1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/mem_encrypt.h> 58 59 #include <trace/events/kvm.h> 60 61 #include <asm/debugreg.h> 62 #include <asm/msr.h> 63 #include <asm/desc.h> 64 #include <asm/mce.h> 65 #include <linux/kernel_stat.h> 66 #include <asm/fpu/internal.h> /* Ugh! */ 67 #include <asm/pvclock.h> 68 #include <asm/div64.h> 69 #include <asm/irq_remapping.h> 70 #include <asm/mshyperv.h> 71 #include <asm/hypervisor.h> 72 #include <asm/intel_pt.h> 73 74 #define CREATE_TRACE_POINTS 75 #include "trace.h" 76 77 #define MAX_IO_MSRS 256 78 #define KVM_MAX_MCE_BANKS 32 79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 81 82 #define emul_to_vcpu(ctxt) \ 83 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 84 85 /* EFER defaults: 86 * - enable syscall per default because its emulated by KVM 87 * - enable LME and LMA per default on 64 bit KVM 88 */ 89 #ifdef CONFIG_X86_64 90 static 91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 92 #else 93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 94 #endif 95 96 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 97 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 98 99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 100 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 101 102 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 103 static void process_nmi(struct kvm_vcpu *vcpu); 104 static void enter_smm(struct kvm_vcpu *vcpu); 105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 106 static void store_regs(struct kvm_vcpu *vcpu); 107 static int sync_regs(struct kvm_vcpu *vcpu); 108 109 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 110 EXPORT_SYMBOL_GPL(kvm_x86_ops); 111 112 static bool __read_mostly ignore_msrs = 0; 113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 114 115 static bool __read_mostly report_ignored_msrs = true; 116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 117 118 unsigned int min_timer_period_us = 200; 119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 120 121 static bool __read_mostly kvmclock_periodic_sync = true; 122 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 123 124 bool __read_mostly kvm_has_tsc_control; 125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 126 u32 __read_mostly kvm_max_guest_tsc_khz; 127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 128 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 130 u64 __read_mostly kvm_max_tsc_scaling_ratio; 131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 132 u64 __read_mostly kvm_default_tsc_scaling_ratio; 133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 134 135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 136 static u32 __read_mostly tsc_tolerance_ppm = 250; 137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 138 139 /* 140 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 141 * adaptive tuning starting from default advancment of 1000ns. '0' disables 142 * advancement entirely. Any other value is used as-is and disables adaptive 143 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 144 */ 145 static int __read_mostly lapic_timer_advance_ns = -1; 146 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 147 148 static bool __read_mostly vector_hashing = true; 149 module_param(vector_hashing, bool, S_IRUGO); 150 151 bool __read_mostly enable_vmware_backdoor = false; 152 module_param(enable_vmware_backdoor, bool, S_IRUGO); 153 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 154 155 static bool __read_mostly force_emulation_prefix = false; 156 module_param(force_emulation_prefix, bool, S_IRUGO); 157 158 #define KVM_NR_SHARED_MSRS 16 159 160 struct kvm_shared_msrs_global { 161 int nr; 162 u32 msrs[KVM_NR_SHARED_MSRS]; 163 }; 164 165 struct kvm_shared_msrs { 166 struct user_return_notifier urn; 167 bool registered; 168 struct kvm_shared_msr_values { 169 u64 host; 170 u64 curr; 171 } values[KVM_NR_SHARED_MSRS]; 172 }; 173 174 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 175 static struct kvm_shared_msrs __percpu *shared_msrs; 176 177 struct kvm_stats_debugfs_item debugfs_entries[] = { 178 { "pf_fixed", VCPU_STAT(pf_fixed) }, 179 { "pf_guest", VCPU_STAT(pf_guest) }, 180 { "tlb_flush", VCPU_STAT(tlb_flush) }, 181 { "invlpg", VCPU_STAT(invlpg) }, 182 { "exits", VCPU_STAT(exits) }, 183 { "io_exits", VCPU_STAT(io_exits) }, 184 { "mmio_exits", VCPU_STAT(mmio_exits) }, 185 { "signal_exits", VCPU_STAT(signal_exits) }, 186 { "irq_window", VCPU_STAT(irq_window_exits) }, 187 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 188 { "halt_exits", VCPU_STAT(halt_exits) }, 189 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 190 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 191 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 192 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 193 { "hypercalls", VCPU_STAT(hypercalls) }, 194 { "request_irq", VCPU_STAT(request_irq_exits) }, 195 { "irq_exits", VCPU_STAT(irq_exits) }, 196 { "host_state_reload", VCPU_STAT(host_state_reload) }, 197 { "fpu_reload", VCPU_STAT(fpu_reload) }, 198 { "insn_emulation", VCPU_STAT(insn_emulation) }, 199 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 200 { "irq_injections", VCPU_STAT(irq_injections) }, 201 { "nmi_injections", VCPU_STAT(nmi_injections) }, 202 { "req_event", VCPU_STAT(req_event) }, 203 { "l1d_flush", VCPU_STAT(l1d_flush) }, 204 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 205 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 206 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 207 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 208 { "mmu_flooded", VM_STAT(mmu_flooded) }, 209 { "mmu_recycled", VM_STAT(mmu_recycled) }, 210 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 211 { "mmu_unsync", VM_STAT(mmu_unsync) }, 212 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 213 { "largepages", VM_STAT(lpages) }, 214 { "max_mmu_page_hash_collisions", 215 VM_STAT(max_mmu_page_hash_collisions) }, 216 { NULL } 217 }; 218 219 u64 __read_mostly host_xcr0; 220 221 struct kmem_cache *x86_fpu_cache; 222 EXPORT_SYMBOL_GPL(x86_fpu_cache); 223 224 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 225 226 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 227 { 228 int i; 229 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 230 vcpu->arch.apf.gfns[i] = ~0; 231 } 232 233 static void kvm_on_user_return(struct user_return_notifier *urn) 234 { 235 unsigned slot; 236 struct kvm_shared_msrs *locals 237 = container_of(urn, struct kvm_shared_msrs, urn); 238 struct kvm_shared_msr_values *values; 239 unsigned long flags; 240 241 /* 242 * Disabling irqs at this point since the following code could be 243 * interrupted and executed through kvm_arch_hardware_disable() 244 */ 245 local_irq_save(flags); 246 if (locals->registered) { 247 locals->registered = false; 248 user_return_notifier_unregister(urn); 249 } 250 local_irq_restore(flags); 251 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 252 values = &locals->values[slot]; 253 if (values->host != values->curr) { 254 wrmsrl(shared_msrs_global.msrs[slot], values->host); 255 values->curr = values->host; 256 } 257 } 258 } 259 260 static void shared_msr_update(unsigned slot, u32 msr) 261 { 262 u64 value; 263 unsigned int cpu = smp_processor_id(); 264 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 265 266 /* only read, and nobody should modify it at this time, 267 * so don't need lock */ 268 if (slot >= shared_msrs_global.nr) { 269 printk(KERN_ERR "kvm: invalid MSR slot!"); 270 return; 271 } 272 rdmsrl_safe(msr, &value); 273 smsr->values[slot].host = value; 274 smsr->values[slot].curr = value; 275 } 276 277 void kvm_define_shared_msr(unsigned slot, u32 msr) 278 { 279 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 280 shared_msrs_global.msrs[slot] = msr; 281 if (slot >= shared_msrs_global.nr) 282 shared_msrs_global.nr = slot + 1; 283 } 284 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 285 286 static void kvm_shared_msr_cpu_online(void) 287 { 288 unsigned i; 289 290 for (i = 0; i < shared_msrs_global.nr; ++i) 291 shared_msr_update(i, shared_msrs_global.msrs[i]); 292 } 293 294 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 295 { 296 unsigned int cpu = smp_processor_id(); 297 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 298 int err; 299 300 if (((value ^ smsr->values[slot].curr) & mask) == 0) 301 return 0; 302 smsr->values[slot].curr = value; 303 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 304 if (err) 305 return 1; 306 307 if (!smsr->registered) { 308 smsr->urn.on_user_return = kvm_on_user_return; 309 user_return_notifier_register(&smsr->urn); 310 smsr->registered = true; 311 } 312 return 0; 313 } 314 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 315 316 static void drop_user_return_notifiers(void) 317 { 318 unsigned int cpu = smp_processor_id(); 319 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 320 321 if (smsr->registered) 322 kvm_on_user_return(&smsr->urn); 323 } 324 325 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 326 { 327 return vcpu->arch.apic_base; 328 } 329 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 330 331 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 332 { 333 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 334 } 335 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 336 337 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 338 { 339 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 340 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 341 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 342 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 343 344 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 345 return 1; 346 if (!msr_info->host_initiated) { 347 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 348 return 1; 349 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 350 return 1; 351 } 352 353 kvm_lapic_set_base(vcpu, msr_info->data); 354 return 0; 355 } 356 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 357 358 asmlinkage __visible void kvm_spurious_fault(void) 359 { 360 /* Fault while not rebooting. We want the trace. */ 361 BUG(); 362 } 363 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 364 365 #define EXCPT_BENIGN 0 366 #define EXCPT_CONTRIBUTORY 1 367 #define EXCPT_PF 2 368 369 static int exception_class(int vector) 370 { 371 switch (vector) { 372 case PF_VECTOR: 373 return EXCPT_PF; 374 case DE_VECTOR: 375 case TS_VECTOR: 376 case NP_VECTOR: 377 case SS_VECTOR: 378 case GP_VECTOR: 379 return EXCPT_CONTRIBUTORY; 380 default: 381 break; 382 } 383 return EXCPT_BENIGN; 384 } 385 386 #define EXCPT_FAULT 0 387 #define EXCPT_TRAP 1 388 #define EXCPT_ABORT 2 389 #define EXCPT_INTERRUPT 3 390 391 static int exception_type(int vector) 392 { 393 unsigned int mask; 394 395 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 396 return EXCPT_INTERRUPT; 397 398 mask = 1 << vector; 399 400 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 401 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 402 return EXCPT_TRAP; 403 404 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 405 return EXCPT_ABORT; 406 407 /* Reserved exceptions will result in fault */ 408 return EXCPT_FAULT; 409 } 410 411 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 412 { 413 unsigned nr = vcpu->arch.exception.nr; 414 bool has_payload = vcpu->arch.exception.has_payload; 415 unsigned long payload = vcpu->arch.exception.payload; 416 417 if (!has_payload) 418 return; 419 420 switch (nr) { 421 case DB_VECTOR: 422 /* 423 * "Certain debug exceptions may clear bit 0-3. The 424 * remaining contents of the DR6 register are never 425 * cleared by the processor". 426 */ 427 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 428 /* 429 * DR6.RTM is set by all #DB exceptions that don't clear it. 430 */ 431 vcpu->arch.dr6 |= DR6_RTM; 432 vcpu->arch.dr6 |= payload; 433 /* 434 * Bit 16 should be set in the payload whenever the #DB 435 * exception should clear DR6.RTM. This makes the payload 436 * compatible with the pending debug exceptions under VMX. 437 * Though not currently documented in the SDM, this also 438 * makes the payload compatible with the exit qualification 439 * for #DB exceptions under VMX. 440 */ 441 vcpu->arch.dr6 ^= payload & DR6_RTM; 442 break; 443 case PF_VECTOR: 444 vcpu->arch.cr2 = payload; 445 break; 446 } 447 448 vcpu->arch.exception.has_payload = false; 449 vcpu->arch.exception.payload = 0; 450 } 451 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 452 453 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 454 unsigned nr, bool has_error, u32 error_code, 455 bool has_payload, unsigned long payload, bool reinject) 456 { 457 u32 prev_nr; 458 int class1, class2; 459 460 kvm_make_request(KVM_REQ_EVENT, vcpu); 461 462 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 463 queue: 464 if (has_error && !is_protmode(vcpu)) 465 has_error = false; 466 if (reinject) { 467 /* 468 * On vmentry, vcpu->arch.exception.pending is only 469 * true if an event injection was blocked by 470 * nested_run_pending. In that case, however, 471 * vcpu_enter_guest requests an immediate exit, 472 * and the guest shouldn't proceed far enough to 473 * need reinjection. 474 */ 475 WARN_ON_ONCE(vcpu->arch.exception.pending); 476 vcpu->arch.exception.injected = true; 477 if (WARN_ON_ONCE(has_payload)) { 478 /* 479 * A reinjected event has already 480 * delivered its payload. 481 */ 482 has_payload = false; 483 payload = 0; 484 } 485 } else { 486 vcpu->arch.exception.pending = true; 487 vcpu->arch.exception.injected = false; 488 } 489 vcpu->arch.exception.has_error_code = has_error; 490 vcpu->arch.exception.nr = nr; 491 vcpu->arch.exception.error_code = error_code; 492 vcpu->arch.exception.has_payload = has_payload; 493 vcpu->arch.exception.payload = payload; 494 /* 495 * In guest mode, payload delivery should be deferred, 496 * so that the L1 hypervisor can intercept #PF before 497 * CR2 is modified (or intercept #DB before DR6 is 498 * modified under nVMX). However, for ABI 499 * compatibility with KVM_GET_VCPU_EVENTS and 500 * KVM_SET_VCPU_EVENTS, we can't delay payload 501 * delivery unless userspace has enabled this 502 * functionality via the per-VM capability, 503 * KVM_CAP_EXCEPTION_PAYLOAD. 504 */ 505 if (!vcpu->kvm->arch.exception_payload_enabled || 506 !is_guest_mode(vcpu)) 507 kvm_deliver_exception_payload(vcpu); 508 return; 509 } 510 511 /* to check exception */ 512 prev_nr = vcpu->arch.exception.nr; 513 if (prev_nr == DF_VECTOR) { 514 /* triple fault -> shutdown */ 515 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 516 return; 517 } 518 class1 = exception_class(prev_nr); 519 class2 = exception_class(nr); 520 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 521 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 522 /* 523 * Generate double fault per SDM Table 5-5. Set 524 * exception.pending = true so that the double fault 525 * can trigger a nested vmexit. 526 */ 527 vcpu->arch.exception.pending = true; 528 vcpu->arch.exception.injected = false; 529 vcpu->arch.exception.has_error_code = true; 530 vcpu->arch.exception.nr = DF_VECTOR; 531 vcpu->arch.exception.error_code = 0; 532 vcpu->arch.exception.has_payload = false; 533 vcpu->arch.exception.payload = 0; 534 } else 535 /* replace previous exception with a new one in a hope 536 that instruction re-execution will regenerate lost 537 exception */ 538 goto queue; 539 } 540 541 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 542 { 543 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 544 } 545 EXPORT_SYMBOL_GPL(kvm_queue_exception); 546 547 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 548 { 549 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 550 } 551 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 552 553 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 554 unsigned long payload) 555 { 556 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 557 } 558 559 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 560 u32 error_code, unsigned long payload) 561 { 562 kvm_multiple_exception(vcpu, nr, true, error_code, 563 true, payload, false); 564 } 565 566 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 567 { 568 if (err) 569 kvm_inject_gp(vcpu, 0); 570 else 571 return kvm_skip_emulated_instruction(vcpu); 572 573 return 1; 574 } 575 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 576 577 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 578 { 579 ++vcpu->stat.pf_guest; 580 vcpu->arch.exception.nested_apf = 581 is_guest_mode(vcpu) && fault->async_page_fault; 582 if (vcpu->arch.exception.nested_apf) { 583 vcpu->arch.apf.nested_apf_token = fault->address; 584 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 585 } else { 586 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 587 fault->address); 588 } 589 } 590 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 591 592 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 593 { 594 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 595 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 596 else 597 vcpu->arch.mmu->inject_page_fault(vcpu, fault); 598 599 return fault->nested_page_fault; 600 } 601 602 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 603 { 604 atomic_inc(&vcpu->arch.nmi_queued); 605 kvm_make_request(KVM_REQ_NMI, vcpu); 606 } 607 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 608 609 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 610 { 611 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 612 } 613 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 614 615 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 616 { 617 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 618 } 619 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 620 621 /* 622 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 623 * a #GP and return false. 624 */ 625 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 626 { 627 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 628 return true; 629 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 630 return false; 631 } 632 EXPORT_SYMBOL_GPL(kvm_require_cpl); 633 634 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 635 { 636 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 637 return true; 638 639 kvm_queue_exception(vcpu, UD_VECTOR); 640 return false; 641 } 642 EXPORT_SYMBOL_GPL(kvm_require_dr); 643 644 /* 645 * This function will be used to read from the physical memory of the currently 646 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 647 * can read from guest physical or from the guest's guest physical memory. 648 */ 649 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 650 gfn_t ngfn, void *data, int offset, int len, 651 u32 access) 652 { 653 struct x86_exception exception; 654 gfn_t real_gfn; 655 gpa_t ngpa; 656 657 ngpa = gfn_to_gpa(ngfn); 658 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 659 if (real_gfn == UNMAPPED_GVA) 660 return -EFAULT; 661 662 real_gfn = gpa_to_gfn(real_gfn); 663 664 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 665 } 666 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 667 668 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 669 void *data, int offset, int len, u32 access) 670 { 671 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 672 data, offset, len, access); 673 } 674 675 /* 676 * Load the pae pdptrs. Return true is they are all valid. 677 */ 678 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 679 { 680 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 681 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 682 int i; 683 int ret; 684 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 685 686 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 687 offset * sizeof(u64), sizeof(pdpte), 688 PFERR_USER_MASK|PFERR_WRITE_MASK); 689 if (ret < 0) { 690 ret = 0; 691 goto out; 692 } 693 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 694 if ((pdpte[i] & PT_PRESENT_MASK) && 695 (pdpte[i] & 696 vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) { 697 ret = 0; 698 goto out; 699 } 700 } 701 ret = 1; 702 703 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 704 __set_bit(VCPU_EXREG_PDPTR, 705 (unsigned long *)&vcpu->arch.regs_avail); 706 __set_bit(VCPU_EXREG_PDPTR, 707 (unsigned long *)&vcpu->arch.regs_dirty); 708 out: 709 710 return ret; 711 } 712 EXPORT_SYMBOL_GPL(load_pdptrs); 713 714 bool pdptrs_changed(struct kvm_vcpu *vcpu) 715 { 716 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 717 bool changed = true; 718 int offset; 719 gfn_t gfn; 720 int r; 721 722 if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu)) 723 return false; 724 725 if (!test_bit(VCPU_EXREG_PDPTR, 726 (unsigned long *)&vcpu->arch.regs_avail)) 727 return true; 728 729 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 730 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 731 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 732 PFERR_USER_MASK | PFERR_WRITE_MASK); 733 if (r < 0) 734 goto out; 735 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 736 out: 737 738 return changed; 739 } 740 EXPORT_SYMBOL_GPL(pdptrs_changed); 741 742 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 743 { 744 unsigned long old_cr0 = kvm_read_cr0(vcpu); 745 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 746 747 cr0 |= X86_CR0_ET; 748 749 #ifdef CONFIG_X86_64 750 if (cr0 & 0xffffffff00000000UL) 751 return 1; 752 #endif 753 754 cr0 &= ~CR0_RESERVED_BITS; 755 756 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 757 return 1; 758 759 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 760 return 1; 761 762 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 763 #ifdef CONFIG_X86_64 764 if ((vcpu->arch.efer & EFER_LME)) { 765 int cs_db, cs_l; 766 767 if (!is_pae(vcpu)) 768 return 1; 769 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 770 if (cs_l) 771 return 1; 772 } else 773 #endif 774 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 775 kvm_read_cr3(vcpu))) 776 return 1; 777 } 778 779 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 780 return 1; 781 782 kvm_x86_ops->set_cr0(vcpu, cr0); 783 784 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 785 kvm_clear_async_pf_completion_queue(vcpu); 786 kvm_async_pf_hash_reset(vcpu); 787 } 788 789 if ((cr0 ^ old_cr0) & update_bits) 790 kvm_mmu_reset_context(vcpu); 791 792 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 793 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 794 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 795 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 796 797 return 0; 798 } 799 EXPORT_SYMBOL_GPL(kvm_set_cr0); 800 801 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 802 { 803 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 804 } 805 EXPORT_SYMBOL_GPL(kvm_lmsw); 806 807 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 808 { 809 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 810 !vcpu->guest_xcr0_loaded) { 811 /* kvm_set_xcr() also depends on this */ 812 if (vcpu->arch.xcr0 != host_xcr0) 813 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 814 vcpu->guest_xcr0_loaded = 1; 815 } 816 } 817 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0); 818 819 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 820 { 821 if (vcpu->guest_xcr0_loaded) { 822 if (vcpu->arch.xcr0 != host_xcr0) 823 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 824 vcpu->guest_xcr0_loaded = 0; 825 } 826 } 827 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0); 828 829 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 830 { 831 u64 xcr0 = xcr; 832 u64 old_xcr0 = vcpu->arch.xcr0; 833 u64 valid_bits; 834 835 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 836 if (index != XCR_XFEATURE_ENABLED_MASK) 837 return 1; 838 if (!(xcr0 & XFEATURE_MASK_FP)) 839 return 1; 840 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 841 return 1; 842 843 /* 844 * Do not allow the guest to set bits that we do not support 845 * saving. However, xcr0 bit 0 is always set, even if the 846 * emulated CPU does not support XSAVE (see fx_init). 847 */ 848 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 849 if (xcr0 & ~valid_bits) 850 return 1; 851 852 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 853 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 854 return 1; 855 856 if (xcr0 & XFEATURE_MASK_AVX512) { 857 if (!(xcr0 & XFEATURE_MASK_YMM)) 858 return 1; 859 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 860 return 1; 861 } 862 vcpu->arch.xcr0 = xcr0; 863 864 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 865 kvm_update_cpuid(vcpu); 866 return 0; 867 } 868 869 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 870 { 871 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 872 __kvm_set_xcr(vcpu, index, xcr)) { 873 kvm_inject_gp(vcpu, 0); 874 return 1; 875 } 876 return 0; 877 } 878 EXPORT_SYMBOL_GPL(kvm_set_xcr); 879 880 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 881 { 882 unsigned long old_cr4 = kvm_read_cr4(vcpu); 883 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 884 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 885 886 if (cr4 & CR4_RESERVED_BITS) 887 return 1; 888 889 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE)) 890 return 1; 891 892 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP)) 893 return 1; 894 895 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP)) 896 return 1; 897 898 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE)) 899 return 1; 900 901 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE)) 902 return 1; 903 904 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57)) 905 return 1; 906 907 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP)) 908 return 1; 909 910 if (is_long_mode(vcpu)) { 911 if (!(cr4 & X86_CR4_PAE)) 912 return 1; 913 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 914 && ((cr4 ^ old_cr4) & pdptr_bits) 915 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 916 kvm_read_cr3(vcpu))) 917 return 1; 918 919 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 920 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 921 return 1; 922 923 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 924 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 925 return 1; 926 } 927 928 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 929 return 1; 930 931 if (((cr4 ^ old_cr4) & pdptr_bits) || 932 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 933 kvm_mmu_reset_context(vcpu); 934 935 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 936 kvm_update_cpuid(vcpu); 937 938 return 0; 939 } 940 EXPORT_SYMBOL_GPL(kvm_set_cr4); 941 942 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 943 { 944 bool skip_tlb_flush = false; 945 #ifdef CONFIG_X86_64 946 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 947 948 if (pcid_enabled) { 949 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 950 cr3 &= ~X86_CR3_PCID_NOFLUSH; 951 } 952 #endif 953 954 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 955 if (!skip_tlb_flush) { 956 kvm_mmu_sync_roots(vcpu); 957 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 958 } 959 return 0; 960 } 961 962 if (is_long_mode(vcpu) && 963 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) 964 return 1; 965 else if (is_pae(vcpu) && is_paging(vcpu) && 966 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 967 return 1; 968 969 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush); 970 vcpu->arch.cr3 = cr3; 971 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 972 973 return 0; 974 } 975 EXPORT_SYMBOL_GPL(kvm_set_cr3); 976 977 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 978 { 979 if (cr8 & CR8_RESERVED_BITS) 980 return 1; 981 if (lapic_in_kernel(vcpu)) 982 kvm_lapic_set_tpr(vcpu, cr8); 983 else 984 vcpu->arch.cr8 = cr8; 985 return 0; 986 } 987 EXPORT_SYMBOL_GPL(kvm_set_cr8); 988 989 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 990 { 991 if (lapic_in_kernel(vcpu)) 992 return kvm_lapic_get_cr8(vcpu); 993 else 994 return vcpu->arch.cr8; 995 } 996 EXPORT_SYMBOL_GPL(kvm_get_cr8); 997 998 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 999 { 1000 int i; 1001 1002 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1003 for (i = 0; i < KVM_NR_DB_REGS; i++) 1004 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1005 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1006 } 1007 } 1008 1009 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 1010 { 1011 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1012 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 1013 } 1014 1015 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 1016 { 1017 unsigned long dr7; 1018 1019 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1020 dr7 = vcpu->arch.guest_debug_dr7; 1021 else 1022 dr7 = vcpu->arch.dr7; 1023 kvm_x86_ops->set_dr7(vcpu, dr7); 1024 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1025 if (dr7 & DR7_BP_EN_MASK) 1026 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1027 } 1028 1029 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1030 { 1031 u64 fixed = DR6_FIXED_1; 1032 1033 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1034 fixed |= DR6_RTM; 1035 return fixed; 1036 } 1037 1038 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1039 { 1040 switch (dr) { 1041 case 0 ... 3: 1042 vcpu->arch.db[dr] = val; 1043 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1044 vcpu->arch.eff_db[dr] = val; 1045 break; 1046 case 4: 1047 /* fall through */ 1048 case 6: 1049 if (val & 0xffffffff00000000ULL) 1050 return -1; /* #GP */ 1051 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1052 kvm_update_dr6(vcpu); 1053 break; 1054 case 5: 1055 /* fall through */ 1056 default: /* 7 */ 1057 if (val & 0xffffffff00000000ULL) 1058 return -1; /* #GP */ 1059 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1060 kvm_update_dr7(vcpu); 1061 break; 1062 } 1063 1064 return 0; 1065 } 1066 1067 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1068 { 1069 if (__kvm_set_dr(vcpu, dr, val)) { 1070 kvm_inject_gp(vcpu, 0); 1071 return 1; 1072 } 1073 return 0; 1074 } 1075 EXPORT_SYMBOL_GPL(kvm_set_dr); 1076 1077 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1078 { 1079 switch (dr) { 1080 case 0 ... 3: 1081 *val = vcpu->arch.db[dr]; 1082 break; 1083 case 4: 1084 /* fall through */ 1085 case 6: 1086 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1087 *val = vcpu->arch.dr6; 1088 else 1089 *val = kvm_x86_ops->get_dr6(vcpu); 1090 break; 1091 case 5: 1092 /* fall through */ 1093 default: /* 7 */ 1094 *val = vcpu->arch.dr7; 1095 break; 1096 } 1097 return 0; 1098 } 1099 EXPORT_SYMBOL_GPL(kvm_get_dr); 1100 1101 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1102 { 1103 u32 ecx = kvm_rcx_read(vcpu); 1104 u64 data; 1105 int err; 1106 1107 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1108 if (err) 1109 return err; 1110 kvm_rax_write(vcpu, (u32)data); 1111 kvm_rdx_write(vcpu, data >> 32); 1112 return err; 1113 } 1114 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1115 1116 /* 1117 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1118 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1119 * 1120 * This list is modified at module load time to reflect the 1121 * capabilities of the host cpu. This capabilities test skips MSRs that are 1122 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs 1123 * may depend on host virtualization features rather than host cpu features. 1124 */ 1125 1126 static u32 msrs_to_save[] = { 1127 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1128 MSR_STAR, 1129 #ifdef CONFIG_X86_64 1130 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1131 #endif 1132 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1133 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1134 MSR_IA32_SPEC_CTRL, 1135 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1136 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1137 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1138 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1139 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1140 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1141 }; 1142 1143 static unsigned num_msrs_to_save; 1144 1145 static u32 emulated_msrs[] = { 1146 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1147 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1148 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1149 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1150 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1151 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1152 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1153 HV_X64_MSR_RESET, 1154 HV_X64_MSR_VP_INDEX, 1155 HV_X64_MSR_VP_RUNTIME, 1156 HV_X64_MSR_SCONTROL, 1157 HV_X64_MSR_STIMER0_CONFIG, 1158 HV_X64_MSR_VP_ASSIST_PAGE, 1159 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1160 HV_X64_MSR_TSC_EMULATION_STATUS, 1161 1162 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1163 MSR_KVM_PV_EOI_EN, 1164 1165 MSR_IA32_TSC_ADJUST, 1166 MSR_IA32_TSCDEADLINE, 1167 MSR_IA32_ARCH_CAPABILITIES, 1168 MSR_IA32_MISC_ENABLE, 1169 MSR_IA32_MCG_STATUS, 1170 MSR_IA32_MCG_CTL, 1171 MSR_IA32_MCG_EXT_CTL, 1172 MSR_IA32_SMBASE, 1173 MSR_SMI_COUNT, 1174 MSR_PLATFORM_INFO, 1175 MSR_MISC_FEATURES_ENABLES, 1176 MSR_AMD64_VIRT_SPEC_CTRL, 1177 MSR_IA32_POWER_CTL, 1178 1179 MSR_K7_HWCR, 1180 }; 1181 1182 static unsigned num_emulated_msrs; 1183 1184 /* 1185 * List of msr numbers which are used to expose MSR-based features that 1186 * can be used by a hypervisor to validate requested CPU features. 1187 */ 1188 static u32 msr_based_features[] = { 1189 MSR_IA32_VMX_BASIC, 1190 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1191 MSR_IA32_VMX_PINBASED_CTLS, 1192 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1193 MSR_IA32_VMX_PROCBASED_CTLS, 1194 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1195 MSR_IA32_VMX_EXIT_CTLS, 1196 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1197 MSR_IA32_VMX_ENTRY_CTLS, 1198 MSR_IA32_VMX_MISC, 1199 MSR_IA32_VMX_CR0_FIXED0, 1200 MSR_IA32_VMX_CR0_FIXED1, 1201 MSR_IA32_VMX_CR4_FIXED0, 1202 MSR_IA32_VMX_CR4_FIXED1, 1203 MSR_IA32_VMX_VMCS_ENUM, 1204 MSR_IA32_VMX_PROCBASED_CTLS2, 1205 MSR_IA32_VMX_EPT_VPID_CAP, 1206 MSR_IA32_VMX_VMFUNC, 1207 1208 MSR_F10H_DECFG, 1209 MSR_IA32_UCODE_REV, 1210 MSR_IA32_ARCH_CAPABILITIES, 1211 }; 1212 1213 static unsigned int num_msr_based_features; 1214 1215 u64 kvm_get_arch_capabilities(void) 1216 { 1217 u64 data; 1218 1219 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data); 1220 1221 /* 1222 * If we're doing cache flushes (either "always" or "cond") 1223 * we will do one whenever the guest does a vmlaunch/vmresume. 1224 * If an outer hypervisor is doing the cache flush for us 1225 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1226 * capability to the guest too, and if EPT is disabled we're not 1227 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1228 * require a nested hypervisor to do a flush of its own. 1229 */ 1230 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1231 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1232 1233 return data; 1234 } 1235 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities); 1236 1237 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1238 { 1239 switch (msr->index) { 1240 case MSR_IA32_ARCH_CAPABILITIES: 1241 msr->data = kvm_get_arch_capabilities(); 1242 break; 1243 case MSR_IA32_UCODE_REV: 1244 rdmsrl_safe(msr->index, &msr->data); 1245 break; 1246 default: 1247 if (kvm_x86_ops->get_msr_feature(msr)) 1248 return 1; 1249 } 1250 return 0; 1251 } 1252 1253 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1254 { 1255 struct kvm_msr_entry msr; 1256 int r; 1257 1258 msr.index = index; 1259 r = kvm_get_msr_feature(&msr); 1260 if (r) 1261 return r; 1262 1263 *data = msr.data; 1264 1265 return 0; 1266 } 1267 1268 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1269 { 1270 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1271 return false; 1272 1273 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1274 return false; 1275 1276 if (efer & (EFER_LME | EFER_LMA) && 1277 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1278 return false; 1279 1280 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1281 return false; 1282 1283 return true; 1284 1285 } 1286 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1287 { 1288 if (efer & efer_reserved_bits) 1289 return false; 1290 1291 return __kvm_valid_efer(vcpu, efer); 1292 } 1293 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1294 1295 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1296 { 1297 u64 old_efer = vcpu->arch.efer; 1298 u64 efer = msr_info->data; 1299 1300 if (efer & efer_reserved_bits) 1301 return 1; 1302 1303 if (!msr_info->host_initiated) { 1304 if (!