1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 struct kvm_caps kvm_caps __read_mostly = { 96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 97 }; 98 EXPORT_SYMBOL_GPL(kvm_caps); 99 100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 101 102 #define emul_to_vcpu(ctxt) \ 103 ((struct kvm_vcpu *)(ctxt)->vcpu) 104 105 /* EFER defaults: 106 * - enable syscall per default because its emulated by KVM 107 * - enable LME and LMA per default on 64 bit KVM 108 */ 109 #ifdef CONFIG_X86_64 110 static 111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 112 #else 113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 114 #endif 115 116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 117 118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 119 120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 121 122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 124 125 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 126 static void process_nmi(struct kvm_vcpu *vcpu); 127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 128 static void store_regs(struct kvm_vcpu *vcpu); 129 static int sync_regs(struct kvm_vcpu *vcpu); 130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 131 132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 134 135 static DEFINE_MUTEX(vendor_module_lock); 136 struct kvm_x86_ops kvm_x86_ops __read_mostly; 137 138 #define KVM_X86_OP(func) \ 139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 140 *(((struct kvm_x86_ops *)0)->func)); 141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 143 #include <asm/kvm-x86-ops.h> 144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 146 147 static bool __read_mostly ignore_msrs = 0; 148 module_param(ignore_msrs, bool, 0644); 149 150 bool __read_mostly report_ignored_msrs = true; 151 module_param(report_ignored_msrs, bool, 0644); 152 EXPORT_SYMBOL_GPL(report_ignored_msrs); 153 154 unsigned int min_timer_period_us = 200; 155 module_param(min_timer_period_us, uint, 0644); 156 157 static bool __read_mostly kvmclock_periodic_sync = true; 158 module_param(kvmclock_periodic_sync, bool, 0444); 159 160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 161 static u32 __read_mostly tsc_tolerance_ppm = 250; 162 module_param(tsc_tolerance_ppm, uint, 0644); 163 164 /* 165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 166 * adaptive tuning starting from default advancement of 1000ns. '0' disables 167 * advancement entirely. Any other value is used as-is and disables adaptive 168 * tuning, i.e. allows privileged userspace to set an exact advancement time. 169 */ 170 static int __read_mostly lapic_timer_advance_ns = -1; 171 module_param(lapic_timer_advance_ns, int, 0644); 172 173 static bool __read_mostly vector_hashing = true; 174 module_param(vector_hashing, bool, 0444); 175 176 bool __read_mostly enable_vmware_backdoor = false; 177 module_param(enable_vmware_backdoor, bool, 0444); 178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 179 180 /* 181 * Flags to manipulate forced emulation behavior (any non-zero value will 182 * enable forced emulation). 183 */ 184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 185 static int __read_mostly force_emulation_prefix; 186 module_param(force_emulation_prefix, int, 0644); 187 188 int __read_mostly pi_inject_timer = -1; 189 module_param(pi_inject_timer, bint, 0644); 190 191 /* Enable/disable PMU virtualization */ 192 bool __read_mostly enable_pmu = true; 193 EXPORT_SYMBOL_GPL(enable_pmu); 194 module_param(enable_pmu, bool, 0444); 195 196 bool __read_mostly eager_page_split = true; 197 module_param(eager_page_split, bool, 0644); 198 199 /* Enable/disable SMT_RSB bug mitigation */ 200 static bool __read_mostly mitigate_smt_rsb; 201 module_param(mitigate_smt_rsb, bool, 0444); 202 203 /* 204 * Restoring the host value for MSRs that are only consumed when running in 205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 206 * returns to userspace, i.e. the kernel can run with the guest's value. 207 */ 208 #define KVM_MAX_NR_USER_RETURN_MSRS 16 209 210 struct kvm_user_return_msrs { 211 struct user_return_notifier urn; 212 bool registered; 213 struct kvm_user_return_msr_values { 214 u64 host; 215 u64 curr; 216 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 217 }; 218 219 u32 __read_mostly kvm_nr_uret_msrs; 220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 222 static struct kvm_user_return_msrs __percpu *user_return_msrs; 223 224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 228 229 u64 __read_mostly host_efer; 230 EXPORT_SYMBOL_GPL(host_efer); 231 232 bool __read_mostly allow_smaller_maxphyaddr = 0; 233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 234 235 bool __read_mostly enable_apicv = true; 236 EXPORT_SYMBOL_GPL(enable_apicv); 237 238 u64 __read_mostly host_xss; 239 EXPORT_SYMBOL_GPL(host_xss); 240 241 u64 __read_mostly host_arch_capabilities; 242 EXPORT_SYMBOL_GPL(host_arch_capabilities); 243 244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 245 KVM_GENERIC_VM_STATS(), 246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 247 STATS_DESC_COUNTER(VM, mmu_pte_write), 248 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 249 STATS_DESC_COUNTER(VM, mmu_flooded), 250 STATS_DESC_COUNTER(VM, mmu_recycled), 251 STATS_DESC_COUNTER(VM, mmu_cache_miss), 252 STATS_DESC_ICOUNTER(VM, mmu_unsync), 253 STATS_DESC_ICOUNTER(VM, pages_4k), 254 STATS_DESC_ICOUNTER(VM, pages_2m), 255 STATS_DESC_ICOUNTER(VM, pages_1g), 256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 259 }; 260 261 const struct kvm_stats_header kvm_vm_stats_header = { 262 .name_size = KVM_STATS_NAME_SIZE, 263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 264 .id_offset = sizeof(struct kvm_stats_header), 265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 267 sizeof(kvm_vm_stats_desc), 268 }; 269 270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 271 KVM_GENERIC_VCPU_STATS(), 272 STATS_DESC_COUNTER(VCPU, pf_taken), 273 STATS_DESC_COUNTER(VCPU, pf_fixed), 274 STATS_DESC_COUNTER(VCPU, pf_emulate), 275 STATS_DESC_COUNTER(VCPU, pf_spurious), 276 STATS_DESC_COUNTER(VCPU, pf_fast), 277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 278 STATS_DESC_COUNTER(VCPU, pf_guest), 279 STATS_DESC_COUNTER(VCPU, tlb_flush), 280 STATS_DESC_COUNTER(VCPU, invlpg), 281 STATS_DESC_COUNTER(VCPU, exits), 282 STATS_DESC_COUNTER(VCPU, io_exits), 283 STATS_DESC_COUNTER(VCPU, mmio_exits), 284 STATS_DESC_COUNTER(VCPU, signal_exits), 285 STATS_DESC_COUNTER(VCPU, irq_window_exits), 286 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 287 STATS_DESC_COUNTER(VCPU, l1d_flush), 288 STATS_DESC_COUNTER(VCPU, halt_exits), 289 STATS_DESC_COUNTER(VCPU, request_irq_exits), 290 STATS_DESC_COUNTER(VCPU, irq_exits), 291 STATS_DESC_COUNTER(VCPU, host_state_reload), 292 STATS_DESC_COUNTER(VCPU, fpu_reload), 293 STATS_DESC_COUNTER(VCPU, insn_emulation), 294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 295 STATS_DESC_COUNTER(VCPU, hypercalls), 296 STATS_DESC_COUNTER(VCPU, irq_injections), 297 STATS_DESC_COUNTER(VCPU, nmi_injections), 298 STATS_DESC_COUNTER(VCPU, req_event), 299 STATS_DESC_COUNTER(VCPU, nested_run), 300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 301 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 302 STATS_DESC_COUNTER(VCPU, preemption_reported), 303 STATS_DESC_COUNTER(VCPU, preemption_other), 304 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 305 STATS_DESC_COUNTER(VCPU, notify_window_exits), 306 }; 307 308 const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315 }; 316 317 u64 __read_mostly host_xcr0; 318 319 static struct kmem_cache *x86_emulator_cache; 320 321 /* 322 * When called, it means the previous get/set msr reached an invalid msr. 323 * Return true if we want to ignore/silent this failed msr access. 