xref: /linux/arch/x86/kvm/x86.c (revision b0f84a84fff180718995b1269da2988e5b28be42)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73 
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76 
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81 
82 #define emul_to_vcpu(ctxt) \
83 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84 
85 /* EFER defaults:
86  * - enable syscall per default because its emulated by KVM
87  * - enable LME and LMA per default on 64 bit KVM
88  */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95 
96 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
97 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98 
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101 
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
108 
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111 
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114 
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117 
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120 
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123 
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32  __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64  __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134 
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138 
139 /*
140  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
141  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
142  * advancement entirely.  Any other value is used as-is and disables adaptive
143  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
144  */
145 static int __read_mostly lapic_timer_advance_ns = -1;
146 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
147 
148 static bool __read_mostly vector_hashing = true;
149 module_param(vector_hashing, bool, S_IRUGO);
150 
151 bool __read_mostly enable_vmware_backdoor = false;
152 module_param(enable_vmware_backdoor, bool, S_IRUGO);
153 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
154 
155 static bool __read_mostly force_emulation_prefix = false;
156 module_param(force_emulation_prefix, bool, S_IRUGO);
157 
158 #define KVM_NR_SHARED_MSRS 16
159 
160 struct kvm_shared_msrs_global {
161 	int nr;
162 	u32 msrs[KVM_NR_SHARED_MSRS];
163 };
164 
165 struct kvm_shared_msrs {
166 	struct user_return_notifier urn;
167 	bool registered;
168 	struct kvm_shared_msr_values {
169 		u64 host;
170 		u64 curr;
171 	} values[KVM_NR_SHARED_MSRS];
172 };
173 
174 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
175 static struct kvm_shared_msrs __percpu *shared_msrs;
176 
177 struct kvm_stats_debugfs_item debugfs_entries[] = {
178 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
179 	{ "pf_guest", VCPU_STAT(pf_guest) },
180 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
181 	{ "invlpg", VCPU_STAT(invlpg) },
182 	{ "exits", VCPU_STAT(exits) },
183 	{ "io_exits", VCPU_STAT(io_exits) },
184 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
185 	{ "signal_exits", VCPU_STAT(signal_exits) },
186 	{ "irq_window", VCPU_STAT(irq_window_exits) },
187 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
188 	{ "halt_exits", VCPU_STAT(halt_exits) },
189 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
190 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
191 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
192 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
193 	{ "hypercalls", VCPU_STAT(hypercalls) },
194 	{ "request_irq", VCPU_STAT(request_irq_exits) },
195 	{ "irq_exits", VCPU_STAT(irq_exits) },
196 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
197 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
198 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
199 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
200 	{ "irq_injections", VCPU_STAT(irq_injections) },
201 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
202 	{ "req_event", VCPU_STAT(req_event) },
203 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
204 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
205 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
206 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
207 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
208 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
209 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
210 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
211 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
212 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
213 	{ "largepages", VM_STAT(lpages) },
214 	{ "max_mmu_page_hash_collisions",
215 		VM_STAT(max_mmu_page_hash_collisions) },
216 	{ NULL }
217 };
218 
219 u64 __read_mostly host_xcr0;
220 
221 struct kmem_cache *x86_fpu_cache;
222 EXPORT_SYMBOL_GPL(x86_fpu_cache);
223 
224 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
225 
226 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
227 {
228 	int i;
229 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
230 		vcpu->arch.apf.gfns[i] = ~0;
231 }
232 
233 static void kvm_on_user_return(struct user_return_notifier *urn)
234 {
235 	unsigned slot;
236 	struct kvm_shared_msrs *locals
237 		= container_of(urn, struct kvm_shared_msrs, urn);
238 	struct kvm_shared_msr_values *values;
239 	unsigned long flags;
240 
241 	/*
242 	 * Disabling irqs at this point since the following code could be
243 	 * interrupted and executed through kvm_arch_hardware_disable()
244 	 */
245 	local_irq_save(flags);
246 	if (locals->registered) {
247 		locals->registered = false;
248 		user_return_notifier_unregister(urn);
249 	}
250 	local_irq_restore(flags);
251 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
252 		values = &locals->values[slot];
253 		if (values->host != values->curr) {
254 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
255 			values->curr = values->host;
256 		}
257 	}
258 }
259 
260 static void shared_msr_update(unsigned slot, u32 msr)
261 {
262 	u64 value;
263 	unsigned int cpu = smp_processor_id();
264 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
265 
266 	/* only read, and nobody should modify it at this time,
267 	 * so don't need lock */
268 	if (slot >= shared_msrs_global.nr) {
269 		printk(KERN_ERR "kvm: invalid MSR slot!");
270 		return;
271 	}
272 	rdmsrl_safe(msr, &value);
273 	smsr->values[slot].host = value;
274 	smsr->values[slot].curr = value;
275 }
276 
277 void kvm_define_shared_msr(unsigned slot, u32 msr)
278 {
279 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
280 	shared_msrs_global.msrs[slot] = msr;
281 	if (slot >= shared_msrs_global.nr)
282 		shared_msrs_global.nr = slot + 1;
283 }
284 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
285 
286 static void kvm_shared_msr_cpu_online(void)
287 {
288 	unsigned i;
289 
290 	for (i = 0; i < shared_msrs_global.nr; ++i)
291 		shared_msr_update(i, shared_msrs_global.msrs[i]);
292 }
293 
294 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
295 {
296 	unsigned int cpu = smp_processor_id();
297 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298 	int err;
299 
300 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
301 		return 0;
302 	smsr->values[slot].curr = value;
303 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
304 	if (err)
305 		return 1;
306 
307 	if (!smsr->registered) {
308 		smsr->urn.on_user_return = kvm_on_user_return;
309 		user_return_notifier_register(&smsr->urn);
310 		smsr->registered = true;
311 	}
312 	return 0;
313 }
314 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
315 
316 static void drop_user_return_notifiers(void)
317 {
318 	unsigned int cpu = smp_processor_id();
319 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
320 
321 	if (smsr->registered)
322 		kvm_on_user_return(&smsr->urn);
323 }
324 
325 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
326 {
327 	return vcpu->arch.apic_base;
328 }
329 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
330 
331 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
332 {
333 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
334 }
335 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
336 
337 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
338 {
339 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
340 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
341 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
342 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
343 
344 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
345 		return 1;
346 	if (!msr_info->host_initiated) {
347 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
348 			return 1;
349 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
350 			return 1;
351 	}
352 
353 	kvm_lapic_set_base(vcpu, msr_info->data);
354 	return 0;
355 }
356 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
357 
358 asmlinkage __visible void kvm_spurious_fault(void)
359 {
360 	/* Fault while not rebooting.  We want the trace. */
361 	BUG();
362 }
363 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
364 
365 #define EXCPT_BENIGN		0
366 #define EXCPT_CONTRIBUTORY	1
367 #define EXCPT_PF		2
368 
369 static int exception_class(int vector)
370 {
371 	switch (vector) {
372 	case PF_VECTOR:
373 		return EXCPT_PF;
374 	case DE_VECTOR:
375 	case TS_VECTOR:
376 	case NP_VECTOR:
377 	case SS_VECTOR:
378 	case GP_VECTOR:
379 		return EXCPT_CONTRIBUTORY;
380 	default:
381 		break;
382 	}
383 	return EXCPT_BENIGN;
384 }
385 
386 #define EXCPT_FAULT		0
387 #define EXCPT_TRAP		1
388 #define EXCPT_ABORT		2
389 #define EXCPT_INTERRUPT		3
390 
391 static int exception_type(int vector)
392 {
393 	unsigned int mask;
394 
395 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
396 		return EXCPT_INTERRUPT;
397 
398 	mask = 1 << vector;
399 
400 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
401 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
402 		return EXCPT_TRAP;
403 
404 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
405 		return EXCPT_ABORT;
406 
407 	/* Reserved exceptions will result in fault */
408 	return EXCPT_FAULT;
409 }
410 
411 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
412 {
413 	unsigned nr = vcpu->arch.exception.nr;
414 	bool has_payload = vcpu->arch.exception.has_payload;
415 	unsigned long payload = vcpu->arch.exception.payload;
416 
417 	if (!has_payload)
418 		return;
419 
420 	switch (nr) {
421 	case DB_VECTOR:
422 		/*
423 		 * "Certain debug exceptions may clear bit 0-3.  The
424 		 * remaining contents of the DR6 register are never
425 		 * cleared by the processor".
426 		 */
427 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
428 		/*
429 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
430 		 */
431 		vcpu->arch.dr6 |= DR6_RTM;
432 		vcpu->arch.dr6 |= payload;
433 		/*
434 		 * Bit 16 should be set in the payload whenever the #DB
435 		 * exception should clear DR6.RTM. This makes the payload
436 		 * compatible with the pending debug exceptions under VMX.
437 		 * Though not currently documented in the SDM, this also
438 		 * makes the payload compatible with the exit qualification
439 		 * for #DB exceptions under VMX.
440 		 */
441 		vcpu->arch.dr6 ^= payload & DR6_RTM;
442 		break;
443 	case PF_VECTOR:
444 		vcpu->arch.cr2 = payload;
445 		break;
446 	}
447 
448 	vcpu->arch.exception.has_payload = false;
449 	vcpu->arch.exception.payload = 0;
450 }
451 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
452 
453 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
454 		unsigned nr, bool has_error, u32 error_code,
455 	        bool has_payload, unsigned long payload, bool reinject)
456 {
457 	u32 prev_nr;
458 	int class1, class2;
459 
460 	kvm_make_request(KVM_REQ_EVENT, vcpu);
461 
462 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
463 	queue:
464 		if (has_error && !is_protmode(vcpu))
465 			has_error = false;
466 		if (reinject) {
467 			/*
468 			 * On vmentry, vcpu->arch.exception.pending is only
469 			 * true if an event injection was blocked by
470 			 * nested_run_pending.  In that case, however,
471 			 * vcpu_enter_guest requests an immediate exit,
472 			 * and the guest shouldn't proceed far enough to
473 			 * need reinjection.
474 			 */
475 			WARN_ON_ONCE(vcpu->arch.exception.pending);
476 			vcpu->arch.exception.injected = true;
477 			if (WARN_ON_ONCE(has_payload)) {
478 				/*
479 				 * A reinjected event has already
480 				 * delivered its payload.
481 				 */
482 				has_payload = false;
483 				payload = 0;
484 			}
485 		} else {
486 			vcpu->arch.exception.pending = true;
487 			vcpu->arch.exception.injected = false;
488 		}
489 		vcpu->arch.exception.has_error_code = has_error;
490 		vcpu->arch.exception.nr = nr;
491 		vcpu->arch.exception.error_code = error_code;
492 		vcpu->arch.exception.has_payload = has_payload;
493 		vcpu->arch.exception.payload = payload;
494 		/*
495 		 * In guest mode, payload delivery should be deferred,
496 		 * so that the L1 hypervisor can intercept #PF before
497 		 * CR2 is modified (or intercept #DB before DR6 is
498 		 * modified under nVMX).  However, for ABI
499 		 * compatibility with KVM_GET_VCPU_EVENTS and
500 		 * KVM_SET_VCPU_EVENTS, we can't delay payload
501 		 * delivery unless userspace has enabled this
502 		 * functionality via the per-VM capability,
503 		 * KVM_CAP_EXCEPTION_PAYLOAD.
504 		 */
505 		if (!vcpu->kvm->arch.exception_payload_enabled ||
506 		    !is_guest_mode(vcpu))
507 			kvm_deliver_exception_payload(vcpu);
508 		return;
509 	}
510 
511 	/* to check exception */
512 	prev_nr = vcpu->arch.exception.nr;
513 	if (prev_nr == DF_VECTOR) {
514 		/* triple fault -> shutdown */
515 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
516 		return;
517 	}
518 	class1 = exception_class(prev_nr);
519 	class2 = exception_class(nr);
520 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
521 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
522 		/*
523 		 * Generate double fault per SDM Table 5-5.  Set
524 		 * exception.pending = true so that the double fault
525 		 * can trigger a nested vmexit.
526 		 */
527 		vcpu->arch.exception.pending = true;
528 		vcpu->arch.exception.injected = false;
529 		vcpu->arch.exception.has_error_code = true;
530 		vcpu->arch.exception.nr = DF_VECTOR;
531 		vcpu->arch.exception.error_code = 0;
532 		vcpu->arch.exception.has_payload = false;
533 		vcpu->arch.exception.payload = 0;
534 	} else
535 		/* replace previous exception with a new one in a hope
536 		   that instruction re-execution will regenerate lost
537 		   exception */
538 		goto queue;
539 }
540 
541 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
542 {
543 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
544 }
545 EXPORT_SYMBOL_GPL(kvm_queue_exception);
546 
547 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
548 {
549 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
550 }
551 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
552 
553 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
554 				  unsigned long payload)
555 {
556 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
557 }
558 
559 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
560 				    u32 error_code, unsigned long payload)
561 {
562 	kvm_multiple_exception(vcpu, nr, true, error_code,
563 			       true, payload, false);
564 }
565 
566 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
567 {
568 	if (err)
569 		kvm_inject_gp(vcpu, 0);
570 	else
571 		return kvm_skip_emulated_instruction(vcpu);
572 
573 	return 1;
574 }
575 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
576 
577 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
578 {
579 	++vcpu->stat.pf_guest;
580 	vcpu->arch.exception.nested_apf =
581 		is_guest_mode(vcpu) && fault->async_page_fault;
582 	if (vcpu->arch.exception.nested_apf) {
583 		vcpu->arch.apf.nested_apf_token = fault->address;
584 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
585 	} else {
586 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
587 					fault->address);
588 	}
589 }
590 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
591 
592 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
593 {
594 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
595 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
596 	else
597 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
598 
599 	return fault->nested_page_fault;
600 }
601 
602 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
603 {
604 	atomic_inc(&vcpu->arch.nmi_queued);
605 	kvm_make_request(KVM_REQ_NMI, vcpu);
606 }
607 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
608 
609 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
610 {
611 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
612 }
613 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
614 
615 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
616 {
617 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
618 }
619 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
620 
621 /*
622  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
623  * a #GP and return false.
624  */
625 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
626 {
627 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
628 		return true;
629 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
630 	return false;
631 }
632 EXPORT_SYMBOL_GPL(kvm_require_cpl);
633 
634 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
635 {
636 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
637 		return true;
638 
639 	kvm_queue_exception(vcpu, UD_VECTOR);
640 	return false;
641 }
642 EXPORT_SYMBOL_GPL(kvm_require_dr);
643 
644 /*
645  * This function will be used to read from the physical memory of the currently
646  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
647  * can read from guest physical or from the guest's guest physical memory.
648  */
649 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
650 			    gfn_t ngfn, void *data, int offset, int len,
651 			    u32 access)
652 {
653 	struct x86_exception exception;
654 	gfn_t real_gfn;
655 	gpa_t ngpa;
656 
657 	ngpa     = gfn_to_gpa(ngfn);
658 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
659 	if (real_gfn == UNMAPPED_GVA)
660 		return -EFAULT;
661 
662 	real_gfn = gpa_to_gfn(real_gfn);
663 
664 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
665 }
666 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
667 
668 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
669 			       void *data, int offset, int len, u32 access)
670 {
671 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
672 				       data, offset, len, access);
673 }
674 
675 /*
676  * Load the pae pdptrs.  Return true is they are all valid.
677  */
678 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
679 {
680 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
681 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
682 	int i;
683 	int ret;
684 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
685 
686 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
687 				      offset * sizeof(u64), sizeof(pdpte),
688 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
689 	if (ret < 0) {
690 		ret = 0;
691 		goto out;
692 	}
693 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
694 		if ((pdpte[i] & PT_PRESENT_MASK) &&
695 		    (pdpte[i] &
696 		     vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
697 			ret = 0;
698 			goto out;
699 		}
700 	}
701 	ret = 1;
702 
703 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
704 	__set_bit(VCPU_EXREG_PDPTR,
705 		  (unsigned long *)&vcpu->arch.regs_avail);
706 	__set_bit(VCPU_EXREG_PDPTR,
707 		  (unsigned long *)&vcpu->arch.regs_dirty);
708 out:
709 
710 	return ret;
711 }
712 EXPORT_SYMBOL_GPL(load_pdptrs);
713 
714 bool pdptrs_changed(struct kvm_vcpu *vcpu)
715 {
716 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
717 	bool changed = true;
718 	int offset;
719 	gfn_t gfn;
720 	int r;
721 
722 	if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
723 		return false;
724 
725 	if (!test_bit(VCPU_EXREG_PDPTR,
726 		      (unsigned long *)&vcpu->arch.regs_avail))
727 		return true;
728 
729 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
730 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
731 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
732 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
733 	if (r < 0)
734 		goto out;
735 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
736 out:
737 
738 	return changed;
739 }
740 EXPORT_SYMBOL_GPL(pdptrs_changed);
741 
742 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
743 {
744 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
745 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
746 
747 	cr0 |= X86_CR0_ET;
748 
749 #ifdef CONFIG_X86_64
750 	if (cr0 & 0xffffffff00000000UL)
751 		return 1;
752 #endif
753 
754 	cr0 &= ~CR0_RESERVED_BITS;
755 
756 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
757 		return 1;
758 
759 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
760 		return 1;
761 
762 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
763 #ifdef CONFIG_X86_64
764 		if ((vcpu->arch.efer & EFER_LME)) {
765 			int cs_db, cs_l;
766 
767 			if (!is_pae(vcpu))
768 				return 1;
769 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
770 			if (cs_l)
771 				return 1;
772 		} else
773 #endif
774 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775 						 kvm_read_cr3(vcpu)))
776 			return 1;
777 	}
778 
779 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
780 		return 1;
781 
782 	kvm_x86_ops->set_cr0(vcpu, cr0);
783 
784 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
785 		kvm_clear_async_pf_completion_queue(vcpu);
786 		kvm_async_pf_hash_reset(vcpu);
787 	}
788 
789 	if ((cr0 ^ old_cr0) & update_bits)
790 		kvm_mmu_reset_context(vcpu);
791 
792 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
793 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
794 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
795 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
796 
797 	return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr0);
800 
801 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
802 {
803 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
804 }
805 EXPORT_SYMBOL_GPL(kvm_lmsw);
806 
807 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
808 {
809 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
810 			!vcpu->guest_xcr0_loaded) {
811 		/* kvm_set_xcr() also depends on this */
812 		if (vcpu->arch.xcr0 != host_xcr0)
813 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
814 		vcpu->guest_xcr0_loaded = 1;
815 	}
816 }
817 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
818 
819 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
820 {
821 	if (vcpu->guest_xcr0_loaded) {
822 		if (vcpu->arch.xcr0 != host_xcr0)
823 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
824 		vcpu->guest_xcr0_loaded = 0;
825 	}
826 }
827 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
828 
829 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
830 {
831 	u64 xcr0 = xcr;
832 	u64 old_xcr0 = vcpu->arch.xcr0;
833 	u64 valid_bits;
834 
835 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
836 	if (index != XCR_XFEATURE_ENABLED_MASK)
837 		return 1;
838 	if (!(xcr0 & XFEATURE_MASK_FP))
839 		return 1;
840 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
841 		return 1;
842 
843 	/*
844 	 * Do not allow the guest to set bits that we do not support
845 	 * saving.  However, xcr0 bit 0 is always set, even if the
846 	 * emulated CPU does not support XSAVE (see fx_init).
847 	 */
848 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
849 	if (xcr0 & ~valid_bits)
850 		return 1;
851 
852 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
853 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
854 		return 1;
855 
856 	if (xcr0 & XFEATURE_MASK_AVX512) {
857 		if (!(xcr0 & XFEATURE_MASK_YMM))
858 			return 1;
859 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
860 			return 1;
861 	}
862 	vcpu->arch.xcr0 = xcr0;
863 
864 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
865 		kvm_update_cpuid(vcpu);
866 	return 0;
867 }
868 
869 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
870 {
871 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
872 	    __kvm_set_xcr(vcpu, index, xcr)) {
873 		kvm_inject_gp(vcpu, 0);
874 		return 1;
875 	}
876 	return 0;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_xcr);
879 
880 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
881 {
882 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
883 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
884 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
885 
886 	if (cr4 & CR4_RESERVED_BITS)
887 		return 1;
888 
889 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
890 		return 1;
891 
892 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
893 		return 1;
894 
895 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
896 		return 1;
897 
898 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
899 		return 1;
900 
901 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
902 		return 1;
903 
904 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
905 		return 1;
906 
907 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
908 		return 1;
909 
910 	if (is_long_mode(vcpu)) {
911 		if (!(cr4 & X86_CR4_PAE))
912 			return 1;
913 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
914 		   && ((cr4 ^ old_cr4) & pdptr_bits)
915 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
916 				   kvm_read_cr3(vcpu)))
917 		return 1;
918 
919 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
920 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
921 			return 1;
922 
923 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
924 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
925 			return 1;
926 	}
927 
928 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
929 		return 1;
930 
931 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
932 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
933 		kvm_mmu_reset_context(vcpu);
934 
935 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
936 		kvm_update_cpuid(vcpu);
937 
938 	return 0;
939 }
940 EXPORT_SYMBOL_GPL(kvm_set_cr4);
941 
942 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
943 {
944 	bool skip_tlb_flush = false;
945 #ifdef CONFIG_X86_64
946 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
947 
948 	if (pcid_enabled) {
949 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
950 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
951 	}
952 #endif
953 
954 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
955 		if (!skip_tlb_flush) {
956 			kvm_mmu_sync_roots(vcpu);
957 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
958 		}
959 		return 0;
960 	}
961 
962 	if (is_long_mode(vcpu) &&
963 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
964 		return 1;
965 	else if (is_pae(vcpu) && is_paging(vcpu) &&
966 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
967 		return 1;
968 
969 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
970 	vcpu->arch.cr3 = cr3;
971 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
972 
973 	return 0;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_cr3);
976 
977 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
978 {
979 	if (cr8 & CR8_RESERVED_BITS)
980 		return 1;
981 	if (lapic_in_kernel(vcpu))
982 		kvm_lapic_set_tpr(vcpu, cr8);
983 	else
984 		vcpu->arch.cr8 = cr8;
985 	return 0;
986 }
987 EXPORT_SYMBOL_GPL(kvm_set_cr8);
988 
989 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
990 {
991 	if (lapic_in_kernel(vcpu))
992 		return kvm_lapic_get_cr8(vcpu);
993 	else
994 		return vcpu->arch.cr8;
995 }
996 EXPORT_SYMBOL_GPL(kvm_get_cr8);
997 
998 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
999 {
1000 	int i;
1001 
1002 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1003 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1004 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1005 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1006 	}
1007 }
1008 
1009 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1010 {
1011 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1012 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1013 }
1014 
1015 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1016 {
1017 	unsigned long dr7;
1018 
1019 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1020 		dr7 = vcpu->arch.guest_debug_dr7;
1021 	else
1022 		dr7 = vcpu->arch.dr7;
1023 	kvm_x86_ops->set_dr7(vcpu, dr7);
1024 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1025 	if (dr7 & DR7_BP_EN_MASK)
1026 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1027 }
1028 
1029 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1030 {
1031 	u64 fixed = DR6_FIXED_1;
1032 
1033 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1034 		fixed |= DR6_RTM;
1035 	return fixed;
1036 }
1037 
1038 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1039 {
1040 	switch (dr) {
1041 	case 0 ... 3:
1042 		vcpu->arch.db[dr] = val;
1043 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1044 			vcpu->arch.eff_db[dr] = val;
1045 		break;
1046 	case 4:
1047 		/* fall through */
1048 	case 6:
1049 		if (val & 0xffffffff00000000ULL)
1050 			return -1; /* #GP */
1051 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1052 		kvm_update_dr6(vcpu);
1053 		break;
1054 	case 5:
1055 		/* fall through */
1056 	default: /* 7 */
1057 		if (val & 0xffffffff00000000ULL)
1058 			return -1; /* #GP */
1059 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1060 		kvm_update_dr7(vcpu);
1061 		break;
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1068 {
1069 	if (__kvm_set_dr(vcpu, dr, val)) {
1070 		kvm_inject_gp(vcpu, 0);
1071 		return 1;
1072 	}
1073 	return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_set_dr);
1076 
1077 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1078 {
1079 	switch (dr) {
1080 	case 0 ... 3:
1081 		*val = vcpu->arch.db[dr];
1082 		break;
1083 	case 4:
1084 		/* fall through */
1085 	case 6:
1086 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1087 			*val = vcpu->arch.dr6;
1088 		else
1089 			*val = kvm_x86_ops->get_dr6(vcpu);
1090 		break;
1091 	case 5:
1092 		/* fall through */
1093 	default: /* 7 */
1094 		*val = vcpu->arch.dr7;
1095 		break;
1096 	}
1097 	return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_get_dr);
1100 
1101 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1102 {
1103 	u32 ecx = kvm_rcx_read(vcpu);
1104 	u64 data;
1105 	int err;
1106 
1107 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1108 	if (err)
1109 		return err;
1110 	kvm_rax_write(vcpu, (u32)data);
1111 	kvm_rdx_write(vcpu, data >> 32);
1112 	return err;
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1115 
1116 /*
1117  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1118  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1119  *
1120  * This list is modified at module load time to reflect the
1121  * capabilities of the host cpu. This capabilities test skips MSRs that are
1122  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1123  * may depend on host virtualization features rather than host cpu features.
1124  */
1125 
1126 static u32 msrs_to_save[] = {
1127 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1128 	MSR_STAR,
1129 #ifdef CONFIG_X86_64
1130 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1131 #endif
1132 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1133 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1134 	MSR_IA32_SPEC_CTRL,
1135 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1136 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1137 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1138 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1139 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1140 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1141 };
1142 
1143 static unsigned num_msrs_to_save;
1144 
1145 static u32 emulated_msrs[] = {
1146 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1147 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1148 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1149 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1150 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1151 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1152 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1153 	HV_X64_MSR_RESET,
1154 	HV_X64_MSR_VP_INDEX,
1155 	HV_X64_MSR_VP_RUNTIME,
1156 	HV_X64_MSR_SCONTROL,
1157 	HV_X64_MSR_STIMER0_CONFIG,
1158 	HV_X64_MSR_VP_ASSIST_PAGE,
1159 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1160 	HV_X64_MSR_TSC_EMULATION_STATUS,
1161 
1162 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1163 	MSR_KVM_PV_EOI_EN,
1164 
1165 	MSR_IA32_TSC_ADJUST,
1166 	MSR_IA32_TSCDEADLINE,
1167 	MSR_IA32_ARCH_CAPABILITIES,
1168 	MSR_IA32_MISC_ENABLE,
1169 	MSR_IA32_MCG_STATUS,
1170 	MSR_IA32_MCG_CTL,
1171 	MSR_IA32_MCG_EXT_CTL,
1172 	MSR_IA32_SMBASE,
1173 	MSR_SMI_COUNT,
1174 	MSR_PLATFORM_INFO,
1175 	MSR_MISC_FEATURES_ENABLES,
1176 	MSR_AMD64_VIRT_SPEC_CTRL,
1177 	MSR_IA32_POWER_CTL,
1178 
1179 	MSR_K7_HWCR,
1180 };
1181 
1182 static unsigned num_emulated_msrs;
1183 
1184 /*
1185  * List of msr numbers which are used to expose MSR-based features that
1186  * can be used by a hypervisor to validate requested CPU features.
1187  */
1188 static u32 msr_based_features[] = {
1189 	MSR_IA32_VMX_BASIC,
1190 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1191 	MSR_IA32_VMX_PINBASED_CTLS,
1192 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1193 	MSR_IA32_VMX_PROCBASED_CTLS,
1194 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1195 	MSR_IA32_VMX_EXIT_CTLS,
1196 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1197 	MSR_IA32_VMX_ENTRY_CTLS,
1198 	MSR_IA32_VMX_MISC,
1199 	MSR_IA32_VMX_CR0_FIXED0,
1200 	MSR_IA32_VMX_CR0_FIXED1,
1201 	MSR_IA32_VMX_CR4_FIXED0,
1202 	MSR_IA32_VMX_CR4_FIXED1,
1203 	MSR_IA32_VMX_VMCS_ENUM,
1204 	MSR_IA32_VMX_PROCBASED_CTLS2,
1205 	MSR_IA32_VMX_EPT_VPID_CAP,
1206 	MSR_IA32_VMX_VMFUNC,
1207 
1208 	MSR_F10H_DECFG,
1209 	MSR_IA32_UCODE_REV,
1210 	MSR_IA32_ARCH_CAPABILITIES,
1211 };
1212 
1213 static unsigned int num_msr_based_features;
1214 
1215 u64 kvm_get_arch_capabilities(void)
1216 {
1217 	u64 data;
1218 
1219 	rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1220 
1221 	/*
1222 	 * If we're doing cache flushes (either "always" or "cond")
1223 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1224 	 * If an outer hypervisor is doing the cache flush for us
1225 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1226 	 * capability to the guest too, and if EPT is disabled we're not
1227 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1228 	 * require a nested hypervisor to do a flush of its own.
1229 	 */
1230 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1231 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1232 
1233 	return data;
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1236 
1237 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1238 {
1239 	switch (msr->index) {
1240 	case MSR_IA32_ARCH_CAPABILITIES:
1241 		msr->data = kvm_get_arch_capabilities();
1242 		break;
1243 	case MSR_IA32_UCODE_REV:
1244 		rdmsrl_safe(msr->index, &msr->data);
1245 		break;
1246 	default:
1247 		if (kvm_x86_ops->get_msr_feature(msr))
1248 			return 1;
1249 	}
1250 	return 0;
1251 }
1252 
1253 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1254 {
1255 	struct kvm_msr_entry msr;
1256 	int r;
1257 
1258 	msr.index = index;
1259 	r = kvm_get_msr_feature(&msr);
1260 	if (r)
1261 		return r;
1262 
1263 	*data = msr.data;
1264 
1265 	return 0;
1266 }
1267 
1268 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1269 {
1270 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1271 		return false;
1272 
1273 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1274 		return false;
1275 
1276 	if (efer & (EFER_LME | EFER_LMA) &&
1277 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1278 		return false;
1279 
1280 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1281 		return false;
1282 
1283 	return true;
1284 
1285 }
1286 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1287 {
1288 	if (efer & efer_reserved_bits)
1289 		return false;
1290 
1291 	return __kvm_valid_efer(vcpu, efer);
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1294 
1295 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1296 {
1297 	u64 old_efer = vcpu->arch.efer;
1298 	u64 efer = msr_info->data;
1299 
1300 	if (efer & efer_reserved_bits)
1301 		return 1;
1302 
1303 	if (!msr_info->host_initiated) {
1304 		if (!__kvm_valid_efer(vcpu, efer))
1305 			return 1;
1306 
1307 		if (is_paging(vcpu) &&
1308 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1309 			return 1;
1310 	}
1311 
1312 	efer &= ~EFER_LMA;
1313 	efer |= vcpu->arch.efer & EFER_LMA;
1314 
1315 	kvm_x86_ops->set_efer(vcpu, efer);
1316 
1317 	/* Update reserved bits */
1318 	if ((efer ^ old_efer) & EFER_NX)
1319 		kvm_mmu_reset_context(vcpu);
1320 
1321 	return 0;
1322 }
1323 
1324 void kvm_enable_efer_bits(u64 mask)
1325 {
1326        efer_reserved_bits &= ~mask;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1329 
1330 /*
1331  * Writes msr value into into the appropriate "register".
1332  * Returns 0 on success, non-0 otherwise.
1333  * Assumes vcpu_load() was already called.
1334  */
1335 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1336 {
1337 	switch (msr->index) {
1338 	case MSR_FS_BASE:
1339 	case MSR_GS_BASE:
1340 	case MSR_KERNEL_GS_BASE:
1341 	case MSR_CSTAR:
1342 	case MSR_LSTAR:
1343 		if (is_noncanonical_address(msr->data, vcpu))
1344 			return 1;
1345 		break;
1346 	case MSR_IA32_SYSENTER_EIP:
1347 	case MSR_IA32_SYSENTER_ESP:
1348 		/*
1349 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1350 		 * non-canonical address is written on Intel but not on
1351 		 * AMD (which ignores the top 32-bits, because it does
1352 		 * not implement 64-bit SYSENTER).
1353 		 *
1354 		 * 64-bit code should hence be able to write a non-canonical
1355 		 * value on AMD.  Making the address canonical ensures that
1356 		 * vmentry does not fail on Intel after writing a non-canonical
1357 		 * value, and that something deterministic happens if the guest
1358 		 * invokes 64-bit SYSENTER.
1359 		 */
1360 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1361 	}
1362 	return kvm_x86_ops->set_msr(vcpu, msr);
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_set_msr);
1365 
1366 /*
1367  * Adapt set_msr() to msr_io()'s calling convention
1368  */
1369 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1370 {
1371 	struct msr_data msr;
1372 	int r;
1373 
1374 	msr.index = index;
1375 	msr.host_initiated = true;
1376 	r = kvm_get_msr(vcpu, &msr);
1377 	if (r)
1378 		return r;
1379 
1380 	*data = msr.data;
1381 	return 0;
1382 }
1383 
1384 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1385 {
1386 	struct msr_data msr;
1387 
1388 	msr.data = *data;
1389 	msr.index = index;
1390 	msr.host_initiated = true;
1391 	return kvm_set_msr(vcpu, &msr);
1392 }
1393 
1394 #ifdef CONFIG_X86_64
1395 struct pvclock_gtod_data {
1396 	seqcount_t	seq;
1397 
1398 	struct { /* extract of a clocksource struct */
1399 		int vclock_mode;
1400 		u64	cycle_last;
1401 		u64	mask;
1402 		u32	mult;
1403 		u32	shift;
1404 	} clock;
1405 
1406 	u64		boot_ns;
1407 	u64		nsec_base;
1408 	u64		wall_time_sec;
1409 };
1410 
1411 static struct pvclock_gtod_data pvclock_gtod_data;
1412 
1413 static void update_pvclock_gtod(struct timekeeper *tk)
1414 {
1415 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1416 	u64 boot_ns;
1417 
1418 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1419 
1420 	write_seqcount_begin(&vdata->seq);
1421 
1422 	/* copy pvclock gtod data */
1423 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1424 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1425 	vdata->clock.mask		= tk->tkr_mono.mask;
1426 	vdata->clock.mult		= tk->tkr_mono.mult;
1427 	vdata->clock.shift		= tk->tkr_mono.shift;
1428 
1429 	vdata->boot_ns			= boot_ns;
1430 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1431 
1432 	vdata->wall_time_sec            = tk->xtime_sec;
1433 
1434 	write_seqcount_end(&vdata->seq);
1435 }
1436 #endif
1437 
1438 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1439 {
1440 	/*
1441 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1442 	 * vcpu_enter_guest.  This function is only called from
1443 	 * the physical CPU that is running vcpu.
