1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "mmu.h" 22 #include "i8254.h" 23 #include "tss.h" 24 #include "kvm_cache_regs.h" 25 #include "x86.h" 26 #include "cpuid.h" 27 #include "pmu.h" 28 #include "hyperv.h" 29 30 #include <linux/clocksource.h> 31 #include <linux/interrupt.h> 32 #include <linux/kvm.h> 33 #include <linux/fs.h> 34 #include <linux/vmalloc.h> 35 #include <linux/export.h> 36 #include <linux/moduleparam.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <linux/timekeeper_internal.h> 50 #include <linux/pvclock_gtod.h> 51 #include <linux/kvm_irqfd.h> 52 #include <linux/irqbypass.h> 53 #include <linux/sched/stat.h> 54 #include <linux/sched/isolation.h> 55 #include <linux/mem_encrypt.h> 56 57 #include <trace/events/kvm.h> 58 59 #include <asm/debugreg.h> 60 #include <asm/msr.h> 61 #include <asm/desc.h> 62 #include <asm/mce.h> 63 #include <linux/kernel_stat.h> 64 #include <asm/fpu/internal.h> /* Ugh! */ 65 #include <asm/pvclock.h> 66 #include <asm/div64.h> 67 #include <asm/irq_remapping.h> 68 #include <asm/mshyperv.h> 69 #include <asm/hypervisor.h> 70 #include <asm/intel_pt.h> 71 #include <clocksource/hyperv_timer.h> 72 73 #define CREATE_TRACE_POINTS 74 #include "trace.h" 75 76 #define MAX_IO_MSRS 256 77 #define KVM_MAX_MCE_BANKS 32 78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 80 81 #define emul_to_vcpu(ctxt) \ 82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 83 84 /* EFER defaults: 85 * - enable syscall per default because its emulated by KVM 86 * - enable LME and LMA per default on 64 bit KVM 87 */ 88 #ifdef CONFIG_X86_64 89 static 90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 91 #else 92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 93 #endif 94 95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 97 98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 100 101 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 102 static void process_nmi(struct kvm_vcpu *vcpu); 103 static void enter_smm(struct kvm_vcpu *vcpu); 104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 105 static void store_regs(struct kvm_vcpu *vcpu); 106 static int sync_regs(struct kvm_vcpu *vcpu); 107 108 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 109 EXPORT_SYMBOL_GPL(kvm_x86_ops); 110 111 static bool __read_mostly ignore_msrs = 0; 112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 113 114 static bool __read_mostly report_ignored_msrs = true; 115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 116 117 unsigned int min_timer_period_us = 200; 118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 119 120 static bool __read_mostly kvmclock_periodic_sync = true; 121 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 122 123 bool __read_mostly kvm_has_tsc_control; 124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 125 u32 __read_mostly kvm_max_guest_tsc_khz; 126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 127 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 129 u64 __read_mostly kvm_max_tsc_scaling_ratio; 130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 131 u64 __read_mostly kvm_default_tsc_scaling_ratio; 132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 133 134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 135 static u32 __read_mostly tsc_tolerance_ppm = 250; 136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 137 138 /* 139 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 140 * adaptive tuning starting from default advancment of 1000ns. '0' disables 141 * advancement entirely. Any other value is used as-is and disables adaptive 142 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 143 */ 144 static int __read_mostly lapic_timer_advance_ns = -1; 145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 146 147 static bool __read_mostly vector_hashing = true; 148 module_param(vector_hashing, bool, S_IRUGO); 149 150 bool __read_mostly enable_vmware_backdoor = false; 151 module_param(enable_vmware_backdoor, bool, S_IRUGO); 152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 153 154 static bool __read_mostly force_emulation_prefix = false; 155 module_param(force_emulation_prefix, bool, S_IRUGO); 156 157 int __read_mostly pi_inject_timer = -1; 158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 159 160 #define KVM_NR_SHARED_MSRS 16 161 162 struct kvm_shared_msrs_global { 163 int nr; 164 u32 msrs[KVM_NR_SHARED_MSRS]; 165 }; 166 167 struct kvm_shared_msrs { 168 struct user_return_notifier urn; 169 bool registered; 170 struct kvm_shared_msr_values { 171 u64 host; 172 u64 curr; 173 } values[KVM_NR_SHARED_MSRS]; 174 }; 175 176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 177 static struct kvm_shared_msrs __percpu *shared_msrs; 178 179 struct kvm_stats_debugfs_item debugfs_entries[] = { 180 { "pf_fixed", VCPU_STAT(pf_fixed) }, 181 { "pf_guest", VCPU_STAT(pf_guest) }, 182 { "tlb_flush", VCPU_STAT(tlb_flush) }, 183 { "invlpg", VCPU_STAT(invlpg) }, 184 { "exits", VCPU_STAT(exits) }, 185 { "io_exits", VCPU_STAT(io_exits) }, 186 { "mmio_exits", VCPU_STAT(mmio_exits) }, 187 { "signal_exits", VCPU_STAT(signal_exits) }, 188 { "irq_window", VCPU_STAT(irq_window_exits) }, 189 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 190 { "halt_exits", VCPU_STAT(halt_exits) }, 191 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 192 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 193 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 194 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 195 { "hypercalls", VCPU_STAT(hypercalls) }, 196 { "request_irq", VCPU_STAT(request_irq_exits) }, 197 { "irq_exits", VCPU_STAT(irq_exits) }, 198 { "host_state_reload", VCPU_STAT(host_state_reload) }, 199 { "fpu_reload", VCPU_STAT(fpu_reload) }, 200 { "insn_emulation", VCPU_STAT(insn_emulation) }, 201 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 202 { "irq_injections", VCPU_STAT(irq_injections) }, 203 { "nmi_injections", VCPU_STAT(nmi_injections) }, 204 { "req_event", VCPU_STAT(req_event) }, 205 { "l1d_flush", VCPU_STAT(l1d_flush) }, 206 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 207 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 208 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 209 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 210 { "mmu_flooded", VM_STAT(mmu_flooded) }, 211 { "mmu_recycled", VM_STAT(mmu_recycled) }, 212 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 213 { "mmu_unsync", VM_STAT(mmu_unsync) }, 214 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 215 { "largepages", VM_STAT(lpages) }, 216 { "max_mmu_page_hash_collisions", 217 VM_STAT(max_mmu_page_hash_collisions) }, 218 { NULL } 219 }; 220 221 u64 __read_mostly host_xcr0; 222 223 struct kmem_cache *x86_fpu_cache; 224 EXPORT_SYMBOL_GPL(x86_fpu_cache); 225 226 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 227 228 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 229 { 230 int i; 231 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 232 vcpu->arch.apf.gfns[i] = ~0; 233 } 234 235 static void kvm_on_user_return(struct user_return_notifier *urn) 236 { 237 unsigned slot; 238 struct kvm_shared_msrs *locals 239 = container_of(urn, struct kvm_shared_msrs, urn); 240 struct kvm_shared_msr_values *values; 241 unsigned long flags; 242 243 /* 244 * Disabling irqs at this point since the following code could be 245 * interrupted and executed through kvm_arch_hardware_disable() 246 */ 247 local_irq_save(flags); 248 if (locals->registered) { 249 locals->registered = false; 250 user_return_notifier_unregister(urn); 251 } 252 local_irq_restore(flags); 253 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 254 values = &locals->values[slot]; 255 if (values->host != values->curr) { 256 wrmsrl(shared_msrs_global.msrs[slot], values->host); 257 values->curr = values->host; 258 } 259 } 260 } 261 262 static void shared_msr_update(unsigned slot, u32 msr) 263 { 264 u64 value; 265 unsigned int cpu = smp_processor_id(); 266 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 267 268 /* only read, and nobody should modify it at this time, 269 * so don't need lock */ 270 if (slot >= shared_msrs_global.nr) { 271 printk(KERN_ERR "kvm: invalid MSR slot!"); 272 return; 273 } 274 rdmsrl_safe(msr, &value); 275 smsr->values[slot].host = value; 276 smsr->values[slot].curr = value; 277 } 278 279 void kvm_define_shared_msr(unsigned slot, u32 msr) 280 { 281 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 282 shared_msrs_global.msrs[slot] = msr; 283 if (slot >= shared_msrs_global.nr) 284 shared_msrs_global.nr = slot + 1; 285 } 286 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 287 288 static void kvm_shared_msr_cpu_online(void) 289 { 290 unsigned i; 291 292 for (i = 0; i < shared_msrs_global.nr; ++i) 293 shared_msr_update(i, shared_msrs_global.msrs[i]); 294 } 295 296 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 297 { 298 unsigned int cpu = smp_processor_id(); 299 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 300 int err; 301 302 if (((value ^ smsr->values[slot].curr) & mask) == 0) 303 return 0; 304 smsr->values[slot].curr = value; 305 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 306 if (err) 307 return 1; 308 309 if (!smsr->registered) { 310 smsr->urn.on_user_return = kvm_on_user_return; 311 user_return_notifier_register(&smsr->urn); 312 smsr->registered = true; 313 } 314 return 0; 315 } 316 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 317 318 static void drop_user_return_notifiers(void) 319 { 320 unsigned int cpu = smp_processor_id(); 321 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 322 323 if (smsr->registered) 324 kvm_on_user_return(&smsr->urn); 325 } 326 327 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 328 { 329 return vcpu->arch.apic_base; 330 } 331 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 332 333 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 334 { 335 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 336 } 337 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 338 339 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 340 { 341 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 342 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 343 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 344 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 345 346 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 347 return 1; 348 if (!msr_info->host_initiated) { 349 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 350 return 1; 351 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 352 return 1; 353 } 354 355 kvm_lapic_set_base(vcpu, msr_info->data); 356 return 0; 357 } 358 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 359 360 asmlinkage __visible void kvm_spurious_fault(void) 361 { 362 /* Fault while not rebooting. We want the trace. */ 363 BUG(); 364 } 365 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 366 367 #define EXCPT_BENIGN 0 368 #define EXCPT_CONTRIBUTORY 1 369 #define EXCPT_PF 2 370 371 static int exception_class(int vector) 372 { 373 switch (vector) { 374 case PF_VECTOR: 375 return EXCPT_PF; 376 case DE_VECTOR: 377 case TS_VECTOR: 378 case NP_VECTOR: 379 case SS_VECTOR: 380 case GP_VECTOR: 381 return EXCPT_CONTRIBUTORY; 382 default: 383 break; 384 } 385 return EXCPT_BENIGN; 386 } 387 388 #define EXCPT_FAULT 0 389 #define EXCPT_TRAP 1 390 #define EXCPT_ABORT 2 391 #define EXCPT_INTERRUPT 3 392 393 static int exception_type(int vector) 394 { 395 unsigned int mask; 396 397 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 398 return EXCPT_INTERRUPT; 399 400 mask = 1 << vector; 401 402 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 403 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 404 return EXCPT_TRAP; 405 406 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 407 return EXCPT_ABORT; 408 409 /* Reserved exceptions will result in fault */ 410 return EXCPT_FAULT; 411 } 412 413 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 414 { 415 unsigned nr = vcpu->arch.exception.nr; 416 bool has_payload = vcpu->arch.exception.has_payload; 417 unsigned long payload = vcpu->arch.exception.payload; 418 419 if (!has_payload) 420 return; 421 422 switch (nr) { 423 case DB_VECTOR: 424 /* 425 * "Certain debug exceptions may clear bit 0-3. The 426 * remaining contents of the DR6 register are never 427 * cleared by the processor". 428 */ 429 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 430 /* 431 * DR6.RTM is set by all #DB exceptions that don't clear it. 432 */ 433 vcpu->arch.dr6 |= DR6_RTM; 434 vcpu->arch.dr6 |= payload; 435 /* 436 * Bit 16 should be set in the payload whenever the #DB 437 * exception should clear DR6.RTM. This makes the payload 438 * compatible with the pending debug exceptions under VMX. 439 * Though not currently documented in the SDM, this also 440 * makes the payload compatible with the exit qualification 441 * for #DB exceptions under VMX. 442 */ 443 vcpu->arch.dr6 ^= payload & DR6_RTM; 444 break; 445 case PF_VECTOR: 446 vcpu->arch.cr2 = payload; 447 break; 448 } 449 450 vcpu->arch.exception.has_payload = false; 451 vcpu->arch.exception.payload = 0; 452 } 453 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 454 455 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 456 unsigned nr, bool has_error, u32 error_code, 457 bool has_payload, unsigned long payload, bool reinject) 458 { 459 u32 prev_nr; 460 int class1, class2; 461 462 kvm_make_request(KVM_REQ_EVENT, vcpu); 463 464 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 465 queue: 466 if (has_error && !is_protmode(vcpu)) 467 has_error = false; 468 if (reinject) { 469 /* 470 * On vmentry, vcpu->arch.exception.pending is only 471 * true if an event injection was blocked by 472 * nested_run_pending. In that case, however, 473 * vcpu_enter_guest requests an immediate exit, 474 * and the guest shouldn't proceed far enough to 475 * need reinjection. 476 */ 477 WARN_ON_ONCE(vcpu->arch.exception.pending); 478 vcpu->arch.exception.injected = true; 479 if (WARN_ON_ONCE(has_payload)) { 480 /* 481 * A reinjected event has already 482 * delivered its payload. 483 */ 484 has_payload = false; 485 payload = 0; 486 } 487 } else { 488 vcpu->arch.exception.pending = true; 489 vcpu->arch.exception.injected = false; 490 } 491 vcpu->arch.exception.has_error_code = has_error; 492 vcpu->arch.exception.nr = nr; 493 vcpu->arch.exception.error_code = error_code; 494 vcpu->arch.exception.has_payload = has_payload; 495 vcpu->arch.exception.payload = payload; 496 /* 497 * In guest mode, payload delivery should be deferred, 498 * so that the L1 hypervisor can intercept #PF before 499 * CR2 is modified (or intercept #DB before DR6 is 500 * modified under nVMX). However, for ABI 501 * compatibility with KVM_GET_VCPU_EVENTS and 502 * KVM_SET_VCPU_EVENTS, we can't delay payload 503 * delivery unless userspace has enabled this 504 * functionality via the per-VM capability, 505 * KVM_CAP_EXCEPTION_PAYLOAD. 506 */ 507 if (!vcpu->kvm->arch.exception_payload_enabled || 508 !is_guest_mode(vcpu)) 509 kvm_deliver_exception_payload(vcpu); 510 return; 511 } 512 513 /* to check exception */ 514 prev_nr = vcpu->arch.exception.nr; 515 if (prev_nr == DF_VECTOR) { 516 /* triple fault -> shutdown */ 517 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 518 return; 519 } 520 class1 = exception_class(prev_nr); 521 class2 = exception_class(nr); 522 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 523 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 524 /* 525 * Generate double fault per SDM Table 5-5. Set 526 * exception.pending = true so that the double fault 527 * can trigger a nested vmexit. 528 */ 529 vcpu->arch.exception.pending = true; 530 vcpu->arch.exception.injected = false; 531 vcpu->arch.exception.has_error_code = true; 532 vcpu->arch.exception.nr = DF_VECTOR; 533 vcpu->arch.exception.error_code = 0; 534 vcpu->arch.exception.has_payload = false; 535 vcpu->arch.exception.payload = 0; 536 } else 537 /* replace previous exception with a new one in a hope 538 that instruction re-execution will regenerate lost 539 exception */ 540 goto queue; 541 } 542 543 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 544 { 545 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 546 } 547 EXPORT_SYMBOL_GPL(kvm_queue_exception); 548 549 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 550 { 551 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 552 } 553 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 554 555 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 556 unsigned long payload) 557 { 558 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 559 } 560 561 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 562 u32 error_code, unsigned long payload) 563 { 564 kvm_multiple_exception(vcpu, nr, true, error_code, 565 true, payload, false); 566 } 567 568 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 569 { 570 if (err) 571 kvm_inject_gp(vcpu, 0); 572 else 573 return kvm_skip_emulated_instruction(vcpu); 574 575 return 1; 576 } 577 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 578 579 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 580 { 581 ++vcpu->stat.pf_guest; 582 vcpu->arch.exception.nested_apf = 583 is_guest_mode(vcpu) && fault->async_page_fault; 584 if (vcpu->arch.exception.nested_apf) { 585 vcpu->arch.apf.nested_apf_token = fault->address; 586 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 587 } else { 588 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 589 fault->address); 590 } 591 } 592 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 593 594 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 595 { 596 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 597 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 598 else 599 vcpu->arch.mmu->inject_page_fault(vcpu, fault); 600 601 return fault->nested_page_fault; 602 } 603 604 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 605 { 606 atomic_inc(&vcpu->arch.nmi_queued); 607 kvm_make_request(KVM_REQ_NMI, vcpu); 608 } 609 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 610 611 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 612 { 613 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 614 } 615 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 616 617 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 618 { 619 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 620 } 621 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 622 623 /* 624 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 625 * a #GP and return false. 626 */ 627 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 628 { 629 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 630 return true; 631 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 632 return false; 633 } 634 EXPORT_SYMBOL_GPL(kvm_require_cpl); 635 636 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 637 { 638 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 639 return true; 640 641 kvm_queue_exception(vcpu, UD_VECTOR); 642 return false; 643 } 644 EXPORT_SYMBOL_GPL(kvm_require_dr); 645 646 /* 647 * This function will be used to read from the physical memory of the currently 648 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 649 * can read from guest physical or from the guest's guest physical memory. 650 */ 651 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 652 gfn_t ngfn, void *data, int offset, int len, 653 u32 access) 654 { 655 struct x86_exception exception; 656 gfn_t real_gfn; 657 gpa_t ngpa; 658 659 ngpa = gfn_to_gpa(ngfn); 660 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 661 if (real_gfn == UNMAPPED_GVA) 662 return -EFAULT; 663 664 real_gfn = gpa_to_gfn(real_gfn); 665 666 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 667 } 668 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 669 670 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 671 void *data, int offset, int len, u32 access) 672 { 673 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 674 data, offset, len, access); 675 } 676 677 /* 678 * Load the pae pdptrs. Return true is they are all valid. 679 */ 680 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 681 { 682 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 683 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 684 int i; 685 int ret; 686 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 687 688 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 689 offset * sizeof(u64), sizeof(pdpte), 690 PFERR_USER_MASK|PFERR_WRITE_MASK); 691 if (ret < 0) { 692 ret = 0; 693 goto out; 694 } 695 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 696 if ((pdpte[i] & PT_PRESENT_MASK) && 697 (pdpte[i] & 698 vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) { 699 ret = 0; 700 goto out; 701 } 702 } 703 ret = 1; 704 705 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 706 __set_bit(VCPU_EXREG_PDPTR, 707 (unsigned long *)&vcpu->arch.regs_avail); 708 __set_bit(VCPU_EXREG_PDPTR, 709 (unsigned long *)&vcpu->arch.regs_dirty); 710 out: 711 712 return ret; 713 } 714 EXPORT_SYMBOL_GPL(load_pdptrs); 715 716 bool pdptrs_changed(struct kvm_vcpu *vcpu) 717 { 718 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 719 bool changed = true; 720 int offset; 721 gfn_t gfn; 722 int r; 723 724 if (!is_pae_paging(vcpu)) 725 return false; 726 727 if (!test_bit(VCPU_EXREG_PDPTR, 728 (unsigned long *)&vcpu->arch.regs_avail)) 729 return true; 730 731 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 732 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 733 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 734 PFERR_USER_MASK | PFERR_WRITE_MASK); 735 if (r < 0) 736 goto out; 737 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 738 out: 739 740 return changed; 741 } 742 EXPORT_SYMBOL_GPL(pdptrs_changed); 743 744 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 745 { 746 unsigned long old_cr0 = kvm_read_cr0(vcpu); 747 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 748 749 cr0 |= X86_CR0_ET; 750 751 #ifdef CONFIG_X86_64 752 if (cr0 & 0xffffffff00000000UL) 753 return 1; 754 #endif 755 756 cr0 &= ~CR0_RESERVED_BITS; 757 758 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 759 return 1; 760 761 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 762 return 1; 763 764 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 765 #ifdef CONFIG_X86_64 766 if ((vcpu->arch.efer & EFER_LME)) { 767 int cs_db, cs_l; 768 769 if (!is_pae(vcpu)) 770 return 1; 771 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 772 if (cs_l) 773 return 1; 774 } else 775 #endif 776 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 777 kvm_read_cr3(vcpu))) 778 return 1; 779 } 780 781 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 782 return 1; 783 784 kvm_x86_ops->set_cr0(vcpu, cr0); 785 786 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 787 kvm_clear_async_pf_completion_queue(vcpu); 788 kvm_async_pf_hash_reset(vcpu); 789 } 790 791 if ((cr0 ^ old_cr0) & update_bits) 792 kvm_mmu_reset_context(vcpu); 793 794 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 795 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 796 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 797 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 798 799 return 0; 800 } 801 EXPORT_SYMBOL_GPL(kvm_set_cr0); 802 803 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 804 { 805 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 806 } 807 EXPORT_SYMBOL_GPL(kvm_lmsw); 808 809 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 810 { 811 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 812 !vcpu->guest_xcr0_loaded) { 813 /* kvm_set_xcr() also depends on this */ 814 if (vcpu->arch.xcr0 != host_xcr0) 815 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 816 vcpu->guest_xcr0_loaded = 1; 817 } 818 } 819 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0); 820 821 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 822 { 823 if (vcpu->guest_xcr0_loaded) { 824 if (vcpu->arch.xcr0 != host_xcr0) 825 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 826 vcpu->guest_xcr0_loaded = 0; 827 } 828 } 829 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0); 830 831 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 832 { 833 u64 xcr0 = xcr; 834 u64 old_xcr0 = vcpu->arch.xcr0; 835 u64 valid_bits; 836 837 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 838 if (index != XCR_XFEATURE_ENABLED_MASK) 839 return 1; 840 if (!(xcr0 & XFEATURE_MASK_FP)) 841 return 1; 842 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 843 return 1; 844 845 /* 846 * Do not allow the guest to set bits that we do not support 847 * saving. However, xcr0 bit 0 is always set, even if the 848 * emulated CPU does not support XSAVE (see fx_init). 849 */ 850 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 851 if (xcr0 & ~valid_bits) 852 return 1; 853 854 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 855 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 856 return 1; 857 858 if (xcr0 & XFEATURE_MASK_AVX512) { 859 if (!(xcr0 & XFEATURE_MASK_YMM)) 860 return 1; 861 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 862 return 1; 863 } 864 vcpu->arch.xcr0 = xcr0; 865 866 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 867 kvm_update_cpuid(vcpu); 868 return 0; 869 } 870 871 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 872 { 873 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 874 __kvm_set_xcr(vcpu, index, xcr)) { 875 kvm_inject_gp(vcpu, 0); 876 return 1; 877 } 878 return 0; 879 } 880 EXPORT_SYMBOL_GPL(kvm_set_xcr); 881 882 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 883 { 884 unsigned long old_cr4 = kvm_read_cr4(vcpu); 885 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 886 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 887 888 if (cr4 & CR4_RESERVED_BITS) 889 return 1; 890 891 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE)) 892 return 1; 893 894 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP)) 895 return 1; 896 897 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP)) 898 return 1; 899 900 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE)) 901 return 1; 902 903 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE)) 904 return 1; 905 906 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57)) 907 return 1; 908 909 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP)) 910 return 1; 911 912 if (is_long_mode(vcpu)) { 913 if (!(cr4 & X86_CR4_PAE)) 914 return 1; 915 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 916 && ((cr4 ^ old_cr4) & pdptr_bits) 917 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 918 kvm_read_cr3(vcpu))) 919 return 1; 920 921 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 922 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 923 return 1; 924 925 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 926 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 927 return 1; 928 } 929 930 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 931 return 1; 932 933 if (((cr4 ^ old_cr4) & pdptr_bits) || 934 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 935 kvm_mmu_reset_context(vcpu); 936 937 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 938 kvm_update_cpuid(vcpu); 939 940 return 0; 941 } 942 EXPORT_SYMBOL_GPL(kvm_set_cr4); 943 944 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 945 { 946 bool skip_tlb_flush = false; 947 #ifdef CONFIG_X86_64 948 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 949 950 if (pcid_enabled) { 951 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 952 cr3 &= ~X86_CR3_PCID_NOFLUSH; 953 } 954 #endif 955 956 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 957 if (!skip_tlb_flush) { 958 kvm_mmu_sync_roots(vcpu); 959 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 960 } 961 return 0; 962 } 963 964 if (is_long_mode(vcpu) && 965 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) 966 return 1; 967 else if (is_pae_paging(vcpu) && 968 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 969 return 1; 970 971 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush); 972 vcpu->arch.cr3 = cr3; 973 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 974 975 return 0; 976 } 977 EXPORT_SYMBOL_GPL(kvm_set_cr3); 978 979 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 980 { 981 if (cr8 & CR8_RESERVED_BITS) 982 return 1; 983 if (lapic_in_kernel(vcpu)) 984 kvm_lapic_set_tpr(vcpu, cr8); 985 else 986 vcpu->arch.cr8 = cr8; 987 return 0; 988 } 989 EXPORT_SYMBOL_GPL(kvm_set_cr8); 990 991 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 992 { 993 if (lapic_in_kernel(vcpu)) 994 return kvm_lapic_get_cr8(vcpu); 995 else 996 return vcpu->arch.cr8; 997 } 998 EXPORT_SYMBOL_GPL(kvm_get_cr8); 999 1000 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1001 { 1002 int i; 1003 1004 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1005 for (i = 0; i < KVM_NR_DB_REGS; i++) 1006 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1007 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1008 } 1009 } 1010 1011 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 1012 { 1013 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1014 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 1015 } 1016 1017 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 1018 { 1019 unsigned long dr7; 1020 1021 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1022 dr7 = vcpu->arch.guest_debug_dr7; 1023 else 1024 dr7 = vcpu->arch.dr7; 1025 kvm_x86_ops->set_dr7(vcpu, dr7); 1026 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1027 if (dr7 & DR7_BP_EN_MASK) 1028 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1029 } 1030 1031 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1032 { 1033 u64 fixed = DR6_FIXED_1; 1034 1035 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1036 fixed |= DR6_RTM; 1037 return fixed; 1038 } 1039 1040 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1041 { 1042 switch (dr) { 1043 case 0 ... 3: 1044 vcpu->arch.db[dr] = val; 1045 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1046 vcpu->arch.eff_db[dr] = val; 1047 break; 1048 case 4: 1049 /* fall through */ 1050 case 6: 1051 if (val & 0xffffffff00000000ULL) 1052 return -1; /* #GP */ 1053 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1054 kvm_update_dr6(vcpu); 1055 break; 1056 case 5: 1057 /* fall through */ 1058 default: /* 7 */ 1059 if (val & 0xffffffff00000000ULL) 1060 return -1; /* #GP */ 1061 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1062 kvm_update_dr7(vcpu); 1063 break; 1064 } 1065 1066 return 0; 1067 } 1068 1069 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1070 { 1071 if (__kvm_set_dr(vcpu, dr, val)) { 1072 kvm_inject_gp(vcpu, 0); 1073 return 1; 1074 } 1075 return 0; 1076 } 1077 EXPORT_SYMBOL_GPL(kvm_set_dr); 1078 1079 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1080 { 1081 switch (dr) { 1082 case 0 ... 3: 1083 *val = vcpu->arch.db[dr]; 1084 break; 1085 case 4: 1086 /* fall through */ 1087 case 6: 1088 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1089 *val = vcpu->arch.dr6; 1090 else 1091 *val = kvm_x86_ops->get_dr6(vcpu); 1092 break; 1093 case 5: 1094 /* fall through */ 1095 default: /* 7 */ 1096 *val = vcpu->arch.dr7; 1097 break; 1098 } 1099 return 0; 1100 } 1101 EXPORT_SYMBOL_GPL(kvm_get_dr); 1102 1103 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1104 { 1105 u32 ecx = kvm_rcx_read(vcpu); 1106 u64 data; 1107 int err; 1108 1109 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1110 if (err) 1111 return err; 1112 kvm_rax_write(vcpu, (u32)data); 1113 kvm_rdx_write(vcpu, data >> 32); 1114 return err; 1115 } 1116 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1117 1118 /* 1119 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1120 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1121 * 1122 * This list is modified at module load time to reflect the 1123 * capabilities of the host cpu. This capabilities test skips MSRs that are 1124 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs 1125 * may depend on host virtualization features rather than host cpu features. 1126 */ 1127 1128 static u32 msrs_to_save[] = { 1129 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1130 MSR_STAR, 1131 #ifdef CONFIG_X86_64 1132 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1133 #endif 1134 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1135 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1136 MSR_IA32_SPEC_CTRL, 1137 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1138 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1139 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1140 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1141 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1142 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1143 }; 1144 1145 static unsigned num_msrs_to_save; 1146 1147 static u32 emulated_msrs[] = { 1148 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1149 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1150 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1151 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1152 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1153 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1154 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1155 HV_X64_MSR_RESET, 1156 HV_X64_MSR_VP_INDEX, 1157 HV_X64_MSR_VP_RUNTIME, 1158 HV_X64_MSR_SCONTROL, 1159 HV_X64_MSR_STIMER0_CONFIG, 1160 HV_X64_MSR_VP_ASSIST_PAGE, 1161 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1162 HV_X64_MSR_TSC_EMULATION_STATUS, 1163 1164 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1165 MSR_KVM_PV_EOI_EN, 1166 1167 MSR_IA32_TSC_ADJUST, 1168 MSR_IA32_TSCDEADLINE, 1169 MSR_IA32_ARCH_CAPABILITIES, 1170 MSR_IA32_MISC_ENABLE, 1171 MSR_IA32_MCG_STATUS, 1172 MSR_IA32_MCG_CTL, 1173 MSR_IA32_MCG_EXT_CTL, 1174 MSR_IA32_SMBASE, 1175 MSR_SMI_COUNT, 1176 MSR_PLATFORM_INFO, 1177 MSR_MISC_FEATURES_ENABLES, 1178 MSR_AMD64_VIRT_SPEC_CTRL, 1179 MSR_IA32_POWER_CTL, 1180 1181 /* 1182 * The following list leaves out MSRs whose values are determined 1183 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1184 * We always support the "true" VMX control MSRs, even if the host 1185 * processor does not, so I am putting these registers here rather 1186 * than in msrs_to_save. 1187 */ 1188 MSR_IA32_VMX_BASIC, 1189 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1190 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1191 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1192 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1193 MSR_IA32_VMX_MISC, 1194 MSR_IA32_VMX_CR0_FIXED0, 1195 MSR_IA32_VMX_CR4_FIXED0, 1196 MSR_IA32_VMX_VMCS_ENUM, 1197 MSR_IA32_VMX_PROCBASED_CTLS2, 1198 MSR_IA32_VMX_EPT_VPID_CAP, 1199 MSR_IA32_VMX_VMFUNC, 1200 1201 MSR_K7_HWCR, 1202 MSR_KVM_POLL_CONTROL, 1203 }; 1204 1205 static unsigned num_emulated_msrs; 1206 1207 /* 1208 * List of msr numbers which are used to expose MSR-based features that 1209 * can be used by a hypervisor to validate requested CPU features. 1210 */ 1211 static u32 msr_based_features[] = { 1212 MSR_IA32_VMX_BASIC, 1213 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1214 MSR_IA32_VMX_PINBASED_CTLS, 1215 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1216 MSR_IA32_VMX_PROCBASED_CTLS, 1217 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1218 MSR_IA32_VMX_EXIT_CTLS, 1219 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1220 MSR_IA32_VMX_ENTRY_CTLS, 1221 MSR_IA32_VMX_MISC, 1222 MSR_IA32_VMX_CR0_FIXED0, 1223 MSR_IA32_VMX_CR0_FIXED1, 1224 MSR_IA32_VMX_CR4_FIXED0, 1225 MSR_IA32_VMX_CR4_FIXED1, 1226 MSR_IA32_VMX_VMCS_ENUM, 1227 MSR_IA32_VMX_PROCBASED_CTLS2, 1228 MSR_IA32_VMX_EPT_VPID_CAP, 1229 MSR_IA32_VMX_VMFUNC, 1230 1231 MSR_F10H_DECFG, 1232 MSR_IA32_UCODE_REV, 1233 MSR_IA32_ARCH_CAPABILITIES, 1234 }; 1235 1236 static unsigned int num_msr_based_features; 1237 1238 static u64 kvm_get_arch_capabilities(void) 1239 { 1240 u64 data = 0; 1241 1242 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1243 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1244 1245 /* 1246 * If we're doing cache flushes (either "always" or "cond") 1247 * we will do one whenever the guest does a vmlaunch/vmresume. 