324 */ 325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 326 { 327 const char *op = write ? "wrmsr" : "rdmsr"; 328 329 if (ignore_msrs) { 330 if (report_ignored_msrs) 331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 332 op, msr, data); 333 /* Mask the error */ 334 return true; 335 } else { 336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 337 op, msr, data); 338 return false; 339 } 340 } 341 342 static struct kmem_cache *kvm_alloc_emulator_cache(void) 343 { 344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 345 unsigned int size = sizeof(struct x86_emulate_ctxt); 346 347 return kmem_cache_create_usercopy("x86_emulator", size, 348 __alignof__(struct x86_emulate_ctxt), 349 SLAB_ACCOUNT, useroffset, 350 size - useroffset, NULL); 351 } 352 353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 354 355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 356 { 357 int i; 358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 359 vcpu->arch.apf.gfns[i] = ~0; 360 } 361 362 static void kvm_on_user_return(struct user_return_notifier *urn) 363 { 364 unsigned slot; 365 struct kvm_user_return_msrs *msrs 366 = container_of(urn, struct kvm_user_return_msrs, urn); 367 struct kvm_user_return_msr_values *values; 368 unsigned long flags; 369 370 /* 371 * Disabling irqs at this point since the following code could be 372 * interrupted and executed through kvm_arch_hardware_disable() 373 */ 374 local_irq_save(flags); 375 if (msrs->registered) { 376 msrs->registered = false; 377 user_return_notifier_unregister(urn); 378 } 379 local_irq_restore(flags); 380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 381 values = &msrs->values[slot]; 382 if (values->host != values->curr) { 383 wrmsrl(kvm_uret_msrs_list[slot], values->host); 384 values->curr = values->host; 385 } 386 } 387 } 388 389 static int kvm_probe_user_return_msr(u32 msr) 390 { 391 u64 val; 392 int ret; 393 394 preempt_disable(); 395 ret = rdmsrl_safe(msr, &val); 396 if (ret) 397 goto out; 398 ret = wrmsrl_safe(msr, val); 399 out: 400 preempt_enable(); 401 return ret; 402 } 403 404 int kvm_add_user_return_msr(u32 msr) 405 { 406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 407 408 if (kvm_probe_user_return_msr(msr)) 409 return -1; 410 411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 412 return kvm_nr_uret_msrs++; 413 } 414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 415 416 int kvm_find_user_return_msr(u32 msr) 417 { 418 int i; 419 420 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 421 if (kvm_uret_msrs_list[i] == msr) 422 return i; 423 } 424 return -1; 425 } 426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 427 428 static void kvm_user_return_msr_cpu_online(void) 429 { 430 unsigned int cpu = smp_processor_id(); 431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 432 u64 value; 433 int i; 434 435 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 436 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 437 msrs->values[i].host = value; 438 msrs->values[i].curr = value; 439 } 440 } 441 442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 443 { 444 unsigned int cpu = smp_processor_id(); 445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 446 int err; 447 448 value = (value & mask) | (msrs->values[slot].host & ~mask); 449 if (value == msrs->values[slot].curr) 450 return 0; 451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 452 if (err) 453 return 1; 454 455 msrs->values[slot].curr = value; 456 if (!msrs->registered) { 457 msrs->urn.on_user_return = kvm_on_user_return; 458 user_return_notifier_register(&msrs->urn); 459 msrs->registered = true; 460 } 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 464 465 static void drop_user_return_notifiers(void) 466 { 467 unsigned int cpu = smp_processor_id(); 468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 469 470 if (msrs->registered) 471 kvm_on_user_return(&msrs->urn); 472 } 473 474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 475 { 476 return vcpu->arch.apic_base; 477 } 478 479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 480 { 481 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 482 } 483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 484 485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 486 { 487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 491 492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 493 return 1; 494 if (!msr_info->host_initiated) { 495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 496 return 1; 497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 498 return 1; 499 } 500 501 kvm_lapic_set_base(vcpu, msr_info->data); 502 kvm_recalculate_apic_map(vcpu->kvm); 503 return 0; 504 } 505 506 /* 507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 508 * 509 * Hardware virtualization extension instructions may fault if a reboot turns 510 * off virtualization while processes are running. Usually after catching the 511 * fault we just panic; during reboot instead the instruction is ignored. 512 */ 513 noinstr void kvm_spurious_fault(void) 514 { 515 /* Fault while not rebooting. We want the trace. */ 516 BUG_ON(!kvm_rebooting); 517 } 518 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 519 520 #define EXCPT_BENIGN 0 521 #define EXCPT_CONTRIBUTORY 1 522 #define EXCPT_PF 2 523 524 static int exception_class(int vector) 525 { 526 switch (vector) { 527 case PF_VECTOR: 528 return EXCPT_PF; 529 case DE_VECTOR: 530 case TS_VECTOR: 531 case NP_VECTOR: 532 case SS_VECTOR: 533 case GP_VECTOR: 534 return EXCPT_CONTRIBUTORY; 535 default: 536 break; 537 } 538 return EXCPT_BENIGN; 539 } 540 541 #define EXCPT_FAULT 0 542 #define EXCPT_TRAP 1 543 #define EXCPT_ABORT 2 544 #define EXCPT_INTERRUPT 3 545 #define EXCPT_DB 4 546 547 static int exception_type(int vector) 548 { 549 unsigned int mask; 550 551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 552 return EXCPT_INTERRUPT; 553 554 mask = 1 << vector; 555 556 /* 557 * #DBs can be trap-like or fault-like, the caller must check other CPU 558 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 559 */ 560 if (mask & (1 << DB_VECTOR)) 561 return EXCPT_DB; 562 563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 564 return EXCPT_TRAP; 565 566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 567 return EXCPT_ABORT; 568 569 /* Reserved exceptions will result in fault */ 570 return EXCPT_FAULT; 571 } 572 573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 574 struct kvm_queued_exception *ex) 575 { 576 if (!ex->has_payload) 577 return; 578 579 switch (ex->vector) { 580 case DB_VECTOR: 581 /* 582 * "Certain debug exceptions may clear bit 0-3. The 583 * remaining contents of the DR6 register are never 584 * cleared by the processor". 585 */ 586 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 587 /* 588 * In order to reflect the #DB exception payload in guest 589 * dr6, three components need to be considered: active low 590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 591 * DR6_BS and DR6_BT) 592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 593 * In the target guest dr6: 594 * FIXED_1 bits should always be set. 595 * Active low bits should be cleared if 1-setting in payload. 596 * Active high bits should be set if 1-setting in payload. 597 * 598 * Note, the payload is compatible with the pending debug 599 * exceptions/exit qualification under VMX, that active_low bits 600 * are active high in payload. 601 * So they need to be flipped for DR6. 602 */ 603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 604 vcpu->arch.dr6 |= ex->payload; 605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 606 607 /* 608 * The #DB payload is defined as compatible with the 'pending 609 * debug exceptions' field under VMX, not DR6. While bit 12 is 610 * defined in the 'pending debug exceptions' field (enabled 611 * breakpoint), it is reserved and must be zero in DR6. 