1444 	 */
1445 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1446 }
1447 
1448 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1449 {
1450 	int version;
1451 	int r;
1452 	struct pvclock_wall_clock wc;
1453 	struct timespec64 boot;
1454 
1455 	if (!wall_clock)
1456 		return;
1457 
1458 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1459 	if (r)
1460 		return;
1461 
1462 	if (version & 1)
1463 		++version;  /* first time write, random junk */
1464 
1465 	++version;
1466 
1467 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1468 		return;
1469 
1470 	/*
1471 	 * The guest calculates current wall clock time by adding
1472 	 * system time (updated by kvm_guest_time_update below) to the
1473 	 * wall clock specified here.  guest system time equals host
1474 	 * system time for us, thus we must fill in host boot time here.
1475 	 */
1476 	getboottime64(&boot);
1477 
1478 	if (kvm->arch.kvmclock_offset) {
1479 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1480 		boot = timespec64_sub(boot, ts);
1481 	}
1482 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1483 	wc.nsec = boot.tv_nsec;
1484 	wc.version = version;
1485 
1486 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1487 
1488 	version++;
1489 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1490 }
1491 
1492 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1493 {
1494 	do_shl32_div32(dividend, divisor);
1495 	return dividend;
1496 }
1497 
1498 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1499 			       s8 *pshift, u32 *pmultiplier)
1500 {
1501 	uint64_t scaled64;
1502 	int32_t  shift = 0;
1503 	uint64_t tps64;
1504 	uint32_t tps32;
1505 
1506 	tps64 = base_hz;
1507 	scaled64 = scaled_hz;
1508 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1509 		tps64 >>= 1;
1510 		shift--;
1511 	}
1512 
1513 	tps32 = (uint32_t)tps64;
1514 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1515 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1516 			scaled64 >>= 1;
1517 		else
1518 			tps32 <<= 1;
1519 		shift++;
1520 	}
1521 
1522 	*pshift = shift;
1523 	*pmultiplier = div_frac(scaled64, tps32);
1524 
1525 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1526 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1527 }
1528 
1529 #ifdef CONFIG_X86_64
1530 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1531 #endif
1532 
1533 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1534 static unsigned long max_tsc_khz;
1535 
1536 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1537 {
1538 	u64 v = (u64)khz * (1000000 + ppm);
1539 	do_div(v, 1000000);
1540 	return v;
1541 }
1542 
1543 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1544 {
1545 	u64 ratio;
1546 
1547 	/* Guest TSC same frequency as host TSC? */
1548 	if (!scale) {
1549 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1550 		return 0;
1551 	}
1552 
1553 	/* TSC scaling supported? */
1554 	if (!kvm_has_tsc_control) {
1555 		if (user_tsc_khz > tsc_khz) {
1556 			vcpu->arch.tsc_catchup = 1;
1557 			vcpu->arch.tsc_always_catchup = 1;
1558 			return 0;
1559 		} else {
1560 			WARN(1, "user requested TSC rate below hardware speed\n");
1561 			return -1;
1562 		}
1563 	}
1564 
1565 	/* TSC scaling required  - calculate ratio */
1566 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1567 				user_tsc_khz, tsc_khz);
1568 
1569 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1570 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1571 			  user_tsc_khz);
1572 		return -1;
1573 	}
1574 
1575 	vcpu->arch.tsc_scaling_ratio = ratio;
1576 	return 0;
1577 }
1578 
1579 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1580 {
1581 	u32 thresh_lo, thresh_hi;
1582 	int use_scaling = 0;
1583 
1584 	/* tsc_khz can be zero if TSC calibration fails */
1585 	if (user_tsc_khz == 0) {
1586 		/* set tsc_scaling_ratio to a safe value */
1587 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1588 		return -1;
1589 	}
1590 
1591 	/* Compute a scale to convert nanoseconds in TSC cycles */
1592 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1593 			   &vcpu->arch.virtual_tsc_shift,
1594 			   &vcpu->arch.virtual_tsc_mult);
1595 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1596 
1597 	/*
1598 	 * Compute the variation in TSC rate which is acceptable
1599 	 * within the range of tolerance and decide if the
1600 	 * rate being applied is within that bounds of the hardware
1601 	 * rate.  If so, no scaling or compensation need be done.
1602 	 */
1603 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1604 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1605 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1606 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1607 		use_scaling = 1;
1608 	}
1609 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1610 }
1611 
1612 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1613 {
1614 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1615 				      vcpu->arch.virtual_tsc_mult,
1616 				      vcpu->arch.virtual_tsc_shift);
1617 	tsc += vcpu->arch.this_tsc_write;
1618 	return tsc;
1619 }
1620 
1621 static inline int gtod_is_based_on_tsc(int mode)
1622 {
1623 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1624 }
1625 
1626 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1627 {
1628 #ifdef CONFIG_X86_64
1629 	bool vcpus_matched;
1630 	struct kvm_arch *ka = &vcpu->kvm->arch;
1631 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1632 
1633 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1634 			 atomic_read(&vcpu->kvm->online_vcpus));
1635 
1636 	/*
1637 	 * Once the masterclock is enabled, always perform request in
1638 	 * order to update it.
1639 	 *
1640 	 * In order to enable masterclock, the host clocksource must be TSC
1641 	 * and the vcpus need to have matched TSCs.  When that happens,
1642 	 * perform request to enable masterclock.
1643 	 */
1644 	if (ka->use_master_clock ||
1645 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1646 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1647 
1648 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1649 			    atomic_read(&vcpu->kvm->online_vcpus),
1650 		            ka->use_master_clock, gtod->clock.vclock_mode);
1651 #endif
1652 }
1653 
1654 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1655 {
1656 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1657 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1658 }
1659 
1660 /*
1661  * Multiply tsc by a fixed point number represented by ratio.
1662  *
1663  * The most significant 64-N bits (mult) of ratio represent the
1664  * integral part of the fixed point number; the remaining N bits
1665  * (frac) represent the fractional part, ie. ratio represents a fixed
1666  * point number (mult + frac * 2^(-N)).
1667  *
1668  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1669  */
1670 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1671 {
1672 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1673 }
1674 
1675 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1676 {
1677 	u64 _tsc = tsc;
1678 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1679 
1680 	if (ratio != kvm_default_tsc_scaling_ratio)
1681 		_tsc = __scale_tsc(ratio, tsc);
1682 
1683 	return _tsc;
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1686 
1687 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1688 {
1689 	u64 tsc;
1690 
1691 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1692 
1693 	return target_tsc - tsc;
1694 }
1695 
1696 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1697 {
1698 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1699 
1700 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1703 
1704 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1705 {
1706 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1707 }
1708 
1709 static inline bool kvm_check_tsc_unstable(void)
1710 {
1711 #ifdef CONFIG_X86_64
1712 	/*
1713 	 * TSC is marked unstable when we're running on Hyper-V,
1714 	 * 'TSC page' clocksource is good.
1715 	 */
1716 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1717 		return false;
1718 #endif
1719 	return check_tsc_unstable();
1720 }
1721 
1722 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1723 {
1724 	struct kvm *kvm = vcpu->kvm;
1725 	u64 offset, ns, elapsed;
1726 	unsigned long flags;
1727 	bool matched;
1728 	bool already_matched;
1729 	u64 data = msr->data;
1730 	bool synchronizing = false;
1731 
1732 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1733 	offset = kvm_compute_tsc_offset(vcpu, data);
1734 	ns = ktime_get_boot_ns();
1735 	elapsed = ns - kvm->arch.last_tsc_nsec;
1736 
1737 	if (vcpu->arch.virtual_tsc_khz) {
1738 		if (data == 0 && msr->host_initiated) {
1739 			/*
1740 			 * detection of vcpu initialization -- need to sync
1741 			 * with other vCPUs. This particularly helps to keep
1742 			 * kvm_clock stable after CPU hotplug
1743 			 */
1744 			synchronizing = true;
1745 		} else {
1746 			u64 tsc_exp = kvm->arch.last_tsc_write +
1747 						nsec_to_cycles(vcpu, elapsed);
1748 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1749 			/*
1750 			 * Special case: TSC write with a small delta (1 second)
1751 			 * of virtual cycle time against real time is
1752 			 * interpreted as an attempt to synchronize the CPU.
1753 			 */
1754 			synchronizing = data < tsc_exp + tsc_hz &&
1755 					data + tsc_hz > tsc_exp;
1756 		}
1757 	}
1758 
1759 	/*
1760 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1761 	 * TSC, we add elapsed time in this computation.  We could let the
1762 	 * compensation code attempt to catch up if we fall behind, but
1763 	 * it's better to try to match offsets from the beginning.
1764          */
1765 	if (synchronizing &&
1766 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1767 		if (!kvm_check_tsc_unstable()) {
1768 			offset = kvm->arch.cur_tsc_offset;
1769 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1770 		} else {
1771 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1772 			data += delta;
1773 			offset = kvm_compute_tsc_offset(vcpu, data);
1774 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1775 		}
1776 		matched = true;
1777 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1778 	} else {
1779 		/*
1780 		 * We split periods of matched TSC writes into generations.
1781 		 * For each generation, we track the original measured
1782 		 * nanosecond time, offset, and write, so if TSCs are in
1783 		 * sync, we can match exact offset, and if not, we can match
1784 		 * exact software computation in compute_guest_tsc()
1785 		 *
1786 		 * These values are tracked in kvm->arch.cur_xxx variables.
1787 		 */
1788 		kvm->arch.cur_tsc_generation++;
1789 		kvm->arch.cur_tsc_nsec = ns;
1790 		kvm->arch.cur_tsc_write = data;
1791 		kvm->arch.cur_tsc_offset = offset;
1792 		matched = false;
1793 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1794 			 kvm->arch.cur_tsc_generation, data);
1795 	}
1796 
1797 	/*
1798 	 * We also track th most recent recorded KHZ, write and time to
1799 	 * allow the matching interval to be extended at each write.
1800 	 */
1801 	kvm->arch.last_tsc_nsec = ns;
1802 	kvm->arch.last_tsc_write = data;
1803 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1804 
1805 	vcpu->arch.last_guest_tsc = data;
1806 
1807 	/* Keep track of which generation this VCPU has synchronized to */
1808 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1809 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1810 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1811 
1812 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1813 		update_ia32_tsc_adjust_msr(vcpu, offset);
1814 
1815 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1816 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1817 
1818 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1819 	if (!matched) {
1820 		kvm->arch.nr_vcpus_matched_tsc = 0;
1821 	} else if (!already_matched) {
1822 		kvm->arch.nr_vcpus_matched_tsc++;
1823 	}
1824 
1825 	kvm_track_tsc_matching(vcpu);
1826 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1827 }
1828 
1829 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1830 
1831 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1832 					   s64 adjustment)
1833 {
1834 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1835 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1836 }
1837 
1838 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1839 {
1840 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1841 		WARN_ON(adjustment < 0);
1842 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1843 	adjust_tsc_offset_guest(vcpu, adjustment);
1844 }
1845 
1846 #ifdef CONFIG_X86_64
1847 
1848 static u64 read_tsc(void)
1849 {
1850 	u64 ret = (u64)rdtsc_ordered();
1851 	u64 last = pvclock_gtod_data.clock.cycle_last;
1852 
1853 	if (likely(ret >= last))
1854 		return ret;
1855 
1856 	/*
1857 	 * GCC likes to generate cmov here, but this branch is extremely
1858 	 * predictable (it's just a function of time and the likely is
1859 	 * very likely) and there's a data dependence, so force GCC
1860 	 * to generate a branch instead.  I don't barrier() because
1861 	 * we don't actually need a barrier, and if this function
1862 	 * ever gets inlined it will generate worse code.
1863 	 */
1864 	asm volatile ("");
1865 	return last;
1866 }
1867 
1868 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1869 {
1870 	long v;
1871 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1872 	u64 tsc_pg_val;
1873 
1874 	switch (gtod->clock.vclock_mode) {
1875 	case VCLOCK_HVCLOCK:
1876 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1877 						  tsc_timestamp);
1878 		if (tsc_pg_val != U64_MAX) {
1879 			/* TSC page valid */
1880 			*mode = VCLOCK_HVCLOCK;
1881 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1882 				gtod->clock.mask;
1883 		} else {
1884 			/* TSC page invalid */
1885 			*mode = VCLOCK_NONE;
1886 		}
1887 		break;
1888 	case VCLOCK_TSC:
1889 		*mode = VCLOCK_TSC;
1890 		*tsc_timestamp = read_tsc();
1891 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1892 			gtod->clock.mask;
1893 		break;
1894 	default:
1895 		*mode = VCLOCK_NONE;
1896 	}
1897 
1898 	if (*mode == VCLOCK_NONE)
1899 		*tsc_timestamp = v = 0;
1900 
1901 	return v * gtod->clock.mult;
1902 }
1903 
1904 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1905 {
1906 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1907 	unsigned long seq;
1908 	int mode;
1909 	u64 ns;
1910 
1911 	do {
1912 		seq = read_seqcount_begin(&gtod->seq);
1913 		ns = gtod->nsec_base;
1914 		ns += vgettsc(tsc_timestamp, &mode);
1915 		ns >>= gtod->clock.shift;
1916 		ns += gtod->boot_ns;
1917 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1918 	*t = ns;
1919 
1920 	return mode;
1921 }
1922 
1923 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1924 {
1925 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1926 	unsigned long seq;
1927 	int mode;
1928 	u64 ns;
1929 
1930 	do {
1931 		seq = read_seqcount_begin(&gtod->seq);
1932 		ts->tv_sec = gtod->wall_time_sec;
1933 		ns = gtod->nsec_base;
1934 		ns += vgettsc(tsc_timestamp, &mode);
1935 		ns >>= gtod->clock.shift;
1936 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1937 
1938 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1939 	ts->tv_nsec = ns;
1940 
1941 	return mode;
1942 }
1943 
1944 /* returns true if host is using TSC based clocksource */
1945 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1946 {
1947 	/* checked again under seqlock below */
1948 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1949 		return false;
1950 
1951 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1952 						      tsc_timestamp));
1953 }
1954 
1955 /* returns true if host is using TSC based clocksource */
1956 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1957 					   u64 *tsc_timestamp)
1958 {
1959 	/* checked again under seqlock below */
1960 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1961 		return false;
1962 
1963 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1964 }
1965 #endif
1966 
1967 /*
1968  *
1969  * Assuming a stable TSC across physical CPUS, and a stable TSC
1970  * across virtual CPUs, the following condition is possible.
1971  * Each numbered line represents an event visible to both
1972  * CPUs at the next numbered event.
1973  *
1974  * "timespecX" represents host monotonic time. "tscX" represents
1975  * RDTSC value.
1976  *
1977  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1978  *
1979  * 1.  read timespec0,tsc0
1980  * 2.					| timespec1 = timespec0 + N
1981  * 					| tsc1 = tsc0 + M
1982  * 3. transition to guest		| transition to guest
1983  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1984  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1985  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1986  *
1987  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1988  *
1989  * 	- ret0 < ret1
1990  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1991  *		...
1992  *	- 0 < N - M => M < N
1993  *
1994  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1995  * always the case (the difference between two distinct xtime instances
1996  * might be smaller then the difference between corresponding TSC reads,
1997  * when updating guest vcpus pvclock areas).
1998  *
1999  * To avoid that problem, do not allow visibility of distinct
2000  * system_timestamp/tsc_timestamp values simultaneously: use a master
2001  * copy of host monotonic time values. Update that master copy
2002  * in lockstep.
2003  *
2004  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2005  *
2006  */
2007 
2008 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2009 {
2010 #ifdef CONFIG_X86_64
2011 	struct kvm_arch *ka = &kvm->arch;
2012 	int vclock_mode;
2013 	bool host_tsc_clocksource, vcpus_matched;
2014 
2015 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2016 			atomic_read(&kvm->online_vcpus));
2017 
2018 	/*
2019 	 * If the host uses TSC clock, then passthrough TSC as stable
2020 	 * to the guest.
2021 	 */
2022 	host_tsc_clocksource = kvm_get_time_and_clockread(
2023 					&ka->master_kernel_ns,
2024 					&ka->master_cycle_now);
2025 
2026 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2027 				&& !ka->backwards_tsc_observed
2028 				&& !ka->boot_vcpu_runs_old_kvmclock;
2029 
2030 	if (ka->use_master_clock)
2031 		atomic_set(&kvm_guest_has_master_clock, 1);
2032 
2033 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2034 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2035 					vcpus_matched);
2036 #endif
2037 }
2038 
2039 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2040 {
2041 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2042 }
2043 
2044 static void kvm_gen_update_masterclock(struct kvm *kvm)
2045 {
2046 #ifdef CONFIG_X86_64
2047 	int i;
2048 	struct kvm_vcpu *vcpu;
2049 	struct kvm_arch *ka = &kvm->arch;
2050 
2051 	spin_lock(&ka->pvclock_gtod_sync_lock);
2052 	kvm_make_mclock_inprogress_request(kvm);
2053 	/* no guest entries from this point */
2054 	pvclock_update_vm_gtod_copy(kvm);
2055 
2056 	kvm_for_each_vcpu(i, vcpu, kvm)
2057 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2058 
2059 	/* guest entries allowed */
2060 	kvm_for_each_vcpu(i, vcpu, kvm)
2061 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2062 
2063 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2064 #endif
2065 }
2066 
2067 u64 get_kvmclock_ns(struct kvm *kvm)
2068 {
2069 	struct kvm_arch *ka = &kvm->arch;
2070 	struct pvclock_vcpu_time_info hv_clock;
2071 	u64 ret;
2072 
2073 	spin_lock(&ka->pvclock_gtod_sync_lock);
2074 	if (!ka->use_master_clock) {
2075 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2076 		return ktime_get_boot_ns() + ka->kvmclock_offset;
2077 	}
2078 
2079 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2080 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2081 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2082 
2083 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2084 	get_cpu();
2085 
2086 	if (__this_cpu_read(cpu_tsc_khz)) {
2087 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2088 				   &hv_clock.tsc_shift,
2089 				   &hv_clock.tsc_to_system_mul);
2090 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2091 	} else
2092 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2093 
2094 	put_cpu();
2095 
2096 	return ret;
2097 }
2098 
2099 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2100 {
2101 	struct kvm_vcpu_arch *vcpu = &v->arch;
2102 	struct pvclock_vcpu_time_info guest_hv_clock;
2103 
2104 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2105 		&guest_hv_clock, sizeof(guest_hv_clock))))
2106 		return;
2107 
2108 	/* This VCPU is paused, but it's legal for a guest to read another
2109 	 * VCPU's kvmclock, so we really have to follow the specification where
2110 	 * it says that version is odd if data is being modified, and even after
2111 	 * it is consistent.
2112 	 *
2113 	 * Version field updates must be kept separate.  This is because
2114 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2115 	 * writes within a string instruction are weakly ordered.  So there
2116 	 * are three writes overall.
2117 	 *
2118 	 * As a small optimization, only write the version field in the first
2119 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2120 	 * version field is the first in the struct.
2121 	 */
2122 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2123 
2124 	if (guest_hv_clock.version & 1)
2125 		++guest_hv_clock.version;  /* first time write, random junk */
2126 
2127 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2128 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2129 				&vcpu->hv_clock,
2130 				sizeof(vcpu->hv_clock.version));
2131 
2132 	smp_wmb();
2133 
2134 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2135 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2136 
2137 	if (vcpu->pvclock_set_guest_stopped_request) {
2138 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2139 		vcpu->pvclock_set_guest_stopped_request = false;
2140 	}
2141 
2142 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2143 
2144 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2145 				&vcpu->hv_clock,
2146 				sizeof(vcpu->hv_clock));
2147 
2148 	smp_wmb();
2149 
2150 	vcpu->hv_clock.version++;
2151 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2152 				&vcpu->hv_clock,
2153 				sizeof(vcpu->hv_clock.version));
2154 }
2155 
2156 static int kvm_guest_time_update(struct kvm_vcpu *v)
2157 {
2158 	unsigned long flags, tgt_tsc_khz;
2159 	struct kvm_vcpu_arch *vcpu = &v->arch;
2160 	struct kvm_arch *ka = &v->kvm->arch;
2161 	s64 kernel_ns;
2162 	u64 tsc_timestamp, host_tsc;
2163 	u8 pvclock_flags;
2164 	bool use_master_clock;
2165 
2166 	kernel_ns = 0;
2167 	host_tsc = 0;
2168 
2169 	/*
2170 	 * If the host uses TSC clock, then passthrough TSC as stable
2171 	 * to the guest.
2172 	 */
2173 	spin_lock(&ka->pvclock_gtod_sync_lock);
2174 	use_master_clock = ka->use_master_clock;
2175 	if (use_master_clock) {
2176 		host_tsc = ka->master_cycle_now;
2177 		kernel_ns = ka->master_kernel_ns;
2178 	}
2179 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2180 
2181 	/* Keep irq disabled to prevent changes to the clock */
2182 	local_irq_save(flags);
2183 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2184 	if (unlikely(tgt_tsc_khz == 0)) {
2185 		local_irq_restore(flags);
2186 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2187 		return 1;
2188 	}
2189 	if (!use_master_clock) {
2190 		host_tsc = rdtsc();
2191 		kernel_ns = ktime_get_boot_ns();
2192 	}
2193 
2194 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2195 
2196 	/*
2197 	 * We may have to catch up the TSC to match elapsed wall clock
2198 	 * time for two reasons, even if kvmclock is used.
2199 	 *   1) CPU could have been running below the maximum TSC rate
2200 	 *   2) Broken TSC compensation resets the base at each VCPU
2201 	 *      entry to avoid unknown leaps of TSC even when running
2202 	 *      again on the same CPU.  This may cause apparent elapsed
2203 	 *      time to disappear, and the guest to stand still or run
2204 	 *	very slowly.
2205 	 */
2206 	if (vcpu->tsc_catchup) {
2207 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2208 		if (tsc > tsc_timestamp) {
2209 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2210 			tsc_timestamp = tsc;
2211 		}
2212 	}
2213 
2214 	local_irq_restore(flags);
2215 
2216 	/* With all the info we got, fill in the values */
2217 
2218 	if (kvm_has_tsc_control)
2219 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2220 
2221 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2222 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2223 				   &vcpu->hv_clock.tsc_shift,
2224 				   &vcpu->hv_clock.tsc_to_system_mul);
2225 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2226 	}
2227 
2228 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2229 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2230 	vcpu->last_guest_tsc = tsc_timestamp;
2231 
2232 	/* If the host uses TSC clocksource, then it is stable */
2233 	pvclock_flags = 0;
2234 	if (use_master_clock)
2235 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2236 
2237 	vcpu->hv_clock.flags = pvclock_flags;
2238 
2239 	if (vcpu->pv_time_enabled)
2240 		kvm_setup_pvclock_page(v);
2241 	if (v == kvm_get_vcpu(v->kvm, 0))
2242 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2243 	return 0;
2244 }
2245 
2246 /*
2247  * kvmclock updates which are isolated to a given vcpu, such as
2248  * vcpu->cpu migration, should not allow system_timestamp from
2249  * the rest of the vcpus to remain static. Otherwise ntp frequency
2250  * correction applies to one vcpu's system_timestamp but not
2251  * the others.
2252  *
2253  * So in those cases, request a kvmclock update for all vcpus.
2254  * We need to rate-limit these requests though, as they can
2255  * considerably slow guests that have a large number of vcpus.
2256  * The time for a remote vcpu to update its kvmclock is bound
2257  * by the delay we use to rate-limit the updates.
2258  */
2259 
2260 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2261 
2262 static void kvmclock_update_fn(struct work_struct *work)
2263 {
2264 	int i;
2265 	struct delayed_work *dwork = to_delayed_work(work);
2266 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2267 					   kvmclock_update_work);
2268 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2269 	struct kvm_vcpu *vcpu;
2270 
2271 	kvm_for_each_vcpu(i, vcpu, kvm) {
2272 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2273 		kvm_vcpu_kick(vcpu);
2274 	}
2275 }
2276 
2277 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2278 {
2279 	struct kvm *kvm = v->kvm;
2280 
2281 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2282 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2283 					KVMCLOCK_UPDATE_DELAY);
2284 }
2285 
2286 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2287 
2288 static void kvmclock_sync_fn(struct work_struct *work)
2289 {
2290 	struct delayed_work *dwork = to_delayed_work(work);
2291 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2292 					   kvmclock_sync_work);
2293 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2294 
2295 	if (!kvmclock_periodic_sync)
2296 		return;
2297 
2298 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2299 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2300 					KVMCLOCK_SYNC_PERIOD);
2301 }
2302 
2303 /*
2304  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2305  */
2306 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2307 {
2308 	/* McStatusWrEn enabled? */
2309 	if (guest_cpuid_is_amd(vcpu))
2310 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2311 
2312 	return false;
2313 }
2314 
2315 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2316 {
2317 	u64 mcg_cap = vcpu->arch.mcg_cap;
2318 	unsigned bank_num = mcg_cap & 0xff;
2319 	u32 msr = msr_info->index;
2320 	u64 data = msr_info->data;
2321 
2322 	switch (msr) {
2323 	case MSR_IA32_MCG_STATUS:
2324 		vcpu->arch.mcg_status = data;
2325 		break;
2326 	case MSR_IA32_MCG_CTL:
2327 		if (!(mcg_cap & MCG_CTL_P) &&
2328 		    (data || !msr_info->host_initiated))
2329 			return 1;
2330 		if (data != 0 && data != ~(u64)0)
2331 			return 1;
2332 		vcpu->arch.mcg_ctl = data;
2333 		break;
2334 	default:
2335 		if (msr >= MSR_IA32_MC0_CTL &&
2336 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2337 			u32 offset = msr - MSR_IA32_MC0_CTL;
2338 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2339 			 * some Linux kernels though clear bit 10 in bank 4 to
2340 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2341 			 * this to avoid an uncatched #GP in the guest
2342 			 */
2343 			if ((offset & 0x3) == 0 &&
2344 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2345 				return -1;
2346 
2347 			/* MCi_STATUS */
2348 			if (!msr_info->host_initiated &&
2349 			    (offset & 0x3) == 1 && data != 0) {
2350 				if (!can_set_mci_status(vcpu))
2351 					return -1;
2352 			}
2353 
2354 			vcpu->arch.mce_banks[offset] = data;
2355 			break;
2356 		}
2357 		return 1;
2358 	}
2359 	return 0;
2360 }
2361 
2362 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2363 {
2364 	struct kvm *kvm = vcpu->kvm;
2365 	int lm = is_long_mode(vcpu);
2366 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2367 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2368 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2369 		: kvm->arch.xen_hvm_config.blob_size_32;
2370 	u32 page_num = data & ~PAGE_MASK;
2371 	u64 page_addr = data & PAGE_MASK;
2372 	u8 *page;
2373 	int r;
2374 
2375 	r = -E2BIG;
2376 	if (page_num >= blob_size)
2377 		goto out;
2378 	r = -ENOMEM;
2379 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2380 	if (IS_ERR(page)) {
2381 		r = PTR_ERR(page);
2382 		goto out;
2383 	}
2384 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2385 		goto out_free;
2386 	r = 0;
2387 out_free:
2388 	kfree(page);
2389 out:
2390 	return r;
2391 }
2392 
2393 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2394 {
2395 	gpa_t gpa = data & ~0x3f;
2396 
2397 	/* Bits 3:5 are reserved, Should be zero */
2398 	if (data & 0x38)
2399 		return 1;
2400 
2401 	vcpu->arch.apf.msr_val = data;
2402 
2403 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2404 		kvm_clear_async_pf_completion_queue(vcpu);
2405 		kvm_async_pf_hash_reset(vcpu);
2406 		return 0;
2407 	}
2408 
2409 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2410 					sizeof(u32)))
2411 		return 1;
2412 
2413 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2414 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2415 	kvm_async_pf_wakeup_all(vcpu);
2416 	return 0;
2417 }
2418 
2419 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2420 {
2421 	vcpu->arch.pv_time_enabled = false;
2422 }
2423 
2424 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2425 {
2426 	++vcpu->stat.tlb_flush;
2427 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2428 }
2429 
2430 static void record_steal_time(struct kvm_vcpu *vcpu)
2431 {
2432 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2433 		return;
2434 
2435 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2436 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2437 		return;
2438 
2439 	/*
2440 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2441 	 * expensive IPIs.
2442 	 */
2443 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2444 		kvm_vcpu_flush_tlb(vcpu, false);
2445 
2446 	if (vcpu->arch.st.steal.version & 1)
2447 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2448 
2449 	vcpu->arch.st.steal.version += 1;
2450 
2451 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2452 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2453 
2454 	smp_wmb();
2455 
2456 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2457 		vcpu->arch.st.last_steal;
2458 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2459 
2460 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2461 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2462 
2463 	smp_wmb();
2464 
2465 	vcpu->arch.st.steal.version += 1;
2466 
2467 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2468 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2469 }
2470 
2471 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2472 {
2473 	bool pr = false;
2474 	u32 msr = msr_info->index;
2475 	u64 data = msr_info->data;
2476 
2477 	switch (msr) {
2478 	case MSR_AMD64_NB_CFG:
2479 	case MSR_IA32_UCODE_WRITE:
2480 	case MSR_VM_HSAVE_PA:
2481 	case MSR_AMD64_PATCH_LOADER:
2482 	case MSR_AMD64_BU_CFG2:
2483 	case MSR_AMD64_DC_CFG:
2484 	case MSR_F15H_EX_CFG:
2485 		break;
2486 
2487 	case MSR_IA32_UCODE_REV:
2488 		if (msr_info->host_initiated)
2489 			vcpu->arch.microcode_version = data;
2490 		break;
2491 	case MSR_IA32_ARCH_CAPABILITIES:
2492 		if (!msr_info->host_initiated)
2493 			return 1;
2494 		vcpu->arch.arch_capabilities = data;
2495 		break;
2496 	case MSR_EFER:
2497 		return set_efer(vcpu, msr_info);
2498 	case MSR_K7_HWCR:
2499 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2500 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2501 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2502 
2503 		/* Handle McStatusWrEn */
2504 		if (data == BIT_ULL(18)) {
2505 			vcpu->arch.msr_hwcr = data;
2506 		} else if (data != 0) {
2507 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2508 				    data);
2509 			return 1;
2510 		}
2511 		break;
2512 	case MSR_FAM10H_MMIO_CONF_BASE:
2513 		if (data != 0) {
2514 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2515 				    "0x%llx\n", data);
2516 			return 1;
2517 		}
2518 		break;
2519 	case MSR_IA32_DEBUGCTLMSR:
2520 		if (!data) {
2521 			/* We support the non-activated case already */
2522 			break;
2523 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2524 			/* Values other than LBR and BTF are vendor-specific,
2525 			   thus reserved and should throw a #GP */
2526 			return 1;
2527 		}
2528 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2529 			    __func__, data);
2530 		break;
2531 	case 0x200 ... 0x2ff:
2532 		return kvm_mtrr_set_msr(vcpu, msr, data);
2533 	case MSR_IA32_APICBASE:
2534 		return kvm_set_apic_base(vcpu, msr_info);
2535 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2536 		return kvm_x2apic_msr_write(vcpu, msr, data);
2537 	case MSR_IA32_TSCDEADLINE:
2538 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2539 		break;
2540 	case MSR_IA32_TSC_ADJUST:
2541 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2542 			if (!msr_info->host_initiated) {
2543 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2544 				adjust_tsc_offset_guest(vcpu, adj);
2545 			}
2546 			vcpu->arch.ia32_tsc_adjust_msr = data;
2547 		}
2548 		break;
2549 	case MSR_IA32_MISC_ENABLE:
2550 		vcpu->arch.ia32_misc_enable_msr = data;
2551 		break;
2552 	case MSR_IA32_SMBASE:
2553 		if (!msr_info->host_initiated)
2554 			return 1;
2555 		vcpu->arch.smbase = data;
2556 		break;
2557 	case MSR_IA32_TSC:
2558 		kvm_write_tsc(vcpu, msr_info);
2559 		break;
2560 	case MSR_SMI_COUNT:
2561 		if (!msr_info->host_initiated)
2562 			return 1;
2563 		vcpu->arch.smi_count = data;
2564 		break;
2565 	case MSR_KVM_WALL_CLOCK_NEW:
2566 	case MSR_KVM_WALL_CLOCK:
2567 		vcpu->kvm->arch.wall_clock = data;
2568 		kvm_write_wall_clock(vcpu->kvm, data);
2569 		break;
2570 	case MSR_KVM_SYSTEM_TIME_NEW:
2571 	case MSR_KVM_SYSTEM_TIME: {
2572 		struct kvm_arch *ka = &vcpu->kvm->arch;
2573 
2574 		kvmclock_reset(vcpu);
2575 
2576 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2577 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2578 
2579 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2580 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2581 
2582 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2583 		}
2584 
2585 		vcpu->arch.time = data;
2586 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2587 
2588 		/* we verify if the enable bit is set... */
2589 		if (!(data & 1))
2590 			break;
2591 
2592 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2593 		     &vcpu->arch.pv_time, data & ~1ULL,
2594 		     sizeof(struct pvclock_vcpu_time_info)))
2595 			vcpu->arch.pv_time_enabled = false;
2596 		else
2597 			vcpu->arch.pv_time_enabled = true;
2598 
2599 		break;
2600 	}
2601 	case MSR_KVM_ASYNC_PF_EN:
2602 		if (kvm_pv_enable_async_pf(vcpu, data))
2603 			return 1;
2604 		break;
2605 	case MSR_KVM_STEAL_TIME:
2606 
2607 		if (unlikely(!sched_info_on()))
2608 			return 1;
2609 
2610 		if (data & KVM_STEAL_RESERVED_MASK)
2611 			return 1;
2612 
2613 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2614 						data & KVM_STEAL_VALID_BITS,
2615 						sizeof(struct kvm_steal_time)))
2616 			return 1;
2617 
2618 		vcpu->arch.st.msr_val = data;
2619 
2620 		if (!(data & KVM_MSR_ENABLED))
2621 			break;
2622 
2623 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2624 
2625 		break;
2626 	case MSR_KVM_PV_EOI_EN:
2627 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2628 			return 1;
2629 		break;
2630 
2631 	case MSR_IA32_MCG_CTL:
2632 	case MSR_IA32_MCG_STATUS:
2633 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2634 		return set_msr_mce(vcpu, msr_info);
2635 
2636 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2637 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2638 		pr = true; /* fall through */
2639 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2640 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2641 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2642 			return kvm_pmu_set_msr(vcpu, msr_info);
2643 
2644 		if (pr || data != 0)
2645 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2646 				    "0x%x data 0x%llx\n", msr, data);
2647 		break;
2648 	case MSR_K7_CLK_CTL:
2649 		/*
2650 		 * Ignore all writes to this no longer documented MSR.