1248 * If an outer hypervisor is doing the cache flush for us 1249 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1250 * capability to the guest too, and if EPT is disabled we're not 1251 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1252 * require a nested hypervisor to do a flush of its own. 1253 */ 1254 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1255 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1256 1257 return data; 1258 } 1259 1260 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1261 { 1262 switch (msr->index) { 1263 case MSR_IA32_ARCH_CAPABILITIES: 1264 msr->data = kvm_get_arch_capabilities(); 1265 break; 1266 case MSR_IA32_UCODE_REV: 1267 rdmsrl_safe(msr->index, &msr->data); 1268 break; 1269 default: 1270 if (kvm_x86_ops->get_msr_feature(msr)) 1271 return 1; 1272 } 1273 return 0; 1274 } 1275 1276 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1277 { 1278 struct kvm_msr_entry msr; 1279 int r; 1280 1281 msr.index = index; 1282 r = kvm_get_msr_feature(&msr); 1283 if (r) 1284 return r; 1285 1286 *data = msr.data; 1287 1288 return 0; 1289 } 1290 1291 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1292 { 1293 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1294 return false; 1295 1296 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1297 return false; 1298 1299 if (efer & (EFER_LME | EFER_LMA) && 1300 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1301 return false; 1302 1303 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1304 return false; 1305 1306 return true; 1307 1308 } 1309 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1310 { 1311 if (efer & efer_reserved_bits) 1312 return false; 1313 1314 return __kvm_valid_efer(vcpu, efer); 1315 } 1316 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1317 1318 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1319 { 1320 u64 old_efer = vcpu->arch.efer; 1321 u64 efer = msr_info->data; 1322 1323 if (efer & efer_reserved_bits) 1324 return 1; 1325 1326 if (!msr_info->host_initiated) { 1327 if (!__kvm_valid_efer(vcpu, efer)) 1328 return 1; 1329 1330 if (is_paging(vcpu) && 1331 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1332 return 1; 1333 } 1334 1335 efer &= ~EFER_LMA; 1336 efer |= vcpu->arch.efer & EFER_LMA; 1337 1338 kvm_x86_ops->set_efer(vcpu, efer); 1339 1340 /* Update reserved bits */ 1341 if ((efer ^ old_efer) & EFER_NX) 1342 kvm_mmu_reset_context(vcpu); 1343 1344 return 0; 1345 } 1346 1347 void kvm_enable_efer_bits(u64 mask) 1348 { 1349 efer_reserved_bits &= ~mask; 1350 } 1351 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1352 1353 /* 1354 * Writes msr value into into the appropriate "register". 1355 * Returns 0 on success, non-0 otherwise. 1356 * Assumes vcpu_load() was already called. 1357 */ 1358 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 1359 { 1360 switch (msr->index) { 1361 case MSR_FS_BASE: 1362 case MSR_GS_BASE: 1363 case MSR_KERNEL_GS_BASE: 1364 case MSR_CSTAR: 1365 case MSR_LSTAR: 1366 if (is_noncanonical_address(msr->data, vcpu)) 1367 return 1; 1368 break; 1369 case MSR_IA32_SYSENTER_EIP: 1370 case MSR_IA32_SYSENTER_ESP: 1371 /* 1372 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1373 * non-canonical address is written on Intel but not on 1374 * AMD (which ignores the top 32-bits, because it does 1375 * not implement 64-bit SYSENTER). 1376 * 1377 * 64-bit code should hence be able to write a non-canonical 1378 * value on AMD. Making the address canonical ensures that 1379 * vmentry does not fail on Intel after writing a non-canonical 1380 * value, and that something deterministic happens if the guest 1381 * invokes 64-bit SYSENTER. 1382 */ 1383 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu)); 1384 } 1385 return kvm_x86_ops->set_msr(vcpu, msr); 1386 } 1387 EXPORT_SYMBOL_GPL(kvm_set_msr); 1388 1389 /* 1390 * Adapt set_msr() to msr_io()'s calling convention 1391 */ 1392 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1393 { 1394 struct msr_data msr; 1395 int r; 1396 1397 msr.index = index; 1398 msr.host_initiated = true; 1399 r = kvm_get_msr(vcpu, &msr); 1400 if (r) 1401 return r; 1402 1403 *data = msr.data; 1404 return 0; 1405 } 1406 1407 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1408 { 1409 struct msr_data msr; 1410 1411 msr.data = *data; 1412 msr.index = index; 1413 msr.host_initiated = true; 1414 return kvm_set_msr(vcpu, &msr); 1415 } 1416 1417 #ifdef CONFIG_X86_64 1418 struct pvclock_gtod_data { 1419 seqcount_t seq; 1420 1421 struct { /* extract of a clocksource struct */ 1422 int vclock_mode; 1423 u64 cycle_last; 1424 u64 mask; 1425 u32 mult; 1426 u32 shift; 1427 } clock; 1428 1429 u64 boot_ns; 1430 u64 nsec_base; 1431 u64 wall_time_sec; 1432 }; 1433 1434 static struct pvclock_gtod_data pvclock_gtod_data; 1435 1436 static void update_pvclock_gtod(struct timekeeper *tk) 1437 { 1438 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1439 u64 boot_ns; 1440 1441 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); 1442 1443 write_seqcount_begin(&vdata->seq); 1444 1445 /* copy pvclock gtod data */ 1446 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; 1447 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1448 vdata->clock.mask = tk->tkr_mono.mask; 1449 vdata->clock.mult = tk->tkr_mono.mult; 1450 vdata->clock.shift = tk->tkr_mono.shift; 1451 1452 vdata->boot_ns = boot_ns; 1453 vdata->nsec_base = tk->tkr_mono.xtime_nsec; 1454 1455 vdata->wall_time_sec = tk->xtime_sec; 1456 1457 write_seqcount_end(&vdata->seq); 1458 } 1459 #endif 1460 1461 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1462 { 1463 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1464 kvm_vcpu_kick(vcpu); 1465 } 1466 1467 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1468 { 1469 int version; 1470 int r; 1471 struct pvclock_wall_clock wc; 1472 struct timespec64 boot; 1473 1474 if (!wall_clock) 1475 return; 1476 1477 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1478 if (r) 1479 return; 1480 1481 if (version & 1) 1482 ++version; /* first time write, random junk */ 1483 1484 ++version; 1485 1486 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1487 return; 1488 1489 /* 1490 * The guest calculates current wall clock time by adding 1491 * system time (updated by kvm_guest_time_update below) to the 1492 * wall clock specified here. guest system time equals host 1493 * system time for us, thus we must fill in host boot time here. 1494 */ 1495 getboottime64(&boot); 1496 1497 if (kvm->arch.kvmclock_offset) { 1498 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); 1499 boot = timespec64_sub(boot, ts); 1500 } 1501 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ 1502 wc.nsec = boot.tv_nsec; 1503 wc.version = version; 1504 1505 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1506 1507 version++; 1508 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1509 } 1510 1511 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1512 { 1513 do_shl32_div32(dividend, divisor); 1514 return dividend; 1515 } 1516 1517 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1518 s8 *pshift, u32 *pmultiplier) 1519 { 1520 uint64_t scaled64; 1521 int32_t shift = 0; 1522 uint64_t tps64; 1523 uint32_t tps32; 1524 1525 tps64 = base_hz; 1526 scaled64 = scaled_hz; 1527 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1528 tps64 >>= 1; 1529 shift--; 1530 } 1531 1532 tps32 = (uint32_t)tps64; 1533 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1534 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1535 scaled64 >>= 1; 1536 else 1537 tps32 <<= 1; 1538 shift++; 1539 } 1540 1541 *pshift = shift; 1542 *pmultiplier = div_frac(scaled64, tps32); 1543 } 1544 1545 #ifdef CONFIG_X86_64 1546 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1547 #endif 1548 1549 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1550 static unsigned long max_tsc_khz; 1551 1552 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1553 { 1554 u64 v = (u64)khz * (1000000 + ppm); 1555 do_div(v, 1000000); 1556 return v; 1557 } 1558 1559 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1560 { 1561 u64 ratio; 1562 1563 /* Guest TSC same frequency as host TSC? */ 1564 if (!scale) { 1565 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1566 return 0; 1567 } 1568 1569 /* TSC scaling supported? */ 1570 if (!kvm_has_tsc_control) { 1571 if (user_tsc_khz > tsc_khz) { 1572 vcpu->arch.tsc_catchup = 1; 1573 vcpu->arch.tsc_always_catchup = 1; 1574 return 0; 1575 } else { 1576 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 1577 return -1; 1578 } 1579 } 1580 1581 /* TSC scaling required - calculate ratio */ 1582 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1583 user_tsc_khz, tsc_khz); 1584 1585 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1586 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1587 user_tsc_khz); 1588 return -1; 1589 } 1590 1591 vcpu->arch.tsc_scaling_ratio = ratio; 1592 return 0; 1593 } 1594 1595 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1596 { 1597 u32 thresh_lo, thresh_hi; 1598 int use_scaling = 0; 1599 1600 /* tsc_khz can be zero if TSC calibration fails */ 1601 if (user_tsc_khz == 0) { 1602 /* set tsc_scaling_ratio to a safe value */ 1603 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1604 return -1; 1605 } 1606 1607 /* Compute a scale to convert nanoseconds in TSC cycles */ 1608 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1609 &vcpu->arch.virtual_tsc_shift, 1610 &vcpu->arch.virtual_tsc_mult); 1611 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1612 1613 /* 1614 * Compute the variation in TSC rate which is acceptable 1615 * within the range of tolerance and decide if the 1616 * rate being applied is within that bounds of the hardware 1617 * rate. If so, no scaling or compensation need be done. 1618 */ 1619 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1620 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1621 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1622 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1623 use_scaling = 1; 1624 } 1625 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1626 } 1627 1628 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1629 { 1630 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1631 vcpu->arch.virtual_tsc_mult, 1632 vcpu->arch.virtual_tsc_shift); 1633 tsc += vcpu->arch.this_tsc_write; 1634 return tsc; 1635 } 1636 1637 static inline int gtod_is_based_on_tsc(int mode) 1638 { 1639 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK; 1640 } 1641 1642 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1643 { 1644 #ifdef CONFIG_X86_64 1645 bool vcpus_matched; 1646 struct kvm_arch *ka = &vcpu->kvm->arch; 1647 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1648 1649 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1650 atomic_read(&vcpu->kvm->online_vcpus)); 1651 1652 /* 1653 * Once the masterclock is enabled, always perform request in 1654 * order to update it. 1655 * 1656 * In order to enable masterclock, the host clocksource must be TSC 1657 * and the vcpus need to have matched TSCs. When that happens, 1658 * perform request to enable masterclock. 1659 */ 1660 if (ka->use_master_clock || 1661 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 1662 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1663 1664 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1665 atomic_read(&vcpu->kvm->online_vcpus), 1666 ka->use_master_clock, gtod->clock.vclock_mode); 1667 #endif 1668 } 1669 1670 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1671 { 1672 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1673 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1674 } 1675 1676 /* 1677 * Multiply tsc by a fixed point number represented by ratio. 1678 * 1679 * The most significant 64-N bits (mult) of ratio represent the 1680 * integral part of the fixed point number; the remaining N bits 1681 * (frac) represent the fractional part, ie. ratio represents a fixed 1682 * point number (mult + frac * 2^(-N)). 1683 * 1684 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1685 */ 1686 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1687 { 1688 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1689 } 1690 1691 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1692 { 1693 u64 _tsc = tsc; 1694 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1695 1696 if (ratio != kvm_default_tsc_scaling_ratio) 1697 _tsc = __scale_tsc(ratio, tsc); 1698 1699 return _tsc; 1700 } 1701 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1702 1703 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1704 { 1705 u64 tsc; 1706 1707 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1708 1709 return target_tsc - tsc; 1710 } 1711 1712 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1713 { 1714 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1715 1716 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1717 } 1718 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1719 1720 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1721 { 1722 vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset); 1723 } 1724 1725 static inline bool kvm_check_tsc_unstable(void) 1726 { 1727 #ifdef CONFIG_X86_64 1728 /* 1729 * TSC is marked unstable when we're running on Hyper-V, 1730 * 'TSC page' clocksource is good. 1731 */ 1732 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK) 1733 return false; 1734 #endif 1735 return check_tsc_unstable(); 1736 } 1737 1738 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1739 { 1740 struct kvm *kvm = vcpu->kvm; 1741 u64 offset, ns, elapsed; 1742 unsigned long flags; 1743 bool matched; 1744 bool already_matched; 1745 u64 data = msr->data; 1746 bool synchronizing = false; 1747 1748 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1749 offset = kvm_compute_tsc_offset(vcpu, data); 1750 ns = ktime_get_boottime_ns(); 1751 elapsed = ns - kvm->arch.last_tsc_nsec; 1752 1753 if (vcpu->arch.virtual_tsc_khz) { 1754 if (data == 0 && msr->host_initiated) { 1755 /* 1756 * detection of vcpu initialization -- need to sync 1757 * with other vCPUs. This particularly helps to keep 1758 * kvm_clock stable after CPU hotplug 1759 */ 1760 synchronizing = true; 1761 } else { 1762 u64 tsc_exp = kvm->arch.last_tsc_write + 1763 nsec_to_cycles(vcpu, elapsed); 1764 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 1765 /* 1766 * Special case: TSC write with a small delta (1 second) 1767 * of virtual cycle time against real time is 1768 * interpreted as an attempt to synchronize the CPU. 1769 */ 1770 synchronizing = data < tsc_exp + tsc_hz && 1771 data + tsc_hz > tsc_exp; 1772 } 1773 } 1774 1775 /* 1776 * For a reliable TSC, we can match TSC offsets, and for an unstable 1777 * TSC, we add elapsed time in this computation. We could let the 1778 * compensation code attempt to catch up if we fall behind, but 1779 * it's better to try to match offsets from the beginning. 1780 */ 1781 if (synchronizing && 1782 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1783 if (!kvm_check_tsc_unstable()) { 1784 offset = kvm->arch.cur_tsc_offset; 1785 } else { 1786 u64 delta = nsec_to_cycles(vcpu, elapsed); 1787 data += delta; 1788 offset = kvm_compute_tsc_offset(vcpu, data); 1789 } 1790 matched = true; 1791 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1792 } else { 1793 /* 1794 * We split periods of matched TSC writes into generations. 1795 * For each generation, we track the original measured 1796 * nanosecond time, offset, and write, so if TSCs are in 1797 * sync, we can match exact offset, and if not, we can match 1798 * exact software computation in compute_guest_tsc() 1799 * 1800 * These values are tracked in kvm->arch.cur_xxx variables. 1801 */ 1802 kvm->arch.cur_tsc_generation++; 1803 kvm->arch.cur_tsc_nsec = ns; 1804 kvm->arch.cur_tsc_write = data; 1805 kvm->arch.cur_tsc_offset = offset; 1806 matched = false; 1807 } 1808 1809 /* 1810 * We also track th most recent recorded KHZ, write and time to 1811 * allow the matching interval to be extended at each write. 1812 */ 1813 kvm->arch.last_tsc_nsec = ns; 1814 kvm->arch.last_tsc_write = data; 1815 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1816 1817 vcpu->arch.last_guest_tsc = data; 1818 1819 /* Keep track of which generation this VCPU has synchronized to */ 1820 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1821 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1822 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1823 1824 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 1825 update_ia32_tsc_adjust_msr(vcpu, offset); 1826 1827 kvm_vcpu_write_tsc_offset(vcpu, offset); 1828 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1829 1830 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1831 if (!matched) { 1832 kvm->arch.nr_vcpus_matched_tsc = 0; 1833 } else if (!already_matched) { 1834 kvm->arch.nr_vcpus_matched_tsc++; 1835 } 1836 1837 kvm_track_tsc_matching(vcpu); 1838 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1839 } 1840 1841 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1842 1843 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 1844 s64 adjustment) 1845 { 1846 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1847 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 1848 } 1849 1850 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 1851 { 1852 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 1853 WARN_ON(adjustment < 0); 1854 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 1855 adjust_tsc_offset_guest(vcpu, adjustment); 1856 } 1857 1858 #ifdef CONFIG_X86_64 1859 1860 static u64 read_tsc(void) 1861 { 1862 u64 ret = (u64)rdtsc_ordered(); 1863 u64 last = pvclock_gtod_data.clock.cycle_last; 1864 1865 if (likely(ret >= last)) 1866 return ret; 1867 1868 /* 1869 * GCC likes to generate cmov here, but this branch is extremely 1870 * predictable (it's just a function of time and the likely is 1871 * very likely) and there's a data dependence, so force GCC 1872 * to generate a branch instead. I don't barrier() because 1873 * we don't actually need a barrier, and if this function 1874 * ever gets inlined it will generate worse code. 1875 */ 1876 asm volatile (""); 1877 return last; 1878 } 1879 1880 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode) 1881 { 1882 long v; 1883 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1884 u64 tsc_pg_val; 1885 1886 switch (gtod->clock.vclock_mode) { 1887 case VCLOCK_HVCLOCK: 1888 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 1889 tsc_timestamp); 1890 if (tsc_pg_val != U64_MAX) { 1891 /* TSC page valid */ 1892 *mode = VCLOCK_HVCLOCK; 1893 v = (tsc_pg_val - gtod->clock.cycle_last) & 1894 gtod->clock.mask; 1895 } else { 1896 /* TSC page invalid */ 1897 *mode = VCLOCK_NONE; 1898 } 1899 break; 1900 case VCLOCK_TSC: 1901 *mode = VCLOCK_TSC; 1902 *tsc_timestamp = read_tsc(); 1903 v = (*tsc_timestamp - gtod->clock.cycle_last) & 1904 gtod->clock.mask; 1905 break; 1906 default: 1907 *mode = VCLOCK_NONE; 1908 } 1909 1910 if (*mode == VCLOCK_NONE) 1911 *tsc_timestamp = v = 0; 1912 1913 return v * gtod->clock.mult; 1914 } 1915 1916 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp) 1917 { 1918 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1919 unsigned long seq; 1920 int mode; 1921 u64 ns; 1922 1923 do { 1924 seq = read_seqcount_begin(>od->seq); 1925 ns = gtod->nsec_base; 1926 ns += vgettsc(tsc_timestamp, &mode); 1927 ns >>= gtod->clock.shift; 1928 ns += gtod->boot_ns; 1929 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1930 *t = ns; 1931 1932 return mode; 1933 } 1934 1935 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 1936 { 1937 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1938 unsigned long seq; 1939 int mode; 1940 u64 ns; 1941 1942 do { 1943 seq = read_seqcount_begin(>od->seq); 1944 ts->tv_sec = gtod->wall_time_sec; 1945 ns = gtod->nsec_base; 1946 ns += vgettsc(tsc_timestamp, &mode); 1947 ns >>= gtod->clock.shift; 1948 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1949 1950 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 1951 ts->tv_nsec = ns; 1952 1953 return mode; 1954 } 1955 1956 /* returns true if host is using TSC based clocksource */ 1957 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 1958 { 1959 /* checked again under seqlock below */ 1960 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 1961 return false; 1962 1963 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns, 1964 tsc_timestamp)); 1965 } 1966 1967 /* returns true if host is using TSC based clocksource */ 1968 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 1969 u64 *tsc_timestamp) 1970 { 1971 /* checked again under seqlock below */ 1972 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 1973 return false; 1974 1975 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 1976 } 1977 #endif 1978 1979 /* 1980 * 1981 * Assuming a stable TSC across physical CPUS, and a stable TSC 1982 * across virtual CPUs, the following condition is possible. 1983 * Each numbered line represents an event visible to both 1984 * CPUs at the next numbered event. 1985 * 1986 * "timespecX" represents host monotonic time. "tscX" represents 1987 * RDTSC value. 1988 * 1989 * VCPU0 on CPU0 | VCPU1 on CPU1 1990 * 1991 * 1. read timespec0,tsc0 1992 * 2. | timespec1 = timespec0 + N 1993 * | tsc1 = tsc0 + M 1994 * 3. transition to guest | transition to guest 1995 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1996 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1997 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1998 * 1999 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2000 * 2001 * - ret0 < ret1 2002 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2003 * ... 2004 * - 0 < N - M => M < N 2005 * 2006 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2007 * always the case (the difference between two distinct xtime instances 2008 * might be smaller then the difference between corresponding TSC reads, 2009 * when updating guest vcpus pvclock areas). 2010 * 2011 * To avoid that problem, do not allow visibility of distinct 2012 * system_timestamp/tsc_timestamp values simultaneously: use a master 2013 * copy of host monotonic time values. Update that master copy 2014 * in lockstep. 2015 * 2016 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2017 * 2018 */ 2019 2020 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2021 { 2022 #ifdef CONFIG_X86_64 2023 struct kvm_arch *ka = &kvm->arch; 2024 int vclock_mode; 2025 bool host_tsc_clocksource, vcpus_matched; 2026 2027 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2028 atomic_read(&kvm->online_vcpus)); 2029 2030 /* 2031 * If the host uses TSC clock, then passthrough TSC as stable 2032 * to the guest. 2033 */ 2034 host_tsc_clocksource = kvm_get_time_and_clockread( 2035 &ka->master_kernel_ns, 2036 &ka->master_cycle_now); 2037 2038 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2039 && !ka->backwards_tsc_observed 2040 && !ka->boot_vcpu_runs_old_kvmclock; 2041 2042 if (ka->use_master_clock) 2043 atomic_set(&kvm_guest_has_master_clock, 1); 2044 2045 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2046 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2047 vcpus_matched); 2048 #endif 2049 } 2050 2051 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2052 { 2053 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2054 } 2055 2056 static void kvm_gen_update_masterclock(struct kvm *kvm) 2057 { 2058 #ifdef CONFIG_X86_64 2059 int i; 2060 struct kvm_vcpu *vcpu; 2061 struct kvm_arch *ka = &kvm->arch; 2062 2063 spin_lock(&ka->pvclock_gtod_sync_lock); 2064 kvm_make_mclock_inprogress_request(kvm); 2065 /* no guest entries from this point */ 2066 pvclock_update_vm_gtod_copy(kvm); 2067 2068 kvm_for_each_vcpu(i, vcpu, kvm) 2069 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2070 2071 /* guest entries allowed */ 2072 kvm_for_each_vcpu(i, vcpu, kvm) 2073 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2074 2075 spin_unlock(&ka->pvclock_gtod_sync_lock); 2076 #endif 2077 } 2078 2079 u64 get_kvmclock_ns(struct kvm *kvm) 2080 { 2081 struct kvm_arch *ka = &kvm->arch; 2082 struct pvclock_vcpu_time_info hv_clock; 2083 u64 ret; 2084 2085 spin_lock(&ka->pvclock_gtod_sync_lock); 2086 if (!ka->use_master_clock) { 2087 spin_unlock(&ka->pvclock_gtod_sync_lock); 2088 return ktime_get_boottime_ns() + ka->kvmclock_offset; 2089 } 2090 2091 hv_clock.tsc_timestamp = ka->master_cycle_now; 2092 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2093 spin_unlock(&ka->pvclock_gtod_sync_lock); 2094 2095 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2096 get_cpu(); 2097 2098 if (__this_cpu_read(cpu_tsc_khz)) { 2099 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2100 &hv_clock.tsc_shift, 2101 &hv_clock.tsc_to_system_mul); 2102 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2103 } else 2104 ret = ktime_get_boottime_ns() + ka->kvmclock_offset; 2105 2106 put_cpu(); 2107 2108 return ret; 2109 } 2110 2111 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2112 { 2113 struct kvm_vcpu_arch *vcpu = &v->arch; 2114 struct pvclock_vcpu_time_info guest_hv_clock; 2115 2116 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2117 &guest_hv_clock, sizeof(guest_hv_clock)))) 2118 return; 2119 2120 /* This VCPU is paused, but it's legal for a guest to read another 2121 * VCPU's kvmclock, so we really have to follow the specification where 2122 * it says that version is odd if data is being modified, and even after 2123 * it is consistent. 2124 * 2125 * Version field updates must be kept separate. This is because 2126 * kvm_write_guest_cached might use a "rep movs" instruction, and 2127 * writes within a string instruction are weakly ordered. So there 2128 * are three writes overall. 2129 * 2130 * As a small optimization, only write the version field in the first 2131 * and third write. The vcpu->pv_time cache is still valid, because the 2132 * version field is the first in the struct. 2133 */ 2134 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2135 2136 if (guest_hv_clock.version & 1) 2137 ++guest_hv_clock.version; /* first time write, random junk */ 2138 2139 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2140 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2141 &vcpu->hv_clock, 2142 sizeof(vcpu->hv_clock.version)); 2143 2144 smp_wmb(); 2145 2146 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2147 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2148 2149 if (vcpu->pvclock_set_guest_stopped_request) { 2150 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2151 vcpu->pvclock_set_guest_stopped_request = false; 2152 } 2153 2154 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2155 2156 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2157 &vcpu->hv_clock, 2158 sizeof(vcpu->hv_clock)); 2159 2160 smp_wmb(); 2161 2162 vcpu->hv_clock.version++; 2163 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2164 &vcpu->hv_clock, 2165 sizeof(vcpu->hv_clock.version)); 2166 } 2167 2168 static int kvm_guest_time_update(struct kvm_vcpu *v) 2169 { 2170 unsigned long flags, tgt_tsc_khz; 2171 struct kvm_vcpu_arch *vcpu = &v->arch; 2172 struct kvm_arch *ka = &v->kvm->arch; 2173 s64 kernel_ns; 2174 u64 tsc_timestamp, host_tsc; 2175 u8 pvclock_flags; 2176 bool use_master_clock; 2177 2178 kernel_ns = 0; 2179 host_tsc = 0; 2180 2181 /* 2182 * If the host uses TSC clock, then passthrough TSC as stable 2183 * to the guest. 2184 */ 2185 spin_lock(&ka->pvclock_gtod_sync_lock); 2186 use_master_clock = ka->use_master_clock; 2187 if (use_master_clock) { 2188 host_tsc = ka->master_cycle_now; 2189 kernel_ns = ka->master_kernel_ns; 2190 } 2191 spin_unlock(&ka->pvclock_gtod_sync_lock); 2192 2193 /* Keep irq disabled to prevent changes to the clock */ 2194 local_irq_save(flags); 2195 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2196 if (unlikely(tgt_tsc_khz == 0)) { 2197 local_irq_restore(flags); 2198 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2199 return 1; 2200 } 2201 if (!use_master_clock) { 2202 host_tsc = rdtsc(); 2203 kernel_ns = ktime_get_boottime_ns(); 2204 } 2205 2206 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2207 2208 /* 2209 * We may have to catch up the TSC to match elapsed wall clock 2210 * time for two reasons, even if kvmclock is used. 2211 * 1) CPU could have been running below the maximum TSC rate 2212 * 2) Broken TSC compensation resets the base at each VCPU 2213 * entry to avoid unknown leaps of TSC even when running 2214 * again on the same CPU. This may cause apparent elapsed 2215 * time to disappear, and the guest to stand still or run 2216 * very slowly. 2217 */ 2218 if (vcpu->tsc_catchup) { 2219 u64 tsc = compute_guest_tsc(v, kernel_ns); 2220 if (tsc > tsc_timestamp) { 2221 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2222 tsc_timestamp = tsc; 2223 } 2224 } 2225 2226 local_irq_restore(flags); 2227 2228 /* With all the info we got, fill in the values */ 2229 2230 if (kvm_has_tsc_control) 2231 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2232 2233 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2234 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2235 &vcpu->hv_clock.tsc_shift, 2236 &vcpu->hv_clock.tsc_to_system_mul); 2237 vcpu->hw_tsc_khz = tgt_tsc_khz; 2238 } 2239 2240 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2241 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2242 vcpu->last_guest_tsc = tsc_timestamp; 2243 2244 /* If the host uses TSC clocksource, then it is stable */ 2245 pvclock_flags = 0; 2246 if (use_master_clock) 2247 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2248 2249 vcpu->hv_clock.flags = pvclock_flags; 2250 2251 if (vcpu->pv_time_enabled) 2252 kvm_setup_pvclock_page(v); 2253 if (v == kvm_get_vcpu(v->kvm, 0)) 2254 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2255 return 0; 2256 } 2257 2258 /* 2259 * kvmclock updates which are isolated to a given vcpu, such as 2260 * vcpu->cpu migration, should not allow system_timestamp from 2261 * the rest of the vcpus to remain static. Otherwise ntp frequency 2262 * correction applies to one vcpu's system_timestamp but not 2263 * the others. 2264 * 2265 * So in those cases, request a kvmclock update for all vcpus. 2266 * We need to rate-limit these requests though, as they can 2267 * considerably slow guests that have a large number of vcpus. 2268 * The time for a remote vcpu to update its kvmclock is bound 2269 * by the delay we use to rate-limit the updates. 2270 */ 2271 2272 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2273 2274 static void kvmclock_update_fn(struct work_struct *work) 2275 { 2276 int i; 2277 struct delayed_work *dwork = to_delayed_work(work); 2278 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2279 kvmclock_update_work); 2280 struct kvm *kvm = container_of(ka, struct kvm, arch); 2281 struct kvm_vcpu *vcpu; 2282 2283 kvm_for_each_vcpu(i, vcpu, kvm) { 2284 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2285 kvm_vcpu_kick(vcpu); 2286 } 2287 } 2288 2289 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2290 { 2291 struct kvm *kvm = v->kvm; 2292 2293 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2294 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2295 KVMCLOCK_UPDATE_DELAY); 2296 } 2297 2298 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2299 2300 static void kvmclock_sync_fn(struct work_struct *work) 2301 { 2302 struct delayed_work *dwork = to_delayed_work(work); 2303 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2304 kvmclock_sync_work); 2305 struct kvm *kvm = container_of(ka, struct kvm, arch); 2306 2307 if (!kvmclock_periodic_sync) 2308 return; 2309 2310 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2311 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2312 KVMCLOCK_SYNC_PERIOD); 2313 } 2314 2315 /* 2316 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2317 */ 2318 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2319 { 2320 /* McStatusWrEn enabled? */ 2321 if (guest_cpuid_is_amd(vcpu)) 2322 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2323 2324 return false; 2325 } 2326 2327 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2328 { 2329 u64 mcg_cap = vcpu->arch.mcg_cap; 2330 unsigned bank_num = mcg_cap & 0xff; 2331 u32 msr = msr_info->index; 2332 u64 data = msr_info->data; 2333 2334 switch (msr) { 2335 case MSR_IA32_MCG_STATUS: 2336 vcpu->arch.mcg_status = data; 2337 break; 2338 case MSR_IA32_MCG_CTL: 2339 if (!(mcg_cap & MCG_CTL_P) && 2340 (data || !msr_info->host_initiated)) 2341 return 1; 2342 if (data != 0 && data != ~(u64)0) 2343 return 1; 2344 vcpu->arch.mcg_ctl = data; 2345 break; 2346 default: 2347 if (msr >= MSR_IA32_MC0_CTL && 2348 msr < MSR_IA32_MCx_CTL(bank_num)) { 2349 u32 offset = msr - MSR_IA32_MC0_CTL; 2350 /* only 0 or all 1s can be written to IA32_MCi_CTL 2351 * some Linux kernels though clear bit 10 in bank 4 to 2352 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2353 * this to avoid an uncatched #GP in the guest 2354 */ 2355 if ((offset & 0x3) == 0 && 2356 data != 0 && (data | (1 << 10)) != ~(u64)0) 2357 return -1; 2358 2359 /* MCi_STATUS */ 2360 if (!msr_info->host_initiated && 2361 (offset & 0x3) == 1 && data != 0) { 2362 if (!can_set_mci_status(vcpu)) 2363 return -1; 2364 } 2365 2366 vcpu->arch.mce_banks[offset] = data; 2367 break; 2368 } 2369 return 1; 2370 } 2371 return 0; 2372 } 2373 2374 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2375 { 2376 struct kvm *kvm = vcpu->kvm; 2377 int lm = is_long_mode(vcpu); 2378 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2379 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2380 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2381 : kvm->arch.xen_hvm_config.blob_size_32; 2382 u32 page_num = data & ~PAGE_MASK; 2383 u64 page_addr = data & PAGE_MASK; 2384 u8 *page; 2385 int r; 2386 2387 r = -E2BIG; 2388 if (page_num >= blob_size) 2389 goto out; 2390 r = -ENOMEM; 2391 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2392 if (IS_ERR(page)) { 2393 r = PTR_ERR(page); 2394 goto out; 2395 } 2396 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2397 goto out_free; 2398 r = 0; 2399 out_free: 2400 kfree(page); 2401 out: 2402 return r; 2403 } 2404 2405 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2406 { 2407 gpa_t gpa = data & ~0x3f; 2408 2409 /* Bits 3:5 are reserved, Should be zero */ 2410 if (data & 0x38) 2411 return 1; 2412 2413 vcpu->arch.apf.msr_val = data; 2414 2415 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2416 kvm_clear_async_pf_completion_queue(vcpu); 2417 kvm_async_pf_hash_reset(vcpu); 2418 return 0; 2419 } 2420 2421 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2422 sizeof(u32))) 2423 return 1; 2424 2425 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2426 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2427 kvm_async_pf_wakeup_all(vcpu); 2428 return 0; 2429 } 2430 2431 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2432 { 2433 vcpu->arch.pv_time_enabled = false; 2434 } 2435 2436 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) 2437 { 2438 ++vcpu->stat.tlb_flush; 2439 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa); 2440 } 2441 2442 static void record_steal_time(struct kvm_vcpu *vcpu) 2443 { 2444 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2445 return; 2446 2447 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2448 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2449 return; 2450 2451 /* 2452 * Doing a TLB flush here, on the guest's behalf, can avoid 2453 * expensive IPIs. 2454 */ 2455 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB) 2456 kvm_vcpu_flush_tlb(vcpu, false); 2457 2458 if (vcpu->arch.st.steal.version & 1) 2459 vcpu->arch.st.steal.version += 1; /* first time write, random junk */ 2460 2461 vcpu->arch.st.steal.version += 1; 2462 2463 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2464 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2465 2466 smp_wmb(); 2467 2468 vcpu->arch.st.steal.steal += current->sched_info.run_delay - 2469 vcpu->arch.st.last_steal; 2470 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2471 2472 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2473 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2474 2475 smp_wmb(); 2476 2477 vcpu->arch.st.steal.version += 1; 2478 2479 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2480 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2481 } 2482 2483 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2484 { 2485 bool pr = false; 2486 u32 msr = msr_info->index; 2487 u64 data = msr_info->data; 2488 2489 switch (msr) { 2490 case MSR_AMD64_NB_CFG: 2491 case MSR_IA32_UCODE_WRITE: 2492 case MSR_VM_HSAVE_PA: 2493 case MSR_AMD64_PATCH_LOADER: 2494 case MSR_AMD64_BU_CFG2: 2495 case MSR_AMD64_DC_CFG: 2496 case MSR_F15H_EX_CFG: 2497 break; 2498 2499 case MSR_IA32_UCODE_REV: 2500 if (msr_info->host_initiated) 2501 vcpu->arch.microcode_version = data; 2502 break; 2503 case MSR_IA32_ARCH_CAPABILITIES: 2504 if (!msr_info->host_initiated) 2505 return 1; 2506 vcpu->arch.arch_capabilities = data; 2507 break; 2508 case MSR_EFER: 2509 return set_efer(vcpu, msr_info); 2510 case MSR_K7_HWCR: 2511 data &= ~(u64)0x40; /* ignore flush filter disable */ 2512 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2513 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2514 2515 /* Handle McStatusWrEn */ 2516 if (data == BIT_ULL(18)) { 2517 vcpu->arch.msr_hwcr = data; 2518 } else if (data != 0) { 2519 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2520 data); 2521 return 1; 2522 } 2523 break; 2524 case MSR_FAM10H_MMIO_CONF_BASE: 2525 if (data != 0) { 2526 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2527 "0x%llx\n", data); 2528 return 1; 2529 } 2530 break; 2531 case MSR_IA32_DEBUGCTLMSR: 2532 if (!data) { 2533 /* We support the non-activated case already */ 2534 break; 2535 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2536 /* Values other than LBR and BTF are vendor-specific, 2537 thus reserved and should throw a #GP */ 2538 return 1; 2539 } 2540 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2541 __func__, data); 2542 break; 2543 case 0x200 ... 