612 */ 613 vcpu->arch.dr6 &= ~BIT(12); 614 break; 615 case PF_VECTOR: 616 vcpu->arch.cr2 = ex->payload; 617 break; 618 } 619 620 ex->has_payload = false; 621 ex->payload = 0; 622 } 623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 624 625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 626 bool has_error_code, u32 error_code, 627 bool has_payload, unsigned long payload) 628 { 629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 630 631 ex->vector = vector; 632 ex->injected = false; 633 ex->pending = true; 634 ex->has_error_code = has_error_code; 635 ex->error_code = error_code; 636 ex->has_payload = has_payload; 637 ex->payload = payload; 638 } 639 640 /* Forcibly leave the nested mode in cases like a vCPU reset */ 641 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 642 { 643 kvm_x86_ops.nested_ops->leave_nested(vcpu); 644 } 645 646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 647 unsigned nr, bool has_error, u32 error_code, 648 bool has_payload, unsigned long payload, bool reinject) 649 { 650 u32 prev_nr; 651 int class1, class2; 652 653 kvm_make_request(KVM_REQ_EVENT, vcpu); 654 655 /* 656 * If the exception is destined for L2 and isn't being reinjected, 657 * morph it to a VM-Exit if L1 wants to intercept the exception. A 658 * previously injected exception is not checked because it was checked 659 * when it was original queued, and re-checking is incorrect if _L1_ 660 * injected the exception, in which case it's exempt from interception. 661 */ 662 if (!reinject && is_guest_mode(vcpu) && 663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 665 has_payload, payload); 666 return; 667 } 668 669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 670 queue: 671 if (reinject) { 672 /* 673 * On VM-Entry, an exception can be pending if and only 674 * if event injection was blocked by nested_run_pending. 675 * In that case, however, vcpu_enter_guest() requests an 676 * immediate exit, and the guest shouldn't proceed far 677 * enough to need reinjection. 678 */ 679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 680 vcpu->arch.exception.injected = true; 681 if (WARN_ON_ONCE(has_payload)) { 682 /* 683 * A reinjected event has already 684 * delivered its payload. 685 */ 686 has_payload = false; 687 payload = 0; 688 } 689 } else { 690 vcpu->arch.exception.pending = true; 691 vcpu->arch.exception.injected = false; 692 } 693 vcpu->arch.exception.has_error_code = has_error; 694 vcpu->arch.exception.vector = nr; 695 vcpu->arch.exception.error_code = error_code; 696 vcpu->arch.exception.has_payload = has_payload; 697 vcpu->arch.exception.payload = payload; 698 if (!is_guest_mode(vcpu)) 699 kvm_deliver_exception_payload(vcpu, 700 &vcpu->arch.exception); 701 return; 702 } 703 704 /* to check exception */ 705 prev_nr = vcpu->arch.exception.vector; 706 if (prev_nr == DF_VECTOR) { 707 /* triple fault -> shutdown */ 708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 709 return; 710 } 711 class1 = exception_class(prev_nr); 712 class2 = exception_class(nr); 713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 715 /* 716 * Synthesize #DF. Clear the previously injected or pending 717 * exception so as not to incorrectly trigger shutdown. 718 */ 719 vcpu->arch.exception.injected = false; 720 vcpu->arch.exception.pending = false; 721 722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 723 } else { 724 /* replace previous exception with a new one in a hope 725 that instruction re-execution will regenerate lost 726 exception */ 727 goto queue; 728 } 729 } 730 731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 734 } 735 EXPORT_SYMBOL_GPL(kvm_queue_exception); 736 737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 738 { 739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 740 } 741 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 742 743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 744 unsigned long payload) 745 { 746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 747 } 748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 749 750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 751 u32 error_code, unsigned long payload) 752 { 753 kvm_multiple_exception(vcpu, nr, true, error_code, 754 true, payload, false); 755 } 756 757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 758 { 759 if (err) 760 kvm_inject_gp(vcpu, 0); 761 else 762 return kvm_skip_emulated_instruction(vcpu); 763 764 return 1; 765 } 766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 767 768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 769 { 770 if (err) { 771 kvm_inject_gp(vcpu, 0); 772 return 1; 773 } 774 775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 776 EMULTYPE_COMPLETE_USER_EXIT); 777 } 778 779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 780 { 781 ++vcpu->stat.pf_guest; 782 783 /* 784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 785 * whether or not L1 wants to intercept "regular" #PF. 786 */ 787 if (is_guest_mode(vcpu) && fault->async_page_fault) 788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 789 true, fault->error_code, 790 true, fault->address); 791 else 792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 793 fault->address); 794 } 795 796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 797 struct x86_exception *fault) 798 { 799 struct kvm_mmu *fault_mmu; 800 WARN_ON_ONCE(fault->vector != PF_VECTOR); 801 802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 803 vcpu->arch.walk_mmu; 804 805 /* 806 * Invalidate the TLB entry for the faulting address, if it exists, 807 * else the access will fault indefinitely (and to emulate hardware). 808 */ 809 if ((fault->error_code & PFERR_PRESENT_MASK) && 810 !(fault->error_code & PFERR_RSVD_MASK)) 811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 812 KVM_MMU_ROOT_CURRENT); 813 814 fault_mmu->inject_page_fault(vcpu, fault); 815 } 816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 817 818 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 819 { 820 atomic_inc(&vcpu->arch.nmi_queued); 821 kvm_make_request(KVM_REQ_NMI, vcpu); 822 } 823 824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 827 } 828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 829 830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 831 { 832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 833 } 834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 835 836 /* 837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 838 * a #GP and return false. 839 */ 840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 841 { 842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 843 return true; 844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 845 return false; 846 } 847 848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 849 { 850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 851 return true; 852 853 kvm_queue_exception(vcpu, UD_VECTOR); 854 return false; 855 } 856 EXPORT_SYMBOL_GPL(kvm_require_dr); 857 858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 859 { 860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 861 } 862 863 /* 864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 865 */ 866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 867 { 868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 870 gpa_t real_gpa; 871 int i; 872 int ret; 873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 874 875 /* 876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 877 * to an L1 GPA. 878 */ 879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 881 if (real_gpa == INVALID_GPA) 882 return 0; 883 884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 886 cr3 & GENMASK(11, 5), sizeof(pdpte)); 887 if (ret < 0) 888 return 0; 889 890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 891 if ((pdpte[i] & PT_PRESENT_MASK) && 892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 893 return 0; 894 } 895 } 896 897 /* 898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 899 * Shadow page roots need to be reconstructed instead. 