2651 		 * Writes are only relevant for old K7 processors,
2652 		 * all pre-dating SVM, but a recommended workaround from
2653 		 * AMD for these chips. It is possible to specify the
2654 		 * affected processor models on the command line, hence
2655 		 * the need to ignore the workaround.
2656 		 */
2657 		break;
2658 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2659 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2660 	case HV_X64_MSR_CRASH_CTL:
2661 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2662 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2663 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2664 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2665 		return kvm_hv_set_msr_common(vcpu, msr, data,
2666 					     msr_info->host_initiated);
2667 	case MSR_IA32_BBL_CR_CTL3:
2668 		/* Drop writes to this legacy MSR -- see rdmsr
2669 		 * counterpart for further detail.
2670 		 */
2671 		if (report_ignored_msrs)
2672 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2673 				msr, data);
2674 		break;
2675 	case MSR_AMD64_OSVW_ID_LENGTH:
2676 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2677 			return 1;
2678 		vcpu->arch.osvw.length = data;
2679 		break;
2680 	case MSR_AMD64_OSVW_STATUS:
2681 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2682 			return 1;
2683 		vcpu->arch.osvw.status = data;
2684 		break;
2685 	case MSR_PLATFORM_INFO:
2686 		if (!msr_info->host_initiated ||
2687 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2688 		     cpuid_fault_enabled(vcpu)))
2689 			return 1;
2690 		vcpu->arch.msr_platform_info = data;
2691 		break;
2692 	case MSR_MISC_FEATURES_ENABLES:
2693 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2694 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2695 		     !supports_cpuid_fault(vcpu)))
2696 			return 1;
2697 		vcpu->arch.msr_misc_features_enables = data;
2698 		break;
2699 	default:
2700 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2701 			return xen_hvm_config(vcpu, data);
2702 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2703 			return kvm_pmu_set_msr(vcpu, msr_info);
2704 		if (!ignore_msrs) {
2705 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2706 				    msr, data);
2707 			return 1;
2708 		} else {
2709 			if (report_ignored_msrs)
2710 				vcpu_unimpl(vcpu,
2711 					"ignored wrmsr: 0x%x data 0x%llx\n",
2712 					msr, data);
2713 			break;
2714 		}
2715 	}
2716 	return 0;
2717 }
2718 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2719 
2720 
2721 /*
2722  * Reads an msr value (of 'msr_index') into 'pdata'.
2723  * Returns 0 on success, non-0 otherwise.
2724  * Assumes vcpu_load() was already called.
2725  */
2726 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2727 {
2728 	return kvm_x86_ops->get_msr(vcpu, msr);
2729 }
2730 EXPORT_SYMBOL_GPL(kvm_get_msr);
2731 
2732 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2733 {
2734 	u64 data;
2735 	u64 mcg_cap = vcpu->arch.mcg_cap;
2736 	unsigned bank_num = mcg_cap & 0xff;
2737 
2738 	switch (msr) {
2739 	case MSR_IA32_P5_MC_ADDR:
2740 	case MSR_IA32_P5_MC_TYPE:
2741 		data = 0;
2742 		break;
2743 	case MSR_IA32_MCG_CAP:
2744 		data = vcpu->arch.mcg_cap;
2745 		break;
2746 	case MSR_IA32_MCG_CTL:
2747 		if (!(mcg_cap & MCG_CTL_P) && !host)
2748 			return 1;
2749 		data = vcpu->arch.mcg_ctl;
2750 		break;
2751 	case MSR_IA32_MCG_STATUS:
2752 		data = vcpu->arch.mcg_status;
2753 		break;
2754 	default:
2755 		if (msr >= MSR_IA32_MC0_CTL &&
2756 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2757 			u32 offset = msr - MSR_IA32_MC0_CTL;
2758 			data = vcpu->arch.mce_banks[offset];
2759 			break;
2760 		}
2761 		return 1;
2762 	}
2763 	*pdata = data;
2764 	return 0;
2765 }
2766 
2767 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2768 {
2769 	switch (msr_info->index) {
2770 	case MSR_IA32_PLATFORM_ID:
2771 	case MSR_IA32_EBL_CR_POWERON:
2772 	case MSR_IA32_DEBUGCTLMSR:
2773 	case MSR_IA32_LASTBRANCHFROMIP:
2774 	case MSR_IA32_LASTBRANCHTOIP:
2775 	case MSR_IA32_LASTINTFROMIP:
2776 	case MSR_IA32_LASTINTTOIP:
2777 	case MSR_K8_SYSCFG:
2778 	case MSR_K8_TSEG_ADDR:
2779 	case MSR_K8_TSEG_MASK:
2780 	case MSR_VM_HSAVE_PA:
2781 	case MSR_K8_INT_PENDING_MSG:
2782 	case MSR_AMD64_NB_CFG:
2783 	case MSR_FAM10H_MMIO_CONF_BASE:
2784 	case MSR_AMD64_BU_CFG2:
2785 	case MSR_IA32_PERF_CTL:
2786 	case MSR_AMD64_DC_CFG:
2787 	case MSR_F15H_EX_CFG:
2788 		msr_info->data = 0;
2789 		break;
2790 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2791 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2792 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2793 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2794 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2795 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2796 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2797 		msr_info->data = 0;
2798 		break;
2799 	case MSR_IA32_UCODE_REV:
2800 		msr_info->data = vcpu->arch.microcode_version;
2801 		break;
2802 	case MSR_IA32_ARCH_CAPABILITIES:
2803 		if (!msr_info->host_initiated &&
2804 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2805 			return 1;
2806 		msr_info->data = vcpu->arch.arch_capabilities;
2807 		break;
2808 	case MSR_IA32_TSC:
2809 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2810 		break;
2811 	case MSR_MTRRcap:
2812 	case 0x200 ... 0x2ff:
2813 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2814 	case 0xcd: /* fsb frequency */
2815 		msr_info->data = 3;
2816 		break;
2817 		/*
2818 		 * MSR_EBC_FREQUENCY_ID
2819 		 * Conservative value valid for even the basic CPU models.
2820 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2821 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2822 		 * and 266MHz for model 3, or 4. Set Core Clock
2823 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2824 		 * 31:24) even though these are only valid for CPU
2825 		 * models > 2, however guests may end up dividing or
2826 		 * multiplying by zero otherwise.
2827 		 */
2828 	case MSR_EBC_FREQUENCY_ID:
2829 		msr_info->data = 1 << 24;
2830 		break;
2831 	case MSR_IA32_APICBASE:
2832 		msr_info->data = kvm_get_apic_base(vcpu);
2833 		break;
2834 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2835 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2836 		break;
2837 	case MSR_IA32_TSCDEADLINE:
2838 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2839 		break;
2840 	case MSR_IA32_TSC_ADJUST:
2841 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2842 		break;
2843 	case MSR_IA32_MISC_ENABLE:
2844 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2845 		break;
2846 	case MSR_IA32_SMBASE:
2847 		if (!msr_info->host_initiated)
2848 			return 1;
2849 		msr_info->data = vcpu->arch.smbase;
2850 		break;
2851 	case MSR_SMI_COUNT:
2852 		msr_info->data = vcpu->arch.smi_count;
2853 		break;
2854 	case MSR_IA32_PERF_STATUS:
2855 		/* TSC increment by tick */
2856 		msr_info->data = 1000ULL;
2857 		/* CPU multiplier */
2858 		msr_info->data |= (((uint64_t)4ULL) << 40);
2859 		break;
2860 	case MSR_EFER:
2861 		msr_info->data = vcpu->arch.efer;
2862 		break;
2863 	case MSR_KVM_WALL_CLOCK:
2864 	case MSR_KVM_WALL_CLOCK_NEW:
2865 		msr_info->data = vcpu->kvm->arch.wall_clock;
2866 		break;
2867 	case MSR_KVM_SYSTEM_TIME:
2868 	case MSR_KVM_SYSTEM_TIME_NEW:
2869 		msr_info->data = vcpu->arch.time;
2870 		break;
2871 	case MSR_KVM_ASYNC_PF_EN:
2872 		msr_info->data = vcpu->arch.apf.msr_val;
2873 		break;
2874 	case MSR_KVM_STEAL_TIME:
2875 		msr_info->data = vcpu->arch.st.msr_val;
2876 		break;
2877 	case MSR_KVM_PV_EOI_EN:
2878 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2879 		break;
2880 	case MSR_IA32_P5_MC_ADDR:
2881 	case MSR_IA32_P5_MC_TYPE:
2882 	case MSR_IA32_MCG_CAP:
2883 	case MSR_IA32_MCG_CTL:
2884 	case MSR_IA32_MCG_STATUS:
2885 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2886 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2887 				   msr_info->host_initiated);
2888 	case MSR_K7_CLK_CTL:
2889 		/*
2890 		 * Provide expected ramp-up count for K7. All other
2891 		 * are set to zero, indicating minimum divisors for
2892 		 * every field.
2893 		 *
2894 		 * This prevents guest kernels on AMD host with CPU
2895 		 * type 6, model 8 and higher from exploding due to
2896 		 * the rdmsr failing.
2897 		 */
2898 		msr_info->data = 0x20000000;
2899 		break;
2900 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2901 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2902 	case HV_X64_MSR_CRASH_CTL:
2903 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2904 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2905 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2906 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2907 		return kvm_hv_get_msr_common(vcpu,
2908 					     msr_info->index, &msr_info->data,
2909 					     msr_info->host_initiated);
2910 		break;
2911 	case MSR_IA32_BBL_CR_CTL3:
2912 		/* This legacy MSR exists but isn't fully documented in current
2913 		 * silicon.  It is however accessed by winxp in very narrow
2914 		 * scenarios where it sets bit #19, itself documented as
2915 		 * a "reserved" bit.  Best effort attempt to source coherent
2916 		 * read data here should the balance of the register be
2917 		 * interpreted by the guest:
2918 		 *
2919 		 * L2 cache control register 3: 64GB range, 256KB size,
2920 		 * enabled, latency 0x1, configured
2921 		 */
2922 		msr_info->data = 0xbe702111;
2923 		break;
2924 	case MSR_AMD64_OSVW_ID_LENGTH:
2925 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2926 			return 1;
2927 		msr_info->data = vcpu->arch.osvw.length;
2928 		break;
2929 	case MSR_AMD64_OSVW_STATUS:
2930 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2931 			return 1;
2932 		msr_info->data = vcpu->arch.osvw.status;
2933 		break;
2934 	case MSR_PLATFORM_INFO:
2935 		if (!msr_info->host_initiated &&
2936 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2937 			return 1;
2938 		msr_info->data = vcpu->arch.msr_platform_info;
2939 		break;
2940 	case MSR_MISC_FEATURES_ENABLES:
2941 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2942 		break;
2943 	case MSR_K7_HWCR:
2944 		msr_info->data = vcpu->arch.msr_hwcr;
2945 		break;
2946 	default:
2947 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2948 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2949 		if (!ignore_msrs) {
2950 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2951 					       msr_info->index);
2952 			return 1;
2953 		} else {
2954 			if (report_ignored_msrs)
2955 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2956 					msr_info->index);
2957 			msr_info->data = 0;
2958 		}
2959 		break;
2960 	}
2961 	return 0;
2962 }
2963 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2964 
2965 /*
2966  * Read or write a bunch of msrs. All parameters are kernel addresses.
2967  *
2968  * @return number of msrs set successfully.
2969  */
2970 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2971 		    struct kvm_msr_entry *entries,
2972 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2973 				  unsigned index, u64 *data))
2974 {
2975 	int i;
2976 
2977 	for (i = 0; i < msrs->nmsrs; ++i)
2978 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2979 			break;
2980 
2981 	return i;
2982 }
2983 
2984 /*
2985  * Read or write a bunch of msrs. Parameters are user addresses.
2986  *
2987  * @return number of msrs set successfully.
2988  */
2989 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2990 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2991 				unsigned index, u64 *data),
2992 		  int writeback)
2993 {
2994 	struct kvm_msrs msrs;
2995 	struct kvm_msr_entry *entries;
2996 	int r, n;
2997 	unsigned size;
2998 
2999 	r = -EFAULT;
3000 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3001 		goto out;
3002 
3003 	r = -E2BIG;
3004 	if (msrs.nmsrs >= MAX_IO_MSRS)
3005 		goto out;
3006 
3007 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3008 	entries = memdup_user(user_msrs->entries, size);
3009 	if (IS_ERR(entries)) {
3010 		r = PTR_ERR(entries);
3011 		goto out;
3012 	}
3013 
3014 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3015 	if (r < 0)
3016 		goto out_free;
3017 
3018 	r = -EFAULT;
3019 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3020 		goto out_free;
3021 
3022 	r = n;
3023 
3024 out_free:
3025 	kfree(entries);
3026 out:
3027 	return r;
3028 }
3029 
3030 static inline bool kvm_can_mwait_in_guest(void)
3031 {
3032 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3033 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3034 		boot_cpu_has(X86_FEATURE_ARAT);
3035 }
3036 
3037 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3038 {
3039 	int r = 0;
3040 
3041 	switch (ext) {
3042 	case KVM_CAP_IRQCHIP:
3043 	case KVM_CAP_HLT:
3044 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3045 	case KVM_CAP_SET_TSS_ADDR:
3046 	case KVM_CAP_EXT_CPUID:
3047 	case KVM_CAP_EXT_EMUL_CPUID:
3048 	case KVM_CAP_CLOCKSOURCE:
3049 	case KVM_CAP_PIT:
3050 	case KVM_CAP_NOP_IO_DELAY:
3051 	case KVM_CAP_MP_STATE:
3052 	case KVM_CAP_SYNC_MMU:
3053 	case KVM_CAP_USER_NMI:
3054 	case KVM_CAP_REINJECT_CONTROL:
3055 	case KVM_CAP_IRQ_INJECT_STATUS:
3056 	case KVM_CAP_IOEVENTFD:
3057 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3058 	case KVM_CAP_PIT2:
3059 	case KVM_CAP_PIT_STATE2:
3060 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3061 	case KVM_CAP_XEN_HVM:
3062 	case KVM_CAP_VCPU_EVENTS:
3063 	case KVM_CAP_HYPERV:
3064 	case KVM_CAP_HYPERV_VAPIC:
3065 	case KVM_CAP_HYPERV_SPIN:
3066 	case KVM_CAP_HYPERV_SYNIC:
3067 	case KVM_CAP_HYPERV_SYNIC2:
3068 	case KVM_CAP_HYPERV_VP_INDEX:
3069 	case KVM_CAP_HYPERV_EVENTFD:
3070 	case KVM_CAP_HYPERV_TLBFLUSH:
3071 	case KVM_CAP_HYPERV_SEND_IPI:
3072 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3073 	case KVM_CAP_HYPERV_CPUID:
3074 	case KVM_CAP_PCI_SEGMENT:
3075 	case KVM_CAP_DEBUGREGS:
3076 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3077 	case KVM_CAP_XSAVE:
3078 	case KVM_CAP_ASYNC_PF:
3079 	case KVM_CAP_GET_TSC_KHZ:
3080 	case KVM_CAP_KVMCLOCK_CTRL:
3081 	case KVM_CAP_READONLY_MEM:
3082 	case KVM_CAP_HYPERV_TIME:
3083 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3084 	case KVM_CAP_TSC_DEADLINE_TIMER:
3085 	case KVM_CAP_DISABLE_QUIRKS:
3086 	case KVM_CAP_SET_BOOT_CPU_ID:
3087  	case KVM_CAP_SPLIT_IRQCHIP:
3088 	case KVM_CAP_IMMEDIATE_EXIT:
3089 	case KVM_CAP_GET_MSR_FEATURES:
3090 	case KVM_CAP_MSR_PLATFORM_INFO:
3091 	case KVM_CAP_EXCEPTION_PAYLOAD:
3092 		r = 1;
3093 		break;
3094 	case KVM_CAP_SYNC_REGS:
3095 		r = KVM_SYNC_X86_VALID_FIELDS;
3096 		break;
3097 	case KVM_CAP_ADJUST_CLOCK:
3098 		r = KVM_CLOCK_TSC_STABLE;
3099 		break;
3100 	case KVM_CAP_X86_DISABLE_EXITS:
3101 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3102 		if(kvm_can_mwait_in_guest())
3103 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3104 		break;
3105 	case KVM_CAP_X86_SMM:
3106 		/* SMBASE is usually relocated above 1M on modern chipsets,
3107 		 * and SMM handlers might indeed rely on 4G segment limits,
3108 		 * so do not report SMM to be available if real mode is
3109 		 * emulated via vm86 mode.  Still, do not go to great lengths
3110 		 * to avoid userspace's usage of the feature, because it is a
3111 		 * fringe case that is not enabled except via specific settings
3112 		 * of the module parameters.
3113 		 */
3114 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3115 		break;
3116 	case KVM_CAP_VAPIC:
3117 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3118 		break;
3119 	case KVM_CAP_NR_VCPUS:
3120 		r = KVM_SOFT_MAX_VCPUS;
3121 		break;
3122 	case KVM_CAP_MAX_VCPUS:
3123 		r = KVM_MAX_VCPUS;
3124 		break;
3125 	case KVM_CAP_MAX_VCPU_ID:
3126 		r = KVM_MAX_VCPU_ID;
3127 		break;
3128 	case KVM_CAP_PV_MMU:	/* obsolete */
3129 		r = 0;
3130 		break;
3131 	case KVM_CAP_MCE:
3132 		r = KVM_MAX_MCE_BANKS;
3133 		break;
3134 	case KVM_CAP_XCRS:
3135 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3136 		break;
3137 	case KVM_CAP_TSC_CONTROL:
3138 		r = kvm_has_tsc_control;
3139 		break;
3140 	case KVM_CAP_X2APIC_API:
3141 		r = KVM_X2APIC_API_VALID_FLAGS;
3142 		break;
3143 	case KVM_CAP_NESTED_STATE:
3144 		r = kvm_x86_ops->get_nested_state ?
3145 			kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3146 		break;
3147 	default:
3148 		break;
3149 	}
3150 	return r;
3151 
3152 }
3153 
3154 long kvm_arch_dev_ioctl(struct file *filp,
3155 			unsigned int ioctl, unsigned long arg)
3156 {
3157 	void __user *argp = (void __user *)arg;
3158 	long r;
3159 
3160 	switch (ioctl) {
3161 	case KVM_GET_MSR_INDEX_LIST: {
3162 		struct kvm_msr_list __user *user_msr_list = argp;
3163 		struct kvm_msr_list msr_list;
3164 		unsigned n;
3165 
3166 		r = -EFAULT;
3167 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3168 			goto out;
3169 		n = msr_list.nmsrs;
3170 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3171 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3172 			goto out;
3173 		r = -E2BIG;
3174 		if (n < msr_list.nmsrs)
3175 			goto out;
3176 		r = -EFAULT;
3177 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3178 				 num_msrs_to_save * sizeof(u32)))
3179 			goto out;
3180 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3181 				 &emulated_msrs,
3182 				 num_emulated_msrs * sizeof(u32)))
3183 			goto out;
3184 		r = 0;
3185 		break;
3186 	}
3187 	case KVM_GET_SUPPORTED_CPUID:
3188 	case KVM_GET_EMULATED_CPUID: {
3189 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3190 		struct kvm_cpuid2 cpuid;
3191 
3192 		r = -EFAULT;
3193 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3194 			goto out;
3195 
3196 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3197 					    ioctl);
3198 		if (r)
3199 			goto out;
3200 
3201 		r = -EFAULT;
3202 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3203 			goto out;
3204 		r = 0;
3205 		break;
3206 	}
3207 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3208 		r = -EFAULT;
3209 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3210 				 sizeof(kvm_mce_cap_supported)))
3211 			goto out;
3212 		r = 0;
3213 		break;
3214 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3215 		struct kvm_msr_list __user *user_msr_list = argp;
3216 		struct kvm_msr_list msr_list;
3217 		unsigned int n;
3218 
3219 		r = -EFAULT;
3220 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3221 			goto out;
3222 		n = msr_list.nmsrs;
3223 		msr_list.nmsrs = num_msr_based_features;
3224 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3225 			goto out;
3226 		r = -E2BIG;
3227 		if (n < msr_list.nmsrs)
3228 			goto out;
3229 		r = -EFAULT;
3230 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3231 				 num_msr_based_features * sizeof(u32)))
3232 			goto out;
3233 		r = 0;
3234 		break;
3235 	}
3236 	case KVM_GET_MSRS:
3237 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3238 		break;
3239 	}
3240 	default:
3241 		r = -EINVAL;
3242 	}
3243 out:
3244 	return r;
3245 }
3246 
3247 static void wbinvd_ipi(void *garbage)
3248 {
3249 	wbinvd();
3250 }
3251 
3252 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3253 {
3254 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3255 }
3256 
3257 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3258 {
3259 	/* Address WBINVD may be executed by guest */
3260 	if (need_emulate_wbinvd(vcpu)) {
3261 		if (kvm_x86_ops->has_wbinvd_exit())
3262 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3263 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3264 			smp_call_function_single(vcpu->cpu,
3265 					wbinvd_ipi, NULL, 1);
3266 	}
3267 
3268 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3269 
3270 	/* Apply any externally detected TSC adjustments (due to suspend) */
3271 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3272 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3273 		vcpu->arch.tsc_offset_adjustment = 0;
3274 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3275 	}
3276 
3277 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3278 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3279 				rdtsc() - vcpu->arch.last_host_tsc;
3280 		if (tsc_delta < 0)
3281 			mark_tsc_unstable("KVM discovered backwards TSC");
3282 
3283 		if (kvm_check_tsc_unstable()) {
3284 			u64 offset = kvm_compute_tsc_offset(vcpu,
3285 						vcpu->arch.last_guest_tsc);
3286 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3287 			vcpu->arch.tsc_catchup = 1;
3288 		}
3289 
3290 		if (kvm_lapic_hv_timer_in_use(vcpu))
3291 			kvm_lapic_restart_hv_timer(vcpu);
3292 
3293 		/*
3294 		 * On a host with synchronized TSC, there is no need to update
3295 		 * kvmclock on vcpu->cpu migration
3296 		 */
3297 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3298 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3299 		if (vcpu->cpu != cpu)
3300 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3301 		vcpu->cpu = cpu;
3302 	}
3303 
3304 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3305 }
3306 
3307 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3308 {
3309 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3310 		return;
3311 
3312 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3313 
3314 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3315 			&vcpu->arch.st.steal.preempted,
3316 			offsetof(struct kvm_steal_time, preempted),
3317 			sizeof(vcpu->arch.st.steal.preempted));
3318 }
3319 
3320 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3321 {
3322 	int idx;
3323 
3324 	if (vcpu->preempted)
3325 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3326 
3327 	/*
3328 	 * Disable page faults because we're in atomic context here.
3329 	 * kvm_write_guest_offset_cached() would call might_fault()
3330 	 * that relies on pagefault_disable() to tell if there's a
3331 	 * bug. NOTE: the write to guest memory may not go through if
3332 	 * during postcopy live migration or if there's heavy guest
3333 	 * paging.
3334 	 */
3335 	pagefault_disable();
3336 	/*
3337 	 * kvm_memslots() will be called by
3338 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3339 	 */
3340 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3341 	kvm_steal_time_set_preempted(vcpu);
3342 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3343 	pagefault_enable();
3344 	kvm_x86_ops->vcpu_put(vcpu);
3345 	vcpu->arch.last_host_tsc = rdtsc();
3346 	/*
3347 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3348 	 * on every vmexit, but if not, we might have a stale dr6 from the
3349 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3350 	 */
3351 	set_debugreg(0, 6);
3352 }
3353 
3354 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3355 				    struct kvm_lapic_state *s)
3356 {
3357 	if (vcpu->arch.apicv_active)
3358 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3359 
3360 	return kvm_apic_get_state(vcpu, s);
3361 }
3362 
3363 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3364 				    struct kvm_lapic_state *s)
3365 {
3366 	int r;
3367 
3368 	r = kvm_apic_set_state(vcpu, s);
3369 	if (r)
3370 		return r;
3371 	update_cr8_intercept(vcpu);
3372 
3373 	return 0;
3374 }
3375 
3376 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3377 {
3378 	return (!lapic_in_kernel(vcpu) ||
3379 		kvm_apic_accept_pic_intr(vcpu));
3380 }
3381 
3382 /*
3383  * if userspace requested an interrupt window, check that the
3384  * interrupt window is open.
3385  *
3386  * No need to exit to userspace if we already have an interrupt queued.
3387  */
3388 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3389 {
3390 	return kvm_arch_interrupt_allowed(vcpu) &&
3391 		!kvm_cpu_has_interrupt(vcpu) &&
3392 		!kvm_event_needs_reinjection(vcpu) &&
3393 		kvm_cpu_accept_dm_intr(vcpu);
3394 }
3395 
3396 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3397 				    struct kvm_interrupt *irq)
3398 {
3399 	if (irq->irq >= KVM_NR_INTERRUPTS)
3400 		return -EINVAL;
3401 
3402 	if (!irqchip_in_kernel(vcpu->kvm)) {
3403 		kvm_queue_interrupt(vcpu, irq->irq, false);
3404 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3405 		return 0;
3406 	}
3407 
3408 	/*
3409 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3410 	 * fail for in-kernel 8259.
3411 	 */
3412 	if (pic_in_kernel(vcpu->kvm))
3413 		return -ENXIO;
3414 
3415 	if (vcpu->arch.pending_external_vector != -1)
3416 		return -EEXIST;
3417 
3418 	vcpu->arch.pending_external_vector = irq->irq;
3419 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3420 	return 0;
3421 }
3422 
3423 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3424 {
3425 	kvm_inject_nmi(vcpu);
3426 
3427 	return 0;
3428 }
3429 
3430 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3431 {
3432 	kvm_make_request(KVM_REQ_SMI, vcpu);
3433 
3434 	return 0;
3435 }
3436 
3437 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3438 					   struct kvm_tpr_access_ctl *tac)
3439 {
3440 	if (tac->flags)
3441 		return -EINVAL;
3442 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3443 	return 0;
3444 }
3445 
3446 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3447 					u64 mcg_cap)
3448 {
3449 	int r;
3450 	unsigned bank_num = mcg_cap & 0xff, bank;
3451 
3452 	r = -EINVAL;
3453 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3454 		goto out;
3455 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3456 		goto out;
3457 	r = 0;
3458 	vcpu->arch.mcg_cap = mcg_cap;
3459 	/* Init IA32_MCG_CTL to all 1s */
3460 	if (mcg_cap & MCG_CTL_P)
3461 		vcpu->arch.mcg_ctl = ~(u64)0;
3462 	/* Init IA32_MCi_CTL to all 1s */
3463 	for (bank = 0; bank < bank_num; bank++)
3464 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3465 
3466 	if (kvm_x86_ops->setup_mce)
3467 		kvm_x86_ops->setup_mce(vcpu);
3468 out:
3469 	return r;
3470 }
3471 
3472 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3473 				      struct kvm_x86_mce *mce)
3474 {
3475 	u64 mcg_cap = vcpu->arch.mcg_cap;
3476 	unsigned bank_num = mcg_cap & 0xff;
3477 	u64 *banks = vcpu->arch.mce_banks;
3478 
3479 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3480 		return -EINVAL;
3481 	/*
3482 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3483 	 * reporting is disabled
3484 	 */
3485 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3486 	    vcpu->arch.mcg_ctl != ~(u64)0)
3487 		return 0;
3488 	banks += 4 * mce->bank;
3489 	/*
3490 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3491 	 * reporting is disabled for the bank
3492 	 */
3493 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3494 		return 0;
3495 	if (mce->status & MCI_STATUS_UC) {
3496 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3497 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3498 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3499 			return 0;
3500 		}
3501 		if (banks[1] & MCI_STATUS_VAL)
3502 			mce->status |= MCI_STATUS_OVER;
3503 		banks[2] = mce->addr;
3504 		banks[3] = mce->misc;
3505 		vcpu->arch.mcg_status = mce->mcg_status;
3506 		banks[1] = mce->status;
3507 		kvm_queue_exception(vcpu, MC_VECTOR);
3508 	} else if (!(banks[1] & MCI_STATUS_VAL)
3509 		   || !(banks[1] & MCI_STATUS_UC)) {
3510 		if (banks[1] & MCI_STATUS_VAL)
3511 			mce->status |= MCI_STATUS_OVER;
3512 		banks[2] = mce->addr;
3513 		banks[3] = mce->misc;
3514 		banks[1] = mce->status;
3515 	} else
3516 		banks[1] |= MCI_STATUS_OVER;
3517 	return 0;
3518 }
3519 
3520 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3521 					       struct kvm_vcpu_events *events)
3522 {
3523 	process_nmi(vcpu);
3524 
3525 	/*
3526 	 * The API doesn't provide the instruction length for software
3527 	 * exceptions, so don't report them. As long as the guest RIP
3528 	 * isn't advanced, we should expect to encounter the exception
3529 	 * again.
3530 	 */
3531 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3532 		events->exception.injected = 0;
3533 		events->exception.pending = 0;
3534 	} else {
3535 		events->exception.injected = vcpu->arch.exception.injected;
3536 		events->exception.pending = vcpu->arch.exception.pending;
3537 		/*
3538 		 * For ABI compatibility, deliberately conflate
3539 		 * pending and injected exceptions when
3540 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3541 		 */
3542 		if (!vcpu->kvm->arch.exception_payload_enabled)
3543 			events->exception.injected |=
3544 				vcpu->arch.exception.pending;
3545 	}
3546 	events->exception.nr = vcpu->arch.exception.nr;
3547 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3548 	events->exception.error_code = vcpu->arch.exception.error_code;
3549 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3550 	events->exception_payload = vcpu->arch.exception.payload;
3551 
3552 	events->interrupt.injected =
3553 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3554 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3555 	events->interrupt.soft = 0;
3556 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3557 
3558 	events->nmi.injected = vcpu->arch.nmi_injected;
3559 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3560 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3561 	events->nmi.pad = 0;
3562 
3563 	events->sipi_vector = 0; /* never valid when reporting to user space */
3564 
3565 	events->smi.smm = is_smm(vcpu);
3566 	events->smi.pending = vcpu->arch.smi_pending;
3567 	events->smi.smm_inside_nmi =
3568 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3569 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3570 
3571 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3572 			 | KVM_VCPUEVENT_VALID_SHADOW
3573 			 | KVM_VCPUEVENT_VALID_SMM);
3574 	if (vcpu->kvm->arch.exception_payload_enabled)
3575 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3576 
3577 	memset(&events->reserved, 0, sizeof(events->reserved));
3578 }
3579 
3580 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3581 
3582 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3583 					      struct kvm_vcpu_events *events)
3584 {
3585 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3586 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3587 			      | KVM_VCPUEVENT_VALID_SHADOW
3588 			      | KVM_VCPUEVENT_VALID_SMM
3589 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3590 		return -EINVAL;
3591 
3592 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3593 		if (!vcpu->kvm->arch.exception_payload_enabled)
3594 			return -EINVAL;
3595 		if (events->exception.pending)
3596 			events->exception.injected = 0;
3597 		else
3598 			events->exception_has_payload = 0;
3599 	} else {
3600 		events->exception.pending = 0;
3601 		events->exception_has_payload = 0;
3602 	}
3603 
3604 	if ((events->exception.injected || events->exception.pending) &&
3605 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3606 		return -EINVAL;
3607 
3608 	/* INITs are latched while in SMM */
3609 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3610 	    (events->smi.smm || events->smi.pending) &&
3611 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3612 		return -EINVAL;
3613 
3614 	process_nmi(vcpu);
3615 	vcpu->arch.exception.injected = events->exception.injected;
3616 	vcpu->arch.exception.pending = events->exception.pending;
3617 	vcpu->arch.exception.nr = events->exception.nr;
3618 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3619 	vcpu->arch.exception.error_code = events->exception.error_code;
3620 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3621 	vcpu->arch.exception.payload = events->exception_payload;
3622 
3623 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3624 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3625 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3626 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3627 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3628 						  events->interrupt.shadow);
3629 
3630 	vcpu->arch.nmi_injected = events->nmi.injected;
3631 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3632 		vcpu->arch.nmi_pending = events->nmi.pending;
3633 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3634 
3635 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3636 	    lapic_in_kernel(vcpu))
3637 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3638 
3639 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3640 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3641 			if (events->smi.smm)
3642 				vcpu->arch.hflags |= HF_SMM_MASK;
3643 			else
3644 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3645 			kvm_smm_changed(vcpu);
3646 		}
3647 
3648 		vcpu->arch.smi_pending = events->smi.pending;
3649 
3650 		if (events->smi.smm) {
3651 			if (events->smi.smm_inside_nmi)
3652 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3653 			else
3654 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3655 			if (lapic_in_kernel(vcpu)) {
3656 				if (events->smi.latched_init)
3657 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3658 				else
3659 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3660 			}
3661 		}
3662 	}
3663 
3664 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3665 
3666 	return 0;
3667 }
3668 
3669 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3670 					     struct kvm_debugregs *dbgregs)
3671 {
3672 	unsigned long val;
3673 
3674 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3675 	kvm_get_dr(vcpu, 6, &val);
3676 	dbgregs->dr6 = val;
3677 	dbgregs->dr7 = vcpu->arch.dr7;
3678 	dbgregs->flags = 0;
3679 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3680 }
3681 
3682 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3683 					    struct kvm_debugregs *dbgregs)
3684 {
3685 	if (dbgregs->flags)
3686 		return -EINVAL;
3687 
3688 	if (dbgregs->dr6 & ~0xffffffffull)
3689 		return -EINVAL;
3690 	if (dbgregs->dr7 & ~0xffffffffull)
3691 		return -EINVAL;
3692 
3693 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3694 	kvm_update_dr0123(vcpu);
3695 	vcpu->arch.dr6 = dbgregs->dr6;
3696 	kvm_update_dr6(vcpu);
3697 	vcpu->arch.dr7 = dbgregs->dr7;
3698 	kvm_update_dr7(vcpu);
3699 
3700 	return 0;
3701 }
3702 
3703 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3704 
3705 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3706 {
3707 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3708 	u64 xstate_bv = xsave->header.xfeatures;
3709 	u64 valid;
3710 
3711 	/*
3712 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3713 	 * leaves 0 and 1 in the loop below.
3714 	 */
3715 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3716 
3717 	/* Set XSTATE_BV */
3718 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3719 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3720 
3721 	/*
3722 	 * Copy each region from the possibly compacted offset to the
3723 	 * non-compacted offset.
3724 	 */
3725 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3726 	while (valid) {
3727 		u64 xfeature_mask = valid & -valid;
3728 		int xfeature_nr = fls64(xfeature_mask) - 1;
3729 		void *src = get_xsave_addr(xsave, xfeature_nr);
3730 
3731 		if (src) {
3732 			u32 size, offset, ecx, edx;
3733 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3734 				    &size, &offset, &ecx, &edx);
3735 			if (xfeature_nr == XFEATURE_PKRU)
3736 				memcpy(dest + offset, &vcpu->arch.pkru,
3737 				       sizeof(vcpu->arch.pkru));
3738 			else
3739 				memcpy(dest + offset, src, size);
3740 
3741 		}
3742 
3743 		valid -= xfeature_mask;
3744 	}
3745 }
3746 
3747 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3748 {
3749 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3750 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3751 	u64 valid;
3752 
3753 	/*
3754 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3755 	 * leaves 0 and 1 in the loop below.
