xref: /linux/arch/x86/kvm/x86.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53 
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/xcr.h>
61 #include <asm/pvclock.h>
62 #include <asm/div64.h>
63 
64 #define MAX_IO_MSRS 256
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
67 
68 #define emul_to_vcpu(ctxt) \
69 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
70 
71 /* EFER defaults:
72  * - enable syscall per default because its emulated by KVM
73  * - enable LME and LMA per default on 64 bit KVM
74  */
75 #ifdef CONFIG_X86_64
76 static
77 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
78 #else
79 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
80 #endif
81 
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84 
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static void process_nmi(struct kvm_vcpu *vcpu);
87 
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90 
91 static bool ignore_msrs = 0;
92 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
93 
94 bool kvm_has_tsc_control;
95 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
96 u32  kvm_max_guest_tsc_khz;
97 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
98 
99 #define KVM_NR_SHARED_MSRS 16
100 
101 struct kvm_shared_msrs_global {
102 	int nr;
103 	u32 msrs[KVM_NR_SHARED_MSRS];
104 };
105 
106 struct kvm_shared_msrs {
107 	struct user_return_notifier urn;
108 	bool registered;
109 	struct kvm_shared_msr_values {
110 		u64 host;
111 		u64 curr;
112 	} values[KVM_NR_SHARED_MSRS];
113 };
114 
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
117 
118 struct kvm_stats_debugfs_item debugfs_entries[] = {
119 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
120 	{ "pf_guest", VCPU_STAT(pf_guest) },
121 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
122 	{ "invlpg", VCPU_STAT(invlpg) },
123 	{ "exits", VCPU_STAT(exits) },
124 	{ "io_exits", VCPU_STAT(io_exits) },
125 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
126 	{ "signal_exits", VCPU_STAT(signal_exits) },
127 	{ "irq_window", VCPU_STAT(irq_window_exits) },
128 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
129 	{ "halt_exits", VCPU_STAT(halt_exits) },
130 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
131 	{ "hypercalls", VCPU_STAT(hypercalls) },
132 	{ "request_irq", VCPU_STAT(request_irq_exits) },
133 	{ "irq_exits", VCPU_STAT(irq_exits) },
134 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
135 	{ "efer_reload", VCPU_STAT(efer_reload) },
136 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
137 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
138 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
139 	{ "irq_injections", VCPU_STAT(irq_injections) },
140 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
141 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
142 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
143 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
144 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
145 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
146 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
147 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
148 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
149 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
150 	{ "largepages", VM_STAT(lpages) },
151 	{ NULL }
152 };
153 
154 u64 __read_mostly host_xcr0;
155 
156 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
157 
158 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
159 {
160 	int i;
161 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
162 		vcpu->arch.apf.gfns[i] = ~0;
163 }
164 
165 static void kvm_on_user_return(struct user_return_notifier *urn)
166 {
167 	unsigned slot;
168 	struct kvm_shared_msrs *locals
169 		= container_of(urn, struct kvm_shared_msrs, urn);
170 	struct kvm_shared_msr_values *values;
171 
172 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
173 		values = &locals->values[slot];
174 		if (values->host != values->curr) {
175 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
176 			values->curr = values->host;
177 		}
178 	}
179 	locals->registered = false;
180 	user_return_notifier_unregister(urn);
181 }
182 
183 static void shared_msr_update(unsigned slot, u32 msr)
184 {
185 	struct kvm_shared_msrs *smsr;
186 	u64 value;
187 
188 	smsr = &__get_cpu_var(shared_msrs);
189 	/* only read, and nobody should modify it at this time,
190 	 * so don't need lock */
191 	if (slot >= shared_msrs_global.nr) {
192 		printk(KERN_ERR "kvm: invalid MSR slot!");
193 		return;
194 	}
195 	rdmsrl_safe(msr, &value);
196 	smsr->values[slot].host = value;
197 	smsr->values[slot].curr = value;
198 }
199 
200 void kvm_define_shared_msr(unsigned slot, u32 msr)
201 {
202 	if (slot >= shared_msrs_global.nr)
203 		shared_msrs_global.nr = slot + 1;
204 	shared_msrs_global.msrs[slot] = msr;
205 	/* we need ensured the shared_msr_global have been updated */
206 	smp_wmb();
207 }
208 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
209 
210 static void kvm_shared_msr_cpu_online(void)
211 {
212 	unsigned i;
213 
214 	for (i = 0; i < shared_msrs_global.nr; ++i)
215 		shared_msr_update(i, shared_msrs_global.msrs[i]);
216 }
217 
218 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
219 {
220 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221 
222 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
223 		return;
224 	smsr->values[slot].curr = value;
225 	wrmsrl(shared_msrs_global.msrs[slot], value);
226 	if (!smsr->registered) {
227 		smsr->urn.on_user_return = kvm_on_user_return;
228 		user_return_notifier_register(&smsr->urn);
229 		smsr->registered = true;
230 	}
231 }
232 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
233 
234 static void drop_user_return_notifiers(void *ignore)
235 {
236 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
237 
238 	if (smsr->registered)
239 		kvm_on_user_return(&smsr->urn);
240 }
241 
242 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
243 {
244 	if (irqchip_in_kernel(vcpu->kvm))
245 		return vcpu->arch.apic_base;
246 	else
247 		return vcpu->arch.apic_base;
248 }
249 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
250 
251 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
252 {
253 	/* TODO: reserve bits check */
254 	if (irqchip_in_kernel(vcpu->kvm))
255 		kvm_lapic_set_base(vcpu, data);
256 	else
257 		vcpu->arch.apic_base = data;
258 }
259 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
260 
261 #define EXCPT_BENIGN		0
262 #define EXCPT_CONTRIBUTORY	1
263 #define EXCPT_PF		2
264 
265 static int exception_class(int vector)
266 {
267 	switch (vector) {
268 	case PF_VECTOR:
269 		return EXCPT_PF;
270 	case DE_VECTOR:
271 	case TS_VECTOR:
272 	case NP_VECTOR:
273 	case SS_VECTOR:
274 	case GP_VECTOR:
275 		return EXCPT_CONTRIBUTORY;
276 	default:
277 		break;
278 	}
279 	return EXCPT_BENIGN;
280 }
281 
282 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
283 		unsigned nr, bool has_error, u32 error_code,
284 		bool reinject)
285 {
286 	u32 prev_nr;
287 	int class1, class2;
288 
289 	kvm_make_request(KVM_REQ_EVENT, vcpu);
290 
291 	if (!vcpu->arch.exception.pending) {
292 	queue:
293 		vcpu->arch.exception.pending = true;
294 		vcpu->arch.exception.has_error_code = has_error;
295 		vcpu->arch.exception.nr = nr;
296 		vcpu->arch.exception.error_code = error_code;
297 		vcpu->arch.exception.reinject = reinject;
298 		return;
299 	}
300 
301 	/* to check exception */
302 	prev_nr = vcpu->arch.exception.nr;
303 	if (prev_nr == DF_VECTOR) {
304 		/* triple fault -> shutdown */
305 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
306 		return;
307 	}
308 	class1 = exception_class(prev_nr);
309 	class2 = exception_class(nr);
310 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
311 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
312 		/* generate double fault per SDM Table 5-5 */
313 		vcpu->arch.exception.pending = true;
314 		vcpu->arch.exception.has_error_code = true;
315 		vcpu->arch.exception.nr = DF_VECTOR;
316 		vcpu->arch.exception.error_code = 0;
317 	} else
318 		/* replace previous exception with a new one in a hope
319 		   that instruction re-execution will regenerate lost
320 		   exception */
321 		goto queue;
322 }
323 
324 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 {
326 	kvm_multiple_exception(vcpu, nr, false, 0, false);
327 }
328 EXPORT_SYMBOL_GPL(kvm_queue_exception);
329 
330 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 {
332 	kvm_multiple_exception(vcpu, nr, false, 0, true);
333 }
334 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
335 
336 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
337 {
338 	if (err)
339 		kvm_inject_gp(vcpu, 0);
340 	else
341 		kvm_x86_ops->skip_emulated_instruction(vcpu);
342 }
343 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
344 
345 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
346 {
347 	++vcpu->stat.pf_guest;
348 	vcpu->arch.cr2 = fault->address;
349 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
350 }
351 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
352 
353 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
354 {
355 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
356 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
357 	else
358 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
359 }
360 
361 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
362 {
363 	atomic_inc(&vcpu->arch.nmi_queued);
364 	kvm_make_request(KVM_REQ_NMI, vcpu);
365 }
366 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
367 
368 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
369 {
370 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
371 }
372 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
373 
374 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 {
376 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
377 }
378 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
379 
380 /*
381  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
382  * a #GP and return false.
383  */
384 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
385 {
386 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
387 		return true;
388 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
389 	return false;
390 }
391 EXPORT_SYMBOL_GPL(kvm_require_cpl);
392 
393 /*
394  * This function will be used to read from the physical memory of the currently
395  * running guest. The difference to kvm_read_guest_page is that this function
396  * can read from guest physical or from the guest's guest physical memory.
397  */
398 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
399 			    gfn_t ngfn, void *data, int offset, int len,
400 			    u32 access)
401 {
402 	gfn_t real_gfn;
403 	gpa_t ngpa;
404 
405 	ngpa     = gfn_to_gpa(ngfn);
406 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
407 	if (real_gfn == UNMAPPED_GVA)
408 		return -EFAULT;
409 
410 	real_gfn = gpa_to_gfn(real_gfn);
411 
412 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
413 }
414 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
415 
416 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
417 			       void *data, int offset, int len, u32 access)
418 {
419 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
420 				       data, offset, len, access);
421 }
422 
423 /*
424  * Load the pae pdptrs.  Return true is they are all valid.
425  */
426 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
427 {
428 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
429 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
430 	int i;
431 	int ret;
432 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
433 
434 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
435 				      offset * sizeof(u64), sizeof(pdpte),
436 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
437 	if (ret < 0) {
438 		ret = 0;
439 		goto out;
440 	}
441 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
442 		if (is_present_gpte(pdpte[i]) &&
443 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
444 			ret = 0;
445 			goto out;
446 		}
447 	}
448 	ret = 1;
449 
450 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
451 	__set_bit(VCPU_EXREG_PDPTR,
452 		  (unsigned long *)&vcpu->arch.regs_avail);
453 	__set_bit(VCPU_EXREG_PDPTR,
454 		  (unsigned long *)&vcpu->arch.regs_dirty);
455 out:
456 
457 	return ret;
458 }
459 EXPORT_SYMBOL_GPL(load_pdptrs);
460 
461 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
462 {
463 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
464 	bool changed = true;
465 	int offset;
466 	gfn_t gfn;
467 	int r;
468 
469 	if (is_long_mode(vcpu) || !is_pae(vcpu))
470 		return false;
471 
472 	if (!test_bit(VCPU_EXREG_PDPTR,
473 		      (unsigned long *)&vcpu->arch.regs_avail))
474 		return true;
475 
476 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
477 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
478 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
479 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
480 	if (r < 0)
481 		goto out;
482 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
483 out:
484 
485 	return changed;
486 }
487 
488 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
489 {
490 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
491 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
492 				    X86_CR0_CD | X86_CR0_NW;
493 
494 	cr0 |= X86_CR0_ET;
495 
496 #ifdef CONFIG_X86_64
497 	if (cr0 & 0xffffffff00000000UL)
498 		return 1;
499 #endif
500 
501 	cr0 &= ~CR0_RESERVED_BITS;
502 
503 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
504 		return 1;
505 
506 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
507 		return 1;
508 
509 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
510 #ifdef CONFIG_X86_64
511 		if ((vcpu->arch.efer & EFER_LME)) {
512 			int cs_db, cs_l;
513 
514 			if (!is_pae(vcpu))
515 				return 1;
516 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
517 			if (cs_l)
518 				return 1;
519 		} else
520 #endif
521 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
522 						 kvm_read_cr3(vcpu)))
523 			return 1;
524 	}
525 
526 	kvm_x86_ops->set_cr0(vcpu, cr0);
527 
528 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
529 		kvm_clear_async_pf_completion_queue(vcpu);
530 		kvm_async_pf_hash_reset(vcpu);
531 	}
532 
533 	if ((cr0 ^ old_cr0) & update_bits)
534 		kvm_mmu_reset_context(vcpu);
535 	return 0;
536 }
537 EXPORT_SYMBOL_GPL(kvm_set_cr0);
538 
539 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
540 {
541 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
542 }
543 EXPORT_SYMBOL_GPL(kvm_lmsw);
544 
545 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
546 {
547 	u64 xcr0;
548 
549 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
550 	if (index != XCR_XFEATURE_ENABLED_MASK)
551 		return 1;
552 	xcr0 = xcr;
553 	if (kvm_x86_ops->get_cpl(vcpu) != 0)
554 		return 1;
555 	if (!(xcr0 & XSTATE_FP))
556 		return 1;
557 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
558 		return 1;
559 	if (xcr0 & ~host_xcr0)
560 		return 1;
561 	vcpu->arch.xcr0 = xcr0;
562 	vcpu->guest_xcr0_loaded = 0;
563 	return 0;
564 }
565 
566 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
567 {
568 	if (__kvm_set_xcr(vcpu, index, xcr)) {
569 		kvm_inject_gp(vcpu, 0);
570 		return 1;
571 	}
572 	return 0;
573 }
574 EXPORT_SYMBOL_GPL(kvm_set_xcr);
575 
576 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
577 {
578 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
579 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
580 				   X86_CR4_PAE | X86_CR4_SMEP;
581 	if (cr4 & CR4_RESERVED_BITS)
582 		return 1;
583 
584 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
585 		return 1;
586 
587 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
588 		return 1;
589 
590 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
591 		return 1;
592 
593 	if (is_long_mode(vcpu)) {
594 		if (!(cr4 & X86_CR4_PAE))
595 			return 1;
596 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
597 		   && ((cr4 ^ old_cr4) & pdptr_bits)
598 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
599 				   kvm_read_cr3(vcpu)))
600 		return 1;
601 
602 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
603 		return 1;
604 
605 	if ((cr4 ^ old_cr4) & pdptr_bits)
606 		kvm_mmu_reset_context(vcpu);
607 
608 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
609 		kvm_update_cpuid(vcpu);
610 
611 	return 0;
612 }
613 EXPORT_SYMBOL_GPL(kvm_set_cr4);
614 
615 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
616 {
617 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
618 		kvm_mmu_sync_roots(vcpu);
619 		kvm_mmu_flush_tlb(vcpu);
620 		return 0;
621 	}
622 
623 	if (is_long_mode(vcpu)) {
624 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
625 			return 1;
626 	} else {
627 		if (is_pae(vcpu)) {
628 			if (cr3 & CR3_PAE_RESERVED_BITS)
629 				return 1;
630 			if (is_paging(vcpu) &&
631 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
632 				return 1;
633 		}
634 		/*
635 		 * We don't check reserved bits in nonpae mode, because
636 		 * this isn't enforced, and VMware depends on this.
637 		 */
638 	}
639 
640 	/*
641 	 * Does the new cr3 value map to physical memory? (Note, we
642 	 * catch an invalid cr3 even in real-mode, because it would
643 	 * cause trouble later on when we turn on paging anyway.)
644 	 *
645 	 * A real CPU would silently accept an invalid cr3 and would
646 	 * attempt to use it - with largely undefined (and often hard
647 	 * to debug) behavior on the guest side.
648 	 */
649 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
650 		return 1;
651 	vcpu->arch.cr3 = cr3;
652 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
653 	vcpu->arch.mmu.new_cr3(vcpu);
654 	return 0;
655 }
656 EXPORT_SYMBOL_GPL(kvm_set_cr3);
657 
658 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
659 {
660 	if (cr8 & CR8_RESERVED_BITS)
661 		return 1;
662 	if (irqchip_in_kernel(vcpu->kvm))
663 		kvm_lapic_set_tpr(vcpu, cr8);
664 	else
665 		vcpu->arch.cr8 = cr8;
666 	return 0;
667 }
668 EXPORT_SYMBOL_GPL(kvm_set_cr8);
669 
670 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
671 {
672 	if (irqchip_in_kernel(vcpu->kvm))
673 		return kvm_lapic_get_cr8(vcpu);
674 	else
675 		return vcpu->arch.cr8;
676 }
677 EXPORT_SYMBOL_GPL(kvm_get_cr8);
678 
679 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
680 {
681 	switch (dr) {
682 	case 0 ... 3:
683 		vcpu->arch.db[dr] = val;
684 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
685 			vcpu->arch.eff_db[dr] = val;
686 		break;
687 	case 4:
688 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
689 			return 1; /* #UD */
690 		/* fall through */
691 	case 6:
692 		if (val & 0xffffffff00000000ULL)
693 			return -1; /* #GP */
694 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
695 		break;
696 	case 5:
697 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
698 			return 1; /* #UD */
699 		/* fall through */
700 	default: /* 7 */
701 		if (val & 0xffffffff00000000ULL)
702 			return -1; /* #GP */
703 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
704 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
705 			kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
706 			vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
707 		}
708 		break;
709 	}
710 
711 	return 0;
712 }
713 
714 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
715 {
716 	int res;
717 
718 	res = __kvm_set_dr(vcpu, dr, val);
719 	if (res > 0)
720 		kvm_queue_exception(vcpu, UD_VECTOR);
721 	else if (res < 0)
722 		kvm_inject_gp(vcpu, 0);
723 
724 	return res;
725 }
726 EXPORT_SYMBOL_GPL(kvm_set_dr);
727 
728 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
729 {
730 	switch (dr) {
731 	case 0 ... 3:
732 		*val = vcpu->arch.db[dr];
733 		break;
734 	case 4:
735 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
736 			return 1;
737 		/* fall through */
738 	case 6:
739 		*val = vcpu->arch.dr6;
740 		break;
741 	case 5:
742 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
743 			return 1;
744 		/* fall through */
745 	default: /* 7 */
746 		*val = vcpu->arch.dr7;
747 		break;
748 	}
749 
750 	return 0;
751 }
752 
753 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
754 {
755 	if (_kvm_get_dr(vcpu, dr, val)) {
756 		kvm_queue_exception(vcpu, UD_VECTOR);
757 		return 1;
758 	}
759 	return 0;
760 }
761 EXPORT_SYMBOL_GPL(kvm_get_dr);
762 
763 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
764 {
765 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
766 	u64 data;
767 	int err;
768 
769 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
770 	if (err)
771 		return err;
772 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
773 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
774 	return err;
775 }
776 EXPORT_SYMBOL_GPL(kvm_rdpmc);
777 
778 /*
779  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
780  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
781  *
782  * This list is modified at module load time to reflect the
783  * capabilities of the host cpu. This capabilities test skips MSRs that are
784  * kvm-specific. Those are put in the beginning of the list.
785  */
786 
787 #define KVM_SAVE_MSRS_BEGIN	9
788 static u32 msrs_to_save[] = {
789 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
790 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
791 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
792 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
793 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
794 	MSR_STAR,
795 #ifdef CONFIG_X86_64
796 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
797 #endif
798 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
799 };
800 
801 static unsigned num_msrs_to_save;
802 
803 static u32 emulated_msrs[] = {
804 	MSR_IA32_TSCDEADLINE,
805 	MSR_IA32_MISC_ENABLE,
806 	MSR_IA32_MCG_STATUS,
807 	MSR_IA32_MCG_CTL,
808 };
809 
810 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
811 {
812 	u64 old_efer = vcpu->arch.efer;
813 
814 	if (efer & efer_reserved_bits)
815 		return 1;
816 
817 	if (is_paging(vcpu)
818 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
819 		return 1;
820 
821 	if (efer & EFER_FFXSR) {
822 		struct kvm_cpuid_entry2 *feat;
823 
824 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
825 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
826 			return 1;
827 	}
828 
829 	if (efer & EFER_SVME) {
830 		struct kvm_cpuid_entry2 *feat;
831 
832 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
833 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
834 			return 1;
835 	}
836 
837 	efer &= ~EFER_LMA;
838 	efer |= vcpu->arch.efer & EFER_LMA;
839 
840 	kvm_x86_ops->set_efer(vcpu, efer);
841 
842 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
843 
844 	/* Update reserved bits */
845 	if ((efer ^ old_efer) & EFER_NX)
846 		kvm_mmu_reset_context(vcpu);
847 
848 	return 0;
849 }
850 
851 void kvm_enable_efer_bits(u64 mask)
852 {
853        efer_reserved_bits &= ~mask;
854 }
855 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
856 
857 
858 /*
859  * Writes msr value into into the appropriate "register".
860  * Returns 0 on success, non-0 otherwise.
861  * Assumes vcpu_load() was already called.
862  */
863 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
864 {
865 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
866 }
867 
868 /*
869  * Adapt set_msr() to msr_io()'s calling convention
870  */
871 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
872 {
873 	return kvm_set_msr(vcpu, index, *data);
874 }
875 
876 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
877 {
878 	int version;
879 	int r;
880 	struct pvclock_wall_clock wc;
881 	struct timespec boot;
882 
883 	if (!wall_clock)
884 		return;
885 
886 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
887 	if (r)
888 		return;
889 
890 	if (version & 1)
891 		++version;  /* first time write, random junk */
892 
893 	++version;
894 
895 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
896 
897 	/*
898 	 * The guest calculates current wall clock time by adding
899 	 * system time (updated by kvm_guest_time_update below) to the
900 	 * wall clock specified here.  guest system time equals host
901 	 * system time for us, thus we must fill in host boot time here.
