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448 
449 	if (msrs->registered)
450 		kvm_on_user_return(&msrs->urn);
451 }
452 
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455 	return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458 
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464 
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471 
472 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473 		return 1;
474 	if (!msr_info->host_initiated) {
475 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476 			return 1;
477 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478 			return 1;
479 	}
480 
481 	kvm_lapic_set_base(vcpu, msr_info->data);
482 	kvm_recalculate_apic_map(vcpu->kvm);
483 	return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486 
487 /*
488  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489  *
490  * Hardware virtualization extension instructions may fault if a reboot turns
491  * off virtualization while processes are running.  Usually after catching the
492  * fault we just panic; during reboot instead the instruction is ignored.
493  */
494 noinstr void kvm_spurious_fault(void)
495 {
496 	/* Fault while not rebooting.  We want the trace. */
497 	BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500 
501 #define EXCPT_BENIGN		0
502 #define EXCPT_CONTRIBUTORY	1
503 #define EXCPT_PF		2
504 
505 static int exception_class(int vector)
506 {
507 	switch (vector) {
508 	case PF_VECTOR:
509 		return EXCPT_PF;
510 	case DE_VECTOR:
511 	case TS_VECTOR:
512 	case NP_VECTOR:
513 	case SS_VECTOR:
514 	case GP_VECTOR:
515 		return EXCPT_CONTRIBUTORY;
516 	default:
517 		break;
518 	}
519 	return EXCPT_BENIGN;
520 }
521 
522 #define EXCPT_FAULT		0
523 #define EXCPT_TRAP		1
524 #define EXCPT_ABORT		2
525 #define EXCPT_INTERRUPT		3
526 
527 static int exception_type(int vector)
528 {
529 	unsigned int mask;
530 
531 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532 		return EXCPT_INTERRUPT;
533 
534 	mask = 1 << vector;
535 
536 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
537 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538 		return EXCPT_TRAP;
539 
540 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541 		return EXCPT_ABORT;
542 
543 	/* Reserved exceptions will result in fault */
544 	return EXCPT_FAULT;
545 }
546 
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549 	unsigned nr = vcpu->arch.exception.nr;
550 	bool has_payload = vcpu->arch.exception.has_payload;
551 	unsigned long payload = vcpu->arch.exception.payload;
552 
553 	if (!has_payload)
554 		return;
555 
556 	switch (nr) {
557 	case DB_VECTOR:
558 		/*
559 		 * "Certain debug exceptions may clear bit 0-3.  The
560 		 * remaining contents of the DR6 register are never
561 		 * cleared by the processor".
562 		 */
563 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564 		/*
565 		 * In order to reflect the #DB exception payload in guest
566 		 * dr6, three components need to be considered: active low
567 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568 		 * DR6_BS and DR6_BT)
569 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570 		 * In the target guest dr6:
571 		 * FIXED_1 bits should always be set.
572 		 * Active low bits should be cleared if 1-setting in payload.
573 		 * Active high bits should be set if 1-setting in payload.
574 		 *
575 		 * Note, the payload is compatible with the pending debug
576 		 * exceptions/exit qualification under VMX, that active_low bits
577 		 * are active high in payload.
578 		 * So they need to be flipped for DR6.
579 		 */
580 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581 		vcpu->arch.dr6 |= payload;
582 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583 
584 		/*
585 		 * The #DB payload is defined as compatible with the 'pending
586 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
587 		 * defined in the 'pending debug exceptions' field (enabled
588 		 * breakpoint), it is reserved and must be zero in DR6.
589 		 */
590 		vcpu->arch.dr6 &= ~BIT(12);
591 		break;
592 	case PF_VECTOR:
593 		vcpu->arch.cr2 = payload;
594 		break;
595 	}
596 
597 	vcpu->arch.exception.has_payload = false;
598 	vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601 
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603 		unsigned nr, bool has_error, u32 error_code,
604 	        bool has_payload, unsigned long payload, bool reinject)
605 {
606 	u32 prev_nr;
607 	int class1, class2;
608 
609 	kvm_make_request(KVM_REQ_EVENT, vcpu);
610 
611 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612 	queue:
613 		if (reinject) {
614 			/*
615 			 * On vmentry, vcpu->arch.exception.pending is only
616 			 * true if an event injection was blocked by
617 			 * nested_run_pending.  In that case, however,
618 			 * vcpu_enter_guest requests an immediate exit,
619 			 * and the guest shouldn't proceed far enough to
620 			 * need reinjection.
621 			 */
622 			WARN_ON_ONCE(vcpu->arch.exception.pending);
623 			vcpu->arch.exception.injected = true;
624 			if (WARN_ON_ONCE(has_payload)) {
625 				/*
626 				 * A reinjected event has already
627 				 * delivered its payload.
628 				 */
629 				has_payload = false;
630 				payload = 0;
631 			}
632 		} else {
633 			vcpu->arch.exception.pending = true;
634 			vcpu->arch.exception.injected = false;
635 		}
636 		vcpu->arch.exception.has_error_code = has_error;
637 		vcpu->arch.exception.nr = nr;
638 		vcpu->arch.exception.error_code = error_code;
639 		vcpu->arch.exception.has_payload = has_payload;
640 		vcpu->arch.exception.payload = payload;
641 		if (!is_guest_mode(vcpu))
642 			kvm_deliver_exception_payload(vcpu);
643 		return;
644 	}
645 
646 	/* to check exception */
647 	prev_nr = vcpu->arch.exception.nr;
648 	if (prev_nr == DF_VECTOR) {
649 		/* triple fault -> shutdown */
650 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651 		return;
652 	}
653 	class1 = exception_class(prev_nr);
654 	class2 = exception_class(nr);
655 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657 		/*
658 		 * Generate double fault per SDM Table 5-5.  Set
659 		 * exception.pending = true so that the double fault
660 		 * can trigger a nested vmexit.
661 		 */
662 		vcpu->arch.exception.pending = true;
663 		vcpu->arch.exception.injected = false;
664 		vcpu->arch.exception.has_error_code = true;
665 		vcpu->arch.exception.nr = DF_VECTOR;
666 		vcpu->arch.exception.error_code = 0;
667 		vcpu->arch.exception.has_payload = false;
668 		vcpu->arch.exception.payload = 0;
669 	} else
670 		/* replace previous exception with a new one in a hope
671 		   that instruction re-execution will regenerate lost
672 		   exception */
673 		goto queue;
674 }
675 
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681 
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687 
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689 			   unsigned long payload)
690 {
691 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694 
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696 				    u32 error_code, unsigned long payload)
697 {
698 	kvm_multiple_exception(vcpu, nr, true, error_code,
699 			       true, payload, false);
700 }
701 
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704 	if (err)
705 		kvm_inject_gp(vcpu, 0);
706 	else
707 		return kvm_skip_emulated_instruction(vcpu);
708 
709 	return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712 
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715 	++vcpu->stat.pf_guest;
716 	vcpu->arch.exception.nested_apf =
717 		is_guest_mode(vcpu) && fault->async_page_fault;
718 	if (vcpu->arch.exception.nested_apf) {
719 		vcpu->arch.apf.nested_apf_token = fault->address;
720 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721 	} else {
722 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723 					fault->address);
724 	}
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727 
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729 				    struct x86_exception *fault)
730 {
731 	struct kvm_mmu *fault_mmu;
732 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
733 
734 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735 					       vcpu->arch.walk_mmu;
736 
737 	/*
738 	 * Invalidate the TLB entry for the faulting address, if it exists,
739 	 * else the access will fault indefinitely (and to emulate hardware).
740 	 */
741 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
742 	    !(fault->error_code & PFERR_RSVD_MASK))
743 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744 				       fault_mmu->root_hpa);
745 
746 	fault_mmu->inject_page_fault(vcpu, fault);
747 	return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750 
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753 	atomic_inc(&vcpu->arch.nmi_queued);
754 	kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757 
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763 
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769 
770 /*
771  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
772  * a #GP and return false.
773  */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777 		return true;
778 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779 	return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782 
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786 		return true;
787 
788 	kvm_queue_exception(vcpu, UD_VECTOR);
789 	return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792 
793 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
794 {
795 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
796 }
797 
798 /*
799  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
800  */
801 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
802 {
803 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
804 	gpa_t real_gpa;
805 	int i;
806 	int ret;
807 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
808 
809 	/*
810 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
811 	 * to an L1 GPA.
812 	 */
813 	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(pdpt_gfn),
814 				      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
815 	if (real_gpa == UNMAPPED_GVA)
816 		return 0;
817 
818 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
819 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
820 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
821 	if (ret < 0)
822 		return 0;
823 
824 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
825 		if ((pdpte[i] & PT_PRESENT_MASK) &&
826 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
827 			return 0;
828 		}
829 	}
830 
831 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
832 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
833 	vcpu->arch.pdptrs_from_userspace = false;
834 
835 	return 1;
836 }
837 EXPORT_SYMBOL_GPL(load_pdptrs);
838 
839 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
840 {
841 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
842 		kvm_clear_async_pf_completion_queue(vcpu);
843 		kvm_async_pf_hash_reset(vcpu);
844 	}
845 
846 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
847 		kvm_mmu_reset_context(vcpu);
848 
849 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
850 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
851 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
852 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
853 }
854 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
855 
856 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
857 {
858 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
859 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
860 
861 	cr0 |= X86_CR0_ET;
862 
863 #ifdef CONFIG_X86_64
864 	if (cr0 & 0xffffffff00000000UL)
865 		return 1;
866 #endif
867 
868 	cr0 &= ~CR0_RESERVED_BITS;
869 
870 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
871 		return 1;
872 
873 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
874 		return 1;
875 
876 #ifdef CONFIG_X86_64
877 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
878 	    (cr0 & X86_CR0_PG)) {
879 		int cs_db, cs_l;
880 
881 		if (!is_pae(vcpu))
882 			return 1;
883 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
884 		if (cs_l)
885 			return 1;
886 	}
887 #endif
888 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
889 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
890 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
891 		return 1;
892 
893 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
894 		return 1;
895 
896 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
897 
898 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
899 
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_set_cr0);
903 
904 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
905 {
906 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
907 }
908 EXPORT_SYMBOL_GPL(kvm_lmsw);
909 
910 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
911 {
912 	if (vcpu->arch.guest_state_protected)
913 		return;
914 
915 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
916 
917 		if (vcpu->arch.xcr0 != host_xcr0)
918 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
919 
920 		if (vcpu->arch.xsaves_enabled &&
921 		    vcpu->arch.ia32_xss != host_xss)
922 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
923 	}
924 
925 	if (static_cpu_has(X86_FEATURE_PKU) &&
926 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
927 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
928 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
929 		write_pkru(vcpu->arch.pkru);
930 }
931 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
932 
933 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
934 {
935 	if (vcpu->arch.guest_state_protected)
936 		return;
937 
938 	if (static_cpu_has(X86_FEATURE_PKU) &&
939 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
940 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
941 		vcpu->arch.pkru = rdpkru();
942 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
943 			write_pkru(vcpu->arch.host_pkru);
944 	}
945 
946 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
947 
948 		if (vcpu->arch.xcr0 != host_xcr0)
949 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
950 
951 		if (vcpu->arch.xsaves_enabled &&
952 		    vcpu->arch.ia32_xss != host_xss)
953 			wrmsrl(MSR_IA32_XSS, host_xss);
954 	}
955 
956 }
957 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
958 
959 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
960 {
961 	u64 xcr0 = xcr;
962 	u64 old_xcr0 = vcpu->arch.xcr0;
963 	u64 valid_bits;
964 
965 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
966 	if (index != XCR_XFEATURE_ENABLED_MASK)
967 		return 1;
968 	if (!(xcr0 & XFEATURE_MASK_FP))
969 		return 1;
970 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
971 		return 1;
972 
973 	/*
974 	 * Do not allow the guest to set bits that we do not support
975 	 * saving.  However, xcr0 bit 0 is always set, even if the
976 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
977 	 */
978 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
979 	if (xcr0 & ~valid_bits)
980 		return 1;
981 
982 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
983 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
984 		return 1;
985 
986 	if (xcr0 & XFEATURE_MASK_AVX512) {
987 		if (!(xcr0 & XFEATURE_MASK_YMM))
988 			return 1;
989 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
990 			return 1;
991 	}
992 	vcpu->arch.xcr0 = xcr0;
993 
994 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
995 		kvm_update_cpuid_runtime(vcpu);
996 	return 0;
997 }
998 
999 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1000 {
1001 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1002 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1003 		kvm_inject_gp(vcpu, 0);
1004 		return 1;
1005 	}
1006 
1007 	return kvm_skip_emulated_instruction(vcpu);
1008 }
1009 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1010 
1011 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1012 {
1013 	if (cr4 & cr4_reserved_bits)
1014 		return false;
1015 
1016 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1017 		return false;
1018 
1019 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1022 
1023 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1024 {
1025 	/*
1026 	 * If any role bit is changed, the MMU needs to be reset.
1027 	 *
1028 	 * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1029 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1030 	 * according to the SDM; however, stale prev_roots could be reused
1031 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1032 	 * free them all.  KVM_REQ_MMU_RELOAD is fit for the both cases; it
1033 	 * is slow, but changing CR4.PCIDE is a rare case.
1034 	 *
1035 	 * If CR4.PGE is changed, the guest TLB must be flushed.
1036 	 *
1037 	 * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1038 	 * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1039 	 * the usage of "else if".
1040 	 */
1041 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1042 		kvm_mmu_reset_context(vcpu);
1043 	else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1044 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1045 	else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1046 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1047 }
1048 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1049 
1050 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1051 {
1052 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1053 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1054 				   X86_CR4_SMEP;
1055 
1056 	if (!kvm_is_valid_cr4(vcpu, cr4))
1057 		return 1;
1058 
1059 	if (is_long_mode(vcpu)) {
1060 		if (!(cr4 & X86_CR4_PAE))
1061 			return 1;
1062 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1063 			return 1;
1064 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1065 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1066 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1067 				   kvm_read_cr3(vcpu)))
1068 		return 1;
1069 
1070 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1071 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1072 			return 1;
1073 
1074 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1075 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1076 			return 1;
1077 	}
1078 
1079 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1080 
1081 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1082 
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1086 
1087 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1088 {
1089 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1090 	unsigned long roots_to_free = 0;
1091 	int i;
1092 
1093 	/*
1094 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1095 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1096 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1097 	 * the invalidation, but the guest's TLB entries need to be flushed as
1098 	 * the CPU may have cached entries in its TLB for the target PCID.
1099 	 */
1100 	if (unlikely(tdp_enabled)) {
1101 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1102 		return;
1103 	}
1104 
1105 	/*
1106 	 * If neither the current CR3 nor any of the prev_roots use the given
1107 	 * PCID, then nothing needs to be done here because a resync will
1108 	 * happen anyway before switching to any other CR3.
1109 	 */
1110 	if (kvm_get_active_pcid(vcpu) == pcid) {
1111 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1112 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1113 	}
1114 
1115 	/*
1116 	 * If PCID is disabled, there is no need to free prev_roots even if the
1117 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1118 	 * with PCIDE=0.
1119 	 */
1120 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1121 		return;
1122 
1123 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1124 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1125 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1126 
1127 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1128 }
1129 
1130 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1131 {
1132 	bool skip_tlb_flush = false;
1133 	unsigned long pcid = 0;
1134 #ifdef CONFIG_X86_64
1135 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1136 
1137 	if (pcid_enabled) {
1138 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1139 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1140 		pcid = cr3 & X86_CR3_PCID_MASK;
1141 	}
1142 #endif
1143 
1144 	/* PDPTRs are always reloaded for PAE paging. */
1145 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1146 		goto handle_tlb_flush;
1147 
1148 	/*
1149 	 * Do not condition the GPA check on long mode, this helper is used to
1150 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1151 	 * the current vCPU mode is accurate.
1152 	 */
1153 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1154 		return 1;
1155 
1156 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1157 		return 1;
1158 
1159 	if (cr3 != kvm_read_cr3(vcpu))
1160 		kvm_mmu_new_pgd(vcpu, cr3);
1161 
1162 	vcpu->arch.cr3 = cr3;
1163 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1164 
1165 handle_tlb_flush:
1166 	/*
1167 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1168 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1169 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1170 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1171 	 * i.e. only PCID=0 can be relevant.
1172 	 */
1173 	if (!skip_tlb_flush)
1174 		kvm_invalidate_pcid(vcpu, pcid);
1175 
1176 	return 0;
1177 }
1178 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1179 
1180 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1181 {
1182 	if (cr8 & CR8_RESERVED_BITS)
1183 		return 1;
1184 	if (lapic_in_kernel(vcpu))
1185 		kvm_lapic_set_tpr(vcpu, cr8);
1186 	else
1187 		vcpu->arch.cr8 = cr8;
1188 	return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1191 
1192 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1193 {
1194 	if (lapic_in_kernel(vcpu))
1195 		return kvm_lapic_get_cr8(vcpu);
1196 	else
1197 		return vcpu->arch.cr8;
1198 }
1199 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1200 
1201 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1202 {
1203 	int i;
1204 
1205 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1206 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1207 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1208 	}
1209 }
1210 
1211 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1212 {
1213 	unsigned long dr7;
1214 
1215 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1216 		dr7 = vcpu->arch.guest_debug_dr7;
1217 	else
1218 		dr7 = vcpu->arch.dr7;
1219 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1220 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1221 	if (dr7 & DR7_BP_EN_MASK)
1222 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1223 }
1224 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1225 
1226 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1227 {
1228 	u64 fixed = DR6_FIXED_1;
1229 
1230 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1231 		fixed |= DR6_RTM;
1232 
1233 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1234 		fixed |= DR6_BUS_LOCK;
1235 	return fixed;
1236 }
1237 
1238 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1239 {
1240 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1241 
1242 	switch (dr) {
1243 	case 0 ... 3:
1244 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1245 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1246 			vcpu->arch.eff_db[dr] = val;
1247 		break;
1248 	case 4:
1249 	case 6:
1250 		if (!kvm_dr6_valid(val))
1251 			return 1; /* #GP */
1252 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1253 		break;
1254 	case 5:
1255 	default: /* 7 */
1256 		if (!kvm_dr7_valid(val))
1257 			return 1; /* #GP */
1258 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1259 		kvm_update_dr7(vcpu);
1260 		break;
1261 	}
1262 
1263 	return 0;
1264 }
1265 EXPORT_SYMBOL_GPL(kvm_set_dr);
1266 
1267 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1268 {
1269 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1270 
1271 	switch (dr) {
1272 	case 0 ... 3:
1273 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1274 		break;
1275 	case 4:
1276 	case 6:
1277 		*val = vcpu->arch.dr6;
1278 		break;
1279 	case 5:
1280 	default: /* 7 */
1281 		*val = vcpu->arch.dr7;
1282 		break;
1283 	}
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_get_dr);
1286 
1287 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1288 {
1289 	u32 ecx = kvm_rcx_read(vcpu);
1290 	u64 data;
1291 
1292 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1293 		kvm_inject_gp(vcpu, 0);
1294 		return 1;
1295 	}
1296 
1297 	kvm_rax_write(vcpu, (u32)data);
1298 	kvm_rdx_write(vcpu, data >> 32);
1299 	return kvm_skip_emulated_instruction(vcpu);
1300 }
1301 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1302 
1303 /*
1304  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1305  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1306  *
1307  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1308  * extract the supported MSRs from the related const lists.
1309  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1310  * capabilities of the host cpu. This capabilities test skips MSRs that are
1311  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1312  * may depend on host virtualization features rather than host cpu features.
1313  */
1314 
1315 static const u32 msrs_to_save_all[] = {
1316 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1317 	MSR_STAR,
1318 #ifdef CONFIG_X86_64
1319 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1320 #endif
1321 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1322 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1323 	MSR_IA32_SPEC_CTRL,
1324 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1325 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1326 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1327 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1328 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1329 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1330 	MSR_IA32_UMWAIT_CONTROL,
1331 
1332 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1333 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1334 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1335 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1336 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1337 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1338 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1339 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1340 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1341 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1342 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1343 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1344 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1345 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1346 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1347 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1348 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1349 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1350 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1351 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1352 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1353 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1354 
1355 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1356 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1357 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1358 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1359 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1360 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1361 };
1362 
1363 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1364 static unsigned num_msrs_to_save;
1365 
1366 static const u32 emulated_msrs_all[] = {
1367 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1368 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1369 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1370 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1371 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1372 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1373 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1374 	HV_X64_MSR_RESET,
1375 	HV_X64_MSR_VP_INDEX,
1376 	HV_X64_MSR_VP_RUNTIME,
1377 	HV_X64_MSR_SCONTROL,
1378 	HV_X64_MSR_STIMER0_CONFIG,
1379 	HV_X64_MSR_VP_ASSIST_PAGE,
1380 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1381 	HV_X64_MSR_TSC_EMULATION_STATUS,
1382 	HV_X64_MSR_SYNDBG_OPTIONS,
1383 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1384 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1385 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1386 
1387 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1388 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1389 
1390 	MSR_IA32_TSC_ADJUST,
1391 	MSR_IA32_TSC_DEADLINE,
1392 	MSR_IA32_ARCH_CAPABILITIES,
1393 	MSR_IA32_PERF_CAPABILITIES,
1394 	MSR_IA32_MISC_ENABLE,
1395 	MSR_IA32_MCG_STATUS,
1396 	MSR_IA32_MCG_CTL,
1397 	MSR_IA32_MCG_EXT_CTL,
1398 	MSR_IA32_SMBASE,
1399 	MSR_SMI_COUNT,
1400 	MSR_PLATFORM_INFO,
1401 	MSR_MISC_FEATURES_ENABLES,
1402 	MSR_AMD64_VIRT_SPEC_CTRL,
1403 	MSR_AMD64_TSC_RATIO,
1404 	MSR_IA32_POWER_CTL,
1405 	MSR_IA32_UCODE_REV,
1406 
1407 	/*
1408 	 * The following list leaves out MSRs whose values are determined
1409 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1410 	 * We always support the "true" VMX control MSRs, even if the host
1411 	 * processor does not, so I am putting these registers here rather
1412 	 * than in msrs_to_save_all.
1413 	 */
1414 	MSR_IA32_VMX_BASIC,
1415 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1416 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1417 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1418 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1419 	MSR_IA32_VMX_MISC,
1420 	MSR_IA32_VMX_CR0_FIXED0,
1421 	MSR_IA32_VMX_CR4_FIXED0,
1422 	MSR_IA32_VMX_VMCS_ENUM,
1423 	MSR_IA32_VMX_PROCBASED_CTLS2,
1424 	MSR_IA32_VMX_EPT_VPID_CAP,
1425 	MSR_IA32_VMX_VMFUNC,
1426 
1427 	MSR_K7_HWCR,
1428 	MSR_KVM_POLL_CONTROL,
1429 };
1430 
1431 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1432 static unsigned num_emulated_msrs;
1433 
1434 /*
1435  * List of msr numbers which are used to expose MSR-based features that
1436  * can be used by a hypervisor to validate requested CPU features.
1437  */
1438 static const u32 msr_based_features_all[] = {
1439 	MSR_IA32_VMX_BASIC,
1440 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1441 	MSR_IA32_VMX_PINBASED_CTLS,
1442 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1443 	MSR_IA32_VMX_PROCBASED_CTLS,
1444 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1445 	MSR_IA32_VMX_EXIT_CTLS,
1446 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1447 	MSR_IA32_VMX_ENTRY_CTLS,
1448 	MSR_IA32_VMX_MISC,
1449 	MSR_IA32_VMX_CR0_FIXED0,
1450 	MSR_IA32_VMX_CR0_FIXED1,
1451 	MSR_IA32_VMX_CR4_FIXED0,
1452 	MSR_IA32_VMX_CR4_FIXED1,
1453 	MSR_IA32_VMX_VMCS_ENUM,
1454 	MSR_IA32_VMX_PROCBASED_CTLS2,
1455 	MSR_IA32_VMX_EPT_VPID_CAP,
1456 	MSR_IA32_VMX_VMFUNC,
1457 
1458 	MSR_F10H_DECFG,
1459 	MSR_IA32_UCODE_REV,
1460 	MSR_IA32_ARCH_CAPABILITIES,
1461 	MSR_IA32_PERF_CAPABILITIES,
1462 };
1463 
1464 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1465 static unsigned int num_msr_based_features;
1466 
1467 static u64 kvm_get_arch_capabilities(void)
1468 {
1469 	u64 data = 0;
1470 
1471 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1472 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1473 
1474 	/*
1475 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1476 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1477 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1478 	 * L1 guests, so it need not worry about its own (L2) guests.
1479 	 */
1480 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1481 
1482 	/*
1483 	 * If we're doing cache flushes (either "always" or "cond")
1484 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1485 	 * If an outer hypervisor is doing the cache flush for us
1486 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1487 	 * capability to the guest too, and if EPT is disabled we're not
1488 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1489 	 * require a nested hypervisor to do a flush of its own.
1490 	 */
1491 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1492 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1493 
1494 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1495 		data |= ARCH_CAP_RDCL_NO;
1496 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1497 		data |= ARCH_CAP_SSB_NO;
1498 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1499 		data |= ARCH_CAP_MDS_NO;
1500 
1501 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1502 		/*
1503 		 * If RTM=0 because the kernel has disabled TSX, the host might
1504 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1505 		 * and therefore knows that there cannot be TAA) but keep
1506 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1507 		 * and we want to allow migrating those guests to tsx=off hosts.
1508 		 */
1509 		data &= ~ARCH_CAP_TAA_NO;
1510 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1511 		data |= ARCH_CAP_TAA_NO;
1512 	} else {
1513 		/*
1514 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1515 		 * host so the guest can choose between disabling TSX or
1516 		 * using VERW to clear CPU buffers.
1517 		 */
1518 	}
1519 
1520 	return data;
1521 }
1522 
1523 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1524 {
1525 	switch (msr->index) {
1526 	case MSR_IA32_ARCH_CAPABILITIES:
1527 		msr->data = kvm_get_arch_capabilities();
1528 		break;
1529 	case MSR_IA32_UCODE_REV:
1530 		rdmsrl_safe(msr->index, &msr->data);
1531 		break;
1532 	default:
1533 		return static_call(kvm_x86_get_msr_feature)(msr);
1534 	}
1535 	return 0;
1536 }
1537 
1538 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1539 {
1540 	struct kvm_msr_entry msr;
1541 	int r;
1542 
1543 	msr.index = index;
1544 	r = kvm_get_msr_feature(&msr);
1545 
1546 	if (r == KVM_MSR_RET_INVALID) {
1547 		/* Unconditionally clear the output for simplicity */
1548 		*data = 0;
1549 		if (kvm_msr_ignored_check(index, 0, false))
1550 			r = 0;
1551 	}
1552 
1553 	if (r)
1554 		return r;
1555 
1556 	*data = msr.data;
1557 
1558 	return 0;
1559 }
1560 
1561 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1562 {
1563 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1564 		return false;
1565 
1566 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1567 		return false;
1568 
1569 	if (efer & (EFER_LME | EFER_LMA) &&
1570 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1571 		return false;
1572 
1573 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1574 		return false;
1575 
1576 	return true;
1577 
1578 }
1579 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1580 {
1581 	if (efer & efer_reserved_bits)
1582 		return false;
1583 
1584 	return __kvm_valid_efer(vcpu, efer);
1585 }
1586 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1587 
1588 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1589 {
1590 	u64 old_efer = vcpu->arch.efer;
1591 	u64 efer = msr_info->data;
1592 	int r;
1593 
1594 	if (efer & efer_reserved_bits)
1595 		return 1;
1596 
1597 	if (!msr_info->host_initiated) {
1598 		if (!__kvm_valid_efer(vcpu, efer))
1599 			return 1;
1600 
1601 		if (is_paging(vcpu) &&
1602 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1603 			return 1;
1604 	}
1605 
1606 	efer &= ~EFER_LMA;
1607 	efer |= vcpu->arch.efer & EFER_LMA;
1608 
1609 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1610 	if (r) {
1611 		WARN_ON(r > 0);
1612 		return r;
1613 	}
1614 
1615 	/* Update reserved bits */
1616 	if ((efer ^ old_efer) & EFER_NX)
1617 		kvm_mmu_reset_context(vcpu);
1618 
1619 	return 0;
1620 }
1621 
1622 void kvm_enable_efer_bits(u64 mask)
1623 {
1624        efer_reserved_bits &= ~mask;
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1627 
1628 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1629 {
1630 	struct kvm_x86_msr_filter *msr_filter;
1631 	struct msr_bitmap_range *ranges;
1632 	struct kvm *kvm = vcpu->kvm;
1633 	bool allowed;
1634 	int idx;
1635 	u32 i;
1636 
1637 	/* x2APIC MSRs do not support filtering. */
1638 	if (index >= 0x800 && index <= 0x8ff)
1639 		return true;
1640 
1641 	idx = srcu_read_lock(&kvm->srcu);
1642 
1643 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1644 	if (!msr_filter) {
1645 		allowed = true;
1646 		goto out;
1647 	}
1648 
1649 	allowed = msr_filter->default_allow;
1650 	ranges = msr_filter->ranges;
1651 
1652 	for (i = 0; i < msr_filter->count; i++) {
1653 		u32 start = ranges[i].base;
1654 		u32 end = start + ranges[i].nmsrs;
1655 		u32 flags = ranges[i].flags;
1656 		unsigned long *bitmap = ranges[i].bitmap;
1657 
1658 		if ((index >= start) && (index < end) && (flags & type)) {
1659 			allowed = !!test_bit(index - start, bitmap);
1660 			break;
1661 		}
1662 	}
1663 
1664 out:
1665 	srcu_read_unlock(&kvm->srcu, idx);
1666 
1667 	return allowed;
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1670 
1671 /*
1672  * Write @data into the MSR specified by @index.  Select MSR specific fault
1673  * checks are bypassed if @host_initiated is %true.
1674  * Returns 0 on success, non-0 otherwise.
1675  * Assumes vcpu_load() was already called.
1676  */
1677 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1678 			 bool host_initiated)
1679 {
1680 	struct msr_data msr;
1681 
1682 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1683 		return KVM_MSR_RET_FILTERED;
1684 
1685 	switch (index) {
1686 	case MSR_FS_BASE:
1687 	case MSR_GS_BASE:
1688 	case MSR_KERNEL_GS_BASE:
1689 	case MSR_CSTAR:
1690 	case MSR_LSTAR:
1691 		if (is_noncanonical_address(data, vcpu))
1692 			return 1;
1693 		break;
1694 	case MSR_IA32_SYSENTER_EIP:
1695 	case MSR_IA32_SYSENTER_ESP:
1696 		/*
1697 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1698 		 * non-canonical address is written on Intel but not on
1699 		 * AMD (which ignores the top 32-bits, because it does
1700 		 * not implement 64-bit SYSENTER).
1701 		 *
1702 		 * 64-bit code should hence be able to write a non-canonical
1703 		 * value on AMD.  Making the address canonical ensures that
1704 		 * vmentry does not fail on Intel after writing a non-canonical
1705 		 * value, and that something deterministic happens if the guest
1706 		 * invokes 64-bit SYSENTER.
1707 		 */
1708 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1709 		break;
1710 	case MSR_TSC_AUX:
1711 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1712 			return 1;
1713 
1714 		if (!host_initiated &&
1715 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1716 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1717 			return 1;
1718 
1719 		/*
1720 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1721 		 * incomplete and conflicting architectural behavior.  Current
1722 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1723 		 * reserved and always read as zeros.  Enforce Intel's reserved
1724 		 * bits check if and only if the guest CPU is Intel, and clear
1725 		 * the bits in all other cases.  This ensures cross-vendor
1726 		 * migration will provide consistent behavior for the guest.
1727 		 */
1728 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1729 			return 1;
1730 
1731 		data = (u32)data;
1732 		break;
1733 	}
1734 
1735 	msr.data = data;
1736 	msr.index = index;
1737 	msr.host_initiated = host_initiated;
1738 
1739 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1740 }
1741 
1742 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1743 				     u32 index, u64 data, bool host_initiated)
1744 {
1745 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1746 
1747 	if (ret == KVM_MSR_RET_INVALID)
1748 		if (kvm_msr_ignored_check(index, data, true))
1749 			ret = 0;
1750 
1751 	return ret;
1752 }
1753 
1754 /*
1755  * Read the MSR specified by @index into @data.  Select MSR specific fault
1756  * checks are bypassed if @host_initiated is %true.
1757  * Returns 0 on success, non-0 otherwise.
1758  * Assumes vcpu_load() was already called.
1759  */
1760 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1761 		  bool host_initiated)
1762 {
1763 	struct msr_data msr;
1764 	int ret;
1765 
1766 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1767 		return KVM_MSR_RET_FILTERED;
1768 
1769 	switch (index) {
1770 	case MSR_TSC_AUX:
1771 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1772 			return 1;
1773 
1774 		if (!host_initiated &&
1775 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1776 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1777 			return 1;
1778 		break;
1779 	}
1780 
1781 	msr.index = index;
1782 	msr.host_initiated = host_initiated;
1783 
1784 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1785 	if (!ret)
1786 		*data = msr.data;
1787 	return ret;
1788 }
1789 
1790 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1791 				     u32 index, u64 *data, bool host_initiated)
1792 {
1793 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1794 
1795 	if (ret == KVM_MSR_RET_INVALID) {
1796 		/* Unconditionally clear *data for simplicity */
1797 		*data = 0;
1798 		if (kvm_msr_ignored_check(index, 0, false))
1799 			ret = 0;
1800 	}
1801 
1802 	return ret;
1803 }
1804 
1805 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1806 {
1807 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_get_msr);
1810 
1811 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1812 {
1813 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1814 }
1815 EXPORT_SYMBOL_GPL(kvm_set_msr);
1816 
1817 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1818 {
1819 	int err = vcpu->run->msr.error;
1820 	if (!err) {
1821 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1822 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1823 	}
1824 
1825 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1826 }
1827 
1828 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1829 {
1830 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1831 }
1832 
1833 static u64 kvm_msr_reason(int r)
1834 {
1835 	switch (r) {
1836 	case KVM_MSR_RET_INVALID:
1837 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1838 	case KVM_MSR_RET_FILTERED:
1839 		return KVM_MSR_EXIT_REASON_FILTER;
1840 	default:
1841 		return KVM_MSR_EXIT_REASON_INVAL;
1842 	}
1843 }
1844 
1845 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1846 			      u32 exit_reason, u64 data,
1847 			      int (*completion)(struct kvm_vcpu *vcpu),
1848 			      int r)
1849 {
1850 	u64 msr_reason = kvm_msr_reason(r);
1851 
1852 	/* Check if the user wanted to know about this MSR fault */
1853 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1854 		return 0;
1855 
1856 	vcpu->run->exit_reason = exit_reason;
1857 	vcpu->run->msr.error = 0;
1858 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1859 	vcpu->run->msr.reason = msr_reason;
1860 	vcpu->run->msr.index = index;
1861 	vcpu->run->msr.data = data;
1862 	vcpu->arch.complete_userspace_io = completion;
1863 
1864 	return 1;
1865 }
1866 
1867 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1868 {
1869 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1870 				   complete_emulated_rdmsr, r);
1871 }
1872 
1873 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1874 {
1875 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1876 				   complete_emulated_wrmsr, r);
1877 }
1878 
1879 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1880 {
1881 	u32 ecx = kvm_rcx_read(vcpu);
1882 	u64 data;
1883 	int r;
1884 
1885 	r = kvm_get_msr(vcpu, ecx, &data);
1886 
1887 	/* MSR read failed? See if we should ask user space */
1888 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1889 		/* Bounce to user space */
1890 		return 0;
1891 	}
1892 
1893 	if (!r) {
1894 		trace_kvm_msr_read(ecx, data);
1895 
1896 		kvm_rax_write(vcpu, data & -1u);
1897 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1898 	} else {
1899 		trace_kvm_msr_read_ex(ecx);
1900 	}
1901 
1902 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1905 
1906 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1907 {
1908 	u32 ecx = kvm_rcx_read(vcpu);
1909 	u64 data = kvm_read_edx_eax(vcpu);
1910 	int r;
1911 
1912 	r = kvm_set_msr(vcpu, ecx, data);
1913 
1914 	/* MSR write failed? See if we should ask user space */
1915 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1916 		/* Bounce to user space */
1917 		return 0;
1918 
1919 	/* Signal all other negative errors to userspace */
1920 	if (r < 0)
1921 		return r;
1922 
1923 	if (!r)
1924 		trace_kvm_msr_write(ecx, data);
1925 	else
1926 		trace_kvm_msr_write_ex(ecx, data);
1927 
1928 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1931 
1932 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1933 {
1934 	return kvm_skip_emulated_instruction(vcpu);
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1937 
1938 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1939 {
1940 	/* Treat an INVD instruction as a NOP and just skip it. */
1941 	return kvm_emulate_as_nop(vcpu);
1942 }
1943 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1944 
1945 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1946 {
1947 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1948 	return kvm_emulate_as_nop(vcpu);
1949 }
1950 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1951 
1952 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1953 {
1954 	kvm_queue_exception(vcpu, UD_VECTOR);
1955 	return 1;
1956 }
1957 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1958 
1959 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1960 {
1961 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1962 	return kvm_emulate_as_nop(vcpu);
1963 }
1964 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1965 
1966 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1967 {
1968 	xfer_to_guest_mode_prepare();
1969 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1970 		xfer_to_guest_mode_work_pending();
1971 }
1972 
1973 /*
1974  * The fast path for frequent and performance sensitive wrmsr emulation,
1975  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1976  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1977  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1978  * other cases which must be called after interrupts are enabled on the host.
1979  */
1980 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1981 {
1982 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1983 		return 1;
1984 
1985 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1986 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1987 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1988 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1989 
1990 		data &= ~(1 << 12);
1991 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1992 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1993 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1994 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1995 		return 0;
1996 	}
1997 
1998 	return 1;
1999 }
2000 
2001 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2002 {
2003 	if (!kvm_can_use_hv_timer(vcpu))
2004 		return 1;
2005 
2006 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2007 	return 0;
2008 }
2009 
2010 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2011 {
2012 	u32 msr = kvm_rcx_read(vcpu);
2013 	u64 data;
2014 	fastpath_t ret = EXIT_FASTPATH_NONE;
2015 
2016 	switch (msr) {
2017 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2018 		data = kvm_read_edx_eax(vcpu);
2019 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2020 			kvm_skip_emulated_instruction(vcpu);
2021 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2022 		}
2023 		break;
2024 	case MSR_IA32_TSC_DEADLINE:
2025 		data = kvm_read_edx_eax(vcpu);
2026 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2027 			kvm_skip_emulated_instruction(vcpu);
2028 			ret = EXIT_FASTPATH_REENTER_GUEST;
2029 		}
2030 		break;
2031 	default:
2032 		break;
2033 	}
2034 
2035 	if (ret != EXIT_FASTPATH_NONE)
2036 		trace_kvm_msr_write(msr, data);
2037 
2038 	return ret;
2039 }
2040 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2041 
2042 /*
2043  * Adapt set_msr() to msr_io()'s calling convention
2044  */
2045 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2046 {
2047 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2048 }
2049 
2050 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2051 {
2052 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2053 }
2054 
2055 #ifdef CONFIG_X86_64
2056 struct pvclock_clock {
2057 	int vclock_mode;
2058 	u64 cycle_last;
2059 	u64 mask;
2060 	u32 mult;
2061 	u32 shift;
2062 	u64 base_cycles;
2063 	u64 offset;
2064 };
2065 
2066 struct pvclock_gtod_data {
2067 	seqcount_t	seq;
2068 
2069 	struct pvclock_clock clock; /* extract of a clocksource struct */
2070 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2071 
2072 	ktime_t		offs_boot;
2073 	u64		wall_time_sec;
2074 };
2075 
2076 static struct pvclock_gtod_data pvclock_gtod_data;
2077 
2078 static void update_pvclock_gtod(struct timekeeper *tk)
2079 {
2080 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2081 
2082 	write_seqcount_begin(&vdata->seq);
2083 
2084 	/* copy pvclock gtod data */
2085 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2086 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2087 	vdata->clock.mask		= tk->tkr_mono.mask;
2088 	vdata->clock.mult		= tk->tkr_mono.mult;
2089 	vdata->clock.shift		= tk->tkr_mono.shift;
2090 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2091 	vdata->clock.offset		= tk->tkr_mono.base;
2092 
2093 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2094 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2095 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2096 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2097 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2098 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2099 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2100 
2101 	vdata->wall_time_sec            = tk->xtime_sec;
2102 
2103 	vdata->offs_boot		= tk->offs_boot;
2104 
2105 	write_seqcount_end(&vdata->seq);
2106 }
2107 
2108 static s64 get_kvmclock_base_ns(void)
2109 {
2110 	/* Count up from boot time, but with the frequency of the raw clock.  */
2111 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2112 }
2113 #else
2114 static s64 get_kvmclock_base_ns(void)
2115 {
2116 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2117 	return ktime_get_boottime_ns();
2118 }
2119 #endif
2120 
2121 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2122 {
2123 	int version;
2124 	int r;
2125 	struct pvclock_wall_clock wc;
2126 	u32 wc_sec_hi;
2127 	u64 wall_nsec;
2128 
2129 	if (!wall_clock)
2130 		return;
2131 
2132 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2133 	if (r)
2134 		return;
2135 
2136 	if (version & 1)
2137 		++version;  /* first time write, random junk */
2138 
2139 	++version;
2140 
2141 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2142 		return;
2143 
2144 	/*
2145 	 * The guest calculates current wall clock time by adding
2146 	 * system time (updated by kvm_guest_time_update below) to the
2147 	 * wall clock specified here.  We do the reverse here.