900 */ 901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 903 904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 907 vcpu->arch.pdptrs_from_userspace = false; 908 909 return 1; 910 } 911 EXPORT_SYMBOL_GPL(load_pdptrs); 912 913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 914 { 915 #ifdef CONFIG_X86_64 916 if (cr0 & 0xffffffff00000000UL) 917 return false; 918 #endif 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return false; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return false; 925 926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 927 } 928 929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 930 { 931 /* 932 * CR0.WP is incorporated into the MMU role, but only for non-nested, 933 * indirect shadow MMUs. If paging is disabled, no updates are needed 934 * as there are no permission bits to emulate. If TDP is enabled, the 935 * MMU's metadata needs to be updated, e.g. so that emulating guest 936 * translations does the right thing, but there's no need to unload the 937 * root as CR0.WP doesn't affect SPTEs. 938 */ 939 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 940 if (!(cr0 & X86_CR0_PG)) 941 return; 942 943 if (tdp_enabled) { 944 kvm_init_mmu(vcpu); 945 return; 946 } 947 } 948 949 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 950 kvm_clear_async_pf_completion_queue(vcpu); 951 kvm_async_pf_hash_reset(vcpu); 952 953 /* 954 * Clearing CR0.PG is defined to flush the TLB from the guest's 955 * perspective. 956 */ 957 if (!(cr0 & X86_CR0_PG)) 958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 959 } 960 961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 962 kvm_mmu_reset_context(vcpu); 963 964 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 965 kvm_mmu_honors_guest_mtrrs(vcpu->kvm) && 966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 968 } 969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 970 971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 972 { 973 unsigned long old_cr0 = kvm_read_cr0(vcpu); 974 975 if (!kvm_is_valid_cr0(vcpu, cr0)) 976 return 1; 977 978 cr0 |= X86_CR0_ET; 979 980 /* Write to CR0 reserved bits are ignored, even on Intel. */ 981 cr0 &= ~CR0_RESERVED_BITS; 982 983 #ifdef CONFIG_X86_64 984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 985 (cr0 & X86_CR0_PG)) { 986 int cs_db, cs_l; 987 988 if (!is_pae(vcpu)) 989 return 1; 990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 991 if (cs_l) 992 return 1; 993 } 994 #endif 995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if (!(cr0 & X86_CR0_PG) && 1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1002 return 1; 1003 1004 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1005 1006 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1007 1008 return 0; 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1011 1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1013 { 1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1015 } 1016 EXPORT_SYMBOL_GPL(kvm_lmsw); 1017 1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1019 { 1020 if (vcpu->arch.guest_state_protected) 1021 return; 1022 1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1027 1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1031 } 1032 1033 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1034 vcpu->arch.pkru != vcpu->arch.host_pkru && 1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1037 write_pkru(vcpu->arch.pkru); 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1040 1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1042 { 1043 if (vcpu->arch.guest_state_protected) 1044 return; 1045 1046 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1049 vcpu->arch.pkru = rdpkru(); 1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1051 write_pkru(vcpu->arch.host_pkru); 1052 } 1053 1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1055 1056 if (vcpu->arch.xcr0 != host_xcr0) 1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1058 1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1060 vcpu->arch.ia32_xss != host_xss) 1061 wrmsrl(MSR_IA32_XSS, host_xss); 1062 } 1063 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1066 1067 #ifdef CONFIG_X86_64 1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1069 { 1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1071 } 1072 #endif 1073 1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1075 { 1076 u64 xcr0 = xcr; 1077 u64 old_xcr0 = vcpu->arch.xcr0; 1078 u64 valid_bits; 1079 1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1081 if (index != XCR_XFEATURE_ENABLED_MASK) 1082 return 1; 1083 if (!(xcr0 & XFEATURE_MASK_FP)) 1084 return 1; 1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1086 return 1; 1087 1088 /* 1089 * Do not allow the guest to set bits that we do not support 1090 * saving. However, xcr0 bit 0 is always set, even if the 1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1092 */ 1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1094 if (xcr0 & ~valid_bits) 1095 return 1; 1096 1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1098 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1099 return 1; 1100 1101 if (xcr0 & XFEATURE_MASK_AVX512) { 1102 if (!(xcr0 & XFEATURE_MASK_YMM)) 1103 return 1; 1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1105 return 1; 1106 } 1107 1108 if ((xcr0 & XFEATURE_MASK_XTILE) && 1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1110 return 1; 1111 1112 vcpu->arch.xcr0 = xcr0; 1113 1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1115 kvm_update_cpuid_runtime(vcpu); 1116 return 0; 1117 } 1118 1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1120 { 1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 1128 return kvm_skip_emulated_instruction(vcpu); 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1131 1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1133 { 1134 if (cr4 & cr4_reserved_bits) 1135 return false; 1136 1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1138 return false; 1139 1140 return true; 1141 } 1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1143 1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1145 { 1146 return __kvm_is_valid_cr4(vcpu, cr4) && 1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1148 } 1149 1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1151 { 1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1153 kvm_mmu_reset_context(vcpu); 1154 1155 /* 1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1157 * according to the SDM; however, stale prev_roots could be reused 1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1161 * so fall through. 1162 */ 1163 if (!tdp_enabled && 1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1165 kvm_mmu_unload(vcpu); 1166 1167 /* 1168 * The TLB has to be flushed for all PCIDs if any of the following 1169 * (architecturally required) changes happen: 1170 * - CR4.PCIDE is changed from 1 to 0 1171 * - CR4.PGE is toggled 1172 * 1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1174 */ 1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1178 1179 /* 1180 * The TLB has to be flushed for the current PCID if any of the 1181 * following (architecturally required) changes happen: 1182 * - CR4.SMEP is changed from 0 to 1 1183 * - CR4.PAE is toggled 1184 */ 1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1188 1189 } 1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1191 1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1193 { 1194 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1195 1196 if (!kvm_is_valid_cr4(vcpu, cr4)) 1197 return 1; 1198 1199 if (is_long_mode(vcpu)) { 1200 if (!