3756 	 */
3757 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3758 
3759 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3760 	xsave->header.xfeatures = xstate_bv;
3761 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3762 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3763 
3764 	/*
3765 	 * Copy each region from the non-compacted offset to the
3766 	 * possibly compacted offset.
3767 	 */
3768 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3769 	while (valid) {
3770 		u64 xfeature_mask = valid & -valid;
3771 		int xfeature_nr = fls64(xfeature_mask) - 1;
3772 		void *dest = get_xsave_addr(xsave, xfeature_nr);
3773 
3774 		if (dest) {
3775 			u32 size, offset, ecx, edx;
3776 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3777 				    &size, &offset, &ecx, &edx);
3778 			if (xfeature_nr == XFEATURE_PKRU)
3779 				memcpy(&vcpu->arch.pkru, src + offset,
3780 				       sizeof(vcpu->arch.pkru));
3781 			else
3782 				memcpy(dest, src + offset, size);
3783 		}
3784 
3785 		valid -= xfeature_mask;
3786 	}
3787 }
3788 
3789 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3790 					 struct kvm_xsave *guest_xsave)
3791 {
3792 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3793 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3794 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3795 	} else {
3796 		memcpy(guest_xsave->region,
3797 			&vcpu->arch.guest_fpu->state.fxsave,
3798 			sizeof(struct fxregs_state));
3799 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3800 			XFEATURE_MASK_FPSSE;
3801 	}
3802 }
3803 
3804 #define XSAVE_MXCSR_OFFSET 24
3805 
3806 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3807 					struct kvm_xsave *guest_xsave)
3808 {
3809 	u64 xstate_bv =
3810 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3811 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3812 
3813 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3814 		/*
3815 		 * Here we allow setting states that are not present in
3816 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3817 		 * with old userspace.
3818 		 */
3819 		if (xstate_bv & ~kvm_supported_xcr0() ||
3820 			mxcsr & ~mxcsr_feature_mask)
3821 			return -EINVAL;
3822 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3823 	} else {
3824 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3825 			mxcsr & ~mxcsr_feature_mask)
3826 			return -EINVAL;
3827 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3828 			guest_xsave->region, sizeof(struct fxregs_state));
3829 	}
3830 	return 0;
3831 }
3832 
3833 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3834 					struct kvm_xcrs *guest_xcrs)
3835 {
3836 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3837 		guest_xcrs->nr_xcrs = 0;
3838 		return;
3839 	}
3840 
3841 	guest_xcrs->nr_xcrs = 1;
3842 	guest_xcrs->flags = 0;
3843 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3844 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3845 }
3846 
3847 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3848 				       struct kvm_xcrs *guest_xcrs)
3849 {
3850 	int i, r = 0;
3851 
3852 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3853 		return -EINVAL;
3854 
3855 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3856 		return -EINVAL;
3857 
3858 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3859 		/* Only support XCR0 currently */
3860 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3861 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3862 				guest_xcrs->xcrs[i].value);
3863 			break;
3864 		}
3865 	if (r)
3866 		r = -EINVAL;
3867 	return r;
3868 }
3869 
3870 /*
3871  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3872  * stopped by the hypervisor.  This function will be called from the host only.
3873  * EINVAL is returned when the host attempts to set the flag for a guest that
3874  * does not support pv clocks.
3875  */
3876 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3877 {
3878 	if (!vcpu->arch.pv_time_enabled)
3879 		return -EINVAL;
3880 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3881 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3882 	return 0;
3883 }
3884 
3885 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3886 				     struct kvm_enable_cap *cap)
3887 {
3888 	int r;
3889 	uint16_t vmcs_version;
3890 	void __user *user_ptr;
3891 
3892 	if (cap->flags)
3893 		return -EINVAL;
3894 
3895 	switch (cap->cap) {
3896 	case KVM_CAP_HYPERV_SYNIC2:
3897 		if (cap->args[0])
3898 			return -EINVAL;
3899 		/* fall through */
3900 
3901 	case KVM_CAP_HYPERV_SYNIC:
3902 		if (!irqchip_in_kernel(vcpu->kvm))
3903 			return -EINVAL;
3904 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3905 					     KVM_CAP_HYPERV_SYNIC2);
3906 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3907 		if (!kvm_x86_ops->nested_enable_evmcs)
3908 			return -ENOTTY;
3909 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3910 		if (!r) {
3911 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
3912 			if (copy_to_user(user_ptr, &vmcs_version,
3913 					 sizeof(vmcs_version)))
3914 				r = -EFAULT;
3915 		}
3916 		return r;
3917 
3918 	default:
3919 		return -EINVAL;
3920 	}
3921 }
3922 
3923 long kvm_arch_vcpu_ioctl(struct file *filp,
3924 			 unsigned int ioctl, unsigned long arg)
3925 {
3926 	struct kvm_vcpu *vcpu = filp->private_data;
3927 	void __user *argp = (void __user *)arg;
3928 	int r;
3929 	union {
3930 		struct kvm_lapic_state *lapic;
3931 		struct kvm_xsave *xsave;
3932 		struct kvm_xcrs *xcrs;
3933 		void *buffer;
3934 	} u;
3935 
3936 	vcpu_load(vcpu);
3937 
3938 	u.buffer = NULL;
3939 	switch (ioctl) {
3940 	case KVM_GET_LAPIC: {
3941 		r = -EINVAL;
3942 		if (!lapic_in_kernel(vcpu))
3943 			goto out;
3944 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3945 				GFP_KERNEL_ACCOUNT);
3946 
3947 		r = -ENOMEM;
3948 		if (!u.lapic)
3949 			goto out;
3950 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3951 		if (r)
3952 			goto out;
3953 		r = -EFAULT;
3954 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3955 			goto out;
3956 		r = 0;
3957 		break;
3958 	}
3959 	case KVM_SET_LAPIC: {
3960 		r = -EINVAL;
3961 		if (!lapic_in_kernel(vcpu))
3962 			goto out;
3963 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3964 		if (IS_ERR(u.lapic)) {
3965 			r = PTR_ERR(u.lapic);
3966 			goto out_nofree;
3967 		}
3968 
3969 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3970 		break;
3971 	}
3972 	case KVM_INTERRUPT: {
3973 		struct kvm_interrupt irq;
3974 
3975 		r = -EFAULT;
3976 		if (copy_from_user(&irq, argp, sizeof(irq)))
3977 			goto out;
3978 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3979 		break;
3980 	}
3981 	case KVM_NMI: {
3982 		r = kvm_vcpu_ioctl_nmi(vcpu);
3983 		break;
3984 	}
3985 	case KVM_SMI: {
3986 		r = kvm_vcpu_ioctl_smi(vcpu);
3987 		break;
3988 	}
3989 	case KVM_SET_CPUID: {
3990 		struct kvm_cpuid __user *cpuid_arg = argp;
3991 		struct kvm_cpuid cpuid;
3992 
3993 		r = -EFAULT;
3994 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3995 			goto out;
3996 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3997 		break;
3998 	}
3999 	case KVM_SET_CPUID2: {
4000 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4001 		struct kvm_cpuid2 cpuid;
4002 
4003 		r = -EFAULT;
4004 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4005 			goto out;
4006 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4007 					      cpuid_arg->entries);
4008 		break;
4009 	}
4010 	case KVM_GET_CPUID2: {
4011 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4012 		struct kvm_cpuid2 cpuid;
4013 
4014 		r = -EFAULT;
4015 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4016 			goto out;
4017 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4018 					      cpuid_arg->entries);
4019 		if (r)
4020 			goto out;
4021 		r = -EFAULT;
4022 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4023 			goto out;
4024 		r = 0;
4025 		break;
4026 	}
4027 	case KVM_GET_MSRS: {
4028 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4029 		r = msr_io(vcpu, argp, do_get_msr, 1);
4030 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4031 		break;
4032 	}
4033 	case KVM_SET_MSRS: {
4034 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4035 		r = msr_io(vcpu, argp, do_set_msr, 0);
4036 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4037 		break;
4038 	}
4039 	case KVM_TPR_ACCESS_REPORTING: {
4040 		struct kvm_tpr_access_ctl tac;
4041 
4042 		r = -EFAULT;
4043 		if (copy_from_user(&tac, argp, sizeof(tac)))
4044 			goto out;
4045 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4046 		if (r)
4047 			goto out;
4048 		r = -EFAULT;
4049 		if (copy_to_user(argp, &tac, sizeof(tac)))
4050 			goto out;
4051 		r = 0;
4052 		break;
4053 	};
4054 	case KVM_SET_VAPIC_ADDR: {
4055 		struct kvm_vapic_addr va;
4056 		int idx;
4057 
4058 		r = -EINVAL;
4059 		if (!lapic_in_kernel(vcpu))
4060 			goto out;
4061 		r = -EFAULT;
4062 		if (copy_from_user(&va, argp, sizeof(va)))
4063 			goto out;
4064 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4065 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4066 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4067 		break;
4068 	}
4069 	case KVM_X86_SETUP_MCE: {
4070 		u64 mcg_cap;
4071 
4072 		r = -EFAULT;
4073 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4074 			goto out;
4075 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4076 		break;
4077 	}
4078 	case KVM_X86_SET_MCE: {
4079 		struct kvm_x86_mce mce;
4080 
4081 		r = -EFAULT;
4082 		if (copy_from_user(&mce, argp, sizeof(mce)))
4083 			goto out;
4084 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4085 		break;
4086 	}
4087 	case KVM_GET_VCPU_EVENTS: {
4088 		struct kvm_vcpu_events events;
4089 
4090 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4091 
4092 		r = -EFAULT;
4093 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4094 			break;
4095 		r = 0;
4096 		break;
4097 	}
4098 	case KVM_SET_VCPU_EVENTS: {
4099 		struct kvm_vcpu_events events;
4100 
4101 		r = -EFAULT;
4102 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4103 			break;
4104 
4105 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4106 		break;
4107 	}
4108 	case KVM_GET_DEBUGREGS: {
4109 		struct kvm_debugregs dbgregs;
4110 
4111 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4112 
4113 		r = -EFAULT;
4114 		if (copy_to_user(argp, &dbgregs,
4115 				 sizeof(struct kvm_debugregs)))
4116 			break;
4117 		r = 0;
4118 		break;
4119 	}
4120 	case KVM_SET_DEBUGREGS: {
4121 		struct kvm_debugregs dbgregs;
4122 
4123 		r = -EFAULT;
4124 		if (copy_from_user(&dbgregs, argp,
4125 				   sizeof(struct kvm_debugregs)))
4126 			break;
4127 
4128 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4129 		break;
4130 	}
4131 	case KVM_GET_XSAVE: {
4132 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4133 		r = -ENOMEM;
4134 		if (!u.xsave)
4135 			break;
4136 
4137 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4138 
4139 		r = -EFAULT;
4140 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4141 			break;
4142 		r = 0;
4143 		break;
4144 	}
4145 	case KVM_SET_XSAVE: {
4146 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4147 		if (IS_ERR(u.xsave)) {
4148 			r = PTR_ERR(u.xsave);
4149 			goto out_nofree;
4150 		}
4151 
4152 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4153 		break;
4154 	}
4155 	case KVM_GET_XCRS: {
4156 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4157 		r = -ENOMEM;
4158 		if (!u.xcrs)
4159 			break;
4160 
4161 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4162 
4163 		r = -EFAULT;
4164 		if (copy_to_user(argp, u.xcrs,
4165 				 sizeof(struct kvm_xcrs)))
4166 			break;
4167 		r = 0;
4168 		break;
4169 	}
4170 	case KVM_SET_XCRS: {
4171 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4172 		if (IS_ERR(u.xcrs)) {
4173 			r = PTR_ERR(u.xcrs);
4174 			goto out_nofree;
4175 		}
4176 
4177 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4178 		break;
4179 	}
4180 	case KVM_SET_TSC_KHZ: {
4181 		u32 user_tsc_khz;
4182 
4183 		r = -EINVAL;
4184 		user_tsc_khz = (u32)arg;
4185 
4186 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4187 			goto out;
4188 
4189 		if (user_tsc_khz == 0)
4190 			user_tsc_khz = tsc_khz;
4191 
4192 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4193 			r = 0;
4194 
4195 		goto out;
4196 	}
4197 	case KVM_GET_TSC_KHZ: {
4198 		r = vcpu->arch.virtual_tsc_khz;
4199 		goto out;
4200 	}
4201 	case KVM_KVMCLOCK_CTRL: {
4202 		r = kvm_set_guest_paused(vcpu);
4203 		goto out;
4204 	}
4205 	case KVM_ENABLE_CAP: {
4206 		struct kvm_enable_cap cap;
4207 
4208 		r = -EFAULT;
4209 		if (copy_from_user(&cap, argp, sizeof(cap)))
4210 			goto out;
4211 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4212 		break;
4213 	}
4214 	case KVM_GET_NESTED_STATE: {
4215 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4216 		u32 user_data_size;
4217 
4218 		r = -EINVAL;
4219 		if (!kvm_x86_ops->get_nested_state)
4220 			break;
4221 
4222 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4223 		r = -EFAULT;
4224 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4225 			break;
4226 
4227 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4228 						  user_data_size);
4229 		if (r < 0)
4230 			break;
4231 
4232 		if (r > user_data_size) {
4233 			if (put_user(r, &user_kvm_nested_state->size))
4234 				r = -EFAULT;
4235 			else
4236 				r = -E2BIG;
4237 			break;
4238 		}
4239 
4240 		r = 0;
4241 		break;
4242 	}
4243 	case KVM_SET_NESTED_STATE: {
4244 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4245 		struct kvm_nested_state kvm_state;
4246 
4247 		r = -EINVAL;
4248 		if (!kvm_x86_ops->set_nested_state)
4249 			break;
4250 
4251 		r = -EFAULT;
4252 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4253 			break;
4254 
4255 		r = -EINVAL;
4256 		if (kvm_state.size < sizeof(kvm_state))
4257 			break;
4258 
4259 		if (kvm_state.flags &
4260 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4261 		      | KVM_STATE_NESTED_EVMCS))
4262 			break;
4263 
4264 		/* nested_run_pending implies guest_mode.  */
4265 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4266 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4267 			break;
4268 
4269 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4270 		break;
4271 	}
4272 	case KVM_GET_SUPPORTED_HV_CPUID: {
4273 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4274 		struct kvm_cpuid2 cpuid;
4275 
4276 		r = -EFAULT;
4277 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4278 			goto out;
4279 
4280 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4281 						cpuid_arg->entries);
4282 		if (r)
4283 			goto out;
4284 
4285 		r = -EFAULT;
4286 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4287 			goto out;
4288 		r = 0;
4289 		break;
4290 	}
4291 	default:
4292 		r = -EINVAL;
4293 	}
4294 out:
4295 	kfree(u.buffer);
4296 out_nofree:
4297 	vcpu_put(vcpu);
4298 	return r;
4299 }
4300 
4301 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4302 {
4303 	return VM_FAULT_SIGBUS;
4304 }
4305 
4306 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4307 {
4308 	int ret;
4309 
4310 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4311 		return -EINVAL;
4312 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4313 	return ret;
4314 }
4315 
4316 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4317 					      u64 ident_addr)
4318 {
4319 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4320 }
4321 
4322 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4323 					 unsigned long kvm_nr_mmu_pages)
4324 {
4325 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4326 		return -EINVAL;
4327 
4328 	mutex_lock(&kvm->slots_lock);
4329 
4330 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4331 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4332 
4333 	mutex_unlock(&kvm->slots_lock);
4334 	return 0;
4335 }
4336 
4337 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4338 {
4339 	return kvm->arch.n_max_mmu_pages;
4340 }
4341 
4342 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4343 {
4344 	struct kvm_pic *pic = kvm->arch.vpic;
4345 	int r;
4346 
4347 	r = 0;
4348 	switch (chip->chip_id) {
4349 	case KVM_IRQCHIP_PIC_MASTER:
4350 		memcpy(&chip->chip.pic, &pic->pics[0],
4351 			sizeof(struct kvm_pic_state));
4352 		break;
4353 	case KVM_IRQCHIP_PIC_SLAVE:
4354 		memcpy(&chip->chip.pic, &pic->pics[1],
4355 			sizeof(struct kvm_pic_state));
4356 		break;
4357 	case KVM_IRQCHIP_IOAPIC:
4358 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4359 		break;
4360 	default:
4361 		r = -EINVAL;
4362 		break;
4363 	}
4364 	return r;
4365 }
4366 
4367 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4368 {
4369 	struct kvm_pic *pic = kvm->arch.vpic;
4370 	int r;
4371 
4372 	r = 0;
4373 	switch (chip->chip_id) {
4374 	case KVM_IRQCHIP_PIC_MASTER:
4375 		spin_lock(&pic->lock);
4376 		memcpy(&pic->pics[0], &chip->chip.pic,
4377 			sizeof(struct kvm_pic_state));
4378 		spin_unlock(&pic->lock);
4379 		break;
4380 	case KVM_IRQCHIP_PIC_SLAVE:
4381 		spin_lock(&pic->lock);
4382 		memcpy(&pic->pics[1], &chip->chip.pic,
4383 			sizeof(struct kvm_pic_state));
4384 		spin_unlock(&pic->lock);
4385 		break;
4386 	case KVM_IRQCHIP_IOAPIC:
4387 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4388 		break;
4389 	default:
4390 		r = -EINVAL;
4391 		break;
4392 	}
4393 	kvm_pic_update_irq(pic);
4394 	return r;
4395 }
4396 
4397 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4398 {
4399 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4400 
4401 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4402 
4403 	mutex_lock(&kps->lock);
4404 	memcpy(ps, &kps->channels, sizeof(*ps));
4405 	mutex_unlock(&kps->lock);
4406 	return 0;
4407 }
4408 
4409 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4410 {
4411 	int i;
4412 	struct kvm_pit *pit = kvm->arch.vpit;
4413 
4414 	mutex_lock(&pit->pit_state.lock);
4415 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4416 	for (i = 0; i < 3; i++)
4417 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4418 	mutex_unlock(&pit->pit_state.lock);
4419 	return 0;
4420 }
4421 
4422 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4423 {
4424 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4425 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4426 		sizeof(ps->channels));
4427 	ps->flags = kvm->arch.vpit->pit_state.flags;
4428 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4429 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4430 	return 0;
4431 }
4432 
4433 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4434 {
4435 	int start = 0;
4436 	int i;
4437 	u32 prev_legacy, cur_legacy;
4438 	struct kvm_pit *pit = kvm->arch.vpit;
4439 
4440 	mutex_lock(&pit->pit_state.lock);
4441 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4442 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4443 	if (!prev_legacy && cur_legacy)
4444 		start = 1;
4445 	memcpy(&pit->pit_state.channels, &ps->channels,
4446 	       sizeof(pit->pit_state.channels));
4447 	pit->pit_state.flags = ps->flags;
4448 	for (i = 0; i < 3; i++)
4449 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4450 				   start && i == 0);
4451 	mutex_unlock(&pit->pit_state.lock);
4452 	return 0;
4453 }
4454 
4455 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4456 				 struct kvm_reinject_control *control)
4457 {
4458 	struct kvm_pit *pit = kvm->arch.vpit;
4459 
4460 	if (!pit)
4461 		return -ENXIO;
4462 
4463 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4464 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4465 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4466 	 */
4467 	mutex_lock(&pit->pit_state.lock);
4468 	kvm_pit_set_reinject(pit, control->pit_reinject);
4469 	mutex_unlock(&pit->pit_state.lock);
4470 
4471 	return 0;
4472 }
4473 
4474 /**
4475  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4476  * @kvm: kvm instance
4477  * @log: slot id and address to which we copy the log
4478  *
4479  * Steps 1-4 below provide general overview of dirty page logging. See
4480  * kvm_get_dirty_log_protect() function description for additional details.
4481  *
4482  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4483  * always flush the TLB (step 4) even if previous step failed  and the dirty
4484  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4485  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4486  * writes will be marked dirty for next log read.
4487  *
4488  *   1. Take a snapshot of the bit and clear it if needed.
4489  *   2. Write protect the corresponding page.
4490  *   3. Copy the snapshot to the userspace.
4491  *   4. Flush TLB's if needed.
4492  */
4493 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4494 {
4495 	bool flush = false;
4496 	int r;
4497 
4498 	mutex_lock(&kvm->slots_lock);
4499 
4500 	/*
4501 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4502 	 */
4503 	if (kvm_x86_ops->flush_log_dirty)
4504 		kvm_x86_ops->flush_log_dirty(kvm);
4505 
4506 	r = kvm_get_dirty_log_protect(kvm, log, &flush);
4507 
4508 	/*
4509 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4510 	 * kvm_mmu_slot_remove_write_access().
4511 	 */
4512 	lockdep_assert_held(&kvm->slots_lock);
4513 	if (flush)
4514 		kvm_flush_remote_tlbs(kvm);
4515 
4516 	mutex_unlock(&kvm->slots_lock);
4517 	return r;
4518 }
4519 
4520 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4521 {
4522 	bool flush = false;
4523 	int r;
4524 
4525 	mutex_lock(&kvm->slots_lock);
4526 
4527 	/*
4528 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4529 	 */
4530 	if (kvm_x86_ops->flush_log_dirty)
4531 		kvm_x86_ops->flush_log_dirty(kvm);
4532 
4533 	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4534 
4535 	/*
4536 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4537 	 * kvm_mmu_slot_remove_write_access().
4538 	 */
4539 	lockdep_assert_held(&kvm->slots_lock);
4540 	if (flush)
4541 		kvm_flush_remote_tlbs(kvm);
4542 
4543 	mutex_unlock(&kvm->slots_lock);
4544 	return r;
4545 }
4546 
4547 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4548 			bool line_status)
4549 {
4550 	if (!irqchip_in_kernel(kvm))
4551 		return -ENXIO;
4552 
4553 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4554 					irq_event->irq, irq_event->level,
4555 					line_status);
4556 	return 0;
4557 }
4558 
4559 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4560 			    struct kvm_enable_cap *cap)
4561 {
4562 	int r;
4563 
4564 	if (cap->flags)
4565 		return -EINVAL;
4566 
4567 	switch (cap->cap) {
4568 	case KVM_CAP_DISABLE_QUIRKS:
4569 		kvm->arch.disabled_quirks = cap->args[0];
4570 		r = 0;
4571 		break;
4572 	case KVM_CAP_SPLIT_IRQCHIP: {
4573 		mutex_lock(&kvm->lock);
4574 		r = -EINVAL;
4575 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4576 			goto split_irqchip_unlock;
4577 		r = -EEXIST;
4578 		if (irqchip_in_kernel(kvm))
4579 			goto split_irqchip_unlock;
4580 		if (kvm->created_vcpus)
4581 			goto split_irqchip_unlock;
4582 		r = kvm_setup_empty_irq_routing(kvm);
4583 		if (r)
4584 			goto split_irqchip_unlock;
4585 		/* Pairs with irqchip_in_kernel. */
4586 		smp_wmb();
4587 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4588 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4589 		r = 0;
4590 split_irqchip_unlock:
4591 		mutex_unlock(&kvm->lock);
4592 		break;
4593 	}
4594 	case KVM_CAP_X2APIC_API:
4595 		r = -EINVAL;
4596 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4597 			break;
4598 
4599 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4600 			kvm->arch.x2apic_format = true;
4601 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4602 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4603 
4604 		r = 0;
4605 		break;
4606 	case KVM_CAP_X86_DISABLE_EXITS:
4607 		r = -EINVAL;
4608 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4609 			break;
4610 
4611 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4612 			kvm_can_mwait_in_guest())
4613 			kvm->arch.mwait_in_guest = true;
4614 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4615 			kvm->arch.hlt_in_guest = true;
4616 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4617 			kvm->arch.pause_in_guest = true;
4618 		r = 0;
4619 		break;
4620 	case KVM_CAP_MSR_PLATFORM_INFO:
4621 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4622 		r = 0;
4623 		break;
4624 	case KVM_CAP_EXCEPTION_PAYLOAD:
4625 		kvm->arch.exception_payload_enabled = cap->args[0];
4626 		r = 0;
4627 		break;
4628 	default:
4629 		r = -EINVAL;
4630 		break;
4631 	}
4632 	return r;
4633 }
4634 
4635 long kvm_arch_vm_ioctl(struct file *filp,
4636 		       unsigned int ioctl, unsigned long arg)
4637 {
4638 	struct kvm *kvm = filp->private_data;
4639 	void __user *argp = (void __user *)arg;
4640 	int r = -ENOTTY;
4641 	/*
4642 	 * This union makes it completely explicit to gcc-3.x
4643 	 * that these two variables' stack usage should be
4644 	 * combined, not added together.
4645 	 */
4646 	union {
4647 		struct kvm_pit_state ps;
4648 		struct kvm_pit_state2 ps2;
4649 		struct kvm_pit_config pit_config;
4650 	} u;
4651 
4652 	switch (ioctl) {
4653 	case KVM_SET_TSS_ADDR:
4654 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4655 		break;
4656 	case KVM_SET_IDENTITY_MAP_ADDR: {
4657 		u64 ident_addr;
4658 
4659 		mutex_lock(&kvm->lock);
4660 		r = -EINVAL;
4661 		if (kvm->created_vcpus)
4662 			goto set_identity_unlock;
4663 		r = -EFAULT;
4664 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4665 			goto set_identity_unlock;
4666 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4667 set_identity_unlock:
4668 		mutex_unlock(&kvm->lock);
4669 		break;
4670 	}
4671 	case KVM_SET_NR_MMU_PAGES:
4672 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4673 		break;
4674 	case KVM_GET_NR_MMU_PAGES:
4675 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4676 		break;
4677 	case KVM_CREATE_IRQCHIP: {
4678 		mutex_lock(&kvm->lock);
4679 
4680 		r = -EEXIST;
4681 		if (irqchip_in_kernel(kvm))
4682 			goto create_irqchip_unlock;
4683 
4684 		r = -EINVAL;
4685 		if (kvm->created_vcpus)
4686 			goto create_irqchip_unlock;
4687 
4688 		r = kvm_pic_init(kvm);
4689 		if (r)
4690 			goto create_irqchip_unlock;
4691 
4692 		r = kvm_ioapic_init(kvm);
4693 		if (r) {
4694 			kvm_pic_destroy(kvm);
4695 			goto create_irqchip_unlock;
4696 		}
4697 
4698 		r = kvm_setup_default_irq_routing(kvm);
4699 		if (r) {
4700 			kvm_ioapic_destroy(kvm);
4701 			kvm_pic_destroy(kvm);
4702 			goto create_irqchip_unlock;
4703 		}
4704 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4705 		smp_wmb();
4706 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4707 	create_irqchip_unlock:
4708 		mutex_unlock(&kvm->lock);
4709 		break;
4710 	}
4711 	case KVM_CREATE_PIT:
4712 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4713 		goto create_pit;
4714 	case KVM_CREATE_PIT2:
4715 		r = -EFAULT;
4716 		if (copy_from_user(&u.pit_config, argp,
4717 				   sizeof(struct kvm_pit_config)))
4718 			goto out;
4719 	create_pit:
4720 		mutex_lock(&kvm->lock);
4721 		r = -EEXIST;
4722 		if (kvm->arch.vpit)
4723 			goto create_pit_unlock;
4724 		r = -ENOMEM;
4725 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4726 		if (kvm->arch.vpit)
4727 			r = 0;
4728 	create_pit_unlock:
4729 		mutex_unlock(&kvm->lock);
4730 		break;
4731 	case KVM_GET_IRQCHIP: {
4732 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4733 		struct kvm_irqchip *chip;
4734 
4735 		chip = memdup_user(argp, sizeof(*chip));
4736 		if (IS_ERR(chip)) {
4737 			r = PTR_ERR(chip);
4738 			goto out;
4739 		}
4740 
4741 		r = -ENXIO;
4742 		if (!irqchip_kernel(kvm))
4743 			goto get_irqchip_out;
4744 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4745 		if (r)
4746 			goto get_irqchip_out;
4747 		r = -EFAULT;
4748 		if (copy_to_user(argp, chip, sizeof(*chip)))
4749 			goto get_irqchip_out;
4750 		r = 0;
4751 	get_irqchip_out:
4752 		kfree(chip);
4753 		break;
4754 	}
4755 	case KVM_SET_IRQCHIP: {
4756 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4757 		struct kvm_irqchip *chip;
4758 
4759 		chip = memdup_user(argp, sizeof(*chip));
4760 		if (IS_ERR(chip)) {
4761 			r = PTR_ERR(chip);
4762 			goto out;
4763 		}
4764 
4765 		r = -ENXIO;
4766 		if (!irqchip_kernel(kvm))
4767 			goto set_irqchip_out;
4768 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4769 		if (r)
4770 			goto set_irqchip_out;
4771 		r = 0;
4772 	set_irqchip_out:
4773 		kfree(chip);
4774 		break;
4775 	}
4776 	case KVM_GET_PIT: {
4777 		r = -EFAULT;
4778 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4779 			goto out;
4780 		r = -ENXIO;
4781 		if (!kvm->arch.vpit)
4782 			goto out;
4783 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4784 		if (r)
4785 			goto out;
4786 		r = -EFAULT;
4787 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4788 			goto out;
4789 		r = 0;
4790 		break;
4791 	}
4792 	case KVM_SET_PIT: {
4793 		r = -EFAULT;
4794 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4795 			goto out;
4796 		r = -ENXIO;
4797 		if (!kvm->arch.vpit)
4798 			goto out;
4799 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4800 		break;
4801 	}
4802 	case KVM_GET_PIT2: {
4803 		r = -ENXIO;
4804 		if (!kvm->arch.vpit)
4805 			goto out;
4806 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4807 		if (r)
4808 			goto out;
4809 		r = -EFAULT;
4810 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4811 			goto out;
4812 		r = 0;
4813 		break;
4814 	}
4815 	case KVM_SET_PIT2: {
4816 		r = -EFAULT;
4817 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4818 			goto out;
4819 		r = -ENXIO;
4820 		if (!kvm->arch.vpit)
4821 			goto out;
4822 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4823 		break;
4824 	}
4825 	case KVM_REINJECT_CONTROL: {
4826 		struct kvm_reinject_control control;
4827 		r =  -EFAULT;
4828 		if (copy_from_user(&control, argp, sizeof(control)))
4829 			goto out;
4830 		r = kvm_vm_ioctl_reinject(kvm, &control);
4831 		break;
4832 	}
4833 	case KVM_SET_BOOT_CPU_ID:
4834 		r = 0;
4835 		mutex_lock(&kvm->lock);
4836 		if (kvm->created_vcpus)
4837 			r = -EBUSY;
4838 		else
4839 			kvm->arch.bsp_vcpu_id = arg;
4840 		mutex_unlock(&kvm->lock);
4841 		break;
4842 	case KVM_XEN_HVM_CONFIG: {
4843 		struct kvm_xen_hvm_config xhc;
4844 		r = -EFAULT;
4845 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4846 			goto out;
4847 		r = -EINVAL;
4848 		if (xhc.flags)
4849 			goto out;
4850 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4851 		r = 0;
4852 		break;
4853 	}
4854 	case KVM_SET_CLOCK: {
4855 		struct kvm_clock_data user_ns;
4856 		u64 now_ns;
4857 
4858 		r = -EFAULT;
4859 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4860 			goto out;
4861 
4862 		r = -EINVAL;
4863 		if (user_ns.flags)
4864 			goto out;
4865 
4866 		r = 0;
4867 		/*
4868 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4869 		 * kvm_gen_update_masterclock() can be cut down to locked
4870 		 * pvclock_update_vm_gtod_copy().
4871 		 */
4872 		kvm_gen_update_masterclock(kvm);
4873 		now_ns = get_kvmclock_ns(kvm);
4874 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4875 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4876 		break;
4877 	}
4878 	case KVM_GET_CLOCK: {
4879 		struct kvm_clock_data user_ns;
4880 		u64 now_ns;
4881 
4882 		now_ns = get_kvmclock_ns(kvm);
4883 		user_ns.clock = now_ns;
4884 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4885 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4886 
4887 		r = -EFAULT;
4888 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4889 			goto out;
4890 		r = 0;
4891 		break;
4892 	}
4893 	case KVM_MEMORY_ENCRYPT_OP: {
4894 		r = -ENOTTY;
4895 		if (kvm_x86_ops->mem_enc_op)
4896 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4897 		break;
4898 	}
4899 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4900 		struct kvm_enc_region region;
4901 
4902 		r = -EFAULT;
4903 		if (copy_from_user(&region, argp, sizeof(region)))
4904 			goto out;
4905 
4906 		r = -ENOTTY;
4907 		if (kvm_x86_ops->mem_enc_reg_region)
4908 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4909 		break;
4910 	}
4911 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4912 		struct kvm_enc_region region;
4913 
4914 		r = -EFAULT;
4915 		if (copy_from_user(&region, argp, sizeof(region)))
4916 			goto out;
4917 
4918 		r = -ENOTTY;
4919 		if (kvm_x86_ops->mem_enc_unreg_region)
4920 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4921 		break;
4922 	}
4923 	case KVM_HYPERV_EVENTFD: {
4924 		struct kvm_hyperv_eventfd hvevfd;
4925 
4926 		r = -EFAULT;
4927 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4928 			goto out;
4929 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4930 		break;
4931 	}
4932 	default:
4933 		r = -ENOTTY;
4934 	}
4935 out:
4936 	return r;
4937 }
4938 
4939 static void kvm_init_msr_list(void)
4940 {
4941 	u32 dummy[2];
4942 	unsigned i, j;
4943 
4944 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4945 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4946 			continue;
4947 
4948 		/*
4949 		 * Even MSRs that are valid in the host may not be exposed
4950 		 * to the guests in some cases.
