xref: /linux/arch/x86/kvm/x86.c (revision b22bb139dcb370cd3a7f3c5ae29d55bb69235ace)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29 
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56 
57 #include <trace/events/kvm.h>
58 
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <clocksource/hyperv_timer.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107 
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110 
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113 
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122 
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133 
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137 
138 /*
139  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
140  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
141  * advancement entirely.  Any other value is used as-is and disables adaptive
142  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
143  */
144 static int __read_mostly lapic_timer_advance_ns = -1;
145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
146 
147 static bool __read_mostly vector_hashing = true;
148 module_param(vector_hashing, bool, S_IRUGO);
149 
150 bool __read_mostly enable_vmware_backdoor = false;
151 module_param(enable_vmware_backdoor, bool, S_IRUGO);
152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
153 
154 static bool __read_mostly force_emulation_prefix = false;
155 module_param(force_emulation_prefix, bool, S_IRUGO);
156 
157 int __read_mostly pi_inject_timer = -1;
158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
159 
160 #define KVM_NR_SHARED_MSRS 16
161 
162 struct kvm_shared_msrs_global {
163 	int nr;
164 	u32 msrs[KVM_NR_SHARED_MSRS];
165 };
166 
167 struct kvm_shared_msrs {
168 	struct user_return_notifier urn;
169 	bool registered;
170 	struct kvm_shared_msr_values {
171 		u64 host;
172 		u64 curr;
173 	} values[KVM_NR_SHARED_MSRS];
174 };
175 
176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
177 static struct kvm_shared_msrs __percpu *shared_msrs;
178 
179 struct kvm_stats_debugfs_item debugfs_entries[] = {
180 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
181 	{ "pf_guest", VCPU_STAT(pf_guest) },
182 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
183 	{ "invlpg", VCPU_STAT(invlpg) },
184 	{ "exits", VCPU_STAT(exits) },
185 	{ "io_exits", VCPU_STAT(io_exits) },
186 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
187 	{ "signal_exits", VCPU_STAT(signal_exits) },
188 	{ "irq_window", VCPU_STAT(irq_window_exits) },
189 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
190 	{ "halt_exits", VCPU_STAT(halt_exits) },
191 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
192 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
193 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
194 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
195 	{ "hypercalls", VCPU_STAT(hypercalls) },
196 	{ "request_irq", VCPU_STAT(request_irq_exits) },
197 	{ "irq_exits", VCPU_STAT(irq_exits) },
198 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
199 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
200 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
201 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
202 	{ "irq_injections", VCPU_STAT(irq_injections) },
203 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
204 	{ "req_event", VCPU_STAT(req_event) },
205 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
206 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
207 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
208 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
209 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
210 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
211 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
212 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
213 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
214 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
215 	{ "largepages", VM_STAT(lpages) },
216 	{ "max_mmu_page_hash_collisions",
217 		VM_STAT(max_mmu_page_hash_collisions) },
218 	{ NULL }
219 };
220 
221 u64 __read_mostly host_xcr0;
222 
223 struct kmem_cache *x86_fpu_cache;
224 EXPORT_SYMBOL_GPL(x86_fpu_cache);
225 
226 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
227 
228 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
229 {
230 	int i;
231 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
232 		vcpu->arch.apf.gfns[i] = ~0;
233 }
234 
235 static void kvm_on_user_return(struct user_return_notifier *urn)
236 {
237 	unsigned slot;
238 	struct kvm_shared_msrs *locals
239 		= container_of(urn, struct kvm_shared_msrs, urn);
240 	struct kvm_shared_msr_values *values;
241 	unsigned long flags;
242 
243 	/*
244 	 * Disabling irqs at this point since the following code could be
245 	 * interrupted and executed through kvm_arch_hardware_disable()
246 	 */
247 	local_irq_save(flags);
248 	if (locals->registered) {
249 		locals->registered = false;
250 		user_return_notifier_unregister(urn);
251 	}
252 	local_irq_restore(flags);
253 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
254 		values = &locals->values[slot];
255 		if (values->host != values->curr) {
256 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
257 			values->curr = values->host;
258 		}
259 	}
260 }
261 
262 static void shared_msr_update(unsigned slot, u32 msr)
263 {
264 	u64 value;
265 	unsigned int cpu = smp_processor_id();
266 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
267 
268 	/* only read, and nobody should modify it at this time,
269 	 * so don't need lock */
270 	if (slot >= shared_msrs_global.nr) {
271 		printk(KERN_ERR "kvm: invalid MSR slot!");
272 		return;
273 	}
274 	rdmsrl_safe(msr, &value);
275 	smsr->values[slot].host = value;
276 	smsr->values[slot].curr = value;
277 }
278 
279 void kvm_define_shared_msr(unsigned slot, u32 msr)
280 {
281 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
282 	shared_msrs_global.msrs[slot] = msr;
283 	if (slot >= shared_msrs_global.nr)
284 		shared_msrs_global.nr = slot + 1;
285 }
286 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
287 
288 static void kvm_shared_msr_cpu_online(void)
289 {
290 	unsigned i;
291 
292 	for (i = 0; i < shared_msrs_global.nr; ++i)
293 		shared_msr_update(i, shared_msrs_global.msrs[i]);
294 }
295 
296 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
297 {
298 	unsigned int cpu = smp_processor_id();
299 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300 	int err;
301 
302 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
303 		return 0;
304 	smsr->values[slot].curr = value;
305 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
306 	if (err)
307 		return 1;
308 
309 	if (!smsr->registered) {
310 		smsr->urn.on_user_return = kvm_on_user_return;
311 		user_return_notifier_register(&smsr->urn);
312 		smsr->registered = true;
313 	}
314 	return 0;
315 }
316 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
317 
318 static void drop_user_return_notifiers(void)
319 {
320 	unsigned int cpu = smp_processor_id();
321 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322 
323 	if (smsr->registered)
324 		kvm_on_user_return(&smsr->urn);
325 }
326 
327 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
328 {
329 	return vcpu->arch.apic_base;
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
332 
333 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
334 {
335 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
336 }
337 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
338 
339 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
340 {
341 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
342 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
343 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
344 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
345 
346 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
347 		return 1;
348 	if (!msr_info->host_initiated) {
349 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
350 			return 1;
351 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
352 			return 1;
353 	}
354 
355 	kvm_lapic_set_base(vcpu, msr_info->data);
356 	return 0;
357 }
358 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
359 
360 asmlinkage __visible void kvm_spurious_fault(void)
361 {
362 	/* Fault while not rebooting.  We want the trace. */
363 	BUG();
364 }
365 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
366 
367 #define EXCPT_BENIGN		0
368 #define EXCPT_CONTRIBUTORY	1
369 #define EXCPT_PF		2
370 
371 static int exception_class(int vector)
372 {
373 	switch (vector) {
374 	case PF_VECTOR:
375 		return EXCPT_PF;
376 	case DE_VECTOR:
377 	case TS_VECTOR:
378 	case NP_VECTOR:
379 	case SS_VECTOR:
380 	case GP_VECTOR:
381 		return EXCPT_CONTRIBUTORY;
382 	default:
383 		break;
384 	}
385 	return EXCPT_BENIGN;
386 }
387 
388 #define EXCPT_FAULT		0
389 #define EXCPT_TRAP		1
390 #define EXCPT_ABORT		2
391 #define EXCPT_INTERRUPT		3
392 
393 static int exception_type(int vector)
394 {
395 	unsigned int mask;
396 
397 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
398 		return EXCPT_INTERRUPT;
399 
400 	mask = 1 << vector;
401 
402 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
403 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
404 		return EXCPT_TRAP;
405 
406 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
407 		return EXCPT_ABORT;
408 
409 	/* Reserved exceptions will result in fault */
410 	return EXCPT_FAULT;
411 }
412 
413 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
414 {
415 	unsigned nr = vcpu->arch.exception.nr;
416 	bool has_payload = vcpu->arch.exception.has_payload;
417 	unsigned long payload = vcpu->arch.exception.payload;
418 
419 	if (!has_payload)
420 		return;
421 
422 	switch (nr) {
423 	case DB_VECTOR:
424 		/*
425 		 * "Certain debug exceptions may clear bit 0-3.  The
426 		 * remaining contents of the DR6 register are never
427 		 * cleared by the processor".
428 		 */
429 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
430 		/*
431 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
432 		 */
433 		vcpu->arch.dr6 |= DR6_RTM;
434 		vcpu->arch.dr6 |= payload;
435 		/*
436 		 * Bit 16 should be set in the payload whenever the #DB
437 		 * exception should clear DR6.RTM. This makes the payload
438 		 * compatible with the pending debug exceptions under VMX.
439 		 * Though not currently documented in the SDM, this also
440 		 * makes the payload compatible with the exit qualification
441 		 * for #DB exceptions under VMX.
442 		 */
443 		vcpu->arch.dr6 ^= payload & DR6_RTM;
444 		break;
445 	case PF_VECTOR:
446 		vcpu->arch.cr2 = payload;
447 		break;
448 	}
449 
450 	vcpu->arch.exception.has_payload = false;
451 	vcpu->arch.exception.payload = 0;
452 }
453 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
454 
455 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
456 		unsigned nr, bool has_error, u32 error_code,
457 	        bool has_payload, unsigned long payload, bool reinject)
458 {
459 	u32 prev_nr;
460 	int class1, class2;
461 
462 	kvm_make_request(KVM_REQ_EVENT, vcpu);
463 
464 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
465 	queue:
466 		if (has_error && !is_protmode(vcpu))
467 			has_error = false;
468 		if (reinject) {
469 			/*
470 			 * On vmentry, vcpu->arch.exception.pending is only
471 			 * true if an event injection was blocked by
472 			 * nested_run_pending.  In that case, however,
473 			 * vcpu_enter_guest requests an immediate exit,
474 			 * and the guest shouldn't proceed far enough to
475 			 * need reinjection.
476 			 */
477 			WARN_ON_ONCE(vcpu->arch.exception.pending);
478 			vcpu->arch.exception.injected = true;
479 			if (WARN_ON_ONCE(has_payload)) {
480 				/*
481 				 * A reinjected event has already
482 				 * delivered its payload.
483 				 */
484 				has_payload = false;
485 				payload = 0;
486 			}
487 		} else {
488 			vcpu->arch.exception.pending = true;
489 			vcpu->arch.exception.injected = false;
490 		}
491 		vcpu->arch.exception.has_error_code = has_error;
492 		vcpu->arch.exception.nr = nr;
493 		vcpu->arch.exception.error_code = error_code;
494 		vcpu->arch.exception.has_payload = has_payload;
495 		vcpu->arch.exception.payload = payload;
496 		/*
497 		 * In guest mode, payload delivery should be deferred,
498 		 * so that the L1 hypervisor can intercept #PF before
499 		 * CR2 is modified (or intercept #DB before DR6 is
500 		 * modified under nVMX).  However, for ABI
501 		 * compatibility with KVM_GET_VCPU_EVENTS and
502 		 * KVM_SET_VCPU_EVENTS, we can't delay payload
503 		 * delivery unless userspace has enabled this
504 		 * functionality via the per-VM capability,
505 		 * KVM_CAP_EXCEPTION_PAYLOAD.
506 		 */
507 		if (!vcpu->kvm->arch.exception_payload_enabled ||
508 		    !is_guest_mode(vcpu))
509 			kvm_deliver_exception_payload(vcpu);
510 		return;
511 	}
512 
513 	/* to check exception */
514 	prev_nr = vcpu->arch.exception.nr;
515 	if (prev_nr == DF_VECTOR) {
516 		/* triple fault -> shutdown */
517 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
518 		return;
519 	}
520 	class1 = exception_class(prev_nr);
521 	class2 = exception_class(nr);
522 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
523 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
524 		/*
525 		 * Generate double fault per SDM Table 5-5.  Set
526 		 * exception.pending = true so that the double fault
527 		 * can trigger a nested vmexit.
528 		 */
529 		vcpu->arch.exception.pending = true;
530 		vcpu->arch.exception.injected = false;
531 		vcpu->arch.exception.has_error_code = true;
532 		vcpu->arch.exception.nr = DF_VECTOR;
533 		vcpu->arch.exception.error_code = 0;
534 		vcpu->arch.exception.has_payload = false;
535 		vcpu->arch.exception.payload = 0;
536 	} else
537 		/* replace previous exception with a new one in a hope
538 		   that instruction re-execution will regenerate lost
539 		   exception */
540 		goto queue;
541 }
542 
543 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
546 }
547 EXPORT_SYMBOL_GPL(kvm_queue_exception);
548 
549 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
550 {
551 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
552 }
553 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
554 
555 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
556 				  unsigned long payload)
557 {
558 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
559 }
560 
561 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
562 				    u32 error_code, unsigned long payload)
563 {
564 	kvm_multiple_exception(vcpu, nr, true, error_code,
565 			       true, payload, false);
566 }
567 
568 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
569 {
570 	if (err)
571 		kvm_inject_gp(vcpu, 0);
572 	else
573 		return kvm_skip_emulated_instruction(vcpu);
574 
575 	return 1;
576 }
577 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
578 
579 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
580 {
581 	++vcpu->stat.pf_guest;
582 	vcpu->arch.exception.nested_apf =
583 		is_guest_mode(vcpu) && fault->async_page_fault;
584 	if (vcpu->arch.exception.nested_apf) {
585 		vcpu->arch.apf.nested_apf_token = fault->address;
586 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
587 	} else {
588 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
589 					fault->address);
590 	}
591 }
592 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
593 
594 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
595 {
596 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
597 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
598 	else
599 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
600 
601 	return fault->nested_page_fault;
602 }
603 
604 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
605 {
606 	atomic_inc(&vcpu->arch.nmi_queued);
607 	kvm_make_request(KVM_REQ_NMI, vcpu);
608 }
609 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
610 
611 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
614 }
615 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
616 
617 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
618 {
619 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
620 }
621 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
622 
623 /*
624  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
625  * a #GP and return false.
626  */
627 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
628 {
629 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
630 		return true;
631 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
632 	return false;
633 }
634 EXPORT_SYMBOL_GPL(kvm_require_cpl);
635 
636 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
637 {
638 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
639 		return true;
640 
641 	kvm_queue_exception(vcpu, UD_VECTOR);
642 	return false;
643 }
644 EXPORT_SYMBOL_GPL(kvm_require_dr);
645 
646 /*
647  * This function will be used to read from the physical memory of the currently
648  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
649  * can read from guest physical or from the guest's guest physical memory.
650  */
651 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
652 			    gfn_t ngfn, void *data, int offset, int len,
653 			    u32 access)
654 {
655 	struct x86_exception exception;
656 	gfn_t real_gfn;
657 	gpa_t ngpa;
658 
659 	ngpa     = gfn_to_gpa(ngfn);
660 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
661 	if (real_gfn == UNMAPPED_GVA)
662 		return -EFAULT;
663 
664 	real_gfn = gpa_to_gfn(real_gfn);
665 
666 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
667 }
668 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
669 
670 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
671 			       void *data, int offset, int len, u32 access)
672 {
673 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
674 				       data, offset, len, access);
675 }
676 
677 /*
678  * Load the pae pdptrs.  Return true is they are all valid.
679  */
680 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
681 {
682 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
683 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
684 	int i;
685 	int ret;
686 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
687 
688 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
689 				      offset * sizeof(u64), sizeof(pdpte),
690 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
691 	if (ret < 0) {
692 		ret = 0;
693 		goto out;
694 	}
695 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
696 		if ((pdpte[i] & PT_PRESENT_MASK) &&
697 		    (pdpte[i] &
698 		     vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
699 			ret = 0;
700 			goto out;
701 		}
702 	}
703 	ret = 1;
704 
705 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
706 	__set_bit(VCPU_EXREG_PDPTR,
707 		  (unsigned long *)&vcpu->arch.regs_avail);
708 	__set_bit(VCPU_EXREG_PDPTR,
709 		  (unsigned long *)&vcpu->arch.regs_dirty);
710 out:
711 
712 	return ret;
713 }
714 EXPORT_SYMBOL_GPL(load_pdptrs);
715 
716 bool pdptrs_changed(struct kvm_vcpu *vcpu)
717 {
718 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
719 	bool changed = true;
720 	int offset;
721 	gfn_t gfn;
722 	int r;
723 
724 	if (!is_pae_paging(vcpu))
725 		return false;
726 
727 	if (!test_bit(VCPU_EXREG_PDPTR,
728 		      (unsigned long *)&vcpu->arch.regs_avail))
729 		return true;
730 
731 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
732 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
733 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
734 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
735 	if (r < 0)
736 		goto out;
737 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
738 out:
739 
740 	return changed;
741 }
742 EXPORT_SYMBOL_GPL(pdptrs_changed);
743 
744 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
745 {
746 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
747 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
748 
749 	cr0 |= X86_CR0_ET;
750 
751 #ifdef CONFIG_X86_64
752 	if (cr0 & 0xffffffff00000000UL)
753 		return 1;
754 #endif
755 
756 	cr0 &= ~CR0_RESERVED_BITS;
757 
758 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
759 		return 1;
760 
761 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
762 		return 1;
763 
764 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
765 #ifdef CONFIG_X86_64
766 		if ((vcpu->arch.efer & EFER_LME)) {
767 			int cs_db, cs_l;
768 
769 			if (!is_pae(vcpu))
770 				return 1;
771 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
772 			if (cs_l)
773 				return 1;
774 		} else
775 #endif
776 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
777 						 kvm_read_cr3(vcpu)))
778 			return 1;
779 	}
780 
781 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
782 		return 1;
783 
784 	kvm_x86_ops->set_cr0(vcpu, cr0);
785 
786 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
787 		kvm_clear_async_pf_completion_queue(vcpu);
788 		kvm_async_pf_hash_reset(vcpu);
789 	}
790 
791 	if ((cr0 ^ old_cr0) & update_bits)
792 		kvm_mmu_reset_context(vcpu);
793 
794 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
795 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
796 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
797 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
798 
799 	return 0;
800 }
801 EXPORT_SYMBOL_GPL(kvm_set_cr0);
802 
803 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
804 {
805 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
806 }
807 EXPORT_SYMBOL_GPL(kvm_lmsw);
808 
809 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
810 {
811 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
812 			!vcpu->guest_xcr0_loaded) {
813 		/* kvm_set_xcr() also depends on this */
814 		if (vcpu->arch.xcr0 != host_xcr0)
815 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
816 		vcpu->guest_xcr0_loaded = 1;
817 	}
818 }
819 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
820 
821 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
822 {
823 	if (vcpu->guest_xcr0_loaded) {
824 		if (vcpu->arch.xcr0 != host_xcr0)
825 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
826 		vcpu->guest_xcr0_loaded = 0;
827 	}
828 }
829 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
830 
831 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
832 {
833 	u64 xcr0 = xcr;
834 	u64 old_xcr0 = vcpu->arch.xcr0;
835 	u64 valid_bits;
836 
837 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
838 	if (index != XCR_XFEATURE_ENABLED_MASK)
839 		return 1;
840 	if (!(xcr0 & XFEATURE_MASK_FP))
841 		return 1;
842 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
843 		return 1;
844 
845 	/*
846 	 * Do not allow the guest to set bits that we do not support
847 	 * saving.  However, xcr0 bit 0 is always set, even if the
848 	 * emulated CPU does not support XSAVE (see fx_init).
849 	 */
850 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
851 	if (xcr0 & ~valid_bits)
852 		return 1;
853 
854 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
855 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
856 		return 1;
857 
858 	if (xcr0 & XFEATURE_MASK_AVX512) {
859 		if (!(xcr0 & XFEATURE_MASK_YMM))
860 			return 1;
861 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
862 			return 1;
863 	}
864 	vcpu->arch.xcr0 = xcr0;
865 
866 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
867 		kvm_update_cpuid(vcpu);
868 	return 0;
869 }
870 
871 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
872 {
873 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
874 	    __kvm_set_xcr(vcpu, index, xcr)) {
875 		kvm_inject_gp(vcpu, 0);
876 		return 1;
877 	}
878 	return 0;
879 }
880 EXPORT_SYMBOL_GPL(kvm_set_xcr);
881 
882 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
883 {
884 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
885 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
886 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
887 
888 	if (cr4 & CR4_RESERVED_BITS)
889 		return 1;
890 
891 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
892 		return 1;
893 
894 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
895 		return 1;
896 
897 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
898 		return 1;
899 
900 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
901 		return 1;
902 
903 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
904 		return 1;
905 
906 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
907 		return 1;
908 
909 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
910 		return 1;
911 
912 	if (is_long_mode(vcpu)) {
913 		if (!(cr4 & X86_CR4_PAE))
914 			return 1;
915 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
916 		   && ((cr4 ^ old_cr4) & pdptr_bits)
917 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
918 				   kvm_read_cr3(vcpu)))
919 		return 1;
920 
921 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
922 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
923 			return 1;
924 
925 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
926 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
927 			return 1;
928 	}
929 
930 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
931 		return 1;
932 
933 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
934 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
935 		kvm_mmu_reset_context(vcpu);
936 
937 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
938 		kvm_update_cpuid(vcpu);
939 
940 	return 0;
941 }
942 EXPORT_SYMBOL_GPL(kvm_set_cr4);
943 
944 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
945 {
946 	bool skip_tlb_flush = false;
947 #ifdef CONFIG_X86_64
948 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
949 
950 	if (pcid_enabled) {
951 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
952 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
953 	}
954 #endif
955 
956 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
957 		if (!skip_tlb_flush) {
958 			kvm_mmu_sync_roots(vcpu);
959 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
960 		}
961 		return 0;
962 	}
963 
964 	if (is_long_mode(vcpu) &&
965 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
966 		return 1;
967 	else if (is_pae_paging(vcpu) &&
968 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
969 		return 1;
970 
971 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
972 	vcpu->arch.cr3 = cr3;
973 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
974 
975 	return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_set_cr3);
978 
979 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
980 {
981 	if (cr8 & CR8_RESERVED_BITS)
982 		return 1;
983 	if (lapic_in_kernel(vcpu))
984 		kvm_lapic_set_tpr(vcpu, cr8);
985 	else
986 		vcpu->arch.cr8 = cr8;
987 	return 0;
988 }
989 EXPORT_SYMBOL_GPL(kvm_set_cr8);
990 
991 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
992 {
993 	if (lapic_in_kernel(vcpu))
994 		return kvm_lapic_get_cr8(vcpu);
995 	else
996 		return vcpu->arch.cr8;
997 }
998 EXPORT_SYMBOL_GPL(kvm_get_cr8);
999 
1000 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1001 {
1002 	int i;
1003 
1004 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1005 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1006 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1007 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1008 	}
1009 }
1010 
1011 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1012 {
1013 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1014 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1015 }
1016 
1017 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1018 {
1019 	unsigned long dr7;
1020 
1021 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1022 		dr7 = vcpu->arch.guest_debug_dr7;
1023 	else
1024 		dr7 = vcpu->arch.dr7;
1025 	kvm_x86_ops->set_dr7(vcpu, dr7);
1026 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1027 	if (dr7 & DR7_BP_EN_MASK)
1028 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1029 }
1030 
1031 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1032 {
1033 	u64 fixed = DR6_FIXED_1;
1034 
1035 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1036 		fixed |= DR6_RTM;
1037 	return fixed;
1038 }
1039 
1040 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1041 {
1042 	switch (dr) {
1043 	case 0 ... 3:
1044 		vcpu->arch.db[dr] = val;
1045 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1046 			vcpu->arch.eff_db[dr] = val;
1047 		break;
1048 	case 4:
1049 		/* fall through */
1050 	case 6:
1051 		if (val & 0xffffffff00000000ULL)
1052 			return -1; /* #GP */
1053 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1054 		kvm_update_dr6(vcpu);
1055 		break;
1056 	case 5:
1057 		/* fall through */
1058 	default: /* 7 */
1059 		if (val & 0xffffffff00000000ULL)
1060 			return -1; /* #GP */
1061 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1062 		kvm_update_dr7(vcpu);
1063 		break;
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1070 {
1071 	if (__kvm_set_dr(vcpu, dr, val)) {
1072 		kvm_inject_gp(vcpu, 0);
1073 		return 1;
1074 	}
1075 	return 0;
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_set_dr);
1078 
1079 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1080 {
1081 	switch (dr) {
1082 	case 0 ... 3:
1083 		*val = vcpu->arch.db[dr];
1084 		break;
1085 	case 4:
1086 		/* fall through */
1087 	case 6:
1088 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1089 			*val = vcpu->arch.dr6;
1090 		else
1091 			*val = kvm_x86_ops->get_dr6(vcpu);
1092 		break;
1093 	case 5:
1094 		/* fall through */
1095 	default: /* 7 */
1096 		*val = vcpu->arch.dr7;
1097 		break;
1098 	}
1099 	return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(kvm_get_dr);
1102 
1103 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1104 {
1105 	u32 ecx = kvm_rcx_read(vcpu);
1106 	u64 data;
1107 	int err;
1108 
1109 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1110 	if (err)
1111 		return err;
1112 	kvm_rax_write(vcpu, (u32)data);
1113 	kvm_rdx_write(vcpu, data >> 32);
1114 	return err;
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1117 
1118 /*
1119  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1120  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1121  *
1122  * This list is modified at module load time to reflect the
1123  * capabilities of the host cpu. This capabilities test skips MSRs that are
1124  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1125  * may depend on host virtualization features rather than host cpu features.
1126  */
1127 
1128 static u32 msrs_to_save[] = {
1129 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1130 	MSR_STAR,
1131 #ifdef CONFIG_X86_64
1132 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1133 #endif
1134 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1135 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1136 	MSR_IA32_SPEC_CTRL,
1137 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1138 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1139 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1140 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1141 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1142 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1143 };
1144 
1145 static unsigned num_msrs_to_save;
1146 
1147 static u32 emulated_msrs[] = {
1148 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1149 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1150 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1151 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1152 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1153 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1154 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1155 	HV_X64_MSR_RESET,
1156 	HV_X64_MSR_VP_INDEX,
1157 	HV_X64_MSR_VP_RUNTIME,
1158 	HV_X64_MSR_SCONTROL,
1159 	HV_X64_MSR_STIMER0_CONFIG,
1160 	HV_X64_MSR_VP_ASSIST_PAGE,
1161 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1162 	HV_X64_MSR_TSC_EMULATION_STATUS,
1163 
1164 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1165 	MSR_KVM_PV_EOI_EN,
1166 
1167 	MSR_IA32_TSC_ADJUST,
1168 	MSR_IA32_TSCDEADLINE,
1169 	MSR_IA32_ARCH_CAPABILITIES,
1170 	MSR_IA32_MISC_ENABLE,
1171 	MSR_IA32_MCG_STATUS,
1172 	MSR_IA32_MCG_CTL,
1173 	MSR_IA32_MCG_EXT_CTL,
1174 	MSR_IA32_SMBASE,
1175 	MSR_SMI_COUNT,
1176 	MSR_PLATFORM_INFO,
1177 	MSR_MISC_FEATURES_ENABLES,
1178 	MSR_AMD64_VIRT_SPEC_CTRL,
1179 	MSR_IA32_POWER_CTL,
1180 
1181 	/*
1182 	 * The following list leaves out MSRs whose values are determined
1183 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1184 	 * We always support the "true" VMX control MSRs, even if the host
1185 	 * processor does not, so I am putting these registers here rather
1186 	 * than in msrs_to_save.
1187 	 */
1188 	MSR_IA32_VMX_BASIC,
1189 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1190 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1191 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1192 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1193 	MSR_IA32_VMX_MISC,
1194 	MSR_IA32_VMX_CR0_FIXED0,
1195 	MSR_IA32_VMX_CR4_FIXED0,
1196 	MSR_IA32_VMX_VMCS_ENUM,
1197 	MSR_IA32_VMX_PROCBASED_CTLS2,
1198 	MSR_IA32_VMX_EPT_VPID_CAP,
1199 	MSR_IA32_VMX_VMFUNC,
1200 
1201 	MSR_K7_HWCR,
1202 	MSR_KVM_POLL_CONTROL,
1203 };
1204 
1205 static unsigned num_emulated_msrs;
1206 
1207 /*
1208  * List of msr numbers which are used to expose MSR-based features that
1209  * can be used by a hypervisor to validate requested CPU features.
1210  */
1211 static u32 msr_based_features[] = {
1212 	MSR_IA32_VMX_BASIC,
1213 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1214 	MSR_IA32_VMX_PINBASED_CTLS,
1215 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1216 	MSR_IA32_VMX_PROCBASED_CTLS,
1217 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1218 	MSR_IA32_VMX_EXIT_CTLS,
1219 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1220 	MSR_IA32_VMX_ENTRY_CTLS,
1221 	MSR_IA32_VMX_MISC,
1222 	MSR_IA32_VMX_CR0_FIXED0,
1223 	MSR_IA32_VMX_CR0_FIXED1,
1224 	MSR_IA32_VMX_CR4_FIXED0,
1225 	MSR_IA32_VMX_CR4_FIXED1,
1226 	MSR_IA32_VMX_VMCS_ENUM,
1227 	MSR_IA32_VMX_PROCBASED_CTLS2,
1228 	MSR_IA32_VMX_EPT_VPID_CAP,
1229 	MSR_IA32_VMX_VMFUNC,
1230 
1231 	MSR_F10H_DECFG,
1232 	MSR_IA32_UCODE_REV,
1233 	MSR_IA32_ARCH_CAPABILITIES,
1234 };
1235 
1236 static unsigned int num_msr_based_features;
1237 
1238 static u64 kvm_get_arch_capabilities(void)
1239 {
1240 	u64 data = 0;
1241 
1242 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1243 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1244 
1245 	/*
1246 	 * If we're doing cache flushes (either "always" or "cond")
1247 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1248 	 * If an outer hypervisor is doing the cache flush for us
1249 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1250 	 * capability to the guest too, and if EPT is disabled we're not
1251 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1252 	 * require a nested hypervisor to do a flush of its own.
1253 	 */
1254 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1255 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1256 
1257 	return data;
1258 }
1259 
1260 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1261 {
1262 	switch (msr->index) {
1263 	case MSR_IA32_ARCH_CAPABILITIES:
1264 		msr->data = kvm_get_arch_capabilities();
1265 		break;
1266 	case MSR_IA32_UCODE_REV:
1267 		rdmsrl_safe(msr->index, &msr->data);
1268 		break;
1269 	default:
1270 		if (kvm_x86_ops->get_msr_feature(msr))
1271 			return 1;
1272 	}
1273 	return 0;
1274 }
1275 
1276 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1277 {
1278 	struct kvm_msr_entry msr;
1279 	int r;
1280 
1281 	msr.index = index;
1282 	r = kvm_get_msr_feature(&msr);
1283 	if (r)
1284 		return r;
1285 
1286 	*data = msr.data;
1287 
1288 	return 0;
1289 }
1290 
1291 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1292 {
1293 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1294 		return false;
1295 
1296 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1297 		return false;
1298 
1299 	if (efer & (EFER_LME | EFER_LMA) &&
1300 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1301 		return false;
1302 
1303 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1304 		return false;
1305 
1306 	return true;
1307 
1308 }
1309 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1310 {
1311 	if (efer & efer_reserved_bits)
1312 		return false;
1313 
1314 	return __kvm_valid_efer(vcpu, efer);
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1317 
1318 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1319 {
1320 	u64 old_efer = vcpu->arch.efer;
1321 	u64 efer = msr_info->data;
1322 
1323 	if (efer & efer_reserved_bits)
1324 		return 1;
1325 
1326 	if (!msr_info->host_initiated) {
1327 		if (!__kvm_valid_efer(vcpu, efer))
1328 			return 1;
1329 
1330 		if (is_paging(vcpu) &&
1331 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1332 			return 1;
1333 	}
1334 
1335 	efer &= ~EFER_LMA;
1336 	efer |= vcpu->arch.efer & EFER_LMA;
1337 
1338 	kvm_x86_ops->set_efer(vcpu, efer);
1339 
1340 	/* Update reserved bits */
1341 	if ((efer ^ old_efer) & EFER_NX)
1342 		kvm_mmu_reset_context(vcpu);
1343 
1344 	return 0;
1345 }
1346 
1347 void kvm_enable_efer_bits(u64 mask)
1348 {
1349        efer_reserved_bits &= ~mask;
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1352 
1353 /*
1354  * Writes msr value into into the appropriate "register".
1355  * Returns 0 on success, non-0 otherwise.
1356  * Assumes vcpu_load() was already called.
1357  */
1358 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1359 {
1360 	switch (msr->index) {
1361 	case MSR_FS_BASE:
1362 	case MSR_GS_BASE:
1363 	case MSR_KERNEL_GS_BASE:
1364 	case MSR_CSTAR:
1365 	case MSR_LSTAR:
1366 		if (is_noncanonical_address(msr->data, vcpu))
1367 			return 1;
1368 		break;
1369 	case MSR_IA32_SYSENTER_EIP:
1370 	case MSR_IA32_SYSENTER_ESP:
1371 		/*
1372 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1373 		 * non-canonical address is written on Intel but not on
1374 		 * AMD (which ignores the top 32-bits, because it does
1375 		 * not implement 64-bit SYSENTER).
1376 		 *
1377 		 * 64-bit code should hence be able to write a non-canonical
1378 		 * value on AMD.  Making the address canonical ensures that
1379 		 * vmentry does not fail on Intel after writing a non-canonical
1380 		 * value, and that something deterministic happens if the guest
1381 		 * invokes 64-bit SYSENTER.
1382 		 */
1383 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1384 	}
1385 	return kvm_x86_ops->set_msr(vcpu, msr);
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_set_msr);
1388 
1389 /*
1390  * Adapt set_msr() to msr_io()'s calling convention
1391  */
1392 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1393 {
1394 	struct msr_data msr;
1395 	int r;
1396 
1397 	msr.index = index;
1398 	msr.host_initiated = true;
1399 	r = kvm_get_msr(vcpu, &msr);
1400 	if (r)
1401 		return r;
1402 
1403 	*data = msr.data;
1404 	return 0;
1405 }
1406 
1407 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1408 {
1409 	struct msr_data msr;
1410 
1411 	msr.data = *data;
1412 	msr.index = index;
1413 	msr.host_initiated = true;
1414 	return kvm_set_msr(vcpu, &msr);
1415 }
1416 
1417 #ifdef CONFIG_X86_64
1418 struct pvclock_gtod_data {
1419 	seqcount_t	seq;
1420 
1421 	struct { /* extract of a clocksource struct */
1422 		int vclock_mode;
1423 		u64	cycle_last;
1424 		u64	mask;
1425 		u32	mult;
1426 		u32	shift;
1427 	} clock;
1428 
1429 	u64		boot_ns;
1430 	u64		nsec_base;
1431 	u64		wall_time_sec;
1432 };
1433 
1434 static struct pvclock_gtod_data pvclock_gtod_data;
1435 
1436 static void update_pvclock_gtod(struct timekeeper *tk)
1437 {
1438 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1439 	u64 boot_ns;
1440 
1441 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1442 
1443 	write_seqcount_begin(&vdata->seq);
1444 
1445 	/* copy pvclock gtod data */
1446 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1447 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1448 	vdata->clock.mask		= tk->tkr_mono.mask;
1449 	vdata->clock.mult		= tk->tkr_mono.mult;
1450 	vdata->clock.shift		= tk->tkr_mono.shift;
1451 
1452 	vdata->boot_ns			= boot_ns;
1453 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1454 
1455 	vdata->wall_time_sec            = tk->xtime_sec;
1456 
1457 	write_seqcount_end(&vdata->seq);
1458 }
1459 #endif
1460 
1461 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1462 {
1463 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1464 	kvm_vcpu_kick(vcpu);
1465 }
1466 
1467 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1468 {
1469 	int version;
1470 	int r;
1471 	struct pvclock_wall_clock wc;
1472 	struct timespec64 boot;
1473 
1474 	if (!wall_clock)
1475 		return;
1476 
1477 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1478 	if (r)
1479 		return;
1480 
1481 	if (version & 1)
1482 		++version;  /* first time write, random junk */
1483 
1484 	++version;
1485 
1486 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1487 		return;
1488 
1489 	/*
1490 	 * The guest calculates current wall clock time by adding
1491 	 * system time (updated by kvm_guest_time_update below) to the
1492 	 * wall clock specified here.  guest system time equals host
1493 	 * system time for us, thus we must fill in host boot time here.