902 	 */
903 	getboottime(&boot);
904 
905 	wc.sec = boot.tv_sec;
906 	wc.nsec = boot.tv_nsec;
907 	wc.version = version;
908 
909 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
910 
911 	version++;
912 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
913 }
914 
915 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
916 {
917 	uint32_t quotient, remainder;
918 
919 	/* Don't try to replace with do_div(), this one calculates
920 	 * "(dividend << 32) / divisor" */
921 	__asm__ ( "divl %4"
922 		  : "=a" (quotient), "=d" (remainder)
923 		  : "0" (0), "1" (dividend), "r" (divisor) );
924 	return quotient;
925 }
926 
927 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
928 			       s8 *pshift, u32 *pmultiplier)
929 {
930 	uint64_t scaled64;
931 	int32_t  shift = 0;
932 	uint64_t tps64;
933 	uint32_t tps32;
934 
935 	tps64 = base_khz * 1000LL;
936 	scaled64 = scaled_khz * 1000LL;
937 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
938 		tps64 >>= 1;
939 		shift--;
940 	}
941 
942 	tps32 = (uint32_t)tps64;
943 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
944 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
945 			scaled64 >>= 1;
946 		else
947 			tps32 <<= 1;
948 		shift++;
949 	}
950 
951 	*pshift = shift;
952 	*pmultiplier = div_frac(scaled64, tps32);
953 
954 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
955 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
956 }
957 
958 static inline u64 get_kernel_ns(void)
959 {
960 	struct timespec ts;
961 
962 	WARN_ON(preemptible());
963 	ktime_get_ts(&ts);
964 	monotonic_to_bootbased(&ts);
965 	return timespec_to_ns(&ts);
966 }
967 
968 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
969 unsigned long max_tsc_khz;
970 
971 static inline int kvm_tsc_changes_freq(void)
972 {
973 	int cpu = get_cpu();
974 	int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
975 		  cpufreq_quick_get(cpu) != 0;
976 	put_cpu();
977 	return ret;
978 }
979 
980 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
981 {
982 	if (vcpu->arch.virtual_tsc_khz)
983 		return vcpu->arch.virtual_tsc_khz;
984 	else
985 		return __this_cpu_read(cpu_tsc_khz);
986 }
987 
988 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
989 {
990 	u64 ret;
991 
992 	WARN_ON(preemptible());
993 	if (kvm_tsc_changes_freq())
994 		printk_once(KERN_WARNING
995 		 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
996 	ret = nsec * vcpu_tsc_khz(vcpu);
997 	do_div(ret, USEC_PER_SEC);
998 	return ret;
999 }
1000 
1001 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1002 {
1003 	/* Compute a scale to convert nanoseconds in TSC cycles */
1004 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1005 			   &vcpu->arch.tsc_catchup_shift,
1006 			   &vcpu->arch.tsc_catchup_mult);
1007 }
1008 
1009 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1010 {
1011 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1012 				      vcpu->arch.tsc_catchup_mult,
1013 				      vcpu->arch.tsc_catchup_shift);
1014 	tsc += vcpu->arch.last_tsc_write;
1015 	return tsc;
1016 }
1017 
1018 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1019 {
1020 	struct kvm *kvm = vcpu->kvm;
1021 	u64 offset, ns, elapsed;
1022 	unsigned long flags;
1023 	s64 sdiff;
1024 
1025 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1026 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1027 	ns = get_kernel_ns();
1028 	elapsed = ns - kvm->arch.last_tsc_nsec;
1029 	sdiff = data - kvm->arch.last_tsc_write;
1030 	if (sdiff < 0)
1031 		sdiff = -sdiff;
1032 
1033 	/*
1034 	 * Special case: close write to TSC within 5 seconds of
1035 	 * another CPU is interpreted as an attempt to synchronize
1036 	 * The 5 seconds is to accommodate host load / swapping as
1037 	 * well as any reset of TSC during the boot process.
1038 	 *
1039 	 * In that case, for a reliable TSC, we can match TSC offsets,
1040 	 * or make a best guest using elapsed value.
1041 	 */
1042 	if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1043 	    elapsed < 5ULL * NSEC_PER_SEC) {
1044 		if (!check_tsc_unstable()) {
1045 			offset = kvm->arch.last_tsc_offset;
1046 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1047 		} else {
1048 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1049 			offset += delta;
1050 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1051 		}
1052 		ns = kvm->arch.last_tsc_nsec;
1053 	}
1054 	kvm->arch.last_tsc_nsec = ns;
1055 	kvm->arch.last_tsc_write = data;
1056 	kvm->arch.last_tsc_offset = offset;
1057 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1058 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1059 
1060 	/* Reset of TSC must disable overshoot protection below */
1061 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1062 	vcpu->arch.last_tsc_write = data;
1063 	vcpu->arch.last_tsc_nsec = ns;
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1066 
1067 static int kvm_guest_time_update(struct kvm_vcpu *v)
1068 {
1069 	unsigned long flags;
1070 	struct kvm_vcpu_arch *vcpu = &v->arch;
1071 	void *shared_kaddr;
1072 	unsigned long this_tsc_khz;
1073 	s64 kernel_ns, max_kernel_ns;
1074 	u64 tsc_timestamp;
1075 
1076 	/* Keep irq disabled to prevent changes to the clock */
1077 	local_irq_save(flags);
1078 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1079 	kernel_ns = get_kernel_ns();
1080 	this_tsc_khz = vcpu_tsc_khz(v);
1081 	if (unlikely(this_tsc_khz == 0)) {
1082 		local_irq_restore(flags);
1083 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1084 		return 1;
1085 	}
1086 
1087 	/*
1088 	 * We may have to catch up the TSC to match elapsed wall clock
1089 	 * time for two reasons, even if kvmclock is used.
1090 	 *   1) CPU could have been running below the maximum TSC rate
1091 	 *   2) Broken TSC compensation resets the base at each VCPU
1092 	 *      entry to avoid unknown leaps of TSC even when running
1093 	 *      again on the same CPU.  This may cause apparent elapsed
1094 	 *      time to disappear, and the guest to stand still or run
1095 	 *	very slowly.
1096 	 */
1097 	if (vcpu->tsc_catchup) {
1098 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1099 		if (tsc > tsc_timestamp) {
1100 			kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1101 			tsc_timestamp = tsc;
1102 		}
1103 	}
1104 
1105 	local_irq_restore(flags);
1106 
1107 	if (!vcpu->time_page)
1108 		return 0;
1109 
1110 	/*
1111 	 * Time as measured by the TSC may go backwards when resetting the base
1112 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1113 	 * higher than the resolution of the other clock scales.  Thus, many
1114 	 * possible measurments of the TSC correspond to one measurement of any
1115 	 * other clock, and so a spread of values is possible.  This is not a
1116 	 * problem for the computation of the nanosecond clock; with TSC rates
1117 	 * around 1GHZ, there can only be a few cycles which correspond to one
1118 	 * nanosecond value, and any path through this code will inevitably
1119 	 * take longer than that.  However, with the kernel_ns value itself,
1120 	 * the precision may be much lower, down to HZ granularity.  If the
1121 	 * first sampling of TSC against kernel_ns ends in the low part of the
1122 	 * range, and the second in the high end of the range, we can get:
1123 	 *
1124 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1125 	 *
1126 	 * As the sampling errors potentially range in the thousands of cycles,
1127 	 * it is possible such a time value has already been observed by the
1128 	 * guest.  To protect against this, we must compute the system time as
1129 	 * observed by the guest and ensure the new system time is greater.
1130 	 */
1131 	max_kernel_ns = 0;
1132 	if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1133 		max_kernel_ns = vcpu->last_guest_tsc -
1134 				vcpu->hv_clock.tsc_timestamp;
1135 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1136 				    vcpu->hv_clock.tsc_to_system_mul,
1137 				    vcpu->hv_clock.tsc_shift);
1138 		max_kernel_ns += vcpu->last_kernel_ns;
1139 	}
1140 
1141 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1142 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1143 				   &vcpu->hv_clock.tsc_shift,
1144 				   &vcpu->hv_clock.tsc_to_system_mul);
1145 		vcpu->hw_tsc_khz = this_tsc_khz;
1146 	}
1147 
1148 	if (max_kernel_ns > kernel_ns)
1149 		kernel_ns = max_kernel_ns;
1150 
1151 	/* With all the info we got, fill in the values */
1152 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1153 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1154 	vcpu->last_kernel_ns = kernel_ns;
1155 	vcpu->last_guest_tsc = tsc_timestamp;
1156 	vcpu->hv_clock.flags = 0;
1157 
1158 	/*
1159 	 * The interface expects us to write an even number signaling that the
1160 	 * update is finished. Since the guest won't see the intermediate
1161 	 * state, we just increase by 2 at the end.
1162 	 */
1163 	vcpu->hv_clock.version += 2;
1164 
1165 	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1166 
1167 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1168 	       sizeof(vcpu->hv_clock));
1169 
1170 	kunmap_atomic(shared_kaddr, KM_USER0);
1171 
1172 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1173 	return 0;
1174 }
1175 
1176 static bool msr_mtrr_valid(unsigned msr)
1177 {
1178 	switch (msr) {
1179 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1180 	case MSR_MTRRfix64K_00000:
1181 	case MSR_MTRRfix16K_80000:
1182 	case MSR_MTRRfix16K_A0000:
1183 	case MSR_MTRRfix4K_C0000:
1184 	case MSR_MTRRfix4K_C8000:
1185 	case MSR_MTRRfix4K_D0000:
1186 	case MSR_MTRRfix4K_D8000:
1187 	case MSR_MTRRfix4K_E0000:
1188 	case MSR_MTRRfix4K_E8000:
1189 	case MSR_MTRRfix4K_F0000:
1190 	case MSR_MTRRfix4K_F8000:
1191 	case MSR_MTRRdefType:
1192 	case MSR_IA32_CR_PAT:
1193 		return true;
1194 	case 0x2f8:
1195 		return true;
1196 	}
1197 	return false;
1198 }
1199 
1200 static bool valid_pat_type(unsigned t)
1201 {
1202 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1203 }
1204 
1205 static bool valid_mtrr_type(unsigned t)
1206 {
1207 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1208 }
1209 
1210 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1211 {
1212 	int i;
1213 
1214 	if (!msr_mtrr_valid(msr))
1215 		return false;
1216 
1217 	if (msr == MSR_IA32_CR_PAT) {
1218 		for (i = 0; i < 8; i++)
1219 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1220 				return false;
1221 		return true;
1222 	} else if (msr == MSR_MTRRdefType) {
1223 		if (data & ~0xcff)
1224 			return false;
1225 		return valid_mtrr_type(data & 0xff);
1226 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1227 		for (i = 0; i < 8 ; i++)
1228 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1229 				return false;
1230 		return true;
1231 	}
1232 
1233 	/* variable MTRRs */
1234 	return valid_mtrr_type(data & 0xff);
1235 }
1236 
1237 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1238 {
1239 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1240 
1241 	if (!mtrr_valid(vcpu, msr, data))
1242 		return 1;
1243 
1244 	if (msr == MSR_MTRRdefType) {
1245 		vcpu->arch.mtrr_state.def_type = data;
1246 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1247 	} else if (msr == MSR_MTRRfix64K_00000)
1248 		p[0] = data;
1249 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1250 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1251 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1252 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1253 	else if (msr == MSR_IA32_CR_PAT)
1254 		vcpu->arch.pat = data;
1255 	else {	/* Variable MTRRs */
1256 		int idx, is_mtrr_mask;
1257 		u64 *pt;
1258 
1259 		idx = (msr - 0x200) / 2;
1260 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1261 		if (!is_mtrr_mask)
1262 			pt =
1263 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1264 		else
1265 			pt =
1266 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1267 		*pt = data;
1268 	}
1269 
1270 	kvm_mmu_reset_context(vcpu);
1271 	return 0;
1272 }
1273 
1274 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1275 {
1276 	u64 mcg_cap = vcpu->arch.mcg_cap;
1277 	unsigned bank_num = mcg_cap & 0xff;
1278 
1279 	switch (msr) {
1280 	case MSR_IA32_MCG_STATUS:
1281 		vcpu->arch.mcg_status = data;
1282 		break;
1283 	case MSR_IA32_MCG_CTL:
1284 		if (!(mcg_cap & MCG_CTL_P))
1285 			return 1;
1286 		if (data != 0 && data != ~(u64)0)
1287 			return -1;
1288 		vcpu->arch.mcg_ctl = data;
1289 		break;
1290 	default:
1291 		if (msr >= MSR_IA32_MC0_CTL &&
1292 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1293 			u32 offset = msr - MSR_IA32_MC0_CTL;
1294 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1295 			 * some Linux kernels though clear bit 10 in bank 4 to
1296 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1297 			 * this to avoid an uncatched #GP in the guest
1298 			 */
1299 			if ((offset & 0x3) == 0 &&
1300 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1301 				return -1;
1302 			vcpu->arch.mce_banks[offset] = data;
1303 			break;
1304 		}
1305 		return 1;
1306 	}
1307 	return 0;
1308 }
1309 
1310 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1311 {
1312 	struct kvm *kvm = vcpu->kvm;
1313 	int lm = is_long_mode(vcpu);
1314 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1315 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1316 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1317 		: kvm->arch.xen_hvm_config.blob_size_32;
1318 	u32 page_num = data & ~PAGE_MASK;
1319 	u64 page_addr = data & PAGE_MASK;
1320 	u8 *page;
1321 	int r;
1322 
1323 	r = -E2BIG;
1324 	if (page_num >= blob_size)
1325 		goto out;
1326 	r = -ENOMEM;
1327 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1328 	if (IS_ERR(page)) {
1329 		r = PTR_ERR(page);
1330 		goto out;
1331 	}
1332 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1333 		goto out_free;
1334 	r = 0;
1335 out_free:
1336 	kfree(page);
1337 out:
1338 	return r;
1339 }
1340 
1341 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1342 {
1343 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1344 }
1345 
1346 static bool kvm_hv_msr_partition_wide(u32 msr)
1347 {
1348 	bool r = false;
1349 	switch (msr) {
1350 	case HV_X64_MSR_GUEST_OS_ID:
1351 	case HV_X64_MSR_HYPERCALL:
1352 		r = true;
1353 		break;
1354 	}
1355 
1356 	return r;
1357 }
1358 
1359 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1360 {
1361 	struct kvm *kvm = vcpu->kvm;
1362 
1363 	switch (msr) {
1364 	case HV_X64_MSR_GUEST_OS_ID:
1365 		kvm->arch.hv_guest_os_id = data;
1366 		/* setting guest os id to zero disables hypercall page */
1367 		if (!kvm->arch.hv_guest_os_id)
1368 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1369 		break;
1370 	case HV_X64_MSR_HYPERCALL: {
1371 		u64 gfn;
1372 		unsigned long addr;
1373 		u8 instructions[4];
1374 
1375 		/* if guest os id is not set hypercall should remain disabled */
1376 		if (!kvm->arch.hv_guest_os_id)
1377 			break;
1378 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1379 			kvm->arch.hv_hypercall = data;
1380 			break;
1381 		}
1382 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1383 		addr = gfn_to_hva(kvm, gfn);
1384 		if (kvm_is_error_hva(addr))
1385 			return 1;
1386 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1387 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1388 		if (__copy_to_user((void __user *)addr, instructions, 4))
1389 			return 1;
1390 		kvm->arch.hv_hypercall = data;
1391 		break;
1392 	}
1393 	default:
1394 		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1395 			  "data 0x%llx\n", msr, data);
1396 		return 1;
1397 	}
1398 	return 0;
1399 }
1400 
1401 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1402 {
1403 	switch (msr) {
1404 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1405 		unsigned long addr;
1406 
1407 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1408 			vcpu->arch.hv_vapic = data;
1409 			break;
1410 		}
1411 		addr = gfn_to_hva(vcpu->kvm, data >>
1412 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1413 		if (kvm_is_error_hva(addr))
1414 			return 1;
1415 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1416 			return 1;
1417 		vcpu->arch.hv_vapic = data;
1418 		break;
1419 	}
1420 	case HV_X64_MSR_EOI:
1421 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1422 	case HV_X64_MSR_ICR:
1423 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1424 	case HV_X64_MSR_TPR:
1425 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1426 	default:
1427 		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1428 			  "data 0x%llx\n", msr, data);
1429 		return 1;
1430 	}
1431 
1432 	return 0;
1433 }
1434 
1435 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1436 {
1437 	gpa_t gpa = data & ~0x3f;
1438 
1439 	/* Bits 2:5 are resrved, Should be zero */
1440 	if (data & 0x3c)
1441 		return 1;
1442 
1443 	vcpu->arch.apf.msr_val = data;
1444 
1445 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1446 		kvm_clear_async_pf_completion_queue(vcpu);
1447 		kvm_async_pf_hash_reset(vcpu);
1448 		return 0;
1449 	}
1450 
1451 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1452 		return 1;
1453 
1454 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1455 	kvm_async_pf_wakeup_all(vcpu);
1456 	return 0;
1457 }
1458 
1459 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1460 {
1461 	if (vcpu->arch.time_page) {
1462 		kvm_release_page_dirty(vcpu->arch.time_page);
1463 		vcpu->arch.time_page = NULL;
1464 	}
1465 }
1466 
1467 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1468 {
1469 	u64 delta;
1470 
1471 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1472 		return;
1473 
1474 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1475 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1476 	vcpu->arch.st.accum_steal = delta;
1477 }
1478 
1479 static void record_steal_time(struct kvm_vcpu *vcpu)
1480 {
1481 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1482 		return;
1483 
1484 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1485 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1486 		return;
1487 
1488 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1489 	vcpu->arch.st.steal.version += 2;
1490 	vcpu->arch.st.accum_steal = 0;
1491 
1492 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1493 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1494 }
1495 
1496 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1497 {
1498 	switch (msr) {
1499 	case MSR_EFER:
1500 		return set_efer(vcpu, data);
1501 	case MSR_K7_HWCR:
1502 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1503 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1504 		if (data != 0) {
1505 			pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1506 				data);
1507 			return 1;
1508 		}
1509 		break;
1510 	case MSR_FAM10H_MMIO_CONF_BASE:
1511 		if (data != 0) {
1512 			pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1513 				"0x%llx\n", data);
1514 			return 1;
1515 		}
1516 		break;
1517 	case MSR_AMD64_NB_CFG:
1518 		break;
1519 	case MSR_IA32_DEBUGCTLMSR:
1520 		if (!data) {
1521 			/* We support the non-activated case already */
1522 			break;
1523 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1524 			/* Values other than LBR and BTF are vendor-specific,
1525 			   thus reserved and should throw a #GP */
1526 			return 1;
1527 		}
1528 		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1529 			__func__, data);
1530 		break;
1531 	case MSR_IA32_UCODE_REV:
1532 	case MSR_IA32_UCODE_WRITE:
1533 	case MSR_VM_HSAVE_PA:
1534 	case MSR_AMD64_PATCH_LOADER:
1535 		break;
1536 	case 0x200 ... 0x2ff:
1537 		return set_msr_mtrr(vcpu, msr, data);
1538 	case MSR_IA32_APICBASE:
1539 		kvm_set_apic_base(vcpu, data);
1540 		break;
1541 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1542 		return kvm_x2apic_msr_write(vcpu, msr, data);
1543 	case MSR_IA32_TSCDEADLINE:
1544 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
1545 		break;
1546 	case MSR_IA32_MISC_ENABLE:
1547 		vcpu->arch.ia32_misc_enable_msr = data;
1548 		break;
1549 	case MSR_KVM_WALL_CLOCK_NEW:
1550 	case MSR_KVM_WALL_CLOCK:
1551 		vcpu->kvm->arch.wall_clock = data;
1552 		kvm_write_wall_clock(vcpu->kvm, data);
1553 		break;
1554 	case MSR_KVM_SYSTEM_TIME_NEW:
1555 	case MSR_KVM_SYSTEM_TIME: {
1556 		kvmclock_reset(vcpu);
1557 
1558 		vcpu->arch.time = data;
1559 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1560 
1561 		/* we verify if the enable bit is set... */
1562 		if (!(data & 1))
1563 			break;
1564 
1565 		/* ...but clean it before doing the actual write */
1566 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1567 
1568 		vcpu->arch.time_page =
1569 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1570 
1571 		if (is_error_page(vcpu->arch.time_page)) {
1572 			kvm_release_page_clean(vcpu->arch.time_page);
1573 			vcpu->arch.time_page = NULL;
1574 		}
1575 		break;
1576 	}
1577 	case MSR_KVM_ASYNC_PF_EN:
1578 		if (kvm_pv_enable_async_pf(vcpu, data))
1579 			return 1;
1580 		break;
1581 	case MSR_KVM_STEAL_TIME:
1582 
1583 		if (unlikely(!sched_info_on()))
1584 			return 1;
1585 
1586 		if (data & KVM_STEAL_RESERVED_MASK)
1587 			return 1;
1588 
1589 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1590 							data & KVM_STEAL_VALID_BITS))
1591 			return 1;
1592 
1593 		vcpu->arch.st.msr_val = data;
1594 
1595 		if (!(data & KVM_MSR_ENABLED))
1596 			break;
1597 
1598 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
1599 
1600 		preempt_disable();
1601 		accumulate_steal_time(vcpu);
1602 		preempt_enable();
1603 
1604 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1605 
1606 		break;
1607 
1608 	case MSR_IA32_MCG_CTL:
1609 	case MSR_IA32_MCG_STATUS:
1610 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1611 		return set_msr_mce(vcpu, msr, data);
1612 
1613 	/* Performance counters are not protected by a CPUID bit,
1614 	 * so we should check all of them in the generic path for the sake of
1615 	 * cross vendor migration.
1616 	 * Writing a zero into the event select MSRs disables them,
1617 	 * which we perfectly emulate ;-). Any other value should be at least
1618 	 * reported, some guests depend on them.
1619 	 */
1620 	case MSR_K7_EVNTSEL0:
1621 	case MSR_K7_EVNTSEL1:
1622 	case MSR_K7_EVNTSEL2:
1623 	case MSR_K7_EVNTSEL3:
1624 		if (data != 0)
1625 			pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1626 				"0x%x data 0x%llx\n", msr, data);
1627 		break;
1628 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
1629 	 * so we ignore writes to make it happy.
1630 	 */
1631 	case MSR_K7_PERFCTR0:
1632 	case MSR_K7_PERFCTR1:
1633 	case MSR_K7_PERFCTR2:
1634 	case MSR_K7_PERFCTR3:
1635 		pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1636 			"0x%x data 0x%llx\n", msr, data);
1637 		break;
1638 	case MSR_K7_CLK_CTL:
1639 		/*
1640 		 * Ignore all writes to this no longer documented MSR.
1641 		 * Writes are only relevant for old K7 processors,
1642 		 * all pre-dating SVM, but a recommended workaround from
1643 		 * AMD for these chips. It is possible to speicify the
1644 		 * affected processor models on the command line, hence
1645 		 * the need to ignore the workaround.
1646 		 */
1647 		break;
1648 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1649 		if (kvm_hv_msr_partition_wide(msr)) {
1650 			int r;
1651 			mutex_lock(&vcpu->kvm->lock);
1652 			r = set_msr_hyperv_pw(vcpu, msr, data);
1653 			mutex_unlock(&vcpu->kvm->lock);
1654 			return r;
1655 		} else
1656 			return set_msr_hyperv(vcpu, msr, data);
1657 		break;
1658 	case MSR_IA32_BBL_CR_CTL3:
1659 		/* Drop writes to this legacy MSR -- see rdmsr
1660 		 * counterpart for further detail.