2148 	 */
2149 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2150 
2151 	wc.nsec = do_div(wall_nsec, 1000000000);
2152 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2153 	wc.version = version;
2154 
2155 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2156 
2157 	if (sec_hi_ofs) {
2158 		wc_sec_hi = wall_nsec >> 32;
2159 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2160 				&wc_sec_hi, sizeof(wc_sec_hi));
2161 	}
2162 
2163 	version++;
2164 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2165 }
2166 
2167 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2168 				  bool old_msr, bool host_initiated)
2169 {
2170 	struct kvm_arch *ka = &vcpu->kvm->arch;
2171 
2172 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2173 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2174 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2175 
2176 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2177 	}
2178 
2179 	vcpu->arch.time = system_time;
2180 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2181 
2182 	/* we verify if the enable bit is set... */
2183 	vcpu->arch.pv_time_enabled = false;
2184 	if (!(system_time & 1))
2185 		return;
2186 
2187 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2188 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2189 				       sizeof(struct pvclock_vcpu_time_info)))
2190 		vcpu->arch.pv_time_enabled = true;
2191 
2192 	return;
2193 }
2194 
2195 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2196 {
2197 	do_shl32_div32(dividend, divisor);
2198 	return dividend;
2199 }
2200 
2201 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2202 			       s8 *pshift, u32 *pmultiplier)
2203 {
2204 	uint64_t scaled64;
2205 	int32_t  shift = 0;
2206 	uint64_t tps64;
2207 	uint32_t tps32;
2208 
2209 	tps64 = base_hz;
2210 	scaled64 = scaled_hz;
2211 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2212 		tps64 >>= 1;
2213 		shift--;
2214 	}
2215 
2216 	tps32 = (uint32_t)tps64;
2217 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2218 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2219 			scaled64 >>= 1;
2220 		else
2221 			tps32 <<= 1;
2222 		shift++;
2223 	}
2224 
2225 	*pshift = shift;
2226 	*pmultiplier = div_frac(scaled64, tps32);
2227 }
2228 
2229 #ifdef CONFIG_X86_64
2230 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2231 #endif
2232 
2233 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2234 static unsigned long max_tsc_khz;
2235 
2236 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2237 {
2238 	u64 v = (u64)khz * (1000000 + ppm);
2239 	do_div(v, 1000000);
2240 	return v;
2241 }
2242 
2243 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2244 
2245 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2246 {
2247 	u64 ratio;
2248 
2249 	/* Guest TSC same frequency as host TSC? */
2250 	if (!scale) {
2251 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2252 		return 0;
2253 	}
2254 
2255 	/* TSC scaling supported? */
2256 	if (!kvm_has_tsc_control) {
2257 		if (user_tsc_khz > tsc_khz) {
2258 			vcpu->arch.tsc_catchup = 1;
2259 			vcpu->arch.tsc_always_catchup = 1;
2260 			return 0;
2261 		} else {
2262 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2263 			return -1;
2264 		}
2265 	}
2266 
2267 	/* TSC scaling required  - calculate ratio */
2268 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2269 				user_tsc_khz, tsc_khz);
2270 
2271 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2272 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2273 			            user_tsc_khz);
2274 		return -1;
2275 	}
2276 
2277 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2278 	return 0;
2279 }
2280 
2281 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2282 {
2283 	u32 thresh_lo, thresh_hi;
2284 	int use_scaling = 0;
2285 
2286 	/* tsc_khz can be zero if TSC calibration fails */
2287 	if (user_tsc_khz == 0) {
2288 		/* set tsc_scaling_ratio to a safe value */
2289 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2290 		return -1;
2291 	}
2292 
2293 	/* Compute a scale to convert nanoseconds in TSC cycles */
2294 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2295 			   &vcpu->arch.virtual_tsc_shift,
2296 			   &vcpu->arch.virtual_tsc_mult);
2297 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2298 
2299 	/*
2300 	 * Compute the variation in TSC rate which is acceptable
2301 	 * within the range of tolerance and decide if the
2302 	 * rate being applied is within that bounds of the hardware
2303 	 * rate.  If so, no scaling or compensation need be done.
2304 	 */
2305 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2306 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2307 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2308 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2309 		use_scaling = 1;
2310 	}
2311 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2312 }
2313 
2314 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2315 {
2316 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2317 				      vcpu->arch.virtual_tsc_mult,
2318 				      vcpu->arch.virtual_tsc_shift);
2319 	tsc += vcpu->arch.this_tsc_write;
2320 	return tsc;
2321 }
2322 
2323 static inline int gtod_is_based_on_tsc(int mode)
2324 {
2325 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2326 }
2327 
2328 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2329 {
2330 #ifdef CONFIG_X86_64
2331 	bool vcpus_matched;
2332 	struct kvm_arch *ka = &vcpu->kvm->arch;
2333 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2334 
2335 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2336 			 atomic_read(&vcpu->kvm->online_vcpus));
2337 
2338 	/*
2339 	 * Once the masterclock is enabled, always perform request in
2340 	 * order to update it.
2341 	 *
2342 	 * In order to enable masterclock, the host clocksource must be TSC
2343 	 * and the vcpus need to have matched TSCs.  When that happens,
2344 	 * perform request to enable masterclock.
2345 	 */
2346 	if (ka->use_master_clock ||
2347 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2348 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2349 
2350 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2351 			    atomic_read(&vcpu->kvm->online_vcpus),
2352 		            ka->use_master_clock, gtod->clock.vclock_mode);
2353 #endif
2354 }
2355 
2356 /*
2357  * Multiply tsc by a fixed point number represented by ratio.
2358  *
2359  * The most significant 64-N bits (mult) of ratio represent the
2360  * integral part of the fixed point number; the remaining N bits
2361  * (frac) represent the fractional part, ie. ratio represents a fixed
2362  * point number (mult + frac * 2^(-N)).
2363  *
2364  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2365  */
2366 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2367 {
2368 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2369 }
2370 
2371 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2372 {
2373 	u64 _tsc = tsc;
2374 
2375 	if (ratio != kvm_default_tsc_scaling_ratio)
2376 		_tsc = __scale_tsc(ratio, tsc);
2377 
2378 	return _tsc;
2379 }
2380 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2381 
2382 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2383 {
2384 	u64 tsc;
2385 
2386 	tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2387 
2388 	return target_tsc - tsc;
2389 }
2390 
2391 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2392 {
2393 	return vcpu->arch.l1_tsc_offset +
2394 		kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2395 }
2396 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2397 
2398 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2399 {
2400 	u64 nested_offset;
2401 
2402 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2403 		nested_offset = l1_offset;
2404 	else
2405 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2406 						kvm_tsc_scaling_ratio_frac_bits);
2407 
2408 	nested_offset += l2_offset;
2409 	return nested_offset;
2410 }
2411 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2412 
2413 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2414 {
2415 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2416 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2417 				       kvm_tsc_scaling_ratio_frac_bits);
2418 
2419 	return l1_multiplier;
2420 }
2421 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2422 
2423 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2424 {
2425 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2426 				   vcpu->arch.l1_tsc_offset,
2427 				   l1_offset);
2428 
2429 	vcpu->arch.l1_tsc_offset = l1_offset;
2430 
2431 	/*
2432 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2433 	 * according to the spec this should set L1's TSC (as opposed to
2434 	 * setting L1's offset for L2).
2435 	 */
2436 	if (is_guest_mode(vcpu))
2437 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2438 			l1_offset,
2439 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2440 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2441 	else
2442 		vcpu->arch.tsc_offset = l1_offset;
2443 
2444 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2445 }
2446 
2447 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2448 {
2449 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2450 
2451 	/* Userspace is changing the multiplier while L2 is active */
2452 	if (is_guest_mode(vcpu))
2453 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2454 			l1_multiplier,
2455 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2456 	else
2457 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2458 
2459 	if (kvm_has_tsc_control)
2460 		static_call(kvm_x86_write_tsc_multiplier)(
2461 			vcpu, vcpu->arch.tsc_scaling_ratio);
2462 }
2463 
2464 static inline bool kvm_check_tsc_unstable(void)
2465 {
2466 #ifdef CONFIG_X86_64
2467 	/*
2468 	 * TSC is marked unstable when we're running on Hyper-V,
2469 	 * 'TSC page' clocksource is good.
2470 	 */
2471 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2472 		return false;
2473 #endif
2474 	return check_tsc_unstable();
2475 }
2476 
2477 /*
2478  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2479  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2480  * participates in.
2481  */
2482 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2483 				  u64 ns, bool matched)
2484 {
2485 	struct kvm *kvm = vcpu->kvm;
2486 
2487 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2488 
2489 	/*
2490 	 * We also track th most recent recorded KHZ, write and time to
2491 	 * allow the matching interval to be extended at each write.
2492 	 */
2493 	kvm->arch.last_tsc_nsec = ns;
2494 	kvm->arch.last_tsc_write = tsc;
2495 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2496 	kvm->arch.last_tsc_offset = offset;
2497 
2498 	vcpu->arch.last_guest_tsc = tsc;
2499 
2500 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2501 
2502 	if (!matched) {
2503 		/*
2504 		 * We split periods of matched TSC writes into generations.
2505 		 * For each generation, we track the original measured
2506 		 * nanosecond time, offset, and write, so if TSCs are in
2507 		 * sync, we can match exact offset, and if not, we can match
2508 		 * exact software computation in compute_guest_tsc()
2509 		 *
2510 		 * These values are tracked in kvm->arch.cur_xxx variables.
2511 		 */
2512 		kvm->arch.cur_tsc_generation++;
2513 		kvm->arch.cur_tsc_nsec = ns;
2514 		kvm->arch.cur_tsc_write = tsc;
2515 		kvm->arch.cur_tsc_offset = offset;
2516 		kvm->arch.nr_vcpus_matched_tsc = 0;
2517 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2518 		kvm->arch.nr_vcpus_matched_tsc++;
2519 	}
2520 
2521 	/* Keep track of which generation this VCPU has synchronized to */
2522 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2523 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2524 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2525 
2526 	kvm_track_tsc_matching(vcpu);
2527 }
2528 
2529 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2530 {
2531 	struct kvm *kvm = vcpu->kvm;
2532 	u64 offset, ns, elapsed;
2533 	unsigned long flags;
2534 	bool matched = false;
2535 	bool synchronizing = false;
2536 
2537 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2538 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2539 	ns = get_kvmclock_base_ns();
2540 	elapsed = ns - kvm->arch.last_tsc_nsec;
2541 
2542 	if (vcpu->arch.virtual_tsc_khz) {
2543 		if (data == 0) {
2544 			/*
2545 			 * detection of vcpu initialization -- need to sync
2546 			 * with other vCPUs. This particularly helps to keep
2547 			 * kvm_clock stable after CPU hotplug
2548 			 */
2549 			synchronizing = true;
2550 		} else {
2551 			u64 tsc_exp = kvm->arch.last_tsc_write +
2552 						nsec_to_cycles(vcpu, elapsed);
2553 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2554 			/*
2555 			 * Special case: TSC write with a small delta (1 second)
2556 			 * of virtual cycle time against real time is
2557 			 * interpreted as an attempt to synchronize the CPU.
2558 			 */
2559 			synchronizing = data < tsc_exp + tsc_hz &&
2560 					data + tsc_hz > tsc_exp;
2561 		}
2562 	}
2563 
2564 	/*
2565 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2566 	 * TSC, we add elapsed time in this computation.  We could let the
2567 	 * compensation code attempt to catch up if we fall behind, but
2568 	 * it's better to try to match offsets from the beginning.
2569          */
2570 	if (synchronizing &&
2571 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2572 		if (!kvm_check_tsc_unstable()) {
2573 			offset = kvm->arch.cur_tsc_offset;
2574 		} else {
2575 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2576 			data += delta;
2577 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2578 		}
2579 		matched = true;
2580 	}
2581 
2582 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2583 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2584 }
2585 
2586 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2587 					   s64 adjustment)
2588 {
2589 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2590 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2591 }
2592 
2593 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2594 {
2595 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2596 		WARN_ON(adjustment < 0);
2597 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2598 				   vcpu->arch.l1_tsc_scaling_ratio);
2599 	adjust_tsc_offset_guest(vcpu, adjustment);
2600 }
2601 
2602 #ifdef CONFIG_X86_64
2603 
2604 static u64 read_tsc(void)
2605 {
2606 	u64 ret = (u64)rdtsc_ordered();
2607 	u64 last = pvclock_gtod_data.clock.cycle_last;
2608 
2609 	if (likely(ret >= last))
2610 		return ret;
2611 
2612 	/*
2613 	 * GCC likes to generate cmov here, but this branch is extremely
2614 	 * predictable (it's just a function of time and the likely is
2615 	 * very likely) and there's a data dependence, so force GCC
2616 	 * to generate a branch instead.  I don't barrier() because
2617 	 * we don't actually need a barrier, and if this function
2618 	 * ever gets inlined it will generate worse code.
2619 	 */
2620 	asm volatile ("");
2621 	return last;
2622 }
2623 
2624 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2625 			  int *mode)
2626 {
2627 	long v;
2628 	u64 tsc_pg_val;
2629 
2630 	switch (clock->vclock_mode) {
2631 	case VDSO_CLOCKMODE_HVCLOCK:
2632 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2633 						  tsc_timestamp);
2634 		if (tsc_pg_val != U64_MAX) {
2635 			/* TSC page valid */
2636 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2637 			v = (tsc_pg_val - clock->cycle_last) &
2638 				clock->mask;
2639 		} else {
2640 			/* TSC page invalid */
2641 			*mode = VDSO_CLOCKMODE_NONE;
2642 		}
2643 		break;
2644 	case VDSO_CLOCKMODE_TSC:
2645 		*mode = VDSO_CLOCKMODE_TSC;
2646 		*tsc_timestamp = read_tsc();
2647 		v = (*tsc_timestamp - clock->cycle_last) &
2648 			clock->mask;
2649 		break;
2650 	default:
2651 		*mode = VDSO_CLOCKMODE_NONE;
2652 	}
2653 
2654 	if (*mode == VDSO_CLOCKMODE_NONE)
2655 		*tsc_timestamp = v = 0;
2656 
2657 	return v * clock->mult;
2658 }
2659 
2660 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2661 {
2662 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2663 	unsigned long seq;
2664 	int mode;
2665 	u64 ns;
2666 
2667 	do {
2668 		seq = read_seqcount_begin(&gtod->seq);
2669 		ns = gtod->raw_clock.base_cycles;
2670 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2671 		ns >>= gtod->raw_clock.shift;
2672 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2673 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2674 	*t = ns;
2675 
2676 	return mode;
2677 }
2678 
2679 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2680 {
2681 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2682 	unsigned long seq;
2683 	int mode;
2684 	u64 ns;
2685 
2686 	do {
2687 		seq = read_seqcount_begin(&gtod->seq);
2688 		ts->tv_sec = gtod->wall_time_sec;
2689 		ns = gtod->clock.base_cycles;
2690 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2691 		ns >>= gtod->clock.shift;
2692 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2693 
2694 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2695 	ts->tv_nsec = ns;
2696 
2697 	return mode;
2698 }
2699 
2700 /* returns true if host is using TSC based clocksource */
2701 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2702 {
2703 	/* checked again under seqlock below */
2704 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2705 		return false;
2706 
2707 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2708 						      tsc_timestamp));
2709 }
2710 
2711 /* returns true if host is using TSC based clocksource */
2712 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2713 					   u64 *tsc_timestamp)
2714 {
2715 	/* checked again under seqlock below */
2716 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2717 		return false;
2718 
2719 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2720 }
2721 #endif
2722 
2723 /*
2724  *
2725  * Assuming a stable TSC across physical CPUS, and a stable TSC
2726  * across virtual CPUs, the following condition is possible.
2727  * Each numbered line represents an event visible to both
2728  * CPUs at the next numbered event.
2729  *
2730  * "timespecX" represents host monotonic time. "tscX" represents
2731  * RDTSC value.
2732  *
2733  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2734  *
2735  * 1.  read timespec0,tsc0
2736  * 2.					| timespec1 = timespec0 + N
2737  * 					| tsc1 = tsc0 + M
2738  * 3. transition to guest		| transition to guest
2739  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2740  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2741  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2742  *
2743  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2744  *
2745  * 	- ret0 < ret1
2746  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2747  *		...
2748  *	- 0 < N - M => M < N
2749  *
2750  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2751  * always the case (the difference between two distinct xtime instances
2752  * might be smaller then the difference between corresponding TSC reads,
2753  * when updating guest vcpus pvclock areas).
2754  *
2755  * To avoid that problem, do not allow visibility of distinct
2756  * system_timestamp/tsc_timestamp values simultaneously: use a master
2757  * copy of host monotonic time values. Update that master copy
2758  * in lockstep.
2759  *
2760  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2761  *
2762  */
2763 
2764 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2765 {
2766 #ifdef CONFIG_X86_64
2767 	struct kvm_arch *ka = &kvm->arch;
2768 	int vclock_mode;
2769 	bool host_tsc_clocksource, vcpus_matched;
2770 
2771 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2772 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2773 			atomic_read(&kvm->online_vcpus));
2774 
2775 	/*
2776 	 * If the host uses TSC clock, then passthrough TSC as stable
2777 	 * to the guest.
2778 	 */
2779 	host_tsc_clocksource = kvm_get_time_and_clockread(
2780 					&ka->master_kernel_ns,
2781 					&ka->master_cycle_now);
2782 
2783 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2784 				&& !ka->backwards_tsc_observed
2785 				&& !ka->boot_vcpu_runs_old_kvmclock;
2786 
2787 	if (ka->use_master_clock)
2788 		atomic_set(&kvm_guest_has_master_clock, 1);
2789 
2790 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2791 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2792 					vcpus_matched);
2793 #endif
2794 }
2795 
2796 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2797 {
2798 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2799 }
2800 
2801 static void __kvm_start_pvclock_update(struct kvm *kvm)
2802 {
2803 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2804 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2805 }
2806 
2807 static void kvm_start_pvclock_update(struct kvm *kvm)
2808 {
2809 	kvm_make_mclock_inprogress_request(kvm);
2810 
2811 	/* no guest entries from this point */
2812 	__kvm_start_pvclock_update(kvm);
2813 }
2814 
2815 static void kvm_end_pvclock_update(struct kvm *kvm)
2816 {
2817 	struct kvm_arch *ka = &kvm->arch;
2818 	struct kvm_vcpu *vcpu;
2819 	int i;
2820 
2821 	write_seqcount_end(&ka->pvclock_sc);
2822 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2823 	kvm_for_each_vcpu(i, vcpu, kvm)
2824 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2825 
2826 	/* guest entries allowed */
2827 	kvm_for_each_vcpu(i, vcpu, kvm)
2828 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2829 }
2830 
2831 static void kvm_update_masterclock(struct kvm *kvm)
2832 {
2833 	kvm_hv_invalidate_tsc_page(kvm);
2834 	kvm_start_pvclock_update(kvm);
2835 	pvclock_update_vm_gtod_copy(kvm);
2836 	kvm_end_pvclock_update(kvm);
2837 }
2838 
2839 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2840 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2841 {
2842 	struct kvm_arch *ka = &kvm->arch;
2843 	struct pvclock_vcpu_time_info hv_clock;
2844 
2845 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2846 	get_cpu();
2847 
2848 	data->flags = 0;
2849 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2850 #ifdef CONFIG_X86_64
2851 		struct timespec64 ts;
2852 
2853 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2854 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2855 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2856 		} else
2857 #endif
2858 		data->host_tsc = rdtsc();
2859 
2860 		data->flags |= KVM_CLOCK_TSC_STABLE;
2861 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2862 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2863 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2864 				   &hv_clock.tsc_shift,
2865 				   &hv_clock.tsc_to_system_mul);
2866 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2867 	} else {
2868 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2869 	}
2870 
2871 	put_cpu();
2872 }
2873 
2874 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2875 {
2876 	struct kvm_arch *ka = &kvm->arch;
2877 	unsigned seq;
2878 
2879 	do {
2880 		seq = read_seqcount_begin(&ka->pvclock_sc);
2881 		__get_kvmclock(kvm, data);
2882 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2883 }
2884 
2885 u64 get_kvmclock_ns(struct kvm *kvm)
2886 {
2887 	struct kvm_clock_data data;
2888 
2889 	get_kvmclock(kvm, &data);
2890 	return data.clock;
2891 }
2892 
2893 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2894 				   struct gfn_to_hva_cache *cache,
2895 				   unsigned int offset)
2896 {
2897 	struct kvm_vcpu_arch *vcpu = &v->arch;
2898 	struct pvclock_vcpu_time_info guest_hv_clock;
2899 
2900 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2901 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2902 		return;
2903 
2904 	/* This VCPU is paused, but it's legal for a guest to read another
2905 	 * VCPU's kvmclock, so we really have to follow the specification where
2906 	 * it says that version is odd if data is being modified, and even after
2907 	 * it is consistent.
2908 	 *
2909 	 * Version field updates must be kept separate.  This is because
2910 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2911 	 * writes within a string instruction are weakly ordered.  So there
2912 	 * are three writes overall.
2913 	 *
2914 	 * As a small optimization, only write the version field in the first
2915 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2916 	 * version field is the first in the struct.
2917 	 */
2918 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2919 
2920 	if (guest_hv_clock.version & 1)
2921 		++guest_hv_clock.version;  /* first time write, random junk */
2922 
2923 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2924 	kvm_write_guest_offset_cached(v->kvm, cache,
2925 				      &vcpu->hv_clock, offset,
2926 				      sizeof(vcpu->hv_clock.version));
2927 
2928 	smp_wmb();
2929 
2930 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2931 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2932 
2933 	if (vcpu->pvclock_set_guest_stopped_request) {
2934 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2935 		vcpu->pvclock_set_guest_stopped_request = false;
2936 	}
2937 
2938 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2939 
2940 	kvm_write_guest_offset_cached(v->kvm, cache,
2941 				      &vcpu->hv_clock, offset,
2942 				      sizeof(vcpu->hv_clock));
2943 
2944 	smp_wmb();
2945 
2946 	vcpu->hv_clock.version++;
2947 	kvm_write_guest_offset_cached(v->kvm, cache,
2948 				     &vcpu->hv_clock, offset,
2949 				     sizeof(vcpu->hv_clock.version));
2950 }
2951 
2952 static int kvm_guest_time_update(struct kvm_vcpu *v)
2953 {
2954 	unsigned long flags, tgt_tsc_khz;
2955 	unsigned seq;
2956 	struct kvm_vcpu_arch *vcpu = &v->arch;
2957 	struct kvm_arch *ka = &v->kvm->arch;
2958 	s64 kernel_ns;
2959 	u64 tsc_timestamp, host_tsc;
2960 	u8 pvclock_flags;
2961 	bool use_master_clock;
2962 
2963 	kernel_ns = 0;
2964 	host_tsc = 0;
2965 
2966 	/*
2967 	 * If the host uses TSC clock, then passthrough TSC as stable
2968 	 * to the guest.
2969 	 */
2970 	do {
2971 		seq = read_seqcount_begin(&ka->pvclock_sc);
2972 		use_master_clock = ka->use_master_clock;
2973 		if (use_master_clock) {
2974 			host_tsc = ka->master_cycle_now;
2975 			kernel_ns = ka->master_kernel_ns;
2976 		}
2977 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2978 
2979 	/* Keep irq disabled to prevent changes to the clock */
2980 	local_irq_save(flags);
2981 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2982 	if (unlikely(tgt_tsc_khz == 0)) {
2983 		local_irq_restore(flags);
2984 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2985 		return 1;
2986 	}
2987 	if (!use_master_clock) {
2988 		host_tsc = rdtsc();
2989 		kernel_ns = get_kvmclock_base_ns();
2990 	}
2991 
2992 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2993 
2994 	/*
2995 	 * We may have to catch up the TSC to match elapsed wall clock
2996 	 * time for two reasons, even if kvmclock is used.
2997 	 *   1) CPU could have been running below the maximum TSC rate
2998 	 *   2) Broken TSC compensation resets the base at each VCPU
2999 	 *      entry to avoid unknown leaps of TSC even when running
3000 	 *      again on the same CPU.  This may cause apparent elapsed
3001 	 *      time to disappear, and the guest to stand still or run
3002 	 *	very slowly.
3003 	 */
3004 	if (vcpu->tsc_catchup) {
3005 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3006 		if (tsc > tsc_timestamp) {
3007 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3008 			tsc_timestamp = tsc;
3009 		}
3010 	}
3011 
3012 	local_irq_restore(flags);
3013 
3014 	/* With all the info we got, fill in the values */
3015 
3016 	if (kvm_has_tsc_control)
3017 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3018 					    v->arch.l1_tsc_scaling_ratio);
3019 
3020 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3021 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3022 				   &vcpu->hv_clock.tsc_shift,
3023 				   &vcpu->hv_clock.tsc_to_system_mul);
3024 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3025 	}
3026 
3027 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3028 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3029 	vcpu->last_guest_tsc = tsc_timestamp;
3030 
3031 	/* If the host uses TSC clocksource, then it is stable */
3032 	pvclock_flags = 0;
3033 	if (use_master_clock)
3034 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3035 
3036 	vcpu->hv_clock.flags = pvclock_flags;
3037 
3038 	if (vcpu->pv_time_enabled)
3039 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3040 	if (vcpu->xen.vcpu_info_set)
3041 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3042 				       offsetof(struct compat_vcpu_info, time));
3043 	if (vcpu->xen.vcpu_time_info_set)
3044 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3045 	if (!v->vcpu_idx)
3046 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3047 	return 0;
3048 }
3049 
3050 /*
3051  * kvmclock updates which are isolated to a given vcpu, such as
3052  * vcpu->cpu migration, should not allow system_timestamp from
3053  * the rest of the vcpus to remain static. Otherwise ntp frequency
3054  * correction applies to one vcpu's system_timestamp but not
3055  * the others.
3056  *
3057  * So in those cases, request a kvmclock update for all vcpus.
3058  * We need to rate-limit these requests though, as they can
3059  * considerably slow guests that have a large number of vcpus.
3060  * The time for a remote vcpu to update its kvmclock is bound
3061  * by the delay we use to rate-limit the updates.
3062  */
3063 
3064 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3065 
3066 static void kvmclock_update_fn(struct work_struct *work)
3067 {
3068 	int i;
3069 	struct delayed_work *dwork = to_delayed_work(work);
3070 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3071 					   kvmclock_update_work);
3072 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3073 	struct kvm_vcpu *vcpu;
3074 
3075 	kvm_for_each_vcpu(i, vcpu, kvm) {
3076 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3077 		kvm_vcpu_kick(vcpu);
3078 	}
3079 }
3080 
3081 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3082 {
3083 	struct kvm *kvm = v->kvm;
3084 
3085 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3086 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3087 					KVMCLOCK_UPDATE_DELAY);
3088 }
3089 
3090 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3091 
3092 static void kvmclock_sync_fn(struct work_struct *work)
3093 {
3094 	struct delayed_work *dwork = to_delayed_work(work);
3095 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3096 					   kvmclock_sync_work);
3097 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3098 
3099 	if (!kvmclock_periodic_sync)
3100 		return;
3101 
3102 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3103 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3104 					KVMCLOCK_SYNC_PERIOD);
3105 }
3106 
3107 /*
3108  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3109  */
3110 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3111 {
3112 	/* McStatusWrEn enabled? */
3113 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3114 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3115 
3116 	return false;
3117 }
3118 
3119 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3120 {
3121 	u64 mcg_cap = vcpu->arch.mcg_cap;
3122 	unsigned bank_num = mcg_cap & 0xff;
3123 	u32 msr = msr_info->index;
3124 	u64 data = msr_info->data;
3125 
3126 	switch (msr) {
3127 	case MSR_IA32_MCG_STATUS:
3128 		vcpu->arch.mcg_status = data;
3129 		break;
3130 	case MSR_IA32_MCG_CTL:
3131 		if (!(mcg_cap & MCG_CTL_P) &&
3132 		    (data || !msr_info->host_initiated))
3133 			return 1;
3134 		if (data != 0 && data != ~(u64)0)
3135 			return 1;
3136 		vcpu->arch.mcg_ctl = data;
3137 		break;
3138 	default:
3139 		if (msr >= MSR_IA32_MC0_CTL &&
3140 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3141 			u32 offset = array_index_nospec(
3142 				msr - MSR_IA32_MC0_CTL,
3143 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3144 
3145 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3146 			 * some Linux kernels though clear bit 10 in bank 4 to
3147 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3148 			 * this to avoid an uncatched #GP in the guest
3149 			 */
3150 			if ((offset & 0x3) == 0 &&
3151 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3152 				return -1;
3153 
3154 			/* MCi_STATUS */
3155 			if (!msr_info->host_initiated &&
3156 			    (offset & 0x3) == 1 && data != 0) {
3157 				if (!can_set_mci_status(vcpu))
3158 					return -1;
3159 			}
3160 
3161 			vcpu->arch.mce_banks[offset] = data;
3162 			break;
3163 		}
3164 		return 1;
3165 	}
3166 	return 0;
3167 }
3168 
3169 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3170 {
3171 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3172 
3173 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3174 }
3175 
3176 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3177 {
3178 	gpa_t gpa = data & ~0x3f;
3179 
3180 	/* Bits 4:5 are reserved, Should be zero */
3181 	if (data & 0x30)
3182 		return 1;
3183 
3184 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3185 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3186 		return 1;
3187 
3188 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3189 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3190 		return 1;
3191 
3192 	if (!lapic_in_kernel(vcpu))
3193 		return data ? 1 : 0;
3194 
3195 	vcpu->arch.apf.msr_en_val = data;
3196 
3197 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3198 		kvm_clear_async_pf_completion_queue(vcpu);
3199 		kvm_async_pf_hash_reset(vcpu);
3200 		return 0;
3201 	}
3202 
3203 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3204 					sizeof(u64)))
3205 		return 1;
3206 
3207 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3208 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3209 
3210 	kvm_async_pf_wakeup_all(vcpu);
3211 
3212 	return 0;
3213 }
3214 
3215 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3216 {
3217 	/* Bits 8-63 are reserved */
3218 	if (data >> 8)
3219 		return 1;
3220 
3221 	if (!lapic_in_kernel(vcpu))
3222 		return 1;
3223 
3224 	vcpu->arch.apf.msr_int_val = data;
3225 
3226 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3227 
3228 	return 0;
3229 }
3230 
3231 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3232 {
3233 	vcpu->arch.pv_time_enabled = false;
3234 	vcpu->arch.time = 0;
3235 }
3236 
3237 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3238 {
3239 	++vcpu->stat.tlb_flush;
3240 	static_call(kvm_x86_tlb_flush_all)(vcpu);
3241 }
3242 
3243 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3244 {
3245 	++vcpu->stat.tlb_flush;
3246 
3247 	if (!tdp_enabled) {
3248 		/*
3249 		 * A TLB flush on behalf of the guest is equivalent to
3250 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3251 		 * a forced sync of the shadow page tables.  Ensure all the
3252 		 * roots are synced and the guest TLB in hardware is clean.
3253 		 */
3254 		kvm_mmu_sync_roots(vcpu);
3255 		kvm_mmu_sync_prev_roots(vcpu);
3256 	}
3257 
3258 	static_call(kvm_x86_tlb_flush_guest)(vcpu);
3259 }
3260 
3261 
3262 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3263 {
3264 	++vcpu->stat.tlb_flush;
3265 	static_call(kvm_x86_tlb_flush_current)(vcpu);
3266 }
3267 
3268 /*
3269  * Service "local" TLB flush requests, which are specific to the current MMU
3270  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3271  * TLB flushes that are targeted at an MMU context also need to be serviced
3272  * prior before nested VM-Enter/VM-Exit.
3273  */
3274 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3275 {
3276 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3277 		kvm_vcpu_flush_tlb_current(vcpu);
3278 
3279 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3280 		kvm_vcpu_flush_tlb_guest(vcpu);
3281 }
3282 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3283 
3284 static void record_steal_time(struct kvm_vcpu *vcpu)
3285 {
3286 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3287 	struct kvm_steal_time __user *st;
3288 	struct kvm_memslots *slots;
3289 	u64 steal;
3290 	u32 version;
3291 
3292 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3293 		kvm_xen_runstate_set_running(vcpu);
3294 		return;
3295 	}
3296 
3297 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3298 		return;
3299 
3300 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3301 		return;
3302 
3303 	slots = kvm_memslots(vcpu->kvm);
3304 
3305 	if (unlikely(slots->generation != ghc->generation ||
3306 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3307 		gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3308 
3309 		/* We rely on the fact that it fits in a single page. */
3310 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3311 
3312 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3313 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3314 			return;
3315 	}
3316 
3317 	st = (struct kvm_steal_time __user *)ghc->hva;
3318 	/*
3319 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3320 	 * expensive IPIs.
3321 	 */
3322 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3323 		u8 st_preempted = 0;
3324 		int err = -EFAULT;
3325 
3326 		if (!user_access_begin(st, sizeof(*st)))
3327 			return;
3328 
3329 		asm volatile("1: xchgb %0, %2\n"
3330 			     "xor %1, %1\n"
3331 			     "2:\n"
3332 			     _ASM_EXTABLE_UA(1b, 2b)
3333 			     : "+q" (st_preempted),
3334 			       "+&r" (err),
3335 			       "+m" (st->preempted));
3336 		if (err)
3337 			goto out;
3338 
3339 		user_access_end();
3340 
3341 		vcpu->arch.st.preempted = 0;
3342 
3343 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3344 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3345 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3346 			kvm_vcpu_flush_tlb_guest(vcpu);
3347 
3348 		if (!user_access_begin(st, sizeof(*st)))
3349 			goto dirty;
3350 	} else {
3351 		if (!user_access_begin(st, sizeof(*st)))
3352 			return;
3353 
3354 		unsafe_put_user(0, &st->preempted, out);
3355 		vcpu->arch.st.preempted = 0;
3356 	}
3357 
3358 	unsafe_get_user(version, &st->version, out);
3359 	if (version & 1)
3360 		version += 1;  /* first time write, random junk */
3361 
3362 	version += 1;
3363 	unsafe_put_user(version, &st->version, out);
3364 
3365 	smp_wmb();
3366 
3367 	unsafe_get_user(steal, &st->steal, out);
3368 	steal += current->sched_info.run_delay -
3369 		vcpu->arch.st.last_steal;
3370 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3371 	unsafe_put_user(steal, &st->steal, out);
3372 
3373 	version += 1;
3374 	unsafe_put_user(version, &st->version, out);
3375 
3376  out:
3377 	user_access_end();
3378  dirty:
3379 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3380 }
3381 
3382 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3383 {
3384 	bool pr = false;
3385 	u32 msr = msr_info->index;
3386 	u64 data = msr_info->data;
3387 
3388 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3389 		return kvm_xen_write_hypercall_page(vcpu, data);
3390 
3391 	switch (msr) {
3392 	case MSR_AMD64_NB_CFG:
3393 	case MSR_IA32_UCODE_WRITE:
3394 	case MSR_VM_HSAVE_PA:
3395 	case MSR_AMD64_PATCH_LOADER:
3396 	case MSR_AMD64_BU_CFG2:
3397 	case MSR_AMD64_DC_CFG:
3398 	case MSR_F15H_EX_CFG:
3399 		break;
3400 
3401 	case MSR_IA32_UCODE_REV:
3402 		if (msr_info->host_initiated)
3403 			vcpu->arch.microcode_version = data;
3404 		break;
3405 	case MSR_IA32_ARCH_CAPABILITIES:
3406 		if (!msr_info->host_initiated)
3407 			return 1;
3408 		vcpu->arch.arch_capabilities = data;
3409 		break;
3410 	case MSR_IA32_PERF_CAPABILITIES: {
3411 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3412 
3413 		if (!msr_info->host_initiated)
3414 			return 1;
3415 		if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3416 			return 1;
3417 		if (data & ~msr_ent.data)
3418 			return 1;
3419 
3420 		vcpu->arch.perf_capabilities = data;
3421 
3422 		return 0;
3423 		}
3424 	case MSR_EFER:
3425 		return set_efer(vcpu, msr_info);
3426 	case MSR_K7_HWCR:
3427 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3428 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3429 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3430 
3431 		/* Handle McStatusWrEn */
3432 		if (data == BIT_ULL(18)) {
3433 			vcpu->arch.msr_hwcr = data;
3434 		} else if (data != 0) {
3435 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3436 				    data);
3437 			return 1;
3438 		}
3439 		break;
3440 	case MSR_FAM10H_MMIO_CONF_BASE:
3441 		if (data != 0) {
3442 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3443 				    "0x%llx\n", data);
3444 			return 1;
3445 		}
3446 		break;
3447 	case 0x200 ... 0x2ff:
3448 		return kvm_mtrr_set_msr(vcpu, msr, data);
3449 	case MSR_IA32_APICBASE:
3450 		return kvm_set_apic_base(vcpu, msr_info);
3451 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3452 		return kvm_x2apic_msr_write(vcpu, msr, data);
3453 	case MSR_IA32_TSC_DEADLINE:
3454 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3455 		break;
3456 	case MSR_IA32_TSC_ADJUST:
3457 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3458 			if (!msr_info->host_initiated) {
3459 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3460 				adjust_tsc_offset_guest(vcpu, adj);
3461 				/* Before back to guest, tsc_timestamp must be adjusted
3462 				 * as well, otherwise guest's percpu pvclock time could jump.
3463 				 */
3464 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3465 			}
3466 			vcpu->arch.ia32_tsc_adjust_msr = data;
3467 		}
3468 		break;
3469 	case MSR_IA32_MISC_ENABLE:
3470 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3471 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3472 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3473 				return 1;
3474 			vcpu->arch.ia32_misc_enable_msr = data;
3475 			kvm_update_cpuid_runtime(vcpu);
3476 		} else {
3477 			vcpu->arch.ia32_misc_enable_msr = data;
3478 		}
3479 		break;
3480 	case MSR_IA32_SMBASE:
3481 		if (!msr_info->host_initiated)
3482 			return 1;
3483 		vcpu->arch.smbase = data;
3484 		break;
3485 	case MSR_IA32_POWER_CTL:
3486 		vcpu->arch.msr_ia32_power_ctl = data;
3487 		break;
3488 	case MSR_IA32_TSC:
3489 		if (msr_info->host_initiated) {
3490 			kvm_synchronize_tsc(vcpu, data);
3491 		} else {
3492 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3493 			adjust_tsc_offset_guest(vcpu, adj);
3494 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3495 		}
3496 		break;
3497 	case MSR_IA32_XSS:
3498 		if (!msr_info->host_initiated &&
3499 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3500 			return 1;
3501 		/*
3502 		 * KVM supports exposing PT to the guest, but does not support
3503 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3504 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3505 		 */
3506 		if (data & ~supported_xss)
3507 			return 1;
3508 		vcpu->arch.ia32_xss = data;
3509 		break;
3510 	case MSR_SMI_COUNT:
3511 		if (!msr_info->host_initiated)
3512 			return 1;
3513 		vcpu->arch.smi_count = data;
3514 		break;
3515 	case MSR_KVM_WALL_CLOCK_NEW:
3516 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3517 			return 1;
3518 
3519 		vcpu->kvm->arch.wall_clock = data;
3520 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3521 		break;
3522 	case MSR_KVM_WALL_CLOCK:
3523 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3524 			return 1;
3525 
3526 		vcpu->kvm->arch.wall_clock = data;
3527 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3528 		break;
3529 	case MSR_KVM_SYSTEM_TIME_NEW:
3530 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3531 			return 1;
3532 
3533 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3534 		break;
3535 	case MSR_KVM_SYSTEM_TIME:
3536 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3537 			return 1;
3538 
3539 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3540 		break;
3541 	case MSR_KVM_ASYNC_PF_EN:
3542 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3543 			return 1;
3544 
3545 		if (kvm_pv_enable_async_pf(vcpu, data))
3546 			return 1;
3547 		break;
3548 	case MSR_KVM_ASYNC_PF_INT:
3549 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3550 			return 1;
3551 
3552 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3553 			return 1;
3554 		break;
3555 	case MSR_KVM_ASYNC_PF_ACK:
3556 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3557 			return 1;
3558 		if (data & 0x1) {
3559 			vcpu->arch.apf.pageready_pending = false;
3560 			kvm_check_async_pf_completion(vcpu);
3561 		}
3562 		break;
3563 	case MSR_KVM_STEAL_TIME:
3564 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3565 			return 1;
3566 
3567 		if (unlikely(!sched_info_on()))
3568 			return 1;
3569 
3570 		if (data & KVM_STEAL_RESERVED_MASK)
3571 			return 1;
3572 
3573 		vcpu->arch.st.msr_val = data;
3574 
3575 		if (!(data & KVM_MSR_ENABLED))
3576 			break;
3577 
3578 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3579 
3580 		break;
3581 	case MSR_KVM_PV_EOI_EN:
3582 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3583 			return 1;
3584 
3585 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3586 			return 1;
3587 		break;
3588 
3589 	case MSR_KVM_POLL_CONTROL:
3590 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3591 			return 1;
3592 
3593 		/* only enable bit supported */
3594 		if (data & (-1ULL << 1))
3595 			return 1;
3596 
3597 		vcpu->arch.msr_kvm_poll_control = data;
3598 		break;
3599 
3600 	case MSR_IA32_MCG_CTL:
3601 	case MSR_IA32_MCG_STATUS:
3602 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3603 		return set_msr_mce(vcpu, msr_info);
3604 
3605 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3606 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3607 		pr = true;
3608 		fallthrough;
3609 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3610 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3611 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3612 			return kvm_pmu_set_msr(vcpu, msr_info);
3613 
3614 		if (pr || data != 0)
3615 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3616 				    "0x%x data 0x%llx\n", msr, data);
3617 		break;
3618 	case MSR_K7_CLK_CTL:
3619 		/*
3620 		 * Ignore all writes to this no longer documented MSR.
3621 		 * Writes are only relevant for old K7 processors,
3622 		 * all pre-dating SVM, but a recommended workaround from
3623 		 * AMD for these chips. It is possible to specify the
3624 		 * affected processor models on the command line, hence
3625 		 * the need to ignore the workaround.