__kvm_valid_efer(vcpu, efer)) 1305 return 1; 1306 1307 if (is_paging(vcpu) && 1308 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1309 return 1; 1310 } 1311 1312 efer &= ~EFER_LMA; 1313 efer |= vcpu->arch.efer & EFER_LMA; 1314 1315 kvm_x86_ops->set_efer(vcpu, efer); 1316 1317 /* Update reserved bits */ 1318 if ((efer ^ old_efer) & EFER_NX) 1319 kvm_mmu_reset_context(vcpu); 1320 1321 return 0; 1322 } 1323 1324 void kvm_enable_efer_bits(u64 mask) 1325 { 1326 efer_reserved_bits &= ~mask; 1327 } 1328 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1329 1330 /* 1331 * Writes msr value into into the appropriate "register". 1332 * Returns 0 on success, non-0 otherwise. 1333 * Assumes vcpu_load() was already called. 1334 */ 1335 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 1336 { 1337 switch (msr->index) { 1338 case MSR_FS_BASE: 1339 case MSR_GS_BASE: 1340 case MSR_KERNEL_GS_BASE: 1341 case MSR_CSTAR: 1342 case MSR_LSTAR: 1343 if (is_noncanonical_address(msr->data, vcpu)) 1344 return 1; 1345 break; 1346 case MSR_IA32_SYSENTER_EIP: 1347 case MSR_IA32_SYSENTER_ESP: 1348 /* 1349 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1350 * non-canonical address is written on Intel but not on 1351 * AMD (which ignores the top 32-bits, because it does 1352 * not implement 64-bit SYSENTER). 1353 * 1354 * 64-bit code should hence be able to write a non-canonical 1355 * value on AMD. Making the address canonical ensures that 1356 * vmentry does not fail on Intel after writing a non-canonical 1357 * value, and that something deterministic happens if the guest 1358 * invokes 64-bit SYSENTER. 1359 */ 1360 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu)); 1361 } 1362 return kvm_x86_ops->set_msr(vcpu, msr); 1363 } 1364 EXPORT_SYMBOL_GPL(kvm_set_msr); 1365 1366 /* 1367 * Adapt set_msr() to msr_io()'s calling convention 1368 */ 1369 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1370 { 1371 struct msr_data msr; 1372 int r; 1373 1374 msr.index = index; 1375 msr.host_initiated = true; 1376 r = kvm_get_msr(vcpu, &msr); 1377 if (r) 1378 return r; 1379 1380 *data = msr.data; 1381 return 0; 1382 } 1383 1384 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1385 { 1386 struct msr_data msr; 1387 1388 msr.data = *data; 1389 msr.index = index; 1390 msr.host_initiated = true; 1391 return kvm_set_msr(vcpu, &msr); 1392 } 1393 1394 #ifdef CONFIG_X86_64 1395 struct pvclock_gtod_data { 1396 seqcount_t seq; 1397 1398 struct { /* extract of a clocksource struct */ 1399 int vclock_mode; 1400 u64 cycle_last; 1401 u64 mask; 1402 u32 mult; 1403 u32 shift; 1404 } clock; 1405 1406 u64 boot_ns; 1407 u64 nsec_base; 1408 u64 wall_time_sec; 1409 }; 1410 1411 static struct pvclock_gtod_data pvclock_gtod_data; 1412 1413 static void update_pvclock_gtod(struct timekeeper *tk) 1414 { 1415 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1416 u64 boot_ns; 1417 1418 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); 1419 1420 write_seqcount_begin(&vdata->seq); 1421 1422 /* copy pvclock gtod data */ 1423 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; 1424 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1425 vdata->clock.mask = tk->tkr_mono.mask; 1426 vdata->clock.mult = tk->tkr_mono.mult; 1427 vdata->clock.shift = tk->tkr_mono.shift; 1428 1429 vdata->boot_ns = boot_ns; 1430 vdata->nsec_base = tk->tkr_mono.xtime_nsec; 1431 1432 vdata->wall_time_sec = tk->xtime_sec; 1433 1434 write_seqcount_end(&vdata->seq); 1435 } 1436 #endif 1437 1438 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1439 { 1440 /* 1441 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in 1442 * vcpu_enter_guest. This function is only called from 1443 * the physical CPU that is running vcpu. 1444 */ 1445 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1446 } 1447 1448 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1449 { 1450 int version; 1451 int r; 1452 struct pvclock_wall_clock wc; 1453 struct timespec64 boot; 1454 1455 if (!wall_clock) 1456 return; 1457 1458 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1459 if (r) 1460 return; 1461 1462 if (version & 1) 1463 ++version; /* first time write, random junk */ 1464 1465 ++version; 1466 1467 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1468 return; 1469 1470 /* 1471 * The guest calculates current wall clock time by adding 1472 * system time (updated by kvm_guest_time_update below) to the 1473 * wall clock specified here. guest system time equals host 1474 * system time for us, thus we must fill in host boot time here. 1475 */ 1476 getboottime64(&boot); 1477 1478 if (kvm->arch.kvmclock_offset) { 1479 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); 1480 boot = timespec64_sub(boot, ts); 1481 } 1482 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ 1483 wc.nsec = boot.tv_nsec; 1484 wc.version = version; 1485 1486 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1487 1488 version++; 1489 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1490 } 1491 1492 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1493 { 1494 do_shl32_div32(dividend, divisor); 1495 return dividend; 1496 } 1497 1498 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1499 s8 *pshift, u32 *pmultiplier) 1500 { 1501 uint64_t scaled64; 1502 int32_t shift = 0; 1503 uint64_t tps64; 1504 uint32_t tps32; 1505 1506 tps64 = base_hz; 1507 scaled64 = scaled_hz; 1508 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1509 tps64 >>= 1; 1510 shift--; 1511 } 1512 1513 tps32 = (uint32_t)tps64; 1514 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1515 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1516 scaled64 >>= 1; 1517 else 1518 tps32 <<= 1; 1519 shift++; 1520 } 1521 1522 *pshift = shift; 1523 *pmultiplier = div_frac(scaled64, tps32); 1524 1525 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", 1526 __func__, base_hz, scaled_hz, shift, *pmultiplier); 1527 } 1528 1529 #ifdef CONFIG_X86_64 1530 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1531 #endif 1532 1533 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1534 static unsigned long max_tsc_khz; 1535 1536 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1537 { 1538 u64 v = (u64)khz * (1000000 + ppm); 1539 do_div(v, 1000000); 1540 return v; 1541 } 1542 1543 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1544 { 1545 u64 ratio; 1546 1547 /* Guest TSC same frequency as host TSC? */ 1548 if (!scale) { 1549 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1550 return 0; 1551 } 1552 1553 /* TSC scaling supported? */ 1554 if (!kvm_has_tsc_control) { 1555 if (user_tsc_khz > tsc_khz) { 1556 vcpu->arch.tsc_catchup = 1; 1557 vcpu->arch.tsc_always_catchup = 1; 1558 return 0; 1559 } else { 1560 WARN(1, "user requested TSC rate below hardware speed\n"); 1561 return -1; 1562 } 1563 } 1564 1565 /* TSC scaling required - calculate ratio */ 1566 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1567 user_tsc_khz, tsc_khz); 1568 1569 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1570 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1571 user_tsc_khz); 1572 return -1; 1573 } 1574 1575 vcpu->arch.tsc_scaling_ratio = ratio; 1576 return 0; 1577 } 1578 1579 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1580 { 1581 u32 thresh_lo, thresh_hi; 1582 int use_scaling = 0; 1583 1584 /* tsc_khz can be zero if TSC calibration fails */ 1585 if (user_tsc_khz == 0) { 1586 /* set tsc_scaling_ratio to a safe value */ 1587 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1588 return -1; 1589 } 1590 1591 /* Compute a scale to convert nanoseconds in TSC cycles */ 1592 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1593 &vcpu->arch.virtual_tsc_shift, 1594 &vcpu->arch.virtual_tsc_mult); 1595 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1596 1597 /* 1598 * Compute the variation in TSC rate which is acceptable 1599 * within the range of tolerance and decide if the 1600 * rate being applied is within that bounds of the hardware 1601 * rate. If so, no scaling or compensation need be done. 1602 */ 1603 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1604 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1605 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1606 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1607 use_scaling = 1; 1608 } 1609 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1610 } 1611 1612 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1613 { 1614 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1615 vcpu->arch.virtual_tsc_mult, 1616 vcpu->arch.virtual_tsc_shift); 1617 tsc += vcpu->arch.this_tsc_write; 1618 return tsc; 1619 } 1620 1621 static inline int gtod_is_based_on_tsc(int mode) 1622 { 1623 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK; 1624 } 1625 1626 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1627 { 1628 #ifdef CONFIG_X86_64 1629 bool vcpus_matched; 1630 struct kvm_arch *ka = &vcpu->kvm->arch; 1631 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1632 1633 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1634 atomic_read(&vcpu->kvm->online_vcpus)); 1635 1636 /* 1637 * Once the masterclock is enabled, always perform request in 1638 * order to update it. 1639 * 1640 * In order to enable masterclock, the host clocksource must be TSC 1641 * and the vcpus need to have matched TSCs. When that happens, 1642 * perform request to enable masterclock. 1643 */ 1644 if (ka->use_master_clock || 1645 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 1646 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1647 1648 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1649 atomic_read(&vcpu->kvm->online_vcpus), 1650 ka->use_master_clock, gtod->clock.vclock_mode); 1651 #endif 1652 } 1653 1654 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1655 { 1656 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1657 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1658 } 1659 1660 /* 1661 * Multiply tsc by a fixed point number represented by ratio. 1662 * 1663 * The most significant 64-N bits (mult) of ratio represent the 1664 * integral part of the fixed point number; the remaining N bits 1665 * (frac) represent the fractional part, ie. ratio represents a fixed 1666 * point number (mult + frac * 2^(-N)). 1667 * 1668 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1669 */ 1670 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1671 { 1672 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1673 } 1674 1675 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1676 { 1677 u64 _tsc = tsc; 1678 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1679 1680 if (ratio != kvm_default_tsc_scaling_ratio) 1681 _tsc = __scale_tsc(ratio, tsc); 1682 1683 return _tsc; 1684 } 1685 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1686 1687 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1688 { 1689 u64 tsc; 1690 1691 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1692 1693 return target_tsc - tsc; 1694 } 1695 1696 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1697 { 1698 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1699 1700 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1701 } 1702 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1703 1704 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1705 { 1706 vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset); 1707 } 1708 1709 static inline bool kvm_check_tsc_unstable(void) 1710 { 1711 #ifdef CONFIG_X86_64 1712 /* 1713 * TSC is marked unstable when we're running on Hyper-V, 1714 * 'TSC page' clocksource is good. 1715 */ 1716 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK) 1717 return false; 1718 #endif 1719 return check_tsc_unstable(); 1720 } 1721 1722 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1723 { 1724 struct kvm *kvm = vcpu->kvm; 1725 u64 offset, ns, elapsed; 1726 unsigned long flags; 1727 bool matched; 1728 bool already_matched; 1729 u64 data = msr->data; 1730 bool synchronizing = false; 1731 1732 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1733 offset = kvm_compute_tsc_offset(vcpu, data); 1734 ns = ktime_get_boot_ns(); 1735 elapsed = ns - kvm->arch.last_tsc_nsec; 1736 1737 if (vcpu->arch.virtual_tsc_khz) { 1738 if (data == 0 && msr->host_initiated) { 1739 /* 1740 * detection of vcpu initialization -- need to sync 1741 * with other vCPUs. This particularly helps to keep 1742 * kvm_clock stable after CPU hotplug 1743 */ 1744 synchronizing = true; 1745 } else { 1746 u64 tsc_exp = kvm->arch.last_tsc_write + 1747 nsec_to_cycles(vcpu, elapsed); 1748 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 1749 /* 1750 * Special case: TSC write with a small delta (1 second) 1751 * of virtual cycle time against real time is 1752 * interpreted as an attempt to synchronize the CPU. 1753 */ 1754 synchronizing = data < tsc_exp + tsc_hz && 1755 data + tsc_hz > tsc_exp; 1756 } 1757 } 1758 1759 /* 1760 * For a reliable TSC, we can match TSC offsets, and for an unstable 1761 * TSC, we add elapsed time in this computation. We could let the 1762 * compensation code attempt to catch up if we fall behind, but 1763 * it's better to try to match offsets from the beginning. 1764 */ 1765 if (synchronizing && 1766 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1767 if (!kvm_check_tsc_unstable()) { 1768 offset = kvm->arch.cur_tsc_offset; 1769 pr_debug("kvm: matched tsc offset for %llu\n", data); 1770 } else { 1771 u64 delta = nsec_to_cycles(vcpu, elapsed); 1772 data += delta; 1773 offset = kvm_compute_tsc_offset(vcpu, data); 1774 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1775 } 1776 matched = true; 1777 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1778 } else { 1779 /* 1780 * We split periods of matched TSC writes into generations. 1781 * For each generation, we track the original measured 1782 * nanosecond time, offset, and write, so if TSCs are in 1783 * sync, we can match exact offset, and if not, we can match 1784 * exact software computation in compute_guest_tsc() 1785 * 1786 * These values are tracked in kvm->arch.cur_xxx variables. 1787 */ 1788 kvm->arch.cur_tsc_generation++; 1789 kvm->arch.cur_tsc_nsec = ns; 1790 kvm->arch.cur_tsc_write = data; 1791 kvm->arch.cur_tsc_offset = offset; 1792 matched = false; 1793 pr_debug("kvm: new tsc generation %llu, clock %llu\n", 1794 kvm->arch.cur_tsc_generation, data); 1795 } 1796 1797 /* 1798 * We also track th most recent recorded KHZ, write and time to 1799 * allow the matching interval to be extended at each write. 1800 */ 1801 kvm->arch.last_tsc_nsec = ns; 1802 kvm->arch.last_tsc_write = data; 1803 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1804 1805 vcpu->arch.last_guest_tsc = data; 1806 1807 /* Keep track of which generation this VCPU has synchronized to */ 1808 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1809 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1810 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1811 1812 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 1813 update_ia32_tsc_adjust_msr(vcpu, offset); 1814 1815 kvm_vcpu_write_tsc_offset(vcpu, offset); 1816 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1817 1818 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1819 if (!matched) { 1820 kvm->arch.nr_vcpus_matched_tsc = 0; 1821 } else if (!already_matched) { 1822 kvm->arch.nr_vcpus_matched_tsc++; 1823 } 1824 1825 kvm_track_tsc_matching(vcpu); 1826 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1827 } 1828 1829 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1830 1831 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 1832 s64 adjustment) 1833 { 1834 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1835 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 1836 } 1837 1838 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 1839 { 1840 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 1841 WARN_ON(adjustment < 0); 1842 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 1843 adjust_tsc_offset_guest(vcpu, adjustment); 1844 } 1845 1846 #ifdef CONFIG_X86_64 1847 1848 static u64 read_tsc(void) 1849 { 1850 u64 ret = (u64)rdtsc_ordered(); 1851 u64 last = pvclock_gtod_data.clock.cycle_last; 1852 1853 if (likely(ret >= last)) 1854 return ret; 1855 1856 /* 1857 * GCC likes to generate cmov here, but this branch is extremely 1858 * predictable (it's just a function of time and the likely is 1859 * very likely) and there's a data dependence, so force GCC 1860 * to generate a branch instead. I don't barrier() because 1861 * we don't actually need a barrier, and if this function 1862 * ever gets inlined it will generate worse code. 1863 */ 1864 asm volatile (""); 1865 return last; 1866 } 1867 1868 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode) 1869 { 1870 long v; 1871 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1872 u64 tsc_pg_val; 1873 1874 switch (gtod->clock.vclock_mode) { 1875 case VCLOCK_HVCLOCK: 1876 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 1877 tsc_timestamp); 1878 if (tsc_pg_val != U64_MAX) { 1879 /* TSC page valid */ 1880 *mode = VCLOCK_HVCLOCK; 1881 v = (tsc_pg_val - gtod->clock.cycle_last) & 1882 gtod->clock.mask; 1883 } else { 1884 /* TSC page invalid */ 1885 *mode = VCLOCK_NONE; 1886 } 1887 break; 1888 case VCLOCK_TSC: 1889 *mode = VCLOCK_TSC; 1890 *tsc_timestamp = read_tsc(); 1891 v = (*tsc_timestamp - gtod->clock.cycle_last) & 1892 gtod->clock.mask; 1893 break; 1894 default: 1895 *mode = VCLOCK_NONE; 1896 } 1897 1898 if (*mode == VCLOCK_NONE) 1899 *tsc_timestamp = v = 0; 1900 1901 return v * gtod->clock.mult; 1902 } 1903 1904 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp) 1905 { 1906 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1907 unsigned long seq; 1908 int mode; 1909 u64 ns; 1910 1911 do { 1912 seq = read_seqcount_begin(>od->seq); 1913 ns = gtod->nsec_base; 1914 ns += vgettsc(tsc_timestamp, &mode); 1915 ns >>= gtod->clock.shift; 1916 ns += gtod->boot_ns; 1917 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1918 *t = ns; 1919 1920 return mode; 1921 } 1922 1923 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 1924 { 1925 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1926 unsigned long seq; 1927 int mode; 1928 u64 ns; 1929 1930 do { 1931 seq = read_seqcount_begin(>od->seq); 1932 ts->tv_sec = gtod->wall_time_sec; 1933 ns = gtod->nsec_base; 1934 ns += vgettsc(tsc_timestamp, &mode); 1935 ns >>= gtod->clock.shift; 1936 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1937 1938 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 1939 ts->tv_nsec = ns; 1940 1941 return mode; 1942 } 1943 1944 /* returns true if host is using TSC based clocksource */ 1945 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 1946 { 1947 /* checked again under seqlock below */ 1948 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 1949 return false; 1950 1951 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns, 1952 tsc_timestamp)); 1953 } 1954 1955 /* returns true if host is using TSC based clocksource */ 1956 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 1957 u64 *tsc_timestamp) 1958 { 1959 /* checked again under seqlock below */ 1960 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 1961 return false; 1962 1963 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 1964 } 1965 #endif 1966 1967 /* 1968 * 1969 * Assuming a stable TSC across physical CPUS, and a stable TSC 1970 * across virtual CPUs, the following condition is possible. 1971 * Each numbered line represents an event visible to both 1972 * CPUs at the next numbered event. 1973 * 1974 * "timespecX" represents host monotonic time. "tscX" represents 1975 * RDTSC value. 1976 * 1977 * VCPU0 on CPU0 | VCPU1 on CPU1 1978 * 1979 * 1. read timespec0,tsc0 1980 * 2. | timespec1 = timespec0 + N 1981 * | tsc1 = tsc0 + M 1982 * 3. transition to guest | transition to guest 1983 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1984 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1985 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1986 * 1987 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1988 * 1989 * - ret0 < ret1 1990 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1991 * ... 1992 * - 0 < N - M => M < N 1993 * 1994 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1995 * always the case (the difference between two distinct xtime instances 1996 * might be smaller then the difference between corresponding TSC reads, 1997 * when updating guest vcpus pvclock areas). 1998 * 1999 * To avoid that problem, do not allow visibility of distinct 2000 * system_timestamp/tsc_timestamp values simultaneously: use a master 2001 * copy of host monotonic time values. Update that master copy 2002 * in lockstep. 2003 * 2004 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2005 * 2006 */ 2007 2008 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2009 { 2010 #ifdef CONFIG_X86_64 2011 struct kvm_arch *ka = &kvm->arch; 2012 int vclock_mode; 2013 bool host_tsc_clocksource, vcpus_matched; 2014 2015 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2016 atomic_read(&kvm->online_vcpus)); 2017 2018 /* 2019 * If the host uses TSC clock, then passthrough TSC as stable 2020 * to the guest. 2021 */ 2022 host_tsc_clocksource = kvm_get_time_and_clockread( 2023 &ka->master_kernel_ns, 2024 &ka->master_cycle_now); 2025 2026 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2027 && !ka->backwards_tsc_observed 2028 && !ka->boot_vcpu_runs_old_kvmclock; 2029 2030 if (ka->use_master_clock) 2031 atomic_set(&kvm_guest_has_master_clock, 1); 2032 2033 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2034 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2035 vcpus_matched); 2036 #endif 2037 } 2038 2039 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2040 { 2041 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2042 } 2043 2044 static void kvm_gen_update_masterclock(struct kvm *kvm) 2045 { 2046 #ifdef CONFIG_X86_64 2047 int i; 2048 struct kvm_vcpu *vcpu; 2049 struct kvm_arch *ka = &kvm->arch; 2050 2051 spin_lock(&ka->pvclock_gtod_sync_lock); 2052 kvm_make_mclock_inprogress_request(kvm); 2053 /* no guest entries from this point */ 2054 pvclock_update_vm_gtod_copy(kvm); 2055 2056 kvm_for_each_vcpu(i, vcpu, kvm) 2057 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2058 2059 /* guest entries allowed */ 2060 kvm_for_each_vcpu(i, vcpu, kvm) 2061 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2062 2063 spin_unlock(&ka->pvclock_gtod_sync_lock); 2064 #endif 2065 } 2066 2067 u64 get_kvmclock_ns(struct kvm *kvm) 2068 { 2069 struct kvm_arch *ka = &kvm->arch; 2070 struct pvclock_vcpu_time_info hv_clock; 2071 u64 ret; 2072 2073 spin_lock(&ka->pvclock_gtod_sync_lock); 2074 if (!ka->use_master_clock) { 2075 spin_unlock(&ka->pvclock_gtod_sync_lock); 2076 return ktime_get_boot_ns() + ka->kvmclock_offset; 2077 } 2078 2079 hv_clock.tsc_timestamp = ka->master_cycle_now; 2080 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2081 spin_unlock(&ka->pvclock_gtod_sync_lock); 2082 2083 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2084 get_cpu(); 2085 2086 if (__this_cpu_read(cpu_tsc_khz)) { 2087 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2088 &hv_clock.tsc_shift, 2089 &hv_clock.tsc_to_system_mul); 2090 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2091 } else 2092 ret = ktime_get_boot_ns() + ka->kvmclock_offset; 2093 2094 put_cpu(); 2095 2096 return ret; 2097 } 2098 2099 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2100 { 2101 struct kvm_vcpu_arch *vcpu = &v->arch; 2102 struct pvclock_vcpu_time_info guest_hv_clock; 2103 2104 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2105 &guest_hv_clock, sizeof(guest_hv_clock)))) 2106 return; 2107 2108 /* This VCPU is paused, but it's legal for a guest to read another 2109 * VCPU's kvmclock, so we really have to follow the specification where 2110 * it says that version is odd if data is being modified, and even after 2111 * it is consistent. 2112 * 2113 * Version field updates must be kept separate. This is because 2114 * kvm_write_guest_cached might use a "rep movs" instruction, and 2115 * writes within a string instruction are weakly ordered. So there 2116 * are three writes overall. 2117 * 2118 * As a small optimization, only write the version field in the first 2119 * and third write. The vcpu->pv_time cache is still valid, because the 2120 * version field is the first in the struct. 2121 */ 2122 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2123 2124 if (guest_hv_clock.version & 1) 2125 ++guest_hv_clock.version; /* first time write, random junk */ 2126 2127 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2128 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2129 &vcpu->hv_clock, 2130 sizeof(vcpu->hv_clock.version)); 2131 2132 smp_wmb(); 2133 2134 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2135 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2136 2137 if (vcpu->pvclock_set_guest_stopped_request) { 2138 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2139 vcpu->pvclock_set_guest_stopped_request = false; 2140 } 2141 2142 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2143 2144 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2145 &vcpu->hv_clock, 2146 sizeof(vcpu->hv_clock)); 2147 2148 smp_wmb(); 2149 2150 vcpu->hv_clock.version++; 2151 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2152 &vcpu->hv_clock, 2153 sizeof(vcpu->hv_clock.version)); 2154 } 2155 2156 static int kvm_guest_time_update(struct kvm_vcpu *v) 2157 { 2158 unsigned long flags, tgt_tsc_khz; 2159 struct kvm_vcpu_arch *vcpu = &v->arch; 2160 struct kvm_arch *ka = &v->kvm->arch; 2161 s64 kernel_ns; 2162 u64 tsc_timestamp, host_tsc; 2163 u8 pvclock_flags; 2164 bool use_master_clock; 2165 2166 kernel_ns = 0; 2167 host_tsc = 0; 2168 2169 /* 2170 * If the host uses TSC clock, then passthrough TSC as stable 2171 * to the guest. 2172 */ 2173 spin_lock(&ka->pvclock_gtod_sync_lock); 2174 use_master_clock = ka->use_master_clock; 2175 if (use_master_clock) { 2176 host_tsc = ka->master_cycle_now; 2177 kernel_ns = ka->master_kernel_ns; 2178 } 2179 spin_unlock(&ka->pvclock_gtod_sync_lock); 2180 2181 /* Keep irq disabled to prevent changes to the clock */ 2182 local_irq_save(flags); 2183 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2184 if (unlikely(tgt_tsc_khz == 0)) { 2185 local_irq_restore(flags); 2186 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2187 return 1; 2188 } 2189 if (!use_master_clock) { 2190 host_tsc = rdtsc(); 2191 kernel_ns = ktime_get_boot_ns(); 2192 } 2193 2194 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2195 2196 /* 2197 * We may have to catch up the TSC to match elapsed wall clock 2198 * time for two reasons, even if kvmclock is used. 2199 * 1) CPU could have been running below the maximum TSC rate 2200 * 2) Broken TSC compensation resets the base at each VCPU 2201 * entry to avoid unknown leaps of TSC even when running 2202 * again on the same CPU. This may cause apparent elapsed 2203 * time to disappear, and the guest to stand still or run 2204 * very slowly. 2205 */ 2206 if (vcpu->tsc_catchup) { 2207 u64 tsc = compute_guest_tsc(v, kernel_ns); 2208 if (tsc > tsc_timestamp) { 2209 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2210 tsc_timestamp = tsc; 2211 } 2212 } 2213 2214 local_irq_restore(flags); 2215 2216 /* With all the info we got, fill in the values */ 2217 2218 if (kvm_has_tsc_control) 2219 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2220 2221 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2222 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2223 &vcpu->hv_clock.tsc_shift, 2224 &vcpu->hv_clock.tsc_to_system_mul); 2225 vcpu->hw_tsc_khz = tgt_tsc_khz; 2226 } 2227 2228 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2229 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2230 vcpu->last_guest_tsc = tsc_timestamp; 2231 2232 /* If the host uses TSC clocksource, then it is stable */ 2233 pvclock_flags = 0; 2234 if (use_master_clock) 2235 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2236 2237 vcpu->hv_clock.flags = pvclock_flags; 2238 2239 if (vcpu->pv_time_enabled) 2240 kvm_setup_pvclock_page(v); 2241 if (v == kvm_get_vcpu(v->kvm, 0)) 2242 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2243 return 0; 2244 } 2245 2246 /* 2247 * kvmclock updates which are isolated to a given vcpu, such as 2248 * vcpu->cpu migration, should not allow system_timestamp from 2249 * the rest of the vcpus to remain static. Otherwise ntp frequency 2250 * correction applies to one vcpu's system_timestamp but not 2251 * the others. 2252 * 2253 * So in those cases, request a kvmclock update for all vcpus. 2254 * We need to rate-limit these requests though, as they can 2255 * considerably slow guests that have a large number of vcpus. 2256 * The time for a remote vcpu to update its kvmclock is bound 2257 * by the delay we use to rate-limit the updates. 2258 */ 2259 2260 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2261 2262 static void kvmclock_update_fn(struct work_struct *work) 2263 { 2264 int i; 2265 struct delayed_work *dwork = to_delayed_work(work); 2266 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2267 kvmclock_update_work); 2268 struct kvm *kvm = container_of(ka, struct kvm, arch); 2269 struct kvm_vcpu *vcpu; 2270 2271 kvm_for_each_vcpu(i, vcpu, kvm) { 2272 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2273 kvm_vcpu_kick(vcpu); 2274 } 2275 } 2276 2277 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2278 { 2279 struct kvm *kvm = v->kvm; 2280 2281 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2282 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2283 KVMCLOCK_UPDATE_DELAY); 2284 } 2285 2286 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2287 2288 static void kvmclock_sync_fn(struct work_struct *work) 2289 { 2290 struct delayed_work *dwork = to_delayed_work(work); 2291 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2292 kvmclock_sync_work); 2293 struct kvm *kvm = container_of(ka, struct kvm, arch); 2294 2295 if (!kvmclock_periodic_sync) 2296 return; 2297 2298 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2299 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2300 KVMCLOCK_SYNC_PERIOD); 2301 } 2302 2303 /* 2304 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2305 */ 2306 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2307 { 2308 /* McStatusWrEn enabled? */ 2309 if (guest_cpuid_is_amd(vcpu)) 2310 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2311 2312 return false; 2313 } 2314 2315 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2316 { 2317 u64 mcg_cap = vcpu->arch.mcg_cap; 2318 unsigned bank_num = mcg_cap & 0xff; 2319 u32 msr = msr_info->index; 2320 u64 data = msr_info->data; 2321 2322 switch (msr) { 2323 case MSR_IA32_MCG_STATUS: 2324 vcpu->arch.mcg_status = data; 2325 break; 2326 case MSR_IA32_MCG_CTL: 2327 if (!(mcg_cap & MCG_CTL_P) && 2328 (data || !msr_info->host_initiated)) 2329 return 1; 2330 if (data != 0 && data != ~(u64)0) 2331 return 1; 2332 vcpu->arch.mcg_ctl = data; 2333 break; 2334 default: 2335 if (msr >= MSR_IA32_MC0_CTL && 2336 msr < MSR_IA32_MCx_CTL(bank_num)) { 2337 u32 offset = msr - MSR_IA32_MC0_CTL; 2338 /* only 0 or all 1s can be written to IA32_MCi_CTL 2339 * some Linux kernels though clear bit 10 in bank 4 to 2340 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2341 * this to avoid an uncatched #GP in the guest 2342 */ 2343 if ((offset & 0x3) == 0 && 2344 data != 0 && (data | (1 << 10)) != ~(u64)0) 2345 return -1; 2346 2347 /* MCi_STATUS */ 2348 if (!msr_info->host_initiated && 2349 (offset & 0x3) == 1 && data != 0) { 2350 if (!can_set_mci_status(vcpu)) 2351 return -1; 2352 } 2353 2354 vcpu->arch.mce_banks[offset] = data; 2355 break; 2356 } 2357 return 1; 2358 } 2359 return 0; 2360 } 2361 2362 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2363 { 2364 struct kvm *kvm = vcpu->kvm; 2365 int lm = is_long_mode(vcpu); 2366 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2367 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2368 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2369 : kvm->arch.xen_hvm_config.blob_size_32; 2370 u32 page_num = data & ~PAGE_MASK; 2371 u64 page_addr = data & PAGE_MASK; 2372 u8 *page; 2373 int r; 2374 2375 r = -E2BIG; 2376 if (page_num >= blob_size) 2377 goto out; 2378 r = -ENOMEM; 2379 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2380 if (IS_ERR(page)) { 2381 r = PTR_ERR(page); 2382 goto out; 2383 } 2384 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2385 goto out_free; 2386 r = 0; 2387 out_free: 2388 kfree(page); 2389 out: 2390 return r; 2391 } 2392 2393 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2394 { 2395 gpa_t gpa = data & ~0x3f; 2396 2397 /* Bits 3:5 are reserved, Should be zero */ 2398 if (data & 0x38) 2399 return 1; 2400 2401 vcpu->arch.apf.msr_val = data; 2402 2403 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2404 kvm_clear_async_pf_completion_queue(vcpu); 2405 kvm_async_pf_hash_reset(vcpu); 2406 return 0; 2407 } 2408 2409 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2410 sizeof(u32))) 2411 return 1; 2412 2413 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2414 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2415 kvm_async_pf_wakeup_all(vcpu); 2416 return 0; 2417 } 2418 2419 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2420 { 2421 vcpu->arch.pv_time_enabled = false; 2422 } 2423 2424 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) 2425 { 2426 ++vcpu->stat.tlb_flush; 2427 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa); 2428 } 2429 2430 static void record_steal_time(struct kvm_vcpu *vcpu) 2431 { 2432 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2433 return; 2434 2435 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2436 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2437 return; 2438 2439 /* 2440 * Doing a TLB flush here, on the guest's behalf, can avoid 2441 * expensive IPIs. 2442 */ 2443 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB) 2444 kvm_vcpu_flush_tlb(vcpu, false); 2445 2446 if (vcpu->arch.st.steal.version & 1) 2447 vcpu->arch.st.steal.version += 1; /* first time write, random junk */ 2448 2449 vcpu->arch.st.steal.version += 1; 2450 2451 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2452 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2453 2454 smp_wmb(); 2455 2456 vcpu->arch.st.steal.steal += current->sched_info.run_delay - 2457 vcpu->arch.st.last_steal; 2458 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2459 2460 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2461 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2462 2463 smp_wmb(); 2464 2465 vcpu->arch.st.steal.version += 1; 2466 2467 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2468 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2469 } 2470 2471 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2472 { 2473 bool pr = false; 2474 u32 msr = msr_info->index; 2475 u64 data = msr_info->data; 2476 2477 switch (msr) { 2478 case MSR_AMD64_NB_CFG: 2479 case MSR_IA32_UCODE_WRITE: 2480 case MSR_VM_HSAVE_PA: 2481 case MSR_AMD64_PATCH_LOADER: 2482 case MSR_AMD64_BU_CFG2: 2483 case MSR_AMD64_DC_CFG: 2484 case MSR_F15H_EX_CFG: 2485 break; 2486 2487 case MSR_IA32_UCODE_REV: 2488 if (msr_info->host_initiated) 2489 vcpu->arch.microcode_version = data; 2490 break; 2491 case MSR_IA32_ARCH_CAPABILITIES: 2492 if (!msr_info->host_initiated) 2493 return 1; 2494 vcpu->arch.arch_capabilities = data; 2495 break; 2496 case MSR_EFER: 2497 return set_efer(vcpu, msr_info); 2498 case MSR_K7_HWCR: 2499 data &= ~(u64)0x40; /* ignore flush filter disable */ 2500 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2501 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2502 2503 /* Handle McStatusWrEn */ 2504 if (data == BIT_ULL(18)) { 2505 vcpu->arch.msr_hwcr = data; 2506 } else if (data != 0) { 2507 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2508 data); 2509 return 1; 2510 } 2511 break; 2512 case MSR_FAM10H_MMIO_CONF_BASE: 2513 if (data != 0) { 2514 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2515 "0x%llx\n", data); 2516 return 1; 2517 } 2518 break; 2519 case MSR_IA32_DEBUGCTLMSR: 2520 if (!data) { 2521 /* We support the non-activated case already */ 2522 break; 2523 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2524 /* Values other than LBR and BTF are vendor-specific, 2525 thus reserved and should throw a #GP */ 2526 return 1; 2527 } 2528 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2529 __func__, data); 2530 break; 2531 case 0x200 ... 