1661 		 */
1662 		pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1663 		break;
1664 	default:
1665 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1666 			return xen_hvm_config(vcpu, data);
1667 		if (kvm_pmu_msr(vcpu, msr))
1668 			return kvm_pmu_set_msr(vcpu, msr, data);
1669 		if (!ignore_msrs) {
1670 			pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1671 				msr, data);
1672 			return 1;
1673 		} else {
1674 			pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1675 				msr, data);
1676 			break;
1677 		}
1678 	}
1679 	return 0;
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1682 
1683 
1684 /*
1685  * Reads an msr value (of 'msr_index') into 'pdata'.
1686  * Returns 0 on success, non-0 otherwise.
1687  * Assumes vcpu_load() was already called.
1688  */
1689 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1690 {
1691 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1692 }
1693 
1694 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1695 {
1696 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1697 
1698 	if (!msr_mtrr_valid(msr))
1699 		return 1;
1700 
1701 	if (msr == MSR_MTRRdefType)
1702 		*pdata = vcpu->arch.mtrr_state.def_type +
1703 			 (vcpu->arch.mtrr_state.enabled << 10);
1704 	else if (msr == MSR_MTRRfix64K_00000)
1705 		*pdata = p[0];
1706 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1707 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1708 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1709 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1710 	else if (msr == MSR_IA32_CR_PAT)
1711 		*pdata = vcpu->arch.pat;
1712 	else {	/* Variable MTRRs */
1713 		int idx, is_mtrr_mask;
1714 		u64 *pt;
1715 
1716 		idx = (msr - 0x200) / 2;
1717 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1718 		if (!is_mtrr_mask)
1719 			pt =
1720 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1721 		else
1722 			pt =
1723 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1724 		*pdata = *pt;
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1731 {
1732 	u64 data;
1733 	u64 mcg_cap = vcpu->arch.mcg_cap;
1734 	unsigned bank_num = mcg_cap & 0xff;
1735 
1736 	switch (msr) {
1737 	case MSR_IA32_P5_MC_ADDR:
1738 	case MSR_IA32_P5_MC_TYPE:
1739 		data = 0;
1740 		break;
1741 	case MSR_IA32_MCG_CAP:
1742 		data = vcpu->arch.mcg_cap;
1743 		break;
1744 	case MSR_IA32_MCG_CTL:
1745 		if (!(mcg_cap & MCG_CTL_P))
1746 			return 1;
1747 		data = vcpu->arch.mcg_ctl;
1748 		break;
1749 	case MSR_IA32_MCG_STATUS:
1750 		data = vcpu->arch.mcg_status;
1751 		break;
1752 	default:
1753 		if (msr >= MSR_IA32_MC0_CTL &&
1754 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1755 			u32 offset = msr - MSR_IA32_MC0_CTL;
1756 			data = vcpu->arch.mce_banks[offset];
1757 			break;
1758 		}
1759 		return 1;
1760 	}
1761 	*pdata = data;
1762 	return 0;
1763 }
1764 
1765 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1766 {
1767 	u64 data = 0;
1768 	struct kvm *kvm = vcpu->kvm;
1769 
1770 	switch (msr) {
1771 	case HV_X64_MSR_GUEST_OS_ID:
1772 		data = kvm->arch.hv_guest_os_id;
1773 		break;
1774 	case HV_X64_MSR_HYPERCALL:
1775 		data = kvm->arch.hv_hypercall;
1776 		break;
1777 	default:
1778 		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1779 		return 1;
1780 	}
1781 
1782 	*pdata = data;
1783 	return 0;
1784 }
1785 
1786 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1787 {
1788 	u64 data = 0;
1789 
1790 	switch (msr) {
1791 	case HV_X64_MSR_VP_INDEX: {
1792 		int r;
1793 		struct kvm_vcpu *v;
1794 		kvm_for_each_vcpu(r, v, vcpu->kvm)
1795 			if (v == vcpu)
1796 				data = r;
1797 		break;
1798 	}
1799 	case HV_X64_MSR_EOI:
1800 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1801 	case HV_X64_MSR_ICR:
1802 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1803 	case HV_X64_MSR_TPR:
1804 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1805 	case HV_X64_MSR_APIC_ASSIST_PAGE:
1806 		data = vcpu->arch.hv_vapic;
1807 		break;
1808 	default:
1809 		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1810 		return 1;
1811 	}
1812 	*pdata = data;
1813 	return 0;
1814 }
1815 
1816 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1817 {
1818 	u64 data;
1819 
1820 	switch (msr) {
1821 	case MSR_IA32_PLATFORM_ID:
1822 	case MSR_IA32_EBL_CR_POWERON:
1823 	case MSR_IA32_DEBUGCTLMSR:
1824 	case MSR_IA32_LASTBRANCHFROMIP:
1825 	case MSR_IA32_LASTBRANCHTOIP:
1826 	case MSR_IA32_LASTINTFROMIP:
1827 	case MSR_IA32_LASTINTTOIP:
1828 	case MSR_K8_SYSCFG:
1829 	case MSR_K7_HWCR:
1830 	case MSR_VM_HSAVE_PA:
1831 	case MSR_K7_EVNTSEL0:
1832 	case MSR_K7_PERFCTR0:
1833 	case MSR_K8_INT_PENDING_MSG:
1834 	case MSR_AMD64_NB_CFG:
1835 	case MSR_FAM10H_MMIO_CONF_BASE:
1836 		data = 0;
1837 		break;
1838 	case MSR_IA32_UCODE_REV:
1839 		data = 0x100000000ULL;
1840 		break;
1841 	case MSR_MTRRcap:
1842 		data = 0x500 | KVM_NR_VAR_MTRR;
1843 		break;
1844 	case 0x200 ... 0x2ff:
1845 		return get_msr_mtrr(vcpu, msr, pdata);
1846 	case 0xcd: /* fsb frequency */
1847 		data = 3;
1848 		break;
1849 		/*
1850 		 * MSR_EBC_FREQUENCY_ID
1851 		 * Conservative value valid for even the basic CPU models.
1852 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1853 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1854 		 * and 266MHz for model 3, or 4. Set Core Clock
1855 		 * Frequency to System Bus Frequency Ratio to 1 (bits
1856 		 * 31:24) even though these are only valid for CPU
1857 		 * models > 2, however guests may end up dividing or
1858 		 * multiplying by zero otherwise.
1859 		 */
1860 	case MSR_EBC_FREQUENCY_ID:
1861 		data = 1 << 24;
1862 		break;
1863 	case MSR_IA32_APICBASE:
1864 		data = kvm_get_apic_base(vcpu);
1865 		break;
1866 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1867 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
1868 		break;
1869 	case MSR_IA32_TSCDEADLINE:
1870 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
1871 		break;
1872 	case MSR_IA32_MISC_ENABLE:
1873 		data = vcpu->arch.ia32_misc_enable_msr;
1874 		break;
1875 	case MSR_IA32_PERF_STATUS:
1876 		/* TSC increment by tick */
1877 		data = 1000ULL;
1878 		/* CPU multiplier */
1879 		data |= (((uint64_t)4ULL) << 40);
1880 		break;
1881 	case MSR_EFER:
1882 		data = vcpu->arch.efer;
1883 		break;
1884 	case MSR_KVM_WALL_CLOCK:
1885 	case MSR_KVM_WALL_CLOCK_NEW:
1886 		data = vcpu->kvm->arch.wall_clock;
1887 		break;
1888 	case MSR_KVM_SYSTEM_TIME:
1889 	case MSR_KVM_SYSTEM_TIME_NEW:
1890 		data = vcpu->arch.time;
1891 		break;
1892 	case MSR_KVM_ASYNC_PF_EN:
1893 		data = vcpu->arch.apf.msr_val;
1894 		break;
1895 	case MSR_KVM_STEAL_TIME:
1896 		data = vcpu->arch.st.msr_val;
1897 		break;
1898 	case MSR_IA32_P5_MC_ADDR:
1899 	case MSR_IA32_P5_MC_TYPE:
1900 	case MSR_IA32_MCG_CAP:
1901 	case MSR_IA32_MCG_CTL:
1902 	case MSR_IA32_MCG_STATUS:
1903 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1904 		return get_msr_mce(vcpu, msr, pdata);
1905 	case MSR_K7_CLK_CTL:
1906 		/*
1907 		 * Provide expected ramp-up count for K7. All other
1908 		 * are set to zero, indicating minimum divisors for
1909 		 * every field.
1910 		 *
1911 		 * This prevents guest kernels on AMD host with CPU
1912 		 * type 6, model 8 and higher from exploding due to
1913 		 * the rdmsr failing.
1914 		 */
1915 		data = 0x20000000;
1916 		break;
1917 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1918 		if (kvm_hv_msr_partition_wide(msr)) {
1919 			int r;
1920 			mutex_lock(&vcpu->kvm->lock);
1921 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
1922 			mutex_unlock(&vcpu->kvm->lock);
1923 			return r;
1924 		} else
1925 			return get_msr_hyperv(vcpu, msr, pdata);
1926 		break;
1927 	case MSR_IA32_BBL_CR_CTL3:
1928 		/* This legacy MSR exists but isn't fully documented in current
1929 		 * silicon.  It is however accessed by winxp in very narrow
1930 		 * scenarios where it sets bit #19, itself documented as
1931 		 * a "reserved" bit.  Best effort attempt to source coherent
1932 		 * read data here should the balance of the register be
1933 		 * interpreted by the guest:
1934 		 *
1935 		 * L2 cache control register 3: 64GB range, 256KB size,
1936 		 * enabled, latency 0x1, configured
1937 		 */
1938 		data = 0xbe702111;
1939 		break;
1940 	default:
1941 		if (kvm_pmu_msr(vcpu, msr))
1942 			return kvm_pmu_get_msr(vcpu, msr, pdata);
1943 		if (!ignore_msrs) {
1944 			pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1945 			return 1;
1946 		} else {
1947 			pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1948 			data = 0;
1949 		}
1950 		break;
1951 	}
1952 	*pdata = data;
1953 	return 0;
1954 }
1955 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1956 
1957 /*
1958  * Read or write a bunch of msrs. All parameters are kernel addresses.
1959  *
1960  * @return number of msrs set successfully.
1961  */
1962 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1963 		    struct kvm_msr_entry *entries,
1964 		    int (*do_msr)(struct kvm_vcpu *vcpu,
1965 				  unsigned index, u64 *data))
1966 {
1967 	int i, idx;
1968 
1969 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1970 	for (i = 0; i < msrs->nmsrs; ++i)
1971 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
1972 			break;
1973 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1974 
1975 	return i;
1976 }
1977 
1978 /*
1979  * Read or write a bunch of msrs. Parameters are user addresses.
1980  *
1981  * @return number of msrs set successfully.
1982  */
1983 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1984 		  int (*do_msr)(struct kvm_vcpu *vcpu,
1985 				unsigned index, u64 *data),
1986 		  int writeback)
1987 {
1988 	struct kvm_msrs msrs;
1989 	struct kvm_msr_entry *entries;
1990 	int r, n;
1991 	unsigned size;
1992 
1993 	r = -EFAULT;
1994 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1995 		goto out;
1996 
1997 	r = -E2BIG;
1998 	if (msrs.nmsrs >= MAX_IO_MSRS)
1999 		goto out;
2000 
2001 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2002 	entries = memdup_user(user_msrs->entries, size);
2003 	if (IS_ERR(entries)) {
2004 		r = PTR_ERR(entries);
2005 		goto out;
2006 	}
2007 
2008 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2009 	if (r < 0)
2010 		goto out_free;
2011 
2012 	r = -EFAULT;
2013 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2014 		goto out_free;
2015 
2016 	r = n;
2017 
2018 out_free:
2019 	kfree(entries);
2020 out:
2021 	return r;
2022 }
2023 
2024 int kvm_dev_ioctl_check_extension(long ext)
2025 {
2026 	int r;
2027 
2028 	switch (ext) {
2029 	case KVM_CAP_IRQCHIP:
2030 	case KVM_CAP_HLT:
2031 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2032 	case KVM_CAP_SET_TSS_ADDR:
2033 	case KVM_CAP_EXT_CPUID:
2034 	case KVM_CAP_CLOCKSOURCE:
2035 	case KVM_CAP_PIT:
2036 	case KVM_CAP_NOP_IO_DELAY:
2037 	case KVM_CAP_MP_STATE:
2038 	case KVM_CAP_SYNC_MMU:
2039 	case KVM_CAP_USER_NMI:
2040 	case KVM_CAP_REINJECT_CONTROL:
2041 	case KVM_CAP_IRQ_INJECT_STATUS:
2042 	case KVM_CAP_ASSIGN_DEV_IRQ:
2043 	case KVM_CAP_IRQFD:
2044 	case KVM_CAP_IOEVENTFD:
2045 	case KVM_CAP_PIT2:
2046 	case KVM_CAP_PIT_STATE2:
2047 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2048 	case KVM_CAP_XEN_HVM:
2049 	case KVM_CAP_ADJUST_CLOCK:
2050 	case KVM_CAP_VCPU_EVENTS:
2051 	case KVM_CAP_HYPERV:
2052 	case KVM_CAP_HYPERV_VAPIC:
2053 	case KVM_CAP_HYPERV_SPIN:
2054 	case KVM_CAP_PCI_SEGMENT:
2055 	case KVM_CAP_DEBUGREGS:
2056 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2057 	case KVM_CAP_XSAVE:
2058 	case KVM_CAP_ASYNC_PF:
2059 	case KVM_CAP_GET_TSC_KHZ:
2060 		r = 1;
2061 		break;
2062 	case KVM_CAP_COALESCED_MMIO:
2063 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2064 		break;
2065 	case KVM_CAP_VAPIC:
2066 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2067 		break;
2068 	case KVM_CAP_NR_VCPUS:
2069 		r = KVM_SOFT_MAX_VCPUS;
2070 		break;
2071 	case KVM_CAP_MAX_VCPUS:
2072 		r = KVM_MAX_VCPUS;
2073 		break;
2074 	case KVM_CAP_NR_MEMSLOTS:
2075 		r = KVM_MEMORY_SLOTS;
2076 		break;
2077 	case KVM_CAP_PV_MMU:	/* obsolete */
2078 		r = 0;
2079 		break;
2080 	case KVM_CAP_IOMMU:
2081 		r = iommu_present(&pci_bus_type);
2082 		break;
2083 	case KVM_CAP_MCE:
2084 		r = KVM_MAX_MCE_BANKS;
2085 		break;
2086 	case KVM_CAP_XCRS:
2087 		r = cpu_has_xsave;
2088 		break;
2089 	case KVM_CAP_TSC_CONTROL:
2090 		r = kvm_has_tsc_control;
2091 		break;
2092 	case KVM_CAP_TSC_DEADLINE_TIMER:
2093 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2094 		break;
2095 	default:
2096 		r = 0;
2097 		break;
2098 	}
2099 	return r;
2100 
2101 }
2102 
2103 long kvm_arch_dev_ioctl(struct file *filp,
2104 			unsigned int ioctl, unsigned long arg)
2105 {
2106 	void __user *argp = (void __user *)arg;
2107 	long r;
2108 
2109 	switch (ioctl) {
2110 	case KVM_GET_MSR_INDEX_LIST: {
2111 		struct kvm_msr_list __user *user_msr_list = argp;
2112 		struct kvm_msr_list msr_list;
2113 		unsigned n;
2114 
2115 		r = -EFAULT;
2116 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2117 			goto out;
2118 		n = msr_list.nmsrs;
2119 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2120 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2121 			goto out;
2122 		r = -E2BIG;
2123 		if (n < msr_list.nmsrs)
2124 			goto out;
2125 		r = -EFAULT;
2126 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2127 				 num_msrs_to_save * sizeof(u32)))
2128 			goto out;
2129 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2130 				 &emulated_msrs,
2131 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2132 			goto out;
2133 		r = 0;
2134 		break;
2135 	}
2136 	case KVM_GET_SUPPORTED_CPUID: {
2137 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2138 		struct kvm_cpuid2 cpuid;
2139 
2140 		r = -EFAULT;
2141 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2142 			goto out;
2143 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2144 						      cpuid_arg->entries);
2145 		if (r)
2146 			goto out;
2147 
2148 		r = -EFAULT;
2149 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2150 			goto out;
2151 		r = 0;
2152 		break;
2153 	}
2154 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2155 		u64 mce_cap;
2156 
2157 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2158 		r = -EFAULT;
2159 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2160 			goto out;
2161 		r = 0;
2162 		break;
2163 	}
2164 	default:
2165 		r = -EINVAL;
2166 	}
2167 out:
2168 	return r;
2169 }
2170 
2171 static void wbinvd_ipi(void *garbage)
2172 {
2173 	wbinvd();
2174 }
2175 
2176 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2177 {
2178 	return vcpu->kvm->arch.iommu_domain &&
2179 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2180 }
2181 
2182 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2183 {
2184 	/* Address WBINVD may be executed by guest */
2185 	if (need_emulate_wbinvd(vcpu)) {
2186 		if (kvm_x86_ops->has_wbinvd_exit())
2187 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2188 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2189 			smp_call_function_single(vcpu->cpu,
2190 					wbinvd_ipi, NULL, 1);
2191 	}
2192 
2193 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2194 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2195 		/* Make sure TSC doesn't go backwards */
2196 		s64 tsc_delta;
2197 		u64 tsc;
2198 
2199 		tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2200 		tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2201 			     tsc - vcpu->arch.last_guest_tsc;
2202 
2203 		if (tsc_delta < 0)
2204 			mark_tsc_unstable("KVM discovered backwards TSC");
2205 		if (check_tsc_unstable()) {
2206 			kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2207 			vcpu->arch.tsc_catchup = 1;
2208 		}
2209 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2210 		if (vcpu->cpu != cpu)
2211 			kvm_migrate_timers(vcpu);
2212 		vcpu->cpu = cpu;
2213 	}
2214 
2215 	accumulate_steal_time(vcpu);
2216 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2217 }
2218 
2219 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2220 {
2221 	kvm_x86_ops->vcpu_put(vcpu);
2222 	kvm_put_guest_fpu(vcpu);
2223 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2224 }
2225 
2226 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2227 				    struct kvm_lapic_state *s)
2228 {
2229 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2230 
2231 	return 0;
2232 }
2233 
2234 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2235 				    struct kvm_lapic_state *s)
2236 {
2237 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2238 	kvm_apic_post_state_restore(vcpu);
2239 	update_cr8_intercept(vcpu);
2240 
2241 	return 0;
2242 }
2243 
2244 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2245 				    struct kvm_interrupt *irq)
2246 {
2247 	if (irq->irq < 0 || irq->irq >= 256)
2248 		return -EINVAL;
2249 	if (irqchip_in_kernel(vcpu->kvm))
2250 		return -ENXIO;
2251 
2252 	kvm_queue_interrupt(vcpu, irq->irq, false);
2253 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2254 
2255 	return 0;
2256 }
2257 
2258 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2259 {
2260 	kvm_inject_nmi(vcpu);
2261 
2262 	return 0;
2263 }
2264 
2265 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2266 					   struct kvm_tpr_access_ctl *tac)
2267 {
2268 	if (tac->flags)
2269 		return -EINVAL;
2270 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2271 	return 0;
2272 }
2273 
2274 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2275 					u64 mcg_cap)
2276 {
2277 	int r;
2278 	unsigned bank_num = mcg_cap & 0xff, bank;
2279 
2280 	r = -EINVAL;
2281 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2282 		goto out;
2283 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2284 		goto out;
2285 	r = 0;
2286 	vcpu->arch.mcg_cap = mcg_cap;
2287 	/* Init IA32_MCG_CTL to all 1s */
2288 	if (mcg_cap & MCG_CTL_P)
2289 		vcpu->arch.mcg_ctl = ~(u64)0;
2290 	/* Init IA32_MCi_CTL to all 1s */
2291 	for (bank = 0; bank < bank_num; bank++)
2292 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2293 out:
2294 	return r;
2295 }
2296 
2297 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2298 				      struct kvm_x86_mce *mce)
2299 {
2300 	u64 mcg_cap = vcpu->arch.mcg_cap;
2301 	unsigned bank_num = mcg_cap & 0xff;
2302 	u64 *banks = vcpu->arch.mce_banks;
2303 
2304 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2305 		return -EINVAL;
2306 	/*
2307 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2308 	 * reporting is disabled
2309 	 */
2310 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2311 	    vcpu->arch.mcg_ctl != ~(u64)0)
2312 		return 0;
2313 	banks += 4 * mce->bank;
2314 	/*
2315 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2316 	 * reporting is disabled for the bank
2317 	 */
2318 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2319 		return 0;
2320 	if (mce->status & MCI_STATUS_UC) {
2321 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2322 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2323 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2324 			return 0;
2325 		}
2326 		if (banks[1] & MCI_STATUS_VAL)
2327 			mce->status |= MCI_STATUS_OVER;
2328 		banks[2] = mce->addr;
2329 		banks[3] = mce->misc;
2330 		vcpu->arch.mcg_status = mce->mcg_status;
2331 		banks[1] = mce->status;
2332 		kvm_queue_exception(vcpu, MC_VECTOR);
2333 	} else if (!(banks[1] & MCI_STATUS_VAL)
2334 		   || !(banks[1] & MCI_STATUS_UC)) {
2335 		if (banks[1] & MCI_STATUS_VAL)
2336 			mce->status |= MCI_STATUS_OVER;
2337 		banks[2] = mce->addr;
2338 		banks[3] = mce->misc;
2339 		banks[1] = mce->status;
2340 	} else
2341 		banks[1] |= MCI_STATUS_OVER;
2342 	return 0;
2343 }
2344 
2345 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2346 					       struct kvm_vcpu_events *events)
2347 {
2348 	process_nmi(vcpu);
2349 	events->exception.injected =
2350 		vcpu->arch.exception.pending &&
2351 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2352 	events->exception.nr = vcpu->arch.exception.nr;
2353 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2354 	events->exception.pad = 0;
2355 	events->exception.error_code = vcpu->arch.exception.error_code;
2356 
2357 	events->interrupt.injected =
2358 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2359 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2360 	events->interrupt.soft = 0;
2361 	events->interrupt.shadow =
2362 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2363 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2364 