3626 		 */
3627 		break;
3628 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3629 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3630 	case HV_X64_MSR_SYNDBG_OPTIONS:
3631 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3632 	case HV_X64_MSR_CRASH_CTL:
3633 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3634 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3635 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3636 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3637 		return kvm_hv_set_msr_common(vcpu, msr, data,
3638 					     msr_info->host_initiated);
3639 	case MSR_IA32_BBL_CR_CTL3:
3640 		/* Drop writes to this legacy MSR -- see rdmsr
3641 		 * counterpart for further detail.
3642 		 */
3643 		if (report_ignored_msrs)
3644 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3645 				msr, data);
3646 		break;
3647 	case MSR_AMD64_OSVW_ID_LENGTH:
3648 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3649 			return 1;
3650 		vcpu->arch.osvw.length = data;
3651 		break;
3652 	case MSR_AMD64_OSVW_STATUS:
3653 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3654 			return 1;
3655 		vcpu->arch.osvw.status = data;
3656 		break;
3657 	case MSR_PLATFORM_INFO:
3658 		if (!msr_info->host_initiated ||
3659 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3660 		     cpuid_fault_enabled(vcpu)))
3661 			return 1;
3662 		vcpu->arch.msr_platform_info = data;
3663 		break;
3664 	case MSR_MISC_FEATURES_ENABLES:
3665 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3666 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3667 		     !supports_cpuid_fault(vcpu)))
3668 			return 1;
3669 		vcpu->arch.msr_misc_features_enables = data;
3670 		break;
3671 	default:
3672 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3673 			return kvm_pmu_set_msr(vcpu, msr_info);
3674 		return KVM_MSR_RET_INVALID;
3675 	}
3676 	return 0;
3677 }
3678 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3679 
3680 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3681 {
3682 	u64 data;
3683 	u64 mcg_cap = vcpu->arch.mcg_cap;
3684 	unsigned bank_num = mcg_cap & 0xff;
3685 
3686 	switch (msr) {
3687 	case MSR_IA32_P5_MC_ADDR:
3688 	case MSR_IA32_P5_MC_TYPE:
3689 		data = 0;
3690 		break;
3691 	case MSR_IA32_MCG_CAP:
3692 		data = vcpu->arch.mcg_cap;
3693 		break;
3694 	case MSR_IA32_MCG_CTL:
3695 		if (!(mcg_cap & MCG_CTL_P) && !host)
3696 			return 1;
3697 		data = vcpu->arch.mcg_ctl;
3698 		break;
3699 	case MSR_IA32_MCG_STATUS:
3700 		data = vcpu->arch.mcg_status;
3701 		break;
3702 	default:
3703 		if (msr >= MSR_IA32_MC0_CTL &&
3704 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3705 			u32 offset = array_index_nospec(
3706 				msr - MSR_IA32_MC0_CTL,
3707 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3708 
3709 			data = vcpu->arch.mce_banks[offset];
3710 			break;
3711 		}
3712 		return 1;
3713 	}
3714 	*pdata = data;
3715 	return 0;
3716 }
3717 
3718 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3719 {
3720 	switch (msr_info->index) {
3721 	case MSR_IA32_PLATFORM_ID:
3722 	case MSR_IA32_EBL_CR_POWERON:
3723 	case MSR_IA32_LASTBRANCHFROMIP:
3724 	case MSR_IA32_LASTBRANCHTOIP:
3725 	case MSR_IA32_LASTINTFROMIP:
3726 	case MSR_IA32_LASTINTTOIP:
3727 	case MSR_AMD64_SYSCFG:
3728 	case MSR_K8_TSEG_ADDR:
3729 	case MSR_K8_TSEG_MASK:
3730 	case MSR_VM_HSAVE_PA:
3731 	case MSR_K8_INT_PENDING_MSG:
3732 	case MSR_AMD64_NB_CFG:
3733 	case MSR_FAM10H_MMIO_CONF_BASE:
3734 	case MSR_AMD64_BU_CFG2:
3735 	case MSR_IA32_PERF_CTL:
3736 	case MSR_AMD64_DC_CFG:
3737 	case MSR_F15H_EX_CFG:
3738 	/*
3739 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3740 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3741 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3742 	 * so for existing CPU-specific MSRs.
3743 	 */
3744 	case MSR_RAPL_POWER_UNIT:
3745 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3746 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3747 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3748 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3749 		msr_info->data = 0;
3750 		break;
3751 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3752 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3753 			return kvm_pmu_get_msr(vcpu, msr_info);
3754 		if (!msr_info->host_initiated)
3755 			return 1;
3756 		msr_info->data = 0;
3757 		break;
3758 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3759 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3760 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3761 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3762 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3763 			return kvm_pmu_get_msr(vcpu, msr_info);
3764 		msr_info->data = 0;
3765 		break;
3766 	case MSR_IA32_UCODE_REV:
3767 		msr_info->data = vcpu->arch.microcode_version;
3768 		break;
3769 	case MSR_IA32_ARCH_CAPABILITIES:
3770 		if (!msr_info->host_initiated &&
3771 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3772 			return 1;
3773 		msr_info->data = vcpu->arch.arch_capabilities;
3774 		break;
3775 	case MSR_IA32_PERF_CAPABILITIES:
3776 		if (!msr_info->host_initiated &&
3777 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3778 			return 1;
3779 		msr_info->data = vcpu->arch.perf_capabilities;
3780 		break;
3781 	case MSR_IA32_POWER_CTL:
3782 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3783 		break;
3784 	case MSR_IA32_TSC: {
3785 		/*
3786 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3787 		 * even when not intercepted. AMD manual doesn't explicitly
3788 		 * state this but appears to behave the same.
3789 		 *
3790 		 * On userspace reads and writes, however, we unconditionally
3791 		 * return L1's TSC value to ensure backwards-compatible
3792 		 * behavior for migration.
3793 		 */
3794 		u64 offset, ratio;
3795 
3796 		if (msr_info->host_initiated) {
3797 			offset = vcpu->arch.l1_tsc_offset;
3798 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3799 		} else {
3800 			offset = vcpu->arch.tsc_offset;
3801 			ratio = vcpu->arch.tsc_scaling_ratio;
3802 		}
3803 
3804 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3805 		break;
3806 	}
3807 	case MSR_MTRRcap:
3808 	case 0x200 ... 0x2ff:
3809 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3810 	case 0xcd: /* fsb frequency */
3811 		msr_info->data = 3;
3812 		break;
3813 		/*
3814 		 * MSR_EBC_FREQUENCY_ID
3815 		 * Conservative value valid for even the basic CPU models.
3816 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3817 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3818 		 * and 266MHz for model 3, or 4. Set Core Clock
3819 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3820 		 * 31:24) even though these are only valid for CPU
3821 		 * models > 2, however guests may end up dividing or
3822 		 * multiplying by zero otherwise.
3823 		 */
3824 	case MSR_EBC_FREQUENCY_ID:
3825 		msr_info->data = 1 << 24;
3826 		break;
3827 	case MSR_IA32_APICBASE:
3828 		msr_info->data = kvm_get_apic_base(vcpu);
3829 		break;
3830 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3831 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3832 	case MSR_IA32_TSC_DEADLINE:
3833 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3834 		break;
3835 	case MSR_IA32_TSC_ADJUST:
3836 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3837 		break;
3838 	case MSR_IA32_MISC_ENABLE:
3839 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3840 		break;
3841 	case MSR_IA32_SMBASE:
3842 		if (!msr_info->host_initiated)
3843 			return 1;
3844 		msr_info->data = vcpu->arch.smbase;
3845 		break;
3846 	case MSR_SMI_COUNT:
3847 		msr_info->data = vcpu->arch.smi_count;
3848 		break;
3849 	case MSR_IA32_PERF_STATUS:
3850 		/* TSC increment by tick */
3851 		msr_info->data = 1000ULL;
3852 		/* CPU multiplier */
3853 		msr_info->data |= (((uint64_t)4ULL) << 40);
3854 		break;
3855 	case MSR_EFER:
3856 		msr_info->data = vcpu->arch.efer;
3857 		break;
3858 	case MSR_KVM_WALL_CLOCK:
3859 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3860 			return 1;
3861 
3862 		msr_info->data = vcpu->kvm->arch.wall_clock;
3863 		break;
3864 	case MSR_KVM_WALL_CLOCK_NEW:
3865 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3866 			return 1;
3867 
3868 		msr_info->data = vcpu->kvm->arch.wall_clock;
3869 		break;
3870 	case MSR_KVM_SYSTEM_TIME:
3871 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3872 			return 1;
3873 
3874 		msr_info->data = vcpu->arch.time;
3875 		break;
3876 	case MSR_KVM_SYSTEM_TIME_NEW:
3877 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3878 			return 1;
3879 
3880 		msr_info->data = vcpu->arch.time;
3881 		break;
3882 	case MSR_KVM_ASYNC_PF_EN:
3883 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3884 			return 1;
3885 
3886 		msr_info->data = vcpu->arch.apf.msr_en_val;
3887 		break;
3888 	case MSR_KVM_ASYNC_PF_INT:
3889 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3890 			return 1;
3891 
3892 		msr_info->data = vcpu->arch.apf.msr_int_val;
3893 		break;
3894 	case MSR_KVM_ASYNC_PF_ACK:
3895 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3896 			return 1;
3897 
3898 		msr_info->data = 0;
3899 		break;
3900 	case MSR_KVM_STEAL_TIME:
3901 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3902 			return 1;
3903 
3904 		msr_info->data = vcpu->arch.st.msr_val;
3905 		break;
3906 	case MSR_KVM_PV_EOI_EN:
3907 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3908 			return 1;
3909 
3910 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3911 		break;
3912 	case MSR_KVM_POLL_CONTROL:
3913 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3914 			return 1;
3915 
3916 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3917 		break;
3918 	case MSR_IA32_P5_MC_ADDR:
3919 	case MSR_IA32_P5_MC_TYPE:
3920 	case MSR_IA32_MCG_CAP:
3921 	case MSR_IA32_MCG_CTL:
3922 	case MSR_IA32_MCG_STATUS:
3923 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3924 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3925 				   msr_info->host_initiated);
3926 	case MSR_IA32_XSS:
3927 		if (!msr_info->host_initiated &&
3928 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3929 			return 1;
3930 		msr_info->data = vcpu->arch.ia32_xss;
3931 		break;
3932 	case MSR_K7_CLK_CTL:
3933 		/*
3934 		 * Provide expected ramp-up count for K7. All other
3935 		 * are set to zero, indicating minimum divisors for
3936 		 * every field.
3937 		 *
3938 		 * This prevents guest kernels on AMD host with CPU
3939 		 * type 6, model 8 and higher from exploding due to
3940 		 * the rdmsr failing.
3941 		 */
3942 		msr_info->data = 0x20000000;
3943 		break;
3944 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3945 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3946 	case HV_X64_MSR_SYNDBG_OPTIONS:
3947 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3948 	case HV_X64_MSR_CRASH_CTL:
3949 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3950 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3951 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3952 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3953 		return kvm_hv_get_msr_common(vcpu,
3954 					     msr_info->index, &msr_info->data,
3955 					     msr_info->host_initiated);
3956 	case MSR_IA32_BBL_CR_CTL3:
3957 		/* This legacy MSR exists but isn't fully documented in current
3958 		 * silicon.  It is however accessed by winxp in very narrow
3959 		 * scenarios where it sets bit #19, itself documented as
3960 		 * a "reserved" bit.  Best effort attempt to source coherent
3961 		 * read data here should the balance of the register be
3962 		 * interpreted by the guest:
3963 		 *
3964 		 * L2 cache control register 3: 64GB range, 256KB size,
3965 		 * enabled, latency 0x1, configured
3966 		 */
3967 		msr_info->data = 0xbe702111;
3968 		break;
3969 	case MSR_AMD64_OSVW_ID_LENGTH:
3970 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3971 			return 1;
3972 		msr_info->data = vcpu->arch.osvw.length;
3973 		break;
3974 	case MSR_AMD64_OSVW_STATUS:
3975 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3976 			return 1;
3977 		msr_info->data = vcpu->arch.osvw.status;
3978 		break;
3979 	case MSR_PLATFORM_INFO:
3980 		if (!msr_info->host_initiated &&
3981 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3982 			return 1;
3983 		msr_info->data = vcpu->arch.msr_platform_info;
3984 		break;
3985 	case MSR_MISC_FEATURES_ENABLES:
3986 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3987 		break;
3988 	case MSR_K7_HWCR:
3989 		msr_info->data = vcpu->arch.msr_hwcr;
3990 		break;
3991 	default:
3992 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3993 			return kvm_pmu_get_msr(vcpu, msr_info);
3994 		return KVM_MSR_RET_INVALID;
3995 	}
3996 	return 0;
3997 }
3998 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3999 
4000 /*
4001  * Read or write a bunch of msrs. All parameters are kernel addresses.
4002  *
4003  * @return number of msrs set successfully.
4004  */
4005 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4006 		    struct kvm_msr_entry *entries,
4007 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4008 				  unsigned index, u64 *data))
4009 {
4010 	int i;
4011 
4012 	for (i = 0; i < msrs->nmsrs; ++i)
4013 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4014 			break;
4015 
4016 	return i;
4017 }
4018 
4019 /*
4020  * Read or write a bunch of msrs. Parameters are user addresses.
4021  *
4022  * @return number of msrs set successfully.
4023  */
4024 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4025 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4026 				unsigned index, u64 *data),
4027 		  int writeback)
4028 {
4029 	struct kvm_msrs msrs;
4030 	struct kvm_msr_entry *entries;
4031 	int r, n;
4032 	unsigned size;
4033 
4034 	r = -EFAULT;
4035 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4036 		goto out;
4037 
4038 	r = -E2BIG;
4039 	if (msrs.nmsrs >= MAX_IO_MSRS)
4040 		goto out;
4041 
4042 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4043 	entries = memdup_user(user_msrs->entries, size);
4044 	if (IS_ERR(entries)) {
4045 		r = PTR_ERR(entries);
4046 		goto out;
4047 	}
4048 
4049 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4050 	if (r < 0)
4051 		goto out_free;
4052 
4053 	r = -EFAULT;
4054 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4055 		goto out_free;
4056 
4057 	r = n;
4058 
4059 out_free:
4060 	kfree(entries);
4061 out:
4062 	return r;
4063 }
4064 
4065 static inline bool kvm_can_mwait_in_guest(void)
4066 {
4067 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4068 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4069 		boot_cpu_has(X86_FEATURE_ARAT);
4070 }
4071 
4072 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4073 					    struct kvm_cpuid2 __user *cpuid_arg)
4074 {
4075 	struct kvm_cpuid2 cpuid;
4076 	int r;
4077 
4078 	r = -EFAULT;
4079 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4080 		return r;
4081 
4082 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4083 	if (r)
4084 		return r;
4085 
4086 	r = -EFAULT;
4087 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4088 		return r;
4089 
4090 	return 0;
4091 }
4092 
4093 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4094 {
4095 	int r = 0;
4096 
4097 	switch (ext) {
4098 	case KVM_CAP_IRQCHIP:
4099 	case KVM_CAP_HLT:
4100 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4101 	case KVM_CAP_SET_TSS_ADDR:
4102 	case KVM_CAP_EXT_CPUID:
4103 	case KVM_CAP_EXT_EMUL_CPUID:
4104 	case KVM_CAP_CLOCKSOURCE:
4105 	case KVM_CAP_PIT:
4106 	case KVM_CAP_NOP_IO_DELAY:
4107 	case KVM_CAP_MP_STATE:
4108 	case KVM_CAP_SYNC_MMU:
4109 	case KVM_CAP_USER_NMI:
4110 	case KVM_CAP_REINJECT_CONTROL:
4111 	case KVM_CAP_IRQ_INJECT_STATUS:
4112 	case KVM_CAP_IOEVENTFD:
4113 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4114 	case KVM_CAP_PIT2:
4115 	case KVM_CAP_PIT_STATE2:
4116 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4117 	case KVM_CAP_VCPU_EVENTS:
4118 	case KVM_CAP_HYPERV:
4119 	case KVM_CAP_HYPERV_VAPIC:
4120 	case KVM_CAP_HYPERV_SPIN:
4121 	case KVM_CAP_HYPERV_SYNIC:
4122 	case KVM_CAP_HYPERV_SYNIC2:
4123 	case KVM_CAP_HYPERV_VP_INDEX:
4124 	case KVM_CAP_HYPERV_EVENTFD:
4125 	case KVM_CAP_HYPERV_TLBFLUSH:
4126 	case KVM_CAP_HYPERV_SEND_IPI:
4127 	case KVM_CAP_HYPERV_CPUID:
4128 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4129 	case KVM_CAP_SYS_HYPERV_CPUID:
4130 	case KVM_CAP_PCI_SEGMENT:
4131 	case KVM_CAP_DEBUGREGS:
4132 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4133 	case KVM_CAP_XSAVE:
4134 	case KVM_CAP_ASYNC_PF:
4135 	case KVM_CAP_ASYNC_PF_INT:
4136 	case KVM_CAP_GET_TSC_KHZ:
4137 	case KVM_CAP_KVMCLOCK_CTRL:
4138 	case KVM_CAP_READONLY_MEM:
4139 	case KVM_CAP_HYPERV_TIME:
4140 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4141 	case KVM_CAP_TSC_DEADLINE_TIMER:
4142 	case KVM_CAP_DISABLE_QUIRKS:
4143 	case KVM_CAP_SET_BOOT_CPU_ID:
4144  	case KVM_CAP_SPLIT_IRQCHIP:
4145 	case KVM_CAP_IMMEDIATE_EXIT:
4146 	case KVM_CAP_PMU_EVENT_FILTER:
4147 	case KVM_CAP_GET_MSR_FEATURES:
4148 	case KVM_CAP_MSR_PLATFORM_INFO:
4149 	case KVM_CAP_EXCEPTION_PAYLOAD:
4150 	case KVM_CAP_SET_GUEST_DEBUG:
4151 	case KVM_CAP_LAST_CPU:
4152 	case KVM_CAP_X86_USER_SPACE_MSR:
4153 	case KVM_CAP_X86_MSR_FILTER:
4154 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4155 #ifdef CONFIG_X86_SGX_KVM
4156 	case KVM_CAP_SGX_ATTRIBUTE:
4157 #endif
4158 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4159 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4160 	case KVM_CAP_SREGS2:
4161 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4162 	case KVM_CAP_VCPU_ATTRIBUTES:
4163 		r = 1;
4164 		break;
4165 	case KVM_CAP_EXIT_HYPERCALL:
4166 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4167 		break;
4168 	case KVM_CAP_SET_GUEST_DEBUG2:
4169 		return KVM_GUESTDBG_VALID_MASK;
4170 #ifdef CONFIG_KVM_XEN
4171 	case KVM_CAP_XEN_HVM:
4172 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4173 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4174 		    KVM_XEN_HVM_CONFIG_SHARED_INFO;
4175 		if (sched_info_on())
4176 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4177 		break;
4178 #endif
4179 	case KVM_CAP_SYNC_REGS:
4180 		r = KVM_SYNC_X86_VALID_FIELDS;
4181 		break;
4182 	case KVM_CAP_ADJUST_CLOCK:
4183 		r = KVM_CLOCK_VALID_FLAGS;
4184 		break;
4185 	case KVM_CAP_X86_DISABLE_EXITS:
4186 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4187 		      KVM_X86_DISABLE_EXITS_CSTATE;
4188 		if(kvm_can_mwait_in_guest())
4189 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4190 		break;
4191 	case KVM_CAP_X86_SMM:
4192 		/* SMBASE is usually relocated above 1M on modern chipsets,
4193 		 * and SMM handlers might indeed rely on 4G segment limits,
4194 		 * so do not report SMM to be available if real mode is
4195 		 * emulated via vm86 mode.  Still, do not go to great lengths
4196 		 * to avoid userspace's usage of the feature, because it is a
4197 		 * fringe case that is not enabled except via specific settings
4198 		 * of the module parameters.
4199 		 */
4200 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4201 		break;
4202 	case KVM_CAP_VAPIC:
4203 		r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4204 		break;
4205 	case KVM_CAP_NR_VCPUS:
4206 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4207 		break;
4208 	case KVM_CAP_MAX_VCPUS:
4209 		r = KVM_MAX_VCPUS;
4210 		break;
4211 	case KVM_CAP_MAX_VCPU_ID:
4212 		r = KVM_MAX_VCPU_IDS;
4213 		break;
4214 	case KVM_CAP_PV_MMU:	/* obsolete */
4215 		r = 0;
4216 		break;
4217 	case KVM_CAP_MCE:
4218 		r = KVM_MAX_MCE_BANKS;
4219 		break;
4220 	case KVM_CAP_XCRS:
4221 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4222 		break;
4223 	case KVM_CAP_TSC_CONTROL:
4224 		r = kvm_has_tsc_control;
4225 		break;
4226 	case KVM_CAP_X2APIC_API:
4227 		r = KVM_X2APIC_API_VALID_FLAGS;
4228 		break;
4229 	case KVM_CAP_NESTED_STATE:
4230 		r = kvm_x86_ops.nested_ops->get_state ?
4231 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4232 		break;
4233 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4234 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4235 		break;
4236 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4237 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4238 		break;
4239 	case KVM_CAP_SMALLER_MAXPHYADDR:
4240 		r = (int) allow_smaller_maxphyaddr;
4241 		break;
4242 	case KVM_CAP_STEAL_TIME:
4243 		r = sched_info_on();
4244 		break;
4245 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4246 		if (kvm_has_bus_lock_exit)
4247 			r = KVM_BUS_LOCK_DETECTION_OFF |
4248 			    KVM_BUS_LOCK_DETECTION_EXIT;
4249 		else
4250 			r = 0;
4251 		break;
4252 	default:
4253 		break;
4254 	}
4255 	return r;
4256 
4257 }
4258 
4259 long kvm_arch_dev_ioctl(struct file *filp,
4260 			unsigned int ioctl, unsigned long arg)
4261 {
4262 	void __user *argp = (void __user *)arg;
4263 	long r;
4264 
4265 	switch (ioctl) {
4266 	case KVM_GET_MSR_INDEX_LIST: {
4267 		struct kvm_msr_list __user *user_msr_list = argp;
4268 		struct kvm_msr_list msr_list;
4269 		unsigned n;
4270 
4271 		r = -EFAULT;
4272 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4273 			goto out;
4274 		n = msr_list.nmsrs;
4275 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4276 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4277 			goto out;
4278 		r = -E2BIG;
4279 		if (n < msr_list.nmsrs)
4280 			goto out;
4281 		r = -EFAULT;
4282 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4283 				 num_msrs_to_save * sizeof(u32)))
4284 			goto out;
4285 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4286 				 &emulated_msrs,
4287 				 num_emulated_msrs * sizeof(u32)))
4288 			goto out;
4289 		r = 0;
4290 		break;
4291 	}
4292 	case KVM_GET_SUPPORTED_CPUID:
4293 	case KVM_GET_EMULATED_CPUID: {
4294 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4295 		struct kvm_cpuid2 cpuid;
4296 
4297 		r = -EFAULT;
4298 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4299 			goto out;
4300 
4301 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4302 					    ioctl);
4303 		if (r)
4304 			goto out;
4305 
4306 		r = -EFAULT;
4307 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4308 			goto out;
4309 		r = 0;
4310 		break;
4311 	}
4312 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4313 		r = -EFAULT;
4314 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4315 				 sizeof(kvm_mce_cap_supported)))
4316 			goto out;
4317 		r = 0;
4318 		break;
4319 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4320 		struct kvm_msr_list __user *user_msr_list = argp;
4321 		struct kvm_msr_list msr_list;
4322 		unsigned int n;
4323 
4324 		r = -EFAULT;
4325 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4326 			goto out;
4327 		n = msr_list.nmsrs;
4328 		msr_list.nmsrs = num_msr_based_features;
4329 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4330 			goto out;
4331 		r = -E2BIG;
4332 		if (n < msr_list.nmsrs)
4333 			goto out;
4334 		r = -EFAULT;
4335 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4336 				 num_msr_based_features * sizeof(u32)))
4337 			goto out;
4338 		r = 0;
4339 		break;
4340 	}
4341 	case KVM_GET_MSRS:
4342 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4343 		break;
4344 	case KVM_GET_SUPPORTED_HV_CPUID:
4345 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4346 		break;
4347 	default:
4348 		r = -EINVAL;
4349 		break;
4350 	}
4351 out:
4352 	return r;
4353 }
4354 
4355 static void wbinvd_ipi(void *garbage)
4356 {
4357 	wbinvd();
4358 }
4359 
4360 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4361 {
4362 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4363 }
4364 
4365 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4366 {
4367 	/* Address WBINVD may be executed by guest */
4368 	if (need_emulate_wbinvd(vcpu)) {
4369 		if (static_call(kvm_x86_has_wbinvd_exit)())
4370 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4371 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4372 			smp_call_function_single(vcpu->cpu,
4373 					wbinvd_ipi, NULL, 1);
4374 	}
4375 
4376 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4377 
4378 	/* Save host pkru register if supported */
4379 	vcpu->arch.host_pkru = read_pkru();
4380 
4381 	/* Apply any externally detected TSC adjustments (due to suspend) */
4382 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4383 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4384 		vcpu->arch.tsc_offset_adjustment = 0;
4385 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4386 	}
4387 
4388 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4389 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4390 				rdtsc() - vcpu->arch.last_host_tsc;
4391 		if (tsc_delta < 0)
4392 			mark_tsc_unstable("KVM discovered backwards TSC");
4393 
4394 		if (kvm_check_tsc_unstable()) {
4395 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4396 						vcpu->arch.last_guest_tsc);
4397 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4398 			vcpu->arch.tsc_catchup = 1;
4399 		}
4400 
4401 		if (kvm_lapic_hv_timer_in_use(vcpu))
4402 			kvm_lapic_restart_hv_timer(vcpu);
4403 
4404 		/*
4405 		 * On a host with synchronized TSC, there is no need to update
4406 		 * kvmclock on vcpu->cpu migration
4407 		 */
4408 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4409 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4410 		if (vcpu->cpu != cpu)
4411 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4412 		vcpu->cpu = cpu;
4413 	}
4414 
4415 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4416 }
4417 
4418 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4419 {
4420 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4421 	struct kvm_steal_time __user *st;
4422 	struct kvm_memslots *slots;
4423 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4424 
4425 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4426 		return;
4427 
4428 	if (vcpu->arch.st.preempted)
4429 		return;
4430 
4431 	/* This happens on process exit */
4432 	if (unlikely(current->mm != vcpu->kvm->mm))
4433 		return;
4434 
4435 	slots = kvm_memslots(vcpu->kvm);
4436 
4437 	if (unlikely(slots->generation != ghc->generation ||
4438 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4439 		return;
4440 
4441 	st = (struct kvm_steal_time __user *)ghc->hva;
4442 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4443 
4444 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4445 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4446 
4447 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4448 }
4449 
4450 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4451 {
4452 	int idx;
4453 
4454 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4455 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4456 
4457 	/*
4458 	 * Take the srcu lock as memslots will be accessed to check the gfn
4459 	 * cache generation against the memslots generation.
4460 	 */
4461 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4462 	if (kvm_xen_msr_enabled(vcpu->kvm))
4463 		kvm_xen_runstate_set_preempted(vcpu);
4464 	else
4465 		kvm_steal_time_set_preempted(vcpu);
4466 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4467 
4468 	static_call(kvm_x86_vcpu_put)(vcpu);
4469 	vcpu->arch.last_host_tsc = rdtsc();
4470 }
4471 
4472 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4473 				    struct kvm_lapic_state *s)
4474 {
4475 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4476 
4477 	return kvm_apic_get_state(vcpu, s);
4478 }
4479 
4480 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4481 				    struct kvm_lapic_state *s)
4482 {
4483 	int r;
4484 
4485 	r = kvm_apic_set_state(vcpu, s);
4486 	if (r)
4487 		return r;
4488 	update_cr8_intercept(vcpu);
4489 
4490 	return 0;
4491 }
4492 
4493 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4494 {
4495 	/*
4496 	 * We can accept userspace's request for interrupt injection
4497 	 * as long as we have a place to store the interrupt number.
4498 	 * The actual injection will happen when the CPU is able to
4499 	 * deliver the interrupt.
4500 	 */
4501 	if (kvm_cpu_has_extint(vcpu))
4502 		return false;
4503 
4504 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4505 	return (!lapic_in_kernel(vcpu) ||
4506 		kvm_apic_accept_pic_intr(vcpu));
4507 }
4508 
4509 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4510 {
4511 	/*
4512 	 * Do not cause an interrupt window exit if an exception
4513 	 * is pending or an event needs reinjection; userspace
4514 	 * might want to inject the interrupt manually using KVM_SET_REGS
4515 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4516 	 * instruction boundary and with no events half-injected.
4517 	 */
4518 	return (kvm_arch_interrupt_allowed(vcpu) &&
4519 		kvm_cpu_accept_dm_intr(vcpu) &&
4520 		!kvm_event_needs_reinjection(vcpu) &&
4521 		!vcpu->arch.exception.pending);
4522 }
4523 
4524 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4525 				    struct kvm_interrupt *irq)
4526 {
4527 	if (irq->irq >= KVM_NR_INTERRUPTS)
4528 		return -EINVAL;
4529 
4530 	if (!irqchip_in_kernel(vcpu->kvm)) {
4531 		kvm_queue_interrupt(vcpu, irq->irq, false);
4532 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4533 		return 0;
4534 	}
4535 
4536 	/*
4537 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4538 	 * fail for in-kernel 8259.
4539 	 */
4540 	if (pic_in_kernel(vcpu->kvm))
4541 		return -ENXIO;
4542 
4543 	if (vcpu->arch.pending_external_vector != -1)
4544 		return -EEXIST;
4545 
4546 	vcpu->arch.pending_external_vector = irq->irq;
4547 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4548 	return 0;
4549 }
4550 
4551 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4552 {
4553 	kvm_inject_nmi(vcpu);
4554 
4555 	return 0;
4556 }
4557 
4558 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4559 {
4560 	kvm_make_request(KVM_REQ_SMI, vcpu);
4561 
4562 	return 0;
4563 }
4564 
4565 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4566 					   struct kvm_tpr_access_ctl *tac)
4567 {
4568 	if (tac->flags)
4569 		return -EINVAL;
4570 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4571 	return 0;
4572 }
4573 
4574 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4575 					u64 mcg_cap)
4576 {
4577 	int r;
4578 	unsigned bank_num = mcg_cap & 0xff, bank;
4579 
4580 	r = -EINVAL;
4581 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4582 		goto out;
4583 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4584 		goto out;
4585 	r = 0;
4586 	vcpu->arch.mcg_cap = mcg_cap;
4587 	/* Init IA32_MCG_CTL to all 1s */
4588 	if (mcg_cap & MCG_CTL_P)
4589 		vcpu->arch.mcg_ctl = ~(u64)0;
4590 	/* Init IA32_MCi_CTL to all 1s */
4591 	for (bank = 0; bank < bank_num; bank++)
4592 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4593 
4594 	static_call(kvm_x86_setup_mce)(vcpu);
4595 out:
4596 	return r;
4597 }
4598 
4599 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4600 				      struct kvm_x86_mce *mce)
4601 {
4602 	u64 mcg_cap = vcpu->arch.mcg_cap;
4603 	unsigned bank_num = mcg_cap & 0xff;
4604 	u64 *banks = vcpu->arch.mce_banks;
4605 
4606 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4607 		return -EINVAL;
4608 	/*
4609 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4610 	 * reporting is disabled
4611 	 */
4612 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4613 	    vcpu->arch.mcg_ctl != ~(u64)0)
4614 		return 0;
4615 	banks += 4 * mce->bank;
4616 	/*
4617 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4618 	 * reporting is disabled for the bank
4619 	 */
4620 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4621 		return 0;
4622 	if (mce->status & MCI_STATUS_UC) {
4623 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4624 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4625 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4626 			return 0;
4627 		}
4628 		if (banks[1] & MCI_STATUS_VAL)
4629 			mce->status |= MCI_STATUS_OVER;
4630 		banks[2] = mce->addr;
4631 		banks[3] = mce->misc;
4632 		vcpu->arch.mcg_status = mce->mcg_status;
4633 		banks[1] = mce->status;
4634 		kvm_queue_exception(vcpu, MC_VECTOR);
4635 	} else if (!(banks[1] & MCI_STATUS_VAL)
4636 		   || !(banks[1] & MCI_STATUS_UC)) {
4637 		if (banks[1] & MCI_STATUS_VAL)
4638 			mce->status |= MCI_STATUS_OVER;
4639 		banks[2] = mce->addr;
4640 		banks[3] = mce->misc;
4641 		banks[1] = mce->status;
4642 	} else
4643 		banks[1] |= MCI_STATUS_OVER;
4644 	return 0;
4645 }
4646 
4647 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4648 					       struct kvm_vcpu_events *events)
4649 {
4650 	process_nmi(vcpu);
4651 
4652 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4653 		process_smi(vcpu);
4654 
4655 	/*
4656 	 * In guest mode, payload delivery should be deferred,
4657 	 * so that the L1 hypervisor can intercept #PF before
4658 	 * CR2 is modified (or intercept #DB before DR6 is
4659 	 * modified under nVMX). Unless the per-VM capability,
4660 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4661 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4662 	 * opportunistically defer the exception payload, deliver it if the
4663 	 * capability hasn't been requested before processing a
4664 	 * KVM_GET_VCPU_EVENTS.
4665 	 */
4666 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4667 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4668 		kvm_deliver_exception_payload(vcpu);
4669 
4670 	/*
4671 	 * The API doesn't provide the instruction length for software
4672 	 * exceptions, so don't report them. As long as the guest RIP
4673 	 * isn't advanced, we should expect to encounter the exception
4674 	 * again.
4675 	 */
4676 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4677 		events->exception.injected = 0;
4678 		events->exception.pending = 0;
4679 	} else {
4680 		events->exception.injected = vcpu->arch.exception.injected;
4681 		events->exception.pending = vcpu->arch.exception.pending;
4682 		/*
4683 		 * For ABI compatibility, deliberately conflate
4684 		 * pending and injected exceptions when
4685 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4686 		 */
4687 		if (!vcpu->kvm->arch.exception_payload_enabled)
4688 			events->exception.injected |=
4689 				vcpu->arch.exception.pending;
4690 	}
4691 	events->exception.nr = vcpu->arch.exception.nr;
4692 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4693 	events->exception.error_code = vcpu->arch.exception.error_code;
4694 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4695 	events->exception_payload = vcpu->arch.exception.payload;
4696 
4697 	events->interrupt.injected =
4698 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4699 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4700 	events->interrupt.soft = 0;
4701 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4702 
4703 	events->nmi.injected = vcpu->arch.nmi_injected;
4704 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4705 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4706 	events->nmi.pad = 0;
4707 
4708 	events->sipi_vector = 0; /* never valid when reporting to user space */
4709 
4710 	events->smi.smm = is_smm(vcpu);
4711 	events->smi.pending = vcpu->arch.smi_pending;
4712 	events->smi.smm_inside_nmi =
4713 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4714 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4715 
4716 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4717 			 | KVM_VCPUEVENT_VALID_SHADOW
4718 			 | KVM_VCPUEVENT_VALID_SMM);
4719 	if (vcpu->kvm->arch.exception_payload_enabled)
4720 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4721 
4722 	memset(&events->reserved, 0, sizeof(events->reserved));
4723 }
4724 
4725 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4726 
4727 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4728 					      struct kvm_vcpu_events *events)
4729 {
4730 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4731 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4732 			      | KVM_VCPUEVENT_VALID_SHADOW
4733 			      | KVM_VCPUEVENT_VALID_SMM
4734 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4735 		return -EINVAL;
4736 
4737 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4738 		if (!vcpu->kvm->arch.exception_payload_enabled)
4739 			return -EINVAL;
4740 		if (events->exception.pending)
4741 			events->exception.injected = 0;
4742 		else
4743 			events->exception_has_payload = 0;
4744 	} else {
4745 		events->exception.pending = 0;
4746 		events->exception_has_payload = 0;
4747 	}
4748 
4749 	if ((events->exception.injected || events->exception.pending) &&
4750 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4751 		return -EINVAL;
4752 
4753 	/* INITs are latched while in SMM */
4754 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4755 	    (events->smi.smm || events->smi.pending) &&
4756 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4757 		return -EINVAL;
4758 
4759 	process_nmi(vcpu);
4760 	vcpu->arch.exception.injected = events->exception.injected;
4761 	vcpu->arch.exception.pending = events->exception.pending;
4762 	vcpu->arch.exception.nr = events->exception.nr;
4763 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4764 	vcpu->arch.exception.error_code = events->exception.error_code;
4765 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4766 	vcpu->arch.exception.payload = events->exception_payload;
4767 
4768 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4769 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4770 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4771 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4772 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4773 						events->interrupt.shadow);
4774 
4775 	vcpu->arch.nmi_injected = events->nmi.injected;
4776 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4777 		vcpu->arch.nmi_pending = events->nmi.pending;
4778 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4779 
4780 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4781 	    lapic_in_kernel(vcpu))
4782 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4783 
4784 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4785 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4786 			kvm_smm_changed(vcpu, events->smi.smm);
4787 
4788 		vcpu->arch.smi_pending = events->smi.pending;
4789 
4790 		if (events->smi.smm) {
4791 			if (events->smi.smm_inside_nmi)
4792 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4793 			else
4794 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4795 		}
4796 
4797 		if (lapic_in_kernel(vcpu)) {
4798 			if (events->smi.latched_init)
4799 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4800 			else
4801 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4802 		}
4803 	}
4804 
4805 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4806 
4807 	return 0;
4808 }
4809 
4810 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4811 					     struct kvm_debugregs *dbgregs)
4812 {
4813 	unsigned long val;
4814 
4815 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4816 	kvm_get_dr(vcpu, 6, &val);
4817 	dbgregs->dr6 = val;
4818 	dbgregs->dr7 = vcpu->arch.dr7;
4819 	dbgregs->flags = 0;
4820 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4821 }
4822 
4823 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4824 					    struct kvm_debugregs *dbgregs)
4825 {
4826 	if (dbgregs->flags)
4827 		return -EINVAL;
4828 
4829 	if (!kvm_dr6_valid(dbgregs->dr6))
4830 		return -EINVAL;
4831 	if (!kvm_dr7_valid(dbgregs->dr7))
4832 		return -EINVAL;
4833 
4834 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4835 	kvm_update_dr0123(vcpu);
4836 	vcpu->arch.dr6 = dbgregs->dr6;
4837 	vcpu->arch.dr7 = dbgregs->dr7;
4838 	kvm_update_dr7(vcpu);
4839 
4840 	return 0;
4841 }
4842 
4843 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4844 					 struct kvm_xsave *guest_xsave)
4845 {
4846 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4847 		return;
4848 
4849 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4850 				       guest_xsave->region,
4851 				       sizeof(guest_xsave->region),
4852 				       vcpu->arch.pkru);
4853 }
4854 
4855 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4856 					struct kvm_xsave *guest_xsave)
4857 {
4858 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4859 		return 0;
4860 
4861 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
4862 					      guest_xsave->region,
4863 					      supported_xcr0, &vcpu->arch.pkru);
4864 }
4865 
4866 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4867 					struct kvm_xcrs *guest_xcrs)
4868 {
4869 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4870 		guest_xcrs->nr_xcrs = 0;
4871 		return;
4872 	}
4873 
4874 	guest_xcrs->nr_xcrs = 1;
4875 	guest_xcrs->flags = 0;
4876 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4877 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4878 }
4879 
4880 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4881 				       struct kvm_xcrs *guest_xcrs)
4882 {
4883 	int i, r = 0;
4884 
4885 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4886 		return -EINVAL;
4887 
4888 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4889 		return -EINVAL;
4890 
4891 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4892 		/* Only support XCR0 currently */
4893 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4894 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4895 				guest_xcrs->xcrs[i].value);
4896 			break;
4897 		}
4898 	if (r)
4899 		r = -EINVAL;
4900 	return r;
4901 }
4902 
4903 /*
4904  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4905  * stopped by the hypervisor.  This function will be called from the host only.
4906  * EINVAL is returned when the host attempts to set the flag for a guest that
4907  * does not support pv clocks.