1494 	 */
1495 	getboottime64(&boot);
1496 
1497 	if (kvm->arch.kvmclock_offset) {
1498 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1499 		boot = timespec64_sub(boot, ts);
1500 	}
1501 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1502 	wc.nsec = boot.tv_nsec;
1503 	wc.version = version;
1504 
1505 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1506 
1507 	version++;
1508 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1509 }
1510 
1511 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1512 {
1513 	do_shl32_div32(dividend, divisor);
1514 	return dividend;
1515 }
1516 
1517 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1518 			       s8 *pshift, u32 *pmultiplier)
1519 {
1520 	uint64_t scaled64;
1521 	int32_t  shift = 0;
1522 	uint64_t tps64;
1523 	uint32_t tps32;
1524 
1525 	tps64 = base_hz;
1526 	scaled64 = scaled_hz;
1527 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1528 		tps64 >>= 1;
1529 		shift--;
1530 	}
1531 
1532 	tps32 = (uint32_t)tps64;
1533 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1534 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1535 			scaled64 >>= 1;
1536 		else
1537 			tps32 <<= 1;
1538 		shift++;
1539 	}
1540 
1541 	*pshift = shift;
1542 	*pmultiplier = div_frac(scaled64, tps32);
1543 }
1544 
1545 #ifdef CONFIG_X86_64
1546 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1547 #endif
1548 
1549 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1550 static unsigned long max_tsc_khz;
1551 
1552 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1553 {
1554 	u64 v = (u64)khz * (1000000 + ppm);
1555 	do_div(v, 1000000);
1556 	return v;
1557 }
1558 
1559 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1560 {
1561 	u64 ratio;
1562 
1563 	/* Guest TSC same frequency as host TSC? */
1564 	if (!scale) {
1565 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1566 		return 0;
1567 	}
1568 
1569 	/* TSC scaling supported? */
1570 	if (!kvm_has_tsc_control) {
1571 		if (user_tsc_khz > tsc_khz) {
1572 			vcpu->arch.tsc_catchup = 1;
1573 			vcpu->arch.tsc_always_catchup = 1;
1574 			return 0;
1575 		} else {
1576 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1577 			return -1;
1578 		}
1579 	}
1580 
1581 	/* TSC scaling required  - calculate ratio */
1582 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1583 				user_tsc_khz, tsc_khz);
1584 
1585 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1586 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1587 			            user_tsc_khz);
1588 		return -1;
1589 	}
1590 
1591 	vcpu->arch.tsc_scaling_ratio = ratio;
1592 	return 0;
1593 }
1594 
1595 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1596 {
1597 	u32 thresh_lo, thresh_hi;
1598 	int use_scaling = 0;
1599 
1600 	/* tsc_khz can be zero if TSC calibration fails */
1601 	if (user_tsc_khz == 0) {
1602 		/* set tsc_scaling_ratio to a safe value */
1603 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1604 		return -1;
1605 	}
1606 
1607 	/* Compute a scale to convert nanoseconds in TSC cycles */
1608 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1609 			   &vcpu->arch.virtual_tsc_shift,
1610 			   &vcpu->arch.virtual_tsc_mult);
1611 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1612 
1613 	/*
1614 	 * Compute the variation in TSC rate which is acceptable
1615 	 * within the range of tolerance and decide if the
1616 	 * rate being applied is within that bounds of the hardware
1617 	 * rate.  If so, no scaling or compensation need be done.
1618 	 */
1619 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1620 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1621 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1622 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1623 		use_scaling = 1;
1624 	}
1625 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1626 }
1627 
1628 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1629 {
1630 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1631 				      vcpu->arch.virtual_tsc_mult,
1632 				      vcpu->arch.virtual_tsc_shift);
1633 	tsc += vcpu->arch.this_tsc_write;
1634 	return tsc;
1635 }
1636 
1637 static inline int gtod_is_based_on_tsc(int mode)
1638 {
1639 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1640 }
1641 
1642 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1643 {
1644 #ifdef CONFIG_X86_64
1645 	bool vcpus_matched;
1646 	struct kvm_arch *ka = &vcpu->kvm->arch;
1647 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1648 
1649 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1650 			 atomic_read(&vcpu->kvm->online_vcpus));
1651 
1652 	/*
1653 	 * Once the masterclock is enabled, always perform request in
1654 	 * order to update it.
1655 	 *
1656 	 * In order to enable masterclock, the host clocksource must be TSC
1657 	 * and the vcpus need to have matched TSCs.  When that happens,
1658 	 * perform request to enable masterclock.
1659 	 */
1660 	if (ka->use_master_clock ||
1661 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1662 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1663 
1664 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1665 			    atomic_read(&vcpu->kvm->online_vcpus),
1666 		            ka->use_master_clock, gtod->clock.vclock_mode);
1667 #endif
1668 }
1669 
1670 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1671 {
1672 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1673 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1674 }
1675 
1676 /*
1677  * Multiply tsc by a fixed point number represented by ratio.
1678  *
1679  * The most significant 64-N bits (mult) of ratio represent the
1680  * integral part of the fixed point number; the remaining N bits
1681  * (frac) represent the fractional part, ie. ratio represents a fixed
1682  * point number (mult + frac * 2^(-N)).
1683  *
1684  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1685  */
1686 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1687 {
1688 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1689 }
1690 
1691 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1692 {
1693 	u64 _tsc = tsc;
1694 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1695 
1696 	if (ratio != kvm_default_tsc_scaling_ratio)
1697 		_tsc = __scale_tsc(ratio, tsc);
1698 
1699 	return _tsc;
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1702 
1703 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1704 {
1705 	u64 tsc;
1706 
1707 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1708 
1709 	return target_tsc - tsc;
1710 }
1711 
1712 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1713 {
1714 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1715 
1716 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1719 
1720 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1721 {
1722 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1723 }
1724 
1725 static inline bool kvm_check_tsc_unstable(void)
1726 {
1727 #ifdef CONFIG_X86_64
1728 	/*
1729 	 * TSC is marked unstable when we're running on Hyper-V,
1730 	 * 'TSC page' clocksource is good.
1731 	 */
1732 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1733 		return false;
1734 #endif
1735 	return check_tsc_unstable();
1736 }
1737 
1738 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1739 {
1740 	struct kvm *kvm = vcpu->kvm;
1741 	u64 offset, ns, elapsed;
1742 	unsigned long flags;
1743 	bool matched;
1744 	bool already_matched;
1745 	u64 data = msr->data;
1746 	bool synchronizing = false;
1747 
1748 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1749 	offset = kvm_compute_tsc_offset(vcpu, data);
1750 	ns = ktime_get_boottime_ns();
1751 	elapsed = ns - kvm->arch.last_tsc_nsec;
1752 
1753 	if (vcpu->arch.virtual_tsc_khz) {
1754 		if (data == 0 && msr->host_initiated) {
1755 			/*
1756 			 * detection of vcpu initialization -- need to sync
1757 			 * with other vCPUs. This particularly helps to keep
1758 			 * kvm_clock stable after CPU hotplug
1759 			 */
1760 			synchronizing = true;
1761 		} else {
1762 			u64 tsc_exp = kvm->arch.last_tsc_write +
1763 						nsec_to_cycles(vcpu, elapsed);
1764 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1765 			/*
1766 			 * Special case: TSC write with a small delta (1 second)
1767 			 * of virtual cycle time against real time is
1768 			 * interpreted as an attempt to synchronize the CPU.
1769 			 */
1770 			synchronizing = data < tsc_exp + tsc_hz &&
1771 					data + tsc_hz > tsc_exp;
1772 		}
1773 	}
1774 
1775 	/*
1776 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1777 	 * TSC, we add elapsed time in this computation.  We could let the
1778 	 * compensation code attempt to catch up if we fall behind, but
1779 	 * it's better to try to match offsets from the beginning.
1780          */
1781 	if (synchronizing &&
1782 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1783 		if (!kvm_check_tsc_unstable()) {
1784 			offset = kvm->arch.cur_tsc_offset;
1785 		} else {
1786 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1787 			data += delta;
1788 			offset = kvm_compute_tsc_offset(vcpu, data);
1789 		}
1790 		matched = true;
1791 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1792 	} else {
1793 		/*
1794 		 * We split periods of matched TSC writes into generations.
1795 		 * For each generation, we track the original measured
1796 		 * nanosecond time, offset, and write, so if TSCs are in
1797 		 * sync, we can match exact offset, and if not, we can match
1798 		 * exact software computation in compute_guest_tsc()
1799 		 *
1800 		 * These values are tracked in kvm->arch.cur_xxx variables.
1801 		 */
1802 		kvm->arch.cur_tsc_generation++;
1803 		kvm->arch.cur_tsc_nsec = ns;
1804 		kvm->arch.cur_tsc_write = data;
1805 		kvm->arch.cur_tsc_offset = offset;
1806 		matched = false;
1807 	}
1808 
1809 	/*
1810 	 * We also track th most recent recorded KHZ, write and time to
1811 	 * allow the matching interval to be extended at each write.
1812 	 */
1813 	kvm->arch.last_tsc_nsec = ns;
1814 	kvm->arch.last_tsc_write = data;
1815 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1816 
1817 	vcpu->arch.last_guest_tsc = data;
1818 
1819 	/* Keep track of which generation this VCPU has synchronized to */
1820 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1821 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1822 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1823 
1824 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1825 		update_ia32_tsc_adjust_msr(vcpu, offset);
1826 
1827 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1828 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1829 
1830 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1831 	if (!matched) {
1832 		kvm->arch.nr_vcpus_matched_tsc = 0;
1833 	} else if (!already_matched) {
1834 		kvm->arch.nr_vcpus_matched_tsc++;
1835 	}
1836 
1837 	kvm_track_tsc_matching(vcpu);
1838 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1839 }
1840 
1841 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1842 
1843 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1844 					   s64 adjustment)
1845 {
1846 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1847 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1848 }
1849 
1850 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1851 {
1852 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1853 		WARN_ON(adjustment < 0);
1854 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1855 	adjust_tsc_offset_guest(vcpu, adjustment);
1856 }
1857 
1858 #ifdef CONFIG_X86_64
1859 
1860 static u64 read_tsc(void)
1861 {
1862 	u64 ret = (u64)rdtsc_ordered();
1863 	u64 last = pvclock_gtod_data.clock.cycle_last;
1864 
1865 	if (likely(ret >= last))
1866 		return ret;
1867 
1868 	/*
1869 	 * GCC likes to generate cmov here, but this branch is extremely
1870 	 * predictable (it's just a function of time and the likely is
1871 	 * very likely) and there's a data dependence, so force GCC
1872 	 * to generate a branch instead.  I don't barrier() because
1873 	 * we don't actually need a barrier, and if this function
1874 	 * ever gets inlined it will generate worse code.
1875 	 */
1876 	asm volatile ("");
1877 	return last;
1878 }
1879 
1880 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1881 {
1882 	long v;
1883 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1884 	u64 tsc_pg_val;
1885 
1886 	switch (gtod->clock.vclock_mode) {
1887 	case VCLOCK_HVCLOCK:
1888 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1889 						  tsc_timestamp);
1890 		if (tsc_pg_val != U64_MAX) {
1891 			/* TSC page valid */
1892 			*mode = VCLOCK_HVCLOCK;
1893 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1894 				gtod->clock.mask;
1895 		} else {
1896 			/* TSC page invalid */
1897 			*mode = VCLOCK_NONE;
1898 		}
1899 		break;
1900 	case VCLOCK_TSC:
1901 		*mode = VCLOCK_TSC;
1902 		*tsc_timestamp = read_tsc();
1903 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1904 			gtod->clock.mask;
1905 		break;
1906 	default:
1907 		*mode = VCLOCK_NONE;
1908 	}
1909 
1910 	if (*mode == VCLOCK_NONE)
1911 		*tsc_timestamp = v = 0;
1912 
1913 	return v * gtod->clock.mult;
1914 }
1915 
1916 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1917 {
1918 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1919 	unsigned long seq;
1920 	int mode;
1921 	u64 ns;
1922 
1923 	do {
1924 		seq = read_seqcount_begin(&gtod->seq);
1925 		ns = gtod->nsec_base;
1926 		ns += vgettsc(tsc_timestamp, &mode);
1927 		ns >>= gtod->clock.shift;
1928 		ns += gtod->boot_ns;
1929 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1930 	*t = ns;
1931 
1932 	return mode;
1933 }
1934 
1935 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1936 {
1937 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1938 	unsigned long seq;
1939 	int mode;
1940 	u64 ns;
1941 
1942 	do {
1943 		seq = read_seqcount_begin(&gtod->seq);
1944 		ts->tv_sec = gtod->wall_time_sec;
1945 		ns = gtod->nsec_base;
1946 		ns += vgettsc(tsc_timestamp, &mode);
1947 		ns >>= gtod->clock.shift;
1948 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1949 
1950 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1951 	ts->tv_nsec = ns;
1952 
1953 	return mode;
1954 }
1955 
1956 /* returns true if host is using TSC based clocksource */
1957 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1958 {
1959 	/* checked again under seqlock below */
1960 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1961 		return false;
1962 
1963 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1964 						      tsc_timestamp));
1965 }
1966 
1967 /* returns true if host is using TSC based clocksource */
1968 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1969 					   u64 *tsc_timestamp)
1970 {
1971 	/* checked again under seqlock below */
1972 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1973 		return false;
1974 
1975 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1976 }
1977 #endif
1978 
1979 /*
1980  *
1981  * Assuming a stable TSC across physical CPUS, and a stable TSC
1982  * across virtual CPUs, the following condition is possible.
1983  * Each numbered line represents an event visible to both
1984  * CPUs at the next numbered event.
1985  *
1986  * "timespecX" represents host monotonic time. "tscX" represents
1987  * RDTSC value.
1988  *
1989  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1990  *
1991  * 1.  read timespec0,tsc0
1992  * 2.					| timespec1 = timespec0 + N
1993  * 					| tsc1 = tsc0 + M
1994  * 3. transition to guest		| transition to guest
1995  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1996  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1997  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1998  *
1999  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2000  *
2001  * 	- ret0 < ret1
2002  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2003  *		...
2004  *	- 0 < N - M => M < N
2005  *
2006  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2007  * always the case (the difference between two distinct xtime instances
2008  * might be smaller then the difference between corresponding TSC reads,
2009  * when updating guest vcpus pvclock areas).
2010  *
2011  * To avoid that problem, do not allow visibility of distinct
2012  * system_timestamp/tsc_timestamp values simultaneously: use a master
2013  * copy of host monotonic time values. Update that master copy
2014  * in lockstep.
2015  *
2016  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2017  *
2018  */
2019 
2020 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2021 {
2022 #ifdef CONFIG_X86_64
2023 	struct kvm_arch *ka = &kvm->arch;
2024 	int vclock_mode;
2025 	bool host_tsc_clocksource, vcpus_matched;
2026 
2027 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2028 			atomic_read(&kvm->online_vcpus));
2029 
2030 	/*
2031 	 * If the host uses TSC clock, then passthrough TSC as stable
2032 	 * to the guest.
2033 	 */
2034 	host_tsc_clocksource = kvm_get_time_and_clockread(
2035 					&ka->master_kernel_ns,
2036 					&ka->master_cycle_now);
2037 
2038 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2039 				&& !ka->backwards_tsc_observed
2040 				&& !ka->boot_vcpu_runs_old_kvmclock;
2041 
2042 	if (ka->use_master_clock)
2043 		atomic_set(&kvm_guest_has_master_clock, 1);
2044 
2045 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2046 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2047 					vcpus_matched);
2048 #endif
2049 }
2050 
2051 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2052 {
2053 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2054 }
2055 
2056 static void kvm_gen_update_masterclock(struct kvm *kvm)
2057 {
2058 #ifdef CONFIG_X86_64
2059 	int i;
2060 	struct kvm_vcpu *vcpu;
2061 	struct kvm_arch *ka = &kvm->arch;
2062 
2063 	spin_lock(&ka->pvclock_gtod_sync_lock);
2064 	kvm_make_mclock_inprogress_request(kvm);
2065 	/* no guest entries from this point */
2066 	pvclock_update_vm_gtod_copy(kvm);
2067 
2068 	kvm_for_each_vcpu(i, vcpu, kvm)
2069 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2070 
2071 	/* guest entries allowed */
2072 	kvm_for_each_vcpu(i, vcpu, kvm)
2073 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2074 
2075 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2076 #endif
2077 }
2078 
2079 u64 get_kvmclock_ns(struct kvm *kvm)
2080 {
2081 	struct kvm_arch *ka = &kvm->arch;
2082 	struct pvclock_vcpu_time_info hv_clock;
2083 	u64 ret;
2084 
2085 	spin_lock(&ka->pvclock_gtod_sync_lock);
2086 	if (!ka->use_master_clock) {
2087 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2088 		return ktime_get_boottime_ns() + ka->kvmclock_offset;
2089 	}
2090 
2091 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2092 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2093 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2094 
2095 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2096 	get_cpu();
2097 
2098 	if (__this_cpu_read(cpu_tsc_khz)) {
2099 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2100 				   &hv_clock.tsc_shift,
2101 				   &hv_clock.tsc_to_system_mul);
2102 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2103 	} else
2104 		ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2105 
2106 	put_cpu();
2107 
2108 	return ret;
2109 }
2110 
2111 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2112 {
2113 	struct kvm_vcpu_arch *vcpu = &v->arch;
2114 	struct pvclock_vcpu_time_info guest_hv_clock;
2115 
2116 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2117 		&guest_hv_clock, sizeof(guest_hv_clock))))
2118 		return;
2119 
2120 	/* This VCPU is paused, but it's legal for a guest to read another
2121 	 * VCPU's kvmclock, so we really have to follow the specification where
2122 	 * it says that version is odd if data is being modified, and even after
2123 	 * it is consistent.
2124 	 *
2125 	 * Version field updates must be kept separate.  This is because
2126 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2127 	 * writes within a string instruction are weakly ordered.  So there
2128 	 * are three writes overall.
2129 	 *
2130 	 * As a small optimization, only write the version field in the first
2131 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2132 	 * version field is the first in the struct.
2133 	 */
2134 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2135 
2136 	if (guest_hv_clock.version & 1)
2137 		++guest_hv_clock.version;  /* first time write, random junk */
2138 
2139 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2140 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2141 				&vcpu->hv_clock,
2142 				sizeof(vcpu->hv_clock.version));
2143 
2144 	smp_wmb();
2145 
2146 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2147 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2148 
2149 	if (vcpu->pvclock_set_guest_stopped_request) {
2150 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2151 		vcpu->pvclock_set_guest_stopped_request = false;
2152 	}
2153 
2154 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2155 
2156 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2157 				&vcpu->hv_clock,
2158 				sizeof(vcpu->hv_clock));
2159 
2160 	smp_wmb();
2161 
2162 	vcpu->hv_clock.version++;
2163 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2164 				&vcpu->hv_clock,
2165 				sizeof(vcpu->hv_clock.version));
2166 }
2167 
2168 static int kvm_guest_time_update(struct kvm_vcpu *v)
2169 {
2170 	unsigned long flags, tgt_tsc_khz;
2171 	struct kvm_vcpu_arch *vcpu = &v->arch;
2172 	struct kvm_arch *ka = &v->kvm->arch;
2173 	s64 kernel_ns;
2174 	u64 tsc_timestamp, host_tsc;
2175 	u8 pvclock_flags;
2176 	bool use_master_clock;
2177 
2178 	kernel_ns = 0;
2179 	host_tsc = 0;
2180 
2181 	/*
2182 	 * If the host uses TSC clock, then passthrough TSC as stable
2183 	 * to the guest.
2184 	 */
2185 	spin_lock(&ka->pvclock_gtod_sync_lock);
2186 	use_master_clock = ka->use_master_clock;
2187 	if (use_master_clock) {
2188 		host_tsc = ka->master_cycle_now;
2189 		kernel_ns = ka->master_kernel_ns;
2190 	}
2191 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2192 
2193 	/* Keep irq disabled to prevent changes to the clock */
2194 	local_irq_save(flags);
2195 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2196 	if (unlikely(tgt_tsc_khz == 0)) {
2197 		local_irq_restore(flags);
2198 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2199 		return 1;
2200 	}
2201 	if (!use_master_clock) {
2202 		host_tsc = rdtsc();
2203 		kernel_ns = ktime_get_boottime_ns();
2204 	}
2205 
2206 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2207 
2208 	/*
2209 	 * We may have to catch up the TSC to match elapsed wall clock
2210 	 * time for two reasons, even if kvmclock is used.
2211 	 *   1) CPU could have been running below the maximum TSC rate
2212 	 *   2) Broken TSC compensation resets the base at each VCPU
2213 	 *      entry to avoid unknown leaps of TSC even when running
2214 	 *      again on the same CPU.  This may cause apparent elapsed
2215 	 *      time to disappear, and the guest to stand still or run
2216 	 *	very slowly.
2217 	 */
2218 	if (vcpu->tsc_catchup) {
2219 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2220 		if (tsc > tsc_timestamp) {
2221 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2222 			tsc_timestamp = tsc;
2223 		}
2224 	}
2225 
2226 	local_irq_restore(flags);
2227 
2228 	/* With all the info we got, fill in the values */
2229 
2230 	if (kvm_has_tsc_control)
2231 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2232 
2233 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2234 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2235 				   &vcpu->hv_clock.tsc_shift,
2236 				   &vcpu->hv_clock.tsc_to_system_mul);
2237 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2238 	}
2239 
2240 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2241 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2242 	vcpu->last_guest_tsc = tsc_timestamp;
2243 
2244 	/* If the host uses TSC clocksource, then it is stable */
2245 	pvclock_flags = 0;
2246 	if (use_master_clock)
2247 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2248 
2249 	vcpu->hv_clock.flags = pvclock_flags;
2250 
2251 	if (vcpu->pv_time_enabled)
2252 		kvm_setup_pvclock_page(v);
2253 	if (v == kvm_get_vcpu(v->kvm, 0))
2254 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2255 	return 0;
2256 }
2257 
2258 /*
2259  * kvmclock updates which are isolated to a given vcpu, such as
2260  * vcpu->cpu migration, should not allow system_timestamp from
2261  * the rest of the vcpus to remain static. Otherwise ntp frequency
2262  * correction applies to one vcpu's system_timestamp but not
2263  * the others.
2264  *
2265  * So in those cases, request a kvmclock update for all vcpus.
2266  * We need to rate-limit these requests though, as they can
2267  * considerably slow guests that have a large number of vcpus.
2268  * The time for a remote vcpu to update its kvmclock is bound
2269  * by the delay we use to rate-limit the updates.
2270  */
2271 
2272 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2273 
2274 static void kvmclock_update_fn(struct work_struct *work)
2275 {
2276 	int i;
2277 	struct delayed_work *dwork = to_delayed_work(work);
2278 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2279 					   kvmclock_update_work);
2280 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2281 	struct kvm_vcpu *vcpu;
2282 
2283 	kvm_for_each_vcpu(i, vcpu, kvm) {
2284 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2285 		kvm_vcpu_kick(vcpu);
2286 	}
2287 }
2288 
2289 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2290 {
2291 	struct kvm *kvm = v->kvm;
2292 
2293 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2294 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2295 					KVMCLOCK_UPDATE_DELAY);
2296 }
2297 
2298 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2299 
2300 static void kvmclock_sync_fn(struct work_struct *work)
2301 {
2302 	struct delayed_work *dwork = to_delayed_work(work);
2303 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2304 					   kvmclock_sync_work);
2305 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2306 
2307 	if (!kvmclock_periodic_sync)
2308 		return;
2309 
2310 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2311 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2312 					KVMCLOCK_SYNC_PERIOD);
2313 }
2314 
2315 /*
2316  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2317  */
2318 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2319 {
2320 	/* McStatusWrEn enabled? */
2321 	if (guest_cpuid_is_amd(vcpu))
2322 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2323 
2324 	return false;
2325 }
2326 
2327 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2328 {
2329 	u64 mcg_cap = vcpu->arch.mcg_cap;
2330 	unsigned bank_num = mcg_cap & 0xff;
2331 	u32 msr = msr_info->index;
2332 	u64 data = msr_info->data;
2333 
2334 	switch (msr) {
2335 	case MSR_IA32_MCG_STATUS:
2336 		vcpu->arch.mcg_status = data;
2337 		break;
2338 	case MSR_IA32_MCG_CTL:
2339 		if (!(mcg_cap & MCG_CTL_P) &&
2340 		    (data || !msr_info->host_initiated))
2341 			return 1;
2342 		if (data != 0 && data != ~(u64)0)
2343 			return 1;
2344 		vcpu->arch.mcg_ctl = data;
2345 		break;
2346 	default:
2347 		if (msr >= MSR_IA32_MC0_CTL &&
2348 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2349 			u32 offset = msr - MSR_IA32_MC0_CTL;
2350 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2351 			 * some Linux kernels though clear bit 10 in bank 4 to
2352 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2353 			 * this to avoid an uncatched #GP in the guest
2354 			 */
2355 			if ((offset & 0x3) == 0 &&
2356 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2357 				return -1;
2358 
2359 			/* MCi_STATUS */
2360 			if (!msr_info->host_initiated &&
2361 			    (offset & 0x3) == 1 && data != 0) {
2362 				if (!can_set_mci_status(vcpu))
2363 					return -1;
2364 			}
2365 
2366 			vcpu->arch.mce_banks[offset] = data;
2367 			break;
2368 		}
2369 		return 1;
2370 	}
2371 	return 0;
2372 }
2373 
2374 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2375 {
2376 	struct kvm *kvm = vcpu->kvm;
2377 	int lm = is_long_mode(vcpu);
2378 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2379 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2380 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2381 		: kvm->arch.xen_hvm_config.blob_size_32;
2382 	u32 page_num = data & ~PAGE_MASK;
2383 	u64 page_addr = data & PAGE_MASK;
2384 	u8 *page;
2385 	int r;
2386 
2387 	r = -E2BIG;
2388 	if (page_num >= blob_size)
2389 		goto out;
2390 	r = -ENOMEM;
2391 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2392 	if (IS_ERR(page)) {
2393 		r = PTR_ERR(page);
2394 		goto out;
2395 	}
2396 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2397 		goto out_free;
2398 	r = 0;
2399 out_free:
2400 	kfree(page);
2401 out:
2402 	return r;
2403 }
2404 
2405 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2406 {
2407 	gpa_t gpa = data & ~0x3f;
2408 
2409 	/* Bits 3:5 are reserved, Should be zero */
2410 	if (data & 0x38)
2411 		return 1;
2412 
2413 	vcpu->arch.apf.msr_val = data;
2414 
2415 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2416 		kvm_clear_async_pf_completion_queue(vcpu);
2417 		kvm_async_pf_hash_reset(vcpu);
2418 		return 0;
2419 	}
2420 
2421 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2422 					sizeof(u32)))
2423 		return 1;
2424 
2425 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2426 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2427 	kvm_async_pf_wakeup_all(vcpu);
2428 	return 0;
2429 }
2430 
2431 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2432 {
2433 	vcpu->arch.pv_time_enabled = false;
2434 }
2435 
2436 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2437 {
2438 	++vcpu->stat.tlb_flush;
2439 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2440 }
2441 
2442 static void record_steal_time(struct kvm_vcpu *vcpu)
2443 {
2444 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2445 		return;
2446 
2447 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2448 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2449 		return;
2450 
2451 	/*
2452 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2453 	 * expensive IPIs.
2454 	 */
2455 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2456 		kvm_vcpu_flush_tlb(vcpu, false);
2457 
2458 	if (vcpu->arch.st.steal.version & 1)
2459 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2460 
2461 	vcpu->arch.st.steal.version += 1;
2462 
2463 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2464 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2465 
2466 	smp_wmb();
2467 
2468 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2469 		vcpu->arch.st.last_steal;
2470 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2471 
2472 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2473 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2474 
2475 	smp_wmb();
2476 
2477 	vcpu->arch.st.steal.version += 1;
2478 
2479 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2480 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2481 }
2482 
2483 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2484 {
2485 	bool pr = false;
2486 	u32 msr = msr_info->index;
2487 	u64 data = msr_info->data;
2488 
2489 	switch (msr) {
2490 	case MSR_AMD64_NB_CFG:
2491 	case MSR_IA32_UCODE_WRITE:
2492 	case MSR_VM_HSAVE_PA:
2493 	case MSR_AMD64_PATCH_LOADER:
2494 	case MSR_AMD64_BU_CFG2:
2495 	case MSR_AMD64_DC_CFG:
2496 	case MSR_F15H_EX_CFG:
2497 		break;
2498 
2499 	case MSR_IA32_UCODE_REV:
2500 		if (msr_info->host_initiated)
2501 			vcpu->arch.microcode_version = data;
2502 		break;
2503 	case MSR_IA32_ARCH_CAPABILITIES:
2504 		if (!msr_info->host_initiated)
2505 			return 1;
2506 		vcpu->arch.arch_capabilities = data;
2507 		break;
2508 	case MSR_EFER:
2509 		return set_efer(vcpu, msr_info);
2510 	case MSR_K7_HWCR:
2511 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2512 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2513 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2514 
2515 		/* Handle McStatusWrEn */
2516 		if (data == BIT_ULL(18)) {
2517 			vcpu->arch.msr_hwcr = data;
2518 		} else if (data != 0) {
2519 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2520 				    data);
2521 			return 1;
2522 		}
2523 		break;
2524 	case MSR_FAM10H_MMIO_CONF_BASE:
2525 		if (data != 0) {
2526 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2527 				    "0x%llx\n", data);
2528 			return 1;
2529 		}
2530 		break;
2531 	case MSR_IA32_DEBUGCTLMSR:
2532 		if (!data) {
2533 			/* We support the non-activated case already */
2534 			break;
2535 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2536 			/* Values other than LBR and BTF are vendor-specific,
2537 			   thus reserved and should throw a #GP */
2538 			return 1;
2539 		}
2540 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2541 			    __func__, data);
2542 		break;
2543 	case 0x200 ... 0x2ff:
2544 		return kvm_mtrr_set_msr(vcpu, msr, data);
2545 	case MSR_IA32_APICBASE:
2546 		return kvm_set_apic_base(vcpu, msr_info);
2547 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2548 		return kvm_x2apic_msr_write(vcpu, msr, data);
2549 	case MSR_IA32_TSCDEADLINE:
2550 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2551 		break;
2552 	case MSR_IA32_TSC_ADJUST:
2553 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2554 			if (!msr_info->host_initiated) {
2555 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2556 				adjust_tsc_offset_guest(vcpu, adj);
2557 			}
2558 			vcpu->arch.ia32_tsc_adjust_msr = data;
2559 		}
2560 		break;
2561 	case MSR_IA32_MISC_ENABLE:
2562 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2563 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2564 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2565 				return 1;
2566 			vcpu->arch.ia32_misc_enable_msr = data;
2567 			kvm_update_cpuid(vcpu);
2568 		} else {
2569 			vcpu->arch.ia32_misc_enable_msr = data;
2570 		}
2571 		break;
2572 	case MSR_IA32_SMBASE:
2573 		if (!msr_info->host_initiated)
2574 			return 1;
2575 		vcpu->arch.smbase = data;
2576 		break;
2577 	case MSR_IA32_POWER_CTL:
2578 		vcpu->arch.msr_ia32_power_ctl = data;
2579 		break;
2580 	case MSR_IA32_TSC:
2581 		kvm_write_tsc(vcpu, msr_info);
2582 		break;
2583 	case MSR_SMI_COUNT:
2584 		if (!msr_info->host_initiated)
2585 			return 1;
2586 		vcpu->arch.smi_count = data;
2587 		break;
2588 	case MSR_KVM_WALL_CLOCK_NEW:
2589 	case MSR_KVM_WALL_CLOCK:
2590 		vcpu->kvm->arch.wall_clock = data;
2591 		kvm_write_wall_clock(vcpu->kvm, data);
2592 		break;
2593 	case MSR_KVM_SYSTEM_TIME_NEW:
2594 	case MSR_KVM_SYSTEM_TIME: {
2595 		struct kvm_arch *ka = &vcpu->kvm->arch;
2596 
2597 		kvmclock_reset(vcpu);
2598 
2599 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2600 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2601 
2602 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2603 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2604 
2605 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2606 		}
2607 
2608 		vcpu->arch.time = data;
2609 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2610 
2611 		/* we verify if the enable bit is set... */
2612 		if (!(data & 1))
2613 			break;
2614 
2615 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2616 		     &vcpu->arch.pv_time, data & ~1ULL,
2617 		     sizeof(struct pvclock_vcpu_time_info)))
2618 			vcpu->arch.pv_time_enabled = false;
2619 		else
2620 			vcpu->arch.pv_time_enabled = true;
2621 
2622 		break;
2623 	}
2624 	case MSR_KVM_ASYNC_PF_EN:
2625 		if (kvm_pv_enable_async_pf(vcpu, data))
2626 			return 1;
2627 		break;
2628 	case MSR_KVM_STEAL_TIME:
2629 
2630 		if (unlikely(!sched_info_on()))
2631 			return 1;
2632 
2633 		if (data & KVM_STEAL_RESERVED_MASK)
2634 			return 1;
2635 
2636 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2637 						data & KVM_STEAL_VALID_BITS,
2638 						sizeof(struct kvm_steal_time)))
2639 			return 1;
2640 
2641 		vcpu->arch.st.msr_val = data;
2642 
2643 		if (!(data & KVM_MSR_ENABLED))
2644 			break;
2645 
2646 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2647 
2648 		break;
2649 	case MSR_KVM_PV_EOI_EN:
2650 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2651 			return 1;
2652 		break;
2653 
2654 	case MSR_KVM_POLL_CONTROL:
2655 		/* only enable bit supported */
2656 		if (data & (-1ULL << 1))
2657 			return 1;
2658 
2659 		vcpu->arch.msr_kvm_poll_control = data;
2660 		break;
2661 
2662 	case MSR_IA32_MCG_CTL:
2663 	case MSR_IA32_MCG_STATUS:
2664 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2665 		return set_msr_mce(vcpu, msr_info);
2666 
2667 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2668 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2669 		pr = true; /* fall through */
2670 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2671 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2672 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2673 			return kvm_pmu_set_msr(vcpu, msr_info);
2674 
2675 		if (pr || data != 0)
2676 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2677 				    "0x%x data 0x%llx\n", msr, data);
2678 		break;
2679 	case MSR_K7_CLK_CTL:
2680 		/*
2681 		 * Ignore all writes to this no longer documented MSR.