2365 	events->nmi.injected = vcpu->arch.nmi_injected;
2366 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2367 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2368 	events->nmi.pad = 0;
2369 
2370 	events->sipi_vector = vcpu->arch.sipi_vector;
2371 
2372 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2373 			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2374 			 | KVM_VCPUEVENT_VALID_SHADOW);
2375 	memset(&events->reserved, 0, sizeof(events->reserved));
2376 }
2377 
2378 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2379 					      struct kvm_vcpu_events *events)
2380 {
2381 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2382 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2383 			      | KVM_VCPUEVENT_VALID_SHADOW))
2384 		return -EINVAL;
2385 
2386 	process_nmi(vcpu);
2387 	vcpu->arch.exception.pending = events->exception.injected;
2388 	vcpu->arch.exception.nr = events->exception.nr;
2389 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2390 	vcpu->arch.exception.error_code = events->exception.error_code;
2391 
2392 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2393 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2394 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2395 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2396 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2397 						  events->interrupt.shadow);
2398 
2399 	vcpu->arch.nmi_injected = events->nmi.injected;
2400 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2401 		vcpu->arch.nmi_pending = events->nmi.pending;
2402 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2403 
2404 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2405 		vcpu->arch.sipi_vector = events->sipi_vector;
2406 
2407 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2408 
2409 	return 0;
2410 }
2411 
2412 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2413 					     struct kvm_debugregs *dbgregs)
2414 {
2415 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2416 	dbgregs->dr6 = vcpu->arch.dr6;
2417 	dbgregs->dr7 = vcpu->arch.dr7;
2418 	dbgregs->flags = 0;
2419 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2420 }
2421 
2422 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2423 					    struct kvm_debugregs *dbgregs)
2424 {
2425 	if (dbgregs->flags)
2426 		return -EINVAL;
2427 
2428 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2429 	vcpu->arch.dr6 = dbgregs->dr6;
2430 	vcpu->arch.dr7 = dbgregs->dr7;
2431 
2432 	return 0;
2433 }
2434 
2435 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2436 					 struct kvm_xsave *guest_xsave)
2437 {
2438 	if (cpu_has_xsave)
2439 		memcpy(guest_xsave->region,
2440 			&vcpu->arch.guest_fpu.state->xsave,
2441 			xstate_size);
2442 	else {
2443 		memcpy(guest_xsave->region,
2444 			&vcpu->arch.guest_fpu.state->fxsave,
2445 			sizeof(struct i387_fxsave_struct));
2446 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2447 			XSTATE_FPSSE;
2448 	}
2449 }
2450 
2451 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2452 					struct kvm_xsave *guest_xsave)
2453 {
2454 	u64 xstate_bv =
2455 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2456 
2457 	if (cpu_has_xsave)
2458 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2459 			guest_xsave->region, xstate_size);
2460 	else {
2461 		if (xstate_bv & ~XSTATE_FPSSE)
2462 			return -EINVAL;
2463 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2464 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
2465 	}
2466 	return 0;
2467 }
2468 
2469 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2470 					struct kvm_xcrs *guest_xcrs)
2471 {
2472 	if (!cpu_has_xsave) {
2473 		guest_xcrs->nr_xcrs = 0;
2474 		return;
2475 	}
2476 
2477 	guest_xcrs->nr_xcrs = 1;
2478 	guest_xcrs->flags = 0;
2479 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2480 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2481 }
2482 
2483 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2484 				       struct kvm_xcrs *guest_xcrs)
2485 {
2486 	int i, r = 0;
2487 
2488 	if (!cpu_has_xsave)
2489 		return -EINVAL;
2490 
2491 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2492 		return -EINVAL;
2493 
2494 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2495 		/* Only support XCR0 currently */
2496 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2497 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2498 				guest_xcrs->xcrs[0].value);
2499 			break;
2500 		}
2501 	if (r)
2502 		r = -EINVAL;
2503 	return r;
2504 }
2505 
2506 long kvm_arch_vcpu_ioctl(struct file *filp,
2507 			 unsigned int ioctl, unsigned long arg)
2508 {
2509 	struct kvm_vcpu *vcpu = filp->private_data;
2510 	void __user *argp = (void __user *)arg;
2511 	int r;
2512 	union {
2513 		struct kvm_lapic_state *lapic;
2514 		struct kvm_xsave *xsave;
2515 		struct kvm_xcrs *xcrs;
2516 		void *buffer;
2517 	} u;
2518 
2519 	u.buffer = NULL;
2520 	switch (ioctl) {
2521 	case KVM_GET_LAPIC: {
2522 		r = -EINVAL;
2523 		if (!vcpu->arch.apic)
2524 			goto out;
2525 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2526 
2527 		r = -ENOMEM;
2528 		if (!u.lapic)
2529 			goto out;
2530 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2531 		if (r)
2532 			goto out;
2533 		r = -EFAULT;
2534 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2535 			goto out;
2536 		r = 0;
2537 		break;
2538 	}
2539 	case KVM_SET_LAPIC: {
2540 		r = -EINVAL;
2541 		if (!vcpu->arch.apic)
2542 			goto out;
2543 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
2544 		if (IS_ERR(u.lapic)) {
2545 			r = PTR_ERR(u.lapic);
2546 			goto out;
2547 		}
2548 
2549 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2550 		if (r)
2551 			goto out;
2552 		r = 0;
2553 		break;
2554 	}
2555 	case KVM_INTERRUPT: {
2556 		struct kvm_interrupt irq;
2557 
2558 		r = -EFAULT;
2559 		if (copy_from_user(&irq, argp, sizeof irq))
2560 			goto out;
2561 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2562 		if (r)
2563 			goto out;
2564 		r = 0;
2565 		break;
2566 	}
2567 	case KVM_NMI: {
2568 		r = kvm_vcpu_ioctl_nmi(vcpu);
2569 		if (r)
2570 			goto out;
2571 		r = 0;
2572 		break;
2573 	}
2574 	case KVM_SET_CPUID: {
2575 		struct kvm_cpuid __user *cpuid_arg = argp;
2576 		struct kvm_cpuid cpuid;
2577 
2578 		r = -EFAULT;
2579 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2580 			goto out;
2581 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2582 		if (r)
2583 			goto out;
2584 		break;
2585 	}
2586 	case KVM_SET_CPUID2: {
2587 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2588 		struct kvm_cpuid2 cpuid;
2589 
2590 		r = -EFAULT;
2591 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2592 			goto out;
2593 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2594 					      cpuid_arg->entries);
2595 		if (r)
2596 			goto out;
2597 		break;
2598 	}
2599 	case KVM_GET_CPUID2: {
2600 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2601 		struct kvm_cpuid2 cpuid;
2602 
2603 		r = -EFAULT;
2604 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2605 			goto out;
2606 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2607 					      cpuid_arg->entries);
2608 		if (r)
2609 			goto out;
2610 		r = -EFAULT;
2611 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2612 			goto out;
2613 		r = 0;
2614 		break;
2615 	}
2616 	case KVM_GET_MSRS:
2617 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
2618 		break;
2619 	case KVM_SET_MSRS:
2620 		r = msr_io(vcpu, argp, do_set_msr, 0);
2621 		break;
2622 	case KVM_TPR_ACCESS_REPORTING: {
2623 		struct kvm_tpr_access_ctl tac;
2624 
2625 		r = -EFAULT;
2626 		if (copy_from_user(&tac, argp, sizeof tac))
2627 			goto out;
2628 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2629 		if (r)
2630 			goto out;
2631 		r = -EFAULT;
2632 		if (copy_to_user(argp, &tac, sizeof tac))
2633 			goto out;
2634 		r = 0;
2635 		break;
2636 	};
2637 	case KVM_SET_VAPIC_ADDR: {
2638 		struct kvm_vapic_addr va;
2639 
2640 		r = -EINVAL;
2641 		if (!irqchip_in_kernel(vcpu->kvm))
2642 			goto out;
2643 		r = -EFAULT;
2644 		if (copy_from_user(&va, argp, sizeof va))
2645 			goto out;
2646 		r = 0;
2647 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2648 		break;
2649 	}
2650 	case KVM_X86_SETUP_MCE: {
2651 		u64 mcg_cap;
2652 
2653 		r = -EFAULT;
2654 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2655 			goto out;
2656 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2657 		break;
2658 	}
2659 	case KVM_X86_SET_MCE: {
2660 		struct kvm_x86_mce mce;
2661 
2662 		r = -EFAULT;
2663 		if (copy_from_user(&mce, argp, sizeof mce))
2664 			goto out;
2665 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2666 		break;
2667 	}
2668 	case KVM_GET_VCPU_EVENTS: {
2669 		struct kvm_vcpu_events events;
2670 
2671 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2672 
2673 		r = -EFAULT;
2674 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2675 			break;
2676 		r = 0;
2677 		break;
2678 	}
2679 	case KVM_SET_VCPU_EVENTS: {
2680 		struct kvm_vcpu_events events;
2681 
2682 		r = -EFAULT;
2683 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2684 			break;
2685 
2686 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2687 		break;
2688 	}
2689 	case KVM_GET_DEBUGREGS: {
2690 		struct kvm_debugregs dbgregs;
2691 
2692 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2693 
2694 		r = -EFAULT;
2695 		if (copy_to_user(argp, &dbgregs,
2696 				 sizeof(struct kvm_debugregs)))
2697 			break;
2698 		r = 0;
2699 		break;
2700 	}
2701 	case KVM_SET_DEBUGREGS: {
2702 		struct kvm_debugregs dbgregs;
2703 
2704 		r = -EFAULT;
2705 		if (copy_from_user(&dbgregs, argp,
2706 				   sizeof(struct kvm_debugregs)))
2707 			break;
2708 
2709 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2710 		break;
2711 	}
2712 	case KVM_GET_XSAVE: {
2713 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2714 		r = -ENOMEM;
2715 		if (!u.xsave)
2716 			break;
2717 
2718 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2719 
2720 		r = -EFAULT;
2721 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2722 			break;
2723 		r = 0;
2724 		break;
2725 	}
2726 	case KVM_SET_XSAVE: {
2727 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
2728 		if (IS_ERR(u.xsave)) {
2729 			r = PTR_ERR(u.xsave);
2730 			goto out;
2731 		}
2732 
2733 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2734 		break;
2735 	}
2736 	case KVM_GET_XCRS: {
2737 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2738 		r = -ENOMEM;
2739 		if (!u.xcrs)
2740 			break;
2741 
2742 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2743 
2744 		r = -EFAULT;
2745 		if (copy_to_user(argp, u.xcrs,
2746 				 sizeof(struct kvm_xcrs)))
2747 			break;
2748 		r = 0;
2749 		break;
2750 	}
2751 	case KVM_SET_XCRS: {
2752 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2753 		if (IS_ERR(u.xcrs)) {
2754 			r = PTR_ERR(u.xcrs);
2755 			goto out;
2756 		}
2757 
2758 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2759 		break;
2760 	}
2761 	case KVM_SET_TSC_KHZ: {
2762 		u32 user_tsc_khz;
2763 
2764 		r = -EINVAL;
2765 		if (!kvm_has_tsc_control)
2766 			break;
2767 
2768 		user_tsc_khz = (u32)arg;
2769 
2770 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2771 			goto out;
2772 
2773 		kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
2774 
2775 		r = 0;
2776 		goto out;
2777 	}
2778 	case KVM_GET_TSC_KHZ: {
2779 		r = -EIO;
2780 		if (check_tsc_unstable())
2781 			goto out;
2782 
2783 		r = vcpu_tsc_khz(vcpu);
2784 
2785 		goto out;
2786 	}
2787 	default:
2788 		r = -EINVAL;
2789 	}
2790 out:
2791 	kfree(u.buffer);
2792 	return r;
2793 }
2794 
2795 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2796 {
2797 	int ret;
2798 
2799 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
2800 		return -1;
2801 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2802 	return ret;
2803 }
2804 
2805 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2806 					      u64 ident_addr)
2807 {
2808 	kvm->arch.ept_identity_map_addr = ident_addr;
2809 	return 0;
2810 }
2811 
2812 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2813 					  u32 kvm_nr_mmu_pages)
2814 {
2815 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2816 		return -EINVAL;
2817 
2818 	mutex_lock(&kvm->slots_lock);
2819 	spin_lock(&kvm->mmu_lock);
2820 
2821 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2822 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2823 
2824 	spin_unlock(&kvm->mmu_lock);
2825 	mutex_unlock(&kvm->slots_lock);
2826 	return 0;
2827 }
2828 
2829 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2830 {
2831 	return kvm->arch.n_max_mmu_pages;
2832 }
2833 
2834 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2835 {
2836 	int r;
2837 
2838 	r = 0;
2839 	switch (chip->chip_id) {
2840 	case KVM_IRQCHIP_PIC_MASTER:
2841 		memcpy(&chip->chip.pic,
2842 			&pic_irqchip(kvm)->pics[0],
2843 			sizeof(struct kvm_pic_state));
2844 		break;
2845 	case KVM_IRQCHIP_PIC_SLAVE:
2846 		memcpy(&chip->chip.pic,
2847 			&pic_irqchip(kvm)->pics[1],
2848 			sizeof(struct kvm_pic_state));
2849 		break;
2850 	case KVM_IRQCHIP_IOAPIC:
2851 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2852 		break;
2853 	default:
2854 		r = -EINVAL;
2855 		break;
2856 	}
2857 	return r;
2858 }
2859 
2860 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2861 {
2862 	int r;
2863 
2864 	r = 0;
2865 	switch (chip->chip_id) {
2866 	case KVM_IRQCHIP_PIC_MASTER:
2867 		spin_lock(&pic_irqchip(kvm)->lock);
2868 		memcpy(&pic_irqchip(kvm)->pics[0],
2869 			&chip->chip.pic,
2870 			sizeof(struct kvm_pic_state));
2871 		spin_unlock(&pic_irqchip(kvm)->lock);
2872 		break;
2873 	case KVM_IRQCHIP_PIC_SLAVE:
2874 		spin_lock(&pic_irqchip(kvm)->lock);
2875 		memcpy(&pic_irqchip(kvm)->pics[1],
2876 			&chip->chip.pic,
2877 			sizeof(struct kvm_pic_state));
2878 		spin_unlock(&pic_irqchip(kvm)->lock);
2879 		break;
2880 	case KVM_IRQCHIP_IOAPIC:
2881 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2882 		break;
2883 	default:
2884 		r = -EINVAL;
2885 		break;
2886 	}
2887 	kvm_pic_update_irq(pic_irqchip(kvm));
2888 	return r;
2889 }
2890 
2891 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2892 {
2893 	int r = 0;
2894 
2895 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2896 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2897 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2898 	return r;
2899 }
2900 
2901 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2902 {
2903 	int r = 0;
2904 
2905 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2906 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2907 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2908 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2909 	return r;
2910 }
2911 
2912 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2913 {
2914 	int r = 0;
2915 
2916 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2917 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2918 		sizeof(ps->channels));
2919 	ps->flags = kvm->arch.vpit->pit_state.flags;
2920 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2921 	memset(&ps->reserved, 0, sizeof(ps->reserved));
2922 	return r;
2923 }
2924 
2925 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2926 {
2927 	int r = 0, start = 0;
2928 	u32 prev_legacy, cur_legacy;
2929 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2930 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2931 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2932 	if (!prev_legacy && cur_legacy)
2933 		start = 1;
2934 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2935 	       sizeof(kvm->arch.vpit->pit_state.channels));
2936 	kvm->arch.vpit->pit_state.flags = ps->flags;
2937 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2938 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2939 	return r;
2940 }
2941 
2942 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2943 				 struct kvm_reinject_control *control)
2944 {
2945 	if (!kvm->arch.vpit)
2946 		return -ENXIO;
2947 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2948 	kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2949 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2950 	return 0;
2951 }
2952 
2953 /**
2954  * write_protect_slot - write protect a slot for dirty logging
2955  * @kvm: the kvm instance
2956  * @memslot: the slot we protect
2957  * @dirty_bitmap: the bitmap indicating which pages are dirty
2958  * @nr_dirty_pages: the number of dirty pages
2959  *
2960  * We have two ways to find all sptes to protect:
2961  * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
2962  *    checks ones that have a spte mapping a page in the slot.
2963  * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
2964  *
2965  * Generally speaking, if there are not so many dirty pages compared to the
2966  * number of shadow pages, we should use the latter.
2967  *
2968  * Note that letting others write into a page marked dirty in the old bitmap
2969  * by using the remaining tlb entry is not a problem.  That page will become
2970  * write protected again when we flush the tlb and then be reported dirty to
2971  * the user space by copying the old bitmap.
2972  */
2973 static void write_protect_slot(struct kvm *kvm,
2974 			       struct kvm_memory_slot *memslot,
2975 			       unsigned long *dirty_bitmap,
2976 			       unsigned long nr_dirty_pages)
2977 {
2978 	/* Not many dirty pages compared to # of shadow pages. */
2979 	if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) {
2980 		unsigned long gfn_offset;
2981 
2982 		for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) {
2983 			unsigned long gfn = memslot->base_gfn + gfn_offset;
2984 
2985 			spin_lock(&kvm->mmu_lock);
2986 			kvm_mmu_rmap_write_protect(kvm, gfn, memslot);
2987 			spin_unlock(&kvm->mmu_lock);
2988 		}
2989 		kvm_flush_remote_tlbs(kvm);
2990 	} else {
2991 		spin_lock(&kvm->mmu_lock);
2992 		kvm_mmu_slot_remove_write_access(kvm, memslot->id);
2993 		spin_unlock(&kvm->mmu_lock);
2994 	}
2995 }
2996 
2997 /*
2998  * Get (and clear) the dirty memory log for a memory slot.
2999  */
3000 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3001 				      struct kvm_dirty_log *log)
3002 {
3003 	int r;
3004 	struct kvm_memory_slot *memslot;
3005 	unsigned long n, nr_dirty_pages;
3006 
3007 	mutex_lock(&kvm->slots_lock);
3008 
3009 	r = -EINVAL;
3010 	if (log->slot >= KVM_MEMORY_SLOTS)
3011 		goto out;
3012 
3013 	memslot = id_to_memslot(kvm->memslots, log->slot);
3014 	r = -ENOENT;
3015 	if (!memslot->dirty_bitmap)
3016 		goto out;
3017 
3018 	n = kvm_dirty_bitmap_bytes(memslot);
3019 	nr_dirty_pages = memslot->nr_dirty_pages;
3020 
3021 	/* If nothing is dirty, don't bother messing with page tables. */
3022 	if (nr_dirty_pages) {
3023 		struct kvm_memslots *slots, *old_slots;
3024 		unsigned long *dirty_bitmap, *dirty_bitmap_head;
3025 
3026 		dirty_bitmap = memslot->dirty_bitmap;
3027 		dirty_bitmap_head = memslot->dirty_bitmap_head;
3028 		if (dirty_bitmap == dirty_bitmap_head)
3029 			dirty_bitmap_head += n / sizeof(long);
3030 		memset(dirty_bitmap_head, 0, n);
3031 
3032 		r = -ENOMEM;
3033 		slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL);
3034 		if (!slots)
3035 			goto out;
3036 
3037 		memslot = id_to_memslot(slots, log->slot);
3038 		memslot->nr_dirty_pages = 0;
3039 		memslot->dirty_bitmap = dirty_bitmap_head;
3040 		update_memslots(slots, NULL);
3041 
3042 		old_slots = kvm->memslots;
3043 		rcu_assign_pointer(kvm->memslots, slots);
3044 		synchronize_srcu_expedited(&kvm->srcu);
3045 		kfree(old_slots);
3046 
3047 		write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages);
3048 
3049 		r = -EFAULT;
3050 		if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3051 			goto out;
3052 	} else {
3053 		r = -EFAULT;
3054 		if (clear_user(log->dirty_bitmap, n))
3055 			goto out;
3056 	}
3057 
3058 	r = 0;
3059 out:
3060 	mutex_unlock(&kvm->slots_lock);
3061 	return r;
3062 }
3063 
3064 long kvm_arch_vm_ioctl(struct file *filp,
3065 		       unsigned int ioctl, unsigned long arg)
3066 {
3067 	struct kvm *kvm = filp->private_data;
3068 	void __user *argp = (void __user *)arg;
3069 	int r = -ENOTTY;
3070 	/*
3071 	 * This union makes it completely explicit to gcc-3.x
3072 	 * that these two variables' stack usage should be
3073 	 * combined, not added together.