(cr4 & X86_CR4_PAE)) 1201 return 1; 1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1203 return 1; 1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1207 return 1; 1208 1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1212 return 1; 1213 } 1214 1215 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1216 1217 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1222 1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1224 { 1225 struct kvm_mmu *mmu = vcpu->arch.mmu; 1226 unsigned long roots_to_free = 0; 1227 int i; 1228 1229 /* 1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1232 * also via the emulator. KVM's TDP page tables are not in the scope of 1233 * the invalidation, but the guest's TLB entries need to be flushed as 1234 * the CPU may have cached entries in its TLB for the target PCID. 1235 */ 1236 if (unlikely(tdp_enabled)) { 1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1238 return; 1239 } 1240 1241 /* 1242 * If neither the current CR3 nor any of the prev_roots use the given 1243 * PCID, then nothing needs to be done here because a resync will 1244 * happen anyway before switching to any other CR3. 1245 */ 1246 if (kvm_get_active_pcid(vcpu) == pcid) { 1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1249 } 1250 1251 /* 1252 * If PCID is disabled, there is no need to free prev_roots even if the 1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1254 * with PCIDE=0. 1255 */ 1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1257 return; 1258 1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1262 1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1264 } 1265 1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1267 { 1268 bool skip_tlb_flush = false; 1269 unsigned long pcid = 0; 1270 #ifdef CONFIG_X86_64 1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1273 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1274 pcid = cr3 & X86_CR3_PCID_MASK; 1275 } 1276 #endif 1277 1278 /* PDPTRs are always reloaded for PAE paging. */ 1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1280 goto handle_tlb_flush; 1281 1282 /* 1283 * Do not condition the GPA check on long mode, this helper is used to 1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1285 * the current vCPU mode is accurate. 1286 */ 1287 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1288 return 1; 1289 1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1291 return 1; 1292 1293 if (cr3 != kvm_read_cr3(vcpu)) 1294 kvm_mmu_new_pgd(vcpu, cr3); 1295 1296 vcpu->arch.cr3 = cr3; 1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1299 1300 handle_tlb_flush: 1301 /* 1302 * A load of CR3 that flushes the TLB flushes only the current PCID, 1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1304 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1305 * and it's impossible to use a non-zero PCID when PCID is disabled, 1306 * i.e. only PCID=0 can be relevant. 1307 */ 1308 if (!skip_tlb_flush) 1309 kvm_invalidate_pcid(vcpu, pcid); 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1314 1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1316 { 1317 if (cr8 & CR8_RESERVED_BITS) 1318 return 1; 1319 if (lapic_in_kernel(vcpu)) 1320 kvm_lapic_set_tpr(vcpu, cr8); 1321 else 1322 vcpu->arch.cr8 = cr8; 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1326 1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1328 { 1329 if (lapic_in_kernel(vcpu)) 1330 return kvm_lapic_get_cr8(vcpu); 1331 else 1332 return vcpu->arch.cr8; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1335 1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1337 { 1338 int i; 1339 1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1341 for (i = 0; i < KVM_NR_DB_REGS; i++) 1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1343 } 1344 } 1345 1346 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1347 { 1348 unsigned long dr7; 1349 1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1351 dr7 = vcpu->arch.guest_debug_dr7; 1352 else 1353 dr7 = vcpu->arch.dr7; 1354 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1356 if (dr7 & DR7_BP_EN_MASK) 1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1358 } 1359 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1360 1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1362 { 1363 u64 fixed = DR6_FIXED_1; 1364 1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1366 fixed |= DR6_RTM; 1367 1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1369 fixed |= DR6_BUS_LOCK; 1370 return fixed; 1371 } 1372 1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1374 { 1375 size_t size = ARRAY_SIZE(vcpu->arch.db); 1376 1377 switch (dr) { 1378 case 0 ... 3: 1379 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1381 vcpu->arch.eff_db[dr] = val; 1382 break; 1383 case 4: 1384 case 6: 1385 if (!kvm_dr6_valid(val)) 1386 return 1; /* #GP */ 1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1388 break; 1389 case 5: 1390 default: /* 7 */ 1391 if (!kvm_dr7_valid(val)) 1392 return 1; /* #GP */ 1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1394 kvm_update_dr7(vcpu); 1395 break; 1396 } 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_set_dr); 1401 1402 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) 1403 { 1404 size_t size = ARRAY_SIZE(vcpu->arch.db); 1405 1406 switch (dr) { 1407 case 0 ... 3: 1408 return vcpu->arch.db[array_index_nospec(dr, size)]; 1409 case 4: 1410 case 6: 1411 return vcpu->arch.dr6; 1412 case 5: 1413 default: /* 7 */ 1414 return vcpu->arch.dr7; 1415 } 1416 } 1417 EXPORT_SYMBOL_GPL(kvm_get_dr); 1418 1419 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1420 { 1421 u32 ecx = kvm_rcx_read(vcpu); 1422 u64 data; 1423 1424 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1425 kvm_inject_gp(vcpu, 0); 1426 return 1; 1427 } 1428 1429 kvm_rax_write(vcpu, (u32)data); 1430 kvm_rdx_write(vcpu, data >> 32); 1431 return kvm_skip_emulated_instruction(vcpu); 1432 } 1433 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1434 1435 /* 1436 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1437 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1438 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1439 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1440 * MSRs that KVM emulates without strictly requiring host support. 1441 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1442 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1443 * msrs_to_save and emulated_msrs. 1444 */ 1445 1446 static const u32 msrs_to_save_base[] = { 1447 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1448 MSR_STAR, 1449 #ifdef CONFIG_X86_64 1450 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1451 #endif 1452 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1453 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1454 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1455 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1456 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1457 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1458 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1459 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1460 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1461 MSR_IA32_UMWAIT_CONTROL, 1462 1463 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1464 }; 1465 1466 static const u32 msrs_to_save_pmu[] = { 1467 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1468 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1469 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1470 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1471 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1472 1473 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1474 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1475 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1476 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1477 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1478 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1479 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1480 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1481 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1482 1483 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1484 