4951 		 */
4952 		switch (msrs_to_save[i]) {
4953 		case MSR_IA32_BNDCFGS:
4954 			if (!kvm_mpx_supported())
4955 				continue;
4956 			break;
4957 		case MSR_TSC_AUX:
4958 			if (!kvm_x86_ops->rdtscp_supported())
4959 				continue;
4960 			break;
4961 		case MSR_IA32_RTIT_CTL:
4962 		case MSR_IA32_RTIT_STATUS:
4963 			if (!kvm_x86_ops->pt_supported())
4964 				continue;
4965 			break;
4966 		case MSR_IA32_RTIT_CR3_MATCH:
4967 			if (!kvm_x86_ops->pt_supported() ||
4968 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
4969 				continue;
4970 			break;
4971 		case MSR_IA32_RTIT_OUTPUT_BASE:
4972 		case MSR_IA32_RTIT_OUTPUT_MASK:
4973 			if (!kvm_x86_ops->pt_supported() ||
4974 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
4975 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
4976 				continue;
4977 			break;
4978 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
4979 			if (!kvm_x86_ops->pt_supported() ||
4980 				msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
4981 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
4982 				continue;
4983 			break;
4984 		}
4985 		default:
4986 			break;
4987 		}
4988 
4989 		if (j < i)
4990 			msrs_to_save[j] = msrs_to_save[i];
4991 		j++;
4992 	}
4993 	num_msrs_to_save = j;
4994 
4995 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4996 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4997 			continue;
4998 
4999 		if (j < i)
5000 			emulated_msrs[j] = emulated_msrs[i];
5001 		j++;
5002 	}
5003 	num_emulated_msrs = j;
5004 
5005 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5006 		struct kvm_msr_entry msr;
5007 
5008 		msr.index = msr_based_features[i];
5009 		if (kvm_get_msr_feature(&msr))
5010 			continue;
5011 
5012 		if (j < i)
5013 			msr_based_features[j] = msr_based_features[i];
5014 		j++;
5015 	}
5016 	num_msr_based_features = j;
5017 }
5018 
5019 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5020 			   const void *v)
5021 {
5022 	int handled = 0;
5023 	int n;
5024 
5025 	do {
5026 		n = min(len, 8);
5027 		if (!(lapic_in_kernel(vcpu) &&
5028 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5029 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5030 			break;
5031 		handled += n;
5032 		addr += n;
5033 		len -= n;
5034 		v += n;
5035 	} while (len);
5036 
5037 	return handled;
5038 }
5039 
5040 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5041 {
5042 	int handled = 0;
5043 	int n;
5044 
5045 	do {
5046 		n = min(len, 8);
5047 		if (!(lapic_in_kernel(vcpu) &&
5048 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5049 					 addr, n, v))
5050 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5051 			break;
5052 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5053 		handled += n;
5054 		addr += n;
5055 		len -= n;
5056 		v += n;
5057 	} while (len);
5058 
5059 	return handled;
5060 }
5061 
5062 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5063 			struct kvm_segment *var, int seg)
5064 {
5065 	kvm_x86_ops->set_segment(vcpu, var, seg);
5066 }
5067 
5068 void kvm_get_segment(struct kvm_vcpu *vcpu,
5069 		     struct kvm_segment *var, int seg)
5070 {
5071 	kvm_x86_ops->get_segment(vcpu, var, seg);
5072 }
5073 
5074 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5075 			   struct x86_exception *exception)
5076 {
5077 	gpa_t t_gpa;
5078 
5079 	BUG_ON(!mmu_is_nested(vcpu));
5080 
5081 	/* NPT walks are always user-walks */
5082 	access |= PFERR_USER_MASK;
5083 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5084 
5085 	return t_gpa;
5086 }
5087 
5088 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5089 			      struct x86_exception *exception)
5090 {
5091 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5092 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5093 }
5094 
5095  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5096 				struct x86_exception *exception)
5097 {
5098 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5099 	access |= PFERR_FETCH_MASK;
5100 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5101 }
5102 
5103 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5104 			       struct x86_exception *exception)
5105 {
5106 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5107 	access |= PFERR_WRITE_MASK;
5108 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5109 }
5110 
5111 /* uses this to access any guest's mapped memory without checking CPL */
5112 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5113 				struct x86_exception *exception)
5114 {
5115 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5116 }
5117 
5118 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5119 				      struct kvm_vcpu *vcpu, u32 access,
5120 				      struct x86_exception *exception)
5121 {
5122 	void *data = val;
5123 	int r = X86EMUL_CONTINUE;
5124 
5125 	while (bytes) {
5126 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5127 							    exception);
5128 		unsigned offset = addr & (PAGE_SIZE-1);
5129 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5130 		int ret;
5131 
5132 		if (gpa == UNMAPPED_GVA)
5133 			return X86EMUL_PROPAGATE_FAULT;
5134 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5135 					       offset, toread);
5136 		if (ret < 0) {
5137 			r = X86EMUL_IO_NEEDED;
5138 			goto out;
5139 		}
5140 
5141 		bytes -= toread;
5142 		data += toread;
5143 		addr += toread;
5144 	}
5145 out:
5146 	return r;
5147 }
5148 
5149 /* used for instruction fetching */
5150 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5151 				gva_t addr, void *val, unsigned int bytes,
5152 				struct x86_exception *exception)
5153 {
5154 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5155 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5156 	unsigned offset;
5157 	int ret;
5158 
5159 	/* Inline kvm_read_guest_virt_helper for speed.  */
5160 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5161 						    exception);
5162 	if (unlikely(gpa == UNMAPPED_GVA))
5163 		return X86EMUL_PROPAGATE_FAULT;
5164 
5165 	offset = addr & (PAGE_SIZE-1);
5166 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5167 		bytes = (unsigned)PAGE_SIZE - offset;
5168 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5169 				       offset, bytes);
5170 	if (unlikely(ret < 0))
5171 		return X86EMUL_IO_NEEDED;
5172 
5173 	return X86EMUL_CONTINUE;
5174 }
5175 
5176 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5177 			       gva_t addr, void *val, unsigned int bytes,
5178 			       struct x86_exception *exception)
5179 {
5180 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5181 
5182 	/*
5183 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5184 	 * is returned, but our callers are not ready for that and they blindly
5185 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5186 	 * uninitialized kernel stack memory into cr2 and error code.
5187 	 */
5188 	memset(exception, 0, sizeof(*exception));
5189 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5190 					  exception);
5191 }
5192 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5193 
5194 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5195 			     gva_t addr, void *val, unsigned int bytes,
5196 			     struct x86_exception *exception, bool system)
5197 {
5198 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5199 	u32 access = 0;
5200 
5201 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5202 		access |= PFERR_USER_MASK;
5203 
5204 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5205 }
5206 
5207 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5208 		unsigned long addr, void *val, unsigned int bytes)
5209 {
5210 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5211 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5212 
5213 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5214 }
5215 
5216 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5217 				      struct kvm_vcpu *vcpu, u32 access,
5218 				      struct x86_exception *exception)
5219 {
5220 	void *data = val;
5221 	int r = X86EMUL_CONTINUE;
5222 
5223 	while (bytes) {
5224 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5225 							     access,
5226 							     exception);
5227 		unsigned offset = addr & (PAGE_SIZE-1);
5228 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5229 		int ret;
5230 
5231 		if (gpa == UNMAPPED_GVA)
5232 			return X86EMUL_PROPAGATE_FAULT;
5233 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5234 		if (ret < 0) {
5235 			r = X86EMUL_IO_NEEDED;
5236 			goto out;
5237 		}
5238 
5239 		bytes -= towrite;
5240 		data += towrite;
5241 		addr += towrite;
5242 	}
5243 out:
5244 	return r;
5245 }
5246 
5247 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5248 			      unsigned int bytes, struct x86_exception *exception,
5249 			      bool system)
5250 {
5251 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5252 	u32 access = PFERR_WRITE_MASK;
5253 
5254 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5255 		access |= PFERR_USER_MASK;
5256 
5257 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5258 					   access, exception);
5259 }
5260 
5261 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5262 				unsigned int bytes, struct x86_exception *exception)
5263 {
5264 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5265 	vcpu->arch.l1tf_flush_l1d = true;
5266 
5267 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5268 					   PFERR_WRITE_MASK, exception);
5269 }
5270 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5271 
5272 int handle_ud(struct kvm_vcpu *vcpu)
5273 {
5274 	int emul_type = EMULTYPE_TRAP_UD;
5275 	enum emulation_result er;
5276 	char sig[5]; /* ud2; .ascii "kvm" */
5277 	struct x86_exception e;
5278 
5279 	if (force_emulation_prefix &&
5280 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5281 				sig, sizeof(sig), &e) == 0 &&
5282 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5283 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5284 		emul_type = 0;
5285 	}
5286 
5287 	er = kvm_emulate_instruction(vcpu, emul_type);
5288 	if (er == EMULATE_USER_EXIT)
5289 		return 0;
5290 	if (er != EMULATE_DONE)
5291 		kvm_queue_exception(vcpu, UD_VECTOR);
5292 	return 1;
5293 }
5294 EXPORT_SYMBOL_GPL(handle_ud);
5295 
5296 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5297 			    gpa_t gpa, bool write)
5298 {
5299 	/* For APIC access vmexit */
5300 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5301 		return 1;
5302 
5303 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5304 		trace_vcpu_match_mmio(gva, gpa, write, true);
5305 		return 1;
5306 	}
5307 
5308 	return 0;
5309 }
5310 
5311 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5312 				gpa_t *gpa, struct x86_exception *exception,
5313 				bool write)
5314 {
5315 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5316 		| (write ? PFERR_WRITE_MASK : 0);
5317 
5318 	/*
5319 	 * currently PKRU is only applied to ept enabled guest so
5320 	 * there is no pkey in EPT page table for L1 guest or EPT
5321 	 * shadow page table for L2 guest.
5322 	 */
5323 	if (vcpu_match_mmio_gva(vcpu, gva)
5324 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5325 				 vcpu->arch.access, 0, access)) {
5326 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5327 					(gva & (PAGE_SIZE - 1));
5328 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5329 		return 1;
5330 	}
5331 
5332 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5333 
5334 	if (*gpa == UNMAPPED_GVA)
5335 		return -1;
5336 
5337 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5338 }
5339 
5340 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5341 			const void *val, int bytes)
5342 {
5343 	int ret;
5344 
5345 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5346 	if (ret < 0)
5347 		return 0;
5348 	kvm_page_track_write(vcpu, gpa, val, bytes);
5349 	return 1;
5350 }
5351 
5352 struct read_write_emulator_ops {
5353 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5354 				  int bytes);
5355 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5356 				  void *val, int bytes);
5357 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5358 			       int bytes, void *val);
5359 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5360 				    void *val, int bytes);
5361 	bool write;
5362 };
5363 
5364 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5365 {
5366 	if (vcpu->mmio_read_completed) {
5367 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5368 			       vcpu->mmio_fragments[0].gpa, val);
5369 		vcpu->mmio_read_completed = 0;
5370 		return 1;
5371 	}
5372 
5373 	return 0;
5374 }
5375 
5376 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5377 			void *val, int bytes)
5378 {
5379 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5380 }
5381 
5382 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5383 			 void *val, int bytes)
5384 {
5385 	return emulator_write_phys(vcpu, gpa, val, bytes);
5386 }
5387 
5388 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5389 {
5390 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5391 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5392 }
5393 
5394 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5395 			  void *val, int bytes)
5396 {
5397 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5398 	return X86EMUL_IO_NEEDED;
5399 }
5400 
5401 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5402 			   void *val, int bytes)
5403 {
5404 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5405 
5406 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5407 	return X86EMUL_CONTINUE;
5408 }
5409 
5410 static const struct read_write_emulator_ops read_emultor = {
5411 	.read_write_prepare = read_prepare,
5412 	.read_write_emulate = read_emulate,
5413 	.read_write_mmio = vcpu_mmio_read,
5414 	.read_write_exit_mmio = read_exit_mmio,
5415 };
5416 
5417 static const struct read_write_emulator_ops write_emultor = {
5418 	.read_write_emulate = write_emulate,
5419 	.read_write_mmio = write_mmio,
5420 	.read_write_exit_mmio = write_exit_mmio,
5421 	.write = true,
5422 };
5423 
5424 static int emulator_read_write_onepage(unsigned long addr, void *val,
5425 				       unsigned int bytes,
5426 				       struct x86_exception *exception,
5427 				       struct kvm_vcpu *vcpu,
5428 				       const struct read_write_emulator_ops *ops)
5429 {
5430 	gpa_t gpa;
5431 	int handled, ret;
5432 	bool write = ops->write;
5433 	struct kvm_mmio_fragment *frag;
5434 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5435 
5436 	/*
5437 	 * If the exit was due to a NPF we may already have a GPA.
5438 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5439 	 * Note, this cannot be used on string operations since string
5440 	 * operation using rep will only have the initial GPA from the NPF
5441 	 * occurred.
5442 	 */
5443 	if (vcpu->arch.gpa_available &&
5444 	    emulator_can_use_gpa(ctxt) &&
5445 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5446 		gpa = vcpu->arch.gpa_val;
5447 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5448 	} else {
5449 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5450 		if (ret < 0)
5451 			return X86EMUL_PROPAGATE_FAULT;
5452 	}
5453 
5454 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5455 		return X86EMUL_CONTINUE;
5456 
5457 	/*
5458 	 * Is this MMIO handled locally?
5459 	 */
5460 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5461 	if (handled == bytes)
5462 		return X86EMUL_CONTINUE;
5463 
5464 	gpa += handled;
5465 	bytes -= handled;
5466 	val += handled;
5467 
5468 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5469 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5470 	frag->gpa = gpa;
5471 	frag->data = val;
5472 	frag->len = bytes;
5473 	return X86EMUL_CONTINUE;
5474 }
5475 
5476 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5477 			unsigned long addr,
5478 			void *val, unsigned int bytes,
5479 			struct x86_exception *exception,
5480 			const struct read_write_emulator_ops *ops)
5481 {
5482 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5483 	gpa_t gpa;
5484 	int rc;
5485 
5486 	if (ops->read_write_prepare &&
5487 		  ops->read_write_prepare(vcpu, val, bytes))
5488 		return X86EMUL_CONTINUE;
5489 
5490 	vcpu->mmio_nr_fragments = 0;
5491 
5492 	/* Crossing a page boundary? */
5493 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5494 		int now;
5495 
5496 		now = -addr & ~PAGE_MASK;
5497 		rc = emulator_read_write_onepage(addr, val, now, exception,
5498 						 vcpu, ops);
5499 
5500 		if (rc != X86EMUL_CONTINUE)
5501 			return rc;
5502 		addr += now;
5503 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5504 			addr = (u32)addr;
5505 		val += now;
5506 		bytes -= now;
5507 	}
5508 
5509 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5510 					 vcpu, ops);
5511 	if (rc != X86EMUL_CONTINUE)
5512 		return rc;
5513 
5514 	if (!vcpu->mmio_nr_fragments)
5515 		return rc;
5516 
5517 	gpa = vcpu->mmio_fragments[0].gpa;
5518 
5519 	vcpu->mmio_needed = 1;
5520 	vcpu->mmio_cur_fragment = 0;
5521 
5522 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5523 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5524 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5525 	vcpu->run->mmio.phys_addr = gpa;
5526 
5527 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5528 }
5529 
5530 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5531 				  unsigned long addr,
5532 				  void *val,
5533 				  unsigned int bytes,
5534 				  struct x86_exception *exception)
5535 {
5536 	return emulator_read_write(ctxt, addr, val, bytes,
5537 				   exception, &read_emultor);
5538 }
5539 
5540 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5541 			    unsigned long addr,
5542 			    const void *val,
5543 			    unsigned int bytes,
5544 			    struct x86_exception *exception)
5545 {
5546 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5547 				   exception, &write_emultor);
5548 }
5549 
5550 #define CMPXCHG_TYPE(t, ptr, old, new) \
5551 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5552 
5553 #ifdef CONFIG_X86_64
5554 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5555 #else
5556 #  define CMPXCHG64(ptr, old, new) \
5557 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5558 #endif
5559 
5560 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5561 				     unsigned long addr,
5562 				     const void *old,
5563 				     const void *new,
5564 				     unsigned int bytes,
5565 				     struct x86_exception *exception)
5566 {
5567 	struct kvm_host_map map;
5568 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5569 	gpa_t gpa;
5570 	char *kaddr;
5571 	bool exchanged;
5572 
5573 	/* guests cmpxchg8b have to be emulated atomically */
5574 	if (bytes > 8 || (bytes & (bytes - 1)))
5575 		goto emul_write;
5576 
5577 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5578 
5579 	if (gpa == UNMAPPED_GVA ||
5580 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5581 		goto emul_write;
5582 
5583 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5584 		goto emul_write;
5585 
5586 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5587 		goto emul_write;
5588 
5589 	kaddr = map.hva + offset_in_page(gpa);
5590 
5591 	switch (bytes) {
5592 	case 1:
5593 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5594 		break;
5595 	case 2:
5596 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5597 		break;
5598 	case 4:
5599 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5600 		break;
5601 	case 8:
5602 		exchanged = CMPXCHG64(kaddr, old, new);
5603 		break;
5604 	default:
5605 		BUG();
5606 	}
5607 
5608 	kvm_vcpu_unmap(vcpu, &map, true);
5609 
5610 	if (!exchanged)
5611 		return X86EMUL_CMPXCHG_FAILED;
5612 
5613 	kvm_page_track_write(vcpu, gpa, new, bytes);
5614 
5615 	return X86EMUL_CONTINUE;
5616 
5617 emul_write:
5618 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5619 
5620 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5621 }
5622 
5623 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5624 {
5625 	int r = 0, i;
5626 
5627 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5628 		if (vcpu->arch.pio.in)
5629 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5630 					    vcpu->arch.pio.size, pd);
5631 		else
5632 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5633 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5634 					     pd);
5635 		if (r)
5636 			break;
5637 		pd += vcpu->arch.pio.size;
5638 	}
5639 	return r;
5640 }
5641 
5642 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5643 			       unsigned short port, void *val,
5644 			       unsigned int count, bool in)
5645 {
5646 	vcpu->arch.pio.port = port;
5647 	vcpu->arch.pio.in = in;
5648 	vcpu->arch.pio.count  = count;
5649 	vcpu->arch.pio.size = size;
5650 
5651 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5652 		vcpu->arch.pio.count = 0;
5653 		return 1;
5654 	}
5655 
5656 	vcpu->run->exit_reason = KVM_EXIT_IO;
5657 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5658 	vcpu->run->io.size = size;
5659 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5660 	vcpu->run->io.count = count;
5661 	vcpu->run->io.port = port;
5662 
5663 	return 0;
5664 }
5665 
5666 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5667 				    int size, unsigned short port, void *val,
5668 				    unsigned int count)
5669 {
5670 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5671 	int ret;
5672 
5673 	if (vcpu->arch.pio.count)
5674 		goto data_avail;
5675 
5676 	memset(vcpu->arch.pio_data, 0, size * count);
5677 
5678 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5679 	if (ret) {
5680 data_avail:
5681 		memcpy(val, vcpu->arch.pio_data, size * count);
5682 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5683 		vcpu->arch.pio.count = 0;
5684 		return 1;
5685 	}
5686 
5687 	return 0;
5688 }
5689 
5690 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5691 				     int size, unsigned short port,
5692 				     const void *val, unsigned int count)
5693 {
5694 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5695 
5696 	memcpy(vcpu->arch.pio_data, val, size * count);
5697 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5698 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5699 }
5700 
5701 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5702 {
5703 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5704 }
5705 
5706 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5707 {
5708 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5709 }
5710 
5711 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5712 {
5713 	if (!need_emulate_wbinvd(vcpu))
5714 		return X86EMUL_CONTINUE;
5715 
5716 	if (kvm_x86_ops->has_wbinvd_exit()) {
5717 		int cpu = get_cpu();
5718 
5719 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5720 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5721 				wbinvd_ipi, NULL, 1);
5722 		put_cpu();
5723 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5724 	} else
5725 		wbinvd();
5726 	return X86EMUL_CONTINUE;
5727 }
5728 
5729 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5730 {
5731 	kvm_emulate_wbinvd_noskip(vcpu);
5732 	return kvm_skip_emulated_instruction(vcpu);
5733 }
5734 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5735 
5736 
5737 
5738 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5739 {
5740 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5741 }
5742 
5743 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5744 			   unsigned long *dest)
5745 {
5746 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5747 }
5748 
5749 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5750 			   unsigned long value)
5751 {
5752 
5753 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5754 }
5755 
5756 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5757 {
5758 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5759 }
5760 
5761 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5762 {
5763 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5764 	unsigned long value;
5765 
5766 	switch (cr) {
5767 	case 0:
5768 		value = kvm_read_cr0(vcpu);
5769 		break;
5770 	case 2:
5771 		value = vcpu->arch.cr2;
5772 		break;
5773 	case 3:
5774 		value = kvm_read_cr3(vcpu);
5775 		break;
5776 	case 4:
5777 		value = kvm_read_cr4(vcpu);
5778 		break;
5779 	case 8:
5780 		value = kvm_get_cr8(vcpu);
5781 		break;
5782 	default:
5783 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5784 		return 0;
5785 	}
5786 
5787 	return value;
5788 }
5789 
5790 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5791 {
5792 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5793 	int res = 0;
5794 
5795 	switch (cr) {
5796 	case 0:
5797 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5798 		break;
5799 	case 2:
5800 		vcpu->arch.cr2 = val;
5801 		break;
5802 	case 3:
5803 		res = kvm_set_cr3(vcpu, val);
5804 		break;
5805 	case 4:
5806 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5807 		break;
5808 	case 8:
5809 		res = kvm_set_cr8(vcpu, val);
5810 		break;
5811 	default:
5812 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5813 		res = -1;
5814 	}
5815 
5816 	return res;
5817 }
5818 
5819 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5820 {
5821 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5822 }
5823 
5824 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5825 {
5826 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5827 }
5828 
5829 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5830 {
5831 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5832 }
5833 
5834 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5835 {
5836 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5837 }
5838 
5839 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5840 {
5841 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5842 }
5843 
5844 static unsigned long emulator_get_cached_segment_base(
5845 	struct x86_emulate_ctxt *ctxt, int seg)
5846 {
5847 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5848 }
5849 
5850 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5851 				 struct desc_struct *desc, u32 *base3,
5852 				 int seg)
5853 {
5854 	struct kvm_segment var;
5855 
5856 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5857 	*selector = var.selector;
5858 
5859 	if (var.unusable) {
5860 		memset(desc, 0, sizeof(*desc));
5861 		if (base3)
5862 			*base3 = 0;
5863 		return false;
5864 	}
5865 
5866 	if (var.g)
5867 		var.limit >>= 12;
5868 	set_desc_limit(desc, var.limit);
5869 	set_desc_base(desc, (unsigned long)var.base);
5870 #ifdef CONFIG_X86_64
5871 	if (base3)
5872 		*base3 = var.base >> 32;
5873 #endif
5874 	desc->type = var.type;
5875 	desc->s = var.s;
5876 	desc->dpl = var.dpl;
5877 	desc->p = var.present;
5878 	desc->avl = var.avl;
5879 	desc->l = var.l;
5880 	desc->d = var.db;
5881 	desc->g = var.g;
5882 
5883 	return true;
5884 }
5885 
5886 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5887 				 struct desc_struct *desc, u32 base3,
5888 				 int seg)
5889 {
5890 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5891 	struct kvm_segment var;
5892 
5893 	var.selector = selector;
5894 	var.base = get_desc_base(desc);
5895 #ifdef CONFIG_X86_64
5896 	var.base |= ((u64)base3) << 32;
5897 #endif
5898 	var.limit = get_desc_limit(desc);
5899 	if (desc->g)
5900 		var.limit = (var.limit << 12) | 0xfff;
5901 	var.type = desc->type;
5902 	var.dpl = desc->dpl;
5903 	var.db = desc->d;
5904 	var.s = desc->s;
5905 	var.l = desc->l;
5906 	var.g = desc->g;
5907 	var.avl = desc->avl;
5908 	var.present = desc->p;
5909 	var.unusable = !var.present;
5910 	var.padding = 0;
5911 
5912 	kvm_set_segment(vcpu, &var, seg);
5913 	return;
5914 }
5915 
5916 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5917 			    u32 msr_index, u64 *pdata)
5918 {
5919 	struct msr_data msr;
5920 	int r;
5921 
5922 	msr.index = msr_index;
5923 	msr.host_initiated = false;
5924 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5925 	if (r)
5926 		return r;
5927 
5928 	*pdata = msr.data;
5929 	return 0;
5930 }
5931 
5932 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5933 			    u32 msr_index, u64 data)
5934 {
5935 	struct msr_data msr;
5936 
5937 	msr.data = data;
5938 	msr.index = msr_index;
5939 	msr.host_initiated = false;
5940 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5941 }
5942 
5943 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5944 {
5945 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5946 
5947 	return vcpu->arch.smbase;
5948 }
5949 
5950 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5951 {
5952 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5953 
5954 	vcpu->arch.smbase = smbase;
5955 }
5956 
5957 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5958 			      u32 pmc)
5959 {
5960 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5961 }
5962 
5963 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5964 			     u32 pmc, u64 *pdata)
5965 {
5966 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5967 }
5968 
5969 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5970 {
5971 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5972 }
5973 
5974 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5975 			      struct x86_instruction_info *info,
5976 			      enum x86_intercept_stage stage)
5977 {
5978 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5979 }
5980 
5981 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5982 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5983 {
5984 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5985 }
5986 
5987 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5988 {
5989 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5990 }
5991 
5992 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5993 {
5994 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5995 }
5996 
5997 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5998 {
5999 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6000 }
6001 
6002 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6003 {
6004 	return emul_to_vcpu(ctxt)->arch.hflags;
6005 }
6006 
6007 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6008 {
6009 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6010 }
6011 
6012 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6013 				  const char *smstate)
6014 {
6015 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6016 }
6017 
6018 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6019 {
6020 	kvm_smm_changed(emul_to_vcpu(ctxt));
6021 }
6022 
6023 static const struct x86_emulate_ops emulate_ops = {
6024 	.read_gpr            = emulator_read_gpr,
6025 	.write_gpr           = emulator_write_gpr,
6026 	.read_std            = emulator_read_std,
6027 	.write_std           = emulator_write_std,
6028 	.read_phys           = kvm_read_guest_phys_system,
6029 	.fetch               = kvm_fetch_guest_virt,
6030 	.read_emulated       = emulator_read_emulated,
6031 	.write_emulated      = emulator_write_emulated,
6032 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6033 	.invlpg              = emulator_invlpg,
6034 	.pio_in_emulated     = emulator_pio_in_emulated,
6035 	.pio_out_emulated    = emulator_pio_out_emulated,
6036 	.get_segment         = emulator_get_segment,
6037 	.set_segment         = emulator_set_segment,
6038 	.get_cached_segment_base = emulator_get_cached_segment_base,
6039 	.get_gdt             = emulator_get_gdt,
6040 	.get_idt	     = emulator_get_idt,
6041 	.set_gdt             = emulator_set_gdt,
6042 	.set_idt	     = emulator_set_idt,
6043 	.get_cr              = emulator_get_cr,
6044 	.set_cr              = emulator_set_cr,
6045 	.cpl                 = emulator_get_cpl,
6046 	.get_dr              = emulator_get_dr,
6047 	.set_dr              = emulator_set_dr,
6048 	.get_smbase          = emulator_get_smbase,
6049 	.set_smbase          = emulator_set_smbase,
6050 	.set_msr             = emulator_set_msr,
6051 	.get_msr             = emulator_get_msr,
6052 	.check_pmc	     = emulator_check_pmc,
6053 	.read_pmc            = emulator_read_pmc,
6054 	.halt                = emulator_halt,
6055 	.wbinvd              = emulator_wbinvd,
6056 	.fix_hypercall       = emulator_fix_hypercall,
6057 	.intercept           = emulator_intercept,
6058 	.get_cpuid           = emulator_get_cpuid,
6059 	.set_nmi_mask        = emulator_set_nmi_mask,
6060 	.get_hflags          = emulator_get_hflags,
6061 	.set_hflags          = emulator_set_hflags,
6062 	.pre_leave_smm       = emulator_pre_leave_smm,
6063 	.post_leave_smm      = emulator_post_leave_smm,
6064 };
6065 
6066 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6067 {
6068 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6069 	/*
6070 	 * an sti; sti; sequence only disable interrupts for the first
6071 	 * instruction. So, if the last instruction, be it emulated or
6072 	 * not, left the system with the INT_STI flag enabled, it
6073 	 * means that the last instruction is an sti. We should not
6074 	 * leave the flag on in this case. The same goes for mov ss
6075 	 */
6076 	if (int_shadow & mask)
6077 		mask = 0;
6078 	if (unlikely(int_shadow || mask)) {
6079 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6080 		if (!mask)
6081 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6082 	}
6083 }
6084 
6085 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6086 {
6087 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6088 	if (ctxt->exception.vector == PF_VECTOR)
6089 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6090 
6091 	if (ctxt->exception.error_code_valid)
6092 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6093 				      ctxt->exception.error_code);
6094 	else
6095 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6096 	return false;
6097 }
6098 
6099 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6100 {
6101 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6102 	int cs_db, cs_l;
6103 
6104 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6105 
6106 	ctxt->eflags = kvm_get_rflags(vcpu);
6107 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6108 
6109 	ctxt->eip = kvm_rip_read(vcpu);
6110 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6111 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6112 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6113 		     cs_db				? X86EMUL_MODE_PROT32 :
6114 							  X86EMUL_MODE_PROT16;
6115 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6116 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6117 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6118 
6119 	init_decode_cache(ctxt);
6120 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6121 }
6122 
6123 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6124 {
6125 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6126 	int ret;
6127 
6128 	init_emulate_ctxt(vcpu);
6129 
6130 	ctxt->op_bytes = 2;
6131 	ctxt->ad_bytes = 2;
6132 	ctxt->_eip = ctxt->eip + inc_eip;
6133 	ret = emulate_int_real(ctxt, irq);
6134 
6135 	if (ret != X86EMUL_CONTINUE)
6136 		return EMULATE_FAIL;
6137 
6138 	ctxt->eip = ctxt->_eip;
6139 	kvm_rip_write(vcpu, ctxt->eip);
6140 	kvm_set_rflags(vcpu, ctxt->eflags);
6141 
6142 	return EMULATE_DONE;
6143 }
6144 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6145 
6146 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6147 {
6148 	int r = EMULATE_DONE;
6149 
6150 	++vcpu->stat.insn_emulation_fail;
6151 	trace_kvm_emulate_insn_failed(vcpu);
6152 
6153 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6154 		return EMULATE_FAIL;
6155 
6156 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6157 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6158 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6159 		vcpu->run->internal.ndata = 0;
6160 		r = EMULATE_USER_EXIT;
6161 	}
6162 
6163 	kvm_queue_exception(vcpu, UD_VECTOR);
6164 
6165 	return r;
6166 }
6167 
6168 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6169 				  bool write_fault_to_shadow_pgtable,
6170 				  int emulation_type)
6171 {
6172 	gpa_t gpa = cr2;
6173 	kvm_pfn_t pfn;
6174 
6175 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6176 		return false;
6177 
6178 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6179 		return false;
6180 
6181 	if (!vcpu->arch.mmu->direct_map) {
6182 		/*
6183 		 * Write permission should be allowed since only
6184 		 * write access need to be emulated.
6185 		 */
6186 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6187 
6188 		/*
6189 		 * If the mapping is invalid in guest, let cpu retry
6190 		 * it to generate fault.
6191 		 */
6192 		if (gpa == UNMAPPED_GVA)
6193 			return true;
6194 	}
6195 
6196 	/*
6197 	 * Do not retry the unhandleable instruction if it faults on the
6198 	 * readonly host memory, otherwise it will goto a infinite loop:
6199 	 * retry instruction -> write #PF -> emulation fail -> retry
6200 	 * instruction -> ...
6201 	 */
6202 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6203 
6204 	/*
6205 	 * If the instruction failed on the error pfn, it can not be fixed,
6206 	 * report the error to userspace.
6207 	 */
6208 	if (is_error_noslot_pfn(pfn))
6209 		return false;
6210 
6211 	kvm_release_pfn_clean(pfn);
6212 
6213 	/* The instructions are well-emulated on direct mmu. */
6214 	if (vcpu->arch.mmu->direct_map) {
6215 		unsigned int indirect_shadow_pages;
6216 
6217 		spin_lock(&vcpu->kvm->mmu_lock);
6218 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6219 		spin_unlock(&vcpu->kvm->mmu_lock);
6220 
6221 		if (indirect_shadow_pages)
6222 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6223 
6224 		return true;
6225 	}
6226 
6227 	/*
6228 	 * if emulation was due to access to shadowed page table
6229 	 * and it failed try to unshadow page and re-enter the
6230 	 * guest to let CPU execute the instruction.
6231 	 */
6232 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6233 
6234 	/*
6235 	 * If the access faults on its page table, it can not
6236 	 * be fixed by unprotecting shadow page and it should
6237 	 * be reported to userspace.
6238 	 */
6239 	return !write_fault_to_shadow_pgtable;
6240 }
6241 
6242 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6243 			      unsigned long cr2,  int emulation_type)
6244 {
6245 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6246 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6247 
6248 	last_retry_eip = vcpu->arch.last_retry_eip;
6249 	last_retry_addr = vcpu->arch.last_retry_addr;
6250 
6251 	/*
6252 	 * If the emulation is caused by #PF and it is non-page_table
6253 	 * writing instruction, it means the VM-EXIT is caused by shadow
6254 	 * page protected, we can zap the shadow page and retry this
6255 	 * instruction directly.
6256 	 *
6257 	 * Note: if the guest uses a non-page-table modifying instruction
6258 	 * on the PDE that points to the instruction, then we will unmap
6259 	 * the instruction and go to an infinite loop. So, we cache the
6260 	 * last retried eip and the last fault address, if we meet the eip
6261 	 * and the address again, we can break out of the potential infinite
6262 	 * loop.
6263 	 */
6264 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6265 
6266 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6267 		return false;
6268 
6269 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6270 		return false;
6271 
6272 	if (x86_page_table_writing_insn(ctxt))
6273 		return false;
6274 
6275 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6276 		return false;
6277 
6278 	vcpu->arch.last_retry_eip = ctxt->eip;
6279 	vcpu->arch.last_retry_addr = cr2;
6280 
6281 	if (!vcpu->arch.mmu->direct_map)
6282 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6283 
6284 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6285 
6286 	return true;
6287 }
6288 
6289 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6290 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6291 
6292 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6293 {
6294 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6295 		/* This is a good place to trace that we are exiting SMM.  */
6296 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6297 
6298 		/* Process a latched INIT or SMI, if any.  */
6299 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6300 	}
6301 
6302 	kvm_mmu_reset_context(vcpu);
6303 }
6304 
6305 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6306 				unsigned long *db)
6307 {
6308 	u32 dr6 = 0;
6309 	int i;
6310 	u32 enable, rwlen;
6311 
6312 	enable = dr7;
6313 	rwlen = dr7 >> 16;
6314 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6315 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6316 			dr6 |= (1 << i);
6317 	return dr6;
6318 }
6319 
6320 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6321 {
6322 	struct kvm_run *kvm_run = vcpu->run;
6323 
6324 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6325 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6326 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6327 		kvm_run->debug.arch.exception = DB_VECTOR;
6328 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6329 		*r = EMULATE_USER_EXIT;
6330 	} else {
6331 		kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6332 	}
6333 }
6334 
6335 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6336 {
6337 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6338 	int r = EMULATE_DONE;
6339 
6340 	kvm_x86_ops->skip_emulated_instruction(vcpu);
6341 
6342 	/*
6343 	 * rflags is the old, "raw" value of the flags.  The new value has
6344 	 * not been saved yet.