0x2ff: 2532 return kvm_mtrr_set_msr(vcpu, msr, data); 2533 case MSR_IA32_APICBASE: 2534 return kvm_set_apic_base(vcpu, msr_info); 2535 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2536 return kvm_x2apic_msr_write(vcpu, msr, data); 2537 case MSR_IA32_TSCDEADLINE: 2538 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2539 break; 2540 case MSR_IA32_TSC_ADJUST: 2541 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2542 if (!msr_info->host_initiated) { 2543 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2544 adjust_tsc_offset_guest(vcpu, adj); 2545 } 2546 vcpu->arch.ia32_tsc_adjust_msr = data; 2547 } 2548 break; 2549 case MSR_IA32_MISC_ENABLE: 2550 vcpu->arch.ia32_misc_enable_msr = data; 2551 break; 2552 case MSR_IA32_SMBASE: 2553 if (!msr_info->host_initiated) 2554 return 1; 2555 vcpu->arch.smbase = data; 2556 break; 2557 case MSR_IA32_TSC: 2558 kvm_write_tsc(vcpu, msr_info); 2559 break; 2560 case MSR_SMI_COUNT: 2561 if (!msr_info->host_initiated) 2562 return 1; 2563 vcpu->arch.smi_count = data; 2564 break; 2565 case MSR_KVM_WALL_CLOCK_NEW: 2566 case MSR_KVM_WALL_CLOCK: 2567 vcpu->kvm->arch.wall_clock = data; 2568 kvm_write_wall_clock(vcpu->kvm, data); 2569 break; 2570 case MSR_KVM_SYSTEM_TIME_NEW: 2571 case MSR_KVM_SYSTEM_TIME: { 2572 struct kvm_arch *ka = &vcpu->kvm->arch; 2573 2574 kvmclock_reset(vcpu); 2575 2576 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2577 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2578 2579 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2580 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2581 2582 ka->boot_vcpu_runs_old_kvmclock = tmp; 2583 } 2584 2585 vcpu->arch.time = data; 2586 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2587 2588 /* we verify if the enable bit is set... */ 2589 if (!(data & 1)) 2590 break; 2591 2592 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2593 &vcpu->arch.pv_time, data & ~1ULL, 2594 sizeof(struct pvclock_vcpu_time_info))) 2595 vcpu->arch.pv_time_enabled = false; 2596 else 2597 vcpu->arch.pv_time_enabled = true; 2598 2599 break; 2600 } 2601 case MSR_KVM_ASYNC_PF_EN: 2602 if (kvm_pv_enable_async_pf(vcpu, data)) 2603 return 1; 2604 break; 2605 case MSR_KVM_STEAL_TIME: 2606 2607 if (unlikely(!sched_info_on())) 2608 return 1; 2609 2610 if (data & KVM_STEAL_RESERVED_MASK) 2611 return 1; 2612 2613 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2614 data & KVM_STEAL_VALID_BITS, 2615 sizeof(struct kvm_steal_time))) 2616 return 1; 2617 2618 vcpu->arch.st.msr_val = data; 2619 2620 if (!(data & KVM_MSR_ENABLED)) 2621 break; 2622 2623 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2624 2625 break; 2626 case MSR_KVM_PV_EOI_EN: 2627 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 2628 return 1; 2629 break; 2630 2631 case MSR_IA32_MCG_CTL: 2632 case MSR_IA32_MCG_STATUS: 2633 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2634 return set_msr_mce(vcpu, msr_info); 2635 2636 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2637 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2638 pr = true; /* fall through */ 2639 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2640 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2641 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2642 return kvm_pmu_set_msr(vcpu, msr_info); 2643 2644 if (pr || data != 0) 2645 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2646 "0x%x data 0x%llx\n", msr, data); 2647 break; 2648 case MSR_K7_CLK_CTL: 2649 /* 2650 * Ignore all writes to this no longer documented MSR. 2651 * Writes are only relevant for old K7 processors, 2652 * all pre-dating SVM, but a recommended workaround from 2653 * AMD for these chips. It is possible to specify the 2654 * affected processor models on the command line, hence 2655 * the need to ignore the workaround. 2656 */ 2657 break; 2658 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2659 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2660 case HV_X64_MSR_CRASH_CTL: 2661 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2662 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2663 case HV_X64_MSR_TSC_EMULATION_CONTROL: 2664 case HV_X64_MSR_TSC_EMULATION_STATUS: 2665 return kvm_hv_set_msr_common(vcpu, msr, data, 2666 msr_info->host_initiated); 2667 case MSR_IA32_BBL_CR_CTL3: 2668 /* Drop writes to this legacy MSR -- see rdmsr 2669 * counterpart for further detail. 2670 */ 2671 if (report_ignored_msrs) 2672 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2673 msr, data); 2674 break; 2675 case MSR_AMD64_OSVW_ID_LENGTH: 2676 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2677 return 1; 2678 vcpu->arch.osvw.length = data; 2679 break; 2680 case MSR_AMD64_OSVW_STATUS: 2681 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2682 return 1; 2683 vcpu->arch.osvw.status = data; 2684 break; 2685 case MSR_PLATFORM_INFO: 2686 if (!msr_info->host_initiated || 2687 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 2688 cpuid_fault_enabled(vcpu))) 2689 return 1; 2690 vcpu->arch.msr_platform_info = data; 2691 break; 2692 case MSR_MISC_FEATURES_ENABLES: 2693 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 2694 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 2695 !supports_cpuid_fault(vcpu))) 2696 return 1; 2697 vcpu->arch.msr_misc_features_enables = data; 2698 break; 2699 default: 2700 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2701 return xen_hvm_config(vcpu, data); 2702 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2703 return kvm_pmu_set_msr(vcpu, msr_info); 2704 if (!ignore_msrs) { 2705 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2706 msr, data); 2707 return 1; 2708 } else { 2709 if (report_ignored_msrs) 2710 vcpu_unimpl(vcpu, 2711 "ignored wrmsr: 0x%x data 0x%llx\n", 2712 msr, data); 2713 break; 2714 } 2715 } 2716 return 0; 2717 } 2718 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2719 2720 2721 /* 2722 * Reads an msr value (of 'msr_index') into 'pdata'. 2723 * Returns 0 on success, non-0 otherwise. 2724 * Assumes vcpu_load() was already called. 2725 */ 2726 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2727 { 2728 return kvm_x86_ops->get_msr(vcpu, msr); 2729 } 2730 EXPORT_SYMBOL_GPL(kvm_get_msr); 2731 2732 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 2733 { 2734 u64 data; 2735 u64 mcg_cap = vcpu->arch.mcg_cap; 2736 unsigned bank_num = mcg_cap & 0xff; 2737 2738 switch (msr) { 2739 case MSR_IA32_P5_MC_ADDR: 2740 case MSR_IA32_P5_MC_TYPE: 2741 data = 0; 2742 break; 2743 case MSR_IA32_MCG_CAP: 2744 data = vcpu->arch.mcg_cap; 2745 break; 2746 case MSR_IA32_MCG_CTL: 2747 if (!(mcg_cap & MCG_CTL_P) && !host) 2748 return 1; 2749 data = vcpu->arch.mcg_ctl; 2750 break; 2751 case MSR_IA32_MCG_STATUS: 2752 data = vcpu->arch.mcg_status; 2753 break; 2754 default: 2755 if (msr >= MSR_IA32_MC0_CTL && 2756 msr < MSR_IA32_MCx_CTL(bank_num)) { 2757 u32 offset = msr - MSR_IA32_MC0_CTL; 2758 data = vcpu->arch.mce_banks[offset]; 2759 break; 2760 } 2761 return 1; 2762 } 2763 *pdata = data; 2764 return 0; 2765 } 2766 2767 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2768 { 2769 switch (msr_info->index) { 2770 case MSR_IA32_PLATFORM_ID: 2771 case MSR_IA32_EBL_CR_POWERON: 2772 case MSR_IA32_DEBUGCTLMSR: 2773 case MSR_IA32_LASTBRANCHFROMIP: 2774 case MSR_IA32_LASTBRANCHTOIP: 2775 case MSR_IA32_LASTINTFROMIP: 2776 case MSR_IA32_LASTINTTOIP: 2777 case MSR_K8_SYSCFG: 2778 case MSR_K8_TSEG_ADDR: 2779 case MSR_K8_TSEG_MASK: 2780 case MSR_VM_HSAVE_PA: 2781 case MSR_K8_INT_PENDING_MSG: 2782 case MSR_AMD64_NB_CFG: 2783 case MSR_FAM10H_MMIO_CONF_BASE: 2784 case MSR_AMD64_BU_CFG2: 2785 case MSR_IA32_PERF_CTL: 2786 case MSR_AMD64_DC_CFG: 2787 case MSR_F15H_EX_CFG: 2788 msr_info->data = 0; 2789 break; 2790 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 2791 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2792 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2793 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2794 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2795 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2796 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2797 msr_info->data = 0; 2798 break; 2799 case MSR_IA32_UCODE_REV: 2800 msr_info->data = vcpu->arch.microcode_version; 2801 break; 2802 case MSR_IA32_ARCH_CAPABILITIES: 2803 if (!msr_info->host_initiated && 2804 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 2805 return 1; 2806 msr_info->data = vcpu->arch.arch_capabilities; 2807 break; 2808 case MSR_IA32_TSC: 2809 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; 2810 break; 2811 case MSR_MTRRcap: 2812 case 0x200 ... 0x2ff: 2813 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 2814 case 0xcd: /* fsb frequency */ 2815 msr_info->data = 3; 2816 break; 2817 /* 2818 * MSR_EBC_FREQUENCY_ID 2819 * Conservative value valid for even the basic CPU models. 2820 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2821 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2822 * and 266MHz for model 3, or 4. Set Core Clock 2823 * Frequency to System Bus Frequency Ratio to 1 (bits 2824 * 31:24) even though these are only valid for CPU 2825 * models > 2, however guests may end up dividing or 2826 * multiplying by zero otherwise. 2827 */ 2828 case MSR_EBC_FREQUENCY_ID: 2829 msr_info->data = 1 << 24; 2830 break; 2831 case MSR_IA32_APICBASE: 2832 msr_info->data = kvm_get_apic_base(vcpu); 2833 break; 2834 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2835 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 2836 break; 2837 case MSR_IA32_TSCDEADLINE: 2838 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 2839 break; 2840 case MSR_IA32_TSC_ADJUST: 2841 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2842 break; 2843 case MSR_IA32_MISC_ENABLE: 2844 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 2845 break; 2846 case MSR_IA32_SMBASE: 2847 if (!msr_info->host_initiated) 2848 return 1; 2849 msr_info->data = vcpu->arch.smbase; 2850 break; 2851 case MSR_SMI_COUNT: 2852 msr_info->data = vcpu->arch.smi_count; 2853 break; 2854 case MSR_IA32_PERF_STATUS: 2855 /* TSC increment by tick */ 2856 msr_info->data = 1000ULL; 2857 /* CPU multiplier */ 2858 msr_info->data |= (((uint64_t)4ULL) << 40); 2859 break; 2860 case MSR_EFER: 2861 msr_info->data = vcpu->arch.efer; 2862 break; 2863 case MSR_KVM_WALL_CLOCK: 2864 case MSR_KVM_WALL_CLOCK_NEW: 2865 msr_info->data = vcpu->kvm->arch.wall_clock; 2866 break; 2867 case MSR_KVM_SYSTEM_TIME: 2868 case MSR_KVM_SYSTEM_TIME_NEW: 2869 msr_info->data = vcpu->arch.time; 2870 break; 2871 case MSR_KVM_ASYNC_PF_EN: 2872 msr_info->data = vcpu->arch.apf.msr_val; 2873 break; 2874 case MSR_KVM_STEAL_TIME: 2875 msr_info->data = vcpu->arch.st.msr_val; 2876 break; 2877 case MSR_KVM_PV_EOI_EN: 2878 msr_info->data = vcpu->arch.pv_eoi.msr_val; 2879 break; 2880 case MSR_IA32_P5_MC_ADDR: 2881 case MSR_IA32_P5_MC_TYPE: 2882 case MSR_IA32_MCG_CAP: 2883 case MSR_IA32_MCG_CTL: 2884 case MSR_IA32_MCG_STATUS: 2885 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2886 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 2887 msr_info->host_initiated); 2888 case MSR_K7_CLK_CTL: 2889 /* 2890 * Provide expected ramp-up count for K7. All other 2891 * are set to zero, indicating minimum divisors for 2892 * every field. 2893 * 2894 * This prevents guest kernels on AMD host with CPU 2895 * type 6, model 8 and higher from exploding due to 2896 * the rdmsr failing. 2897 */ 2898 msr_info->data = 0x20000000; 2899 break; 2900 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2901 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2902 case HV_X64_MSR_CRASH_CTL: 2903 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2904 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2905 case HV_X64_MSR_TSC_EMULATION_CONTROL: 2906 case HV_X64_MSR_TSC_EMULATION_STATUS: 2907 return kvm_hv_get_msr_common(vcpu, 2908 msr_info->index, &msr_info->data, 2909 msr_info->host_initiated); 2910 break; 2911 case MSR_IA32_BBL_CR_CTL3: 2912 /* This legacy MSR exists but isn't fully documented in current 2913 * silicon. It is however accessed by winxp in very narrow 2914 * scenarios where it sets bit #19, itself documented as 2915 * a "reserved" bit. Best effort attempt to source coherent 2916 * read data here should the balance of the register be 2917 * interpreted by the guest: 2918 * 2919 * L2 cache control register 3: 64GB range, 256KB size, 2920 * enabled, latency 0x1, configured 2921 */ 2922 msr_info->data = 0xbe702111; 2923 break; 2924 case MSR_AMD64_OSVW_ID_LENGTH: 2925 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2926 return 1; 2927 msr_info->data = vcpu->arch.osvw.length; 2928 break; 2929 case MSR_AMD64_OSVW_STATUS: 2930 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2931 return 1; 2932 msr_info->data = vcpu->arch.osvw.status; 2933 break; 2934 case MSR_PLATFORM_INFO: 2935 if (!msr_info->host_initiated && 2936 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 2937 return 1; 2938 msr_info->data = vcpu->arch.msr_platform_info; 2939 break; 2940 case MSR_MISC_FEATURES_ENABLES: 2941 msr_info->data = vcpu->arch.msr_misc_features_enables; 2942 break; 2943 case MSR_K7_HWCR: 2944 msr_info->data = vcpu->arch.msr_hwcr; 2945 break; 2946 default: 2947 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2948 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2949 if (!ignore_msrs) { 2950 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 2951 msr_info->index); 2952 return 1; 2953 } else { 2954 if (report_ignored_msrs) 2955 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", 2956 msr_info->index); 2957 msr_info->data = 0; 2958 } 2959 break; 2960 } 2961 return 0; 2962 } 2963 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2964 2965 /* 2966 * Read or write a bunch of msrs. All parameters are kernel addresses. 2967 * 2968 * @return number of msrs set successfully. 2969 */ 2970 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2971 struct kvm_msr_entry *entries, 2972 int (*do_msr)(struct kvm_vcpu *vcpu, 2973 unsigned index, u64 *data)) 2974 { 2975 int i; 2976 2977 for (i = 0; i < msrs->nmsrs; ++i) 2978 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2979 break; 2980 2981 return i; 2982 } 2983 2984 /* 2985 * Read or write a bunch of msrs. Parameters are user addresses. 2986 * 2987 * @return number of msrs set successfully. 2988 */ 2989 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2990 int (*do_msr)(struct kvm_vcpu *vcpu, 2991 unsigned index, u64 *data), 2992 int writeback) 2993 { 2994 struct kvm_msrs msrs; 2995 struct kvm_msr_entry *entries; 2996 int r, n; 2997 unsigned size; 2998 2999 r = -EFAULT; 3000 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3001 goto out; 3002 3003 r = -E2BIG; 3004 if (msrs.nmsrs >= MAX_IO_MSRS) 3005 goto out; 3006 3007 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3008 entries = memdup_user(user_msrs->entries, size); 3009 if (IS_ERR(entries)) { 3010 r = PTR_ERR(entries); 3011 goto out; 3012 } 3013 3014 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3015 if (r < 0) 3016 goto out_free; 3017 3018 r = -EFAULT; 3019 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3020 goto out_free; 3021 3022 r = n; 3023 3024 out_free: 3025 kfree(entries); 3026 out: 3027 return r; 3028 } 3029 3030 static inline bool kvm_can_mwait_in_guest(void) 3031 { 3032 return boot_cpu_has(X86_FEATURE_MWAIT) && 3033 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3034 boot_cpu_has(X86_FEATURE_ARAT); 3035 } 3036 3037 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3038 { 3039 int r = 0; 3040 3041 switch (ext) { 3042 case KVM_CAP_IRQCHIP: 3043 case KVM_CAP_HLT: 3044 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3045 case KVM_CAP_SET_TSS_ADDR: 3046 case KVM_CAP_EXT_CPUID: 3047 case KVM_CAP_EXT_EMUL_CPUID: 3048 case KVM_CAP_CLOCKSOURCE: 3049 case KVM_CAP_PIT: 3050 case KVM_CAP_NOP_IO_DELAY: 3051 case KVM_CAP_MP_STATE: 3052 case KVM_CAP_SYNC_MMU: 3053 case KVM_CAP_USER_NMI: 3054 case KVM_CAP_REINJECT_CONTROL: 3055 case KVM_CAP_IRQ_INJECT_STATUS: 3056 case KVM_CAP_IOEVENTFD: 3057 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3058 case KVM_CAP_PIT2: 3059 case KVM_CAP_PIT_STATE2: 3060 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3061 case KVM_CAP_XEN_HVM: 3062 case KVM_CAP_VCPU_EVENTS: 3063 case KVM_CAP_HYPERV: 3064 case KVM_CAP_HYPERV_VAPIC: 3065 case KVM_CAP_HYPERV_SPIN: 3066 case KVM_CAP_HYPERV_SYNIC: 3067 case KVM_CAP_HYPERV_SYNIC2: 3068 case KVM_CAP_HYPERV_VP_INDEX: 3069 case KVM_CAP_HYPERV_EVENTFD: 3070 case KVM_CAP_HYPERV_TLBFLUSH: 3071 case KVM_CAP_HYPERV_SEND_IPI: 3072 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3073 case KVM_CAP_HYPERV_CPUID: 3074 case KVM_CAP_PCI_SEGMENT: 3075 case KVM_CAP_DEBUGREGS: 3076 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3077 case KVM_CAP_XSAVE: 3078 case KVM_CAP_ASYNC_PF: 3079 case KVM_CAP_GET_TSC_KHZ: 3080 case KVM_CAP_KVMCLOCK_CTRL: 3081 case KVM_CAP_READONLY_MEM: 3082 case KVM_CAP_HYPERV_TIME: 3083 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3084 case KVM_CAP_TSC_DEADLINE_TIMER: 3085 case KVM_CAP_DISABLE_QUIRKS: 3086 case KVM_CAP_SET_BOOT_CPU_ID: 3087 case KVM_CAP_SPLIT_IRQCHIP: 3088 case KVM_CAP_IMMEDIATE_EXIT: 3089 case KVM_CAP_GET_MSR_FEATURES: 3090 case KVM_CAP_MSR_PLATFORM_INFO: 3091 case KVM_CAP_EXCEPTION_PAYLOAD: 3092 r = 1; 3093 break; 3094 case KVM_CAP_SYNC_REGS: 3095 r = KVM_SYNC_X86_VALID_FIELDS; 3096 break; 3097 case KVM_CAP_ADJUST_CLOCK: 3098 r = KVM_CLOCK_TSC_STABLE; 3099 break; 3100 case KVM_CAP_X86_DISABLE_EXITS: 3101 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE; 3102 if(kvm_can_mwait_in_guest()) 3103 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3104 break; 3105 case KVM_CAP_X86_SMM: 3106 /* SMBASE is usually relocated above 1M on modern chipsets, 3107 * and SMM handlers might indeed rely on 4G segment limits, 3108 * so do not report SMM to be available if real mode is 3109 * emulated via vm86 mode. Still, do not go to great lengths 3110 * to avoid userspace's usage of the feature, because it is a 3111 * fringe case that is not enabled except via specific settings 3112 * of the module parameters. 3113 */ 3114 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE); 3115 break; 3116 case KVM_CAP_VAPIC: 3117 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 3118 break; 3119 case KVM_CAP_NR_VCPUS: 3120 r = KVM_SOFT_MAX_VCPUS; 3121 break; 3122 case KVM_CAP_MAX_VCPUS: 3123 r = KVM_MAX_VCPUS; 3124 break; 3125 case KVM_CAP_MAX_VCPU_ID: 3126 r = KVM_MAX_VCPU_ID; 3127 break; 3128 case KVM_CAP_PV_MMU: /* obsolete */ 3129 r = 0; 3130 break; 3131 case KVM_CAP_MCE: 3132 r = KVM_MAX_MCE_BANKS; 3133 break; 3134 case KVM_CAP_XCRS: 3135 r = boot_cpu_has(X86_FEATURE_XSAVE); 3136 break; 3137 case KVM_CAP_TSC_CONTROL: 3138 r = kvm_has_tsc_control; 3139 break; 3140 case KVM_CAP_X2APIC_API: 3141 r = KVM_X2APIC_API_VALID_FLAGS; 3142 break; 3143 case KVM_CAP_NESTED_STATE: 3144 r = kvm_x86_ops->get_nested_state ? 3145 kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0; 3146 break; 3147 default: 3148 break; 3149 } 3150 return r; 3151 3152 } 3153 3154 long kvm_arch_dev_ioctl(struct file *filp, 3155 unsigned int ioctl, unsigned long arg) 3156 { 3157 void __user *argp = (void __user *)arg; 3158 long r; 3159 3160 switch (ioctl) { 3161 case KVM_GET_MSR_INDEX_LIST: { 3162 struct kvm_msr_list __user *user_msr_list = argp; 3163 struct kvm_msr_list msr_list; 3164 unsigned n; 3165 3166 r = -EFAULT; 3167 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3168 goto out; 3169 n = msr_list.nmsrs; 3170 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3171 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3172 goto out; 3173 r = -E2BIG; 3174 if (n < msr_list.nmsrs) 3175 goto out; 3176 r = -EFAULT; 3177 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3178 num_msrs_to_save * sizeof(u32))) 3179 goto out; 3180 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3181 &emulated_msrs, 3182 num_emulated_msrs * sizeof(u32))) 3183 goto out; 3184 r = 0; 3185 break; 3186 } 3187 case KVM_GET_SUPPORTED_CPUID: 3188 case KVM_GET_EMULATED_CPUID: { 3189 struct kvm_cpuid2 __user *cpuid_arg = argp; 3190 struct kvm_cpuid2 cpuid; 3191 3192 r = -EFAULT; 3193 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3194 goto out; 3195 3196 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3197 ioctl); 3198 if (r) 3199 goto out; 3200 3201 r = -EFAULT; 3202 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3203 goto out; 3204 r = 0; 3205 break; 3206 } 3207 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 3208 r = -EFAULT; 3209 if (copy_to_user(argp, &kvm_mce_cap_supported, 3210 sizeof(kvm_mce_cap_supported))) 3211 goto out; 3212 r = 0; 3213 break; 3214 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3215 struct kvm_msr_list __user *user_msr_list = argp; 3216 struct kvm_msr_list msr_list; 3217 unsigned int n; 3218 3219 r = -EFAULT; 3220 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3221 goto out; 3222 n = msr_list.nmsrs; 3223 msr_list.nmsrs = num_msr_based_features; 3224 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3225 goto out; 3226 r = -E2BIG; 3227 if (n < msr_list.nmsrs) 3228 goto out; 3229 r = -EFAULT; 3230 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3231 num_msr_based_features * sizeof(u32))) 3232 goto out; 3233 r = 0; 3234 break; 3235 } 3236 case KVM_GET_MSRS: 3237 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3238 break; 3239 } 3240 default: 3241 r = -EINVAL; 3242 } 3243 out: 3244 return r; 3245 } 3246 3247 static void wbinvd_ipi(void *garbage) 3248 { 3249 wbinvd(); 3250 } 3251 3252 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3253 { 3254 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3255 } 3256 3257 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3258 { 3259 /* Address WBINVD may be executed by guest */ 3260 if (need_emulate_wbinvd(vcpu)) { 3261 if (kvm_x86_ops->has_wbinvd_exit()) 3262 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3263 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3264 smp_call_function_single(vcpu->cpu, 3265 wbinvd_ipi, NULL, 1); 3266 } 3267 3268 kvm_x86_ops->vcpu_load(vcpu, cpu); 3269 3270 /* Apply any externally detected TSC adjustments (due to suspend) */ 3271 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3272 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3273 vcpu->arch.tsc_offset_adjustment = 0; 3274 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3275 } 3276 3277 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3278 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3279 rdtsc() - vcpu->arch.last_host_tsc; 3280 if (tsc_delta < 0) 3281 mark_tsc_unstable("KVM discovered backwards TSC"); 3282 3283 if (kvm_check_tsc_unstable()) { 3284 u64 offset = kvm_compute_tsc_offset(vcpu, 3285 vcpu->arch.last_guest_tsc); 3286 kvm_vcpu_write_tsc_offset(vcpu, offset); 3287 vcpu->arch.tsc_catchup = 1; 3288 } 3289 3290 if (kvm_lapic_hv_timer_in_use(vcpu)) 3291 kvm_lapic_restart_hv_timer(vcpu); 3292 3293 /* 3294 * On a host with synchronized TSC, there is no need to update 3295 * kvmclock on vcpu->cpu migration 3296 */ 3297 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3298 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3299 if (vcpu->cpu != cpu) 3300 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3301 vcpu->cpu = cpu; 3302 } 3303 3304 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3305 } 3306 3307 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3308 { 3309 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3310 return; 3311 3312 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED; 3313 3314 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, 3315 &vcpu->arch.st.steal.preempted, 3316 offsetof(struct kvm_steal_time, preempted), 3317 sizeof(vcpu->arch.st.steal.preempted)); 3318 } 3319 3320 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3321 { 3322 int idx; 3323 3324 if (vcpu->preempted) 3325 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu); 3326 3327 /* 3328 * Disable page faults because we're in atomic context here. 3329 * kvm_write_guest_offset_cached() would call might_fault() 3330 * that relies on pagefault_disable() to tell if there's a 3331 * bug. NOTE: the write to guest memory may not go through if 3332 * during postcopy live migration or if there's heavy guest 3333 * paging. 3334 */ 3335 pagefault_disable(); 3336 /* 3337 * kvm_memslots() will be called by 3338 * kvm_write_guest_offset_cached() so take the srcu lock. 3339 */ 3340 idx = srcu_read_lock(&vcpu->kvm->srcu); 3341 kvm_steal_time_set_preempted(vcpu); 3342 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3343 pagefault_enable(); 3344 kvm_x86_ops->vcpu_put(vcpu); 3345 vcpu->arch.last_host_tsc = rdtsc(); 3346 /* 3347 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3348 * on every vmexit, but if not, we might have a stale dr6 from the 3349 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3350 */ 3351 set_debugreg(0, 6); 3352 } 3353 3354 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3355 struct kvm_lapic_state *s) 3356 { 3357 if (vcpu->arch.apicv_active) 3358 kvm_x86_ops->sync_pir_to_irr(vcpu); 3359 3360 return kvm_apic_get_state(vcpu, s); 3361 } 3362 3363 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 3364 struct kvm_lapic_state *s) 3365 { 3366 int r; 3367 3368 r = kvm_apic_set_state(vcpu, s); 3369 if (r) 3370 return r; 3371 update_cr8_intercept(vcpu); 3372 3373 return 0; 3374 } 3375 3376 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 3377 { 3378 return (!lapic_in_kernel(vcpu) || 3379 kvm_apic_accept_pic_intr(vcpu)); 3380 } 3381 3382 /* 3383 * if userspace requested an interrupt window, check that the 3384 * interrupt window is open. 3385 * 3386 * No need to exit to userspace if we already have an interrupt queued. 3387 */ 3388 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 3389 { 3390 return kvm_arch_interrupt_allowed(vcpu) && 3391 !kvm_cpu_has_interrupt(vcpu) && 3392 !kvm_event_needs_reinjection(vcpu) && 3393 kvm_cpu_accept_dm_intr(vcpu); 3394 } 3395 3396 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 3397 struct kvm_interrupt *irq) 3398 { 3399 if (irq->irq >= KVM_NR_INTERRUPTS) 3400 return -EINVAL; 3401 3402 if (!irqchip_in_kernel(vcpu->kvm)) { 3403 kvm_queue_interrupt(vcpu, irq->irq, false); 3404 kvm_make_request(KVM_REQ_EVENT, vcpu); 3405 return 0; 3406 } 3407 3408 /* 3409 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3410 * fail for in-kernel 8259. 3411 */ 3412 if (pic_in_kernel(vcpu->kvm)) 3413 return -ENXIO; 3414 3415 if (vcpu->arch.pending_external_vector != -1) 3416 return -EEXIST; 3417 3418 vcpu->arch.pending_external_vector = irq->irq; 3419 kvm_make_request(KVM_REQ_EVENT, vcpu); 3420 return 0; 3421 } 3422 3423 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3424 { 3425 kvm_inject_nmi(vcpu); 3426 3427 return 0; 3428 } 3429 3430 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3431 { 3432 kvm_make_request(KVM_REQ_SMI, vcpu); 3433 3434 return 0; 3435 } 3436 3437 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3438 struct kvm_tpr_access_ctl *tac) 3439 { 3440 if (tac->flags) 3441 return -EINVAL; 3442 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3443 return 0; 3444 } 3445 3446 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3447 u64 mcg_cap) 3448 { 3449 int r; 3450 unsigned bank_num = mcg_cap & 0xff, bank; 3451 3452 r = -EINVAL; 3453 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3454 goto out; 3455 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3456 goto out; 3457 r = 0; 3458 vcpu->arch.mcg_cap = mcg_cap; 3459 /* Init IA32_MCG_CTL to all 1s */ 3460 if (mcg_cap & MCG_CTL_P) 3461 vcpu->arch.mcg_ctl = ~(u64)0; 3462 /* Init IA32_MCi_CTL to all 1s */ 3463 for (bank = 0; bank < bank_num; bank++) 3464 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3465 3466 if (kvm_x86_ops->setup_mce) 3467 kvm_x86_ops->setup_mce(vcpu); 3468 out: 3469 return r; 3470 } 3471 3472 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3473 struct kvm_x86_mce *mce) 3474 { 3475 u64 mcg_cap = vcpu->arch.mcg_cap; 3476 unsigned bank_num = mcg_cap & 0xff; 3477 u64 *banks = vcpu->arch.mce_banks; 3478 3479 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3480 return -EINVAL; 3481 /* 3482 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3483 * reporting is disabled 3484 */ 3485 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3486 vcpu->arch.mcg_ctl != ~(u64)0) 3487 return 0; 3488 banks += 4 * mce->bank; 3489 /* 3490 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3491 * reporting is disabled for the bank 3492 */ 3493 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3494 return 0; 3495 if (mce->status & MCI_STATUS_UC) { 3496 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3497 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3498 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3499 return 0; 3500 } 3501 if (banks[1] & MCI_STATUS_VAL) 3502 mce->status |= MCI_STATUS_OVER; 3503 banks[2] = mce->addr; 3504 banks[3] = mce->misc; 3505 vcpu->arch.mcg_status = mce->mcg_status; 3506 banks[1] = mce->status; 3507 kvm_queue_exception(vcpu, MC_VECTOR); 3508 } else if (!(banks[1] & MCI_STATUS_VAL) 3509 || !(banks[1] & MCI_STATUS_UC)) { 3510 if (banks[1] & MCI_STATUS_VAL) 3511 mce->status |= MCI_STATUS_OVER; 3512 banks[2] = mce->addr; 3513 banks[3] = mce->misc; 3514 banks[1] = mce->status; 3515 } else 3516 banks[1] |= MCI_STATUS_OVER; 3517 return 0; 3518 } 3519 3520 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3521 struct kvm_vcpu_events *events) 3522 { 3523 process_nmi(vcpu); 3524 3525 /* 3526 * The API doesn't provide the instruction length for software 3527 * exceptions, so don't report them. As long as the guest RIP 3528 * isn't advanced, we should expect to encounter the exception 3529 * again. 3530 */ 3531 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 3532 events->exception.injected = 0; 3533 events->exception.pending = 0; 3534 } else { 3535 events->exception.injected = vcpu->arch.exception.injected; 3536 events->exception.pending = vcpu->arch.exception.pending; 3537 /* 3538 * For ABI compatibility, deliberately conflate 3539 * pending and injected exceptions when 3540 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 3541 */ 3542 if (!vcpu->kvm->arch.exception_payload_enabled) 3543 events->exception.injected |= 3544 vcpu->arch.exception.pending; 3545 } 3546 events->exception.nr = vcpu->arch.exception.nr; 3547 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3548 events->exception.error_code = vcpu->arch.exception.error_code; 3549 events->exception_has_payload = vcpu->arch.exception.has_payload; 3550 events->exception_payload = vcpu->arch.exception.payload; 3551 3552 events->interrupt.injected = 3553 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 3554 events->interrupt.nr = vcpu->arch.interrupt.nr; 3555 events->interrupt.soft = 0; 3556 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3557 3558 events->nmi.injected = vcpu->arch.nmi_injected; 3559 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3560 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3561 events->nmi.pad = 0; 3562 3563 events->sipi_vector = 0; /* never valid when reporting to user space */ 3564 3565 events->smi.smm = is_smm(vcpu); 3566 events->smi.pending = vcpu->arch.smi_pending; 3567 events->smi.smm_inside_nmi = 3568 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3569 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3570 3571 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3572 | KVM_VCPUEVENT_VALID_SHADOW 3573 | KVM_VCPUEVENT_VALID_SMM); 3574 if (vcpu->kvm->arch.exception_payload_enabled) 3575 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3576 3577 memset(&events->reserved, 0, sizeof(events->reserved)); 3578 } 3579 3580 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 3581 3582 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3583 struct kvm_vcpu_events *events) 3584 { 3585 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3586 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3587 | KVM_VCPUEVENT_VALID_SHADOW 3588 | KVM_VCPUEVENT_VALID_SMM 3589 | KVM_VCPUEVENT_VALID_PAYLOAD)) 3590 return -EINVAL; 3591 3592 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 3593 if (!vcpu->kvm->arch.exception_payload_enabled) 3594 return -EINVAL; 3595 if (events->exception.pending) 3596 events->exception.injected = 0; 3597 else 3598 events->exception_has_payload = 0; 3599 } else { 3600 events->exception.pending = 0; 3601 events->exception_has_payload = 0; 3602 } 3603 3604 if ((events->exception.injected || events->exception.pending) && 3605 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 3606 return -EINVAL; 3607 3608 /* INITs are latched while in SMM */ 3609 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 3610 (events->smi.smm || events->smi.pending) && 3611 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 3612 return -EINVAL; 3613 3614 process_nmi(vcpu); 3615 vcpu->arch.exception.injected = events->exception.injected; 3616 vcpu->arch.exception.pending = events->exception.pending; 3617 vcpu->arch.exception.nr = events->exception.nr; 3618 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3619 vcpu->arch.exception.error_code = events->exception.error_code; 3620 vcpu->arch.exception.has_payload = events->exception_has_payload; 3621 vcpu->arch.exception.payload = events->exception_payload; 3622 3623 vcpu->arch.interrupt.injected = events->interrupt.injected; 3624 vcpu->arch.interrupt.nr = events->interrupt.nr; 3625 vcpu->arch.interrupt.soft = events->interrupt.soft; 3626 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3627 kvm_x86_ops->set_interrupt_shadow(vcpu, 3628 events->interrupt.shadow); 3629 3630 vcpu->arch.nmi_injected = events->nmi.injected; 3631 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3632 vcpu->arch.nmi_pending = events->nmi.pending; 3633 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3634 3635 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3636 lapic_in_kernel(vcpu)) 3637 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3638 3639 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3640 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 3641 if (events->smi.smm) 3642 vcpu->arch.hflags |= HF_SMM_MASK; 3643 else 3644 vcpu->arch.hflags &= ~HF_SMM_MASK; 3645 kvm_smm_changed(vcpu); 3646 } 3647 3648 vcpu->arch.smi_pending = events->smi.pending; 3649 3650 if (events->smi.smm) { 3651 if (events->smi.smm_inside_nmi) 3652 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3653 else 3654 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3655 if (lapic_in_kernel(vcpu)) { 3656 if (events->smi.latched_init) 3657 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3658 else 3659 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3660 } 3661 } 3662 } 3663 3664 kvm_make_request(KVM_REQ_EVENT, vcpu); 3665 3666 return 0; 3667 } 3668 3669 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3670 struct kvm_debugregs *dbgregs) 3671 { 3672 unsigned long val; 3673 3674 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3675 kvm_get_dr(vcpu, 6, &val); 3676 dbgregs->dr6 = val; 3677 dbgregs->dr7 = vcpu->arch.dr7; 3678 dbgregs->flags = 0; 3679 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3680 } 3681 3682 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3683 struct kvm_debugregs *dbgregs) 3684 { 3685 if (dbgregs->flags) 3686 return -EINVAL; 3687 3688 if (dbgregs->dr6 & ~0xffffffffull) 3689 return -EINVAL; 3690 if (dbgregs->dr7 & ~0xffffffffull) 3691 return -EINVAL; 3692 3693 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3694 kvm_update_dr0123(vcpu); 3695 vcpu->arch.dr6 = dbgregs->dr6; 3696 kvm_update_dr6(vcpu); 3697 vcpu->arch.dr7 = dbgregs->dr7; 3698 kvm_update_dr7(vcpu); 3699 3700 return 0; 3701 } 3702 3703 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3704 3705 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3706 { 3707 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 3708 u64 xstate_bv = xsave->header.xfeatures; 3709 u64 valid; 3710 3711 /* 3712 * Copy legacy XSAVE area, to avoid complications with CPUID 3713 * leaves 0 and 1 in the loop below. 