4908  */
4909 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4910 {
4911 	if (!vcpu->arch.pv_time_enabled)
4912 		return -EINVAL;
4913 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4914 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4915 	return 0;
4916 }
4917 
4918 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
4919 				 struct kvm_device_attr *attr)
4920 {
4921 	int r;
4922 
4923 	switch (attr->attr) {
4924 	case KVM_VCPU_TSC_OFFSET:
4925 		r = 0;
4926 		break;
4927 	default:
4928 		r = -ENXIO;
4929 	}
4930 
4931 	return r;
4932 }
4933 
4934 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
4935 				 struct kvm_device_attr *attr)
4936 {
4937 	u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
4938 	int r;
4939 
4940 	if ((u64)(unsigned long)uaddr != attr->addr)
4941 		return -EFAULT;
4942 
4943 	switch (attr->attr) {
4944 	case KVM_VCPU_TSC_OFFSET:
4945 		r = -EFAULT;
4946 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
4947 			break;
4948 		r = 0;
4949 		break;
4950 	default:
4951 		r = -ENXIO;
4952 	}
4953 
4954 	return r;
4955 }
4956 
4957 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
4958 				 struct kvm_device_attr *attr)
4959 {
4960 	u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
4961 	struct kvm *kvm = vcpu->kvm;
4962 	int r;
4963 
4964 	if ((u64)(unsigned long)uaddr != attr->addr)
4965 		return -EFAULT;
4966 
4967 	switch (attr->attr) {
4968 	case KVM_VCPU_TSC_OFFSET: {
4969 		u64 offset, tsc, ns;
4970 		unsigned long flags;
4971 		bool matched;
4972 
4973 		r = -EFAULT;
4974 		if (get_user(offset, uaddr))
4975 			break;
4976 
4977 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
4978 
4979 		matched = (vcpu->arch.virtual_tsc_khz &&
4980 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
4981 			   kvm->arch.last_tsc_offset == offset);
4982 
4983 		tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
4984 		ns = get_kvmclock_base_ns();
4985 
4986 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
4987 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
4988 
4989 		r = 0;
4990 		break;
4991 	}
4992 	default:
4993 		r = -ENXIO;
4994 	}
4995 
4996 	return r;
4997 }
4998 
4999 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5000 				      unsigned int ioctl,
5001 				      void __user *argp)
5002 {
5003 	struct kvm_device_attr attr;
5004 	int r;
5005 
5006 	if (copy_from_user(&attr, argp, sizeof(attr)))
5007 		return -EFAULT;
5008 
5009 	if (attr.group != KVM_VCPU_TSC_CTRL)
5010 		return -ENXIO;
5011 
5012 	switch (ioctl) {
5013 	case KVM_HAS_DEVICE_ATTR:
5014 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5015 		break;
5016 	case KVM_GET_DEVICE_ATTR:
5017 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5018 		break;
5019 	case KVM_SET_DEVICE_ATTR:
5020 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5021 		break;
5022 	}
5023 
5024 	return r;
5025 }
5026 
5027 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5028 				     struct kvm_enable_cap *cap)
5029 {
5030 	int r;
5031 	uint16_t vmcs_version;
5032 	void __user *user_ptr;
5033 
5034 	if (cap->flags)
5035 		return -EINVAL;
5036 
5037 	switch (cap->cap) {
5038 	case KVM_CAP_HYPERV_SYNIC2:
5039 		if (cap->args[0])
5040 			return -EINVAL;
5041 		fallthrough;
5042 
5043 	case KVM_CAP_HYPERV_SYNIC:
5044 		if (!irqchip_in_kernel(vcpu->kvm))
5045 			return -EINVAL;
5046 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5047 					     KVM_CAP_HYPERV_SYNIC2);
5048 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5049 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5050 			return -ENOTTY;
5051 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5052 		if (!r) {
5053 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5054 			if (copy_to_user(user_ptr, &vmcs_version,
5055 					 sizeof(vmcs_version)))
5056 				r = -EFAULT;
5057 		}
5058 		return r;
5059 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5060 		if (!kvm_x86_ops.enable_direct_tlbflush)
5061 			return -ENOTTY;
5062 
5063 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5064 
5065 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5066 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5067 
5068 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5069 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5070 		if (vcpu->arch.pv_cpuid.enforce)
5071 			kvm_update_pv_runtime(vcpu);
5072 
5073 		return 0;
5074 	default:
5075 		return -EINVAL;
5076 	}
5077 }
5078 
5079 long kvm_arch_vcpu_ioctl(struct file *filp,
5080 			 unsigned int ioctl, unsigned long arg)
5081 {
5082 	struct kvm_vcpu *vcpu = filp->private_data;
5083 	void __user *argp = (void __user *)arg;
5084 	int r;
5085 	union {
5086 		struct kvm_sregs2 *sregs2;
5087 		struct kvm_lapic_state *lapic;
5088 		struct kvm_xsave *xsave;
5089 		struct kvm_xcrs *xcrs;
5090 		void *buffer;
5091 	} u;
5092 
5093 	vcpu_load(vcpu);
5094 
5095 	u.buffer = NULL;
5096 	switch (ioctl) {
5097 	case KVM_GET_LAPIC: {
5098 		r = -EINVAL;
5099 		if (!lapic_in_kernel(vcpu))
5100 			goto out;
5101 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5102 				GFP_KERNEL_ACCOUNT);
5103 
5104 		r = -ENOMEM;
5105 		if (!u.lapic)
5106 			goto out;
5107 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5108 		if (r)
5109 			goto out;
5110 		r = -EFAULT;
5111 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5112 			goto out;
5113 		r = 0;
5114 		break;
5115 	}
5116 	case KVM_SET_LAPIC: {
5117 		r = -EINVAL;
5118 		if (!lapic_in_kernel(vcpu))
5119 			goto out;
5120 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5121 		if (IS_ERR(u.lapic)) {
5122 			r = PTR_ERR(u.lapic);
5123 			goto out_nofree;
5124 		}
5125 
5126 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5127 		break;
5128 	}
5129 	case KVM_INTERRUPT: {
5130 		struct kvm_interrupt irq;
5131 
5132 		r = -EFAULT;
5133 		if (copy_from_user(&irq, argp, sizeof(irq)))
5134 			goto out;
5135 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5136 		break;
5137 	}
5138 	case KVM_NMI: {
5139 		r = kvm_vcpu_ioctl_nmi(vcpu);
5140 		break;
5141 	}
5142 	case KVM_SMI: {
5143 		r = kvm_vcpu_ioctl_smi(vcpu);
5144 		break;
5145 	}
5146 	case KVM_SET_CPUID: {
5147 		struct kvm_cpuid __user *cpuid_arg = argp;
5148 		struct kvm_cpuid cpuid;
5149 
5150 		/*
5151 		 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
5152 		 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
5153 		 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
5154 		 * faults due to reusing SPs/SPTEs.  In practice no sane VMM mucks with
5155 		 * the core vCPU model on the fly, so fail.
5156 		 */
5157 		r = -EINVAL;
5158 		if (vcpu->arch.last_vmentry_cpu != -1)
5159 			goto out;
5160 
5161 		r = -EFAULT;
5162 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5163 			goto out;
5164 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5165 		break;
5166 	}
5167 	case KVM_SET_CPUID2: {
5168 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5169 		struct kvm_cpuid2 cpuid;
5170 
5171 		/*
5172 		 * KVM_SET_CPUID{,2} after KVM_RUN is forbidded, see the comment in
5173 		 * KVM_SET_CPUID case above.
5174 		 */
5175 		r = -EINVAL;
5176 		if (vcpu->arch.last_vmentry_cpu != -1)
5177 			goto out;
5178 
5179 		r = -EFAULT;
5180 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5181 			goto out;
5182 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5183 					      cpuid_arg->entries);
5184 		break;
5185 	}
5186 	case KVM_GET_CPUID2: {
5187 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5188 		struct kvm_cpuid2 cpuid;
5189 
5190 		r = -EFAULT;
5191 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5192 			goto out;
5193 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5194 					      cpuid_arg->entries);
5195 		if (r)
5196 			goto out;
5197 		r = -EFAULT;
5198 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5199 			goto out;
5200 		r = 0;
5201 		break;
5202 	}
5203 	case KVM_GET_MSRS: {
5204 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5205 		r = msr_io(vcpu, argp, do_get_msr, 1);
5206 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5207 		break;
5208 	}
5209 	case KVM_SET_MSRS: {
5210 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5211 		r = msr_io(vcpu, argp, do_set_msr, 0);
5212 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5213 		break;
5214 	}
5215 	case KVM_TPR_ACCESS_REPORTING: {
5216 		struct kvm_tpr_access_ctl tac;
5217 
5218 		r = -EFAULT;
5219 		if (copy_from_user(&tac, argp, sizeof(tac)))
5220 			goto out;
5221 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5222 		if (r)
5223 			goto out;
5224 		r = -EFAULT;
5225 		if (copy_to_user(argp, &tac, sizeof(tac)))
5226 			goto out;
5227 		r = 0;
5228 		break;
5229 	};
5230 	case KVM_SET_VAPIC_ADDR: {
5231 		struct kvm_vapic_addr va;
5232 		int idx;
5233 
5234 		r = -EINVAL;
5235 		if (!lapic_in_kernel(vcpu))
5236 			goto out;
5237 		r = -EFAULT;
5238 		if (copy_from_user(&va, argp, sizeof(va)))
5239 			goto out;
5240 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5241 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5242 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5243 		break;
5244 	}
5245 	case KVM_X86_SETUP_MCE: {
5246 		u64 mcg_cap;
5247 
5248 		r = -EFAULT;
5249 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5250 			goto out;
5251 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5252 		break;
5253 	}
5254 	case KVM_X86_SET_MCE: {
5255 		struct kvm_x86_mce mce;
5256 
5257 		r = -EFAULT;
5258 		if (copy_from_user(&mce, argp, sizeof(mce)))
5259 			goto out;
5260 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5261 		break;
5262 	}
5263 	case KVM_GET_VCPU_EVENTS: {
5264 		struct kvm_vcpu_events events;
5265 
5266 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5267 
5268 		r = -EFAULT;
5269 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5270 			break;
5271 		r = 0;
5272 		break;
5273 	}
5274 	case KVM_SET_VCPU_EVENTS: {
5275 		struct kvm_vcpu_events events;
5276 
5277 		r = -EFAULT;
5278 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5279 			break;
5280 
5281 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5282 		break;
5283 	}
5284 	case KVM_GET_DEBUGREGS: {
5285 		struct kvm_debugregs dbgregs;
5286 
5287 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5288 
5289 		r = -EFAULT;
5290 		if (copy_to_user(argp, &dbgregs,
5291 				 sizeof(struct kvm_debugregs)))
5292 			break;
5293 		r = 0;
5294 		break;
5295 	}
5296 	case KVM_SET_DEBUGREGS: {
5297 		struct kvm_debugregs dbgregs;
5298 
5299 		r = -EFAULT;
5300 		if (copy_from_user(&dbgregs, argp,
5301 				   sizeof(struct kvm_debugregs)))
5302 			break;
5303 
5304 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5305 		break;
5306 	}
5307 	case KVM_GET_XSAVE: {
5308 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5309 		r = -ENOMEM;
5310 		if (!u.xsave)
5311 			break;
5312 
5313 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5314 
5315 		r = -EFAULT;
5316 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5317 			break;
5318 		r = 0;
5319 		break;
5320 	}
5321 	case KVM_SET_XSAVE: {
5322 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
5323 		if (IS_ERR(u.xsave)) {
5324 			r = PTR_ERR(u.xsave);
5325 			goto out_nofree;
5326 		}
5327 
5328 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5329 		break;
5330 	}
5331 	case KVM_GET_XCRS: {
5332 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5333 		r = -ENOMEM;
5334 		if (!u.xcrs)
5335 			break;
5336 
5337 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5338 
5339 		r = -EFAULT;
5340 		if (copy_to_user(argp, u.xcrs,
5341 				 sizeof(struct kvm_xcrs)))
5342 			break;
5343 		r = 0;
5344 		break;
5345 	}
5346 	case KVM_SET_XCRS: {
5347 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5348 		if (IS_ERR(u.xcrs)) {
5349 			r = PTR_ERR(u.xcrs);
5350 			goto out_nofree;
5351 		}
5352 
5353 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5354 		break;
5355 	}
5356 	case KVM_SET_TSC_KHZ: {
5357 		u32 user_tsc_khz;
5358 
5359 		r = -EINVAL;
5360 		user_tsc_khz = (u32)arg;
5361 
5362 		if (kvm_has_tsc_control &&
5363 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5364 			goto out;
5365 
5366 		if (user_tsc_khz == 0)
5367 			user_tsc_khz = tsc_khz;
5368 
5369 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5370 			r = 0;
5371 
5372 		goto out;
5373 	}
5374 	case KVM_GET_TSC_KHZ: {
5375 		r = vcpu->arch.virtual_tsc_khz;
5376 		goto out;
5377 	}
5378 	case KVM_KVMCLOCK_CTRL: {
5379 		r = kvm_set_guest_paused(vcpu);
5380 		goto out;
5381 	}
5382 	case KVM_ENABLE_CAP: {
5383 		struct kvm_enable_cap cap;
5384 
5385 		r = -EFAULT;
5386 		if (copy_from_user(&cap, argp, sizeof(cap)))
5387 			goto out;
5388 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5389 		break;
5390 	}
5391 	case KVM_GET_NESTED_STATE: {
5392 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5393 		u32 user_data_size;
5394 
5395 		r = -EINVAL;
5396 		if (!kvm_x86_ops.nested_ops->get_state)
5397 			break;
5398 
5399 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5400 		r = -EFAULT;
5401 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5402 			break;
5403 
5404 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5405 						     user_data_size);
5406 		if (r < 0)
5407 			break;
5408 
5409 		if (r > user_data_size) {
5410 			if (put_user(r, &user_kvm_nested_state->size))
5411 				r = -EFAULT;
5412 			else
5413 				r = -E2BIG;
5414 			break;
5415 		}
5416 
5417 		r = 0;
5418 		break;
5419 	}
5420 	case KVM_SET_NESTED_STATE: {
5421 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5422 		struct kvm_nested_state kvm_state;
5423 		int idx;
5424 
5425 		r = -EINVAL;
5426 		if (!kvm_x86_ops.nested_ops->set_state)
5427 			break;
5428 
5429 		r = -EFAULT;
5430 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5431 			break;
5432 
5433 		r = -EINVAL;
5434 		if (kvm_state.size < sizeof(kvm_state))
5435 			break;
5436 
5437 		if (kvm_state.flags &
5438 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5439 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5440 		      | KVM_STATE_NESTED_GIF_SET))
5441 			break;
5442 
5443 		/* nested_run_pending implies guest_mode.  */
5444 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5445 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5446 			break;
5447 
5448 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5449 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5450 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5451 		break;
5452 	}
5453 	case KVM_GET_SUPPORTED_HV_CPUID:
5454 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5455 		break;
5456 #ifdef CONFIG_KVM_XEN
5457 	case KVM_XEN_VCPU_GET_ATTR: {
5458 		struct kvm_xen_vcpu_attr xva;
5459 
5460 		r = -EFAULT;
5461 		if (copy_from_user(&xva, argp, sizeof(xva)))
5462 			goto out;
5463 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5464 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5465 			r = -EFAULT;
5466 		break;
5467 	}
5468 	case KVM_XEN_VCPU_SET_ATTR: {
5469 		struct kvm_xen_vcpu_attr xva;
5470 
5471 		r = -EFAULT;
5472 		if (copy_from_user(&xva, argp, sizeof(xva)))
5473 			goto out;
5474 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5475 		break;
5476 	}
5477 #endif
5478 	case KVM_GET_SREGS2: {
5479 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5480 		r = -ENOMEM;
5481 		if (!u.sregs2)
5482 			goto out;
5483 		__get_sregs2(vcpu, u.sregs2);
5484 		r = -EFAULT;
5485 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5486 			goto out;
5487 		r = 0;
5488 		break;
5489 	}
5490 	case KVM_SET_SREGS2: {
5491 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5492 		if (IS_ERR(u.sregs2)) {
5493 			r = PTR_ERR(u.sregs2);
5494 			u.sregs2 = NULL;
5495 			goto out;
5496 		}
5497 		r = __set_sregs2(vcpu, u.sregs2);
5498 		break;
5499 	}
5500 	case KVM_HAS_DEVICE_ATTR:
5501 	case KVM_GET_DEVICE_ATTR:
5502 	case KVM_SET_DEVICE_ATTR:
5503 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5504 		break;
5505 	default:
5506 		r = -EINVAL;
5507 	}
5508 out:
5509 	kfree(u.buffer);
5510 out_nofree:
5511 	vcpu_put(vcpu);
5512 	return r;
5513 }
5514 
5515 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5516 {
5517 	return VM_FAULT_SIGBUS;
5518 }
5519 
5520 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5521 {
5522 	int ret;
5523 
5524 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5525 		return -EINVAL;
5526 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5527 	return ret;
5528 }
5529 
5530 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5531 					      u64 ident_addr)
5532 {
5533 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5534 }
5535 
5536 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5537 					 unsigned long kvm_nr_mmu_pages)
5538 {
5539 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5540 		return -EINVAL;
5541 
5542 	mutex_lock(&kvm->slots_lock);
5543 
5544 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5545 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5546 
5547 	mutex_unlock(&kvm->slots_lock);
5548 	return 0;
5549 }
5550 
5551 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5552 {
5553 	return kvm->arch.n_max_mmu_pages;
5554 }
5555 
5556 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5557 {
5558 	struct kvm_pic *pic = kvm->arch.vpic;
5559 	int r;
5560 
5561 	r = 0;
5562 	switch (chip->chip_id) {
5563 	case KVM_IRQCHIP_PIC_MASTER:
5564 		memcpy(&chip->chip.pic, &pic->pics[0],
5565 			sizeof(struct kvm_pic_state));
5566 		break;
5567 	case KVM_IRQCHIP_PIC_SLAVE:
5568 		memcpy(&chip->chip.pic, &pic->pics[1],
5569 			sizeof(struct kvm_pic_state));
5570 		break;
5571 	case KVM_IRQCHIP_IOAPIC:
5572 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5573 		break;
5574 	default:
5575 		r = -EINVAL;
5576 		break;
5577 	}
5578 	return r;
5579 }
5580 
5581 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5582 {
5583 	struct kvm_pic *pic = kvm->arch.vpic;
5584 	int r;
5585 
5586 	r = 0;
5587 	switch (chip->chip_id) {
5588 	case KVM_IRQCHIP_PIC_MASTER:
5589 		spin_lock(&pic->lock);
5590 		memcpy(&pic->pics[0], &chip->chip.pic,
5591 			sizeof(struct kvm_pic_state));
5592 		spin_unlock(&pic->lock);
5593 		break;
5594 	case KVM_IRQCHIP_PIC_SLAVE:
5595 		spin_lock(&pic->lock);
5596 		memcpy(&pic->pics[1], &chip->chip.pic,
5597 			sizeof(struct kvm_pic_state));
5598 		spin_unlock(&pic->lock);
5599 		break;
5600 	case KVM_IRQCHIP_IOAPIC:
5601 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5602 		break;
5603 	default:
5604 		r = -EINVAL;
5605 		break;
5606 	}
5607 	kvm_pic_update_irq(pic);
5608 	return r;
5609 }
5610 
5611 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5612 {
5613 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5614 
5615 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5616 
5617 	mutex_lock(&kps->lock);
5618 	memcpy(ps, &kps->channels, sizeof(*ps));
5619 	mutex_unlock(&kps->lock);
5620 	return 0;
5621 }
5622 
5623 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5624 {
5625 	int i;
5626 	struct kvm_pit *pit = kvm->arch.vpit;
5627 
5628 	mutex_lock(&pit->pit_state.lock);
5629 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5630 	for (i = 0; i < 3; i++)
5631 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5632 	mutex_unlock(&pit->pit_state.lock);
5633 	return 0;
5634 }
5635 
5636 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5637 {
5638 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5639 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5640 		sizeof(ps->channels));
5641 	ps->flags = kvm->arch.vpit->pit_state.flags;
5642 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5643 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5644 	return 0;
5645 }
5646 
5647 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5648 {
5649 	int start = 0;
5650 	int i;
5651 	u32 prev_legacy, cur_legacy;
5652 	struct kvm_pit *pit = kvm->arch.vpit;
5653 
5654 	mutex_lock(&pit->pit_state.lock);
5655 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5656 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5657 	if (!prev_legacy && cur_legacy)
5658 		start = 1;
5659 	memcpy(&pit->pit_state.channels, &ps->channels,
5660 	       sizeof(pit->pit_state.channels));
5661 	pit->pit_state.flags = ps->flags;
5662 	for (i = 0; i < 3; i++)
5663 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5664 				   start && i == 0);
5665 	mutex_unlock(&pit->pit_state.lock);
5666 	return 0;
5667 }
5668 
5669 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5670 				 struct kvm_reinject_control *control)
5671 {
5672 	struct kvm_pit *pit = kvm->arch.vpit;
5673 
5674 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5675 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5676 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5677 	 */
5678 	mutex_lock(&pit->pit_state.lock);
5679 	kvm_pit_set_reinject(pit, control->pit_reinject);
5680 	mutex_unlock(&pit->pit_state.lock);
5681 
5682 	return 0;
5683 }
5684 
5685 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5686 {
5687 
5688 	/*
5689 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5690 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5691 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5692 	 * VM-Exit.
5693 	 */
5694 	struct kvm_vcpu *vcpu;
5695 	int i;
5696 
5697 	kvm_for_each_vcpu(i, vcpu, kvm)
5698 		kvm_vcpu_kick(vcpu);
5699 }
5700 
5701 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5702 			bool line_status)
5703 {
5704 	if (!irqchip_in_kernel(kvm))
5705 		return -ENXIO;
5706 
5707 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5708 					irq_event->irq, irq_event->level,
5709 					line_status);
5710 	return 0;
5711 }
5712 
5713 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5714 			    struct kvm_enable_cap *cap)
5715 {
5716 	int r;
5717 
5718 	if (cap->flags)
5719 		return -EINVAL;
5720 
5721 	switch (cap->cap) {
5722 	case KVM_CAP_DISABLE_QUIRKS:
5723 		kvm->arch.disabled_quirks = cap->args[0];
5724 		r = 0;
5725 		break;
5726 	case KVM_CAP_SPLIT_IRQCHIP: {
5727 		mutex_lock(&kvm->lock);
5728 		r = -EINVAL;
5729 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5730 			goto split_irqchip_unlock;
5731 		r = -EEXIST;
5732 		if (irqchip_in_kernel(kvm))
5733 			goto split_irqchip_unlock;
5734 		if (kvm->created_vcpus)
5735 			goto split_irqchip_unlock;
5736 		r = kvm_setup_empty_irq_routing(kvm);
5737 		if (r)
5738 			goto split_irqchip_unlock;
5739 		/* Pairs with irqchip_in_kernel. */
5740 		smp_wmb();
5741 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5742 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5743 		kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5744 		r = 0;
5745 split_irqchip_unlock:
5746 		mutex_unlock(&kvm->lock);
5747 		break;
5748 	}
5749 	case KVM_CAP_X2APIC_API:
5750 		r = -EINVAL;
5751 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5752 			break;
5753 
5754 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5755 			kvm->arch.x2apic_format = true;
5756 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5757 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5758 
5759 		r = 0;
5760 		break;
5761 	case KVM_CAP_X86_DISABLE_EXITS:
5762 		r = -EINVAL;
5763 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5764 			break;
5765 
5766 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5767 			kvm_can_mwait_in_guest())
5768 			kvm->arch.mwait_in_guest = true;
5769 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5770 			kvm->arch.hlt_in_guest = true;
5771 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5772 			kvm->arch.pause_in_guest = true;
5773 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5774 			kvm->arch.cstate_in_guest = true;
5775 		r = 0;
5776 		break;
5777 	case KVM_CAP_MSR_PLATFORM_INFO:
5778 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5779 		r = 0;
5780 		break;
5781 	case KVM_CAP_EXCEPTION_PAYLOAD:
5782 		kvm->arch.exception_payload_enabled = cap->args[0];
5783 		r = 0;
5784 		break;
5785 	case KVM_CAP_X86_USER_SPACE_MSR:
5786 		kvm->arch.user_space_msr_mask = cap->args[0];
5787 		r = 0;
5788 		break;
5789 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5790 		r = -EINVAL;
5791 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5792 			break;
5793 
5794 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5795 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5796 			break;
5797 
5798 		if (kvm_has_bus_lock_exit &&
5799 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5800 			kvm->arch.bus_lock_detection_enabled = true;
5801 		r = 0;
5802 		break;
5803 #ifdef CONFIG_X86_SGX_KVM
5804 	case KVM_CAP_SGX_ATTRIBUTE: {
5805 		unsigned long allowed_attributes = 0;
5806 
5807 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5808 		if (r)
5809 			break;
5810 
5811 		/* KVM only supports the PROVISIONKEY privileged attribute. */
5812 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5813 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5814 			kvm->arch.sgx_provisioning_allowed = true;
5815 		else
5816 			r = -EINVAL;
5817 		break;
5818 	}
5819 #endif
5820 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5821 		r = -EINVAL;
5822 		if (kvm_x86_ops.vm_copy_enc_context_from)
5823 			r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5824 		return r;
5825 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
5826 		r = -EINVAL;
5827 		if (kvm_x86_ops.vm_move_enc_context_from)
5828 			r = kvm_x86_ops.vm_move_enc_context_from(
5829 				kvm, cap->args[0]);
5830 		return r;
5831 	case KVM_CAP_EXIT_HYPERCALL:
5832 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5833 			r = -EINVAL;
5834 			break;
5835 		}
5836 		kvm->arch.hypercall_exit_enabled = cap->args[0];
5837 		r = 0;
5838 		break;
5839 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5840 		r = -EINVAL;
5841 		if (cap->args[0] & ~1)
5842 			break;
5843 		kvm->arch.exit_on_emulation_error = cap->args[0];
5844 		r = 0;
5845 		break;
5846 	default:
5847 		r = -EINVAL;
5848 		break;
5849 	}
5850 	return r;
5851 }
5852 
5853 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5854 {
5855 	struct kvm_x86_msr_filter *msr_filter;
5856 
5857 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5858 	if (!msr_filter)
5859 		return NULL;
5860 
5861 	msr_filter->default_allow = default_allow;
5862 	return msr_filter;
5863 }
5864 
5865 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5866 {
5867 	u32 i;
5868 
5869 	if (!msr_filter)
5870 		return;
5871 
5872 	for (i = 0; i < msr_filter->count; i++)
5873 		kfree(msr_filter->ranges[i].bitmap);
5874 
5875 	kfree(msr_filter);
5876 }
5877 
5878 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5879 			      struct kvm_msr_filter_range *user_range)
5880 {
5881 	unsigned long *bitmap = NULL;
5882 	size_t bitmap_size;
5883 
5884 	if (!user_range->nmsrs)
5885 		return 0;
5886 
5887 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5888 		return -EINVAL;
5889 
5890 	if (!user_range->flags)
5891 		return -EINVAL;
5892 
5893 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5894 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5895 		return -EINVAL;
5896 
5897 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5898 	if (IS_ERR(bitmap))
5899 		return PTR_ERR(bitmap);
5900 
5901 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5902 		.flags = user_range->flags,
5903 		.base = user_range->base,
5904 		.nmsrs = user_range->nmsrs,
5905 		.bitmap = bitmap,
5906 	};
5907 
5908 	msr_filter->count++;
5909 	return 0;
5910 }
5911 
5912 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5913 {
5914 	struct kvm_msr_filter __user *user_msr_filter = argp;
5915 	struct kvm_x86_msr_filter *new_filter, *old_filter;
5916 	struct kvm_msr_filter filter;
5917 	bool default_allow;
5918 	bool empty = true;
5919 	int r = 0;
5920 	u32 i;
5921 
5922 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5923 		return -EFAULT;
5924 
5925 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5926 		empty &= !filter.ranges[i].nmsrs;
5927 
5928 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5929 	if (empty && !default_allow)
5930 		return -EINVAL;
5931 
5932 	new_filter = kvm_alloc_msr_filter(default_allow);
5933 	if (!new_filter)
5934 		return -ENOMEM;
5935 
5936 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5937 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5938 		if (r) {
5939 			kvm_free_msr_filter(new_filter);
5940 			return r;
5941 		}
5942 	}
5943 
5944 	mutex_lock(&kvm->lock);
5945 
5946 	/* The per-VM filter is protected by kvm->lock... */
5947 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5948 
5949 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5950 	synchronize_srcu(&kvm->srcu);
5951 
5952 	kvm_free_msr_filter(old_filter);
5953 
5954 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5955 	mutex_unlock(&kvm->lock);
5956 
5957 	return 0;
5958 }
5959 
5960 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5961 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5962 {
5963 	struct kvm_vcpu *vcpu;
5964 	int i, ret = 0;
5965 
5966 	mutex_lock(&kvm->lock);
5967 	kvm_for_each_vcpu(i, vcpu, kvm) {
5968 		if (!vcpu->arch.pv_time_enabled)
5969 			continue;
5970 
5971 		ret = kvm_set_guest_paused(vcpu);
5972 		if (ret) {
5973 			kvm_err("Failed to pause guest VCPU%d: %d\n",
5974 				vcpu->vcpu_id, ret);
5975 			break;
5976 		}
5977 	}
5978 	mutex_unlock(&kvm->lock);
5979 
5980 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
5981 }
5982 
5983 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5984 {
5985 	switch (state) {
5986 	case PM_HIBERNATION_PREPARE:
5987 	case PM_SUSPEND_PREPARE:
5988 		return kvm_arch_suspend_notifier(kvm);
5989 	}
5990 
5991 	return NOTIFY_DONE;
5992 }
5993 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5994 
5995 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
5996 {
5997 	struct kvm_clock_data data = { 0 };
5998 
5999 	get_kvmclock(kvm, &data);
6000 	if (copy_to_user(argp, &data, sizeof(data)))
6001 		return -EFAULT;
6002 
6003 	return 0;
6004 }
6005 
6006 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6007 {
6008 	struct kvm_arch *ka = &kvm->arch;
6009 	struct kvm_clock_data data;
6010 	u64 now_raw_ns;
6011 
6012 	if (copy_from_user(&data, argp, sizeof(data)))
6013 		return -EFAULT;
6014 
6015 	/*
6016 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6017 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6018 	 */
6019 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6020 		return -EINVAL;
6021 
6022 	kvm_hv_invalidate_tsc_page(kvm);
6023 	kvm_start_pvclock_update(kvm);
6024 	pvclock_update_vm_gtod_copy(kvm);
6025 
6026 	/*
6027 	 * This pairs with kvm_guest_time_update(): when masterclock is
6028 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6029 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6030 	 * is slightly ahead) here we risk going negative on unsigned
6031 	 * 'system_time' when 'data.clock' is very small.
6032 	 */
6033 	if (data.flags & KVM_CLOCK_REALTIME) {
6034 		u64 now_real_ns = ktime_get_real_ns();
6035 
6036 		/*
6037 		 * Avoid stepping the kvmclock backwards.
6038 		 */
6039 		if (now_real_ns > data.realtime)
6040 			data.clock += now_real_ns - data.realtime;
6041 	}
6042 
6043 	if (ka->use_master_clock)
6044 		now_raw_ns = ka->master_kernel_ns;
6045 	else
6046 		now_raw_ns = get_kvmclock_base_ns();
6047 	ka->kvmclock_offset = data.clock - now_raw_ns;
6048 	kvm_end_pvclock_update(kvm);
6049 	return 0;
6050 }
6051 
6052 long kvm_arch_vm_ioctl(struct file *filp,
6053 		       unsigned int ioctl, unsigned long arg)
6054 {
6055 	struct kvm *kvm = filp->private_data;
6056 	void __user *argp = (void __user *)arg;
6057 	int r = -ENOTTY;
6058 	/*
6059 	 * This union makes it completely explicit to gcc-3.x
6060 	 * that these two variables' stack usage should be
6061 	 * combined, not added together.
6062 	 */
6063 	union {
6064 		struct kvm_pit_state ps;
6065 		struct kvm_pit_state2 ps2;
6066 		struct kvm_pit_config pit_config;
6067 	} u;
6068 
6069 	switch (ioctl) {
6070 	case KVM_SET_TSS_ADDR:
6071 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6072 		break;
6073 	case KVM_SET_IDENTITY_MAP_ADDR: {
6074 		u64 ident_addr;
6075 
6076 		mutex_lock(&kvm->lock);
6077 		r = -EINVAL;
6078 		if (kvm->created_vcpus)
6079 			goto set_identity_unlock;
6080 		r = -EFAULT;
6081 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6082 			goto set_identity_unlock;
6083 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6084 set_identity_unlock:
6085 		mutex_unlock(&kvm->lock);
6086 		break;
6087 	}
6088 	case KVM_SET_NR_MMU_PAGES:
6089 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6090 		break;
6091 	case KVM_GET_NR_MMU_PAGES:
6092 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6093 		break;
6094 	case KVM_CREATE_IRQCHIP: {
6095 		mutex_lock(&kvm->lock);
6096 
6097 		r = -EEXIST;
6098 		if (irqchip_in_kernel(kvm))
6099 			goto create_irqchip_unlock;
6100 
6101 		r = -EINVAL;
6102 		if (kvm->created_vcpus)
6103 			goto create_irqchip_unlock;
6104 
6105 		r = kvm_pic_init(kvm);
6106 		if (r)
6107 			goto create_irqchip_unlock;
6108 
6109 		r = kvm_ioapic_init(kvm);
6110 		if (r) {
6111 			kvm_pic_destroy(kvm);
6112 			goto create_irqchip_unlock;
6113 		}
6114 
6115 		r = kvm_setup_default_irq_routing(kvm);
6116 		if (r) {
6117 			kvm_ioapic_destroy(kvm);
6118 			kvm_pic_destroy(kvm);
6119 			goto create_irqchip_unlock;
6120 		}
6121 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6122 		smp_wmb();
6123 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6124 		kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6125 	create_irqchip_unlock:
6126 		mutex_unlock(&kvm->lock);
6127 		break;
6128 	}
6129 	case KVM_CREATE_PIT:
6130 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6131 		goto create_pit;
6132 	case KVM_CREATE_PIT2:
6133 		r = -EFAULT;
6134 		if (copy_from_user(&u.pit_config, argp,
6135 				   sizeof(struct kvm_pit_config)))
6136 			goto out;
6137 	create_pit:
6138 		mutex_lock(&kvm->lock);
6139 		r = -EEXIST;
6140 		if (kvm->arch.vpit)
6141 			goto create_pit_unlock;
6142 		r = -ENOMEM;
6143 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6144 		if (kvm->arch.vpit)
6145 			r = 0;
6146 	create_pit_unlock:
6147 		mutex_unlock(&kvm->lock);
6148 		break;
6149 	case KVM_GET_IRQCHIP: {
6150 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6151 		struct kvm_irqchip *chip;
6152 
6153 		chip = memdup_user(argp, sizeof(*chip));
6154 		if (IS_ERR(chip)) {
6155 			r = PTR_ERR(chip);
6156 			goto out;
6157 		}
6158 
6159 		r = -ENXIO;
6160 		if (!irqchip_kernel(kvm))
6161 			goto get_irqchip_out;
6162 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6163 		if (r)
6164 			goto get_irqchip_out;
6165 		r = -EFAULT;
6166 		if (copy_to_user(argp, chip, sizeof(*chip)))
6167 			goto get_irqchip_out;
6168 		r = 0;
6169 	get_irqchip_out:
6170 		kfree(chip);
6171 		break;
6172 	}
6173 	case KVM_SET_IRQCHIP: {
6174 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6175 		struct kvm_irqchip *chip;
6176 
6177 		chip = memdup_user(argp, sizeof(*chip));
6178 		if (IS_ERR(chip)) {
6179 			r = PTR_ERR(chip);
6180 			goto out;
6181 		}
6182 
6183 		r = -ENXIO;
6184 		if (!irqchip_kernel(kvm))
6185 			goto set_irqchip_out;
6186 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6187 	set_irqchip_out:
6188 		kfree(chip);
6189 		break;
6190 	}
6191 	case KVM_GET_PIT: {
6192 		r = -EFAULT;
6193 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6194 			goto out;
6195 		r = -ENXIO;
6196 		if (!kvm->arch.vpit)
6197 			goto out;
6198 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6199 		if (r)
6200 			goto out;
6201 		r = -EFAULT;
6202 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6203 			goto out;
6204 		r = 0;
6205 		break;
6206 	}
6207 	case KVM_SET_PIT: {
6208 		r = -EFAULT;
6209 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6210 			goto out;
6211 		mutex_lock(&kvm->lock);
6212 		r = -ENXIO;
6213 		if (!kvm->arch.vpit)
6214 			goto set_pit_out;
6215 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6216 set_pit_out:
6217 		mutex_unlock(&kvm->lock);
6218 		break;
6219 	}
6220 	case KVM_GET_PIT2: {
6221 		r = -ENXIO;
6222 		if (!kvm->arch.vpit)
6223 			goto out;
6224 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6225 		if (r)
6226 			goto out;
6227 		r = -EFAULT;
6228 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6229 			goto out;
6230 		r = 0;
6231 		break;
6232 	}
6233 	case KVM_SET_PIT2: {
6234 		r = -EFAULT;
6235 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6236 			goto out;
6237 		mutex_lock(&kvm->lock);
6238 		r = -ENXIO;
6239 		if (!kvm->arch.vpit)
6240 			goto set_pit2_out;
6241 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6242 set_pit2_out:
6243 		mutex_unlock(&kvm->lock);
6244 		break;
6245 	}
6246 	case KVM_REINJECT_CONTROL: {
6247 		struct kvm_reinject_control control;
6248 		r =  -EFAULT;
6249 		if (copy_from_user(&control, argp, sizeof(control)))
6250 			goto out;
6251 		r = -ENXIO;
6252 		if (!kvm->arch.vpit)
6253 			goto out;
6254 		r = kvm_vm_ioctl_reinject(kvm, &control);
6255 		break;
6256 	}
6257 	case KVM_SET_BOOT_CPU_ID:
6258 		r = 0;
6259 		mutex_lock(&kvm->lock);
6260 		if (kvm->created_vcpus)
6261 			r = -EBUSY;
6262 		else
6263 			kvm->arch.bsp_vcpu_id = arg;
6264 		mutex_unlock(&kvm->lock);
6265 		break;
6266 #ifdef CONFIG_KVM_XEN
6267 	case KVM_XEN_HVM_CONFIG: {
6268 		struct kvm_xen_hvm_config xhc;
6269 		r = -EFAULT;
6270 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6271 			goto out;
6272 		r = kvm_xen_hvm_config(kvm, &xhc);
6273 		break;
6274 	}
6275 	case KVM_XEN_HVM_GET_ATTR: {
6276 		struct kvm_xen_hvm_attr xha;
6277 
6278 		r = -EFAULT;
6279 		if (copy_from_user(&xha, argp, sizeof(xha)))
6280 			goto out;
6281 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6282 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6283 			r = -EFAULT;
6284 		break;
6285 	}
6286 	case KVM_XEN_HVM_SET_ATTR: {
6287 		struct kvm_xen_hvm_attr xha;
6288 
6289 		r = -EFAULT;
6290 		if (copy_from_user(&xha, argp, sizeof(xha)))
6291 			goto out;
6292 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6293 		break;
6294 	}
6295 #endif
6296 	case KVM_SET_CLOCK:
6297 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6298 		break;
6299 	case KVM_GET_CLOCK:
6300 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6301 		break;
6302 	case KVM_MEMORY_ENCRYPT_OP: {
6303 		r = -ENOTTY;
6304 		if (kvm_x86_ops.mem_enc_op)
6305 			r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6306 		break;
6307 	}
6308 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6309 		struct kvm_enc_region region;
6310 
6311 		r = -EFAULT;
6312 		if (copy_from_user(&region, argp, sizeof(region)))
6313 			goto out;
6314 
6315 		r = -ENOTTY;
6316 		if (kvm_x86_ops.mem_enc_reg_region)
6317 			r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6318 		break;
6319 	}
6320 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6321 		struct kvm_enc_region region;
6322 
6323 		r = -EFAULT;
6324 		if (copy_from_user(&region, argp, sizeof(region)))
6325 			goto out;
6326 
6327 		r = -ENOTTY;
6328 		if (kvm_x86_ops.mem_enc_unreg_region)
6329 			r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6330 		break;
6331 	}
6332 	case KVM_HYPERV_EVENTFD: {
6333 		struct kvm_hyperv_eventfd hvevfd;
6334 
6335 		r = -EFAULT;
6336 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6337 			goto out;
6338 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6339 		break;
6340 	}
6341 	case KVM_SET_PMU_EVENT_FILTER:
6342 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6343 		break;
6344 	case KVM_X86_SET_MSR_FILTER:
6345 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6346 		break;
6347 	default:
6348 		r = -ENOTTY;
6349 	}
6350 out:
6351 	return r;
6352 }
6353 
6354 static void kvm_init_msr_list(void)
6355 {
6356 	struct x86_pmu_capability x86_pmu;
6357 	u32 dummy[2];
6358 	unsigned i;
6359 
6360 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6361 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6362 
6363 	perf_get_x86_pmu_capability(&x86_pmu);
6364 
6365 	num_msrs_to_save = 0;
6366 	num_emulated_msrs = 0;
6367 	num_msr_based_features = 0;
6368 
6369 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6370 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6371 			continue;
6372 
6373 		/*
6374 		 * Even MSRs that are valid in the host may not be exposed
6375 		 * to the guests in some cases.