6345 	 *
6346 	 * This is correct even for TF set by the guest, because "the
6347 	 * processor will not generate this exception after the instruction
6348 	 * that sets the TF flag".
6349 	 */
6350 	if (unlikely(rflags & X86_EFLAGS_TF))
6351 		kvm_vcpu_do_singlestep(vcpu, &r);
6352 	return r == EMULATE_DONE;
6353 }
6354 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6355 
6356 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6357 {
6358 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6359 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6360 		struct kvm_run *kvm_run = vcpu->run;
6361 		unsigned long eip = kvm_get_linear_rip(vcpu);
6362 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6363 					   vcpu->arch.guest_debug_dr7,
6364 					   vcpu->arch.eff_db);
6365 
6366 		if (dr6 != 0) {
6367 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6368 			kvm_run->debug.arch.pc = eip;
6369 			kvm_run->debug.arch.exception = DB_VECTOR;
6370 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6371 			*r = EMULATE_USER_EXIT;
6372 			return true;
6373 		}
6374 	}
6375 
6376 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6377 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6378 		unsigned long eip = kvm_get_linear_rip(vcpu);
6379 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6380 					   vcpu->arch.dr7,
6381 					   vcpu->arch.db);
6382 
6383 		if (dr6 != 0) {
6384 			vcpu->arch.dr6 &= ~15;
6385 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6386 			kvm_queue_exception(vcpu, DB_VECTOR);
6387 			*r = EMULATE_DONE;
6388 			return true;
6389 		}
6390 	}
6391 
6392 	return false;
6393 }
6394 
6395 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6396 {
6397 	switch (ctxt->opcode_len) {
6398 	case 1:
6399 		switch (ctxt->b) {
6400 		case 0xe4:	/* IN */
6401 		case 0xe5:
6402 		case 0xec:
6403 		case 0xed:
6404 		case 0xe6:	/* OUT */
6405 		case 0xe7:
6406 		case 0xee:
6407 		case 0xef:
6408 		case 0x6c:	/* INS */
6409 		case 0x6d:
6410 		case 0x6e:	/* OUTS */
6411 		case 0x6f:
6412 			return true;
6413 		}
6414 		break;
6415 	case 2:
6416 		switch (ctxt->b) {
6417 		case 0x33:	/* RDPMC */
6418 			return true;
6419 		}
6420 		break;
6421 	}
6422 
6423 	return false;
6424 }
6425 
6426 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6427 			    unsigned long cr2,
6428 			    int emulation_type,
6429 			    void *insn,
6430 			    int insn_len)
6431 {
6432 	int r;
6433 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6434 	bool writeback = true;
6435 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6436 
6437 	vcpu->arch.l1tf_flush_l1d = true;
6438 
6439 	/*
6440 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6441 	 * never reused.
6442 	 */
6443 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6444 	kvm_clear_exception_queue(vcpu);
6445 
6446 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6447 		init_emulate_ctxt(vcpu);
6448 
6449 		/*
6450 		 * We will reenter on the same instruction since
6451 		 * we do not set complete_userspace_io.  This does not
6452 		 * handle watchpoints yet, those would be handled in
6453 		 * the emulate_ops.
6454 		 */
6455 		if (!(emulation_type & EMULTYPE_SKIP) &&
6456 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6457 			return r;
6458 
6459 		ctxt->interruptibility = 0;
6460 		ctxt->have_exception = false;
6461 		ctxt->exception.vector = -1;
6462 		ctxt->perm_ok = false;
6463 
6464 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6465 
6466 		r = x86_decode_insn(ctxt, insn, insn_len);
6467 
6468 		trace_kvm_emulate_insn_start(vcpu);
6469 		++vcpu->stat.insn_emulation;
6470 		if (r != EMULATION_OK)  {
6471 			if (emulation_type & EMULTYPE_TRAP_UD)
6472 				return EMULATE_FAIL;
6473 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6474 						emulation_type))
6475 				return EMULATE_DONE;
6476 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
6477 				return EMULATE_DONE;
6478 			if (emulation_type & EMULTYPE_SKIP)
6479 				return EMULATE_FAIL;
6480 			return handle_emulation_failure(vcpu, emulation_type);
6481 		}
6482 	}
6483 
6484 	if ((emulation_type & EMULTYPE_VMWARE) &&
6485 	    !is_vmware_backdoor_opcode(ctxt))
6486 		return EMULATE_FAIL;
6487 
6488 	if (emulation_type & EMULTYPE_SKIP) {
6489 		kvm_rip_write(vcpu, ctxt->_eip);
6490 		if (ctxt->eflags & X86_EFLAGS_RF)
6491 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6492 		return EMULATE_DONE;
6493 	}
6494 
6495 	if (retry_instruction(ctxt, cr2, emulation_type))
6496 		return EMULATE_DONE;
6497 
6498 	/* this is needed for vmware backdoor interface to work since it
6499 	   changes registers values  during IO operation */
6500 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6501 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6502 		emulator_invalidate_register_cache(ctxt);
6503 	}
6504 
6505 restart:
6506 	/* Save the faulting GPA (cr2) in the address field */
6507 	ctxt->exception.address = cr2;
6508 
6509 	r = x86_emulate_insn(ctxt);
6510 
6511 	if (r == EMULATION_INTERCEPTED)
6512 		return EMULATE_DONE;
6513 
6514 	if (r == EMULATION_FAILED) {
6515 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6516 					emulation_type))
6517 			return EMULATE_DONE;
6518 
6519 		return handle_emulation_failure(vcpu, emulation_type);
6520 	}
6521 
6522 	if (ctxt->have_exception) {
6523 		r = EMULATE_DONE;
6524 		if (inject_emulated_exception(vcpu))
6525 			return r;
6526 	} else if (vcpu->arch.pio.count) {
6527 		if (!vcpu->arch.pio.in) {
6528 			/* FIXME: return into emulator if single-stepping.  */
6529 			vcpu->arch.pio.count = 0;
6530 		} else {
6531 			writeback = false;
6532 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6533 		}
6534 		r = EMULATE_USER_EXIT;
6535 	} else if (vcpu->mmio_needed) {
6536 		if (!vcpu->mmio_is_write)
6537 			writeback = false;
6538 		r = EMULATE_USER_EXIT;
6539 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6540 	} else if (r == EMULATION_RESTART)
6541 		goto restart;
6542 	else
6543 		r = EMULATE_DONE;
6544 
6545 	if (writeback) {
6546 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6547 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6548 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6549 		kvm_rip_write(vcpu, ctxt->eip);
6550 		if (r == EMULATE_DONE && ctxt->tf)
6551 			kvm_vcpu_do_singlestep(vcpu, &r);
6552 		if (!ctxt->have_exception ||
6553 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6554 			__kvm_set_rflags(vcpu, ctxt->eflags);
6555 
6556 		/*
6557 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6558 		 * do nothing, and it will be requested again as soon as
6559 		 * the shadow expires.  But we still need to check here,
6560 		 * because POPF has no interrupt shadow.
6561 		 */
6562 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6563 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6564 	} else
6565 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6566 
6567 	return r;
6568 }
6569 
6570 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6571 {
6572 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6573 }
6574 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6575 
6576 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6577 					void *insn, int insn_len)
6578 {
6579 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6580 }
6581 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6582 
6583 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6584 {
6585 	vcpu->arch.pio.count = 0;
6586 	return 1;
6587 }
6588 
6589 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6590 {
6591 	vcpu->arch.pio.count = 0;
6592 
6593 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6594 		return 1;
6595 
6596 	return kvm_skip_emulated_instruction(vcpu);
6597 }
6598 
6599 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6600 			    unsigned short port)
6601 {
6602 	unsigned long val = kvm_rax_read(vcpu);
6603 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6604 					    size, port, &val, 1);
6605 	if (ret)
6606 		return ret;
6607 
6608 	/*
6609 	 * Workaround userspace that relies on old KVM behavior of %rip being
6610 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6611 	 */
6612 	if (port == 0x7e &&
6613 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6614 		vcpu->arch.complete_userspace_io =
6615 			complete_fast_pio_out_port_0x7e;
6616 		kvm_skip_emulated_instruction(vcpu);
6617 	} else {
6618 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6619 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6620 	}
6621 	return 0;
6622 }
6623 
6624 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6625 {
6626 	unsigned long val;
6627 
6628 	/* We should only ever be called with arch.pio.count equal to 1 */
6629 	BUG_ON(vcpu->arch.pio.count != 1);
6630 
6631 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6632 		vcpu->arch.pio.count = 0;
6633 		return 1;
6634 	}
6635 
6636 	/* For size less than 4 we merge, else we zero extend */
6637 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6638 
6639 	/*
6640 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6641 	 * the copy and tracing
6642 	 */
6643 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6644 				 vcpu->arch.pio.port, &val, 1);
6645 	kvm_rax_write(vcpu, val);
6646 
6647 	return kvm_skip_emulated_instruction(vcpu);
6648 }
6649 
6650 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6651 			   unsigned short port)
6652 {
6653 	unsigned long val;
6654 	int ret;
6655 
6656 	/* For size less than 4 we merge, else we zero extend */
6657 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6658 
6659 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6660 				       &val, 1);
6661 	if (ret) {
6662 		kvm_rax_write(vcpu, val);
6663 		return ret;
6664 	}
6665 
6666 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6667 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6668 
6669 	return 0;
6670 }
6671 
6672 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6673 {
6674 	int ret;
6675 
6676 	if (in)
6677 		ret = kvm_fast_pio_in(vcpu, size, port);
6678 	else
6679 		ret = kvm_fast_pio_out(vcpu, size, port);
6680 	return ret && kvm_skip_emulated_instruction(vcpu);
6681 }
6682 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6683 
6684 static int kvmclock_cpu_down_prep(unsigned int cpu)
6685 {
6686 	__this_cpu_write(cpu_tsc_khz, 0);
6687 	return 0;
6688 }
6689 
6690 static void tsc_khz_changed(void *data)
6691 {
6692 	struct cpufreq_freqs *freq = data;
6693 	unsigned long khz = 0;
6694 
6695 	if (data)
6696 		khz = freq->new;
6697 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6698 		khz = cpufreq_quick_get(raw_smp_processor_id());
6699 	if (!khz)
6700 		khz = tsc_khz;
6701 	__this_cpu_write(cpu_tsc_khz, khz);
6702 }
6703 
6704 #ifdef CONFIG_X86_64
6705 static void kvm_hyperv_tsc_notifier(void)
6706 {
6707 	struct kvm *kvm;
6708 	struct kvm_vcpu *vcpu;
6709 	int cpu;
6710 
6711 	spin_lock(&kvm_lock);
6712 	list_for_each_entry(kvm, &vm_list, vm_list)
6713 		kvm_make_mclock_inprogress_request(kvm);
6714 
6715 	hyperv_stop_tsc_emulation();
6716 
6717 	/* TSC frequency always matches when on Hyper-V */
6718 	for_each_present_cpu(cpu)
6719 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6720 	kvm_max_guest_tsc_khz = tsc_khz;
6721 
6722 	list_for_each_entry(kvm, &vm_list, vm_list) {
6723 		struct kvm_arch *ka = &kvm->arch;
6724 
6725 		spin_lock(&ka->pvclock_gtod_sync_lock);
6726 
6727 		pvclock_update_vm_gtod_copy(kvm);
6728 
6729 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6730 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6731 
6732 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6733 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6734 
6735 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6736 	}
6737 	spin_unlock(&kvm_lock);
6738 }
6739 #endif
6740 
6741 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6742 {
6743 	struct kvm *kvm;
6744 	struct kvm_vcpu *vcpu;
6745 	int i, send_ipi = 0;
6746 
6747 	/*
6748 	 * We allow guests to temporarily run on slowing clocks,
6749 	 * provided we notify them after, or to run on accelerating
6750 	 * clocks, provided we notify them before.  Thus time never
6751 	 * goes backwards.
6752 	 *
6753 	 * However, we have a problem.  We can't atomically update
6754 	 * the frequency of a given CPU from this function; it is
6755 	 * merely a notifier, which can be called from any CPU.
6756 	 * Changing the TSC frequency at arbitrary points in time
6757 	 * requires a recomputation of local variables related to
6758 	 * the TSC for each VCPU.  We must flag these local variables
6759 	 * to be updated and be sure the update takes place with the
6760 	 * new frequency before any guests proceed.
6761 	 *
6762 	 * Unfortunately, the combination of hotplug CPU and frequency
6763 	 * change creates an intractable locking scenario; the order
6764 	 * of when these callouts happen is undefined with respect to
6765 	 * CPU hotplug, and they can race with each other.  As such,
6766 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6767 	 * undefined; you can actually have a CPU frequency change take
6768 	 * place in between the computation of X and the setting of the
6769 	 * variable.  To protect against this problem, all updates of
6770 	 * the per_cpu tsc_khz variable are done in an interrupt
6771 	 * protected IPI, and all callers wishing to update the value
6772 	 * must wait for a synchronous IPI to complete (which is trivial
6773 	 * if the caller is on the CPU already).  This establishes the
6774 	 * necessary total order on variable updates.
6775 	 *
6776 	 * Note that because a guest time update may take place
6777 	 * anytime after the setting of the VCPU's request bit, the
6778 	 * correct TSC value must be set before the request.  However,
6779 	 * to ensure the update actually makes it to any guest which
6780 	 * starts running in hardware virtualization between the set
6781 	 * and the acquisition of the spinlock, we must also ping the
6782 	 * CPU after setting the request bit.
6783 	 *
6784 	 */
6785 
6786 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6787 
6788 	spin_lock(&kvm_lock);
6789 	list_for_each_entry(kvm, &vm_list, vm_list) {
6790 		kvm_for_each_vcpu(i, vcpu, kvm) {
6791 			if (vcpu->cpu != cpu)
6792 				continue;
6793 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6794 			if (vcpu->cpu != smp_processor_id())
6795 				send_ipi = 1;
6796 		}
6797 	}
6798 	spin_unlock(&kvm_lock);
6799 
6800 	if (freq->old < freq->new && send_ipi) {
6801 		/*
6802 		 * We upscale the frequency.  Must make the guest
6803 		 * doesn't see old kvmclock values while running with
6804 		 * the new frequency, otherwise we risk the guest sees
6805 		 * time go backwards.
6806 		 *
6807 		 * In case we update the frequency for another cpu
6808 		 * (which might be in guest context) send an interrupt
6809 		 * to kick the cpu out of guest context.  Next time
6810 		 * guest context is entered kvmclock will be updated,
6811 		 * so the guest will not see stale values.
6812 		 */
6813 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6814 	}
6815 }
6816 
6817 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6818 				     void *data)
6819 {
6820 	struct cpufreq_freqs *freq = data;
6821 	int cpu;
6822 
6823 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6824 		return 0;
6825 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6826 		return 0;
6827 
6828 	for_each_cpu(cpu, freq->policy->cpus)
6829 		__kvmclock_cpufreq_notifier(freq, cpu);
6830 
6831 	return 0;
6832 }
6833 
6834 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6835 	.notifier_call  = kvmclock_cpufreq_notifier
6836 };
6837 
6838 static int kvmclock_cpu_online(unsigned int cpu)
6839 {
6840 	tsc_khz_changed(NULL);
6841 	return 0;
6842 }
6843 
6844 static void kvm_timer_init(void)
6845 {
6846 	max_tsc_khz = tsc_khz;
6847 
6848 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6849 #ifdef CONFIG_CPU_FREQ
6850 		struct cpufreq_policy policy;
6851 		int cpu;
6852 
6853 		memset(&policy, 0, sizeof(policy));
6854 		cpu = get_cpu();
6855 		cpufreq_get_policy(&policy, cpu);
6856 		if (policy.cpuinfo.max_freq)
6857 			max_tsc_khz = policy.cpuinfo.max_freq;
6858 		put_cpu();
6859 #endif
6860 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6861 					  CPUFREQ_TRANSITION_NOTIFIER);
6862 	}
6863 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6864 
6865 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6866 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6867 }
6868 
6869 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6870 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6871 
6872 int kvm_is_in_guest(void)
6873 {
6874 	return __this_cpu_read(current_vcpu) != NULL;
6875 }
6876 
6877 static int kvm_is_user_mode(void)
6878 {
6879 	int user_mode = 3;
6880 
6881 	if (__this_cpu_read(current_vcpu))
6882 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6883 
6884 	return user_mode != 0;
6885 }
6886 
6887 static unsigned long kvm_get_guest_ip(void)
6888 {
6889 	unsigned long ip = 0;
6890 
6891 	if (__this_cpu_read(current_vcpu))
6892 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6893 
6894 	return ip;
6895 }
6896 
6897 static void kvm_handle_intel_pt_intr(void)
6898 {
6899 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6900 
6901 	kvm_make_request(KVM_REQ_PMI, vcpu);
6902 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6903 			(unsigned long *)&vcpu->arch.pmu.global_status);
6904 }
6905 
6906 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6907 	.is_in_guest		= kvm_is_in_guest,
6908 	.is_user_mode		= kvm_is_user_mode,
6909 	.get_guest_ip		= kvm_get_guest_ip,
6910 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
6911 };
6912 
6913 static void kvm_set_mmio_spte_mask(void)
6914 {
6915 	u64 mask;
6916 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6917 
6918 	/*
6919 	 * Set the reserved bits and the present bit of an paging-structure
6920 	 * entry to generate page fault with PFER.RSV = 1.
6921 	 */
6922 
6923 	/*
6924 	 * Mask the uppermost physical address bit, which would be reserved as
6925 	 * long as the supported physical address width is less than 52.
6926 	 */
6927 	mask = 1ull << 51;
6928 
6929 	/* Set the present bit. */
6930 	mask |= 1ull;
6931 
6932 	/*
6933 	 * If reserved bit is not supported, clear the present bit to disable
6934 	 * mmio page fault.
6935 	 */
6936 	if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6937 		mask &= ~1ull;
6938 
6939 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6940 }
6941 
6942 #ifdef CONFIG_X86_64
6943 static void pvclock_gtod_update_fn(struct work_struct *work)
6944 {
6945 	struct kvm *kvm;
6946 
6947 	struct kvm_vcpu *vcpu;
6948 	int i;
6949 
6950 	spin_lock(&kvm_lock);
6951 	list_for_each_entry(kvm, &vm_list, vm_list)
6952 		kvm_for_each_vcpu(i, vcpu, kvm)
6953 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6954 	atomic_set(&kvm_guest_has_master_clock, 0);
6955 	spin_unlock(&kvm_lock);
6956 }
6957 
6958 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6959 
6960 /*
6961  * Notification about pvclock gtod data update.
6962  */
6963 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6964 			       void *priv)
6965 {
6966 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6967 	struct timekeeper *tk = priv;
6968 
6969 	update_pvclock_gtod(tk);
6970 
6971 	/* disable master clock if host does not trust, or does not
6972 	 * use, TSC based clocksource.
6973 	 */
6974 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6975 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6976 		queue_work(system_long_wq, &pvclock_gtod_work);
6977 
6978 	return 0;
6979 }
6980 
6981 static struct notifier_block pvclock_gtod_notifier = {
6982 	.notifier_call = pvclock_gtod_notify,
6983 };
6984 #endif
6985 
6986 int kvm_arch_init(void *opaque)
6987 {
6988 	int r;
6989 	struct kvm_x86_ops *ops = opaque;
6990 
6991 	if (kvm_x86_ops) {
6992 		printk(KERN_ERR "kvm: already loaded the other module\n");
6993 		r = -EEXIST;
6994 		goto out;
6995 	}
6996 
6997 	if (!ops->cpu_has_kvm_support()) {
6998 		printk(KERN_ERR "kvm: no hardware support\n");
6999 		r = -EOPNOTSUPP;
7000 		goto out;
7001 	}
7002 	if (ops->disabled_by_bios()) {
7003 		printk(KERN_ERR "kvm: disabled by bios\n");
7004 		r = -EOPNOTSUPP;
7005 		goto out;
7006 	}
7007 
7008 	/*
7009 	 * KVM explicitly assumes that the guest has an FPU and
7010 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7011 	 * vCPU's FPU state as a fxregs_state struct.
7012 	 */
7013 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7014 		printk(KERN_ERR "kvm: inadequate fpu\n");
7015 		r = -EOPNOTSUPP;
7016 		goto out;
7017 	}
7018 
7019 	r = -ENOMEM;
7020 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7021 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7022 					  NULL);
7023 	if (!x86_fpu_cache) {
7024 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7025 		goto out;
7026 	}
7027 
7028 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7029 	if (!shared_msrs) {
7030 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7031 		goto out_free_x86_fpu_cache;
7032 	}
7033 
7034 	r = kvm_mmu_module_init();
7035 	if (r)
7036 		goto out_free_percpu;
7037 
7038 	kvm_set_mmio_spte_mask();
7039 
7040 	kvm_x86_ops = ops;
7041 
7042 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7043 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7044 			PT_PRESENT_MASK, 0, sme_me_mask);
7045 	kvm_timer_init();
7046 
7047 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7048 
7049 	if (boot_cpu_has(X86_FEATURE_XSAVE))
7050 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7051 
7052 	kvm_lapic_init();
7053 #ifdef CONFIG_X86_64
7054 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7055 
7056 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7057 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7058 #endif
7059 
7060 	return 0;
7061 
7062 out_free_percpu:
7063 	free_percpu(shared_msrs);
7064 out_free_x86_fpu_cache:
7065 	kmem_cache_destroy(x86_fpu_cache);
7066 out:
7067 	return r;
7068 }
7069 
7070 void kvm_arch_exit(void)
7071 {
7072 #ifdef CONFIG_X86_64
7073 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7074 		clear_hv_tscchange_cb();
7075 #endif
7076 	kvm_lapic_exit();
7077 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7078 
7079 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7080 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7081 					    CPUFREQ_TRANSITION_NOTIFIER);
7082 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7083 #ifdef CONFIG_X86_64
7084 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7085 #endif
7086 	kvm_x86_ops = NULL;
7087 	kvm_mmu_module_exit();
7088 	free_percpu(shared_msrs);
7089 	kmem_cache_destroy(x86_fpu_cache);
7090 }
7091 
7092 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7093 {
7094 	++vcpu->stat.halt_exits;
7095 	if (lapic_in_kernel(vcpu)) {
7096 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7097 		return 1;
7098 	} else {
7099 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7100 		return 0;
7101 	}
7102 }
7103 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7104 
7105 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7106 {
7107 	int ret = kvm_skip_emulated_instruction(vcpu);
7108 	/*
7109 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7110 	 * KVM_EXIT_DEBUG here.
7111 	 */
7112 	return kvm_vcpu_halt(vcpu) && ret;
7113 }
7114 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7115 
7116 #ifdef CONFIG_X86_64
7117 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7118 			        unsigned long clock_type)
7119 {
7120 	struct kvm_clock_pairing clock_pairing;
7121 	struct timespec64 ts;
7122 	u64 cycle;
7123 	int ret;
7124 
7125 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7126 		return -KVM_EOPNOTSUPP;
7127 
7128 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7129 		return -KVM_EOPNOTSUPP;
7130 
7131 	clock_pairing.sec = ts.tv_sec;
7132 	clock_pairing.nsec = ts.tv_nsec;
7133 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7134 	clock_pairing.flags = 0;
7135 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7136 
7137 	ret = 0;
7138 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7139 			    sizeof(struct kvm_clock_pairing)))
7140 		ret = -KVM_EFAULT;
7141 
7142 	return ret;
7143 }
7144 #endif
7145 
7146 /*
7147  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7148  *
7149  * @apicid - apicid of vcpu to be kicked.
7150  */
7151 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7152 {
7153 	struct kvm_lapic_irq lapic_irq;
7154 
7155 	lapic_irq.shorthand = 0;
7156 	lapic_irq.dest_mode = 0;
7157 	lapic_irq.level = 0;
7158 	lapic_irq.dest_id = apicid;
7159 	lapic_irq.msi_redir_hint = false;
7160 
7161 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7162 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7163 }
7164 
7165 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7166 {
7167 	if (!lapic_in_kernel(vcpu)) {
7168 		WARN_ON_ONCE(vcpu->arch.apicv_active);
7169 		return;
7170 	}
7171 	if (!vcpu->arch.apicv_active)
7172 		return;
7173 
7174 	vcpu->arch.apicv_active = false;
7175 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7176 }
7177 
7178 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7179 {
7180 	unsigned long nr, a0, a1, a2, a3, ret;
7181 	int op_64_bit;
7182 
7183 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7184 		return kvm_hv_hypercall(vcpu);
7185 
7186 	nr = kvm_rax_read(vcpu);
7187 	a0 = kvm_rbx_read(vcpu);
7188 	a1 = kvm_rcx_read(vcpu);
7189 	a2 = kvm_rdx_read(vcpu);
7190 	a3 = kvm_rsi_read(vcpu);
7191 
7192 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7193 
7194 	op_64_bit = is_64_bit_mode(vcpu);
7195 	if (!op_64_bit) {
7196 		nr &= 0xFFFFFFFF;
7197 		a0 &= 0xFFFFFFFF;
7198 		a1 &= 0xFFFFFFFF;
7199 		a2 &= 0xFFFFFFFF;
7200 		a3 &= 0xFFFFFFFF;
7201 	}
7202 
7203 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7204 		ret = -KVM_EPERM;
7205 		goto out;
7206 	}
7207 
7208 	switch (nr) {
7209 	case KVM_HC_VAPIC_POLL_IRQ:
7210 		ret = 0;
7211 		break;
7212 	case KVM_HC_KICK_CPU:
7213 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7214 		ret = 0;
7215 		break;
7216 #ifdef CONFIG_X86_64
7217 	case KVM_HC_CLOCK_PAIRING:
7218 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7219 		break;
7220 #endif
7221 	case KVM_HC_SEND_IPI:
7222 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7223 		break;
7224 	default:
7225 		ret = -KVM_ENOSYS;
7226 		break;
7227 	}
7228 out:
7229 	if (!op_64_bit)
7230 		ret = (u32)ret;
7231 	kvm_rax_write(vcpu, ret);
7232 
7233 	++vcpu->stat.hypercalls;
7234 	return kvm_skip_emulated_instruction(vcpu);
7235 }
7236 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7237 
7238 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7239 {
7240 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7241 	char instruction[3];
7242 	unsigned long rip = kvm_rip_read(vcpu);
7243 
7244 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7245 
7246 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7247 		&ctxt->exception);
7248 }
7249 
7250 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7251 {
7252 	return vcpu->run->request_interrupt_window &&
7253 		likely(!pic_in_kernel(vcpu->kvm));
7254 }
7255 
7256 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7257 {
7258 	struct kvm_run *kvm_run = vcpu->run;
7259 
7260 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7261 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7262 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7263 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7264 	kvm_run->ready_for_interrupt_injection =
7265 		pic_in_kernel(vcpu->kvm) ||
7266 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7267 }
7268 
7269 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7270 {
7271 	int max_irr, tpr;
7272 
7273 	if (!kvm_x86_ops->update_cr8_intercept)
7274 		return;
7275 
7276 	if (!lapic_in_kernel(vcpu))
7277 		return;
7278 
7279 	if (vcpu->arch.apicv_active)
7280 		return;
7281 
7282 	if (!vcpu->arch.apic->vapic_addr)
7283 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7284 	else
7285 		max_irr = -1;
7286 
7287 	if (max_irr != -1)
7288 		max_irr >>= 4;
7289 
7290 	tpr = kvm_lapic_get_cr8(vcpu);
7291 
7292 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7293 }
7294 
7295 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7296 {
7297 	int r;
7298 
7299 	/* try to reinject previous events if any */
7300 
7301 	if (vcpu->arch.exception.injected)
7302 		kvm_x86_ops->queue_exception(vcpu);
7303 	/*
7304 	 * Do not inject an NMI or interrupt if there is a pending
7305 	 * exception.  Exceptions and interrupts are recognized at
7306 	 * instruction boundaries, i.e. the start of an instruction.
7307 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7308 	 * NMIs and interrupts, i.e. traps are recognized before an
7309 	 * NMI/interrupt that's pending on the same instruction.
7310 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7311 	 * priority, but are only generated (pended) during instruction
7312 	 * execution, i.e. a pending fault-like exception means the
7313 	 * fault occurred on the *previous* instruction and must be
7314 	 * serviced prior to recognizing any new events in order to
7315 	 * fully complete the previous instruction.
7316 	 */
7317 	else if (!vcpu->arch.exception.pending) {
7318 		if (vcpu->arch.nmi_injected)
7319 			kvm_x86_ops->set_nmi(vcpu);
7320 		else if (vcpu->arch.interrupt.injected)
7321 			kvm_x86_ops->set_irq(vcpu);
7322 	}
7323 
7324 	/*
7325 	 * Call check_nested_events() even if we reinjected a previous event
7326 	 * in order for caller to determine if it should require immediate-exit
7327 	 * from L2 to L1 due to pending L1 events which require exit
7328 	 * from L2 to L1.
7329 	 */
7330 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7331 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7332 		if (r != 0)
7333 			return r;
7334 	}
7335 
7336 	/* try to inject new event if pending */
7337 	if (vcpu->arch.exception.pending) {
7338 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7339 					vcpu->arch.exception.has_error_code,
7340 					vcpu->arch.exception.error_code);
7341 
7342 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7343 		vcpu->arch.exception.pending = false;
7344 		vcpu->arch.exception.injected = true;
7345 
7346 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7347 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7348 					     X86_EFLAGS_RF);
7349 
7350 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7351 			/*
7352 			 * This code assumes that nSVM doesn't use
7353 			 * check_nested_events(). If it does, the
7354 			 * DR6/DR7 changes should happen before L1
7355 			 * gets a #VMEXIT for an intercepted #DB in
7356 			 * L2.  (Under VMX, on the other hand, the
7357 			 * DR6/DR7 changes should not happen in the
7358 			 * event of a VM-exit to L1 for an intercepted
7359 			 * #DB in L2.)
7360 			 */
7361 			kvm_deliver_exception_payload(vcpu);
7362 			if (vcpu->arch.dr7 & DR7_GD) {
7363 				vcpu->arch.dr7 &= ~DR7_GD;
7364 				kvm_update_dr7(vcpu);
7365 			}
7366 		}
7367 
7368 		kvm_x86_ops->queue_exception(vcpu);
7369 	}
7370 
7371 	/* Don't consider new event if we re-injected an event */
7372 	if (kvm_event_needs_reinjection(vcpu))
7373 		return 0;
7374 
7375 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7376 	    kvm_x86_ops->smi_allowed(vcpu)) {
7377 		vcpu->arch.smi_pending = false;
7378 		++vcpu->arch.smi_count;
7379 		enter_smm(vcpu);
7380 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7381 		--vcpu->arch.nmi_pending;
7382 		vcpu->arch.nmi_injected = true;
7383 		kvm_x86_ops->set_nmi(vcpu);
7384 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7385 		/*
7386 		 * Because interrupts can be injected asynchronously, we are
7387 		 * calling check_nested_events again here to avoid a race condition.
7388 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7389 		 * proposal and current concerns.  Perhaps we should be setting
7390 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7391 		 */
7392 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7393 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7394 			if (r != 0)
7395 				return r;
7396 		}
7397 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7398 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7399 					    false);
7400 			kvm_x86_ops->set_irq(vcpu);
7401 		}
7402 	}
7403 
7404 	return 0;
7405 }
7406 
7407 static void process_nmi(struct kvm_vcpu *vcpu)
7408 {
7409 	unsigned limit = 2;
7410 
7411 	/*
7412 	 * x86 is limited to one NMI running, and one NMI pending after it.
7413 	 * If an NMI is already in progress, limit further NMIs to just one.
7414 	 * Otherwise, allow two (and we'll inject the first one immediately).
7415 	 */
7416 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7417 		limit = 1;
7418 
7419 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7420 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7421 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7422 }
7423 
7424 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7425 {
7426 	u32 flags = 0;
7427 	flags |= seg->g       << 23;
7428 	flags |= seg->db      << 22;
7429 	flags |= seg->l       << 21;
7430 	flags |= seg->avl     << 20;
7431 	flags |= seg->present << 15;
7432 	flags |= seg->dpl     << 13;
7433 	flags |= seg->s       << 12;
7434 	flags |= seg->type    << 8;
7435 	return flags;
7436 }
7437 
7438 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7439 {
7440 	struct kvm_segment seg;
7441 	int offset;
7442 
7443 	kvm_get_segment(vcpu, &seg, n);
7444 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7445 
7446 	if (n < 3)
7447 		offset = 0x7f84 + n * 12;
7448 	else
7449 		offset = 0x7f2c + (n - 3) * 12;
7450 
7451 	put_smstate(u32, buf, offset + 8, seg.base);
7452 	put_smstate(u32, buf, offset + 4, seg.limit);
7453 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7454 }
7455 
7456 #ifdef CONFIG_X86_64
7457 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7458 {
7459 	struct kvm_segment seg;
7460 	int offset;
7461 	u16 flags;
7462 
7463 	kvm_get_segment(vcpu, &seg, n);
7464 	offset = 0x7e00 + n * 16;
7465 
7466 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7467 	put_smstate(u16, buf, offset, seg.selector);
7468 	put_smstate(u16, buf, offset + 2, flags);
7469 	put_smstate(u32, buf, offset + 4, seg.limit);
7470 	put_smstate(u64, buf, offset + 8, seg.base);
7471 }
7472 #endif
7473 
7474 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7475 {
7476 	struct desc_ptr dt;
7477 	struct kvm_segment seg;
7478 	unsigned long val;
7479 	int i;
7480 
7481 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7482 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7483 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7484 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7485 
7486 	for (i = 0; i < 8; i++)
7487 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7488 
7489 	kvm_get_dr(vcpu, 6, &val);
7490 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7491 	kvm_get_dr(vcpu, 7, &val);
7492 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7493 
7494 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7495 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7496 	put_smstate(u32, buf, 0x7f64, seg.base);
7497 	put_smstate(u32, buf, 0x7f60, seg.limit);
7498 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7499 
7500 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7501 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7502 	put_smstate(u32, buf, 0x7f80, seg.base);
7503 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7504 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7505 
7506 	kvm_x86_ops->get_gdt(vcpu, &dt);
7507 	put_smstate(u32, buf, 0x7f74, dt.address);
7508 	put_smstate(u32, buf, 0x7f70, dt.size);
7509 
7510 	kvm_x86_ops->get_idt(vcpu, &dt);
7511 	put_smstate(u32, buf, 0x7f58, dt.address);
7512 	put_smstate(u32, buf, 0x7f54, dt.size);
7513 
7514 	for (i = 0; i < 6; i++)
7515 		enter_smm_save_seg_32(vcpu, buf, i);
7516 
7517 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7518 
7519 	/* revision id */
7520 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7521 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7522 }
7523 
7524 #ifdef CONFIG_X86_64
7525 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7526 {
7527 	struct desc_ptr dt;
7528 	struct kvm_segment seg;
7529 	unsigned long val;
7530 	int i;
7531 
7532 	for (i = 0; i < 16; i++)
7533 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7534 
7535 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7536 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7537 
7538 	kvm_get_dr(vcpu, 6, &val);
7539 	put_smstate(u64, buf, 0x7f68, val);
7540 	kvm_get_dr(vcpu, 7, &val);
7541 	put_smstate(u64, buf, 0x7f60, val);
7542 
7543 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7544 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7545 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7546 
7547 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7548 
7549 	/* revision id */
7550 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7551 
7552 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7553 
7554 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7555 	put_smstate(u16, buf, 0x7e90, seg.selector);
7556 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7557 	put_smstate(u32, buf, 0x7e94, seg.limit);
7558 	put_smstate(u64, buf, 0x7e98, seg.base);
7559 
7560 	kvm_x86_ops->get_idt(vcpu, &dt);
7561 	put_smstate(u32, buf, 0x7e84, dt.size);
7562 	put_smstate(u64, buf, 0x7e88, dt.address);
7563 
7564 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7565 	put_smstate(u16, buf, 0x7e70, seg.selector);
7566 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7567 	put_smstate(u32, buf, 0x7e74, seg.limit);
7568 	put_smstate(u64, buf, 0x7e78, seg.base);
7569 
7570 	kvm_x86_ops->get_gdt(vcpu, &dt);
7571 	put_smstate(u32, buf, 0x7e64, dt.size);
7572 	put_smstate(u64, buf, 0x7e68, dt.address);
7573 
7574 	for (i = 0; i < 6; i++)
7575 		enter_smm_save_seg_64(vcpu, buf, i);
7576 }
7577 #endif
7578 
7579 static void enter_smm(struct kvm_vcpu *vcpu)
7580 {
7581 	struct kvm_segment cs, ds;
7582 	struct desc_ptr dt;
7583 	char buf[512];
7584 	u32 cr0;
7585 
7586 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7587 	memset(buf, 0, 512);
7588 #ifdef CONFIG_X86_64
7589 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7590 		enter_smm_save_state_64(vcpu, buf);
7591 	else
7592 #endif
7593 		enter_smm_save_state_32(vcpu, buf);
7594 
7595 	/*
7596 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7597 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7598 	 * the SMM state-save area.