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1485 1486 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1487 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1488 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1489 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1490 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1491 1492 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1493 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1494 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1495 }; 1496 1497 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1498 ARRAY_SIZE(msrs_to_save_pmu)]; 1499 static unsigned num_msrs_to_save; 1500 1501 static const u32 emulated_msrs_all[] = { 1502 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1503 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1504 1505 #ifdef CONFIG_KVM_HYPERV 1506 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1507 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1508 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1509 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1510 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1511 HV_X64_MSR_RESET, 1512 HV_X64_MSR_VP_INDEX, 1513 HV_X64_MSR_VP_RUNTIME, 1514 HV_X64_MSR_SCONTROL, 1515 HV_X64_MSR_STIMER0_CONFIG, 1516 HV_X64_MSR_VP_ASSIST_PAGE, 1517 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1518 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1519 HV_X64_MSR_SYNDBG_OPTIONS, 1520 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1521 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1522 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1523 #endif 1524 1525 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1526 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1527 1528 MSR_IA32_TSC_ADJUST, 1529 MSR_IA32_TSC_DEADLINE, 1530 MSR_IA32_ARCH_CAPABILITIES, 1531 MSR_IA32_PERF_CAPABILITIES, 1532 MSR_IA32_MISC_ENABLE, 1533 MSR_IA32_MCG_STATUS, 1534 MSR_IA32_MCG_CTL, 1535 MSR_IA32_MCG_EXT_CTL, 1536 MSR_IA32_SMBASE, 1537 MSR_SMI_COUNT, 1538 MSR_PLATFORM_INFO, 1539 MSR_MISC_FEATURES_ENABLES, 1540 MSR_AMD64_VIRT_SPEC_CTRL, 1541 MSR_AMD64_TSC_RATIO, 1542 MSR_IA32_POWER_CTL, 1543 MSR_IA32_UCODE_REV, 1544 1545 /* 1546 * KVM always supports the "true" VMX control MSRs, even if the host 1547 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1548 * doesn't strictly require them to exist in the host (ignoring that 1549 * KVM would refuse to load in the first place if the core set of MSRs 1550 * aren't supported). 1551 */ 1552 MSR_IA32_VMX_BASIC, 1553 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1554 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1555 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1556 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1557 MSR_IA32_VMX_MISC, 1558 MSR_IA32_VMX_CR0_FIXED0, 1559 MSR_IA32_VMX_CR4_FIXED0, 1560 MSR_IA32_VMX_VMCS_ENUM, 1561 MSR_IA32_VMX_PROCBASED_CTLS2, 1562 MSR_IA32_VMX_EPT_VPID_CAP, 1563 MSR_IA32_VMX_VMFUNC, 1564 1565 MSR_K7_HWCR, 1566 MSR_KVM_POLL_CONTROL, 1567 }; 1568 1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1570 static unsigned num_emulated_msrs; 1571 1572 /* 1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1574 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1575 * feature MSRs, but are handled separately to allow expedited lookups. 1576 */ 1577 static const u32 msr_based_features_all_except_vmx[] = { 1578 MSR_AMD64_DE_CFG, 1579 MSR_IA32_UCODE_REV, 1580 MSR_IA32_ARCH_CAPABILITIES, 1581 MSR_IA32_PERF_CAPABILITIES, 1582 }; 1583 1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1585 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1586 static unsigned int num_msr_based_features; 1587 1588 /* 1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1590 * patch, are immutable once the vCPU model is defined. 1591 */ 1592 static bool kvm_is_immutable_feature_msr(u32 msr) 1593 { 1594 int i; 1595 1596 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1597 return true; 1598 1599 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1600 if (msr == msr_based_features_all_except_vmx[i]) 1601 return msr != MSR_IA32_UCODE_REV; 1602 } 1603 1604 return false; 1605 } 1606 1607 /* 1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1609 * does not yet virtualize. These include: 1610 * 10 - MISC_PACKAGE_CTRLS 1611 * 11 - ENERGY_FILTERING_CTL 1612 * 12 - DOITM 1613 * 18 - FB_CLEAR_CTRL 1614 * 21 - XAPIC_DISABLE_STATUS 1615 * 23 - OVERCLOCKING_STATUS 1616 */ 1617 1618 #define KVM_SUPPORTED_ARCH_CAP \ 1619 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1620 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1621 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1622 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1623 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1624 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO) 1625 1626 static u64 kvm_get_arch_capabilities(void) 1627 { 1628 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1629 1630 /* 1631 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1632 * the nested hypervisor runs with NX huge pages. If it is not, 1633 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1634 * L1 guests, so it need not worry about its own (L2) guests. 1635 */ 1636 data |= ARCH_CAP_PSCHANGE_MC_NO; 1637 1638 /* 1639 * If we're doing cache flushes (either "always" or "cond") 1640 * we will do one whenever the guest does a vmlaunch/vmresume. 1641 * If an outer hypervisor is doing the cache flush for us 1642 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1643 * capability to the guest too, and if EPT is disabled we're not 1644 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1645 * require a nested hypervisor to do a flush of its own. 1646 */ 1647 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1648 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1649 1650 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1651 data |= ARCH_CAP_RDCL_NO; 1652 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1653 data |= ARCH_CAP_SSB_NO; 1654 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1655 data |= ARCH_CAP_MDS_NO; 1656 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1657 data |= ARCH_CAP_RFDS_NO; 1658 1659 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1660 /* 1661 * If RTM=0 because the kernel has disabled TSX, the host might 1662 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1663 * and therefore knows that there cannot be TAA) but keep 1664 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1665 * and we want to allow migrating those guests to tsx=off hosts. 1666 */ 1667 data &= ~ARCH_CAP_TAA_NO; 1668 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1669 data |= ARCH_CAP_TAA_NO; 1670 } else { 1671 /* 1672 * Nothing to do here; we emulate TSX_CTRL if present on the 1673 * host so the guest can choose between disabling TSX or 1674 * using VERW to clear CPU buffers. 