0x2ff: 2544 return kvm_mtrr_set_msr(vcpu, msr, data); 2545 case MSR_IA32_APICBASE: 2546 return kvm_set_apic_base(vcpu, msr_info); 2547 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2548 return kvm_x2apic_msr_write(vcpu, msr, data); 2549 case MSR_IA32_TSCDEADLINE: 2550 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2551 break; 2552 case MSR_IA32_TSC_ADJUST: 2553 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2554 if (!msr_info->host_initiated) { 2555 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2556 adjust_tsc_offset_guest(vcpu, adj); 2557 } 2558 vcpu->arch.ia32_tsc_adjust_msr = data; 2559 } 2560 break; 2561 case MSR_IA32_MISC_ENABLE: 2562 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 2563 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 2564 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 2565 return 1; 2566 vcpu->arch.ia32_misc_enable_msr = data; 2567 kvm_update_cpuid(vcpu); 2568 } else { 2569 vcpu->arch.ia32_misc_enable_msr = data; 2570 } 2571 break; 2572 case MSR_IA32_SMBASE: 2573 if (!msr_info->host_initiated) 2574 return 1; 2575 vcpu->arch.smbase = data; 2576 break; 2577 case MSR_IA32_POWER_CTL: 2578 vcpu->arch.msr_ia32_power_ctl = data; 2579 break; 2580 case MSR_IA32_TSC: 2581 kvm_write_tsc(vcpu, msr_info); 2582 break; 2583 case MSR_SMI_COUNT: 2584 if (!msr_info->host_initiated) 2585 return 1; 2586 vcpu->arch.smi_count = data; 2587 break; 2588 case MSR_KVM_WALL_CLOCK_NEW: 2589 case MSR_KVM_WALL_CLOCK: 2590 vcpu->kvm->arch.wall_clock = data; 2591 kvm_write_wall_clock(vcpu->kvm, data); 2592 break; 2593 case MSR_KVM_SYSTEM_TIME_NEW: 2594 case MSR_KVM_SYSTEM_TIME: { 2595 struct kvm_arch *ka = &vcpu->kvm->arch; 2596 2597 kvmclock_reset(vcpu); 2598 2599 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2600 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2601 2602 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2603 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2604 2605 ka->boot_vcpu_runs_old_kvmclock = tmp; 2606 } 2607 2608 vcpu->arch.time = data; 2609 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2610 2611 /* we verify if the enable bit is set... */ 2612 if (!(data & 1)) 2613 break; 2614 2615 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2616 &vcpu->arch.pv_time, data & ~1ULL, 2617 sizeof(struct pvclock_vcpu_time_info))) 2618 vcpu->arch.pv_time_enabled = false; 2619 else 2620 vcpu->arch.pv_time_enabled = true; 2621 2622 break; 2623 } 2624 case MSR_KVM_ASYNC_PF_EN: 2625 if (kvm_pv_enable_async_pf(vcpu, data)) 2626 return 1; 2627 break; 2628 case MSR_KVM_STEAL_TIME: 2629 2630 if (unlikely(!sched_info_on())) 2631 return 1; 2632 2633 if (data & KVM_STEAL_RESERVED_MASK) 2634 return 1; 2635 2636 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2637 data & KVM_STEAL_VALID_BITS, 2638 sizeof(struct kvm_steal_time))) 2639 return 1; 2640 2641 vcpu->arch.st.msr_val = data; 2642 2643 if (!(data & KVM_MSR_ENABLED)) 2644 break; 2645 2646 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2647 2648 break; 2649 case MSR_KVM_PV_EOI_EN: 2650 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 2651 return 1; 2652 break; 2653 2654 case MSR_KVM_POLL_CONTROL: 2655 /* only enable bit supported */ 2656 if (data & (-1ULL << 1)) 2657 return 1; 2658 2659 vcpu->arch.msr_kvm_poll_control = data; 2660 break; 2661 2662 case MSR_IA32_MCG_CTL: 2663 case MSR_IA32_MCG_STATUS: 2664 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2665 return set_msr_mce(vcpu, msr_info); 2666 2667 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2668 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2669 pr = true; /* fall through */ 2670 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2671 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2672 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2673 return kvm_pmu_set_msr(vcpu, msr_info); 2674 2675 if (pr || data != 0) 2676 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2677 "0x%x data 0x%llx\n", msr, data); 2678 break; 2679 case MSR_K7_CLK_CTL: 2680 /* 2681 * Ignore all writes to this no longer documented MSR. 2682 * Writes are only relevant for old K7 processors, 2683 * all pre-dating SVM, but a recommended workaround from 2684 * AMD for these chips. It is possible to specify the 2685 * affected processor models on the command line, hence 2686 * the need to ignore the workaround. 2687 */ 2688 break; 2689 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2690 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2691 case HV_X64_MSR_CRASH_CTL: 2692 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2693 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2694 case HV_X64_MSR_TSC_EMULATION_CONTROL: 2695 case HV_X64_MSR_TSC_EMULATION_STATUS: 2696 return kvm_hv_set_msr_common(vcpu, msr, data, 2697 msr_info->host_initiated); 2698 case MSR_IA32_BBL_CR_CTL3: 2699 /* Drop writes to this legacy MSR -- see rdmsr 2700 * counterpart for further detail. 2701 */ 2702 if (report_ignored_msrs) 2703 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2704 msr, data); 2705 break; 2706 case MSR_AMD64_OSVW_ID_LENGTH: 2707 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2708 return 1; 2709 vcpu->arch.osvw.length = data; 2710 break; 2711 case MSR_AMD64_OSVW_STATUS: 2712 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2713 return 1; 2714 vcpu->arch.osvw.status = data; 2715 break; 2716 case MSR_PLATFORM_INFO: 2717 if (!msr_info->host_initiated || 2718 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 2719 cpuid_fault_enabled(vcpu))) 2720 return 1; 2721 vcpu->arch.msr_platform_info = data; 2722 break; 2723 case MSR_MISC_FEATURES_ENABLES: 2724 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 2725 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 2726 !supports_cpuid_fault(vcpu))) 2727 return 1; 2728 vcpu->arch.msr_misc_features_enables = data; 2729 break; 2730 default: 2731 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2732 return xen_hvm_config(vcpu, data); 2733 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2734 return kvm_pmu_set_msr(vcpu, msr_info); 2735 if (!ignore_msrs) { 2736 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2737 msr, data); 2738 return 1; 2739 } else { 2740 if (report_ignored_msrs) 2741 vcpu_unimpl(vcpu, 2742 "ignored wrmsr: 0x%x data 0x%llx\n", 2743 msr, data); 2744 break; 2745 } 2746 } 2747 return 0; 2748 } 2749 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2750 2751 2752 /* 2753 * Reads an msr value (of 'msr_index') into 'pdata'. 2754 * Returns 0 on success, non-0 otherwise. 2755 * Assumes vcpu_load() was already called. 2756 */ 2757 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2758 { 2759 return kvm_x86_ops->get_msr(vcpu, msr); 2760 } 2761 EXPORT_SYMBOL_GPL(kvm_get_msr); 2762 2763 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 2764 { 2765 u64 data; 2766 u64 mcg_cap = vcpu->arch.mcg_cap; 2767 unsigned bank_num = mcg_cap & 0xff; 2768 2769 switch (msr) { 2770 case MSR_IA32_P5_MC_ADDR: 2771 case MSR_IA32_P5_MC_TYPE: 2772 data = 0; 2773 break; 2774 case MSR_IA32_MCG_CAP: 2775 data = vcpu->arch.mcg_cap; 2776 break; 2777 case MSR_IA32_MCG_CTL: 2778 if (!(mcg_cap & MCG_CTL_P) && !host) 2779 return 1; 2780 data = vcpu->arch.mcg_ctl; 2781 break; 2782 case MSR_IA32_MCG_STATUS: 2783 data = vcpu->arch.mcg_status; 2784 break; 2785 default: 2786 if (msr >= MSR_IA32_MC0_CTL && 2787 msr < MSR_IA32_MCx_CTL(bank_num)) { 2788 u32 offset = msr - MSR_IA32_MC0_CTL; 2789 data = vcpu->arch.mce_banks[offset]; 2790 break; 2791 } 2792 return 1; 2793 } 2794 *pdata = data; 2795 return 0; 2796 } 2797 2798 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2799 { 2800 switch (msr_info->index) { 2801 case MSR_IA32_PLATFORM_ID: 2802 case MSR_IA32_EBL_CR_POWERON: 2803 case MSR_IA32_DEBUGCTLMSR: 2804 case MSR_IA32_LASTBRANCHFROMIP: 2805 case MSR_IA32_LASTBRANCHTOIP: 2806 case MSR_IA32_LASTINTFROMIP: 2807 case MSR_IA32_LASTINTTOIP: 2808 case MSR_K8_SYSCFG: 2809 case MSR_K8_TSEG_ADDR: 2810 case MSR_K8_TSEG_MASK: 2811 case MSR_VM_HSAVE_PA: 2812 case MSR_K8_INT_PENDING_MSG: 2813 case MSR_AMD64_NB_CFG: 2814 case MSR_FAM10H_MMIO_CONF_BASE: 2815 case MSR_AMD64_BU_CFG2: 2816 case MSR_IA32_PERF_CTL: 2817 case MSR_AMD64_DC_CFG: 2818 case MSR_F15H_EX_CFG: 2819 msr_info->data = 0; 2820 break; 2821 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 2822 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2823 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2824 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2825 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2826 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2827 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2828 msr_info->data = 0; 2829 break; 2830 case MSR_IA32_UCODE_REV: 2831 msr_info->data = vcpu->arch.microcode_version; 2832 break; 2833 case MSR_IA32_ARCH_CAPABILITIES: 2834 if (!msr_info->host_initiated && 2835 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 2836 return 1; 2837 msr_info->data = vcpu->arch.arch_capabilities; 2838 break; 2839 case MSR_IA32_POWER_CTL: 2840 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 2841 break; 2842 case MSR_IA32_TSC: 2843 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; 2844 break; 2845 case MSR_MTRRcap: 2846 case 0x200 ... 0x2ff: 2847 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 2848 case 0xcd: /* fsb frequency */ 2849 msr_info->data = 3; 2850 break; 2851 /* 2852 * MSR_EBC_FREQUENCY_ID 2853 * Conservative value valid for even the basic CPU models. 2854 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2855 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2856 * and 266MHz for model 3, or 4. Set Core Clock 2857 * Frequency to System Bus Frequency Ratio to 1 (bits 2858 * 31:24) even though these are only valid for CPU 2859 * models > 2, however guests may end up dividing or 2860 * multiplying by zero otherwise. 2861 */ 2862 case MSR_EBC_FREQUENCY_ID: 2863 msr_info->data = 1 << 24; 2864 break; 2865 case MSR_IA32_APICBASE: 2866 msr_info->data = kvm_get_apic_base(vcpu); 2867 break; 2868 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2869 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 2870 break; 2871 case MSR_IA32_TSCDEADLINE: 2872 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 2873 break; 2874 case MSR_IA32_TSC_ADJUST: 2875 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2876 break; 2877 case MSR_IA32_MISC_ENABLE: 2878 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 2879 break; 2880 case MSR_IA32_SMBASE: 2881 if (!msr_info->host_initiated) 2882 return 1; 2883 msr_info->data = vcpu->arch.smbase; 2884 break; 2885 case MSR_SMI_COUNT: 2886 msr_info->data = vcpu->arch.smi_count; 2887 break; 2888 case MSR_IA32_PERF_STATUS: 2889 /* TSC increment by tick */ 2890 msr_info->data = 1000ULL; 2891 /* CPU multiplier */ 2892 msr_info->data |= (((uint64_t)4ULL) << 40); 2893 break; 2894 case MSR_EFER: 2895 msr_info->data = vcpu->arch.efer; 2896 break; 2897 case MSR_KVM_WALL_CLOCK: 2898 case MSR_KVM_WALL_CLOCK_NEW: 2899 msr_info->data = vcpu->kvm->arch.wall_clock; 2900 break; 2901 case MSR_KVM_SYSTEM_TIME: 2902 case MSR_KVM_SYSTEM_TIME_NEW: 2903 msr_info->data = vcpu->arch.time; 2904 break; 2905 case MSR_KVM_ASYNC_PF_EN: 2906 msr_info->data = vcpu->arch.apf.msr_val; 2907 break; 2908 case MSR_KVM_STEAL_TIME: 2909 msr_info->data = vcpu->arch.st.msr_val; 2910 break; 2911 case MSR_KVM_PV_EOI_EN: 2912 msr_info->data = vcpu->arch.pv_eoi.msr_val; 2913 break; 2914 case MSR_KVM_POLL_CONTROL: 2915 msr_info->data = vcpu->arch.msr_kvm_poll_control; 2916 break; 2917 case MSR_IA32_P5_MC_ADDR: 2918 case MSR_IA32_P5_MC_TYPE: 2919 case MSR_IA32_MCG_CAP: 2920 case MSR_IA32_MCG_CTL: 2921 case MSR_IA32_MCG_STATUS: 2922 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2923 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 2924 msr_info->host_initiated); 2925 case MSR_K7_CLK_CTL: 2926 /* 2927 * Provide expected ramp-up count for K7. All other 2928 * are set to zero, indicating minimum divisors for 2929 * every field. 2930 * 2931 * This prevents guest kernels on AMD host with CPU 2932 * type 6, model 8 and higher from exploding due to 2933 * the rdmsr failing. 2934 */ 2935 msr_info->data = 0x20000000; 2936 break; 2937 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2938 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2939 case HV_X64_MSR_CRASH_CTL: 2940 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2941 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2942 case HV_X64_MSR_TSC_EMULATION_CONTROL: 2943 case HV_X64_MSR_TSC_EMULATION_STATUS: 2944 return kvm_hv_get_msr_common(vcpu, 2945 msr_info->index, &msr_info->data, 2946 msr_info->host_initiated); 2947 break; 2948 case MSR_IA32_BBL_CR_CTL3: 2949 /* This legacy MSR exists but isn't fully documented in current 2950 * silicon. It is however accessed by winxp in very narrow 2951 * scenarios where it sets bit #19, itself documented as 2952 * a "reserved" bit. Best effort attempt to source coherent 2953 * read data here should the balance of the register be 2954 * interpreted by the guest: 2955 * 2956 * L2 cache control register 3: 64GB range, 256KB size, 2957 * enabled, latency 0x1, configured 2958 */ 2959 msr_info->data = 0xbe702111; 2960 break; 2961 case MSR_AMD64_OSVW_ID_LENGTH: 2962 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2963 return 1; 2964 msr_info->data = vcpu->arch.osvw.length; 2965 break; 2966 case MSR_AMD64_OSVW_STATUS: 2967 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2968 return 1; 2969 msr_info->data = vcpu->arch.osvw.status; 2970 break; 2971 case MSR_PLATFORM_INFO: 2972 if (!msr_info->host_initiated && 2973 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 2974 return 1; 2975 msr_info->data = vcpu->arch.msr_platform_info; 2976 break; 2977 case MSR_MISC_FEATURES_ENABLES: 2978 msr_info->data = vcpu->arch.msr_misc_features_enables; 2979 break; 2980 case MSR_K7_HWCR: 2981 msr_info->data = vcpu->arch.msr_hwcr; 2982 break; 2983 default: 2984 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2985 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2986 if (!ignore_msrs) { 2987 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 2988 msr_info->index); 2989 return 1; 2990 } else { 2991 if (report_ignored_msrs) 2992 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", 2993 msr_info->index); 2994 msr_info->data = 0; 2995 } 2996 break; 2997 } 2998 return 0; 2999 } 3000 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3001 3002 /* 3003 * Read or write a bunch of msrs. All parameters are kernel addresses. 3004 * 3005 * @return number of msrs set successfully. 3006 */ 3007 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3008 struct kvm_msr_entry *entries, 3009 int (*do_msr)(struct kvm_vcpu *vcpu, 3010 unsigned index, u64 *data)) 3011 { 3012 int i; 3013 3014 for (i = 0; i < msrs->nmsrs; ++i) 3015 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3016 break; 3017 3018 return i; 3019 } 3020 3021 /* 3022 * Read or write a bunch of msrs. Parameters are user addresses. 3023 * 3024 * @return number of msrs set successfully. 3025 */ 3026 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3027 int (*do_msr)(struct kvm_vcpu *vcpu, 3028 unsigned index, u64 *data), 3029 int writeback) 3030 { 3031 struct kvm_msrs msrs; 3032 struct kvm_msr_entry *entries; 3033 int r, n; 3034 unsigned size; 3035 3036 r = -EFAULT; 3037 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3038 goto out; 3039 3040 r = -E2BIG; 3041 if (msrs.nmsrs >= MAX_IO_MSRS) 3042 goto out; 3043 3044 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3045 entries = memdup_user(user_msrs->entries, size); 3046 if (IS_ERR(entries)) { 3047 r = PTR_ERR(entries); 3048 goto out; 3049 } 3050 3051 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3052 if (r < 0) 3053 goto out_free; 3054 3055 r = -EFAULT; 3056 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3057 goto out_free; 3058 3059 r = n; 3060 3061 out_free: 3062 kfree(entries); 3063 out: 3064 return r; 3065 } 3066 3067 static inline bool kvm_can_mwait_in_guest(void) 3068 { 3069 return boot_cpu_has(X86_FEATURE_MWAIT) && 3070 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3071 boot_cpu_has(X86_FEATURE_ARAT); 3072 } 3073 3074 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3075 { 3076 int r = 0; 3077 3078 switch (ext) { 3079 case KVM_CAP_IRQCHIP: 3080 case KVM_CAP_HLT: 3081 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3082 case KVM_CAP_SET_TSS_ADDR: 3083 case KVM_CAP_EXT_CPUID: 3084 case KVM_CAP_EXT_EMUL_CPUID: 3085 case KVM_CAP_CLOCKSOURCE: 3086 case KVM_CAP_PIT: 3087 case KVM_CAP_NOP_IO_DELAY: 3088 case KVM_CAP_MP_STATE: 3089 case KVM_CAP_SYNC_MMU: 3090 case KVM_CAP_USER_NMI: 3091 case KVM_CAP_REINJECT_CONTROL: 3092 case KVM_CAP_IRQ_INJECT_STATUS: 3093 case KVM_CAP_IOEVENTFD: 3094 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3095 case KVM_CAP_PIT2: 3096 case KVM_CAP_PIT_STATE2: 3097 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3098 case KVM_CAP_XEN_HVM: 3099 case KVM_CAP_VCPU_EVENTS: 3100 case KVM_CAP_HYPERV: 3101 case KVM_CAP_HYPERV_VAPIC: 3102 case KVM_CAP_HYPERV_SPIN: 3103 case KVM_CAP_HYPERV_SYNIC: 3104 case KVM_CAP_HYPERV_SYNIC2: 3105 case KVM_CAP_HYPERV_VP_INDEX: 3106 case KVM_CAP_HYPERV_EVENTFD: 3107 case KVM_CAP_HYPERV_TLBFLUSH: 3108 case KVM_CAP_HYPERV_SEND_IPI: 3109 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3110 case KVM_CAP_HYPERV_CPUID: 3111 case KVM_CAP_PCI_SEGMENT: 3112 case KVM_CAP_DEBUGREGS: 3113 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3114 case KVM_CAP_XSAVE: 3115 case KVM_CAP_ASYNC_PF: 3116 case KVM_CAP_GET_TSC_KHZ: 3117 case KVM_CAP_KVMCLOCK_CTRL: 3118 case KVM_CAP_READONLY_MEM: 3119 case KVM_CAP_HYPERV_TIME: 3120 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3121 case KVM_CAP_TSC_DEADLINE_TIMER: 3122 case KVM_CAP_DISABLE_QUIRKS: 3123 case KVM_CAP_SET_BOOT_CPU_ID: 3124 case KVM_CAP_SPLIT_IRQCHIP: 3125 case KVM_CAP_IMMEDIATE_EXIT: 3126 case KVM_CAP_PMU_EVENT_FILTER: 3127 case KVM_CAP_GET_MSR_FEATURES: 3128 case KVM_CAP_MSR_PLATFORM_INFO: 3129 case KVM_CAP_EXCEPTION_PAYLOAD: 3130 r = 1; 3131 break; 3132 case KVM_CAP_SYNC_REGS: 3133 r = KVM_SYNC_X86_VALID_FIELDS; 3134 break; 3135 case KVM_CAP_ADJUST_CLOCK: 3136 r = KVM_CLOCK_TSC_STABLE; 3137 break; 3138 case KVM_CAP_X86_DISABLE_EXITS: 3139 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3140 KVM_X86_DISABLE_EXITS_CSTATE; 3141 if(kvm_can_mwait_in_guest()) 3142 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3143 break; 3144 case KVM_CAP_X86_SMM: 3145 /* SMBASE is usually relocated above 1M on modern chipsets, 3146 * and SMM handlers might indeed rely on 4G segment limits, 3147 * so do not report SMM to be available if real mode is 3148 * emulated via vm86 mode. Still, do not go to great lengths 3149 * to avoid userspace's usage of the feature, because it is a 3150 * fringe case that is not enabled except via specific settings 3151 * of the module parameters. 3152 */ 3153 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE); 3154 break; 3155 case KVM_CAP_VAPIC: 3156 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 3157 break; 3158 case KVM_CAP_NR_VCPUS: 3159 r = KVM_SOFT_MAX_VCPUS; 3160 break; 3161 case KVM_CAP_MAX_VCPUS: 3162 r = KVM_MAX_VCPUS; 3163 break; 3164 case KVM_CAP_MAX_VCPU_ID: 3165 r = KVM_MAX_VCPU_ID; 3166 break; 3167 case KVM_CAP_PV_MMU: /* obsolete */ 3168 r = 0; 3169 break; 3170 case KVM_CAP_MCE: 3171 r = KVM_MAX_MCE_BANKS; 3172 break; 3173 case KVM_CAP_XCRS: 3174 r = boot_cpu_has(X86_FEATURE_XSAVE); 3175 break; 3176 case KVM_CAP_TSC_CONTROL: 3177 r = kvm_has_tsc_control; 3178 break; 3179 case KVM_CAP_X2APIC_API: 3180 r = KVM_X2APIC_API_VALID_FLAGS; 3181 break; 3182 case KVM_CAP_NESTED_STATE: 3183 r = kvm_x86_ops->get_nested_state ? 3184 kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0; 3185 break; 3186 default: 3187 break; 3188 } 3189 return r; 3190 3191 } 3192 3193 long kvm_arch_dev_ioctl(struct file *filp, 3194 unsigned int ioctl, unsigned long arg) 3195 { 3196 void __user *argp = (void __user *)arg; 3197 long r; 3198 3199 switch (ioctl) { 3200 case KVM_GET_MSR_INDEX_LIST: { 3201 struct kvm_msr_list __user *user_msr_list = argp; 3202 struct kvm_msr_list msr_list; 3203 unsigned n; 3204 3205 r = -EFAULT; 3206 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3207 goto out; 3208 n = msr_list.nmsrs; 3209 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3210 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3211 goto out; 3212 r = -E2BIG; 3213 if (n < msr_list.nmsrs) 3214 goto out; 3215 r = -EFAULT; 3216 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3217 num_msrs_to_save * sizeof(u32))) 3218 goto out; 3219 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3220 &emulated_msrs, 3221 num_emulated_msrs * sizeof(u32))) 3222 goto out; 3223 r = 0; 3224 break; 3225 } 3226 case KVM_GET_SUPPORTED_CPUID: 3227 case KVM_GET_EMULATED_CPUID: { 3228 struct kvm_cpuid2 __user *cpuid_arg = argp; 3229 struct kvm_cpuid2 cpuid; 3230 3231 r = -EFAULT; 3232 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3233 goto out; 3234 3235 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3236 ioctl); 3237 if (r) 3238 goto out; 3239 3240 r = -EFAULT; 3241 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3242 goto out; 3243 r = 0; 3244 break; 3245 } 3246 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 3247 r = -EFAULT; 3248 if (copy_to_user(argp, &kvm_mce_cap_supported, 3249 sizeof(kvm_mce_cap_supported))) 3250 goto out; 3251 r = 0; 3252 break; 3253 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3254 struct kvm_msr_list __user *user_msr_list = argp; 3255 struct kvm_msr_list msr_list; 3256 unsigned int n; 3257 3258 r = -EFAULT; 3259 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3260 goto out; 3261 n = msr_list.nmsrs; 3262 msr_list.nmsrs = num_msr_based_features; 3263 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3264 goto out; 3265 r = -E2BIG; 3266 if (n < msr_list.nmsrs) 3267 goto out; 3268 r = -EFAULT; 3269 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3270 num_msr_based_features * sizeof(u32))) 3271 goto out; 3272 r = 0; 3273 break; 3274 } 3275 case KVM_GET_MSRS: 3276 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3277 break; 3278 } 3279 default: 3280 r = -EINVAL; 3281 } 3282 out: 3283 return r; 3284 } 3285 3286 static void wbinvd_ipi(void *garbage) 3287 { 3288 wbinvd(); 3289 } 3290 3291 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3292 { 3293 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3294 } 3295 3296 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3297 { 3298 /* Address WBINVD may be executed by guest */ 3299 if (need_emulate_wbinvd(vcpu)) { 3300 if (kvm_x86_ops->has_wbinvd_exit()) 3301 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3302 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3303 smp_call_function_single(vcpu->cpu, 3304 wbinvd_ipi, NULL, 1); 3305 } 3306 3307 kvm_x86_ops->vcpu_load(vcpu, cpu); 3308 3309 fpregs_assert_state_consistent(); 3310 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 3311 switch_fpu_return(); 3312 3313 /* Apply any externally detected TSC adjustments (due to suspend) */ 3314 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3315 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3316 vcpu->arch.tsc_offset_adjustment = 0; 3317 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3318 } 3319 3320 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3321 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3322 rdtsc() - vcpu->arch.last_host_tsc; 3323 if (tsc_delta < 0) 3324 mark_tsc_unstable("KVM discovered backwards TSC"); 3325 3326 if (kvm_check_tsc_unstable()) { 3327 u64 offset = kvm_compute_tsc_offset(vcpu, 3328 vcpu->arch.last_guest_tsc); 3329 kvm_vcpu_write_tsc_offset(vcpu, offset); 3330 vcpu->arch.tsc_catchup = 1; 3331 } 3332 3333 if (kvm_lapic_hv_timer_in_use(vcpu)) 3334 kvm_lapic_restart_hv_timer(vcpu); 3335 3336 /* 3337 * On a host with synchronized TSC, there is no need to update 3338 * kvmclock on vcpu->cpu migration 3339 */ 3340 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3341 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3342 if (vcpu->cpu != cpu) 3343 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3344 vcpu->cpu = cpu; 3345 } 3346 3347 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3348 } 3349 3350 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3351 { 3352 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3353 return; 3354 3355 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED; 3356 3357 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, 3358 &vcpu->arch.st.steal.preempted, 3359 offsetof(struct kvm_steal_time, preempted), 3360 sizeof(vcpu->arch.st.steal.preempted)); 3361 } 3362 3363 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3364 { 3365 int idx; 3366 3367 if (vcpu->preempted) 3368 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu); 3369 3370 /* 3371 * Disable page faults because we're in atomic context here. 3372 * kvm_write_guest_offset_cached() would call might_fault() 3373 * that relies on pagefault_disable() to tell if there's a 3374 * bug. NOTE: the write to guest memory may not go through if 3375 * during postcopy live migration or if there's heavy guest 3376 * paging. 3377 */ 3378 pagefault_disable(); 3379 /* 3380 * kvm_memslots() will be called by 3381 * kvm_write_guest_offset_cached() so take the srcu lock. 3382 */ 3383 idx = srcu_read_lock(&vcpu->kvm->srcu); 3384 kvm_steal_time_set_preempted(vcpu); 3385 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3386 pagefault_enable(); 3387 kvm_x86_ops->vcpu_put(vcpu); 3388 vcpu->arch.last_host_tsc = rdtsc(); 3389 /* 3390 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3391 * on every vmexit, but if not, we might have a stale dr6 from the 3392 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3393 */ 3394 set_debugreg(0, 6); 3395 } 3396 3397 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3398 struct kvm_lapic_state *s) 3399 { 3400 if (vcpu->arch.apicv_active) 3401 kvm_x86_ops->sync_pir_to_irr(vcpu); 3402 3403 return kvm_apic_get_state(vcpu, s); 3404 } 3405 3406 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 3407 struct kvm_lapic_state *s) 3408 { 3409 int r; 3410 3411 r = kvm_apic_set_state(vcpu, s); 3412 if (r) 3413 return r; 3414 update_cr8_intercept(vcpu); 3415 3416 return 0; 3417 } 3418 3419 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 3420 { 3421 return (!lapic_in_kernel(vcpu) || 3422 kvm_apic_accept_pic_intr(vcpu)); 3423 } 3424 3425 /* 3426 * if userspace requested an interrupt window, check that the 3427 * interrupt window is open. 3428 * 3429 * No need to exit to userspace if we already have an interrupt queued. 3430 */ 3431 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 3432 { 3433 return kvm_arch_interrupt_allowed(vcpu) && 3434 !kvm_cpu_has_interrupt(vcpu) && 3435 !kvm_event_needs_reinjection(vcpu) && 3436 kvm_cpu_accept_dm_intr(vcpu); 3437 } 3438 3439 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 3440 struct kvm_interrupt *irq) 3441 { 3442 if (irq->irq >= KVM_NR_INTERRUPTS) 3443 return -EINVAL; 3444 3445 if (!irqchip_in_kernel(vcpu->kvm)) { 3446 kvm_queue_interrupt(vcpu, irq->irq, false); 3447 kvm_make_request(KVM_REQ_EVENT, vcpu); 3448 return 0; 3449 } 3450 3451 /* 3452 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3453 * fail for in-kernel 8259. 3454 */ 3455 if (pic_in_kernel(vcpu->kvm)) 3456 return -ENXIO; 3457 3458 if (vcpu->arch.pending_external_vector != -1) 3459 return -EEXIST; 3460 3461 vcpu->arch.pending_external_vector = irq->irq; 3462 kvm_make_request(KVM_REQ_EVENT, vcpu); 3463 return 0; 3464 } 3465 3466 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3467 { 3468 kvm_inject_nmi(vcpu); 3469 3470 return 0; 3471 } 3472 3473 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3474 { 3475 kvm_make_request(KVM_REQ_SMI, vcpu); 3476 3477 return 0; 3478 } 3479 3480 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3481 struct kvm_tpr_access_ctl *tac) 3482 { 3483 if (tac->flags) 3484 return -EINVAL; 3485 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3486 return 0; 3487 } 3488 3489 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3490 u64 mcg_cap) 3491 { 3492 int r; 3493 unsigned bank_num = mcg_cap & 0xff, bank; 3494 3495 r = -EINVAL; 3496 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3497 goto out; 3498 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3499 goto out; 3500 r = 0; 3501 vcpu->arch.mcg_cap = mcg_cap; 3502 /* Init IA32_MCG_CTL to all 1s */ 3503 if (mcg_cap & MCG_CTL_P) 3504 vcpu->arch.mcg_ctl = ~(u64)0; 3505 /* Init IA32_MCi_CTL to all 1s */ 3506 for (bank = 0; bank < bank_num; bank++) 3507 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3508 3509 if (kvm_x86_ops->setup_mce) 3510 kvm_x86_ops->setup_mce(vcpu); 3511 out: 3512 return r; 3513 } 3514 3515 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3516 struct kvm_x86_mce *mce) 3517 { 3518 u64 mcg_cap = vcpu->arch.mcg_cap; 3519 unsigned bank_num = mcg_cap & 0xff; 3520 u64 *banks = vcpu->arch.mce_banks; 3521 3522 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3523 return -EINVAL; 3524 /* 3525 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3526 * reporting is disabled 3527 */ 3528 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3529 vcpu->arch.mcg_ctl != ~(u64)0) 3530 return 0; 3531 banks += 4 * mce->bank; 3532 /* 3533 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3534 * reporting is disabled for the bank 3535 */ 3536 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3537 return 0; 3538 if (mce->status & MCI_STATUS_UC) { 3539 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3540 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3541 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3542 return 0; 3543 } 3544 if (banks[1] & MCI_STATUS_VAL) 3545 mce->status |= MCI_STATUS_OVER; 3546 banks[2] = mce->addr; 3547 banks[3] = mce->misc; 3548 vcpu->arch.mcg_status = mce->mcg_status; 3549 banks[1] = mce->status; 3550 kvm_queue_exception(vcpu, MC_VECTOR); 3551 } else if (!(banks[1] & MCI_STATUS_VAL) 3552 || !(banks[1] & MCI_STATUS_UC)) { 3553 if (banks[1] & MCI_STATUS_VAL) 3554 mce->status |= MCI_STATUS_OVER; 3555 banks[2] = mce->addr; 3556 banks[3] = mce->misc; 3557 banks[1] = mce->status; 3558 } else 3559 banks[1] |= MCI_STATUS_OVER; 3560 return 0; 3561 } 3562 3563 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3564 struct kvm_vcpu_events *events) 3565 { 3566 process_nmi(vcpu); 3567 3568 /* 3569 * The API doesn't provide the instruction length for software 3570 * exceptions, so don't report them. As long as the guest RIP 3571 * isn't advanced, we should expect to encounter the exception 3572 * again. 3573 */ 3574 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 3575 events->exception.injected = 0; 3576 events->exception.pending = 0; 3577 } else { 3578 events->exception.injected = vcpu->arch.exception.injected; 3579 events->exception.pending = vcpu->arch.exception.pending; 3580 /* 3581 * For ABI compatibility, deliberately conflate 3582 * pending and injected exceptions when 3583 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 3584 */ 3585 if (!vcpu->kvm->arch.exception_payload_enabled) 3586 events->exception.injected |= 3587 vcpu->arch.exception.pending; 3588 } 3589 events->exception.nr = vcpu->arch.exception.nr; 3590 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3591 events->exception.error_code = vcpu->arch.exception.error_code; 3592 events->exception_has_payload = vcpu->arch.exception.has_payload; 3593 events->exception_payload = vcpu->arch.exception.payload; 3594 3595 events->interrupt.injected = 3596 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 3597 events->interrupt.nr = vcpu->arch.interrupt.nr; 3598 events->interrupt.soft = 0; 3599 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3600 3601 events->nmi.injected = vcpu->arch.nmi_injected; 3602 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3603 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3604 events->nmi.pad = 0; 3605 3606 events->sipi_vector = 0; /* never valid when reporting to user space */ 3607 3608 events->smi.smm = is_smm(vcpu); 3609 events->smi.pending = vcpu->arch.smi_pending; 3610 events->smi.smm_inside_nmi = 3611 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3612 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3613 3614 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3615 | KVM_VCPUEVENT_VALID_SHADOW 3616 | KVM_VCPUEVENT_VALID_SMM); 3617 if (vcpu->kvm->arch.exception_payload_enabled) 3618 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3619 3620 memset(&events->reserved, 0, sizeof(events->reserved)); 3621 } 3622 3623 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 3624 3625 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3626 struct kvm_vcpu_events *events) 3627 { 3628 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3629 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3630 | KVM_VCPUEVENT_VALID_SHADOW 3631 | KVM_VCPUEVENT_VALID_SMM 3632 | KVM_VCPUEVENT_VALID_PAYLOAD)) 3633 return -EINVAL; 3634 3635 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 3636 if (!vcpu->kvm->arch.exception_payload_enabled) 3637 return -EINVAL; 3638 if (events->exception.pending) 3639 events->exception.injected = 0; 3640 else 3641 events->exception_has_payload = 0; 3642 } else { 3643 events->exception.pending = 0; 3644 events->exception_has_payload = 0; 3645 } 3646 3647 if ((events->exception.injected || events->exception.pending) && 3648 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 3649 return -EINVAL; 3650 3651 /* INITs are latched while in SMM */ 3652 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 3653 (events->smi.smm || events->smi.pending) && 3654 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 3655 return -EINVAL; 3656 3657 process_nmi(vcpu); 3658 vcpu->arch.exception.injected = events->exception.injected; 3659 vcpu->arch.exception.pending = events->exception.pending; 3660 vcpu->arch.exception.nr = events->exception.nr; 3661 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3662 vcpu->arch.exception.error_code = events->exception.error_code; 3663 vcpu->arch.exception.has_payload = events->exception_has_payload; 3664 vcpu->arch.exception.payload = events->exception_payload; 3665 3666 vcpu->arch.interrupt.injected = events->interrupt.injected; 3667 vcpu->arch.interrupt.nr = events->interrupt.nr; 3668 vcpu->arch.interrupt.soft = events->interrupt.soft; 3669 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3670 kvm_x86_ops->set_interrupt_shadow(vcpu, 3671 events->interrupt.shadow); 3672 3673 vcpu->arch.nmi_injected = events->nmi.injected; 3674 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3675 vcpu->arch.nmi_pending = events->nmi.pending; 3676 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3677 3678 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3679 lapic_in_kernel(vcpu)) 3680 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3681 3682 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3683 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 3684 if (events->smi.smm) 3685 vcpu->arch.hflags |= HF_SMM_MASK; 3686 else 3687 vcpu->arch.hflags &= ~HF_SMM_MASK; 3688 kvm_smm_changed(vcpu); 3689 } 3690 3691 vcpu->arch.smi_pending = events->smi.pending; 3692 3693 if (events->smi.smm) { 3694 if (events->smi.smm_inside_nmi) 3695 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3696 else 3697 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3698 if (lapic_in_kernel(vcpu)) { 3699 if (events->smi.latched_init) 3700 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3701 else 3702 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3703 } 3704 } 3705 } 3706 3707 kvm_make_request(KVM_REQ_EVENT, vcpu); 3708 3709 return 0; 3710 } 3711 3712 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3713 struct kvm_debugregs *dbgregs) 3714 { 3715 unsigned long val; 3716 3717 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3718 kvm_get_dr(vcpu, 6, &val); 3719 dbgregs->dr6 = val; 3720 dbgregs->dr7 = vcpu->arch.dr7; 3721 dbgregs->flags = 0; 3722 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3723 } 3724 3725 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3726 struct kvm_debugregs *dbgregs) 3727 { 3728 if (dbgregs->flags) 3729 return -EINVAL; 3730 3731 if (dbgregs->dr6 & ~0xffffffffull) 3732 return -EINVAL; 3733 if (dbgregs->dr7 & ~0xffffffffull) 3734 return -EINVAL; 3735 3736 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3737 kvm_update_dr0123(vcpu); 3738 vcpu->arch.dr6 = dbgregs->dr6; 3739 kvm_update_dr6(vcpu); 3740 vcpu->arch.dr7 = dbgregs->dr7; 3741 kvm_update_dr7(vcpu); 3742 3743 return 0; 3744 } 3745 3746 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3747 3748 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3749 { 3750 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 3751 u64 xstate_bv = xsave->header.xfeatures; 3752 u64 valid; 3753 3754 /* 3755 * Copy legacy XSAVE area, to avoid complications with CPUID 3756 * leaves 0 and 1 in the loop below. 