7599 	 */
7600 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7601 
7602 	vcpu->arch.hflags |= HF_SMM_MASK;
7603 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7604 
7605 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7606 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7607 	else
7608 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7609 
7610 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7611 	kvm_rip_write(vcpu, 0x8000);
7612 
7613 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7614 	kvm_x86_ops->set_cr0(vcpu, cr0);
7615 	vcpu->arch.cr0 = cr0;
7616 
7617 	kvm_x86_ops->set_cr4(vcpu, 0);
7618 
7619 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7620 	dt.address = dt.size = 0;
7621 	kvm_x86_ops->set_idt(vcpu, &dt);
7622 
7623 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7624 
7625 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7626 	cs.base = vcpu->arch.smbase;
7627 
7628 	ds.selector = 0;
7629 	ds.base = 0;
7630 
7631 	cs.limit    = ds.limit = 0xffffffff;
7632 	cs.type     = ds.type = 0x3;
7633 	cs.dpl      = ds.dpl = 0;
7634 	cs.db       = ds.db = 0;
7635 	cs.s        = ds.s = 1;
7636 	cs.l        = ds.l = 0;
7637 	cs.g        = ds.g = 1;
7638 	cs.avl      = ds.avl = 0;
7639 	cs.present  = ds.present = 1;
7640 	cs.unusable = ds.unusable = 0;
7641 	cs.padding  = ds.padding = 0;
7642 
7643 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7644 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7645 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7646 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7647 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7648 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7649 
7650 #ifdef CONFIG_X86_64
7651 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7652 		kvm_x86_ops->set_efer(vcpu, 0);
7653 #endif
7654 
7655 	kvm_update_cpuid(vcpu);
7656 	kvm_mmu_reset_context(vcpu);
7657 }
7658 
7659 static void process_smi(struct kvm_vcpu *vcpu)
7660 {
7661 	vcpu->arch.smi_pending = true;
7662 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7663 }
7664 
7665 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7666 {
7667 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7668 }
7669 
7670 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7671 {
7672 	if (!kvm_apic_present(vcpu))
7673 		return;
7674 
7675 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7676 
7677 	if (irqchip_split(vcpu->kvm))
7678 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7679 	else {
7680 		if (vcpu->arch.apicv_active)
7681 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7682 		if (ioapic_in_kernel(vcpu->kvm))
7683 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7684 	}
7685 
7686 	if (is_guest_mode(vcpu))
7687 		vcpu->arch.load_eoi_exitmap_pending = true;
7688 	else
7689 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7690 }
7691 
7692 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7693 {
7694 	u64 eoi_exit_bitmap[4];
7695 
7696 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7697 		return;
7698 
7699 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7700 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7701 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7702 }
7703 
7704 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7705 		unsigned long start, unsigned long end,
7706 		bool blockable)
7707 {
7708 	unsigned long apic_address;
7709 
7710 	/*
7711 	 * The physical address of apic access page is stored in the VMCS.
7712 	 * Update it when it becomes invalid.
7713 	 */
7714 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7715 	if (start <= apic_address && apic_address < end)
7716 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7717 
7718 	return 0;
7719 }
7720 
7721 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7722 {
7723 	struct page *page = NULL;
7724 
7725 	if (!lapic_in_kernel(vcpu))
7726 		return;
7727 
7728 	if (!kvm_x86_ops->set_apic_access_page_addr)
7729 		return;
7730 
7731 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7732 	if (is_error_page(page))
7733 		return;
7734 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7735 
7736 	/*
7737 	 * Do not pin apic access page in memory, the MMU notifier
7738 	 * will call us again if it is migrated or swapped out.
7739 	 */
7740 	put_page(page);
7741 }
7742 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7743 
7744 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7745 {
7746 	smp_send_reschedule(vcpu->cpu);
7747 }
7748 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7749 
7750 /*
7751  * Returns 1 to let vcpu_run() continue the guest execution loop without
7752  * exiting to the userspace.  Otherwise, the value will be returned to the
7753  * userspace.
7754  */
7755 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7756 {
7757 	int r;
7758 	bool req_int_win =
7759 		dm_request_for_irq_injection(vcpu) &&
7760 		kvm_cpu_accept_dm_intr(vcpu);
7761 
7762 	bool req_immediate_exit = false;
7763 
7764 	if (kvm_request_pending(vcpu)) {
7765 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7766 			kvm_x86_ops->get_vmcs12_pages(vcpu);
7767 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7768 			kvm_mmu_unload(vcpu);
7769 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7770 			__kvm_migrate_timers(vcpu);
7771 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7772 			kvm_gen_update_masterclock(vcpu->kvm);
7773 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7774 			kvm_gen_kvmclock_update(vcpu);
7775 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7776 			r = kvm_guest_time_update(vcpu);
7777 			if (unlikely(r))
7778 				goto out;
7779 		}
7780 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7781 			kvm_mmu_sync_roots(vcpu);
7782 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7783 			kvm_mmu_load_cr3(vcpu);
7784 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7785 			kvm_vcpu_flush_tlb(vcpu, true);
7786 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7787 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7788 			r = 0;
7789 			goto out;
7790 		}
7791 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7792 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7793 			vcpu->mmio_needed = 0;
7794 			r = 0;
7795 			goto out;
7796 		}
7797 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7798 			/* Page is swapped out. Do synthetic halt */
7799 			vcpu->arch.apf.halted = true;
7800 			r = 1;
7801 			goto out;
7802 		}
7803 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7804 			record_steal_time(vcpu);
7805 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7806 			process_smi(vcpu);
7807 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7808 			process_nmi(vcpu);
7809 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7810 			kvm_pmu_handle_event(vcpu);
7811 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7812 			kvm_pmu_deliver_pmi(vcpu);
7813 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7814 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7815 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7816 				     vcpu->arch.ioapic_handled_vectors)) {
7817 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7818 				vcpu->run->eoi.vector =
7819 						vcpu->arch.pending_ioapic_eoi;
7820 				r = 0;
7821 				goto out;
7822 			}
7823 		}
7824 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7825 			vcpu_scan_ioapic(vcpu);
7826 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7827 			vcpu_load_eoi_exitmap(vcpu);
7828 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7829 			kvm_vcpu_reload_apic_access_page(vcpu);
7830 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7831 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7832 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7833 			r = 0;
7834 			goto out;
7835 		}
7836 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7837 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7838 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7839 			r = 0;
7840 			goto out;
7841 		}
7842 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7843 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7844 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7845 			r = 0;
7846 			goto out;
7847 		}
7848 
7849 		/*
7850 		 * KVM_REQ_HV_STIMER has to be processed after
7851 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7852 		 * depend on the guest clock being up-to-date
7853 		 */
7854 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7855 			kvm_hv_process_stimers(vcpu);
7856 	}
7857 
7858 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7859 		++vcpu->stat.req_event;
7860 		kvm_apic_accept_events(vcpu);
7861 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7862 			r = 1;
7863 			goto out;
7864 		}
7865 
7866 		if (inject_pending_event(vcpu, req_int_win) != 0)
7867 			req_immediate_exit = true;
7868 		else {
7869 			/* Enable SMI/NMI/IRQ window open exits if needed.
7870 			 *
7871 			 * SMIs have three cases:
7872 			 * 1) They can be nested, and then there is nothing to
7873 			 *    do here because RSM will cause a vmexit anyway.
7874 			 * 2) There is an ISA-specific reason why SMI cannot be
7875 			 *    injected, and the moment when this changes can be
7876 			 *    intercepted.
7877 			 * 3) Or the SMI can be pending because
7878 			 *    inject_pending_event has completed the injection
7879 			 *    of an IRQ or NMI from the previous vmexit, and
7880 			 *    then we request an immediate exit to inject the
7881 			 *    SMI.
7882 			 */
7883 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7884 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7885 					req_immediate_exit = true;
7886 			if (vcpu->arch.nmi_pending)
7887 				kvm_x86_ops->enable_nmi_window(vcpu);
7888 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7889 				kvm_x86_ops->enable_irq_window(vcpu);
7890 			WARN_ON(vcpu->arch.exception.pending);
7891 		}
7892 
7893 		if (kvm_lapic_enabled(vcpu)) {
7894 			update_cr8_intercept(vcpu);
7895 			kvm_lapic_sync_to_vapic(vcpu);
7896 		}
7897 	}
7898 
7899 	r = kvm_mmu_reload(vcpu);
7900 	if (unlikely(r)) {
7901 		goto cancel_injection;
7902 	}
7903 
7904 	preempt_disable();
7905 
7906 	kvm_x86_ops->prepare_guest_switch(vcpu);
7907 
7908 	/*
7909 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7910 	 * IPI are then delayed after guest entry, which ensures that they
7911 	 * result in virtual interrupt delivery.
7912 	 */
7913 	local_irq_disable();
7914 	vcpu->mode = IN_GUEST_MODE;
7915 
7916 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7917 
7918 	/*
7919 	 * 1) We should set ->mode before checking ->requests.  Please see
7920 	 * the comment in kvm_vcpu_exiting_guest_mode().
7921 	 *
7922 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
7923 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7924 	 * (see vmx_deliver_posted_interrupt).
7925 	 *
7926 	 * 3) This also orders the write to mode from any reads to the page
7927 	 * tables done while the VCPU is running.  Please see the comment
7928 	 * in kvm_flush_remote_tlbs.
7929 	 */
7930 	smp_mb__after_srcu_read_unlock();
7931 
7932 	/*
7933 	 * This handles the case where a posted interrupt was
7934 	 * notified with kvm_vcpu_kick.
7935 	 */
7936 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7937 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7938 
7939 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7940 	    || need_resched() || signal_pending(current)) {
7941 		vcpu->mode = OUTSIDE_GUEST_MODE;
7942 		smp_wmb();
7943 		local_irq_enable();
7944 		preempt_enable();
7945 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7946 		r = 1;
7947 		goto cancel_injection;
7948 	}
7949 
7950 	if (req_immediate_exit) {
7951 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7952 		kvm_x86_ops->request_immediate_exit(vcpu);
7953 	}
7954 
7955 	trace_kvm_entry(vcpu->vcpu_id);
7956 	if (lapic_in_kernel(vcpu) &&
7957 	    vcpu->arch.apic->lapic_timer.timer_advance_ns)
7958 		wait_lapic_expire(vcpu);
7959 	guest_enter_irqoff();
7960 
7961 	fpregs_assert_state_consistent();
7962 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
7963 		switch_fpu_return();
7964 
7965 	if (unlikely(vcpu->arch.switch_db_regs)) {
7966 		set_debugreg(0, 7);
7967 		set_debugreg(vcpu->arch.eff_db[0], 0);
7968 		set_debugreg(vcpu->arch.eff_db[1], 1);
7969 		set_debugreg(vcpu->arch.eff_db[2], 2);
7970 		set_debugreg(vcpu->arch.eff_db[3], 3);
7971 		set_debugreg(vcpu->arch.dr6, 6);
7972 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7973 	}
7974 
7975 	kvm_x86_ops->run(vcpu);
7976 
7977 	/*
7978 	 * Do this here before restoring debug registers on the host.  And
7979 	 * since we do this before handling the vmexit, a DR access vmexit
7980 	 * can (a) read the correct value of the debug registers, (b) set
7981 	 * KVM_DEBUGREG_WONT_EXIT again.
7982 	 */
7983 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7984 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7985 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7986 		kvm_update_dr0123(vcpu);
7987 		kvm_update_dr6(vcpu);
7988 		kvm_update_dr7(vcpu);
7989 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7990 	}
7991 
7992 	/*
7993 	 * If the guest has used debug registers, at least dr7
7994 	 * will be disabled while returning to the host.
7995 	 * If we don't have active breakpoints in the host, we don't
7996 	 * care about the messed up debug address registers. But if
7997 	 * we have some of them active, restore the old state.
7998 	 */
7999 	if (hw_breakpoint_active())
8000 		hw_breakpoint_restore();
8001 
8002 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8003 
8004 	vcpu->mode = OUTSIDE_GUEST_MODE;
8005 	smp_wmb();
8006 
8007 	kvm_before_interrupt(vcpu);
8008 	kvm_x86_ops->handle_external_intr(vcpu);
8009 	kvm_after_interrupt(vcpu);
8010 
8011 	++vcpu->stat.exits;
8012 
8013 	guest_exit_irqoff();
8014 
8015 	local_irq_enable();
8016 	preempt_enable();
8017 
8018 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8019 
8020 	/*
8021 	 * Profile KVM exit RIPs:
8022 	 */
8023 	if (unlikely(prof_on == KVM_PROFILING)) {
8024 		unsigned long rip = kvm_rip_read(vcpu);
8025 		profile_hit(KVM_PROFILING, (void *)rip);
8026 	}
8027 
8028 	if (unlikely(vcpu->arch.tsc_always_catchup))
8029 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8030 
8031 	if (vcpu->arch.apic_attention)
8032 		kvm_lapic_sync_from_vapic(vcpu);
8033 
8034 	vcpu->arch.gpa_available = false;
8035 	r = kvm_x86_ops->handle_exit(vcpu);
8036 	return r;
8037 
8038 cancel_injection:
8039 	kvm_x86_ops->cancel_injection(vcpu);
8040 	if (unlikely(vcpu->arch.apic_attention))
8041 		kvm_lapic_sync_from_vapic(vcpu);
8042 out:
8043 	return r;
8044 }
8045 
8046 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8047 {
8048 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8049 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8050 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8051 		kvm_vcpu_block(vcpu);
8052 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8053 
8054 		if (kvm_x86_ops->post_block)
8055 			kvm_x86_ops->post_block(vcpu);
8056 
8057 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8058 			return 1;
8059 	}
8060 
8061 	kvm_apic_accept_events(vcpu);
8062 	switch(vcpu->arch.mp_state) {
8063 	case KVM_MP_STATE_HALTED:
8064 		vcpu->arch.pv.pv_unhalted = false;
8065 		vcpu->arch.mp_state =
8066 			KVM_MP_STATE_RUNNABLE;
8067 		/* fall through */
8068 	case KVM_MP_STATE_RUNNABLE:
8069 		vcpu->arch.apf.halted = false;
8070 		break;
8071 	case KVM_MP_STATE_INIT_RECEIVED:
8072 		break;
8073 	default:
8074 		return -EINTR;
8075 		break;
8076 	}
8077 	return 1;
8078 }
8079 
8080 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8081 {
8082 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8083 		kvm_x86_ops->check_nested_events(vcpu, false);
8084 
8085 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8086 		!vcpu->arch.apf.halted);
8087 }
8088 
8089 static int vcpu_run(struct kvm_vcpu *vcpu)
8090 {
8091 	int r;
8092 	struct kvm *kvm = vcpu->kvm;
8093 
8094 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8095 	vcpu->arch.l1tf_flush_l1d = true;
8096 
8097 	for (;;) {
8098 		if (kvm_vcpu_running(vcpu)) {
8099 			r = vcpu_enter_guest(vcpu);
8100 		} else {
8101 			r = vcpu_block(kvm, vcpu);
8102 		}
8103 
8104 		if (r <= 0)
8105 			break;
8106 
8107 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8108 		if (kvm_cpu_has_pending_timer(vcpu))
8109 			kvm_inject_pending_timer_irqs(vcpu);
8110 
8111 		if (dm_request_for_irq_injection(vcpu) &&
8112 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8113 			r = 0;
8114 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8115 			++vcpu->stat.request_irq_exits;
8116 			break;
8117 		}
8118 
8119 		kvm_check_async_pf_completion(vcpu);
8120 
8121 		if (signal_pending(current)) {
8122 			r = -EINTR;
8123 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8124 			++vcpu->stat.signal_exits;
8125 			break;
8126 		}
8127 		if (need_resched()) {
8128 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8129 			cond_resched();
8130 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8131 		}
8132 	}
8133 
8134 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8135 
8136 	return r;
8137 }
8138 
8139 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8140 {
8141 	int r;
8142 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8143 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8144 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8145 	if (r != EMULATE_DONE)
8146 		return 0;
8147 	return 1;
8148 }
8149 
8150 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8151 {
8152 	BUG_ON(!vcpu->arch.pio.count);
8153 
8154 	return complete_emulated_io(vcpu);
8155 }
8156 
8157 /*
8158  * Implements the following, as a state machine:
8159  *
8160  * read:
8161  *   for each fragment
8162  *     for each mmio piece in the fragment
8163  *       write gpa, len
8164  *       exit
8165  *       copy data
8166  *   execute insn
8167  *
8168  * write:
8169  *   for each fragment
8170  *     for each mmio piece in the fragment
8171  *       write gpa, len
8172  *       copy data
8173  *       exit
8174  */
8175 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8176 {
8177 	struct kvm_run *run = vcpu->run;
8178 	struct kvm_mmio_fragment *frag;
8179 	unsigned len;
8180 
8181 	BUG_ON(!vcpu->mmio_needed);
8182 
8183 	/* Complete previous fragment */
8184 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8185 	len = min(8u, frag->len);
8186 	if (!vcpu->mmio_is_write)
8187 		memcpy(frag->data, run->mmio.data, len);
8188 
8189 	if (frag->len <= 8) {
8190 		/* Switch to the next fragment. */
8191 		frag++;
8192 		vcpu->mmio_cur_fragment++;
8193 	} else {
8194 		/* Go forward to the next mmio piece. */
8195 		frag->data += len;
8196 		frag->gpa += len;
8197 		frag->len -= len;
8198 	}
8199 
8200 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8201 		vcpu->mmio_needed = 0;
8202 
8203 		/* FIXME: return into emulator if single-stepping.  */
8204 		if (vcpu->mmio_is_write)
8205 			return 1;
8206 		vcpu->mmio_read_completed = 1;
8207 		return complete_emulated_io(vcpu);
8208 	}
8209 
8210 	run->exit_reason = KVM_EXIT_MMIO;
8211 	run->mmio.phys_addr = frag->gpa;
8212 	if (vcpu->mmio_is_write)
8213 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8214 	run->mmio.len = min(8u, frag->len);
8215 	run->mmio.is_write = vcpu->mmio_is_write;
8216 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8217 	return 0;
8218 }
8219 
8220 /* Swap (qemu) user FPU context for the guest FPU context. */
8221 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8222 {
8223 	fpregs_lock();
8224 
8225 	copy_fpregs_to_fpstate(&current->thread.fpu);
8226 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8227 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8228 				~XFEATURE_MASK_PKRU);
8229 
8230 	fpregs_mark_activate();
8231 	fpregs_unlock();
8232 
8233 	trace_kvm_fpu(1);
8234 }
8235 
8236 /* When vcpu_run ends, restore user space FPU context. */
8237 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8238 {
8239 	fpregs_lock();
8240 
8241 	copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8242 	copy_kernel_to_fpregs(&current->thread.fpu.state);
8243 
8244 	fpregs_mark_activate();
8245 	fpregs_unlock();
8246 
8247 	++vcpu->stat.fpu_reload;
8248 	trace_kvm_fpu(0);
8249 }
8250 
8251 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8252 {
8253 	int r;
8254 
8255 	vcpu_load(vcpu);
8256 	kvm_sigset_activate(vcpu);
8257 	kvm_load_guest_fpu(vcpu);
8258 
8259 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8260 		if (kvm_run->immediate_exit) {
8261 			r = -EINTR;
8262 			goto out;
8263 		}
8264 		kvm_vcpu_block(vcpu);
8265 		kvm_apic_accept_events(vcpu);
8266 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8267 		r = -EAGAIN;
8268 		if (signal_pending(current)) {
8269 			r = -EINTR;
8270 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8271 			++vcpu->stat.signal_exits;
8272 		}
8273 		goto out;
8274 	}
8275 
8276 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8277 		r = -EINVAL;
8278 		goto out;
8279 	}
8280 
8281 	if (vcpu->run->kvm_dirty_regs) {
8282 		r = sync_regs(vcpu);
8283 		if (r != 0)
8284 			goto out;
8285 	}
8286 
8287 	/* re-sync apic's tpr */
8288 	if (!lapic_in_kernel(vcpu)) {
8289 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8290 			r = -EINVAL;
8291 			goto out;
8292 		}
8293 	}
8294 
8295 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8296 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8297 		vcpu->arch.complete_userspace_io = NULL;
8298 		r = cui(vcpu);
8299 		if (r <= 0)
8300 			goto out;
8301 	} else
8302 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8303 
8304 	if (kvm_run->immediate_exit)
8305 		r = -EINTR;
8306 	else
8307 		r = vcpu_run(vcpu);
8308 
8309 out:
8310 	kvm_put_guest_fpu(vcpu);
8311 	if (vcpu->run->kvm_valid_regs)
8312 		store_regs(vcpu);
8313 	post_kvm_run_save(vcpu);
8314 	kvm_sigset_deactivate(vcpu);
8315 
8316 	vcpu_put(vcpu);
8317 	return r;
8318 }
8319 
8320 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8321 {
8322 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8323 		/*
8324 		 * We are here if userspace calls get_regs() in the middle of
8325 		 * instruction emulation. Registers state needs to be copied
8326 		 * back from emulation context to vcpu. Userspace shouldn't do
8327 		 * that usually, but some bad designed PV devices (vmware
8328 		 * backdoor interface) need this to work
8329 		 */
8330 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8331 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8332 	}
8333 	regs->rax = kvm_rax_read(vcpu);
8334 	regs->rbx = kvm_rbx_read(vcpu);
8335 	regs->rcx = kvm_rcx_read(vcpu);
8336 	regs->rdx = kvm_rdx_read(vcpu);
8337 	regs->rsi = kvm_rsi_read(vcpu);
8338 	regs->rdi = kvm_rdi_read(vcpu);
8339 	regs->rsp = kvm_rsp_read(vcpu);
8340 	regs->rbp = kvm_rbp_read(vcpu);
8341 #ifdef CONFIG_X86_64
8342 	regs->r8 = kvm_r8_read(vcpu);
8343 	regs->r9 = kvm_r9_read(vcpu);
8344 	regs->r10 = kvm_r10_read(vcpu);
8345 	regs->r11 = kvm_r11_read(vcpu);
8346 	regs->r12 = kvm_r12_read(vcpu);
8347 	regs->r13 = kvm_r13_read(vcpu);
8348 	regs->r14 = kvm_r14_read(vcpu);
8349 	regs->r15 = kvm_r15_read(vcpu);
8350 #endif
8351 
8352 	regs->rip = kvm_rip_read(vcpu);
8353 	regs->rflags = kvm_get_rflags(vcpu);
8354 }
8355 
8356 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8357 {
8358 	vcpu_load(vcpu);
8359 	__get_regs(vcpu, regs);
8360 	vcpu_put(vcpu);
8361 	return 0;
8362 }
8363 
8364 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8365 {
8366 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8367 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8368 
8369 	kvm_rax_write(vcpu, regs->rax);
8370 	kvm_rbx_write(vcpu, regs->rbx);
8371 	kvm_rcx_write(vcpu, regs->rcx);
8372 	kvm_rdx_write(vcpu, regs->rdx);
8373 	kvm_rsi_write(vcpu, regs->rsi);
8374 	kvm_rdi_write(vcpu, regs->rdi);
8375 	kvm_rsp_write(vcpu, regs->rsp);
8376 	kvm_rbp_write(vcpu, regs->rbp);
8377 #ifdef CONFIG_X86_64
8378 	kvm_r8_write(vcpu, regs->r8);
8379 	kvm_r9_write(vcpu, regs->r9);
8380 	kvm_r10_write(vcpu, regs->r10);
8381 	kvm_r11_write(vcpu, regs->r11);
8382 	kvm_r12_write(vcpu, regs->r12);
8383 	kvm_r13_write(vcpu, regs->r13);
8384 	kvm_r14_write(vcpu, regs->r14);
8385 	kvm_r15_write(vcpu, regs->r15);
8386 #endif
8387 
8388 	kvm_rip_write(vcpu, regs->rip);
8389 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8390 
8391 	vcpu->arch.exception.pending = false;
8392 
8393 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8394 }
8395 
8396 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8397 {
8398 	vcpu_load(vcpu);
8399 	__set_regs(vcpu, regs);
8400 	vcpu_put(vcpu);
8401 	return 0;
8402 }
8403 
8404 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8405 {
8406 	struct kvm_segment cs;
8407 
8408 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8409 	*db = cs.db;
8410 	*l = cs.l;
8411 }
8412 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8413 
8414 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8415 {
8416 	struct desc_ptr dt;
8417 
8418 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8419 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8420 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8421 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8422 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8423 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8424 
8425 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8426 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8427 
8428 	kvm_x86_ops->get_idt(vcpu, &dt);
8429 	sregs->idt.limit = dt.size;
8430 	sregs->idt.base = dt.address;
8431 	kvm_x86_ops->get_gdt(vcpu, &dt);
8432 	sregs->gdt.limit = dt.size;
8433 	sregs->gdt.base = dt.address;
8434 
8435 	sregs->cr0 = kvm_read_cr0(vcpu);
8436 	sregs->cr2 = vcpu->arch.cr2;
8437 	sregs->cr3 = kvm_read_cr3(vcpu);
8438 	sregs->cr4 = kvm_read_cr4(vcpu);
8439 	sregs->cr8 = kvm_get_cr8(vcpu);
8440 	sregs->efer = vcpu->arch.efer;
8441 	sregs->apic_base = kvm_get_apic_base(vcpu);
8442 
8443 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8444 
8445 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8446 		set_bit(vcpu->arch.interrupt.nr,
8447 			(unsigned long *)sregs->interrupt_bitmap);
8448 }
8449 
8450 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8451 				  struct kvm_sregs *sregs)
8452 {
8453 	vcpu_load(vcpu);
8454 	__get_sregs(vcpu, sregs);
8455 	vcpu_put(vcpu);
8456 	return 0;
8457 }
8458 
8459 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8460 				    struct kvm_mp_state *mp_state)
8461 {
8462 	vcpu_load(vcpu);
8463 
8464 	kvm_apic_accept_events(vcpu);
8465 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8466 					vcpu->arch.pv.pv_unhalted)
8467 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8468 	else
8469 		mp_state->mp_state = vcpu->arch.mp_state;
8470 
8471 	vcpu_put(vcpu);
8472 	return 0;
8473 }
8474 
8475 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8476 				    struct kvm_mp_state *mp_state)
8477 {
8478 	int ret = -EINVAL;
8479 
8480 	vcpu_load(vcpu);
8481 
8482 	if (!lapic_in_kernel(vcpu) &&
8483 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8484 		goto out;
8485 
8486 	/* INITs are latched while in SMM */
8487 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8488 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8489 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8490 		goto out;
8491 
8492 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8493 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8494 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8495 	} else
8496 		vcpu->arch.mp_state = mp_state->mp_state;
8497 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8498 
8499 	ret = 0;
8500 out:
8501 	vcpu_put(vcpu);
8502 	return ret;
8503 }
8504 
8505 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8506 		    int reason, bool has_error_code, u32 error_code)
8507 {
8508 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8509 	int ret;
8510 
8511 	init_emulate_ctxt(vcpu);
8512 
8513 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8514 				   has_error_code, error_code);
8515 
8516 	if (ret)
8517 		return EMULATE_FAIL;
8518 
8519 	kvm_rip_write(vcpu, ctxt->eip);
8520 	kvm_set_rflags(vcpu, ctxt->eflags);
8521 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8522 	return EMULATE_DONE;
8523 }
8524 EXPORT_SYMBOL_GPL(kvm_task_switch);
8525 
8526 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8527 {
8528 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8529 			(sregs->cr4 & X86_CR4_OSXSAVE))
8530 		return  -EINVAL;
8531 
8532 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8533 		/*
8534 		 * When EFER.LME and CR0.PG are set, the processor is in
8535 		 * 64-bit mode (though maybe in a 32-bit code segment).
8536 		 * CR4.PAE and EFER.LMA must be set.
8537 		 */
8538 		if (!(sregs->cr4 & X86_CR4_PAE)
8539 		    || !(sregs->efer & EFER_LMA))
8540 			return -EINVAL;
8541 	} else {
8542 		/*
8543 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8544 		 * segment cannot be 64-bit.
8545 		 */
8546 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8547 			return -EINVAL;
8548 	}
8549 
8550 	return 0;
8551 }
8552 
8553 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8554 {
8555 	struct msr_data apic_base_msr;
8556 	int mmu_reset_needed = 0;
8557 	int cpuid_update_needed = 0;
8558 	int pending_vec, max_bits, idx;
8559 	struct desc_ptr dt;
8560 	int ret = -EINVAL;
8561 
8562 	if (kvm_valid_sregs(vcpu, sregs))
8563 		goto out;
8564 
8565 	apic_base_msr.data = sregs->apic_base;
8566 	apic_base_msr.host_initiated = true;
8567 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8568 		goto out;
8569 
8570 	dt.size = sregs->idt.limit;
8571 	dt.address = sregs->idt.base;
8572 	kvm_x86_ops->set_idt(vcpu, &dt);
8573 	dt.size = sregs->gdt.limit;
8574 	dt.address = sregs->gdt.base;
8575 	kvm_x86_ops->set_gdt(vcpu, &dt);
8576 
8577 	vcpu->arch.cr2 = sregs->cr2;
8578 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8579 	vcpu->arch.cr3 = sregs->cr3;
8580 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8581 
8582 	kvm_set_cr8(vcpu, sregs->cr8);
8583 
8584 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8585 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8586 
8587 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8588 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8589 	vcpu->arch.cr0 = sregs->cr0;
8590 
8591 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8592 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8593 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8594 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8595 	if (cpuid_update_needed)
8596 		kvm_update_cpuid(vcpu);
8597 
8598 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8599 	if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8600 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8601 		mmu_reset_needed = 1;
8602 	}
8603 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8604 
8605 	if (mmu_reset_needed)
8606 		kvm_mmu_reset_context(vcpu);
8607 
8608 	max_bits = KVM_NR_INTERRUPTS;
8609 	pending_vec = find_first_bit(
8610 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8611 	if (pending_vec < max_bits) {
8612 		kvm_queue_interrupt(vcpu, pending_vec, false);
8613 		pr_debug("Set back pending irq %d\n", pending_vec);
8614 	}
8615 
8616 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8617 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8618 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8619 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8620 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8621 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8622 
8623 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8624 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8625 
8626 	update_cr8_intercept(vcpu);
8627 
8628 	/* Older userspace won't unhalt the vcpu on reset. */
8629 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8630 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8631 	    !is_protmode(vcpu))
8632 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8633 
8634 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8635 
8636 	ret = 0;
8637 out:
8638 	return ret;
8639 }
8640 
8641 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8642 				  struct kvm_sregs *sregs)
8643 {
8644 	int ret;
8645 
8646 	vcpu_load(vcpu);
8647 	ret = __set_sregs(vcpu, sregs);
8648 	vcpu_put(vcpu);
8649 	return ret;
8650 }
8651 
8652 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8653 					struct kvm_guest_debug *dbg)
8654 {
8655 	unsigned long rflags;
8656 	int i, r;
8657 
8658 	vcpu_load(vcpu);
8659 
8660 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8661 		r = -EBUSY;
8662 		if (vcpu->arch.exception.pending)
8663 			goto out;
8664 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8665 			kvm_queue_exception(vcpu, DB_VECTOR);
8666 		else
8667 			kvm_queue_exception(vcpu, BP_VECTOR);
8668 	}
8669 
8670 	/*
8671 	 * Read rflags as long as potentially injected trace flags are still
8672 	 * filtered out.
8673 	 */
8674 	rflags = kvm_get_rflags(vcpu);
8675 
8676 	vcpu->guest_debug = dbg->control;
8677 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8678 		vcpu->guest_debug = 0;
8679 
8680 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8681 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8682 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8683 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8684 	} else {
8685 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8686 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8687 	}
8688 	kvm_update_dr7(vcpu);
8689 
8690 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8691 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8692 			get_segment_base(vcpu, VCPU_SREG_CS);
8693 
8694 	/*
8695 	 * Trigger an rflags update that will inject or remove the trace
8696 	 * flags.
8697 	 */
8698 	kvm_set_rflags(vcpu, rflags);
8699 
8700 	kvm_x86_ops->update_bp_intercept(vcpu);
8701 
8702 	r = 0;
8703 
8704 out:
8705 	vcpu_put(vcpu);
8706 	return r;
8707 }
8708 
8709 /*
8710  * Translate a guest virtual address to a guest physical address.