3074 	 */
3075 	union {
3076 		struct kvm_pit_state ps;
3077 		struct kvm_pit_state2 ps2;
3078 		struct kvm_pit_config pit_config;
3079 	} u;
3080 
3081 	switch (ioctl) {
3082 	case KVM_SET_TSS_ADDR:
3083 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3084 		if (r < 0)
3085 			goto out;
3086 		break;
3087 	case KVM_SET_IDENTITY_MAP_ADDR: {
3088 		u64 ident_addr;
3089 
3090 		r = -EFAULT;
3091 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3092 			goto out;
3093 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3094 		if (r < 0)
3095 			goto out;
3096 		break;
3097 	}
3098 	case KVM_SET_NR_MMU_PAGES:
3099 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3100 		if (r)
3101 			goto out;
3102 		break;
3103 	case KVM_GET_NR_MMU_PAGES:
3104 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3105 		break;
3106 	case KVM_CREATE_IRQCHIP: {
3107 		struct kvm_pic *vpic;
3108 
3109 		mutex_lock(&kvm->lock);
3110 		r = -EEXIST;
3111 		if (kvm->arch.vpic)
3112 			goto create_irqchip_unlock;
3113 		r = -ENOMEM;
3114 		vpic = kvm_create_pic(kvm);
3115 		if (vpic) {
3116 			r = kvm_ioapic_init(kvm);
3117 			if (r) {
3118 				mutex_lock(&kvm->slots_lock);
3119 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3120 							  &vpic->dev_master);
3121 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3122 							  &vpic->dev_slave);
3123 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3124 							  &vpic->dev_eclr);
3125 				mutex_unlock(&kvm->slots_lock);
3126 				kfree(vpic);
3127 				goto create_irqchip_unlock;
3128 			}
3129 		} else
3130 			goto create_irqchip_unlock;
3131 		smp_wmb();
3132 		kvm->arch.vpic = vpic;
3133 		smp_wmb();
3134 		r = kvm_setup_default_irq_routing(kvm);
3135 		if (r) {
3136 			mutex_lock(&kvm->slots_lock);
3137 			mutex_lock(&kvm->irq_lock);
3138 			kvm_ioapic_destroy(kvm);
3139 			kvm_destroy_pic(kvm);
3140 			mutex_unlock(&kvm->irq_lock);
3141 			mutex_unlock(&kvm->slots_lock);
3142 		}
3143 	create_irqchip_unlock:
3144 		mutex_unlock(&kvm->lock);
3145 		break;
3146 	}
3147 	case KVM_CREATE_PIT:
3148 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3149 		goto create_pit;
3150 	case KVM_CREATE_PIT2:
3151 		r = -EFAULT;
3152 		if (copy_from_user(&u.pit_config, argp,
3153 				   sizeof(struct kvm_pit_config)))
3154 			goto out;
3155 	create_pit:
3156 		mutex_lock(&kvm->slots_lock);
3157 		r = -EEXIST;
3158 		if (kvm->arch.vpit)
3159 			goto create_pit_unlock;
3160 		r = -ENOMEM;
3161 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3162 		if (kvm->arch.vpit)
3163 			r = 0;
3164 	create_pit_unlock:
3165 		mutex_unlock(&kvm->slots_lock);
3166 		break;
3167 	case KVM_IRQ_LINE_STATUS:
3168 	case KVM_IRQ_LINE: {
3169 		struct kvm_irq_level irq_event;
3170 
3171 		r = -EFAULT;
3172 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
3173 			goto out;
3174 		r = -ENXIO;
3175 		if (irqchip_in_kernel(kvm)) {
3176 			__s32 status;
3177 			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3178 					irq_event.irq, irq_event.level);
3179 			if (ioctl == KVM_IRQ_LINE_STATUS) {
3180 				r = -EFAULT;
3181 				irq_event.status = status;
3182 				if (copy_to_user(argp, &irq_event,
3183 							sizeof irq_event))
3184 					goto out;
3185 			}
3186 			r = 0;
3187 		}
3188 		break;
3189 	}
3190 	case KVM_GET_IRQCHIP: {
3191 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3192 		struct kvm_irqchip *chip;
3193 
3194 		chip = memdup_user(argp, sizeof(*chip));
3195 		if (IS_ERR(chip)) {
3196 			r = PTR_ERR(chip);
3197 			goto out;
3198 		}
3199 
3200 		r = -ENXIO;
3201 		if (!irqchip_in_kernel(kvm))
3202 			goto get_irqchip_out;
3203 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3204 		if (r)
3205 			goto get_irqchip_out;
3206 		r = -EFAULT;
3207 		if (copy_to_user(argp, chip, sizeof *chip))
3208 			goto get_irqchip_out;
3209 		r = 0;
3210 	get_irqchip_out:
3211 		kfree(chip);
3212 		if (r)
3213 			goto out;
3214 		break;
3215 	}
3216 	case KVM_SET_IRQCHIP: {
3217 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3218 		struct kvm_irqchip *chip;
3219 
3220 		chip = memdup_user(argp, sizeof(*chip));
3221 		if (IS_ERR(chip)) {
3222 			r = PTR_ERR(chip);
3223 			goto out;
3224 		}
3225 
3226 		r = -ENXIO;
3227 		if (!irqchip_in_kernel(kvm))
3228 			goto set_irqchip_out;
3229 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3230 		if (r)
3231 			goto set_irqchip_out;
3232 		r = 0;
3233 	set_irqchip_out:
3234 		kfree(chip);
3235 		if (r)
3236 			goto out;
3237 		break;
3238 	}
3239 	case KVM_GET_PIT: {
3240 		r = -EFAULT;
3241 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3242 			goto out;
3243 		r = -ENXIO;
3244 		if (!kvm->arch.vpit)
3245 			goto out;
3246 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3247 		if (r)
3248 			goto out;
3249 		r = -EFAULT;
3250 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3251 			goto out;
3252 		r = 0;
3253 		break;
3254 	}
3255 	case KVM_SET_PIT: {
3256 		r = -EFAULT;
3257 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3258 			goto out;
3259 		r = -ENXIO;
3260 		if (!kvm->arch.vpit)
3261 			goto out;
3262 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3263 		if (r)
3264 			goto out;
3265 		r = 0;
3266 		break;
3267 	}
3268 	case KVM_GET_PIT2: {
3269 		r = -ENXIO;
3270 		if (!kvm->arch.vpit)
3271 			goto out;
3272 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3273 		if (r)
3274 			goto out;
3275 		r = -EFAULT;
3276 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3277 			goto out;
3278 		r = 0;
3279 		break;
3280 	}
3281 	case KVM_SET_PIT2: {
3282 		r = -EFAULT;
3283 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3284 			goto out;
3285 		r = -ENXIO;
3286 		if (!kvm->arch.vpit)
3287 			goto out;
3288 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3289 		if (r)
3290 			goto out;
3291 		r = 0;
3292 		break;
3293 	}
3294 	case KVM_REINJECT_CONTROL: {
3295 		struct kvm_reinject_control control;
3296 		r =  -EFAULT;
3297 		if (copy_from_user(&control, argp, sizeof(control)))
3298 			goto out;
3299 		r = kvm_vm_ioctl_reinject(kvm, &control);
3300 		if (r)
3301 			goto out;
3302 		r = 0;
3303 		break;
3304 	}
3305 	case KVM_XEN_HVM_CONFIG: {
3306 		r = -EFAULT;
3307 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3308 				   sizeof(struct kvm_xen_hvm_config)))
3309 			goto out;
3310 		r = -EINVAL;
3311 		if (kvm->arch.xen_hvm_config.flags)
3312 			goto out;
3313 		r = 0;
3314 		break;
3315 	}
3316 	case KVM_SET_CLOCK: {
3317 		struct kvm_clock_data user_ns;
3318 		u64 now_ns;
3319 		s64 delta;
3320 
3321 		r = -EFAULT;
3322 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3323 			goto out;
3324 
3325 		r = -EINVAL;
3326 		if (user_ns.flags)
3327 			goto out;
3328 
3329 		r = 0;
3330 		local_irq_disable();
3331 		now_ns = get_kernel_ns();
3332 		delta = user_ns.clock - now_ns;
3333 		local_irq_enable();
3334 		kvm->arch.kvmclock_offset = delta;
3335 		break;
3336 	}
3337 	case KVM_GET_CLOCK: {
3338 		struct kvm_clock_data user_ns;
3339 		u64 now_ns;
3340 
3341 		local_irq_disable();
3342 		now_ns = get_kernel_ns();
3343 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3344 		local_irq_enable();
3345 		user_ns.flags = 0;
3346 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3347 
3348 		r = -EFAULT;
3349 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3350 			goto out;
3351 		r = 0;
3352 		break;
3353 	}
3354 
3355 	default:
3356 		;
3357 	}
3358 out:
3359 	return r;
3360 }
3361 
3362 static void kvm_init_msr_list(void)
3363 {
3364 	u32 dummy[2];
3365 	unsigned i, j;
3366 
3367 	/* skip the first msrs in the list. KVM-specific */
3368 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3369 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3370 			continue;
3371 		if (j < i)
3372 			msrs_to_save[j] = msrs_to_save[i];
3373 		j++;
3374 	}
3375 	num_msrs_to_save = j;
3376 }
3377 
3378 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3379 			   const void *v)
3380 {
3381 	int handled = 0;
3382 	int n;
3383 
3384 	do {
3385 		n = min(len, 8);
3386 		if (!(vcpu->arch.apic &&
3387 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3388 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3389 			break;
3390 		handled += n;
3391 		addr += n;
3392 		len -= n;
3393 		v += n;
3394 	} while (len);
3395 
3396 	return handled;
3397 }
3398 
3399 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3400 {
3401 	int handled = 0;
3402 	int n;
3403 
3404 	do {
3405 		n = min(len, 8);
3406 		if (!(vcpu->arch.apic &&
3407 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3408 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3409 			break;
3410 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3411 		handled += n;
3412 		addr += n;
3413 		len -= n;
3414 		v += n;
3415 	} while (len);
3416 
3417 	return handled;
3418 }
3419 
3420 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3421 			struct kvm_segment *var, int seg)
3422 {
3423 	kvm_x86_ops->set_segment(vcpu, var, seg);
3424 }
3425 
3426 void kvm_get_segment(struct kvm_vcpu *vcpu,
3427 		     struct kvm_segment *var, int seg)
3428 {
3429 	kvm_x86_ops->get_segment(vcpu, var, seg);
3430 }
3431 
3432 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3433 {
3434 	gpa_t t_gpa;
3435 	struct x86_exception exception;
3436 
3437 	BUG_ON(!mmu_is_nested(vcpu));
3438 
3439 	/* NPT walks are always user-walks */
3440 	access |= PFERR_USER_MASK;
3441 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3442 
3443 	return t_gpa;
3444 }
3445 
3446 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3447 			      struct x86_exception *exception)
3448 {
3449 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3450 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3451 }
3452 
3453  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3454 				struct x86_exception *exception)
3455 {
3456 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3457 	access |= PFERR_FETCH_MASK;
3458 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3459 }
3460 
3461 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3462 			       struct x86_exception *exception)
3463 {
3464 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3465 	access |= PFERR_WRITE_MASK;
3466 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3467 }
3468 
3469 /* uses this to access any guest's mapped memory without checking CPL */
3470 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3471 				struct x86_exception *exception)
3472 {
3473 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3474 }
3475 
3476 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3477 				      struct kvm_vcpu *vcpu, u32 access,
3478 				      struct x86_exception *exception)
3479 {
3480 	void *data = val;
3481 	int r = X86EMUL_CONTINUE;
3482 
3483 	while (bytes) {
3484 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3485 							    exception);
3486 		unsigned offset = addr & (PAGE_SIZE-1);
3487 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3488 		int ret;
3489 
3490 		if (gpa == UNMAPPED_GVA)
3491 			return X86EMUL_PROPAGATE_FAULT;
3492 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3493 		if (ret < 0) {
3494 			r = X86EMUL_IO_NEEDED;
3495 			goto out;
3496 		}
3497 
3498 		bytes -= toread;
3499 		data += toread;
3500 		addr += toread;
3501 	}
3502 out:
3503 	return r;
3504 }
3505 
3506 /* used for instruction fetching */
3507 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3508 				gva_t addr, void *val, unsigned int bytes,
3509 				struct x86_exception *exception)
3510 {
3511 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3512 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3513 
3514 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3515 					  access | PFERR_FETCH_MASK,
3516 					  exception);
3517 }
3518 
3519 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3520 			       gva_t addr, void *val, unsigned int bytes,
3521 			       struct x86_exception *exception)
3522 {
3523 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3524 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3525 
3526 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3527 					  exception);
3528 }
3529 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3530 
3531 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3532 				      gva_t addr, void *val, unsigned int bytes,
3533 				      struct x86_exception *exception)
3534 {
3535 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3536 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3537 }
3538 
3539 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3540 				       gva_t addr, void *val,
3541 				       unsigned int bytes,
3542 				       struct x86_exception *exception)
3543 {
3544 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3545 	void *data = val;
3546 	int r = X86EMUL_CONTINUE;
3547 
3548 	while (bytes) {
3549 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3550 							     PFERR_WRITE_MASK,
3551 							     exception);
3552 		unsigned offset = addr & (PAGE_SIZE-1);
3553 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3554 		int ret;
3555 
3556 		if (gpa == UNMAPPED_GVA)
3557 			return X86EMUL_PROPAGATE_FAULT;
3558 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3559 		if (ret < 0) {
3560 			r = X86EMUL_IO_NEEDED;
3561 			goto out;
3562 		}
3563 
3564 		bytes -= towrite;
3565 		data += towrite;
3566 		addr += towrite;
3567 	}
3568 out:
3569 	return r;
3570 }
3571 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3572 
3573 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3574 				gpa_t *gpa, struct x86_exception *exception,
3575 				bool write)
3576 {
3577 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3578 
3579 	if (vcpu_match_mmio_gva(vcpu, gva) &&
3580 		  check_write_user_access(vcpu, write, access,
3581 		  vcpu->arch.access)) {
3582 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3583 					(gva & (PAGE_SIZE - 1));
3584 		trace_vcpu_match_mmio(gva, *gpa, write, false);
3585 		return 1;
3586 	}
3587 
3588 	if (write)
3589 		access |= PFERR_WRITE_MASK;
3590 
3591 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3592 
3593 	if (*gpa == UNMAPPED_GVA)
3594 		return -1;
3595 
3596 	/* For APIC access vmexit */
3597 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3598 		return 1;
3599 
3600 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3601 		trace_vcpu_match_mmio(gva, *gpa, write, true);
3602 		return 1;
3603 	}
3604 
3605 	return 0;
3606 }
3607 
3608 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3609 			const void *val, int bytes)
3610 {
3611 	int ret;
3612 
3613 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3614 	if (ret < 0)
3615 		return 0;
3616 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3617 	return 1;
3618 }
3619 
3620 struct read_write_emulator_ops {
3621 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3622 				  int bytes);
3623 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3624 				  void *val, int bytes);
3625 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3626 			       int bytes, void *val);
3627 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3628 				    void *val, int bytes);
3629 	bool write;
3630 };
3631 
3632 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3633 {
3634 	if (vcpu->mmio_read_completed) {
3635 		memcpy(val, vcpu->mmio_data, bytes);
3636 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3637 			       vcpu->mmio_phys_addr, *(u64 *)val);
3638 		vcpu->mmio_read_completed = 0;
3639 		return 1;
3640 	}
3641 
3642 	return 0;
3643 }
3644 
3645 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3646 			void *val, int bytes)
3647 {
3648 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3649 }
3650 
3651 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3652 			 void *val, int bytes)
3653 {
3654 	return emulator_write_phys(vcpu, gpa, val, bytes);
3655 }
3656 
3657 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3658 {
3659 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3660 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
3661 }
3662 
3663 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3664 			  void *val, int bytes)
3665 {
3666 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3667 	return X86EMUL_IO_NEEDED;
3668 }
3669 
3670 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3671 			   void *val, int bytes)
3672 {
3673 	memcpy(vcpu->mmio_data, val, bytes);
3674 	memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3675 	return X86EMUL_CONTINUE;
3676 }
3677 
3678 static struct read_write_emulator_ops read_emultor = {
3679 	.read_write_prepare = read_prepare,
3680 	.read_write_emulate = read_emulate,
3681 	.read_write_mmio = vcpu_mmio_read,
3682 	.read_write_exit_mmio = read_exit_mmio,
3683 };
3684 
3685 static struct read_write_emulator_ops write_emultor = {
3686 	.read_write_emulate = write_emulate,
3687 	.read_write_mmio = write_mmio,
3688 	.read_write_exit_mmio = write_exit_mmio,
3689 	.write = true,
3690 };
3691 
3692 static int emulator_read_write_onepage(unsigned long addr, void *val,
3693 				       unsigned int bytes,
3694 				       struct x86_exception *exception,
3695 				       struct kvm_vcpu *vcpu,
3696 				       struct read_write_emulator_ops *ops)
3697 {
3698 	gpa_t gpa;
3699 	int handled, ret;
3700 	bool write = ops->write;
3701 
3702 	if (ops->read_write_prepare &&
3703 		  ops->read_write_prepare(vcpu, val, bytes))
3704 		return X86EMUL_CONTINUE;
3705 
3706 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3707 
3708 	if (ret < 0)
3709 		return X86EMUL_PROPAGATE_FAULT;
3710 
3711 	/* For APIC access vmexit */
3712 	if (ret)
3713 		goto mmio;
3714 
3715 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3716 		return X86EMUL_CONTINUE;
3717 
3718 mmio:
3719 	/*
3720 	 * Is this MMIO handled locally?
3721 	 */
3722 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3723 	if (handled == bytes)
3724 		return X86EMUL_CONTINUE;
3725 
3726 	gpa += handled;
3727 	bytes -= handled;
3728 	val += handled;
3729 
3730 	vcpu->mmio_needed = 1;
3731 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
3732 	vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3733 	vcpu->mmio_size = bytes;
3734 	vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3735 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
3736 	vcpu->mmio_index = 0;
3737 
3738 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3739 }
3740 
3741 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3742 			void *val, unsigned int bytes,
3743 			struct x86_exception *exception,
3744 			struct read_write_emulator_ops *ops)
3745 {
3746 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3747 
3748 	/* Crossing a page boundary? */
3749 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3750 		int rc, now;
3751 
3752 		now = -addr & ~PAGE_MASK;
3753 		rc = emulator_read_write_onepage(addr, val, now, exception,
3754 						 vcpu, ops);
3755 
3756 		if (rc != X86EMUL_CONTINUE)
3757 			return rc;
3758 		addr += now;
3759 		val += now;
3760 		bytes -= now;
3761 	}
3762 
3763 	return emulator_read_write_onepage(addr, val, bytes, exception,
3764 					   vcpu, ops);
3765 }
3766 
3767 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3768 				  unsigned long addr,
3769 				  void *val,
3770 				  unsigned int bytes,
3771 				  struct x86_exception *exception)
3772 {
3773 	return emulator_read_write(ctxt, addr, val, bytes,
3774 				   exception, &read_emultor);
3775 }
3776 
3777 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3778 			    unsigned long addr,
3779 			    const void *val,
3780 			    unsigned int bytes,
3781 			    struct x86_exception *exception)
3782 {
3783 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
3784 				   exception, &write_emultor);
3785 }
3786 
3787 #define CMPXCHG_TYPE(t, ptr, old, new) \
3788 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3789 
3790 #ifdef CONFIG_X86_64
3791 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3792 #else
3793 #  define CMPXCHG64(ptr, old, new) \
3794 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3795 #endif
3796 
3797 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3798 				     unsigned long addr,
3799 				     const void *old,
3800 				     const void *new,
3801 				     unsigned int bytes,
3802 				     struct x86_exception *exception)
3803 {
3804 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3805 	gpa_t gpa;
3806 	struct page *page;
3807 	char *kaddr;
3808 	bool exchanged;
3809 
3810 	/* guests cmpxchg8b have to be emulated atomically */
3811 	if (bytes > 8 || (bytes & (bytes - 1)))
3812 		goto emul_write;
3813 
3814 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3815 
3816 	if (gpa == UNMAPPED_GVA ||
3817 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3818 		goto emul_write;
3819 
3820 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3821 		goto emul_write;
3822 
3823 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3824 	if (is_error_page(page)) {
3825 		kvm_release_page_clean(page);
3826 		goto emul_write;
3827 	}
3828 
3829 	kaddr = kmap_atomic(page, KM_USER0);
3830 	kaddr += offset_in_page(gpa);
3831 	switch (bytes) {
3832 	case 1:
3833 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3834 		break;
3835 	case 2:
3836 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3837 		break;
3838 	case 4:
3839 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3840 		break;
3841 	case 8:
3842 		exchanged = CMPXCHG64(kaddr, old, new);
3843 		break;
3844 	default:
3845 		BUG();
3846 	}
3847 	kunmap_atomic(kaddr, KM_USER0);
3848 	kvm_release_page_dirty(page);
3849 
3850 	if (!exchanged)
3851 		return X86EMUL_CMPXCHG_FAILED;
3852 
3853 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3854 
3855 	return X86EMUL_CONTINUE;
3856 
3857 emul_write:
3858 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3859 
3860 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3861 }
3862 
3863 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3864 {
3865 	/* TODO: String I/O for in kernel device */
3866 	int r;
3867 
3868 	if (vcpu->arch.pio.in)
3869 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3870 				    vcpu->arch.pio.size, pd);
3871 	else
3872 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3873 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
3874 				     pd);
3875 	return r;
3876 }
3877 
3878 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
3879 			       unsigned short port, void *val,
3880 			       unsigned int count, bool in)
3881 {
3882 	trace_kvm_pio(!in, port, size, count);
3883 
3884 	vcpu->arch.pio.port = port;
3885 	vcpu->arch.pio.in = in;
3886 	vcpu->arch.pio.count  = count;
3887 	vcpu->arch.pio.size = size;
3888 
3889 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3890 		vcpu->arch.pio.count = 0;
3891 		return 1;
3892 	}
3893 
3894 	vcpu->run->exit_reason = KVM_EXIT_IO;
3895 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3896 	vcpu->run->io.size = size;
3897 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3898 	vcpu->run->io.count = count;
3899 	vcpu->run->io.port = port;
3900 
3901 	return 0;
3902 }
3903 
3904 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
3905 				    int size, unsigned short port, void *val,
3906 				    unsigned int count)
3907 {
3908 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3909 	int ret;
3910 
3911 	if (vcpu->arch.pio.count)
3912 		goto data_avail;
3913 
3914 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
3915 	if (ret) {
3916 data_avail:
3917 		memcpy(val, vcpu->arch.pio_data, size * count);
3918 		vcpu->arch.pio.count = 0;
3919 		return 1;
3920 	}
3921 
3922 	return 0;
3923 }
3924 
3925 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
3926 				     int size, unsigned short port,
3927 				     const void *val, unsigned int count)
3928 {
3929 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3930 
3931 	memcpy(vcpu->arch.pio_data, val, size * count);
3932 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
3933 }
3934 
3935 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3936 {
3937 	return kvm_x86_ops->get_segment_base(vcpu, seg);
3938 }
3939 
3940 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
3941 {
3942 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
3943 }
3944 
3945 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3946 {
3947 	if (!need_emulate_wbinvd(vcpu))
3948 		return X86EMUL_CONTINUE;
3949 
3950 	if (kvm_x86_ops->has_wbinvd_exit()) {
3951 		int cpu = get_cpu();
3952 
3953 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3954 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3955 				wbinvd_ipi, NULL, 1);
3956 		put_cpu();
3957 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3958 	} else
3959 		wbinvd();
3960 	return X86EMUL_CONTINUE;
3961 }
3962 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3963 
3964 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
3965 {
3966 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
3967 }
3968 
3969 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3970 {
3971 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
3972 }
3973 
3974 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3975 {
3976 
3977 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
3978 }
3979 
3980 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3981 {
3982 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3983 }
3984 
3985 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
3986 {
3987 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3988 	unsigned long value;
3989 
3990 	switch (cr) {
3991 	case 0:
3992 		value = kvm_read_cr0(vcpu);
3993 		break;
3994 	case 2:
3995 		value = vcpu->arch.cr2;
3996 		break;
3997 	case 3:
3998 		value = kvm_read_cr3(vcpu);
3999 		break;
4000 	case 4:
4001 		value = kvm_read_cr4(vcpu);
4002 		break;
4003 	case 8:
4004 		value = kvm_get_cr8(vcpu);
4005 		break;
4006 	default:
4007 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4008 		return 0;
4009 	}
4010 
4011 	return value;
4012 }
4013 
4014 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4015 {
4016 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4017 	int res = 0;
4018 
4019 	switch (cr) {
4020 	case 0:
4021 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4022 		break;
4023 	case 2:
4024 		vcpu->arch.cr2 = val;
4025 		break;
4026 	case 3:
4027 		res = kvm_set_cr3(vcpu, val);
4028 		break;
4029 	case 4:
4030 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4031 		break;
4032 	case 8:
4033 		res = kvm_set_cr8(vcpu, val);
4034 		break;
4035 	default:
4036 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4037 		res = -1;
4038 	}
4039 
4040 	return res;
4041 }
4042 
4043 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4044 {
4045 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4046 }
4047 
4048 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4049 {
4050 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4051 }
4052 
4053 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4054 {
4055 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4056 }
4057 
4058 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4059 {
4060 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4061 }
4062 
4063 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4064 {
4065 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4066 }
4067 
4068 static unsigned long emulator_get_cached_segment_base(
4069 	struct x86_emulate_ctxt *ctxt, int seg)
4070 {
4071 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4072 }
4073 
4074 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4075 				 struct desc_struct *desc, u32 *base3,
4076 				 int seg)
4077 {
4078 	struct kvm_segment var;
4079 
4080 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4081 	*selector = var.selector;
4082 
4083 	if (var.unusable)
4084 		return false;
4085 
4086 	if (var.g)
4087 		var.limit >>= 12;
4088 	set_desc_limit(desc, var.limit);
4089 	set_desc_base(desc, (unsigned long)var.base);
4090 #ifdef CONFIG_X86_64
4091 	if (base3)
4092 		*base3 = var.base >> 32;
4093 #endif
4094 	desc->type = var.type;
4095 	desc->s = var.s;
4096 	desc->dpl = var.dpl;
4097 	desc->p = var.present;
4098 	desc->avl = var.avl;
4099 	desc->l = var.l;
4100 	desc->d = var.db;
4101 	desc->g = var.g;
4102 
4103 	return true;
4104 }
4105 
4106 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4107 				 struct desc_struct *desc, u32 base3,
4108 				 int seg)
4109 {
4110 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4111 	struct kvm_segment var;
4112 
4113 	var.selector = selector;
4114 	var.base = get_desc_base(desc);
4115 #ifdef CONFIG_X86_64
4116 	var.base |= ((u64)base3) << 32;
4117 #endif
4118 	var.limit = get_desc_limit(desc);
4119 	if (desc->g)
4120 		var.limit = (var.limit << 12) | 0xfff;
4121 	var.type = desc->type;
4122 	var.present = desc->p;
4123 	var.dpl = desc->dpl;
4124 	var.db = desc->d;
4125 	var.s = desc->s;
4126 	var.l = desc->l;
4127 	var.g = desc->g;
4128 	var.avl = desc->avl;
4129 	var.present = desc->p;
4130 	var.unusable = !var.present;
4131 	var.padding = 0;
4132 
4133 	kvm_set_segment(vcpu, &var, seg);
4134 	return;
4135 }
4136 
4137 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4138 			    u32 msr_index, u64 *pdata)
4139 {
4140 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4141 }
4142 
4143 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4144 			    u32 msr_index, u64 data)
4145 {
4146 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4147 }
4148 
4149 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4150 			     u32 pmc, u64 *pdata)
4151 {
4152 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4153 }
4154 
4155 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4156 {
4157 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4158 }
4159 
4160 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4161 {
4162 	preempt_disable();
4163 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4164 	/*
4165 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4166 	 * so it may be clear at this point.