3757 */ 3758 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 3759 3760 /* Set XSTATE_BV */ 3761 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 3762 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 3763 3764 /* 3765 * Copy each region from the possibly compacted offset to the 3766 * non-compacted offset. 3767 */ 3768 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3769 while (valid) { 3770 u64 xfeature_mask = valid & -valid; 3771 int xfeature_nr = fls64(xfeature_mask) - 1; 3772 void *src = get_xsave_addr(xsave, xfeature_nr); 3773 3774 if (src) { 3775 u32 size, offset, ecx, edx; 3776 cpuid_count(XSTATE_CPUID, xfeature_nr, 3777 &size, &offset, &ecx, &edx); 3778 if (xfeature_nr == XFEATURE_PKRU) 3779 memcpy(dest + offset, &vcpu->arch.pkru, 3780 sizeof(vcpu->arch.pkru)); 3781 else 3782 memcpy(dest + offset, src, size); 3783 3784 } 3785 3786 valid -= xfeature_mask; 3787 } 3788 } 3789 3790 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 3791 { 3792 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 3793 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 3794 u64 valid; 3795 3796 /* 3797 * Copy legacy XSAVE area, to avoid complications with CPUID 3798 * leaves 0 and 1 in the loop below. 3799 */ 3800 memcpy(xsave, src, XSAVE_HDR_OFFSET); 3801 3802 /* Set XSTATE_BV and possibly XCOMP_BV. */ 3803 xsave->header.xfeatures = xstate_bv; 3804 if (boot_cpu_has(X86_FEATURE_XSAVES)) 3805 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 3806 3807 /* 3808 * Copy each region from the non-compacted offset to the 3809 * possibly compacted offset. 3810 */ 3811 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3812 while (valid) { 3813 u64 xfeature_mask = valid & -valid; 3814 int xfeature_nr = fls64(xfeature_mask) - 1; 3815 void *dest = get_xsave_addr(xsave, xfeature_nr); 3816 3817 if (dest) { 3818 u32 size, offset, ecx, edx; 3819 cpuid_count(XSTATE_CPUID, xfeature_nr, 3820 &size, &offset, &ecx, &edx); 3821 if (xfeature_nr == XFEATURE_PKRU) 3822 memcpy(&vcpu->arch.pkru, src + offset, 3823 sizeof(vcpu->arch.pkru)); 3824 else 3825 memcpy(dest, src + offset, size); 3826 } 3827 3828 valid -= xfeature_mask; 3829 } 3830 } 3831 3832 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3833 struct kvm_xsave *guest_xsave) 3834 { 3835 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3836 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 3837 fill_xsave((u8 *) guest_xsave->region, vcpu); 3838 } else { 3839 memcpy(guest_xsave->region, 3840 &vcpu->arch.guest_fpu->state.fxsave, 3841 sizeof(struct fxregs_state)); 3842 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3843 XFEATURE_MASK_FPSSE; 3844 } 3845 } 3846 3847 #define XSAVE_MXCSR_OFFSET 24 3848 3849 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3850 struct kvm_xsave *guest_xsave) 3851 { 3852 u64 xstate_bv = 3853 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3854 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 3855 3856 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3857 /* 3858 * Here we allow setting states that are not present in 3859 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3860 * with old userspace. 3861 */ 3862 if (xstate_bv & ~kvm_supported_xcr0() || 3863 mxcsr & ~mxcsr_feature_mask) 3864 return -EINVAL; 3865 load_xsave(vcpu, (u8 *)guest_xsave->region); 3866 } else { 3867 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 3868 mxcsr & ~mxcsr_feature_mask) 3869 return -EINVAL; 3870 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 3871 guest_xsave->region, sizeof(struct fxregs_state)); 3872 } 3873 return 0; 3874 } 3875 3876 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3877 struct kvm_xcrs *guest_xcrs) 3878 { 3879 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 3880 guest_xcrs->nr_xcrs = 0; 3881 return; 3882 } 3883 3884 guest_xcrs->nr_xcrs = 1; 3885 guest_xcrs->flags = 0; 3886 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3887 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3888 } 3889 3890 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3891 struct kvm_xcrs *guest_xcrs) 3892 { 3893 int i, r = 0; 3894 3895 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 3896 return -EINVAL; 3897 3898 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3899 return -EINVAL; 3900 3901 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3902 /* Only support XCR0 currently */ 3903 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3904 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3905 guest_xcrs->xcrs[i].value); 3906 break; 3907 } 3908 if (r) 3909 r = -EINVAL; 3910 return r; 3911 } 3912 3913 /* 3914 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3915 * stopped by the hypervisor. This function will be called from the host only. 3916 * EINVAL is returned when the host attempts to set the flag for a guest that 3917 * does not support pv clocks. 3918 */ 3919 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3920 { 3921 if (!vcpu->arch.pv_time_enabled) 3922 return -EINVAL; 3923 vcpu->arch.pvclock_set_guest_stopped_request = true; 3924 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3925 return 0; 3926 } 3927 3928 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3929 struct kvm_enable_cap *cap) 3930 { 3931 int r; 3932 uint16_t vmcs_version; 3933 void __user *user_ptr; 3934 3935 if (cap->flags) 3936 return -EINVAL; 3937 3938 switch (cap->cap) { 3939 case KVM_CAP_HYPERV_SYNIC2: 3940 if (cap->args[0]) 3941 return -EINVAL; 3942 /* fall through */ 3943 3944 case KVM_CAP_HYPERV_SYNIC: 3945 if (!irqchip_in_kernel(vcpu->kvm)) 3946 return -EINVAL; 3947 return kvm_hv_activate_synic(vcpu, cap->cap == 3948 KVM_CAP_HYPERV_SYNIC2); 3949 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3950 if (!kvm_x86_ops->nested_enable_evmcs) 3951 return -ENOTTY; 3952 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version); 3953 if (!r) { 3954 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 3955 if (copy_to_user(user_ptr, &vmcs_version, 3956 sizeof(vmcs_version))) 3957 r = -EFAULT; 3958 } 3959 return r; 3960 3961 default: 3962 return -EINVAL; 3963 } 3964 } 3965 3966 long kvm_arch_vcpu_ioctl(struct file *filp, 3967 unsigned int ioctl, unsigned long arg) 3968 { 3969 struct kvm_vcpu *vcpu = filp->private_data; 3970 void __user *argp = (void __user *)arg; 3971 int r; 3972 union { 3973 struct kvm_lapic_state *lapic; 3974 struct kvm_xsave *xsave; 3975 struct kvm_xcrs *xcrs; 3976 void *buffer; 3977 } u; 3978 3979 vcpu_load(vcpu); 3980 3981 u.buffer = NULL; 3982 switch (ioctl) { 3983 case KVM_GET_LAPIC: { 3984 r = -EINVAL; 3985 if (!lapic_in_kernel(vcpu)) 3986 goto out; 3987 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 3988 GFP_KERNEL_ACCOUNT); 3989 3990 r = -ENOMEM; 3991 if (!u.lapic) 3992 goto out; 3993 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3994 if (r) 3995 goto out; 3996 r = -EFAULT; 3997 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3998 goto out; 3999 r = 0; 4000 break; 4001 } 4002 case KVM_SET_LAPIC: { 4003 r = -EINVAL; 4004 if (!lapic_in_kernel(vcpu)) 4005 goto out; 4006 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4007 if (IS_ERR(u.lapic)) { 4008 r = PTR_ERR(u.lapic); 4009 goto out_nofree; 4010 } 4011 4012 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4013 break; 4014 } 4015 case KVM_INTERRUPT: { 4016 struct kvm_interrupt irq; 4017 4018 r = -EFAULT; 4019 if (copy_from_user(&irq, argp, sizeof(irq))) 4020 goto out; 4021 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4022 break; 4023 } 4024 case KVM_NMI: { 4025 r = kvm_vcpu_ioctl_nmi(vcpu); 4026 break; 4027 } 4028 case KVM_SMI: { 4029 r = kvm_vcpu_ioctl_smi(vcpu); 4030 break; 4031 } 4032 case KVM_SET_CPUID: { 4033 struct kvm_cpuid __user *cpuid_arg = argp; 4034 struct kvm_cpuid cpuid; 4035 4036 r = -EFAULT; 4037 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4038 goto out; 4039 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4040 break; 4041 } 4042 case KVM_SET_CPUID2: { 4043 struct kvm_cpuid2 __user *cpuid_arg = argp; 4044 struct kvm_cpuid2 cpuid; 4045 4046 r = -EFAULT; 4047 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4048 goto out; 4049 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4050 cpuid_arg->entries); 4051 break; 4052 } 4053 case KVM_GET_CPUID2: { 4054 struct kvm_cpuid2 __user *cpuid_arg = argp; 4055 struct kvm_cpuid2 cpuid; 4056 4057 r = -EFAULT; 4058 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4059 goto out; 4060 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4061 cpuid_arg->entries); 4062 if (r) 4063 goto out; 4064 r = -EFAULT; 4065 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4066 goto out; 4067 r = 0; 4068 break; 4069 } 4070 case KVM_GET_MSRS: { 4071 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4072 r = msr_io(vcpu, argp, do_get_msr, 1); 4073 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4074 break; 4075 } 4076 case KVM_SET_MSRS: { 4077 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4078 r = msr_io(vcpu, argp, do_set_msr, 0); 4079 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4080 break; 4081 } 4082 case KVM_TPR_ACCESS_REPORTING: { 4083 struct kvm_tpr_access_ctl tac; 4084 4085 r = -EFAULT; 4086 if (copy_from_user(&tac, argp, sizeof(tac))) 4087 goto out; 4088 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4089 if (r) 4090 goto out; 4091 r = -EFAULT; 4092 if (copy_to_user(argp, &tac, sizeof(tac))) 4093 goto out; 4094 r = 0; 4095 break; 4096 }; 4097 case KVM_SET_VAPIC_ADDR: { 4098 struct kvm_vapic_addr va; 4099 int idx; 4100 4101 r = -EINVAL; 4102 if (!lapic_in_kernel(vcpu)) 4103 goto out; 4104 r = -EFAULT; 4105 if (copy_from_user(&va, argp, sizeof(va))) 4106 goto out; 4107 idx = srcu_read_lock(&vcpu->kvm->srcu); 4108 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4109 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4110 break; 4111 } 4112 case KVM_X86_SETUP_MCE: { 4113 u64 mcg_cap; 4114 4115 r = -EFAULT; 4116 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4117 goto out; 4118 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4119 break; 4120 } 4121 case KVM_X86_SET_MCE: { 4122 struct kvm_x86_mce mce; 4123 4124 r = -EFAULT; 4125 if (copy_from_user(&mce, argp, sizeof(mce))) 4126 goto out; 4127 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4128 break; 4129 } 4130 case KVM_GET_VCPU_EVENTS: { 4131 struct kvm_vcpu_events events; 4132 4133 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4134 4135 r = -EFAULT; 4136 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4137 break; 4138 r = 0; 4139 break; 4140 } 4141 case KVM_SET_VCPU_EVENTS: { 4142 struct kvm_vcpu_events events; 4143 4144 r = -EFAULT; 4145 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4146 break; 4147 4148 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4149 break; 4150 } 4151 case KVM_GET_DEBUGREGS: { 4152 struct kvm_debugregs dbgregs; 4153 4154 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4155 4156 r = -EFAULT; 4157 if (copy_to_user(argp, &dbgregs, 4158 sizeof(struct kvm_debugregs))) 4159 break; 4160 r = 0; 4161 break; 4162 } 4163 case KVM_SET_DEBUGREGS: { 4164 struct kvm_debugregs dbgregs; 4165 4166 r = -EFAULT; 4167 if (copy_from_user(&dbgregs, argp, 4168 sizeof(struct kvm_debugregs))) 4169 break; 4170 4171 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4172 break; 4173 } 4174 case KVM_GET_XSAVE: { 4175 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4176 r = -ENOMEM; 4177 if (!u.xsave) 4178 break; 4179 4180 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4181 4182 r = -EFAULT; 4183 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4184 break; 4185 r = 0; 4186 break; 4187 } 4188 case KVM_SET_XSAVE: { 4189 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4190 if (IS_ERR(u.xsave)) { 4191 r = PTR_ERR(u.xsave); 4192 goto out_nofree; 4193 } 4194 4195 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4196 break; 4197 } 4198 case KVM_GET_XCRS: { 4199 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4200 r = -ENOMEM; 4201 if (!u.xcrs) 4202 break; 4203 4204 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4205 4206 r = -EFAULT; 4207 if (copy_to_user(argp, u.xcrs, 4208 sizeof(struct kvm_xcrs))) 4209 break; 4210 r = 0; 4211 break; 4212 } 4213 case KVM_SET_XCRS: { 4214 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4215 if (IS_ERR(u.xcrs)) { 4216 r = PTR_ERR(u.xcrs); 4217 goto out_nofree; 4218 } 4219 4220 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4221 break; 4222 } 4223 case KVM_SET_TSC_KHZ: { 4224 u32 user_tsc_khz; 4225 4226 r = -EINVAL; 4227 user_tsc_khz = (u32)arg; 4228 4229 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 4230 goto out; 4231 4232 if (user_tsc_khz == 0) 4233 user_tsc_khz = tsc_khz; 4234 4235 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4236 r = 0; 4237 4238 goto out; 4239 } 4240 case KVM_GET_TSC_KHZ: { 4241 r = vcpu->arch.virtual_tsc_khz; 4242 goto out; 4243 } 4244 case KVM_KVMCLOCK_CTRL: { 4245 r = kvm_set_guest_paused(vcpu); 4246 goto out; 4247 } 4248 case KVM_ENABLE_CAP: { 4249 struct kvm_enable_cap cap; 4250 4251 r = -EFAULT; 4252 if (copy_from_user(&cap, argp, sizeof(cap))) 4253 goto out; 4254 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4255 break; 4256 } 4257 case KVM_GET_NESTED_STATE: { 4258 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4259 u32 user_data_size; 4260 4261 r = -EINVAL; 4262 if (!kvm_x86_ops->get_nested_state) 4263 break; 4264 4265 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4266 r = -EFAULT; 4267 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4268 break; 4269 4270 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state, 4271 user_data_size); 4272 if (r < 0) 4273 break; 4274 4275 if (r > user_data_size) { 4276 if (put_user(r, &user_kvm_nested_state->size)) 4277 r = -EFAULT; 4278 else 4279 r = -E2BIG; 4280 break; 4281 } 4282 4283 r = 0; 4284 break; 4285 } 4286 case KVM_SET_NESTED_STATE: { 4287 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4288 struct kvm_nested_state kvm_state; 4289 4290 r = -EINVAL; 4291 if (!kvm_x86_ops->set_nested_state) 4292 break; 4293 4294 r = -EFAULT; 4295 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4296 break; 4297 4298 r = -EINVAL; 4299 if (kvm_state.size < sizeof(kvm_state)) 4300 break; 4301 4302 if (kvm_state.flags & 4303 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4304 | KVM_STATE_NESTED_EVMCS)) 4305 break; 4306 4307 /* nested_run_pending implies guest_mode. */ 4308 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4309 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4310 break; 4311 4312 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state); 4313 break; 4314 } 4315 case KVM_GET_SUPPORTED_HV_CPUID: { 4316 struct kvm_cpuid2 __user *cpuid_arg = argp; 4317 struct kvm_cpuid2 cpuid; 4318 4319 r = -EFAULT; 4320 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4321 goto out; 4322 4323 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4324 cpuid_arg->entries); 4325 if (r) 4326 goto out; 4327 4328 r = -EFAULT; 4329 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4330 goto out; 4331 r = 0; 4332 break; 4333 } 4334 default: 4335 r = -EINVAL; 4336 } 4337 out: 4338 kfree(u.buffer); 4339 out_nofree: 4340 vcpu_put(vcpu); 4341 return r; 4342 } 4343 4344 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4345 { 4346 return VM_FAULT_SIGBUS; 4347 } 4348 4349 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 4350 { 4351 int ret; 4352 4353 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 4354 return -EINVAL; 4355 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 4356 return ret; 4357 } 4358 4359 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 4360 u64 ident_addr) 4361 { 4362 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr); 4363 } 4364 4365 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 4366 unsigned long kvm_nr_mmu_pages) 4367 { 4368 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 4369 return -EINVAL; 4370 4371 mutex_lock(&kvm->slots_lock); 4372 4373 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 4374 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 4375 4376 mutex_unlock(&kvm->slots_lock); 4377 return 0; 4378 } 4379 4380 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 4381 { 4382 return kvm->arch.n_max_mmu_pages; 4383 } 4384 4385 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4386 { 4387 struct kvm_pic *pic = kvm->arch.vpic; 4388 int r; 4389 4390 r = 0; 4391 switch (chip->chip_id) { 4392 case KVM_IRQCHIP_PIC_MASTER: 4393 memcpy(&chip->chip.pic, &pic->pics[0], 4394 sizeof(struct kvm_pic_state)); 4395 break; 4396 case KVM_IRQCHIP_PIC_SLAVE: 4397 memcpy(&chip->chip.pic, &pic->pics[1], 4398 sizeof(struct kvm_pic_state)); 4399 break; 4400 case KVM_IRQCHIP_IOAPIC: 4401 kvm_get_ioapic(kvm, &chip->chip.ioapic); 4402 break; 4403 default: 4404 r = -EINVAL; 4405 break; 4406 } 4407 return r; 4408 } 4409 4410 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4411 { 4412 struct kvm_pic *pic = kvm->arch.vpic; 4413 int r; 4414 4415 r = 0; 4416 switch (chip->chip_id) { 4417 case KVM_IRQCHIP_PIC_MASTER: 4418 spin_lock(&pic->lock); 4419 memcpy(&pic->pics[0], &chip->chip.pic, 4420 sizeof(struct kvm_pic_state)); 4421 spin_unlock(&pic->lock); 4422 break; 4423 case KVM_IRQCHIP_PIC_SLAVE: 4424 spin_lock(&pic->lock); 4425 memcpy(&pic->pics[1], &chip->chip.pic, 4426 sizeof(struct kvm_pic_state)); 4427 spin_unlock(&pic->lock); 4428 break; 4429 case KVM_IRQCHIP_IOAPIC: 4430 kvm_set_ioapic(kvm, &chip->chip.ioapic); 4431 break; 4432 default: 4433 r = -EINVAL; 4434 break; 4435 } 4436 kvm_pic_update_irq(pic); 4437 return r; 4438 } 4439 4440 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4441 { 4442 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 4443 4444 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 4445 4446 mutex_lock(&kps->lock); 4447 memcpy(ps, &kps->channels, sizeof(*ps)); 4448 mutex_unlock(&kps->lock); 4449 return 0; 4450 } 4451 4452 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4453 { 4454 int i; 4455 struct kvm_pit *pit = kvm->arch.vpit; 4456 4457 mutex_lock(&pit->pit_state.lock); 4458 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 4459 for (i = 0; i < 3; i++) 4460 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 4461 mutex_unlock(&pit->pit_state.lock); 4462 return 0; 4463 } 4464 4465 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4466 { 4467 mutex_lock(&kvm->arch.vpit->pit_state.lock); 4468 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 4469 sizeof(ps->channels)); 4470 ps->flags = kvm->arch.vpit->pit_state.flags; 4471 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 4472 memset(&ps->reserved, 0, sizeof(ps->reserved)); 4473 return 0; 4474 } 4475 4476 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4477 { 4478 int start = 0; 4479 int i; 4480 u32 prev_legacy, cur_legacy; 4481 struct kvm_pit *pit = kvm->arch.vpit; 4482 4483 mutex_lock(&pit->pit_state.lock); 4484 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 4485 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 4486 if (!prev_legacy && cur_legacy) 4487 start = 1; 4488 memcpy(&pit->pit_state.channels, &ps->channels, 4489 sizeof(pit->pit_state.channels)); 4490 pit->pit_state.flags = ps->flags; 4491 for (i = 0; i < 3; i++) 4492 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 4493 start && i == 0); 4494 mutex_unlock(&pit->pit_state.lock); 4495 return 0; 4496 } 4497 4498 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 4499 struct kvm_reinject_control *control) 4500 { 4501 struct kvm_pit *pit = kvm->arch.vpit; 4502 4503 if (!pit) 4504 return -ENXIO; 4505 4506 /* pit->pit_state.lock was overloaded to prevent userspace from getting 4507 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 4508 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 4509 */ 4510 mutex_lock(&pit->pit_state.lock); 4511 kvm_pit_set_reinject(pit, control->pit_reinject); 4512 mutex_unlock(&pit->pit_state.lock); 4513 4514 return 0; 4515 } 4516 4517 /** 4518 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 4519 * @kvm: kvm instance 4520 * @log: slot id and address to which we copy the log 4521 * 4522 * Steps 1-4 below provide general overview of dirty page logging. See 4523 * kvm_get_dirty_log_protect() function description for additional details. 4524 * 4525 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 4526 * always flush the TLB (step 4) even if previous step failed and the dirty 4527 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 4528 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 4529 * writes will be marked dirty for next log read. 4530 * 4531 * 1. Take a snapshot of the bit and clear it if needed. 4532 * 2. Write protect the corresponding page. 4533 * 3. Copy the snapshot to the userspace. 4534 * 4. Flush TLB's if needed. 4535 */ 4536 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 4537 { 4538 bool flush = false; 4539 int r; 4540 4541 mutex_lock(&kvm->slots_lock); 4542 4543 /* 4544 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4545 */ 4546 if (kvm_x86_ops->flush_log_dirty) 4547 kvm_x86_ops->flush_log_dirty(kvm); 4548 4549 r = kvm_get_dirty_log_protect(kvm, log, &flush); 4550 4551 /* 4552 * All the TLBs can be flushed out of mmu lock, see the comments in 4553 * kvm_mmu_slot_remove_write_access(). 4554 */ 4555 lockdep_assert_held(&kvm->slots_lock); 4556 if (flush) 4557 kvm_flush_remote_tlbs(kvm); 4558 4559 mutex_unlock(&kvm->slots_lock); 4560 return r; 4561 } 4562 4563 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log) 4564 { 4565 bool flush = false; 4566 int r; 4567 4568 mutex_lock(&kvm->slots_lock); 4569 4570 /* 4571 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4572 */ 4573 if (kvm_x86_ops->flush_log_dirty) 4574 kvm_x86_ops->flush_log_dirty(kvm); 4575 4576 r = kvm_clear_dirty_log_protect(kvm, log, &flush); 4577 4578 /* 4579 * All the TLBs can be flushed out of mmu lock, see the comments in 4580 * kvm_mmu_slot_remove_write_access(). 4581 */ 4582 lockdep_assert_held(&kvm->slots_lock); 4583 if (flush) 4584 kvm_flush_remote_tlbs(kvm); 4585 4586 mutex_unlock(&kvm->slots_lock); 4587 return r; 4588 } 4589 4590 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 4591 bool line_status) 4592 { 4593 if (!irqchip_in_kernel(kvm)) 4594 return -ENXIO; 4595 4596 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 4597 irq_event->irq, irq_event->level, 4598 line_status); 4599 return 0; 4600 } 4601 4602 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4603 struct kvm_enable_cap *cap) 4604 { 4605 int r; 4606 4607 if (cap->flags) 4608 return -EINVAL; 4609 4610 switch (cap->cap) { 4611 case KVM_CAP_DISABLE_QUIRKS: 4612 kvm->arch.disabled_quirks = cap->args[0]; 4613 r = 0; 4614 break; 4615 case KVM_CAP_SPLIT_IRQCHIP: { 4616 mutex_lock(&kvm->lock); 4617 r = -EINVAL; 4618 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4619 goto split_irqchip_unlock; 4620 r = -EEXIST; 4621 if (irqchip_in_kernel(kvm)) 4622 goto split_irqchip_unlock; 4623 if (kvm->created_vcpus) 4624 goto split_irqchip_unlock; 4625 r = kvm_setup_empty_irq_routing(kvm); 4626 if (r) 4627 goto split_irqchip_unlock; 4628 /* Pairs with irqchip_in_kernel. */ 4629 smp_wmb(); 4630 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4631 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4632 r = 0; 4633 split_irqchip_unlock: 4634 mutex_unlock(&kvm->lock); 4635 break; 4636 } 4637 case KVM_CAP_X2APIC_API: 4638 r = -EINVAL; 4639 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 4640 break; 4641 4642 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 4643 kvm->arch.x2apic_format = true; 4644 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 4645 kvm->arch.x2apic_broadcast_quirk_disabled = true; 4646 4647 r = 0; 4648 break; 4649 case KVM_CAP_X86_DISABLE_EXITS: 4650 r = -EINVAL; 4651 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 4652 break; 4653 4654 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 4655 kvm_can_mwait_in_guest()) 4656 kvm->arch.mwait_in_guest = true; 4657 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 4658 kvm->arch.hlt_in_guest = true; 4659 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 4660 kvm->arch.pause_in_guest = true; 4661 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 4662 kvm->arch.cstate_in_guest = true; 4663 r = 0; 4664 break; 4665 case KVM_CAP_MSR_PLATFORM_INFO: 4666 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 4667 r = 0; 4668 break; 4669 case KVM_CAP_EXCEPTION_PAYLOAD: 4670 kvm->arch.exception_payload_enabled = cap->args[0]; 4671 r = 0; 4672 break; 4673 default: 4674 r = -EINVAL; 4675 break; 4676 } 4677 return r; 4678 } 4679 4680 long kvm_arch_vm_ioctl(struct file *filp, 4681 unsigned int ioctl, unsigned long arg) 4682 { 4683 struct kvm *kvm = filp->private_data; 4684 void __user *argp = (void __user *)arg; 4685 int r = -ENOTTY; 4686 /* 4687 * This union makes it completely explicit to gcc-3.x 4688 * that these two variables' stack usage should be 4689 * combined, not added together. 4690 */ 4691 union { 4692 struct kvm_pit_state ps; 4693 struct kvm_pit_state2 ps2; 4694 struct kvm_pit_config pit_config; 4695 } u; 4696 4697 switch (ioctl) { 4698 case KVM_SET_TSS_ADDR: 4699 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 4700 break; 4701 case KVM_SET_IDENTITY_MAP_ADDR: { 4702 u64 ident_addr; 4703 4704 mutex_lock(&kvm->lock); 4705 r = -EINVAL; 4706 if (kvm->created_vcpus) 4707 goto set_identity_unlock; 4708 r = -EFAULT; 4709 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 4710 goto set_identity_unlock; 4711 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 4712 set_identity_unlock: 4713 mutex_unlock(&kvm->lock); 4714 break; 4715 } 4716 case KVM_SET_NR_MMU_PAGES: 4717 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 4718 break; 4719 case KVM_GET_NR_MMU_PAGES: 4720 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4721 break; 4722 case KVM_CREATE_IRQCHIP: { 4723 mutex_lock(&kvm->lock); 4724 4725 r = -EEXIST; 4726 if (irqchip_in_kernel(kvm)) 4727 goto create_irqchip_unlock; 4728 4729 r = -EINVAL; 4730 if (kvm->created_vcpus) 4731 goto create_irqchip_unlock; 4732 4733 r = kvm_pic_init(kvm); 4734 if (r) 4735 goto create_irqchip_unlock; 4736 4737 r = kvm_ioapic_init(kvm); 4738 if (r) { 4739 kvm_pic_destroy(kvm); 4740 goto create_irqchip_unlock; 4741 } 4742 4743 r = kvm_setup_default_irq_routing(kvm); 4744 if (r) { 4745 kvm_ioapic_destroy(kvm); 4746 kvm_pic_destroy(kvm); 4747 goto create_irqchip_unlock; 4748 } 4749 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4750 smp_wmb(); 4751 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4752 create_irqchip_unlock: 4753 mutex_unlock(&kvm->lock); 4754 break; 4755 } 4756 case KVM_CREATE_PIT: 4757 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 4758 goto create_pit; 4759 case KVM_CREATE_PIT2: 4760 r = -EFAULT; 4761 if (copy_from_user(&u.pit_config, argp, 4762 sizeof(struct kvm_pit_config))) 4763 goto out; 4764 create_pit: 4765 mutex_lock(&kvm->lock); 4766 r = -EEXIST; 4767 if (kvm->arch.vpit) 4768 goto create_pit_unlock; 4769 r = -ENOMEM; 4770 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 4771 if (kvm->arch.vpit) 4772 r = 0; 4773 create_pit_unlock: 4774 mutex_unlock(&kvm->lock); 4775 break; 4776 case KVM_GET_IRQCHIP: { 4777 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4778 struct kvm_irqchip *chip; 4779 4780 chip = memdup_user(argp, sizeof(*chip)); 4781 if (IS_ERR(chip)) { 4782 r = PTR_ERR(chip); 4783 goto out; 4784 } 4785 4786 r = -ENXIO; 4787 if (!irqchip_kernel(kvm)) 4788 goto get_irqchip_out; 4789 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 4790 if (r) 4791 goto get_irqchip_out; 4792 r = -EFAULT; 4793 if (copy_to_user(argp, chip, sizeof(*chip))) 4794 goto get_irqchip_out; 4795 r = 0; 4796 get_irqchip_out: 4797 kfree(chip); 4798 break; 4799 } 4800 case KVM_SET_IRQCHIP: { 4801 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4802 struct kvm_irqchip *chip; 4803 4804 chip = memdup_user(argp, sizeof(*chip)); 4805 if (IS_ERR(chip)) { 4806 r = PTR_ERR(chip); 4807 goto out; 4808 } 4809 4810 r = -ENXIO; 4811 if (!irqchip_kernel(kvm)) 4812 goto set_irqchip_out; 4813 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 4814 if (r) 4815 goto set_irqchip_out; 4816 r = 0; 4817 set_irqchip_out: 4818 kfree(chip); 4819 break; 4820 } 4821 case KVM_GET_PIT: { 4822 r = -EFAULT; 4823 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 4824 goto out; 4825 r = -ENXIO; 4826 if (!kvm->arch.vpit) 4827 goto out; 4828 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 4829 if (r) 4830 goto out; 4831 r = -EFAULT; 4832 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 4833 goto out; 4834 r = 0; 4835 break; 4836 } 4837 case KVM_SET_PIT: { 4838 r = -EFAULT; 4839 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 4840 goto out; 4841 r = -ENXIO; 4842 if (!kvm->arch.vpit) 4843 goto out; 4844 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 4845 break; 4846 } 4847 case KVM_GET_PIT2: { 4848 r = -ENXIO; 4849 if (!kvm->arch.vpit) 4850 goto out; 4851 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 4852 if (r) 4853 goto out; 4854 r = -EFAULT; 4855 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 4856 goto out; 4857 r = 0; 4858 break; 4859 } 4860 case KVM_SET_PIT2: { 4861 r = -EFAULT; 4862 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 4863 goto out; 4864 r = -ENXIO; 4865 if (!kvm->arch.vpit) 4866 goto out; 4867 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 4868 break; 4869 } 4870 case KVM_REINJECT_CONTROL: { 4871 struct kvm_reinject_control control; 4872 r = -EFAULT; 4873 if (copy_from_user(&control, argp, sizeof(control))) 4874 goto out; 4875 r = kvm_vm_ioctl_reinject(kvm, &control); 4876 break; 4877 } 4878 case KVM_SET_BOOT_CPU_ID: 4879 r = 0; 4880 mutex_lock(&kvm->lock); 4881 if (kvm->created_vcpus) 4882 r = -EBUSY; 4883 else 4884 kvm->arch.bsp_vcpu_id = arg; 4885 mutex_unlock(&kvm->lock); 4886 break; 4887 case KVM_XEN_HVM_CONFIG: { 4888 struct kvm_xen_hvm_config xhc; 4889 r = -EFAULT; 4890 if (copy_from_user(&xhc, argp, sizeof(xhc))) 4891 goto out; 4892 r = -EINVAL; 4893 if (xhc.flags) 4894 goto out; 4895 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 4896 r = 0; 4897 break; 4898 } 4899 case KVM_SET_CLOCK: { 4900 struct kvm_clock_data user_ns; 4901 u64 now_ns; 4902 4903 r = -EFAULT; 4904 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 4905 goto out; 4906 4907 r = -EINVAL; 4908 if (user_ns.flags) 4909 goto out; 4910 4911 r = 0; 4912 /* 4913 * TODO: userspace has to take care of races with VCPU_RUN, so 4914 * kvm_gen_update_masterclock() can be cut down to locked 4915 * pvclock_update_vm_gtod_copy(). 4916 */ 4917 kvm_gen_update_masterclock(kvm); 4918 now_ns = get_kvmclock_ns(kvm); 4919 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 4920 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 4921 break; 4922 } 4923 case KVM_GET_CLOCK: { 4924 struct kvm_clock_data user_ns; 4925 u64 now_ns; 4926 4927 now_ns = get_kvmclock_ns(kvm); 4928 user_ns.clock = now_ns; 4929 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 4930 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 4931 4932 r = -EFAULT; 4933 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 4934 goto out; 4935 r = 0; 4936 break; 4937 } 4938 case KVM_MEMORY_ENCRYPT_OP: { 4939 r = -ENOTTY; 4940 if (kvm_x86_ops->mem_enc_op) 4941 r = kvm_x86_ops->mem_enc_op(kvm, argp); 4942 break; 4943 } 4944 case KVM_MEMORY_ENCRYPT_REG_REGION: { 4945 struct kvm_enc_region region; 4946 4947 r = -EFAULT; 4948 if (copy_from_user(®ion, argp, sizeof(region))) 4949 goto out; 4950 4951 r = -ENOTTY; 4952 if (kvm_x86_ops->mem_enc_reg_region) 4953 r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion); 4954 break; 4955 } 4956 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 4957 struct kvm_enc_region region; 4958 4959 r = -EFAULT; 4960 if (copy_from_user(®ion, argp, sizeof(region))) 4961 goto out; 4962 4963 r = -ENOTTY; 4964 if (kvm_x86_ops->mem_enc_unreg_region) 4965 r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion); 4966 break; 4967 } 4968 case KVM_HYPERV_EVENTFD: { 4969 struct kvm_hyperv_eventfd hvevfd; 4970 4971 r = -EFAULT; 4972 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 4973 goto out; 4974 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 4975 break; 4976 } 4977 case KVM_SET_PMU_EVENT_FILTER: 4978 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 4979 break; 4980 default: 4981 r = -ENOTTY; 4982 } 4983 out: 4984 return r; 4985 } 4986 4987 static void kvm_init_msr_list(void) 4988 { 4989 u32 dummy[2]; 4990 unsigned i, j; 4991 4992 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { 4993 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 4994 continue; 4995 4996 /* 4997 * Even MSRs that are valid in the host may not be exposed 4998 * to the guests in some cases. 4999 */ 5000 switch (msrs_to_save[i]) { 5001 case MSR_IA32_BNDCFGS: 5002 if (!kvm_mpx_supported()) 5003 continue; 5004 break; 5005 case MSR_TSC_AUX: 5006 if (!kvm_x86_ops->rdtscp_supported()) 5007 continue; 5008 break; 5009 case MSR_IA32_RTIT_CTL: 5010 case MSR_IA32_RTIT_STATUS: 5011 if (!kvm_x86_ops->pt_supported()) 5012 continue; 5013 break; 5014 case MSR_IA32_RTIT_CR3_MATCH: 5015 if (!kvm_x86_ops->pt_supported() || 5016 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5017 continue; 5018 break; 5019 case MSR_IA32_RTIT_OUTPUT_BASE: 5020 case MSR_IA32_RTIT_OUTPUT_MASK: 5021 if (!kvm_x86_ops->pt_supported() || 5022 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5023 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5024 continue; 5025 break; 5026 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: { 5027 if (!kvm_x86_ops->pt_supported() || 5028 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >= 5029 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5030 continue; 5031 break; 5032 } 5033 default: 5034 break; 5035 } 5036 5037 if (j < i) 5038 msrs_to_save[j] = msrs_to_save[i]; 5039 j++; 5040 } 5041 num_msrs_to_save = j; 5042 5043 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { 5044 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i])) 5045 continue; 5046 5047 if (j < i) 5048 emulated_msrs[j] = emulated_msrs[i]; 5049 j++; 5050 } 5051 num_emulated_msrs = j; 5052 5053 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) { 5054 struct kvm_msr_entry msr; 5055 5056 msr.index = msr_based_features[i]; 5057 if (kvm_get_msr_feature(&msr)) 5058 continue; 5059 5060 if (j < i) 5061 msr_based_features[j] = msr_based_features[i]; 5062 j++; 5063 } 5064 num_msr_based_features = j; 5065 } 5066 5067 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5068 const void *v) 5069 { 5070 int handled = 0; 5071 int n; 5072 5073 do { 5074 n = min(len, 8); 5075 if (!(lapic_in_kernel(vcpu) && 5076 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5077 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5078 break; 5079 handled += n; 5080 addr += n; 5081 len -= n; 5082 v += n; 5083 } while (len); 5084 5085 return handled; 5086 } 5087 5088 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5089 { 5090 int handled = 0; 5091 int n; 5092 5093 do { 5094 n = min(len, 8); 5095 if (!