2682 		 * Writes are only relevant for old K7 processors,
2683 		 * all pre-dating SVM, but a recommended workaround from
2684 		 * AMD for these chips. It is possible to specify the
2685 		 * affected processor models on the command line, hence
2686 		 * the need to ignore the workaround.
2687 		 */
2688 		break;
2689 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2690 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2691 	case HV_X64_MSR_CRASH_CTL:
2692 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2693 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2694 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2695 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2696 		return kvm_hv_set_msr_common(vcpu, msr, data,
2697 					     msr_info->host_initiated);
2698 	case MSR_IA32_BBL_CR_CTL3:
2699 		/* Drop writes to this legacy MSR -- see rdmsr
2700 		 * counterpart for further detail.
2701 		 */
2702 		if (report_ignored_msrs)
2703 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2704 				msr, data);
2705 		break;
2706 	case MSR_AMD64_OSVW_ID_LENGTH:
2707 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2708 			return 1;
2709 		vcpu->arch.osvw.length = data;
2710 		break;
2711 	case MSR_AMD64_OSVW_STATUS:
2712 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2713 			return 1;
2714 		vcpu->arch.osvw.status = data;
2715 		break;
2716 	case MSR_PLATFORM_INFO:
2717 		if (!msr_info->host_initiated ||
2718 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2719 		     cpuid_fault_enabled(vcpu)))
2720 			return 1;
2721 		vcpu->arch.msr_platform_info = data;
2722 		break;
2723 	case MSR_MISC_FEATURES_ENABLES:
2724 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2725 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2726 		     !supports_cpuid_fault(vcpu)))
2727 			return 1;
2728 		vcpu->arch.msr_misc_features_enables = data;
2729 		break;
2730 	default:
2731 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2732 			return xen_hvm_config(vcpu, data);
2733 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2734 			return kvm_pmu_set_msr(vcpu, msr_info);
2735 		if (!ignore_msrs) {
2736 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2737 				    msr, data);
2738 			return 1;
2739 		} else {
2740 			if (report_ignored_msrs)
2741 				vcpu_unimpl(vcpu,
2742 					"ignored wrmsr: 0x%x data 0x%llx\n",
2743 					msr, data);
2744 			break;
2745 		}
2746 	}
2747 	return 0;
2748 }
2749 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2750 
2751 
2752 /*
2753  * Reads an msr value (of 'msr_index') into 'pdata'.
2754  * Returns 0 on success, non-0 otherwise.
2755  * Assumes vcpu_load() was already called.
2756  */
2757 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2758 {
2759 	return kvm_x86_ops->get_msr(vcpu, msr);
2760 }
2761 EXPORT_SYMBOL_GPL(kvm_get_msr);
2762 
2763 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2764 {
2765 	u64 data;
2766 	u64 mcg_cap = vcpu->arch.mcg_cap;
2767 	unsigned bank_num = mcg_cap & 0xff;
2768 
2769 	switch (msr) {
2770 	case MSR_IA32_P5_MC_ADDR:
2771 	case MSR_IA32_P5_MC_TYPE:
2772 		data = 0;
2773 		break;
2774 	case MSR_IA32_MCG_CAP:
2775 		data = vcpu->arch.mcg_cap;
2776 		break;
2777 	case MSR_IA32_MCG_CTL:
2778 		if (!(mcg_cap & MCG_CTL_P) && !host)
2779 			return 1;
2780 		data = vcpu->arch.mcg_ctl;
2781 		break;
2782 	case MSR_IA32_MCG_STATUS:
2783 		data = vcpu->arch.mcg_status;
2784 		break;
2785 	default:
2786 		if (msr >= MSR_IA32_MC0_CTL &&
2787 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2788 			u32 offset = msr - MSR_IA32_MC0_CTL;
2789 			data = vcpu->arch.mce_banks[offset];
2790 			break;
2791 		}
2792 		return 1;
2793 	}
2794 	*pdata = data;
2795 	return 0;
2796 }
2797 
2798 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2799 {
2800 	switch (msr_info->index) {
2801 	case MSR_IA32_PLATFORM_ID:
2802 	case MSR_IA32_EBL_CR_POWERON:
2803 	case MSR_IA32_DEBUGCTLMSR:
2804 	case MSR_IA32_LASTBRANCHFROMIP:
2805 	case MSR_IA32_LASTBRANCHTOIP:
2806 	case MSR_IA32_LASTINTFROMIP:
2807 	case MSR_IA32_LASTINTTOIP:
2808 	case MSR_K8_SYSCFG:
2809 	case MSR_K8_TSEG_ADDR:
2810 	case MSR_K8_TSEG_MASK:
2811 	case MSR_VM_HSAVE_PA:
2812 	case MSR_K8_INT_PENDING_MSG:
2813 	case MSR_AMD64_NB_CFG:
2814 	case MSR_FAM10H_MMIO_CONF_BASE:
2815 	case MSR_AMD64_BU_CFG2:
2816 	case MSR_IA32_PERF_CTL:
2817 	case MSR_AMD64_DC_CFG:
2818 	case MSR_F15H_EX_CFG:
2819 		msr_info->data = 0;
2820 		break;
2821 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2822 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2823 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2824 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2825 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2826 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2827 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2828 		msr_info->data = 0;
2829 		break;
2830 	case MSR_IA32_UCODE_REV:
2831 		msr_info->data = vcpu->arch.microcode_version;
2832 		break;
2833 	case MSR_IA32_ARCH_CAPABILITIES:
2834 		if (!msr_info->host_initiated &&
2835 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2836 			return 1;
2837 		msr_info->data = vcpu->arch.arch_capabilities;
2838 		break;
2839 	case MSR_IA32_POWER_CTL:
2840 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2841 		break;
2842 	case MSR_IA32_TSC:
2843 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2844 		break;
2845 	case MSR_MTRRcap:
2846 	case 0x200 ... 0x2ff:
2847 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2848 	case 0xcd: /* fsb frequency */
2849 		msr_info->data = 3;
2850 		break;
2851 		/*
2852 		 * MSR_EBC_FREQUENCY_ID
2853 		 * Conservative value valid for even the basic CPU models.
2854 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2855 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2856 		 * and 266MHz for model 3, or 4. Set Core Clock
2857 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2858 		 * 31:24) even though these are only valid for CPU
2859 		 * models > 2, however guests may end up dividing or
2860 		 * multiplying by zero otherwise.
2861 		 */
2862 	case MSR_EBC_FREQUENCY_ID:
2863 		msr_info->data = 1 << 24;
2864 		break;
2865 	case MSR_IA32_APICBASE:
2866 		msr_info->data = kvm_get_apic_base(vcpu);
2867 		break;
2868 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2869 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2870 		break;
2871 	case MSR_IA32_TSCDEADLINE:
2872 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2873 		break;
2874 	case MSR_IA32_TSC_ADJUST:
2875 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2876 		break;
2877 	case MSR_IA32_MISC_ENABLE:
2878 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2879 		break;
2880 	case MSR_IA32_SMBASE:
2881 		if (!msr_info->host_initiated)
2882 			return 1;
2883 		msr_info->data = vcpu->arch.smbase;
2884 		break;
2885 	case MSR_SMI_COUNT:
2886 		msr_info->data = vcpu->arch.smi_count;
2887 		break;
2888 	case MSR_IA32_PERF_STATUS:
2889 		/* TSC increment by tick */
2890 		msr_info->data = 1000ULL;
2891 		/* CPU multiplier */
2892 		msr_info->data |= (((uint64_t)4ULL) << 40);
2893 		break;
2894 	case MSR_EFER:
2895 		msr_info->data = vcpu->arch.efer;
2896 		break;
2897 	case MSR_KVM_WALL_CLOCK:
2898 	case MSR_KVM_WALL_CLOCK_NEW:
2899 		msr_info->data = vcpu->kvm->arch.wall_clock;
2900 		break;
2901 	case MSR_KVM_SYSTEM_TIME:
2902 	case MSR_KVM_SYSTEM_TIME_NEW:
2903 		msr_info->data = vcpu->arch.time;
2904 		break;
2905 	case MSR_KVM_ASYNC_PF_EN:
2906 		msr_info->data = vcpu->arch.apf.msr_val;
2907 		break;
2908 	case MSR_KVM_STEAL_TIME:
2909 		msr_info->data = vcpu->arch.st.msr_val;
2910 		break;
2911 	case MSR_KVM_PV_EOI_EN:
2912 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2913 		break;
2914 	case MSR_KVM_POLL_CONTROL:
2915 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
2916 		break;
2917 	case MSR_IA32_P5_MC_ADDR:
2918 	case MSR_IA32_P5_MC_TYPE:
2919 	case MSR_IA32_MCG_CAP:
2920 	case MSR_IA32_MCG_CTL:
2921 	case MSR_IA32_MCG_STATUS:
2922 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2923 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2924 				   msr_info->host_initiated);
2925 	case MSR_K7_CLK_CTL:
2926 		/*
2927 		 * Provide expected ramp-up count for K7. All other
2928 		 * are set to zero, indicating minimum divisors for
2929 		 * every field.
2930 		 *
2931 		 * This prevents guest kernels on AMD host with CPU
2932 		 * type 6, model 8 and higher from exploding due to
2933 		 * the rdmsr failing.
2934 		 */
2935 		msr_info->data = 0x20000000;
2936 		break;
2937 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2938 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2939 	case HV_X64_MSR_CRASH_CTL:
2940 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2941 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2942 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2943 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2944 		return kvm_hv_get_msr_common(vcpu,
2945 					     msr_info->index, &msr_info->data,
2946 					     msr_info->host_initiated);
2947 		break;
2948 	case MSR_IA32_BBL_CR_CTL3:
2949 		/* This legacy MSR exists but isn't fully documented in current
2950 		 * silicon.  It is however accessed by winxp in very narrow
2951 		 * scenarios where it sets bit #19, itself documented as
2952 		 * a "reserved" bit.  Best effort attempt to source coherent
2953 		 * read data here should the balance of the register be
2954 		 * interpreted by the guest:
2955 		 *
2956 		 * L2 cache control register 3: 64GB range, 256KB size,
2957 		 * enabled, latency 0x1, configured
2958 		 */
2959 		msr_info->data = 0xbe702111;
2960 		break;
2961 	case MSR_AMD64_OSVW_ID_LENGTH:
2962 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2963 			return 1;
2964 		msr_info->data = vcpu->arch.osvw.length;
2965 		break;
2966 	case MSR_AMD64_OSVW_STATUS:
2967 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2968 			return 1;
2969 		msr_info->data = vcpu->arch.osvw.status;
2970 		break;
2971 	case MSR_PLATFORM_INFO:
2972 		if (!msr_info->host_initiated &&
2973 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2974 			return 1;
2975 		msr_info->data = vcpu->arch.msr_platform_info;
2976 		break;
2977 	case MSR_MISC_FEATURES_ENABLES:
2978 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2979 		break;
2980 	case MSR_K7_HWCR:
2981 		msr_info->data = vcpu->arch.msr_hwcr;
2982 		break;
2983 	default:
2984 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2985 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2986 		if (!ignore_msrs) {
2987 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2988 					       msr_info->index);
2989 			return 1;
2990 		} else {
2991 			if (report_ignored_msrs)
2992 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2993 					msr_info->index);
2994 			msr_info->data = 0;
2995 		}
2996 		break;
2997 	}
2998 	return 0;
2999 }
3000 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3001 
3002 /*
3003  * Read or write a bunch of msrs. All parameters are kernel addresses.
3004  *
3005  * @return number of msrs set successfully.
3006  */
3007 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3008 		    struct kvm_msr_entry *entries,
3009 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3010 				  unsigned index, u64 *data))
3011 {
3012 	int i;
3013 
3014 	for (i = 0; i < msrs->nmsrs; ++i)
3015 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3016 			break;
3017 
3018 	return i;
3019 }
3020 
3021 /*
3022  * Read or write a bunch of msrs. Parameters are user addresses.
3023  *
3024  * @return number of msrs set successfully.
3025  */
3026 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3027 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3028 				unsigned index, u64 *data),
3029 		  int writeback)
3030 {
3031 	struct kvm_msrs msrs;
3032 	struct kvm_msr_entry *entries;
3033 	int r, n;
3034 	unsigned size;
3035 
3036 	r = -EFAULT;
3037 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3038 		goto out;
3039 
3040 	r = -E2BIG;
3041 	if (msrs.nmsrs >= MAX_IO_MSRS)
3042 		goto out;
3043 
3044 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3045 	entries = memdup_user(user_msrs->entries, size);
3046 	if (IS_ERR(entries)) {
3047 		r = PTR_ERR(entries);
3048 		goto out;
3049 	}
3050 
3051 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3052 	if (r < 0)
3053 		goto out_free;
3054 
3055 	r = -EFAULT;
3056 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3057 		goto out_free;
3058 
3059 	r = n;
3060 
3061 out_free:
3062 	kfree(entries);
3063 out:
3064 	return r;
3065 }
3066 
3067 static inline bool kvm_can_mwait_in_guest(void)
3068 {
3069 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3070 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3071 		boot_cpu_has(X86_FEATURE_ARAT);
3072 }
3073 
3074 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3075 {
3076 	int r = 0;
3077 
3078 	switch (ext) {
3079 	case KVM_CAP_IRQCHIP:
3080 	case KVM_CAP_HLT:
3081 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3082 	case KVM_CAP_SET_TSS_ADDR:
3083 	case KVM_CAP_EXT_CPUID:
3084 	case KVM_CAP_EXT_EMUL_CPUID:
3085 	case KVM_CAP_CLOCKSOURCE:
3086 	case KVM_CAP_PIT:
3087 	case KVM_CAP_NOP_IO_DELAY:
3088 	case KVM_CAP_MP_STATE:
3089 	case KVM_CAP_SYNC_MMU:
3090 	case KVM_CAP_USER_NMI:
3091 	case KVM_CAP_REINJECT_CONTROL:
3092 	case KVM_CAP_IRQ_INJECT_STATUS:
3093 	case KVM_CAP_IOEVENTFD:
3094 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3095 	case KVM_CAP_PIT2:
3096 	case KVM_CAP_PIT_STATE2:
3097 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3098 	case KVM_CAP_XEN_HVM:
3099 	case KVM_CAP_VCPU_EVENTS:
3100 	case KVM_CAP_HYPERV:
3101 	case KVM_CAP_HYPERV_VAPIC:
3102 	case KVM_CAP_HYPERV_SPIN:
3103 	case KVM_CAP_HYPERV_SYNIC:
3104 	case KVM_CAP_HYPERV_SYNIC2:
3105 	case KVM_CAP_HYPERV_VP_INDEX:
3106 	case KVM_CAP_HYPERV_EVENTFD:
3107 	case KVM_CAP_HYPERV_TLBFLUSH:
3108 	case KVM_CAP_HYPERV_SEND_IPI:
3109 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3110 	case KVM_CAP_HYPERV_CPUID:
3111 	case KVM_CAP_PCI_SEGMENT:
3112 	case KVM_CAP_DEBUGREGS:
3113 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3114 	case KVM_CAP_XSAVE:
3115 	case KVM_CAP_ASYNC_PF:
3116 	case KVM_CAP_GET_TSC_KHZ:
3117 	case KVM_CAP_KVMCLOCK_CTRL:
3118 	case KVM_CAP_READONLY_MEM:
3119 	case KVM_CAP_HYPERV_TIME:
3120 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3121 	case KVM_CAP_TSC_DEADLINE_TIMER:
3122 	case KVM_CAP_DISABLE_QUIRKS:
3123 	case KVM_CAP_SET_BOOT_CPU_ID:
3124  	case KVM_CAP_SPLIT_IRQCHIP:
3125 	case KVM_CAP_IMMEDIATE_EXIT:
3126 	case KVM_CAP_PMU_EVENT_FILTER:
3127 	case KVM_CAP_GET_MSR_FEATURES:
3128 	case KVM_CAP_MSR_PLATFORM_INFO:
3129 	case KVM_CAP_EXCEPTION_PAYLOAD:
3130 		r = 1;
3131 		break;
3132 	case KVM_CAP_SYNC_REGS:
3133 		r = KVM_SYNC_X86_VALID_FIELDS;
3134 		break;
3135 	case KVM_CAP_ADJUST_CLOCK:
3136 		r = KVM_CLOCK_TSC_STABLE;
3137 		break;
3138 	case KVM_CAP_X86_DISABLE_EXITS:
3139 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3140 		      KVM_X86_DISABLE_EXITS_CSTATE;
3141 		if(kvm_can_mwait_in_guest())
3142 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3143 		break;
3144 	case KVM_CAP_X86_SMM:
3145 		/* SMBASE is usually relocated above 1M on modern chipsets,
3146 		 * and SMM handlers might indeed rely on 4G segment limits,
3147 		 * so do not report SMM to be available if real mode is
3148 		 * emulated via vm86 mode.  Still, do not go to great lengths
3149 		 * to avoid userspace's usage of the feature, because it is a
3150 		 * fringe case that is not enabled except via specific settings
3151 		 * of the module parameters.
3152 		 */
3153 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3154 		break;
3155 	case KVM_CAP_VAPIC:
3156 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3157 		break;
3158 	case KVM_CAP_NR_VCPUS:
3159 		r = KVM_SOFT_MAX_VCPUS;
3160 		break;
3161 	case KVM_CAP_MAX_VCPUS:
3162 		r = KVM_MAX_VCPUS;
3163 		break;
3164 	case KVM_CAP_MAX_VCPU_ID:
3165 		r = KVM_MAX_VCPU_ID;
3166 		break;
3167 	case KVM_CAP_PV_MMU:	/* obsolete */
3168 		r = 0;
3169 		break;
3170 	case KVM_CAP_MCE:
3171 		r = KVM_MAX_MCE_BANKS;
3172 		break;
3173 	case KVM_CAP_XCRS:
3174 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3175 		break;
3176 	case KVM_CAP_TSC_CONTROL:
3177 		r = kvm_has_tsc_control;
3178 		break;
3179 	case KVM_CAP_X2APIC_API:
3180 		r = KVM_X2APIC_API_VALID_FLAGS;
3181 		break;
3182 	case KVM_CAP_NESTED_STATE:
3183 		r = kvm_x86_ops->get_nested_state ?
3184 			kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3185 		break;
3186 	default:
3187 		break;
3188 	}
3189 	return r;
3190 
3191 }
3192 
3193 long kvm_arch_dev_ioctl(struct file *filp,
3194 			unsigned int ioctl, unsigned long arg)
3195 {
3196 	void __user *argp = (void __user *)arg;
3197 	long r;
3198 
3199 	switch (ioctl) {
3200 	case KVM_GET_MSR_INDEX_LIST: {
3201 		struct kvm_msr_list __user *user_msr_list = argp;
3202 		struct kvm_msr_list msr_list;
3203 		unsigned n;
3204 
3205 		r = -EFAULT;
3206 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3207 			goto out;
3208 		n = msr_list.nmsrs;
3209 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3210 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3211 			goto out;
3212 		r = -E2BIG;
3213 		if (n < msr_list.nmsrs)
3214 			goto out;
3215 		r = -EFAULT;
3216 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3217 				 num_msrs_to_save * sizeof(u32)))
3218 			goto out;
3219 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3220 				 &emulated_msrs,
3221 				 num_emulated_msrs * sizeof(u32)))
3222 			goto out;
3223 		r = 0;
3224 		break;
3225 	}
3226 	case KVM_GET_SUPPORTED_CPUID:
3227 	case KVM_GET_EMULATED_CPUID: {
3228 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3229 		struct kvm_cpuid2 cpuid;
3230 
3231 		r = -EFAULT;
3232 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3233 			goto out;
3234 
3235 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3236 					    ioctl);
3237 		if (r)
3238 			goto out;
3239 
3240 		r = -EFAULT;
3241 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3242 			goto out;
3243 		r = 0;
3244 		break;
3245 	}
3246 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3247 		r = -EFAULT;
3248 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3249 				 sizeof(kvm_mce_cap_supported)))
3250 			goto out;
3251 		r = 0;
3252 		break;
3253 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3254 		struct kvm_msr_list __user *user_msr_list = argp;
3255 		struct kvm_msr_list msr_list;
3256 		unsigned int n;
3257 
3258 		r = -EFAULT;
3259 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3260 			goto out;
3261 		n = msr_list.nmsrs;
3262 		msr_list.nmsrs = num_msr_based_features;
3263 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3264 			goto out;
3265 		r = -E2BIG;
3266 		if (n < msr_list.nmsrs)
3267 			goto out;
3268 		r = -EFAULT;
3269 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3270 				 num_msr_based_features * sizeof(u32)))
3271 			goto out;
3272 		r = 0;
3273 		break;
3274 	}
3275 	case KVM_GET_MSRS:
3276 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3277 		break;
3278 	}
3279 	default:
3280 		r = -EINVAL;
3281 	}
3282 out:
3283 	return r;
3284 }
3285 
3286 static void wbinvd_ipi(void *garbage)
3287 {
3288 	wbinvd();
3289 }
3290 
3291 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3292 {
3293 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3294 }
3295 
3296 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3297 {
3298 	/* Address WBINVD may be executed by guest */
3299 	if (need_emulate_wbinvd(vcpu)) {
3300 		if (kvm_x86_ops->has_wbinvd_exit())
3301 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3302 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3303 			smp_call_function_single(vcpu->cpu,
3304 					wbinvd_ipi, NULL, 1);
3305 	}
3306 
3307 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3308 
3309 	fpregs_assert_state_consistent();
3310 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
3311 		switch_fpu_return();
3312 
3313 	/* Apply any externally detected TSC adjustments (due to suspend) */
3314 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3315 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3316 		vcpu->arch.tsc_offset_adjustment = 0;
3317 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3318 	}
3319 
3320 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3321 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3322 				rdtsc() - vcpu->arch.last_host_tsc;
3323 		if (tsc_delta < 0)
3324 			mark_tsc_unstable("KVM discovered backwards TSC");
3325 
3326 		if (kvm_check_tsc_unstable()) {
3327 			u64 offset = kvm_compute_tsc_offset(vcpu,
3328 						vcpu->arch.last_guest_tsc);
3329 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3330 			vcpu->arch.tsc_catchup = 1;
3331 		}
3332 
3333 		if (kvm_lapic_hv_timer_in_use(vcpu))
3334 			kvm_lapic_restart_hv_timer(vcpu);
3335 
3336 		/*
3337 		 * On a host with synchronized TSC, there is no need to update
3338 		 * kvmclock on vcpu->cpu migration
3339 		 */
3340 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3341 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3342 		if (vcpu->cpu != cpu)
3343 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3344 		vcpu->cpu = cpu;
3345 	}
3346 
3347 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3348 }
3349 
3350 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3351 {
3352 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3353 		return;
3354 
3355 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3356 
3357 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3358 			&vcpu->arch.st.steal.preempted,
3359 			offsetof(struct kvm_steal_time, preempted),
3360 			sizeof(vcpu->arch.st.steal.preempted));
3361 }
3362 
3363 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3364 {
3365 	int idx;
3366 
3367 	if (vcpu->preempted)
3368 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3369 
3370 	/*
3371 	 * Disable page faults because we're in atomic context here.
3372 	 * kvm_write_guest_offset_cached() would call might_fault()
3373 	 * that relies on pagefault_disable() to tell if there's a
3374 	 * bug. NOTE: the write to guest memory may not go through if
3375 	 * during postcopy live migration or if there's heavy guest
3376 	 * paging.
3377 	 */
3378 	pagefault_disable();
3379 	/*
3380 	 * kvm_memslots() will be called by
3381 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3382 	 */
3383 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3384 	kvm_steal_time_set_preempted(vcpu);
3385 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3386 	pagefault_enable();
3387 	kvm_x86_ops->vcpu_put(vcpu);
3388 	vcpu->arch.last_host_tsc = rdtsc();
3389 	/*
3390 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3391 	 * on every vmexit, but if not, we might have a stale dr6 from the
3392 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3393 	 */
3394 	set_debugreg(0, 6);
3395 }
3396 
3397 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3398 				    struct kvm_lapic_state *s)
3399 {
3400 	if (vcpu->arch.apicv_active)
3401 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3402 
3403 	return kvm_apic_get_state(vcpu, s);
3404 }
3405 
3406 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3407 				    struct kvm_lapic_state *s)
3408 {
3409 	int r;
3410 
3411 	r = kvm_apic_set_state(vcpu, s);
3412 	if (r)
3413 		return r;
3414 	update_cr8_intercept(vcpu);
3415 
3416 	return 0;
3417 }
3418 
3419 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3420 {
3421 	return (!lapic_in_kernel(vcpu) ||
3422 		kvm_apic_accept_pic_intr(vcpu));
3423 }
3424 
3425 /*
3426  * if userspace requested an interrupt window, check that the
3427  * interrupt window is open.
3428  *
3429  * No need to exit to userspace if we already have an interrupt queued.
3430  */
3431 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3432 {
3433 	return kvm_arch_interrupt_allowed(vcpu) &&
3434 		!kvm_cpu_has_interrupt(vcpu) &&
3435 		!kvm_event_needs_reinjection(vcpu) &&
3436 		kvm_cpu_accept_dm_intr(vcpu);
3437 }
3438 
3439 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3440 				    struct kvm_interrupt *irq)
3441 {
3442 	if (irq->irq >= KVM_NR_INTERRUPTS)
3443 		return -EINVAL;
3444 
3445 	if (!irqchip_in_kernel(vcpu->kvm)) {
3446 		kvm_queue_interrupt(vcpu, irq->irq, false);
3447 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3448 		return 0;
3449 	}
3450 
3451 	/*
3452 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3453 	 * fail for in-kernel 8259.
3454 	 */
3455 	if (pic_in_kernel(vcpu->kvm))
3456 		return -ENXIO;
3457 
3458 	if (vcpu->arch.pending_external_vector != -1)
3459 		return -EEXIST;
3460 
3461 	vcpu->arch.pending_external_vector = irq->irq;
3462 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3463 	return 0;
3464 }
3465 
3466 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3467 {
3468 	kvm_inject_nmi(vcpu);
3469 
3470 	return 0;
3471 }
3472 
3473 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3474 {
3475 	kvm_make_request(KVM_REQ_SMI, vcpu);
3476 
3477 	return 0;
3478 }
3479 
3480 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3481 					   struct kvm_tpr_access_ctl *tac)
3482 {
3483 	if (tac->flags)
3484 		return -EINVAL;
3485 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3486 	return 0;
3487 }
3488 
3489 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3490 					u64 mcg_cap)
3491 {
3492 	int r;
3493 	unsigned bank_num = mcg_cap & 0xff, bank;
3494 
3495 	r = -EINVAL;
3496 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3497 		goto out;
3498 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3499 		goto out;
3500 	r = 0;
3501 	vcpu->arch.mcg_cap = mcg_cap;
3502 	/* Init IA32_MCG_CTL to all 1s */
3503 	if (mcg_cap & MCG_CTL_P)
3504 		vcpu->arch.mcg_ctl = ~(u64)0;
3505 	/* Init IA32_MCi_CTL to all 1s */
3506 	for (bank = 0; bank < bank_num; bank++)
3507 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3508 
3509 	if (kvm_x86_ops->setup_mce)
3510 		kvm_x86_ops->setup_mce(vcpu);
3511 out:
3512 	return r;
3513 }
3514 
3515 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3516 				      struct kvm_x86_mce *mce)
3517 {
3518 	u64 mcg_cap = vcpu->arch.mcg_cap;
3519 	unsigned bank_num = mcg_cap & 0xff;
3520 	u64 *banks = vcpu->arch.mce_banks;
3521 
3522 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3523 		return -EINVAL;
3524 	/*
3525 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3526 	 * reporting is disabled
3527 	 */
3528 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3529 	    vcpu->arch.mcg_ctl != ~(u64)0)
3530 		return 0;
3531 	banks += 4 * mce->bank;
3532 	/*
3533 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3534 	 * reporting is disabled for the bank
3535 	 */
3536 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3537 		return 0;
3538 	if (mce->status & MCI_STATUS_UC) {
3539 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3540 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3541 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3542 			return 0;
3543 		}
3544 		if (banks[1] & MCI_STATUS_VAL)
3545 			mce->status |= MCI_STATUS_OVER;
3546 		banks[2] = mce->addr;
3547 		banks[3] = mce->misc;
3548 		vcpu->arch.mcg_status = mce->mcg_status;
3549 		banks[1] = mce->status;
3550 		kvm_queue_exception(vcpu, MC_VECTOR);
3551 	} else if (!(banks[1] & MCI_STATUS_VAL)
3552 		   || !(banks[1] & MCI_STATUS_UC)) {
3553 		if (banks[1] & MCI_STATUS_VAL)
3554 			mce->status |= MCI_STATUS_OVER;
3555 		banks[2] = mce->addr;
3556 		banks[3] = mce->misc;
3557 		banks[1] = mce->status;
3558 	} else
3559 		banks[1] |= MCI_STATUS_OVER;
3560 	return 0;
3561 }
3562 
3563 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3564 					       struct kvm_vcpu_events *events)
3565 {
3566 	process_nmi(vcpu);
3567 
3568 	/*
3569 	 * The API doesn't provide the instruction length for software
3570 	 * exceptions, so don't report them. As long as the guest RIP
3571 	 * isn't advanced, we should expect to encounter the exception
3572 	 * again.
3573 	 */
3574 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3575 		events->exception.injected = 0;
3576 		events->exception.pending = 0;
3577 	} else {
3578 		events->exception.injected = vcpu->arch.exception.injected;
3579 		events->exception.pending = vcpu->arch.exception.pending;
3580 		/*
3581 		 * For ABI compatibility, deliberately conflate
3582 		 * pending and injected exceptions when
3583 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3584 		 */
3585 		if (!vcpu->kvm->arch.exception_payload_enabled)
3586 			events->exception.injected |=
3587 				vcpu->arch.exception.pending;
3588 	}
3589 	events->exception.nr = vcpu->arch.exception.nr;
3590 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3591 	events->exception.error_code = vcpu->arch.exception.error_code;
3592 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3593 	events->exception_payload = vcpu->arch.exception.payload;
3594 
3595 	events->interrupt.injected =
3596 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3597 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3598 	events->interrupt.soft = 0;
3599 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3600 
3601 	events->nmi.injected = vcpu->arch.nmi_injected;
3602 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3603 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3604 	events->nmi.pad = 0;
3605 
3606 	events->sipi_vector = 0; /* never valid when reporting to user space */
3607 
3608 	events->smi.smm = is_smm(vcpu);
3609 	events->smi.pending = vcpu->arch.smi_pending;
3610 	events->smi.smm_inside_nmi =
3611 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3612 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3613 
3614 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3615 			 | KVM_VCPUEVENT_VALID_SHADOW
3616 			 | KVM_VCPUEVENT_VALID_SMM);
3617 	if (vcpu->kvm->arch.exception_payload_enabled)
3618 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3619 
3620 	memset(&events->reserved, 0, sizeof(events->reserved));
3621 }
3622 
3623 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3624 
3625 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3626 					      struct kvm_vcpu_events *events)
3627 {
3628 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3629 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3630 			      | KVM_VCPUEVENT_VALID_SHADOW
3631 			      | KVM_VCPUEVENT_VALID_SMM
3632 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3633 		return -EINVAL;
3634 
3635 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3636 		if (!vcpu->kvm->arch.exception_payload_enabled)
3637 			return -EINVAL;
3638 		if (events->exception.pending)
3639 			events->exception.injected = 0;
3640 		else
3641 			events->exception_has_payload = 0;
3642 	} else {
3643 		events->exception.pending = 0;
3644 		events->exception_has_payload = 0;
3645 	}
3646 
3647 	if ((events->exception.injected || events->exception.pending) &&
3648 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3649 		return -EINVAL;
3650 
3651 	/* INITs are latched while in SMM */
3652 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3653 	    (events->smi.smm || events->smi.pending) &&
3654 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3655 		return -EINVAL;
3656 
3657 	process_nmi(vcpu);
3658 	vcpu->arch.exception.injected = events->exception.injected;
3659 	vcpu->arch.exception.pending = events->exception.pending;
3660 	vcpu->arch.exception.nr = events->exception.nr;
3661 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3662 	vcpu->arch.exception.error_code = events->exception.error_code;
3663 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3664 	vcpu->arch.exception.payload = events->exception_payload;
3665 
3666 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3667 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3668 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3669 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3670 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3671 						  events->interrupt.shadow);
3672 
3673 	vcpu->arch.nmi_injected = events->nmi.injected;
3674 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3675 		vcpu->arch.nmi_pending = events->nmi.pending;
3676 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3677 
3678 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3679 	    lapic_in_kernel(vcpu))
3680 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3681 
3682 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3683 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3684 			if (events->smi.smm)
3685 				vcpu->arch.hflags |= HF_SMM_MASK;
3686 			else
3687 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3688 			kvm_smm_changed(vcpu);
3689 		}
3690 
3691 		vcpu->arch.smi_pending = events->smi.pending;
3692 
3693 		if (events->smi.smm) {
3694 			if (events->smi.smm_inside_nmi)
3695 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3696 			else
3697 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3698 			if (lapic_in_kernel(vcpu)) {
3699 				if (events->smi.latched_init)
3700 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3701 				else
3702 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3703 			}
3704 		}
3705 	}
3706 
3707 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3708 
3709 	return 0;
3710 }
3711 
3712 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3713 					     struct kvm_debugregs *dbgregs)
3714 {
3715 	unsigned long val;
3716 
3717 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3718 	kvm_get_dr(vcpu, 6, &val);
3719 	dbgregs->dr6 = val;
3720 	dbgregs->dr7 = vcpu->arch.dr7;
3721 	dbgregs->flags = 0;
3722 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3723 }
3724 
3725 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3726 					    struct kvm_debugregs *dbgregs)
3727 {
3728 	if (dbgregs->flags)
3729 		return -EINVAL;
3730 
3731 	if (dbgregs->dr6 & ~0xffffffffull)
3732 		return -EINVAL;
3733 	if (dbgregs->dr7 & ~0xffffffffull)
3734 		return -EINVAL;
3735 
3736 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3737 	kvm_update_dr0123(vcpu);
3738 	vcpu->arch.dr6 = dbgregs->dr6;
3739 	kvm_update_dr6(vcpu);
3740 	vcpu->arch.dr7 = dbgregs->dr7;
3741 	kvm_update_dr7(vcpu);
3742 
3743 	return 0;
3744 }
3745 
3746 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3747 
3748 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3749 {
3750 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3751 	u64 xstate_bv = xsave->header.xfeatures;
3752 	u64 valid;
3753 
3754 	/*
3755 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3756 	 * leaves 0 and 1 in the loop below.
3757 	 */
3758 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3759 
3760 	/* Set XSTATE_BV */
3761 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3762 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3763 
3764 	/*
3765 	 * Copy each region from the possibly compacted offset to the
3766 	 * non-compacted offset.