6376 		 */
6377 		switch (msrs_to_save_all[i]) {
6378 		case MSR_IA32_BNDCFGS:
6379 			if (!kvm_mpx_supported())
6380 				continue;
6381 			break;
6382 		case MSR_TSC_AUX:
6383 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6384 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6385 				continue;
6386 			break;
6387 		case MSR_IA32_UMWAIT_CONTROL:
6388 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6389 				continue;
6390 			break;
6391 		case MSR_IA32_RTIT_CTL:
6392 		case MSR_IA32_RTIT_STATUS:
6393 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6394 				continue;
6395 			break;
6396 		case MSR_IA32_RTIT_CR3_MATCH:
6397 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6398 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6399 				continue;
6400 			break;
6401 		case MSR_IA32_RTIT_OUTPUT_BASE:
6402 		case MSR_IA32_RTIT_OUTPUT_MASK:
6403 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6404 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6405 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6406 				continue;
6407 			break;
6408 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6409 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6410 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6411 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6412 				continue;
6413 			break;
6414 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6415 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6416 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6417 				continue;
6418 			break;
6419 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6420 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6421 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6422 				continue;
6423 			break;
6424 		default:
6425 			break;
6426 		}
6427 
6428 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6429 	}
6430 
6431 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6432 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6433 			continue;
6434 
6435 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6436 	}
6437 
6438 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6439 		struct kvm_msr_entry msr;
6440 
6441 		msr.index = msr_based_features_all[i];
6442 		if (kvm_get_msr_feature(&msr))
6443 			continue;
6444 
6445 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6446 	}
6447 }
6448 
6449 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6450 			   const void *v)
6451 {
6452 	int handled = 0;
6453 	int n;
6454 
6455 	do {
6456 		n = min(len, 8);
6457 		if (!(lapic_in_kernel(vcpu) &&
6458 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6459 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6460 			break;
6461 		handled += n;
6462 		addr += n;
6463 		len -= n;
6464 		v += n;
6465 	} while (len);
6466 
6467 	return handled;
6468 }
6469 
6470 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6471 {
6472 	int handled = 0;
6473 	int n;
6474 
6475 	do {
6476 		n = min(len, 8);
6477 		if (!(lapic_in_kernel(vcpu) &&
6478 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6479 					 addr, n, v))
6480 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6481 			break;
6482 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6483 		handled += n;
6484 		addr += n;
6485 		len -= n;
6486 		v += n;
6487 	} while (len);
6488 
6489 	return handled;
6490 }
6491 
6492 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6493 			struct kvm_segment *var, int seg)
6494 {
6495 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6496 }
6497 
6498 void kvm_get_segment(struct kvm_vcpu *vcpu,
6499 		     struct kvm_segment *var, int seg)
6500 {
6501 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6502 }
6503 
6504 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6505 			   struct x86_exception *exception)
6506 {
6507 	gpa_t t_gpa;
6508 
6509 	BUG_ON(!mmu_is_nested(vcpu));
6510 
6511 	/* NPT walks are always user-walks */
6512 	access |= PFERR_USER_MASK;
6513 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6514 
6515 	return t_gpa;
6516 }
6517 
6518 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6519 			      struct x86_exception *exception)
6520 {
6521 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6522 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6523 }
6524 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6525 
6526  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6527 				struct x86_exception *exception)
6528 {
6529 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6530 	access |= PFERR_FETCH_MASK;
6531 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6532 }
6533 
6534 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6535 			       struct x86_exception *exception)
6536 {
6537 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6538 	access |= PFERR_WRITE_MASK;
6539 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6540 }
6541 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6542 
6543 /* uses this to access any guest's mapped memory without checking CPL */
6544 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6545 				struct x86_exception *exception)
6546 {
6547 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6548 }
6549 
6550 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6551 				      struct kvm_vcpu *vcpu, u32 access,
6552 				      struct x86_exception *exception)
6553 {
6554 	void *data = val;
6555 	int r = X86EMUL_CONTINUE;
6556 
6557 	while (bytes) {
6558 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6559 							    exception);
6560 		unsigned offset = addr & (PAGE_SIZE-1);
6561 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6562 		int ret;
6563 
6564 		if (gpa == UNMAPPED_GVA)
6565 			return X86EMUL_PROPAGATE_FAULT;
6566 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6567 					       offset, toread);
6568 		if (ret < 0) {
6569 			r = X86EMUL_IO_NEEDED;
6570 			goto out;
6571 		}
6572 
6573 		bytes -= toread;
6574 		data += toread;
6575 		addr += toread;
6576 	}
6577 out:
6578 	return r;
6579 }
6580 
6581 /* used for instruction fetching */
6582 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6583 				gva_t addr, void *val, unsigned int bytes,
6584 				struct x86_exception *exception)
6585 {
6586 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6587 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6588 	unsigned offset;
6589 	int ret;
6590 
6591 	/* Inline kvm_read_guest_virt_helper for speed.  */
6592 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6593 						    exception);
6594 	if (unlikely(gpa == UNMAPPED_GVA))
6595 		return X86EMUL_PROPAGATE_FAULT;
6596 
6597 	offset = addr & (PAGE_SIZE-1);
6598 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6599 		bytes = (unsigned)PAGE_SIZE - offset;
6600 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6601 				       offset, bytes);
6602 	if (unlikely(ret < 0))
6603 		return X86EMUL_IO_NEEDED;
6604 
6605 	return X86EMUL_CONTINUE;
6606 }
6607 
6608 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6609 			       gva_t addr, void *val, unsigned int bytes,
6610 			       struct x86_exception *exception)
6611 {
6612 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6613 
6614 	/*
6615 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6616 	 * is returned, but our callers are not ready for that and they blindly
6617 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6618 	 * uninitialized kernel stack memory into cr2 and error code.
6619 	 */
6620 	memset(exception, 0, sizeof(*exception));
6621 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6622 					  exception);
6623 }
6624 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6625 
6626 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6627 			     gva_t addr, void *val, unsigned int bytes,
6628 			     struct x86_exception *exception, bool system)
6629 {
6630 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6631 	u32 access = 0;
6632 
6633 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6634 		access |= PFERR_USER_MASK;
6635 
6636 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6637 }
6638 
6639 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6640 		unsigned long addr, void *val, unsigned int bytes)
6641 {
6642 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6643 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6644 
6645 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6646 }
6647 
6648 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6649 				      struct kvm_vcpu *vcpu, u32 access,
6650 				      struct x86_exception *exception)
6651 {
6652 	void *data = val;
6653 	int r = X86EMUL_CONTINUE;
6654 
6655 	while (bytes) {
6656 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6657 							     access,
6658 							     exception);
6659 		unsigned offset = addr & (PAGE_SIZE-1);
6660 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6661 		int ret;
6662 
6663 		if (gpa == UNMAPPED_GVA)
6664 			return X86EMUL_PROPAGATE_FAULT;
6665 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6666 		if (ret < 0) {
6667 			r = X86EMUL_IO_NEEDED;
6668 			goto out;
6669 		}
6670 
6671 		bytes -= towrite;
6672 		data += towrite;
6673 		addr += towrite;
6674 	}
6675 out:
6676 	return r;
6677 }
6678 
6679 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6680 			      unsigned int bytes, struct x86_exception *exception,
6681 			      bool system)
6682 {
6683 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6684 	u32 access = PFERR_WRITE_MASK;
6685 
6686 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6687 		access |= PFERR_USER_MASK;
6688 
6689 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6690 					   access, exception);
6691 }
6692 
6693 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6694 				unsigned int bytes, struct x86_exception *exception)
6695 {
6696 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6697 	vcpu->arch.l1tf_flush_l1d = true;
6698 
6699 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6700 					   PFERR_WRITE_MASK, exception);
6701 }
6702 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6703 
6704 int handle_ud(struct kvm_vcpu *vcpu)
6705 {
6706 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6707 	int emul_type = EMULTYPE_TRAP_UD;
6708 	char sig[5]; /* ud2; .ascii "kvm" */
6709 	struct x86_exception e;
6710 
6711 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6712 		return 1;
6713 
6714 	if (force_emulation_prefix &&
6715 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6716 				sig, sizeof(sig), &e) == 0 &&
6717 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6718 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6719 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6720 	}
6721 
6722 	return kvm_emulate_instruction(vcpu, emul_type);
6723 }
6724 EXPORT_SYMBOL_GPL(handle_ud);
6725 
6726 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6727 			    gpa_t gpa, bool write)
6728 {
6729 	/* For APIC access vmexit */
6730 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6731 		return 1;
6732 
6733 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6734 		trace_vcpu_match_mmio(gva, gpa, write, true);
6735 		return 1;
6736 	}
6737 
6738 	return 0;
6739 }
6740 
6741 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6742 				gpa_t *gpa, struct x86_exception *exception,
6743 				bool write)
6744 {
6745 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6746 		| (write ? PFERR_WRITE_MASK : 0);
6747 
6748 	/*
6749 	 * currently PKRU is only applied to ept enabled guest so
6750 	 * there is no pkey in EPT page table for L1 guest or EPT
6751 	 * shadow page table for L2 guest.
6752 	 */
6753 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6754 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
6755 			      vcpu->arch.mmio_access, 0, access))) {
6756 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6757 					(gva & (PAGE_SIZE - 1));
6758 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6759 		return 1;
6760 	}
6761 
6762 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6763 
6764 	if (*gpa == UNMAPPED_GVA)
6765 		return -1;
6766 
6767 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6768 }
6769 
6770 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6771 			const void *val, int bytes)
6772 {
6773 	int ret;
6774 
6775 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6776 	if (ret < 0)
6777 		return 0;
6778 	kvm_page_track_write(vcpu, gpa, val, bytes);
6779 	return 1;
6780 }
6781 
6782 struct read_write_emulator_ops {
6783 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6784 				  int bytes);
6785 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6786 				  void *val, int bytes);
6787 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6788 			       int bytes, void *val);
6789 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6790 				    void *val, int bytes);
6791 	bool write;
6792 };
6793 
6794 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6795 {
6796 	if (vcpu->mmio_read_completed) {
6797 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6798 			       vcpu->mmio_fragments[0].gpa, val);
6799 		vcpu->mmio_read_completed = 0;
6800 		return 1;
6801 	}
6802 
6803 	return 0;
6804 }
6805 
6806 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6807 			void *val, int bytes)
6808 {
6809 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6810 }
6811 
6812 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6813 			 void *val, int bytes)
6814 {
6815 	return emulator_write_phys(vcpu, gpa, val, bytes);
6816 }
6817 
6818 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6819 {
6820 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6821 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6822 }
6823 
6824 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6825 			  void *val, int bytes)
6826 {
6827 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6828 	return X86EMUL_IO_NEEDED;
6829 }
6830 
6831 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6832 			   void *val, int bytes)
6833 {
6834 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6835 
6836 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6837 	return X86EMUL_CONTINUE;
6838 }
6839 
6840 static const struct read_write_emulator_ops read_emultor = {
6841 	.read_write_prepare = read_prepare,
6842 	.read_write_emulate = read_emulate,
6843 	.read_write_mmio = vcpu_mmio_read,
6844 	.read_write_exit_mmio = read_exit_mmio,
6845 };
6846 
6847 static const struct read_write_emulator_ops write_emultor = {
6848 	.read_write_emulate = write_emulate,
6849 	.read_write_mmio = write_mmio,
6850 	.read_write_exit_mmio = write_exit_mmio,
6851 	.write = true,
6852 };
6853 
6854 static int emulator_read_write_onepage(unsigned long addr, void *val,
6855 				       unsigned int bytes,
6856 				       struct x86_exception *exception,
6857 				       struct kvm_vcpu *vcpu,
6858 				       const struct read_write_emulator_ops *ops)
6859 {
6860 	gpa_t gpa;
6861 	int handled, ret;
6862 	bool write = ops->write;
6863 	struct kvm_mmio_fragment *frag;
6864 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6865 
6866 	/*
6867 	 * If the exit was due to a NPF we may already have a GPA.
6868 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6869 	 * Note, this cannot be used on string operations since string
6870 	 * operation using rep will only have the initial GPA from the NPF
6871 	 * occurred.
6872 	 */
6873 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6874 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6875 		gpa = ctxt->gpa_val;
6876 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6877 	} else {
6878 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6879 		if (ret < 0)
6880 			return X86EMUL_PROPAGATE_FAULT;
6881 	}
6882 
6883 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6884 		return X86EMUL_CONTINUE;
6885 
6886 	/*
6887 	 * Is this MMIO handled locally?
6888 	 */
6889 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6890 	if (handled == bytes)
6891 		return X86EMUL_CONTINUE;
6892 
6893 	gpa += handled;
6894 	bytes -= handled;
6895 	val += handled;
6896 
6897 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6898 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6899 	frag->gpa = gpa;
6900 	frag->data = val;
6901 	frag->len = bytes;
6902 	return X86EMUL_CONTINUE;
6903 }
6904 
6905 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6906 			unsigned long addr,
6907 			void *val, unsigned int bytes,
6908 			struct x86_exception *exception,
6909 			const struct read_write_emulator_ops *ops)
6910 {
6911 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6912 	gpa_t gpa;
6913 	int rc;
6914 
6915 	if (ops->read_write_prepare &&
6916 		  ops->read_write_prepare(vcpu, val, bytes))
6917 		return X86EMUL_CONTINUE;
6918 
6919 	vcpu->mmio_nr_fragments = 0;
6920 
6921 	/* Crossing a page boundary? */
6922 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6923 		int now;
6924 
6925 		now = -addr & ~PAGE_MASK;
6926 		rc = emulator_read_write_onepage(addr, val, now, exception,
6927 						 vcpu, ops);
6928 
6929 		if (rc != X86EMUL_CONTINUE)
6930 			return rc;
6931 		addr += now;
6932 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6933 			addr = (u32)addr;
6934 		val += now;
6935 		bytes -= now;
6936 	}
6937 
6938 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6939 					 vcpu, ops);
6940 	if (rc != X86EMUL_CONTINUE)
6941 		return rc;
6942 
6943 	if (!vcpu->mmio_nr_fragments)
6944 		return rc;
6945 
6946 	gpa = vcpu->mmio_fragments[0].gpa;
6947 
6948 	vcpu->mmio_needed = 1;
6949 	vcpu->mmio_cur_fragment = 0;
6950 
6951 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6952 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6953 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6954 	vcpu->run->mmio.phys_addr = gpa;
6955 
6956 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6957 }
6958 
6959 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6960 				  unsigned long addr,
6961 				  void *val,
6962 				  unsigned int bytes,
6963 				  struct x86_exception *exception)
6964 {
6965 	return emulator_read_write(ctxt, addr, val, bytes,
6966 				   exception, &read_emultor);
6967 }
6968 
6969 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6970 			    unsigned long addr,
6971 			    const void *val,
6972 			    unsigned int bytes,
6973 			    struct x86_exception *exception)
6974 {
6975 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6976 				   exception, &write_emultor);
6977 }
6978 
6979 #define CMPXCHG_TYPE(t, ptr, old, new) \
6980 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6981 
6982 #ifdef CONFIG_X86_64
6983 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6984 #else
6985 #  define CMPXCHG64(ptr, old, new) \
6986 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6987 #endif
6988 
6989 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6990 				     unsigned long addr,
6991 				     const void *old,
6992 				     const void *new,
6993 				     unsigned int bytes,
6994 				     struct x86_exception *exception)
6995 {
6996 	struct kvm_host_map map;
6997 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6998 	u64 page_line_mask;
6999 	gpa_t gpa;
7000 	char *kaddr;
7001 	bool exchanged;
7002 
7003 	/* guests cmpxchg8b have to be emulated atomically */
7004 	if (bytes > 8 || (bytes & (bytes - 1)))
7005 		goto emul_write;
7006 
7007 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7008 
7009 	if (gpa == UNMAPPED_GVA ||
7010 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7011 		goto emul_write;
7012 
7013 	/*
7014 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7015 	 * enabled in the host and the access splits a cache line.
7016 	 */
7017 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7018 		page_line_mask = ~(cache_line_size() - 1);
7019 	else
7020 		page_line_mask = PAGE_MASK;
7021 
7022 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7023 		goto emul_write;
7024 
7025 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7026 		goto emul_write;
7027 
7028 	kaddr = map.hva + offset_in_page(gpa);
7029 
7030 	switch (bytes) {
7031 	case 1:
7032 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7033 		break;
7034 	case 2:
7035 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7036 		break;
7037 	case 4:
7038 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7039 		break;
7040 	case 8:
7041 		exchanged = CMPXCHG64(kaddr, old, new);
7042 		break;
7043 	default:
7044 		BUG();
7045 	}
7046 
7047 	kvm_vcpu_unmap(vcpu, &map, true);
7048 
7049 	if (!exchanged)
7050 		return X86EMUL_CMPXCHG_FAILED;
7051 
7052 	kvm_page_track_write(vcpu, gpa, new, bytes);
7053 
7054 	return X86EMUL_CONTINUE;
7055 
7056 emul_write:
7057 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7058 
7059 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7060 }
7061 
7062 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7063 {
7064 	int r = 0, i;
7065 
7066 	for (i = 0; i < vcpu->arch.pio.count; i++) {
7067 		if (vcpu->arch.pio.in)
7068 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7069 					    vcpu->arch.pio.size, pd);
7070 		else
7071 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7072 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
7073 					     pd);
7074 		if (r)
7075 			break;
7076 		pd += vcpu->arch.pio.size;
7077 	}
7078 	return r;
7079 }
7080 
7081 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7082 			       unsigned short port,
7083 			       unsigned int count, bool in)
7084 {
7085 	vcpu->arch.pio.port = port;
7086 	vcpu->arch.pio.in = in;
7087 	vcpu->arch.pio.count  = count;
7088 	vcpu->arch.pio.size = size;
7089 
7090 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7091 		return 1;
7092 
7093 	vcpu->run->exit_reason = KVM_EXIT_IO;
7094 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7095 	vcpu->run->io.size = size;
7096 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7097 	vcpu->run->io.count = count;
7098 	vcpu->run->io.port = port;
7099 
7100 	return 0;
7101 }
7102 
7103 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7104 			     unsigned short port, unsigned int count)
7105 {
7106 	WARN_ON(vcpu->arch.pio.count);
7107 	memset(vcpu->arch.pio_data, 0, size * count);
7108 	return emulator_pio_in_out(vcpu, size, port, count, true);
7109 }
7110 
7111 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7112 {
7113 	int size = vcpu->arch.pio.size;
7114 	unsigned count = vcpu->arch.pio.count;
7115 	memcpy(val, vcpu->arch.pio_data, size * count);
7116 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7117 	vcpu->arch.pio.count = 0;
7118 }
7119 
7120 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7121 			   unsigned short port, void *val, unsigned int count)
7122 {
7123 	if (vcpu->arch.pio.count) {
7124 		/* Complete previous iteration.  */
7125 	} else {
7126 		int r = __emulator_pio_in(vcpu, size, port, count);
7127 		if (!r)
7128 			return r;
7129 
7130 		/* Results already available, fall through.  */
7131 	}
7132 
7133 	WARN_ON(count != vcpu->arch.pio.count);
7134 	complete_emulator_pio_in(vcpu, val);
7135 	return 1;
7136 }
7137 
7138 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7139 				    int size, unsigned short port, void *val,
7140 				    unsigned int count)
7141 {
7142 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7143 
7144 }
7145 
7146 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7147 			    unsigned short port, const void *val,
7148 			    unsigned int count)
7149 {
7150 	int ret;
7151 
7152 	memcpy(vcpu->arch.pio_data, val, size * count);
7153 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7154 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7155 	if (ret)
7156                 vcpu->arch.pio.count = 0;
7157 
7158         return ret;
7159 }
7160 
7161 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7162 				     int size, unsigned short port,
7163 				     const void *val, unsigned int count)
7164 {
7165 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7166 }
7167 
7168 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7169 {
7170 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7171 }
7172 
7173 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7174 {
7175 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7176 }
7177 
7178 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7179 {
7180 	if (!need_emulate_wbinvd(vcpu))
7181 		return X86EMUL_CONTINUE;
7182 
7183 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7184 		int cpu = get_cpu();
7185 
7186 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7187 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7188 				wbinvd_ipi, NULL, 1);
7189 		put_cpu();
7190 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7191 	} else
7192 		wbinvd();
7193 	return X86EMUL_CONTINUE;
7194 }
7195 
7196 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7197 {
7198 	kvm_emulate_wbinvd_noskip(vcpu);
7199 	return kvm_skip_emulated_instruction(vcpu);
7200 }
7201 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7202 
7203 
7204 
7205 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7206 {
7207 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7208 }
7209 
7210 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7211 			    unsigned long *dest)
7212 {
7213 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7214 }
7215 
7216 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7217 			   unsigned long value)
7218 {
7219 
7220 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7221 }
7222 
7223 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7224 {
7225 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7226 }
7227 
7228 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7229 {
7230 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7231 	unsigned long value;
7232 
7233 	switch (cr) {
7234 	case 0:
7235 		value = kvm_read_cr0(vcpu);
7236 		break;
7237 	case 2:
7238 		value = vcpu->arch.cr2;
7239 		break;
7240 	case 3:
7241 		value = kvm_read_cr3(vcpu);
7242 		break;
7243 	case 4:
7244 		value = kvm_read_cr4(vcpu);
7245 		break;
7246 	case 8:
7247 		value = kvm_get_cr8(vcpu);
7248 		break;
7249 	default:
7250 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7251 		return 0;
7252 	}
7253 
7254 	return value;
7255 }
7256 
7257 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7258 {
7259 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7260 	int res = 0;
7261 
7262 	switch (cr) {
7263 	case 0:
7264 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7265 		break;
7266 	case 2:
7267 		vcpu->arch.cr2 = val;
7268 		break;
7269 	case 3:
7270 		res = kvm_set_cr3(vcpu, val);
7271 		break;
7272 	case 4:
7273 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7274 		break;
7275 	case 8:
7276 		res = kvm_set_cr8(vcpu, val);
7277 		break;
7278 	default:
7279 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7280 		res = -1;
7281 	}
7282 
7283 	return res;
7284 }
7285 
7286 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7287 {
7288 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7289 }
7290 
7291 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7292 {
7293 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7294 }
7295 
7296 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7297 {
7298 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7299 }
7300 
7301 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7302 {
7303 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7304 }
7305 
7306 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7307 {
7308 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7309 }
7310 
7311 static unsigned long emulator_get_cached_segment_base(
7312 	struct x86_emulate_ctxt *ctxt, int seg)
7313 {
7314 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7315 }
7316 
7317 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7318 				 struct desc_struct *desc, u32 *base3,
7319 				 int seg)
7320 {
7321 	struct kvm_segment var;
7322 
7323 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7324 	*selector = var.selector;
7325 
7326 	if (var.unusable) {
7327 		memset(desc, 0, sizeof(*desc));
7328 		if (base3)
7329 			*base3 = 0;
7330 		return false;
7331 	}
7332 
7333 	if (var.g)
7334 		var.limit >>= 12;
7335 	set_desc_limit(desc, var.limit);
7336 	set_desc_base(desc, (unsigned long)var.base);
7337 #ifdef CONFIG_X86_64
7338 	if (base3)
7339 		*base3 = var.base >> 32;
7340 #endif
7341 	desc->type = var.type;
7342 	desc->s = var.s;
7343 	desc->dpl = var.dpl;
7344 	desc->p = var.present;
7345 	desc->avl = var.avl;
7346 	desc->l = var.l;
7347 	desc->d = var.db;
7348 	desc->g = var.g;
7349 
7350 	return true;
7351 }
7352 
7353 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7354 				 struct desc_struct *desc, u32 base3,
7355 				 int seg)
7356 {
7357 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7358 	struct kvm_segment var;
7359 
7360 	var.selector = selector;
7361 	var.base = get_desc_base(desc);
7362 #ifdef CONFIG_X86_64
7363 	var.base |= ((u64)base3) << 32;
7364 #endif
7365 	var.limit = get_desc_limit(desc);
7366 	if (desc->g)
7367 		var.limit = (var.limit << 12) | 0xfff;
7368 	var.type = desc->type;
7369 	var.dpl = desc->dpl;
7370 	var.db = desc->d;
7371 	var.s = desc->s;
7372 	var.l = desc->l;
7373 	var.g = desc->g;
7374 	var.avl = desc->avl;
7375 	var.present = desc->p;
7376 	var.unusable = !var.present;
7377 	var.padding = 0;
7378 
7379 	kvm_set_segment(vcpu, &var, seg);
7380 	return;
7381 }
7382 
7383 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7384 			    u32 msr_index, u64 *pdata)
7385 {
7386 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7387 	int r;
7388 
7389 	r = kvm_get_msr(vcpu, msr_index, pdata);
7390 
7391 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7392 		/* Bounce to user space */
7393 		return X86EMUL_IO_NEEDED;
7394 	}
7395 
7396 	return r;
7397 }
7398 
7399 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7400 			    u32 msr_index, u64 data)
7401 {
7402 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7403 	int r;
7404 
7405 	r = kvm_set_msr(vcpu, msr_index, data);
7406 
7407 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7408 		/* Bounce to user space */
7409 		return X86EMUL_IO_NEEDED;
7410 	}
7411 
7412 	return r;
7413 }
7414 
7415 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7416 {
7417 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7418 
7419 	return vcpu->arch.smbase;
7420 }
7421 
7422 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7423 {
7424 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7425 
7426 	vcpu->arch.smbase = smbase;
7427 }
7428 
7429 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7430 			      u32 pmc)
7431 {
7432 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7433 		return 0;
7434 	return -EINVAL;
7435 }
7436 
7437 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7438 			     u32 pmc, u64 *pdata)
7439 {
7440 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7441 }
7442 
7443 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7444 {
7445 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7446 }
7447 
7448 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7449 			      struct x86_instruction_info *info,
7450 			      enum x86_intercept_stage stage)
7451 {
7452 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7453 					    &ctxt->exception);
7454 }
7455 
7456 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7457 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7458 			      bool exact_only)
7459 {
7460 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7461 }
7462 
7463 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7464 {
7465 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7466 }
7467 
7468 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7469 {
7470 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7471 }
7472 
7473 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7474 {
7475 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7476 }
7477 
7478 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7479 {
7480 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7481 }
7482 
7483 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7484 {
7485 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7486 }
7487 
7488 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7489 {
7490 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7491 }
7492 
7493 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7494 {
7495 	return emul_to_vcpu(ctxt)->arch.hflags;
7496 }
7497 
7498 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7499 {
7500 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7501 
7502 	kvm_smm_changed(vcpu, false);
7503 }
7504 
7505 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7506 				  const char *smstate)
7507 {
7508 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7509 }
7510 
7511 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7512 {
7513 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7514 }
7515 
7516 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7517 {
7518 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7519 }
7520 
7521 static const struct x86_emulate_ops emulate_ops = {
7522 	.read_gpr            = emulator_read_gpr,
7523 	.write_gpr           = emulator_write_gpr,
7524 	.read_std            = emulator_read_std,
7525 	.write_std           = emulator_write_std,
7526 	.read_phys           = kvm_read_guest_phys_system,
7527 	.fetch               = kvm_fetch_guest_virt,
7528 	.read_emulated       = emulator_read_emulated,
7529 	.write_emulated      = emulator_write_emulated,
7530 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7531 	.invlpg              = emulator_invlpg,
7532 	.pio_in_emulated     = emulator_pio_in_emulated,
7533 	.pio_out_emulated    = emulator_pio_out_emulated,
7534 	.get_segment         = emulator_get_segment,
7535 	.set_segment         = emulator_set_segment,
7536 	.get_cached_segment_base = emulator_get_cached_segment_base,
7537 	.get_gdt             = emulator_get_gdt,
7538 	.get_idt	     = emulator_get_idt,
7539 	.set_gdt             = emulator_set_gdt,
7540 	.set_idt	     = emulator_set_idt,
7541 	.get_cr              = emulator_get_cr,
7542 	.set_cr              = emulator_set_cr,
7543 	.cpl                 = emulator_get_cpl,
7544 	.get_dr              = emulator_get_dr,
7545 	.set_dr              = emulator_set_dr,
7546 	.get_smbase          = emulator_get_smbase,
7547 	.set_smbase          = emulator_set_smbase,
7548 	.set_msr             = emulator_set_msr,
7549 	.get_msr             = emulator_get_msr,
7550 	.check_pmc	     = emulator_check_pmc,
7551 	.read_pmc            = emulator_read_pmc,
7552 	.halt                = emulator_halt,
7553 	.wbinvd              = emulator_wbinvd,
7554 	.fix_hypercall       = emulator_fix_hypercall,
7555 	.intercept           = emulator_intercept,
7556 	.get_cpuid           = emulator_get_cpuid,
7557 	.guest_has_long_mode = emulator_guest_has_long_mode,
7558 	.guest_has_movbe     = emulator_guest_has_movbe,
7559 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7560 	.set_nmi_mask        = emulator_set_nmi_mask,
7561 	.get_hflags          = emulator_get_hflags,
7562 	.exiting_smm         = emulator_exiting_smm,
7563 	.leave_smm           = emulator_leave_smm,
7564 	.triple_fault        = emulator_triple_fault,
7565 	.set_xcr             = emulator_set_xcr,
7566 };
7567 
7568 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7569 {
7570 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7571 	/*
7572 	 * an sti; sti; sequence only disable interrupts for the first
7573 	 * instruction. So, if the last instruction, be it emulated or
7574 	 * not, left the system with the INT_STI flag enabled, it
7575 	 * means that the last instruction is an sti. We should not
7576 	 * leave the flag on in this case. The same goes for mov ss
7577 	 */
7578 	if (int_shadow & mask)
7579 		mask = 0;
7580 	if (unlikely(int_shadow || mask)) {
7581 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7582 		if (!mask)
7583 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7584 	}
7585 }
7586 
7587 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7588 {
7589 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7590 	if (ctxt->exception.vector == PF_VECTOR)
7591 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7592 
7593 	if (ctxt->exception.error_code_valid)
7594 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7595 				      ctxt->exception.error_code);
7596 	else
7597 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7598 	return false;
7599 }
7600 
7601 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7602 {
7603 	struct x86_emulate_ctxt *ctxt;
7604 
7605 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7606 	if (!ctxt) {
7607 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7608 		return NULL;
7609 	}
7610 
7611 	ctxt->vcpu = vcpu;
7612 	ctxt->ops = &emulate_ops;
7613 	vcpu->arch.emulate_ctxt = ctxt;
7614 
7615 	return ctxt;
7616 }
7617 
7618 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7619 {
7620 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7621 	int cs_db, cs_l;
7622 
7623 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7624 
7625 	ctxt->gpa_available = false;
7626 	ctxt->eflags = kvm_get_rflags(vcpu);
7627 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7628 
7629 	ctxt->eip = kvm_rip_read(vcpu);
7630 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7631 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7632 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7633 		     cs_db				? X86EMUL_MODE_PROT32 :
7634 							  X86EMUL_MODE_PROT16;
7635 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7636 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7637 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7638 
7639 	ctxt->interruptibility = 0;
7640 	ctxt->have_exception = false;
7641 	ctxt->exception.vector = -1;
7642 	ctxt->perm_ok = false;
7643 
7644 	init_decode_cache(ctxt);
7645 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7646 }
7647 
7648 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7649 {
7650 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7651 	int ret;
7652 
7653 	init_emulate_ctxt(vcpu);
7654 
7655 	ctxt->op_bytes = 2;
7656 	ctxt->ad_bytes = 2;
7657 	ctxt->_eip = ctxt->eip + inc_eip;
7658 	ret = emulate_int_real(ctxt, irq);
7659 
7660 	if (ret != X86EMUL_CONTINUE) {
7661 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7662 	} else {
7663 		ctxt->eip = ctxt->_eip;
7664 		kvm_rip_write(vcpu, ctxt->eip);
7665 		kvm_set_rflags(vcpu, ctxt->eflags);
7666 	}
7667 }
7668 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7669 
7670 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7671 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
7672 {
7673 	struct kvm_run *run = vcpu->run;
7674 	u64 info[5];
7675 	u8 info_start;
7676 
7677 	/*
7678 	 * Zero the whole array used to retrieve the exit info, as casting to
7679 	 * u32 for select entries will leave some chunks uninitialized.
7680 	 */
7681 	memset(&info, 0, sizeof(info));
7682 
7683 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7684 					   &info[2], (u32 *)&info[3],
7685 					   (u32 *)&info[4]);
7686 
7687 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7688 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7689 
7690 	/*
7691 	 * There's currently space for 13 entries, but 5 are used for the exit
7692 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
7693 	 * when expanding kvm_run.emulation_failure in the future.
7694 	 */
7695 	if (WARN_ON_ONCE(ndata > 4))
7696 		ndata = 4;
7697 
7698 	/* Always include the flags as a 'data' entry. */
7699 	info_start = 1;
7700 	run->emulation_failure.flags = 0;
7701 
7702 	if (insn_size) {
7703 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7704 			      sizeof(run->emulation_failure.insn_bytes) != 16));
7705 		info_start += 2;
7706 		run->emulation_failure.flags |=
7707 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7708 		run->emulation_failure.insn_size = insn_size;
7709 		memset(run->emulation_failure.insn_bytes, 0x90,
7710 		       sizeof(run->emulation_failure.insn_bytes));
7711 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7712 	}
7713 
7714 	memcpy(&run->internal.data[info_start], info, sizeof(info));
7715 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7716 	       ndata * sizeof(data[0]));
7717 
7718 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7719 }
7720 
7721 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7722 {
7723 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7724 
7725 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7726 				       ctxt->fetch.end - ctxt->fetch.data);
7727 }
7728 
7729 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7730 					  u8 ndata)
7731 {
7732 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7733 }
7734 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7735 
7736 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7737 {
7738 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7739 }
7740 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7741 
7742 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7743 {
7744 	struct kvm *kvm = vcpu->kvm;
7745 
7746 	++vcpu->stat.insn_emulation_fail;
7747 	trace_kvm_emulate_insn_failed(vcpu);
7748 
7749 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7750 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7751 		return 1;
7752 	}
7753 
7754 	if (kvm->arch.exit_on_emulation_error ||
7755 	    (emulation_type & EMULTYPE_SKIP)) {
7756 		prepare_emulation_ctxt_failure_exit(vcpu);
7757 		return 0;
7758 	}
7759 
7760 	kvm_queue_exception(vcpu, UD_VECTOR);
7761 
7762 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7763 		prepare_emulation_ctxt_failure_exit(vcpu);
7764 		return 0;
7765 	}
7766 
7767 	return 1;
7768 }
7769 
7770 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7771 				  bool write_fault_to_shadow_pgtable,
7772 				  int emulation_type)
7773 {
7774 	gpa_t gpa = cr2_or_gpa;
7775 	kvm_pfn_t pfn;
7776 
7777 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7778 		return false;
7779 
7780 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7781 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7782 		return false;
7783 
7784 	if (!vcpu->arch.mmu->direct_map) {
7785 		/*
7786 		 * Write permission should be allowed since only
7787 		 * write access need to be emulated.
7788 		 */
7789 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7790 
7791 		/*
7792 		 * If the mapping is invalid in guest, let cpu retry
7793 		 * it to generate fault.
7794 		 */
7795 		if (gpa == UNMAPPED_GVA)
7796 			return true;
7797 	}
7798 
7799 	/*
7800 	 * Do not retry the unhandleable instruction if it faults on the
7801 	 * readonly host memory, otherwise it will goto a infinite loop:
7802 	 * retry instruction -> write #PF -> emulation fail -> retry
7803 	 * instruction -> ...
7804 	 */
7805 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7806 
7807 	/*
7808 	 * If the instruction failed on the error pfn, it can not be fixed,
7809 	 * report the error to userspace.
7810 	 */
7811 	if (is_error_noslot_pfn(pfn))
7812 		return false;
7813 
7814 	kvm_release_pfn_clean(pfn);
7815 
7816 	/* The instructions are well-emulated on direct mmu. */
7817 	if (vcpu->arch.mmu->direct_map) {
7818 		unsigned int indirect_shadow_pages;
7819 
7820 		write_lock(&vcpu->kvm->mmu_lock);
7821 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7822 		write_unlock(&vcpu->kvm->mmu_lock);
7823 
7824 		if (indirect_shadow_pages)
7825 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7826 
7827 		return true;
7828 	}
7829 
7830 	/*
7831 	 * if emulation was due to access to shadowed page table
7832 	 * and it failed try to unshadow page and re-enter the
7833 	 * guest to let CPU execute the instruction.
7834 	 */
7835 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7836 
7837 	/*
7838 	 * If the access faults on its page table, it can not
7839 	 * be fixed by unprotecting shadow page and it should
7840 	 * be reported to userspace.
7841 	 */
7842 	return !write_fault_to_shadow_pgtable;
7843 }
7844 
7845 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7846 			      gpa_t cr2_or_gpa,  int emulation_type)
7847 {
7848 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7849 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7850 
7851 	last_retry_eip = vcpu->arch.last_retry_eip;
7852 	last_retry_addr = vcpu->arch.last_retry_addr;
7853 
7854 	/*
7855 	 * If the emulation is caused by #PF and it is non-page_table
7856 	 * writing instruction, it means the VM-EXIT is caused by shadow
7857 	 * page protected, we can zap the shadow page and retry this
7858 	 * instruction directly.
7859 	 *
7860 	 * Note: if the guest uses a non-page-table modifying instruction
7861 	 * on the PDE that points to the instruction, then we will unmap
7862 	 * the instruction and go to an infinite loop. So, we cache the
7863 	 * last retried eip and the last fault address, if we meet the eip
7864 	 * and the address again, we can break out of the potential infinite
7865 	 * loop.
7866 	 */
7867 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7868 
7869 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7870 		return false;
7871 
7872 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7873 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7874 		return false;
7875 
7876 	if (x86_page_table_writing_insn(ctxt))
7877 		return false;
7878 
7879 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7880 		return false;
7881 
7882 	vcpu->arch.last_retry_eip = ctxt->eip;
7883 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7884 
7885 	if (!vcpu->arch.mmu->direct_map)
7886 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7887 
7888 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7889 
7890 	return true;
7891 }
7892 
7893 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7894 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7895 
7896 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7897 {
7898 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7899 
7900 	if (entering_smm) {
7901 		vcpu->arch.hflags |= HF_SMM_MASK;
7902 	} else {
7903 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7904 
7905 		/* Process a latched INIT or SMI, if any.  */
7906 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7907 
7908 		/*
7909 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7910 		 * on SMM exit we still need to reload them from
7911 		 * guest memory
7912 		 */
7913 		vcpu->arch.pdptrs_from_userspace = false;
7914 	}
7915 
7916 	kvm_mmu_reset_context(vcpu);
7917 }
7918 
7919 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7920 				unsigned long *db)
7921 {
7922 	u32 dr6 = 0;
7923 	int i;
7924 	u32 enable, rwlen;
7925 
7926 	enable = dr7;
7927 	rwlen = dr7 >> 16;
7928 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7929 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7930 			dr6 |= (1 << i);
7931 	return dr6;
7932 }
7933 
7934 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7935 {
7936 	struct kvm_run *kvm_run = vcpu->run;
7937 
7938 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7939 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7940 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7941 		kvm_run->debug.arch.exception = DB_VECTOR;
7942 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7943 		return 0;
7944 	}
7945 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7946 	return 1;
7947 }
7948 
7949 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7950 {
7951 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7952 	int r;
7953 
7954 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7955 	if (unlikely(!r))
7956 		return 0;
7957 
7958 	/*
7959 	 * rflags is the old, "raw" value of the flags.  The new value has
7960 	 * not been saved yet.
7961 	 *
7962 	 * This is correct even for TF set by the guest, because "the
7963 	 * processor will not generate this exception after the instruction
7964 	 * that sets the TF flag".
7965 	 */
7966 	if (unlikely(rflags & X86_EFLAGS_TF))
7967 		r = kvm_vcpu_do_singlestep(vcpu);
7968 	return r;
7969 }
7970 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7971 
7972 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7973 {
7974 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7975 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7976 		struct kvm_run *kvm_run = vcpu->run;
7977 		unsigned long eip = kvm_get_linear_rip(vcpu);
7978 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7979 					   vcpu->arch.guest_debug_dr7,
7980 					   vcpu->arch.eff_db);
7981 
7982 		if (dr6 != 0) {
7983 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7984 			kvm_run->debug.arch.pc = eip;
7985 			kvm_run->debug.arch.exception = DB_VECTOR;
7986 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7987 			*r = 0;
7988 			return true;
7989 		}
7990 	}
7991 
7992 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7993 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7994 		unsigned long eip = kvm_get_linear_rip(vcpu);
7995 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7996 					   vcpu->arch.dr7,
7997 					   vcpu->arch.db);
7998 
7999 		if (dr6 != 0) {
8000 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8001 			*r = 1;
8002 			return true;
8003 		}
8004 	}
8005 
8006 	return false;
8007 }
8008 
8009 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8010 {
8011 	switch (ctxt->opcode_len) {
8012 	case 1:
8013 		switch (ctxt->b) {
8014 		case 0xe4:	/* IN */
8015 		case 0xe5:
8016 		case 0xec:
8017 		case 0xed:
8018 		case 0xe6:	/* OUT */
8019 		case 0xe7:
8020 		case 0xee:
8021 		case 0xef:
8022 		case 0x6c:	/* INS */
8023 		case 0x6d:
8024 		case 0x6e:	/* OUTS */
8025 		case 0x6f:
8026 			return true;
8027 		}
8028 		break;
8029 	case 2:
8030 		switch (ctxt->b) {
8031 		case 0x33:	/* RDPMC */
8032 			return true;
8033 		}
8034 		break;
8035 	}
8036 
8037 	return false;
8038 }
8039 
8040 /*
8041  * Decode to be emulated instruction. Return EMULATION_OK if success.
8042  */
8043 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8044 				    void *insn, int insn_len)
8045 {
8046 	int r = EMULATION_OK;
8047 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8048 
8049 	init_emulate_ctxt(vcpu);
8050 
8051 	/*
8052 	 * We will reenter on the same instruction since we do not set
8053 	 * complete_userspace_io. This does not handle watchpoints yet,
8054 	 * those would be handled in the emulate_ops.
8055 	 */
8056 	if (!(emulation_type & EMULTYPE_SKIP) &&
8057 	    kvm_vcpu_check_breakpoint(vcpu, &r))
8058 		return r;
8059 
8060 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8061 
8062 	trace_kvm_emulate_insn_start(vcpu);
8063 	++vcpu->stat.insn_emulation;
8064 
8065 	return r;
8066 }
8067 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8068 
8069 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8070 			    int emulation_type, void *insn, int insn_len)
8071 {
8072 	int r;
8073 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8074 	bool writeback = true;
8075 	bool write_fault_to_spt;
8076 
8077 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
8078 		return 1;
8079 
8080 	vcpu->arch.l1tf_flush_l1d = true;
8081 
8082 	/*
8083 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8084 	 * never reused.
8085 	 */
8086 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8087 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8088 
8089 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8090 		kvm_clear_exception_queue(vcpu);
8091 
8092 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8093 						    insn, insn_len);
8094 		if (r != EMULATION_OK)  {
8095 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8096 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8097 				kvm_queue_exception(vcpu, UD_VECTOR);
8098 				return 1;
8099 			}
8100 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8101 						  write_fault_to_spt,
8102 						  emulation_type))
8103 				return 1;
8104 			if (ctxt->have_exception) {
8105 				/*
8106 				 * #UD should result in just EMULATION_FAILED, and trap-like
8107 				 * exception should not be encountered during decode.
8108 				 */
8109 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8110 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8111 				inject_emulated_exception(vcpu);
8112 				return 1;
8113 			}
8114 			return handle_emulation_failure(vcpu, emulation_type);
8115 		}
8116 	}
8117 
8118 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8119 	    !is_vmware_backdoor_opcode(ctxt)) {
8120 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8121 		return 1;
8122 	}
8123 
8124 	/*
8125 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
8126 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
8127 	 * updating interruptibility state and injecting single-step #DBs.