3714 */ 3715 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 3716 3717 /* Set XSTATE_BV */ 3718 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 3719 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 3720 3721 /* 3722 * Copy each region from the possibly compacted offset to the 3723 * non-compacted offset. 3724 */ 3725 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3726 while (valid) { 3727 u64 xfeature_mask = valid & -valid; 3728 int xfeature_nr = fls64(xfeature_mask) - 1; 3729 void *src = get_xsave_addr(xsave, xfeature_nr); 3730 3731 if (src) { 3732 u32 size, offset, ecx, edx; 3733 cpuid_count(XSTATE_CPUID, xfeature_nr, 3734 &size, &offset, &ecx, &edx); 3735 if (xfeature_nr == XFEATURE_PKRU) 3736 memcpy(dest + offset, &vcpu->arch.pkru, 3737 sizeof(vcpu->arch.pkru)); 3738 else 3739 memcpy(dest + offset, src, size); 3740 3741 } 3742 3743 valid -= xfeature_mask; 3744 } 3745 } 3746 3747 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 3748 { 3749 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 3750 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 3751 u64 valid; 3752 3753 /* 3754 * Copy legacy XSAVE area, to avoid complications with CPUID 3755 * leaves 0 and 1 in the loop below. 3756 */ 3757 memcpy(xsave, src, XSAVE_HDR_OFFSET); 3758 3759 /* Set XSTATE_BV and possibly XCOMP_BV. */ 3760 xsave->header.xfeatures = xstate_bv; 3761 if (boot_cpu_has(X86_FEATURE_XSAVES)) 3762 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 3763 3764 /* 3765 * Copy each region from the non-compacted offset to the 3766 * possibly compacted offset. 3767 */ 3768 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3769 while (valid) { 3770 u64 xfeature_mask = valid & -valid; 3771 int xfeature_nr = fls64(xfeature_mask) - 1; 3772 void *dest = get_xsave_addr(xsave, xfeature_nr); 3773 3774 if (dest) { 3775 u32 size, offset, ecx, edx; 3776 cpuid_count(XSTATE_CPUID, xfeature_nr, 3777 &size, &offset, &ecx, &edx); 3778 if (xfeature_nr == XFEATURE_PKRU) 3779 memcpy(&vcpu->arch.pkru, src + offset, 3780 sizeof(vcpu->arch.pkru)); 3781 else 3782 memcpy(dest, src + offset, size); 3783 } 3784 3785 valid -= xfeature_mask; 3786 } 3787 } 3788 3789 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3790 struct kvm_xsave *guest_xsave) 3791 { 3792 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3793 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 3794 fill_xsave((u8 *) guest_xsave->region, vcpu); 3795 } else { 3796 memcpy(guest_xsave->region, 3797 &vcpu->arch.guest_fpu->state.fxsave, 3798 sizeof(struct fxregs_state)); 3799 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3800 XFEATURE_MASK_FPSSE; 3801 } 3802 } 3803 3804 #define XSAVE_MXCSR_OFFSET 24 3805 3806 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3807 struct kvm_xsave *guest_xsave) 3808 { 3809 u64 xstate_bv = 3810 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3811 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 3812 3813 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3814 /* 3815 * Here we allow setting states that are not present in 3816 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3817 * with old userspace. 3818 */ 3819 if (xstate_bv & ~kvm_supported_xcr0() || 3820 mxcsr & ~mxcsr_feature_mask) 3821 return -EINVAL; 3822 load_xsave(vcpu, (u8 *)guest_xsave->region); 3823 } else { 3824 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 3825 mxcsr & ~mxcsr_feature_mask) 3826 return -EINVAL; 3827 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 3828 guest_xsave->region, sizeof(struct fxregs_state)); 3829 } 3830 return 0; 3831 } 3832 3833 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3834 struct kvm_xcrs *guest_xcrs) 3835 { 3836 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 3837 guest_xcrs->nr_xcrs = 0; 3838 return; 3839 } 3840 3841 guest_xcrs->nr_xcrs = 1; 3842 guest_xcrs->flags = 0; 3843 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3844 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3845 } 3846 3847 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3848 struct kvm_xcrs *guest_xcrs) 3849 { 3850 int i, r = 0; 3851 3852 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 3853 return -EINVAL; 3854 3855 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3856 return -EINVAL; 3857 3858 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3859 /* Only support XCR0 currently */ 3860 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3861 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3862 guest_xcrs->xcrs[i].value); 3863 break; 3864 } 3865 if (r) 3866 r = -EINVAL; 3867 return r; 3868 } 3869 3870 /* 3871 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3872 * stopped by the hypervisor. This function will be called from the host only. 3873 * EINVAL is returned when the host attempts to set the flag for a guest that 3874 * does not support pv clocks. 3875 */ 3876 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3877 { 3878 if (!vcpu->arch.pv_time_enabled) 3879 return -EINVAL; 3880 vcpu->arch.pvclock_set_guest_stopped_request = true; 3881 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3882 return 0; 3883 } 3884 3885 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3886 struct kvm_enable_cap *cap) 3887 { 3888 int r; 3889 uint16_t vmcs_version; 3890 void __user *user_ptr; 3891 3892 if (cap->flags) 3893 return -EINVAL; 3894 3895 switch (cap->cap) { 3896 case KVM_CAP_HYPERV_SYNIC2: 3897 if (cap->args[0]) 3898 return -EINVAL; 3899 /* fall through */ 3900 3901 case KVM_CAP_HYPERV_SYNIC: 3902 if (!irqchip_in_kernel(vcpu->kvm)) 3903 return -EINVAL; 3904 return kvm_hv_activate_synic(vcpu, cap->cap == 3905 KVM_CAP_HYPERV_SYNIC2); 3906 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3907 if (!kvm_x86_ops->nested_enable_evmcs) 3908 return -ENOTTY; 3909 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version); 3910 if (!r) { 3911 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 3912 if (copy_to_user(user_ptr, &vmcs_version, 3913 sizeof(vmcs_version))) 3914 r = -EFAULT; 3915 } 3916 return r; 3917 3918 default: 3919 return -EINVAL; 3920 } 3921 } 3922 3923 long kvm_arch_vcpu_ioctl(struct file *filp, 3924 unsigned int ioctl, unsigned long arg) 3925 { 3926 struct kvm_vcpu *vcpu = filp->private_data; 3927 void __user *argp = (void __user *)arg; 3928 int r; 3929 union { 3930 struct kvm_lapic_state *lapic; 3931 struct kvm_xsave *xsave; 3932 struct kvm_xcrs *xcrs; 3933 void *buffer; 3934 } u; 3935 3936 vcpu_load(vcpu); 3937 3938 u.buffer = NULL; 3939 switch (ioctl) { 3940 case KVM_GET_LAPIC: { 3941 r = -EINVAL; 3942 if (!lapic_in_kernel(vcpu)) 3943 goto out; 3944 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 3945 GFP_KERNEL_ACCOUNT); 3946 3947 r = -ENOMEM; 3948 if (!u.lapic) 3949 goto out; 3950 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3951 if (r) 3952 goto out; 3953 r = -EFAULT; 3954 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3955 goto out; 3956 r = 0; 3957 break; 3958 } 3959 case KVM_SET_LAPIC: { 3960 r = -EINVAL; 3961 if (!lapic_in_kernel(vcpu)) 3962 goto out; 3963 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3964 if (IS_ERR(u.lapic)) { 3965 r = PTR_ERR(u.lapic); 3966 goto out_nofree; 3967 } 3968 3969 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3970 break; 3971 } 3972 case KVM_INTERRUPT: { 3973 struct kvm_interrupt irq; 3974 3975 r = -EFAULT; 3976 if (copy_from_user(&irq, argp, sizeof(irq))) 3977 goto out; 3978 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3979 break; 3980 } 3981 case KVM_NMI: { 3982 r = kvm_vcpu_ioctl_nmi(vcpu); 3983 break; 3984 } 3985 case KVM_SMI: { 3986 r = kvm_vcpu_ioctl_smi(vcpu); 3987 break; 3988 } 3989 case KVM_SET_CPUID: { 3990 struct kvm_cpuid __user *cpuid_arg = argp; 3991 struct kvm_cpuid cpuid; 3992 3993 r = -EFAULT; 3994 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3995 goto out; 3996 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3997 break; 3998 } 3999 case KVM_SET_CPUID2: { 4000 struct kvm_cpuid2 __user *cpuid_arg = argp; 4001 struct kvm_cpuid2 cpuid; 4002 4003 r = -EFAULT; 4004 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4005 goto out; 4006 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4007 cpuid_arg->entries); 4008 break; 4009 } 4010 case KVM_GET_CPUID2: { 4011 struct kvm_cpuid2 __user *cpuid_arg = argp; 4012 struct kvm_cpuid2 cpuid; 4013 4014 r = -EFAULT; 4015 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4016 goto out; 4017 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4018 cpuid_arg->entries); 4019 if (r) 4020 goto out; 4021 r = -EFAULT; 4022 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4023 goto out; 4024 r = 0; 4025 break; 4026 } 4027 case KVM_GET_MSRS: { 4028 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4029 r = msr_io(vcpu, argp, do_get_msr, 1); 4030 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4031 break; 4032 } 4033 case KVM_SET_MSRS: { 4034 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4035 r = msr_io(vcpu, argp, do_set_msr, 0); 4036 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4037 break; 4038 } 4039 case KVM_TPR_ACCESS_REPORTING: { 4040 struct kvm_tpr_access_ctl tac; 4041 4042 r = -EFAULT; 4043 if (copy_from_user(&tac, argp, sizeof(tac))) 4044 goto out; 4045 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4046 if (r) 4047 goto out; 4048 r = -EFAULT; 4049 if (copy_to_user(argp, &tac, sizeof(tac))) 4050 goto out; 4051 r = 0; 4052 break; 4053 }; 4054 case KVM_SET_VAPIC_ADDR: { 4055 struct kvm_vapic_addr va; 4056 int idx; 4057 4058 r = -EINVAL; 4059 if (!lapic_in_kernel(vcpu)) 4060 goto out; 4061 r = -EFAULT; 4062 if (copy_from_user(&va, argp, sizeof(va))) 4063 goto out; 4064 idx = srcu_read_lock(&vcpu->kvm->srcu); 4065 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4066 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4067 break; 4068 } 4069 case KVM_X86_SETUP_MCE: { 4070 u64 mcg_cap; 4071 4072 r = -EFAULT; 4073 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4074 goto out; 4075 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4076 break; 4077 } 4078 case KVM_X86_SET_MCE: { 4079 struct kvm_x86_mce mce; 4080 4081 r = -EFAULT; 4082 if (copy_from_user(&mce, argp, sizeof(mce))) 4083 goto out; 4084 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4085 break; 4086 } 4087 case KVM_GET_VCPU_EVENTS: { 4088 struct kvm_vcpu_events events; 4089 4090 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4091 4092 r = -EFAULT; 4093 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4094 break; 4095 r = 0; 4096 break; 4097 } 4098 case KVM_SET_VCPU_EVENTS: { 4099 struct kvm_vcpu_events events; 4100 4101 r = -EFAULT; 4102 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4103 break; 4104 4105 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4106 break; 4107 } 4108 case KVM_GET_DEBUGREGS: { 4109 struct kvm_debugregs dbgregs; 4110 4111 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4112 4113 r = -EFAULT; 4114 if (copy_to_user(argp, &dbgregs, 4115 sizeof(struct kvm_debugregs))) 4116 break; 4117 r = 0; 4118 break; 4119 } 4120 case KVM_SET_DEBUGREGS: { 4121 struct kvm_debugregs dbgregs; 4122 4123 r = -EFAULT; 4124 if (copy_from_user(&dbgregs, argp, 4125 sizeof(struct kvm_debugregs))) 4126 break; 4127 4128 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4129 break; 4130 } 4131 case KVM_GET_XSAVE: { 4132 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4133 r = -ENOMEM; 4134 if (!u.xsave) 4135 break; 4136 4137 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4138 4139 r = -EFAULT; 4140 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4141 break; 4142 r = 0; 4143 break; 4144 } 4145 case KVM_SET_XSAVE: { 4146 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4147 if (IS_ERR(u.xsave)) { 4148 r = PTR_ERR(u.xsave); 4149 goto out_nofree; 4150 } 4151 4152 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4153 break; 4154 } 4155 case KVM_GET_XCRS: { 4156 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4157 r = -ENOMEM; 4158 if (!u.xcrs) 4159 break; 4160 4161 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4162 4163 r = -EFAULT; 4164 if (copy_to_user(argp, u.xcrs, 4165 sizeof(struct kvm_xcrs))) 4166 break; 4167 r = 0; 4168 break; 4169 } 4170 case KVM_SET_XCRS: { 4171 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4172 if (IS_ERR(u.xcrs)) { 4173 r = PTR_ERR(u.xcrs); 4174 goto out_nofree; 4175 } 4176 4177 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4178 break; 4179 } 4180 case KVM_SET_TSC_KHZ: { 4181 u32 user_tsc_khz; 4182 4183 r = -EINVAL; 4184 user_tsc_khz = (u32)arg; 4185 4186 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 4187 goto out; 4188 4189 if (user_tsc_khz == 0) 4190 user_tsc_khz = tsc_khz; 4191 4192 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4193 r = 0; 4194 4195 goto out; 4196 } 4197 case KVM_GET_TSC_KHZ: { 4198 r = vcpu->arch.virtual_tsc_khz; 4199 goto out; 4200 } 4201 case KVM_KVMCLOCK_CTRL: { 4202 r = kvm_set_guest_paused(vcpu); 4203 goto out; 4204 } 4205 case KVM_ENABLE_CAP: { 4206 struct kvm_enable_cap cap; 4207 4208 r = -EFAULT; 4209 if (copy_from_user(&cap, argp, sizeof(cap))) 4210 goto out; 4211 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4212 break; 4213 } 4214 case KVM_GET_NESTED_STATE: { 4215 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4216 u32 user_data_size; 4217 4218 r = -EINVAL; 4219 if (!kvm_x86_ops->get_nested_state) 4220 break; 4221 4222 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4223 r = -EFAULT; 4224 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4225 break; 4226 4227 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state, 4228 user_data_size); 4229 if (r < 0) 4230 break; 4231 4232 if (r > user_data_size) { 4233 if (put_user(r, &user_kvm_nested_state->size)) 4234 r = -EFAULT; 4235 else 4236 r = -E2BIG; 4237 break; 4238 } 4239 4240 r = 0; 4241 break; 4242 } 4243 case KVM_SET_NESTED_STATE: { 4244 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4245 struct kvm_nested_state kvm_state; 4246 4247 r = -EINVAL; 4248 if (!kvm_x86_ops->set_nested_state) 4249 break; 4250 4251 r = -EFAULT; 4252 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4253 break; 4254 4255 r = -EINVAL; 4256 if (kvm_state.size < sizeof(kvm_state)) 4257 break; 4258 4259 if (kvm_state.flags & 4260 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4261 | KVM_STATE_NESTED_EVMCS)) 4262 break; 4263 4264 /* nested_run_pending implies guest_mode. */ 4265 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4266 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4267 break; 4268 4269 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state); 4270 break; 4271 } 4272 case KVM_GET_SUPPORTED_HV_CPUID: { 4273 struct kvm_cpuid2 __user *cpuid_arg = argp; 4274 struct kvm_cpuid2 cpuid; 4275 4276 r = -EFAULT; 4277 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4278 goto out; 4279 4280 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4281 cpuid_arg->entries); 4282 if (r) 4283 goto out; 4284 4285 r = -EFAULT; 4286 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4287 goto out; 4288 r = 0; 4289 break; 4290 } 4291 default: 4292 r = -EINVAL; 4293 } 4294 out: 4295 kfree(u.buffer); 4296 out_nofree: 4297 vcpu_put(vcpu); 4298 return r; 4299 } 4300 4301 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4302 { 4303 return VM_FAULT_SIGBUS; 4304 } 4305 4306 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 4307 { 4308 int ret; 4309 4310 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 4311 return -EINVAL; 4312 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 4313 return ret; 4314 } 4315 4316 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 4317 u64 ident_addr) 4318 { 4319 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr); 4320 } 4321 4322 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 4323 unsigned long kvm_nr_mmu_pages) 4324 { 4325 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 4326 return -EINVAL; 4327 4328 mutex_lock(&kvm->slots_lock); 4329 4330 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 4331 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 4332 4333 mutex_unlock(&kvm->slots_lock); 4334 return 0; 4335 } 4336 4337 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 4338 { 4339 return kvm->arch.n_max_mmu_pages; 4340 } 4341 4342 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4343 { 4344 struct kvm_pic *pic = kvm->arch.vpic; 4345 int r; 4346 4347 r = 0; 4348 switch (chip->chip_id) { 4349 case KVM_IRQCHIP_PIC_MASTER: 4350 memcpy(&chip->chip.pic, &pic->pics[0], 4351 sizeof(struct kvm_pic_state)); 4352 break; 4353 case KVM_IRQCHIP_PIC_SLAVE: 4354 memcpy(&chip->chip.pic, &pic->pics[1], 4355 sizeof(struct kvm_pic_state)); 4356 break; 4357 case KVM_IRQCHIP_IOAPIC: 4358 kvm_get_ioapic(kvm, &chip->chip.ioapic); 4359 break; 4360 default: 4361 r = -EINVAL; 4362 break; 4363 } 4364 return r; 4365 } 4366 4367 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4368 { 4369 struct kvm_pic *pic = kvm->arch.vpic; 4370 int r; 4371 4372 r = 0; 4373 switch (chip->chip_id) { 4374 case KVM_IRQCHIP_PIC_MASTER: 4375 spin_lock(&pic->lock); 4376 memcpy(&pic->pics[0], &chip->chip.pic, 4377 sizeof(struct kvm_pic_state)); 4378 spin_unlock(&pic->lock); 4379 break; 4380 case KVM_IRQCHIP_PIC_SLAVE: 4381 spin_lock(&pic->lock); 4382 memcpy(&pic->pics[1], &chip->chip.pic, 4383 sizeof(struct kvm_pic_state)); 4384 spin_unlock(&pic->lock); 4385 break; 4386 case KVM_IRQCHIP_IOAPIC: 4387 kvm_set_ioapic(kvm, &chip->chip.ioapic); 4388 break; 4389 default: 4390 r = -EINVAL; 4391 break; 4392 } 4393 kvm_pic_update_irq(pic); 4394 return r; 4395 } 4396 4397 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4398 { 4399 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 4400 4401 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 4402 4403 mutex_lock(&kps->lock); 4404 memcpy(ps, &kps->channels, sizeof(*ps)); 4405 mutex_unlock(&kps->lock); 4406 return 0; 4407 } 4408 4409 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4410 { 4411 int i; 4412 struct kvm_pit *pit = kvm->arch.vpit; 4413 4414 mutex_lock(&pit->pit_state.lock); 4415 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 4416 for (i = 0; i < 3; i++) 4417 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 4418 mutex_unlock(&pit->pit_state.lock); 4419 return 0; 4420 } 4421 4422 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4423 { 4424 mutex_lock(&kvm->arch.vpit->pit_state.lock); 4425 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 4426 sizeof(ps->channels)); 4427 ps->flags = kvm->arch.vpit->pit_state.flags; 4428 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 4429 memset(&ps->reserved, 0, sizeof(ps->reserved)); 4430 return 0; 4431 } 4432 4433 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4434 { 4435 int start = 0; 4436 int i; 4437 u32 prev_legacy, cur_legacy; 4438 struct kvm_pit *pit = kvm->arch.vpit; 4439 4440 mutex_lock(&pit->pit_state.lock); 4441 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 4442 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 4443 if (!prev_legacy && cur_legacy) 4444 start = 1; 4445 memcpy(&pit->pit_state.channels, &ps->channels, 4446 sizeof(pit->pit_state.channels)); 4447 pit->pit_state.flags = ps->flags; 4448 for (i = 0; i < 3; i++) 4449 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 4450 start && i == 0); 4451 mutex_unlock(&pit->pit_state.lock); 4452 return 0; 4453 } 4454 4455 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 4456 struct kvm_reinject_control *control) 4457 { 4458 struct kvm_pit *pit = kvm->arch.vpit; 4459 4460 if (!pit) 4461 return -ENXIO; 4462 4463 /* pit->pit_state.lock was overloaded to prevent userspace from getting 4464 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 4465 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 4466 */ 4467 mutex_lock(&pit->pit_state.lock); 4468 kvm_pit_set_reinject(pit, control->pit_reinject); 4469 mutex_unlock(&pit->pit_state.lock); 4470 4471 return 0; 4472 } 4473 4474 /** 4475 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 4476 * @kvm: kvm instance 4477 * @log: slot id and address to which we copy the log 4478 * 4479 * Steps 1-4 below provide general overview of dirty page logging. See 4480 * kvm_get_dirty_log_protect() function description for additional details. 4481 * 4482 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 4483 * always flush the TLB (step 4) even if previous step failed and the dirty 4484 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 4485 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 4486 * writes will be marked dirty for next log read. 4487 * 4488 * 1. Take a snapshot of the bit and clear it if needed. 4489 * 2. Write protect the corresponding page. 4490 * 3. Copy the snapshot to the userspace. 4491 * 4. Flush TLB's if needed. 4492 */ 4493 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 4494 { 4495 bool flush = false; 4496 int r; 4497 4498 mutex_lock(&kvm->slots_lock); 4499 4500 /* 4501 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4502 */ 4503 if (kvm_x86_ops->flush_log_dirty) 4504 kvm_x86_ops->flush_log_dirty(kvm); 4505 4506 r = kvm_get_dirty_log_protect(kvm, log, &flush); 4507 4508 /* 4509 * All the TLBs can be flushed out of mmu lock, see the comments in 4510 * kvm_mmu_slot_remove_write_access(). 4511 */ 4512 lockdep_assert_held(&kvm->slots_lock); 4513 if (flush) 4514 kvm_flush_remote_tlbs(kvm); 4515 4516 mutex_unlock(&kvm->slots_lock); 4517 return r; 4518 } 4519 4520 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log) 4521 { 4522 bool flush = false; 4523 int r; 4524 4525 mutex_lock(&kvm->slots_lock); 4526 4527 /* 4528 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4529 */ 4530 if (kvm_x86_ops->flush_log_dirty) 4531 kvm_x86_ops->flush_log_dirty(kvm); 4532 4533 r = kvm_clear_dirty_log_protect(kvm, log, &flush); 4534 4535 /* 4536 * All the TLBs can be flushed out of mmu lock, see the comments in 4537 * kvm_mmu_slot_remove_write_access(). 4538 */ 4539 lockdep_assert_held(&kvm->slots_lock); 4540 if (flush) 4541 kvm_flush_remote_tlbs(kvm); 4542 4543 mutex_unlock(&kvm->slots_lock); 4544 return r; 4545 } 4546 4547 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 4548 bool line_status) 4549 { 4550 if (!irqchip_in_kernel(kvm)) 4551 return -ENXIO; 4552 4553 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 4554 irq_event->irq, irq_event->level, 4555 line_status); 4556 return 0; 4557 } 4558 4559 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4560 struct kvm_enable_cap *cap) 4561 { 4562 int r; 4563 4564 if (cap->flags) 4565 return -EINVAL; 4566 4567 switch (cap->cap) { 4568 case KVM_CAP_DISABLE_QUIRKS: 4569 kvm->arch.disabled_quirks = cap->args[0]; 4570 r = 0; 4571 break; 4572 case KVM_CAP_SPLIT_IRQCHIP: { 4573 mutex_lock(&kvm->lock); 4574 r = -EINVAL; 4575 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4576 goto split_irqchip_unlock; 4577 r = -EEXIST; 4578 if (irqchip_in_kernel(kvm)) 4579 goto split_irqchip_unlock; 4580 if (kvm->created_vcpus) 4581 goto split_irqchip_unlock; 4582 r = kvm_setup_empty_irq_routing(kvm); 4583 if (r) 4584 goto split_irqchip_unlock; 4585 /* Pairs with irqchip_in_kernel. */ 4586 smp_wmb(); 4587 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4588 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4589 r = 0; 4590 split_irqchip_unlock: 4591 mutex_unlock(&kvm->lock); 4592 break; 4593 } 4594 case KVM_CAP_X2APIC_API: 4595 r = -EINVAL; 4596 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 4597 break; 4598 4599 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 4600 kvm->arch.x2apic_format = true; 4601 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 4602 kvm->arch.x2apic_broadcast_quirk_disabled = true; 4603 4604 r = 0; 4605 break; 4606 case KVM_CAP_X86_DISABLE_EXITS: 4607 r = -EINVAL; 4608 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 4609 break; 4610 4611 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 4612 kvm_can_mwait_in_guest()) 4613 kvm->arch.mwait_in_guest = true; 4614 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 4615 kvm->arch.hlt_in_guest = true; 4616 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 4617 kvm->arch.pause_in_guest = true; 4618 r = 0; 4619 break; 4620 case KVM_CAP_MSR_PLATFORM_INFO: 4621 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 4622 r = 0; 4623 break; 4624 case KVM_CAP_EXCEPTION_PAYLOAD: 4625 kvm->arch.exception_payload_enabled = cap->args[0]; 4626 r = 0; 4627 break; 4628 default: 4629 r = -EINVAL; 4630 break; 4631 } 4632 return r; 4633 } 4634 4635 long kvm_arch_vm_ioctl(struct file *filp, 4636 unsigned int ioctl, unsigned long arg) 4637 { 4638 struct kvm *kvm = filp->private_data; 4639 void __user *argp = (void __user *)arg; 4640 int r = -ENOTTY; 4641 /* 4642 * This union makes it completely explicit to gcc-3.x 4643 * that these two variables' stack usage should be 4644 * combined, not added together. 4645 */ 4646 union { 4647 struct kvm_pit_state ps; 4648 struct kvm_pit_state2 ps2; 4649 struct kvm_pit_config pit_config; 4650 } u; 4651 4652 switch (ioctl) { 4653 case KVM_SET_TSS_ADDR: 4654 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 4655 break; 4656 case KVM_SET_IDENTITY_MAP_ADDR: { 4657 u64 ident_addr; 4658 4659 mutex_lock(&kvm->lock); 4660 r = -EINVAL; 4661 if (kvm->created_vcpus) 4662 goto set_identity_unlock; 4663 r = -EFAULT; 4664 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 4665 goto set_identity_unlock; 4666 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 4667 set_identity_unlock: 4668 mutex_unlock(&kvm->lock); 4669 break; 4670 } 4671 case KVM_SET_NR_MMU_PAGES: 4672 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 4673 break; 4674 case KVM_GET_NR_MMU_PAGES: 4675 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4676 break; 4677 case KVM_CREATE_IRQCHIP: { 4678 mutex_lock(&kvm->lock); 4679 4680 r = -EEXIST; 4681 if (irqchip_in_kernel(kvm)) 4682 goto create_irqchip_unlock; 4683 4684 r = -EINVAL; 4685 if (kvm->created_vcpus) 4686 goto create_irqchip_unlock; 4687 4688 r = kvm_pic_init(kvm); 4689 if (r) 4690 goto create_irqchip_unlock; 4691 4692 r = kvm_ioapic_init(kvm); 4693 if (r) { 4694 kvm_pic_destroy(kvm); 4695 goto create_irqchip_unlock; 4696 } 4697 4698 r = kvm_setup_default_irq_routing(kvm); 4699 if (r) { 4700 kvm_ioapic_destroy(kvm); 4701 kvm_pic_destroy(kvm); 4702 goto create_irqchip_unlock; 4703 } 4704 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4705 smp_wmb(); 4706 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4707 create_irqchip_unlock: 4708 mutex_unlock(&kvm->lock); 4709 break; 4710 } 4711 case KVM_CREATE_PIT: 4712 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 4713 goto create_pit; 4714 case KVM_CREATE_PIT2: 4715 r = -EFAULT; 4716 if (copy_from_user(&u.pit_config, argp, 4717 sizeof(struct kvm_pit_config))) 4718 goto out; 4719 create_pit: 4720 mutex_lock(&kvm->lock); 4721 r = -EEXIST; 4722 if (kvm->arch.vpit) 4723 goto create_pit_unlock; 4724 r = -ENOMEM; 4725 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 4726 if (kvm->arch.vpit) 4727 r = 0; 4728 create_pit_unlock: 4729 mutex_unlock(&kvm->lock); 4730 break; 4731 case KVM_GET_IRQCHIP: { 4732 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4733 struct kvm_irqchip *chip; 4734 4735 chip = memdup_user(argp, sizeof(*chip)); 4736 if (IS_ERR(chip)) { 4737 r = PTR_ERR(chip); 4738 goto out; 4739 } 4740 4741 r = -ENXIO; 4742 if (!irqchip_kernel(kvm)) 4743 goto get_irqchip_out; 4744 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 4745 if (r) 4746 goto get_irqchip_out; 4747 r = -EFAULT; 4748 if (copy_to_user(argp, chip, sizeof(*chip))) 4749 goto get_irqchip_out; 4750 r = 0; 4751 get_irqchip_out: 4752 kfree(chip); 4753 break; 4754 } 4755 case KVM_SET_IRQCHIP: { 4756 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4757 struct kvm_irqchip *chip; 4758 4759 chip = memdup_user(argp, sizeof(*chip)); 4760 if (IS_ERR(chip)) { 4761 r = PTR_ERR(chip); 4762 goto out; 4763 } 4764 4765 r = -ENXIO; 4766 if (!irqchip_kernel(kvm)) 4767 goto set_irqchip_out; 4768 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 4769 if (r) 4770 goto set_irqchip_out; 4771 r = 0; 4772 set_irqchip_out: 4773 kfree(chip); 4774 break; 4775 } 4776 case KVM_GET_PIT: { 4777 r = -EFAULT; 4778 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 4779 goto out; 4780 r = -ENXIO; 4781 if (!kvm->arch.vpit) 4782 goto out; 4783 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 4784 if (r) 4785 goto out; 4786 r = -EFAULT; 4787 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 4788 goto out; 4789 r = 0; 4790 break; 4791 } 4792 case KVM_SET_PIT: { 4793 r = -EFAULT; 4794 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 4795 goto out; 4796 r = -ENXIO; 4797 if (!kvm->arch.vpit) 4798 goto out; 4799 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 4800 break; 4801 } 4802 case KVM_GET_PIT2: { 4803 r = -ENXIO; 4804 if (!kvm->arch.vpit) 4805 goto out; 4806 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 4807 if (r) 4808 goto out; 4809 r = -EFAULT; 4810 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 4811 goto out; 4812 r = 0; 4813 break; 4814 } 4815 case KVM_SET_PIT2: { 4816 r = -EFAULT; 4817 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 4818 goto out; 4819 r = -ENXIO; 4820 if (!kvm->arch.vpit) 4821 goto out; 4822 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 4823 break; 4824 } 4825 case KVM_REINJECT_CONTROL: { 4826 struct kvm_reinject_control control; 4827 r = -EFAULT; 4828 if (copy_from_user(&control, argp, sizeof(control))) 4829 goto out; 4830 r = kvm_vm_ioctl_reinject(kvm, &control); 4831 break; 4832 } 4833 case KVM_SET_BOOT_CPU_ID: 4834 r = 0; 4835 mutex_lock(&kvm->lock); 4836 if (kvm->created_vcpus) 4837 r = -EBUSY; 4838 else 4839 kvm->arch.bsp_vcpu_id = arg; 4840 mutex_unlock(&kvm->lock); 4841 break; 4842 case KVM_XEN_HVM_CONFIG: { 4843 struct kvm_xen_hvm_config xhc; 4844 r = -EFAULT; 4845 if (copy_from_user(&xhc, argp, sizeof(xhc))) 4846 goto out; 4847 r = -EINVAL; 4848 if (xhc.flags) 4849 goto out; 4850 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 4851 r = 0; 4852 break; 4853 } 4854 case KVM_SET_CLOCK: { 4855 struct kvm_clock_data user_ns; 4856 u64 now_ns; 4857 4858 r = -EFAULT; 4859 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 4860 goto out; 4861 4862 r = -EINVAL; 4863 if (user_ns.flags) 4864 goto out; 4865 4866 r = 0; 4867 /* 4868 * TODO: userspace has to take care of races with VCPU_RUN, so 4869 * kvm_gen_update_masterclock() can be cut down to locked 4870 * pvclock_update_vm_gtod_copy(). 4871 */ 4872 kvm_gen_update_masterclock(kvm); 4873 now_ns = get_kvmclock_ns(kvm); 4874 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 4875 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 4876 break; 4877 } 4878 case KVM_GET_CLOCK: { 4879 struct kvm_clock_data user_ns; 4880 u64 now_ns; 4881 4882 now_ns = get_kvmclock_ns(kvm); 4883 user_ns.clock = now_ns; 4884 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 4885 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 4886 4887 r = -EFAULT; 4888 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 4889 goto out; 4890 r = 0; 4891 break; 4892 } 4893 case KVM_MEMORY_ENCRYPT_OP: { 4894 r = -ENOTTY; 4895 if (kvm_x86_ops->mem_enc_op) 4896 r = kvm_x86_ops->mem_enc_op(kvm, argp); 4897 break; 4898 } 4899 case KVM_MEMORY_ENCRYPT_REG_REGION: { 4900 struct kvm_enc_region region; 4901 4902 r = -EFAULT; 4903 if (copy_from_user(®ion, argp, sizeof(region))) 4904 goto out; 4905 4906 r = -ENOTTY; 4907 if (kvm_x86_ops->mem_enc_reg_region) 4908 r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion); 4909 break; 4910 } 4911 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 4912 struct kvm_enc_region region; 4913 4914 r = -EFAULT; 4915 if (copy_from_user(®ion, argp, sizeof(region))) 4916 goto out; 4917 4918 r = -ENOTTY; 4919 if (kvm_x86_ops->mem_enc_unreg_region) 4920 r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion); 4921 break; 4922 } 4923 case KVM_HYPERV_EVENTFD: { 4924 struct kvm_hyperv_eventfd hvevfd; 4925 4926 r = -EFAULT; 4927 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 4928 goto out; 4929 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 4930 break; 4931 } 4932 default: 4933 r = -ENOTTY; 4934 } 4935 out: 4936 return r; 4937 } 4938 4939 static void kvm_init_msr_list(void) 4940 { 4941 u32 dummy[2]; 4942 unsigned i, j; 4943 4944 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { 4945 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 4946 continue; 4947 4948 /* 4949 * Even MSRs that are valid in the host may not be exposed 4950 * to the guests in some cases. 4951 */ 4952 switch (msrs_to_save[i]) { 4953 case MSR_IA32_BNDCFGS: 4954 if (!kvm_mpx_supported()) 4955 continue; 4956 break; 4957 case MSR_TSC_AUX: 4958 if (!kvm_x86_ops->rdtscp_supported()) 4959 continue; 4960 break; 4961 case MSR_IA32_RTIT_CTL: 4962 case MSR_IA32_RTIT_STATUS: 4963 if (!kvm_x86_ops->pt_supported()) 4964 continue; 4965 break; 4966 case MSR_IA32_RTIT_CR3_MATCH: 4967 if (!kvm_x86_ops->pt_supported() || 4968 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 4969 continue; 4970 break; 4971 case MSR_IA32_RTIT_OUTPUT_BASE: 4972 case MSR_IA32_RTIT_OUTPUT_MASK: 4973 if (!kvm_x86_ops->pt_supported() || 4974 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 4975 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 4976 continue; 4977 break; 4978 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: { 4979 if (!kvm_x86_ops->pt_supported() || 4980 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >= 4981 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 4982 continue; 4983 break; 4984 } 4985 default: 4986 break; 4987 } 4988 4989 if (j < i) 4990 msrs_to_save[j] = msrs_to_save[i]; 4991 j++; 4992 } 4993 num_msrs_to_save = j; 4994 4995 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { 4996 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i])) 4997 continue; 4998 4999 if (j < i) 5000 emulated_msrs[j] = emulated_msrs[i]; 5001 j++; 5002 } 5003 num_emulated_msrs = j; 5004 5005 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) { 5006 struct kvm_msr_entry msr; 5007 5008 msr.index = msr_based_features[i]; 5009 if (kvm_get_msr_feature(&msr)) 5010 continue; 5011 5012 if (j < i) 5013 msr_based_features[j] = msr_based_features[i]; 5014 j++; 5015 } 5016 num_msr_based_features = j; 5017 } 5018 5019 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5020 const void *v) 5021 { 5022 int handled = 0; 5023 int n; 5024 5025 do { 5026 n = min(len, 8); 5027 if (!(lapic_in_kernel(vcpu) && 5028 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5029 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5030 break; 5031 handled += n; 5032 addr += n; 5033 len -= n; 5034 v += n; 5035 } while (len); 5036 5037 return handled; 5038 } 5039 5040 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5041 { 5042 int handled = 0; 5043 int n; 5044 5045 do { 5046 n = min(len, 8); 5047 if (!