3767 	 */
3768 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3769 	while (valid) {
3770 		u64 xfeature_mask = valid & -valid;
3771 		int xfeature_nr = fls64(xfeature_mask) - 1;
3772 		void *src = get_xsave_addr(xsave, xfeature_nr);
3773 
3774 		if (src) {
3775 			u32 size, offset, ecx, edx;
3776 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3777 				    &size, &offset, &ecx, &edx);
3778 			if (xfeature_nr == XFEATURE_PKRU)
3779 				memcpy(dest + offset, &vcpu->arch.pkru,
3780 				       sizeof(vcpu->arch.pkru));
3781 			else
3782 				memcpy(dest + offset, src, size);
3783 
3784 		}
3785 
3786 		valid -= xfeature_mask;
3787 	}
3788 }
3789 
3790 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3791 {
3792 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3793 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3794 	u64 valid;
3795 
3796 	/*
3797 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3798 	 * leaves 0 and 1 in the loop below.
3799 	 */
3800 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3801 
3802 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3803 	xsave->header.xfeatures = xstate_bv;
3804 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3805 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3806 
3807 	/*
3808 	 * Copy each region from the non-compacted offset to the
3809 	 * possibly compacted offset.
3810 	 */
3811 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3812 	while (valid) {
3813 		u64 xfeature_mask = valid & -valid;
3814 		int xfeature_nr = fls64(xfeature_mask) - 1;
3815 		void *dest = get_xsave_addr(xsave, xfeature_nr);
3816 
3817 		if (dest) {
3818 			u32 size, offset, ecx, edx;
3819 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3820 				    &size, &offset, &ecx, &edx);
3821 			if (xfeature_nr == XFEATURE_PKRU)
3822 				memcpy(&vcpu->arch.pkru, src + offset,
3823 				       sizeof(vcpu->arch.pkru));
3824 			else
3825 				memcpy(dest, src + offset, size);
3826 		}
3827 
3828 		valid -= xfeature_mask;
3829 	}
3830 }
3831 
3832 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3833 					 struct kvm_xsave *guest_xsave)
3834 {
3835 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3836 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3837 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3838 	} else {
3839 		memcpy(guest_xsave->region,
3840 			&vcpu->arch.guest_fpu->state.fxsave,
3841 			sizeof(struct fxregs_state));
3842 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3843 			XFEATURE_MASK_FPSSE;
3844 	}
3845 }
3846 
3847 #define XSAVE_MXCSR_OFFSET 24
3848 
3849 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3850 					struct kvm_xsave *guest_xsave)
3851 {
3852 	u64 xstate_bv =
3853 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3854 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3855 
3856 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3857 		/*
3858 		 * Here we allow setting states that are not present in
3859 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3860 		 * with old userspace.
3861 		 */
3862 		if (xstate_bv & ~kvm_supported_xcr0() ||
3863 			mxcsr & ~mxcsr_feature_mask)
3864 			return -EINVAL;
3865 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3866 	} else {
3867 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3868 			mxcsr & ~mxcsr_feature_mask)
3869 			return -EINVAL;
3870 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3871 			guest_xsave->region, sizeof(struct fxregs_state));
3872 	}
3873 	return 0;
3874 }
3875 
3876 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3877 					struct kvm_xcrs *guest_xcrs)
3878 {
3879 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3880 		guest_xcrs->nr_xcrs = 0;
3881 		return;
3882 	}
3883 
3884 	guest_xcrs->nr_xcrs = 1;
3885 	guest_xcrs->flags = 0;
3886 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3887 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3888 }
3889 
3890 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3891 				       struct kvm_xcrs *guest_xcrs)
3892 {
3893 	int i, r = 0;
3894 
3895 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3896 		return -EINVAL;
3897 
3898 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3899 		return -EINVAL;
3900 
3901 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3902 		/* Only support XCR0 currently */
3903 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3904 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3905 				guest_xcrs->xcrs[i].value);
3906 			break;
3907 		}
3908 	if (r)
3909 		r = -EINVAL;
3910 	return r;
3911 }
3912 
3913 /*
3914  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3915  * stopped by the hypervisor.  This function will be called from the host only.
3916  * EINVAL is returned when the host attempts to set the flag for a guest that
3917  * does not support pv clocks.
3918  */
3919 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3920 {
3921 	if (!vcpu->arch.pv_time_enabled)
3922 		return -EINVAL;
3923 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3924 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3925 	return 0;
3926 }
3927 
3928 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3929 				     struct kvm_enable_cap *cap)
3930 {
3931 	int r;
3932 	uint16_t vmcs_version;
3933 	void __user *user_ptr;
3934 
3935 	if (cap->flags)
3936 		return -EINVAL;
3937 
3938 	switch (cap->cap) {
3939 	case KVM_CAP_HYPERV_SYNIC2:
3940 		if (cap->args[0])
3941 			return -EINVAL;
3942 		/* fall through */
3943 
3944 	case KVM_CAP_HYPERV_SYNIC:
3945 		if (!irqchip_in_kernel(vcpu->kvm))
3946 			return -EINVAL;
3947 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3948 					     KVM_CAP_HYPERV_SYNIC2);
3949 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3950 		if (!kvm_x86_ops->nested_enable_evmcs)
3951 			return -ENOTTY;
3952 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3953 		if (!r) {
3954 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
3955 			if (copy_to_user(user_ptr, &vmcs_version,
3956 					 sizeof(vmcs_version)))
3957 				r = -EFAULT;
3958 		}
3959 		return r;
3960 
3961 	default:
3962 		return -EINVAL;
3963 	}
3964 }
3965 
3966 long kvm_arch_vcpu_ioctl(struct file *filp,
3967 			 unsigned int ioctl, unsigned long arg)
3968 {
3969 	struct kvm_vcpu *vcpu = filp->private_data;
3970 	void __user *argp = (void __user *)arg;
3971 	int r;
3972 	union {
3973 		struct kvm_lapic_state *lapic;
3974 		struct kvm_xsave *xsave;
3975 		struct kvm_xcrs *xcrs;
3976 		void *buffer;
3977 	} u;
3978 
3979 	vcpu_load(vcpu);
3980 
3981 	u.buffer = NULL;
3982 	switch (ioctl) {
3983 	case KVM_GET_LAPIC: {
3984 		r = -EINVAL;
3985 		if (!lapic_in_kernel(vcpu))
3986 			goto out;
3987 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3988 				GFP_KERNEL_ACCOUNT);
3989 
3990 		r = -ENOMEM;
3991 		if (!u.lapic)
3992 			goto out;
3993 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3994 		if (r)
3995 			goto out;
3996 		r = -EFAULT;
3997 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3998 			goto out;
3999 		r = 0;
4000 		break;
4001 	}
4002 	case KVM_SET_LAPIC: {
4003 		r = -EINVAL;
4004 		if (!lapic_in_kernel(vcpu))
4005 			goto out;
4006 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4007 		if (IS_ERR(u.lapic)) {
4008 			r = PTR_ERR(u.lapic);
4009 			goto out_nofree;
4010 		}
4011 
4012 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4013 		break;
4014 	}
4015 	case KVM_INTERRUPT: {
4016 		struct kvm_interrupt irq;
4017 
4018 		r = -EFAULT;
4019 		if (copy_from_user(&irq, argp, sizeof(irq)))
4020 			goto out;
4021 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4022 		break;
4023 	}
4024 	case KVM_NMI: {
4025 		r = kvm_vcpu_ioctl_nmi(vcpu);
4026 		break;
4027 	}
4028 	case KVM_SMI: {
4029 		r = kvm_vcpu_ioctl_smi(vcpu);
4030 		break;
4031 	}
4032 	case KVM_SET_CPUID: {
4033 		struct kvm_cpuid __user *cpuid_arg = argp;
4034 		struct kvm_cpuid cpuid;
4035 
4036 		r = -EFAULT;
4037 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4038 			goto out;
4039 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4040 		break;
4041 	}
4042 	case KVM_SET_CPUID2: {
4043 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4044 		struct kvm_cpuid2 cpuid;
4045 
4046 		r = -EFAULT;
4047 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4048 			goto out;
4049 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4050 					      cpuid_arg->entries);
4051 		break;
4052 	}
4053 	case KVM_GET_CPUID2: {
4054 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4055 		struct kvm_cpuid2 cpuid;
4056 
4057 		r = -EFAULT;
4058 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4059 			goto out;
4060 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4061 					      cpuid_arg->entries);
4062 		if (r)
4063 			goto out;
4064 		r = -EFAULT;
4065 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4066 			goto out;
4067 		r = 0;
4068 		break;
4069 	}
4070 	case KVM_GET_MSRS: {
4071 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4072 		r = msr_io(vcpu, argp, do_get_msr, 1);
4073 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4074 		break;
4075 	}
4076 	case KVM_SET_MSRS: {
4077 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4078 		r = msr_io(vcpu, argp, do_set_msr, 0);
4079 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4080 		break;
4081 	}
4082 	case KVM_TPR_ACCESS_REPORTING: {
4083 		struct kvm_tpr_access_ctl tac;
4084 
4085 		r = -EFAULT;
4086 		if (copy_from_user(&tac, argp, sizeof(tac)))
4087 			goto out;
4088 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4089 		if (r)
4090 			goto out;
4091 		r = -EFAULT;
4092 		if (copy_to_user(argp, &tac, sizeof(tac)))
4093 			goto out;
4094 		r = 0;
4095 		break;
4096 	};
4097 	case KVM_SET_VAPIC_ADDR: {
4098 		struct kvm_vapic_addr va;
4099 		int idx;
4100 
4101 		r = -EINVAL;
4102 		if (!lapic_in_kernel(vcpu))
4103 			goto out;
4104 		r = -EFAULT;
4105 		if (copy_from_user(&va, argp, sizeof(va)))
4106 			goto out;
4107 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4108 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4109 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4110 		break;
4111 	}
4112 	case KVM_X86_SETUP_MCE: {
4113 		u64 mcg_cap;
4114 
4115 		r = -EFAULT;
4116 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4117 			goto out;
4118 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4119 		break;
4120 	}
4121 	case KVM_X86_SET_MCE: {
4122 		struct kvm_x86_mce mce;
4123 
4124 		r = -EFAULT;
4125 		if (copy_from_user(&mce, argp, sizeof(mce)))
4126 			goto out;
4127 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4128 		break;
4129 	}
4130 	case KVM_GET_VCPU_EVENTS: {
4131 		struct kvm_vcpu_events events;
4132 
4133 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4134 
4135 		r = -EFAULT;
4136 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4137 			break;
4138 		r = 0;
4139 		break;
4140 	}
4141 	case KVM_SET_VCPU_EVENTS: {
4142 		struct kvm_vcpu_events events;
4143 
4144 		r = -EFAULT;
4145 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4146 			break;
4147 
4148 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4149 		break;
4150 	}
4151 	case KVM_GET_DEBUGREGS: {
4152 		struct kvm_debugregs dbgregs;
4153 
4154 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4155 
4156 		r = -EFAULT;
4157 		if (copy_to_user(argp, &dbgregs,
4158 				 sizeof(struct kvm_debugregs)))
4159 			break;
4160 		r = 0;
4161 		break;
4162 	}
4163 	case KVM_SET_DEBUGREGS: {
4164 		struct kvm_debugregs dbgregs;
4165 
4166 		r = -EFAULT;
4167 		if (copy_from_user(&dbgregs, argp,
4168 				   sizeof(struct kvm_debugregs)))
4169 			break;
4170 
4171 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4172 		break;
4173 	}
4174 	case KVM_GET_XSAVE: {
4175 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4176 		r = -ENOMEM;
4177 		if (!u.xsave)
4178 			break;
4179 
4180 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4181 
4182 		r = -EFAULT;
4183 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4184 			break;
4185 		r = 0;
4186 		break;
4187 	}
4188 	case KVM_SET_XSAVE: {
4189 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4190 		if (IS_ERR(u.xsave)) {
4191 			r = PTR_ERR(u.xsave);
4192 			goto out_nofree;
4193 		}
4194 
4195 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4196 		break;
4197 	}
4198 	case KVM_GET_XCRS: {
4199 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4200 		r = -ENOMEM;
4201 		if (!u.xcrs)
4202 			break;
4203 
4204 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4205 
4206 		r = -EFAULT;
4207 		if (copy_to_user(argp, u.xcrs,
4208 				 sizeof(struct kvm_xcrs)))
4209 			break;
4210 		r = 0;
4211 		break;
4212 	}
4213 	case KVM_SET_XCRS: {
4214 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4215 		if (IS_ERR(u.xcrs)) {
4216 			r = PTR_ERR(u.xcrs);
4217 			goto out_nofree;
4218 		}
4219 
4220 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4221 		break;
4222 	}
4223 	case KVM_SET_TSC_KHZ: {
4224 		u32 user_tsc_khz;
4225 
4226 		r = -EINVAL;
4227 		user_tsc_khz = (u32)arg;
4228 
4229 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4230 			goto out;
4231 
4232 		if (user_tsc_khz == 0)
4233 			user_tsc_khz = tsc_khz;
4234 
4235 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4236 			r = 0;
4237 
4238 		goto out;
4239 	}
4240 	case KVM_GET_TSC_KHZ: {
4241 		r = vcpu->arch.virtual_tsc_khz;
4242 		goto out;
4243 	}
4244 	case KVM_KVMCLOCK_CTRL: {
4245 		r = kvm_set_guest_paused(vcpu);
4246 		goto out;
4247 	}
4248 	case KVM_ENABLE_CAP: {
4249 		struct kvm_enable_cap cap;
4250 
4251 		r = -EFAULT;
4252 		if (copy_from_user(&cap, argp, sizeof(cap)))
4253 			goto out;
4254 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4255 		break;
4256 	}
4257 	case KVM_GET_NESTED_STATE: {
4258 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4259 		u32 user_data_size;
4260 
4261 		r = -EINVAL;
4262 		if (!kvm_x86_ops->get_nested_state)
4263 			break;
4264 
4265 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4266 		r = -EFAULT;
4267 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4268 			break;
4269 
4270 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4271 						  user_data_size);
4272 		if (r < 0)
4273 			break;
4274 
4275 		if (r > user_data_size) {
4276 			if (put_user(r, &user_kvm_nested_state->size))
4277 				r = -EFAULT;
4278 			else
4279 				r = -E2BIG;
4280 			break;
4281 		}
4282 
4283 		r = 0;
4284 		break;
4285 	}
4286 	case KVM_SET_NESTED_STATE: {
4287 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4288 		struct kvm_nested_state kvm_state;
4289 
4290 		r = -EINVAL;
4291 		if (!kvm_x86_ops->set_nested_state)
4292 			break;
4293 
4294 		r = -EFAULT;
4295 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4296 			break;
4297 
4298 		r = -EINVAL;
4299 		if (kvm_state.size < sizeof(kvm_state))
4300 			break;
4301 
4302 		if (kvm_state.flags &
4303 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4304 		      | KVM_STATE_NESTED_EVMCS))
4305 			break;
4306 
4307 		/* nested_run_pending implies guest_mode.  */
4308 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4309 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4310 			break;
4311 
4312 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4313 		break;
4314 	}
4315 	case KVM_GET_SUPPORTED_HV_CPUID: {
4316 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4317 		struct kvm_cpuid2 cpuid;
4318 
4319 		r = -EFAULT;
4320 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4321 			goto out;
4322 
4323 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4324 						cpuid_arg->entries);
4325 		if (r)
4326 			goto out;
4327 
4328 		r = -EFAULT;
4329 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4330 			goto out;
4331 		r = 0;
4332 		break;
4333 	}
4334 	default:
4335 		r = -EINVAL;
4336 	}
4337 out:
4338 	kfree(u.buffer);
4339 out_nofree:
4340 	vcpu_put(vcpu);
4341 	return r;
4342 }
4343 
4344 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4345 {
4346 	return VM_FAULT_SIGBUS;
4347 }
4348 
4349 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4350 {
4351 	int ret;
4352 
4353 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4354 		return -EINVAL;
4355 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4356 	return ret;
4357 }
4358 
4359 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4360 					      u64 ident_addr)
4361 {
4362 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4363 }
4364 
4365 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4366 					 unsigned long kvm_nr_mmu_pages)
4367 {
4368 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4369 		return -EINVAL;
4370 
4371 	mutex_lock(&kvm->slots_lock);
4372 
4373 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4374 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4375 
4376 	mutex_unlock(&kvm->slots_lock);
4377 	return 0;
4378 }
4379 
4380 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4381 {
4382 	return kvm->arch.n_max_mmu_pages;
4383 }
4384 
4385 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4386 {
4387 	struct kvm_pic *pic = kvm->arch.vpic;
4388 	int r;
4389 
4390 	r = 0;
4391 	switch (chip->chip_id) {
4392 	case KVM_IRQCHIP_PIC_MASTER:
4393 		memcpy(&chip->chip.pic, &pic->pics[0],
4394 			sizeof(struct kvm_pic_state));
4395 		break;
4396 	case KVM_IRQCHIP_PIC_SLAVE:
4397 		memcpy(&chip->chip.pic, &pic->pics[1],
4398 			sizeof(struct kvm_pic_state));
4399 		break;
4400 	case KVM_IRQCHIP_IOAPIC:
4401 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4402 		break;
4403 	default:
4404 		r = -EINVAL;
4405 		break;
4406 	}
4407 	return r;
4408 }
4409 
4410 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4411 {
4412 	struct kvm_pic *pic = kvm->arch.vpic;
4413 	int r;
4414 
4415 	r = 0;
4416 	switch (chip->chip_id) {
4417 	case KVM_IRQCHIP_PIC_MASTER:
4418 		spin_lock(&pic->lock);
4419 		memcpy(&pic->pics[0], &chip->chip.pic,
4420 			sizeof(struct kvm_pic_state));
4421 		spin_unlock(&pic->lock);
4422 		break;
4423 	case KVM_IRQCHIP_PIC_SLAVE:
4424 		spin_lock(&pic->lock);
4425 		memcpy(&pic->pics[1], &chip->chip.pic,
4426 			sizeof(struct kvm_pic_state));
4427 		spin_unlock(&pic->lock);
4428 		break;
4429 	case KVM_IRQCHIP_IOAPIC:
4430 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4431 		break;
4432 	default:
4433 		r = -EINVAL;
4434 		break;
4435 	}
4436 	kvm_pic_update_irq(pic);
4437 	return r;
4438 }
4439 
4440 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4441 {
4442 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4443 
4444 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4445 
4446 	mutex_lock(&kps->lock);
4447 	memcpy(ps, &kps->channels, sizeof(*ps));
4448 	mutex_unlock(&kps->lock);
4449 	return 0;
4450 }
4451 
4452 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4453 {
4454 	int i;
4455 	struct kvm_pit *pit = kvm->arch.vpit;
4456 
4457 	mutex_lock(&pit->pit_state.lock);
4458 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4459 	for (i = 0; i < 3; i++)
4460 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4461 	mutex_unlock(&pit->pit_state.lock);
4462 	return 0;
4463 }
4464 
4465 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4466 {
4467 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4468 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4469 		sizeof(ps->channels));
4470 	ps->flags = kvm->arch.vpit->pit_state.flags;
4471 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4472 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4473 	return 0;
4474 }
4475 
4476 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4477 {
4478 	int start = 0;
4479 	int i;
4480 	u32 prev_legacy, cur_legacy;
4481 	struct kvm_pit *pit = kvm->arch.vpit;
4482 
4483 	mutex_lock(&pit->pit_state.lock);
4484 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4485 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4486 	if (!prev_legacy && cur_legacy)
4487 		start = 1;
4488 	memcpy(&pit->pit_state.channels, &ps->channels,
4489 	       sizeof(pit->pit_state.channels));
4490 	pit->pit_state.flags = ps->flags;
4491 	for (i = 0; i < 3; i++)
4492 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4493 				   start && i == 0);
4494 	mutex_unlock(&pit->pit_state.lock);
4495 	return 0;
4496 }
4497 
4498 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4499 				 struct kvm_reinject_control *control)
4500 {
4501 	struct kvm_pit *pit = kvm->arch.vpit;
4502 
4503 	if (!pit)
4504 		return -ENXIO;
4505 
4506 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4507 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4508 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4509 	 */
4510 	mutex_lock(&pit->pit_state.lock);
4511 	kvm_pit_set_reinject(pit, control->pit_reinject);
4512 	mutex_unlock(&pit->pit_state.lock);
4513 
4514 	return 0;
4515 }
4516 
4517 /**
4518  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4519  * @kvm: kvm instance
4520  * @log: slot id and address to which we copy the log
4521  *
4522  * Steps 1-4 below provide general overview of dirty page logging. See
4523  * kvm_get_dirty_log_protect() function description for additional details.
4524  *
4525  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4526  * always flush the TLB (step 4) even if previous step failed  and the dirty
4527  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4528  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4529  * writes will be marked dirty for next log read.
4530  *
4531  *   1. Take a snapshot of the bit and clear it if needed.
4532  *   2. Write protect the corresponding page.
4533  *   3. Copy the snapshot to the userspace.
4534  *   4. Flush TLB's if needed.
4535  */
4536 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4537 {
4538 	bool flush = false;
4539 	int r;
4540 
4541 	mutex_lock(&kvm->slots_lock);
4542 
4543 	/*
4544 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4545 	 */
4546 	if (kvm_x86_ops->flush_log_dirty)
4547 		kvm_x86_ops->flush_log_dirty(kvm);
4548 
4549 	r = kvm_get_dirty_log_protect(kvm, log, &flush);
4550 
4551 	/*
4552 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4553 	 * kvm_mmu_slot_remove_write_access().
4554 	 */
4555 	lockdep_assert_held(&kvm->slots_lock);
4556 	if (flush)
4557 		kvm_flush_remote_tlbs(kvm);
4558 
4559 	mutex_unlock(&kvm->slots_lock);
4560 	return r;
4561 }
4562 
4563 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4564 {
4565 	bool flush = false;
4566 	int r;
4567 
4568 	mutex_lock(&kvm->slots_lock);
4569 
4570 	/*
4571 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4572 	 */
4573 	if (kvm_x86_ops->flush_log_dirty)
4574 		kvm_x86_ops->flush_log_dirty(kvm);
4575 
4576 	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4577 
4578 	/*
4579 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4580 	 * kvm_mmu_slot_remove_write_access().
4581 	 */
4582 	lockdep_assert_held(&kvm->slots_lock);
4583 	if (flush)
4584 		kvm_flush_remote_tlbs(kvm);
4585 
4586 	mutex_unlock(&kvm->slots_lock);
4587 	return r;
4588 }
4589 
4590 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4591 			bool line_status)
4592 {
4593 	if (!irqchip_in_kernel(kvm))
4594 		return -ENXIO;
4595 
4596 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4597 					irq_event->irq, irq_event->level,
4598 					line_status);
4599 	return 0;
4600 }
4601 
4602 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4603 			    struct kvm_enable_cap *cap)
4604 {
4605 	int r;
4606 
4607 	if (cap->flags)
4608 		return -EINVAL;
4609 
4610 	switch (cap->cap) {
4611 	case KVM_CAP_DISABLE_QUIRKS:
4612 		kvm->arch.disabled_quirks = cap->args[0];
4613 		r = 0;
4614 		break;
4615 	case KVM_CAP_SPLIT_IRQCHIP: {
4616 		mutex_lock(&kvm->lock);
4617 		r = -EINVAL;
4618 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4619 			goto split_irqchip_unlock;
4620 		r = -EEXIST;
4621 		if (irqchip_in_kernel(kvm))
4622 			goto split_irqchip_unlock;
4623 		if (kvm->created_vcpus)
4624 			goto split_irqchip_unlock;
4625 		r = kvm_setup_empty_irq_routing(kvm);
4626 		if (r)
4627 			goto split_irqchip_unlock;
4628 		/* Pairs with irqchip_in_kernel. */
4629 		smp_wmb();
4630 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4631 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4632 		r = 0;
4633 split_irqchip_unlock:
4634 		mutex_unlock(&kvm->lock);
4635 		break;
4636 	}
4637 	case KVM_CAP_X2APIC_API:
4638 		r = -EINVAL;
4639 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4640 			break;
4641 
4642 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4643 			kvm->arch.x2apic_format = true;
4644 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4645 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4646 
4647 		r = 0;
4648 		break;
4649 	case KVM_CAP_X86_DISABLE_EXITS:
4650 		r = -EINVAL;
4651 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4652 			break;
4653 
4654 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4655 			kvm_can_mwait_in_guest())
4656 			kvm->arch.mwait_in_guest = true;
4657 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4658 			kvm->arch.hlt_in_guest = true;
4659 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4660 			kvm->arch.pause_in_guest = true;
4661 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4662 			kvm->arch.cstate_in_guest = true;
4663 		r = 0;
4664 		break;
4665 	case KVM_CAP_MSR_PLATFORM_INFO:
4666 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4667 		r = 0;
4668 		break;
4669 	case KVM_CAP_EXCEPTION_PAYLOAD:
4670 		kvm->arch.exception_payload_enabled = cap->args[0];
4671 		r = 0;
4672 		break;
4673 	default:
4674 		r = -EINVAL;
4675 		break;
4676 	}
4677 	return r;
4678 }
4679 
4680 long kvm_arch_vm_ioctl(struct file *filp,
4681 		       unsigned int ioctl, unsigned long arg)
4682 {
4683 	struct kvm *kvm = filp->private_data;
4684 	void __user *argp = (void __user *)arg;
4685 	int r = -ENOTTY;
4686 	/*
4687 	 * This union makes it completely explicit to gcc-3.x
4688 	 * that these two variables' stack usage should be
4689 	 * combined, not added together.
4690 	 */
4691 	union {
4692 		struct kvm_pit_state ps;
4693 		struct kvm_pit_state2 ps2;
4694 		struct kvm_pit_config pit_config;
4695 	} u;
4696 
4697 	switch (ioctl) {
4698 	case KVM_SET_TSS_ADDR:
4699 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4700 		break;
4701 	case KVM_SET_IDENTITY_MAP_ADDR: {
4702 		u64 ident_addr;
4703 
4704 		mutex_lock(&kvm->lock);
4705 		r = -EINVAL;
4706 		if (kvm->created_vcpus)
4707 			goto set_identity_unlock;
4708 		r = -EFAULT;
4709 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4710 			goto set_identity_unlock;
4711 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4712 set_identity_unlock:
4713 		mutex_unlock(&kvm->lock);
4714 		break;
4715 	}
4716 	case KVM_SET_NR_MMU_PAGES:
4717 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4718 		break;
4719 	case KVM_GET_NR_MMU_PAGES:
4720 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4721 		break;
4722 	case KVM_CREATE_IRQCHIP: {
4723 		mutex_lock(&kvm->lock);
4724 
4725 		r = -EEXIST;
4726 		if (irqchip_in_kernel(kvm))
4727 			goto create_irqchip_unlock;
4728 
4729 		r = -EINVAL;
4730 		if (kvm->created_vcpus)
4731 			goto create_irqchip_unlock;
4732 
4733 		r = kvm_pic_init(kvm);
4734 		if (r)
4735 			goto create_irqchip_unlock;
4736 
4737 		r = kvm_ioapic_init(kvm);
4738 		if (r) {
4739 			kvm_pic_destroy(kvm);
4740 			goto create_irqchip_unlock;
4741 		}
4742 
4743 		r = kvm_setup_default_irq_routing(kvm);
4744 		if (r) {
4745 			kvm_ioapic_destroy(kvm);
4746 			kvm_pic_destroy(kvm);
4747 			goto create_irqchip_unlock;
4748 		}
4749 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4750 		smp_wmb();
4751 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4752 	create_irqchip_unlock:
4753 		mutex_unlock(&kvm->lock);
4754 		break;
4755 	}
4756 	case KVM_CREATE_PIT:
4757 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4758 		goto create_pit;
4759 	case KVM_CREATE_PIT2:
4760 		r = -EFAULT;
4761 		if (copy_from_user(&u.pit_config, argp,
4762 				   sizeof(struct kvm_pit_config)))
4763 			goto out;
4764 	create_pit:
4765 		mutex_lock(&kvm->lock);
4766 		r = -EEXIST;
4767 		if (kvm->arch.vpit)
4768 			goto create_pit_unlock;
4769 		r = -ENOMEM;
4770 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4771 		if (kvm->arch.vpit)
4772 			r = 0;
4773 	create_pit_unlock:
4774 		mutex_unlock(&kvm->lock);
4775 		break;
4776 	case KVM_GET_IRQCHIP: {
4777 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4778 		struct kvm_irqchip *chip;
4779 
4780 		chip = memdup_user(argp, sizeof(*chip));
4781 		if (IS_ERR(chip)) {
4782 			r = PTR_ERR(chip);
4783 			goto out;
4784 		}
4785 
4786 		r = -ENXIO;
4787 		if (!irqchip_kernel(kvm))
4788 			goto get_irqchip_out;
4789 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4790 		if (r)
4791 			goto get_irqchip_out;
4792 		r = -EFAULT;
4793 		if (copy_to_user(argp, chip, sizeof(*chip)))
4794 			goto get_irqchip_out;
4795 		r = 0;
4796 	get_irqchip_out:
4797 		kfree(chip);
4798 		break;
4799 	}
4800 	case KVM_SET_IRQCHIP: {
4801 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4802 		struct kvm_irqchip *chip;
4803 
4804 		chip = memdup_user(argp, sizeof(*chip));
4805 		if (IS_ERR(chip)) {
4806 			r = PTR_ERR(chip);
4807 			goto out;
4808 		}
4809 
4810 		r = -ENXIO;
4811 		if (!irqchip_kernel(kvm))
4812 			goto set_irqchip_out;
4813 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4814 		if (r)
4815 			goto set_irqchip_out;
4816 		r = 0;
4817 	set_irqchip_out:
4818 		kfree(chip);
4819 		break;
4820 	}
4821 	case KVM_GET_PIT: {
4822 		r = -EFAULT;
4823 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4824 			goto out;
4825 		r = -ENXIO;
4826 		if (!kvm->arch.vpit)
4827 			goto out;
4828 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4829 		if (r)
4830 			goto out;
4831 		r = -EFAULT;
4832 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4833 			goto out;
4834 		r = 0;
4835 		break;
4836 	}
4837 	case KVM_SET_PIT: {
4838 		r = -EFAULT;
4839 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4840 			goto out;
4841 		r = -ENXIO;
4842 		if (!kvm->arch.vpit)
4843 			goto out;
4844 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4845 		break;
4846 	}
4847 	case KVM_GET_PIT2: {
4848 		r = -ENXIO;
4849 		if (!kvm->arch.vpit)
4850 			goto out;
4851 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4852 		if (r)
4853 			goto out;
4854 		r = -EFAULT;
4855 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4856 			goto out;
4857 		r = 0;
4858 		break;
4859 	}
4860 	case KVM_SET_PIT2: {
4861 		r = -EFAULT;
4862 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4863 			goto out;
4864 		r = -ENXIO;
4865 		if (!kvm->arch.vpit)
4866 			goto out;
4867 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4868 		break;
4869 	}
4870 	case KVM_REINJECT_CONTROL: {
4871 		struct kvm_reinject_control control;
4872 		r =  -EFAULT;
4873 		if (copy_from_user(&control, argp, sizeof(control)))
4874 			goto out;
4875 		r = kvm_vm_ioctl_reinject(kvm, &control);
4876 		break;
4877 	}
4878 	case KVM_SET_BOOT_CPU_ID:
4879 		r = 0;
4880 		mutex_lock(&kvm->lock);
4881 		if (kvm->created_vcpus)
4882 			r = -EBUSY;
4883 		else
4884 			kvm->arch.bsp_vcpu_id = arg;
4885 		mutex_unlock(&kvm->lock);
4886 		break;
4887 	case KVM_XEN_HVM_CONFIG: {
4888 		struct kvm_xen_hvm_config xhc;
4889 		r = -EFAULT;
4890 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4891 			goto out;
4892 		r = -EINVAL;
4893 		if (xhc.flags)
4894 			goto out;
4895 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4896 		r = 0;
4897 		break;
4898 	}
4899 	case KVM_SET_CLOCK: {
4900 		struct kvm_clock_data user_ns;
4901 		u64 now_ns;
4902 
4903 		r = -EFAULT;
4904 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4905 			goto out;
4906 
4907 		r = -EINVAL;
4908 		if (user_ns.flags)
4909 			goto out;
4910 
4911 		r = 0;
4912 		/*
4913 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4914 		 * kvm_gen_update_masterclock() can be cut down to locked
4915 		 * pvclock_update_vm_gtod_copy().
4916 		 */
4917 		kvm_gen_update_masterclock(kvm);
4918 		now_ns = get_kvmclock_ns(kvm);
4919 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4920 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4921 		break;
4922 	}
4923 	case KVM_GET_CLOCK: {
4924 		struct kvm_clock_data user_ns;
4925 		u64 now_ns;
4926 
4927 		now_ns = get_kvmclock_ns(kvm);
4928 		user_ns.clock = now_ns;
4929 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4930 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4931 
4932 		r = -EFAULT;
4933 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4934 			goto out;
4935 		r = 0;
4936 		break;
4937 	}
4938 	case KVM_MEMORY_ENCRYPT_OP: {
4939 		r = -ENOTTY;
4940 		if (kvm_x86_ops->mem_enc_op)
4941 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4942 		break;
4943 	}
4944 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4945 		struct kvm_enc_region region;
4946 
4947 		r = -EFAULT;
4948 		if (copy_from_user(&region, argp, sizeof(region)))
4949 			goto out;
4950 
4951 		r = -ENOTTY;
4952 		if (kvm_x86_ops->mem_enc_reg_region)
4953 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4954 		break;
4955 	}
4956 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4957 		struct kvm_enc_region region;
4958 
4959 		r = -EFAULT;
4960 		if (copy_from_user(&region, argp, sizeof(region)))
4961 			goto out;
4962 
4963 		r = -ENOTTY;
4964 		if (kvm_x86_ops->mem_enc_unreg_region)
4965 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4966 		break;
4967 	}
4968 	case KVM_HYPERV_EVENTFD: {
4969 		struct kvm_hyperv_eventfd hvevfd;
4970 
4971 		r = -EFAULT;
4972 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4973 			goto out;
4974 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4975 		break;
4976 	}
4977 	case KVM_SET_PMU_EVENT_FILTER:
4978 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
4979 		break;
4980 	default:
4981 		r = -ENOTTY;
4982 	}
4983 out:
4984 	return r;
4985 }
4986 
4987 static void kvm_init_msr_list(void)
4988 {
4989 	u32 dummy[2];
4990 	unsigned i, j;
4991 
4992 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4993 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4994 			continue;
4995 
4996 		/*
4997 		 * Even MSRs that are valid in the host may not be exposed
4998 		 * to the guests in some cases.