(lapic_in_kernel(vcpu) && 5096 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5097 addr, n, v)) 5098 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5099 break; 5100 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5101 handled += n; 5102 addr += n; 5103 len -= n; 5104 v += n; 5105 } while (len); 5106 5107 return handled; 5108 } 5109 5110 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5111 struct kvm_segment *var, int seg) 5112 { 5113 kvm_x86_ops->set_segment(vcpu, var, seg); 5114 } 5115 5116 void kvm_get_segment(struct kvm_vcpu *vcpu, 5117 struct kvm_segment *var, int seg) 5118 { 5119 kvm_x86_ops->get_segment(vcpu, var, seg); 5120 } 5121 5122 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5123 struct x86_exception *exception) 5124 { 5125 gpa_t t_gpa; 5126 5127 BUG_ON(!mmu_is_nested(vcpu)); 5128 5129 /* NPT walks are always user-walks */ 5130 access |= PFERR_USER_MASK; 5131 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5132 5133 return t_gpa; 5134 } 5135 5136 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5137 struct x86_exception *exception) 5138 { 5139 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5140 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5141 } 5142 5143 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5144 struct x86_exception *exception) 5145 { 5146 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5147 access |= PFERR_FETCH_MASK; 5148 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5149 } 5150 5151 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5152 struct x86_exception *exception) 5153 { 5154 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5155 access |= PFERR_WRITE_MASK; 5156 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5157 } 5158 5159 /* uses this to access any guest's mapped memory without checking CPL */ 5160 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5161 struct x86_exception *exception) 5162 { 5163 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5164 } 5165 5166 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5167 struct kvm_vcpu *vcpu, u32 access, 5168 struct x86_exception *exception) 5169 { 5170 void *data = val; 5171 int r = X86EMUL_CONTINUE; 5172 5173 while (bytes) { 5174 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5175 exception); 5176 unsigned offset = addr & (PAGE_SIZE-1); 5177 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5178 int ret; 5179 5180 if (gpa == UNMAPPED_GVA) 5181 return X86EMUL_PROPAGATE_FAULT; 5182 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5183 offset, toread); 5184 if (ret < 0) { 5185 r = X86EMUL_IO_NEEDED; 5186 goto out; 5187 } 5188 5189 bytes -= toread; 5190 data += toread; 5191 addr += toread; 5192 } 5193 out: 5194 return r; 5195 } 5196 5197 /* used for instruction fetching */ 5198 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5199 gva_t addr, void *val, unsigned int bytes, 5200 struct x86_exception *exception) 5201 { 5202 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5203 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5204 unsigned offset; 5205 int ret; 5206 5207 /* Inline kvm_read_guest_virt_helper for speed. */ 5208 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5209 exception); 5210 if (unlikely(gpa == UNMAPPED_GVA)) 5211 return X86EMUL_PROPAGATE_FAULT; 5212 5213 offset = addr & (PAGE_SIZE-1); 5214 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5215 bytes = (unsigned)PAGE_SIZE - offset; 5216 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5217 offset, bytes); 5218 if (unlikely(ret < 0)) 5219 return X86EMUL_IO_NEEDED; 5220 5221 return X86EMUL_CONTINUE; 5222 } 5223 5224 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5225 gva_t addr, void *val, unsigned int bytes, 5226 struct x86_exception *exception) 5227 { 5228 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5229 5230 /* 5231 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5232 * is returned, but our callers are not ready for that and they blindly 5233 * call kvm_inject_page_fault. Ensure that they at least do not leak 5234 * uninitialized kernel stack memory into cr2 and error code. 5235 */ 5236 memset(exception, 0, sizeof(*exception)); 5237 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5238 exception); 5239 } 5240 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5241 5242 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5243 gva_t addr, void *val, unsigned int bytes, 5244 struct x86_exception *exception, bool system) 5245 { 5246 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5247 u32 access = 0; 5248 5249 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) 5250 access |= PFERR_USER_MASK; 5251 5252 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5253 } 5254 5255 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5256 unsigned long addr, void *val, unsigned int bytes) 5257 { 5258 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5259 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5260 5261 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5262 } 5263 5264 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5265 struct kvm_vcpu *vcpu, u32 access, 5266 struct x86_exception *exception) 5267 { 5268 void *data = val; 5269 int r = X86EMUL_CONTINUE; 5270 5271 while (bytes) { 5272 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 5273 access, 5274 exception); 5275 unsigned offset = addr & (PAGE_SIZE-1); 5276 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 5277 int ret; 5278 5279 if (gpa == UNMAPPED_GVA) 5280 return X86EMUL_PROPAGATE_FAULT; 5281 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 5282 if (ret < 0) { 5283 r = X86EMUL_IO_NEEDED; 5284 goto out; 5285 } 5286 5287 bytes -= towrite; 5288 data += towrite; 5289 addr += towrite; 5290 } 5291 out: 5292 return r; 5293 } 5294 5295 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 5296 unsigned int bytes, struct x86_exception *exception, 5297 bool system) 5298 { 5299 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5300 u32 access = PFERR_WRITE_MASK; 5301 5302 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) 5303 access |= PFERR_USER_MASK; 5304 5305 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5306 access, exception); 5307 } 5308 5309 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 5310 unsigned int bytes, struct x86_exception *exception) 5311 { 5312 /* kvm_write_guest_virt_system can pull in tons of pages. */ 5313 vcpu->arch.l1tf_flush_l1d = true; 5314 5315 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5316 PFERR_WRITE_MASK, exception); 5317 } 5318 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 5319 5320 int handle_ud(struct kvm_vcpu *vcpu) 5321 { 5322 int emul_type = EMULTYPE_TRAP_UD; 5323 enum emulation_result er; 5324 char sig[5]; /* ud2; .ascii "kvm" */ 5325 struct x86_exception e; 5326 5327 if (force_emulation_prefix && 5328 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 5329 sig, sizeof(sig), &e) == 0 && 5330 memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) { 5331 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 5332 emul_type = 0; 5333 } 5334 5335 er = kvm_emulate_instruction(vcpu, emul_type); 5336 if (er == EMULATE_USER_EXIT) 5337 return 0; 5338 if (er != EMULATE_DONE) 5339 kvm_queue_exception(vcpu, UD_VECTOR); 5340 return 1; 5341 } 5342 EXPORT_SYMBOL_GPL(handle_ud); 5343 5344 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5345 gpa_t gpa, bool write) 5346 { 5347 /* For APIC access vmexit */ 5348 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5349 return 1; 5350 5351 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 5352 trace_vcpu_match_mmio(gva, gpa, write, true); 5353 return 1; 5354 } 5355 5356 return 0; 5357 } 5358 5359 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5360 gpa_t *gpa, struct x86_exception *exception, 5361 bool write) 5362 { 5363 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 5364 | (write ? PFERR_WRITE_MASK : 0); 5365 5366 /* 5367 * currently PKRU is only applied to ept enabled guest so 5368 * there is no pkey in EPT page table for L1 guest or EPT 5369 * shadow page table for L2 guest. 5370 */ 5371 if (vcpu_match_mmio_gva(vcpu, gva) 5372 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 5373 vcpu->arch.access, 0, access)) { 5374 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 5375 (gva & (PAGE_SIZE - 1)); 5376 trace_vcpu_match_mmio(gva, *gpa, write, false); 5377 return 1; 5378 } 5379 5380 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5381 5382 if (*gpa == UNMAPPED_GVA) 5383 return -1; 5384 5385 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 5386 } 5387 5388 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 5389 const void *val, int bytes) 5390 { 5391 int ret; 5392 5393 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 5394 if (ret < 0) 5395 return 0; 5396 kvm_page_track_write(vcpu, gpa, val, bytes); 5397 return 1; 5398 } 5399 5400 struct read_write_emulator_ops { 5401 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 5402 int bytes); 5403 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 5404 void *val, int bytes); 5405 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5406 int bytes, void *val); 5407 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5408 void *val, int bytes); 5409 bool write; 5410 }; 5411 5412 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 5413 { 5414 if (vcpu->mmio_read_completed) { 5415 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 5416 vcpu->mmio_fragments[0].gpa, val); 5417 vcpu->mmio_read_completed = 0; 5418 return 1; 5419 } 5420 5421 return 0; 5422 } 5423 5424 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5425 void *val, int bytes) 5426 { 5427 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 5428 } 5429 5430 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5431 void *val, int bytes) 5432 { 5433 return emulator_write_phys(vcpu, gpa, val, bytes); 5434 } 5435 5436 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 5437 { 5438 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 5439 return vcpu_mmio_write(vcpu, gpa, bytes, val); 5440 } 5441 5442 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5443 void *val, int bytes) 5444 { 5445 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 5446 return X86EMUL_IO_NEEDED; 5447 } 5448 5449 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5450 void *val, int bytes) 5451 { 5452 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 5453 5454 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 5455 return X86EMUL_CONTINUE; 5456 } 5457 5458 static const struct read_write_emulator_ops read_emultor = { 5459 .read_write_prepare = read_prepare, 5460 .read_write_emulate = read_emulate, 5461 .read_write_mmio = vcpu_mmio_read, 5462 .read_write_exit_mmio = read_exit_mmio, 5463 }; 5464 5465 static const struct read_write_emulator_ops write_emultor = { 5466 .read_write_emulate = write_emulate, 5467 .read_write_mmio = write_mmio, 5468 .read_write_exit_mmio = write_exit_mmio, 5469 .write = true, 5470 }; 5471 5472 static int emulator_read_write_onepage(unsigned long addr, void *val, 5473 unsigned int bytes, 5474 struct x86_exception *exception, 5475 struct kvm_vcpu *vcpu, 5476 const struct read_write_emulator_ops *ops) 5477 { 5478 gpa_t gpa; 5479 int handled, ret; 5480 bool write = ops->write; 5481 struct kvm_mmio_fragment *frag; 5482 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5483 5484 /* 5485 * If the exit was due to a NPF we may already have a GPA. 5486 * If the GPA is present, use it to avoid the GVA to GPA table walk. 5487 * Note, this cannot be used on string operations since string 5488 * operation using rep will only have the initial GPA from the NPF 5489 * occurred. 5490 */ 5491 if (vcpu->arch.gpa_available && 5492 emulator_can_use_gpa(ctxt) && 5493 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) { 5494 gpa = vcpu->arch.gpa_val; 5495 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 5496 } else { 5497 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 5498 if (ret < 0) 5499 return X86EMUL_PROPAGATE_FAULT; 5500 } 5501 5502 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 5503 return X86EMUL_CONTINUE; 5504 5505 /* 5506 * Is this MMIO handled locally? 5507 */ 5508 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 5509 if (handled == bytes) 5510 return X86EMUL_CONTINUE; 5511 5512 gpa += handled; 5513 bytes -= handled; 5514 val += handled; 5515 5516 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 5517 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 5518 frag->gpa = gpa; 5519 frag->data = val; 5520 frag->len = bytes; 5521 return X86EMUL_CONTINUE; 5522 } 5523 5524 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 5525 unsigned long addr, 5526 void *val, unsigned int bytes, 5527 struct x86_exception *exception, 5528 const struct read_write_emulator_ops *ops) 5529 { 5530 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5531 gpa_t gpa; 5532 int rc; 5533 5534 if (ops->read_write_prepare && 5535 ops->read_write_prepare(vcpu, val, bytes)) 5536 return X86EMUL_CONTINUE; 5537 5538 vcpu->mmio_nr_fragments = 0; 5539 5540 /* Crossing a page boundary? */ 5541 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 5542 int now; 5543 5544 now = -addr & ~PAGE_MASK; 5545 rc = emulator_read_write_onepage(addr, val, now, exception, 5546 vcpu, ops); 5547 5548 if (rc != X86EMUL_CONTINUE) 5549 return rc; 5550 addr += now; 5551 if (ctxt->mode != X86EMUL_MODE_PROT64) 5552 addr = (u32)addr; 5553 val += now; 5554 bytes -= now; 5555 } 5556 5557 rc = emulator_read_write_onepage(addr, val, bytes, exception, 5558 vcpu, ops); 5559 if (rc != X86EMUL_CONTINUE) 5560 return rc; 5561 5562 if (!vcpu->mmio_nr_fragments) 5563 return rc; 5564 5565 gpa = vcpu->mmio_fragments[0].gpa; 5566 5567 vcpu->mmio_needed = 1; 5568 vcpu->mmio_cur_fragment = 0; 5569 5570 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 5571 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 5572 vcpu->run->exit_reason = KVM_EXIT_MMIO; 5573 vcpu->run->mmio.phys_addr = gpa; 5574 5575 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 5576 } 5577 5578 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 5579 unsigned long addr, 5580 void *val, 5581 unsigned int bytes, 5582 struct x86_exception *exception) 5583 { 5584 return emulator_read_write(ctxt, addr, val, bytes, 5585 exception, &read_emultor); 5586 } 5587 5588 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 5589 unsigned long addr, 5590 const void *val, 5591 unsigned int bytes, 5592 struct x86_exception *exception) 5593 { 5594 return emulator_read_write(ctxt, addr, (void *)val, bytes, 5595 exception, &write_emultor); 5596 } 5597 5598 #define CMPXCHG_TYPE(t, ptr, old, new) \ 5599 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 5600 5601 #ifdef CONFIG_X86_64 5602 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 5603 #else 5604 # define CMPXCHG64(ptr, old, new) \ 5605 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 5606 #endif 5607 5608 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 5609 unsigned long addr, 5610 const void *old, 5611 const void *new, 5612 unsigned int bytes, 5613 struct x86_exception *exception) 5614 { 5615 struct kvm_host_map map; 5616 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5617 gpa_t gpa; 5618 char *kaddr; 5619 bool exchanged; 5620 5621 /* guests cmpxchg8b have to be emulated atomically */ 5622 if (bytes > 8 || (bytes & (bytes - 1))) 5623 goto emul_write; 5624 5625 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 5626 5627 if (gpa == UNMAPPED_GVA || 5628 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5629 goto emul_write; 5630 5631 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 5632 goto emul_write; 5633 5634 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 5635 goto emul_write; 5636 5637 kaddr = map.hva + offset_in_page(gpa); 5638 5639 switch (bytes) { 5640 case 1: 5641 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 5642 break; 5643 case 2: 5644 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 5645 break; 5646 case 4: 5647 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 5648 break; 5649 case 8: 5650 exchanged = CMPXCHG64(kaddr, old, new); 5651 break; 5652 default: 5653 BUG(); 5654 } 5655 5656 kvm_vcpu_unmap(vcpu, &map, true); 5657 5658 if (!exchanged) 5659 return X86EMUL_CMPXCHG_FAILED; 5660 5661 kvm_page_track_write(vcpu, gpa, new, bytes); 5662 5663 return X86EMUL_CONTINUE; 5664 5665 emul_write: 5666 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 5667 5668 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 5669 } 5670 5671 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 5672 { 5673 int r = 0, i; 5674 5675 for (i = 0; i < vcpu->arch.pio.count; i++) { 5676 if (vcpu->arch.pio.in) 5677 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 5678 vcpu->arch.pio.size, pd); 5679 else 5680 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 5681 vcpu->arch.pio.port, vcpu->arch.pio.size, 5682 pd); 5683 if (r) 5684 break; 5685 pd += vcpu->arch.pio.size; 5686 } 5687 return r; 5688 } 5689 5690 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 5691 unsigned short port, void *val, 5692 unsigned int count, bool in) 5693 { 5694 vcpu->arch.pio.port = port; 5695 vcpu->arch.pio.in = in; 5696 vcpu->arch.pio.count = count; 5697 vcpu->arch.pio.size = size; 5698 5699 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 5700 vcpu->arch.pio.count = 0; 5701 return 1; 5702 } 5703 5704 vcpu->run->exit_reason = KVM_EXIT_IO; 5705 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 5706 vcpu->run->io.size = size; 5707 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 5708 vcpu->run->io.count = count; 5709 vcpu->run->io.port = port; 5710 5711 return 0; 5712 } 5713 5714 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 5715 int size, unsigned short port, void *val, 5716 unsigned int count) 5717 { 5718 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5719 int ret; 5720 5721 if (vcpu->arch.pio.count) 5722 goto data_avail; 5723 5724 memset(vcpu->arch.pio_data, 0, size * count); 5725 5726 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 5727 if (ret) { 5728 data_avail: 5729 memcpy(val, vcpu->arch.pio_data, size * count); 5730 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 5731 vcpu->arch.pio.count = 0; 5732 return 1; 5733 } 5734 5735 return 0; 5736 } 5737 5738 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 5739 int size, unsigned short port, 5740 const void *val, unsigned int count) 5741 { 5742 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5743 5744 memcpy(vcpu->arch.pio_data, val, size * count); 5745 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 5746 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 5747 } 5748 5749 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 5750 { 5751 return kvm_x86_ops->get_segment_base(vcpu, seg); 5752 } 5753 5754 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 5755 { 5756 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 5757 } 5758 5759 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 5760 { 5761 if (!need_emulate_wbinvd(vcpu)) 5762 return X86EMUL_CONTINUE; 5763 5764 if (kvm_x86_ops->has_wbinvd_exit()) { 5765 int cpu = get_cpu(); 5766 5767 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5768 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 5769 wbinvd_ipi, NULL, 1); 5770 put_cpu(); 5771 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 5772 } else 5773 wbinvd(); 5774 return X86EMUL_CONTINUE; 5775 } 5776 5777 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 5778 { 5779 kvm_emulate_wbinvd_noskip(vcpu); 5780 return kvm_skip_emulated_instruction(vcpu); 5781 } 5782 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 5783 5784 5785 5786 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 5787 { 5788 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 5789 } 5790 5791 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 5792 unsigned long *dest) 5793 { 5794 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 5795 } 5796 5797 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 5798 unsigned long value) 5799 { 5800 5801 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 5802 } 5803 5804 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 5805 { 5806 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 5807 } 5808 5809 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 5810 { 5811 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5812 unsigned long value; 5813 5814 switch (cr) { 5815 case 0: 5816 value = kvm_read_cr0(vcpu); 5817 break; 5818 case 2: 5819 value = vcpu->arch.cr2; 5820 break; 5821 case 3: 5822 value = kvm_read_cr3(vcpu); 5823 break; 5824 case 4: 5825 value = kvm_read_cr4(vcpu); 5826 break; 5827 case 8: 5828 value = kvm_get_cr8(vcpu); 5829 break; 5830 default: 5831 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5832 return 0; 5833 } 5834 5835 return value; 5836 } 5837 5838 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 5839 { 5840 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5841 int res = 0; 5842 5843 switch (cr) { 5844 case 0: 5845 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 5846 break; 5847 case 2: 5848 vcpu->arch.cr2 = val; 5849 break; 5850 case 3: 5851 res = kvm_set_cr3(vcpu, val); 5852 break; 5853 case 4: 5854 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 5855 break; 5856 case 8: 5857 res = kvm_set_cr8(vcpu, val); 5858 break; 5859 default: 5860 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5861 res = -1; 5862 } 5863 5864 return res; 5865 } 5866 5867 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 5868 { 5869 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 5870 } 5871 5872 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5873 { 5874 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 5875 } 5876 5877 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5878 { 5879 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 5880 } 5881 5882 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5883 { 5884 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 5885 } 5886 5887 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5888 { 5889 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 5890 } 5891 5892 static unsigned long emulator_get_cached_segment_base( 5893 struct x86_emulate_ctxt *ctxt, int seg) 5894 { 5895 return get_segment_base(emul_to_vcpu(ctxt), seg); 5896 } 5897 5898 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 5899 struct desc_struct *desc, u32 *base3, 5900 int seg) 5901 { 5902 struct kvm_segment var; 5903 5904 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 5905 *selector = var.selector; 5906 5907 if (var.unusable) { 5908 memset(desc, 0, sizeof(*desc)); 5909 if (base3) 5910 *base3 = 0; 5911 return false; 5912 } 5913 5914 if (var.g) 5915 var.limit >>= 12; 5916 set_desc_limit(desc, var.limit); 5917 set_desc_base(desc, (unsigned long)var.base); 5918 #ifdef CONFIG_X86_64 5919 if (base3) 5920 *base3 = var.base >> 32; 5921 #endif 5922 desc->type = var.type; 5923 desc->s = var.s; 5924 desc->dpl = var.dpl; 5925 desc->p = var.present; 5926 desc->avl = var.avl; 5927 desc->l = var.l; 5928 desc->d = var.db; 5929 desc->g = var.g; 5930 5931 return true; 5932 } 5933 5934 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 5935 struct desc_struct *desc, u32 base3, 5936 int seg) 5937 { 5938 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5939 struct kvm_segment var; 5940 5941 var.selector = selector; 5942 var.base = get_desc_base(desc); 5943 #ifdef CONFIG_X86_64 5944 var.base |= ((u64)base3) << 32; 5945 #endif 5946 var.limit = get_desc_limit(desc); 5947 if (desc->g) 5948 var.limit = (var.limit << 12) | 0xfff; 5949 var.type = desc->type; 5950 var.dpl = desc->dpl; 5951 var.db = desc->d; 5952 var.s = desc->s; 5953 var.l = desc->l; 5954 var.g = desc->g; 5955 var.avl = desc->avl; 5956 var.present = desc->p; 5957 var.unusable = !var.present; 5958 var.padding = 0; 5959 5960 kvm_set_segment(vcpu, &var, seg); 5961 return; 5962 } 5963 5964 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 5965 u32 msr_index, u64 *pdata) 5966 { 5967 struct msr_data msr; 5968 int r; 5969 5970 msr.index = msr_index; 5971 msr.host_initiated = false; 5972 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); 5973 if (r) 5974 return r; 5975 5976 *pdata = msr.data; 5977 return 0; 5978 } 5979 5980 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 5981 u32 msr_index, u64 data) 5982 { 5983 struct msr_data msr; 5984 5985 msr.data = data; 5986 msr.index = msr_index; 5987 msr.host_initiated = false; 5988 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 5989 } 5990 5991 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 5992 { 5993 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5994 5995 return vcpu->arch.smbase; 5996 } 5997 5998 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 5999 { 6000 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6001 6002 vcpu->arch.smbase = smbase; 6003 } 6004 6005 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6006 u32 pmc) 6007 { 6008 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); 6009 } 6010 6011 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6012 u32 pmc, u64 *pdata) 6013 { 6014 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6015 } 6016 6017 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6018 { 6019 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6020 } 6021 6022 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6023 struct x86_instruction_info *info, 6024 enum x86_intercept_stage stage) 6025 { 6026 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 6027 } 6028 6029 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6030 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit) 6031 { 6032 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit); 6033 } 6034 6035 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6036 { 6037 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6038 } 6039 6040 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6041 { 6042 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6043 } 6044 6045 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6046 { 6047 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 6048 } 6049 6050 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6051 { 6052 return emul_to_vcpu(ctxt)->arch.hflags; 6053 } 6054 6055 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6056 { 6057 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6058 } 6059 6060 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6061 const char *smstate) 6062 { 6063 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6064 } 6065 6066 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6067 { 6068 kvm_smm_changed(emul_to_vcpu(ctxt)); 6069 } 6070 6071 static const struct x86_emulate_ops emulate_ops = { 6072 .read_gpr = emulator_read_gpr, 6073 .write_gpr = emulator_write_gpr, 6074 .read_std = emulator_read_std, 6075 .write_std = emulator_write_std, 6076 .read_phys = kvm_read_guest_phys_system, 6077 .fetch = kvm_fetch_guest_virt, 6078 .read_emulated = emulator_read_emulated, 6079 .write_emulated = emulator_write_emulated, 6080 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6081 .invlpg = emulator_invlpg, 6082 .pio_in_emulated = emulator_pio_in_emulated, 6083 .pio_out_emulated = emulator_pio_out_emulated, 6084 .get_segment = emulator_get_segment, 6085 .set_segment = emulator_set_segment, 6086 .get_cached_segment_base = emulator_get_cached_segment_base, 6087 .get_gdt = emulator_get_gdt, 6088 .get_idt = emulator_get_idt, 6089 .set_gdt = emulator_set_gdt, 6090 .set_idt = emulator_set_idt, 6091 .get_cr = emulator_get_cr, 6092 .set_cr = emulator_set_cr, 6093 .cpl = emulator_get_cpl, 6094 .get_dr = emulator_get_dr, 6095 .set_dr = emulator_set_dr, 6096 .get_smbase = emulator_get_smbase, 6097 .set_smbase = emulator_set_smbase, 6098 .set_msr = emulator_set_msr, 6099 .get_msr = emulator_get_msr, 6100 .check_pmc = emulator_check_pmc, 6101 .read_pmc = emulator_read_pmc, 6102 .halt = emulator_halt, 6103 .wbinvd = emulator_wbinvd, 6104 .fix_hypercall = emulator_fix_hypercall, 6105 .intercept = emulator_intercept, 6106 .get_cpuid = emulator_get_cpuid, 6107 .set_nmi_mask = emulator_set_nmi_mask, 6108 .get_hflags = emulator_get_hflags, 6109 .set_hflags = emulator_set_hflags, 6110 .pre_leave_smm = emulator_pre_leave_smm, 6111 .post_leave_smm = emulator_post_leave_smm, 6112 }; 6113 6114 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6115 { 6116 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 6117 /* 6118 * an sti; sti; sequence only disable interrupts for the first 6119 * instruction. So, if the last instruction, be it emulated or 6120 * not, left the system with the INT_STI flag enabled, it 6121 * means that the last instruction is an sti. We should not 6122 * leave the flag on in this case. The same goes for mov ss 6123 */ 6124 if (int_shadow & mask) 6125 mask = 0; 6126 if (unlikely(int_shadow || mask)) { 6127 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 6128 if (!mask) 6129 kvm_make_request(KVM_REQ_EVENT, vcpu); 6130 } 6131 } 6132 6133 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6134 { 6135 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6136 if (ctxt->exception.vector == PF_VECTOR) 6137 return kvm_propagate_fault(vcpu, &ctxt->exception); 6138 6139 if (ctxt->exception.error_code_valid) 6140 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6141 ctxt->exception.error_code); 6142 else 6143 kvm_queue_exception(vcpu, ctxt->exception.vector); 6144 return false; 6145 } 6146 6147 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6148 { 6149 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6150 int cs_db, cs_l; 6151 6152 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6153 6154 ctxt->eflags = kvm_get_rflags(vcpu); 6155 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6156 6157 ctxt->eip = kvm_rip_read(vcpu); 6158 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6159 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6160 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6161 cs_db ? X86EMUL_MODE_PROT32 : 6162 X86EMUL_MODE_PROT16; 6163 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6164 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6165 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6166 6167 init_decode_cache(ctxt); 6168 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6169 } 6170 6171 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6172 { 6173 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6174 int ret; 6175 6176 init_emulate_ctxt(vcpu); 6177 6178 ctxt->op_bytes = 2; 6179 ctxt->ad_bytes = 2; 6180 ctxt->_eip = ctxt->eip + inc_eip; 6181 ret = emulate_int_real(ctxt, irq); 6182 6183 if (ret != X86EMUL_CONTINUE) 6184 return EMULATE_FAIL; 6185 6186 ctxt->eip = ctxt->_eip; 6187 kvm_rip_write(vcpu, ctxt->eip); 6188 kvm_set_rflags(vcpu, ctxt->eflags); 6189 6190 return EMULATE_DONE; 6191 } 6192 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6193 6194 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6195 { 6196 int r = EMULATE_DONE; 6197 6198 ++vcpu->stat.insn_emulation_fail; 6199 trace_kvm_emulate_insn_failed(vcpu); 6200 6201 if (emulation_type & EMULTYPE_NO_UD_ON_FAIL) 6202 return EMULATE_FAIL; 6203 6204 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 6205 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6206 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6207 vcpu->run->internal.ndata = 0; 6208 r = EMULATE_USER_EXIT; 6209 } 6210 6211 kvm_queue_exception(vcpu, UD_VECTOR); 6212 6213 return r; 6214 } 6215 6216 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 6217 bool write_fault_to_shadow_pgtable, 6218 int emulation_type) 6219 { 6220 gpa_t gpa = cr2; 6221 kvm_pfn_t pfn; 6222 6223 if (!(emulation_type & EMULTYPE_ALLOW_RETRY)) 6224 return false; 6225 6226 if (WARN_ON_ONCE(is_guest_mode(vcpu))) 6227 return false; 6228 6229 if (!vcpu->arch.mmu->direct_map) { 6230 /* 6231 * Write permission should be allowed since only 6232 * write access need to be emulated. 6233 */ 6234 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 6235 6236 /* 6237 * If the mapping is invalid in guest, let cpu retry 6238 * it to generate fault. 6239 */ 6240 if (gpa == UNMAPPED_GVA) 6241 return true; 6242 } 6243 6244 /* 6245 * Do not retry the unhandleable instruction if it faults on the 6246 * readonly host memory, otherwise it will goto a infinite loop: 6247 * retry instruction -> write #PF -> emulation fail -> retry 6248 * instruction -> ... 6249 */ 6250 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 6251 6252 /* 6253 * If the instruction failed on the error pfn, it can not be fixed, 6254 * report the error to userspace. 6255 */ 6256 if (is_error_noslot_pfn(pfn)) 6257 return false; 6258 6259 kvm_release_pfn_clean(pfn); 6260 6261 /* The instructions are well-emulated on direct mmu. */ 6262 if (vcpu->arch.mmu->direct_map) { 6263 unsigned int indirect_shadow_pages; 6264 6265 spin_lock(&vcpu->kvm->mmu_lock); 6266 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 6267 spin_unlock(&vcpu->kvm->mmu_lock); 6268 6269 if (indirect_shadow_pages) 6270 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6271 6272 return true; 6273 } 6274 6275 /* 6276 * if emulation was due to access to shadowed page table 6277 * and it failed try to unshadow page and re-enter the 6278 * guest to let CPU execute the instruction. 6279 */ 6280 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6281 6282 /* 6283 * If the access faults on its page table, it can not 6284 * be fixed by unprotecting shadow page and it should 6285 * be reported to userspace. 6286 */ 6287 return !write_fault_to_shadow_pgtable; 6288 } 6289 6290 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 6291 unsigned long cr2, int emulation_type) 6292 { 6293 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6294 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 6295 6296 last_retry_eip = vcpu->arch.last_retry_eip; 6297 last_retry_addr = vcpu->arch.last_retry_addr; 6298 6299 /* 6300 * If the emulation is caused by #PF and it is non-page_table 6301 * writing instruction, it means the VM-EXIT is caused by shadow 6302 * page protected, we can zap the shadow page and retry this 6303 * instruction directly. 6304 * 6305 * Note: if the guest uses a non-page-table modifying instruction 6306 * on the PDE that points to the instruction, then we will unmap 6307 * the instruction and go to an infinite loop. So, we cache the 6308 * last retried eip and the last fault address, if we meet the eip 6309 * and the address again, we can break out of the potential infinite 6310 * loop. 6311 */ 6312 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 6313 6314 if (!(emulation_type & EMULTYPE_ALLOW_RETRY)) 6315 return false; 6316 6317 if (WARN_ON_ONCE(is_guest_mode(vcpu))) 6318 return false; 6319 6320 if (x86_page_table_writing_insn(ctxt)) 6321 return false; 6322 6323 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 6324 return false; 6325 6326 vcpu->arch.last_retry_eip = ctxt->eip; 6327 vcpu->arch.last_retry_addr = cr2; 6328 6329 if (!vcpu->arch.mmu->direct_map) 6330 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 6331 6332 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6333 6334 return true; 6335 } 6336 6337 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 6338 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 6339 6340 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 6341 { 6342 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 6343 /* This is a good place to trace that we are exiting SMM. */ 6344 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 6345 6346 /* Process a latched INIT or SMI, if any. */ 6347 kvm_make_request(KVM_REQ_EVENT, vcpu); 6348 } 6349 6350 kvm_mmu_reset_context(vcpu); 6351 } 6352 6353 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 6354 unsigned long *db) 6355 { 6356 u32 dr6 = 0; 6357 int i; 6358 u32 enable, rwlen; 6359 6360 enable = dr7; 6361 rwlen = dr7 >> 16; 6362 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 6363 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 6364 dr6 |= (1 << i); 6365 return dr6; 6366 } 6367 6368 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r) 6369 { 6370 struct kvm_run *kvm_run = vcpu->run; 6371 6372 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 6373 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 6374 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 6375 kvm_run->debug.arch.exception = DB_VECTOR; 6376 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6377 *r = EMULATE_USER_EXIT; 6378 } else { 6379 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 6380 } 6381 } 6382 6383 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 6384 { 6385 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 6386 int r = EMULATE_DONE; 6387 6388 kvm_x86_ops->skip_emulated_instruction(vcpu); 6389 6390 /* 6391 * rflags is the old, "raw" value of the flags. The new value has 6392 * not been saved yet. 6393 * 6394 * This is correct even for TF set by the guest, because "the 6395 * processor will not generate this exception after the instruction 6396 * that sets the TF flag". 