(lapic_in_kernel(vcpu) && 5048 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5049 addr, n, v)) 5050 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5051 break; 5052 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5053 handled += n; 5054 addr += n; 5055 len -= n; 5056 v += n; 5057 } while (len); 5058 5059 return handled; 5060 } 5061 5062 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5063 struct kvm_segment *var, int seg) 5064 { 5065 kvm_x86_ops->set_segment(vcpu, var, seg); 5066 } 5067 5068 void kvm_get_segment(struct kvm_vcpu *vcpu, 5069 struct kvm_segment *var, int seg) 5070 { 5071 kvm_x86_ops->get_segment(vcpu, var, seg); 5072 } 5073 5074 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5075 struct x86_exception *exception) 5076 { 5077 gpa_t t_gpa; 5078 5079 BUG_ON(!mmu_is_nested(vcpu)); 5080 5081 /* NPT walks are always user-walks */ 5082 access |= PFERR_USER_MASK; 5083 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5084 5085 return t_gpa; 5086 } 5087 5088 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5089 struct x86_exception *exception) 5090 { 5091 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5092 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5093 } 5094 5095 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5096 struct x86_exception *exception) 5097 { 5098 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5099 access |= PFERR_FETCH_MASK; 5100 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5101 } 5102 5103 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5104 struct x86_exception *exception) 5105 { 5106 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5107 access |= PFERR_WRITE_MASK; 5108 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5109 } 5110 5111 /* uses this to access any guest's mapped memory without checking CPL */ 5112 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5113 struct x86_exception *exception) 5114 { 5115 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5116 } 5117 5118 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5119 struct kvm_vcpu *vcpu, u32 access, 5120 struct x86_exception *exception) 5121 { 5122 void *data = val; 5123 int r = X86EMUL_CONTINUE; 5124 5125 while (bytes) { 5126 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5127 exception); 5128 unsigned offset = addr & (PAGE_SIZE-1); 5129 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5130 int ret; 5131 5132 if (gpa == UNMAPPED_GVA) 5133 return X86EMUL_PROPAGATE_FAULT; 5134 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5135 offset, toread); 5136 if (ret < 0) { 5137 r = X86EMUL_IO_NEEDED; 5138 goto out; 5139 } 5140 5141 bytes -= toread; 5142 data += toread; 5143 addr += toread; 5144 } 5145 out: 5146 return r; 5147 } 5148 5149 /* used for instruction fetching */ 5150 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5151 gva_t addr, void *val, unsigned int bytes, 5152 struct x86_exception *exception) 5153 { 5154 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5155 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5156 unsigned offset; 5157 int ret; 5158 5159 /* Inline kvm_read_guest_virt_helper for speed. */ 5160 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5161 exception); 5162 if (unlikely(gpa == UNMAPPED_GVA)) 5163 return X86EMUL_PROPAGATE_FAULT; 5164 5165 offset = addr & (PAGE_SIZE-1); 5166 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5167 bytes = (unsigned)PAGE_SIZE - offset; 5168 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5169 offset, bytes); 5170 if (unlikely(ret < 0)) 5171 return X86EMUL_IO_NEEDED; 5172 5173 return X86EMUL_CONTINUE; 5174 } 5175 5176 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5177 gva_t addr, void *val, unsigned int bytes, 5178 struct x86_exception *exception) 5179 { 5180 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5181 5182 /* 5183 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5184 * is returned, but our callers are not ready for that and they blindly 5185 * call kvm_inject_page_fault. Ensure that they at least do not leak 5186 * uninitialized kernel stack memory into cr2 and error code. 5187 */ 5188 memset(exception, 0, sizeof(*exception)); 5189 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5190 exception); 5191 } 5192 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5193 5194 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5195 gva_t addr, void *val, unsigned int bytes, 5196 struct x86_exception *exception, bool system) 5197 { 5198 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5199 u32 access = 0; 5200 5201 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) 5202 access |= PFERR_USER_MASK; 5203 5204 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5205 } 5206 5207 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5208 unsigned long addr, void *val, unsigned int bytes) 5209 { 5210 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5211 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5212 5213 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5214 } 5215 5216 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5217 struct kvm_vcpu *vcpu, u32 access, 5218 struct x86_exception *exception) 5219 { 5220 void *data = val; 5221 int r = X86EMUL_CONTINUE; 5222 5223 while (bytes) { 5224 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 5225 access, 5226 exception); 5227 unsigned offset = addr & (PAGE_SIZE-1); 5228 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 5229 int ret; 5230 5231 if (gpa == UNMAPPED_GVA) 5232 return X86EMUL_PROPAGATE_FAULT; 5233 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 5234 if (ret < 0) { 5235 r = X86EMUL_IO_NEEDED; 5236 goto out; 5237 } 5238 5239 bytes -= towrite; 5240 data += towrite; 5241 addr += towrite; 5242 } 5243 out: 5244 return r; 5245 } 5246 5247 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 5248 unsigned int bytes, struct x86_exception *exception, 5249 bool system) 5250 { 5251 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5252 u32 access = PFERR_WRITE_MASK; 5253 5254 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) 5255 access |= PFERR_USER_MASK; 5256 5257 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5258 access, exception); 5259 } 5260 5261 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 5262 unsigned int bytes, struct x86_exception *exception) 5263 { 5264 /* kvm_write_guest_virt_system can pull in tons of pages. */ 5265 vcpu->arch.l1tf_flush_l1d = true; 5266 5267 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5268 PFERR_WRITE_MASK, exception); 5269 } 5270 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 5271 5272 int handle_ud(struct kvm_vcpu *vcpu) 5273 { 5274 int emul_type = EMULTYPE_TRAP_UD; 5275 enum emulation_result er; 5276 char sig[5]; /* ud2; .ascii "kvm" */ 5277 struct x86_exception e; 5278 5279 if (force_emulation_prefix && 5280 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 5281 sig, sizeof(sig), &e) == 0 && 5282 memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) { 5283 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 5284 emul_type = 0; 5285 } 5286 5287 er = kvm_emulate_instruction(vcpu, emul_type); 5288 if (er == EMULATE_USER_EXIT) 5289 return 0; 5290 if (er != EMULATE_DONE) 5291 kvm_queue_exception(vcpu, UD_VECTOR); 5292 return 1; 5293 } 5294 EXPORT_SYMBOL_GPL(handle_ud); 5295 5296 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5297 gpa_t gpa, bool write) 5298 { 5299 /* For APIC access vmexit */ 5300 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5301 return 1; 5302 5303 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 5304 trace_vcpu_match_mmio(gva, gpa, write, true); 5305 return 1; 5306 } 5307 5308 return 0; 5309 } 5310 5311 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5312 gpa_t *gpa, struct x86_exception *exception, 5313 bool write) 5314 { 5315 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 5316 | (write ? PFERR_WRITE_MASK : 0); 5317 5318 /* 5319 * currently PKRU is only applied to ept enabled guest so 5320 * there is no pkey in EPT page table for L1 guest or EPT 5321 * shadow page table for L2 guest. 5322 */ 5323 if (vcpu_match_mmio_gva(vcpu, gva) 5324 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 5325 vcpu->arch.access, 0, access)) { 5326 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 5327 (gva & (PAGE_SIZE - 1)); 5328 trace_vcpu_match_mmio(gva, *gpa, write, false); 5329 return 1; 5330 } 5331 5332 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5333 5334 if (*gpa == UNMAPPED_GVA) 5335 return -1; 5336 5337 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 5338 } 5339 5340 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 5341 const void *val, int bytes) 5342 { 5343 int ret; 5344 5345 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 5346 if (ret < 0) 5347 return 0; 5348 kvm_page_track_write(vcpu, gpa, val, bytes); 5349 return 1; 5350 } 5351 5352 struct read_write_emulator_ops { 5353 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 5354 int bytes); 5355 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 5356 void *val, int bytes); 5357 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5358 int bytes, void *val); 5359 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5360 void *val, int bytes); 5361 bool write; 5362 }; 5363 5364 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 5365 { 5366 if (vcpu->mmio_read_completed) { 5367 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 5368 vcpu->mmio_fragments[0].gpa, val); 5369 vcpu->mmio_read_completed = 0; 5370 return 1; 5371 } 5372 5373 return 0; 5374 } 5375 5376 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5377 void *val, int bytes) 5378 { 5379 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 5380 } 5381 5382 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5383 void *val, int bytes) 5384 { 5385 return emulator_write_phys(vcpu, gpa, val, bytes); 5386 } 5387 5388 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 5389 { 5390 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 5391 return vcpu_mmio_write(vcpu, gpa, bytes, val); 5392 } 5393 5394 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5395 void *val, int bytes) 5396 { 5397 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 5398 return X86EMUL_IO_NEEDED; 5399 } 5400 5401 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5402 void *val, int bytes) 5403 { 5404 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 5405 5406 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 5407 return X86EMUL_CONTINUE; 5408 } 5409 5410 static const struct read_write_emulator_ops read_emultor = { 5411 .read_write_prepare = read_prepare, 5412 .read_write_emulate = read_emulate, 5413 .read_write_mmio = vcpu_mmio_read, 5414 .read_write_exit_mmio = read_exit_mmio, 5415 }; 5416 5417 static const struct read_write_emulator_ops write_emultor = { 5418 .read_write_emulate = write_emulate, 5419 .read_write_mmio = write_mmio, 5420 .read_write_exit_mmio = write_exit_mmio, 5421 .write = true, 5422 }; 5423 5424 static int emulator_read_write_onepage(unsigned long addr, void *val, 5425 unsigned int bytes, 5426 struct x86_exception *exception, 5427 struct kvm_vcpu *vcpu, 5428 const struct read_write_emulator_ops *ops) 5429 { 5430 gpa_t gpa; 5431 int handled, ret; 5432 bool write = ops->write; 5433 struct kvm_mmio_fragment *frag; 5434 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5435 5436 /* 5437 * If the exit was due to a NPF we may already have a GPA. 5438 * If the GPA is present, use it to avoid the GVA to GPA table walk. 5439 * Note, this cannot be used on string operations since string 5440 * operation using rep will only have the initial GPA from the NPF 5441 * occurred. 5442 */ 5443 if (vcpu->arch.gpa_available && 5444 emulator_can_use_gpa(ctxt) && 5445 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) { 5446 gpa = vcpu->arch.gpa_val; 5447 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 5448 } else { 5449 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 5450 if (ret < 0) 5451 return X86EMUL_PROPAGATE_FAULT; 5452 } 5453 5454 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 5455 return X86EMUL_CONTINUE; 5456 5457 /* 5458 * Is this MMIO handled locally? 5459 */ 5460 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 5461 if (handled == bytes) 5462 return X86EMUL_CONTINUE; 5463 5464 gpa += handled; 5465 bytes -= handled; 5466 val += handled; 5467 5468 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 5469 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 5470 frag->gpa = gpa; 5471 frag->data = val; 5472 frag->len = bytes; 5473 return X86EMUL_CONTINUE; 5474 } 5475 5476 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 5477 unsigned long addr, 5478 void *val, unsigned int bytes, 5479 struct x86_exception *exception, 5480 const struct read_write_emulator_ops *ops) 5481 { 5482 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5483 gpa_t gpa; 5484 int rc; 5485 5486 if (ops->read_write_prepare && 5487 ops->read_write_prepare(vcpu, val, bytes)) 5488 return X86EMUL_CONTINUE; 5489 5490 vcpu->mmio_nr_fragments = 0; 5491 5492 /* Crossing a page boundary? */ 5493 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 5494 int now; 5495 5496 now = -addr & ~PAGE_MASK; 5497 rc = emulator_read_write_onepage(addr, val, now, exception, 5498 vcpu, ops); 5499 5500 if (rc != X86EMUL_CONTINUE) 5501 return rc; 5502 addr += now; 5503 if (ctxt->mode != X86EMUL_MODE_PROT64) 5504 addr = (u32)addr; 5505 val += now; 5506 bytes -= now; 5507 } 5508 5509 rc = emulator_read_write_onepage(addr, val, bytes, exception, 5510 vcpu, ops); 5511 if (rc != X86EMUL_CONTINUE) 5512 return rc; 5513 5514 if (!vcpu->mmio_nr_fragments) 5515 return rc; 5516 5517 gpa = vcpu->mmio_fragments[0].gpa; 5518 5519 vcpu->mmio_needed = 1; 5520 vcpu->mmio_cur_fragment = 0; 5521 5522 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 5523 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 5524 vcpu->run->exit_reason = KVM_EXIT_MMIO; 5525 vcpu->run->mmio.phys_addr = gpa; 5526 5527 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 5528 } 5529 5530 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 5531 unsigned long addr, 5532 void *val, 5533 unsigned int bytes, 5534 struct x86_exception *exception) 5535 { 5536 return emulator_read_write(ctxt, addr, val, bytes, 5537 exception, &read_emultor); 5538 } 5539 5540 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 5541 unsigned long addr, 5542 const void *val, 5543 unsigned int bytes, 5544 struct x86_exception *exception) 5545 { 5546 return emulator_read_write(ctxt, addr, (void *)val, bytes, 5547 exception, &write_emultor); 5548 } 5549 5550 #define CMPXCHG_TYPE(t, ptr, old, new) \ 5551 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 5552 5553 #ifdef CONFIG_X86_64 5554 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 5555 #else 5556 # define CMPXCHG64(ptr, old, new) \ 5557 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 5558 #endif 5559 5560 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 5561 unsigned long addr, 5562 const void *old, 5563 const void *new, 5564 unsigned int bytes, 5565 struct x86_exception *exception) 5566 { 5567 struct kvm_host_map map; 5568 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5569 gpa_t gpa; 5570 char *kaddr; 5571 bool exchanged; 5572 5573 /* guests cmpxchg8b have to be emulated atomically */ 5574 if (bytes > 8 || (bytes & (bytes - 1))) 5575 goto emul_write; 5576 5577 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 5578 5579 if (gpa == UNMAPPED_GVA || 5580 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5581 goto emul_write; 5582 5583 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 5584 goto emul_write; 5585 5586 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 5587 goto emul_write; 5588 5589 kaddr = map.hva + offset_in_page(gpa); 5590 5591 switch (bytes) { 5592 case 1: 5593 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 5594 break; 5595 case 2: 5596 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 5597 break; 5598 case 4: 5599 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 5600 break; 5601 case 8: 5602 exchanged = CMPXCHG64(kaddr, old, new); 5603 break; 5604 default: 5605 BUG(); 5606 } 5607 5608 kvm_vcpu_unmap(vcpu, &map, true); 5609 5610 if (!exchanged) 5611 return X86EMUL_CMPXCHG_FAILED; 5612 5613 kvm_page_track_write(vcpu, gpa, new, bytes); 5614 5615 return X86EMUL_CONTINUE; 5616 5617 emul_write: 5618 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 5619 5620 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 5621 } 5622 5623 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 5624 { 5625 int r = 0, i; 5626 5627 for (i = 0; i < vcpu->arch.pio.count; i++) { 5628 if (vcpu->arch.pio.in) 5629 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 5630 vcpu->arch.pio.size, pd); 5631 else 5632 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 5633 vcpu->arch.pio.port, vcpu->arch.pio.size, 5634 pd); 5635 if (r) 5636 break; 5637 pd += vcpu->arch.pio.size; 5638 } 5639 return r; 5640 } 5641 5642 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 5643 unsigned short port, void *val, 5644 unsigned int count, bool in) 5645 { 5646 vcpu->arch.pio.port = port; 5647 vcpu->arch.pio.in = in; 5648 vcpu->arch.pio.count = count; 5649 vcpu->arch.pio.size = size; 5650 5651 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 5652 vcpu->arch.pio.count = 0; 5653 return 1; 5654 } 5655 5656 vcpu->run->exit_reason = KVM_EXIT_IO; 5657 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 5658 vcpu->run->io.size = size; 5659 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 5660 vcpu->run->io.count = count; 5661 vcpu->run->io.port = port; 5662 5663 return 0; 5664 } 5665 5666 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 5667 int size, unsigned short port, void *val, 5668 unsigned int count) 5669 { 5670 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5671 int ret; 5672 5673 if (vcpu->arch.pio.count) 5674 goto data_avail; 5675 5676 memset(vcpu->arch.pio_data, 0, size * count); 5677 5678 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 5679 if (ret) { 5680 data_avail: 5681 memcpy(val, vcpu->arch.pio_data, size * count); 5682 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 5683 vcpu->arch.pio.count = 0; 5684 return 1; 5685 } 5686 5687 return 0; 5688 } 5689 5690 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 5691 int size, unsigned short port, 5692 const void *val, unsigned int count) 5693 { 5694 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5695 5696 memcpy(vcpu->arch.pio_data, val, size * count); 5697 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 5698 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 5699 } 5700 5701 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 5702 { 5703 return kvm_x86_ops->get_segment_base(vcpu, seg); 5704 } 5705 5706 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 5707 { 5708 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 5709 } 5710 5711 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 5712 { 5713 if (!need_emulate_wbinvd(vcpu)) 5714 return X86EMUL_CONTINUE; 5715 5716 if (kvm_x86_ops->has_wbinvd_exit()) { 5717 int cpu = get_cpu(); 5718 5719 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5720 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 5721 wbinvd_ipi, NULL, 1); 5722 put_cpu(); 5723 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 5724 } else 5725 wbinvd(); 5726 return X86EMUL_CONTINUE; 5727 } 5728 5729 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 5730 { 5731 kvm_emulate_wbinvd_noskip(vcpu); 5732 return kvm_skip_emulated_instruction(vcpu); 5733 } 5734 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 5735 5736 5737 5738 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 5739 { 5740 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 5741 } 5742 5743 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 5744 unsigned long *dest) 5745 { 5746 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 5747 } 5748 5749 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 5750 unsigned long value) 5751 { 5752 5753 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 5754 } 5755 5756 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 5757 { 5758 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 5759 } 5760 5761 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 5762 { 5763 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5764 unsigned long value; 5765 5766 switch (cr) { 5767 case 0: 5768 value = kvm_read_cr0(vcpu); 5769 break; 5770 case 2: 5771 value = vcpu->arch.cr2; 5772 break; 5773 case 3: 5774 value = kvm_read_cr3(vcpu); 5775 break; 5776 case 4: 5777 value = kvm_read_cr4(vcpu); 5778 break; 5779 case 8: 5780 value = kvm_get_cr8(vcpu); 5781 break; 5782 default: 5783 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5784 return 0; 5785 } 5786 5787 return value; 5788 } 5789 5790 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 5791 { 5792 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5793 int res = 0; 5794 5795 switch (cr) { 5796 case 0: 5797 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 5798 break; 5799 case 2: 5800 vcpu->arch.cr2 = val; 5801 break; 5802 case 3: 5803 res = kvm_set_cr3(vcpu, val); 5804 break; 5805 case 4: 5806 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 5807 break; 5808 case 8: 5809 res = kvm_set_cr8(vcpu, val); 5810 break; 5811 default: 5812 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5813 res = -1; 5814 } 5815 5816 return res; 5817 } 5818 5819 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 5820 { 5821 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 5822 } 5823 5824 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5825 { 5826 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 5827 } 5828 5829 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5830 { 5831 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 5832 } 5833 5834 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5835 { 5836 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 5837 } 5838 5839 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5840 { 5841 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 5842 } 5843 5844 static unsigned long emulator_get_cached_segment_base( 5845 struct x86_emulate_ctxt *ctxt, int seg) 5846 { 5847 return get_segment_base(emul_to_vcpu(ctxt), seg); 5848 } 5849 5850 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 5851 struct desc_struct *desc, u32 *base3, 5852 int seg) 5853 { 5854 struct kvm_segment var; 5855 5856 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 5857 *selector = var.selector; 5858 5859 if (var.unusable) { 5860 memset(desc, 0, sizeof(*desc)); 5861 if (base3) 5862 *base3 = 0; 5863 return false; 5864 } 5865 5866 if (var.g) 5867 var.limit >>= 12; 5868 set_desc_limit(desc, var.limit); 5869 set_desc_base(desc, (unsigned long)var.base); 5870 #ifdef CONFIG_X86_64 5871 if (base3) 5872 *base3 = var.base >> 32; 5873 #endif 5874 desc->type = var.type; 5875 desc->s = var.s; 5876 desc->dpl = var.dpl; 5877 desc->p = var.present; 5878 desc->avl = var.avl; 5879 desc->l = var.l; 5880 desc->d = var.db; 5881 desc->g = var.g; 5882 5883 return true; 5884 } 5885 5886 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 5887 struct desc_struct *desc, u32 base3, 5888 int seg) 5889 { 5890 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5891 struct kvm_segment var; 5892 5893 var.selector = selector; 5894 var.base = get_desc_base(desc); 5895 #ifdef CONFIG_X86_64 5896 var.base |= ((u64)base3) << 32; 5897 #endif 5898 var.limit = get_desc_limit(desc); 5899 if (desc->g) 5900 var.limit = (var.limit << 12) | 0xfff; 5901 var.type = desc->type; 5902 var.dpl = desc->dpl; 5903 var.db = desc->d; 5904 var.s = desc->s; 5905 var.l = desc->l; 5906 var.g = desc->g; 5907 var.avl = desc->avl; 5908 var.present = desc->p; 5909 var.unusable = !var.present; 5910 var.padding = 0; 5911 5912 kvm_set_segment(vcpu, &var, seg); 5913 return; 5914 } 5915 5916 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 5917 u32 msr_index, u64 *pdata) 5918 { 5919 struct msr_data msr; 5920 int r; 5921 5922 msr.index = msr_index; 5923 msr.host_initiated = false; 5924 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); 5925 if (r) 5926 return r; 5927 5928 *pdata = msr.data; 5929 return 0; 5930 } 5931 5932 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 5933 u32 msr_index, u64 data) 5934 { 5935 struct msr_data msr; 5936 5937 msr.data = data; 5938 msr.index = msr_index; 5939 msr.host_initiated = false; 5940 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 5941 } 5942 5943 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 5944 { 5945 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5946 5947 return vcpu->arch.smbase; 5948 } 5949 5950 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 5951 { 5952 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5953 5954 vcpu->arch.smbase = smbase; 5955 } 5956 5957 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 5958 u32 pmc) 5959 { 5960 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); 5961 } 5962 5963 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 5964 u32 pmc, u64 *pdata) 5965 { 5966 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 5967 } 5968 5969 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 5970 { 5971 emul_to_vcpu(ctxt)->arch.halt_request = 1; 5972 } 5973 5974 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 5975 struct x86_instruction_info *info, 5976 enum x86_intercept_stage stage) 5977 { 5978 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 5979 } 5980 5981 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 5982 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit) 5983 { 5984 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit); 5985 } 5986 5987 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 5988 { 5989 return kvm_register_read(emul_to_vcpu(ctxt), reg); 5990 } 5991 5992 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 5993 { 5994 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 5995 } 5996 5997 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 5998 { 5999 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 6000 } 6001 6002 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6003 { 6004 return emul_to_vcpu(ctxt)->arch.hflags; 6005 } 6006 6007 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6008 { 6009 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6010 } 6011 6012 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6013 const char *smstate) 6014 { 6015 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6016 } 6017 6018 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6019 { 6020 kvm_smm_changed(emul_to_vcpu(ctxt)); 6021 } 6022 6023 static const struct x86_emulate_ops emulate_ops = { 6024 .read_gpr = emulator_read_gpr, 6025 .write_gpr = emulator_write_gpr, 6026 .read_std = emulator_read_std, 6027 .write_std = emulator_write_std, 6028 .read_phys = kvm_read_guest_phys_system, 6029 .fetch = kvm_fetch_guest_virt, 6030 .read_emulated = emulator_read_emulated, 6031 .write_emulated = emulator_write_emulated, 6032 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6033 .invlpg = emulator_invlpg, 6034 .pio_in_emulated = emulator_pio_in_emulated, 6035 .pio_out_emulated = emulator_pio_out_emulated, 6036 .get_segment = emulator_get_segment, 6037 .set_segment = emulator_set_segment, 6038 .get_cached_segment_base = emulator_get_cached_segment_base, 6039 .get_gdt = emulator_get_gdt, 6040 .get_idt = emulator_get_idt, 6041 .set_gdt = emulator_set_gdt, 6042 .set_idt = emulator_set_idt, 6043 .get_cr = emulator_get_cr, 6044 .set_cr = emulator_set_cr, 6045 .cpl = emulator_get_cpl, 6046 .get_dr = emulator_get_dr, 6047 .set_dr = emulator_set_dr, 6048 .get_smbase = emulator_get_smbase, 6049 .set_smbase = emulator_set_smbase, 6050 .set_msr = emulator_set_msr, 6051 .get_msr = emulator_get_msr, 6052 .check_pmc = emulator_check_pmc, 6053 .read_pmc = emulator_read_pmc, 6054 .halt = emulator_halt, 6055 .wbinvd = emulator_wbinvd, 6056 .fix_hypercall = emulator_fix_hypercall, 6057 .intercept = emulator_intercept, 6058 .get_cpuid = emulator_get_cpuid, 6059 .set_nmi_mask = emulator_set_nmi_mask, 6060 .get_hflags = emulator_get_hflags, 6061 .set_hflags = emulator_set_hflags, 6062 .pre_leave_smm = emulator_pre_leave_smm, 6063 .post_leave_smm = emulator_post_leave_smm, 6064 }; 6065 6066 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6067 { 6068 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 6069 /* 6070 * an sti; sti; sequence only disable interrupts for the first 6071 * instruction. So, if the last instruction, be it emulated or 6072 * not, left the system with the INT_STI flag enabled, it 6073 * means that the last instruction is an sti. We should not 6074 * leave the flag on in this case. The same goes for mov ss 6075 */ 6076 if (int_shadow & mask) 6077 mask = 0; 6078 if (unlikely(int_shadow || mask)) { 6079 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 6080 if (!mask) 6081 kvm_make_request(KVM_REQ_EVENT, vcpu); 6082 } 6083 } 6084 6085 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6086 { 6087 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6088 if (ctxt->exception.vector == PF_VECTOR) 6089 return kvm_propagate_fault(vcpu, &ctxt->exception); 6090 6091 if (ctxt->exception.error_code_valid) 6092 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6093 ctxt->exception.error_code); 6094 else 6095 kvm_queue_exception(vcpu, ctxt->exception.vector); 6096 return false; 6097 } 6098 6099 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6100 { 6101 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6102 int cs_db, cs_l; 6103 6104 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6105 6106 ctxt->eflags = kvm_get_rflags(vcpu); 6107 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6108 6109 ctxt->eip = kvm_rip_read(vcpu); 6110 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6111 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6112 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6113 cs_db ? X86EMUL_MODE_PROT32 : 6114 X86EMUL_MODE_PROT16; 6115 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6116 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6117 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6118 6119 init_decode_cache(ctxt); 6120 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6121 } 6122 6123 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6124 { 6125 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6126 int ret; 6127 6128 init_emulate_ctxt(vcpu); 6129 6130 ctxt->op_bytes = 2; 6131 ctxt->ad_bytes = 2; 6132 ctxt->_eip = ctxt->eip + inc_eip; 6133 ret = emulate_int_real(ctxt, irq); 6134 6135 if (ret != X86EMUL_CONTINUE) 6136 return EMULATE_FAIL; 6137 6138 ctxt->eip = ctxt->_eip; 6139 kvm_rip_write(vcpu, ctxt->eip); 6140 kvm_set_rflags(vcpu, ctxt->eflags); 6141 6142 return EMULATE_DONE; 6143 } 6144 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6145 6146 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6147 { 6148 int r = EMULATE_DONE; 6149 6150 ++vcpu->stat.insn_emulation_fail; 6151 trace_kvm_emulate_insn_failed(vcpu); 6152 6153 if (emulation_type & EMULTYPE_NO_UD_ON_FAIL) 6154 return EMULATE_FAIL; 6155 6156 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 6157 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6158 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6159 vcpu->run->internal.ndata = 0; 6160 r = EMULATE_USER_EXIT; 6161 } 6162 6163 kvm_queue_exception(vcpu, UD_VECTOR); 6164 6165 return r; 6166 } 6167 6168 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 6169 bool write_fault_to_shadow_pgtable, 6170 int emulation_type) 6171 { 6172 gpa_t gpa = cr2; 6173 kvm_pfn_t pfn; 6174 6175 if (!(emulation_type & EMULTYPE_ALLOW_RETRY)) 6176 return false; 6177 6178 if (WARN_ON_ONCE(is_guest_mode(vcpu))) 6179 return false; 6180 6181 if (!vcpu->arch.mmu->direct_map) { 6182 /* 6183 * Write permission should be allowed since only 6184 * write access need to be emulated. 6185 */ 6186 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 6187 6188 /* 6189 * If the mapping is invalid in guest, let cpu retry 6190 * it to generate fault. 6191 */ 6192 if (gpa == UNMAPPED_GVA) 6193 return true; 6194 } 6195 6196 /* 6197 * Do not retry the unhandleable instruction if it faults on the 6198 * readonly host memory, otherwise it will goto a infinite loop: 6199 * retry instruction -> write #PF -> emulation fail -> retry 6200 * instruction -> ... 6201 */ 6202 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 6203 6204 /* 6205 * If the instruction failed on the error pfn, it can not be fixed, 6206 * report the error to userspace. 6207 */ 6208 if (is_error_noslot_pfn(pfn)) 6209 return false; 6210 6211 kvm_release_pfn_clean(pfn); 6212 6213 /* The instructions are well-emulated on direct mmu. */ 6214 if (vcpu->arch.mmu->direct_map) { 6215 unsigned int indirect_shadow_pages; 6216 6217 spin_lock(&vcpu->kvm->mmu_lock); 6218 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 6219 spin_unlock(&vcpu->kvm->mmu_lock); 6220 6221 if (indirect_shadow_pages) 6222 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6223 6224 return true; 6225 } 6226 6227 /* 6228 * if emulation was due to access to shadowed page table 6229 * and it failed try to unshadow page and re-enter the 6230 * guest to let CPU execute the instruction. 6231 */ 6232 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6233 6234 /* 6235 * If the access faults on its page table, it can not 6236 * be fixed by unprotecting shadow page and it should 6237 * be reported to userspace. 6238 */ 6239 return !write_fault_to_shadow_pgtable; 6240 } 6241 6242 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 6243 unsigned long cr2, int emulation_type) 6244 { 6245 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6246 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 6247 6248 last_retry_eip = vcpu->arch.last_retry_eip; 6249 last_retry_addr = vcpu->arch.last_retry_addr; 6250 6251 /* 6252 * If the emulation is caused by #PF and it is non-page_table 6253 * writing instruction, it means the VM-EXIT is caused by shadow 6254 * page protected, we can zap the shadow page and retry this 6255 * instruction directly. 6256 * 6257 * Note: if the guest uses a non-page-table modifying instruction 6258 * on the PDE that points to the instruction, then we will unmap 6259 * the instruction and go to an infinite loop. So, we cache the 6260 * last retried eip and the last fault address, if we meet the eip 6261 * and the address again, we can break out of the potential infinite 6262 * loop. 6263 */ 6264 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 6265 6266 if (!(emulation_type & EMULTYPE_ALLOW_RETRY)) 6267 return false; 6268 6269 if (WARN_ON_ONCE(is_guest_mode(vcpu))) 6270 return false; 6271 6272 if (x86_page_table_writing_insn(ctxt)) 6273 return false; 6274 6275 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 6276 return false; 6277 6278 vcpu->arch.last_retry_eip = ctxt->eip; 6279 vcpu->arch.last_retry_addr = cr2; 6280 6281 if (!vcpu->arch.mmu->direct_map) 6282 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 6283 6284 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6285 6286 return true; 6287 } 6288 6289 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 6290 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 6291 6292 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 6293 { 6294 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 6295 /* This is a good place to trace that we are exiting SMM. */ 6296 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 6297 6298 /* Process a latched INIT or SMI, if any. */ 6299 kvm_make_request(KVM_REQ_EVENT, vcpu); 6300 } 6301 6302 kvm_mmu_reset_context(vcpu); 6303 } 6304 6305 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 6306 unsigned long *db) 6307 { 6308 u32 dr6 = 0; 6309 int i; 6310 u32 enable, rwlen; 6311 6312 enable = dr7; 6313 rwlen = dr7 >> 16; 6314 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 6315 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 6316 dr6 |= (1 << i); 6317 return dr6; 6318 } 6319 6320 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r) 6321 { 6322 struct kvm_run *kvm_run = vcpu->run; 6323 6324 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 6325 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 6326 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 6327 kvm_run->debug.arch.exception = DB_VECTOR; 6328 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6329 *r = EMULATE_USER_EXIT; 6330 } else { 6331 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 6332 } 6333 } 6334 6335 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 6336 { 6337 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 6338 int r = EMULATE_DONE; 6339 6340 kvm_x86_ops->skip_emulated_instruction(vcpu); 6341 6342 /* 6343 * rflags is the old, "raw" value of the flags. The new value has 6344 * not been saved yet. 6345 * 6346 * This is correct even for TF set by the guest, because "the 6347 * processor will not generate this exception after the instruction 6348 * that sets the TF flag". 