1675 */ 1676 } 1677 1678 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1679 data |= ARCH_CAP_GDS_NO; 1680 1681 return data; 1682 } 1683 1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1685 { 1686 switch (msr->index) { 1687 case MSR_IA32_ARCH_CAPABILITIES: 1688 msr->data = kvm_get_arch_capabilities(); 1689 break; 1690 case MSR_IA32_PERF_CAPABILITIES: 1691 msr->data = kvm_caps.supported_perf_cap; 1692 break; 1693 case MSR_IA32_UCODE_REV: 1694 rdmsrl_safe(msr->index, &msr->data); 1695 break; 1696 default: 1697 return static_call(kvm_x86_get_msr_feature)(msr); 1698 } 1699 return 0; 1700 } 1701 1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1703 { 1704 struct kvm_msr_entry msr; 1705 int r; 1706 1707 /* Unconditionally clear the output for simplicity */ 1708 msr.data = 0; 1709 msr.index = index; 1710 r = kvm_get_msr_feature(&msr); 1711 1712 if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false)) 1713 r = 0; 1714 1715 *data = msr.data; 1716 1717 return r; 1718 } 1719 1720 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1721 { 1722 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1723 return false; 1724 1725 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1726 return false; 1727 1728 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1729 return false; 1730 1731 if (efer & (EFER_LME | EFER_LMA) && 1732 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1733 return false; 1734 1735 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1736 return false; 1737 1738 return true; 1739 1740 } 1741 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1742 { 1743 if (efer & efer_reserved_bits) 1744 return false; 1745 1746 return __kvm_valid_efer(vcpu, efer); 1747 } 1748 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1749 1750 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1751 { 1752 u64 old_efer = vcpu->arch.efer; 1753 u64 efer = msr_info->data; 1754 int r; 1755 1756 if (efer & efer_reserved_bits) 1757 return 1; 1758 1759 if (!msr_info->host_initiated) { 1760 if (!__kvm_valid_efer(vcpu, efer)) 1761 return 1; 1762 1763 if (is_paging(vcpu) && 1764 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1765 return 1; 1766 } 1767 1768 efer &= ~EFER_LMA; 1769 efer |= vcpu->arch.efer & EFER_LMA; 1770 1771 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1772 if (r) { 1773 WARN_ON(r > 0); 1774 return r; 1775 } 1776 1777 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1778 kvm_mmu_reset_context(vcpu); 1779 1780 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1781 (efer & EFER_SVME)) 1782 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1783 1784 return 0; 1785 } 1786 1787 void kvm_enable_efer_bits(u64 mask) 1788 { 1789 efer_reserved_bits &= ~mask; 1790 } 1791 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1792 1793 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1794 { 1795 struct kvm_x86_msr_filter *msr_filter; 1796 struct msr_bitmap_range *ranges; 1797 struct kvm *kvm = vcpu->kvm; 1798 bool allowed; 1799 int idx; 1800 u32 i; 1801 1802 /* x2APIC MSRs do not support filtering. */ 1803 if (index >= 0x800 && index <= 0x8ff) 1804 return true; 1805 1806 idx = srcu_read_lock(&kvm->srcu); 1807 1808 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1809 if (!msr_filter) { 1810 allowed = true; 1811 goto out; 1812 } 1813 1814 allowed = msr_filter->default_allow; 1815 ranges = msr_filter->ranges; 1816 1817 for (i = 0; i < msr_filter->count; i++) { 1818 u32 start = ranges[i].base; 1819 u32 end = start + ranges[i].nmsrs; 1820 u32 flags = ranges[i].flags; 1821 unsigned long *bitmap = ranges[i].bitmap; 1822 1823 if ((index >= start) && (index < end) && (flags & type)) { 1824 allowed = test_bit(index - start, bitmap); 1825 break; 1826 } 1827 } 1828 1829 out: 1830 srcu_read_unlock(&kvm->srcu, idx); 1831 1832 return allowed; 1833 } 1834 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1835 1836 /* 1837 * Write @data into the MSR specified by @index. Select MSR specific fault 1838 * checks are bypassed if @host_initiated is %true. 1839 * Returns 0 on success, non-0 otherwise. 1840 * Assumes vcpu_load() was already called. 1841 */ 1842 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1843 bool host_initiated) 1844 { 1845 struct msr_data msr; 1846 1847 switch (index) { 1848 case MSR_FS_BASE: 1849 case MSR_GS_BASE: 1850 case MSR_KERNEL_GS_BASE: 1851 case MSR_CSTAR: 1852 case MSR_LSTAR: 1853 if (is_noncanonical_address(data, vcpu)) 1854 return 1; 1855 break; 1856 case MSR_IA32_SYSENTER_EIP: 1857 case MSR_IA32_SYSENTER_ESP: 1858 /* 1859 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1860 * non-canonical address is written on Intel but not on 1861 * AMD (which ignores the top 32-bits, because it does 1862 * not implement 64-bit SYSENTER). 1863 * 1864 * 64-bit code should hence be able to write a non-canonical 1865 * value on AMD. Making the address canonical ensures that 1866 * vmentry does not fail on Intel after writing a non-canonical 1867 * value, and that something deterministic happens if the guest 1868 * invokes 64-bit SYSENTER. 1869 */ 1870 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1871 break; 1872 case MSR_TSC_AUX: 1873 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1874 return 1; 1875 1876 if (!host_initiated && 1877 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1878 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1879 return 1; 1880 1881 /* 1882 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1883 * incomplete and conflicting architectural behavior. Current 1884 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1885 * reserved and always read as zeros. Enforce Intel's reserved 1886 * bits check if and only if the guest CPU is Intel, and clear 1887 * the bits in all other cases. This ensures cross-vendor 1888 * migration will provide consistent behavior for the guest. 1889 */ 1890 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1891 return 1; 1892 1893 data = (u32)data; 1894 break; 1895 } 1896 1897 msr.data = data; 1898 msr.index = index; 1899 msr.host_initiated = host_initiated; 1900 1901 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1902 } 1903 1904 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1905 u32 index, u64 data, bool host_initiated) 1906 { 1907 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1908 1909 if (ret == KVM_MSR_RET_INVALID) 1910 if (kvm_msr_ignored_check(index, data, true)) 1911 ret = 0; 1912 1913 return ret; 1914 } 1915 1916 /* 1917 * Read the MSR specified by @index into @data. Select MSR specific fault 1918 * checks are bypassed if @host_initiated is %true. 1919 * Returns 0 on success, non-0 otherwise. 1920 * Assumes vcpu_load() was already called. 1921 */ 1922 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1923 bool host_initiated) 1924 { 1925 struct msr_data msr; 1926 int ret; 1927 1928 switch (index) { 1929 case MSR_TSC_AUX: 1930 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1931 return 1; 1932 1933 if (!host_initiated && 1934 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1935 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1936 return 1; 1937 break; 1938 } 1939 1940 msr.index = index; 1941 msr.host_initiated = host_initiated; 1942 1943 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1944 if (!ret) 1945 *data = msr.data; 1946 return ret; 1947 } 1948 1949 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1950 u32 index, u64 *data, bool host_initiated) 1951 { 1952 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1953 1954 if (ret == KVM_MSR_RET_INVALID) { 1955 /* Unconditionally clear *data for simplicity */ 1956 *data = 0; 1957 if (kvm_msr_ignored_check(index, 0, false)) 1958 ret = 0; 1959 } 1960 1961 return ret; 1962 } 1963 1964 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1965 { 1966 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1967 return KVM_MSR_RET_FILTERED; 1968 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1969 } 1970 1971 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1972 { 1973 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1974 return KVM_MSR_RET_FILTERED; 1975 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1976 } 1977 1978 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1979 { 1980 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1981 } 1982 EXPORT_SYMBOL_GPL(kvm_get_msr); 1983 1984 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1985 { 1986 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1987 } 1988 EXPORT_SYMBOL_GPL(kvm_set_msr); 1989 1990 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1991 { 1992 if (!vcpu->run->msr.error) { 1993 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1994 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1995 } 1996 } 1997 1998 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1999 { 2000 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2001 } 2002 2003 