8128 	 */
8129 	if (emulation_type & EMULTYPE_SKIP) {
8130 		kvm_rip_write(vcpu, ctxt->_eip);
8131 		if (ctxt->eflags & X86_EFLAGS_RF)
8132 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8133 		return 1;
8134 	}
8135 
8136 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8137 		return 1;
8138 
8139 	/* this is needed for vmware backdoor interface to work since it
8140 	   changes registers values  during IO operation */
8141 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8142 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8143 		emulator_invalidate_register_cache(ctxt);
8144 	}
8145 
8146 restart:
8147 	if (emulation_type & EMULTYPE_PF) {
8148 		/* Save the faulting GPA (cr2) in the address field */
8149 		ctxt->exception.address = cr2_or_gpa;
8150 
8151 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8152 		if (vcpu->arch.mmu->direct_map) {
8153 			ctxt->gpa_available = true;
8154 			ctxt->gpa_val = cr2_or_gpa;
8155 		}
8156 	} else {
8157 		/* Sanitize the address out of an abundance of paranoia. */
8158 		ctxt->exception.address = 0;
8159 	}
8160 
8161 	r = x86_emulate_insn(ctxt);
8162 
8163 	if (r == EMULATION_INTERCEPTED)
8164 		return 1;
8165 
8166 	if (r == EMULATION_FAILED) {
8167 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8168 					emulation_type))
8169 			return 1;
8170 
8171 		return handle_emulation_failure(vcpu, emulation_type);
8172 	}
8173 
8174 	if (ctxt->have_exception) {
8175 		r = 1;
8176 		if (inject_emulated_exception(vcpu))
8177 			return r;
8178 	} else if (vcpu->arch.pio.count) {
8179 		if (!vcpu->arch.pio.in) {
8180 			/* FIXME: return into emulator if single-stepping.  */
8181 			vcpu->arch.pio.count = 0;
8182 		} else {
8183 			writeback = false;
8184 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8185 		}
8186 		r = 0;
8187 	} else if (vcpu->mmio_needed) {
8188 		++vcpu->stat.mmio_exits;
8189 
8190 		if (!vcpu->mmio_is_write)
8191 			writeback = false;
8192 		r = 0;
8193 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8194 	} else if (r == EMULATION_RESTART)
8195 		goto restart;
8196 	else
8197 		r = 1;
8198 
8199 	if (writeback) {
8200 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8201 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8202 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8203 		if (!ctxt->have_exception ||
8204 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8205 			kvm_rip_write(vcpu, ctxt->eip);
8206 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8207 				r = kvm_vcpu_do_singlestep(vcpu);
8208 			if (kvm_x86_ops.update_emulated_instruction)
8209 				static_call(kvm_x86_update_emulated_instruction)(vcpu);
8210 			__kvm_set_rflags(vcpu, ctxt->eflags);
8211 		}
8212 
8213 		/*
8214 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8215 		 * do nothing, and it will be requested again as soon as
8216 		 * the shadow expires.  But we still need to check here,
8217 		 * because POPF has no interrupt shadow.
8218 		 */
8219 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8220 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8221 	} else
8222 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8223 
8224 	return r;
8225 }
8226 
8227 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8228 {
8229 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8230 }
8231 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8232 
8233 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8234 					void *insn, int insn_len)
8235 {
8236 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8237 }
8238 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8239 
8240 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8241 {
8242 	vcpu->arch.pio.count = 0;
8243 	return 1;
8244 }
8245 
8246 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8247 {
8248 	vcpu->arch.pio.count = 0;
8249 
8250 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8251 		return 1;
8252 
8253 	return kvm_skip_emulated_instruction(vcpu);
8254 }
8255 
8256 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8257 			    unsigned short port)
8258 {
8259 	unsigned long val = kvm_rax_read(vcpu);
8260 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8261 
8262 	if (ret)
8263 		return ret;
8264 
8265 	/*
8266 	 * Workaround userspace that relies on old KVM behavior of %rip being
8267 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8268 	 */
8269 	if (port == 0x7e &&
8270 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8271 		vcpu->arch.complete_userspace_io =
8272 			complete_fast_pio_out_port_0x7e;
8273 		kvm_skip_emulated_instruction(vcpu);
8274 	} else {
8275 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8276 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8277 	}
8278 	return 0;
8279 }
8280 
8281 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8282 {
8283 	unsigned long val;
8284 
8285 	/* We should only ever be called with arch.pio.count equal to 1 */
8286 	BUG_ON(vcpu->arch.pio.count != 1);
8287 
8288 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8289 		vcpu->arch.pio.count = 0;
8290 		return 1;
8291 	}
8292 
8293 	/* For size less than 4 we merge, else we zero extend */
8294 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8295 
8296 	/*
8297 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8298 	 * the copy and tracing
8299 	 */
8300 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8301 	kvm_rax_write(vcpu, val);
8302 
8303 	return kvm_skip_emulated_instruction(vcpu);
8304 }
8305 
8306 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8307 			   unsigned short port)
8308 {
8309 	unsigned long val;
8310 	int ret;
8311 
8312 	/* For size less than 4 we merge, else we zero extend */
8313 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8314 
8315 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8316 	if (ret) {
8317 		kvm_rax_write(vcpu, val);
8318 		return ret;
8319 	}
8320 
8321 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8322 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8323 
8324 	return 0;
8325 }
8326 
8327 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8328 {
8329 	int ret;
8330 
8331 	if (in)
8332 		ret = kvm_fast_pio_in(vcpu, size, port);
8333 	else
8334 		ret = kvm_fast_pio_out(vcpu, size, port);
8335 	return ret && kvm_skip_emulated_instruction(vcpu);
8336 }
8337 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8338 
8339 static int kvmclock_cpu_down_prep(unsigned int cpu)
8340 {
8341 	__this_cpu_write(cpu_tsc_khz, 0);
8342 	return 0;
8343 }
8344 
8345 static void tsc_khz_changed(void *data)
8346 {
8347 	struct cpufreq_freqs *freq = data;
8348 	unsigned long khz = 0;
8349 
8350 	if (data)
8351 		khz = freq->new;
8352 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8353 		khz = cpufreq_quick_get(raw_smp_processor_id());
8354 	if (!khz)
8355 		khz = tsc_khz;
8356 	__this_cpu_write(cpu_tsc_khz, khz);
8357 }
8358 
8359 #ifdef CONFIG_X86_64
8360 static void kvm_hyperv_tsc_notifier(void)
8361 {
8362 	struct kvm *kvm;
8363 	int cpu;
8364 
8365 	mutex_lock(&kvm_lock);
8366 	list_for_each_entry(kvm, &vm_list, vm_list)
8367 		kvm_make_mclock_inprogress_request(kvm);
8368 
8369 	/* no guest entries from this point */
8370 	hyperv_stop_tsc_emulation();
8371 
8372 	/* TSC frequency always matches when on Hyper-V */
8373 	for_each_present_cpu(cpu)
8374 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8375 	kvm_max_guest_tsc_khz = tsc_khz;
8376 
8377 	list_for_each_entry(kvm, &vm_list, vm_list) {
8378 		__kvm_start_pvclock_update(kvm);
8379 		pvclock_update_vm_gtod_copy(kvm);
8380 		kvm_end_pvclock_update(kvm);
8381 	}
8382 
8383 	mutex_unlock(&kvm_lock);
8384 }
8385 #endif
8386 
8387 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8388 {
8389 	struct kvm *kvm;
8390 	struct kvm_vcpu *vcpu;
8391 	int i, send_ipi = 0;
8392 
8393 	/*
8394 	 * We allow guests to temporarily run on slowing clocks,
8395 	 * provided we notify them after, or to run on accelerating
8396 	 * clocks, provided we notify them before.  Thus time never
8397 	 * goes backwards.
8398 	 *
8399 	 * However, we have a problem.  We can't atomically update
8400 	 * the frequency of a given CPU from this function; it is
8401 	 * merely a notifier, which can be called from any CPU.
8402 	 * Changing the TSC frequency at arbitrary points in time
8403 	 * requires a recomputation of local variables related to
8404 	 * the TSC for each VCPU.  We must flag these local variables
8405 	 * to be updated and be sure the update takes place with the
8406 	 * new frequency before any guests proceed.
8407 	 *
8408 	 * Unfortunately, the combination of hotplug CPU and frequency
8409 	 * change creates an intractable locking scenario; the order
8410 	 * of when these callouts happen is undefined with respect to
8411 	 * CPU hotplug, and they can race with each other.  As such,
8412 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8413 	 * undefined; you can actually have a CPU frequency change take
8414 	 * place in between the computation of X and the setting of the
8415 	 * variable.  To protect against this problem, all updates of
8416 	 * the per_cpu tsc_khz variable are done in an interrupt
8417 	 * protected IPI, and all callers wishing to update the value
8418 	 * must wait for a synchronous IPI to complete (which is trivial
8419 	 * if the caller is on the CPU already).  This establishes the
8420 	 * necessary total order on variable updates.
8421 	 *
8422 	 * Note that because a guest time update may take place
8423 	 * anytime after the setting of the VCPU's request bit, the
8424 	 * correct TSC value must be set before the request.  However,
8425 	 * to ensure the update actually makes it to any guest which
8426 	 * starts running in hardware virtualization between the set
8427 	 * and the acquisition of the spinlock, we must also ping the
8428 	 * CPU after setting the request bit.
8429 	 *
8430 	 */
8431 
8432 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8433 
8434 	mutex_lock(&kvm_lock);
8435 	list_for_each_entry(kvm, &vm_list, vm_list) {
8436 		kvm_for_each_vcpu(i, vcpu, kvm) {
8437 			if (vcpu->cpu != cpu)
8438 				continue;
8439 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8440 			if (vcpu->cpu != raw_smp_processor_id())
8441 				send_ipi = 1;
8442 		}
8443 	}
8444 	mutex_unlock(&kvm_lock);
8445 
8446 	if (freq->old < freq->new && send_ipi) {
8447 		/*
8448 		 * We upscale the frequency.  Must make the guest
8449 		 * doesn't see old kvmclock values while running with
8450 		 * the new frequency, otherwise we risk the guest sees
8451 		 * time go backwards.
8452 		 *
8453 		 * In case we update the frequency for another cpu
8454 		 * (which might be in guest context) send an interrupt
8455 		 * to kick the cpu out of guest context.  Next time
8456 		 * guest context is entered kvmclock will be updated,
8457 		 * so the guest will not see stale values.
8458 		 */
8459 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8460 	}
8461 }
8462 
8463 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8464 				     void *data)
8465 {
8466 	struct cpufreq_freqs *freq = data;
8467 	int cpu;
8468 
8469 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8470 		return 0;
8471 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8472 		return 0;
8473 
8474 	for_each_cpu(cpu, freq->policy->cpus)
8475 		__kvmclock_cpufreq_notifier(freq, cpu);
8476 
8477 	return 0;
8478 }
8479 
8480 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8481 	.notifier_call  = kvmclock_cpufreq_notifier
8482 };
8483 
8484 static int kvmclock_cpu_online(unsigned int cpu)
8485 {
8486 	tsc_khz_changed(NULL);
8487 	return 0;
8488 }
8489 
8490 static void kvm_timer_init(void)
8491 {
8492 	max_tsc_khz = tsc_khz;
8493 
8494 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8495 #ifdef CONFIG_CPU_FREQ
8496 		struct cpufreq_policy *policy;
8497 		int cpu;
8498 
8499 		cpu = get_cpu();
8500 		policy = cpufreq_cpu_get(cpu);
8501 		if (policy) {
8502 			if (policy->cpuinfo.max_freq)
8503 				max_tsc_khz = policy->cpuinfo.max_freq;
8504 			cpufreq_cpu_put(policy);
8505 		}
8506 		put_cpu();
8507 #endif
8508 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8509 					  CPUFREQ_TRANSITION_NOTIFIER);
8510 	}
8511 
8512 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8513 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8514 }
8515 
8516 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8517 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8518 
8519 int kvm_is_in_guest(void)
8520 {
8521 	return __this_cpu_read(current_vcpu) != NULL;
8522 }
8523 
8524 static int kvm_is_user_mode(void)
8525 {
8526 	int user_mode = 3;
8527 
8528 	if (__this_cpu_read(current_vcpu))
8529 		user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8530 
8531 	return user_mode != 0;
8532 }
8533 
8534 static unsigned long kvm_get_guest_ip(void)
8535 {
8536 	unsigned long ip = 0;
8537 
8538 	if (__this_cpu_read(current_vcpu))
8539 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8540 
8541 	return ip;
8542 }
8543 
8544 static void kvm_handle_intel_pt_intr(void)
8545 {
8546 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8547 
8548 	kvm_make_request(KVM_REQ_PMI, vcpu);
8549 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8550 			(unsigned long *)&vcpu->arch.pmu.global_status);
8551 }
8552 
8553 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8554 	.is_in_guest		= kvm_is_in_guest,
8555 	.is_user_mode		= kvm_is_user_mode,
8556 	.get_guest_ip		= kvm_get_guest_ip,
8557 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
8558 };
8559 
8560 #ifdef CONFIG_X86_64
8561 static void pvclock_gtod_update_fn(struct work_struct *work)
8562 {
8563 	struct kvm *kvm;
8564 
8565 	struct kvm_vcpu *vcpu;
8566 	int i;
8567 
8568 	mutex_lock(&kvm_lock);
8569 	list_for_each_entry(kvm, &vm_list, vm_list)
8570 		kvm_for_each_vcpu(i, vcpu, kvm)
8571 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8572 	atomic_set(&kvm_guest_has_master_clock, 0);
8573 	mutex_unlock(&kvm_lock);
8574 }
8575 
8576 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8577 
8578 /*
8579  * Indirection to move queue_work() out of the tk_core.seq write held
8580  * region to prevent possible deadlocks against time accessors which
8581  * are invoked with work related locks held.
8582  */
8583 static void pvclock_irq_work_fn(struct irq_work *w)
8584 {
8585 	queue_work(system_long_wq, &pvclock_gtod_work);
8586 }
8587 
8588 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8589 
8590 /*
8591  * Notification about pvclock gtod data update.
8592  */
8593 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8594 			       void *priv)
8595 {
8596 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8597 	struct timekeeper *tk = priv;
8598 
8599 	update_pvclock_gtod(tk);
8600 
8601 	/*
8602 	 * Disable master clock if host does not trust, or does not use,
8603 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8604 	 * this is invoked with tk_core.seq write held.
8605 	 */
8606 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8607 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8608 		irq_work_queue(&pvclock_irq_work);
8609 	return 0;
8610 }
8611 
8612 static struct notifier_block pvclock_gtod_notifier = {
8613 	.notifier_call = pvclock_gtod_notify,
8614 };
8615 #endif
8616 
8617 int kvm_arch_init(void *opaque)
8618 {
8619 	struct kvm_x86_init_ops *ops = opaque;
8620 	int r;
8621 
8622 	if (kvm_x86_ops.hardware_enable) {
8623 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8624 		r = -EEXIST;
8625 		goto out;
8626 	}
8627 
8628 	if (!ops->cpu_has_kvm_support()) {
8629 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8630 				   ops->runtime_ops->name);
8631 		r = -EOPNOTSUPP;
8632 		goto out;
8633 	}
8634 	if (ops->disabled_by_bios()) {
8635 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8636 				   ops->runtime_ops->name);
8637 		r = -EOPNOTSUPP;
8638 		goto out;
8639 	}
8640 
8641 	/*
8642 	 * KVM explicitly assumes that the guest has an FPU and
8643 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8644 	 * vCPU's FPU state as a fxregs_state struct.
8645 	 */
8646 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8647 		printk(KERN_ERR "kvm: inadequate fpu\n");
8648 		r = -EOPNOTSUPP;
8649 		goto out;
8650 	}
8651 
8652 	r = -ENOMEM;
8653 
8654 	x86_emulator_cache = kvm_alloc_emulator_cache();
8655 	if (!x86_emulator_cache) {
8656 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8657 		goto out;
8658 	}
8659 
8660 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8661 	if (!user_return_msrs) {
8662 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8663 		goto out_free_x86_emulator_cache;
8664 	}
8665 	kvm_nr_uret_msrs = 0;
8666 
8667 	r = kvm_mmu_module_init();
8668 	if (r)
8669 		goto out_free_percpu;
8670 
8671 	kvm_timer_init();
8672 
8673 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
8674 
8675 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8676 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8677 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8678 	}
8679 
8680 	if (pi_inject_timer == -1)
8681 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8682 #ifdef CONFIG_X86_64
8683 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8684 
8685 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8686 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8687 #endif
8688 
8689 	return 0;
8690 
8691 out_free_percpu:
8692 	free_percpu(user_return_msrs);
8693 out_free_x86_emulator_cache:
8694 	kmem_cache_destroy(x86_emulator_cache);
8695 out:
8696 	return r;
8697 }
8698 
8699 void kvm_arch_exit(void)
8700 {
8701 #ifdef CONFIG_X86_64
8702 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8703 		clear_hv_tscchange_cb();
8704 #endif
8705 	kvm_lapic_exit();
8706 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8707 
8708 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8709 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8710 					    CPUFREQ_TRANSITION_NOTIFIER);
8711 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8712 #ifdef CONFIG_X86_64
8713 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8714 	irq_work_sync(&pvclock_irq_work);
8715 	cancel_work_sync(&pvclock_gtod_work);
8716 #endif
8717 	kvm_x86_ops.hardware_enable = NULL;
8718 	kvm_mmu_module_exit();
8719 	free_percpu(user_return_msrs);
8720 	kmem_cache_destroy(x86_emulator_cache);
8721 #ifdef CONFIG_KVM_XEN
8722 	static_key_deferred_flush(&kvm_xen_enabled);
8723 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8724 #endif
8725 }
8726 
8727 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8728 {
8729 	++vcpu->stat.halt_exits;
8730 	if (lapic_in_kernel(vcpu)) {
8731 		vcpu->arch.mp_state = state;
8732 		return 1;
8733 	} else {
8734 		vcpu->run->exit_reason = reason;
8735 		return 0;
8736 	}
8737 }
8738 
8739 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8740 {
8741 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8742 }
8743 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8744 
8745 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8746 {
8747 	int ret = kvm_skip_emulated_instruction(vcpu);
8748 	/*
8749 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8750 	 * KVM_EXIT_DEBUG here.
8751 	 */
8752 	return kvm_vcpu_halt(vcpu) && ret;
8753 }
8754 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8755 
8756 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8757 {
8758 	int ret = kvm_skip_emulated_instruction(vcpu);
8759 
8760 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8761 }
8762 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8763 
8764 #ifdef CONFIG_X86_64
8765 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8766 			        unsigned long clock_type)
8767 {
8768 	struct kvm_clock_pairing clock_pairing;
8769 	struct timespec64 ts;
8770 	u64 cycle;
8771 	int ret;
8772 
8773 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8774 		return -KVM_EOPNOTSUPP;
8775 
8776 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8777 		return -KVM_EOPNOTSUPP;
8778 
8779 	clock_pairing.sec = ts.tv_sec;
8780 	clock_pairing.nsec = ts.tv_nsec;
8781 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8782 	clock_pairing.flags = 0;
8783 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8784 
8785 	ret = 0;
8786 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8787 			    sizeof(struct kvm_clock_pairing)))
8788 		ret = -KVM_EFAULT;
8789 
8790 	return ret;
8791 }
8792 #endif
8793 
8794 /*
8795  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8796  *
8797  * @apicid - apicid of vcpu to be kicked.
8798  */
8799 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8800 {
8801 	struct kvm_lapic_irq lapic_irq;
8802 
8803 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8804 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8805 	lapic_irq.level = 0;
8806 	lapic_irq.dest_id = apicid;
8807 	lapic_irq.msi_redir_hint = false;
8808 
8809 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8810 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8811 }
8812 
8813 bool kvm_apicv_activated(struct kvm *kvm)
8814 {
8815 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8816 }
8817 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8818 
8819 static void kvm_apicv_init(struct kvm *kvm)
8820 {
8821 	init_rwsem(&kvm->arch.apicv_update_lock);
8822 
8823 	set_bit(APICV_INHIBIT_REASON_ABSENT,
8824 		&kvm->arch.apicv_inhibit_reasons);
8825 	if (!enable_apicv)
8826 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8827 			&kvm->arch.apicv_inhibit_reasons);
8828 }
8829 
8830 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8831 {
8832 	struct kvm_vcpu *target = NULL;
8833 	struct kvm_apic_map *map;
8834 
8835 	vcpu->stat.directed_yield_attempted++;
8836 
8837 	if (single_task_running())
8838 		goto no_yield;
8839 
8840 	rcu_read_lock();
8841 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
8842 
8843 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8844 		target = map->phys_map[dest_id]->vcpu;
8845 
8846 	rcu_read_unlock();
8847 
8848 	if (!target || !READ_ONCE(target->ready))
8849 		goto no_yield;
8850 
8851 	/* Ignore requests to yield to self */
8852 	if (vcpu == target)
8853 		goto no_yield;
8854 
8855 	if (kvm_vcpu_yield_to(target) <= 0)
8856 		goto no_yield;
8857 
8858 	vcpu->stat.directed_yield_successful++;
8859 
8860 no_yield:
8861 	return;
8862 }
8863 
8864 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8865 {
8866 	u64 ret = vcpu->run->hypercall.ret;
8867 
8868 	if (!is_64_bit_mode(vcpu))
8869 		ret = (u32)ret;
8870 	kvm_rax_write(vcpu, ret);
8871 	++vcpu->stat.hypercalls;
8872 	return kvm_skip_emulated_instruction(vcpu);
8873 }
8874 
8875 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8876 {
8877 	unsigned long nr, a0, a1, a2, a3, ret;
8878 	int op_64_bit;
8879 
8880 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
8881 		return kvm_xen_hypercall(vcpu);
8882 
8883 	if (kvm_hv_hypercall_enabled(vcpu))
8884 		return kvm_hv_hypercall(vcpu);
8885 
8886 	nr = kvm_rax_read(vcpu);
8887 	a0 = kvm_rbx_read(vcpu);
8888 	a1 = kvm_rcx_read(vcpu);
8889 	a2 = kvm_rdx_read(vcpu);
8890 	a3 = kvm_rsi_read(vcpu);
8891 
8892 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8893 
8894 	op_64_bit = is_64_bit_hypercall(vcpu);
8895 	if (!op_64_bit) {
8896 		nr &= 0xFFFFFFFF;
8897 		a0 &= 0xFFFFFFFF;
8898 		a1 &= 0xFFFFFFFF;
8899 		a2 &= 0xFFFFFFFF;
8900 		a3 &= 0xFFFFFFFF;
8901 	}
8902 
8903 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8904 		ret = -KVM_EPERM;
8905 		goto out;
8906 	}
8907 
8908 	ret = -KVM_ENOSYS;
8909 
8910 	switch (nr) {
8911 	case KVM_HC_VAPIC_POLL_IRQ:
8912 		ret = 0;
8913 		break;
8914 	case KVM_HC_KICK_CPU:
8915 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8916 			break;
8917 
8918 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8919 		kvm_sched_yield(vcpu, a1);
8920 		ret = 0;
8921 		break;
8922 #ifdef CONFIG_X86_64
8923 	case KVM_HC_CLOCK_PAIRING:
8924 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8925 		break;
8926 #endif
8927 	case KVM_HC_SEND_IPI:
8928 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8929 			break;
8930 
8931 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8932 		break;
8933 	case KVM_HC_SCHED_YIELD:
8934 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8935 			break;
8936 
8937 		kvm_sched_yield(vcpu, a0);
8938 		ret = 0;
8939 		break;
8940 	case KVM_HC_MAP_GPA_RANGE: {
8941 		u64 gpa = a0, npages = a1, attrs = a2;
8942 
8943 		ret = -KVM_ENOSYS;
8944 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8945 			break;
8946 
8947 		if (!PAGE_ALIGNED(gpa) || !npages ||
8948 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8949 			ret = -KVM_EINVAL;
8950 			break;
8951 		}
8952 
8953 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
8954 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
8955 		vcpu->run->hypercall.args[0]  = gpa;
8956 		vcpu->run->hypercall.args[1]  = npages;
8957 		vcpu->run->hypercall.args[2]  = attrs;
8958 		vcpu->run->hypercall.longmode = op_64_bit;
8959 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8960 		return 0;
8961 	}
8962 	default:
8963 		ret = -KVM_ENOSYS;
8964 		break;
8965 	}
8966 out:
8967 	if (!op_64_bit)
8968 		ret = (u32)ret;
8969 	kvm_rax_write(vcpu, ret);
8970 
8971 	++vcpu->stat.hypercalls;
8972 	return kvm_skip_emulated_instruction(vcpu);
8973 }
8974 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8975 
8976 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8977 {
8978 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8979 	char instruction[3];
8980 	unsigned long rip = kvm_rip_read(vcpu);
8981 
8982 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8983 
8984 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8985 		&ctxt->exception);
8986 }
8987 
8988 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8989 {
8990 	return vcpu->run->request_interrupt_window &&
8991 		likely(!pic_in_kernel(vcpu->kvm));
8992 }
8993 
8994 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8995 {
8996 	struct kvm_run *kvm_run = vcpu->run;
8997 
8998 	/*
8999 	 * if_flag is obsolete and useless, so do not bother
9000 	 * setting it for SEV-ES guests.  Userspace can just
9001 	 * use kvm_run->ready_for_interrupt_injection.
9002 	 */
9003 	kvm_run->if_flag = !vcpu->arch.guest_state_protected
9004 		&& (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
9005 
9006 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9007 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9008 
9009 	/*
9010 	 * The call to kvm_ready_for_interrupt_injection() may end up in
9011 	 * kvm_xen_has_interrupt() which may require the srcu lock to be
9012 	 * held, to protect against changes in the vcpu_info address.
9013 	 */
9014 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9015 	kvm_run->ready_for_interrupt_injection =
9016 		pic_in_kernel(vcpu->kvm) ||
9017 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9018 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9019 
9020 	if (is_smm(vcpu))
9021 		kvm_run->flags |= KVM_RUN_X86_SMM;
9022 }
9023 
9024 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9025 {
9026 	int max_irr, tpr;
9027 
9028 	if (!kvm_x86_ops.update_cr8_intercept)
9029 		return;
9030 
9031 	if (!lapic_in_kernel(vcpu))
9032 		return;
9033 
9034 	if (vcpu->arch.apicv_active)
9035 		return;
9036 
9037 	if (!vcpu->arch.apic->vapic_addr)
9038 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9039 	else
9040 		max_irr = -1;
9041 
9042 	if (max_irr != -1)
9043 		max_irr >>= 4;
9044 
9045 	tpr = kvm_lapic_get_cr8(vcpu);
9046 
9047 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9048 }
9049 
9050 
9051 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9052 {
9053 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9054 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9055 		return 1;
9056 	}
9057 
9058 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9059 }
9060 
9061 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9062 {
9063 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9064 		vcpu->arch.exception.error_code = false;
9065 	static_call(kvm_x86_queue_exception)(vcpu);
9066 }
9067 
9068 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9069 {
9070 	int r;
9071 	bool can_inject = true;
9072 
9073 	/* try to reinject previous events if any */
9074 
9075 	if (vcpu->arch.exception.injected) {
9076 		kvm_inject_exception(vcpu);
9077 		can_inject = false;
9078 	}
9079 	/*
9080 	 * Do not inject an NMI or interrupt if there is a pending
9081 	 * exception.  Exceptions and interrupts are recognized at
9082 	 * instruction boundaries, i.e. the start of an instruction.
9083 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9084 	 * NMIs and interrupts, i.e. traps are recognized before an
9085 	 * NMI/interrupt that's pending on the same instruction.
9086 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9087 	 * priority, but are only generated (pended) during instruction
9088 	 * execution, i.e. a pending fault-like exception means the
9089 	 * fault occurred on the *previous* instruction and must be
9090 	 * serviced prior to recognizing any new events in order to
9091 	 * fully complete the previous instruction.
9092 	 */
9093 	else if (!vcpu->arch.exception.pending) {
9094 		if (vcpu->arch.nmi_injected) {
9095 			static_call(kvm_x86_set_nmi)(vcpu);
9096 			can_inject = false;
9097 		} else if (vcpu->arch.interrupt.injected) {
9098 			static_call(kvm_x86_set_irq)(vcpu);
9099 			can_inject = false;
9100 		}
9101 	}
9102 
9103 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9104 		     vcpu->arch.exception.pending);
9105 
9106 	/*
9107 	 * Call check_nested_events() even if we reinjected a previous event
9108 	 * in order for caller to determine if it should require immediate-exit
9109 	 * from L2 to L1 due to pending L1 events which require exit
9110 	 * from L2 to L1.
9111 	 */
9112 	if (is_guest_mode(vcpu)) {
9113 		r = kvm_check_nested_events(vcpu);
9114 		if (r < 0)
9115 			goto out;
9116 	}
9117 
9118 	/* try to inject new event if pending */
9119 	if (vcpu->arch.exception.pending) {
9120 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
9121 					vcpu->arch.exception.has_error_code,
9122 					vcpu->arch.exception.error_code);
9123 
9124 		vcpu->arch.exception.pending = false;
9125 		vcpu->arch.exception.injected = true;
9126 
9127 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9128 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9129 					     X86_EFLAGS_RF);
9130 
9131 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9132 			kvm_deliver_exception_payload(vcpu);
9133 			if (vcpu->arch.dr7 & DR7_GD) {
9134 				vcpu->arch.dr7 &= ~DR7_GD;
9135 				kvm_update_dr7(vcpu);
9136 			}
9137 		}
9138 
9139 		kvm_inject_exception(vcpu);
9140 		can_inject = false;
9141 	}
9142 
9143 	/* Don't inject interrupts if the user asked to avoid doing so */
9144 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9145 		return 0;
9146 
9147 	/*
9148 	 * Finally, inject interrupt events.  If an event cannot be injected
9149 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9150 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9151 	 * and can architecturally be injected, but we cannot do it right now:
9152 	 * an interrupt could have arrived just now and we have to inject it
9153 	 * as a vmexit, or there could already an event in the queue, which is
9154 	 * indicated by can_inject.  In that case we request an immediate exit
9155 	 * in order to make progress and get back here for another iteration.
9156 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9157 	 */
9158 	if (vcpu->arch.smi_pending) {
9159 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9160 		if (r < 0)
9161 			goto out;
9162 		if (r) {
9163 			vcpu->arch.smi_pending = false;
9164 			++vcpu->arch.smi_count;
9165 			enter_smm(vcpu);
9166 			can_inject = false;
9167 		} else
9168 			static_call(kvm_x86_enable_smi_window)(vcpu);
9169 	}
9170 
9171 	if (vcpu->arch.nmi_pending) {
9172 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9173 		if (r < 0)
9174 			goto out;
9175 		if (r) {
9176 			--vcpu->arch.nmi_pending;
9177 			vcpu->arch.nmi_injected = true;
9178 			static_call(kvm_x86_set_nmi)(vcpu);
9179 			can_inject = false;
9180 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9181 		}
9182 		if (vcpu->arch.nmi_pending)
9183 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9184 	}
9185 
9186 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9187 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9188 		if (r < 0)
9189 			goto out;
9190 		if (r) {
9191 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9192 			static_call(kvm_x86_set_irq)(vcpu);
9193 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9194 		}
9195 		if (kvm_cpu_has_injectable_intr(vcpu))
9196 			static_call(kvm_x86_enable_irq_window)(vcpu);
9197 	}
9198 
9199 	if (is_guest_mode(vcpu) &&
9200 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9201 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9202 		*req_immediate_exit = true;
9203 
9204 	WARN_ON(vcpu->arch.exception.pending);
9205 	return 0;
9206 
9207 out:
9208 	if (r == -EBUSY) {
9209 		*req_immediate_exit = true;
9210 		r = 0;
9211 	}
9212 	return r;
9213 }
9214 
9215 static void process_nmi(struct kvm_vcpu *vcpu)
9216 {
9217 	unsigned limit = 2;
9218 
9219 	/*
9220 	 * x86 is limited to one NMI running, and one NMI pending after it.
9221 	 * If an NMI is already in progress, limit further NMIs to just one.
9222 	 * Otherwise, allow two (and we'll inject the first one immediately).
9223 	 */
9224 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9225 		limit = 1;
9226 
9227 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9228 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9229 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9230 }
9231 
9232 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9233 {
9234 	u32 flags = 0;
9235 	flags |= seg->g       << 23;
9236 	flags |= seg->db      << 22;
9237 	flags |= seg->l       << 21;
9238 	flags |= seg->avl     << 20;
9239 	flags |= seg->present << 15;
9240 	flags |= seg->dpl     << 13;
9241 	flags |= seg->s       << 12;
9242 	flags |= seg->type    << 8;
9243 	return flags;
9244 }
9245 
9246 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9247 {
9248 	struct kvm_segment seg;
9249 	int offset;
9250 
9251 	kvm_get_segment(vcpu, &seg, n);
9252 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9253 
9254 	if (n < 3)
9255 		offset = 0x7f84 + n * 12;
9256 	else
9257 		offset = 0x7f2c + (n - 3) * 12;
9258 
9259 	put_smstate(u32, buf, offset + 8, seg.base);
9260 	put_smstate(u32, buf, offset + 4, seg.limit);
9261 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9262 }
9263 
9264 #ifdef CONFIG_X86_64
9265 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9266 {
9267 	struct kvm_segment seg;
9268 	int offset;
9269 	u16 flags;
9270 
9271 	kvm_get_segment(vcpu, &seg, n);
9272 	offset = 0x7e00 + n * 16;
9273 
9274 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9275 	put_smstate(u16, buf, offset, seg.selector);
9276 	put_smstate(u16, buf, offset + 2, flags);
9277 	put_smstate(u32, buf, offset + 4, seg.limit);
9278 	put_smstate(u64, buf, offset + 8, seg.base);
9279 }
9280 #endif
9281 
9282 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9283 {
9284 	struct desc_ptr dt;
9285 	struct kvm_segment seg;
9286 	unsigned long val;
9287 	int i;
9288 
9289 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9290 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9291 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9292 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9293 
9294 	for (i = 0; i < 8; i++)
9295 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9296 
9297 	kvm_get_dr(vcpu, 6, &val);
9298 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9299 	kvm_get_dr(vcpu, 7, &val);
9300 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9301 
9302 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9303 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9304 	put_smstate(u32, buf, 0x7f64, seg.base);
9305 	put_smstate(u32, buf, 0x7f60, seg.limit);
9306 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9307 
9308 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9309 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9310 	put_smstate(u32, buf, 0x7f80, seg.base);
9311 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9312 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9313 
9314 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9315 	put_smstate(u32, buf, 0x7f74, dt.address);
9316 	put_smstate(u32, buf, 0x7f70, dt.size);
9317 
9318 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9319 	put_smstate(u32, buf, 0x7f58, dt.address);
9320 	put_smstate(u32, buf, 0x7f54, dt.size);
9321 
9322 	for (i = 0; i < 6; i++)
9323 		enter_smm_save_seg_32(vcpu, buf, i);
9324 
9325 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9326 
9327 	/* revision id */
9328 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9329 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9330 }
9331 
9332 #ifdef CONFIG_X86_64
9333 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9334 {
9335 	struct desc_ptr dt;
9336 	struct kvm_segment seg;
9337 	unsigned long val;
9338 	int i;
9339 
9340 	for (i = 0; i < 16; i++)
9341 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9342 
9343 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9344 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9345 
9346 	kvm_get_dr(vcpu, 6, &val);
9347 	put_smstate(u64, buf, 0x7f68, val);
9348 	kvm_get_dr(vcpu, 7, &val);
9349 	put_smstate(u64, buf, 0x7f60, val);
9350 
9351 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9352 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9353 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9354 
9355 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9356 
9357 	/* revision id */
9358 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9359 
9360 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9361 
9362 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9363 	put_smstate(u16, buf, 0x7e90, seg.selector);
9364 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9365 	put_smstate(u32, buf, 0x7e94, seg.limit);
9366 	put_smstate(u64, buf, 0x7e98, seg.base);
9367 
9368 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9369 	put_smstate(u32, buf, 0x7e84, dt.size);
9370 	put_smstate(u64, buf, 0x7e88, dt.address);
9371 
9372 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9373 	put_smstate(u16, buf, 0x7e70, seg.selector);
9374 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9375 	put_smstate(u32, buf, 0x7e74, seg.limit);
9376 	put_smstate(u64, buf, 0x7e78, seg.base);
9377 
9378 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9379 	put_smstate(u32, buf, 0x7e64, dt.size);
9380 	put_smstate(u64, buf, 0x7e68, dt.address);
9381 
9382 	for (i = 0; i < 6; i++)
9383 		enter_smm_save_seg_64(vcpu, buf, i);
9384 }
9385 #endif
9386 
9387 static void enter_smm(struct kvm_vcpu *vcpu)
9388 {
9389 	struct kvm_segment cs, ds;
9390 	struct desc_ptr dt;
9391 	unsigned long cr0;
9392 	char buf[512];
9393 
9394 	memset(buf, 0, 512);
9395 #ifdef CONFIG_X86_64
9396 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9397 		enter_smm_save_state_64(vcpu, buf);
9398 	else
9399 #endif
9400 		enter_smm_save_state_32(vcpu, buf);
9401 
9402 	/*
9403 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9404 	 * state (e.g. leave guest mode) after we've saved the state into the
9405 	 * SMM state-save area.
9406 	 */
9407 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9408 
9409 	kvm_smm_changed(vcpu, true);
9410 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9411 
9412 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9413 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9414 	else
9415 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9416 
9417 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9418 	kvm_rip_write(vcpu, 0x8000);
9419 
9420 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9421 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9422 	vcpu->arch.cr0 = cr0;
9423 
9424 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9425 
9426 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9427 	dt.address = dt.size = 0;
9428 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9429 
9430 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9431 
9432 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9433 	cs.base = vcpu->arch.smbase;
9434 
9435 	ds.selector = 0;
9436 	ds.base = 0;
9437 
9438 	cs.limit    = ds.limit = 0xffffffff;
9439 	cs.type     = ds.type = 0x3;
9440 	cs.dpl      = ds.dpl = 0;
9441 	cs.db       = ds.db = 0;
9442 	cs.s        = ds.s = 1;
9443 	cs.l        = ds.l = 0;
9444 	cs.g        = ds.g = 1;
9445 	cs.avl      = ds.avl = 0;
9446 	cs.present  = ds.present = 1;
9447 	cs.unusable = ds.unusable = 0;
9448 	cs.padding  = ds.padding = 0;
9449 
9450 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9451 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9452 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9453 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9454 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9455 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9456 
9457 #ifdef CONFIG_X86_64
9458 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9459 		static_call(kvm_x86_set_efer)(vcpu, 0);
9460 #endif
9461 
9462 	kvm_update_cpuid_runtime(vcpu);
9463 	kvm_mmu_reset_context(vcpu);
9464 }
9465 
9466 static void process_smi(struct kvm_vcpu *vcpu)
9467 {
9468 	vcpu->arch.smi_pending = true;
9469 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9470 }
9471 
9472 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9473 				       unsigned long *vcpu_bitmap)
9474 {
9475 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9476 }
9477 
9478 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9479 {
9480 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9481 }
9482 
9483 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9484 {
9485 	bool activate;
9486 
9487 	if (!lapic_in_kernel(vcpu))
9488 		return;
9489 
9490 	down_read(&vcpu->kvm->arch.apicv_update_lock);
9491 
9492 	activate = kvm_apicv_activated(vcpu->kvm);
9493 	if (vcpu->arch.apicv_active == activate)
9494 		goto out;
9495 
9496 	vcpu->arch.apicv_active = activate;
9497 	kvm_apic_update_apicv(vcpu);
9498 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9499 
9500 	/*
9501 	 * When APICv gets disabled, we may still have injected interrupts
9502 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9503 	 * still active when the interrupt got accepted. Make sure
9504 	 * inject_pending_event() is called to check for that.
9505 	 */
9506 	if (!vcpu->arch.apicv_active)
9507 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9508 
9509 out:
9510 	up_read(&vcpu->kvm->arch.apicv_update_lock);
9511 }
9512 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9513 
9514 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9515 {
9516 	unsigned long old, new;
9517 
9518 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9519 
9520 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9521 	    !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9522 		return;
9523 
9524 	old = new = kvm->arch.apicv_inhibit_reasons;
9525 
9526 	if (activate)
9527 		__clear_bit(bit, &new);
9528 	else
9529 		__set_bit(bit, &new);
9530 
9531 	if (!!old != !!new) {
9532 		trace_kvm_apicv_update_request(activate, bit);
9533 		/*
9534 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9535 		 * false positives in the sanity check WARN in svm_vcpu_run().
9536 		 * This task will wait for all vCPUs to ack the kick IRQ before
9537 		 * updating apicv_inhibit_reasons, and all other vCPUs will
9538 		 * block on acquiring apicv_update_lock so that vCPUs can't
9539 		 * redo svm_vcpu_run() without seeing the new inhibit state.
9540 		 *
9541 		 * Note, holding apicv_update_lock and taking it in the read
9542 		 * side (handling the request) also prevents other vCPUs from
9543 		 * servicing the request with a stale apicv_inhibit_reasons.
9544 		 */
9545 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9546 		kvm->arch.apicv_inhibit_reasons = new;
9547 		if (new) {
9548 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9549 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9550 		}
9551 	} else
9552 		kvm->arch.apicv_inhibit_reasons = new;
9553 }
9554 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9555 
9556 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9557 {
9558 	down_write(&kvm->arch.apicv_update_lock);
9559 	__kvm_request_apicv_update(kvm, activate, bit);
9560 	up_write(&kvm->arch.apicv_update_lock);
9561 }
9562 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9563 
9564 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9565 {
9566 	if (!kvm_apic_present(vcpu))
9567 		return;
9568 
9569 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9570 
9571 	if (irqchip_split(vcpu->kvm))
9572 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9573 	else {
9574 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9575 		if (ioapic_in_kernel(vcpu->kvm))
9576 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9577 	}
9578 
9579 	if (is_guest_mode(vcpu))
9580 		vcpu->arch.load_eoi_exitmap_pending = true;
9581 	else
9582 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9583 }
9584 
9585 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9586 {
9587 	u64 eoi_exit_bitmap[4];
9588 
9589 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9590 		return;
9591 
9592 	if (to_hv_vcpu(vcpu)) {
9593 		bitmap_or((ulong *)eoi_exit_bitmap,
9594 			  vcpu->arch.ioapic_handled_vectors,
9595 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9596 		static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9597 		return;
9598 	}
9599 
9600 	static_call(kvm_x86_load_eoi_exitmap)(
9601 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9602 }
9603 
9604 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9605 					    unsigned long start, unsigned long end)
9606 {
9607 	unsigned long apic_address;
9608 
9609 	/*
9610 	 * The physical address of apic access page is stored in the VMCS.