4999 		 */
5000 		switch (msrs_to_save[i]) {
5001 		case MSR_IA32_BNDCFGS:
5002 			if (!kvm_mpx_supported())
5003 				continue;
5004 			break;
5005 		case MSR_TSC_AUX:
5006 			if (!kvm_x86_ops->rdtscp_supported())
5007 				continue;
5008 			break;
5009 		case MSR_IA32_RTIT_CTL:
5010 		case MSR_IA32_RTIT_STATUS:
5011 			if (!kvm_x86_ops->pt_supported())
5012 				continue;
5013 			break;
5014 		case MSR_IA32_RTIT_CR3_MATCH:
5015 			if (!kvm_x86_ops->pt_supported() ||
5016 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5017 				continue;
5018 			break;
5019 		case MSR_IA32_RTIT_OUTPUT_BASE:
5020 		case MSR_IA32_RTIT_OUTPUT_MASK:
5021 			if (!kvm_x86_ops->pt_supported() ||
5022 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5023 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5024 				continue;
5025 			break;
5026 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5027 			if (!kvm_x86_ops->pt_supported() ||
5028 				msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
5029 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5030 				continue;
5031 			break;
5032 		}
5033 		default:
5034 			break;
5035 		}
5036 
5037 		if (j < i)
5038 			msrs_to_save[j] = msrs_to_save[i];
5039 		j++;
5040 	}
5041 	num_msrs_to_save = j;
5042 
5043 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
5044 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
5045 			continue;
5046 
5047 		if (j < i)
5048 			emulated_msrs[j] = emulated_msrs[i];
5049 		j++;
5050 	}
5051 	num_emulated_msrs = j;
5052 
5053 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5054 		struct kvm_msr_entry msr;
5055 
5056 		msr.index = msr_based_features[i];
5057 		if (kvm_get_msr_feature(&msr))
5058 			continue;
5059 
5060 		if (j < i)
5061 			msr_based_features[j] = msr_based_features[i];
5062 		j++;
5063 	}
5064 	num_msr_based_features = j;
5065 }
5066 
5067 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5068 			   const void *v)
5069 {
5070 	int handled = 0;
5071 	int n;
5072 
5073 	do {
5074 		n = min(len, 8);
5075 		if (!(lapic_in_kernel(vcpu) &&
5076 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5077 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5078 			break;
5079 		handled += n;
5080 		addr += n;
5081 		len -= n;
5082 		v += n;
5083 	} while (len);
5084 
5085 	return handled;
5086 }
5087 
5088 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5089 {
5090 	int handled = 0;
5091 	int n;
5092 
5093 	do {
5094 		n = min(len, 8);
5095 		if (!(lapic_in_kernel(vcpu) &&
5096 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5097 					 addr, n, v))
5098 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5099 			break;
5100 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5101 		handled += n;
5102 		addr += n;
5103 		len -= n;
5104 		v += n;
5105 	} while (len);
5106 
5107 	return handled;
5108 }
5109 
5110 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5111 			struct kvm_segment *var, int seg)
5112 {
5113 	kvm_x86_ops->set_segment(vcpu, var, seg);
5114 }
5115 
5116 void kvm_get_segment(struct kvm_vcpu *vcpu,
5117 		     struct kvm_segment *var, int seg)
5118 {
5119 	kvm_x86_ops->get_segment(vcpu, var, seg);
5120 }
5121 
5122 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5123 			   struct x86_exception *exception)
5124 {
5125 	gpa_t t_gpa;
5126 
5127 	BUG_ON(!mmu_is_nested(vcpu));
5128 
5129 	/* NPT walks are always user-walks */
5130 	access |= PFERR_USER_MASK;
5131 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5132 
5133 	return t_gpa;
5134 }
5135 
5136 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5137 			      struct x86_exception *exception)
5138 {
5139 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5140 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5141 }
5142 
5143  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5144 				struct x86_exception *exception)
5145 {
5146 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5147 	access |= PFERR_FETCH_MASK;
5148 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5149 }
5150 
5151 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5152 			       struct x86_exception *exception)
5153 {
5154 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5155 	access |= PFERR_WRITE_MASK;
5156 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5157 }
5158 
5159 /* uses this to access any guest's mapped memory without checking CPL */
5160 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5161 				struct x86_exception *exception)
5162 {
5163 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5164 }
5165 
5166 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5167 				      struct kvm_vcpu *vcpu, u32 access,
5168 				      struct x86_exception *exception)
5169 {
5170 	void *data = val;
5171 	int r = X86EMUL_CONTINUE;
5172 
5173 	while (bytes) {
5174 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5175 							    exception);
5176 		unsigned offset = addr & (PAGE_SIZE-1);
5177 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5178 		int ret;
5179 
5180 		if (gpa == UNMAPPED_GVA)
5181 			return X86EMUL_PROPAGATE_FAULT;
5182 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5183 					       offset, toread);
5184 		if (ret < 0) {
5185 			r = X86EMUL_IO_NEEDED;
5186 			goto out;
5187 		}
5188 
5189 		bytes -= toread;
5190 		data += toread;
5191 		addr += toread;
5192 	}
5193 out:
5194 	return r;
5195 }
5196 
5197 /* used for instruction fetching */
5198 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5199 				gva_t addr, void *val, unsigned int bytes,
5200 				struct x86_exception *exception)
5201 {
5202 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5203 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5204 	unsigned offset;
5205 	int ret;
5206 
5207 	/* Inline kvm_read_guest_virt_helper for speed.  */
5208 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5209 						    exception);
5210 	if (unlikely(gpa == UNMAPPED_GVA))
5211 		return X86EMUL_PROPAGATE_FAULT;
5212 
5213 	offset = addr & (PAGE_SIZE-1);
5214 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5215 		bytes = (unsigned)PAGE_SIZE - offset;
5216 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5217 				       offset, bytes);
5218 	if (unlikely(ret < 0))
5219 		return X86EMUL_IO_NEEDED;
5220 
5221 	return X86EMUL_CONTINUE;
5222 }
5223 
5224 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5225 			       gva_t addr, void *val, unsigned int bytes,
5226 			       struct x86_exception *exception)
5227 {
5228 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5229 
5230 	/*
5231 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5232 	 * is returned, but our callers are not ready for that and they blindly
5233 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5234 	 * uninitialized kernel stack memory into cr2 and error code.
5235 	 */
5236 	memset(exception, 0, sizeof(*exception));
5237 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5238 					  exception);
5239 }
5240 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5241 
5242 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5243 			     gva_t addr, void *val, unsigned int bytes,
5244 			     struct x86_exception *exception, bool system)
5245 {
5246 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5247 	u32 access = 0;
5248 
5249 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5250 		access |= PFERR_USER_MASK;
5251 
5252 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5253 }
5254 
5255 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5256 		unsigned long addr, void *val, unsigned int bytes)
5257 {
5258 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5259 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5260 
5261 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5262 }
5263 
5264 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5265 				      struct kvm_vcpu *vcpu, u32 access,
5266 				      struct x86_exception *exception)
5267 {
5268 	void *data = val;
5269 	int r = X86EMUL_CONTINUE;
5270 
5271 	while (bytes) {
5272 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5273 							     access,
5274 							     exception);
5275 		unsigned offset = addr & (PAGE_SIZE-1);
5276 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5277 		int ret;
5278 
5279 		if (gpa == UNMAPPED_GVA)
5280 			return X86EMUL_PROPAGATE_FAULT;
5281 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5282 		if (ret < 0) {
5283 			r = X86EMUL_IO_NEEDED;
5284 			goto out;
5285 		}
5286 
5287 		bytes -= towrite;
5288 		data += towrite;
5289 		addr += towrite;
5290 	}
5291 out:
5292 	return r;
5293 }
5294 
5295 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5296 			      unsigned int bytes, struct x86_exception *exception,
5297 			      bool system)
5298 {
5299 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5300 	u32 access = PFERR_WRITE_MASK;
5301 
5302 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5303 		access |= PFERR_USER_MASK;
5304 
5305 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5306 					   access, exception);
5307 }
5308 
5309 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5310 				unsigned int bytes, struct x86_exception *exception)
5311 {
5312 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5313 	vcpu->arch.l1tf_flush_l1d = true;
5314 
5315 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5316 					   PFERR_WRITE_MASK, exception);
5317 }
5318 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5319 
5320 int handle_ud(struct kvm_vcpu *vcpu)
5321 {
5322 	int emul_type = EMULTYPE_TRAP_UD;
5323 	enum emulation_result er;
5324 	char sig[5]; /* ud2; .ascii "kvm" */
5325 	struct x86_exception e;
5326 
5327 	if (force_emulation_prefix &&
5328 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5329 				sig, sizeof(sig), &e) == 0 &&
5330 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5331 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5332 		emul_type = 0;
5333 	}
5334 
5335 	er = kvm_emulate_instruction(vcpu, emul_type);
5336 	if (er == EMULATE_USER_EXIT)
5337 		return 0;
5338 	if (er != EMULATE_DONE)
5339 		kvm_queue_exception(vcpu, UD_VECTOR);
5340 	return 1;
5341 }
5342 EXPORT_SYMBOL_GPL(handle_ud);
5343 
5344 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5345 			    gpa_t gpa, bool write)
5346 {
5347 	/* For APIC access vmexit */
5348 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5349 		return 1;
5350 
5351 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5352 		trace_vcpu_match_mmio(gva, gpa, write, true);
5353 		return 1;
5354 	}
5355 
5356 	return 0;
5357 }
5358 
5359 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5360 				gpa_t *gpa, struct x86_exception *exception,
5361 				bool write)
5362 {
5363 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5364 		| (write ? PFERR_WRITE_MASK : 0);
5365 
5366 	/*
5367 	 * currently PKRU is only applied to ept enabled guest so
5368 	 * there is no pkey in EPT page table for L1 guest or EPT
5369 	 * shadow page table for L2 guest.
5370 	 */
5371 	if (vcpu_match_mmio_gva(vcpu, gva)
5372 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5373 				 vcpu->arch.access, 0, access)) {
5374 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5375 					(gva & (PAGE_SIZE - 1));
5376 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5377 		return 1;
5378 	}
5379 
5380 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5381 
5382 	if (*gpa == UNMAPPED_GVA)
5383 		return -1;
5384 
5385 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5386 }
5387 
5388 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5389 			const void *val, int bytes)
5390 {
5391 	int ret;
5392 
5393 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5394 	if (ret < 0)
5395 		return 0;
5396 	kvm_page_track_write(vcpu, gpa, val, bytes);
5397 	return 1;
5398 }
5399 
5400 struct read_write_emulator_ops {
5401 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5402 				  int bytes);
5403 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5404 				  void *val, int bytes);
5405 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5406 			       int bytes, void *val);
5407 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5408 				    void *val, int bytes);
5409 	bool write;
5410 };
5411 
5412 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5413 {
5414 	if (vcpu->mmio_read_completed) {
5415 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5416 			       vcpu->mmio_fragments[0].gpa, val);
5417 		vcpu->mmio_read_completed = 0;
5418 		return 1;
5419 	}
5420 
5421 	return 0;
5422 }
5423 
5424 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5425 			void *val, int bytes)
5426 {
5427 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5428 }
5429 
5430 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5431 			 void *val, int bytes)
5432 {
5433 	return emulator_write_phys(vcpu, gpa, val, bytes);
5434 }
5435 
5436 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5437 {
5438 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5439 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5440 }
5441 
5442 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5443 			  void *val, int bytes)
5444 {
5445 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5446 	return X86EMUL_IO_NEEDED;
5447 }
5448 
5449 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5450 			   void *val, int bytes)
5451 {
5452 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5453 
5454 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5455 	return X86EMUL_CONTINUE;
5456 }
5457 
5458 static const struct read_write_emulator_ops read_emultor = {
5459 	.read_write_prepare = read_prepare,
5460 	.read_write_emulate = read_emulate,
5461 	.read_write_mmio = vcpu_mmio_read,
5462 	.read_write_exit_mmio = read_exit_mmio,
5463 };
5464 
5465 static const struct read_write_emulator_ops write_emultor = {
5466 	.read_write_emulate = write_emulate,
5467 	.read_write_mmio = write_mmio,
5468 	.read_write_exit_mmio = write_exit_mmio,
5469 	.write = true,
5470 };
5471 
5472 static int emulator_read_write_onepage(unsigned long addr, void *val,
5473 				       unsigned int bytes,
5474 				       struct x86_exception *exception,
5475 				       struct kvm_vcpu *vcpu,
5476 				       const struct read_write_emulator_ops *ops)
5477 {
5478 	gpa_t gpa;
5479 	int handled, ret;
5480 	bool write = ops->write;
5481 	struct kvm_mmio_fragment *frag;
5482 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5483 
5484 	/*
5485 	 * If the exit was due to a NPF we may already have a GPA.
5486 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5487 	 * Note, this cannot be used on string operations since string
5488 	 * operation using rep will only have the initial GPA from the NPF
5489 	 * occurred.
5490 	 */
5491 	if (vcpu->arch.gpa_available &&
5492 	    emulator_can_use_gpa(ctxt) &&
5493 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5494 		gpa = vcpu->arch.gpa_val;
5495 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5496 	} else {
5497 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5498 		if (ret < 0)
5499 			return X86EMUL_PROPAGATE_FAULT;
5500 	}
5501 
5502 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5503 		return X86EMUL_CONTINUE;
5504 
5505 	/*
5506 	 * Is this MMIO handled locally?
5507 	 */
5508 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5509 	if (handled == bytes)
5510 		return X86EMUL_CONTINUE;
5511 
5512 	gpa += handled;
5513 	bytes -= handled;
5514 	val += handled;
5515 
5516 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5517 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5518 	frag->gpa = gpa;
5519 	frag->data = val;
5520 	frag->len = bytes;
5521 	return X86EMUL_CONTINUE;
5522 }
5523 
5524 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5525 			unsigned long addr,
5526 			void *val, unsigned int bytes,
5527 			struct x86_exception *exception,
5528 			const struct read_write_emulator_ops *ops)
5529 {
5530 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5531 	gpa_t gpa;
5532 	int rc;
5533 
5534 	if (ops->read_write_prepare &&
5535 		  ops->read_write_prepare(vcpu, val, bytes))
5536 		return X86EMUL_CONTINUE;
5537 
5538 	vcpu->mmio_nr_fragments = 0;
5539 
5540 	/* Crossing a page boundary? */
5541 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5542 		int now;
5543 
5544 		now = -addr & ~PAGE_MASK;
5545 		rc = emulator_read_write_onepage(addr, val, now, exception,
5546 						 vcpu, ops);
5547 
5548 		if (rc != X86EMUL_CONTINUE)
5549 			return rc;
5550 		addr += now;
5551 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5552 			addr = (u32)addr;
5553 		val += now;
5554 		bytes -= now;
5555 	}
5556 
5557 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5558 					 vcpu, ops);
5559 	if (rc != X86EMUL_CONTINUE)
5560 		return rc;
5561 
5562 	if (!vcpu->mmio_nr_fragments)
5563 		return rc;
5564 
5565 	gpa = vcpu->mmio_fragments[0].gpa;
5566 
5567 	vcpu->mmio_needed = 1;
5568 	vcpu->mmio_cur_fragment = 0;
5569 
5570 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5571 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5572 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5573 	vcpu->run->mmio.phys_addr = gpa;
5574 
5575 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5576 }
5577 
5578 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5579 				  unsigned long addr,
5580 				  void *val,
5581 				  unsigned int bytes,
5582 				  struct x86_exception *exception)
5583 {
5584 	return emulator_read_write(ctxt, addr, val, bytes,
5585 				   exception, &read_emultor);
5586 }
5587 
5588 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5589 			    unsigned long addr,
5590 			    const void *val,
5591 			    unsigned int bytes,
5592 			    struct x86_exception *exception)
5593 {
5594 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5595 				   exception, &write_emultor);
5596 }
5597 
5598 #define CMPXCHG_TYPE(t, ptr, old, new) \
5599 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5600 
5601 #ifdef CONFIG_X86_64
5602 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5603 #else
5604 #  define CMPXCHG64(ptr, old, new) \
5605 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5606 #endif
5607 
5608 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5609 				     unsigned long addr,
5610 				     const void *old,
5611 				     const void *new,
5612 				     unsigned int bytes,
5613 				     struct x86_exception *exception)
5614 {
5615 	struct kvm_host_map map;
5616 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5617 	gpa_t gpa;
5618 	char *kaddr;
5619 	bool exchanged;
5620 
5621 	/* guests cmpxchg8b have to be emulated atomically */
5622 	if (bytes > 8 || (bytes & (bytes - 1)))
5623 		goto emul_write;
5624 
5625 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5626 
5627 	if (gpa == UNMAPPED_GVA ||
5628 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5629 		goto emul_write;
5630 
5631 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5632 		goto emul_write;
5633 
5634 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5635 		goto emul_write;
5636 
5637 	kaddr = map.hva + offset_in_page(gpa);
5638 
5639 	switch (bytes) {
5640 	case 1:
5641 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5642 		break;
5643 	case 2:
5644 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5645 		break;
5646 	case 4:
5647 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5648 		break;
5649 	case 8:
5650 		exchanged = CMPXCHG64(kaddr, old, new);
5651 		break;
5652 	default:
5653 		BUG();
5654 	}
5655 
5656 	kvm_vcpu_unmap(vcpu, &map, true);
5657 
5658 	if (!exchanged)
5659 		return X86EMUL_CMPXCHG_FAILED;
5660 
5661 	kvm_page_track_write(vcpu, gpa, new, bytes);
5662 
5663 	return X86EMUL_CONTINUE;
5664 
5665 emul_write:
5666 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5667 
5668 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5669 }
5670 
5671 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5672 {
5673 	int r = 0, i;
5674 
5675 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5676 		if (vcpu->arch.pio.in)
5677 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5678 					    vcpu->arch.pio.size, pd);
5679 		else
5680 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5681 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5682 					     pd);
5683 		if (r)
5684 			break;
5685 		pd += vcpu->arch.pio.size;
5686 	}
5687 	return r;
5688 }
5689 
5690 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5691 			       unsigned short port, void *val,
5692 			       unsigned int count, bool in)
5693 {
5694 	vcpu->arch.pio.port = port;
5695 	vcpu->arch.pio.in = in;
5696 	vcpu->arch.pio.count  = count;
5697 	vcpu->arch.pio.size = size;
5698 
5699 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5700 		vcpu->arch.pio.count = 0;
5701 		return 1;
5702 	}
5703 
5704 	vcpu->run->exit_reason = KVM_EXIT_IO;
5705 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5706 	vcpu->run->io.size = size;
5707 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5708 	vcpu->run->io.count = count;
5709 	vcpu->run->io.port = port;
5710 
5711 	return 0;
5712 }
5713 
5714 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5715 				    int size, unsigned short port, void *val,
5716 				    unsigned int count)
5717 {
5718 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5719 	int ret;
5720 
5721 	if (vcpu->arch.pio.count)
5722 		goto data_avail;
5723 
5724 	memset(vcpu->arch.pio_data, 0, size * count);
5725 
5726 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5727 	if (ret) {
5728 data_avail:
5729 		memcpy(val, vcpu->arch.pio_data, size * count);
5730 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5731 		vcpu->arch.pio.count = 0;
5732 		return 1;
5733 	}
5734 
5735 	return 0;
5736 }
5737 
5738 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5739 				     int size, unsigned short port,
5740 				     const void *val, unsigned int count)
5741 {
5742 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5743 
5744 	memcpy(vcpu->arch.pio_data, val, size * count);
5745 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5746 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5747 }
5748 
5749 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5750 {
5751 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5752 }
5753 
5754 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5755 {
5756 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5757 }
5758 
5759 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5760 {
5761 	if (!need_emulate_wbinvd(vcpu))
5762 		return X86EMUL_CONTINUE;
5763 
5764 	if (kvm_x86_ops->has_wbinvd_exit()) {
5765 		int cpu = get_cpu();
5766 
5767 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5768 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5769 				wbinvd_ipi, NULL, 1);
5770 		put_cpu();
5771 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5772 	} else
5773 		wbinvd();
5774 	return X86EMUL_CONTINUE;
5775 }
5776 
5777 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5778 {
5779 	kvm_emulate_wbinvd_noskip(vcpu);
5780 	return kvm_skip_emulated_instruction(vcpu);
5781 }
5782 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5783 
5784 
5785 
5786 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5787 {
5788 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5789 }
5790 
5791 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5792 			   unsigned long *dest)
5793 {
5794 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5795 }
5796 
5797 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5798 			   unsigned long value)
5799 {
5800 
5801 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5802 }
5803 
5804 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5805 {
5806 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5807 }
5808 
5809 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5810 {
5811 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5812 	unsigned long value;
5813 
5814 	switch (cr) {
5815 	case 0:
5816 		value = kvm_read_cr0(vcpu);
5817 		break;
5818 	case 2:
5819 		value = vcpu->arch.cr2;
5820 		break;
5821 	case 3:
5822 		value = kvm_read_cr3(vcpu);
5823 		break;
5824 	case 4:
5825 		value = kvm_read_cr4(vcpu);
5826 		break;
5827 	case 8:
5828 		value = kvm_get_cr8(vcpu);
5829 		break;
5830 	default:
5831 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5832 		return 0;
5833 	}
5834 
5835 	return value;
5836 }
5837 
5838 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5839 {
5840 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5841 	int res = 0;
5842 
5843 	switch (cr) {
5844 	case 0:
5845 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5846 		break;
5847 	case 2:
5848 		vcpu->arch.cr2 = val;
5849 		break;
5850 	case 3:
5851 		res = kvm_set_cr3(vcpu, val);
5852 		break;
5853 	case 4:
5854 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5855 		break;
5856 	case 8:
5857 		res = kvm_set_cr8(vcpu, val);
5858 		break;
5859 	default:
5860 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5861 		res = -1;
5862 	}
5863 
5864 	return res;
5865 }
5866 
5867 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5868 {
5869 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5870 }
5871 
5872 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5873 {
5874 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5875 }
5876 
5877 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5878 {
5879 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5880 }
5881 
5882 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5883 {
5884 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5885 }
5886 
5887 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5888 {
5889 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5890 }
5891 
5892 static unsigned long emulator_get_cached_segment_base(
5893 	struct x86_emulate_ctxt *ctxt, int seg)
5894 {
5895 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5896 }
5897 
5898 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5899 				 struct desc_struct *desc, u32 *base3,
5900 				 int seg)
5901 {
5902 	struct kvm_segment var;
5903 
5904 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5905 	*selector = var.selector;
5906 
5907 	if (var.unusable) {
5908 		memset(desc, 0, sizeof(*desc));
5909 		if (base3)
5910 			*base3 = 0;
5911 		return false;
5912 	}
5913 
5914 	if (var.g)
5915 		var.limit >>= 12;
5916 	set_desc_limit(desc, var.limit);
5917 	set_desc_base(desc, (unsigned long)var.base);
5918 #ifdef CONFIG_X86_64
5919 	if (base3)
5920 		*base3 = var.base >> 32;
5921 #endif
5922 	desc->type = var.type;
5923 	desc->s = var.s;
5924 	desc->dpl = var.dpl;
5925 	desc->p = var.present;
5926 	desc->avl = var.avl;
5927 	desc->l = var.l;
5928 	desc->d = var.db;
5929 	desc->g = var.g;
5930 
5931 	return true;
5932 }
5933 
5934 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5935 				 struct desc_struct *desc, u32 base3,
5936 				 int seg)
5937 {
5938 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5939 	struct kvm_segment var;
5940 
5941 	var.selector = selector;
5942 	var.base = get_desc_base(desc);
5943 #ifdef CONFIG_X86_64
5944 	var.base |= ((u64)base3) << 32;
5945 #endif
5946 	var.limit = get_desc_limit(desc);
5947 	if (desc->g)
5948 		var.limit = (var.limit << 12) | 0xfff;
5949 	var.type = desc->type;
5950 	var.dpl = desc->dpl;
5951 	var.db = desc->d;
5952 	var.s = desc->s;
5953 	var.l = desc->l;
5954 	var.g = desc->g;
5955 	var.avl = desc->avl;
5956 	var.present = desc->p;
5957 	var.unusable = !var.present;
5958 	var.padding = 0;
5959 
5960 	kvm_set_segment(vcpu, &var, seg);
5961 	return;
5962 }
5963 
5964 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5965 			    u32 msr_index, u64 *pdata)
5966 {
5967 	struct msr_data msr;
5968 	int r;
5969 
5970 	msr.index = msr_index;
5971 	msr.host_initiated = false;
5972 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5973 	if (r)
5974 		return r;
5975 
5976 	*pdata = msr.data;
5977 	return 0;
5978 }
5979 
5980 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5981 			    u32 msr_index, u64 data)
5982 {
5983 	struct msr_data msr;
5984 
5985 	msr.data = data;
5986 	msr.index = msr_index;
5987 	msr.host_initiated = false;
5988 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5989 }
5990 
5991 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5992 {
5993 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5994 
5995 	return vcpu->arch.smbase;
5996 }
5997 
5998 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5999 {
6000 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6001 
6002 	vcpu->arch.smbase = smbase;
6003 }
6004 
6005 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6006 			      u32 pmc)
6007 {
6008 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6009 }
6010 
6011 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6012 			     u32 pmc, u64 *pdata)
6013 {
6014 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6015 }
6016 
6017 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6018 {
6019 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6020 }
6021 
6022 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6023 			      struct x86_instruction_info *info,
6024 			      enum x86_intercept_stage stage)
6025 {
6026 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6027 }
6028 
6029 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6030 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6031 {
6032 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6033 }
6034 
6035 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6036 {
6037 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6038 }
6039 
6040 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6041 {
6042 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6043 }
6044 
6045 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6046 {
6047 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6048 }
6049 
6050 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6051 {
6052 	return emul_to_vcpu(ctxt)->arch.hflags;
6053 }
6054 
6055 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6056 {
6057 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6058 }
6059 
6060 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6061 				  const char *smstate)
6062 {
6063 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6064 }
6065 
6066 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6067 {
6068 	kvm_smm_changed(emul_to_vcpu(ctxt));
6069 }
6070 
6071 static const struct x86_emulate_ops emulate_ops = {
6072 	.read_gpr            = emulator_read_gpr,
6073 	.write_gpr           = emulator_write_gpr,
6074 	.read_std            = emulator_read_std,
6075 	.write_std           = emulator_write_std,
6076 	.read_phys           = kvm_read_guest_phys_system,
6077 	.fetch               = kvm_fetch_guest_virt,
6078 	.read_emulated       = emulator_read_emulated,
6079 	.write_emulated      = emulator_write_emulated,
6080 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6081 	.invlpg              = emulator_invlpg,
6082 	.pio_in_emulated     = emulator_pio_in_emulated,
6083 	.pio_out_emulated    = emulator_pio_out_emulated,
6084 	.get_segment         = emulator_get_segment,
6085 	.set_segment         = emulator_set_segment,
6086 	.get_cached_segment_base = emulator_get_cached_segment_base,
6087 	.get_gdt             = emulator_get_gdt,
6088 	.get_idt	     = emulator_get_idt,
6089 	.set_gdt             = emulator_set_gdt,
6090 	.set_idt	     = emulator_set_idt,
6091 	.get_cr              = emulator_get_cr,
6092 	.set_cr              = emulator_set_cr,
6093 	.cpl                 = emulator_get_cpl,
6094 	.get_dr              = emulator_get_dr,
6095 	.set_dr              = emulator_set_dr,
6096 	.get_smbase          = emulator_get_smbase,
6097 	.set_smbase          = emulator_set_smbase,
6098 	.set_msr             = emulator_set_msr,
6099 	.get_msr             = emulator_get_msr,
6100 	.check_pmc	     = emulator_check_pmc,
6101 	.read_pmc            = emulator_read_pmc,
6102 	.halt                = emulator_halt,
6103 	.wbinvd              = emulator_wbinvd,
6104 	.fix_hypercall       = emulator_fix_hypercall,
6105 	.intercept           = emulator_intercept,
6106 	.get_cpuid           = emulator_get_cpuid,
6107 	.set_nmi_mask        = emulator_set_nmi_mask,
6108 	.get_hflags          = emulator_get_hflags,
6109 	.set_hflags          = emulator_set_hflags,
6110 	.pre_leave_smm       = emulator_pre_leave_smm,
6111 	.post_leave_smm      = emulator_post_leave_smm,
6112 };
6113 
6114 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6115 {
6116 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6117 	/*
6118 	 * an sti; sti; sequence only disable interrupts for the first
6119 	 * instruction. So, if the last instruction, be it emulated or
6120 	 * not, left the system with the INT_STI flag enabled, it
6121 	 * means that the last instruction is an sti. We should not
6122 	 * leave the flag on in this case. The same goes for mov ss
6123 	 */
6124 	if (int_shadow & mask)
6125 		mask = 0;
6126 	if (unlikely(int_shadow || mask)) {
6127 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6128 		if (!mask)
6129 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6130 	}
6131 }
6132 
6133 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6134 {
6135 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6136 	if (ctxt->exception.vector == PF_VECTOR)
6137 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6138 
6139 	if (ctxt->exception.error_code_valid)
6140 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6141 				      ctxt->exception.error_code);
6142 	else
6143 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6144 	return false;
6145 }
6146 
6147 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6148 {
6149 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6150 	int cs_db, cs_l;
6151 
6152 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6153 
6154 	ctxt->eflags = kvm_get_rflags(vcpu);
6155 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6156 
6157 	ctxt->eip = kvm_rip_read(vcpu);
6158 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6159 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6160 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6161 		     cs_db				? X86EMUL_MODE_PROT32 :
6162 							  X86EMUL_MODE_PROT16;
6163 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6164 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6165 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6166 
6167 	init_decode_cache(ctxt);
6168 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6169 }
6170 
6171 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6172 {
6173 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6174 	int ret;
6175 
6176 	init_emulate_ctxt(vcpu);
6177 
6178 	ctxt->op_bytes = 2;
6179 	ctxt->ad_bytes = 2;
6180 	ctxt->_eip = ctxt->eip + inc_eip;
6181 	ret = emulate_int_real(ctxt, irq);
6182 
6183 	if (ret != X86EMUL_CONTINUE)
6184 		return EMULATE_FAIL;
6185 
6186 	ctxt->eip = ctxt->_eip;
6187 	kvm_rip_write(vcpu, ctxt->eip);
6188 	kvm_set_rflags(vcpu, ctxt->eflags);
6189 
6190 	return EMULATE_DONE;
6191 }
6192 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6193 
6194 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6195 {
6196 	int r = EMULATE_DONE;
6197 
6198 	++vcpu->stat.insn_emulation_fail;
6199 	trace_kvm_emulate_insn_failed(vcpu);
6200 
6201 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6202 		return EMULATE_FAIL;
6203 
6204 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6205 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6206 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6207 		vcpu->run->internal.ndata = 0;
6208 		r = EMULATE_USER_EXIT;
6209 	}
6210 
6211 	kvm_queue_exception(vcpu, UD_VECTOR);
6212 
6213 	return r;
6214 }
6215 
6216 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6217 				  bool write_fault_to_shadow_pgtable,
6218 				  int emulation_type)
6219 {
6220 	gpa_t gpa = cr2;
6221 	kvm_pfn_t pfn;
6222 
6223 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6224 		return false;
6225 
6226 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6227 		return false;
6228 
6229 	if (!vcpu->arch.mmu->direct_map) {
6230 		/*
6231 		 * Write permission should be allowed since only
6232 		 * write access need to be emulated.
6233 		 */
6234 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6235 
6236 		/*
6237 		 * If the mapping is invalid in guest, let cpu retry
6238 		 * it to generate fault.
6239 		 */
6240 		if (gpa == UNMAPPED_GVA)
6241 			return true;
6242 	}
6243 
6244 	/*
6245 	 * Do not retry the unhandleable instruction if it faults on the
6246 	 * readonly host memory, otherwise it will goto a infinite loop:
6247 	 * retry instruction -> write #PF -> emulation fail -> retry
6248 	 * instruction -> ...
6249 	 */
6250 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6251 
6252 	/*
6253 	 * If the instruction failed on the error pfn, it can not be fixed,
6254 	 * report the error to userspace.
6255 	 */
6256 	if (is_error_noslot_pfn(pfn))
6257 		return false;
6258 
6259 	kvm_release_pfn_clean(pfn);
6260 
6261 	/* The instructions are well-emulated on direct mmu. */
6262 	if (vcpu->arch.mmu->direct_map) {
6263 		unsigned int indirect_shadow_pages;
6264 
6265 		spin_lock(&vcpu->kvm->mmu_lock);
6266 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6267 		spin_unlock(&vcpu->kvm->mmu_lock);
6268 
6269 		if (indirect_shadow_pages)
6270 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6271 
6272 		return true;
6273 	}
6274 
6275 	/*
6276 	 * if emulation was due to access to shadowed page table
6277 	 * and it failed try to unshadow page and re-enter the
6278 	 * guest to let CPU execute the instruction.
6279 	 */
6280 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6281 
6282 	/*
6283 	 * If the access faults on its page table, it can not
6284 	 * be fixed by unprotecting shadow page and it should
6285 	 * be reported to userspace.
6286 	 */
6287 	return !write_fault_to_shadow_pgtable;
6288 }
6289 
6290 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6291 			      unsigned long cr2,  int emulation_type)
6292 {
6293 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6294 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6295 
6296 	last_retry_eip = vcpu->arch.last_retry_eip;
6297 	last_retry_addr = vcpu->arch.last_retry_addr;
6298 
6299 	/*
6300 	 * If the emulation is caused by #PF and it is non-page_table
6301 	 * writing instruction, it means the VM-EXIT is caused by shadow
6302 	 * page protected, we can zap the shadow page and retry this
6303 	 * instruction directly.
6304 	 *
6305 	 * Note: if the guest uses a non-page-table modifying instruction
6306 	 * on the PDE that points to the instruction, then we will unmap
6307 	 * the instruction and go to an infinite loop. So, we cache the
6308 	 * last retried eip and the last fault address, if we meet the eip
6309 	 * and the address again, we can break out of the potential infinite
6310 	 * loop.
6311 	 */
6312 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6313 
6314 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6315 		return false;
6316 
6317 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6318 		return false;
6319 
6320 	if (x86_page_table_writing_insn(ctxt))
6321 		return false;
6322 
6323 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6324 		return false;
6325 
6326 	vcpu->arch.last_retry_eip = ctxt->eip;
6327 	vcpu->arch.last_retry_addr = cr2;
6328 
6329 	if (!vcpu->arch.mmu->direct_map)
6330 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6331 
6332 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6333 
6334 	return true;
6335 }
6336 
6337 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6338 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6339 
6340 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6341 {
6342 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6343 		/* This is a good place to trace that we are exiting SMM.  */
6344 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6345 
6346 		/* Process a latched INIT or SMI, if any.  */
6347 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6348 	}
6349 
6350 	kvm_mmu_reset_context(vcpu);
6351 }
6352 
6353 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6354 				unsigned long *db)
6355 {
6356 	u32 dr6 = 0;
6357 	int i;
6358 	u32 enable, rwlen;
6359 
6360 	enable = dr7;
6361 	rwlen = dr7 >> 16;
6362 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6363 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6364 			dr6 |= (1 << i);
6365 	return dr6;
6366 }
6367 
6368 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6369 {
6370 	struct kvm_run *kvm_run = vcpu->run;
6371 
6372 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6373 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6374 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6375 		kvm_run->debug.arch.exception = DB_VECTOR;
6376 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6377 		*r = EMULATE_USER_EXIT;
6378 	} else {
6379 		kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6380 	}
6381 }
6382 
6383 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6384 {
6385 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6386 	int r = EMULATE_DONE;
6387 
6388 	kvm_x86_ops->skip_emulated_instruction(vcpu);
6389 
6390 	/*
6391 	 * rflags is the old, "raw" value of the flags.  The new value has
6392 	 * not been saved yet.