4167 	 */
4168 	clts();
4169 }
4170 
4171 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4172 {
4173 	preempt_enable();
4174 }
4175 
4176 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4177 			      struct x86_instruction_info *info,
4178 			      enum x86_intercept_stage stage)
4179 {
4180 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4181 }
4182 
4183 static struct x86_emulate_ops emulate_ops = {
4184 	.read_std            = kvm_read_guest_virt_system,
4185 	.write_std           = kvm_write_guest_virt_system,
4186 	.fetch               = kvm_fetch_guest_virt,
4187 	.read_emulated       = emulator_read_emulated,
4188 	.write_emulated      = emulator_write_emulated,
4189 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4190 	.invlpg              = emulator_invlpg,
4191 	.pio_in_emulated     = emulator_pio_in_emulated,
4192 	.pio_out_emulated    = emulator_pio_out_emulated,
4193 	.get_segment         = emulator_get_segment,
4194 	.set_segment         = emulator_set_segment,
4195 	.get_cached_segment_base = emulator_get_cached_segment_base,
4196 	.get_gdt             = emulator_get_gdt,
4197 	.get_idt	     = emulator_get_idt,
4198 	.set_gdt             = emulator_set_gdt,
4199 	.set_idt	     = emulator_set_idt,
4200 	.get_cr              = emulator_get_cr,
4201 	.set_cr              = emulator_set_cr,
4202 	.cpl                 = emulator_get_cpl,
4203 	.get_dr              = emulator_get_dr,
4204 	.set_dr              = emulator_set_dr,
4205 	.set_msr             = emulator_set_msr,
4206 	.get_msr             = emulator_get_msr,
4207 	.read_pmc            = emulator_read_pmc,
4208 	.halt                = emulator_halt,
4209 	.wbinvd              = emulator_wbinvd,
4210 	.fix_hypercall       = emulator_fix_hypercall,
4211 	.get_fpu             = emulator_get_fpu,
4212 	.put_fpu             = emulator_put_fpu,
4213 	.intercept           = emulator_intercept,
4214 };
4215 
4216 static void cache_all_regs(struct kvm_vcpu *vcpu)
4217 {
4218 	kvm_register_read(vcpu, VCPU_REGS_RAX);
4219 	kvm_register_read(vcpu, VCPU_REGS_RSP);
4220 	kvm_register_read(vcpu, VCPU_REGS_RIP);
4221 	vcpu->arch.regs_dirty = ~0;
4222 }
4223 
4224 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4225 {
4226 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4227 	/*
4228 	 * an sti; sti; sequence only disable interrupts for the first
4229 	 * instruction. So, if the last instruction, be it emulated or
4230 	 * not, left the system with the INT_STI flag enabled, it
4231 	 * means that the last instruction is an sti. We should not
4232 	 * leave the flag on in this case. The same goes for mov ss
4233 	 */
4234 	if (!(int_shadow & mask))
4235 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4236 }
4237 
4238 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4239 {
4240 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4241 	if (ctxt->exception.vector == PF_VECTOR)
4242 		kvm_propagate_fault(vcpu, &ctxt->exception);
4243 	else if (ctxt->exception.error_code_valid)
4244 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4245 				      ctxt->exception.error_code);
4246 	else
4247 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4248 }
4249 
4250 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4251 			      const unsigned long *regs)
4252 {
4253 	memset(&ctxt->twobyte, 0,
4254 	       (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4255 	memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4256 
4257 	ctxt->fetch.start = 0;
4258 	ctxt->fetch.end = 0;
4259 	ctxt->io_read.pos = 0;
4260 	ctxt->io_read.end = 0;
4261 	ctxt->mem_read.pos = 0;
4262 	ctxt->mem_read.end = 0;
4263 }
4264 
4265 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4266 {
4267 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4268 	int cs_db, cs_l;
4269 
4270 	/*
4271 	 * TODO: fix emulate.c to use guest_read/write_register
4272 	 * instead of direct ->regs accesses, can save hundred cycles
4273 	 * on Intel for instructions that don't read/change RSP, for
4274 	 * for example.
4275 	 */
4276 	cache_all_regs(vcpu);
4277 
4278 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4279 
4280 	ctxt->eflags = kvm_get_rflags(vcpu);
4281 	ctxt->eip = kvm_rip_read(vcpu);
4282 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4283 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4284 		     cs_l				? X86EMUL_MODE_PROT64 :
4285 		     cs_db				? X86EMUL_MODE_PROT32 :
4286 							  X86EMUL_MODE_PROT16;
4287 	ctxt->guest_mode = is_guest_mode(vcpu);
4288 
4289 	init_decode_cache(ctxt, vcpu->arch.regs);
4290 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4291 }
4292 
4293 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4294 {
4295 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4296 	int ret;
4297 
4298 	init_emulate_ctxt(vcpu);
4299 
4300 	ctxt->op_bytes = 2;
4301 	ctxt->ad_bytes = 2;
4302 	ctxt->_eip = ctxt->eip + inc_eip;
4303 	ret = emulate_int_real(ctxt, irq);
4304 
4305 	if (ret != X86EMUL_CONTINUE)
4306 		return EMULATE_FAIL;
4307 
4308 	ctxt->eip = ctxt->_eip;
4309 	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4310 	kvm_rip_write(vcpu, ctxt->eip);
4311 	kvm_set_rflags(vcpu, ctxt->eflags);
4312 
4313 	if (irq == NMI_VECTOR)
4314 		vcpu->arch.nmi_pending = 0;
4315 	else
4316 		vcpu->arch.interrupt.pending = false;
4317 
4318 	return EMULATE_DONE;
4319 }
4320 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4321 
4322 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4323 {
4324 	int r = EMULATE_DONE;
4325 
4326 	++vcpu->stat.insn_emulation_fail;
4327 	trace_kvm_emulate_insn_failed(vcpu);
4328 	if (!is_guest_mode(vcpu)) {
4329 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4330 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4331 		vcpu->run->internal.ndata = 0;
4332 		r = EMULATE_FAIL;
4333 	}
4334 	kvm_queue_exception(vcpu, UD_VECTOR);
4335 
4336 	return r;
4337 }
4338 
4339 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4340 {
4341 	gpa_t gpa;
4342 
4343 	if (tdp_enabled)
4344 		return false;
4345 
4346 	/*
4347 	 * if emulation was due to access to shadowed page table
4348 	 * and it failed try to unshadow page and re-entetr the
4349 	 * guest to let CPU execute the instruction.
4350 	 */
4351 	if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4352 		return true;
4353 
4354 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4355 
4356 	if (gpa == UNMAPPED_GVA)
4357 		return true; /* let cpu generate fault */
4358 
4359 	if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4360 		return true;
4361 
4362 	return false;
4363 }
4364 
4365 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4366 			      unsigned long cr2,  int emulation_type)
4367 {
4368 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4369 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4370 
4371 	last_retry_eip = vcpu->arch.last_retry_eip;
4372 	last_retry_addr = vcpu->arch.last_retry_addr;
4373 
4374 	/*
4375 	 * If the emulation is caused by #PF and it is non-page_table
4376 	 * writing instruction, it means the VM-EXIT is caused by shadow
4377 	 * page protected, we can zap the shadow page and retry this
4378 	 * instruction directly.
4379 	 *
4380 	 * Note: if the guest uses a non-page-table modifying instruction
4381 	 * on the PDE that points to the instruction, then we will unmap
4382 	 * the instruction and go to an infinite loop. So, we cache the
4383 	 * last retried eip and the last fault address, if we meet the eip
4384 	 * and the address again, we can break out of the potential infinite
4385 	 * loop.
4386 	 */
4387 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4388 
4389 	if (!(emulation_type & EMULTYPE_RETRY))
4390 		return false;
4391 
4392 	if (x86_page_table_writing_insn(ctxt))
4393 		return false;
4394 
4395 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4396 		return false;
4397 
4398 	vcpu->arch.last_retry_eip = ctxt->eip;
4399 	vcpu->arch.last_retry_addr = cr2;
4400 
4401 	if (!vcpu->arch.mmu.direct_map)
4402 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4403 
4404 	kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4405 
4406 	return true;
4407 }
4408 
4409 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4410 			    unsigned long cr2,
4411 			    int emulation_type,
4412 			    void *insn,
4413 			    int insn_len)
4414 {
4415 	int r;
4416 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4417 	bool writeback = true;
4418 
4419 	kvm_clear_exception_queue(vcpu);
4420 
4421 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4422 		init_emulate_ctxt(vcpu);
4423 		ctxt->interruptibility = 0;
4424 		ctxt->have_exception = false;
4425 		ctxt->perm_ok = false;
4426 
4427 		ctxt->only_vendor_specific_insn
4428 			= emulation_type & EMULTYPE_TRAP_UD;
4429 
4430 		r = x86_decode_insn(ctxt, insn, insn_len);
4431 
4432 		trace_kvm_emulate_insn_start(vcpu);
4433 		++vcpu->stat.insn_emulation;
4434 		if (r != EMULATION_OK)  {
4435 			if (emulation_type & EMULTYPE_TRAP_UD)
4436 				return EMULATE_FAIL;
4437 			if (reexecute_instruction(vcpu, cr2))
4438 				return EMULATE_DONE;
4439 			if (emulation_type & EMULTYPE_SKIP)
4440 				return EMULATE_FAIL;
4441 			return handle_emulation_failure(vcpu);
4442 		}
4443 	}
4444 
4445 	if (emulation_type & EMULTYPE_SKIP) {
4446 		kvm_rip_write(vcpu, ctxt->_eip);
4447 		return EMULATE_DONE;
4448 	}
4449 
4450 	if (retry_instruction(ctxt, cr2, emulation_type))
4451 		return EMULATE_DONE;
4452 
4453 	/* this is needed for vmware backdoor interface to work since it
4454 	   changes registers values  during IO operation */
4455 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4456 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4457 		memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4458 	}
4459 
4460 restart:
4461 	r = x86_emulate_insn(ctxt);
4462 
4463 	if (r == EMULATION_INTERCEPTED)
4464 		return EMULATE_DONE;
4465 
4466 	if (r == EMULATION_FAILED) {
4467 		if (reexecute_instruction(vcpu, cr2))
4468 			return EMULATE_DONE;
4469 
4470 		return handle_emulation_failure(vcpu);
4471 	}
4472 
4473 	if (ctxt->have_exception) {
4474 		inject_emulated_exception(vcpu);
4475 		r = EMULATE_DONE;
4476 	} else if (vcpu->arch.pio.count) {
4477 		if (!vcpu->arch.pio.in)
4478 			vcpu->arch.pio.count = 0;
4479 		else
4480 			writeback = false;
4481 		r = EMULATE_DO_MMIO;
4482 	} else if (vcpu->mmio_needed) {
4483 		if (!vcpu->mmio_is_write)
4484 			writeback = false;
4485 		r = EMULATE_DO_MMIO;
4486 	} else if (r == EMULATION_RESTART)
4487 		goto restart;
4488 	else
4489 		r = EMULATE_DONE;
4490 
4491 	if (writeback) {
4492 		toggle_interruptibility(vcpu, ctxt->interruptibility);
4493 		kvm_set_rflags(vcpu, ctxt->eflags);
4494 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4495 		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4496 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4497 		kvm_rip_write(vcpu, ctxt->eip);
4498 	} else
4499 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4500 
4501 	return r;
4502 }
4503 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4504 
4505 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4506 {
4507 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4508 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4509 					    size, port, &val, 1);
4510 	/* do not return to emulator after return from userspace */
4511 	vcpu->arch.pio.count = 0;
4512 	return ret;
4513 }
4514 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4515 
4516 static void tsc_bad(void *info)
4517 {
4518 	__this_cpu_write(cpu_tsc_khz, 0);
4519 }
4520 
4521 static void tsc_khz_changed(void *data)
4522 {
4523 	struct cpufreq_freqs *freq = data;
4524 	unsigned long khz = 0;
4525 
4526 	if (data)
4527 		khz = freq->new;
4528 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4529 		khz = cpufreq_quick_get(raw_smp_processor_id());
4530 	if (!khz)
4531 		khz = tsc_khz;
4532 	__this_cpu_write(cpu_tsc_khz, khz);
4533 }
4534 
4535 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4536 				     void *data)
4537 {
4538 	struct cpufreq_freqs *freq = data;
4539 	struct kvm *kvm;
4540 	struct kvm_vcpu *vcpu;
4541 	int i, send_ipi = 0;
4542 
4543 	/*
4544 	 * We allow guests to temporarily run on slowing clocks,
4545 	 * provided we notify them after, or to run on accelerating
4546 	 * clocks, provided we notify them before.  Thus time never
4547 	 * goes backwards.
4548 	 *
4549 	 * However, we have a problem.  We can't atomically update
4550 	 * the frequency of a given CPU from this function; it is
4551 	 * merely a notifier, which can be called from any CPU.
4552 	 * Changing the TSC frequency at arbitrary points in time
4553 	 * requires a recomputation of local variables related to
4554 	 * the TSC for each VCPU.  We must flag these local variables
4555 	 * to be updated and be sure the update takes place with the
4556 	 * new frequency before any guests proceed.
4557 	 *
4558 	 * Unfortunately, the combination of hotplug CPU and frequency
4559 	 * change creates an intractable locking scenario; the order
4560 	 * of when these callouts happen is undefined with respect to
4561 	 * CPU hotplug, and they can race with each other.  As such,
4562 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4563 	 * undefined; you can actually have a CPU frequency change take
4564 	 * place in between the computation of X and the setting of the
4565 	 * variable.  To protect against this problem, all updates of
4566 	 * the per_cpu tsc_khz variable are done in an interrupt
4567 	 * protected IPI, and all callers wishing to update the value
4568 	 * must wait for a synchronous IPI to complete (which is trivial
4569 	 * if the caller is on the CPU already).  This establishes the
4570 	 * necessary total order on variable updates.
4571 	 *
4572 	 * Note that because a guest time update may take place
4573 	 * anytime after the setting of the VCPU's request bit, the
4574 	 * correct TSC value must be set before the request.  However,
4575 	 * to ensure the update actually makes it to any guest which
4576 	 * starts running in hardware virtualization between the set
4577 	 * and the acquisition of the spinlock, we must also ping the
4578 	 * CPU after setting the request bit.
4579 	 *
4580 	 */
4581 
4582 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4583 		return 0;
4584 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4585 		return 0;
4586 
4587 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4588 
4589 	raw_spin_lock(&kvm_lock);
4590 	list_for_each_entry(kvm, &vm_list, vm_list) {
4591 		kvm_for_each_vcpu(i, vcpu, kvm) {
4592 			if (vcpu->cpu != freq->cpu)
4593 				continue;
4594 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4595 			if (vcpu->cpu != smp_processor_id())
4596 				send_ipi = 1;
4597 		}
4598 	}
4599 	raw_spin_unlock(&kvm_lock);
4600 
4601 	if (freq->old < freq->new && send_ipi) {
4602 		/*
4603 		 * We upscale the frequency.  Must make the guest
4604 		 * doesn't see old kvmclock values while running with
4605 		 * the new frequency, otherwise we risk the guest sees
4606 		 * time go backwards.
4607 		 *
4608 		 * In case we update the frequency for another cpu
4609 		 * (which might be in guest context) send an interrupt
4610 		 * to kick the cpu out of guest context.  Next time
4611 		 * guest context is entered kvmclock will be updated,
4612 		 * so the guest will not see stale values.
4613 		 */
4614 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4615 	}
4616 	return 0;
4617 }
4618 
4619 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4620 	.notifier_call  = kvmclock_cpufreq_notifier
4621 };
4622 
4623 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4624 					unsigned long action, void *hcpu)
4625 {
4626 	unsigned int cpu = (unsigned long)hcpu;
4627 
4628 	switch (action) {
4629 		case CPU_ONLINE:
4630 		case CPU_DOWN_FAILED:
4631 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4632 			break;
4633 		case CPU_DOWN_PREPARE:
4634 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
4635 			break;
4636 	}
4637 	return NOTIFY_OK;
4638 }
4639 
4640 static struct notifier_block kvmclock_cpu_notifier_block = {
4641 	.notifier_call  = kvmclock_cpu_notifier,
4642 	.priority = -INT_MAX
4643 };
4644 
4645 static void kvm_timer_init(void)
4646 {
4647 	int cpu;
4648 
4649 	max_tsc_khz = tsc_khz;
4650 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4651 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4652 #ifdef CONFIG_CPU_FREQ
4653 		struct cpufreq_policy policy;
4654 		memset(&policy, 0, sizeof(policy));
4655 		cpu = get_cpu();
4656 		cpufreq_get_policy(&policy, cpu);
4657 		if (policy.cpuinfo.max_freq)
4658 			max_tsc_khz = policy.cpuinfo.max_freq;
4659 		put_cpu();
4660 #endif
4661 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4662 					  CPUFREQ_TRANSITION_NOTIFIER);
4663 	}
4664 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4665 	for_each_online_cpu(cpu)
4666 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4667 }
4668 
4669 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4670 
4671 int kvm_is_in_guest(void)
4672 {
4673 	return __this_cpu_read(current_vcpu) != NULL;
4674 }
4675 
4676 static int kvm_is_user_mode(void)
4677 {
4678 	int user_mode = 3;
4679 
4680 	if (__this_cpu_read(current_vcpu))
4681 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4682 
4683 	return user_mode != 0;
4684 }
4685 
4686 static unsigned long kvm_get_guest_ip(void)
4687 {
4688 	unsigned long ip = 0;
4689 
4690 	if (__this_cpu_read(current_vcpu))
4691 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4692 
4693 	return ip;
4694 }
4695 
4696 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4697 	.is_in_guest		= kvm_is_in_guest,
4698 	.is_user_mode		= kvm_is_user_mode,
4699 	.get_guest_ip		= kvm_get_guest_ip,
4700 };
4701 
4702 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4703 {
4704 	__this_cpu_write(current_vcpu, vcpu);
4705 }
4706 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4707 
4708 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4709 {
4710 	__this_cpu_write(current_vcpu, NULL);
4711 }
4712 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4713 
4714 static void kvm_set_mmio_spte_mask(void)
4715 {
4716 	u64 mask;
4717 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
4718 
4719 	/*
4720 	 * Set the reserved bits and the present bit of an paging-structure
4721 	 * entry to generate page fault with PFER.RSV = 1.
4722 	 */
4723 	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4724 	mask |= 1ull;
4725 
4726 #ifdef CONFIG_X86_64
4727 	/*
4728 	 * If reserved bit is not supported, clear the present bit to disable
4729 	 * mmio page fault.