9611 	 * Update it when it becomes invalid.
9612 	 */
9613 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9614 	if (start <= apic_address && apic_address < end)
9615 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9616 }
9617 
9618 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9619 {
9620 	if (!lapic_in_kernel(vcpu))
9621 		return;
9622 
9623 	if (!kvm_x86_ops.set_apic_access_page_addr)
9624 		return;
9625 
9626 	static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9627 }
9628 
9629 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9630 {
9631 	smp_send_reschedule(vcpu->cpu);
9632 }
9633 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9634 
9635 /*
9636  * Returns 1 to let vcpu_run() continue the guest execution loop without
9637  * exiting to the userspace.  Otherwise, the value will be returned to the
9638  * userspace.
9639  */
9640 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9641 {
9642 	int r;
9643 	bool req_int_win =
9644 		dm_request_for_irq_injection(vcpu) &&
9645 		kvm_cpu_accept_dm_intr(vcpu);
9646 	fastpath_t exit_fastpath;
9647 
9648 	bool req_immediate_exit = false;
9649 
9650 	/* Forbid vmenter if vcpu dirty ring is soft-full */
9651 	if (unlikely(vcpu->kvm->dirty_ring_size &&
9652 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9653 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9654 		trace_kvm_dirty_ring_exit(vcpu);
9655 		r = 0;
9656 		goto out;
9657 	}
9658 
9659 	if (kvm_request_pending(vcpu)) {
9660 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9661 			r = -EIO;
9662 			goto out;
9663 		}
9664 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9665 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9666 				r = 0;
9667 				goto out;
9668 			}
9669 		}
9670 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9671 			kvm_mmu_unload(vcpu);
9672 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9673 			__kvm_migrate_timers(vcpu);
9674 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9675 			kvm_update_masterclock(vcpu->kvm);
9676 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9677 			kvm_gen_kvmclock_update(vcpu);
9678 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9679 			r = kvm_guest_time_update(vcpu);
9680 			if (unlikely(r))
9681 				goto out;
9682 		}
9683 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9684 			kvm_mmu_sync_roots(vcpu);
9685 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9686 			kvm_mmu_load_pgd(vcpu);
9687 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9688 			kvm_vcpu_flush_tlb_all(vcpu);
9689 
9690 			/* Flushing all ASIDs flushes the current ASID... */
9691 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9692 		}
9693 		kvm_service_local_tlb_flush_requests(vcpu);
9694 
9695 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9696 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9697 			r = 0;
9698 			goto out;
9699 		}
9700 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9701 			if (is_guest_mode(vcpu)) {
9702 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
9703 			} else {
9704 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9705 				vcpu->mmio_needed = 0;
9706 				r = 0;
9707 				goto out;
9708 			}
9709 		}
9710 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9711 			/* Page is swapped out. Do synthetic halt */
9712 			vcpu->arch.apf.halted = true;
9713 			r = 1;
9714 			goto out;
9715 		}
9716 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9717 			record_steal_time(vcpu);
9718 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9719 			process_smi(vcpu);
9720 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9721 			process_nmi(vcpu);
9722 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9723 			kvm_pmu_handle_event(vcpu);
9724 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9725 			kvm_pmu_deliver_pmi(vcpu);
9726 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9727 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9728 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9729 				     vcpu->arch.ioapic_handled_vectors)) {
9730 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9731 				vcpu->run->eoi.vector =
9732 						vcpu->arch.pending_ioapic_eoi;
9733 				r = 0;
9734 				goto out;
9735 			}
9736 		}
9737 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9738 			vcpu_scan_ioapic(vcpu);
9739 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9740 			vcpu_load_eoi_exitmap(vcpu);
9741 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9742 			kvm_vcpu_reload_apic_access_page(vcpu);
9743 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9744 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9745 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9746 			r = 0;
9747 			goto out;
9748 		}
9749 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9750 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9751 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9752 			r = 0;
9753 			goto out;
9754 		}
9755 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9756 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9757 
9758 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9759 			vcpu->run->hyperv = hv_vcpu->exit;
9760 			r = 0;
9761 			goto out;
9762 		}
9763 
9764 		/*
9765 		 * KVM_REQ_HV_STIMER has to be processed after
9766 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9767 		 * depend on the guest clock being up-to-date
9768 		 */
9769 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9770 			kvm_hv_process_stimers(vcpu);
9771 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9772 			kvm_vcpu_update_apicv(vcpu);
9773 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9774 			kvm_check_async_pf_completion(vcpu);
9775 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9776 			static_call(kvm_x86_msr_filter_changed)(vcpu);
9777 
9778 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9779 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9780 	}
9781 
9782 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9783 	    kvm_xen_has_interrupt(vcpu)) {
9784 		++vcpu->stat.req_event;
9785 		r = kvm_apic_accept_events(vcpu);
9786 		if (r < 0) {
9787 			r = 0;
9788 			goto out;
9789 		}
9790 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9791 			r = 1;
9792 			goto out;
9793 		}
9794 
9795 		r = inject_pending_event(vcpu, &req_immediate_exit);
9796 		if (r < 0) {
9797 			r = 0;
9798 			goto out;
9799 		}
9800 		if (req_int_win)
9801 			static_call(kvm_x86_enable_irq_window)(vcpu);
9802 
9803 		if (kvm_lapic_enabled(vcpu)) {
9804 			update_cr8_intercept(vcpu);
9805 			kvm_lapic_sync_to_vapic(vcpu);
9806 		}
9807 	}
9808 
9809 	r = kvm_mmu_reload(vcpu);
9810 	if (unlikely(r)) {
9811 		goto cancel_injection;
9812 	}
9813 
9814 	preempt_disable();
9815 
9816 	static_call(kvm_x86_prepare_guest_switch)(vcpu);
9817 
9818 	/*
9819 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9820 	 * IPI are then delayed after guest entry, which ensures that they
9821 	 * result in virtual interrupt delivery.
9822 	 */
9823 	local_irq_disable();
9824 	vcpu->mode = IN_GUEST_MODE;
9825 
9826 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9827 
9828 	/*
9829 	 * 1) We should set ->mode before checking ->requests.  Please see
9830 	 * the comment in kvm_vcpu_exiting_guest_mode().
9831 	 *
9832 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9833 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9834 	 * (see vmx_deliver_posted_interrupt).
9835 	 *
9836 	 * 3) This also orders the write to mode from any reads to the page
9837 	 * tables done while the VCPU is running.  Please see the comment
9838 	 * in kvm_flush_remote_tlbs.
9839 	 */
9840 	smp_mb__after_srcu_read_unlock();
9841 
9842 	/*
9843 	 * This handles the case where a posted interrupt was
9844 	 * notified with kvm_vcpu_kick.  Assigned devices can
9845 	 * use the POSTED_INTR_VECTOR even if APICv is disabled,
9846 	 * so do it even if APICv is disabled on this vCPU.
9847 	 */
9848 	if (kvm_lapic_enabled(vcpu))
9849 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9850 
9851 	if (kvm_vcpu_exit_request(vcpu)) {
9852 		vcpu->mode = OUTSIDE_GUEST_MODE;
9853 		smp_wmb();
9854 		local_irq_enable();
9855 		preempt_enable();
9856 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9857 		r = 1;
9858 		goto cancel_injection;
9859 	}
9860 
9861 	if (req_immediate_exit) {
9862 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9863 		static_call(kvm_x86_request_immediate_exit)(vcpu);
9864 	}
9865 
9866 	fpregs_assert_state_consistent();
9867 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9868 		switch_fpu_return();
9869 
9870 	if (unlikely(vcpu->arch.switch_db_regs)) {
9871 		set_debugreg(0, 7);
9872 		set_debugreg(vcpu->arch.eff_db[0], 0);
9873 		set_debugreg(vcpu->arch.eff_db[1], 1);
9874 		set_debugreg(vcpu->arch.eff_db[2], 2);
9875 		set_debugreg(vcpu->arch.eff_db[3], 3);
9876 	} else if (unlikely(hw_breakpoint_active())) {
9877 		set_debugreg(0, 7);
9878 	}
9879 
9880 	for (;;) {
9881 		/*
9882 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
9883 		 * update must kick and wait for all vCPUs before toggling the
9884 		 * per-VM state, and responsing vCPUs must wait for the update
9885 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
9886 		 */
9887 		WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
9888 
9889 		exit_fastpath = static_call(kvm_x86_run)(vcpu);
9890 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9891 			break;
9892 
9893 		if (kvm_lapic_enabled(vcpu))
9894 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9895 
9896 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9897 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9898 			break;
9899 		}
9900 	}
9901 
9902 	/*
9903 	 * Do this here before restoring debug registers on the host.  And
9904 	 * since we do this before handling the vmexit, a DR access vmexit
9905 	 * can (a) read the correct value of the debug registers, (b) set
9906 	 * KVM_DEBUGREG_WONT_EXIT again.
9907 	 */
9908 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9909 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9910 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9911 		kvm_update_dr0123(vcpu);
9912 		kvm_update_dr7(vcpu);
9913 	}
9914 
9915 	/*
9916 	 * If the guest has used debug registers, at least dr7
9917 	 * will be disabled while returning to the host.
9918 	 * If we don't have active breakpoints in the host, we don't
9919 	 * care about the messed up debug address registers. But if
9920 	 * we have some of them active, restore the old state.
9921 	 */
9922 	if (hw_breakpoint_active())
9923 		hw_breakpoint_restore();
9924 
9925 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9926 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9927 
9928 	vcpu->mode = OUTSIDE_GUEST_MODE;
9929 	smp_wmb();
9930 
9931 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9932 
9933 	/*
9934 	 * Consume any pending interrupts, including the possible source of
9935 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9936 	 * An instruction is required after local_irq_enable() to fully unblock
9937 	 * interrupts on processors that implement an interrupt shadow, the
9938 	 * stat.exits increment will do nicely.
9939 	 */
9940 	kvm_before_interrupt(vcpu);
9941 	local_irq_enable();
9942 	++vcpu->stat.exits;
9943 	local_irq_disable();
9944 	kvm_after_interrupt(vcpu);
9945 
9946 	/*
9947 	 * Wait until after servicing IRQs to account guest time so that any
9948 	 * ticks that occurred while running the guest are properly accounted
9949 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9950 	 * of accounting via context tracking, but the loss of accuracy is
9951 	 * acceptable for all known use cases.
9952 	 */
9953 	vtime_account_guest_exit();
9954 
9955 	if (lapic_in_kernel(vcpu)) {
9956 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9957 		if (delta != S64_MIN) {
9958 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9959 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9960 		}
9961 	}
9962 
9963 	local_irq_enable();
9964 	preempt_enable();
9965 
9966 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9967 
9968 	/*
9969 	 * Profile KVM exit RIPs:
9970 	 */
9971 	if (unlikely(prof_on == KVM_PROFILING)) {
9972 		unsigned long rip = kvm_rip_read(vcpu);
9973 		profile_hit(KVM_PROFILING, (void *)rip);
9974 	}
9975 
9976 	if (unlikely(vcpu->arch.tsc_always_catchup))
9977 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9978 
9979 	if (vcpu->arch.apic_attention)
9980 		kvm_lapic_sync_from_vapic(vcpu);
9981 
9982 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9983 	return r;
9984 
9985 cancel_injection:
9986 	if (req_immediate_exit)
9987 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9988 	static_call(kvm_x86_cancel_injection)(vcpu);
9989 	if (unlikely(vcpu->arch.apic_attention))
9990 		kvm_lapic_sync_from_vapic(vcpu);
9991 out:
9992 	return r;
9993 }
9994 
9995 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9996 {
9997 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9998 	    (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9999 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10000 		kvm_vcpu_block(vcpu);
10001 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10002 
10003 		if (kvm_x86_ops.post_block)
10004 			static_call(kvm_x86_post_block)(vcpu);
10005 
10006 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10007 			return 1;
10008 	}
10009 
10010 	if (kvm_apic_accept_events(vcpu) < 0)
10011 		return 0;
10012 	switch(vcpu->arch.mp_state) {
10013 	case KVM_MP_STATE_HALTED:
10014 	case KVM_MP_STATE_AP_RESET_HOLD:
10015 		vcpu->arch.pv.pv_unhalted = false;
10016 		vcpu->arch.mp_state =
10017 			KVM_MP_STATE_RUNNABLE;
10018 		fallthrough;
10019 	case KVM_MP_STATE_RUNNABLE:
10020 		vcpu->arch.apf.halted = false;
10021 		break;
10022 	case KVM_MP_STATE_INIT_RECEIVED:
10023 		break;
10024 	default:
10025 		return -EINTR;
10026 	}
10027 	return 1;
10028 }
10029 
10030 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10031 {
10032 	if (is_guest_mode(vcpu))
10033 		kvm_check_nested_events(vcpu);
10034 
10035 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10036 		!vcpu->arch.apf.halted);
10037 }
10038 
10039 static int vcpu_run(struct kvm_vcpu *vcpu)
10040 {
10041 	int r;
10042 	struct kvm *kvm = vcpu->kvm;
10043 
10044 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10045 	vcpu->arch.l1tf_flush_l1d = true;
10046 
10047 	for (;;) {
10048 		if (kvm_vcpu_running(vcpu)) {
10049 			r = vcpu_enter_guest(vcpu);
10050 		} else {
10051 			r = vcpu_block(kvm, vcpu);
10052 		}
10053 
10054 		if (r <= 0)
10055 			break;
10056 
10057 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10058 		if (kvm_cpu_has_pending_timer(vcpu))
10059 			kvm_inject_pending_timer_irqs(vcpu);
10060 
10061 		if (dm_request_for_irq_injection(vcpu) &&
10062 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10063 			r = 0;
10064 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10065 			++vcpu->stat.request_irq_exits;
10066 			break;
10067 		}
10068 
10069 		if (__xfer_to_guest_mode_work_pending()) {
10070 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10071 			r = xfer_to_guest_mode_handle_work(vcpu);
10072 			if (r)
10073 				return r;
10074 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10075 		}
10076 	}
10077 
10078 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10079 
10080 	return r;
10081 }
10082 
10083 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10084 {
10085 	int r;
10086 
10087 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10088 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10089 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10090 	return r;
10091 }
10092 
10093 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10094 {
10095 	BUG_ON(!vcpu->arch.pio.count);
10096 
10097 	return complete_emulated_io(vcpu);
10098 }
10099 
10100 /*
10101  * Implements the following, as a state machine:
10102  *
10103  * read:
10104  *   for each fragment
10105  *     for each mmio piece in the fragment
10106  *       write gpa, len
10107  *       exit
10108  *       copy data
10109  *   execute insn
10110  *
10111  * write:
10112  *   for each fragment
10113  *     for each mmio piece in the fragment
10114  *       write gpa, len
10115  *       copy data
10116  *       exit
10117  */
10118 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10119 {
10120 	struct kvm_run *run = vcpu->run;
10121 	struct kvm_mmio_fragment *frag;
10122 	unsigned len;
10123 
10124 	BUG_ON(!vcpu->mmio_needed);
10125 
10126 	/* Complete previous fragment */
10127 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10128 	len = min(8u, frag->len);
10129 	if (!vcpu->mmio_is_write)
10130 		memcpy(frag->data, run->mmio.data, len);
10131 
10132 	if (frag->len <= 8) {
10133 		/* Switch to the next fragment. */
10134 		frag++;
10135 		vcpu->mmio_cur_fragment++;
10136 	} else {
10137 		/* Go forward to the next mmio piece. */
10138 		frag->data += len;
10139 		frag->gpa += len;
10140 		frag->len -= len;
10141 	}
10142 
10143 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10144 		vcpu->mmio_needed = 0;
10145 
10146 		/* FIXME: return into emulator if single-stepping.  */
10147 		if (vcpu->mmio_is_write)
10148 			return 1;
10149 		vcpu->mmio_read_completed = 1;
10150 		return complete_emulated_io(vcpu);
10151 	}
10152 
10153 	run->exit_reason = KVM_EXIT_MMIO;
10154 	run->mmio.phys_addr = frag->gpa;
10155 	if (vcpu->mmio_is_write)
10156 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10157 	run->mmio.len = min(8u, frag->len);
10158 	run->mmio.is_write = vcpu->mmio_is_write;
10159 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10160 	return 0;
10161 }
10162 
10163 /* Swap (qemu) user FPU context for the guest FPU context. */
10164 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10165 {
10166 	/*
10167 	 * Exclude PKRU from restore as restored separately in
10168 	 * kvm_x86_ops.run().
10169 	 */
10170 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10171 	trace_kvm_fpu(1);
10172 }
10173 
10174 /* When vcpu_run ends, restore user space FPU context. */
10175 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10176 {
10177 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10178 	++vcpu->stat.fpu_reload;
10179 	trace_kvm_fpu(0);
10180 }
10181 
10182 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10183 {
10184 	struct kvm_run *kvm_run = vcpu->run;
10185 	int r;
10186 
10187 	vcpu_load(vcpu);
10188 	kvm_sigset_activate(vcpu);
10189 	kvm_run->flags = 0;
10190 	kvm_load_guest_fpu(vcpu);
10191 
10192 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10193 		if (kvm_run->immediate_exit) {
10194 			r = -EINTR;
10195 			goto out;
10196 		}
10197 		kvm_vcpu_block(vcpu);
10198 		if (kvm_apic_accept_events(vcpu) < 0) {
10199 			r = 0;
10200 			goto out;
10201 		}
10202 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10203 		r = -EAGAIN;
10204 		if (signal_pending(current)) {
10205 			r = -EINTR;
10206 			kvm_run->exit_reason = KVM_EXIT_INTR;
10207 			++vcpu->stat.signal_exits;
10208 		}
10209 		goto out;
10210 	}
10211 
10212 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10213 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10214 		r = -EINVAL;
10215 		goto out;
10216 	}
10217 
10218 	if (kvm_run->kvm_dirty_regs) {
10219 		r = sync_regs(vcpu);
10220 		if (r != 0)
10221 			goto out;
10222 	}
10223 
10224 	/* re-sync apic's tpr */
10225 	if (!lapic_in_kernel(vcpu)) {
10226 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10227 			r = -EINVAL;
10228 			goto out;
10229 		}
10230 	}
10231 
10232 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10233 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10234 		vcpu->arch.complete_userspace_io = NULL;
10235 		r = cui(vcpu);
10236 		if (r <= 0)
10237 			goto out;
10238 	} else
10239 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10240 
10241 	if (kvm_run->immediate_exit)
10242 		r = -EINTR;
10243 	else
10244 		r = vcpu_run(vcpu);
10245 
10246 out:
10247 	kvm_put_guest_fpu(vcpu);
10248 	if (kvm_run->kvm_valid_regs)
10249 		store_regs(vcpu);
10250 	post_kvm_run_save(vcpu);
10251 	kvm_sigset_deactivate(vcpu);
10252 
10253 	vcpu_put(vcpu);
10254 	return r;
10255 }
10256 
10257 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10258 {
10259 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10260 		/*
10261 		 * We are here if userspace calls get_regs() in the middle of
10262 		 * instruction emulation. Registers state needs to be copied
10263 		 * back from emulation context to vcpu. Userspace shouldn't do
10264 		 * that usually, but some bad designed PV devices (vmware
10265 		 * backdoor interface) need this to work
10266 		 */
10267 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10268 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10269 	}
10270 	regs->rax = kvm_rax_read(vcpu);
10271 	regs->rbx = kvm_rbx_read(vcpu);
10272 	regs->rcx = kvm_rcx_read(vcpu);
10273 	regs->rdx = kvm_rdx_read(vcpu);
10274 	regs->rsi = kvm_rsi_read(vcpu);
10275 	regs->rdi = kvm_rdi_read(vcpu);
10276 	regs->rsp = kvm_rsp_read(vcpu);
10277 	regs->rbp = kvm_rbp_read(vcpu);
10278 #ifdef CONFIG_X86_64
10279 	regs->r8 = kvm_r8_read(vcpu);
10280 	regs->r9 = kvm_r9_read(vcpu);
10281 	regs->r10 = kvm_r10_read(vcpu);
10282 	regs->r11 = kvm_r11_read(vcpu);
10283 	regs->r12 = kvm_r12_read(vcpu);
10284 	regs->r13 = kvm_r13_read(vcpu);
10285 	regs->r14 = kvm_r14_read(vcpu);
10286 	regs->r15 = kvm_r15_read(vcpu);
10287 #endif
10288 
10289 	regs->rip = kvm_rip_read(vcpu);
10290 	regs->rflags = kvm_get_rflags(vcpu);
10291 }
10292 
10293 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10294 {
10295 	vcpu_load(vcpu);
10296 	__get_regs(vcpu, regs);
10297 	vcpu_put(vcpu);
10298 	return 0;
10299 }
10300 
10301 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10302 {
10303 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10304 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10305 
10306 	kvm_rax_write(vcpu, regs->rax);
10307 	kvm_rbx_write(vcpu, regs->rbx);
10308 	kvm_rcx_write(vcpu, regs->rcx);
10309 	kvm_rdx_write(vcpu, regs->rdx);
10310 	kvm_rsi_write(vcpu, regs->rsi);
10311 	kvm_rdi_write(vcpu, regs->rdi);
10312 	kvm_rsp_write(vcpu, regs->rsp);
10313 	kvm_rbp_write(vcpu, regs->rbp);
10314 #ifdef CONFIG_X86_64
10315 	kvm_r8_write(vcpu, regs->r8);
10316 	kvm_r9_write(vcpu, regs->r9);
10317 	kvm_r10_write(vcpu, regs->r10);
10318 	kvm_r11_write(vcpu, regs->r11);
10319 	kvm_r12_write(vcpu, regs->r12);
10320 	kvm_r13_write(vcpu, regs->r13);
10321 	kvm_r14_write(vcpu, regs->r14);
10322 	kvm_r15_write(vcpu, regs->r15);
10323 #endif
10324 
10325 	kvm_rip_write(vcpu, regs->rip);
10326 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10327 
10328 	vcpu->arch.exception.pending = false;
10329 
10330 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10331 }
10332 
10333 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10334 {
10335 	vcpu_load(vcpu);
10336 	__set_regs(vcpu, regs);
10337 	vcpu_put(vcpu);
10338 	return 0;
10339 }
10340 
10341 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10342 {
10343 	struct kvm_segment cs;
10344 
10345 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10346 	*db = cs.db;
10347 	*l = cs.l;
10348 }
10349 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10350 
10351 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10352 {
10353 	struct desc_ptr dt;
10354 
10355 	if (vcpu->arch.guest_state_protected)
10356 		goto skip_protected_regs;
10357 
10358 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10359 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10360 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10361 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10362 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10363 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10364 
10365 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10366 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10367 
10368 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10369 	sregs->idt.limit = dt.size;
10370 	sregs->idt.base = dt.address;
10371 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10372 	sregs->gdt.limit = dt.size;
10373 	sregs->gdt.base = dt.address;
10374 
10375 	sregs->cr2 = vcpu->arch.cr2;
10376 	sregs->cr3 = kvm_read_cr3(vcpu);
10377 
10378 skip_protected_regs:
10379 	sregs->cr0 = kvm_read_cr0(vcpu);
10380 	sregs->cr4 = kvm_read_cr4(vcpu);
10381 	sregs->cr8 = kvm_get_cr8(vcpu);
10382 	sregs->efer = vcpu->arch.efer;
10383 	sregs->apic_base = kvm_get_apic_base(vcpu);
10384 }
10385 
10386 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10387 {
10388 	__get_sregs_common(vcpu, sregs);
10389 
10390 	if (vcpu->arch.guest_state_protected)
10391 		return;
10392 
10393 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10394 		set_bit(vcpu->arch.interrupt.nr,
10395 			(unsigned long *)sregs->interrupt_bitmap);
10396 }
10397 
10398 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10399 {
10400 	int i;
10401 
10402 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10403 
10404 	if (vcpu->arch.guest_state_protected)
10405 		return;
10406 
10407 	if (is_pae_paging(vcpu)) {
10408 		for (i = 0 ; i < 4 ; i++)
10409 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10410 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10411 	}
10412 }
10413 
10414 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10415 				  struct kvm_sregs *sregs)
10416 {
10417 	vcpu_load(vcpu);
10418 	__get_sregs(vcpu, sregs);
10419 	vcpu_put(vcpu);
10420 	return 0;
10421 }
10422 
10423 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10424 				    struct kvm_mp_state *mp_state)
10425 {
10426 	int r;
10427 
10428 	vcpu_load(vcpu);
10429 	if (kvm_mpx_supported())
10430 		kvm_load_guest_fpu(vcpu);
10431 
10432 	r = kvm_apic_accept_events(vcpu);
10433 	if (r < 0)
10434 		goto out;
10435 	r = 0;
10436 
10437 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10438 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10439 	    vcpu->arch.pv.pv_unhalted)
10440 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10441 	else
10442 		mp_state->mp_state = vcpu->arch.mp_state;
10443 
10444 out:
10445 	if (kvm_mpx_supported())
10446 		kvm_put_guest_fpu(vcpu);
10447 	vcpu_put(vcpu);
10448 	return r;
10449 }
10450 
10451 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10452 				    struct kvm_mp_state *mp_state)
10453 {
10454 	int ret = -EINVAL;
10455 
10456 	vcpu_load(vcpu);
10457 
10458 	if (!lapic_in_kernel(vcpu) &&
10459 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10460 		goto out;
10461 
10462 	/*
10463 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10464 	 * INIT state; latched init should be reported using
10465 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10466 	 */
10467 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10468 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10469 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10470 		goto out;
10471 
10472 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10473 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10474 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10475 	} else
10476 		vcpu->arch.mp_state = mp_state->mp_state;
10477 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10478 
10479 	ret = 0;
10480 out:
10481 	vcpu_put(vcpu);
10482 	return ret;
10483 }
10484 
10485 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10486 		    int reason, bool has_error_code, u32 error_code)
10487 {
10488 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10489 	int ret;
10490 
10491 	init_emulate_ctxt(vcpu);
10492 
10493 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10494 				   has_error_code, error_code);
10495 	if (ret) {
10496 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10497 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10498 		vcpu->run->internal.ndata = 0;
10499 		return 0;
10500 	}
10501 
10502 	kvm_rip_write(vcpu, ctxt->eip);
10503 	kvm_set_rflags(vcpu, ctxt->eflags);
10504 	return 1;
10505 }
10506 EXPORT_SYMBOL_GPL(kvm_task_switch);
10507 
10508 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10509 {
10510 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10511 		/*
10512 		 * When EFER.LME and CR0.PG are set, the processor is in
10513 		 * 64-bit mode (though maybe in a 32-bit code segment).
10514 		 * CR4.PAE and EFER.LMA must be set.
10515 		 */
10516 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10517 			return false;
10518 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10519 			return false;
10520 	} else {
10521 		/*
10522 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10523 		 * segment cannot be 64-bit.
10524 		 */
10525 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10526 			return false;
10527 	}
10528 
10529 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10530 }
10531 
10532 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10533 		int *mmu_reset_needed, bool update_pdptrs)
10534 {
10535 	struct msr_data apic_base_msr;
10536 	int idx;
10537 	struct desc_ptr dt;
10538 
10539 	if (!kvm_is_valid_sregs(vcpu, sregs))
10540 		return -EINVAL;
10541 
10542 	apic_base_msr.data = sregs->apic_base;
10543 	apic_base_msr.host_initiated = true;
10544 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10545 		return -EINVAL;
10546 
10547 	if (vcpu->arch.guest_state_protected)
10548 		return 0;
10549 
10550 	dt.size = sregs->idt.limit;
10551 	dt.address = sregs->idt.base;
10552 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10553 	dt.size = sregs->gdt.limit;
10554 	dt.address = sregs->gdt.base;
10555 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10556 
10557 	vcpu->arch.cr2 = sregs->cr2;
10558 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10559 	vcpu->arch.cr3 = sregs->cr3;
10560 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10561 
10562 	kvm_set_cr8(vcpu, sregs->cr8);
10563 
10564 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10565 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10566 
10567 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10568 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10569 	vcpu->arch.cr0 = sregs->cr0;
10570 
10571 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10572 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10573 
10574 	if (update_pdptrs) {
10575 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10576 		if (is_pae_paging(vcpu)) {
10577 			load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10578 			*mmu_reset_needed = 1;
10579 		}
10580 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10581 	}
10582 
10583 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10584 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10585 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10586 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10587 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10588 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10589 
10590 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10591 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10592 
10593 	update_cr8_intercept(vcpu);
10594 
10595 	/* Older userspace won't unhalt the vcpu on reset. */
10596 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10597 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10598 	    !is_protmode(vcpu))
10599 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10600 
10601 	return 0;
10602 }
10603 
10604 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10605 {
10606 	int pending_vec, max_bits;
10607 	int mmu_reset_needed = 0;
10608 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10609 
10610 	if (ret)
10611 		return ret;
10612 
10613 	if (mmu_reset_needed)
10614 		kvm_mmu_reset_context(vcpu);
10615 
10616 	max_bits = KVM_NR_INTERRUPTS;
10617 	pending_vec = find_first_bit(
10618 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
10619 
10620 	if (pending_vec < max_bits) {
10621 		kvm_queue_interrupt(vcpu, pending_vec, false);
10622 		pr_debug("Set back pending irq %d\n", pending_vec);
10623 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10624 	}
10625 	return 0;
10626 }
10627 
10628 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10629 {
10630 	int mmu_reset_needed = 0;
10631 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10632 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10633 		!(sregs2->efer & EFER_LMA);
10634 	int i, ret;
10635 
10636 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10637 		return -EINVAL;
10638 
10639 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10640 		return -EINVAL;
10641 
10642 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10643 				 &mmu_reset_needed, !valid_pdptrs);
10644 	if (ret)
10645 		return ret;
10646 
10647 	if (valid_pdptrs) {
10648 		for (i = 0; i < 4 ; i++)
10649 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10650 
10651 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10652 		mmu_reset_needed = 1;
10653 		vcpu->arch.pdptrs_from_userspace = true;
10654 	}
10655 	if (mmu_reset_needed)
10656 		kvm_mmu_reset_context(vcpu);
10657 	return 0;
10658 }
10659 
10660 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10661 				  struct kvm_sregs *sregs)
10662 {
10663 	int ret;
10664 
10665 	vcpu_load(vcpu);
10666 	ret = __set_sregs(vcpu, sregs);
10667 	vcpu_put(vcpu);
10668 	return ret;
10669 }
10670 
10671 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10672 {
10673 	bool inhibit = false;
10674 	struct kvm_vcpu *vcpu;
10675 	int i;
10676 
10677 	down_write(&kvm->arch.apicv_update_lock);
10678 
10679 	kvm_for_each_vcpu(i, vcpu, kvm) {
10680 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10681 			inhibit = true;
10682 			break;
10683 		}
10684 	}
10685 	__kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10686 	up_write(&kvm->arch.apicv_update_lock);
10687 }
10688 
10689 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10690 					struct kvm_guest_debug *dbg)
10691 {
10692 	unsigned long rflags;
10693 	int i, r;
10694 
10695 	if (vcpu->arch.guest_state_protected)
10696 		return -EINVAL;
10697 
10698 	vcpu_load(vcpu);
10699 
10700 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10701 		r = -EBUSY;
10702 		if (vcpu->arch.exception.pending)
10703 			goto out;
10704 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10705 			kvm_queue_exception(vcpu, DB_VECTOR);
10706 		else
10707 			kvm_queue_exception(vcpu, BP_VECTOR);
10708 	}
10709 
10710 	/*
10711 	 * Read rflags as long as potentially injected trace flags are still
10712 	 * filtered out.
10713 	 */
10714 	rflags = kvm_get_rflags(vcpu);
10715 
10716 	vcpu->guest_debug = dbg->control;
10717 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10718 		vcpu->guest_debug = 0;
10719 
10720 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10721 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10722 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10723 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10724 	} else {
10725 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10726 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10727 	}
10728 	kvm_update_dr7(vcpu);
10729 
10730 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10731 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10732 
10733 	/*
10734 	 * Trigger an rflags update that will inject or remove the trace
10735 	 * flags.
10736 	 */
10737 	kvm_set_rflags(vcpu, rflags);
10738 
10739 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
10740 
10741 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10742 
10743 	r = 0;
10744 
10745 out:
10746 	vcpu_put(vcpu);
10747 	return r;
10748 }
10749 
10750 /*
10751  * Translate a guest virtual address to a guest physical address.
10752  */
10753 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10754 				    struct kvm_translation *tr)
10755 {
10756 	unsigned long vaddr = tr->linear_address;
10757 	gpa_t gpa;
10758 	int idx;
10759 
10760 	vcpu_load(vcpu);
10761 
10762 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10763 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10764 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10765 	tr->physical_address = gpa;
10766 	tr->valid = gpa != UNMAPPED_GVA;
10767 	tr->writeable = 1;
10768 	tr->usermode = 0;
10769 
10770 	vcpu_put(vcpu);
10771 	return 0;
10772 }
10773 
10774 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10775 {
10776 	struct fxregs_state *fxsave;
10777 
10778 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10779 		return 0;
10780 
10781 	vcpu_load(vcpu);
10782 
10783 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10784 	memcpy(fpu->fpr, fxsave->st_space, 128);
10785 	fpu->fcw = fxsave->cwd;
10786 	fpu->fsw = fxsave->swd;
10787 	fpu->ftwx = fxsave->twd;
10788 	fpu->last_opcode = fxsave->fop;
10789 	fpu->last_ip = fxsave->rip;
10790 	fpu->last_dp = fxsave->rdp;
10791 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10792 
10793 	vcpu_put(vcpu);
10794 	return 0;
10795 }
10796 
10797 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10798 {
10799 	struct fxregs_state *fxsave;
10800 
10801 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10802 		return 0;
10803 
10804 	vcpu_load(vcpu);
10805 
10806 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10807 
10808 	memcpy(fxsave->st_space, fpu->fpr, 128);
10809 	fxsave->cwd = fpu->fcw;
10810 	fxsave->swd = fpu->fsw;
10811 	fxsave->twd = fpu->ftwx;
10812 	fxsave->fop = fpu->last_opcode;
10813 	fxsave->rip = fpu->last_ip;
10814 	fxsave->rdp = fpu->last_dp;
10815 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10816 
10817 	vcpu_put(vcpu);
10818 	return 0;
10819 }
10820 
10821 static void store_regs(struct kvm_vcpu *vcpu)
10822 {
10823 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10824 
10825 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10826 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
10827 
10828 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10829 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10830 
10831 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10832 		kvm_vcpu_ioctl_x86_get_vcpu_events(
10833 				vcpu, &vcpu->run->s.regs.events);
10834 }
10835 
10836 static int sync_regs(struct kvm_vcpu *vcpu)
10837 {
10838 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10839 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
10840 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10841 	}
10842 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10843 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10844 			return -EINVAL;
10845 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10846 	}
10847 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10848 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10849 				vcpu, &vcpu->run->s.regs.events))
10850 			return -EINVAL;
10851 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10852 	}
10853 
10854 	return 0;
10855 }
10856 
10857 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10858 {
10859 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10860 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10861 			     "guest TSC will not be reliable\n");
10862 
10863 	return 0;
10864 }
10865 
10866 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10867 {
10868 	struct page *page;
10869 	int r;
10870 
10871 	vcpu->arch.last_vmentry_cpu = -1;
10872 	vcpu->arch.regs_avail = ~0;
10873 	vcpu->arch.regs_dirty = ~0;
10874 
10875 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10876 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10877 	else
10878 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10879 
10880 	r = kvm_mmu_create(vcpu);
10881 	if (r < 0)
10882 		return r;
10883 
10884 	if (irqchip_in_kernel(vcpu->kvm)) {
10885 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10886 		if (r < 0)
10887 			goto fail_mmu_destroy;
10888 		if (kvm_apicv_activated(vcpu->kvm))
10889 			vcpu->arch.apicv_active = true;
10890 	} else
10891 		static_branch_inc(&kvm_has_noapic_vcpu);
10892 
10893 	r = -ENOMEM;
10894 
10895 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10896 	if (!page)
10897 		goto fail_free_lapic;
10898 	vcpu->arch.pio_data = page_address(page);
10899 
10900 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10901 				       GFP_KERNEL_ACCOUNT);
10902 	if (!vcpu->arch.mce_banks)
10903 		goto fail_free_pio_data;
10904 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10905 
10906 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10907 				GFP_KERNEL_ACCOUNT))
10908 		goto fail_free_mce_banks;
10909 
10910 	if (!alloc_emulate_ctxt(vcpu))
10911 		goto free_wbinvd_dirty_mask;
10912 
10913 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
10914 		pr_err("kvm: failed to allocate vcpu's fpu\n");
10915 		goto free_emulate_ctxt;
10916 	}
10917 
10918 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10919 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10920 
10921 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10922 
10923 	kvm_async_pf_hash_reset(vcpu);
10924 	kvm_pmu_init(vcpu);
10925 
10926 	vcpu->arch.pending_external_vector = -1;
10927 	vcpu->arch.preempted_in_kernel = false;
10928 
10929 #if IS_ENABLED(CONFIG_HYPERV)
10930 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
10931 #endif
10932 
10933 	r = static_call(kvm_x86_vcpu_create)(vcpu);
10934 	if (r)
10935 		goto free_guest_fpu;
10936 
10937 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10938 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10939 	kvm_vcpu_mtrr_init(vcpu);
10940 	vcpu_load(vcpu);
10941 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
10942 	kvm_vcpu_reset(vcpu, false);
10943 	kvm_init_mmu(vcpu);
10944 	vcpu_put(vcpu);
10945 	return 0;
10946 
10947 free_guest_fpu:
10948 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
10949 free_emulate_ctxt:
10950 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10951 free_wbinvd_dirty_mask:
10952 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10953 fail_free_mce_banks:
10954 	kfree(vcpu->arch.mce_banks);
10955 fail_free_pio_data:
10956 	free_page((unsigned long)vcpu->arch.pio_data);
10957 fail_free_lapic:
10958 	kvm_free_lapic(vcpu);
10959 fail_mmu_destroy:
10960 	kvm_mmu_destroy(vcpu);
10961 	return r;
10962 }
10963 
10964 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10965 {
10966 	struct kvm *kvm = vcpu->kvm;
10967 
10968 	if (mutex_lock_killable(&vcpu->mutex))
10969 		return;
10970 	vcpu_load(vcpu);
10971 	kvm_synchronize_tsc(vcpu, 0);
10972 	vcpu_put(vcpu);
10973 
10974 	/* poll control enabled by default */
10975 	vcpu->arch.msr_kvm_poll_control = 1;
10976 
10977 	mutex_unlock(&vcpu->mutex);
10978 
10979 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10980 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10981 						KVMCLOCK_SYNC_PERIOD);
10982 }
10983 
10984 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10985 {
10986 	int idx;
10987 
10988 	kvmclock_reset(vcpu);
10989 
10990 	static_call(kvm_x86_vcpu_free)(vcpu);
10991 
10992 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10993 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10994 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
10995 
10996 	kvm_hv_vcpu_uninit(vcpu);
10997 	kvm_pmu_destroy(vcpu);
10998 	kfree(vcpu->arch.mce_banks);
10999 	kvm_free_lapic(vcpu);
11000 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11001 	kvm_mmu_destroy(vcpu);
11002 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11003 	free_page((unsigned long)vcpu->arch.pio_data);
11004 	kvfree(vcpu->arch.cpuid_entries);
11005 	if (!lapic_in_kernel(vcpu))
11006 		static_branch_dec(&kvm_has_noapic_vcpu);
11007 }
11008 
11009 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11010 {
11011 	struct kvm_cpuid_entry2 *cpuid_0x1;
11012 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11013 	unsigned long new_cr0;
11014 
11015 	/*
11016 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11017 	 * to handle side effects.  RESET emulation hits those flows and relies
11018 	 * on emulated/virtualized registers, including those that are loaded
11019 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11020 	 * to detect improper or missing initialization.
11021 	 */
11022 	WARN_ON_ONCE(!init_event &&
11023 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11024 
11025 	kvm_lapic_reset(vcpu, init_event);
11026 
11027 	vcpu->arch.hflags = 0;
11028 
11029 	vcpu->arch.smi_pending = 0;
11030 	vcpu->arch.smi_count = 0;
11031 	atomic_set(&vcpu->arch.nmi_queued, 0);
11032 	vcpu->arch.nmi_pending = 0;
11033 	vcpu->arch.nmi_injected = false;
11034 	kvm_clear_interrupt_queue(vcpu);
11035 	kvm_clear_exception_queue(vcpu);
11036 
11037 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11038 	kvm_update_dr0123(vcpu);
11039 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11040 	vcpu->arch.dr7 = DR7_FIXED_1;
11041 	kvm_update_dr7(vcpu);
11042 
11043 	vcpu->arch.cr2 = 0;
11044 
11045 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11046 	vcpu->arch.apf.msr_en_val = 0;
11047 	vcpu->arch.apf.msr_int_val = 0;
11048 	vcpu->arch.st.msr_val = 0;
11049 
11050 	kvmclock_reset(vcpu);
11051 
11052 	kvm_clear_async_pf_completion_queue(vcpu);
11053 	kvm_async_pf_hash_reset(vcpu);
11054 	vcpu->arch.apf.halted = false;
11055 
11056 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11057 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11058 
11059 		/*
11060 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11061 		 * called with loaded FPU and does not let userspace fix the state.