6393 	 *
6394 	 * This is correct even for TF set by the guest, because "the
6395 	 * processor will not generate this exception after the instruction
6396 	 * that sets the TF flag".
6397 	 */
6398 	if (unlikely(rflags & X86_EFLAGS_TF))
6399 		kvm_vcpu_do_singlestep(vcpu, &r);
6400 	return r == EMULATE_DONE;
6401 }
6402 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6403 
6404 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6405 {
6406 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6407 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6408 		struct kvm_run *kvm_run = vcpu->run;
6409 		unsigned long eip = kvm_get_linear_rip(vcpu);
6410 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6411 					   vcpu->arch.guest_debug_dr7,
6412 					   vcpu->arch.eff_db);
6413 
6414 		if (dr6 != 0) {
6415 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6416 			kvm_run->debug.arch.pc = eip;
6417 			kvm_run->debug.arch.exception = DB_VECTOR;
6418 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6419 			*r = EMULATE_USER_EXIT;
6420 			return true;
6421 		}
6422 	}
6423 
6424 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6425 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6426 		unsigned long eip = kvm_get_linear_rip(vcpu);
6427 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6428 					   vcpu->arch.dr7,
6429 					   vcpu->arch.db);
6430 
6431 		if (dr6 != 0) {
6432 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6433 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6434 			kvm_queue_exception(vcpu, DB_VECTOR);
6435 			*r = EMULATE_DONE;
6436 			return true;
6437 		}
6438 	}
6439 
6440 	return false;
6441 }
6442 
6443 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6444 {
6445 	switch (ctxt->opcode_len) {
6446 	case 1:
6447 		switch (ctxt->b) {
6448 		case 0xe4:	/* IN */
6449 		case 0xe5:
6450 		case 0xec:
6451 		case 0xed:
6452 		case 0xe6:	/* OUT */
6453 		case 0xe7:
6454 		case 0xee:
6455 		case 0xef:
6456 		case 0x6c:	/* INS */
6457 		case 0x6d:
6458 		case 0x6e:	/* OUTS */
6459 		case 0x6f:
6460 			return true;
6461 		}
6462 		break;
6463 	case 2:
6464 		switch (ctxt->b) {
6465 		case 0x33:	/* RDPMC */
6466 			return true;
6467 		}
6468 		break;
6469 	}
6470 
6471 	return false;
6472 }
6473 
6474 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6475 			    unsigned long cr2,
6476 			    int emulation_type,
6477 			    void *insn,
6478 			    int insn_len)
6479 {
6480 	int r;
6481 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6482 	bool writeback = true;
6483 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6484 
6485 	vcpu->arch.l1tf_flush_l1d = true;
6486 
6487 	/*
6488 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6489 	 * never reused.
6490 	 */
6491 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6492 	kvm_clear_exception_queue(vcpu);
6493 
6494 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6495 		init_emulate_ctxt(vcpu);
6496 
6497 		/*
6498 		 * We will reenter on the same instruction since
6499 		 * we do not set complete_userspace_io.  This does not
6500 		 * handle watchpoints yet, those would be handled in
6501 		 * the emulate_ops.
6502 		 */
6503 		if (!(emulation_type & EMULTYPE_SKIP) &&
6504 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6505 			return r;
6506 
6507 		ctxt->interruptibility = 0;
6508 		ctxt->have_exception = false;
6509 		ctxt->exception.vector = -1;
6510 		ctxt->perm_ok = false;
6511 
6512 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6513 
6514 		r = x86_decode_insn(ctxt, insn, insn_len);
6515 
6516 		trace_kvm_emulate_insn_start(vcpu);
6517 		++vcpu->stat.insn_emulation;
6518 		if (r != EMULATION_OK)  {
6519 			if (emulation_type & EMULTYPE_TRAP_UD)
6520 				return EMULATE_FAIL;
6521 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6522 						emulation_type))
6523 				return EMULATE_DONE;
6524 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
6525 				return EMULATE_DONE;
6526 			if (emulation_type & EMULTYPE_SKIP)
6527 				return EMULATE_FAIL;
6528 			return handle_emulation_failure(vcpu, emulation_type);
6529 		}
6530 	}
6531 
6532 	if ((emulation_type & EMULTYPE_VMWARE) &&
6533 	    !is_vmware_backdoor_opcode(ctxt))
6534 		return EMULATE_FAIL;
6535 
6536 	if (emulation_type & EMULTYPE_SKIP) {
6537 		kvm_rip_write(vcpu, ctxt->_eip);
6538 		if (ctxt->eflags & X86_EFLAGS_RF)
6539 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6540 		return EMULATE_DONE;
6541 	}
6542 
6543 	if (retry_instruction(ctxt, cr2, emulation_type))
6544 		return EMULATE_DONE;
6545 
6546 	/* this is needed for vmware backdoor interface to work since it
6547 	   changes registers values  during IO operation */
6548 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6549 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6550 		emulator_invalidate_register_cache(ctxt);
6551 	}
6552 
6553 restart:
6554 	/* Save the faulting GPA (cr2) in the address field */
6555 	ctxt->exception.address = cr2;
6556 
6557 	r = x86_emulate_insn(ctxt);
6558 
6559 	if (r == EMULATION_INTERCEPTED)
6560 		return EMULATE_DONE;
6561 
6562 	if (r == EMULATION_FAILED) {
6563 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6564 					emulation_type))
6565 			return EMULATE_DONE;
6566 
6567 		return handle_emulation_failure(vcpu, emulation_type);
6568 	}
6569 
6570 	if (ctxt->have_exception) {
6571 		r = EMULATE_DONE;
6572 		if (inject_emulated_exception(vcpu))
6573 			return r;
6574 	} else if (vcpu->arch.pio.count) {
6575 		if (!vcpu->arch.pio.in) {
6576 			/* FIXME: return into emulator if single-stepping.  */
6577 			vcpu->arch.pio.count = 0;
6578 		} else {
6579 			writeback = false;
6580 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6581 		}
6582 		r = EMULATE_USER_EXIT;
6583 	} else if (vcpu->mmio_needed) {
6584 		if (!vcpu->mmio_is_write)
6585 			writeback = false;
6586 		r = EMULATE_USER_EXIT;
6587 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6588 	} else if (r == EMULATION_RESTART)
6589 		goto restart;
6590 	else
6591 		r = EMULATE_DONE;
6592 
6593 	if (writeback) {
6594 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6595 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6596 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6597 		if (!ctxt->have_exception ||
6598 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6599 			kvm_rip_write(vcpu, ctxt->eip);
6600 			if (r == EMULATE_DONE && ctxt->tf)
6601 				kvm_vcpu_do_singlestep(vcpu, &r);
6602 			__kvm_set_rflags(vcpu, ctxt->eflags);
6603 		}
6604 
6605 		/*
6606 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6607 		 * do nothing, and it will be requested again as soon as
6608 		 * the shadow expires.  But we still need to check here,
6609 		 * because POPF has no interrupt shadow.
6610 		 */
6611 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6612 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6613 	} else
6614 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6615 
6616 	return r;
6617 }
6618 
6619 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6620 {
6621 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6622 }
6623 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6624 
6625 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6626 					void *insn, int insn_len)
6627 {
6628 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6629 }
6630 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6631 
6632 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6633 {
6634 	vcpu->arch.pio.count = 0;
6635 	return 1;
6636 }
6637 
6638 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6639 {
6640 	vcpu->arch.pio.count = 0;
6641 
6642 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6643 		return 1;
6644 
6645 	return kvm_skip_emulated_instruction(vcpu);
6646 }
6647 
6648 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6649 			    unsigned short port)
6650 {
6651 	unsigned long val = kvm_rax_read(vcpu);
6652 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6653 					    size, port, &val, 1);
6654 	if (ret)
6655 		return ret;
6656 
6657 	/*
6658 	 * Workaround userspace that relies on old KVM behavior of %rip being
6659 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6660 	 */
6661 	if (port == 0x7e &&
6662 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6663 		vcpu->arch.complete_userspace_io =
6664 			complete_fast_pio_out_port_0x7e;
6665 		kvm_skip_emulated_instruction(vcpu);
6666 	} else {
6667 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6668 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6669 	}
6670 	return 0;
6671 }
6672 
6673 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6674 {
6675 	unsigned long val;
6676 
6677 	/* We should only ever be called with arch.pio.count equal to 1 */
6678 	BUG_ON(vcpu->arch.pio.count != 1);
6679 
6680 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6681 		vcpu->arch.pio.count = 0;
6682 		return 1;
6683 	}
6684 
6685 	/* For size less than 4 we merge, else we zero extend */
6686 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6687 
6688 	/*
6689 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6690 	 * the copy and tracing
6691 	 */
6692 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6693 				 vcpu->arch.pio.port, &val, 1);
6694 	kvm_rax_write(vcpu, val);
6695 
6696 	return kvm_skip_emulated_instruction(vcpu);
6697 }
6698 
6699 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6700 			   unsigned short port)
6701 {
6702 	unsigned long val;
6703 	int ret;
6704 
6705 	/* For size less than 4 we merge, else we zero extend */
6706 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6707 
6708 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6709 				       &val, 1);
6710 	if (ret) {
6711 		kvm_rax_write(vcpu, val);
6712 		return ret;
6713 	}
6714 
6715 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6716 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6717 
6718 	return 0;
6719 }
6720 
6721 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6722 {
6723 	int ret;
6724 
6725 	if (in)
6726 		ret = kvm_fast_pio_in(vcpu, size, port);
6727 	else
6728 		ret = kvm_fast_pio_out(vcpu, size, port);
6729 	return ret && kvm_skip_emulated_instruction(vcpu);
6730 }
6731 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6732 
6733 static int kvmclock_cpu_down_prep(unsigned int cpu)
6734 {
6735 	__this_cpu_write(cpu_tsc_khz, 0);
6736 	return 0;
6737 }
6738 
6739 static void tsc_khz_changed(void *data)
6740 {
6741 	struct cpufreq_freqs *freq = data;
6742 	unsigned long khz = 0;
6743 
6744 	if (data)
6745 		khz = freq->new;
6746 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6747 		khz = cpufreq_quick_get(raw_smp_processor_id());
6748 	if (!khz)
6749 		khz = tsc_khz;
6750 	__this_cpu_write(cpu_tsc_khz, khz);
6751 }
6752 
6753 #ifdef CONFIG_X86_64
6754 static void kvm_hyperv_tsc_notifier(void)
6755 {
6756 	struct kvm *kvm;
6757 	struct kvm_vcpu *vcpu;
6758 	int cpu;
6759 
6760 	mutex_lock(&kvm_lock);
6761 	list_for_each_entry(kvm, &vm_list, vm_list)
6762 		kvm_make_mclock_inprogress_request(kvm);
6763 
6764 	hyperv_stop_tsc_emulation();
6765 
6766 	/* TSC frequency always matches when on Hyper-V */
6767 	for_each_present_cpu(cpu)
6768 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6769 	kvm_max_guest_tsc_khz = tsc_khz;
6770 
6771 	list_for_each_entry(kvm, &vm_list, vm_list) {
6772 		struct kvm_arch *ka = &kvm->arch;
6773 
6774 		spin_lock(&ka->pvclock_gtod_sync_lock);
6775 
6776 		pvclock_update_vm_gtod_copy(kvm);
6777 
6778 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6779 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6780 
6781 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6782 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6783 
6784 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6785 	}
6786 	mutex_unlock(&kvm_lock);
6787 }
6788 #endif
6789 
6790 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6791 {
6792 	struct kvm *kvm;
6793 	struct kvm_vcpu *vcpu;
6794 	int i, send_ipi = 0;
6795 
6796 	/*
6797 	 * We allow guests to temporarily run on slowing clocks,
6798 	 * provided we notify them after, or to run on accelerating
6799 	 * clocks, provided we notify them before.  Thus time never
6800 	 * goes backwards.
6801 	 *
6802 	 * However, we have a problem.  We can't atomically update
6803 	 * the frequency of a given CPU from this function; it is
6804 	 * merely a notifier, which can be called from any CPU.
6805 	 * Changing the TSC frequency at arbitrary points in time
6806 	 * requires a recomputation of local variables related to
6807 	 * the TSC for each VCPU.  We must flag these local variables
6808 	 * to be updated and be sure the update takes place with the
6809 	 * new frequency before any guests proceed.
6810 	 *
6811 	 * Unfortunately, the combination of hotplug CPU and frequency
6812 	 * change creates an intractable locking scenario; the order
6813 	 * of when these callouts happen is undefined with respect to
6814 	 * CPU hotplug, and they can race with each other.  As such,
6815 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6816 	 * undefined; you can actually have a CPU frequency change take
6817 	 * place in between the computation of X and the setting of the
6818 	 * variable.  To protect against this problem, all updates of
6819 	 * the per_cpu tsc_khz variable are done in an interrupt
6820 	 * protected IPI, and all callers wishing to update the value
6821 	 * must wait for a synchronous IPI to complete (which is trivial
6822 	 * if the caller is on the CPU already).  This establishes the
6823 	 * necessary total order on variable updates.
6824 	 *
6825 	 * Note that because a guest time update may take place
6826 	 * anytime after the setting of the VCPU's request bit, the
6827 	 * correct TSC value must be set before the request.  However,
6828 	 * to ensure the update actually makes it to any guest which
6829 	 * starts running in hardware virtualization between the set
6830 	 * and the acquisition of the spinlock, we must also ping the
6831 	 * CPU after setting the request bit.
6832 	 *
6833 	 */
6834 
6835 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6836 
6837 	mutex_lock(&kvm_lock);
6838 	list_for_each_entry(kvm, &vm_list, vm_list) {
6839 		kvm_for_each_vcpu(i, vcpu, kvm) {
6840 			if (vcpu->cpu != cpu)
6841 				continue;
6842 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6843 			if (vcpu->cpu != raw_smp_processor_id())
6844 				send_ipi = 1;
6845 		}
6846 	}
6847 	mutex_unlock(&kvm_lock);
6848 
6849 	if (freq->old < freq->new && send_ipi) {
6850 		/*
6851 		 * We upscale the frequency.  Must make the guest
6852 		 * doesn't see old kvmclock values while running with
6853 		 * the new frequency, otherwise we risk the guest sees
6854 		 * time go backwards.
6855 		 *
6856 		 * In case we update the frequency for another cpu
6857 		 * (which might be in guest context) send an interrupt
6858 		 * to kick the cpu out of guest context.  Next time
6859 		 * guest context is entered kvmclock will be updated,
6860 		 * so the guest will not see stale values.
6861 		 */
6862 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6863 	}
6864 }
6865 
6866 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6867 				     void *data)
6868 {
6869 	struct cpufreq_freqs *freq = data;
6870 	int cpu;
6871 
6872 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6873 		return 0;
6874 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6875 		return 0;
6876 
6877 	for_each_cpu(cpu, freq->policy->cpus)
6878 		__kvmclock_cpufreq_notifier(freq, cpu);
6879 
6880 	return 0;
6881 }
6882 
6883 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6884 	.notifier_call  = kvmclock_cpufreq_notifier
6885 };
6886 
6887 static int kvmclock_cpu_online(unsigned int cpu)
6888 {
6889 	tsc_khz_changed(NULL);
6890 	return 0;
6891 }
6892 
6893 static void kvm_timer_init(void)
6894 {
6895 	max_tsc_khz = tsc_khz;
6896 
6897 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6898 #ifdef CONFIG_CPU_FREQ
6899 		struct cpufreq_policy policy;
6900 		int cpu;
6901 
6902 		memset(&policy, 0, sizeof(policy));
6903 		cpu = get_cpu();
6904 		cpufreq_get_policy(&policy, cpu);
6905 		if (policy.cpuinfo.max_freq)
6906 			max_tsc_khz = policy.cpuinfo.max_freq;
6907 		put_cpu();
6908 #endif
6909 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6910 					  CPUFREQ_TRANSITION_NOTIFIER);
6911 	}
6912 
6913 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6914 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6915 }
6916 
6917 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6918 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6919 
6920 int kvm_is_in_guest(void)
6921 {
6922 	return __this_cpu_read(current_vcpu) != NULL;
6923 }
6924 
6925 static int kvm_is_user_mode(void)
6926 {
6927 	int user_mode = 3;
6928 
6929 	if (__this_cpu_read(current_vcpu))
6930 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6931 
6932 	return user_mode != 0;
6933 }
6934 
6935 static unsigned long kvm_get_guest_ip(void)
6936 {
6937 	unsigned long ip = 0;
6938 
6939 	if (__this_cpu_read(current_vcpu))
6940 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6941 
6942 	return ip;
6943 }
6944 
6945 static void kvm_handle_intel_pt_intr(void)
6946 {
6947 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6948 
6949 	kvm_make_request(KVM_REQ_PMI, vcpu);
6950 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6951 			(unsigned long *)&vcpu->arch.pmu.global_status);
6952 }
6953 
6954 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6955 	.is_in_guest		= kvm_is_in_guest,
6956 	.is_user_mode		= kvm_is_user_mode,
6957 	.get_guest_ip		= kvm_get_guest_ip,
6958 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
6959 };
6960 
6961 #ifdef CONFIG_X86_64
6962 static void pvclock_gtod_update_fn(struct work_struct *work)
6963 {
6964 	struct kvm *kvm;
6965 
6966 	struct kvm_vcpu *vcpu;
6967 	int i;
6968 
6969 	mutex_lock(&kvm_lock);
6970 	list_for_each_entry(kvm, &vm_list, vm_list)
6971 		kvm_for_each_vcpu(i, vcpu, kvm)
6972 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6973 	atomic_set(&kvm_guest_has_master_clock, 0);
6974 	mutex_unlock(&kvm_lock);
6975 }
6976 
6977 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6978 
6979 /*
6980  * Notification about pvclock gtod data update.
6981  */
6982 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6983 			       void *priv)
6984 {
6985 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6986 	struct timekeeper *tk = priv;
6987 
6988 	update_pvclock_gtod(tk);
6989 
6990 	/* disable master clock if host does not trust, or does not
6991 	 * use, TSC based clocksource.
6992 	 */
6993 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6994 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6995 		queue_work(system_long_wq, &pvclock_gtod_work);
6996 
6997 	return 0;
6998 }
6999 
7000 static struct notifier_block pvclock_gtod_notifier = {
7001 	.notifier_call = pvclock_gtod_notify,
7002 };
7003 #endif
7004 
7005 int kvm_arch_init(void *opaque)
7006 {
7007 	int r;
7008 	struct kvm_x86_ops *ops = opaque;
7009 
7010 	if (kvm_x86_ops) {
7011 		printk(KERN_ERR "kvm: already loaded the other module\n");
7012 		r = -EEXIST;
7013 		goto out;
7014 	}
7015 
7016 	if (!ops->cpu_has_kvm_support()) {
7017 		printk(KERN_ERR "kvm: no hardware support\n");
7018 		r = -EOPNOTSUPP;
7019 		goto out;
7020 	}
7021 	if (ops->disabled_by_bios()) {
7022 		printk(KERN_ERR "kvm: disabled by bios\n");
7023 		r = -EOPNOTSUPP;
7024 		goto out;
7025 	}
7026 
7027 	/*
7028 	 * KVM explicitly assumes that the guest has an FPU and
7029 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7030 	 * vCPU's FPU state as a fxregs_state struct.
7031 	 */
7032 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7033 		printk(KERN_ERR "kvm: inadequate fpu\n");
7034 		r = -EOPNOTSUPP;
7035 		goto out;
7036 	}
7037 
7038 	r = -ENOMEM;
7039 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7040 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7041 					  NULL);
7042 	if (!x86_fpu_cache) {
7043 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7044 		goto out;
7045 	}
7046 
7047 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7048 	if (!shared_msrs) {
7049 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7050 		goto out_free_x86_fpu_cache;
7051 	}
7052 
7053 	r = kvm_mmu_module_init();
7054 	if (r)
7055 		goto out_free_percpu;
7056 
7057 	kvm_x86_ops = ops;
7058 
7059 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7060 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7061 			PT_PRESENT_MASK, 0, sme_me_mask);
7062 	kvm_timer_init();
7063 
7064 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7065 
7066 	if (boot_cpu_has(X86_FEATURE_XSAVE))
7067 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7068 
7069 	kvm_lapic_init();
7070 	if (pi_inject_timer == -1)
7071 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7072 #ifdef CONFIG_X86_64
7073 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7074 
7075 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7076 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7077 #endif
7078 
7079 	return 0;
7080 
7081 out_free_percpu:
7082 	free_percpu(shared_msrs);
7083 out_free_x86_fpu_cache:
7084 	kmem_cache_destroy(x86_fpu_cache);
7085 out:
7086 	return r;
7087 }
7088 
7089 void kvm_arch_exit(void)
7090 {
7091 #ifdef CONFIG_X86_64
7092 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7093 		clear_hv_tscchange_cb();
7094 #endif
7095 	kvm_lapic_exit();
7096 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7097 
7098 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7099 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7100 					    CPUFREQ_TRANSITION_NOTIFIER);
7101 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7102 #ifdef CONFIG_X86_64
7103 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7104 #endif
7105 	kvm_x86_ops = NULL;
7106 	kvm_mmu_module_exit();
7107 	free_percpu(shared_msrs);
7108 	kmem_cache_destroy(x86_fpu_cache);
7109 }
7110 
7111 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7112 {
7113 	++vcpu->stat.halt_exits;
7114 	if (lapic_in_kernel(vcpu)) {
7115 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7116 		return 1;
7117 	} else {
7118 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7119 		return 0;
7120 	}
7121 }
7122 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7123 
7124 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7125 {
7126 	int ret = kvm_skip_emulated_instruction(vcpu);
7127 	/*
7128 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7129 	 * KVM_EXIT_DEBUG here.
7130 	 */
7131 	return kvm_vcpu_halt(vcpu) && ret;
7132 }
7133 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7134 
7135 #ifdef CONFIG_X86_64
7136 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7137 			        unsigned long clock_type)
7138 {
7139 	struct kvm_clock_pairing clock_pairing;
7140 	struct timespec64 ts;
7141 	u64 cycle;
7142 	int ret;
7143 
7144 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7145 		return -KVM_EOPNOTSUPP;
7146 
7147 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7148 		return -KVM_EOPNOTSUPP;
7149 
7150 	clock_pairing.sec = ts.tv_sec;
7151 	clock_pairing.nsec = ts.tv_nsec;
7152 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7153 	clock_pairing.flags = 0;
7154 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7155 
7156 	ret = 0;
7157 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7158 			    sizeof(struct kvm_clock_pairing)))
7159 		ret = -KVM_EFAULT;
7160 
7161 	return ret;
7162 }
7163 #endif
7164 
7165 /*
7166  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7167  *
7168  * @apicid - apicid of vcpu to be kicked.
7169  */
7170 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7171 {
7172 	struct kvm_lapic_irq lapic_irq;
7173 
7174 	lapic_irq.shorthand = 0;
7175 	lapic_irq.dest_mode = 0;
7176 	lapic_irq.level = 0;
7177 	lapic_irq.dest_id = apicid;
7178 	lapic_irq.msi_redir_hint = false;
7179 
7180 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7181 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7182 }
7183 
7184 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7185 {
7186 	if (!lapic_in_kernel(vcpu)) {
7187 		WARN_ON_ONCE(vcpu->arch.apicv_active);
7188 		return;
7189 	}
7190 	if (!vcpu->arch.apicv_active)
7191 		return;
7192 
7193 	vcpu->arch.apicv_active = false;
7194 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7195 }
7196 
7197 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7198 {
7199 	struct kvm_vcpu *target = NULL;
7200 	struct kvm_apic_map *map;
7201 
7202 	rcu_read_lock();
7203 	map = rcu_dereference(kvm->arch.apic_map);
7204 
7205 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7206 		target = map->phys_map[dest_id]->vcpu;
7207 
7208 	rcu_read_unlock();
7209 
7210 	if (target && READ_ONCE(target->ready))
7211 		kvm_vcpu_yield_to(target);
7212 }
7213 
7214 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7215 {
7216 	unsigned long nr, a0, a1, a2, a3, ret;
7217 	int op_64_bit;
7218 
7219 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7220 		return kvm_hv_hypercall(vcpu);
7221 
7222 	nr = kvm_rax_read(vcpu);
7223 	a0 = kvm_rbx_read(vcpu);
7224 	a1 = kvm_rcx_read(vcpu);
7225 	a2 = kvm_rdx_read(vcpu);
7226 	a3 = kvm_rsi_read(vcpu);
7227 
7228 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7229 
7230 	op_64_bit = is_64_bit_mode(vcpu);
7231 	if (!op_64_bit) {
7232 		nr &= 0xFFFFFFFF;
7233 		a0 &= 0xFFFFFFFF;
7234 		a1 &= 0xFFFFFFFF;
7235 		a2 &= 0xFFFFFFFF;
7236 		a3 &= 0xFFFFFFFF;
7237 	}
7238 
7239 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7240 		ret = -KVM_EPERM;
7241 		goto out;
7242 	}
7243 
7244 	switch (nr) {
7245 	case KVM_HC_VAPIC_POLL_IRQ:
7246 		ret = 0;
7247 		break;
7248 	case KVM_HC_KICK_CPU:
7249 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7250 		kvm_sched_yield(vcpu->kvm, a1);
7251 		ret = 0;
7252 		break;
7253 #ifdef CONFIG_X86_64
7254 	case KVM_HC_CLOCK_PAIRING:
7255 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7256 		break;
7257 #endif
7258 	case KVM_HC_SEND_IPI:
7259 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7260 		break;
7261 	case KVM_HC_SCHED_YIELD:
7262 		kvm_sched_yield(vcpu->kvm, a0);
7263 		ret = 0;
7264 		break;
7265 	default:
7266 		ret = -KVM_ENOSYS;
7267 		break;
7268 	}
7269 out:
7270 	if (!op_64_bit)
7271 		ret = (u32)ret;
7272 	kvm_rax_write(vcpu, ret);
7273 
7274 	++vcpu->stat.hypercalls;
7275 	return kvm_skip_emulated_instruction(vcpu);
7276 }
7277 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7278 
7279 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7280 {
7281 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7282 	char instruction[3];
7283 	unsigned long rip = kvm_rip_read(vcpu);
7284 
7285 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7286 
7287 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7288 		&ctxt->exception);
7289 }
7290 
7291 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7292 {
7293 	return vcpu->run->request_interrupt_window &&
7294 		likely(!pic_in_kernel(vcpu->kvm));
7295 }
7296 
7297 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7298 {
7299 	struct kvm_run *kvm_run = vcpu->run;
7300 
7301 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7302 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7303 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7304 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7305 	kvm_run->ready_for_interrupt_injection =
7306 		pic_in_kernel(vcpu->kvm) ||
7307 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7308 }
7309 
7310 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7311 {
7312 	int max_irr, tpr;
7313 
7314 	if (!kvm_x86_ops->update_cr8_intercept)
7315 		return;
7316 
7317 	if (!lapic_in_kernel(vcpu))
7318 		return;
7319 
7320 	if (vcpu->arch.apicv_active)
7321 		return;
7322 
7323 	if (!vcpu->arch.apic->vapic_addr)
7324 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7325 	else
7326 		max_irr = -1;
7327 
7328 	if (max_irr != -1)
7329 		max_irr >>= 4;
7330 
7331 	tpr = kvm_lapic_get_cr8(vcpu);
7332 
7333 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7334 }
7335 
7336 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7337 {
7338 	int r;
7339 
7340 	/* try to reinject previous events if any */
7341 
7342 	if (vcpu->arch.exception.injected)
7343 		kvm_x86_ops->queue_exception(vcpu);
7344 	/*
7345 	 * Do not inject an NMI or interrupt if there is a pending
7346 	 * exception.  Exceptions and interrupts are recognized at
7347 	 * instruction boundaries, i.e. the start of an instruction.
7348 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7349 	 * NMIs and interrupts, i.e. traps are recognized before an
7350 	 * NMI/interrupt that's pending on the same instruction.
7351 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7352 	 * priority, but are only generated (pended) during instruction
7353 	 * execution, i.e. a pending fault-like exception means the
7354 	 * fault occurred on the *previous* instruction and must be
7355 	 * serviced prior to recognizing any new events in order to
7356 	 * fully complete the previous instruction.
7357 	 */
7358 	else if (!vcpu->arch.exception.pending) {
7359 		if (vcpu->arch.nmi_injected)
7360 			kvm_x86_ops->set_nmi(vcpu);
7361 		else if (vcpu->arch.interrupt.injected)
7362 			kvm_x86_ops->set_irq(vcpu);
7363 	}
7364 
7365 	/*
7366 	 * Call check_nested_events() even if we reinjected a previous event
7367 	 * in order for caller to determine if it should require immediate-exit
7368 	 * from L2 to L1 due to pending L1 events which require exit
7369 	 * from L2 to L1.
7370 	 */
7371 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7372 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7373 		if (r != 0)
7374 			return r;
7375 	}
7376 
7377 	/* try to inject new event if pending */
7378 	if (vcpu->arch.exception.pending) {
7379 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7380 					vcpu->arch.exception.has_error_code,
7381 					vcpu->arch.exception.error_code);
7382 
7383 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7384 		vcpu->arch.exception.pending = false;
7385 		vcpu->arch.exception.injected = true;
7386 
7387 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7388 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7389 					     X86_EFLAGS_RF);
7390 
7391 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7392 			/*
7393 			 * This code assumes that nSVM doesn't use
7394 			 * check_nested_events(). If it does, the
7395 			 * DR6/DR7 changes should happen before L1
7396 			 * gets a #VMEXIT for an intercepted #DB in
7397 			 * L2.  (Under VMX, on the other hand, the
7398 			 * DR6/DR7 changes should not happen in the
7399 			 * event of a VM-exit to L1 for an intercepted
7400 			 * #DB in L2.)
7401 			 */
7402 			kvm_deliver_exception_payload(vcpu);
7403 			if (vcpu->arch.dr7 & DR7_GD) {
7404 				vcpu->arch.dr7 &= ~DR7_GD;
7405 				kvm_update_dr7(vcpu);
7406 			}
7407 		}
7408 
7409 		kvm_x86_ops->queue_exception(vcpu);
7410 	}
7411 
7412 	/* Don't consider new event if we re-injected an event */
7413 	if (kvm_event_needs_reinjection(vcpu))
7414 		return 0;
7415 
7416 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7417 	    kvm_x86_ops->smi_allowed(vcpu)) {
7418 		vcpu->arch.smi_pending = false;
7419 		++vcpu->arch.smi_count;
7420 		enter_smm(vcpu);
7421 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7422 		--vcpu->arch.nmi_pending;
7423 		vcpu->arch.nmi_injected = true;
7424 		kvm_x86_ops->set_nmi(vcpu);
7425 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7426 		/*
7427 		 * Because interrupts can be injected asynchronously, we are
7428 		 * calling check_nested_events again here to avoid a race condition.
7429 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7430 		 * proposal and current concerns.  Perhaps we should be setting
7431 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7432 		 */
7433 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7434 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7435 			if (r != 0)
7436 				return r;
7437 		}
7438 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7439 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7440 					    false);
7441 			kvm_x86_ops->set_irq(vcpu);
7442 		}
7443 	}
7444 
7445 	return 0;
7446 }
7447 
7448 static void process_nmi(struct kvm_vcpu *vcpu)
7449 {
7450 	unsigned limit = 2;
7451 
7452 	/*
7453 	 * x86 is limited to one NMI running, and one NMI pending after it.
7454 	 * If an NMI is already in progress, limit further NMIs to just one.
7455 	 * Otherwise, allow two (and we'll inject the first one immediately).
7456 	 */
7457 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7458 		limit = 1;
7459 
7460 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7461 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7462 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7463 }
7464 
7465 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7466 {
7467 	u32 flags = 0;
7468 	flags |= seg->g       << 23;
7469 	flags |= seg->db      << 22;
7470 	flags |= seg->l       << 21;
7471 	flags |= seg->avl     << 20;
7472 	flags |= seg->present << 15;
7473 	flags |= seg->dpl     << 13;
7474 	flags |= seg->s       << 12;
7475 	flags |= seg->type    << 8;
7476 	return flags;
7477 }
7478 
7479 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7480 {
7481 	struct kvm_segment seg;
7482 	int offset;
7483 
7484 	kvm_get_segment(vcpu, &seg, n);
7485 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7486 
7487 	if (n < 3)
7488 		offset = 0x7f84 + n * 12;
7489 	else
7490 		offset = 0x7f2c + (n - 3) * 12;
7491 
7492 	put_smstate(u32, buf, offset + 8, seg.base);
7493 	put_smstate(u32, buf, offset + 4, seg.limit);
7494 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7495 }
7496 
7497 #ifdef CONFIG_X86_64
7498 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7499 {
7500 	struct kvm_segment seg;
7501 	int offset;
7502 	u16 flags;
7503 
7504 	kvm_get_segment(vcpu, &seg, n);
7505 	offset = 0x7e00 + n * 16;
7506 
7507 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7508 	put_smstate(u16, buf, offset, seg.selector);
7509 	put_smstate(u16, buf, offset + 2, flags);
7510 	put_smstate(u32, buf, offset + 4, seg.limit);
7511 	put_smstate(u64, buf, offset + 8, seg.base);
7512 }
7513 #endif
7514 
7515 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7516 {
7517 	struct desc_ptr dt;
7518 	struct kvm_segment seg;
7519 	unsigned long val;
7520 	int i;
7521 
7522 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7523 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7524 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7525 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7526 
7527 	for (i = 0; i < 8; i++)
7528 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7529 
7530 	kvm_get_dr(vcpu, 6, &val);
7531 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7532 	kvm_get_dr(vcpu, 7, &val);
7533 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7534 
7535 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7536 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7537 	put_smstate(u32, buf, 0x7f64, seg.base);
7538 	put_smstate(u32, buf, 0x7f60, seg.limit);
7539 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7540 
7541 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7542 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7543 	put_smstate(u32, buf, 0x7f80, seg.base);
7544 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7545 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7546 
7547 	kvm_x86_ops->get_gdt(vcpu, &dt);
7548 	put_smstate(u32, buf, 0x7f74, dt.address);
7549 	put_smstate(u32, buf, 0x7f70, dt.size);
7550 
7551 	kvm_x86_ops->get_idt(vcpu, &dt);
7552 	put_smstate(u32, buf, 0x7f58, dt.address);
7553 	put_smstate(u32, buf, 0x7f54, dt.size);
7554 
7555 	for (i = 0; i < 6; i++)
7556 		enter_smm_save_seg_32(vcpu, buf, i);
7557 
7558 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7559 
7560 	/* revision id */
7561 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7562 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7563 }
7564 
7565 #ifdef CONFIG_X86_64
7566 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7567 {
7568 	struct desc_ptr dt;
7569 	struct kvm_segment seg;
7570 	unsigned long val;
7571 	int i;
7572 
7573 	for (i = 0; i < 16; i++)
7574 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7575 
7576 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7577 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7578 
7579 	kvm_get_dr(vcpu, 6, &val);
7580 	put_smstate(u64, buf, 0x7f68, val);
7581 	kvm_get_dr(vcpu, 7, &val);
7582 	put_smstate(u64, buf, 0x7f60, val);
7583 
7584 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7585 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7586 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7587 
7588 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7589 
7590 	/* revision id */
7591 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7592 
7593 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7594 
7595 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7596 	put_smstate(u16, buf, 0x7e90, seg.selector);
7597 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7598 	put_smstate(u32, buf, 0x7e94, seg.limit);
7599 	put_smstate(u64, buf, 0x7e98, seg.base);
7600 
7601 	kvm_x86_ops->get_idt(vcpu, &dt);
7602 	put_smstate(u32, buf, 0x7e84, dt.size);
7603 	put_smstate(u64, buf, 0x7e88, dt.address);
7604 
7605 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7606 	put_smstate(u16, buf, 0x7e70, seg.selector);
7607 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7608 	put_smstate(u32, buf, 0x7e74, seg.limit);
7609 	put_smstate(u64, buf, 0x7e78, seg.base);
7610 
7611 	kvm_x86_ops->get_gdt(vcpu, &dt);
7612 	put_smstate(u32, buf, 0x7e64, dt.size);
7613 	put_smstate(u64, buf, 0x7e68, dt.address);
7614 
7615 	for (i = 0; i < 6; i++)
7616 		enter_smm_save_seg_64(vcpu, buf, i);
7617 }
7618 #endif
7619 
7620 static void enter_smm(struct kvm_vcpu *vcpu)
7621 {
7622 	struct kvm_segment cs, ds;
7623 	struct desc_ptr dt;
7624 	char buf[512];
7625 	u32 cr0;
7626 
7627 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7628 	memset(buf, 0, 512);
7629 #ifdef CONFIG_X86_64
7630 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7631 		enter_smm_save_state_64(vcpu, buf);
7632 	else
7633 #endif
7634 		enter_smm_save_state_32(vcpu, buf);
7635 
7636 	/*
7637 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7638 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7639 	 * the SMM state-save area.