4730 	 */
4731 	if (maxphyaddr == 52)
4732 		mask &= ~1ull;
4733 #endif
4734 
4735 	kvm_mmu_set_mmio_spte_mask(mask);
4736 }
4737 
4738 int kvm_arch_init(void *opaque)
4739 {
4740 	int r;
4741 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4742 
4743 	if (kvm_x86_ops) {
4744 		printk(KERN_ERR "kvm: already loaded the other module\n");
4745 		r = -EEXIST;
4746 		goto out;
4747 	}
4748 
4749 	if (!ops->cpu_has_kvm_support()) {
4750 		printk(KERN_ERR "kvm: no hardware support\n");
4751 		r = -EOPNOTSUPP;
4752 		goto out;
4753 	}
4754 	if (ops->disabled_by_bios()) {
4755 		printk(KERN_ERR "kvm: disabled by bios\n");
4756 		r = -EOPNOTSUPP;
4757 		goto out;
4758 	}
4759 
4760 	r = kvm_mmu_module_init();
4761 	if (r)
4762 		goto out;
4763 
4764 	kvm_set_mmio_spte_mask();
4765 	kvm_init_msr_list();
4766 
4767 	kvm_x86_ops = ops;
4768 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4769 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
4770 
4771 	kvm_timer_init();
4772 
4773 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
4774 
4775 	if (cpu_has_xsave)
4776 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4777 
4778 	return 0;
4779 
4780 out:
4781 	return r;
4782 }
4783 
4784 void kvm_arch_exit(void)
4785 {
4786 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4787 
4788 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4789 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4790 					    CPUFREQ_TRANSITION_NOTIFIER);
4791 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4792 	kvm_x86_ops = NULL;
4793 	kvm_mmu_module_exit();
4794 }
4795 
4796 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4797 {
4798 	++vcpu->stat.halt_exits;
4799 	if (irqchip_in_kernel(vcpu->kvm)) {
4800 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4801 		return 1;
4802 	} else {
4803 		vcpu->run->exit_reason = KVM_EXIT_HLT;
4804 		return 0;
4805 	}
4806 }
4807 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4808 
4809 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4810 {
4811 	u64 param, ingpa, outgpa, ret;
4812 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4813 	bool fast, longmode;
4814 	int cs_db, cs_l;
4815 
4816 	/*
4817 	 * hypercall generates UD from non zero cpl and real mode
4818 	 * per HYPER-V spec
4819 	 */
4820 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4821 		kvm_queue_exception(vcpu, UD_VECTOR);
4822 		return 0;
4823 	}
4824 
4825 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4826 	longmode = is_long_mode(vcpu) && cs_l == 1;
4827 
4828 	if (!longmode) {
4829 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4830 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4831 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4832 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4833 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4834 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4835 	}
4836 #ifdef CONFIG_X86_64
4837 	else {
4838 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4839 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4840 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4841 	}
4842 #endif
4843 
4844 	code = param & 0xffff;
4845 	fast = (param >> 16) & 0x1;
4846 	rep_cnt = (param >> 32) & 0xfff;
4847 	rep_idx = (param >> 48) & 0xfff;
4848 
4849 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4850 
4851 	switch (code) {
4852 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4853 		kvm_vcpu_on_spin(vcpu);
4854 		break;
4855 	default:
4856 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
4857 		break;
4858 	}
4859 
4860 	ret = res | (((u64)rep_done & 0xfff) << 32);
4861 	if (longmode) {
4862 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4863 	} else {
4864 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4865 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4866 	}
4867 
4868 	return 1;
4869 }
4870 
4871 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4872 {
4873 	unsigned long nr, a0, a1, a2, a3, ret;
4874 	int r = 1;
4875 
4876 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
4877 		return kvm_hv_hypercall(vcpu);
4878 
4879 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4880 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4881 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4882 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4883 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4884 
4885 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
4886 
4887 	if (!is_long_mode(vcpu)) {
4888 		nr &= 0xFFFFFFFF;
4889 		a0 &= 0xFFFFFFFF;
4890 		a1 &= 0xFFFFFFFF;
4891 		a2 &= 0xFFFFFFFF;
4892 		a3 &= 0xFFFFFFFF;
4893 	}
4894 
4895 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4896 		ret = -KVM_EPERM;
4897 		goto out;
4898 	}
4899 
4900 	switch (nr) {
4901 	case KVM_HC_VAPIC_POLL_IRQ:
4902 		ret = 0;
4903 		break;
4904 	default:
4905 		ret = -KVM_ENOSYS;
4906 		break;
4907 	}
4908 out:
4909 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4910 	++vcpu->stat.hypercalls;
4911 	return r;
4912 }
4913 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4914 
4915 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
4916 {
4917 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4918 	char instruction[3];
4919 	unsigned long rip = kvm_rip_read(vcpu);
4920 
4921 	/*
4922 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
4923 	 * to ensure that the updated hypercall appears atomically across all
4924 	 * VCPUs.
4925 	 */
4926 	kvm_mmu_zap_all(vcpu->kvm);
4927 
4928 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
4929 
4930 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
4931 }
4932 
4933 /*
4934  * Check if userspace requested an interrupt window, and that the
4935  * interrupt window is open.
4936  *
4937  * No need to exit to userspace if we already have an interrupt queued.
4938  */
4939 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4940 {
4941 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4942 		vcpu->run->request_interrupt_window &&
4943 		kvm_arch_interrupt_allowed(vcpu));
4944 }
4945 
4946 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4947 {
4948 	struct kvm_run *kvm_run = vcpu->run;
4949 
4950 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4951 	kvm_run->cr8 = kvm_get_cr8(vcpu);
4952 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
4953 	if (irqchip_in_kernel(vcpu->kvm))
4954 		kvm_run->ready_for_interrupt_injection = 1;
4955 	else
4956 		kvm_run->ready_for_interrupt_injection =
4957 			kvm_arch_interrupt_allowed(vcpu) &&
4958 			!kvm_cpu_has_interrupt(vcpu) &&
4959 			!kvm_event_needs_reinjection(vcpu);
4960 }
4961 
4962 static void vapic_enter(struct kvm_vcpu *vcpu)
4963 {
4964 	struct kvm_lapic *apic = vcpu->arch.apic;
4965 	struct page *page;
4966 
4967 	if (!apic || !apic->vapic_addr)
4968 		return;
4969 
4970 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4971 
4972 	vcpu->arch.apic->vapic_page = page;
4973 }
4974 
4975 static void vapic_exit(struct kvm_vcpu *vcpu)
4976 {
4977 	struct kvm_lapic *apic = vcpu->arch.apic;
4978 	int idx;
4979 
4980 	if (!apic || !apic->vapic_addr)
4981 		return;
4982 
4983 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4984 	kvm_release_page_dirty(apic->vapic_page);
4985 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4986 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4987 }
4988 
4989 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4990 {
4991 	int max_irr, tpr;
4992 
4993 	if (!kvm_x86_ops->update_cr8_intercept)
4994 		return;
4995 
4996 	if (!vcpu->arch.apic)
4997 		return;
4998 
4999 	if (!vcpu->arch.apic->vapic_addr)
5000 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5001 	else
5002 		max_irr = -1;
5003 
5004 	if (max_irr != -1)
5005 		max_irr >>= 4;
5006 
5007 	tpr = kvm_lapic_get_cr8(vcpu);
5008 
5009 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5010 }
5011 
5012 static void inject_pending_event(struct kvm_vcpu *vcpu)
5013 {
5014 	/* try to reinject previous events if any */
5015 	if (vcpu->arch.exception.pending) {
5016 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5017 					vcpu->arch.exception.has_error_code,
5018 					vcpu->arch.exception.error_code);
5019 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5020 					  vcpu->arch.exception.has_error_code,
5021 					  vcpu->arch.exception.error_code,
5022 					  vcpu->arch.exception.reinject);
5023 		return;
5024 	}
5025 
5026 	if (vcpu->arch.nmi_injected) {
5027 		kvm_x86_ops->set_nmi(vcpu);
5028 		return;
5029 	}
5030 
5031 	if (vcpu->arch.interrupt.pending) {
5032 		kvm_x86_ops->set_irq(vcpu);
5033 		return;
5034 	}
5035 
5036 	/* try to inject new event if pending */
5037 	if (vcpu->arch.nmi_pending) {
5038 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5039 			--vcpu->arch.nmi_pending;
5040 			vcpu->arch.nmi_injected = true;
5041 			kvm_x86_ops->set_nmi(vcpu);
5042 		}
5043 	} else if (kvm_cpu_has_interrupt(vcpu)) {
5044 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5045 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5046 					    false);
5047 			kvm_x86_ops->set_irq(vcpu);
5048 		}
5049 	}
5050 }
5051 
5052 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5053 {
5054 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5055 			!vcpu->guest_xcr0_loaded) {
5056 		/* kvm_set_xcr() also depends on this */
5057 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5058 		vcpu->guest_xcr0_loaded = 1;
5059 	}
5060 }
5061 
5062 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5063 {
5064 	if (vcpu->guest_xcr0_loaded) {
5065 		if (vcpu->arch.xcr0 != host_xcr0)
5066 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5067 		vcpu->guest_xcr0_loaded = 0;
5068 	}
5069 }
5070 
5071 static void process_nmi(struct kvm_vcpu *vcpu)
5072 {
5073 	unsigned limit = 2;
5074 
5075 	/*
5076 	 * x86 is limited to one NMI running, and one NMI pending after it.
5077 	 * If an NMI is already in progress, limit further NMIs to just one.
5078 	 * Otherwise, allow two (and we'll inject the first one immediately).
5079 	 */
5080 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5081 		limit = 1;
5082 
5083 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5084 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5085 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5086 }
5087 
5088 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5089 {
5090 	int r;
5091 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5092 		vcpu->run->request_interrupt_window;
5093 	bool req_immediate_exit = 0;
5094 
5095 	if (vcpu->requests) {
5096 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5097 			kvm_mmu_unload(vcpu);
5098 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5099 			__kvm_migrate_timers(vcpu);
5100 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5101 			r = kvm_guest_time_update(vcpu);
5102 			if (unlikely(r))
5103 				goto out;
5104 		}
5105 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5106 			kvm_mmu_sync_roots(vcpu);
5107 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5108 			kvm_x86_ops->tlb_flush(vcpu);
5109 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5110 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5111 			r = 0;
5112 			goto out;
5113 		}
5114 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5115 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5116 			r = 0;
5117 			goto out;
5118 		}
5119 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5120 			vcpu->fpu_active = 0;
5121 			kvm_x86_ops->fpu_deactivate(vcpu);
5122 		}
5123 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5124 			/* Page is swapped out. Do synthetic halt */
5125 			vcpu->arch.apf.halted = true;
5126 			r = 1;
5127 			goto out;
5128 		}
5129 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5130 			record_steal_time(vcpu);
5131 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5132 			process_nmi(vcpu);
5133 		req_immediate_exit =
5134 			kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5135 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5136 			kvm_handle_pmu_event(vcpu);
5137 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5138 			kvm_deliver_pmi(vcpu);
5139 	}
5140 
5141 	r = kvm_mmu_reload(vcpu);
5142 	if (unlikely(r))
5143 		goto out;
5144 
5145 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5146 		inject_pending_event(vcpu);
5147 
5148 		/* enable NMI/IRQ window open exits if needed */
5149 		if (vcpu->arch.nmi_pending)
5150 			kvm_x86_ops->enable_nmi_window(vcpu);
5151 		else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5152 			kvm_x86_ops->enable_irq_window(vcpu);
5153 
5154 		if (kvm_lapic_enabled(vcpu)) {
5155 			update_cr8_intercept(vcpu);
5156 			kvm_lapic_sync_to_vapic(vcpu);
5157 		}
5158 	}
5159 
5160 	preempt_disable();
5161 
5162 	kvm_x86_ops->prepare_guest_switch(vcpu);
5163 	if (vcpu->fpu_active)
5164 		kvm_load_guest_fpu(vcpu);
5165 	kvm_load_guest_xcr0(vcpu);
5166 
5167 	vcpu->mode = IN_GUEST_MODE;
5168 
5169 	/* We should set ->mode before check ->requests,
5170 	 * see the comment in make_all_cpus_request.
5171 	 */
5172 	smp_mb();
5173 
5174 	local_irq_disable();
5175 
5176 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5177 	    || need_resched() || signal_pending(current)) {
5178 		vcpu->mode = OUTSIDE_GUEST_MODE;
5179 		smp_wmb();
5180 		local_irq_enable();
5181 		preempt_enable();
5182 		kvm_x86_ops->cancel_injection(vcpu);
5183 		r = 1;
5184 		goto out;
5185 	}
5186 
5187 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5188 
5189 	if (req_immediate_exit)
5190 		smp_send_reschedule(vcpu->cpu);
5191 
5192 	kvm_guest_enter();
5193 
5194 	if (unlikely(vcpu->arch.switch_db_regs)) {
5195 		set_debugreg(0, 7);
5196 		set_debugreg(vcpu->arch.eff_db[0], 0);
5197 		set_debugreg(vcpu->arch.eff_db[1], 1);
5198 		set_debugreg(vcpu->arch.eff_db[2], 2);
5199 		set_debugreg(vcpu->arch.eff_db[3], 3);
5200 	}
5201 
5202 	trace_kvm_entry(vcpu->vcpu_id);
5203 	kvm_x86_ops->run(vcpu);
5204 
5205 	/*
5206 	 * If the guest has used debug registers, at least dr7
5207 	 * will be disabled while returning to the host.
5208 	 * If we don't have active breakpoints in the host, we don't
5209 	 * care about the messed up debug address registers. But if
5210 	 * we have some of them active, restore the old state.
5211 	 */
5212 	if (hw_breakpoint_active())
5213 		hw_breakpoint_restore();
5214 
5215 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5216 
5217 	vcpu->mode = OUTSIDE_GUEST_MODE;
5218 	smp_wmb();
5219 	local_irq_enable();
5220 
5221 	++vcpu->stat.exits;
5222 
5223 	/*
5224 	 * We must have an instruction between local_irq_enable() and
5225 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5226 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5227 	 * But we need to prevent reordering, hence this barrier():
5228 	 */
5229 	barrier();
5230 
5231 	kvm_guest_exit();
5232 
5233 	preempt_enable();
5234 
5235 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5236 
5237 	/*
5238 	 * Profile KVM exit RIPs:
5239 	 */
5240 	if (unlikely(prof_on == KVM_PROFILING)) {
5241 		unsigned long rip = kvm_rip_read(vcpu);
5242 		profile_hit(KVM_PROFILING, (void *)rip);
5243 	}
5244 
5245 
5246 	kvm_lapic_sync_from_vapic(vcpu);
5247 
5248 	r = kvm_x86_ops->handle_exit(vcpu);
5249 out:
5250 	return r;
5251 }
5252 
5253 
5254 static int __vcpu_run(struct kvm_vcpu *vcpu)
5255 {
5256 	int r;
5257 	struct kvm *kvm = vcpu->kvm;
5258 
5259 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5260 		pr_debug("vcpu %d received sipi with vector # %x\n",
5261 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5262 		kvm_lapic_reset(vcpu);
5263 		r = kvm_arch_vcpu_reset(vcpu);
5264 		if (r)
5265 			return r;
5266 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5267 	}
5268 
5269 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5270 	vapic_enter(vcpu);
5271 
5272 	r = 1;
5273 	while (r > 0) {
5274 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5275 		    !vcpu->arch.apf.halted)
5276 			r = vcpu_enter_guest(vcpu);
5277 		else {
5278 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5279 			kvm_vcpu_block(vcpu);
5280 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5281 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5282 			{
5283 				switch(vcpu->arch.mp_state) {
5284 				case KVM_MP_STATE_HALTED:
5285 					vcpu->arch.mp_state =
5286 						KVM_MP_STATE_RUNNABLE;
5287 				case KVM_MP_STATE_RUNNABLE:
5288 					vcpu->arch.apf.halted = false;
5289 					break;
5290 				case KVM_MP_STATE_SIPI_RECEIVED:
5291 				default:
5292 					r = -EINTR;
5293 					break;
5294 				}
5295 			}
5296 		}
5297 
5298 		if (r <= 0)
5299 			break;
5300 
5301 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5302 		if (kvm_cpu_has_pending_timer(vcpu))
5303 			kvm_inject_pending_timer_irqs(vcpu);
5304 
5305 		if (dm_request_for_irq_injection(vcpu)) {
5306 			r = -EINTR;
5307 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5308 			++vcpu->stat.request_irq_exits;
5309 		}
5310 
5311 		kvm_check_async_pf_completion(vcpu);
5312 
5313 		if (signal_pending(current)) {
5314 			r = -EINTR;
5315 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5316 			++vcpu->stat.signal_exits;
5317 		}
5318 		if (need_resched()) {
5319 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5320 			kvm_resched(vcpu);
5321 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5322 		}
5323 	}
5324 
5325 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5326 
5327 	vapic_exit(vcpu);
5328 
5329 	return r;
5330 }
5331 
5332 static int complete_mmio(struct kvm_vcpu *vcpu)
5333 {
5334 	struct kvm_run *run = vcpu->run;
5335 	int r;
5336 
5337 	if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5338 		return 1;
5339 
5340 	if (vcpu->mmio_needed) {
5341 		vcpu->mmio_needed = 0;
5342 		if (!vcpu->mmio_is_write)
5343 			memcpy(vcpu->mmio_data + vcpu->mmio_index,
5344 			       run->mmio.data, 8);
5345 		vcpu->mmio_index += 8;
5346 		if (vcpu->mmio_index < vcpu->mmio_size) {
5347 			run->exit_reason = KVM_EXIT_MMIO;
5348 			run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5349 			memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5350 			run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5351 			run->mmio.is_write = vcpu->mmio_is_write;
5352 			vcpu->mmio_needed = 1;
5353 			return 0;
5354 		}
5355 		if (vcpu->mmio_is_write)
5356 			return 1;
5357 		vcpu->mmio_read_completed = 1;
5358 	}
5359 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5360 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5361 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5362 	if (r != EMULATE_DONE)
5363 		return 0;
5364 	return 1;
5365 }
5366 
5367 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5368 {
5369 	int r;
5370 	sigset_t sigsaved;
5371 
5372 	if (!tsk_used_math(current) && init_fpu(current))
5373 		return -ENOMEM;
5374 
5375 	if (vcpu->sigset_active)
5376 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5377 
5378 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5379 		kvm_vcpu_block(vcpu);
5380 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5381 		r = -EAGAIN;
5382 		goto out;
5383 	}
5384 
5385 	/* re-sync apic's tpr */
5386 	if (!irqchip_in_kernel(vcpu->kvm)) {
5387 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5388 			r = -EINVAL;
5389 			goto out;
5390 		}
5391 	}
5392 
5393 	r = complete_mmio(vcpu);
5394 	if (r <= 0)
5395 		goto out;
5396 
5397 	r = __vcpu_run(vcpu);
5398 
5399 out:
5400 	post_kvm_run_save(vcpu);
5401 	if (vcpu->sigset_active)
5402 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5403 
5404 	return r;
5405 }
5406 
5407 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5408 {
5409 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5410 		/*
5411 		 * We are here if userspace calls get_regs() in the middle of
5412 		 * instruction emulation. Registers state needs to be copied
5413 		 * back from emulation context to vcpu. Usrapace shouldn't do
5414 		 * that usually, but some bad designed PV devices (vmware
5415 		 * backdoor interface) need this to work
5416 		 */
5417 		struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5418 		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5419 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5420 	}
5421 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5422 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5423 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5424 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5425 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5426 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5427 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5428 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5429 #ifdef CONFIG_X86_64
5430 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5431 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5432 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5433 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5434 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5435 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5436 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5437 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5438 #endif
5439 
5440 	regs->rip = kvm_rip_read(vcpu);
5441 	regs->rflags = kvm_get_rflags(vcpu);
5442 
5443 	return 0;
5444 }
5445 
5446 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5447 {
5448 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5449 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5450 
5451 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5452 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5453 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5454 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5455 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5456 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5457 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5458 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5459 #ifdef CONFIG_X86_64
5460 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5461 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5462 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5463 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5464 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5465 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5466 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5467 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5468 #endif
5469 
5470 	kvm_rip_write(vcpu, regs->rip);
5471 	kvm_set_rflags(vcpu, regs->rflags);
5472 
5473 	vcpu->arch.exception.pending = false;
5474 
5475 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5476 
5477 	return 0;
5478 }
5479 
5480 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5481 {
5482 	struct kvm_segment cs;
5483 
5484 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5485 	*db = cs.db;
5486 	*l = cs.l;
5487 }
5488 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5489 
5490 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5491 				  struct kvm_sregs *sregs)
5492 {
5493 	struct desc_ptr dt;
5494 
5495 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5496 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5497 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5498 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5499 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5500 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5501 
5502 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5503 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5504 
5505 	kvm_x86_ops->get_idt(vcpu, &dt);
5506 	sregs->idt.limit = dt.size;
5507 	sregs->idt.base = dt.address;
5508 	kvm_x86_ops->get_gdt(vcpu, &dt);
5509 	sregs->gdt.limit = dt.size;
5510 	sregs->gdt.base = dt.address;
5511 
5512 	sregs->cr0 = kvm_read_cr0(vcpu);
5513 	sregs->cr2 = vcpu->arch.cr2;
5514 	sregs->cr3 = kvm_read_cr3(vcpu);
5515 	sregs->cr4 = kvm_read_cr4(vcpu);
5516 	sregs->cr8 = kvm_get_cr8(vcpu);
5517 	sregs->efer = vcpu->arch.efer;
5518 	sregs->apic_base = kvm_get_apic_base(vcpu);
5519 
5520 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5521 
5522 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5523 		set_bit(vcpu->arch.interrupt.nr,
5524 			(unsigned long *)sregs->interrupt_bitmap);
5525 
5526 	return 0;
5527 }
5528 
5529 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5530 				    struct kvm_mp_state *mp_state)
5531 {
5532 	mp_state->mp_state = vcpu->arch.mp_state;
5533 	return 0;
5534 }
5535 
5536 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5537 				    struct kvm_mp_state *mp_state)
5538 {
5539 	vcpu->arch.mp_state = mp_state->mp_state;
5540 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5541 	return 0;
5542 }
5543 
5544 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5545 		    bool has_error_code, u32 error_code)
5546 {
5547 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5548 	int ret;
5549 
5550 	init_emulate_ctxt(vcpu);
5551 
5552 	ret = emulator_task_switch(ctxt, tss_selector, reason,
5553 				   has_error_code, error_code);
5554 
5555 	if (ret)
5556 		return EMULATE_FAIL;
5557 
5558 	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5559 	kvm_rip_write(vcpu, ctxt->eip);
5560 	kvm_set_rflags(vcpu, ctxt->eflags);
5561 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5562 	return EMULATE_DONE;
5563 }
5564 EXPORT_SYMBOL_GPL(kvm_task_switch);
5565 
5566 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5567 				  struct kvm_sregs *sregs)
5568 {
5569 	int mmu_reset_needed = 0;
5570 	int pending_vec, max_bits, idx;
5571 	struct desc_ptr dt;
5572 
5573 	dt.size = sregs->idt.limit;
5574 	dt.address = sregs->idt.base;
5575 	kvm_x86_ops->set_idt(vcpu, &dt);
5576 	dt.size = sregs->gdt.limit;
5577 	dt.address = sregs->gdt.base;
5578 	kvm_x86_ops->set_gdt(vcpu, &dt);
5579 
5580 	vcpu->arch.cr2 = sregs->cr2;
5581 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5582 	vcpu->arch.cr3 = sregs->cr3;
5583 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5584 
5585 	kvm_set_cr8(vcpu, sregs->cr8);
5586 
5587 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5588 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
5589 	kvm_set_apic_base(vcpu, sregs->apic_base);
5590 
5591 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5592 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5593 	vcpu->arch.cr0 = sregs->cr0;
5594 
5595 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5596 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5597 	if (sregs->cr4 & X86_CR4_OSXSAVE)
5598 		kvm_update_cpuid(vcpu);
5599 
5600 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5601 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5602 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5603 		mmu_reset_needed = 1;
5604 	}
5605 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5606 
5607 	if (mmu_reset_needed)
5608 		kvm_mmu_reset_context(vcpu);
5609 
5610 	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5611 	pending_vec = find_first_bit(
5612 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
5613 	if (pending_vec < max_bits) {
5614 		kvm_queue_interrupt(vcpu, pending_vec, false);
5615 		pr_debug("Set back pending irq %d\n", pending_vec);
5616 	}
5617 
5618 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5619 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5620 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5621 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5622 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5623 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5624 
5625 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5626 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5627 
5628 	update_cr8_intercept(vcpu);
5629 
5630 	/* Older userspace won't unhalt the vcpu on reset. */
5631 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5632 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5633 	    !is_protmode(vcpu))
5634 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5635 
5636 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5637 
5638 	return 0;
5639 }
5640 
5641 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5642 					struct kvm_guest_debug *dbg)
5643 {
5644 	unsigned long rflags;
5645 	int i, r;
5646 
5647 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5648 		r = -EBUSY;
5649 		if (vcpu->arch.exception.pending)
5650 			goto out;
5651 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5652 			kvm_queue_exception(vcpu, DB_VECTOR);
5653 		else
5654 			kvm_queue_exception(vcpu, BP_VECTOR);
5655 	}
5656 
5657 	/*
5658 	 * Read rflags as long as potentially injected trace flags are still
5659 	 * filtered out.