6349 */ 6350 if (unlikely(rflags & X86_EFLAGS_TF)) 6351 kvm_vcpu_do_singlestep(vcpu, &r); 6352 return r == EMULATE_DONE; 6353 } 6354 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 6355 6356 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 6357 { 6358 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 6359 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 6360 struct kvm_run *kvm_run = vcpu->run; 6361 unsigned long eip = kvm_get_linear_rip(vcpu); 6362 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6363 vcpu->arch.guest_debug_dr7, 6364 vcpu->arch.eff_db); 6365 6366 if (dr6 != 0) { 6367 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 6368 kvm_run->debug.arch.pc = eip; 6369 kvm_run->debug.arch.exception = DB_VECTOR; 6370 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6371 *r = EMULATE_USER_EXIT; 6372 return true; 6373 } 6374 } 6375 6376 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 6377 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 6378 unsigned long eip = kvm_get_linear_rip(vcpu); 6379 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6380 vcpu->arch.dr7, 6381 vcpu->arch.db); 6382 6383 if (dr6 != 0) { 6384 vcpu->arch.dr6 &= ~15; 6385 vcpu->arch.dr6 |= dr6 | DR6_RTM; 6386 kvm_queue_exception(vcpu, DB_VECTOR); 6387 *r = EMULATE_DONE; 6388 return true; 6389 } 6390 } 6391 6392 return false; 6393 } 6394 6395 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 6396 { 6397 switch (ctxt->opcode_len) { 6398 case 1: 6399 switch (ctxt->b) { 6400 case 0xe4: /* IN */ 6401 case 0xe5: 6402 case 0xec: 6403 case 0xed: 6404 case 0xe6: /* OUT */ 6405 case 0xe7: 6406 case 0xee: 6407 case 0xef: 6408 case 0x6c: /* INS */ 6409 case 0x6d: 6410 case 0x6e: /* OUTS */ 6411 case 0x6f: 6412 return true; 6413 } 6414 break; 6415 case 2: 6416 switch (ctxt->b) { 6417 case 0x33: /* RDPMC */ 6418 return true; 6419 } 6420 break; 6421 } 6422 6423 return false; 6424 } 6425 6426 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 6427 unsigned long cr2, 6428 int emulation_type, 6429 void *insn, 6430 int insn_len) 6431 { 6432 int r; 6433 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6434 bool writeback = true; 6435 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 6436 6437 vcpu->arch.l1tf_flush_l1d = true; 6438 6439 /* 6440 * Clear write_fault_to_shadow_pgtable here to ensure it is 6441 * never reused. 6442 */ 6443 vcpu->arch.write_fault_to_shadow_pgtable = false; 6444 kvm_clear_exception_queue(vcpu); 6445 6446 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 6447 init_emulate_ctxt(vcpu); 6448 6449 /* 6450 * We will reenter on the same instruction since 6451 * we do not set complete_userspace_io. This does not 6452 * handle watchpoints yet, those would be handled in 6453 * the emulate_ops. 6454 */ 6455 if (!(emulation_type & EMULTYPE_SKIP) && 6456 kvm_vcpu_check_breakpoint(vcpu, &r)) 6457 return r; 6458 6459 ctxt->interruptibility = 0; 6460 ctxt->have_exception = false; 6461 ctxt->exception.vector = -1; 6462 ctxt->perm_ok = false; 6463 6464 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 6465 6466 r = x86_decode_insn(ctxt, insn, insn_len); 6467 6468 trace_kvm_emulate_insn_start(vcpu); 6469 ++vcpu->stat.insn_emulation; 6470 if (r != EMULATION_OK) { 6471 if (emulation_type & EMULTYPE_TRAP_UD) 6472 return EMULATE_FAIL; 6473 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 6474 emulation_type)) 6475 return EMULATE_DONE; 6476 if (ctxt->have_exception && inject_emulated_exception(vcpu)) 6477 return EMULATE_DONE; 6478 if (emulation_type & EMULTYPE_SKIP) 6479 return EMULATE_FAIL; 6480 return handle_emulation_failure(vcpu, emulation_type); 6481 } 6482 } 6483 6484 if ((emulation_type & EMULTYPE_VMWARE) && 6485 !is_vmware_backdoor_opcode(ctxt)) 6486 return EMULATE_FAIL; 6487 6488 if (emulation_type & EMULTYPE_SKIP) { 6489 kvm_rip_write(vcpu, ctxt->_eip); 6490 if (ctxt->eflags & X86_EFLAGS_RF) 6491 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 6492 return EMULATE_DONE; 6493 } 6494 6495 if (retry_instruction(ctxt, cr2, emulation_type)) 6496 return EMULATE_DONE; 6497 6498 /* this is needed for vmware backdoor interface to work since it 6499 changes registers values during IO operation */ 6500 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 6501 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6502 emulator_invalidate_register_cache(ctxt); 6503 } 6504 6505 restart: 6506 /* Save the faulting GPA (cr2) in the address field */ 6507 ctxt->exception.address = cr2; 6508 6509 r = x86_emulate_insn(ctxt); 6510 6511 if (r == EMULATION_INTERCEPTED) 6512 return EMULATE_DONE; 6513 6514 if (r == EMULATION_FAILED) { 6515 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 6516 emulation_type)) 6517 return EMULATE_DONE; 6518 6519 return handle_emulation_failure(vcpu, emulation_type); 6520 } 6521 6522 if (ctxt->have_exception) { 6523 r = EMULATE_DONE; 6524 if (inject_emulated_exception(vcpu)) 6525 return r; 6526 } else if (vcpu->arch.pio.count) { 6527 if (!vcpu->arch.pio.in) { 6528 /* FIXME: return into emulator if single-stepping. */ 6529 vcpu->arch.pio.count = 0; 6530 } else { 6531 writeback = false; 6532 vcpu->arch.complete_userspace_io = complete_emulated_pio; 6533 } 6534 r = EMULATE_USER_EXIT; 6535 } else if (vcpu->mmio_needed) { 6536 if (!vcpu->mmio_is_write) 6537 writeback = false; 6538 r = EMULATE_USER_EXIT; 6539 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6540 } else if (r == EMULATION_RESTART) 6541 goto restart; 6542 else 6543 r = EMULATE_DONE; 6544 6545 if (writeback) { 6546 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 6547 toggle_interruptibility(vcpu, ctxt->interruptibility); 6548 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6549 kvm_rip_write(vcpu, ctxt->eip); 6550 if (r == EMULATE_DONE && ctxt->tf) 6551 kvm_vcpu_do_singlestep(vcpu, &r); 6552 if (!ctxt->have_exception || 6553 exception_type(ctxt->exception.vector) == EXCPT_TRAP) 6554 __kvm_set_rflags(vcpu, ctxt->eflags); 6555 6556 /* 6557 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 6558 * do nothing, and it will be requested again as soon as 6559 * the shadow expires. But we still need to check here, 6560 * because POPF has no interrupt shadow. 6561 */ 6562 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 6563 kvm_make_request(KVM_REQ_EVENT, vcpu); 6564 } else 6565 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 6566 6567 return r; 6568 } 6569 6570 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 6571 { 6572 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 6573 } 6574 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 6575 6576 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 6577 void *insn, int insn_len) 6578 { 6579 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 6580 } 6581 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 6582 6583 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 6584 { 6585 vcpu->arch.pio.count = 0; 6586 return 1; 6587 } 6588 6589 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 6590 { 6591 vcpu->arch.pio.count = 0; 6592 6593 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 6594 return 1; 6595 6596 return kvm_skip_emulated_instruction(vcpu); 6597 } 6598 6599 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 6600 unsigned short port) 6601 { 6602 unsigned long val = kvm_rax_read(vcpu); 6603 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 6604 size, port, &val, 1); 6605 if (ret) 6606 return ret; 6607 6608 /* 6609 * Workaround userspace that relies on old KVM behavior of %rip being 6610 * incremented prior to exiting to userspace to handle "OUT 0x7e". 6611 */ 6612 if (port == 0x7e && 6613 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 6614 vcpu->arch.complete_userspace_io = 6615 complete_fast_pio_out_port_0x7e; 6616 kvm_skip_emulated_instruction(vcpu); 6617 } else { 6618 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 6619 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 6620 } 6621 return 0; 6622 } 6623 6624 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 6625 { 6626 unsigned long val; 6627 6628 /* We should only ever be called with arch.pio.count equal to 1 */ 6629 BUG_ON(vcpu->arch.pio.count != 1); 6630 6631 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 6632 vcpu->arch.pio.count = 0; 6633 return 1; 6634 } 6635 6636 /* For size less than 4 we merge, else we zero extend */ 6637 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 6638 6639 /* 6640 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform 6641 * the copy and tracing 6642 */ 6643 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, 6644 vcpu->arch.pio.port, &val, 1); 6645 kvm_rax_write(vcpu, val); 6646 6647 return kvm_skip_emulated_instruction(vcpu); 6648 } 6649 6650 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 6651 unsigned short port) 6652 { 6653 unsigned long val; 6654 int ret; 6655 6656 /* For size less than 4 we merge, else we zero extend */ 6657 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 6658 6659 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, 6660 &val, 1); 6661 if (ret) { 6662 kvm_rax_write(vcpu, val); 6663 return ret; 6664 } 6665 6666 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 6667 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 6668 6669 return 0; 6670 } 6671 6672 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 6673 { 6674 int ret; 6675 6676 if (in) 6677 ret = kvm_fast_pio_in(vcpu, size, port); 6678 else 6679 ret = kvm_fast_pio_out(vcpu, size, port); 6680 return ret && kvm_skip_emulated_instruction(vcpu); 6681 } 6682 EXPORT_SYMBOL_GPL(kvm_fast_pio); 6683 6684 static int kvmclock_cpu_down_prep(unsigned int cpu) 6685 { 6686 __this_cpu_write(cpu_tsc_khz, 0); 6687 return 0; 6688 } 6689 6690 static void tsc_khz_changed(void *data) 6691 { 6692 struct cpufreq_freqs *freq = data; 6693 unsigned long khz = 0; 6694 6695 if (data) 6696 khz = freq->new; 6697 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 6698 khz = cpufreq_quick_get(raw_smp_processor_id()); 6699 if (!khz) 6700 khz = tsc_khz; 6701 __this_cpu_write(cpu_tsc_khz, khz); 6702 } 6703 6704 #ifdef CONFIG_X86_64 6705 static void kvm_hyperv_tsc_notifier(void) 6706 { 6707 struct kvm *kvm; 6708 struct kvm_vcpu *vcpu; 6709 int cpu; 6710 6711 spin_lock(&kvm_lock); 6712 list_for_each_entry(kvm, &vm_list, vm_list) 6713 kvm_make_mclock_inprogress_request(kvm); 6714 6715 hyperv_stop_tsc_emulation(); 6716 6717 /* TSC frequency always matches when on Hyper-V */ 6718 for_each_present_cpu(cpu) 6719 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 6720 kvm_max_guest_tsc_khz = tsc_khz; 6721 6722 list_for_each_entry(kvm, &vm_list, vm_list) { 6723 struct kvm_arch *ka = &kvm->arch; 6724 6725 spin_lock(&ka->pvclock_gtod_sync_lock); 6726 6727 pvclock_update_vm_gtod_copy(kvm); 6728 6729 kvm_for_each_vcpu(cpu, vcpu, kvm) 6730 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6731 6732 kvm_for_each_vcpu(cpu, vcpu, kvm) 6733 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 6734 6735 spin_unlock(&ka->pvclock_gtod_sync_lock); 6736 } 6737 spin_unlock(&kvm_lock); 6738 } 6739 #endif 6740 6741 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 6742 { 6743 struct kvm *kvm; 6744 struct kvm_vcpu *vcpu; 6745 int i, send_ipi = 0; 6746 6747 /* 6748 * We allow guests to temporarily run on slowing clocks, 6749 * provided we notify them after, or to run on accelerating 6750 * clocks, provided we notify them before. Thus time never 6751 * goes backwards. 6752 * 6753 * However, we have a problem. We can't atomically update 6754 * the frequency of a given CPU from this function; it is 6755 * merely a notifier, which can be called from any CPU. 6756 * Changing the TSC frequency at arbitrary points in time 6757 * requires a recomputation of local variables related to 6758 * the TSC for each VCPU. We must flag these local variables 6759 * to be updated and be sure the update takes place with the 6760 * new frequency before any guests proceed. 6761 * 6762 * Unfortunately, the combination of hotplug CPU and frequency 6763 * change creates an intractable locking scenario; the order 6764 * of when these callouts happen is undefined with respect to 6765 * CPU hotplug, and they can race with each other. As such, 6766 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 6767 * undefined; you can actually have a CPU frequency change take 6768 * place in between the computation of X and the setting of the 6769 * variable. To protect against this problem, all updates of 6770 * the per_cpu tsc_khz variable are done in an interrupt 6771 * protected IPI, and all callers wishing to update the value 6772 * must wait for a synchronous IPI to complete (which is trivial 6773 * if the caller is on the CPU already). This establishes the 6774 * necessary total order on variable updates. 6775 * 6776 * Note that because a guest time update may take place 6777 * anytime after the setting of the VCPU's request bit, the 6778 * correct TSC value must be set before the request. However, 6779 * to ensure the update actually makes it to any guest which 6780 * starts running in hardware virtualization between the set 6781 * and the acquisition of the spinlock, we must also ping the 6782 * CPU after setting the request bit. 6783 * 6784 */ 6785 6786 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 6787 6788 spin_lock(&kvm_lock); 6789 list_for_each_entry(kvm, &vm_list, vm_list) { 6790 kvm_for_each_vcpu(i, vcpu, kvm) { 6791 if (vcpu->cpu != cpu) 6792 continue; 6793 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6794 if (vcpu->cpu != smp_processor_id()) 6795 send_ipi = 1; 6796 } 6797 } 6798 spin_unlock(&kvm_lock); 6799 6800 if (freq->old < freq->new && send_ipi) { 6801 /* 6802 * We upscale the frequency. Must make the guest 6803 * doesn't see old kvmclock values while running with 6804 * the new frequency, otherwise we risk the guest sees 6805 * time go backwards. 6806 * 6807 * In case we update the frequency for another cpu 6808 * (which might be in guest context) send an interrupt 6809 * to kick the cpu out of guest context. Next time 6810 * guest context is entered kvmclock will be updated, 6811 * so the guest will not see stale values. 6812 */ 6813 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 6814 } 6815 } 6816 6817 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 6818 void *data) 6819 { 6820 struct cpufreq_freqs *freq = data; 6821 int cpu; 6822 6823 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 6824 return 0; 6825 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 6826 return 0; 6827 6828 for_each_cpu(cpu, freq->policy->cpus) 6829 __kvmclock_cpufreq_notifier(freq, cpu); 6830 6831 return 0; 6832 } 6833 6834 static struct notifier_block kvmclock_cpufreq_notifier_block = { 6835 .notifier_call = kvmclock_cpufreq_notifier 6836 }; 6837 6838 static int kvmclock_cpu_online(unsigned int cpu) 6839 { 6840 tsc_khz_changed(NULL); 6841 return 0; 6842 } 6843 6844 static void kvm_timer_init(void) 6845 { 6846 max_tsc_khz = tsc_khz; 6847 6848 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 6849 #ifdef CONFIG_CPU_FREQ 6850 struct cpufreq_policy policy; 6851 int cpu; 6852 6853 memset(&policy, 0, sizeof(policy)); 6854 cpu = get_cpu(); 6855 cpufreq_get_policy(&policy, cpu); 6856 if (policy.cpuinfo.max_freq) 6857 max_tsc_khz = policy.cpuinfo.max_freq; 6858 put_cpu(); 6859 #endif 6860 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 6861 CPUFREQ_TRANSITION_NOTIFIER); 6862 } 6863 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 6864 6865 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 6866 kvmclock_cpu_online, kvmclock_cpu_down_prep); 6867 } 6868 6869 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 6870 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 6871 6872 int kvm_is_in_guest(void) 6873 { 6874 return __this_cpu_read(current_vcpu) != NULL; 6875 } 6876 6877 static int kvm_is_user_mode(void) 6878 { 6879 int user_mode = 3; 6880 6881 if (__this_cpu_read(current_vcpu)) 6882 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 6883 6884 return user_mode != 0; 6885 } 6886 6887 static unsigned long kvm_get_guest_ip(void) 6888 { 6889 unsigned long ip = 0; 6890 6891 if (__this_cpu_read(current_vcpu)) 6892 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 6893 6894 return ip; 6895 } 6896 6897 static void kvm_handle_intel_pt_intr(void) 6898 { 6899 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 6900 6901 kvm_make_request(KVM_REQ_PMI, vcpu); 6902 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 6903 (unsigned long *)&vcpu->arch.pmu.global_status); 6904 } 6905 6906 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6907 .is_in_guest = kvm_is_in_guest, 6908 .is_user_mode = kvm_is_user_mode, 6909 .get_guest_ip = kvm_get_guest_ip, 6910 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 6911 }; 6912 6913 static void kvm_set_mmio_spte_mask(void) 6914 { 6915 u64 mask; 6916 int maxphyaddr = boot_cpu_data.x86_phys_bits; 6917 6918 /* 6919 * Set the reserved bits and the present bit of an paging-structure 6920 * entry to generate page fault with PFER.RSV = 1. 6921 */ 6922 6923 /* 6924 * Mask the uppermost physical address bit, which would be reserved as 6925 * long as the supported physical address width is less than 52. 6926 */ 6927 mask = 1ull << 51; 6928 6929 /* Set the present bit. */ 6930 mask |= 1ull; 6931 6932 /* 6933 * If reserved bit is not supported, clear the present bit to disable 6934 * mmio page fault. 6935 */ 6936 if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52) 6937 mask &= ~1ull; 6938 6939 kvm_mmu_set_mmio_spte_mask(mask, mask); 6940 } 6941 6942 #ifdef CONFIG_X86_64 6943 static void pvclock_gtod_update_fn(struct work_struct *work) 6944 { 6945 struct kvm *kvm; 6946 6947 struct kvm_vcpu *vcpu; 6948 int i; 6949 6950 spin_lock(&kvm_lock); 6951 list_for_each_entry(kvm, &vm_list, vm_list) 6952 kvm_for_each_vcpu(i, vcpu, kvm) 6953 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 6954 atomic_set(&kvm_guest_has_master_clock, 0); 6955 spin_unlock(&kvm_lock); 6956 } 6957 6958 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 6959 6960 /* 6961 * Notification about pvclock gtod data update. 6962 */ 6963 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 6964 void *priv) 6965 { 6966 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 6967 struct timekeeper *tk = priv; 6968 6969 update_pvclock_gtod(tk); 6970 6971 /* disable master clock if host does not trust, or does not 6972 * use, TSC based clocksource. 6973 */ 6974 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 6975 atomic_read(&kvm_guest_has_master_clock) != 0) 6976 queue_work(system_long_wq, &pvclock_gtod_work); 6977 6978 return 0; 6979 } 6980 6981 static struct notifier_block pvclock_gtod_notifier = { 6982 .notifier_call = pvclock_gtod_notify, 6983 }; 6984 #endif 6985 6986 int kvm_arch_init(void *opaque) 6987 { 6988 int r; 6989 struct kvm_x86_ops *ops = opaque; 6990 6991 if (kvm_x86_ops) { 6992 printk(KERN_ERR "kvm: already loaded the other module\n"); 6993 r = -EEXIST; 6994 goto out; 6995 } 6996 6997 if (!ops->cpu_has_kvm_support()) { 6998 printk(KERN_ERR "kvm: no hardware support\n"); 6999 r = -EOPNOTSUPP; 7000 goto out; 7001 } 7002 if (ops->disabled_by_bios()) { 7003 printk(KERN_ERR "kvm: disabled by bios\n"); 7004 r = -EOPNOTSUPP; 7005 goto out; 7006 } 7007 7008 /* 7009 * KVM explicitly assumes that the guest has an FPU and 7010 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7011 * vCPU's FPU state as a fxregs_state struct. 7012 */ 7013 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7014 printk(KERN_ERR "kvm: inadequate fpu\n"); 7015 r = -EOPNOTSUPP; 7016 goto out; 7017 } 7018 7019 r = -ENOMEM; 7020 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7021 __alignof__(struct fpu), SLAB_ACCOUNT, 7022 NULL); 7023 if (!x86_fpu_cache) { 7024 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7025 goto out; 7026 } 7027 7028 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 7029 if (!shared_msrs) { 7030 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 7031 goto out_free_x86_fpu_cache; 7032 } 7033 7034 r = kvm_mmu_module_init(); 7035 if (r) 7036 goto out_free_percpu; 7037 7038 kvm_set_mmio_spte_mask(); 7039 7040 kvm_x86_ops = ops; 7041 7042 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7043 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7044 PT_PRESENT_MASK, 0, sme_me_mask); 7045 kvm_timer_init(); 7046 7047 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7048 7049 if (boot_cpu_has(X86_FEATURE_XSAVE)) 7050 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7051 7052 kvm_lapic_init(); 7053 #ifdef CONFIG_X86_64 7054 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7055 7056 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7057 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7058 #endif 7059 7060 return 0; 7061 7062 out_free_percpu: 7063 free_percpu(shared_msrs); 7064 out_free_x86_fpu_cache: 7065 kmem_cache_destroy(x86_fpu_cache); 7066 out: 7067 return r; 7068 } 7069 7070 void kvm_arch_exit(void) 7071 { 7072 #ifdef CONFIG_X86_64 7073 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7074 clear_hv_tscchange_cb(); 7075 #endif 7076 kvm_lapic_exit(); 7077 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7078 7079 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7080 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7081 CPUFREQ_TRANSITION_NOTIFIER); 7082 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7083 #ifdef CONFIG_X86_64 7084 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7085 #endif 7086 kvm_x86_ops = NULL; 7087 kvm_mmu_module_exit(); 7088 free_percpu(shared_msrs); 7089 kmem_cache_destroy(x86_fpu_cache); 7090 } 7091 7092 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7093 { 7094 ++vcpu->stat.halt_exits; 7095 if (lapic_in_kernel(vcpu)) { 7096 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7097 return 1; 7098 } else { 7099 vcpu->run->exit_reason = KVM_EXIT_HLT; 7100 return 0; 7101 } 7102 } 7103 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7104 7105 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7106 { 7107 int ret = kvm_skip_emulated_instruction(vcpu); 7108 /* 7109 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7110 * KVM_EXIT_DEBUG here. 7111 */ 7112 return kvm_vcpu_halt(vcpu) && ret; 7113 } 7114 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7115 7116 #ifdef CONFIG_X86_64 7117 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7118 unsigned long clock_type) 7119 { 7120 struct kvm_clock_pairing clock_pairing; 7121 struct timespec64 ts; 7122 u64 cycle; 7123 int ret; 7124 7125 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7126 return -KVM_EOPNOTSUPP; 7127 7128 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7129 return -KVM_EOPNOTSUPP; 7130 7131 clock_pairing.sec = ts.tv_sec; 7132 clock_pairing.nsec = ts.tv_nsec; 7133 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7134 clock_pairing.flags = 0; 7135 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 7136 7137 ret = 0; 7138 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 7139 sizeof(struct kvm_clock_pairing))) 7140 ret = -KVM_EFAULT; 7141 7142 return ret; 7143 } 7144 #endif 7145 7146 /* 7147 * kvm_pv_kick_cpu_op: Kick a vcpu. 7148 * 7149 * @apicid - apicid of vcpu to be kicked. 7150 */ 7151 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 7152 { 7153 struct kvm_lapic_irq lapic_irq; 7154 7155 lapic_irq.shorthand = 0; 7156 lapic_irq.dest_mode = 0; 7157 lapic_irq.level = 0; 7158 lapic_irq.dest_id = apicid; 7159 lapic_irq.msi_redir_hint = false; 7160 7161 lapic_irq.delivery_mode = APIC_DM_REMRD; 7162 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 7163 } 7164 7165 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) 7166 { 7167 if (!lapic_in_kernel(vcpu)) { 7168 WARN_ON_ONCE(vcpu->arch.apicv_active); 7169 return; 7170 } 7171 if (!vcpu->arch.apicv_active) 7172 return; 7173 7174 vcpu->arch.apicv_active = false; 7175 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); 7176 } 7177 7178 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 7179 { 7180 unsigned long nr, a0, a1, a2, a3, ret; 7181 int op_64_bit; 7182 7183 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 7184 return kvm_hv_hypercall(vcpu); 7185 7186 nr = kvm_rax_read(vcpu); 7187 a0 = kvm_rbx_read(vcpu); 7188 a1 = kvm_rcx_read(vcpu); 7189 a2 = kvm_rdx_read(vcpu); 7190 a3 = kvm_rsi_read(vcpu); 7191 7192 trace_kvm_hypercall(nr, a0, a1, a2, a3); 7193 7194 op_64_bit = is_64_bit_mode(vcpu); 7195 if (!op_64_bit) { 7196 nr &= 0xFFFFFFFF; 7197 a0 &= 0xFFFFFFFF; 7198 a1 &= 0xFFFFFFFF; 7199 a2 &= 0xFFFFFFFF; 7200 a3 &= 0xFFFFFFFF; 7201 } 7202 7203 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 7204 ret = -KVM_EPERM; 7205 goto out; 7206 } 7207 7208 switch (nr) { 7209 case KVM_HC_VAPIC_POLL_IRQ: 7210 ret = 0; 7211 break; 7212 case KVM_HC_KICK_CPU: 7213 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 7214 ret = 0; 7215 break; 7216 #ifdef CONFIG_X86_64 7217 case KVM_HC_CLOCK_PAIRING: 7218 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 7219 break; 7220 #endif 7221 case KVM_HC_SEND_IPI: 7222 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 7223 break; 7224 default: 7225 ret = -KVM_ENOSYS; 7226 break; 7227 } 7228 out: 7229 if (!op_64_bit) 7230 ret = (u32)ret; 7231 kvm_rax_write(vcpu, ret); 7232 7233 ++vcpu->stat.hypercalls; 7234 return kvm_skip_emulated_instruction(vcpu); 7235 } 7236 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 7237 7238 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 7239 { 7240 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7241 char instruction[3]; 7242 unsigned long rip = kvm_rip_read(vcpu); 7243 7244 kvm_x86_ops->patch_hypercall(vcpu, instruction); 7245 7246 return emulator_write_emulated(ctxt, rip, instruction, 3, 7247 &ctxt->exception); 7248 } 7249 7250 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 7251 { 7252 return vcpu->run->request_interrupt_window && 7253 likely(!pic_in_kernel(vcpu->kvm)); 7254 } 7255 7256 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 7257 { 7258 struct kvm_run *kvm_run = vcpu->run; 7259 7260 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 7261 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 7262 kvm_run->cr8 = kvm_get_cr8(vcpu); 7263 kvm_run->apic_base = kvm_get_apic_base(vcpu); 7264 kvm_run->ready_for_interrupt_injection = 7265 pic_in_kernel(vcpu->kvm) || 7266 kvm_vcpu_ready_for_interrupt_injection(vcpu); 7267 } 7268 7269 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 7270 { 7271 int max_irr, tpr; 7272 7273 if (!kvm_x86_ops->update_cr8_intercept) 7274 return; 7275 7276 if (!lapic_in_kernel(vcpu)) 7277 return; 7278 7279 if (vcpu->arch.apicv_active) 7280 return; 7281 7282 if (!vcpu->arch.apic->vapic_addr) 7283 max_irr = kvm_lapic_find_highest_irr(vcpu); 7284 else 7285 max_irr = -1; 7286 7287 if (max_irr != -1) 7288 max_irr >>= 4; 7289 7290 tpr = kvm_lapic_get_cr8(vcpu); 7291 7292 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 7293 } 7294 7295 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 7296 { 7297 int r; 7298 7299 /* try to reinject previous events if any */ 7300 7301 if (vcpu->arch.exception.injected) 7302 kvm_x86_ops->queue_exception(vcpu); 7303 /* 7304 * Do not inject an NMI or interrupt if there is a pending 7305 * exception. Exceptions and interrupts are recognized at 7306 * instruction boundaries, i.e. the start of an instruction. 7307 * Trap-like exceptions, e.g. #DB, have higher priority than 7308 * NMIs and interrupts, i.e. traps are recognized before an 7309 * NMI/interrupt that's pending on the same instruction. 7310 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 7311 * priority, but are only generated (pended) during instruction 7312 * execution, i.e. a pending fault-like exception means the 7313 * fault occurred on the *previous* instruction and must be 7314 * serviced prior to recognizing any new events in order to 7315 * fully complete the previous instruction. 7316 */ 7317 else if (!vcpu->arch.exception.pending) { 7318 if (vcpu->arch.nmi_injected) 7319 kvm_x86_ops->set_nmi(vcpu); 7320 else if (vcpu->arch.interrupt.injected) 7321 kvm_x86_ops->set_irq(vcpu); 7322 } 7323 7324 /* 7325 * Call check_nested_events() even if we reinjected a previous event 7326 * in order for caller to determine if it should require immediate-exit 7327 * from L2 to L1 due to pending L1 events which require exit 7328 * from L2 to L1. 7329 */ 7330 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 7331 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 7332 if (r != 0) 7333 return r; 7334 } 7335 7336 /* try to inject new event if pending */ 7337 if (vcpu->arch.exception.pending) { 7338 trace_kvm_inj_exception(vcpu->arch.exception.nr, 7339 vcpu->arch.exception.has_error_code, 7340 vcpu->arch.exception.error_code); 7341 7342 WARN_ON_ONCE(vcpu->arch.exception.injected); 7343 vcpu->arch.exception.pending = false; 7344 vcpu->arch.exception.injected = true; 7345 7346 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 7347 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 7348 X86_EFLAGS_RF); 7349 7350 if (vcpu->arch.exception.nr == DB_VECTOR) { 7351 /* 7352 * This code assumes that nSVM doesn't use 7353 * check_nested_events(). If it does, the 7354 * DR6/DR7 changes should happen before L1 7355 * gets a #VMEXIT for an intercepted #DB in 7356 * L2. (Under VMX, on the other hand, the 7357 * DR6/DR7 changes should not happen in the 7358 * event of a VM-exit to L1 for an intercepted 7359 * #DB in L2.) 7360 */ 7361 kvm_deliver_exception_payload(vcpu); 7362 if (vcpu->arch.dr7 & DR7_GD) { 7363 vcpu->arch.dr7 &= ~DR7_GD; 7364 kvm_update_dr7(vcpu); 7365 } 7366 } 7367 7368 kvm_x86_ops->queue_exception(vcpu); 7369 } 7370 7371 /* Don't consider new event if we re-injected an event */ 7372 if (kvm_event_needs_reinjection(vcpu)) 7373 return 0; 7374 7375 if (vcpu->arch.smi_pending && !is_smm(vcpu) && 7376 kvm_x86_ops->smi_allowed(vcpu)) { 7377 vcpu->arch.smi_pending = false; 7378 ++vcpu->arch.smi_count; 7379 enter_smm(vcpu); 7380 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { 7381 --vcpu->arch.nmi_pending; 7382 vcpu->arch.nmi_injected = true; 7383 kvm_x86_ops->set_nmi(vcpu); 7384 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 7385 /* 7386 * Because interrupts can be injected asynchronously, we are 7387 * calling check_nested_events again here to avoid a race condition. 7388 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 7389 * proposal and current concerns. Perhaps we should be setting 7390 * KVM_REQ_EVENT only on certain events and not unconditionally? 7391 */ 7392 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 7393 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 7394 if (r != 0) 7395 return r; 7396 } 7397 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 7398 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 7399 false); 7400 kvm_x86_ops->set_irq(vcpu); 7401 } 7402 } 7403 7404 return 0; 7405 } 7406 7407 static void process_nmi(struct kvm_vcpu *vcpu) 7408 { 7409 unsigned limit = 2; 7410 7411 /* 7412 * x86 is limited to one NMI running, and one NMI pending after it. 7413 * If an NMI is already in progress, limit further NMIs to just one. 7414 * Otherwise, allow two (and we'll inject the first one immediately). 