7640 	 */
7641 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7642 
7643 	vcpu->arch.hflags |= HF_SMM_MASK;
7644 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7645 
7646 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7647 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7648 	else
7649 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7650 
7651 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7652 	kvm_rip_write(vcpu, 0x8000);
7653 
7654 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7655 	kvm_x86_ops->set_cr0(vcpu, cr0);
7656 	vcpu->arch.cr0 = cr0;
7657 
7658 	kvm_x86_ops->set_cr4(vcpu, 0);
7659 
7660 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7661 	dt.address = dt.size = 0;
7662 	kvm_x86_ops->set_idt(vcpu, &dt);
7663 
7664 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7665 
7666 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7667 	cs.base = vcpu->arch.smbase;
7668 
7669 	ds.selector = 0;
7670 	ds.base = 0;
7671 
7672 	cs.limit    = ds.limit = 0xffffffff;
7673 	cs.type     = ds.type = 0x3;
7674 	cs.dpl      = ds.dpl = 0;
7675 	cs.db       = ds.db = 0;
7676 	cs.s        = ds.s = 1;
7677 	cs.l        = ds.l = 0;
7678 	cs.g        = ds.g = 1;
7679 	cs.avl      = ds.avl = 0;
7680 	cs.present  = ds.present = 1;
7681 	cs.unusable = ds.unusable = 0;
7682 	cs.padding  = ds.padding = 0;
7683 
7684 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7685 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7686 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7687 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7688 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7689 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7690 
7691 #ifdef CONFIG_X86_64
7692 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7693 		kvm_x86_ops->set_efer(vcpu, 0);
7694 #endif
7695 
7696 	kvm_update_cpuid(vcpu);
7697 	kvm_mmu_reset_context(vcpu);
7698 }
7699 
7700 static void process_smi(struct kvm_vcpu *vcpu)
7701 {
7702 	vcpu->arch.smi_pending = true;
7703 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7704 }
7705 
7706 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7707 {
7708 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7709 }
7710 
7711 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7712 {
7713 	if (!kvm_apic_present(vcpu))
7714 		return;
7715 
7716 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7717 
7718 	if (irqchip_split(vcpu->kvm))
7719 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7720 	else {
7721 		if (vcpu->arch.apicv_active)
7722 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7723 		if (ioapic_in_kernel(vcpu->kvm))
7724 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7725 	}
7726 
7727 	if (is_guest_mode(vcpu))
7728 		vcpu->arch.load_eoi_exitmap_pending = true;
7729 	else
7730 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7731 }
7732 
7733 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7734 {
7735 	u64 eoi_exit_bitmap[4];
7736 
7737 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7738 		return;
7739 
7740 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7741 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7742 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7743 }
7744 
7745 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7746 		unsigned long start, unsigned long end,
7747 		bool blockable)
7748 {
7749 	unsigned long apic_address;
7750 
7751 	/*
7752 	 * The physical address of apic access page is stored in the VMCS.
7753 	 * Update it when it becomes invalid.
7754 	 */
7755 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7756 	if (start <= apic_address && apic_address < end)
7757 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7758 
7759 	return 0;
7760 }
7761 
7762 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7763 {
7764 	struct page *page = NULL;
7765 
7766 	if (!lapic_in_kernel(vcpu))
7767 		return;
7768 
7769 	if (!kvm_x86_ops->set_apic_access_page_addr)
7770 		return;
7771 
7772 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7773 	if (is_error_page(page))
7774 		return;
7775 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7776 
7777 	/*
7778 	 * Do not pin apic access page in memory, the MMU notifier
7779 	 * will call us again if it is migrated or swapped out.
7780 	 */
7781 	put_page(page);
7782 }
7783 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7784 
7785 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7786 {
7787 	smp_send_reschedule(vcpu->cpu);
7788 }
7789 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7790 
7791 /*
7792  * Returns 1 to let vcpu_run() continue the guest execution loop without
7793  * exiting to the userspace.  Otherwise, the value will be returned to the
7794  * userspace.
7795  */
7796 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7797 {
7798 	int r;
7799 	bool req_int_win =
7800 		dm_request_for_irq_injection(vcpu) &&
7801 		kvm_cpu_accept_dm_intr(vcpu);
7802 
7803 	bool req_immediate_exit = false;
7804 
7805 	if (kvm_request_pending(vcpu)) {
7806 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7807 			kvm_x86_ops->get_vmcs12_pages(vcpu);
7808 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7809 			kvm_mmu_unload(vcpu);
7810 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7811 			__kvm_migrate_timers(vcpu);
7812 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7813 			kvm_gen_update_masterclock(vcpu->kvm);
7814 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7815 			kvm_gen_kvmclock_update(vcpu);
7816 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7817 			r = kvm_guest_time_update(vcpu);
7818 			if (unlikely(r))
7819 				goto out;
7820 		}
7821 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7822 			kvm_mmu_sync_roots(vcpu);
7823 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7824 			kvm_mmu_load_cr3(vcpu);
7825 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7826 			kvm_vcpu_flush_tlb(vcpu, true);
7827 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7828 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7829 			r = 0;
7830 			goto out;
7831 		}
7832 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7833 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7834 			vcpu->mmio_needed = 0;
7835 			r = 0;
7836 			goto out;
7837 		}
7838 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7839 			/* Page is swapped out. Do synthetic halt */
7840 			vcpu->arch.apf.halted = true;
7841 			r = 1;
7842 			goto out;
7843 		}
7844 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7845 			record_steal_time(vcpu);
7846 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7847 			process_smi(vcpu);
7848 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7849 			process_nmi(vcpu);
7850 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7851 			kvm_pmu_handle_event(vcpu);
7852 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7853 			kvm_pmu_deliver_pmi(vcpu);
7854 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7855 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7856 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7857 				     vcpu->arch.ioapic_handled_vectors)) {
7858 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7859 				vcpu->run->eoi.vector =
7860 						vcpu->arch.pending_ioapic_eoi;
7861 				r = 0;
7862 				goto out;
7863 			}
7864 		}
7865 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7866 			vcpu_scan_ioapic(vcpu);
7867 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7868 			vcpu_load_eoi_exitmap(vcpu);
7869 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7870 			kvm_vcpu_reload_apic_access_page(vcpu);
7871 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7872 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7873 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7874 			r = 0;
7875 			goto out;
7876 		}
7877 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7878 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7879 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7880 			r = 0;
7881 			goto out;
7882 		}
7883 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7884 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7885 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7886 			r = 0;
7887 			goto out;
7888 		}
7889 
7890 		/*
7891 		 * KVM_REQ_HV_STIMER has to be processed after
7892 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7893 		 * depend on the guest clock being up-to-date
7894 		 */
7895 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7896 			kvm_hv_process_stimers(vcpu);
7897 	}
7898 
7899 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7900 		++vcpu->stat.req_event;
7901 		kvm_apic_accept_events(vcpu);
7902 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7903 			r = 1;
7904 			goto out;
7905 		}
7906 
7907 		if (inject_pending_event(vcpu, req_int_win) != 0)
7908 			req_immediate_exit = true;
7909 		else {
7910 			/* Enable SMI/NMI/IRQ window open exits if needed.
7911 			 *
7912 			 * SMIs have three cases:
7913 			 * 1) They can be nested, and then there is nothing to
7914 			 *    do here because RSM will cause a vmexit anyway.
7915 			 * 2) There is an ISA-specific reason why SMI cannot be
7916 			 *    injected, and the moment when this changes can be
7917 			 *    intercepted.
7918 			 * 3) Or the SMI can be pending because
7919 			 *    inject_pending_event has completed the injection
7920 			 *    of an IRQ or NMI from the previous vmexit, and
7921 			 *    then we request an immediate exit to inject the
7922 			 *    SMI.
7923 			 */
7924 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7925 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7926 					req_immediate_exit = true;
7927 			if (vcpu->arch.nmi_pending)
7928 				kvm_x86_ops->enable_nmi_window(vcpu);
7929 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7930 				kvm_x86_ops->enable_irq_window(vcpu);
7931 			WARN_ON(vcpu->arch.exception.pending);
7932 		}
7933 
7934 		if (kvm_lapic_enabled(vcpu)) {
7935 			update_cr8_intercept(vcpu);
7936 			kvm_lapic_sync_to_vapic(vcpu);
7937 		}
7938 	}
7939 
7940 	r = kvm_mmu_reload(vcpu);
7941 	if (unlikely(r)) {
7942 		goto cancel_injection;
7943 	}
7944 
7945 	preempt_disable();
7946 
7947 	kvm_x86_ops->prepare_guest_switch(vcpu);
7948 
7949 	/*
7950 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7951 	 * IPI are then delayed after guest entry, which ensures that they
7952 	 * result in virtual interrupt delivery.
7953 	 */
7954 	local_irq_disable();
7955 	vcpu->mode = IN_GUEST_MODE;
7956 
7957 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7958 
7959 	/*
7960 	 * 1) We should set ->mode before checking ->requests.  Please see
7961 	 * the comment in kvm_vcpu_exiting_guest_mode().
7962 	 *
7963 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
7964 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7965 	 * (see vmx_deliver_posted_interrupt).
7966 	 *
7967 	 * 3) This also orders the write to mode from any reads to the page
7968 	 * tables done while the VCPU is running.  Please see the comment
7969 	 * in kvm_flush_remote_tlbs.
7970 	 */
7971 	smp_mb__after_srcu_read_unlock();
7972 
7973 	/*
7974 	 * This handles the case where a posted interrupt was
7975 	 * notified with kvm_vcpu_kick.
7976 	 */
7977 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7978 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7979 
7980 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7981 	    || need_resched() || signal_pending(current)) {
7982 		vcpu->mode = OUTSIDE_GUEST_MODE;
7983 		smp_wmb();
7984 		local_irq_enable();
7985 		preempt_enable();
7986 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7987 		r = 1;
7988 		goto cancel_injection;
7989 	}
7990 
7991 	if (req_immediate_exit) {
7992 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7993 		kvm_x86_ops->request_immediate_exit(vcpu);
7994 	}
7995 
7996 	trace_kvm_entry(vcpu->vcpu_id);
7997 	guest_enter_irqoff();
7998 
7999 	/* The preempt notifier should have taken care of the FPU already.  */
8000 	WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8001 
8002 	if (unlikely(vcpu->arch.switch_db_regs)) {
8003 		set_debugreg(0, 7);
8004 		set_debugreg(vcpu->arch.eff_db[0], 0);
8005 		set_debugreg(vcpu->arch.eff_db[1], 1);
8006 		set_debugreg(vcpu->arch.eff_db[2], 2);
8007 		set_debugreg(vcpu->arch.eff_db[3], 3);
8008 		set_debugreg(vcpu->arch.dr6, 6);
8009 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8010 	}
8011 
8012 	kvm_x86_ops->run(vcpu);
8013 
8014 	/*
8015 	 * Do this here before restoring debug registers on the host.  And
8016 	 * since we do this before handling the vmexit, a DR access vmexit
8017 	 * can (a) read the correct value of the debug registers, (b) set
8018 	 * KVM_DEBUGREG_WONT_EXIT again.
8019 	 */
8020 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8021 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8022 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8023 		kvm_update_dr0123(vcpu);
8024 		kvm_update_dr6(vcpu);
8025 		kvm_update_dr7(vcpu);
8026 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8027 	}
8028 
8029 	/*
8030 	 * If the guest has used debug registers, at least dr7
8031 	 * will be disabled while returning to the host.
8032 	 * If we don't have active breakpoints in the host, we don't
8033 	 * care about the messed up debug address registers. But if
8034 	 * we have some of them active, restore the old state.
8035 	 */
8036 	if (hw_breakpoint_active())
8037 		hw_breakpoint_restore();
8038 
8039 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8040 
8041 	vcpu->mode = OUTSIDE_GUEST_MODE;
8042 	smp_wmb();
8043 
8044 	kvm_x86_ops->handle_exit_irqoff(vcpu);
8045 
8046 	/*
8047 	 * Consume any pending interrupts, including the possible source of
8048 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8049 	 * An instruction is required after local_irq_enable() to fully unblock
8050 	 * interrupts on processors that implement an interrupt shadow, the
8051 	 * stat.exits increment will do nicely.
8052 	 */
8053 	kvm_before_interrupt(vcpu);
8054 	local_irq_enable();
8055 	++vcpu->stat.exits;
8056 	local_irq_disable();
8057 	kvm_after_interrupt(vcpu);
8058 
8059 	guest_exit_irqoff();
8060 	if (lapic_in_kernel(vcpu)) {
8061 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8062 		if (delta != S64_MIN) {
8063 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8064 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8065 		}
8066 	}
8067 
8068 	local_irq_enable();
8069 	preempt_enable();
8070 
8071 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8072 
8073 	/*
8074 	 * Profile KVM exit RIPs:
8075 	 */
8076 	if (unlikely(prof_on == KVM_PROFILING)) {
8077 		unsigned long rip = kvm_rip_read(vcpu);
8078 		profile_hit(KVM_PROFILING, (void *)rip);
8079 	}
8080 
8081 	if (unlikely(vcpu->arch.tsc_always_catchup))
8082 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8083 
8084 	if (vcpu->arch.apic_attention)
8085 		kvm_lapic_sync_from_vapic(vcpu);
8086 
8087 	vcpu->arch.gpa_available = false;
8088 	r = kvm_x86_ops->handle_exit(vcpu);
8089 	return r;
8090 
8091 cancel_injection:
8092 	kvm_x86_ops->cancel_injection(vcpu);
8093 	if (unlikely(vcpu->arch.apic_attention))
8094 		kvm_lapic_sync_from_vapic(vcpu);
8095 out:
8096 	return r;
8097 }
8098 
8099 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8100 {
8101 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8102 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8103 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8104 		kvm_vcpu_block(vcpu);
8105 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8106 
8107 		if (kvm_x86_ops->post_block)
8108 			kvm_x86_ops->post_block(vcpu);
8109 
8110 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8111 			return 1;
8112 	}
8113 
8114 	kvm_apic_accept_events(vcpu);
8115 	switch(vcpu->arch.mp_state) {
8116 	case KVM_MP_STATE_HALTED:
8117 		vcpu->arch.pv.pv_unhalted = false;
8118 		vcpu->arch.mp_state =
8119 			KVM_MP_STATE_RUNNABLE;
8120 		/* fall through */
8121 	case KVM_MP_STATE_RUNNABLE:
8122 		vcpu->arch.apf.halted = false;
8123 		break;
8124 	case KVM_MP_STATE_INIT_RECEIVED:
8125 		break;
8126 	default:
8127 		return -EINTR;
8128 		break;
8129 	}
8130 	return 1;
8131 }
8132 
8133 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8134 {
8135 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8136 		kvm_x86_ops->check_nested_events(vcpu, false);
8137 
8138 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8139 		!vcpu->arch.apf.halted);
8140 }
8141 
8142 static int vcpu_run(struct kvm_vcpu *vcpu)
8143 {
8144 	int r;
8145 	struct kvm *kvm = vcpu->kvm;
8146 
8147 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8148 	vcpu->arch.l1tf_flush_l1d = true;
8149 
8150 	for (;;) {
8151 		if (kvm_vcpu_running(vcpu)) {
8152 			r = vcpu_enter_guest(vcpu);
8153 		} else {
8154 			r = vcpu_block(kvm, vcpu);
8155 		}
8156 
8157 		if (r <= 0)
8158 			break;
8159 
8160 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8161 		if (kvm_cpu_has_pending_timer(vcpu))
8162 			kvm_inject_pending_timer_irqs(vcpu);
8163 
8164 		if (dm_request_for_irq_injection(vcpu) &&
8165 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8166 			r = 0;
8167 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8168 			++vcpu->stat.request_irq_exits;
8169 			break;
8170 		}
8171 
8172 		kvm_check_async_pf_completion(vcpu);
8173 
8174 		if (signal_pending(current)) {
8175 			r = -EINTR;
8176 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8177 			++vcpu->stat.signal_exits;
8178 			break;
8179 		}
8180 		if (need_resched()) {
8181 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8182 			cond_resched();
8183 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8184 		}
8185 	}
8186 
8187 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8188 
8189 	return r;
8190 }
8191 
8192 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8193 {
8194 	int r;
8195 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8196 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8197 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8198 	if (r != EMULATE_DONE)
8199 		return 0;
8200 	return 1;
8201 }
8202 
8203 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8204 {
8205 	BUG_ON(!vcpu->arch.pio.count);
8206 
8207 	return complete_emulated_io(vcpu);
8208 }
8209 
8210 /*
8211  * Implements the following, as a state machine:
8212  *
8213  * read:
8214  *   for each fragment
8215  *     for each mmio piece in the fragment
8216  *       write gpa, len
8217  *       exit
8218  *       copy data
8219  *   execute insn
8220  *
8221  * write:
8222  *   for each fragment
8223  *     for each mmio piece in the fragment
8224  *       write gpa, len
8225  *       copy data
8226  *       exit
8227  */
8228 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8229 {
8230 	struct kvm_run *run = vcpu->run;
8231 	struct kvm_mmio_fragment *frag;
8232 	unsigned len;
8233 
8234 	BUG_ON(!vcpu->mmio_needed);
8235 
8236 	/* Complete previous fragment */
8237 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8238 	len = min(8u, frag->len);
8239 	if (!vcpu->mmio_is_write)
8240 		memcpy(frag->data, run->mmio.data, len);
8241 
8242 	if (frag->len <= 8) {
8243 		/* Switch to the next fragment. */
8244 		frag++;
8245 		vcpu->mmio_cur_fragment++;
8246 	} else {
8247 		/* Go forward to the next mmio piece. */
8248 		frag->data += len;
8249 		frag->gpa += len;
8250 		frag->len -= len;
8251 	}
8252 
8253 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8254 		vcpu->mmio_needed = 0;
8255 
8256 		/* FIXME: return into emulator if single-stepping.  */
8257 		if (vcpu->mmio_is_write)
8258 			return 1;
8259 		vcpu->mmio_read_completed = 1;
8260 		return complete_emulated_io(vcpu);
8261 	}
8262 
8263 	run->exit_reason = KVM_EXIT_MMIO;
8264 	run->mmio.phys_addr = frag->gpa;
8265 	if (vcpu->mmio_is_write)
8266 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8267 	run->mmio.len = min(8u, frag->len);
8268 	run->mmio.is_write = vcpu->mmio_is_write;
8269 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8270 	return 0;
8271 }
8272 
8273 /* Swap (qemu) user FPU context for the guest FPU context. */
8274 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8275 {
8276 	fpregs_lock();
8277 
8278 	copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8279 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8280 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8281 				~XFEATURE_MASK_PKRU);
8282 
8283 	fpregs_mark_activate();
8284 	fpregs_unlock();
8285 
8286 	trace_kvm_fpu(1);
8287 }
8288 
8289 /* When vcpu_run ends, restore user space FPU context. */
8290 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8291 {
8292 	fpregs_lock();
8293 
8294 	copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8295 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8296 
8297 	fpregs_mark_activate();
8298 	fpregs_unlock();
8299 
8300 	++vcpu->stat.fpu_reload;
8301 	trace_kvm_fpu(0);
8302 }
8303 
8304 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8305 {
8306 	int r;
8307 
8308 	vcpu_load(vcpu);
8309 	kvm_sigset_activate(vcpu);
8310 	kvm_load_guest_fpu(vcpu);
8311 
8312 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8313 		if (kvm_run->immediate_exit) {
8314 			r = -EINTR;
8315 			goto out;
8316 		}
8317 		kvm_vcpu_block(vcpu);
8318 		kvm_apic_accept_events(vcpu);
8319 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8320 		r = -EAGAIN;
8321 		if (signal_pending(current)) {
8322 			r = -EINTR;
8323 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8324 			++vcpu->stat.signal_exits;
8325 		}
8326 		goto out;
8327 	}
8328 
8329 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8330 		r = -EINVAL;
8331 		goto out;
8332 	}
8333 
8334 	if (vcpu->run->kvm_dirty_regs) {
8335 		r = sync_regs(vcpu);
8336 		if (r != 0)
8337 			goto out;
8338 	}
8339 
8340 	/* re-sync apic's tpr */
8341 	if (!lapic_in_kernel(vcpu)) {
8342 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8343 			r = -EINVAL;
8344 			goto out;
8345 		}
8346 	}
8347 
8348 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8349 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8350 		vcpu->arch.complete_userspace_io = NULL;
8351 		r = cui(vcpu);
8352 		if (r <= 0)
8353 			goto out;
8354 	} else
8355 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8356 
8357 	if (kvm_run->immediate_exit)
8358 		r = -EINTR;
8359 	else
8360 		r = vcpu_run(vcpu);
8361 
8362 out:
8363 	kvm_put_guest_fpu(vcpu);
8364 	if (vcpu->run->kvm_valid_regs)
8365 		store_regs(vcpu);
8366 	post_kvm_run_save(vcpu);
8367 	kvm_sigset_deactivate(vcpu);
8368 
8369 	vcpu_put(vcpu);
8370 	return r;
8371 }
8372 
8373 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8374 {
8375 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8376 		/*
8377 		 * We are here if userspace calls get_regs() in the middle of
8378 		 * instruction emulation. Registers state needs to be copied
8379 		 * back from emulation context to vcpu. Userspace shouldn't do
8380 		 * that usually, but some bad designed PV devices (vmware
8381 		 * backdoor interface) need this to work
8382 		 */
8383 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8384 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8385 	}
8386 	regs->rax = kvm_rax_read(vcpu);
8387 	regs->rbx = kvm_rbx_read(vcpu);
8388 	regs->rcx = kvm_rcx_read(vcpu);
8389 	regs->rdx = kvm_rdx_read(vcpu);
8390 	regs->rsi = kvm_rsi_read(vcpu);
8391 	regs->rdi = kvm_rdi_read(vcpu);
8392 	regs->rsp = kvm_rsp_read(vcpu);
8393 	regs->rbp = kvm_rbp_read(vcpu);
8394 #ifdef CONFIG_X86_64
8395 	regs->r8 = kvm_r8_read(vcpu);
8396 	regs->r9 = kvm_r9_read(vcpu);
8397 	regs->r10 = kvm_r10_read(vcpu);
8398 	regs->r11 = kvm_r11_read(vcpu);
8399 	regs->r12 = kvm_r12_read(vcpu);
8400 	regs->r13 = kvm_r13_read(vcpu);
8401 	regs->r14 = kvm_r14_read(vcpu);
8402 	regs->r15 = kvm_r15_read(vcpu);
8403 #endif
8404 
8405 	regs->rip = kvm_rip_read(vcpu);
8406 	regs->rflags = kvm_get_rflags(vcpu);
8407 }
8408 
8409 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8410 {
8411 	vcpu_load(vcpu);
8412 	__get_regs(vcpu, regs);
8413 	vcpu_put(vcpu);
8414 	return 0;
8415 }
8416 
8417 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8418 {
8419 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8420 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8421 
8422 	kvm_rax_write(vcpu, regs->rax);
8423 	kvm_rbx_write(vcpu, regs->rbx);
8424 	kvm_rcx_write(vcpu, regs->rcx);
8425 	kvm_rdx_write(vcpu, regs->rdx);
8426 	kvm_rsi_write(vcpu, regs->rsi);
8427 	kvm_rdi_write(vcpu, regs->rdi);
8428 	kvm_rsp_write(vcpu, regs->rsp);
8429 	kvm_rbp_write(vcpu, regs->rbp);
8430 #ifdef CONFIG_X86_64
8431 	kvm_r8_write(vcpu, regs->r8);
8432 	kvm_r9_write(vcpu, regs->r9);
8433 	kvm_r10_write(vcpu, regs->r10);
8434 	kvm_r11_write(vcpu, regs->r11);
8435 	kvm_r12_write(vcpu, regs->r12);
8436 	kvm_r13_write(vcpu, regs->r13);
8437 	kvm_r14_write(vcpu, regs->r14);
8438 	kvm_r15_write(vcpu, regs->r15);
8439 #endif
8440 
8441 	kvm_rip_write(vcpu, regs->rip);
8442 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8443 
8444 	vcpu->arch.exception.pending = false;
8445 
8446 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8447 }
8448 
8449 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8450 {
8451 	vcpu_load(vcpu);
8452 	__set_regs(vcpu, regs);
8453 	vcpu_put(vcpu);
8454 	return 0;
8455 }
8456 
8457 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8458 {
8459 	struct kvm_segment cs;
8460 
8461 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8462 	*db = cs.db;
8463 	*l = cs.l;
8464 }
8465 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8466 
8467 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8468 {
8469 	struct desc_ptr dt;
8470 
8471 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8472 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8473 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8474 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8475 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8476 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8477 
8478 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8479 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8480 
8481 	kvm_x86_ops->get_idt(vcpu, &dt);
8482 	sregs->idt.limit = dt.size;
8483 	sregs->idt.base = dt.address;
8484 	kvm_x86_ops->get_gdt(vcpu, &dt);
8485 	sregs->gdt.limit = dt.size;
8486 	sregs->gdt.base = dt.address;
8487 
8488 	sregs->cr0 = kvm_read_cr0(vcpu);
8489 	sregs->cr2 = vcpu->arch.cr2;
8490 	sregs->cr3 = kvm_read_cr3(vcpu);
8491 	sregs->cr4 = kvm_read_cr4(vcpu);
8492 	sregs->cr8 = kvm_get_cr8(vcpu);
8493 	sregs->efer = vcpu->arch.efer;
8494 	sregs->apic_base = kvm_get_apic_base(vcpu);
8495 
8496 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8497 
8498 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8499 		set_bit(vcpu->arch.interrupt.nr,
8500 			(unsigned long *)sregs->interrupt_bitmap);
8501 }
8502 
8503 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8504 				  struct kvm_sregs *sregs)
8505 {
8506 	vcpu_load(vcpu);
8507 	__get_sregs(vcpu, sregs);
8508 	vcpu_put(vcpu);
8509 	return 0;
8510 }
8511 
8512 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8513 				    struct kvm_mp_state *mp_state)
8514 {
8515 	vcpu_load(vcpu);
8516 
8517 	kvm_apic_accept_events(vcpu);
8518 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8519 					vcpu->arch.pv.pv_unhalted)
8520 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8521 	else
8522 		mp_state->mp_state = vcpu->arch.mp_state;
8523 
8524 	vcpu_put(vcpu);
8525 	return 0;
8526 }
8527 
8528 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8529 				    struct kvm_mp_state *mp_state)
8530 {
8531 	int ret = -EINVAL;
8532 
8533 	vcpu_load(vcpu);
8534 
8535 	if (!lapic_in_kernel(vcpu) &&
8536 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8537 		goto out;
8538 
8539 	/* INITs are latched while in SMM */
8540 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8541 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8542 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8543 		goto out;
8544 
8545 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8546 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8547 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8548 	} else
8549 		vcpu->arch.mp_state = mp_state->mp_state;
8550 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8551 
8552 	ret = 0;
8553 out:
8554 	vcpu_put(vcpu);
8555 	return ret;
8556 }
8557 
8558 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8559 		    int reason, bool has_error_code, u32 error_code)
8560 {
8561 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8562 	int ret;
8563 
8564 	init_emulate_ctxt(vcpu);
8565 
8566 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8567 				   has_error_code, error_code);
8568 
8569 	if (ret)
8570 		return EMULATE_FAIL;
8571 
8572 	kvm_rip_write(vcpu, ctxt->eip);
8573 	kvm_set_rflags(vcpu, ctxt->eflags);
8574 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8575 	return EMULATE_DONE;
8576 }
8577 EXPORT_SYMBOL_GPL(kvm_task_switch);
8578 
8579 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8580 {
8581 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8582 			(sregs->cr4 & X86_CR4_OSXSAVE))
8583 		return  -EINVAL;
8584 
8585 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8586 		/*
8587 		 * When EFER.LME and CR0.PG are set, the processor is in
8588 		 * 64-bit mode (though maybe in a 32-bit code segment).
8589 		 * CR4.PAE and EFER.LMA must be set.
8590 		 */
8591 		if (!(sregs->cr4 & X86_CR4_PAE)
8592 		    || !(sregs->efer & EFER_LMA))
8593 			return -EINVAL;
8594 	} else {
8595 		/*
8596 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8597 		 * segment cannot be 64-bit.
8598 		 */
8599 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8600 			return -EINVAL;
8601 	}
8602 
8603 	return 0;
8604 }
8605 
8606 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8607 {
8608 	struct msr_data apic_base_msr;
8609 	int mmu_reset_needed = 0;
8610 	int cpuid_update_needed = 0;
8611 	int pending_vec, max_bits, idx;
8612 	struct desc_ptr dt;
8613 	int ret = -EINVAL;
8614 
8615 	if (kvm_valid_sregs(vcpu, sregs))
8616 		goto out;
8617 
8618 	apic_base_msr.data = sregs->apic_base;
8619 	apic_base_msr.host_initiated = true;
8620 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8621 		goto out;
8622 
8623 	dt.size = sregs->idt.limit;
8624 	dt.address = sregs->idt.base;
8625 	kvm_x86_ops->set_idt(vcpu, &dt);
8626 	dt.size = sregs->gdt.limit;
8627 	dt.address = sregs->gdt.base;
8628 	kvm_x86_ops->set_gdt(vcpu, &dt);
8629 
8630 	vcpu->arch.cr2 = sregs->cr2;
8631 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8632 	vcpu->arch.cr3 = sregs->cr3;
8633 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8634 
8635 	kvm_set_cr8(vcpu, sregs->cr8);
8636 
8637 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8638 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8639 
8640 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8641 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8642 	vcpu->arch.cr0 = sregs->cr0;
8643 
8644 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8645 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8646 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8647 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8648 	if (cpuid_update_needed)
8649 		kvm_update_cpuid(vcpu);
8650 
8651 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8652 	if (is_pae_paging(vcpu)) {
8653 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8654 		mmu_reset_needed = 1;
8655 	}
8656 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8657 
8658 	if (mmu_reset_needed)
8659 		kvm_mmu_reset_context(vcpu);
8660 
8661 	max_bits = KVM_NR_INTERRUPTS;
8662 	pending_vec = find_first_bit(
8663 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8664 	if (pending_vec < max_bits) {
8665 		kvm_queue_interrupt(vcpu, pending_vec, false);
8666 		pr_debug("Set back pending irq %d\n", pending_vec);
8667 	}
8668 
8669 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8670 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8671 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8672 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8673 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8674 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8675 
8676 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8677 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8678 
8679 	update_cr8_intercept(vcpu);
8680 
8681 	/* Older userspace won't unhalt the vcpu on reset. */
8682 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8683 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8684 	    !is_protmode(vcpu))
8685 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8686 
8687 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8688 
8689 	ret = 0;
8690 out:
8691 	return ret;
8692 }
8693 
8694 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8695 				  struct kvm_sregs *sregs)
8696 {
8697 	int ret;
8698 
8699 	vcpu_load(vcpu);
8700 	ret = __set_sregs(vcpu, sregs);
8701 	vcpu_put(vcpu);
8702 	return ret;
8703 }
8704 
8705 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8706 					struct kvm_guest_debug *dbg)
8707 {
8708 	unsigned long rflags;
8709 	int i, r;
8710 
8711 	vcpu_load(vcpu);
8712 
8713 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8714 		r = -EBUSY;
8715 		if (vcpu->arch.exception.pending)
8716 			goto out;
8717 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8718 			kvm_queue_exception(vcpu, DB_VECTOR);
8719 		else
8720 			kvm_queue_exception(vcpu, BP_VECTOR);
8721 	}
8722 
8723 	/*
8724 	 * Read rflags as long as potentially injected trace flags are still
8725 	 * filtered out.
8726 	 */
8727 	rflags = kvm_get_rflags(vcpu);
8728 
8729 	vcpu->guest_debug = dbg->control;
8730 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8731 		vcpu->guest_debug = 0;
8732 
8733 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8734 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8735 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8736 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8737 	} else {
8738 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8739 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8740 	}
8741 	kvm_update_dr7(vcpu);
8742 
8743 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8744 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8745 			get_segment_base(vcpu, VCPU_SREG_CS);
8746 
8747 	/*
8748 	 * Trigger an rflags update that will inject or remove the trace
8749 	 * flags.
8750 	 */
8751 	kvm_set_rflags(vcpu, rflags);
8752 
8753 	kvm_x86_ops->update_bp_intercept(vcpu);
8754 
8755 	r = 0;
8756 
8757 out:
8758 	vcpu_put(vcpu);
8759 	return r;
8760 }
8761 
8762 /*
8763  * Translate a guest virtual address to a guest physical address.