5660 	 */
5661 	rflags = kvm_get_rflags(vcpu);
5662 
5663 	vcpu->guest_debug = dbg->control;
5664 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5665 		vcpu->guest_debug = 0;
5666 
5667 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5668 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
5669 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5670 		vcpu->arch.switch_db_regs =
5671 			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5672 	} else {
5673 		for (i = 0; i < KVM_NR_DB_REGS; i++)
5674 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5675 		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5676 	}
5677 
5678 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5679 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5680 			get_segment_base(vcpu, VCPU_SREG_CS);
5681 
5682 	/*
5683 	 * Trigger an rflags update that will inject or remove the trace
5684 	 * flags.
5685 	 */
5686 	kvm_set_rflags(vcpu, rflags);
5687 
5688 	kvm_x86_ops->set_guest_debug(vcpu, dbg);
5689 
5690 	r = 0;
5691 
5692 out:
5693 
5694 	return r;
5695 }
5696 
5697 /*
5698  * Translate a guest virtual address to a guest physical address.
5699  */
5700 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5701 				    struct kvm_translation *tr)
5702 {
5703 	unsigned long vaddr = tr->linear_address;
5704 	gpa_t gpa;
5705 	int idx;
5706 
5707 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5708 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5709 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5710 	tr->physical_address = gpa;
5711 	tr->valid = gpa != UNMAPPED_GVA;
5712 	tr->writeable = 1;
5713 	tr->usermode = 0;
5714 
5715 	return 0;
5716 }
5717 
5718 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5719 {
5720 	struct i387_fxsave_struct *fxsave =
5721 			&vcpu->arch.guest_fpu.state->fxsave;
5722 
5723 	memcpy(fpu->fpr, fxsave->st_space, 128);
5724 	fpu->fcw = fxsave->cwd;
5725 	fpu->fsw = fxsave->swd;
5726 	fpu->ftwx = fxsave->twd;
5727 	fpu->last_opcode = fxsave->fop;
5728 	fpu->last_ip = fxsave->rip;
5729 	fpu->last_dp = fxsave->rdp;
5730 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5731 
5732 	return 0;
5733 }
5734 
5735 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5736 {
5737 	struct i387_fxsave_struct *fxsave =
5738 			&vcpu->arch.guest_fpu.state->fxsave;
5739 
5740 	memcpy(fxsave->st_space, fpu->fpr, 128);
5741 	fxsave->cwd = fpu->fcw;
5742 	fxsave->swd = fpu->fsw;
5743 	fxsave->twd = fpu->ftwx;
5744 	fxsave->fop = fpu->last_opcode;
5745 	fxsave->rip = fpu->last_ip;
5746 	fxsave->rdp = fpu->last_dp;
5747 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5748 
5749 	return 0;
5750 }
5751 
5752 int fx_init(struct kvm_vcpu *vcpu)
5753 {
5754 	int err;
5755 
5756 	err = fpu_alloc(&vcpu->arch.guest_fpu);
5757 	if (err)
5758 		return err;
5759 
5760 	fpu_finit(&vcpu->arch.guest_fpu);
5761 
5762 	/*
5763 	 * Ensure guest xcr0 is valid for loading
5764 	 */
5765 	vcpu->arch.xcr0 = XSTATE_FP;
5766 
5767 	vcpu->arch.cr0 |= X86_CR0_ET;
5768 
5769 	return 0;
5770 }
5771 EXPORT_SYMBOL_GPL(fx_init);
5772 
5773 static void fx_free(struct kvm_vcpu *vcpu)
5774 {
5775 	fpu_free(&vcpu->arch.guest_fpu);
5776 }
5777 
5778 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5779 {
5780 	if (vcpu->guest_fpu_loaded)
5781 		return;
5782 
5783 	/*
5784 	 * Restore all possible states in the guest,
5785 	 * and assume host would use all available bits.
5786 	 * Guest xcr0 would be loaded later.
5787 	 */
5788 	kvm_put_guest_xcr0(vcpu);
5789 	vcpu->guest_fpu_loaded = 1;
5790 	unlazy_fpu(current);
5791 	fpu_restore_checking(&vcpu->arch.guest_fpu);
5792 	trace_kvm_fpu(1);
5793 }
5794 
5795 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5796 {
5797 	kvm_put_guest_xcr0(vcpu);
5798 
5799 	if (!vcpu->guest_fpu_loaded)
5800 		return;
5801 
5802 	vcpu->guest_fpu_loaded = 0;
5803 	fpu_save_init(&vcpu->arch.guest_fpu);
5804 	++vcpu->stat.fpu_reload;
5805 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5806 	trace_kvm_fpu(0);
5807 }
5808 
5809 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5810 {
5811 	kvmclock_reset(vcpu);
5812 
5813 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5814 	fx_free(vcpu);
5815 	kvm_x86_ops->vcpu_free(vcpu);
5816 }
5817 
5818 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5819 						unsigned int id)
5820 {
5821 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5822 		printk_once(KERN_WARNING
5823 		"kvm: SMP vm created on host with unstable TSC; "
5824 		"guest TSC will not be reliable\n");
5825 	return kvm_x86_ops->vcpu_create(kvm, id);
5826 }
5827 
5828 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5829 {
5830 	int r;
5831 
5832 	vcpu->arch.mtrr_state.have_fixed = 1;
5833 	vcpu_load(vcpu);
5834 	r = kvm_arch_vcpu_reset(vcpu);
5835 	if (r == 0)
5836 		r = kvm_mmu_setup(vcpu);
5837 	vcpu_put(vcpu);
5838 
5839 	return r;
5840 }
5841 
5842 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5843 {
5844 	vcpu->arch.apf.msr_val = 0;
5845 
5846 	vcpu_load(vcpu);
5847 	kvm_mmu_unload(vcpu);
5848 	vcpu_put(vcpu);
5849 
5850 	fx_free(vcpu);
5851 	kvm_x86_ops->vcpu_free(vcpu);
5852 }
5853 
5854 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5855 {
5856 	atomic_set(&vcpu->arch.nmi_queued, 0);
5857 	vcpu->arch.nmi_pending = 0;
5858 	vcpu->arch.nmi_injected = false;
5859 
5860 	vcpu->arch.switch_db_regs = 0;
5861 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5862 	vcpu->arch.dr6 = DR6_FIXED_1;
5863 	vcpu->arch.dr7 = DR7_FIXED_1;
5864 
5865 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5866 	vcpu->arch.apf.msr_val = 0;
5867 	vcpu->arch.st.msr_val = 0;
5868 
5869 	kvmclock_reset(vcpu);
5870 
5871 	kvm_clear_async_pf_completion_queue(vcpu);
5872 	kvm_async_pf_hash_reset(vcpu);
5873 	vcpu->arch.apf.halted = false;
5874 
5875 	kvm_pmu_reset(vcpu);
5876 
5877 	return kvm_x86_ops->vcpu_reset(vcpu);
5878 }
5879 
5880 int kvm_arch_hardware_enable(void *garbage)
5881 {
5882 	struct kvm *kvm;
5883 	struct kvm_vcpu *vcpu;
5884 	int i;
5885 
5886 	kvm_shared_msr_cpu_online();
5887 	list_for_each_entry(kvm, &vm_list, vm_list)
5888 		kvm_for_each_vcpu(i, vcpu, kvm)
5889 			if (vcpu->cpu == smp_processor_id())
5890 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5891 	return kvm_x86_ops->hardware_enable(garbage);
5892 }
5893 
5894 void kvm_arch_hardware_disable(void *garbage)
5895 {
5896 	kvm_x86_ops->hardware_disable(garbage);
5897 	drop_user_return_notifiers(garbage);
5898 }
5899 
5900 int kvm_arch_hardware_setup(void)
5901 {
5902 	return kvm_x86_ops->hardware_setup();
5903 }
5904 
5905 void kvm_arch_hardware_unsetup(void)
5906 {
5907 	kvm_x86_ops->hardware_unsetup();
5908 }
5909 
5910 void kvm_arch_check_processor_compat(void *rtn)
5911 {
5912 	kvm_x86_ops->check_processor_compatibility(rtn);
5913 }
5914 
5915 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5916 {
5917 	struct page *page;
5918 	struct kvm *kvm;
5919 	int r;
5920 
5921 	BUG_ON(vcpu->kvm == NULL);
5922 	kvm = vcpu->kvm;
5923 
5924 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5925 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5926 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5927 	else
5928 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5929 
5930 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5931 	if (!page) {
5932 		r = -ENOMEM;
5933 		goto fail;
5934 	}
5935 	vcpu->arch.pio_data = page_address(page);
5936 
5937 	kvm_init_tsc_catchup(vcpu, max_tsc_khz);
5938 
5939 	r = kvm_mmu_create(vcpu);
5940 	if (r < 0)
5941 		goto fail_free_pio_data;
5942 
5943 	if (irqchip_in_kernel(kvm)) {
5944 		r = kvm_create_lapic(vcpu);
5945 		if (r < 0)
5946 			goto fail_mmu_destroy;
5947 	}
5948 
5949 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5950 				       GFP_KERNEL);
5951 	if (!vcpu->arch.mce_banks) {
5952 		r = -ENOMEM;
5953 		goto fail_free_lapic;
5954 	}
5955 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5956 
5957 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5958 		goto fail_free_mce_banks;
5959 
5960 	kvm_async_pf_hash_reset(vcpu);
5961 	kvm_pmu_init(vcpu);
5962 
5963 	return 0;
5964 fail_free_mce_banks:
5965 	kfree(vcpu->arch.mce_banks);
5966 fail_free_lapic:
5967 	kvm_free_lapic(vcpu);
5968 fail_mmu_destroy:
5969 	kvm_mmu_destroy(vcpu);
5970 fail_free_pio_data:
5971 	free_page((unsigned long)vcpu->arch.pio_data);
5972 fail:
5973 	return r;
5974 }
5975 
5976 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5977 {
5978 	int idx;
5979 
5980 	kvm_pmu_destroy(vcpu);
5981 	kfree(vcpu->arch.mce_banks);
5982 	kvm_free_lapic(vcpu);
5983 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5984 	kvm_mmu_destroy(vcpu);
5985 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5986 	free_page((unsigned long)vcpu->arch.pio_data);
5987 }
5988 
5989 int kvm_arch_init_vm(struct kvm *kvm)
5990 {
5991 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5992 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5993 
5994 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5995 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5996 
5997 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
5998 
5999 	return 0;
6000 }
6001 
6002 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6003 {
6004 	vcpu_load(vcpu);
6005 	kvm_mmu_unload(vcpu);
6006 	vcpu_put(vcpu);
6007 }
6008 
6009 static void kvm_free_vcpus(struct kvm *kvm)
6010 {
6011 	unsigned int i;
6012 	struct kvm_vcpu *vcpu;
6013 
6014 	/*
6015 	 * Unpin any mmu pages first.
6016 	 */
6017 	kvm_for_each_vcpu(i, vcpu, kvm) {
6018 		kvm_clear_async_pf_completion_queue(vcpu);
6019 		kvm_unload_vcpu_mmu(vcpu);
6020 	}
6021 	kvm_for_each_vcpu(i, vcpu, kvm)
6022 		kvm_arch_vcpu_free(vcpu);
6023 
6024 	mutex_lock(&kvm->lock);
6025 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6026 		kvm->vcpus[i] = NULL;
6027 
6028 	atomic_set(&kvm->online_vcpus, 0);
6029 	mutex_unlock(&kvm->lock);
6030 }
6031 
6032 void kvm_arch_sync_events(struct kvm *kvm)
6033 {
6034 	kvm_free_all_assigned_devices(kvm);
6035 	kvm_free_pit(kvm);
6036 }
6037 
6038 void kvm_arch_destroy_vm(struct kvm *kvm)
6039 {
6040 	kvm_iommu_unmap_guest(kvm);
6041 	kfree(kvm->arch.vpic);
6042 	kfree(kvm->arch.vioapic);
6043 	kvm_free_vcpus(kvm);
6044 	if (kvm->arch.apic_access_page)
6045 		put_page(kvm->arch.apic_access_page);
6046 	if (kvm->arch.ept_identity_pagetable)
6047 		put_page(kvm->arch.ept_identity_pagetable);
6048 }
6049 
6050 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6051 				struct kvm_memory_slot *memslot,
6052 				struct kvm_memory_slot old,
6053 				struct kvm_userspace_memory_region *mem,
6054 				int user_alloc)
6055 {
6056 	int npages = memslot->npages;
6057 	int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6058 
6059 	/* Prevent internal slot pages from being moved by fork()/COW. */
6060 	if (memslot->id >= KVM_MEMORY_SLOTS)
6061 		map_flags = MAP_SHARED | MAP_ANONYMOUS;
6062 
6063 	/*To keep backward compatibility with older userspace,
6064 	 *x86 needs to hanlde !user_alloc case.
6065 	 */
6066 	if (!user_alloc) {
6067 		if (npages && !old.rmap) {
6068 			unsigned long userspace_addr;
6069 
6070 			down_write(&current->mm->mmap_sem);
6071 			userspace_addr = do_mmap(NULL, 0,
6072 						 npages * PAGE_SIZE,
6073 						 PROT_READ | PROT_WRITE,
6074 						 map_flags,
6075 						 0);
6076 			up_write(&current->mm->mmap_sem);
6077 
6078 			if (IS_ERR((void *)userspace_addr))
6079 				return PTR_ERR((void *)userspace_addr);
6080 
6081 			memslot->userspace_addr = userspace_addr;
6082 		}
6083 	}
6084 
6085 
6086 	return 0;
6087 }
6088 
6089 void kvm_arch_commit_memory_region(struct kvm *kvm,
6090 				struct kvm_userspace_memory_region *mem,
6091 				struct kvm_memory_slot old,
6092 				int user_alloc)
6093 {
6094 
6095 	int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6096 
6097 	if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6098 		int ret;
6099 
6100 		down_write(&current->mm->mmap_sem);
6101 		ret = do_munmap(current->mm, old.userspace_addr,
6102 				old.npages * PAGE_SIZE);
6103 		up_write(&current->mm->mmap_sem);
6104 		if (ret < 0)
6105 			printk(KERN_WARNING
6106 			       "kvm_vm_ioctl_set_memory_region: "
6107 			       "failed to munmap memory\n");
6108 	}
6109 
6110 	if (!kvm->arch.n_requested_mmu_pages)
6111 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6112 
6113 	spin_lock(&kvm->mmu_lock);
6114 	if (nr_mmu_pages)
6115 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6116 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6117 	spin_unlock(&kvm->mmu_lock);
6118 }
6119 
6120 void kvm_arch_flush_shadow(struct kvm *kvm)
6121 {
6122 	kvm_mmu_zap_all(kvm);
6123 	kvm_reload_remote_mmus(kvm);
6124 }
6125 
6126 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6127 {
6128 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6129 		!vcpu->arch.apf.halted)
6130 		|| !list_empty_careful(&vcpu->async_pf.done)
6131 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6132 		|| atomic_read(&vcpu->arch.nmi_queued) ||
6133 		(kvm_arch_interrupt_allowed(vcpu) &&
6134 		 kvm_cpu_has_interrupt(vcpu));
6135 }
6136 
6137 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6138 {
6139 	int me;
6140 	int cpu = vcpu->cpu;
6141 
6142 	if (waitqueue_active(&vcpu->wq)) {
6143 		wake_up_interruptible(&vcpu->wq);
6144 		++vcpu->stat.halt_wakeup;
6145 	}
6146 
6147 	me = get_cpu();
6148 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6149 		if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6150 			smp_send_reschedule(cpu);
6151 	put_cpu();
6152 }
6153 
6154 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6155 {
6156 	return kvm_x86_ops->interrupt_allowed(vcpu);
6157 }
6158 
6159 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6160 {
6161 	unsigned long current_rip = kvm_rip_read(vcpu) +
6162 		get_segment_base(vcpu, VCPU_SREG_CS);
6163 
6164 	return current_rip == linear_rip;
6165 }
6166 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6167 
6168 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6169 {
6170 	unsigned long rflags;
6171 
6172 	rflags = kvm_x86_ops->get_rflags(vcpu);
6173 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6174 		rflags &= ~X86_EFLAGS_TF;
6175 	return rflags;
6176 }
6177 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6178 
6179 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6180 {
6181 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6182 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6183 		rflags |= X86_EFLAGS_TF;
6184 	kvm_x86_ops->set_rflags(vcpu, rflags);
6185 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6186 }
6187 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6188 
6189 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6190 {
6191 	int r;
6192 
6193 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6194 	      is_error_page(work->page))
6195 		return;
6196 
6197 	r = kvm_mmu_reload(vcpu);
6198 	if (unlikely(r))
6199 		return;
6200 
6201 	if (!vcpu->arch.mmu.direct_map &&
6202 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6203 		return;
6204 
6205 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6206 }
6207 
6208 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6209 {
6210 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6211 }
6212 
6213 static inline u32 kvm_async_pf_next_probe(u32 key)
6214 {
6215 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6216 }
6217 
6218 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6219 {
6220 	u32 key = kvm_async_pf_hash_fn(gfn);
6221 
6222 	while (vcpu->arch.apf.gfns[key] != ~0)
6223 		key = kvm_async_pf_next_probe(key);
6224 
6225 	vcpu->arch.apf.gfns[key] = gfn;
6226 }
6227 
6228 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6229 {
6230 	int i;
6231 	u32 key = kvm_async_pf_hash_fn(gfn);
6232 
6233 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6234 		     (vcpu->arch.apf.gfns[key] != gfn &&
6235 		      vcpu->arch.apf.gfns[key] != ~0); i++)
6236 		key = kvm_async_pf_next_probe(key);
6237 
6238 	return key;
6239 }
6240 
6241 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6242 {
6243 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6244 }
6245 
6246 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6247 {
6248 	u32 i, j, k;
6249 
6250 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6251 	while (true) {
6252 		vcpu->arch.apf.gfns[i] = ~0;
6253 		do {
6254 			j = kvm_async_pf_next_probe(j);
6255 			if (vcpu->arch.apf.gfns[j] == ~0)
6256 				return;
6257 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6258 			/*
6259 			 * k lies cyclically in ]i,j]
6260 			 * |    i.k.j |
6261 			 * |....j i.k.| or  |.k..j i...|
6262 			 */
6263 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6264 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6265 		i = j;
6266 	}
6267 }
6268 
6269 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6270 {
6271 
6272 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6273 				      sizeof(val));
6274 }
6275 
6276 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6277 				     struct kvm_async_pf *work)
6278 {
6279 	struct x86_exception fault;
6280 
6281 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6282 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6283 
6284 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6285 	    (vcpu->arch.apf.send_user_only &&
6286 	     kvm_x86_ops->get_cpl(vcpu) == 0))
6287 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6288 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6289 		fault.vector = PF_VECTOR;
6290 		fault.error_code_valid = true;
6291 		fault.error_code = 0;
6292 		fault.nested_page_fault = false;
6293 		fault.address = work->arch.token;
6294 		kvm_inject_page_fault(vcpu, &fault);
6295 	}
6296 }
6297 
6298 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6299 				 struct kvm_async_pf *work)
6300 {
6301 	struct x86_exception fault;
6302 
6303 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
6304 	if (is_error_page(work->page))
6305 		work->arch.token = ~0; /* broadcast wakeup */
6306 	else
6307 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6308 
6309 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6310 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6311 		fault.vector = PF_VECTOR;
6312 		fault.error_code_valid = true;
6313 		fault.error_code = 0;
6314 		fault.nested_page_fault = false;
6315 		fault.address = work->arch.token;
6316 		kvm_inject_page_fault(vcpu, &fault);
6317 	}
6318 	vcpu->arch.apf.halted = false;
6319 }
6320 
6321 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6322 {
6323 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6324 		return true;
6325 	else
6326 		return !kvm_event_needs_reinjection(vcpu) &&
6327 			kvm_x86_ops->interrupt_allowed(vcpu);
6328 }
6329 
6330 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6331 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6332 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6333 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6334 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6335 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6336 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6337 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6338 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6339 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6340 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
6342