7415 */ 7416 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 7417 limit = 1; 7418 7419 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 7420 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 7421 kvm_make_request(KVM_REQ_EVENT, vcpu); 7422 } 7423 7424 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 7425 { 7426 u32 flags = 0; 7427 flags |= seg->g << 23; 7428 flags |= seg->db << 22; 7429 flags |= seg->l << 21; 7430 flags |= seg->avl << 20; 7431 flags |= seg->present << 15; 7432 flags |= seg->dpl << 13; 7433 flags |= seg->s << 12; 7434 flags |= seg->type << 8; 7435 return flags; 7436 } 7437 7438 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 7439 { 7440 struct kvm_segment seg; 7441 int offset; 7442 7443 kvm_get_segment(vcpu, &seg, n); 7444 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 7445 7446 if (n < 3) 7447 offset = 0x7f84 + n * 12; 7448 else 7449 offset = 0x7f2c + (n - 3) * 12; 7450 7451 put_smstate(u32, buf, offset + 8, seg.base); 7452 put_smstate(u32, buf, offset + 4, seg.limit); 7453 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 7454 } 7455 7456 #ifdef CONFIG_X86_64 7457 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 7458 { 7459 struct kvm_segment seg; 7460 int offset; 7461 u16 flags; 7462 7463 kvm_get_segment(vcpu, &seg, n); 7464 offset = 0x7e00 + n * 16; 7465 7466 flags = enter_smm_get_segment_flags(&seg) >> 8; 7467 put_smstate(u16, buf, offset, seg.selector); 7468 put_smstate(u16, buf, offset + 2, flags); 7469 put_smstate(u32, buf, offset + 4, seg.limit); 7470 put_smstate(u64, buf, offset + 8, seg.base); 7471 } 7472 #endif 7473 7474 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 7475 { 7476 struct desc_ptr dt; 7477 struct kvm_segment seg; 7478 unsigned long val; 7479 int i; 7480 7481 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 7482 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 7483 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 7484 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 7485 7486 for (i = 0; i < 8; i++) 7487 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 7488 7489 kvm_get_dr(vcpu, 6, &val); 7490 put_smstate(u32, buf, 0x7fcc, (u32)val); 7491 kvm_get_dr(vcpu, 7, &val); 7492 put_smstate(u32, buf, 0x7fc8, (u32)val); 7493 7494 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7495 put_smstate(u32, buf, 0x7fc4, seg.selector); 7496 put_smstate(u32, buf, 0x7f64, seg.base); 7497 put_smstate(u32, buf, 0x7f60, seg.limit); 7498 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 7499 7500 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7501 put_smstate(u32, buf, 0x7fc0, seg.selector); 7502 put_smstate(u32, buf, 0x7f80, seg.base); 7503 put_smstate(u32, buf, 0x7f7c, seg.limit); 7504 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 7505 7506 kvm_x86_ops->get_gdt(vcpu, &dt); 7507 put_smstate(u32, buf, 0x7f74, dt.address); 7508 put_smstate(u32, buf, 0x7f70, dt.size); 7509 7510 kvm_x86_ops->get_idt(vcpu, &dt); 7511 put_smstate(u32, buf, 0x7f58, dt.address); 7512 put_smstate(u32, buf, 0x7f54, dt.size); 7513 7514 for (i = 0; i < 6; i++) 7515 enter_smm_save_seg_32(vcpu, buf, i); 7516 7517 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 7518 7519 /* revision id */ 7520 put_smstate(u32, buf, 0x7efc, 0x00020000); 7521 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 7522 } 7523 7524 #ifdef CONFIG_X86_64 7525 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 7526 { 7527 struct desc_ptr dt; 7528 struct kvm_segment seg; 7529 unsigned long val; 7530 int i; 7531 7532 for (i = 0; i < 16; i++) 7533 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 7534 7535 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 7536 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 7537 7538 kvm_get_dr(vcpu, 6, &val); 7539 put_smstate(u64, buf, 0x7f68, val); 7540 kvm_get_dr(vcpu, 7, &val); 7541 put_smstate(u64, buf, 0x7f60, val); 7542 7543 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 7544 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 7545 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 7546 7547 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 7548 7549 /* revision id */ 7550 put_smstate(u32, buf, 0x7efc, 0x00020064); 7551 7552 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 7553 7554 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7555 put_smstate(u16, buf, 0x7e90, seg.selector); 7556 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 7557 put_smstate(u32, buf, 0x7e94, seg.limit); 7558 put_smstate(u64, buf, 0x7e98, seg.base); 7559 7560 kvm_x86_ops->get_idt(vcpu, &dt); 7561 put_smstate(u32, buf, 0x7e84, dt.size); 7562 put_smstate(u64, buf, 0x7e88, dt.address); 7563 7564 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7565 put_smstate(u16, buf, 0x7e70, seg.selector); 7566 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 7567 put_smstate(u32, buf, 0x7e74, seg.limit); 7568 put_smstate(u64, buf, 0x7e78, seg.base); 7569 7570 kvm_x86_ops->get_gdt(vcpu, &dt); 7571 put_smstate(u32, buf, 0x7e64, dt.size); 7572 put_smstate(u64, buf, 0x7e68, dt.address); 7573 7574 for (i = 0; i < 6; i++) 7575 enter_smm_save_seg_64(vcpu, buf, i); 7576 } 7577 #endif 7578 7579 static void enter_smm(struct kvm_vcpu *vcpu) 7580 { 7581 struct kvm_segment cs, ds; 7582 struct desc_ptr dt; 7583 char buf[512]; 7584 u32 cr0; 7585 7586 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 7587 memset(buf, 0, 512); 7588 #ifdef CONFIG_X86_64 7589 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 7590 enter_smm_save_state_64(vcpu, buf); 7591 else 7592 #endif 7593 enter_smm_save_state_32(vcpu, buf); 7594 7595 /* 7596 * Give pre_enter_smm() a chance to make ISA-specific changes to the 7597 * vCPU state (e.g. leave guest mode) after we've saved the state into 7598 * the SMM state-save area. 7599 */ 7600 kvm_x86_ops->pre_enter_smm(vcpu, buf); 7601 7602 vcpu->arch.hflags |= HF_SMM_MASK; 7603 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 7604 7605 if (kvm_x86_ops->get_nmi_mask(vcpu)) 7606 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 7607 else 7608 kvm_x86_ops->set_nmi_mask(vcpu, true); 7609 7610 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 7611 kvm_rip_write(vcpu, 0x8000); 7612 7613 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 7614 kvm_x86_ops->set_cr0(vcpu, cr0); 7615 vcpu->arch.cr0 = cr0; 7616 7617 kvm_x86_ops->set_cr4(vcpu, 0); 7618 7619 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 7620 dt.address = dt.size = 0; 7621 kvm_x86_ops->set_idt(vcpu, &dt); 7622 7623 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 7624 7625 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 7626 cs.base = vcpu->arch.smbase; 7627 7628 ds.selector = 0; 7629 ds.base = 0; 7630 7631 cs.limit = ds.limit = 0xffffffff; 7632 cs.type = ds.type = 0x3; 7633 cs.dpl = ds.dpl = 0; 7634 cs.db = ds.db = 0; 7635 cs.s = ds.s = 1; 7636 cs.l = ds.l = 0; 7637 cs.g = ds.g = 1; 7638 cs.avl = ds.avl = 0; 7639 cs.present = ds.present = 1; 7640 cs.unusable = ds.unusable = 0; 7641 cs.padding = ds.padding = 0; 7642 7643 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 7644 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 7645 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 7646 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 7647 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 7648 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 7649 7650 #ifdef CONFIG_X86_64 7651 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 7652 kvm_x86_ops->set_efer(vcpu, 0); 7653 #endif 7654 7655 kvm_update_cpuid(vcpu); 7656 kvm_mmu_reset_context(vcpu); 7657 } 7658 7659 static void process_smi(struct kvm_vcpu *vcpu) 7660 { 7661 vcpu->arch.smi_pending = true; 7662 kvm_make_request(KVM_REQ_EVENT, vcpu); 7663 } 7664 7665 void kvm_make_scan_ioapic_request(struct kvm *kvm) 7666 { 7667 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 7668 } 7669 7670 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 7671 { 7672 if (!kvm_apic_present(vcpu)) 7673 return; 7674 7675 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 7676 7677 if (irqchip_split(vcpu->kvm)) 7678 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 7679 else { 7680 if (vcpu->arch.apicv_active) 7681 kvm_x86_ops->sync_pir_to_irr(vcpu); 7682 if (ioapic_in_kernel(vcpu->kvm)) 7683 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 7684 } 7685 7686 if (is_guest_mode(vcpu)) 7687 vcpu->arch.load_eoi_exitmap_pending = true; 7688 else 7689 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 7690 } 7691 7692 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 7693 { 7694 u64 eoi_exit_bitmap[4]; 7695 7696 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 7697 return; 7698 7699 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 7700 vcpu_to_synic(vcpu)->vec_bitmap, 256); 7701 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 7702 } 7703 7704 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 7705 unsigned long start, unsigned long end, 7706 bool blockable) 7707 { 7708 unsigned long apic_address; 7709 7710 /* 7711 * The physical address of apic access page is stored in the VMCS. 7712 * Update it when it becomes invalid. 7713 */ 7714 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 7715 if (start <= apic_address && apic_address < end) 7716 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 7717 7718 return 0; 7719 } 7720 7721 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 7722 { 7723 struct page *page = NULL; 7724 7725 if (!lapic_in_kernel(vcpu)) 7726 return; 7727 7728 if (!kvm_x86_ops->set_apic_access_page_addr) 7729 return; 7730 7731 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 7732 if (is_error_page(page)) 7733 return; 7734 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 7735 7736 /* 7737 * Do not pin apic access page in memory, the MMU notifier 7738 * will call us again if it is migrated or swapped out. 7739 */ 7740 put_page(page); 7741 } 7742 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); 7743 7744 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 7745 { 7746 smp_send_reschedule(vcpu->cpu); 7747 } 7748 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 7749 7750 /* 7751 * Returns 1 to let vcpu_run() continue the guest execution loop without 7752 * exiting to the userspace. Otherwise, the value will be returned to the 7753 * userspace. 7754 */ 7755 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 7756 { 7757 int r; 7758 bool req_int_win = 7759 dm_request_for_irq_injection(vcpu) && 7760 kvm_cpu_accept_dm_intr(vcpu); 7761 7762 bool req_immediate_exit = false; 7763 7764 if (kvm_request_pending(vcpu)) { 7765 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) 7766 kvm_x86_ops->get_vmcs12_pages(vcpu); 7767 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 7768 kvm_mmu_unload(vcpu); 7769 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 7770 __kvm_migrate_timers(vcpu); 7771 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 7772 kvm_gen_update_masterclock(vcpu->kvm); 7773 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 7774 kvm_gen_kvmclock_update(vcpu); 7775 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 7776 r = kvm_guest_time_update(vcpu); 7777 if (unlikely(r)) 7778 goto out; 7779 } 7780 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 7781 kvm_mmu_sync_roots(vcpu); 7782 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu)) 7783 kvm_mmu_load_cr3(vcpu); 7784 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 7785 kvm_vcpu_flush_tlb(vcpu, true); 7786 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 7787 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 7788 r = 0; 7789 goto out; 7790 } 7791 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 7792 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 7793 vcpu->mmio_needed = 0; 7794 r = 0; 7795 goto out; 7796 } 7797 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 7798 /* Page is swapped out. Do synthetic halt */ 7799 vcpu->arch.apf.halted = true; 7800 r = 1; 7801 goto out; 7802 } 7803 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 7804 record_steal_time(vcpu); 7805 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 7806 process_smi(vcpu); 7807 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 7808 process_nmi(vcpu); 7809 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 7810 kvm_pmu_handle_event(vcpu); 7811 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 7812 kvm_pmu_deliver_pmi(vcpu); 7813 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 7814 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 7815 if (test_bit(vcpu->arch.pending_ioapic_eoi, 7816 vcpu->arch.ioapic_handled_vectors)) { 7817 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 7818 vcpu->run->eoi.vector = 7819 vcpu->arch.pending_ioapic_eoi; 7820 r = 0; 7821 goto out; 7822 } 7823 } 7824 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 7825 vcpu_scan_ioapic(vcpu); 7826 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 7827 vcpu_load_eoi_exitmap(vcpu); 7828 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 7829 kvm_vcpu_reload_apic_access_page(vcpu); 7830 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 7831 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 7832 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 7833 r = 0; 7834 goto out; 7835 } 7836 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 7837 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 7838 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 7839 r = 0; 7840 goto out; 7841 } 7842 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 7843 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 7844 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 7845 r = 0; 7846 goto out; 7847 } 7848 7849 /* 7850 * KVM_REQ_HV_STIMER has to be processed after 7851 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 7852 * depend on the guest clock being up-to-date 7853 */ 7854 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 7855 kvm_hv_process_stimers(vcpu); 7856 } 7857 7858 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 7859 ++vcpu->stat.req_event; 7860 kvm_apic_accept_events(vcpu); 7861 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 7862 r = 1; 7863 goto out; 7864 } 7865 7866 if (inject_pending_event(vcpu, req_int_win) != 0) 7867 req_immediate_exit = true; 7868 else { 7869 /* Enable SMI/NMI/IRQ window open exits if needed. 7870 * 7871 * SMIs have three cases: 7872 * 1) They can be nested, and then there is nothing to 7873 * do here because RSM will cause a vmexit anyway. 7874 * 2) There is an ISA-specific reason why SMI cannot be 7875 * injected, and the moment when this changes can be 7876 * intercepted. 7877 * 3) Or the SMI can be pending because 7878 * inject_pending_event has completed the injection 7879 * of an IRQ or NMI from the previous vmexit, and 7880 * then we request an immediate exit to inject the 7881 * SMI. 7882 */ 7883 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 7884 if (!kvm_x86_ops->enable_smi_window(vcpu)) 7885 req_immediate_exit = true; 7886 if (vcpu->arch.nmi_pending) 7887 kvm_x86_ops->enable_nmi_window(vcpu); 7888 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 7889 kvm_x86_ops->enable_irq_window(vcpu); 7890 WARN_ON(vcpu->arch.exception.pending); 7891 } 7892 7893 if (kvm_lapic_enabled(vcpu)) { 7894 update_cr8_intercept(vcpu); 7895 kvm_lapic_sync_to_vapic(vcpu); 7896 } 7897 } 7898 7899 r = kvm_mmu_reload(vcpu); 7900 if (unlikely(r)) { 7901 goto cancel_injection; 7902 } 7903 7904 preempt_disable(); 7905 7906 kvm_x86_ops->prepare_guest_switch(vcpu); 7907 7908 /* 7909 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 7910 * IPI are then delayed after guest entry, which ensures that they 7911 * result in virtual interrupt delivery. 7912 */ 7913 local_irq_disable(); 7914 vcpu->mode = IN_GUEST_MODE; 7915 7916 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 7917 7918 /* 7919 * 1) We should set ->mode before checking ->requests. Please see 7920 * the comment in kvm_vcpu_exiting_guest_mode(). 7921 * 7922 * 2) For APICv, we should set ->mode before checking PID.ON. This 7923 * pairs with the memory barrier implicit in pi_test_and_set_on 7924 * (see vmx_deliver_posted_interrupt). 7925 * 7926 * 3) This also orders the write to mode from any reads to the page 7927 * tables done while the VCPU is running. Please see the comment 7928 * in kvm_flush_remote_tlbs. 7929 */ 7930 smp_mb__after_srcu_read_unlock(); 7931 7932 /* 7933 * This handles the case where a posted interrupt was 7934 * notified with kvm_vcpu_kick. 7935 */ 7936 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 7937 kvm_x86_ops->sync_pir_to_irr(vcpu); 7938 7939 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) 7940 || need_resched() || signal_pending(current)) { 7941 vcpu->mode = OUTSIDE_GUEST_MODE; 7942 smp_wmb(); 7943 local_irq_enable(); 7944 preempt_enable(); 7945 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 7946 r = 1; 7947 goto cancel_injection; 7948 } 7949 7950 if (req_immediate_exit) { 7951 kvm_make_request(KVM_REQ_EVENT, vcpu); 7952 kvm_x86_ops->request_immediate_exit(vcpu); 7953 } 7954 7955 trace_kvm_entry(vcpu->vcpu_id); 7956 if (lapic_in_kernel(vcpu) && 7957 vcpu->arch.apic->lapic_timer.timer_advance_ns) 7958 wait_lapic_expire(vcpu); 7959 guest_enter_irqoff(); 7960 7961 fpregs_assert_state_consistent(); 7962 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 7963 switch_fpu_return(); 7964 7965 if (unlikely(vcpu->arch.switch_db_regs)) { 7966 set_debugreg(0, 7); 7967 set_debugreg(vcpu->arch.eff_db[0], 0); 7968 set_debugreg(vcpu->arch.eff_db[1], 1); 7969 set_debugreg(vcpu->arch.eff_db[2], 2); 7970 set_debugreg(vcpu->arch.eff_db[3], 3); 7971 set_debugreg(vcpu->arch.dr6, 6); 7972 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 7973 } 7974 7975 kvm_x86_ops->run(vcpu); 7976 7977 /* 7978 * Do this here before restoring debug registers on the host. And 7979 * since we do this before handling the vmexit, a DR access vmexit 7980 * can (a) read the correct value of the debug registers, (b) set 7981 * KVM_DEBUGREG_WONT_EXIT again. 7982 */ 7983 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 7984 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 7985 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 7986 kvm_update_dr0123(vcpu); 7987 kvm_update_dr6(vcpu); 7988 kvm_update_dr7(vcpu); 7989 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 7990 } 7991 7992 /* 7993 * If the guest has used debug registers, at least dr7 7994 * will be disabled while returning to the host. 7995 * If we don't have active breakpoints in the host, we don't 7996 * care about the messed up debug address registers. But if 7997 * we have some of them active, restore the old state. 7998 */ 7999 if (hw_breakpoint_active()) 8000 hw_breakpoint_restore(); 8001 8002 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8003 8004 vcpu->mode = OUTSIDE_GUEST_MODE; 8005 smp_wmb(); 8006 8007 kvm_before_interrupt(vcpu); 8008 kvm_x86_ops->handle_external_intr(vcpu); 8009 kvm_after_interrupt(vcpu); 8010 8011 ++vcpu->stat.exits; 8012 8013 guest_exit_irqoff(); 8014 8015 local_irq_enable(); 8016 preempt_enable(); 8017 8018 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8019 8020 /* 8021 * Profile KVM exit RIPs: 8022 */ 8023 if (unlikely(prof_on == KVM_PROFILING)) { 8024 unsigned long rip = kvm_rip_read(vcpu); 8025 profile_hit(KVM_PROFILING, (void *)rip); 8026 } 8027 8028 if (unlikely(vcpu->arch.tsc_always_catchup)) 8029 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8030 8031 if (vcpu->arch.apic_attention) 8032 kvm_lapic_sync_from_vapic(vcpu); 8033 8034 vcpu->arch.gpa_available = false; 8035 r = kvm_x86_ops->handle_exit(vcpu); 8036 return r; 8037 8038 cancel_injection: 8039 kvm_x86_ops->cancel_injection(vcpu); 8040 if (unlikely(vcpu->arch.apic_attention)) 8041 kvm_lapic_sync_from_vapic(vcpu); 8042 out: 8043 return r; 8044 } 8045 8046 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 8047 { 8048 if (!kvm_arch_vcpu_runnable(vcpu) && 8049 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { 8050 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8051 kvm_vcpu_block(vcpu); 8052 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8053 8054 if (kvm_x86_ops->post_block) 8055 kvm_x86_ops->post_block(vcpu); 8056 8057 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 8058 return 1; 8059 } 8060 8061 kvm_apic_accept_events(vcpu); 8062 switch(vcpu->arch.mp_state) { 8063 case KVM_MP_STATE_HALTED: 8064 vcpu->arch.pv.pv_unhalted = false; 8065 vcpu->arch.mp_state = 8066 KVM_MP_STATE_RUNNABLE; 8067 /* fall through */ 8068 case KVM_MP_STATE_RUNNABLE: 8069 vcpu->arch.apf.halted = false; 8070 break; 8071 case KVM_MP_STATE_INIT_RECEIVED: 8072 break; 8073 default: 8074 return -EINTR; 8075 break; 8076 } 8077 return 1; 8078 } 8079 8080 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 8081 { 8082 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 8083 kvm_x86_ops->check_nested_events(vcpu, false); 8084 8085 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 8086 !vcpu->arch.apf.halted); 8087 } 8088 8089 static int vcpu_run(struct kvm_vcpu *vcpu) 8090 { 8091 int r; 8092 struct kvm *kvm = vcpu->kvm; 8093 8094 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8095 vcpu->arch.l1tf_flush_l1d = true; 8096 8097 for (;;) { 8098 if (kvm_vcpu_running(vcpu)) { 8099 r = vcpu_enter_guest(vcpu); 8100 } else { 8101 r = vcpu_block(kvm, vcpu); 8102 } 8103 8104 if (r <= 0) 8105 break; 8106 8107 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 8108 if (kvm_cpu_has_pending_timer(vcpu)) 8109 kvm_inject_pending_timer_irqs(vcpu); 8110 8111 if (dm_request_for_irq_injection(vcpu) && 8112 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 8113 r = 0; 8114 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 8115 ++vcpu->stat.request_irq_exits; 8116 break; 8117 } 8118 8119 kvm_check_async_pf_completion(vcpu); 8120 8121 if (signal_pending(current)) { 8122 r = -EINTR; 8123 vcpu->run->exit_reason = KVM_EXIT_INTR; 8124 ++vcpu->stat.signal_exits; 8125 break; 8126 } 8127 if (need_resched()) { 8128 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8129 cond_resched(); 8130 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8131 } 8132 } 8133 8134 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8135 8136 return r; 8137 } 8138 8139 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 8140 { 8141 int r; 8142 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8143 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 8144 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8145 if (r != EMULATE_DONE) 8146 return 0; 8147 return 1; 8148 } 8149 8150 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 8151 { 8152 BUG_ON(!vcpu->arch.pio.count); 8153 8154 return complete_emulated_io(vcpu); 8155 } 8156 8157 /* 8158 * Implements the following, as a state machine: 8159 * 8160 * read: 8161 * for each fragment 8162 * for each mmio piece in the fragment 8163 * write gpa, len 8164 * exit 8165 * copy data 8166 * execute insn 8167 * 8168 * write: 8169 * for each fragment 8170 * for each mmio piece in the fragment 8171 * write gpa, len 8172 * copy data 8173 * exit 8174 */ 8175 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 8176 { 8177 struct kvm_run *run = vcpu->run; 8178 struct kvm_mmio_fragment *frag; 8179 unsigned len; 8180 8181 BUG_ON(!vcpu->mmio_needed); 8182 8183 /* Complete previous fragment */ 8184 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 8185 len = min(8u, frag->len); 8186 if (!vcpu->mmio_is_write) 8187 memcpy(frag->data, run->mmio.data, len); 8188 8189 if (frag->len <= 8) { 8190 /* Switch to the next fragment. */ 8191 frag++; 8192 vcpu->mmio_cur_fragment++; 8193 } else { 8194 /* Go forward to the next mmio piece. */ 8195 frag->data += len; 8196 frag->gpa += len; 8197 frag->len -= len; 8198 } 8199 8200 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 8201 vcpu->mmio_needed = 0; 8202 8203 /* FIXME: return into emulator if single-stepping. */ 8204 if (vcpu->mmio_is_write) 8205 return 1; 8206 vcpu->mmio_read_completed = 1; 8207 return complete_emulated_io(vcpu); 8208 } 8209 8210 run->exit_reason = KVM_EXIT_MMIO; 8211 run->mmio.phys_addr = frag->gpa; 8212 if (vcpu->mmio_is_write) 8213 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 8214 run->mmio.len = min(8u, frag->len); 8215 run->mmio.is_write = vcpu->mmio_is_write; 8216 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8217 return 0; 8218 } 8219 8220 /* Swap (qemu) user FPU context for the guest FPU context. */ 8221 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 8222 { 8223 fpregs_lock(); 8224 8225 copy_fpregs_to_fpstate(¤t->thread.fpu); 8226 /* PKRU is separately restored in kvm_x86_ops->run. */ 8227 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 8228 ~XFEATURE_MASK_PKRU); 8229 8230 fpregs_mark_activate(); 8231 fpregs_unlock(); 8232 8233 trace_kvm_fpu(1); 8234 } 8235 8236 /* When vcpu_run ends, restore user space FPU context. */ 8237 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 8238 { 8239 fpregs_lock(); 8240 8241 copy_fpregs_to_fpstate(vcpu->arch.guest_fpu); 8242 copy_kernel_to_fpregs(¤t->thread.fpu.state); 8243 8244 fpregs_mark_activate(); 8245 fpregs_unlock(); 8246 8247 ++vcpu->stat.fpu_reload; 8248 trace_kvm_fpu(0); 8249 } 8250 8251 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 8252 { 8253 int r; 8254 8255 vcpu_load(vcpu); 8256 kvm_sigset_activate(vcpu); 8257 kvm_load_guest_fpu(vcpu); 8258 8259 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 8260 if (kvm_run->immediate_exit) { 8261 r = -EINTR; 8262 goto out; 8263 } 8264 kvm_vcpu_block(vcpu); 8265 kvm_apic_accept_events(vcpu); 8266 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 8267 r = -EAGAIN; 8268 if (signal_pending(current)) { 8269 r = -EINTR; 8270 vcpu->run->exit_reason = KVM_EXIT_INTR; 8271 ++vcpu->stat.signal_exits; 8272 } 8273 goto out; 8274 } 8275 8276 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 8277 r = -EINVAL; 8278 goto out; 8279 } 8280 8281 if (vcpu->run->kvm_dirty_regs) { 8282 r = sync_regs(vcpu); 8283 if (r != 0) 8284 goto out; 8285 } 8286 8287 /* re-sync apic's tpr */ 8288 if (!lapic_in_kernel(vcpu)) { 8289 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 8290 r = -EINVAL; 8291 goto out; 8292 } 8293 } 8294 8295 if (unlikely(vcpu->arch.complete_userspace_io)) { 8296 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 8297 vcpu->arch.complete_userspace_io = NULL; 8298 r = cui(vcpu); 8299 if (r <= 0) 8300 goto out; 8301 } else 8302 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 8303 8304 if (kvm_run->immediate_exit) 8305 r = -EINTR; 8306 else 8307 r = vcpu_run(vcpu); 8308 8309 out: 8310 kvm_put_guest_fpu(vcpu); 8311 if (vcpu->run->kvm_valid_regs) 8312 store_regs(vcpu); 8313 post_kvm_run_save(vcpu); 8314 kvm_sigset_deactivate(vcpu); 8315 8316 vcpu_put(vcpu); 8317 return r; 8318 } 8319 8320 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8321 { 8322 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 8323 /* 8324 * We are here if userspace calls get_regs() in the middle of 8325 * instruction emulation. Registers state needs to be copied 8326 * back from emulation context to vcpu. Userspace shouldn't do 8327 * that usually, but some bad designed PV devices (vmware 8328 * backdoor interface) need this to work 8329 */ 8330 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 8331 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8332 } 8333 regs->rax = kvm_rax_read(vcpu); 8334 regs->rbx = kvm_rbx_read(vcpu); 8335 regs->rcx = kvm_rcx_read(vcpu); 8336 regs->rdx = kvm_rdx_read(vcpu); 8337 regs->rsi = kvm_rsi_read(vcpu); 8338 regs->rdi = kvm_rdi_read(vcpu); 8339 regs->rsp = kvm_rsp_read(vcpu); 8340 regs->rbp = kvm_rbp_read(vcpu); 8341 #ifdef CONFIG_X86_64 8342 regs->r8 = kvm_r8_read(vcpu); 8343 regs->r9 = kvm_r9_read(vcpu); 8344 regs->r10 = kvm_r10_read(vcpu); 8345 regs->r11 = kvm_r11_read(vcpu); 8346 regs->r12 = kvm_r12_read(vcpu); 8347 regs->r13 = kvm_r13_read(vcpu); 8348 regs->r14 = kvm_r14_read(vcpu); 8349 regs->r15 = kvm_r15_read(vcpu); 8350 #endif 8351 8352 regs->rip = kvm_rip_read(vcpu); 8353 regs->rflags = kvm_get_rflags(vcpu); 8354 } 8355 8356 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8357 { 8358 vcpu_load(vcpu); 8359 __get_regs(vcpu, regs); 8360 vcpu_put(vcpu); 8361 return 0; 8362 } 8363 8364 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8365 { 8366 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 8367 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8368 8369 kvm_rax_write(vcpu, regs->rax); 8370 kvm_rbx_write(vcpu, regs->rbx); 8371 kvm_rcx_write(vcpu, regs->rcx); 8372 kvm_rdx_write(vcpu, regs->rdx); 8373 kvm_rsi_write(vcpu, regs->rsi); 8374 kvm_rdi_write(vcpu, regs->rdi); 8375 kvm_rsp_write(vcpu, regs->rsp); 8376 kvm_rbp_write(vcpu, regs->rbp); 8377 #ifdef CONFIG_X86_64 8378 kvm_r8_write(vcpu, regs->r8); 8379 kvm_r9_write(vcpu, regs->r9); 8380 kvm_r10_write(vcpu, regs->r10); 8381 kvm_r11_write(vcpu, regs->r11); 8382 kvm_r12_write(vcpu, regs->r12); 8383 kvm_r13_write(vcpu, regs->r13); 8384 kvm_r14_write(vcpu, regs->r14); 8385 kvm_r15_write(vcpu, regs->r15); 8386 #endif 8387 8388 kvm_rip_write(vcpu, regs->rip); 8389 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 8390 8391 vcpu->arch.exception.pending = false; 8392 8393 kvm_make_request(KVM_REQ_EVENT, vcpu); 8394 } 8395 8396 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8397 { 8398 vcpu_load(vcpu); 8399 __set_regs(vcpu, regs); 8400 vcpu_put(vcpu); 8401 return 0; 8402 } 8403 8404 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 8405 { 8406 struct kvm_segment cs; 8407 8408 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 8409 *db = cs.db; 8410 *l = cs.l; 8411 } 8412 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 8413 8414 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8415 { 8416 struct desc_ptr dt; 8417 8418 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8419 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8420 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8421 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 8422 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 8423 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 8424 8425 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 8426 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 8427 8428 kvm_x86_ops->get_idt(vcpu, &dt); 8429 sregs->idt.limit = dt.size; 8430 sregs->idt.base = dt.address; 8431 kvm_x86_ops->get_gdt(vcpu, &dt); 8432 sregs->gdt.limit = dt.size; 8433 sregs->gdt.base = dt.address; 8434 8435 sregs->cr0 = kvm_read_cr0(vcpu); 8436 sregs->cr2 = vcpu->arch.cr2; 8437 sregs->cr3 = kvm_read_cr3(vcpu); 8438 sregs->cr4 = kvm_read_cr4(vcpu); 8439 sregs->cr8 = kvm_get_cr8(vcpu); 8440 sregs->efer = vcpu->arch.efer; 8441 sregs->apic_base = kvm_get_apic_base(vcpu); 8442 8443 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 8444 8445 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 8446 set_bit(vcpu->arch.interrupt.nr, 8447 (unsigned long *)sregs->interrupt_bitmap); 8448 } 8449 8450 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 8451 struct kvm_sregs *sregs) 8452 { 8453 vcpu_load(vcpu); 8454 __get_sregs(vcpu, sregs); 8455 vcpu_put(vcpu); 8456 return 0; 8457 } 8458 8459 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 8460 struct kvm_mp_state *mp_state) 8461 { 8462 vcpu_load(vcpu); 8463 8464 kvm_apic_accept_events(vcpu); 8465 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 8466 vcpu->arch.pv.pv_unhalted) 8467 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 8468 else 8469 mp_state->mp_state = vcpu->arch.mp_state; 8470 8471 vcpu_put(vcpu); 8472 return 0; 8473 } 8474 8475 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 8476 struct kvm_mp_state *mp_state) 8477 { 8478 int ret = -EINVAL; 8479 8480 vcpu_load(vcpu); 8481 8482 if (!lapic_in_kernel(vcpu) && 8483 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 8484 goto out; 8485 8486 /* INITs are latched while in SMM */ 8487 if ((is_smm(vcpu) || vcpu->arch.smi_pending) && 8488 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 8489 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 8490 goto out; 8491 8492 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 8493 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 8494 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 8495 } else 8496 vcpu->arch.mp_state = mp_state->mp_state; 8497 kvm_make_request(KVM_REQ_EVENT, vcpu); 8498 8499 ret = 0; 8500 out: 8501 vcpu_put(vcpu); 8502 return ret; 8503 } 8504 8505 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 8506 int reason, bool has_error_code, u32 error_code) 8507 { 8508 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 8509 int ret; 8510 8511 init_emulate_ctxt(vcpu); 8512 8513 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 8514 has_error_code, error_code); 8515 8516 if (ret) 8517 return EMULATE_FAIL; 8518 8519 kvm_rip_write(vcpu, ctxt->eip); 8520 kvm_set_rflags(vcpu, ctxt->eflags); 8521 kvm_make_request(KVM_REQ_EVENT, vcpu); 8522 return EMULATE_DONE; 8523 } 8524 EXPORT_SYMBOL_GPL(kvm_task_switch); 8525 8526 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8527 { 8528 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 8529 (sregs->cr4 & X86_CR4_OSXSAVE)) 8530 return -EINVAL; 8531 8532 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 8533 /* 8534 * When EFER.LME and CR0.PG are set, the processor is in 8535 * 64-bit mode (though maybe in a 32-bit code segment). 8536 * CR4.PAE and EFER.LMA must be set. 8537 */ 8538 if (!(sregs->cr4 & X86_CR4_PAE) 8539 || !(sregs->efer & EFER_LMA)) 8540 return -EINVAL; 8541 } else { 8542 /* 8543 * Not in 64-bit mode: EFER.LMA is clear and the code 8544 * segment cannot be 64-bit. 8545 */ 8546 if (sregs->efer & EFER_LMA || sregs->cs.l) 8547 return -EINVAL; 8548 } 8549 8550 return 0; 8551 } 8552 8553 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8554 { 8555 struct msr_data apic_base_msr; 8556 int mmu_reset_needed = 0; 8557 int cpuid_update_needed = 0; 8558 int pending_vec, max_bits, idx; 8559 struct desc_ptr dt; 8560 int ret = -EINVAL; 8561 8562 if (kvm_valid_sregs(vcpu, sregs)) 8563 goto out; 8564 8565 apic_base_msr.data = sregs->apic_base; 8566 apic_base_msr.host_initiated = true; 8567 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 8568 goto out; 8569 8570 dt.size = sregs->idt.limit; 8571 dt.address = sregs->idt.base; 8572 kvm_x86_ops->set_idt(vcpu, &dt); 8573 dt.size = sregs->gdt.limit; 8574 dt.address = sregs->gdt.base; 8575 kvm_x86_ops->set_gdt(vcpu, &dt); 8576 8577 vcpu->arch.cr2 = sregs->cr2; 8578 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 8579 vcpu->arch.cr3 = sregs->cr3; 8580 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 8581 8582 kvm_set_cr8(vcpu, sregs->cr8); 8583 8584 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 8585 kvm_x86_ops->set_efer(vcpu, sregs->efer); 8586 8587 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 8588 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 8589 vcpu->arch.cr0 = sregs->cr0; 8590 8591 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 8592 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 8593 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 8594 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 8595 if (cpuid_update_needed) 8596 kvm_update_cpuid(vcpu); 8597 8598 idx = srcu_read_lock(&vcpu->kvm->srcu); 8599 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) { 8600 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 8601 mmu_reset_needed = 1; 8602 } 8603 srcu_read_unlock(&vcpu->kvm->srcu, idx); 8604 8605 if (mmu_reset_needed) 8606 kvm_mmu_reset_context(vcpu); 8607 8608 max_bits = KVM_NR_INTERRUPTS; 8609 pending_vec = find_first_bit( 8610 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 8611 if (pending_vec < max_bits) { 8612 kvm_queue_interrupt(vcpu, pending_vec, false); 8613 pr_debug("Set back pending irq %d\n", pending_vec); 8614 } 8615 8616 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8617 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8618 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8619 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 8620 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 8621 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 8622 8623 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 8624 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 8625 8626 update_cr8_intercept(vcpu); 8627 8628 /* Older userspace won't unhalt the vcpu on reset. */ 8629 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 8630 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 8631 !is_protmode(vcpu)) 8632 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 8633 8634 kvm_make_request(KVM_REQ_EVENT, vcpu); 8635 8636 ret = 0; 8637 out: 8638 return ret; 8639 } 8640 8641 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 8642 struct kvm_sregs *sregs) 8643 { 8644 int ret; 8645 8646 vcpu_load(vcpu); 8647 ret = __set_sregs(vcpu, sregs); 8648 vcpu_put(vcpu); 8649 return ret; 8650 } 8651 8652 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 8653 struct kvm_guest_debug *dbg) 8654 { 8655 unsigned long rflags; 8656 int i, r; 8657 8658 vcpu_load(vcpu); 8659 8660 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 8661 r = -EBUSY; 8662 if (vcpu->arch.exception.pending) 8663 goto out; 8664 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 8665 kvm_queue_exception(vcpu, DB_VECTOR); 8666 else 8667 kvm_queue_exception(vcpu, BP_VECTOR); 8668 } 8669 8670 /* 8671 * Read rflags as long as potentially injected trace flags are still 8672 * filtered out. 8673 */ 8674 rflags = kvm_get_rflags(vcpu); 8675 8676 vcpu->guest_debug = dbg->control; 8677 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 8678 vcpu->guest_debug = 0; 8679 8680 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 8681 for (i = 0; i < KVM_NR_DB_REGS; ++i) 8682 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 8683 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 8684 } else { 8685 for (i = 0; i < KVM_NR_DB_REGS; i++) 8686 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 8687 } 8688 kvm_update_dr7(vcpu); 8689 8690 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 8691 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 8692 get_segment_base(vcpu, VCPU_SREG_CS); 8693 8694 /* 8695 * Trigger an rflags update that will inject or remove the trace 8696 * flags. 8697 */ 8698 kvm_set_rflags(vcpu, rflags); 8699 8700 kvm_x86_ops->update_bp_intercept(vcpu); 8701 8702 r = 0; 8703 8704 out: 8705 vcpu_put(vcpu); 8706 return r; 8707 } 8708 8709 /* 8710 * Translate a guest virtual address to a guest physical address. 