8764  */
8765 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8766 				    struct kvm_translation *tr)
8767 {
8768 	unsigned long vaddr = tr->linear_address;
8769 	gpa_t gpa;
8770 	int idx;
8771 
8772 	vcpu_load(vcpu);
8773 
8774 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8775 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8776 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8777 	tr->physical_address = gpa;
8778 	tr->valid = gpa != UNMAPPED_GVA;
8779 	tr->writeable = 1;
8780 	tr->usermode = 0;
8781 
8782 	vcpu_put(vcpu);
8783 	return 0;
8784 }
8785 
8786 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8787 {
8788 	struct fxregs_state *fxsave;
8789 
8790 	vcpu_load(vcpu);
8791 
8792 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8793 	memcpy(fpu->fpr, fxsave->st_space, 128);
8794 	fpu->fcw = fxsave->cwd;
8795 	fpu->fsw = fxsave->swd;
8796 	fpu->ftwx = fxsave->twd;
8797 	fpu->last_opcode = fxsave->fop;
8798 	fpu->last_ip = fxsave->rip;
8799 	fpu->last_dp = fxsave->rdp;
8800 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8801 
8802 	vcpu_put(vcpu);
8803 	return 0;
8804 }
8805 
8806 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8807 {
8808 	struct fxregs_state *fxsave;
8809 
8810 	vcpu_load(vcpu);
8811 
8812 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8813 
8814 	memcpy(fxsave->st_space, fpu->fpr, 128);
8815 	fxsave->cwd = fpu->fcw;
8816 	fxsave->swd = fpu->fsw;
8817 	fxsave->twd = fpu->ftwx;
8818 	fxsave->fop = fpu->last_opcode;
8819 	fxsave->rip = fpu->last_ip;
8820 	fxsave->rdp = fpu->last_dp;
8821 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8822 
8823 	vcpu_put(vcpu);
8824 	return 0;
8825 }
8826 
8827 static void store_regs(struct kvm_vcpu *vcpu)
8828 {
8829 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8830 
8831 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8832 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8833 
8834 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8835 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8836 
8837 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8838 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8839 				vcpu, &vcpu->run->s.regs.events);
8840 }
8841 
8842 static int sync_regs(struct kvm_vcpu *vcpu)
8843 {
8844 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8845 		return -EINVAL;
8846 
8847 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8848 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8849 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8850 	}
8851 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8852 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8853 			return -EINVAL;
8854 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8855 	}
8856 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8857 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8858 				vcpu, &vcpu->run->s.regs.events))
8859 			return -EINVAL;
8860 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8861 	}
8862 
8863 	return 0;
8864 }
8865 
8866 static void fx_init(struct kvm_vcpu *vcpu)
8867 {
8868 	fpstate_init(&vcpu->arch.guest_fpu->state);
8869 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8870 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8871 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8872 
8873 	/*
8874 	 * Ensure guest xcr0 is valid for loading
8875 	 */
8876 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8877 
8878 	vcpu->arch.cr0 |= X86_CR0_ET;
8879 }
8880 
8881 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8882 {
8883 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8884 
8885 	kvmclock_reset(vcpu);
8886 
8887 	kvm_x86_ops->vcpu_free(vcpu);
8888 	free_cpumask_var(wbinvd_dirty_mask);
8889 }
8890 
8891 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8892 						unsigned int id)
8893 {
8894 	struct kvm_vcpu *vcpu;
8895 
8896 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8897 		printk_once(KERN_WARNING
8898 		"kvm: SMP vm created on host with unstable TSC; "
8899 		"guest TSC will not be reliable\n");
8900 
8901 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8902 
8903 	return vcpu;
8904 }
8905 
8906 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8907 {
8908 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8909 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8910 	kvm_vcpu_mtrr_init(vcpu);
8911 	vcpu_load(vcpu);
8912 	kvm_vcpu_reset(vcpu, false);
8913 	kvm_init_mmu(vcpu, false);
8914 	vcpu_put(vcpu);
8915 	return 0;
8916 }
8917 
8918 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8919 {
8920 	struct msr_data msr;
8921 	struct kvm *kvm = vcpu->kvm;
8922 
8923 	kvm_hv_vcpu_postcreate(vcpu);
8924 
8925 	if (mutex_lock_killable(&vcpu->mutex))
8926 		return;
8927 	vcpu_load(vcpu);
8928 	msr.data = 0x0;
8929 	msr.index = MSR_IA32_TSC;
8930 	msr.host_initiated = true;
8931 	kvm_write_tsc(vcpu, &msr);
8932 	vcpu_put(vcpu);
8933 
8934 	/* poll control enabled by default */
8935 	vcpu->arch.msr_kvm_poll_control = 1;
8936 
8937 	mutex_unlock(&vcpu->mutex);
8938 
8939 	if (!kvmclock_periodic_sync)
8940 		return;
8941 
8942 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8943 					KVMCLOCK_SYNC_PERIOD);
8944 }
8945 
8946 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8947 {
8948 	vcpu->arch.apf.msr_val = 0;
8949 
8950 	vcpu_load(vcpu);
8951 	kvm_mmu_unload(vcpu);
8952 	vcpu_put(vcpu);
8953 
8954 	kvm_x86_ops->vcpu_free(vcpu);
8955 }
8956 
8957 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8958 {
8959 	kvm_lapic_reset(vcpu, init_event);
8960 
8961 	vcpu->arch.hflags = 0;
8962 
8963 	vcpu->arch.smi_pending = 0;
8964 	vcpu->arch.smi_count = 0;
8965 	atomic_set(&vcpu->arch.nmi_queued, 0);
8966 	vcpu->arch.nmi_pending = 0;
8967 	vcpu->arch.nmi_injected = false;
8968 	kvm_clear_interrupt_queue(vcpu);
8969 	kvm_clear_exception_queue(vcpu);
8970 	vcpu->arch.exception.pending = false;
8971 
8972 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8973 	kvm_update_dr0123(vcpu);
8974 	vcpu->arch.dr6 = DR6_INIT;
8975 	kvm_update_dr6(vcpu);
8976 	vcpu->arch.dr7 = DR7_FIXED_1;
8977 	kvm_update_dr7(vcpu);
8978 
8979 	vcpu->arch.cr2 = 0;
8980 
8981 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8982 	vcpu->arch.apf.msr_val = 0;
8983 	vcpu->arch.st.msr_val = 0;
8984 
8985 	kvmclock_reset(vcpu);
8986 
8987 	kvm_clear_async_pf_completion_queue(vcpu);
8988 	kvm_async_pf_hash_reset(vcpu);
8989 	vcpu->arch.apf.halted = false;
8990 
8991 	if (kvm_mpx_supported()) {
8992 		void *mpx_state_buffer;
8993 
8994 		/*
8995 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8996 		 * called with loaded FPU and does not let userspace fix the state.
8997 		 */
8998 		if (init_event)
8999 			kvm_put_guest_fpu(vcpu);
9000 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9001 					XFEATURE_BNDREGS);
9002 		if (mpx_state_buffer)
9003 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9004 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9005 					XFEATURE_BNDCSR);
9006 		if (mpx_state_buffer)
9007 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9008 		if (init_event)
9009 			kvm_load_guest_fpu(vcpu);
9010 	}
9011 
9012 	if (!init_event) {
9013 		kvm_pmu_reset(vcpu);
9014 		vcpu->arch.smbase = 0x30000;
9015 
9016 		vcpu->arch.msr_misc_features_enables = 0;
9017 
9018 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9019 	}
9020 
9021 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9022 	vcpu->arch.regs_avail = ~0;
9023 	vcpu->arch.regs_dirty = ~0;
9024 
9025 	vcpu->arch.ia32_xss = 0;
9026 
9027 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
9028 }
9029 
9030 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9031 {
9032 	struct kvm_segment cs;
9033 
9034 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9035 	cs.selector = vector << 8;
9036 	cs.base = vector << 12;
9037 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9038 	kvm_rip_write(vcpu, 0);
9039 }
9040 
9041 int kvm_arch_hardware_enable(void)
9042 {
9043 	struct kvm *kvm;
9044 	struct kvm_vcpu *vcpu;
9045 	int i;
9046 	int ret;
9047 	u64 local_tsc;
9048 	u64 max_tsc = 0;
9049 	bool stable, backwards_tsc = false;
9050 
9051 	kvm_shared_msr_cpu_online();
9052 	ret = kvm_x86_ops->hardware_enable();
9053 	if (ret != 0)
9054 		return ret;
9055 
9056 	local_tsc = rdtsc();
9057 	stable = !kvm_check_tsc_unstable();
9058 	list_for_each_entry(kvm, &vm_list, vm_list) {
9059 		kvm_for_each_vcpu(i, vcpu, kvm) {
9060 			if (!stable && vcpu->cpu == smp_processor_id())
9061 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9062 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9063 				backwards_tsc = true;
9064 				if (vcpu->arch.last_host_tsc > max_tsc)
9065 					max_tsc = vcpu->arch.last_host_tsc;
9066 			}
9067 		}
9068 	}
9069 
9070 	/*
9071 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9072 	 * platforms that reset TSC during suspend or hibernate actions, but
9073 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9074 	 * detect that condition here, which happens early in CPU bringup,
9075 	 * before any KVM threads can be running.  Unfortunately, we can't
9076 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9077 	 * enough into CPU bringup that we know how much real time has actually
9078 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9079 	 * variables that haven't been updated yet.
9080 	 *
9081 	 * So we simply find the maximum observed TSC above, then record the
9082 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9083 	 * the adjustment will be applied.  Note that we accumulate
9084 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9085 	 * gets a chance to run again.  In the event that no KVM threads get a
9086 	 * chance to run, we will miss the entire elapsed period, as we'll have
9087 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9088 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9089 	 * uniform across all VCPUs (not to mention the scenario is extremely
9090 	 * unlikely). It is possible that a second hibernate recovery happens
9091 	 * much faster than a first, causing the observed TSC here to be
9092 	 * smaller; this would require additional padding adjustment, which is
9093 	 * why we set last_host_tsc to the local tsc observed here.
9094 	 *
9095 	 * N.B. - this code below runs only on platforms with reliable TSC,
9096 	 * as that is the only way backwards_tsc is set above.  Also note
9097 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9098 	 * have the same delta_cyc adjustment applied if backwards_tsc
9099 	 * is detected.  Note further, this adjustment is only done once,
9100 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9101 	 * called multiple times (one for each physical CPU bringup).
9102 	 *
9103 	 * Platforms with unreliable TSCs don't have to deal with this, they
9104 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9105 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9106 	 * guarantee that they stay in perfect synchronization.
9107 	 */
9108 	if (backwards_tsc) {
9109 		u64 delta_cyc = max_tsc - local_tsc;
9110 		list_for_each_entry(kvm, &vm_list, vm_list) {
9111 			kvm->arch.backwards_tsc_observed = true;
9112 			kvm_for_each_vcpu(i, vcpu, kvm) {
9113 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9114 				vcpu->arch.last_host_tsc = local_tsc;
9115 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9116 			}
9117 
9118 			/*
9119 			 * We have to disable TSC offset matching.. if you were
9120 			 * booting a VM while issuing an S4 host suspend....
9121 			 * you may have some problem.  Solving this issue is
9122 			 * left as an exercise to the reader.
9123 			 */
9124 			kvm->arch.last_tsc_nsec = 0;
9125 			kvm->arch.last_tsc_write = 0;
9126 		}
9127 
9128 	}
9129 	return 0;
9130 }
9131 
9132 void kvm_arch_hardware_disable(void)
9133 {
9134 	kvm_x86_ops->hardware_disable();
9135 	drop_user_return_notifiers();
9136 }
9137 
9138 int kvm_arch_hardware_setup(void)
9139 {
9140 	int r;
9141 
9142 	r = kvm_x86_ops->hardware_setup();
9143 	if (r != 0)
9144 		return r;
9145 
9146 	if (kvm_has_tsc_control) {
9147 		/*
9148 		 * Make sure the user can only configure tsc_khz values that
9149 		 * fit into a signed integer.
9150 		 * A min value is not calculated because it will always
9151 		 * be 1 on all machines.
9152 		 */
9153 		u64 max = min(0x7fffffffULL,
9154 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9155 		kvm_max_guest_tsc_khz = max;
9156 
9157 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9158 	}
9159 
9160 	kvm_init_msr_list();
9161 	return 0;
9162 }
9163 
9164 void kvm_arch_hardware_unsetup(void)
9165 {
9166 	kvm_x86_ops->hardware_unsetup();
9167 }
9168 
9169 int kvm_arch_check_processor_compat(void)
9170 {
9171 	return kvm_x86_ops->check_processor_compatibility();
9172 }
9173 
9174 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9175 {
9176 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9177 }
9178 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9179 
9180 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9181 {
9182 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9183 }
9184 
9185 struct static_key kvm_no_apic_vcpu __read_mostly;
9186 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9187 
9188 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9189 {
9190 	struct page *page;
9191 	int r;
9192 
9193 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9194 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9195 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9196 	else
9197 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9198 
9199 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9200 	if (!page) {
9201 		r = -ENOMEM;
9202 		goto fail;
9203 	}
9204 	vcpu->arch.pio_data = page_address(page);
9205 
9206 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9207 
9208 	r = kvm_mmu_create(vcpu);
9209 	if (r < 0)
9210 		goto fail_free_pio_data;
9211 
9212 	if (irqchip_in_kernel(vcpu->kvm)) {
9213 		vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9214 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9215 		if (r < 0)
9216 			goto fail_mmu_destroy;
9217 	} else
9218 		static_key_slow_inc(&kvm_no_apic_vcpu);
9219 
9220 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9221 				       GFP_KERNEL_ACCOUNT);
9222 	if (!vcpu->arch.mce_banks) {
9223 		r = -ENOMEM;
9224 		goto fail_free_lapic;
9225 	}
9226 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9227 
9228 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9229 				GFP_KERNEL_ACCOUNT)) {
9230 		r = -ENOMEM;
9231 		goto fail_free_mce_banks;
9232 	}
9233 
9234 	fx_init(vcpu);
9235 
9236 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9237 
9238 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9239 
9240 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9241 
9242 	kvm_async_pf_hash_reset(vcpu);
9243 	kvm_pmu_init(vcpu);
9244 
9245 	vcpu->arch.pending_external_vector = -1;
9246 	vcpu->arch.preempted_in_kernel = false;
9247 
9248 	kvm_hv_vcpu_init(vcpu);
9249 
9250 	return 0;
9251 
9252 fail_free_mce_banks:
9253 	kfree(vcpu->arch.mce_banks);
9254 fail_free_lapic:
9255 	kvm_free_lapic(vcpu);
9256 fail_mmu_destroy:
9257 	kvm_mmu_destroy(vcpu);
9258 fail_free_pio_data:
9259 	free_page((unsigned long)vcpu->arch.pio_data);
9260 fail:
9261 	return r;
9262 }
9263 
9264 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9265 {
9266 	int idx;
9267 
9268 	kvm_hv_vcpu_uninit(vcpu);
9269 	kvm_pmu_destroy(vcpu);
9270 	kfree(vcpu->arch.mce_banks);
9271 	kvm_free_lapic(vcpu);
9272 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9273 	kvm_mmu_destroy(vcpu);
9274 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9275 	free_page((unsigned long)vcpu->arch.pio_data);
9276 	if (!lapic_in_kernel(vcpu))
9277 		static_key_slow_dec(&kvm_no_apic_vcpu);
9278 }
9279 
9280 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9281 {
9282 	vcpu->arch.l1tf_flush_l1d = true;
9283 	kvm_x86_ops->sched_in(vcpu, cpu);
9284 }
9285 
9286 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9287 {
9288 	if (type)
9289 		return -EINVAL;
9290 
9291 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9292 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9293 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9294 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9295 
9296 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9297 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9298 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9299 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9300 		&kvm->arch.irq_sources_bitmap);
9301 
9302 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9303 	mutex_init(&kvm->arch.apic_map_lock);
9304 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9305 
9306 	kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9307 	pvclock_update_vm_gtod_copy(kvm);
9308 
9309 	kvm->arch.guest_can_read_msr_platform_info = true;
9310 
9311 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9312 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9313 
9314 	kvm_hv_init_vm(kvm);
9315 	kvm_page_track_init(kvm);
9316 	kvm_mmu_init_vm(kvm);
9317 
9318 	if (kvm_x86_ops->vm_init)
9319 		return kvm_x86_ops->vm_init(kvm);
9320 
9321 	return 0;
9322 }
9323 
9324 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9325 {
9326 	vcpu_load(vcpu);
9327 	kvm_mmu_unload(vcpu);
9328 	vcpu_put(vcpu);
9329 }
9330 
9331 static void kvm_free_vcpus(struct kvm *kvm)
9332 {
9333 	unsigned int i;
9334 	struct kvm_vcpu *vcpu;
9335 
9336 	/*
9337 	 * Unpin any mmu pages first.
9338 	 */
9339 	kvm_for_each_vcpu(i, vcpu, kvm) {
9340 		kvm_clear_async_pf_completion_queue(vcpu);
9341 		kvm_unload_vcpu_mmu(vcpu);
9342 	}
9343 	kvm_for_each_vcpu(i, vcpu, kvm)
9344 		kvm_arch_vcpu_free(vcpu);
9345 
9346 	mutex_lock(&kvm->lock);
9347 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9348 		kvm->vcpus[i] = NULL;
9349 
9350 	atomic_set(&kvm->online_vcpus, 0);
9351 	mutex_unlock(&kvm->lock);
9352 }
9353 
9354 void kvm_arch_sync_events(struct kvm *kvm)
9355 {
9356 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9357 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9358 	kvm_free_pit(kvm);
9359 }
9360 
9361 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9362 {
9363 	int i, r;
9364 	unsigned long hva;
9365 	struct kvm_memslots *slots = kvm_memslots(kvm);
9366 	struct kvm_memory_slot *slot, old;
9367 
9368 	/* Called with kvm->slots_lock held.  */
9369 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9370 		return -EINVAL;
9371 
9372 	slot = id_to_memslot(slots, id);
9373 	if (size) {
9374 		if (slot->npages)
9375 			return -EEXIST;
9376 
9377 		/*
9378 		 * MAP_SHARED to prevent internal slot pages from being moved
9379 		 * by fork()/COW.
9380 		 */
9381 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9382 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9383 		if (IS_ERR((void *)hva))
9384 			return PTR_ERR((void *)hva);
9385 	} else {
9386 		if (!slot->npages)
9387 			return 0;
9388 
9389 		hva = 0;
9390 	}
9391 
9392 	old = *slot;
9393 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9394 		struct kvm_userspace_memory_region m;
9395 
9396 		m.slot = id | (i << 16);
9397 		m.flags = 0;
9398 		m.guest_phys_addr = gpa;
9399 		m.userspace_addr = hva;
9400 		m.memory_size = size;
9401 		r = __kvm_set_memory_region(kvm, &m);
9402 		if (r < 0)
9403 			return r;
9404 	}
9405 
9406 	if (!size)
9407 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9408 
9409 	return 0;
9410 }
9411 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9412 
9413 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9414 {
9415 	int r;
9416 
9417 	mutex_lock(&kvm->slots_lock);
9418 	r = __x86_set_memory_region(kvm, id, gpa, size);
9419 	mutex_unlock(&kvm->slots_lock);
9420 
9421 	return r;
9422 }
9423 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9424 
9425 void kvm_arch_destroy_vm(struct kvm *kvm)
9426 {
9427 	if (current->mm == kvm->mm) {
9428 		/*
9429 		 * Free memory regions allocated on behalf of userspace,
9430 		 * unless the the memory map has changed due to process exit
9431 		 * or fd copying.
9432 		 */
9433 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9434 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9435 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9436 	}
9437 	if (kvm_x86_ops->vm_destroy)
9438 		kvm_x86_ops->vm_destroy(kvm);
9439 	kvm_pic_destroy(kvm);
9440 	kvm_ioapic_destroy(kvm);
9441 	kvm_free_vcpus(kvm);
9442 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9443 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9444 	kvm_mmu_uninit_vm(kvm);
9445 	kvm_page_track_cleanup(kvm);
9446 	kvm_hv_destroy_vm(kvm);
9447 }
9448 
9449 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9450 			   struct kvm_memory_slot *dont)
9451 {
9452 	int i;
9453 
9454 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9455 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9456 			kvfree(free->arch.rmap[i]);
9457 			free->arch.rmap[i] = NULL;
9458 		}
9459 		if (i == 0)
9460 			continue;
9461 
9462 		if (!dont || free->arch.lpage_info[i - 1] !=
9463 			     dont->arch.lpage_info[i - 1]) {
9464 			kvfree(free->arch.lpage_info[i - 1]);
9465 			free->arch.lpage_info[i - 1] = NULL;
9466 		}
9467 	}
9468 
9469 	kvm_page_track_free_memslot(free, dont);
9470 }
9471 
9472 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9473 			    unsigned long npages)
9474 {
9475 	int i;
9476 
9477 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9478 		struct kvm_lpage_info *linfo;
9479 		unsigned long ugfn;
9480 		int lpages;
9481 		int level = i + 1;
9482 
9483 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9484 				      slot->base_gfn, level) + 1;
9485 
9486 		slot->arch.rmap[i] =
9487 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9488 				 GFP_KERNEL_ACCOUNT);
9489 		if (!slot->arch.rmap[i])
9490 			goto out_free;
9491 		if (i == 0)
9492 			continue;
9493 
9494 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9495 		if (!linfo)
9496 			goto out_free;
9497 
9498 		slot->arch.lpage_info[i - 1] = linfo;
9499 
9500 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9501 			linfo[0].disallow_lpage = 1;
9502 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9503 			linfo[lpages - 1].disallow_lpage = 1;
9504 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9505 		/*
9506 		 * If the gfn and userspace address are not aligned wrt each
9507 		 * other, or if explicitly asked to, disable large page
9508 		 * support for this slot
9509 		 */
9510 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9511 		    !kvm_largepages_enabled()) {
9512 			unsigned long j;
9513 
9514 			for (j = 0; j < lpages; ++j)
9515 				linfo[j].disallow_lpage = 1;
9516 		}
9517 	}
9518 
9519 	if (kvm_page_track_create_memslot(slot, npages))
9520 		goto out_free;
9521 
9522 	return 0;
9523 
9524 out_free:
9525 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9526 		kvfree(slot->arch.rmap[i]);
9527 		slot->arch.rmap[i] = NULL;
9528 		if (i == 0)
9529 			continue;
9530 
9531 		kvfree(slot->arch.lpage_info[i - 1]);
9532 		slot->arch.lpage_info[i - 1] = NULL;
9533 	}
9534 	return -ENOMEM;
9535 }
9536 
9537 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9538 {
9539 	/*
9540 	 * memslots->generation has been incremented.
9541 	 * mmio generation may have reached its maximum value.
9542 	 */
9543 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9544 }
9545 
9546 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9547 				struct kvm_memory_slot *memslot,
9548 				const struct kvm_userspace_memory_region *mem,
9549 				enum kvm_mr_change change)
9550 {
9551 	return 0;
9552 }
9553 
9554 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9555 				     struct kvm_memory_slot *new)
9556 {
9557 	/* Still write protect RO slot */
9558 	if (new->flags & KVM_MEM_READONLY) {
9559 		kvm_mmu_slot_remove_write_access(kvm, new);
9560 		return;
9561 	}
9562 
9563 	/*
9564 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9565 	 *
9566 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9567 	 *
9568 	 *  - KVM_MR_CREATE with dirty logging is disabled
9569 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9570 	 *
9571 	 * The reason is, in case of PML, we need to set D-bit for any slots
9572 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9573 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9574 	 * guarantees leaving PML enabled during guest's lifetime won't have
9575 	 * any additional overhead from PML when guest is running with dirty
9576 	 * logging disabled for memory slots.
9577 	 *
9578 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9579 	 * to dirty logging mode.
9580 	 *
9581 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9582 	 *
9583 	 * In case of write protect:
9584 	 *
9585 	 * Write protect all pages for dirty logging.
9586 	 *
9587 	 * All the sptes including the large sptes which point to this
9588 	 * slot are set to readonly. We can not create any new large
9589 	 * spte on this slot until the end of the logging.
9590 	 *
9591 	 * See the comments in fast_page_fault().
9592 	 */
9593 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9594 		if (kvm_x86_ops->slot_enable_log_dirty)
9595 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9596 		else
9597 			kvm_mmu_slot_remove_write_access(kvm, new);
9598 	} else {
9599 		if (kvm_x86_ops->slot_disable_log_dirty)
9600 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9601 	}
9602 }
9603 
9604 void kvm_arch_commit_memory_region(struct kvm *kvm,
9605 				const struct kvm_userspace_memory_region *mem,
9606 				const struct kvm_memory_slot *old,
9607 				const struct kvm_memory_slot *new,
9608 				enum kvm_mr_change change)
9609 {
9610 	if (!kvm->arch.n_requested_mmu_pages)
9611 		kvm_mmu_change_mmu_pages(kvm,
9612 				kvm_mmu_calculate_default_mmu_pages(kvm));
9613 
9614 	/*
9615 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9616 	 * sptes have to be split.  If live migration is successful, the guest
9617 	 * in the source machine will be destroyed and large sptes will be
9618 	 * created in the destination. However, if the guest continues to run
9619 	 * in the source machine (for example if live migration fails), small
9620 	 * sptes will remain around and cause bad performance.
9621 	 *
9622 	 * Scan sptes if dirty logging has been stopped, dropping those
9623 	 * which can be collapsed into a single large-page spte.  Later
9624 	 * page faults will create the large-page sptes.
9625 	 */
9626 	if ((change != KVM_MR_DELETE) &&
9627 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9628 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9629 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9630 
9631 	/*
9632 	 * Set up write protection and/or dirty logging for the new slot.
9633 	 *
9634 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9635 	 * been zapped so no dirty logging staff is needed for old slot. For
9636 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9637 	 * new and it's also covered when dealing with the new slot.
9638 	 *
9639 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9640 	 */
9641 	if (change != KVM_MR_DELETE)
9642 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9643 }
9644 
9645 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9646 {
9647 	kvm_mmu_zap_all(kvm);
9648 }
9649 
9650 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9651 				   struct kvm_memory_slot *slot)
9652 {
9653 	kvm_page_track_flush_slot(kvm, slot);
9654 }
9655 
9656 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9657 {
9658 	return (is_guest_mode(vcpu) &&
9659 			kvm_x86_ops->guest_apic_has_interrupt &&
9660 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9661 }
9662 
9663 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9664 {
9665 	if (!list_empty_careful(&vcpu->async_pf.done))
9666 		return true;
9667 
9668 	if (kvm_apic_has_events(vcpu))
9669 		return true;
9670 
9671 	if (vcpu->arch.pv.pv_unhalted)
9672 		return true;
9673 
9674 	if (vcpu->arch.exception.pending)
9675 		return true;
9676 
9677 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9678 	    (vcpu->arch.nmi_pending &&
9679 	     kvm_x86_ops->nmi_allowed(vcpu)))
9680 		return true;
9681 
9682 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9683 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9684 		return true;
9685 
9686 	if (kvm_arch_interrupt_allowed(vcpu) &&
9687 	    (kvm_cpu_has_interrupt(vcpu) ||
9688 	    kvm_guest_apic_has_interrupt(vcpu)))
9689 		return true;
9690 
9691 	if (kvm_hv_has_stimer_pending(vcpu))
9692 		return true;
9693 
9694 	return false;
9695 }
9696 
9697 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9698 {
9699 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9700 }
9701 
9702 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9703 {
9704 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9705 		return true;
9706 
9707 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9708 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
9709 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
9710 		return true;
9711 
9712 	if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9713 		return true;
9714 
9715 	return false;
9716 }
9717 
9718 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9719 {
9720 	return vcpu->arch.preempted_in_kernel;
9721 }
9722 
9723 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9724 {
9725 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9726 }
9727 
9728 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9729 {
9730 	return kvm_x86_ops->interrupt_allowed(vcpu);
9731 }
9732 
9733 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9734 {
9735 	if (is_64_bit_mode(vcpu))
9736 		return kvm_rip_read(vcpu);
9737 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9738 		     kvm_rip_read(vcpu));
9739 }
9740 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9741 
9742 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9743 {
9744 	return kvm_get_linear_rip(vcpu) == linear_rip;
9745 }
9746 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9747 
9748 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9749 {
9750 	unsigned long rflags;
9751 
9752 	rflags = kvm_x86_ops->get_rflags(vcpu);
9753 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9754 		rflags &= ~X86_EFLAGS_TF;
9755 	return rflags;
9756 }
9757 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9758 
9759 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9760 {
9761 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9762 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9763 		rflags |= X86_EFLAGS_TF;
9764 	kvm_x86_ops->set_rflags(vcpu, rflags);
9765 }
9766 
9767 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9768 {
9769 	__kvm_set_rflags(vcpu, rflags);
9770 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9771 }
9772 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9773 
9774 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9775 {
9776 	int r;
9777 
9778 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9779 	      work->wakeup_all)
9780 		return;
9781 
9782 	r = kvm_mmu_reload(vcpu);
9783 	if (unlikely(r))
9784 		return;
9785 
9786 	if (!vcpu->arch.mmu->direct_map &&
9787 	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9788 		return;
9789 
9790 	vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9791 }
9792 
9793 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9794 {
9795 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9796 }
9797 
9798 static inline u32 kvm_async_pf_next_probe(u32 key)
9799 {
9800 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9801 }
9802 
9803 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9804 {
9805 	u32 key = kvm_async_pf_hash_fn(gfn);
9806 
9807 	while (vcpu->arch.apf.gfns[key] != ~0)
9808 		key = kvm_async_pf_next_probe(key);
9809 
9810 	vcpu->arch.apf.gfns[key] = gfn;
9811 }
9812 
9813 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9814 {
9815 	int i;
9816 	u32 key = kvm_async_pf_hash_fn(gfn);
9817 
9818 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9819 		     (vcpu->arch.apf.gfns[key] != gfn &&
9820 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9821 		key = kvm_async_pf_next_probe(key);
9822 
9823 	return key;
9824 }
9825 
9826 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9827 {
9828 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9829 }
9830 
9831 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9832 {
9833 	u32 i, j, k;
9834 
9835 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9836 	while (true) {
9837 		vcpu->arch.apf.gfns[i] = ~0;
9838 		do {
9839 			j = kvm_async_pf_next_probe(j);
9840 			if (vcpu->arch.apf.gfns[j] == ~0)
9841 				return;
9842 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9843 			/*
9844 			 * k lies cyclically in ]i,j]
9845 			 * |    i.k.j |
9846 			 * |....j i.k.| or  |.k..j i...|
9847 			 */
9848 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9849 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9850 		i = j;
9851 	}
9852 }
9853 
9854 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9855 {
9856 
9857 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9858 				      sizeof(val));
9859 }
9860 
9861 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9862 {
9863 
9864 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9865 				      sizeof(u32));
9866 }
9867 
9868 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
9869 {
9870 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9871 		return false;
9872 
9873 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9874 	    (vcpu->arch.apf.send_user_only &&
9875 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9876 		return false;
9877 
9878 	return true;
9879 }
9880 
9881 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
9882 {
9883 	if (unlikely(!lapic_in_kernel(vcpu) ||
9884 		     kvm_event_needs_reinjection(vcpu) ||
9885 		     vcpu->arch.exception.pending))
9886 		return false;
9887 
9888 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
9889 		return false;
9890 
9891 	/*
9892 	 * If interrupts are off we cannot even use an artificial
9893 	 * halt state.
9894 	 */
9895 	return kvm_x86_ops->interrupt_allowed(vcpu);
9896 }
9897 
9898 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9899 				     struct kvm_async_pf *work)
9900 {
9901 	struct x86_exception fault;
9902 
9903 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9904 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9905 
9906 	if (kvm_can_deliver_async_pf(vcpu) &&
9907 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9908 		fault.vector = PF_VECTOR;
9909 		fault.error_code_valid = true;
9910 		fault.error_code = 0;
9911 		fault.nested_page_fault = false;
9912 		fault.address = work->arch.token;
9913 		fault.async_page_fault = true;
9914 		kvm_inject_page_fault(vcpu, &fault);
9915 	} else {
9916 		/*
9917 		 * It is not possible to deliver a paravirtualized asynchronous
9918 		 * page fault, but putting the guest in an artificial halt state
9919 		 * can be beneficial nevertheless: if an interrupt arrives, we
9920 		 * can deliver it timely and perhaps the guest will schedule
9921 		 * another process.  When the instruction that triggered a page
9922 		 * fault is retried, hopefully the page will be ready in the host.
9923 		 */
9924 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9925 	}
9926 }
9927 
9928 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9929 				 struct kvm_async_pf *work)
9930 {
9931 	struct x86_exception fault;
9932 	u32 val;
9933 
9934 	if (work->wakeup_all)
9935 		work->arch.token = ~0; /* broadcast wakeup */
9936 	else
9937 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9938 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
9939 
9940 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9941 	    !apf_get_user(vcpu, &val)) {
9942 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9943 		    vcpu->arch.exception.pending &&
9944 		    vcpu->arch.exception.nr == PF_VECTOR &&
9945 		    !apf_put_user(vcpu, 0)) {
9946 			vcpu->arch.exception.injected = false;
9947 			vcpu->arch.exception.pending = false;
9948 			vcpu->arch.exception.nr = 0;
9949 			vcpu->arch.exception.has_error_code = false;
9950 			vcpu->arch.exception.error_code = 0;
9951 			vcpu->arch.exception.has_payload = false;
9952 			vcpu->arch.exception.payload = 0;
9953 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9954 			fault.vector = PF_VECTOR;
9955 			fault.error_code_valid = true;
9956 			fault.error_code = 0;
9957 			fault.nested_page_fault = false;
9958 			fault.address = work->arch.token;
9959 			fault.async_page_fault = true;
9960 			kvm_inject_page_fault(vcpu, &fault);
9961 		}
9962 	}
9963 	vcpu->arch.apf.halted = false;
9964 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9965 }
9966 
9967 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9968 {
9969 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9970 		return true;
9971 	else
9972 		return kvm_can_do_async_pf(vcpu);
9973 }
9974 
9975 void kvm_arch_start_assignment(struct kvm *kvm)
9976 {
9977 	atomic_inc(&kvm->arch.assigned_device_count);
9978 }
9979 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9980 
9981 void kvm_arch_end_assignment(struct kvm *kvm)
9982 {
9983 	atomic_dec(&kvm->arch.assigned_device_count);
9984 }
9985 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9986 
9987 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9988 {
9989 	return atomic_read(&kvm->arch.assigned_device_count);
9990 }
9991 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9992 
9993 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9994 {
9995 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9996 }
9997 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9998 
9999 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10000 {
10001 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10002 }
10003 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10004 
10005 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10006 {
10007 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10008 }
10009 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10010 
10011 bool kvm_arch_has_irq_bypass(void)
10012 {
10013 	return kvm_x86_ops->update_pi_irte != NULL;
10014 }
10015 
10016 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10017 				      struct irq_bypass_producer *prod)
10018 {
10019 	struct kvm_kernel_irqfd *irqfd =
10020 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10021 
10022 	irqfd->producer = prod;
10023 
10024 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10025 					   prod->irq, irqfd->gsi, 1);
10026 }
10027 
10028 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10029 				      struct irq_bypass_producer *prod)
10030 {
10031 	int ret;
10032 	struct kvm_kernel_irqfd *irqfd =
10033 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10034 
10035 	WARN_ON(irqfd->producer != prod);
10036 	irqfd->producer = NULL;
10037 
10038 	/*
10039 	 * When producer of consumer is unregistered, we change back to
10040 	 * remapped mode, so we can re-use the current implementation
10041 	 * when the irq is masked/disabled or the consumer side (KVM
10042 	 * int this case doesn't want to receive the interrupts.
10043 	*/
10044 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10045 	if (ret)
10046 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10047 		       " fails: %d\n", irqfd->consumer.token, ret);
10048 }
10049 
10050 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10051 				   uint32_t guest_irq, bool set)
10052 {
10053 	if (!kvm_x86_ops->update_pi_irte)
10054 		return -EINVAL;
10055 
10056 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10057 }
10058 
10059 bool kvm_vector_hashing_enabled(void)
10060 {
10061 	return vector_hashing;
10062 }
10063 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10064 
10065 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10066 {
10067 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10068 }
10069 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10070 
10071 
10072 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10073 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10074 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
10087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10091