11062 		 */
11063 		if (init_event)
11064 			kvm_put_guest_fpu(vcpu);
11065 
11066 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11067 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11068 
11069 		if (init_event)
11070 			kvm_load_guest_fpu(vcpu);
11071 	}
11072 
11073 	if (!init_event) {
11074 		kvm_pmu_reset(vcpu);
11075 		vcpu->arch.smbase = 0x30000;
11076 
11077 		vcpu->arch.msr_misc_features_enables = 0;
11078 
11079 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
11080 	}
11081 
11082 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11083 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11084 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11085 
11086 	/*
11087 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11088 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11089 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11090 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11091 	 * on RESET.  But, go through the motions in case that's ever remedied.
11092 	 */
11093 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11094 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11095 
11096 	vcpu->arch.ia32_xss = 0;
11097 
11098 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11099 
11100 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11101 	kvm_rip_write(vcpu, 0xfff0);
11102 
11103 	vcpu->arch.cr3 = 0;
11104 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11105 
11106 	/*
11107 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11108 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11109 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11110 	 */
11111 	new_cr0 = X86_CR0_ET;
11112 	if (init_event)
11113 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11114 	else
11115 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11116 
11117 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11118 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11119 	static_call(kvm_x86_set_efer)(vcpu, 0);
11120 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11121 
11122 	/*
11123 	 * Reset the MMU context if paging was enabled prior to INIT (which is
11124 	 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
11125 	 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11126 	 * checked because it is unconditionally cleared on INIT and all other
11127 	 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11128 	 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11129 	 */
11130 	if (old_cr0 & X86_CR0_PG)
11131 		kvm_mmu_reset_context(vcpu);
11132 
11133 	/*
11134 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11135 	 * APM states the TLBs are untouched by INIT, but it also states that
11136 	 * the TLBs are flushed on "External initialization of the processor."
11137 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11138 	 * benefit in relying on the guest to flush the TLB immediately after
11139 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11140 	 * performance perspective.
11141 	 */
11142 	if (init_event)
11143 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11144 }
11145 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11146 
11147 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11148 {
11149 	struct kvm_segment cs;
11150 
11151 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11152 	cs.selector = vector << 8;
11153 	cs.base = vector << 12;
11154 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11155 	kvm_rip_write(vcpu, 0);
11156 }
11157 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11158 
11159 int kvm_arch_hardware_enable(void)
11160 {
11161 	struct kvm *kvm;
11162 	struct kvm_vcpu *vcpu;
11163 	int i;
11164 	int ret;
11165 	u64 local_tsc;
11166 	u64 max_tsc = 0;
11167 	bool stable, backwards_tsc = false;
11168 
11169 	kvm_user_return_msr_cpu_online();
11170 	ret = static_call(kvm_x86_hardware_enable)();
11171 	if (ret != 0)
11172 		return ret;
11173 
11174 	local_tsc = rdtsc();
11175 	stable = !kvm_check_tsc_unstable();
11176 	list_for_each_entry(kvm, &vm_list, vm_list) {
11177 		kvm_for_each_vcpu(i, vcpu, kvm) {
11178 			if (!stable && vcpu->cpu == smp_processor_id())
11179 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11180 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11181 				backwards_tsc = true;
11182 				if (vcpu->arch.last_host_tsc > max_tsc)
11183 					max_tsc = vcpu->arch.last_host_tsc;
11184 			}
11185 		}
11186 	}
11187 
11188 	/*
11189 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11190 	 * platforms that reset TSC during suspend or hibernate actions, but
11191 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11192 	 * detect that condition here, which happens early in CPU bringup,
11193 	 * before any KVM threads can be running.  Unfortunately, we can't
11194 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11195 	 * enough into CPU bringup that we know how much real time has actually
11196 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11197 	 * variables that haven't been updated yet.
11198 	 *
11199 	 * So we simply find the maximum observed TSC above, then record the
11200 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11201 	 * the adjustment will be applied.  Note that we accumulate
11202 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11203 	 * gets a chance to run again.  In the event that no KVM threads get a
11204 	 * chance to run, we will miss the entire elapsed period, as we'll have
11205 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11206 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11207 	 * uniform across all VCPUs (not to mention the scenario is extremely
11208 	 * unlikely). It is possible that a second hibernate recovery happens
11209 	 * much faster than a first, causing the observed TSC here to be
11210 	 * smaller; this would require additional padding adjustment, which is
11211 	 * why we set last_host_tsc to the local tsc observed here.
11212 	 *
11213 	 * N.B. - this code below runs only on platforms with reliable TSC,
11214 	 * as that is the only way backwards_tsc is set above.  Also note
11215 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11216 	 * have the same delta_cyc adjustment applied if backwards_tsc
11217 	 * is detected.  Note further, this adjustment is only done once,
11218 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11219 	 * called multiple times (one for each physical CPU bringup).
11220 	 *
11221 	 * Platforms with unreliable TSCs don't have to deal with this, they
11222 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11223 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11224 	 * guarantee that they stay in perfect synchronization.
11225 	 */
11226 	if (backwards_tsc) {
11227 		u64 delta_cyc = max_tsc - local_tsc;
11228 		list_for_each_entry(kvm, &vm_list, vm_list) {
11229 			kvm->arch.backwards_tsc_observed = true;
11230 			kvm_for_each_vcpu(i, vcpu, kvm) {
11231 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11232 				vcpu->arch.last_host_tsc = local_tsc;
11233 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11234 			}
11235 
11236 			/*
11237 			 * We have to disable TSC offset matching.. if you were
11238 			 * booting a VM while issuing an S4 host suspend....
11239 			 * you may have some problem.  Solving this issue is
11240 			 * left as an exercise to the reader.
11241 			 */
11242 			kvm->arch.last_tsc_nsec = 0;
11243 			kvm->arch.last_tsc_write = 0;
11244 		}
11245 
11246 	}
11247 	return 0;
11248 }
11249 
11250 void kvm_arch_hardware_disable(void)
11251 {
11252 	static_call(kvm_x86_hardware_disable)();
11253 	drop_user_return_notifiers();
11254 }
11255 
11256 int kvm_arch_hardware_setup(void *opaque)
11257 {
11258 	struct kvm_x86_init_ops *ops = opaque;
11259 	int r;
11260 
11261 	rdmsrl_safe(MSR_EFER, &host_efer);
11262 
11263 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11264 		rdmsrl(MSR_IA32_XSS, host_xss);
11265 
11266 	r = ops->hardware_setup();
11267 	if (r != 0)
11268 		return r;
11269 
11270 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11271 	kvm_ops_static_call_update();
11272 
11273 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11274 		supported_xss = 0;
11275 
11276 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11277 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11278 #undef __kvm_cpu_cap_has
11279 
11280 	if (kvm_has_tsc_control) {
11281 		/*
11282 		 * Make sure the user can only configure tsc_khz values that
11283 		 * fit into a signed integer.
11284 		 * A min value is not calculated because it will always
11285 		 * be 1 on all machines.
11286 		 */
11287 		u64 max = min(0x7fffffffULL,
11288 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11289 		kvm_max_guest_tsc_khz = max;
11290 
11291 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11292 	}
11293 
11294 	kvm_init_msr_list();
11295 	return 0;
11296 }
11297 
11298 void kvm_arch_hardware_unsetup(void)
11299 {
11300 	static_call(kvm_x86_hardware_unsetup)();
11301 }
11302 
11303 int kvm_arch_check_processor_compat(void *opaque)
11304 {
11305 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11306 	struct kvm_x86_init_ops *ops = opaque;
11307 
11308 	WARN_ON(!irqs_disabled());
11309 
11310 	if (__cr4_reserved_bits(cpu_has, c) !=
11311 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11312 		return -EIO;
11313 
11314 	return ops->check_processor_compatibility();
11315 }
11316 
11317 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11318 {
11319 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11320 }
11321 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11322 
11323 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11324 {
11325 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11326 }
11327 
11328 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11329 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11330 
11331 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11332 {
11333 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11334 
11335 	vcpu->arch.l1tf_flush_l1d = true;
11336 	if (pmu->version && unlikely(pmu->event_count)) {
11337 		pmu->need_cleanup = true;
11338 		kvm_make_request(KVM_REQ_PMU, vcpu);
11339 	}
11340 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11341 }
11342 
11343 void kvm_arch_free_vm(struct kvm *kvm)
11344 {
11345 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11346 	__kvm_arch_free_vm(kvm);
11347 }
11348 
11349 
11350 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11351 {
11352 	int ret;
11353 	unsigned long flags;
11354 
11355 	if (type)
11356 		return -EINVAL;
11357 
11358 	ret = kvm_page_track_init(kvm);
11359 	if (ret)
11360 		return ret;
11361 
11362 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11363 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11364 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11365 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11366 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11367 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11368 
11369 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11370 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11371 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11372 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11373 		&kvm->arch.irq_sources_bitmap);
11374 
11375 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11376 	mutex_init(&kvm->arch.apic_map_lock);
11377 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11378 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11379 
11380 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11381 	pvclock_update_vm_gtod_copy(kvm);
11382 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11383 
11384 	kvm->arch.guest_can_read_msr_platform_info = true;
11385 
11386 #if IS_ENABLED(CONFIG_HYPERV)
11387 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11388 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11389 #endif
11390 
11391 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11392 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11393 
11394 	kvm_apicv_init(kvm);
11395 	kvm_hv_init_vm(kvm);
11396 	kvm_mmu_init_vm(kvm);
11397 	kvm_xen_init_vm(kvm);
11398 
11399 	return static_call(kvm_x86_vm_init)(kvm);
11400 }
11401 
11402 int kvm_arch_post_init_vm(struct kvm *kvm)
11403 {
11404 	return kvm_mmu_post_init_vm(kvm);
11405 }
11406 
11407 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11408 {
11409 	vcpu_load(vcpu);
11410 	kvm_mmu_unload(vcpu);
11411 	vcpu_put(vcpu);
11412 }
11413 
11414 static void kvm_free_vcpus(struct kvm *kvm)
11415 {
11416 	unsigned int i;
11417 	struct kvm_vcpu *vcpu;
11418 
11419 	/*
11420 	 * Unpin any mmu pages first.
11421 	 */
11422 	kvm_for_each_vcpu(i, vcpu, kvm) {
11423 		kvm_clear_async_pf_completion_queue(vcpu);
11424 		kvm_unload_vcpu_mmu(vcpu);
11425 	}
11426 	kvm_for_each_vcpu(i, vcpu, kvm)
11427 		kvm_vcpu_destroy(vcpu);
11428 
11429 	mutex_lock(&kvm->lock);
11430 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11431 		kvm->vcpus[i] = NULL;
11432 
11433 	atomic_set(&kvm->online_vcpus, 0);
11434 	mutex_unlock(&kvm->lock);
11435 }
11436 
11437 void kvm_arch_sync_events(struct kvm *kvm)
11438 {
11439 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11440 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11441 	kvm_free_pit(kvm);
11442 }
11443 
11444 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
11445 
11446 /**
11447  * __x86_set_memory_region: Setup KVM internal memory slot
11448  *
11449  * @kvm: the kvm pointer to the VM.
11450  * @id: the slot ID to setup.
11451  * @gpa: the GPA to install the slot (unused when @size == 0).
11452  * @size: the size of the slot. Set to zero to uninstall a slot.
11453  *
11454  * This function helps to setup a KVM internal memory slot.  Specify
11455  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11456  * slot.  The return code can be one of the following:
11457  *
11458  *   HVA:           on success (uninstall will return a bogus HVA)
11459  *   -errno:        on error
11460  *
11461  * The caller should always use IS_ERR() to check the return value
11462  * before use.  Note, the KVM internal memory slots are guaranteed to
11463  * remain valid and unchanged until the VM is destroyed, i.e., the
11464  * GPA->HVA translation will not change.  However, the HVA is a user
11465  * address, i.e. its accessibility is not guaranteed, and must be
11466  * accessed via __copy_{to,from}_user().
11467  */
11468 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11469 				      u32 size)
11470 {
11471 	int i, r;
11472 	unsigned long hva, old_npages;
11473 	struct kvm_memslots *slots = kvm_memslots(kvm);
11474 	struct kvm_memory_slot *slot;
11475 
11476 	/* Called with kvm->slots_lock held.  */
11477 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11478 		return ERR_PTR_USR(-EINVAL);
11479 
11480 	slot = id_to_memslot(slots, id);
11481 	if (size) {
11482 		if (slot && slot->npages)
11483 			return ERR_PTR_USR(-EEXIST);
11484 
11485 		/*
11486 		 * MAP_SHARED to prevent internal slot pages from being moved
11487 		 * by fork()/COW.
11488 		 */
11489 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11490 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11491 		if (IS_ERR((void *)hva))
11492 			return (void __user *)hva;
11493 	} else {
11494 		if (!slot || !slot->npages)
11495 			return NULL;
11496 
11497 		old_npages = slot->npages;
11498 		hva = slot->userspace_addr;
11499 	}
11500 
11501 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11502 		struct kvm_userspace_memory_region m;
11503 
11504 		m.slot = id | (i << 16);
11505 		m.flags = 0;
11506 		m.guest_phys_addr = gpa;
11507 		m.userspace_addr = hva;
11508 		m.memory_size = size;
11509 		r = __kvm_set_memory_region(kvm, &m);
11510 		if (r < 0)
11511 			return ERR_PTR_USR(r);
11512 	}
11513 
11514 	if (!size)
11515 		vm_munmap(hva, old_npages * PAGE_SIZE);
11516 
11517 	return (void __user *)hva;
11518 }
11519 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11520 
11521 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11522 {
11523 	kvm_mmu_pre_destroy_vm(kvm);
11524 }
11525 
11526 void kvm_arch_destroy_vm(struct kvm *kvm)
11527 {
11528 	if (current->mm == kvm->mm) {
11529 		/*
11530 		 * Free memory regions allocated on behalf of userspace,
11531 		 * unless the the memory map has changed due to process exit
11532 		 * or fd copying.
11533 		 */
11534 		mutex_lock(&kvm->slots_lock);
11535 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11536 					0, 0);
11537 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11538 					0, 0);
11539 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11540 		mutex_unlock(&kvm->slots_lock);
11541 	}
11542 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11543 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11544 	kvm_pic_destroy(kvm);
11545 	kvm_ioapic_destroy(kvm);
11546 	kvm_free_vcpus(kvm);
11547 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11548 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11549 	kvm_mmu_uninit_vm(kvm);
11550 	kvm_page_track_cleanup(kvm);
11551 	kvm_xen_destroy_vm(kvm);
11552 	kvm_hv_destroy_vm(kvm);
11553 }
11554 
11555 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11556 {
11557 	int i;
11558 
11559 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11560 		kvfree(slot->arch.rmap[i]);
11561 		slot->arch.rmap[i] = NULL;
11562 	}
11563 }
11564 
11565 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11566 {
11567 	int i;
11568 
11569 	memslot_rmap_free(slot);
11570 
11571 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11572 		kvfree(slot->arch.lpage_info[i - 1]);
11573 		slot->arch.lpage_info[i - 1] = NULL;
11574 	}
11575 
11576 	kvm_page_track_free_memslot(slot);
11577 }
11578 
11579 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11580 {
11581 	const int sz = sizeof(*slot->arch.rmap[0]);
11582 	int i;
11583 
11584 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11585 		int level = i + 1;
11586 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11587 
11588 		if (slot->arch.rmap[i])
11589 			continue;
11590 
11591 		slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11592 		if (!slot->arch.rmap[i]) {
11593 			memslot_rmap_free(slot);
11594 			return -ENOMEM;
11595 		}
11596 	}
11597 
11598 	return 0;
11599 }
11600 
11601 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11602 				      struct kvm_memory_slot *slot,
11603 				      unsigned long npages)
11604 {
11605 	int i, r;
11606 
11607 	/*
11608 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11609 	 * old arrays will be freed by __kvm_set_memory_region() if installing
11610 	 * the new memslot is successful.
11611 	 */
11612 	memset(&slot->arch, 0, sizeof(slot->arch));
11613 
11614 	if (kvm_memslots_have_rmaps(kvm)) {
11615 		r = memslot_rmap_alloc(slot, npages);
11616 		if (r)
11617 			return r;
11618 	}
11619 
11620 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11621 		struct kvm_lpage_info *linfo;
11622 		unsigned long ugfn;
11623 		int lpages;
11624 		int level = i + 1;
11625 
11626 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11627 
11628 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11629 		if (!linfo)
11630 			goto out_free;
11631 
11632 		slot->arch.lpage_info[i - 1] = linfo;
11633 
11634 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11635 			linfo[0].disallow_lpage = 1;
11636 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11637 			linfo[lpages - 1].disallow_lpage = 1;
11638 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
11639 		/*
11640 		 * If the gfn and userspace address are not aligned wrt each
11641 		 * other, disable large page support for this slot.
11642 		 */
11643 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11644 			unsigned long j;
11645 
11646 			for (j = 0; j < lpages; ++j)
11647 				linfo[j].disallow_lpage = 1;
11648 		}
11649 	}
11650 
11651 	if (kvm_page_track_create_memslot(kvm, slot, npages))
11652 		goto out_free;
11653 
11654 	return 0;
11655 
11656 out_free:
11657 	memslot_rmap_free(slot);
11658 
11659 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11660 		kvfree(slot->arch.lpage_info[i - 1]);
11661 		slot->arch.lpage_info[i - 1] = NULL;
11662 	}
11663 	return -ENOMEM;
11664 }
11665 
11666 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11667 {
11668 	struct kvm_vcpu *vcpu;
11669 	int i;
11670 
11671 	/*
11672 	 * memslots->generation has been incremented.
11673 	 * mmio generation may have reached its maximum value.
11674 	 */
11675 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11676 
11677 	/* Force re-initialization of steal_time cache */
11678 	kvm_for_each_vcpu(i, vcpu, kvm)
11679 		kvm_vcpu_kick(vcpu);
11680 }
11681 
11682 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11683 				struct kvm_memory_slot *memslot,
11684 				const struct kvm_userspace_memory_region *mem,
11685 				enum kvm_mr_change change)
11686 {
11687 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11688 		return kvm_alloc_memslot_metadata(kvm, memslot,
11689 						  mem->memory_size >> PAGE_SHIFT);
11690 	return 0;
11691 }
11692 
11693 
11694 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11695 {
11696 	struct kvm_arch *ka = &kvm->arch;
11697 
11698 	if (!kvm_x86_ops.cpu_dirty_log_size)
11699 		return;
11700 
11701 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11702 	    (!enable && --ka->cpu_dirty_logging_count == 0))
11703 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11704 
11705 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11706 }
11707 
11708 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11709 				     struct kvm_memory_slot *old,
11710 				     const struct kvm_memory_slot *new,
11711 				     enum kvm_mr_change change)
11712 {
11713 	bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11714 
11715 	/*
11716 	 * Update CPU dirty logging if dirty logging is being toggled.  This
11717 	 * applies to all operations.
11718 	 */
11719 	if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11720 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11721 
11722 	/*
11723 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
11724 	 * made writable) or CREATE/MOVE/DELETE of a slot.
11725 	 *
11726 	 * For a memslot with dirty logging disabled:
11727 	 * CREATE:      No dirty mappings will already exist.
11728 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11729 	 *		kvm_arch_flush_shadow_memslot()
11730 	 *
11731 	 * For a memslot with dirty logging enabled:
11732 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
11733 	 *		and no dirty bits to clear.
11734 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11735 	 *		kvm_arch_flush_shadow_memslot().
11736 	 */
11737 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11738 		return;
11739 
11740 	/*
11741 	 * READONLY and non-flags changes were filtered out above, and the only
11742 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11743 	 * logging isn't being toggled on or off.
11744 	 */
11745 	if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11746 		return;
11747 
11748 	if (!log_dirty_pages) {
11749 		/*
11750 		 * Dirty logging tracks sptes in 4k granularity, meaning that
11751 		 * large sptes have to be split.  If live migration succeeds,
11752 		 * the guest in the source machine will be destroyed and large
11753 		 * sptes will be created in the destination.  However, if the
11754 		 * guest continues to run in the source machine (for example if
11755 		 * live migration fails), small sptes will remain around and
11756 		 * cause bad performance.
11757 		 *
11758 		 * Scan sptes if dirty logging has been stopped, dropping those
11759 		 * which can be collapsed into a single large-page spte.  Later
11760 		 * page faults will create the large-page sptes.
11761 		 */
11762 		kvm_mmu_zap_collapsible_sptes(kvm, new);
11763 	} else {
11764 		/*
11765 		 * Initially-all-set does not require write protecting any page,
11766 		 * because they're all assumed to be dirty.
11767 		 */
11768 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11769 			return;
11770 
11771 		if (kvm_x86_ops.cpu_dirty_log_size) {
11772 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11773 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11774 		} else {
11775 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11776 		}
11777 	}
11778 }
11779 
11780 void kvm_arch_commit_memory_region(struct kvm *kvm,
11781 				const struct kvm_userspace_memory_region *mem,
11782 				struct kvm_memory_slot *old,
11783 				const struct kvm_memory_slot *new,
11784 				enum kvm_mr_change change)
11785 {
11786 	if (!kvm->arch.n_requested_mmu_pages)
11787 		kvm_mmu_change_mmu_pages(kvm,
11788 				kvm_mmu_calculate_default_mmu_pages(kvm));
11789 
11790 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
11791 
11792 	/* Free the arrays associated with the old memslot. */
11793 	if (change == KVM_MR_MOVE)
11794 		kvm_arch_free_memslot(kvm, old);
11795 }
11796 
11797 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11798 {
11799 	kvm_mmu_zap_all(kvm);
11800 }
11801 
11802 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11803 				   struct kvm_memory_slot *slot)
11804 {
11805 	kvm_page_track_flush_slot(kvm, slot);
11806 }
11807 
11808 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11809 {
11810 	return (is_guest_mode(vcpu) &&
11811 			kvm_x86_ops.guest_apic_has_interrupt &&
11812 			static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11813 }
11814 
11815 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11816 {
11817 	if (!list_empty_careful(&vcpu->async_pf.done))
11818 		return true;
11819 
11820 	if (kvm_apic_has_events(vcpu))
11821 		return true;
11822 
11823 	if (vcpu->arch.pv.pv_unhalted)
11824 		return true;
11825 
11826 	if (vcpu->arch.exception.pending)
11827 		return true;
11828 
11829 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11830 	    (vcpu->arch.nmi_pending &&
11831 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11832 		return true;
11833 
11834 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11835 	    (vcpu->arch.smi_pending &&
11836 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
11837 		return true;
11838 
11839 	if (kvm_arch_interrupt_allowed(vcpu) &&
11840 	    (kvm_cpu_has_interrupt(vcpu) ||
11841 	    kvm_guest_apic_has_interrupt(vcpu)))
11842 		return true;
11843 
11844 	if (kvm_hv_has_stimer_pending(vcpu))
11845 		return true;
11846 
11847 	if (is_guest_mode(vcpu) &&
11848 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
11849 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11850 		return true;
11851 
11852 	return false;
11853 }
11854 
11855 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11856 {
11857 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11858 }
11859 
11860 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11861 {
11862 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11863 		return true;
11864 
11865 	return false;
11866 }
11867 
11868 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11869 {
11870 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11871 		return true;
11872 
11873 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11874 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11875 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11876 		return true;
11877 
11878 	return kvm_arch_dy_has_pending_interrupt(vcpu);
11879 }
11880 
11881 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11882 {
11883 	if (vcpu->arch.guest_state_protected)
11884 		return true;
11885 
11886 	return vcpu->arch.preempted_in_kernel;
11887 }
11888 
11889 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11890 {
11891 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11892 }
11893 
11894 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11895 {
11896 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11897 }
11898 
11899 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11900 {
11901 	/* Can't read the RIP when guest state is protected, just return 0 */
11902 	if (vcpu->arch.guest_state_protected)
11903 		return 0;
11904 
11905 	if (is_64_bit_mode(vcpu))
11906 		return kvm_rip_read(vcpu);
11907 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11908 		     kvm_rip_read(vcpu));
11909 }
11910 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11911 
11912 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11913 {
11914 	return kvm_get_linear_rip(vcpu) == linear_rip;
11915 }
11916 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11917 
11918 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11919 {
11920 	unsigned long rflags;
11921 
11922 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
11923 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11924 		rflags &= ~X86_EFLAGS_TF;
11925 	return rflags;
11926 }
11927 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11928 
11929 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11930 {
11931 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11932 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11933 		rflags |= X86_EFLAGS_TF;
11934 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
11935 }
11936 
11937 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11938 {
11939 	__kvm_set_rflags(vcpu, rflags);
11940 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11941 }
11942 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11943 
11944 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11945 {
11946 	int r;
11947 
11948 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11949 	      work->wakeup_all)
11950 		return;
11951 
11952 	r = kvm_mmu_reload(vcpu);
11953 	if (unlikely(r))
11954 		return;
11955 
11956 	if (!vcpu->arch.mmu->direct_map &&
11957 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11958 		return;
11959 
11960 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11961 }
11962 
11963 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11964 {
11965 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11966 
11967 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11968 }
11969 
11970 static inline u32 kvm_async_pf_next_probe(u32 key)
11971 {
11972 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11973 }
11974 
11975 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11976 {
11977 	u32 key = kvm_async_pf_hash_fn(gfn);
11978 
11979 	while (vcpu->arch.apf.gfns[key] != ~0)
11980 		key = kvm_async_pf_next_probe(key);
11981 
11982 	vcpu->arch.apf.gfns[key] = gfn;
11983 }
11984 
11985 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11986 {
11987 	int i;
11988 	u32 key = kvm_async_pf_hash_fn(gfn);
11989 
11990 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
11991 		     (vcpu->arch.apf.gfns[key] != gfn &&
11992 		      vcpu->arch.apf.gfns[key] != ~0); i++)
11993 		key = kvm_async_pf_next_probe(key);
11994 
11995 	return key;
11996 }
11997 
11998 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11999 {
12000 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12001 }
12002 
12003 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12004 {
12005 	u32 i, j, k;
12006 
12007 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12008 
12009 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12010 		return;
12011 
12012 	while (true) {
12013 		vcpu->arch.apf.gfns[i] = ~0;
12014 		do {
12015 			j = kvm_async_pf_next_probe(j);
12016 			if (vcpu->arch.apf.gfns[j] == ~0)
12017 				return;
12018 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12019 			/*
12020 			 * k lies cyclically in ]i,j]
12021 			 * |    i.k.j |
12022 			 * |....j i.k.| or  |.k..j i...|
12023 			 */
12024 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12025 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12026 		i = j;
12027 	}
12028 }
12029 
12030 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12031 {
12032 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12033 
12034 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12035 				      sizeof(reason));
12036 }
12037 
12038 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12039 {
12040 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12041 
12042 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12043 					     &token, offset, sizeof(token));
12044 }
12045 
12046 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12047 {
12048 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12049 	u32 val;
12050 
12051 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12052 					 &val, offset, sizeof(val)))
12053 		return false;
12054 
12055 	return !val;
12056 }
12057 
12058 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12059 {
12060 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12061 		return false;
12062 
12063 	if (!kvm_pv_async_pf_enabled(vcpu) ||
12064 	    (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12065 		return false;
12066 
12067 	return true;
12068 }
12069 
12070 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12071 {
12072 	if (unlikely(!lapic_in_kernel(vcpu) ||
12073 		     kvm_event_needs_reinjection(vcpu) ||
12074 		     vcpu->arch.exception.pending))
12075 		return false;
12076 
12077 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12078 		return false;
12079 
12080 	/*
12081 	 * If interrupts are off we cannot even use an artificial
12082 	 * halt state.
12083 	 */
12084 	return kvm_arch_interrupt_allowed(vcpu);
12085 }
12086 
12087 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12088 				     struct kvm_async_pf *work)
12089 {
12090 	struct x86_exception fault;
12091 
12092 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12093 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12094 
12095 	if (kvm_can_deliver_async_pf(vcpu) &&
12096 	    !apf_put_user_notpresent(vcpu)) {
12097 		fault.vector = PF_VECTOR;
12098 		fault.error_code_valid = true;
12099 		fault.error_code = 0;
12100 		fault.nested_page_fault = false;
12101 		fault.address = work->arch.token;
12102 		fault.async_page_fault = true;
12103 		kvm_inject_page_fault(vcpu, &fault);
12104 		return true;
12105 	} else {
12106 		/*
12107 		 * It is not possible to deliver a paravirtualized asynchronous
12108 		 * page fault, but putting the guest in an artificial halt state
12109 		 * can be beneficial nevertheless: if an interrupt arrives, we
12110 		 * can deliver it timely and perhaps the guest will schedule
12111 		 * another process.  When the instruction that triggered a page
12112 		 * fault is retried, hopefully the page will be ready in the host.
12113 		 */
12114 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12115 		return false;
12116 	}
12117 }
12118 
12119 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12120 				 struct kvm_async_pf *work)
12121 {
12122 	struct kvm_lapic_irq irq = {
12123 		.delivery_mode = APIC_DM_FIXED,
12124 		.vector = vcpu->arch.apf.vec
12125 	};
12126 
12127 	if (work->wakeup_all)
12128 		work->arch.token = ~0; /* broadcast wakeup */
12129 	else
12130 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12131 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12132 
12133 	if ((work->wakeup_all || work->notpresent_injected) &&
12134 	    kvm_pv_async_pf_enabled(vcpu) &&
12135 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12136 		vcpu->arch.apf.pageready_pending = true;
12137 		kvm_apic_set_irq(vcpu, &irq, NULL);
12138 	}
12139 
12140 	vcpu->arch.apf.halted = false;
12141 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12142 }
12143 
12144 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12145 {
12146 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12147 	if (!vcpu->arch.apf.pageready_pending)
12148 		kvm_vcpu_kick(vcpu);
12149 }
12150 
12151 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12152 {
12153 	if (!kvm_pv_async_pf_enabled(vcpu))
12154 		return true;
12155 	else
12156 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12157 }
12158 
12159 void kvm_arch_start_assignment(struct kvm *kvm)
12160 {
12161 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12162 		static_call_cond(kvm_x86_start_assignment)(kvm);
12163 }
12164 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12165 
12166 void kvm_arch_end_assignment(struct kvm *kvm)
12167 {
12168 	atomic_dec(&kvm->arch.assigned_device_count);
12169 }
12170 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12171 
12172 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12173 {
12174 	return atomic_read(&kvm->arch.assigned_device_count);
12175 }
12176 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12177 
12178 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12179 {
12180 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12181 }
12182 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12183 
12184 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12185 {
12186 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12187 }
12188 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12189 
12190 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12191 {
12192 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12193 }
12194 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12195 
12196 bool kvm_arch_has_irq_bypass(void)
12197 {
12198 	return true;
12199 }
12200 
12201 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12202 				      struct irq_bypass_producer *prod)
12203 {
12204 	struct kvm_kernel_irqfd *irqfd =
12205 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12206 	int ret;
12207 
12208 	irqfd->producer = prod;
12209 	kvm_arch_start_assignment(irqfd->kvm);
12210 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12211 					 prod->irq, irqfd->gsi, 1);
12212 
12213 	if (ret)
12214 		kvm_arch_end_assignment(irqfd->kvm);
12215 
12216 	return ret;
12217 }
12218 
12219 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12220 				      struct irq_bypass_producer *prod)
12221 {
12222 	int ret;
12223 	struct kvm_kernel_irqfd *irqfd =
12224 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12225 
12226 	WARN_ON(irqfd->producer != prod);
12227 	irqfd->producer = NULL;
12228 
12229 	/*
12230 	 * When producer of consumer is unregistered, we change back to
12231 	 * remapped mode, so we can re-use the current implementation
12232 	 * when the irq is masked/disabled or the consumer side (KVM
12233 	 * int this case doesn't want to receive the interrupts.
12234 	*/
12235 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12236 	if (ret)
12237 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12238 		       " fails: %d\n", irqfd->consumer.token, ret);
12239 
12240 	kvm_arch_end_assignment(irqfd->kvm);
12241 }
12242 
12243 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12244 				   uint32_t guest_irq, bool set)
12245 {
12246 	return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12247 }
12248 
12249 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12250 				  struct kvm_kernel_irq_routing_entry *new)
12251 {
12252 	if (new->type != KVM_IRQ_ROUTING_MSI)
12253 		return true;
12254 
12255 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12256 }
12257 
12258 bool kvm_vector_hashing_enabled(void)
12259 {
12260 	return vector_hashing;
12261 }
12262 
12263 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12264 {
12265 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12266 }
12267 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12268 
12269 
12270 int kvm_spec_ctrl_test_value(u64 value)
12271 {
12272 	/*
12273 	 * test that setting IA32_SPEC_CTRL to given value
12274 	 * is allowed by the host processor
12275 	 */
12276 
12277 	u64 saved_value;
12278 	unsigned long flags;
12279 	int ret = 0;
12280 
12281 	local_irq_save(flags);
12282 
12283 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12284 		ret = 1;
12285 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12286 		ret = 1;
12287 	else
12288 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12289 
12290 	local_irq_restore(flags);
12291 
12292 	return ret;
12293 }
12294 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12295 
12296 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12297 {
12298 	struct x86_exception fault;
12299 	u32 access = error_code &
12300 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12301 
12302 	if (!(error_code & PFERR_PRESENT_MASK) ||
12303 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12304 		/*
12305 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12306 		 * tables probably do not match the TLB.  Just proceed
12307 		 * with the error code that the processor gave.
12308 		 */
12309 		fault.vector = PF_VECTOR;
12310 		fault.error_code_valid = true;
12311 		fault.error_code = error_code;
12312 		fault.nested_page_fault = false;
12313 		fault.address = gva;
12314 	}
12315 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12316 }
12317 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12318 
12319 /*
12320  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12321  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12322  * indicates whether exit to userspace is needed.
12323  */
12324 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12325 			      struct x86_exception *e)
12326 {
12327 	if (r == X86EMUL_PROPAGATE_FAULT) {
12328 		kvm_inject_emulated_page_fault(vcpu, e);
12329 		return 1;
12330 	}
12331 
12332 	/*
12333 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12334 	 * while handling a VMX instruction KVM could've handled the request
12335 	 * correctly by exiting to userspace and performing I/O but there
12336 	 * doesn't seem to be a real use-case behind such requests, just return
12337 	 * KVM_EXIT_INTERNAL_ERROR for now.
12338 	 */
12339 	kvm_prepare_emulation_failure_exit(vcpu);
12340 
12341 	return 0;
12342 }
12343 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12344 
12345 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12346 {
12347 	bool pcid_enabled;
12348 	struct x86_exception e;
12349 	struct {
12350 		u64 pcid;
12351 		u64 gla;
12352 	} operand;
12353 	int r;
12354 
12355 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12356 	if (r != X86EMUL_CONTINUE)
12357 		return kvm_handle_memory_failure(vcpu, r, &e);
12358 
12359 	if (operand.pcid >> 12 != 0) {
12360 		kvm_inject_gp(vcpu, 0);
12361 		return 1;
12362 	}
12363 
12364 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12365 
12366 	switch (type) {
12367 	case INVPCID_TYPE_INDIV_ADDR:
12368 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12369 		    is_noncanonical_address(operand.gla, vcpu)) {
12370 			kvm_inject_gp(vcpu, 0);
12371 			return 1;
12372 		}
12373 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12374 		return kvm_skip_emulated_instruction(vcpu);
12375 
12376 	case INVPCID_TYPE_SINGLE_CTXT:
12377 		if (!pcid_enabled && (operand.pcid != 0)) {
12378 			kvm_inject_gp(vcpu, 0);
12379 			return 1;
12380 		}
12381 
12382 		kvm_invalidate_pcid(vcpu, operand.pcid);
12383 		return kvm_skip_emulated_instruction(vcpu);
12384 
12385 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12386 		/*
12387 		 * Currently, KVM doesn't mark global entries in the shadow
12388 		 * page tables, so a non-global flush just degenerates to a
12389 		 * global flush. If needed, we could optimize this later by
12390 		 * keeping track of global entries in shadow page tables.
12391 		 */
12392 
12393 		fallthrough;
12394 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12395 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12396 		return kvm_skip_emulated_instruction(vcpu);
12397 
12398 	default:
12399 		kvm_inject_gp(vcpu, 0);
12400 		return 1;
12401 	}
12402 }
12403 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12404 
12405 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12406 {
12407 	struct kvm_run *run = vcpu->run;
12408 	struct kvm_mmio_fragment *frag;
12409 	unsigned int len;
12410 
12411 	BUG_ON(!vcpu->mmio_needed);
12412 
12413 	/* Complete previous fragment */
12414 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12415 	len = min(8u, frag->len);
12416 	if (!vcpu->mmio_is_write)
12417 		memcpy(frag->data, run->mmio.data, len);
12418 
12419 	if (frag->len <= 8) {
12420 		/* Switch to the next fragment. */
12421 		frag++;
12422 		vcpu->mmio_cur_fragment++;
12423 	} else {
12424 		/* Go forward to the next mmio piece. */
12425 		frag->data += len;
12426 		frag->gpa += len;
12427 		frag->len -= len;
12428 	}
12429 
12430 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12431 		vcpu->mmio_needed = 0;
12432 
12433 		// VMG change, at this point, we're always done
12434 		// RIP has already been advanced
12435 		return 1;
12436 	}
12437 
12438 	// More MMIO is needed
12439 	run->mmio.phys_addr = frag->gpa;
12440 	run->mmio.len = min(8u, frag->len);
12441 	run->mmio.is_write = vcpu->mmio_is_write;
12442 	if (run->mmio.is_write)
12443 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12444 	run->exit_reason = KVM_EXIT_MMIO;
12445 
12446 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12447 
12448 	return 0;
12449 }
12450 
12451 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12452 			  void *data)
12453 {
12454 	int handled;
12455 	struct kvm_mmio_fragment *frag;
12456 
12457 	if (!data)
12458 		return -EINVAL;
12459 
12460 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12461 	if (handled == bytes)
12462 		return 1;
12463 
12464 	bytes -= handled;
12465 	gpa += handled;
12466 	data += handled;
12467 
12468 	/*TODO: Check if need to increment number of frags */
12469 	frag = vcpu->mmio_fragments;
12470 	vcpu->mmio_nr_fragments = 1;
12471 	frag->len = bytes;
12472 	frag->gpa = gpa;
12473 	frag->data = data;
12474 
12475 	vcpu->mmio_needed = 1;
12476 	vcpu->mmio_cur_fragment = 0;
12477 
12478 	vcpu->run->mmio.phys_addr = gpa;
12479 	vcpu->run->mmio.len = min(8u, frag->len);
12480 	vcpu->run->mmio.is_write = 1;
12481 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12482 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12483 
12484 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12485 
12486 	return 0;
12487 }
12488 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12489 
12490 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12491 			 void *data)
12492 {
12493 	int handled;
12494 	struct kvm_mmio_fragment *frag;
12495 
12496 	if (!data)
12497 		return -EINVAL;
12498 
12499 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12500 	if (handled == bytes)
12501 		return 1;
12502 
12503 	bytes -= handled;
12504 	gpa += handled;
12505 	data += handled;
12506 
12507 	/*TODO: Check if need to increment number of frags */
12508 	frag = vcpu->mmio_fragments;
12509 	vcpu->mmio_nr_fragments = 1;
12510 	frag->len = bytes;
12511 	frag->gpa = gpa;
12512 	frag->data = data;
12513 
12514 	vcpu->mmio_needed = 1;
12515 	vcpu->mmio_cur_fragment = 0;
12516 
12517 	vcpu->run->mmio.phys_addr = gpa;
12518 	vcpu->run->mmio.len = min(8u, frag->len);
12519 	vcpu->run->mmio.is_write = 0;
12520 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12521 
12522 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12523 
12524 	return 0;
12525 }
12526 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12527 
12528 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12529 			   unsigned int port);
12530 
12531 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12532 {
12533 	int size = vcpu->arch.pio.size;
12534 	int port = vcpu->arch.pio.port;
12535 
12536 	vcpu->arch.pio.count = 0;
12537 	if (vcpu->arch.sev_pio_count)
12538 		return kvm_sev_es_outs(vcpu, size, port);
12539 	return 1;
12540 }
12541 
12542 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12543 			   unsigned int port)
12544 {
12545 	for (;;) {
12546 		unsigned int count =
12547 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12548 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12549 
12550 		/* memcpy done already by emulator_pio_out.  */
12551 		vcpu->arch.sev_pio_count -= count;
12552 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12553 		if (!ret)
12554 			break;
12555 
12556 		/* Emulation done by the kernel.  */
12557 		if (!vcpu->arch.sev_pio_count)
12558 			return 1;
12559 	}
12560 
12561 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12562 	return 0;
12563 }
12564 
12565 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12566 			  unsigned int port);
12567 
12568 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12569 {
12570 	unsigned count = vcpu->arch.pio.count;
12571 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12572 	vcpu->arch.sev_pio_count -= count;
12573 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12574 }
12575 
12576 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12577 {
12578 	int size = vcpu->arch.pio.size;
12579 	int port = vcpu->arch.pio.port;
12580 
12581 	advance_sev_es_emulated_ins(vcpu);
12582 	if (vcpu->arch.sev_pio_count)
12583 		return kvm_sev_es_ins(vcpu, size, port);
12584 	return 1;
12585 }
12586 
12587 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12588 			  unsigned int port)
12589 {
12590 	for (;;) {
12591 		unsigned int count =
12592 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12593 		if (!__emulator_pio_in(vcpu, size, port, count))
12594 			break;
12595 
12596 		/* Emulation done by the kernel.  */
12597 		advance_sev_es_emulated_ins(vcpu);
12598 		if (!vcpu->arch.sev_pio_count)
12599 			return 1;
12600 	}
12601 
12602 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12603 	return 0;
12604 }
12605 
12606 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12607 			 unsigned int port, void *data,  unsigned int count,
12608 			 int in)
12609 {
12610 	vcpu->arch.sev_pio_data = data;
12611 	vcpu->arch.sev_pio_count = count;
12612 	return in ? kvm_sev_es_ins(vcpu, size, port)
12613 		  : kvm_sev_es_outs(vcpu, size, port);
12614 }
12615 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12616 
12617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12644