8711 */ 8712 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 8713 struct kvm_translation *tr) 8714 { 8715 unsigned long vaddr = tr->linear_address; 8716 gpa_t gpa; 8717 int idx; 8718 8719 vcpu_load(vcpu); 8720 8721 idx = srcu_read_lock(&vcpu->kvm->srcu); 8722 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 8723 srcu_read_unlock(&vcpu->kvm->srcu, idx); 8724 tr->physical_address = gpa; 8725 tr->valid = gpa != UNMAPPED_GVA; 8726 tr->writeable = 1; 8727 tr->usermode = 0; 8728 8729 vcpu_put(vcpu); 8730 return 0; 8731 } 8732 8733 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 8734 { 8735 struct fxregs_state *fxsave; 8736 8737 vcpu_load(vcpu); 8738 8739 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 8740 memcpy(fpu->fpr, fxsave->st_space, 128); 8741 fpu->fcw = fxsave->cwd; 8742 fpu->fsw = fxsave->swd; 8743 fpu->ftwx = fxsave->twd; 8744 fpu->last_opcode = fxsave->fop; 8745 fpu->last_ip = fxsave->rip; 8746 fpu->last_dp = fxsave->rdp; 8747 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 8748 8749 vcpu_put(vcpu); 8750 return 0; 8751 } 8752 8753 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 8754 { 8755 struct fxregs_state *fxsave; 8756 8757 vcpu_load(vcpu); 8758 8759 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 8760 8761 memcpy(fxsave->st_space, fpu->fpr, 128); 8762 fxsave->cwd = fpu->fcw; 8763 fxsave->swd = fpu->fsw; 8764 fxsave->twd = fpu->ftwx; 8765 fxsave->fop = fpu->last_opcode; 8766 fxsave->rip = fpu->last_ip; 8767 fxsave->rdp = fpu->last_dp; 8768 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 8769 8770 vcpu_put(vcpu); 8771 return 0; 8772 } 8773 8774 static void store_regs(struct kvm_vcpu *vcpu) 8775 { 8776 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 8777 8778 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 8779 __get_regs(vcpu, &vcpu->run->s.regs.regs); 8780 8781 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 8782 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 8783 8784 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 8785 kvm_vcpu_ioctl_x86_get_vcpu_events( 8786 vcpu, &vcpu->run->s.regs.events); 8787 } 8788 8789 static int sync_regs(struct kvm_vcpu *vcpu) 8790 { 8791 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 8792 return -EINVAL; 8793 8794 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 8795 __set_regs(vcpu, &vcpu->run->s.regs.regs); 8796 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 8797 } 8798 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 8799 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 8800 return -EINVAL; 8801 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 8802 } 8803 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 8804 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 8805 vcpu, &vcpu->run->s.regs.events)) 8806 return -EINVAL; 8807 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 8808 } 8809 8810 return 0; 8811 } 8812 8813 static void fx_init(struct kvm_vcpu *vcpu) 8814 { 8815 fpstate_init(&vcpu->arch.guest_fpu->state); 8816 if (boot_cpu_has(X86_FEATURE_XSAVES)) 8817 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 8818 host_xcr0 | XSTATE_COMPACTION_ENABLED; 8819 8820 /* 8821 * Ensure guest xcr0 is valid for loading 8822 */ 8823 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 8824 8825 vcpu->arch.cr0 |= X86_CR0_ET; 8826 } 8827 8828 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 8829 { 8830 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; 8831 8832 kvmclock_reset(vcpu); 8833 8834 kvm_x86_ops->vcpu_free(vcpu); 8835 free_cpumask_var(wbinvd_dirty_mask); 8836 } 8837 8838 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 8839 unsigned int id) 8840 { 8841 struct kvm_vcpu *vcpu; 8842 8843 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 8844 printk_once(KERN_WARNING 8845 "kvm: SMP vm created on host with unstable TSC; " 8846 "guest TSC will not be reliable\n"); 8847 8848 vcpu = kvm_x86_ops->vcpu_create(kvm, id); 8849 8850 return vcpu; 8851 } 8852 8853 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 8854 { 8855 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 8856 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 8857 kvm_vcpu_mtrr_init(vcpu); 8858 vcpu_load(vcpu); 8859 kvm_vcpu_reset(vcpu, false); 8860 kvm_init_mmu(vcpu, false); 8861 vcpu_put(vcpu); 8862 return 0; 8863 } 8864 8865 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 8866 { 8867 struct msr_data msr; 8868 struct kvm *kvm = vcpu->kvm; 8869 8870 kvm_hv_vcpu_postcreate(vcpu); 8871 8872 if (mutex_lock_killable(&vcpu->mutex)) 8873 return; 8874 vcpu_load(vcpu); 8875 msr.data = 0x0; 8876 msr.index = MSR_IA32_TSC; 8877 msr.host_initiated = true; 8878 kvm_write_tsc(vcpu, &msr); 8879 vcpu_put(vcpu); 8880 mutex_unlock(&vcpu->mutex); 8881 8882 if (!kvmclock_periodic_sync) 8883 return; 8884 8885 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 8886 KVMCLOCK_SYNC_PERIOD); 8887 } 8888 8889 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 8890 { 8891 vcpu->arch.apf.msr_val = 0; 8892 8893 vcpu_load(vcpu); 8894 kvm_mmu_unload(vcpu); 8895 vcpu_put(vcpu); 8896 8897 kvm_x86_ops->vcpu_free(vcpu); 8898 } 8899 8900 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 8901 { 8902 kvm_lapic_reset(vcpu, init_event); 8903 8904 vcpu->arch.hflags = 0; 8905 8906 vcpu->arch.smi_pending = 0; 8907 vcpu->arch.smi_count = 0; 8908 atomic_set(&vcpu->arch.nmi_queued, 0); 8909 vcpu->arch.nmi_pending = 0; 8910 vcpu->arch.nmi_injected = false; 8911 kvm_clear_interrupt_queue(vcpu); 8912 kvm_clear_exception_queue(vcpu); 8913 vcpu->arch.exception.pending = false; 8914 8915 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 8916 kvm_update_dr0123(vcpu); 8917 vcpu->arch.dr6 = DR6_INIT; 8918 kvm_update_dr6(vcpu); 8919 vcpu->arch.dr7 = DR7_FIXED_1; 8920 kvm_update_dr7(vcpu); 8921 8922 vcpu->arch.cr2 = 0; 8923 8924 kvm_make_request(KVM_REQ_EVENT, vcpu); 8925 vcpu->arch.apf.msr_val = 0; 8926 vcpu->arch.st.msr_val = 0; 8927 8928 kvmclock_reset(vcpu); 8929 8930 kvm_clear_async_pf_completion_queue(vcpu); 8931 kvm_async_pf_hash_reset(vcpu); 8932 vcpu->arch.apf.halted = false; 8933 8934 if (kvm_mpx_supported()) { 8935 void *mpx_state_buffer; 8936 8937 /* 8938 * To avoid have the INIT path from kvm_apic_has_events() that be 8939 * called with loaded FPU and does not let userspace fix the state. 8940 */ 8941 if (init_event) 8942 kvm_put_guest_fpu(vcpu); 8943 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 8944 XFEATURE_BNDREGS); 8945 if (mpx_state_buffer) 8946 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 8947 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 8948 XFEATURE_BNDCSR); 8949 if (mpx_state_buffer) 8950 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 8951 if (init_event) 8952 kvm_load_guest_fpu(vcpu); 8953 } 8954 8955 if (!init_event) { 8956 kvm_pmu_reset(vcpu); 8957 vcpu->arch.smbase = 0x30000; 8958 8959 vcpu->arch.msr_misc_features_enables = 0; 8960 8961 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 8962 } 8963 8964 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 8965 vcpu->arch.regs_avail = ~0; 8966 vcpu->arch.regs_dirty = ~0; 8967 8968 vcpu->arch.ia32_xss = 0; 8969 8970 kvm_x86_ops->vcpu_reset(vcpu, init_event); 8971 } 8972 8973 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 8974 { 8975 struct kvm_segment cs; 8976 8977 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 8978 cs.selector = vector << 8; 8979 cs.base = vector << 12; 8980 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8981 kvm_rip_write(vcpu, 0); 8982 } 8983 8984 int kvm_arch_hardware_enable(void) 8985 { 8986 struct kvm *kvm; 8987 struct kvm_vcpu *vcpu; 8988 int i; 8989 int ret; 8990 u64 local_tsc; 8991 u64 max_tsc = 0; 8992 bool stable, backwards_tsc = false; 8993 8994 kvm_shared_msr_cpu_online(); 8995 ret = kvm_x86_ops->hardware_enable(); 8996 if (ret != 0) 8997 return ret; 8998 8999 local_tsc = rdtsc(); 9000 stable = !kvm_check_tsc_unstable(); 9001 list_for_each_entry(kvm, &vm_list, vm_list) { 9002 kvm_for_each_vcpu(i, vcpu, kvm) { 9003 if (!stable && vcpu->cpu == smp_processor_id()) 9004 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9005 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 9006 backwards_tsc = true; 9007 if (vcpu->arch.last_host_tsc > max_tsc) 9008 max_tsc = vcpu->arch.last_host_tsc; 9009 } 9010 } 9011 } 9012 9013 /* 9014 * Sometimes, even reliable TSCs go backwards. This happens on 9015 * platforms that reset TSC during suspend or hibernate actions, but 9016 * maintain synchronization. We must compensate. Fortunately, we can 9017 * detect that condition here, which happens early in CPU bringup, 9018 * before any KVM threads can be running. Unfortunately, we can't 9019 * bring the TSCs fully up to date with real time, as we aren't yet far 9020 * enough into CPU bringup that we know how much real time has actually 9021 * elapsed; our helper function, ktime_get_boot_ns() will be using boot 9022 * variables that haven't been updated yet. 9023 * 9024 * So we simply find the maximum observed TSC above, then record the 9025 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 9026 * the adjustment will be applied. Note that we accumulate 9027 * adjustments, in case multiple suspend cycles happen before some VCPU 9028 * gets a chance to run again. In the event that no KVM threads get a 9029 * chance to run, we will miss the entire elapsed period, as we'll have 9030 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 9031 * loose cycle time. This isn't too big a deal, since the loss will be 9032 * uniform across all VCPUs (not to mention the scenario is extremely 9033 * unlikely). It is possible that a second hibernate recovery happens 9034 * much faster than a first, causing the observed TSC here to be 9035 * smaller; this would require additional padding adjustment, which is 9036 * why we set last_host_tsc to the local tsc observed here. 9037 * 9038 * N.B. - this code below runs only on platforms with reliable TSC, 9039 * as that is the only way backwards_tsc is set above. Also note 9040 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 9041 * have the same delta_cyc adjustment applied if backwards_tsc 9042 * is detected. Note further, this adjustment is only done once, 9043 * as we reset last_host_tsc on all VCPUs to stop this from being 9044 * called multiple times (one for each physical CPU bringup). 9045 * 9046 * Platforms with unreliable TSCs don't have to deal with this, they 9047 * will be compensated by the logic in vcpu_load, which sets the TSC to 9048 * catchup mode. This will catchup all VCPUs to real time, but cannot 9049 * guarantee that they stay in perfect synchronization. 9050 */ 9051 if (backwards_tsc) { 9052 u64 delta_cyc = max_tsc - local_tsc; 9053 list_for_each_entry(kvm, &vm_list, vm_list) { 9054 kvm->arch.backwards_tsc_observed = true; 9055 kvm_for_each_vcpu(i, vcpu, kvm) { 9056 vcpu->arch.tsc_offset_adjustment += delta_cyc; 9057 vcpu->arch.last_host_tsc = local_tsc; 9058 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9059 } 9060 9061 /* 9062 * We have to disable TSC offset matching.. if you were 9063 * booting a VM while issuing an S4 host suspend.... 9064 * you may have some problem. Solving this issue is 9065 * left as an exercise to the reader. 9066 */ 9067 kvm->arch.last_tsc_nsec = 0; 9068 kvm->arch.last_tsc_write = 0; 9069 } 9070 9071 } 9072 return 0; 9073 } 9074 9075 void kvm_arch_hardware_disable(void) 9076 { 9077 kvm_x86_ops->hardware_disable(); 9078 drop_user_return_notifiers(); 9079 } 9080 9081 int kvm_arch_hardware_setup(void) 9082 { 9083 int r; 9084 9085 r = kvm_x86_ops->hardware_setup(); 9086 if (r != 0) 9087 return r; 9088 9089 if (kvm_has_tsc_control) { 9090 /* 9091 * Make sure the user can only configure tsc_khz values that 9092 * fit into a signed integer. 9093 * A min value is not calculated because it will always 9094 * be 1 on all machines. 9095 */ 9096 u64 max = min(0x7fffffffULL, 9097 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 9098 kvm_max_guest_tsc_khz = max; 9099 9100 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 9101 } 9102 9103 kvm_init_msr_list(); 9104 return 0; 9105 } 9106 9107 void kvm_arch_hardware_unsetup(void) 9108 { 9109 kvm_x86_ops->hardware_unsetup(); 9110 } 9111 9112 void kvm_arch_check_processor_compat(void *rtn) 9113 { 9114 kvm_x86_ops->check_processor_compatibility(rtn); 9115 } 9116 9117 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 9118 { 9119 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 9120 } 9121 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 9122 9123 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 9124 { 9125 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 9126 } 9127 9128 struct static_key kvm_no_apic_vcpu __read_mostly; 9129 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 9130 9131 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 9132 { 9133 struct page *page; 9134 int r; 9135 9136 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 9137 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9138 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9139 else 9140 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9141 9142 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9143 if (!page) { 9144 r = -ENOMEM; 9145 goto fail; 9146 } 9147 vcpu->arch.pio_data = page_address(page); 9148 9149 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9150 9151 r = kvm_mmu_create(vcpu); 9152 if (r < 0) 9153 goto fail_free_pio_data; 9154 9155 if (irqchip_in_kernel(vcpu->kvm)) { 9156 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu); 9157 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9158 if (r < 0) 9159 goto fail_mmu_destroy; 9160 } else 9161 static_key_slow_inc(&kvm_no_apic_vcpu); 9162 9163 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9164 GFP_KERNEL_ACCOUNT); 9165 if (!vcpu->arch.mce_banks) { 9166 r = -ENOMEM; 9167 goto fail_free_lapic; 9168 } 9169 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9170 9171 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9172 GFP_KERNEL_ACCOUNT)) { 9173 r = -ENOMEM; 9174 goto fail_free_mce_banks; 9175 } 9176 9177 fx_init(vcpu); 9178 9179 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 9180 9181 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9182 9183 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9184 9185 kvm_async_pf_hash_reset(vcpu); 9186 kvm_pmu_init(vcpu); 9187 9188 vcpu->arch.pending_external_vector = -1; 9189 vcpu->arch.preempted_in_kernel = false; 9190 9191 kvm_hv_vcpu_init(vcpu); 9192 9193 return 0; 9194 9195 fail_free_mce_banks: 9196 kfree(vcpu->arch.mce_banks); 9197 fail_free_lapic: 9198 kvm_free_lapic(vcpu); 9199 fail_mmu_destroy: 9200 kvm_mmu_destroy(vcpu); 9201 fail_free_pio_data: 9202 free_page((unsigned long)vcpu->arch.pio_data); 9203 fail: 9204 return r; 9205 } 9206 9207 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 9208 { 9209 int idx; 9210 9211 kvm_hv_vcpu_uninit(vcpu); 9212 kvm_pmu_destroy(vcpu); 9213 kfree(vcpu->arch.mce_banks); 9214 kvm_free_lapic(vcpu); 9215 idx = srcu_read_lock(&vcpu->kvm->srcu); 9216 kvm_mmu_destroy(vcpu); 9217 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9218 free_page((unsigned long)vcpu->arch.pio_data); 9219 if (!lapic_in_kernel(vcpu)) 9220 static_key_slow_dec(&kvm_no_apic_vcpu); 9221 } 9222 9223 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 9224 { 9225 vcpu->arch.l1tf_flush_l1d = true; 9226 kvm_x86_ops->sched_in(vcpu, cpu); 9227 } 9228 9229 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 9230 { 9231 if (type) 9232 return -EINVAL; 9233 9234 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 9235 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 9236 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 9237 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 9238 9239 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 9240 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 9241 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 9242 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 9243 &kvm->arch.irq_sources_bitmap); 9244 9245 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 9246 mutex_init(&kvm->arch.apic_map_lock); 9247 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 9248 9249 kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); 9250 pvclock_update_vm_gtod_copy(kvm); 9251 9252 kvm->arch.guest_can_read_msr_platform_info = true; 9253 9254 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 9255 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 9256 9257 kvm_hv_init_vm(kvm); 9258 kvm_page_track_init(kvm); 9259 kvm_mmu_init_vm(kvm); 9260 9261 if (kvm_x86_ops->vm_init) 9262 return kvm_x86_ops->vm_init(kvm); 9263 9264 return 0; 9265 } 9266 9267 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 9268 { 9269 vcpu_load(vcpu); 9270 kvm_mmu_unload(vcpu); 9271 vcpu_put(vcpu); 9272 } 9273 9274 static void kvm_free_vcpus(struct kvm *kvm) 9275 { 9276 unsigned int i; 9277 struct kvm_vcpu *vcpu; 9278 9279 /* 9280 * Unpin any mmu pages first. 9281 */ 9282 kvm_for_each_vcpu(i, vcpu, kvm) { 9283 kvm_clear_async_pf_completion_queue(vcpu); 9284 kvm_unload_vcpu_mmu(vcpu); 9285 } 9286 kvm_for_each_vcpu(i, vcpu, kvm) 9287 kvm_arch_vcpu_free(vcpu); 9288 9289 mutex_lock(&kvm->lock); 9290 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 9291 kvm->vcpus[i] = NULL; 9292 9293 atomic_set(&kvm->online_vcpus, 0); 9294 mutex_unlock(&kvm->lock); 9295 } 9296 9297 void kvm_arch_sync_events(struct kvm *kvm) 9298 { 9299 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 9300 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 9301 kvm_free_pit(kvm); 9302 } 9303 9304 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9305 { 9306 int i, r; 9307 unsigned long hva; 9308 struct kvm_memslots *slots = kvm_memslots(kvm); 9309 struct kvm_memory_slot *slot, old; 9310 9311 /* Called with kvm->slots_lock held. */ 9312 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 9313 return -EINVAL; 9314 9315 slot = id_to_memslot(slots, id); 9316 if (size) { 9317 if (slot->npages) 9318 return -EEXIST; 9319 9320 /* 9321 * MAP_SHARED to prevent internal slot pages from being moved 9322 * by fork()/COW. 9323 */ 9324 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 9325 MAP_SHARED | MAP_ANONYMOUS, 0); 9326 if (IS_ERR((void *)hva)) 9327 return PTR_ERR((void *)hva); 9328 } else { 9329 if (!slot->npages) 9330 return 0; 9331 9332 hva = 0; 9333 } 9334 9335 old = *slot; 9336 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 9337 struct kvm_userspace_memory_region m; 9338 9339 m.slot = id | (i << 16); 9340 m.flags = 0; 9341 m.guest_phys_addr = gpa; 9342 m.userspace_addr = hva; 9343 m.memory_size = size; 9344 r = __kvm_set_memory_region(kvm, &m); 9345 if (r < 0) 9346 return r; 9347 } 9348 9349 if (!size) 9350 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); 9351 9352 return 0; 9353 } 9354 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 9355 9356 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9357 { 9358 int r; 9359 9360 mutex_lock(&kvm->slots_lock); 9361 r = __x86_set_memory_region(kvm, id, gpa, size); 9362 mutex_unlock(&kvm->slots_lock); 9363 9364 return r; 9365 } 9366 EXPORT_SYMBOL_GPL(x86_set_memory_region); 9367 9368 void kvm_arch_destroy_vm(struct kvm *kvm) 9369 { 9370 if (current->mm == kvm->mm) { 9371 /* 9372 * Free memory regions allocated on behalf of userspace, 9373 * unless the the memory map has changed due to process exit 9374 * or fd copying. 9375 */ 9376 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 9377 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); 9378 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 9379 } 9380 if (kvm_x86_ops->vm_destroy) 9381 kvm_x86_ops->vm_destroy(kvm); 9382 kvm_pic_destroy(kvm); 9383 kvm_ioapic_destroy(kvm); 9384 kvm_free_vcpus(kvm); 9385 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 9386 kvm_mmu_uninit_vm(kvm); 9387 kvm_page_track_cleanup(kvm); 9388 kvm_hv_destroy_vm(kvm); 9389 } 9390 9391 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 9392 struct kvm_memory_slot *dont) 9393 { 9394 int i; 9395 9396 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9397 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 9398 kvfree(free->arch.rmap[i]); 9399 free->arch.rmap[i] = NULL; 9400 } 9401 if (i == 0) 9402 continue; 9403 9404 if (!dont || free->arch.lpage_info[i - 1] != 9405 dont->arch.lpage_info[i - 1]) { 9406 kvfree(free->arch.lpage_info[i - 1]); 9407 free->arch.lpage_info[i - 1] = NULL; 9408 } 9409 } 9410 9411 kvm_page_track_free_memslot(free, dont); 9412 } 9413 9414 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 9415 unsigned long npages) 9416 { 9417 int i; 9418 9419 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9420 struct kvm_lpage_info *linfo; 9421 unsigned long ugfn; 9422 int lpages; 9423 int level = i + 1; 9424 9425 lpages = gfn_to_index(slot->base_gfn + npages - 1, 9426 slot->base_gfn, level) + 1; 9427 9428 slot->arch.rmap[i] = 9429 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 9430 GFP_KERNEL_ACCOUNT); 9431 if (!slot->arch.rmap[i]) 9432 goto out_free; 9433 if (i == 0) 9434 continue; 9435 9436 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 9437 if (!linfo) 9438 goto out_free; 9439 9440 slot->arch.lpage_info[i - 1] = linfo; 9441 9442 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 9443 linfo[0].disallow_lpage = 1; 9444 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 9445 linfo[lpages - 1].disallow_lpage = 1; 9446 ugfn = slot->userspace_addr >> PAGE_SHIFT; 9447 /* 9448 * If the gfn and userspace address are not aligned wrt each 9449 * other, or if explicitly asked to, disable large page 9450 * support for this slot 9451 */ 9452 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 9453 !kvm_largepages_enabled()) { 9454 unsigned long j; 9455 9456 for (j = 0; j < lpages; ++j) 9457 linfo[j].disallow_lpage = 1; 9458 } 9459 } 9460 9461 if (kvm_page_track_create_memslot(slot, npages)) 9462 goto out_free; 9463 9464 return 0; 9465 9466 out_free: 9467 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9468 kvfree(slot->arch.rmap[i]); 9469 slot->arch.rmap[i] = NULL; 9470 if (i == 0) 9471 continue; 9472 9473 kvfree(slot->arch.lpage_info[i - 1]); 9474 slot->arch.lpage_info[i - 1] = NULL; 9475 } 9476 return -ENOMEM; 9477 } 9478 9479 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 9480 { 9481 /* 9482 * memslots->generation has been incremented. 9483 * mmio generation may have reached its maximum value. 9484 */ 9485 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 9486 } 9487 9488 int kvm_arch_prepare_memory_region(struct kvm *kvm, 9489 struct kvm_memory_slot *memslot, 9490 const struct kvm_userspace_memory_region *mem, 9491 enum kvm_mr_change change) 9492 { 9493 return 0; 9494 } 9495 9496 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 9497 struct kvm_memory_slot *new) 9498 { 9499 /* Still write protect RO slot */ 9500 if (new->flags & KVM_MEM_READONLY) { 9501 kvm_mmu_slot_remove_write_access(kvm, new); 9502 return; 9503 } 9504 9505 /* 9506 * Call kvm_x86_ops dirty logging hooks when they are valid. 9507 * 9508 * kvm_x86_ops->slot_disable_log_dirty is called when: 9509 * 9510 * - KVM_MR_CREATE with dirty logging is disabled 9511 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 9512 * 9513 * The reason is, in case of PML, we need to set D-bit for any slots 9514 * with dirty logging disabled in order to eliminate unnecessary GPA 9515 * logging in PML buffer (and potential PML buffer full VMEXT). This 9516 * guarantees leaving PML enabled during guest's lifetime won't have 9517 * any additional overhead from PML when guest is running with dirty 9518 * logging disabled for memory slots. 9519 * 9520 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot 9521 * to dirty logging mode. 9522 * 9523 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 9524 * 9525 * In case of write protect: 9526 * 9527 * Write protect all pages for dirty logging. 9528 * 9529 * All the sptes including the large sptes which point to this 9530 * slot are set to readonly. We can not create any new large 9531 * spte on this slot until the end of the logging. 9532 * 9533 * See the comments in fast_page_fault(). 9534 */ 9535 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 9536 if (kvm_x86_ops->slot_enable_log_dirty) 9537 kvm_x86_ops->slot_enable_log_dirty(kvm, new); 9538 else 9539 kvm_mmu_slot_remove_write_access(kvm, new); 9540 } else { 9541 if (kvm_x86_ops->slot_disable_log_dirty) 9542 kvm_x86_ops->slot_disable_log_dirty(kvm, new); 9543 } 9544 } 9545 9546 void kvm_arch_commit_memory_region(struct kvm *kvm, 9547 const struct kvm_userspace_memory_region *mem, 9548 const struct kvm_memory_slot *old, 9549 const struct kvm_memory_slot *new, 9550 enum kvm_mr_change change) 9551 { 9552 if (!kvm->arch.n_requested_mmu_pages) 9553 kvm_mmu_change_mmu_pages(kvm, 9554 kvm_mmu_calculate_default_mmu_pages(kvm)); 9555 9556 /* 9557 * Dirty logging tracks sptes in 4k granularity, meaning that large 9558 * sptes have to be split. If live migration is successful, the guest 9559 * in the source machine will be destroyed and large sptes will be 9560 * created in the destination. However, if the guest continues to run 9561 * in the source machine (for example if live migration fails), small 9562 * sptes will remain around and cause bad performance. 9563 * 9564 * Scan sptes if dirty logging has been stopped, dropping those 9565 * which can be collapsed into a single large-page spte. Later 9566 * page faults will create the large-page sptes. 9567 */ 9568 if ((change != KVM_MR_DELETE) && 9569 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 9570 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 9571 kvm_mmu_zap_collapsible_sptes(kvm, new); 9572 9573 /* 9574 * Set up write protection and/or dirty logging for the new slot. 9575 * 9576 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 9577 * been zapped so no dirty logging staff is needed for old slot. For 9578 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 9579 * new and it's also covered when dealing with the new slot. 9580 * 9581 * FIXME: const-ify all uses of struct kvm_memory_slot. 9582 */ 9583 if (change != KVM_MR_DELETE) 9584 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 9585 } 9586 9587 void kvm_arch_flush_shadow_all(struct kvm *kvm) 9588 { 9589 kvm_mmu_zap_all(kvm); 9590 } 9591 9592 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 9593 struct kvm_memory_slot *slot) 9594 { 9595 kvm_page_track_flush_slot(kvm, slot); 9596 } 9597 9598 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 9599 { 9600 return (is_guest_mode(vcpu) && 9601 kvm_x86_ops->guest_apic_has_interrupt && 9602 kvm_x86_ops->guest_apic_has_interrupt(vcpu)); 9603 } 9604 9605 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 9606 { 9607 if (!list_empty_careful(&vcpu->async_pf.done)) 9608 return true; 9609 9610 if (kvm_apic_has_events(vcpu)) 9611 return true; 9612 9613 if (vcpu->arch.pv.pv_unhalted) 9614 return true; 9615 9616 if (vcpu->arch.exception.pending) 9617 return true; 9618 9619 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 9620 (vcpu->arch.nmi_pending && 9621 kvm_x86_ops->nmi_allowed(vcpu))) 9622 return true; 9623 9624 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 9625 (vcpu->arch.smi_pending && !is_smm(vcpu))) 9626 return true; 9627 9628 if (kvm_arch_interrupt_allowed(vcpu) && 9629 (kvm_cpu_has_interrupt(vcpu) || 9630 kvm_guest_apic_has_interrupt(vcpu))) 9631 return true; 9632 9633 if (kvm_hv_has_stimer_pending(vcpu)) 9634 return true; 9635 9636 return false; 9637 } 9638 9639 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 9640 { 9641 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 9642 } 9643 9644 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 9645 { 9646 return vcpu->arch.preempted_in_kernel; 9647 } 9648 9649 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 9650 { 9651 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 9652 } 9653 9654 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 9655 { 9656 return kvm_x86_ops->interrupt_allowed(vcpu); 9657 } 9658 9659 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 9660 { 9661 if (is_64_bit_mode(vcpu)) 9662 return kvm_rip_read(vcpu); 9663 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 9664 kvm_rip_read(vcpu)); 9665 } 9666 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 9667 9668 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 9669 { 9670 return kvm_get_linear_rip(vcpu) == linear_rip; 9671 } 9672 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 9673 9674 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 9675 { 9676 unsigned long rflags; 9677 9678 rflags = kvm_x86_ops->get_rflags(vcpu); 9679 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9680 rflags &= ~X86_EFLAGS_TF; 9681 return rflags; 9682 } 9683 EXPORT_SYMBOL_GPL(kvm_get_rflags); 9684 9685 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 9686 { 9687 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 9688 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 9689 rflags |= X86_EFLAGS_TF; 9690 kvm_x86_ops->set_rflags(vcpu, rflags); 9691 } 9692 9693 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 9694 { 9695 __kvm_set_rflags(vcpu, rflags); 9696 kvm_make_request(KVM_REQ_EVENT, vcpu); 9697 } 9698 EXPORT_SYMBOL_GPL(kvm_set_rflags); 9699 9700 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 9701 { 9702 int r; 9703 9704 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 9705 work->wakeup_all) 9706 return; 9707 9708 r = kvm_mmu_reload(vcpu); 9709 if (unlikely(r)) 9710 return; 9711 9712 if (!vcpu->arch.mmu->direct_map && 9713 work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu)) 9714 return; 9715 9716 vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true); 9717 } 9718 9719 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 9720 { 9721 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 9722 } 9723 9724 static inline u32 kvm_async_pf_next_probe(u32 key) 9725 { 9726 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 9727 } 9728 9729 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 9730 { 9731 u32 key = kvm_async_pf_hash_fn(gfn); 9732 9733 while (vcpu->arch.apf.gfns[key] != ~0) 9734 key = kvm_async_pf_next_probe(key); 9735 9736 vcpu->arch.apf.gfns[key] = gfn; 9737 } 9738 9739 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 9740 { 9741 int i; 9742 u32 key = kvm_async_pf_hash_fn(gfn); 9743 9744 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 9745 (vcpu->arch.apf.gfns[key] != gfn && 9746 vcpu->arch.apf.gfns[key] != ~0); i++) 9747 key = kvm_async_pf_next_probe(key); 9748 9749 return key; 9750 } 9751 9752 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 9753 { 9754 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 9755 } 9756 9757 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 9758 { 9759 u32 i, j, k; 9760 9761 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 9762 while (true) { 9763 vcpu->arch.apf.gfns[i] = ~0; 9764 do { 9765 j = kvm_async_pf_next_probe(j); 9766 if (vcpu->arch.apf.gfns[j] == ~0) 9767 return; 9768 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 9769 /* 9770 * k lies cyclically in ]i,j] 9771 * | i.k.j | 9772 * |....j i.k.| or |.k..j i...| 9773 */ 9774 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 9775 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 9776 i = j; 9777 } 9778 } 9779 9780 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 9781 { 9782 9783 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 9784 sizeof(val)); 9785 } 9786 9787 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val) 9788 { 9789 9790 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val, 9791 sizeof(u32)); 9792 } 9793 9794 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 9795 struct kvm_async_pf *work) 9796 { 9797 struct x86_exception fault; 9798 9799 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 9800 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 9801 9802 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 9803 (vcpu->arch.apf.send_user_only && 9804 kvm_x86_ops->get_cpl(vcpu) == 0)) 9805 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 9806 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 9807 fault.vector = PF_VECTOR; 9808 fault.error_code_valid = true; 9809 fault.error_code = 0; 9810 fault.nested_page_fault = false; 9811 fault.address = work->arch.token; 9812 fault.async_page_fault = true; 9813 kvm_inject_page_fault(vcpu, &fault); 9814 } 9815 } 9816 9817 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 9818 struct kvm_async_pf *work) 9819 { 9820 struct x86_exception fault; 9821 u32 val; 9822 9823 if (work->wakeup_all) 9824 work->arch.token = ~0; /* broadcast wakeup */ 9825 else 9826 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 9827 trace_kvm_async_pf_ready(work->arch.token, work->gva); 9828 9829 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED && 9830 !apf_get_user(vcpu, &val)) { 9831 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT && 9832 vcpu->arch.exception.pending && 9833 vcpu->arch.exception.nr == PF_VECTOR && 9834 !apf_put_user(vcpu, 0)) { 9835 vcpu->arch.exception.injected = false; 9836 vcpu->arch.exception.pending = false; 9837 vcpu->arch.exception.nr = 0; 9838 vcpu->arch.exception.has_error_code = false; 9839 vcpu->arch.exception.error_code = 0; 9840 vcpu->arch.exception.has_payload = false; 9841 vcpu->arch.exception.payload = 0; 9842 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 9843 fault.vector = PF_VECTOR; 9844 fault.error_code_valid = true; 9845 fault.error_code = 0; 9846 fault.nested_page_fault = false; 9847 fault.address = work->arch.token; 9848 fault.async_page_fault = true; 9849 kvm_inject_page_fault(vcpu, &fault); 9850 } 9851 } 9852 vcpu->arch.apf.halted = false; 9853 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9854 } 9855 9856 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 9857 { 9858 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 9859 return true; 9860 else 9861 return kvm_can_do_async_pf(vcpu); 9862 } 9863 9864 void kvm_arch_start_assignment(struct kvm *kvm) 9865 { 9866 atomic_inc(&kvm->arch.assigned_device_count); 9867 } 9868 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 9869 9870 void kvm_arch_end_assignment(struct kvm *kvm) 9871 { 9872 atomic_dec(&kvm->arch.assigned_device_count); 9873 } 9874 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 9875 9876 bool kvm_arch_has_assigned_device(struct kvm *kvm) 9877 { 9878 return atomic_read(&kvm->arch.assigned_device_count); 9879 } 9880 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 9881 9882 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 9883 { 9884 atomic_inc(&kvm->arch.noncoherent_dma_count); 9885 } 9886 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 9887 9888 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 9889 { 9890 atomic_dec(&kvm->arch.noncoherent_dma_count); 9891 } 9892 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 9893 9894 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 9895 { 9896 return atomic_read(&kvm->arch.noncoherent_dma_count); 9897 } 9898 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 9899 9900 bool kvm_arch_has_irq_bypass(void) 9901 { 9902 return kvm_x86_ops->update_pi_irte != NULL; 9903 } 9904 9905 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 9906 struct irq_bypass_producer *prod) 9907 { 9908 struct kvm_kernel_irqfd *irqfd = 9909 container_of(cons, struct kvm_kernel_irqfd, consumer); 9910 9911 irqfd->producer = prod; 9912 9913 return kvm_x86_ops->update_pi_irte(irqfd->kvm, 9914 prod->irq, irqfd->gsi, 1); 9915 } 9916 9917 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 9918 struct irq_bypass_producer *prod) 9919 { 9920 int ret; 9921 struct kvm_kernel_irqfd *irqfd = 9922 container_of(cons, struct kvm_kernel_irqfd, consumer); 9923 9924 WARN_ON(irqfd->producer != prod); 9925 irqfd->producer = NULL; 9926 9927 /* 9928 * When producer of consumer is unregistered, we change back to 9929 * remapped mode, so we can re-use the current implementation 9930 * when the irq is masked/disabled or the consumer side (KVM 9931 * int this case doesn't want to receive the interrupts. 9932 */ 9933 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 9934 if (ret) 9935 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 9936 " fails: %d\n", irqfd->consumer.token, ret); 9937 } 9938 9939 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 9940 uint32_t guest_irq, bool set) 9941 { 9942 if (!kvm_x86_ops->update_pi_irte) 9943 return -EINVAL; 9944 9945 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); 9946 } 9947 9948 bool kvm_vector_hashing_enabled(void) 9949 { 9950 return vector_hashing; 9951 } 9952 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); 9953 9954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 9955 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 9956 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 9957 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 9958 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 9959 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 9960 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 9961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 9962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 9963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 9964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 9965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 9966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 9967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 9968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); 9969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 9970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 9971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 9972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 9973