6397 */ 6398 if (unlikely(rflags & X86_EFLAGS_TF)) 6399 kvm_vcpu_do_singlestep(vcpu, &r); 6400 return r == EMULATE_DONE; 6401 } 6402 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 6403 6404 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 6405 { 6406 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 6407 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 6408 struct kvm_run *kvm_run = vcpu->run; 6409 unsigned long eip = kvm_get_linear_rip(vcpu); 6410 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6411 vcpu->arch.guest_debug_dr7, 6412 vcpu->arch.eff_db); 6413 6414 if (dr6 != 0) { 6415 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 6416 kvm_run->debug.arch.pc = eip; 6417 kvm_run->debug.arch.exception = DB_VECTOR; 6418 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6419 *r = EMULATE_USER_EXIT; 6420 return true; 6421 } 6422 } 6423 6424 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 6425 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 6426 unsigned long eip = kvm_get_linear_rip(vcpu); 6427 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6428 vcpu->arch.dr7, 6429 vcpu->arch.db); 6430 6431 if (dr6 != 0) { 6432 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 6433 vcpu->arch.dr6 |= dr6 | DR6_RTM; 6434 kvm_queue_exception(vcpu, DB_VECTOR); 6435 *r = EMULATE_DONE; 6436 return true; 6437 } 6438 } 6439 6440 return false; 6441 } 6442 6443 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 6444 { 6445 switch (ctxt->opcode_len) { 6446 case 1: 6447 switch (ctxt->b) { 6448 case 0xe4: /* IN */ 6449 case 0xe5: 6450 case 0xec: 6451 case 0xed: 6452 case 0xe6: /* OUT */ 6453 case 0xe7: 6454 case 0xee: 6455 case 0xef: 6456 case 0x6c: /* INS */ 6457 case 0x6d: 6458 case 0x6e: /* OUTS */ 6459 case 0x6f: 6460 return true; 6461 } 6462 break; 6463 case 2: 6464 switch (ctxt->b) { 6465 case 0x33: /* RDPMC */ 6466 return true; 6467 } 6468 break; 6469 } 6470 6471 return false; 6472 } 6473 6474 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 6475 unsigned long cr2, 6476 int emulation_type, 6477 void *insn, 6478 int insn_len) 6479 { 6480 int r; 6481 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6482 bool writeback = true; 6483 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 6484 6485 vcpu->arch.l1tf_flush_l1d = true; 6486 6487 /* 6488 * Clear write_fault_to_shadow_pgtable here to ensure it is 6489 * never reused. 6490 */ 6491 vcpu->arch.write_fault_to_shadow_pgtable = false; 6492 kvm_clear_exception_queue(vcpu); 6493 6494 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 6495 init_emulate_ctxt(vcpu); 6496 6497 /* 6498 * We will reenter on the same instruction since 6499 * we do not set complete_userspace_io. This does not 6500 * handle watchpoints yet, those would be handled in 6501 * the emulate_ops. 6502 */ 6503 if (!(emulation_type & EMULTYPE_SKIP) && 6504 kvm_vcpu_check_breakpoint(vcpu, &r)) 6505 return r; 6506 6507 ctxt->interruptibility = 0; 6508 ctxt->have_exception = false; 6509 ctxt->exception.vector = -1; 6510 ctxt->perm_ok = false; 6511 6512 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 6513 6514 r = x86_decode_insn(ctxt, insn, insn_len); 6515 6516 trace_kvm_emulate_insn_start(vcpu); 6517 ++vcpu->stat.insn_emulation; 6518 if (r != EMULATION_OK) { 6519 if (emulation_type & EMULTYPE_TRAP_UD) 6520 return EMULATE_FAIL; 6521 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 6522 emulation_type)) 6523 return EMULATE_DONE; 6524 if (ctxt->have_exception && inject_emulated_exception(vcpu)) 6525 return EMULATE_DONE; 6526 if (emulation_type & EMULTYPE_SKIP) 6527 return EMULATE_FAIL; 6528 return handle_emulation_failure(vcpu, emulation_type); 6529 } 6530 } 6531 6532 if ((emulation_type & EMULTYPE_VMWARE) && 6533 !is_vmware_backdoor_opcode(ctxt)) 6534 return EMULATE_FAIL; 6535 6536 if (emulation_type & EMULTYPE_SKIP) { 6537 kvm_rip_write(vcpu, ctxt->_eip); 6538 if (ctxt->eflags & X86_EFLAGS_RF) 6539 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 6540 return EMULATE_DONE; 6541 } 6542 6543 if (retry_instruction(ctxt, cr2, emulation_type)) 6544 return EMULATE_DONE; 6545 6546 /* this is needed for vmware backdoor interface to work since it 6547 changes registers values during IO operation */ 6548 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 6549 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6550 emulator_invalidate_register_cache(ctxt); 6551 } 6552 6553 restart: 6554 /* Save the faulting GPA (cr2) in the address field */ 6555 ctxt->exception.address = cr2; 6556 6557 r = x86_emulate_insn(ctxt); 6558 6559 if (r == EMULATION_INTERCEPTED) 6560 return EMULATE_DONE; 6561 6562 if (r == EMULATION_FAILED) { 6563 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 6564 emulation_type)) 6565 return EMULATE_DONE; 6566 6567 return handle_emulation_failure(vcpu, emulation_type); 6568 } 6569 6570 if (ctxt->have_exception) { 6571 r = EMULATE_DONE; 6572 if (inject_emulated_exception(vcpu)) 6573 return r; 6574 } else if (vcpu->arch.pio.count) { 6575 if (!vcpu->arch.pio.in) { 6576 /* FIXME: return into emulator if single-stepping. */ 6577 vcpu->arch.pio.count = 0; 6578 } else { 6579 writeback = false; 6580 vcpu->arch.complete_userspace_io = complete_emulated_pio; 6581 } 6582 r = EMULATE_USER_EXIT; 6583 } else if (vcpu->mmio_needed) { 6584 if (!vcpu->mmio_is_write) 6585 writeback = false; 6586 r = EMULATE_USER_EXIT; 6587 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6588 } else if (r == EMULATION_RESTART) 6589 goto restart; 6590 else 6591 r = EMULATE_DONE; 6592 6593 if (writeback) { 6594 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 6595 toggle_interruptibility(vcpu, ctxt->interruptibility); 6596 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6597 if (!ctxt->have_exception || 6598 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 6599 kvm_rip_write(vcpu, ctxt->eip); 6600 if (r == EMULATE_DONE && ctxt->tf) 6601 kvm_vcpu_do_singlestep(vcpu, &r); 6602 __kvm_set_rflags(vcpu, ctxt->eflags); 6603 } 6604 6605 /* 6606 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 6607 * do nothing, and it will be requested again as soon as 6608 * the shadow expires. But we still need to check here, 6609 * because POPF has no interrupt shadow. 6610 */ 6611 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 6612 kvm_make_request(KVM_REQ_EVENT, vcpu); 6613 } else 6614 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 6615 6616 return r; 6617 } 6618 6619 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 6620 { 6621 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 6622 } 6623 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 6624 6625 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 6626 void *insn, int insn_len) 6627 { 6628 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 6629 } 6630 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 6631 6632 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 6633 { 6634 vcpu->arch.pio.count = 0; 6635 return 1; 6636 } 6637 6638 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 6639 { 6640 vcpu->arch.pio.count = 0; 6641 6642 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 6643 return 1; 6644 6645 return kvm_skip_emulated_instruction(vcpu); 6646 } 6647 6648 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 6649 unsigned short port) 6650 { 6651 unsigned long val = kvm_rax_read(vcpu); 6652 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 6653 size, port, &val, 1); 6654 if (ret) 6655 return ret; 6656 6657 /* 6658 * Workaround userspace that relies on old KVM behavior of %rip being 6659 * incremented prior to exiting to userspace to handle "OUT 0x7e". 6660 */ 6661 if (port == 0x7e && 6662 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 6663 vcpu->arch.complete_userspace_io = 6664 complete_fast_pio_out_port_0x7e; 6665 kvm_skip_emulated_instruction(vcpu); 6666 } else { 6667 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 6668 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 6669 } 6670 return 0; 6671 } 6672 6673 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 6674 { 6675 unsigned long val; 6676 6677 /* We should only ever be called with arch.pio.count equal to 1 */ 6678 BUG_ON(vcpu->arch.pio.count != 1); 6679 6680 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 6681 vcpu->arch.pio.count = 0; 6682 return 1; 6683 } 6684 6685 /* For size less than 4 we merge, else we zero extend */ 6686 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 6687 6688 /* 6689 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform 6690 * the copy and tracing 6691 */ 6692 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, 6693 vcpu->arch.pio.port, &val, 1); 6694 kvm_rax_write(vcpu, val); 6695 6696 return kvm_skip_emulated_instruction(vcpu); 6697 } 6698 6699 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 6700 unsigned short port) 6701 { 6702 unsigned long val; 6703 int ret; 6704 6705 /* For size less than 4 we merge, else we zero extend */ 6706 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 6707 6708 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, 6709 &val, 1); 6710 if (ret) { 6711 kvm_rax_write(vcpu, val); 6712 return ret; 6713 } 6714 6715 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 6716 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 6717 6718 return 0; 6719 } 6720 6721 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 6722 { 6723 int ret; 6724 6725 if (in) 6726 ret = kvm_fast_pio_in(vcpu, size, port); 6727 else 6728 ret = kvm_fast_pio_out(vcpu, size, port); 6729 return ret && kvm_skip_emulated_instruction(vcpu); 6730 } 6731 EXPORT_SYMBOL_GPL(kvm_fast_pio); 6732 6733 static int kvmclock_cpu_down_prep(unsigned int cpu) 6734 { 6735 __this_cpu_write(cpu_tsc_khz, 0); 6736 return 0; 6737 } 6738 6739 static void tsc_khz_changed(void *data) 6740 { 6741 struct cpufreq_freqs *freq = data; 6742 unsigned long khz = 0; 6743 6744 if (data) 6745 khz = freq->new; 6746 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 6747 khz = cpufreq_quick_get(raw_smp_processor_id()); 6748 if (!khz) 6749 khz = tsc_khz; 6750 __this_cpu_write(cpu_tsc_khz, khz); 6751 } 6752 6753 #ifdef CONFIG_X86_64 6754 static void kvm_hyperv_tsc_notifier(void) 6755 { 6756 struct kvm *kvm; 6757 struct kvm_vcpu *vcpu; 6758 int cpu; 6759 6760 mutex_lock(&kvm_lock); 6761 list_for_each_entry(kvm, &vm_list, vm_list) 6762 kvm_make_mclock_inprogress_request(kvm); 6763 6764 hyperv_stop_tsc_emulation(); 6765 6766 /* TSC frequency always matches when on Hyper-V */ 6767 for_each_present_cpu(cpu) 6768 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 6769 kvm_max_guest_tsc_khz = tsc_khz; 6770 6771 list_for_each_entry(kvm, &vm_list, vm_list) { 6772 struct kvm_arch *ka = &kvm->arch; 6773 6774 spin_lock(&ka->pvclock_gtod_sync_lock); 6775 6776 pvclock_update_vm_gtod_copy(kvm); 6777 6778 kvm_for_each_vcpu(cpu, vcpu, kvm) 6779 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6780 6781 kvm_for_each_vcpu(cpu, vcpu, kvm) 6782 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 6783 6784 spin_unlock(&ka->pvclock_gtod_sync_lock); 6785 } 6786 mutex_unlock(&kvm_lock); 6787 } 6788 #endif 6789 6790 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 6791 { 6792 struct kvm *kvm; 6793 struct kvm_vcpu *vcpu; 6794 int i, send_ipi = 0; 6795 6796 /* 6797 * We allow guests to temporarily run on slowing clocks, 6798 * provided we notify them after, or to run on accelerating 6799 * clocks, provided we notify them before. Thus time never 6800 * goes backwards. 6801 * 6802 * However, we have a problem. We can't atomically update 6803 * the frequency of a given CPU from this function; it is 6804 * merely a notifier, which can be called from any CPU. 6805 * Changing the TSC frequency at arbitrary points in time 6806 * requires a recomputation of local variables related to 6807 * the TSC for each VCPU. We must flag these local variables 6808 * to be updated and be sure the update takes place with the 6809 * new frequency before any guests proceed. 6810 * 6811 * Unfortunately, the combination of hotplug CPU and frequency 6812 * change creates an intractable locking scenario; the order 6813 * of when these callouts happen is undefined with respect to 6814 * CPU hotplug, and they can race with each other. As such, 6815 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 6816 * undefined; you can actually have a CPU frequency change take 6817 * place in between the computation of X and the setting of the 6818 * variable. To protect against this problem, all updates of 6819 * the per_cpu tsc_khz variable are done in an interrupt 6820 * protected IPI, and all callers wishing to update the value 6821 * must wait for a synchronous IPI to complete (which is trivial 6822 * if the caller is on the CPU already). This establishes the 6823 * necessary total order on variable updates. 6824 * 6825 * Note that because a guest time update may take place 6826 * anytime after the setting of the VCPU's request bit, the 6827 * correct TSC value must be set before the request. However, 6828 * to ensure the update actually makes it to any guest which 6829 * starts running in hardware virtualization between the set 6830 * and the acquisition of the spinlock, we must also ping the 6831 * CPU after setting the request bit. 6832 * 6833 */ 6834 6835 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 6836 6837 mutex_lock(&kvm_lock); 6838 list_for_each_entry(kvm, &vm_list, vm_list) { 6839 kvm_for_each_vcpu(i, vcpu, kvm) { 6840 if (vcpu->cpu != cpu) 6841 continue; 6842 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6843 if (vcpu->cpu != raw_smp_processor_id()) 6844 send_ipi = 1; 6845 } 6846 } 6847 mutex_unlock(&kvm_lock); 6848 6849 if (freq->old < freq->new && send_ipi) { 6850 /* 6851 * We upscale the frequency. Must make the guest 6852 * doesn't see old kvmclock values while running with 6853 * the new frequency, otherwise we risk the guest sees 6854 * time go backwards. 6855 * 6856 * In case we update the frequency for another cpu 6857 * (which might be in guest context) send an interrupt 6858 * to kick the cpu out of guest context. Next time 6859 * guest context is entered kvmclock will be updated, 6860 * so the guest will not see stale values. 6861 */ 6862 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 6863 } 6864 } 6865 6866 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 6867 void *data) 6868 { 6869 struct cpufreq_freqs *freq = data; 6870 int cpu; 6871 6872 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 6873 return 0; 6874 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 6875 return 0; 6876 6877 for_each_cpu(cpu, freq->policy->cpus) 6878 __kvmclock_cpufreq_notifier(freq, cpu); 6879 6880 return 0; 6881 } 6882 6883 static struct notifier_block kvmclock_cpufreq_notifier_block = { 6884 .notifier_call = kvmclock_cpufreq_notifier 6885 }; 6886 6887 static int kvmclock_cpu_online(unsigned int cpu) 6888 { 6889 tsc_khz_changed(NULL); 6890 return 0; 6891 } 6892 6893 static void kvm_timer_init(void) 6894 { 6895 max_tsc_khz = tsc_khz; 6896 6897 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 6898 #ifdef CONFIG_CPU_FREQ 6899 struct cpufreq_policy policy; 6900 int cpu; 6901 6902 memset(&policy, 0, sizeof(policy)); 6903 cpu = get_cpu(); 6904 cpufreq_get_policy(&policy, cpu); 6905 if (policy.cpuinfo.max_freq) 6906 max_tsc_khz = policy.cpuinfo.max_freq; 6907 put_cpu(); 6908 #endif 6909 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 6910 CPUFREQ_TRANSITION_NOTIFIER); 6911 } 6912 6913 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 6914 kvmclock_cpu_online, kvmclock_cpu_down_prep); 6915 } 6916 6917 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 6918 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 6919 6920 int kvm_is_in_guest(void) 6921 { 6922 return __this_cpu_read(current_vcpu) != NULL; 6923 } 6924 6925 static int kvm_is_user_mode(void) 6926 { 6927 int user_mode = 3; 6928 6929 if (__this_cpu_read(current_vcpu)) 6930 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 6931 6932 return user_mode != 0; 6933 } 6934 6935 static unsigned long kvm_get_guest_ip(void) 6936 { 6937 unsigned long ip = 0; 6938 6939 if (__this_cpu_read(current_vcpu)) 6940 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 6941 6942 return ip; 6943 } 6944 6945 static void kvm_handle_intel_pt_intr(void) 6946 { 6947 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 6948 6949 kvm_make_request(KVM_REQ_PMI, vcpu); 6950 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 6951 (unsigned long *)&vcpu->arch.pmu.global_status); 6952 } 6953 6954 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6955 .is_in_guest = kvm_is_in_guest, 6956 .is_user_mode = kvm_is_user_mode, 6957 .get_guest_ip = kvm_get_guest_ip, 6958 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 6959 }; 6960 6961 #ifdef CONFIG_X86_64 6962 static void pvclock_gtod_update_fn(struct work_struct *work) 6963 { 6964 struct kvm *kvm; 6965 6966 struct kvm_vcpu *vcpu; 6967 int i; 6968 6969 mutex_lock(&kvm_lock); 6970 list_for_each_entry(kvm, &vm_list, vm_list) 6971 kvm_for_each_vcpu(i, vcpu, kvm) 6972 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 6973 atomic_set(&kvm_guest_has_master_clock, 0); 6974 mutex_unlock(&kvm_lock); 6975 } 6976 6977 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 6978 6979 /* 6980 * Notification about pvclock gtod data update. 6981 */ 6982 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 6983 void *priv) 6984 { 6985 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 6986 struct timekeeper *tk = priv; 6987 6988 update_pvclock_gtod(tk); 6989 6990 /* disable master clock if host does not trust, or does not 6991 * use, TSC based clocksource. 6992 */ 6993 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 6994 atomic_read(&kvm_guest_has_master_clock) != 0) 6995 queue_work(system_long_wq, &pvclock_gtod_work); 6996 6997 return 0; 6998 } 6999 7000 static struct notifier_block pvclock_gtod_notifier = { 7001 .notifier_call = pvclock_gtod_notify, 7002 }; 7003 #endif 7004 7005 int kvm_arch_init(void *opaque) 7006 { 7007 int r; 7008 struct kvm_x86_ops *ops = opaque; 7009 7010 if (kvm_x86_ops) { 7011 printk(KERN_ERR "kvm: already loaded the other module\n"); 7012 r = -EEXIST; 7013 goto out; 7014 } 7015 7016 if (!ops->cpu_has_kvm_support()) { 7017 printk(KERN_ERR "kvm: no hardware support\n"); 7018 r = -EOPNOTSUPP; 7019 goto out; 7020 } 7021 if (ops->disabled_by_bios()) { 7022 printk(KERN_ERR "kvm: disabled by bios\n"); 7023 r = -EOPNOTSUPP; 7024 goto out; 7025 } 7026 7027 /* 7028 * KVM explicitly assumes that the guest has an FPU and 7029 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7030 * vCPU's FPU state as a fxregs_state struct. 7031 */ 7032 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7033 printk(KERN_ERR "kvm: inadequate fpu\n"); 7034 r = -EOPNOTSUPP; 7035 goto out; 7036 } 7037 7038 r = -ENOMEM; 7039 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7040 __alignof__(struct fpu), SLAB_ACCOUNT, 7041 NULL); 7042 if (!x86_fpu_cache) { 7043 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7044 goto out; 7045 } 7046 7047 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 7048 if (!shared_msrs) { 7049 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 7050 goto out_free_x86_fpu_cache; 7051 } 7052 7053 r = kvm_mmu_module_init(); 7054 if (r) 7055 goto out_free_percpu; 7056 7057 kvm_x86_ops = ops; 7058 7059 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7060 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7061 PT_PRESENT_MASK, 0, sme_me_mask); 7062 kvm_timer_init(); 7063 7064 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7065 7066 if (boot_cpu_has(X86_FEATURE_XSAVE)) 7067 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7068 7069 kvm_lapic_init(); 7070 if (pi_inject_timer == -1) 7071 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7072 #ifdef CONFIG_X86_64 7073 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7074 7075 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7076 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7077 #endif 7078 7079 return 0; 7080 7081 out_free_percpu: 7082 free_percpu(shared_msrs); 7083 out_free_x86_fpu_cache: 7084 kmem_cache_destroy(x86_fpu_cache); 7085 out: 7086 return r; 7087 } 7088 7089 void kvm_arch_exit(void) 7090 { 7091 #ifdef CONFIG_X86_64 7092 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7093 clear_hv_tscchange_cb(); 7094 #endif 7095 kvm_lapic_exit(); 7096 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7097 7098 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7099 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7100 CPUFREQ_TRANSITION_NOTIFIER); 7101 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7102 #ifdef CONFIG_X86_64 7103 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7104 #endif 7105 kvm_x86_ops = NULL; 7106 kvm_mmu_module_exit(); 7107 free_percpu(shared_msrs); 7108 kmem_cache_destroy(x86_fpu_cache); 7109 } 7110 7111 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7112 { 7113 ++vcpu->stat.halt_exits; 7114 if (lapic_in_kernel(vcpu)) { 7115 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7116 return 1; 7117 } else { 7118 vcpu->run->exit_reason = KVM_EXIT_HLT; 7119 return 0; 7120 } 7121 } 7122 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7123 7124 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7125 { 7126 int ret = kvm_skip_emulated_instruction(vcpu); 7127 /* 7128 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7129 * KVM_EXIT_DEBUG here. 7130 */ 7131 return kvm_vcpu_halt(vcpu) && ret; 7132 } 7133 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7134 7135 #ifdef CONFIG_X86_64 7136 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7137 unsigned long clock_type) 7138 { 7139 struct kvm_clock_pairing clock_pairing; 7140 struct timespec64 ts; 7141 u64 cycle; 7142 int ret; 7143 7144 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7145 return -KVM_EOPNOTSUPP; 7146 7147 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7148 return -KVM_EOPNOTSUPP; 7149 7150 clock_pairing.sec = ts.tv_sec; 7151 clock_pairing.nsec = ts.tv_nsec; 7152 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7153 clock_pairing.flags = 0; 7154 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 7155 7156 ret = 0; 7157 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 7158 sizeof(struct kvm_clock_pairing))) 7159 ret = -KVM_EFAULT; 7160 7161 return ret; 7162 } 7163 #endif 7164 7165 /* 7166 * kvm_pv_kick_cpu_op: Kick a vcpu. 7167 * 7168 * @apicid - apicid of vcpu to be kicked. 7169 */ 7170 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 7171 { 7172 struct kvm_lapic_irq lapic_irq; 7173 7174 lapic_irq.shorthand = 0; 7175 lapic_irq.dest_mode = 0; 7176 lapic_irq.level = 0; 7177 lapic_irq.dest_id = apicid; 7178 lapic_irq.msi_redir_hint = false; 7179 7180 lapic_irq.delivery_mode = APIC_DM_REMRD; 7181 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 7182 } 7183 7184 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) 7185 { 7186 if (!lapic_in_kernel(vcpu)) { 7187 WARN_ON_ONCE(vcpu->arch.apicv_active); 7188 return; 7189 } 7190 if (!vcpu->arch.apicv_active) 7191 return; 7192 7193 vcpu->arch.apicv_active = false; 7194 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); 7195 } 7196 7197 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 7198 { 7199 struct kvm_vcpu *target = NULL; 7200 struct kvm_apic_map *map; 7201 7202 rcu_read_lock(); 7203 map = rcu_dereference(kvm->arch.apic_map); 7204 7205 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 7206 target = map->phys_map[dest_id]->vcpu; 7207 7208 rcu_read_unlock(); 7209 7210 if (target && READ_ONCE(target->ready)) 7211 kvm_vcpu_yield_to(target); 7212 } 7213 7214 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 7215 { 7216 unsigned long nr, a0, a1, a2, a3, ret; 7217 int op_64_bit; 7218 7219 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 7220 return kvm_hv_hypercall(vcpu); 7221 7222 nr = kvm_rax_read(vcpu); 7223 a0 = kvm_rbx_read(vcpu); 7224 a1 = kvm_rcx_read(vcpu); 7225 a2 = kvm_rdx_read(vcpu); 7226 a3 = kvm_rsi_read(vcpu); 7227 7228 trace_kvm_hypercall(nr, a0, a1, a2, a3); 7229 7230 op_64_bit = is_64_bit_mode(vcpu); 7231 if (!op_64_bit) { 7232 nr &= 0xFFFFFFFF; 7233 a0 &= 0xFFFFFFFF; 7234 a1 &= 0xFFFFFFFF; 7235 a2 &= 0xFFFFFFFF; 7236 a3 &= 0xFFFFFFFF; 7237 } 7238 7239 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 7240 ret = -KVM_EPERM; 7241 goto out; 7242 } 7243 7244 switch (nr) { 7245 case KVM_HC_VAPIC_POLL_IRQ: 7246 ret = 0; 7247 break; 7248 case KVM_HC_KICK_CPU: 7249 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 7250 kvm_sched_yield(vcpu->kvm, a1); 7251 ret = 0; 7252 break; 7253 #ifdef CONFIG_X86_64 7254 case KVM_HC_CLOCK_PAIRING: 7255 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 7256 break; 7257 #endif 7258 case KVM_HC_SEND_IPI: 7259 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 7260 break; 7261 case KVM_HC_SCHED_YIELD: 7262 kvm_sched_yield(vcpu->kvm, a0); 7263 ret = 0; 7264 break; 7265 default: 7266 ret = -KVM_ENOSYS; 7267 break; 7268 } 7269 out: 7270 if (!op_64_bit) 7271 ret = (u32)ret; 7272 kvm_rax_write(vcpu, ret); 7273 7274 ++vcpu->stat.hypercalls; 7275 return kvm_skip_emulated_instruction(vcpu); 7276 } 7277 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 7278 7279 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 7280 { 7281 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7282 char instruction[3]; 7283 unsigned long rip = kvm_rip_read(vcpu); 7284 7285 kvm_x86_ops->patch_hypercall(vcpu, instruction); 7286 7287 return emulator_write_emulated(ctxt, rip, instruction, 3, 7288 &ctxt->exception); 7289 } 7290 7291 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 7292 { 7293 return vcpu->run->request_interrupt_window && 7294 likely(!pic_in_kernel(vcpu->kvm)); 7295 } 7296 7297 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 7298 { 7299 struct kvm_run *kvm_run = vcpu->run; 7300 7301 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 7302 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 7303 kvm_run->cr8 = kvm_get_cr8(vcpu); 7304 kvm_run->apic_base = kvm_get_apic_base(vcpu); 7305 kvm_run->ready_for_interrupt_injection = 7306 pic_in_kernel(vcpu->kvm) || 7307 kvm_vcpu_ready_for_interrupt_injection(vcpu); 7308 } 7309 7310 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 7311 { 7312 int max_irr, tpr; 7313 7314 if (!kvm_x86_ops->update_cr8_intercept) 7315 return; 7316 7317 if (!lapic_in_kernel(vcpu)) 7318 return; 7319 7320 if (vcpu->arch.apicv_active) 7321 return; 7322 7323 if (!vcpu->arch.apic->vapic_addr) 7324 max_irr = kvm_lapic_find_highest_irr(vcpu); 7325 else 7326 max_irr = -1; 7327 7328 if (max_irr != -1) 7329 max_irr >>= 4; 7330 7331 tpr = kvm_lapic_get_cr8(vcpu); 7332 7333 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 7334 } 7335 7336 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 7337 { 7338 int r; 7339 7340 /* try to reinject previous events if any */ 7341 7342 if (vcpu->arch.exception.injected) 7343 kvm_x86_ops->queue_exception(vcpu); 7344 /* 7345 * Do not inject an NMI or interrupt if there is a pending 7346 * exception. Exceptions and interrupts are recognized at 7347 * instruction boundaries, i.e. the start of an instruction. 7348 * Trap-like exceptions, e.g. #DB, have higher priority than 7349 * NMIs and interrupts, i.e. traps are recognized before an 7350 * NMI/interrupt that's pending on the same instruction. 7351 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 7352 * priority, but are only generated (pended) during instruction 7353 * execution, i.e. a pending fault-like exception means the 7354 * fault occurred on the *previous* instruction and must be 7355 * serviced prior to recognizing any new events in order to 7356 * fully complete the previous instruction. 7357 */ 7358 else if (!vcpu->arch.exception.pending) { 7359 if (vcpu->arch.nmi_injected) 7360 kvm_x86_ops->set_nmi(vcpu); 7361 else if (vcpu->arch.interrupt.injected) 7362 kvm_x86_ops->set_irq(vcpu); 7363 } 7364 7365 /* 7366 * Call check_nested_events() even if we reinjected a previous event 7367 * in order for caller to determine if it should require immediate-exit 7368 * from L2 to L1 due to pending L1 events which require exit 7369 * from L2 to L1. 7370 */ 7371 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 7372 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 7373 if (r != 0) 7374 return r; 7375 } 7376 7377 /* try to inject new event if pending */ 7378 if (vcpu->arch.exception.pending) { 7379 trace_kvm_inj_exception(vcpu->arch.exception.nr, 7380 vcpu->arch.exception.has_error_code, 7381 vcpu->arch.exception.error_code); 7382 7383 WARN_ON_ONCE(vcpu->arch.exception.injected); 7384 vcpu->arch.exception.pending = false; 7385 vcpu->arch.exception.injected = true; 7386 7387 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 7388 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 7389 X86_EFLAGS_RF); 7390 7391 if (vcpu->arch.exception.nr == DB_VECTOR) { 7392 /* 7393 * This code assumes that nSVM doesn't use 7394 * check_nested_events(). If it does, the 7395 * DR6/DR7 changes should happen before L1 7396 * gets a #VMEXIT for an intercepted #DB in 7397 * L2. (Under VMX, on the other hand, the 7398 * DR6/DR7 changes should not happen in the 7399 * event of a VM-exit to L1 for an intercepted 7400 * #DB in L2.) 7401 */ 7402 kvm_deliver_exception_payload(vcpu); 7403 if (vcpu->arch.dr7 & DR7_GD) { 7404 vcpu->arch.dr7 &= ~DR7_GD; 7405 kvm_update_dr7(vcpu); 7406 } 7407 } 7408 7409 kvm_x86_ops->queue_exception(vcpu); 7410 } 7411 7412 /* Don't consider new event if we re-injected an event */ 7413 if (kvm_event_needs_reinjection(vcpu)) 7414 return 0; 7415 7416 if (vcpu->arch.smi_pending && !is_smm(vcpu) && 7417 kvm_x86_ops->smi_allowed(vcpu)) { 7418 vcpu->arch.smi_pending = false; 7419 ++vcpu->arch.smi_count; 7420 enter_smm(vcpu); 7421 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { 7422 --vcpu->arch.nmi_pending; 7423 vcpu->arch.nmi_injected = true; 7424 kvm_x86_ops->set_nmi(vcpu); 7425 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 7426 /* 7427 * Because interrupts can be injected asynchronously, we are 7428 * calling check_nested_events again here to avoid a race condition. 7429 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 7430 * proposal and current concerns. Perhaps we should be setting 7431 * KVM_REQ_EVENT only on certain events and not unconditionally? 7432 */ 7433 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 7434 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 7435 if (r != 0) 7436 return r; 7437 } 7438 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 7439 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 7440 false); 7441 kvm_x86_ops->set_irq(vcpu); 7442 } 7443 } 7444 7445 return 0; 7446 } 7447 7448 static void process_nmi(struct kvm_vcpu *vcpu) 7449 { 7450 unsigned limit = 2; 7451 7452 /* 7453 * x86 is limited to one NMI running, and one NMI pending after it. 7454 * If an NMI is already in progress, limit further NMIs to just one. 7455 * Otherwise, allow two (and we'll inject the first one immediately). 7456 */ 7457 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 7458 limit = 1; 7459 7460 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 7461 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 7462 kvm_make_request(KVM_REQ_EVENT, vcpu); 7463 } 7464 7465 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 7466 { 7467 u32 flags = 0; 7468 flags |= seg->g << 23; 7469 flags |= seg->db << 22; 7470 flags |= seg->l << 21; 7471 flags |= seg->avl << 20; 7472 flags |= seg->present << 15; 7473 flags |= seg->dpl << 13; 7474 flags |= seg->s << 12; 7475 flags |= seg->type << 8; 7476 return flags; 7477 } 7478 7479 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 7480 { 7481 struct kvm_segment seg; 7482 int offset; 7483 7484 kvm_get_segment(vcpu, &seg, n); 7485 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 7486 7487 if (n < 3) 7488 offset = 0x7f84 + n * 12; 7489 else 7490 offset = 0x7f2c + (n - 3) * 12; 7491 7492 put_smstate(u32, buf, offset + 8, seg.base); 7493 put_smstate(u32, buf, offset + 4, seg.limit); 7494 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 7495 } 7496 7497 #ifdef CONFIG_X86_64 7498 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 7499 { 7500 struct kvm_segment seg; 7501 int offset; 7502 u16 flags; 7503 7504 kvm_get_segment(vcpu, &seg, n); 7505 offset = 0x7e00 + n * 16; 7506 7507 flags = enter_smm_get_segment_flags(&seg) >> 8; 7508 put_smstate(u16, buf, offset, seg.selector); 7509 put_smstate(u16, buf, offset + 2, flags); 7510 put_smstate(u32, buf, offset + 4, seg.limit); 7511 put_smstate(u64, buf, offset + 8, seg.base); 7512 } 7513 #endif 7514 7515 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 7516 { 7517 struct desc_ptr dt; 7518 struct kvm_segment seg; 7519 unsigned long val; 7520 int i; 7521 7522 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 7523 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 7524 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 7525 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 7526 7527 for (i = 0; i < 8; i++) 7528 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 7529 7530 kvm_get_dr(vcpu, 6, &val); 7531 put_smstate(u32, buf, 0x7fcc, (u32)val); 7532 kvm_get_dr(vcpu, 7, &val); 7533 put_smstate(u32, buf, 0x7fc8, (u32)val); 7534 7535 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7536 put_smstate(u32, buf, 0x7fc4, seg.selector); 7537 put_smstate(u32, buf, 0x7f64, seg.base); 7538 put_smstate(u32, buf, 0x7f60, seg.limit); 7539 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 7540 7541 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7542 put_smstate(u32, buf, 0x7fc0, seg.selector); 7543 put_smstate(u32, buf, 0x7f80, seg.base); 7544 put_smstate(u32, buf, 0x7f7c, seg.limit); 7545 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 7546 7547 kvm_x86_ops->get_gdt(vcpu, &dt); 7548 put_smstate(u32, buf, 0x7f74, dt.address); 7549 put_smstate(u32, buf, 0x7f70, dt.size); 7550 7551 kvm_x86_ops->get_idt(vcpu, &dt); 7552 put_smstate(u32, buf, 0x7f58, dt.address); 7553 put_smstate(u32, buf, 0x7f54, dt.size); 7554 7555 for (i = 0; i < 6; i++) 7556 enter_smm_save_seg_32(vcpu, buf, i); 7557 7558 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 7559 7560 /* revision id */ 7561 put_smstate(u32, buf, 0x7efc, 0x00020000); 7562 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 7563 } 7564 7565 #ifdef CONFIG_X86_64 7566 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 7567 { 7568 struct desc_ptr dt; 7569 struct kvm_segment seg; 7570 unsigned long val; 7571 int i; 7572 7573 for (i = 0; i < 16; i++) 7574 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 7575 7576 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 7577 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 7578 7579 kvm_get_dr(vcpu, 6, &val); 7580 put_smstate(u64, buf, 0x7f68, val); 7581 kvm_get_dr(vcpu, 7, &val); 7582 put_smstate(u64, buf, 0x7f60, val); 7583 7584 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 7585 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 7586 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 7587 7588 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 7589 7590 /* revision id */ 7591 put_smstate(u32, buf, 0x7efc, 0x00020064); 7592 7593 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 7594 7595 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7596 put_smstate(u16, buf, 0x7e90, seg.selector); 7597 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 7598 put_smstate(u32, buf, 0x7e94, seg.limit); 7599 put_smstate(u64, buf, 0x7e98, seg.base); 7600 7601 kvm_x86_ops->get_idt(vcpu, &dt); 7602 put_smstate(u32, buf, 0x7e84, dt.size); 7603 put_smstate(u64, buf, 0x7e88, dt.address); 7604 7605 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7606 put_smstate(u16, buf, 0x7e70, seg.selector); 7607 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 7608 put_smstate(u32, buf, 0x7e74, seg.limit); 7609 put_smstate(u64, buf, 0x7e78, seg.base); 7610 7611 kvm_x86_ops->get_gdt(vcpu, &dt); 7612 put_smstate(u32, buf, 0x7e64, dt.size); 7613 put_smstate(u64, buf, 0x7e68, dt.address); 7614 7615 for (i = 0; i < 6; i++) 7616 enter_smm_save_seg_64(vcpu, buf, i); 7617 } 7618 #endif 7619 7620 static void enter_smm(struct kvm_vcpu *vcpu) 7621 { 7622 struct kvm_segment cs, ds; 7623 struct desc_ptr dt; 7624 char buf[512]; 7625 u32 cr0; 7626 7627 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 7628 memset(buf, 0, 512); 7629 #ifdef CONFIG_X86_64 7630 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 7631 enter_smm_save_state_64(vcpu, buf); 7632 else 7633 #endif 7634 enter_smm_save_state_32(vcpu, buf); 7635 7636 /* 7637 * Give pre_enter_smm() a chance to make ISA-specific changes to the 7638 * vCPU state (e.g. leave guest mode) after we've saved the state into 7639 * the SMM state-save area. 7640 */ 7641 kvm_x86_ops->pre_enter_smm(vcpu, buf); 7642 7643 vcpu->arch.hflags |= HF_SMM_MASK; 7644 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 7645 7646 if (kvm_x86_ops->get_nmi_mask(vcpu)) 7647 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 7648 else 7649 kvm_x86_ops->set_nmi_mask(vcpu, true); 7650 7651 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 7652 kvm_rip_write(vcpu, 0x8000); 7653 7654 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 7655 kvm_x86_ops->set_cr0(vcpu, cr0); 7656 vcpu->arch.cr0 = cr0; 7657 7658 kvm_x86_ops->set_cr4(vcpu, 0); 7659 7660 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 7661 dt.address = dt.size = 0; 7662 kvm_x86_ops->set_idt(vcpu, &dt); 7663 7664 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 7665 7666 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 7667 cs.base = vcpu->arch.smbase; 7668 7669 ds.selector = 0; 7670 ds.base = 0; 7671 7672 cs.limit = ds.limit = 0xffffffff; 7673 cs.type = ds.type = 0x3; 7674 cs.dpl = ds.dpl = 0; 7675 cs.db = ds.db = 0; 7676 cs.s = ds.s = 1; 7677 cs.l = ds.l = 0; 7678 cs.g = ds.g = 1; 7679 cs.avl = ds.avl = 0; 7680 cs.present = ds.present = 1; 7681 cs.unusable = ds.unusable = 0; 7682 cs.padding = ds.padding = 0; 7683 7684 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 7685 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 7686 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 7687 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 7688 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 7689 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 7690 7691 #ifdef CONFIG_X86_64 7692 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 7693 kvm_x86_ops->set_efer(vcpu, 0); 7694 #endif 7695 7696 kvm_update_cpuid(vcpu); 7697 kvm_mmu_reset_context(vcpu); 7698 } 7699 7700 static void process_smi(struct kvm_vcpu *vcpu) 7701 { 7702 vcpu->arch.smi_pending = true; 7703 kvm_make_request(KVM_REQ_EVENT, vcpu); 7704 } 7705 7706 void kvm_make_scan_ioapic_request(struct kvm *kvm) 7707 { 7708 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 7709 } 7710 7711 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 7712 { 7713 if (!kvm_apic_present(vcpu)) 7714 return; 7715 7716 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 7717 7718 if (irqchip_split(vcpu->kvm)) 7719 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 7720 else { 7721 if (vcpu->arch.apicv_active) 7722 kvm_x86_ops->sync_pir_to_irr(vcpu); 7723 if (ioapic_in_kernel(vcpu->kvm)) 7724 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 7725 } 7726 7727 if (is_guest_mode(vcpu)) 7728 vcpu->arch.load_eoi_exitmap_pending = true; 7729 else 7730 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 7731 } 7732 7733 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 7734 { 7735 u64 eoi_exit_bitmap[4]; 7736 7737 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 7738 return; 7739 7740 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 7741 vcpu_to_synic(vcpu)->vec_bitmap, 256); 7742 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 7743 } 7744 7745 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 7746 unsigned long start, unsigned long end, 7747 bool blockable) 7748 { 7749 unsigned long apic_address; 7750 7751 /* 7752 * The physical address of apic access page is stored in the VMCS. 7753 * Update it when it becomes invalid. 