8711  */
8712 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8713 				    struct kvm_translation *tr)
8714 {
8715 	unsigned long vaddr = tr->linear_address;
8716 	gpa_t gpa;
8717 	int idx;
8718 
8719 	vcpu_load(vcpu);
8720 
8721 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8722 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8723 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8724 	tr->physical_address = gpa;
8725 	tr->valid = gpa != UNMAPPED_GVA;
8726 	tr->writeable = 1;
8727 	tr->usermode = 0;
8728 
8729 	vcpu_put(vcpu);
8730 	return 0;
8731 }
8732 
8733 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8734 {
8735 	struct fxregs_state *fxsave;
8736 
8737 	vcpu_load(vcpu);
8738 
8739 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8740 	memcpy(fpu->fpr, fxsave->st_space, 128);
8741 	fpu->fcw = fxsave->cwd;
8742 	fpu->fsw = fxsave->swd;
8743 	fpu->ftwx = fxsave->twd;
8744 	fpu->last_opcode = fxsave->fop;
8745 	fpu->last_ip = fxsave->rip;
8746 	fpu->last_dp = fxsave->rdp;
8747 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8748 
8749 	vcpu_put(vcpu);
8750 	return 0;
8751 }
8752 
8753 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8754 {
8755 	struct fxregs_state *fxsave;
8756 
8757 	vcpu_load(vcpu);
8758 
8759 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8760 
8761 	memcpy(fxsave->st_space, fpu->fpr, 128);
8762 	fxsave->cwd = fpu->fcw;
8763 	fxsave->swd = fpu->fsw;
8764 	fxsave->twd = fpu->ftwx;
8765 	fxsave->fop = fpu->last_opcode;
8766 	fxsave->rip = fpu->last_ip;
8767 	fxsave->rdp = fpu->last_dp;
8768 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8769 
8770 	vcpu_put(vcpu);
8771 	return 0;
8772 }
8773 
8774 static void store_regs(struct kvm_vcpu *vcpu)
8775 {
8776 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8777 
8778 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8779 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8780 
8781 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8782 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8783 
8784 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8785 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8786 				vcpu, &vcpu->run->s.regs.events);
8787 }
8788 
8789 static int sync_regs(struct kvm_vcpu *vcpu)
8790 {
8791 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8792 		return -EINVAL;
8793 
8794 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8795 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8796 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8797 	}
8798 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8799 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8800 			return -EINVAL;
8801 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8802 	}
8803 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8804 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8805 				vcpu, &vcpu->run->s.regs.events))
8806 			return -EINVAL;
8807 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8808 	}
8809 
8810 	return 0;
8811 }
8812 
8813 static void fx_init(struct kvm_vcpu *vcpu)
8814 {
8815 	fpstate_init(&vcpu->arch.guest_fpu->state);
8816 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8817 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8818 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8819 
8820 	/*
8821 	 * Ensure guest xcr0 is valid for loading
8822 	 */
8823 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8824 
8825 	vcpu->arch.cr0 |= X86_CR0_ET;
8826 }
8827 
8828 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8829 {
8830 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8831 
8832 	kvmclock_reset(vcpu);
8833 
8834 	kvm_x86_ops->vcpu_free(vcpu);
8835 	free_cpumask_var(wbinvd_dirty_mask);
8836 }
8837 
8838 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8839 						unsigned int id)
8840 {
8841 	struct kvm_vcpu *vcpu;
8842 
8843 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8844 		printk_once(KERN_WARNING
8845 		"kvm: SMP vm created on host with unstable TSC; "
8846 		"guest TSC will not be reliable\n");
8847 
8848 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8849 
8850 	return vcpu;
8851 }
8852 
8853 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8854 {
8855 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8856 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8857 	kvm_vcpu_mtrr_init(vcpu);
8858 	vcpu_load(vcpu);
8859 	kvm_vcpu_reset(vcpu, false);
8860 	kvm_init_mmu(vcpu, false);
8861 	vcpu_put(vcpu);
8862 	return 0;
8863 }
8864 
8865 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8866 {
8867 	struct msr_data msr;
8868 	struct kvm *kvm = vcpu->kvm;
8869 
8870 	kvm_hv_vcpu_postcreate(vcpu);
8871 
8872 	if (mutex_lock_killable(&vcpu->mutex))
8873 		return;
8874 	vcpu_load(vcpu);
8875 	msr.data = 0x0;
8876 	msr.index = MSR_IA32_TSC;
8877 	msr.host_initiated = true;
8878 	kvm_write_tsc(vcpu, &msr);
8879 	vcpu_put(vcpu);
8880 	mutex_unlock(&vcpu->mutex);
8881 
8882 	if (!kvmclock_periodic_sync)
8883 		return;
8884 
8885 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8886 					KVMCLOCK_SYNC_PERIOD);
8887 }
8888 
8889 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8890 {
8891 	vcpu->arch.apf.msr_val = 0;
8892 
8893 	vcpu_load(vcpu);
8894 	kvm_mmu_unload(vcpu);
8895 	vcpu_put(vcpu);
8896 
8897 	kvm_x86_ops->vcpu_free(vcpu);
8898 }
8899 
8900 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8901 {
8902 	kvm_lapic_reset(vcpu, init_event);
8903 
8904 	vcpu->arch.hflags = 0;
8905 
8906 	vcpu->arch.smi_pending = 0;
8907 	vcpu->arch.smi_count = 0;
8908 	atomic_set(&vcpu->arch.nmi_queued, 0);
8909 	vcpu->arch.nmi_pending = 0;
8910 	vcpu->arch.nmi_injected = false;
8911 	kvm_clear_interrupt_queue(vcpu);
8912 	kvm_clear_exception_queue(vcpu);
8913 	vcpu->arch.exception.pending = false;
8914 
8915 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8916 	kvm_update_dr0123(vcpu);
8917 	vcpu->arch.dr6 = DR6_INIT;
8918 	kvm_update_dr6(vcpu);
8919 	vcpu->arch.dr7 = DR7_FIXED_1;
8920 	kvm_update_dr7(vcpu);
8921 
8922 	vcpu->arch.cr2 = 0;
8923 
8924 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8925 	vcpu->arch.apf.msr_val = 0;
8926 	vcpu->arch.st.msr_val = 0;
8927 
8928 	kvmclock_reset(vcpu);
8929 
8930 	kvm_clear_async_pf_completion_queue(vcpu);
8931 	kvm_async_pf_hash_reset(vcpu);
8932 	vcpu->arch.apf.halted = false;
8933 
8934 	if (kvm_mpx_supported()) {
8935 		void *mpx_state_buffer;
8936 
8937 		/*
8938 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8939 		 * called with loaded FPU and does not let userspace fix the state.
8940 		 */
8941 		if (init_event)
8942 			kvm_put_guest_fpu(vcpu);
8943 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8944 					XFEATURE_BNDREGS);
8945 		if (mpx_state_buffer)
8946 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8947 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8948 					XFEATURE_BNDCSR);
8949 		if (mpx_state_buffer)
8950 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8951 		if (init_event)
8952 			kvm_load_guest_fpu(vcpu);
8953 	}
8954 
8955 	if (!init_event) {
8956 		kvm_pmu_reset(vcpu);
8957 		vcpu->arch.smbase = 0x30000;
8958 
8959 		vcpu->arch.msr_misc_features_enables = 0;
8960 
8961 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8962 	}
8963 
8964 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8965 	vcpu->arch.regs_avail = ~0;
8966 	vcpu->arch.regs_dirty = ~0;
8967 
8968 	vcpu->arch.ia32_xss = 0;
8969 
8970 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
8971 }
8972 
8973 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8974 {
8975 	struct kvm_segment cs;
8976 
8977 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8978 	cs.selector = vector << 8;
8979 	cs.base = vector << 12;
8980 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8981 	kvm_rip_write(vcpu, 0);
8982 }
8983 
8984 int kvm_arch_hardware_enable(void)
8985 {
8986 	struct kvm *kvm;
8987 	struct kvm_vcpu *vcpu;
8988 	int i;
8989 	int ret;
8990 	u64 local_tsc;
8991 	u64 max_tsc = 0;
8992 	bool stable, backwards_tsc = false;
8993 
8994 	kvm_shared_msr_cpu_online();
8995 	ret = kvm_x86_ops->hardware_enable();
8996 	if (ret != 0)
8997 		return ret;
8998 
8999 	local_tsc = rdtsc();
9000 	stable = !kvm_check_tsc_unstable();
9001 	list_for_each_entry(kvm, &vm_list, vm_list) {
9002 		kvm_for_each_vcpu(i, vcpu, kvm) {
9003 			if (!stable && vcpu->cpu == smp_processor_id())
9004 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9005 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9006 				backwards_tsc = true;
9007 				if (vcpu->arch.last_host_tsc > max_tsc)
9008 					max_tsc = vcpu->arch.last_host_tsc;
9009 			}
9010 		}
9011 	}
9012 
9013 	/*
9014 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9015 	 * platforms that reset TSC during suspend or hibernate actions, but
9016 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9017 	 * detect that condition here, which happens early in CPU bringup,
9018 	 * before any KVM threads can be running.  Unfortunately, we can't
9019 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9020 	 * enough into CPU bringup that we know how much real time has actually
9021 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
9022 	 * variables that haven't been updated yet.
9023 	 *
9024 	 * So we simply find the maximum observed TSC above, then record the
9025 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9026 	 * the adjustment will be applied.  Note that we accumulate
9027 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9028 	 * gets a chance to run again.  In the event that no KVM threads get a
9029 	 * chance to run, we will miss the entire elapsed period, as we'll have
9030 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9031 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9032 	 * uniform across all VCPUs (not to mention the scenario is extremely
9033 	 * unlikely). It is possible that a second hibernate recovery happens
9034 	 * much faster than a first, causing the observed TSC here to be
9035 	 * smaller; this would require additional padding adjustment, which is
9036 	 * why we set last_host_tsc to the local tsc observed here.
9037 	 *
9038 	 * N.B. - this code below runs only on platforms with reliable TSC,
9039 	 * as that is the only way backwards_tsc is set above.  Also note
9040 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9041 	 * have the same delta_cyc adjustment applied if backwards_tsc
9042 	 * is detected.  Note further, this adjustment is only done once,
9043 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9044 	 * called multiple times (one for each physical CPU bringup).
9045 	 *
9046 	 * Platforms with unreliable TSCs don't have to deal with this, they
9047 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9048 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9049 	 * guarantee that they stay in perfect synchronization.
9050 	 */
9051 	if (backwards_tsc) {
9052 		u64 delta_cyc = max_tsc - local_tsc;
9053 		list_for_each_entry(kvm, &vm_list, vm_list) {
9054 			kvm->arch.backwards_tsc_observed = true;
9055 			kvm_for_each_vcpu(i, vcpu, kvm) {
9056 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9057 				vcpu->arch.last_host_tsc = local_tsc;
9058 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9059 			}
9060 
9061 			/*
9062 			 * We have to disable TSC offset matching.. if you were
9063 			 * booting a VM while issuing an S4 host suspend....
9064 			 * you may have some problem.  Solving this issue is
9065 			 * left as an exercise to the reader.
9066 			 */
9067 			kvm->arch.last_tsc_nsec = 0;
9068 			kvm->arch.last_tsc_write = 0;
9069 		}
9070 
9071 	}
9072 	return 0;
9073 }
9074 
9075 void kvm_arch_hardware_disable(void)
9076 {
9077 	kvm_x86_ops->hardware_disable();
9078 	drop_user_return_notifiers();
9079 }
9080 
9081 int kvm_arch_hardware_setup(void)
9082 {
9083 	int r;
9084 
9085 	r = kvm_x86_ops->hardware_setup();
9086 	if (r != 0)
9087 		return r;
9088 
9089 	if (kvm_has_tsc_control) {
9090 		/*
9091 		 * Make sure the user can only configure tsc_khz values that
9092 		 * fit into a signed integer.
9093 		 * A min value is not calculated because it will always
9094 		 * be 1 on all machines.
9095 		 */
9096 		u64 max = min(0x7fffffffULL,
9097 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9098 		kvm_max_guest_tsc_khz = max;
9099 
9100 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9101 	}
9102 
9103 	kvm_init_msr_list();
9104 	return 0;
9105 }
9106 
9107 void kvm_arch_hardware_unsetup(void)
9108 {
9109 	kvm_x86_ops->hardware_unsetup();
9110 }
9111 
9112 void kvm_arch_check_processor_compat(void *rtn)
9113 {
9114 	kvm_x86_ops->check_processor_compatibility(rtn);
9115 }
9116 
9117 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9118 {
9119 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9120 }
9121 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9122 
9123 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9124 {
9125 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9126 }
9127 
9128 struct static_key kvm_no_apic_vcpu __read_mostly;
9129 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9130 
9131 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9132 {
9133 	struct page *page;
9134 	int r;
9135 
9136 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9137 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9138 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9139 	else
9140 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9141 
9142 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9143 	if (!page) {
9144 		r = -ENOMEM;
9145 		goto fail;
9146 	}
9147 	vcpu->arch.pio_data = page_address(page);
9148 
9149 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9150 
9151 	r = kvm_mmu_create(vcpu);
9152 	if (r < 0)
9153 		goto fail_free_pio_data;
9154 
9155 	if (irqchip_in_kernel(vcpu->kvm)) {
9156 		vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9157 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9158 		if (r < 0)
9159 			goto fail_mmu_destroy;
9160 	} else
9161 		static_key_slow_inc(&kvm_no_apic_vcpu);
9162 
9163 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9164 				       GFP_KERNEL_ACCOUNT);
9165 	if (!vcpu->arch.mce_banks) {
9166 		r = -ENOMEM;
9167 		goto fail_free_lapic;
9168 	}
9169 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9170 
9171 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9172 				GFP_KERNEL_ACCOUNT)) {
9173 		r = -ENOMEM;
9174 		goto fail_free_mce_banks;
9175 	}
9176 
9177 	fx_init(vcpu);
9178 
9179 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9180 
9181 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9182 
9183 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9184 
9185 	kvm_async_pf_hash_reset(vcpu);
9186 	kvm_pmu_init(vcpu);
9187 
9188 	vcpu->arch.pending_external_vector = -1;
9189 	vcpu->arch.preempted_in_kernel = false;
9190 
9191 	kvm_hv_vcpu_init(vcpu);
9192 
9193 	return 0;
9194 
9195 fail_free_mce_banks:
9196 	kfree(vcpu->arch.mce_banks);
9197 fail_free_lapic:
9198 	kvm_free_lapic(vcpu);
9199 fail_mmu_destroy:
9200 	kvm_mmu_destroy(vcpu);
9201 fail_free_pio_data:
9202 	free_page((unsigned long)vcpu->arch.pio_data);
9203 fail:
9204 	return r;
9205 }
9206 
9207 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9208 {
9209 	int idx;
9210 
9211 	kvm_hv_vcpu_uninit(vcpu);
9212 	kvm_pmu_destroy(vcpu);
9213 	kfree(vcpu->arch.mce_banks);
9214 	kvm_free_lapic(vcpu);
9215 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9216 	kvm_mmu_destroy(vcpu);
9217 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9218 	free_page((unsigned long)vcpu->arch.pio_data);
9219 	if (!lapic_in_kernel(vcpu))
9220 		static_key_slow_dec(&kvm_no_apic_vcpu);
9221 }
9222 
9223 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9224 {
9225 	vcpu->arch.l1tf_flush_l1d = true;
9226 	kvm_x86_ops->sched_in(vcpu, cpu);
9227 }
9228 
9229 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9230 {
9231 	if (type)
9232 		return -EINVAL;
9233 
9234 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9235 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9236 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9237 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9238 
9239 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9240 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9241 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9242 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9243 		&kvm->arch.irq_sources_bitmap);
9244 
9245 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9246 	mutex_init(&kvm->arch.apic_map_lock);
9247 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9248 
9249 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9250 	pvclock_update_vm_gtod_copy(kvm);
9251 
9252 	kvm->arch.guest_can_read_msr_platform_info = true;
9253 
9254 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9255 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9256 
9257 	kvm_hv_init_vm(kvm);
9258 	kvm_page_track_init(kvm);
9259 	kvm_mmu_init_vm(kvm);
9260 
9261 	if (kvm_x86_ops->vm_init)
9262 		return kvm_x86_ops->vm_init(kvm);
9263 
9264 	return 0;
9265 }
9266 
9267 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9268 {
9269 	vcpu_load(vcpu);
9270 	kvm_mmu_unload(vcpu);
9271 	vcpu_put(vcpu);
9272 }
9273 
9274 static void kvm_free_vcpus(struct kvm *kvm)
9275 {
9276 	unsigned int i;
9277 	struct kvm_vcpu *vcpu;
9278 
9279 	/*
9280 	 * Unpin any mmu pages first.
9281 	 */
9282 	kvm_for_each_vcpu(i, vcpu, kvm) {
9283 		kvm_clear_async_pf_completion_queue(vcpu);
9284 		kvm_unload_vcpu_mmu(vcpu);
9285 	}
9286 	kvm_for_each_vcpu(i, vcpu, kvm)
9287 		kvm_arch_vcpu_free(vcpu);
9288 
9289 	mutex_lock(&kvm->lock);
9290 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9291 		kvm->vcpus[i] = NULL;
9292 
9293 	atomic_set(&kvm->online_vcpus, 0);
9294 	mutex_unlock(&kvm->lock);
9295 }
9296 
9297 void kvm_arch_sync_events(struct kvm *kvm)
9298 {
9299 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9300 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9301 	kvm_free_pit(kvm);
9302 }
9303 
9304 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9305 {
9306 	int i, r;
9307 	unsigned long hva;
9308 	struct kvm_memslots *slots = kvm_memslots(kvm);
9309 	struct kvm_memory_slot *slot, old;
9310 
9311 	/* Called with kvm->slots_lock held.  */
9312 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9313 		return -EINVAL;
9314 
9315 	slot = id_to_memslot(slots, id);
9316 	if (size) {
9317 		if (slot->npages)
9318 			return -EEXIST;
9319 
9320 		/*
9321 		 * MAP_SHARED to prevent internal slot pages from being moved
9322 		 * by fork()/COW.
9323 		 */
9324 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9325 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9326 		if (IS_ERR((void *)hva))
9327 			return PTR_ERR((void *)hva);
9328 	} else {
9329 		if (!slot->npages)
9330 			return 0;
9331 
9332 		hva = 0;
9333 	}
9334 
9335 	old = *slot;
9336 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9337 		struct kvm_userspace_memory_region m;
9338 
9339 		m.slot = id | (i << 16);
9340 		m.flags = 0;
9341 		m.guest_phys_addr = gpa;
9342 		m.userspace_addr = hva;
9343 		m.memory_size = size;
9344 		r = __kvm_set_memory_region(kvm, &m);
9345 		if (r < 0)
9346 			return r;
9347 	}
9348 
9349 	if (!size)
9350 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9351 
9352 	return 0;
9353 }
9354 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9355 
9356 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9357 {
9358 	int r;
9359 
9360 	mutex_lock(&kvm->slots_lock);
9361 	r = __x86_set_memory_region(kvm, id, gpa, size);
9362 	mutex_unlock(&kvm->slots_lock);
9363 
9364 	return r;
9365 }
9366 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9367 
9368 void kvm_arch_destroy_vm(struct kvm *kvm)
9369 {
9370 	if (current->mm == kvm->mm) {
9371 		/*
9372 		 * Free memory regions allocated on behalf of userspace,
9373 		 * unless the the memory map has changed due to process exit
9374 		 * or fd copying.
9375 		 */
9376 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9377 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9378 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9379 	}
9380 	if (kvm_x86_ops->vm_destroy)
9381 		kvm_x86_ops->vm_destroy(kvm);
9382 	kvm_pic_destroy(kvm);
9383 	kvm_ioapic_destroy(kvm);
9384 	kvm_free_vcpus(kvm);
9385 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9386 	kvm_mmu_uninit_vm(kvm);
9387 	kvm_page_track_cleanup(kvm);
9388 	kvm_hv_destroy_vm(kvm);
9389 }
9390 
9391 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9392 			   struct kvm_memory_slot *dont)
9393 {
9394 	int i;
9395 
9396 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9397 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9398 			kvfree(free->arch.rmap[i]);
9399 			free->arch.rmap[i] = NULL;
9400 		}
9401 		if (i == 0)
9402 			continue;
9403 
9404 		if (!dont || free->arch.lpage_info[i - 1] !=
9405 			     dont->arch.lpage_info[i - 1]) {
9406 			kvfree(free->arch.lpage_info[i - 1]);
9407 			free->arch.lpage_info[i - 1] = NULL;
9408 		}
9409 	}
9410 
9411 	kvm_page_track_free_memslot(free, dont);
9412 }
9413 
9414 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9415 			    unsigned long npages)
9416 {
9417 	int i;
9418 
9419 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9420 		struct kvm_lpage_info *linfo;
9421 		unsigned long ugfn;
9422 		int lpages;
9423 		int level = i + 1;
9424 
9425 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9426 				      slot->base_gfn, level) + 1;
9427 
9428 		slot->arch.rmap[i] =
9429 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9430 				 GFP_KERNEL_ACCOUNT);
9431 		if (!slot->arch.rmap[i])
9432 			goto out_free;
9433 		if (i == 0)
9434 			continue;
9435 
9436 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9437 		if (!linfo)
9438 			goto out_free;
9439 
9440 		slot->arch.lpage_info[i - 1] = linfo;
9441 
9442 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9443 			linfo[0].disallow_lpage = 1;
9444 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9445 			linfo[lpages - 1].disallow_lpage = 1;
9446 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9447 		/*
9448 		 * If the gfn and userspace address are not aligned wrt each
9449 		 * other, or if explicitly asked to, disable large page
9450 		 * support for this slot
9451 		 */
9452 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9453 		    !kvm_largepages_enabled()) {
9454 			unsigned long j;
9455 
9456 			for (j = 0; j < lpages; ++j)
9457 				linfo[j].disallow_lpage = 1;
9458 		}
9459 	}
9460 
9461 	if (kvm_page_track_create_memslot(slot, npages))
9462 		goto out_free;
9463 
9464 	return 0;
9465 
9466 out_free:
9467 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9468 		kvfree(slot->arch.rmap[i]);
9469 		slot->arch.rmap[i] = NULL;
9470 		if (i == 0)
9471 			continue;
9472 
9473 		kvfree(slot->arch.lpage_info[i - 1]);
9474 		slot->arch.lpage_info[i - 1] = NULL;
9475 	}
9476 	return -ENOMEM;
9477 }
9478 
9479 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9480 {
9481 	/*
9482 	 * memslots->generation has been incremented.
9483 	 * mmio generation may have reached its maximum value.
9484 	 */
9485 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9486 }
9487 
9488 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9489 				struct kvm_memory_slot *memslot,
9490 				const struct kvm_userspace_memory_region *mem,
9491 				enum kvm_mr_change change)
9492 {
9493 	return 0;
9494 }
9495 
9496 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9497 				     struct kvm_memory_slot *new)
9498 {
9499 	/* Still write protect RO slot */
9500 	if (new->flags & KVM_MEM_READONLY) {
9501 		kvm_mmu_slot_remove_write_access(kvm, new);
9502 		return;
9503 	}
9504 
9505 	/*
9506 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9507 	 *
9508 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9509 	 *
9510 	 *  - KVM_MR_CREATE with dirty logging is disabled
9511 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9512 	 *
9513 	 * The reason is, in case of PML, we need to set D-bit for any slots
9514 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9515 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9516 	 * guarantees leaving PML enabled during guest's lifetime won't have
9517 	 * any additional overhead from PML when guest is running with dirty
9518 	 * logging disabled for memory slots.
9519 	 *
9520 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9521 	 * to dirty logging mode.
9522 	 *
9523 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9524 	 *
9525 	 * In case of write protect:
9526 	 *
9527 	 * Write protect all pages for dirty logging.
9528 	 *
9529 	 * All the sptes including the large sptes which point to this
9530 	 * slot are set to readonly. We can not create any new large
9531 	 * spte on this slot until the end of the logging.
9532 	 *
9533 	 * See the comments in fast_page_fault().
9534 	 */
9535 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9536 		if (kvm_x86_ops->slot_enable_log_dirty)
9537 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9538 		else
9539 			kvm_mmu_slot_remove_write_access(kvm, new);
9540 	} else {
9541 		if (kvm_x86_ops->slot_disable_log_dirty)
9542 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9543 	}
9544 }
9545 
9546 void kvm_arch_commit_memory_region(struct kvm *kvm,
9547 				const struct kvm_userspace_memory_region *mem,
9548 				const struct kvm_memory_slot *old,
9549 				const struct kvm_memory_slot *new,
9550 				enum kvm_mr_change change)
9551 {
9552 	if (!kvm->arch.n_requested_mmu_pages)
9553 		kvm_mmu_change_mmu_pages(kvm,
9554 				kvm_mmu_calculate_default_mmu_pages(kvm));
9555 
9556 	/*
9557 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9558 	 * sptes have to be split.  If live migration is successful, the guest
9559 	 * in the source machine will be destroyed and large sptes will be
9560 	 * created in the destination. However, if the guest continues to run
9561 	 * in the source machine (for example if live migration fails), small
9562 	 * sptes will remain around and cause bad performance.
9563 	 *
9564 	 * Scan sptes if dirty logging has been stopped, dropping those
9565 	 * which can be collapsed into a single large-page spte.  Later
9566 	 * page faults will create the large-page sptes.
9567 	 */
9568 	if ((change != KVM_MR_DELETE) &&
9569 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9570 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9571 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9572 
9573 	/*
9574 	 * Set up write protection and/or dirty logging for the new slot.
9575 	 *
9576 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9577 	 * been zapped so no dirty logging staff is needed for old slot. For
9578 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9579 	 * new and it's also covered when dealing with the new slot.
9580 	 *
9581 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9582 	 */
9583 	if (change != KVM_MR_DELETE)
9584 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9585 }
9586 
9587 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9588 {
9589 	kvm_mmu_zap_all(kvm);
9590 }
9591 
9592 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9593 				   struct kvm_memory_slot *slot)
9594 {
9595 	kvm_page_track_flush_slot(kvm, slot);
9596 }
9597 
9598 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9599 {
9600 	return (is_guest_mode(vcpu) &&
9601 			kvm_x86_ops->guest_apic_has_interrupt &&
9602 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9603 }
9604 
9605 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9606 {
9607 	if (!list_empty_careful(&vcpu->async_pf.done))
9608 		return true;
9609 
9610 	if (kvm_apic_has_events(vcpu))
9611 		return true;
9612 
9613 	if (vcpu->arch.pv.pv_unhalted)
9614 		return true;
9615 
9616 	if (vcpu->arch.exception.pending)
9617 		return true;
9618 
9619 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9620 	    (vcpu->arch.nmi_pending &&
9621 	     kvm_x86_ops->nmi_allowed(vcpu)))
9622 		return true;
9623 
9624 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9625 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9626 		return true;
9627 
9628 	if (kvm_arch_interrupt_allowed(vcpu) &&
9629 	    (kvm_cpu_has_interrupt(vcpu) ||
9630 	    kvm_guest_apic_has_interrupt(vcpu)))
9631 		return true;
9632 
9633 	if (kvm_hv_has_stimer_pending(vcpu))
9634 		return true;
9635 
9636 	return false;
9637 }
9638 
9639 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9640 {
9641 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9642 }
9643 
9644 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9645 {
9646 	return vcpu->arch.preempted_in_kernel;
9647 }
9648 
9649 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9650 {
9651 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9652 }
9653 
9654 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9655 {
9656 	return kvm_x86_ops->interrupt_allowed(vcpu);
9657 }
9658 
9659 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9660 {
9661 	if (is_64_bit_mode(vcpu))
9662 		return kvm_rip_read(vcpu);
9663 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9664 		     kvm_rip_read(vcpu));
9665 }
9666 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9667 
9668 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9669 {
9670 	return kvm_get_linear_rip(vcpu) == linear_rip;
9671 }
9672 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9673 
9674 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9675 {
9676 	unsigned long rflags;
9677 
9678 	rflags = kvm_x86_ops->get_rflags(vcpu);
9679 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9680 		rflags &= ~X86_EFLAGS_TF;
9681 	return rflags;
9682 }
9683 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9684 
9685 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9686 {
9687 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9688 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9689 		rflags |= X86_EFLAGS_TF;
9690 	kvm_x86_ops->set_rflags(vcpu, rflags);
9691 }
9692 
9693 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9694 {
9695 	__kvm_set_rflags(vcpu, rflags);
9696 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9697 }
9698 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9699 
9700 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9701 {
9702 	int r;
9703 
9704 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9705 	      work->wakeup_all)
9706 		return;
9707 
9708 	r = kvm_mmu_reload(vcpu);
9709 	if (unlikely(r))
9710 		return;
9711 
9712 	if (!vcpu->arch.mmu->direct_map &&
9713 	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9714 		return;
9715 
9716 	vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9717 }
9718 
9719 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9720 {
9721 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9722 }
9723 
9724 static inline u32 kvm_async_pf_next_probe(u32 key)
9725 {
9726 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9727 }
9728 
9729 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9730 {
9731 	u32 key = kvm_async_pf_hash_fn(gfn);
9732 
9733 	while (vcpu->arch.apf.gfns[key] != ~0)
9734 		key = kvm_async_pf_next_probe(key);
9735 
9736 	vcpu->arch.apf.gfns[key] = gfn;
9737 }
9738 
9739 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9740 {
9741 	int i;
9742 	u32 key = kvm_async_pf_hash_fn(gfn);
9743 
9744 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9745 		     (vcpu->arch.apf.gfns[key] != gfn &&
9746 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9747 		key = kvm_async_pf_next_probe(key);
9748 
9749 	return key;
9750 }
9751 
9752 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9753 {
9754 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9755 }
9756 
9757 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9758 {
9759 	u32 i, j, k;
9760 
9761 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9762 	while (true) {
9763 		vcpu->arch.apf.gfns[i] = ~0;
9764 		do {
9765 			j = kvm_async_pf_next_probe(j);
9766 			if (vcpu->arch.apf.gfns[j] == ~0)
9767 				return;
9768 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9769 			/*
9770 			 * k lies cyclically in ]i,j]
9771 			 * |    i.k.j |
9772 			 * |....j i.k.| or  |.k..j i...|
9773 			 */
9774 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9775 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9776 		i = j;
9777 	}
9778 }
9779 
9780 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9781 {
9782 
9783 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9784 				      sizeof(val));
9785 }
9786 
9787 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9788 {
9789 
9790 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9791 				      sizeof(u32));
9792 }
9793 
9794 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9795 				     struct kvm_async_pf *work)
9796 {
9797 	struct x86_exception fault;
9798 
9799 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9800 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9801 
9802 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9803 	    (vcpu->arch.apf.send_user_only &&
9804 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9805 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9806 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9807 		fault.vector = PF_VECTOR;
9808 		fault.error_code_valid = true;
9809 		fault.error_code = 0;
9810 		fault.nested_page_fault = false;
9811 		fault.address = work->arch.token;
9812 		fault.async_page_fault = true;
9813 		kvm_inject_page_fault(vcpu, &fault);
9814 	}
9815 }
9816 
9817 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9818 				 struct kvm_async_pf *work)
9819 {
9820 	struct x86_exception fault;
9821 	u32 val;
9822 
9823 	if (work->wakeup_all)
9824 		work->arch.token = ~0; /* broadcast wakeup */
9825 	else
9826 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9827 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
9828 
9829 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9830 	    !apf_get_user(vcpu, &val)) {
9831 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9832 		    vcpu->arch.exception.pending &&
9833 		    vcpu->arch.exception.nr == PF_VECTOR &&
9834 		    !apf_put_user(vcpu, 0)) {
9835 			vcpu->arch.exception.injected = false;
9836 			vcpu->arch.exception.pending = false;
9837 			vcpu->arch.exception.nr = 0;
9838 			vcpu->arch.exception.has_error_code = false;
9839 			vcpu->arch.exception.error_code = 0;
9840 			vcpu->arch.exception.has_payload = false;
9841 			vcpu->arch.exception.payload = 0;
9842 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9843 			fault.vector = PF_VECTOR;
9844 			fault.error_code_valid = true;
9845 			fault.error_code = 0;
9846 			fault.nested_page_fault = false;
9847 			fault.address = work->arch.token;
9848 			fault.async_page_fault = true;
9849 			kvm_inject_page_fault(vcpu, &fault);
9850 		}
9851 	}
9852 	vcpu->arch.apf.halted = false;
9853 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9854 }
9855 
9856 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9857 {
9858 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9859 		return true;
9860 	else
9861 		return kvm_can_do_async_pf(vcpu);
9862 }
9863 
9864 void kvm_arch_start_assignment(struct kvm *kvm)
9865 {
9866 	atomic_inc(&kvm->arch.assigned_device_count);
9867 }
9868 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9869 
9870 void kvm_arch_end_assignment(struct kvm *kvm)
9871 {
9872 	atomic_dec(&kvm->arch.assigned_device_count);
9873 }
9874 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9875 
9876 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9877 {
9878 	return atomic_read(&kvm->arch.assigned_device_count);
9879 }
9880 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9881 
9882 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9883 {
9884 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9885 }
9886 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9887 
9888 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9889 {
9890 	atomic_dec(&kvm->arch.noncoherent_dma_count);
9891 }
9892 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9893 
9894 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9895 {
9896 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9897 }
9898 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9899 
9900 bool kvm_arch_has_irq_bypass(void)
9901 {
9902 	return kvm_x86_ops->update_pi_irte != NULL;
9903 }
9904 
9905 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9906 				      struct irq_bypass_producer *prod)
9907 {
9908 	struct kvm_kernel_irqfd *irqfd =
9909 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9910 
9911 	irqfd->producer = prod;
9912 
9913 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9914 					   prod->irq, irqfd->gsi, 1);
9915 }
9916 
9917 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9918 				      struct irq_bypass_producer *prod)
9919 {
9920 	int ret;
9921 	struct kvm_kernel_irqfd *irqfd =
9922 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9923 
9924 	WARN_ON(irqfd->producer != prod);
9925 	irqfd->producer = NULL;
9926 
9927 	/*
9928 	 * When producer of consumer is unregistered, we change back to
9929 	 * remapped mode, so we can re-use the current implementation
9930 	 * when the irq is masked/disabled or the consumer side (KVM
9931 	 * int this case doesn't want to receive the interrupts.
9932 	*/
9933 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9934 	if (ret)
9935 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9936 		       " fails: %d\n", irqfd->consumer.token, ret);
9937 }
9938 
9939 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9940 				   uint32_t guest_irq, bool set)
9941 {
9942 	if (!kvm_x86_ops->update_pi_irte)
9943 		return -EINVAL;
9944 
9945 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9946 }
9947 
9948 bool kvm_vector_hashing_enabled(void)
9949 {
9950 	return vector_hashing;
9951 }
9952 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9953 
9954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9955 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9956 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9957 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9958 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9959 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9960 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9973