7754 */ 7755 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 7756 if (start <= apic_address && apic_address < end) 7757 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 7758 7759 return 0; 7760 } 7761 7762 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 7763 { 7764 struct page *page = NULL; 7765 7766 if (!lapic_in_kernel(vcpu)) 7767 return; 7768 7769 if (!kvm_x86_ops->set_apic_access_page_addr) 7770 return; 7771 7772 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 7773 if (is_error_page(page)) 7774 return; 7775 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 7776 7777 /* 7778 * Do not pin apic access page in memory, the MMU notifier 7779 * will call us again if it is migrated or swapped out. 7780 */ 7781 put_page(page); 7782 } 7783 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); 7784 7785 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 7786 { 7787 smp_send_reschedule(vcpu->cpu); 7788 } 7789 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 7790 7791 /* 7792 * Returns 1 to let vcpu_run() continue the guest execution loop without 7793 * exiting to the userspace. Otherwise, the value will be returned to the 7794 * userspace. 7795 */ 7796 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 7797 { 7798 int r; 7799 bool req_int_win = 7800 dm_request_for_irq_injection(vcpu) && 7801 kvm_cpu_accept_dm_intr(vcpu); 7802 7803 bool req_immediate_exit = false; 7804 7805 if (kvm_request_pending(vcpu)) { 7806 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) 7807 kvm_x86_ops->get_vmcs12_pages(vcpu); 7808 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 7809 kvm_mmu_unload(vcpu); 7810 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 7811 __kvm_migrate_timers(vcpu); 7812 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 7813 kvm_gen_update_masterclock(vcpu->kvm); 7814 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 7815 kvm_gen_kvmclock_update(vcpu); 7816 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 7817 r = kvm_guest_time_update(vcpu); 7818 if (unlikely(r)) 7819 goto out; 7820 } 7821 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 7822 kvm_mmu_sync_roots(vcpu); 7823 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu)) 7824 kvm_mmu_load_cr3(vcpu); 7825 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 7826 kvm_vcpu_flush_tlb(vcpu, true); 7827 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 7828 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 7829 r = 0; 7830 goto out; 7831 } 7832 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 7833 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 7834 vcpu->mmio_needed = 0; 7835 r = 0; 7836 goto out; 7837 } 7838 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 7839 /* Page is swapped out. Do synthetic halt */ 7840 vcpu->arch.apf.halted = true; 7841 r = 1; 7842 goto out; 7843 } 7844 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 7845 record_steal_time(vcpu); 7846 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 7847 process_smi(vcpu); 7848 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 7849 process_nmi(vcpu); 7850 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 7851 kvm_pmu_handle_event(vcpu); 7852 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 7853 kvm_pmu_deliver_pmi(vcpu); 7854 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 7855 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 7856 if (test_bit(vcpu->arch.pending_ioapic_eoi, 7857 vcpu->arch.ioapic_handled_vectors)) { 7858 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 7859 vcpu->run->eoi.vector = 7860 vcpu->arch.pending_ioapic_eoi; 7861 r = 0; 7862 goto out; 7863 } 7864 } 7865 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 7866 vcpu_scan_ioapic(vcpu); 7867 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 7868 vcpu_load_eoi_exitmap(vcpu); 7869 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 7870 kvm_vcpu_reload_apic_access_page(vcpu); 7871 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 7872 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 7873 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 7874 r = 0; 7875 goto out; 7876 } 7877 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 7878 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 7879 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 7880 r = 0; 7881 goto out; 7882 } 7883 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 7884 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 7885 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 7886 r = 0; 7887 goto out; 7888 } 7889 7890 /* 7891 * KVM_REQ_HV_STIMER has to be processed after 7892 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 7893 * depend on the guest clock being up-to-date 7894 */ 7895 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 7896 kvm_hv_process_stimers(vcpu); 7897 } 7898 7899 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 7900 ++vcpu->stat.req_event; 7901 kvm_apic_accept_events(vcpu); 7902 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 7903 r = 1; 7904 goto out; 7905 } 7906 7907 if (inject_pending_event(vcpu, req_int_win) != 0) 7908 req_immediate_exit = true; 7909 else { 7910 /* Enable SMI/NMI/IRQ window open exits if needed. 7911 * 7912 * SMIs have three cases: 7913 * 1) They can be nested, and then there is nothing to 7914 * do here because RSM will cause a vmexit anyway. 7915 * 2) There is an ISA-specific reason why SMI cannot be 7916 * injected, and the moment when this changes can be 7917 * intercepted. 7918 * 3) Or the SMI can be pending because 7919 * inject_pending_event has completed the injection 7920 * of an IRQ or NMI from the previous vmexit, and 7921 * then we request an immediate exit to inject the 7922 * SMI. 7923 */ 7924 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 7925 if (!kvm_x86_ops->enable_smi_window(vcpu)) 7926 req_immediate_exit = true; 7927 if (vcpu->arch.nmi_pending) 7928 kvm_x86_ops->enable_nmi_window(vcpu); 7929 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 7930 kvm_x86_ops->enable_irq_window(vcpu); 7931 WARN_ON(vcpu->arch.exception.pending); 7932 } 7933 7934 if (kvm_lapic_enabled(vcpu)) { 7935 update_cr8_intercept(vcpu); 7936 kvm_lapic_sync_to_vapic(vcpu); 7937 } 7938 } 7939 7940 r = kvm_mmu_reload(vcpu); 7941 if (unlikely(r)) { 7942 goto cancel_injection; 7943 } 7944 7945 preempt_disable(); 7946 7947 kvm_x86_ops->prepare_guest_switch(vcpu); 7948 7949 /* 7950 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 7951 * IPI are then delayed after guest entry, which ensures that they 7952 * result in virtual interrupt delivery. 7953 */ 7954 local_irq_disable(); 7955 vcpu->mode = IN_GUEST_MODE; 7956 7957 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 7958 7959 /* 7960 * 1) We should set ->mode before checking ->requests. Please see 7961 * the comment in kvm_vcpu_exiting_guest_mode(). 7962 * 7963 * 2) For APICv, we should set ->mode before checking PID.ON. This 7964 * pairs with the memory barrier implicit in pi_test_and_set_on 7965 * (see vmx_deliver_posted_interrupt). 7966 * 7967 * 3) This also orders the write to mode from any reads to the page 7968 * tables done while the VCPU is running. Please see the comment 7969 * in kvm_flush_remote_tlbs. 7970 */ 7971 smp_mb__after_srcu_read_unlock(); 7972 7973 /* 7974 * This handles the case where a posted interrupt was 7975 * notified with kvm_vcpu_kick. 7976 */ 7977 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 7978 kvm_x86_ops->sync_pir_to_irr(vcpu); 7979 7980 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) 7981 || need_resched() || signal_pending(current)) { 7982 vcpu->mode = OUTSIDE_GUEST_MODE; 7983 smp_wmb(); 7984 local_irq_enable(); 7985 preempt_enable(); 7986 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 7987 r = 1; 7988 goto cancel_injection; 7989 } 7990 7991 if (req_immediate_exit) { 7992 kvm_make_request(KVM_REQ_EVENT, vcpu); 7993 kvm_x86_ops->request_immediate_exit(vcpu); 7994 } 7995 7996 trace_kvm_entry(vcpu->vcpu_id); 7997 guest_enter_irqoff(); 7998 7999 /* The preempt notifier should have taken care of the FPU already. */ 8000 WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD)); 8001 8002 if (unlikely(vcpu->arch.switch_db_regs)) { 8003 set_debugreg(0, 7); 8004 set_debugreg(vcpu->arch.eff_db[0], 0); 8005 set_debugreg(vcpu->arch.eff_db[1], 1); 8006 set_debugreg(vcpu->arch.eff_db[2], 2); 8007 set_debugreg(vcpu->arch.eff_db[3], 3); 8008 set_debugreg(vcpu->arch.dr6, 6); 8009 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8010 } 8011 8012 kvm_x86_ops->run(vcpu); 8013 8014 /* 8015 * Do this here before restoring debug registers on the host. And 8016 * since we do this before handling the vmexit, a DR access vmexit 8017 * can (a) read the correct value of the debug registers, (b) set 8018 * KVM_DEBUGREG_WONT_EXIT again. 8019 */ 8020 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 8021 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 8022 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 8023 kvm_update_dr0123(vcpu); 8024 kvm_update_dr6(vcpu); 8025 kvm_update_dr7(vcpu); 8026 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8027 } 8028 8029 /* 8030 * If the guest has used debug registers, at least dr7 8031 * will be disabled while returning to the host. 8032 * If we don't have active breakpoints in the host, we don't 8033 * care about the messed up debug address registers. But if 8034 * we have some of them active, restore the old state. 8035 */ 8036 if (hw_breakpoint_active()) 8037 hw_breakpoint_restore(); 8038 8039 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8040 8041 vcpu->mode = OUTSIDE_GUEST_MODE; 8042 smp_wmb(); 8043 8044 kvm_x86_ops->handle_exit_irqoff(vcpu); 8045 8046 /* 8047 * Consume any pending interrupts, including the possible source of 8048 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 8049 * An instruction is required after local_irq_enable() to fully unblock 8050 * interrupts on processors that implement an interrupt shadow, the 8051 * stat.exits increment will do nicely. 8052 */ 8053 kvm_before_interrupt(vcpu); 8054 local_irq_enable(); 8055 ++vcpu->stat.exits; 8056 local_irq_disable(); 8057 kvm_after_interrupt(vcpu); 8058 8059 guest_exit_irqoff(); 8060 if (lapic_in_kernel(vcpu)) { 8061 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 8062 if (delta != S64_MIN) { 8063 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 8064 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 8065 } 8066 } 8067 8068 local_irq_enable(); 8069 preempt_enable(); 8070 8071 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8072 8073 /* 8074 * Profile KVM exit RIPs: 8075 */ 8076 if (unlikely(prof_on == KVM_PROFILING)) { 8077 unsigned long rip = kvm_rip_read(vcpu); 8078 profile_hit(KVM_PROFILING, (void *)rip); 8079 } 8080 8081 if (unlikely(vcpu->arch.tsc_always_catchup)) 8082 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8083 8084 if (vcpu->arch.apic_attention) 8085 kvm_lapic_sync_from_vapic(vcpu); 8086 8087 vcpu->arch.gpa_available = false; 8088 r = kvm_x86_ops->handle_exit(vcpu); 8089 return r; 8090 8091 cancel_injection: 8092 kvm_x86_ops->cancel_injection(vcpu); 8093 if (unlikely(vcpu->arch.apic_attention)) 8094 kvm_lapic_sync_from_vapic(vcpu); 8095 out: 8096 return r; 8097 } 8098 8099 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 8100 { 8101 if (!kvm_arch_vcpu_runnable(vcpu) && 8102 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { 8103 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8104 kvm_vcpu_block(vcpu); 8105 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8106 8107 if (kvm_x86_ops->post_block) 8108 kvm_x86_ops->post_block(vcpu); 8109 8110 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 8111 return 1; 8112 } 8113 8114 kvm_apic_accept_events(vcpu); 8115 switch(vcpu->arch.mp_state) { 8116 case KVM_MP_STATE_HALTED: 8117 vcpu->arch.pv.pv_unhalted = false; 8118 vcpu->arch.mp_state = 8119 KVM_MP_STATE_RUNNABLE; 8120 /* fall through */ 8121 case KVM_MP_STATE_RUNNABLE: 8122 vcpu->arch.apf.halted = false; 8123 break; 8124 case KVM_MP_STATE_INIT_RECEIVED: 8125 break; 8126 default: 8127 return -EINTR; 8128 break; 8129 } 8130 return 1; 8131 } 8132 8133 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 8134 { 8135 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 8136 kvm_x86_ops->check_nested_events(vcpu, false); 8137 8138 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 8139 !vcpu->arch.apf.halted); 8140 } 8141 8142 static int vcpu_run(struct kvm_vcpu *vcpu) 8143 { 8144 int r; 8145 struct kvm *kvm = vcpu->kvm; 8146 8147 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8148 vcpu->arch.l1tf_flush_l1d = true; 8149 8150 for (;;) { 8151 if (kvm_vcpu_running(vcpu)) { 8152 r = vcpu_enter_guest(vcpu); 8153 } else { 8154 r = vcpu_block(kvm, vcpu); 8155 } 8156 8157 if (r <= 0) 8158 break; 8159 8160 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 8161 if (kvm_cpu_has_pending_timer(vcpu)) 8162 kvm_inject_pending_timer_irqs(vcpu); 8163 8164 if (dm_request_for_irq_injection(vcpu) && 8165 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 8166 r = 0; 8167 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 8168 ++vcpu->stat.request_irq_exits; 8169 break; 8170 } 8171 8172 kvm_check_async_pf_completion(vcpu); 8173 8174 if (signal_pending(current)) { 8175 r = -EINTR; 8176 vcpu->run->exit_reason = KVM_EXIT_INTR; 8177 ++vcpu->stat.signal_exits; 8178 break; 8179 } 8180 if (need_resched()) { 8181 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8182 cond_resched(); 8183 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8184 } 8185 } 8186 8187 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8188 8189 return r; 8190 } 8191 8192 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 8193 { 8194 int r; 8195 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8196 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 8197 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8198 if (r != EMULATE_DONE) 8199 return 0; 8200 return 1; 8201 } 8202 8203 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 8204 { 8205 BUG_ON(!vcpu->arch.pio.count); 8206 8207 return complete_emulated_io(vcpu); 8208 } 8209 8210 /* 8211 * Implements the following, as a state machine: 8212 * 8213 * read: 8214 * for each fragment 8215 * for each mmio piece in the fragment 8216 * write gpa, len 8217 * exit 8218 * copy data 8219 * execute insn 8220 * 8221 * write: 8222 * for each fragment 8223 * for each mmio piece in the fragment 8224 * write gpa, len 8225 * copy data 8226 * exit 8227 */ 8228 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 8229 { 8230 struct kvm_run *run = vcpu->run; 8231 struct kvm_mmio_fragment *frag; 8232 unsigned len; 8233 8234 BUG_ON(!vcpu->mmio_needed); 8235 8236 /* Complete previous fragment */ 8237 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 8238 len = min(8u, frag->len); 8239 if (!vcpu->mmio_is_write) 8240 memcpy(frag->data, run->mmio.data, len); 8241 8242 if (frag->len <= 8) { 8243 /* Switch to the next fragment. */ 8244 frag++; 8245 vcpu->mmio_cur_fragment++; 8246 } else { 8247 /* Go forward to the next mmio piece. */ 8248 frag->data += len; 8249 frag->gpa += len; 8250 frag->len -= len; 8251 } 8252 8253 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 8254 vcpu->mmio_needed = 0; 8255 8256 /* FIXME: return into emulator if single-stepping. */ 8257 if (vcpu->mmio_is_write) 8258 return 1; 8259 vcpu->mmio_read_completed = 1; 8260 return complete_emulated_io(vcpu); 8261 } 8262 8263 run->exit_reason = KVM_EXIT_MMIO; 8264 run->mmio.phys_addr = frag->gpa; 8265 if (vcpu->mmio_is_write) 8266 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 8267 run->mmio.len = min(8u, frag->len); 8268 run->mmio.is_write = vcpu->mmio_is_write; 8269 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8270 return 0; 8271 } 8272 8273 /* Swap (qemu) user FPU context for the guest FPU context. */ 8274 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 8275 { 8276 fpregs_lock(); 8277 8278 copy_fpregs_to_fpstate(vcpu->arch.user_fpu); 8279 /* PKRU is separately restored in kvm_x86_ops->run. */ 8280 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 8281 ~XFEATURE_MASK_PKRU); 8282 8283 fpregs_mark_activate(); 8284 fpregs_unlock(); 8285 8286 trace_kvm_fpu(1); 8287 } 8288 8289 /* When vcpu_run ends, restore user space FPU context. */ 8290 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 8291 { 8292 fpregs_lock(); 8293 8294 copy_fpregs_to_fpstate(vcpu->arch.guest_fpu); 8295 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 8296 8297 fpregs_mark_activate(); 8298 fpregs_unlock(); 8299 8300 ++vcpu->stat.fpu_reload; 8301 trace_kvm_fpu(0); 8302 } 8303 8304 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 8305 { 8306 int r; 8307 8308 vcpu_load(vcpu); 8309 kvm_sigset_activate(vcpu); 8310 kvm_load_guest_fpu(vcpu); 8311 8312 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 8313 if (kvm_run->immediate_exit) { 8314 r = -EINTR; 8315 goto out; 8316 } 8317 kvm_vcpu_block(vcpu); 8318 kvm_apic_accept_events(vcpu); 8319 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 8320 r = -EAGAIN; 8321 if (signal_pending(current)) { 8322 r = -EINTR; 8323 vcpu->run->exit_reason = KVM_EXIT_INTR; 8324 ++vcpu->stat.signal_exits; 8325 } 8326 goto out; 8327 } 8328 8329 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 8330 r = -EINVAL; 8331 goto out; 8332 } 8333 8334 if (vcpu->run->kvm_dirty_regs) { 8335 r = sync_regs(vcpu); 8336 if (r != 0) 8337 goto out; 8338 } 8339 8340 /* re-sync apic's tpr */ 8341 if (!lapic_in_kernel(vcpu)) { 8342 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 8343 r = -EINVAL; 8344 goto out; 8345 } 8346 } 8347 8348 if (unlikely(vcpu->arch.complete_userspace_io)) { 8349 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 8350 vcpu->arch.complete_userspace_io = NULL; 8351 r = cui(vcpu); 8352 if (r <= 0) 8353 goto out; 8354 } else 8355 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 8356 8357 if (kvm_run->immediate_exit) 8358 r = -EINTR; 8359 else 8360 r = vcpu_run(vcpu); 8361 8362 out: 8363 kvm_put_guest_fpu(vcpu); 8364 if (vcpu->run->kvm_valid_regs) 8365 store_regs(vcpu); 8366 post_kvm_run_save(vcpu); 8367 kvm_sigset_deactivate(vcpu); 8368 8369 vcpu_put(vcpu); 8370 return r; 8371 } 8372 8373 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8374 { 8375 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 8376 /* 8377 * We are here if userspace calls get_regs() in the middle of 8378 * instruction emulation. Registers state needs to be copied 8379 * back from emulation context to vcpu. Userspace shouldn't do 8380 * that usually, but some bad designed PV devices (vmware 8381 * backdoor interface) need this to work 8382 */ 8383 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 8384 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8385 } 8386 regs->rax = kvm_rax_read(vcpu); 8387 regs->rbx = kvm_rbx_read(vcpu); 8388 regs->rcx = kvm_rcx_read(vcpu); 8389 regs->rdx = kvm_rdx_read(vcpu); 8390 regs->rsi = kvm_rsi_read(vcpu); 8391 regs->rdi = kvm_rdi_read(vcpu); 8392 regs->rsp = kvm_rsp_read(vcpu); 8393 regs->rbp = kvm_rbp_read(vcpu); 8394 #ifdef CONFIG_X86_64 8395 regs->r8 = kvm_r8_read(vcpu); 8396 regs->r9 = kvm_r9_read(vcpu); 8397 regs->r10 = kvm_r10_read(vcpu); 8398 regs->r11 = kvm_r11_read(vcpu); 8399 regs->r12 = kvm_r12_read(vcpu); 8400 regs->r13 = kvm_r13_read(vcpu); 8401 regs->r14 = kvm_r14_read(vcpu); 8402 regs->r15 = kvm_r15_read(vcpu); 8403 #endif 8404 8405 regs->rip = kvm_rip_read(vcpu); 8406 regs->rflags = kvm_get_rflags(vcpu); 8407 } 8408 8409 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8410 { 8411 vcpu_load(vcpu); 8412 __get_regs(vcpu, regs); 8413 vcpu_put(vcpu); 8414 return 0; 8415 } 8416 8417 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8418 { 8419 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 8420 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8421 8422 kvm_rax_write(vcpu, regs->rax); 8423 kvm_rbx_write(vcpu, regs->rbx); 8424 kvm_rcx_write(vcpu, regs->rcx); 8425 kvm_rdx_write(vcpu, regs->rdx); 8426 kvm_rsi_write(vcpu, regs->rsi); 8427 kvm_rdi_write(vcpu, regs->rdi); 8428 kvm_rsp_write(vcpu, regs->rsp); 8429 kvm_rbp_write(vcpu, regs->rbp); 8430 #ifdef CONFIG_X86_64 8431 kvm_r8_write(vcpu, regs->r8); 8432 kvm_r9_write(vcpu, regs->r9); 8433 kvm_r10_write(vcpu, regs->r10); 8434 kvm_r11_write(vcpu, regs->r11); 8435 kvm_r12_write(vcpu, regs->r12); 8436 kvm_r13_write(vcpu, regs->r13); 8437 kvm_r14_write(vcpu, regs->r14); 8438 kvm_r15_write(vcpu, regs->r15); 8439 #endif 8440 8441 kvm_rip_write(vcpu, regs->rip); 8442 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 8443 8444 vcpu->arch.exception.pending = false; 8445 8446 kvm_make_request(KVM_REQ_EVENT, vcpu); 8447 } 8448 8449 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8450 { 8451 vcpu_load(vcpu); 8452 __set_regs(vcpu, regs); 8453 vcpu_put(vcpu); 8454 return 0; 8455 } 8456 8457 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 8458 { 8459 struct kvm_segment cs; 8460 8461 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 8462 *db = cs.db; 8463 *l = cs.l; 8464 } 8465 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 8466 8467 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8468 { 8469 struct desc_ptr dt; 8470 8471 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8472 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8473 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8474 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 8475 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 8476 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 8477 8478 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 8479 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 8480 8481 kvm_x86_ops->get_idt(vcpu, &dt); 8482 sregs->idt.limit = dt.size; 8483 sregs->idt.base = dt.address; 8484 kvm_x86_ops->get_gdt(vcpu, &dt); 8485 sregs->gdt.limit = dt.size; 8486 sregs->gdt.base = dt.address; 8487 8488 sregs->cr0 = kvm_read_cr0(vcpu); 8489 sregs->cr2 = vcpu->arch.cr2; 8490 sregs->cr3 = kvm_read_cr3(vcpu); 8491 sregs->cr4 = kvm_read_cr4(vcpu); 8492 sregs->cr8 = kvm_get_cr8(vcpu); 8493 sregs->efer = vcpu->arch.efer; 8494 sregs->apic_base = kvm_get_apic_base(vcpu); 8495 8496 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 8497 8498 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 8499 set_bit(vcpu->arch.interrupt.nr, 8500 (unsigned long *)sregs->interrupt_bitmap); 8501 } 8502 8503 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 8504 struct kvm_sregs *sregs) 8505 { 8506 vcpu_load(vcpu); 8507 __get_sregs(vcpu, sregs); 8508 vcpu_put(vcpu); 8509 return 0; 8510 } 8511 8512 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 8513 struct kvm_mp_state *mp_state) 8514 { 8515 vcpu_load(vcpu); 8516 8517 kvm_apic_accept_events(vcpu); 8518 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 8519 vcpu->arch.pv.pv_unhalted) 8520 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 8521 else 8522 mp_state->mp_state = vcpu->arch.mp_state; 8523 8524 vcpu_put(vcpu); 8525 return 0; 8526 } 8527 8528 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 8529 struct kvm_mp_state *mp_state) 8530 { 8531 int ret = -EINVAL; 8532 8533 vcpu_load(vcpu); 8534 8535 if (!lapic_in_kernel(vcpu) && 8536 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 8537 goto out; 8538 8539 /* INITs are latched while in SMM */ 8540 if ((is_smm(vcpu) || vcpu->arch.smi_pending) && 8541 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 8542 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 8543 goto out; 8544 8545 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 8546 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 8547 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 8548 } else 8549 vcpu->arch.mp_state = mp_state->mp_state; 8550 kvm_make_request(KVM_REQ_EVENT, vcpu); 8551 8552 ret = 0; 8553 out: 8554 vcpu_put(vcpu); 8555 return ret; 8556 } 8557 8558 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 8559 int reason, bool has_error_code, u32 error_code) 8560 { 8561 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 8562 int ret; 8563 8564 init_emulate_ctxt(vcpu); 8565 8566 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 8567 has_error_code, error_code); 8568 8569 if (ret) 8570 return EMULATE_FAIL; 8571 8572 kvm_rip_write(vcpu, ctxt->eip); 8573 kvm_set_rflags(vcpu, ctxt->eflags); 8574 kvm_make_request(KVM_REQ_EVENT, vcpu); 8575 return EMULATE_DONE; 8576 } 8577 EXPORT_SYMBOL_GPL(kvm_task_switch); 8578 8579 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8580 { 8581 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 8582 (sregs->cr4 & X86_CR4_OSXSAVE)) 8583 return -EINVAL; 8584 8585 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 8586 /* 8587 * When EFER.LME and CR0.PG are set, the processor is in 8588 * 64-bit mode (though maybe in a 32-bit code segment). 8589 * CR4.PAE and EFER.LMA must be set. 8590 */ 8591 if (!(sregs->cr4 & X86_CR4_PAE) 8592 || !(sregs->efer & EFER_LMA)) 8593 return -EINVAL; 8594 } else { 8595 /* 8596 * Not in 64-bit mode: EFER.LMA is clear and the code 8597 * segment cannot be 64-bit. 8598 */ 8599 if (sregs->efer & EFER_LMA || sregs->cs.l) 8600 return -EINVAL; 8601 } 8602 8603 return 0; 8604 } 8605 8606 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8607 { 8608 struct msr_data apic_base_msr; 8609 int mmu_reset_needed = 0; 8610 int cpuid_update_needed = 0; 8611 int pending_vec, max_bits, idx; 8612 struct desc_ptr dt; 8613 int ret = -EINVAL; 8614 8615 if (kvm_valid_sregs(vcpu, sregs)) 8616 goto out; 8617 8618 apic_base_msr.data = sregs->apic_base; 8619 apic_base_msr.host_initiated = true; 8620 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 8621 goto out; 8622 8623 dt.size = sregs->idt.limit; 8624 dt.address = sregs->idt.base; 8625 kvm_x86_ops->set_idt(vcpu, &dt); 8626 dt.size = sregs->gdt.limit; 8627 dt.address = sregs->gdt.base; 8628 kvm_x86_ops->set_gdt(vcpu, &dt); 8629 8630 vcpu->arch.cr2 = sregs->cr2; 8631 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 8632 vcpu->arch.cr3 = sregs->cr3; 8633 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 8634 8635 kvm_set_cr8(vcpu, sregs->cr8); 8636 8637 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 8638 kvm_x86_ops->set_efer(vcpu, sregs->efer); 8639 8640 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 8641 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 8642 vcpu->arch.cr0 = sregs->cr0; 8643 8644 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 8645 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 8646 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 8647 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 8648 if (cpuid_update_needed) 8649 kvm_update_cpuid(vcpu); 8650 8651 idx = srcu_read_lock(&vcpu->kvm->srcu); 8652 if (is_pae_paging(vcpu)) { 8653 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 8654 mmu_reset_needed = 1; 8655 } 8656 srcu_read_unlock(&vcpu->kvm->srcu, idx); 8657 8658 if (mmu_reset_needed) 8659 kvm_mmu_reset_context(vcpu); 8660 8661 max_bits = KVM_NR_INTERRUPTS; 8662 pending_vec = find_first_bit( 8663 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 8664 if (pending_vec < max_bits) { 8665 kvm_queue_interrupt(vcpu, pending_vec, false); 8666 pr_debug("Set back pending irq %d\n", pending_vec); 8667 } 8668 8669 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8670 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8671 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8672 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 8673 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 8674 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 8675 8676 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 8677 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 8678 8679 update_cr8_intercept(vcpu); 8680 8681 /* Older userspace won't unhalt the vcpu on reset. */ 8682 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 8683 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 8684 !is_protmode(vcpu)) 8685 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 8686 8687 kvm_make_request(KVM_REQ_EVENT, vcpu); 8688 8689 ret = 0; 8690 out: 8691 return ret; 8692 } 8693 8694 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 8695 struct kvm_sregs *sregs) 8696 { 8697 int ret; 8698 8699 vcpu_load(vcpu); 8700 ret = __set_sregs(vcpu, sregs); 8701 vcpu_put(vcpu); 8702 return ret; 8703 } 8704 8705 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 8706 struct kvm_guest_debug *dbg) 8707 { 8708 unsigned long rflags; 8709 int i, r; 8710 8711 vcpu_load(vcpu); 8712 8713 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 8714 r = -EBUSY; 8715 if (vcpu->arch.exception.pending) 8716 goto out; 8717 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 8718 kvm_queue_exception(vcpu, DB_VECTOR); 8719 else 8720 kvm_queue_exception(vcpu, BP_VECTOR); 8721 } 8722 8723 /* 8724 * Read rflags as long as potentially injected trace flags are still 8725 * filtered out. 8726 */ 8727 rflags = kvm_get_rflags(vcpu); 8728 8729 vcpu->guest_debug = dbg->control; 8730 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 8731 vcpu->guest_debug = 0; 8732 8733 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 8734 for (i = 0; i < KVM_NR_DB_REGS; ++i) 8735 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 8736 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 8737 } else { 8738 for (i = 0; i < KVM_NR_DB_REGS; i++) 8739 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 8740 } 8741 kvm_update_dr7(vcpu); 8742 8743 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 8744 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 8745 get_segment_base(vcpu, VCPU_SREG_CS); 8746 8747 /* 8748 * Trigger an rflags update that will inject or remove the trace 8749 * flags. 8750 */ 8751 kvm_set_rflags(vcpu, rflags); 8752 8753 kvm_x86_ops->update_bp_intercept(vcpu); 8754 8755 r = 0; 8756 8757 out: 8758 vcpu_put(vcpu); 8759 return r; 8760 } 8761 8762 /* 8763 * Translate a guest virtual address to a guest physical address. 8764 */ 8765 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 8766 struct kvm_translation *tr) 8767 { 8768 unsigned long vaddr = tr->linear_address; 8769 gpa_t gpa; 8770 int idx; 8771 8772 vcpu_load(vcpu); 8773 8774 idx = srcu_read_lock(&vcpu->kvm->srcu); 8775 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 8776 srcu_read_unlock(&vcpu->kvm->srcu, idx); 8777 tr->physical_address = gpa; 8778 tr->valid = gpa != UNMAPPED_GVA; 8779 tr->writeable = 1; 8780 tr->usermode = 0; 8781 8782 vcpu_put(vcpu); 8783 return 0; 8784 } 8785 8786 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 8787 { 8788 struct fxregs_state *fxsave; 8789 8790 vcpu_load(vcpu); 8791 8792 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 8793 memcpy(fpu->fpr, fxsave->st_space, 128); 8794 fpu->fcw = fxsave->cwd; 8795 fpu->fsw = fxsave->swd; 8796 fpu->ftwx = fxsave->twd; 8797 fpu->last_opcode = fxsave->fop; 8798 fpu->last_ip = fxsave->rip; 8799 fpu->last_dp = fxsave->rdp; 8800 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 8801 8802 vcpu_put(vcpu); 8803 return 0; 8804 } 8805 8806 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 8807 { 8808 struct fxregs_state *fxsave; 8809 8810 vcpu_load(vcpu); 8811 8812 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 8813 8814 memcpy(fxsave->st_space, fpu->fpr, 128); 8815 fxsave->cwd = fpu->fcw; 8816 fxsave->swd = fpu->fsw; 8817 fxsave->twd = fpu->ftwx; 8818 fxsave->fop = fpu->last_opcode; 8819 fxsave->rip = fpu->last_ip; 8820 fxsave->rdp = fpu->last_dp; 8821 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 8822 8823 vcpu_put(vcpu); 8824 return 0; 8825 } 8826 8827 static void store_regs(struct kvm_vcpu *vcpu) 8828 { 8829 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 8830 8831 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 8832 __get_regs(vcpu, &vcpu->run->s.regs.regs); 8833 8834 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 8835 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 8836 8837 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 8838 kvm_vcpu_ioctl_x86_get_vcpu_events( 8839 vcpu, &vcpu->run->s.regs.events); 8840 } 8841 8842 static int sync_regs(struct kvm_vcpu *vcpu) 8843 { 8844 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 8845 return -EINVAL; 8846 8847 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 8848 __set_regs(vcpu, &vcpu->run->s.regs.regs); 8849 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 8850 } 8851 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 8852 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 8853 return -EINVAL; 8854 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 8855 } 8856 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 8857 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 8858 vcpu, &vcpu->run->s.regs.events)) 8859 return -EINVAL; 8860 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 8861 } 8862 8863 return 0; 8864 } 8865 8866 static void fx_init(struct kvm_vcpu *vcpu) 8867 { 8868 fpstate_init(&vcpu->arch.guest_fpu->state); 8869 if (boot_cpu_has(X86_FEATURE_XSAVES)) 8870 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 8871 host_xcr0 | XSTATE_COMPACTION_ENABLED; 8872 8873 /* 8874 * Ensure guest xcr0 is valid for loading 8875 */ 8876 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 8877 8878 vcpu->arch.cr0 |= X86_CR0_ET; 8879 } 8880 8881 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 8882 { 8883 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; 8884 8885 kvmclock_reset(vcpu); 8886 8887 kvm_x86_ops->vcpu_free(vcpu); 8888 free_cpumask_var(wbinvd_dirty_mask); 8889 } 8890 8891 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 8892 unsigned int id) 8893 { 8894 struct kvm_vcpu *vcpu; 8895 8896 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 8897 printk_once(KERN_WARNING 8898 "kvm: SMP vm created on host with unstable TSC; " 8899 "guest TSC will not be reliable\n"); 8900 8901 vcpu = kvm_x86_ops->vcpu_create(kvm, id); 8902 8903 return vcpu; 8904 } 8905 8906 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 8907 { 8908 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 8909 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 8910 kvm_vcpu_mtrr_init(vcpu); 8911 vcpu_load(vcpu); 8912 kvm_vcpu_reset(vcpu, false); 8913 kvm_init_mmu(vcpu, false); 8914 vcpu_put(vcpu); 8915 return 0; 8916 } 8917 8918 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 8919 { 8920 struct msr_data msr; 8921 struct kvm *kvm = vcpu->kvm; 8922 8923 kvm_hv_vcpu_postcreate(vcpu); 8924 8925 if (mutex_lock_killable(&vcpu->mutex)) 8926 return; 8927 vcpu_load(vcpu); 8928 msr.data = 0x0; 8929 msr.index = MSR_IA32_TSC; 8930 msr.host_initiated = true; 8931 kvm_write_tsc(vcpu, &msr); 8932 vcpu_put(vcpu); 8933 8934 /* poll control enabled by default */ 8935 vcpu->arch.msr_kvm_poll_control = 1; 8936 8937 mutex_unlock(&vcpu->mutex); 8938 8939 if (!kvmclock_periodic_sync) 8940 return; 8941 8942 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 8943 KVMCLOCK_SYNC_PERIOD); 8944 } 8945 8946 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 8947 { 8948 vcpu->arch.apf.msr_val = 0; 8949 8950 vcpu_load(vcpu); 8951 kvm_mmu_unload(vcpu); 8952 vcpu_put(vcpu); 8953 8954 kvm_x86_ops->vcpu_free(vcpu); 8955 } 8956 8957 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 8958 { 8959 kvm_lapic_reset(vcpu, init_event); 8960 8961 vcpu->arch.hflags = 0; 8962 8963 vcpu->arch.smi_pending = 0; 8964 vcpu->arch.smi_count = 0; 8965 atomic_set(&vcpu->arch.nmi_queued, 0); 8966 vcpu->arch.nmi_pending = 0; 8967 vcpu->arch.nmi_injected = false; 8968 kvm_clear_interrupt_queue(vcpu); 8969 kvm_clear_exception_queue(vcpu); 8970 vcpu->arch.exception.pending = false; 8971 8972 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 8973 kvm_update_dr0123(vcpu); 8974 vcpu->arch.dr6 = DR6_INIT; 8975 kvm_update_dr6(vcpu); 8976 vcpu->arch.dr7 = DR7_FIXED_1; 8977 kvm_update_dr7(vcpu); 8978 8979 vcpu->arch.cr2 = 0; 8980 8981 kvm_make_request(KVM_REQ_EVENT, vcpu); 8982 vcpu->arch.apf.msr_val = 0; 8983 vcpu->arch.st.msr_val = 0; 8984 8985 kvmclock_reset(vcpu); 8986 8987 kvm_clear_async_pf_completion_queue(vcpu); 8988 kvm_async_pf_hash_reset(vcpu); 8989 vcpu->arch.apf.halted = false; 8990 8991 if (kvm_mpx_supported()) { 8992 void *mpx_state_buffer; 8993 8994 /* 8995 * To avoid have the INIT path from kvm_apic_has_events() that be 8996 * called with loaded FPU and does not let userspace fix the state. 8997 */ 8998 if (init_event) 8999 kvm_put_guest_fpu(vcpu); 9000 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9001 XFEATURE_BNDREGS); 9002 if (mpx_state_buffer) 9003 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 9004 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9005 XFEATURE_BNDCSR); 9006 if (mpx_state_buffer) 9007 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 9008 if (init_event) 9009 kvm_load_guest_fpu(vcpu); 9010 } 9011 9012 if (!init_event) { 9013 kvm_pmu_reset(vcpu); 9014 vcpu->arch.smbase = 0x30000; 9015 9016 vcpu->arch.msr_misc_features_enables = 0; 9017 9018 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9019 } 9020 9021 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 9022 vcpu->arch.regs_avail = ~0; 9023 vcpu->arch.regs_dirty = ~0; 9024 9025 vcpu->arch.ia32_xss = 0; 9026 9027 kvm_x86_ops->vcpu_reset(vcpu, init_event); 9028 } 9029 9030 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 9031 { 9032 struct kvm_segment cs; 9033 9034 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9035 cs.selector = vector << 8; 9036 cs.base = vector << 12; 9037 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9038 kvm_rip_write(vcpu, 0); 9039 } 9040 9041 int kvm_arch_hardware_enable(void) 9042 { 9043 struct kvm *kvm; 9044 struct kvm_vcpu *vcpu; 9045 int i; 9046 int ret; 9047 u64 local_tsc; 9048 u64 max_tsc = 0; 9049 bool stable, backwards_tsc = false; 9050 9051 kvm_shared_msr_cpu_online(); 9052 ret = kvm_x86_ops->hardware_enable(); 9053 if (ret != 0) 9054 return ret; 9055 9056 local_tsc = rdtsc(); 9057 stable = !kvm_check_tsc_unstable(); 9058 list_for_each_entry(kvm, &vm_list, vm_list) { 9059 kvm_for_each_vcpu(i, vcpu, kvm) { 9060 if (!stable && vcpu->cpu == smp_processor_id()) 9061 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9062 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 9063 backwards_tsc = true; 9064 if (vcpu->arch.last_host_tsc > max_tsc) 9065 max_tsc = vcpu->arch.last_host_tsc; 9066 } 9067 } 9068 } 9069 9070 /* 9071 * Sometimes, even reliable TSCs go backwards. This happens on 9072 * platforms that reset TSC during suspend or hibernate actions, but 9073 * maintain synchronization. We must compensate. Fortunately, we can 9074 * detect that condition here, which happens early in CPU bringup, 9075 * before any KVM threads can be running. Unfortunately, we can't 9076 * bring the TSCs fully up to date with real time, as we aren't yet far 9077 * enough into CPU bringup that we know how much real time has actually 9078 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 9079 * variables that haven't been updated yet. 9080 * 9081 * So we simply find the maximum observed TSC above, then record the 9082 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 9083 * the adjustment will be applied. Note that we accumulate 9084 * adjustments, in case multiple suspend cycles happen before some VCPU 9085 * gets a chance to run again. In the event that no KVM threads get a 9086 * chance to run, we will miss the entire elapsed period, as we'll have 9087 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 9088 * loose cycle time. This isn't too big a deal, since the loss will be 9089 * uniform across all VCPUs (not to mention the scenario is extremely 9090 * unlikely). It is possible that a second hibernate recovery happens 9091 * much faster than a first, causing the observed TSC here to be 9092 * smaller; this would require additional padding adjustment, which is 9093 * why we set last_host_tsc to the local tsc observed here. 9094 * 9095 * N.B. - this code below runs only on platforms with reliable TSC, 9096 * as that is the only way backwards_tsc is set above. Also note 9097 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 9098 * have the same delta_cyc adjustment applied if backwards_tsc 9099 * is detected. Note further, this adjustment is only done once, 9100 * as we reset last_host_tsc on all VCPUs to stop this from being 9101 * called multiple times (one for each physical CPU bringup). 9102 * 9103 * Platforms with unreliable TSCs don't have to deal with this, they 9104 * will be compensated by the logic in vcpu_load, which sets the TSC to 9105 * catchup mode. This will catchup all VCPUs to real time, but cannot 9106 * guarantee that they stay in perfect synchronization. 9107 */ 9108 if (backwards_tsc) { 9109 u64 delta_cyc = max_tsc - local_tsc; 9110 list_for_each_entry(kvm, &vm_list, vm_list) { 9111 kvm->arch.backwards_tsc_observed = true; 9112 kvm_for_each_vcpu(i, vcpu, kvm) { 9113 vcpu->arch.tsc_offset_adjustment += delta_cyc; 9114 vcpu->arch.last_host_tsc = local_tsc; 9115 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9116 } 9117 9118 /* 9119 * We have to disable TSC offset matching.. if you were 9120 * booting a VM while issuing an S4 host suspend.... 9121 * you may have some problem. Solving this issue is 9122 * left as an exercise to the reader. 9123 */ 9124 kvm->arch.last_tsc_nsec = 0; 9125 kvm->arch.last_tsc_write = 0; 9126 } 9127 9128 } 9129 return 0; 9130 } 9131 9132 void kvm_arch_hardware_disable(void) 9133 { 9134 kvm_x86_ops->hardware_disable(); 9135 drop_user_return_notifiers(); 9136 } 9137 9138 int kvm_arch_hardware_setup(void) 9139 { 9140 int r; 9141 9142 r = kvm_x86_ops->hardware_setup(); 9143 if (r != 0) 9144 return r; 9145 9146 if (kvm_has_tsc_control) { 9147 /* 9148 * Make sure the user can only configure tsc_khz values that 9149 * fit into a signed integer. 9150 * A min value is not calculated because it will always 9151 * be 1 on all machines. 9152 */ 9153 u64 max = min(0x7fffffffULL, 9154 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 9155 kvm_max_guest_tsc_khz = max; 9156 9157 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 9158 } 9159 9160 kvm_init_msr_list(); 9161 return 0; 9162 } 9163 9164 void kvm_arch_hardware_unsetup(void) 9165 { 9166 kvm_x86_ops->hardware_unsetup(); 9167 } 9168 9169 int kvm_arch_check_processor_compat(void) 9170 { 9171 return kvm_x86_ops->check_processor_compatibility(); 9172 } 9173 9174 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 9175 { 9176 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 9177 } 9178 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 9179 9180 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 9181 { 9182 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 9183 } 9184 9185 struct static_key kvm_no_apic_vcpu __read_mostly; 9186 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 9187 9188 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 9189 { 9190 struct page *page; 9191 int r; 9192 9193 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 9194 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9195 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9196 else 9197 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9198 9199 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9200 if (!page) { 9201 r = -ENOMEM; 9202 goto fail; 9203 } 9204 vcpu->arch.pio_data = page_address(page); 9205 9206 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9207 9208 r = kvm_mmu_create(vcpu); 9209 if (r < 0) 9210 goto fail_free_pio_data; 9211 9212 if (irqchip_in_kernel(vcpu->kvm)) { 9213 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu); 9214 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9215 if (r < 0) 9216 goto fail_mmu_destroy; 9217 } else 9218 static_key_slow_inc(&kvm_no_apic_vcpu); 9219 9220 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9221 GFP_KERNEL_ACCOUNT); 9222 if (!vcpu->arch.mce_banks) { 9223 r = -ENOMEM; 9224 goto fail_free_lapic; 9225 } 9226 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9227 9228 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9229 GFP_KERNEL_ACCOUNT)) { 9230 r = -ENOMEM; 9231 goto fail_free_mce_banks; 9232 } 9233 9234 fx_init(vcpu); 9235 9236 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 9237 9238 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9239 9240 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9241 9242 kvm_async_pf_hash_reset(vcpu); 9243 kvm_pmu_init(vcpu); 9244 9245 vcpu->arch.pending_external_vector = -1; 9246 vcpu->arch.preempted_in_kernel = false; 9247 9248 kvm_hv_vcpu_init(vcpu); 9249 9250 return 0; 9251 9252 fail_free_mce_banks: 9253 kfree(vcpu->arch.mce_banks); 9254 fail_free_lapic: 9255 kvm_free_lapic(vcpu); 9256 fail_mmu_destroy: 9257 kvm_mmu_destroy(vcpu); 9258 fail_free_pio_data: 9259 free_page((unsigned long)vcpu->arch.pio_data); 9260 fail: 9261 return r; 9262 } 9263 9264 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 9265 { 9266 int idx; 9267 9268 kvm_hv_vcpu_uninit(vcpu); 9269 kvm_pmu_destroy(vcpu); 9270 kfree(vcpu->arch.mce_banks); 9271 kvm_free_lapic(vcpu); 9272 idx = srcu_read_lock(&vcpu->kvm->srcu); 9273 kvm_mmu_destroy(vcpu); 9274 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9275 free_page((unsigned long)vcpu->arch.pio_data); 9276 if (!lapic_in_kernel(vcpu)) 9277 static_key_slow_dec(&kvm_no_apic_vcpu); 9278 } 9279 9280 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 9281 { 9282 vcpu->arch.l1tf_flush_l1d = true; 9283 kvm_x86_ops->sched_in(vcpu, cpu); 9284 } 9285 9286 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 9287 { 9288 if (type) 9289 return -EINVAL; 9290 9291 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 9292 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 9293 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 9294 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 9295 9296 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 9297 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 9298 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 9299 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 9300 &kvm->arch.irq_sources_bitmap); 9301 9302 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 9303 mutex_init(&kvm->arch.apic_map_lock); 9304 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 9305 9306 kvm->arch.kvmclock_offset = -ktime_get_boottime_ns(); 9307 pvclock_update_vm_gtod_copy(kvm); 9308 9309 kvm->arch.guest_can_read_msr_platform_info = true; 9310 9311 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 9312 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 9313 9314 kvm_hv_init_vm(kvm); 9315 kvm_page_track_init(kvm); 9316 kvm_mmu_init_vm(kvm); 9317 9318 if (kvm_x86_ops->vm_init) 9319 return kvm_x86_ops->vm_init(kvm); 9320 9321 return 0; 9322 } 9323 9324 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 9325 { 9326 vcpu_load(vcpu); 9327 kvm_mmu_unload(vcpu); 9328 vcpu_put(vcpu); 9329 } 9330 9331 static void kvm_free_vcpus(struct kvm *kvm) 9332 { 9333 unsigned int i; 9334 struct kvm_vcpu *vcpu; 9335 9336 /* 9337 * Unpin any mmu pages first. 9338 */ 9339 kvm_for_each_vcpu(i, vcpu, kvm) { 9340 kvm_clear_async_pf_completion_queue(vcpu); 9341 kvm_unload_vcpu_mmu(vcpu); 9342 } 9343 kvm_for_each_vcpu(i, vcpu, kvm) 9344 kvm_arch_vcpu_free(vcpu); 9345 9346 mutex_lock(&kvm->lock); 9347 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 9348 kvm->vcpus[i] = NULL; 9349 9350 atomic_set(&kvm->online_vcpus, 0); 9351 mutex_unlock(&kvm->lock); 9352 } 9353 9354 void kvm_arch_sync_events(struct kvm *kvm) 9355 { 9356 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 9357 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 9358 kvm_free_pit(kvm); 9359 } 9360 9361 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9362 { 9363 int i, r; 9364 unsigned long hva; 9365 struct kvm_memslots *slots = kvm_memslots(kvm); 9366 struct kvm_memory_slot *slot, old; 9367 9368 /* Called with kvm->slots_lock held. */ 9369 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 9370 return -EINVAL; 9371 9372 slot = id_to_memslot(slots, id); 9373 if (size) { 9374 if (slot->npages) 9375 return -EEXIST; 9376 9377 /* 9378 * MAP_SHARED to prevent internal slot pages from being moved 9379 * by fork()/COW. 9380 */ 9381 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 9382 MAP_SHARED | MAP_ANONYMOUS, 0); 9383 if (IS_ERR((void *)hva)) 9384 return PTR_ERR((void *)hva); 9385 } else { 9386 if (!slot->npages) 9387 return 0; 9388 9389 hva = 0; 9390 } 9391 9392 old = *slot; 9393 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 9394 struct kvm_userspace_memory_region m; 9395 9396 m.slot = id | (i << 16); 9397 m.flags = 0; 9398 m.guest_phys_addr = gpa; 9399 m.userspace_addr = hva; 9400 m.memory_size = size; 9401 r = __kvm_set_memory_region(kvm, &m); 9402 if (r < 0) 9403 return r; 9404 } 9405 9406 if (!size) 9407 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); 9408 9409 return 0; 9410 } 9411 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 9412 9413 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9414 { 9415 int r; 9416 9417 mutex_lock(&kvm->slots_lock); 9418 r = __x86_set_memory_region(kvm, id, gpa, size); 9419 mutex_unlock(&kvm->slots_lock); 9420 9421 return r; 9422 } 9423 EXPORT_SYMBOL_GPL(x86_set_memory_region); 9424 9425 void kvm_arch_destroy_vm(struct kvm *kvm) 9426 { 9427 if (current->mm == kvm->mm) { 9428 /* 9429 * Free memory regions allocated on behalf of userspace, 9430 * unless the the memory map has changed due to process exit 9431 * or fd copying. 9432 */ 9433 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 9434 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); 9435 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 9436 } 9437 if (kvm_x86_ops->vm_destroy) 9438 kvm_x86_ops->vm_destroy(kvm); 9439 kvm_pic_destroy(kvm); 9440 kvm_ioapic_destroy(kvm); 9441 kvm_free_vcpus(kvm); 9442 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 9443 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 9444 kvm_mmu_uninit_vm(kvm); 9445 kvm_page_track_cleanup(kvm); 9446 kvm_hv_destroy_vm(kvm); 9447 } 9448 9449 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 9450 struct kvm_memory_slot *dont) 9451 { 9452 int i; 9453 9454 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9455 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 9456 kvfree(free->arch.rmap[i]); 9457 free->arch.rmap[i] = NULL; 9458 } 9459 if (i == 0) 9460 continue; 9461 9462 if (!dont || free->arch.lpage_info[i - 1] != 9463 dont->arch.lpage_info[i - 1]) { 9464 kvfree(free->arch.lpage_info[i - 1]); 9465 free->arch.lpage_info[i - 1] = NULL; 9466 } 9467 } 9468 9469 kvm_page_track_free_memslot(free, dont); 9470 } 9471 9472 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 9473 unsigned long npages) 9474 { 9475 int i; 9476 9477 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9478 struct kvm_lpage_info *linfo; 9479 unsigned long ugfn; 9480 int lpages; 9481 int level = i + 1; 9482 9483 lpages = gfn_to_index(slot->base_gfn + npages - 1, 9484 slot->base_gfn, level) + 1; 9485 9486 slot->arch.rmap[i] = 9487 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 9488 GFP_KERNEL_ACCOUNT); 9489 if (!slot->arch.rmap[i]) 9490 goto out_free; 9491 if (i == 0) 9492 continue; 9493 9494 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 9495 if (!linfo) 9496 goto out_free; 9497 9498 slot->arch.lpage_info[i - 1] = linfo; 9499 9500 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 9501 linfo[0].disallow_lpage = 1; 9502 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 9503 linfo[lpages - 1].disallow_lpage = 1; 9504 ugfn = slot->userspace_addr >> PAGE_SHIFT; 9505 /* 9506 * If the gfn and userspace address are not aligned wrt each 9507 * other, or if explicitly asked to, disable large page 9508 * support for this slot 9509 */ 9510 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 9511 !kvm_largepages_enabled()) { 9512 unsigned long j; 9513 9514 for (j = 0; j < lpages; ++j) 9515 linfo[j].disallow_lpage = 1; 9516 } 9517 } 9518 9519 if (kvm_page_track_create_memslot(slot, npages)) 9520 goto out_free; 9521 9522 return 0; 9523 9524 out_free: 9525 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9526 kvfree(slot->arch.rmap[i]); 9527 slot->arch.rmap[i] = NULL; 9528 if (i == 0) 9529 continue; 9530 9531 kvfree(slot->arch.lpage_info[i - 1]); 9532 slot->arch.lpage_info[i - 1] = NULL; 9533 } 9534 return -ENOMEM; 9535 } 9536 9537 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 9538 { 9539 /* 9540 * memslots->generation has been incremented. 9541 * mmio generation may have reached its maximum value. 9542 */ 9543 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 9544 } 9545 9546 int kvm_arch_prepare_memory_region(struct kvm *kvm, 9547 struct kvm_memory_slot *memslot, 9548 const struct kvm_userspace_memory_region *mem, 9549 enum kvm_mr_change change) 9550 { 9551 return 0; 9552 } 9553 9554 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 9555 struct kvm_memory_slot *new) 9556 { 9557 /* Still write protect RO slot */ 9558 if (new->flags & KVM_MEM_READONLY) { 9559 kvm_mmu_slot_remove_write_access(kvm, new); 9560 return; 9561 } 9562 9563 /* 9564 * Call kvm_x86_ops dirty logging hooks when they are valid. 9565 * 9566 * kvm_x86_ops->slot_disable_log_dirty is called when: 9567 * 9568 * - KVM_MR_CREATE with dirty logging is disabled 9569 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 9570 * 9571 * The reason is, in case of PML, we need to set D-bit for any slots 9572 * with dirty logging disabled in order to eliminate unnecessary GPA 9573 * logging in PML buffer (and potential PML buffer full VMEXT). This 9574 * guarantees leaving PML enabled during guest's lifetime won't have 9575 * any additional overhead from PML when guest is running with dirty 9576 * logging disabled for memory slots. 9577 * 9578 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot 9579 * to dirty logging mode. 9580 * 9581 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 9582 * 9583 * In case of write protect: 9584 * 9585 * Write protect all pages for dirty logging. 9586 * 9587 * All the sptes including the large sptes which point to this 9588 * slot are set to readonly. We can not create any new large 9589 * spte on this slot until the end of the logging. 9590 * 9591 * See the comments in fast_page_fault(). 9592 */ 9593 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 9594 if (kvm_x86_ops->slot_enable_log_dirty) 9595 kvm_x86_ops->slot_enable_log_dirty(kvm, new); 9596 else 9597 kvm_mmu_slot_remove_write_access(kvm, new); 9598 } else { 9599 if (kvm_x86_ops->slot_disable_log_dirty) 9600 kvm_x86_ops->slot_disable_log_dirty(kvm, new); 9601 } 9602 } 9603 9604 void kvm_arch_commit_memory_region(struct kvm *kvm, 9605 const struct kvm_userspace_memory_region *mem, 9606 const struct kvm_memory_slot *old, 9607 const struct kvm_memory_slot *new, 9608 enum kvm_mr_change change) 9609 { 9610 if (!kvm->arch.n_requested_mmu_pages) 9611 kvm_mmu_change_mmu_pages(kvm, 9612 kvm_mmu_calculate_default_mmu_pages(kvm)); 9613 9614 /* 9615 * Dirty logging tracks sptes in 4k granularity, meaning that large 9616 * sptes have to be split. If live migration is successful, the guest 9617 * in the source machine will be destroyed and large sptes will be 9618 * created in the destination. However, if the guest continues to run 9619 * in the source machine (for example if live migration fails), small 9620 * sptes will remain around and cause bad performance. 9621 * 9622 * Scan sptes if dirty logging has been stopped, dropping those 9623 * which can be collapsed into a single large-page spte. Later 9624 * page faults will create the large-page sptes. 9625 */ 9626 if ((change != KVM_MR_DELETE) && 9627 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 9628 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 9629 kvm_mmu_zap_collapsible_sptes(kvm, new); 9630 9631 /* 9632 * Set up write protection and/or dirty logging for the new slot. 9633 * 9634 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 9635 * been zapped so no dirty logging staff is needed for old slot. For 9636 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 9637 * new and it's also covered when dealing with the new slot. 9638 * 9639 * FIXME: const-ify all uses of struct kvm_memory_slot. 9640 */ 9641 if (change != KVM_MR_DELETE) 9642 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 9643 } 9644 9645 void kvm_arch_flush_shadow_all(struct kvm *kvm) 9646 { 9647 kvm_mmu_zap_all(kvm); 9648 } 9649 9650 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 9651 struct kvm_memory_slot *slot) 9652 { 9653 kvm_page_track_flush_slot(kvm, slot); 9654 } 9655 9656 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 9657 { 9658 return (is_guest_mode(vcpu) && 9659 kvm_x86_ops->guest_apic_has_interrupt && 9660 kvm_x86_ops->guest_apic_has_interrupt(vcpu)); 9661 } 9662 9663 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 9664 { 9665 if (!list_empty_careful(&vcpu->async_pf.done)) 9666 return true; 9667 9668 if (kvm_apic_has_events(vcpu)) 9669 return true; 9670 9671 if (vcpu->arch.pv.pv_unhalted) 9672 return true; 9673 9674 if (vcpu->arch.exception.pending) 9675 return true; 9676 9677 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 9678 (vcpu->arch.nmi_pending && 9679 kvm_x86_ops->nmi_allowed(vcpu))) 9680 return true; 9681 9682 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 9683 (vcpu->arch.smi_pending && !is_smm(vcpu))) 9684 return true; 9685 9686 if (kvm_arch_interrupt_allowed(vcpu) && 9687 (kvm_cpu_has_interrupt(vcpu) || 9688 kvm_guest_apic_has_interrupt(vcpu))) 9689 return true; 9690 9691 if (kvm_hv_has_stimer_pending(vcpu)) 9692 return true; 9693 9694 return false; 9695 } 9696 9697 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 9698 { 9699 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 9700 } 9701 9702 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 9703 { 9704 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 9705 return true; 9706 9707 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 9708 kvm_test_request(KVM_REQ_SMI, vcpu) || 9709 kvm_test_request(KVM_REQ_EVENT, vcpu)) 9710 return true; 9711 9712 if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu)) 9713 return true; 9714 9715 return false; 9716 } 9717 9718 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 9719 { 9720 return vcpu->arch.preempted_in_kernel; 9721 } 9722 9723 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 9724 { 9725 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 9726 } 9727 9728 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 9729 { 9730 return kvm_x86_ops->interrupt_allowed(vcpu); 9731 } 9732 9733 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 9734 { 9735 if (is_64_bit_mode(vcpu)) 9736 return kvm_rip_read(vcpu); 9737 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 9738 kvm_rip_read(vcpu)); 9739 } 9740 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 9741 9742 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 9743 { 9744 return kvm_get_linear_rip(vcpu) == linear_rip; 9745 } 9746 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 9747 9748 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 9749 { 9750 unsigned long rflags; 9751 9752 rflags = kvm_x86_ops->get_rflags(vcpu); 9753 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9754 rflags &= ~X86_EFLAGS_TF; 9755 return rflags; 9756 } 9757 EXPORT_SYMBOL_GPL(kvm_get_rflags); 9758 9759 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 9760 { 9761 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 9762 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 9763 rflags |= X86_EFLAGS_TF; 9764 kvm_x86_ops->set_rflags(vcpu, rflags); 9765 } 9766 9767 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 9768 { 9769 __kvm_set_rflags(vcpu, rflags); 9770 kvm_make_request(KVM_REQ_EVENT, vcpu); 9771 } 9772 EXPORT_SYMBOL_GPL(kvm_set_rflags); 9773 9774 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 9775 { 9776 int r; 9777 9778 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 9779 work->wakeup_all) 9780 return; 9781 9782 r = kvm_mmu_reload(vcpu); 9783 if (unlikely(r)) 9784 return; 9785 9786 if (!vcpu->arch.mmu->direct_map && 9787 work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu)) 9788 return; 9789 9790 vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true); 9791 } 9792 9793 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 9794 { 9795 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 9796 } 9797 9798 static inline u32 kvm_async_pf_next_probe(u32 key) 9799 { 9800 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 9801 } 9802 9803 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 9804 { 9805 u32 key = kvm_async_pf_hash_fn(gfn); 9806 9807 while (vcpu->arch.apf.gfns[key] != ~0) 9808 key = kvm_async_pf_next_probe(key); 9809 9810 vcpu->arch.apf.gfns[key] = gfn; 9811 } 9812 9813 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 9814 { 9815 int i; 9816 u32 key = kvm_async_pf_hash_fn(gfn); 9817 9818 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 9819 (vcpu->arch.apf.gfns[key] != gfn && 9820 vcpu->arch.apf.gfns[key] != ~0); i++) 9821 key = kvm_async_pf_next_probe(key); 9822 9823 return key; 9824 } 9825 9826 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 9827 { 9828 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 9829 } 9830 9831 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 9832 { 9833 u32 i, j, k; 9834 9835 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 9836 while (true) { 9837 vcpu->arch.apf.gfns[i] = ~0; 9838 do { 9839 j = kvm_async_pf_next_probe(j); 9840 if (vcpu->arch.apf.gfns[j] == ~0) 9841 return; 9842 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 9843 /* 9844 * k lies cyclically in ]i,j] 9845 * | i.k.j | 9846 * |....j i.k.| or |.k..j i...| 9847 */ 9848 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 9849 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 9850 i = j; 9851 } 9852 } 9853 9854 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 9855 { 9856 9857 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 9858 sizeof(val)); 9859 } 9860 9861 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val) 9862 { 9863 9864 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val, 9865 sizeof(u32)); 9866 } 9867 9868 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 9869 { 9870 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 9871 return false; 9872 9873 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 9874 (vcpu->arch.apf.send_user_only && 9875 kvm_x86_ops->get_cpl(vcpu) == 0)) 9876 return false; 9877 9878 return true; 9879 } 9880 9881 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 9882 { 9883 if (unlikely(!lapic_in_kernel(vcpu) || 9884 kvm_event_needs_reinjection(vcpu) || 9885 vcpu->arch.exception.pending)) 9886 return false; 9887 9888 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 9889 return false; 9890 9891 /* 9892 * If interrupts are off we cannot even use an artificial 9893 * halt state. 9894 */ 9895 return kvm_x86_ops->interrupt_allowed(vcpu); 9896 } 9897 9898 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 9899 struct kvm_async_pf *work) 9900 { 9901 struct x86_exception fault; 9902 9903 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 9904 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 9905 9906 if (kvm_can_deliver_async_pf(vcpu) && 9907 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 9908 fault.vector = PF_VECTOR; 9909 fault.error_code_valid = true; 9910 fault.error_code = 0; 9911 fault.nested_page_fault = false; 9912 fault.address = work->arch.token; 9913 fault.async_page_fault = true; 9914 kvm_inject_page_fault(vcpu, &fault); 9915 } else { 9916 /* 9917 * It is not possible to deliver a paravirtualized asynchronous 9918 * page fault, but putting the guest in an artificial halt state 9919 * can be beneficial nevertheless: if an interrupt arrives, we 9920 * can deliver it timely and perhaps the guest will schedule 9921 * another process. When the instruction that triggered a page 9922 * fault is retried, hopefully the page will be ready in the host. 9923 */ 9924 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 9925 } 9926 } 9927 9928 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 9929 struct kvm_async_pf *work) 9930 { 9931 struct x86_exception fault; 9932 u32 val; 9933 9934 if (work->wakeup_all) 9935 work->arch.token = ~0; /* broadcast wakeup */ 9936 else 9937 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 9938 trace_kvm_async_pf_ready(work->arch.token, work->gva); 9939 9940 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED && 9941 !apf_get_user(vcpu, &val)) { 9942 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT && 9943 vcpu->arch.exception.pending && 9944 vcpu->arch.exception.nr == PF_VECTOR && 9945 !apf_put_user(vcpu, 0)) { 9946 vcpu->arch.exception.injected = false; 9947 vcpu->arch.exception.pending = false; 9948 vcpu->arch.exception.nr = 0; 9949 vcpu->arch.exception.has_error_code = false; 9950 vcpu->arch.exception.error_code = 0; 9951 vcpu->arch.exception.has_payload = false; 9952 vcpu->arch.exception.payload = 0; 9953 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 9954 fault.vector = PF_VECTOR; 9955 fault.error_code_valid = true; 9956 fault.error_code = 0; 9957 fault.nested_page_fault = false; 9958 fault.address = work->arch.token; 9959 fault.async_page_fault = true; 9960 kvm_inject_page_fault(vcpu, &fault); 9961 } 9962 } 9963 vcpu->arch.apf.halted = false; 9964 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9965 } 9966 9967 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 9968 { 9969 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 9970 return true; 9971 else 9972 return kvm_can_do_async_pf(vcpu); 9973 } 9974 9975 void kvm_arch_start_assignment(struct kvm *kvm) 9976 { 9977 atomic_inc(&kvm->arch.assigned_device_count); 9978 } 9979 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 9980 9981 void kvm_arch_end_assignment(struct kvm *kvm) 9982 { 9983 atomic_dec(&kvm->arch.assigned_device_count); 9984 } 9985 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 9986 9987 bool kvm_arch_has_assigned_device(struct kvm *kvm) 9988 { 9989 return atomic_read(&kvm->arch.assigned_device_count); 9990 } 9991 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 9992 9993 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 9994 { 9995 atomic_inc(&kvm->arch.noncoherent_dma_count); 9996 } 9997 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 9998 9999 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 10000 { 10001 atomic_dec(&kvm->arch.noncoherent_dma_count); 10002 } 10003 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 10004 10005 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 10006 { 10007 return atomic_read(&kvm->arch.noncoherent_dma_count); 10008 } 10009 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 10010 10011 bool kvm_arch_has_irq_bypass(void) 10012 { 10013 return kvm_x86_ops->update_pi_irte != NULL; 10014 } 10015 10016 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 10017 struct irq_bypass_producer *prod) 10018 { 10019 struct kvm_kernel_irqfd *irqfd = 10020 container_of(cons, struct kvm_kernel_irqfd, consumer); 10021 10022 irqfd->producer = prod; 10023 10024 return kvm_x86_ops->update_pi_irte(irqfd->kvm, 10025 prod->irq, irqfd->gsi, 1); 10026 } 10027 10028 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 10029 struct irq_bypass_producer *prod) 10030 { 10031 int ret; 10032 struct kvm_kernel_irqfd *irqfd = 10033 container_of(cons, struct kvm_kernel_irqfd, consumer); 10034 10035 WARN_ON(irqfd->producer != prod); 10036 irqfd->producer = NULL; 10037 10038 /* 10039 * When producer of consumer is unregistered, we change back to 10040 * remapped mode, so we can re-use the current implementation 10041 * when the irq is masked/disabled or the consumer side (KVM 10042 * int this case doesn't want to receive the interrupts. 10043 */ 10044 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 10045 if (ret) 10046 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 10047 " fails: %d\n", irqfd->consumer.token, ret); 10048 } 10049 10050 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 10051 uint32_t guest_irq, bool set) 10052 { 10053 if (!kvm_x86_ops->update_pi_irte) 10054 return -EINVAL; 10055 10056 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); 10057 } 10058 10059 bool kvm_vector_hashing_enabled(void) 10060 { 10061 return vector_hashing; 10062 } 10063 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); 10064 10065 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 10066 { 10067 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 10068 } 10069 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 10070 10071 10072 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 10073 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 10074 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 10075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 10076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 10077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 10078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 10079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 10080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 10081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 10082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 10083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 10084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 10085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 10086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); 10087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 10088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 10089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 10090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 10091