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2004 { 2005 complete_userspace_rdmsr(vcpu); 2006 return complete_emulated_msr_access(vcpu); 2007 } 2008 2009 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2010 { 2011 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2012 } 2013 2014 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2015 { 2016 complete_userspace_rdmsr(vcpu); 2017 return complete_fast_msr_access(vcpu); 2018 } 2019 2020 static u64 kvm_msr_reason(int r) 2021 { 2022 switch (r) { 2023 case KVM_MSR_RET_INVALID: 2024 return KVM_MSR_EXIT_REASON_UNKNOWN; 2025 case KVM_MSR_RET_FILTERED: 2026 return KVM_MSR_EXIT_REASON_FILTER; 2027 default: 2028 return KVM_MSR_EXIT_REASON_INVAL; 2029 } 2030 } 2031 2032 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2033 u32 exit_reason, u64 data, 2034 int (*completion)(struct kvm_vcpu *vcpu), 2035 int r) 2036 { 2037 u64 msr_reason = kvm_msr_reason(r); 2038 2039 /* Check if the user wanted to know about this MSR fault */ 2040 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2041 return 0; 2042 2043 vcpu->run->exit_reason = exit_reason; 2044 vcpu->run->msr.error = 0; 2045 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2046 vcpu->run->msr.reason = msr_reason; 2047 vcpu->run->msr.index = index; 2048 vcpu->run->msr.data = data; 2049 vcpu->arch.complete_userspace_io = completion; 2050 2051 return 1; 2052 } 2053 2054 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2055 { 2056 u32 ecx = kvm_rcx_read(vcpu); 2057 u64 data; 2058 int r; 2059 2060 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2061 2062 if (!r) { 2063 trace_kvm_msr_read(ecx, data); 2064 2065 kvm_rax_write(vcpu, data & -1u); 2066 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2067 } else { 2068 /* MSR read failed? See if we should ask user space */ 2069 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2070 complete_fast_rdmsr, r)) 2071 return 0; 2072 trace_kvm_msr_read_ex(ecx); 2073 } 2074 2075 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2076 } 2077 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2078 2079 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2080 { 2081 u32 ecx = kvm_rcx_read(vcpu); 2082 u64 data = kvm_read_edx_eax(vcpu); 2083 int r; 2084 2085 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2086 2087 if (!r) { 2088 trace_kvm_msr_write(ecx, data); 2089 } else { 2090 /* MSR write failed? See if we should ask user space */ 2091 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2092 complete_fast_msr_access, r)) 2093 return 0; 2094 /* Signal all other negative errors to userspace */ 2095 if (r < 0) 2096 return r; 2097 trace_kvm_msr_write_ex(ecx, data); 2098 } 2099 2100 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2101 } 2102 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2103 2104 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2105 { 2106 return kvm_skip_emulated_instruction(vcpu); 2107 } 2108 2109 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2110 { 2111 /* Treat an INVD instruction as a NOP and just skip it. */ 2112 return kvm_emulate_as_nop(vcpu); 2113 } 2114 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2115 2116 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2117 { 2118 kvm_queue_exception(vcpu, UD_VECTOR); 2119 return 1; 2120 } 2121 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2122 2123 2124 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2125 { 2126 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2127 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2128 return kvm_handle_invalid_op(vcpu); 2129 2130 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2131 return kvm_emulate_as_nop(vcpu); 2132 } 2133 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2134 { 2135 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2136 } 2137 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2138 2139 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2140 { 2141 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2142 } 2143 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2144 2145 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2146 { 2147 xfer_to_guest_mode_prepare(); 2148 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2149 xfer_to_guest_mode_work_pending(); 2150 } 2151 2152 /* 2153 * The fast path for frequent and performance sensitive wrmsr emulation, 2154 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2155 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2156 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2157 * other cases which must be called after interrupts are enabled on the host. 2158 */ 2159 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2160 { 2161 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2162 return 1; 2163 2164 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2165 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2166 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2167 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2168 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2169 2170 return 1; 2171 } 2172 2173 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2174 { 2175 if (!kvm_can_use_hv_timer(vcpu)) 2176 return 1; 2177 2178 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2179 return 0; 2180 } 2181 2182 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2183 { 2184 u32 msr = kvm_rcx_read(vcpu); 2185 u64 data; 2186 fastpath_t ret = EXIT_FASTPATH_NONE; 2187 2188 kvm_vcpu_srcu_read_lock(vcpu); 2189 2190 switch (msr) { 2191 case APIC_BASE_MSR + (APIC_ICR >> 4): 2192 data = kvm_read_edx_eax(vcpu); 2193 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2194 kvm_skip_emulated_instruction(vcpu); 2195 ret = EXIT_FASTPATH_EXIT_HANDLED; 2196 } 2197 break; 2198 case MSR_IA32_TSC_DEADLINE: 2199 data = kvm_read_edx_eax(vcpu); 2200 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2201 kvm_skip_emulated_instruction(vcpu); 2202 ret = EXIT_FASTPATH_REENTER_GUEST; 2203 } 2204 break; 2205 default: 2206 break; 2207 } 2208 2209 if (ret != EXIT_FASTPATH_NONE) 2210 trace_kvm_msr_write(msr, data); 2211 2212 kvm_vcpu_srcu_read_unlock(vcpu); 2213 2214 return ret; 2215 } 2216 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2217 2218 /* 2219 * Adapt set_msr() to msr_io()'s calling convention 2220 */ 2221 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2222 { 2223 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2224 } 2225 2226 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2227 { 2228 u64 val; 2229 2230 /* 2231 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2232 * not support modifying the guest vCPU model on the fly, e.g. changing 2233 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2234 * writes of the same value, e.g. to allow userspace to blindly stuff 2235 * all MSRs when emulating RESET. 2236 */ 2237 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2238 if (do_get_msr(vcpu, index, &val) || *data != val) 2239 return -EINVAL; 2240 2241 return 0; 2242 } 2243 2244 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2245 } 2246 2247 #ifdef CONFIG_X86_64 2248 struct pvclock_clock { 2249 int vclock_mode; 2250 u64 cycle_last; 2251 u64 mask; 2252 u32 mult; 2253 u32 shift; 2254 u64 base_cycles; 2255 u64 offset; 2256 }; 2257 2258 struct pvclock_gtod_data { 2259 seqcount_t seq; 2260 2261 struct pvclock_clock clock; /* extract of a clocksource struct */ 2262 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2263 2264 ktime_t offs_boot; 2265 u64 wall_time_sec; 2266 }; 2267 2268 static struct pvclock_gtod_data pvclock_gtod_data; 2269 2270 static void update_pvclock_gtod(struct timekeeper *tk) 2271 { 2272 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2273 2274 write_seqcount_begin(&vdata->seq); 2275 2276 /* copy pvclock gtod data */ 2277 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2278 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2279 vdata->clock.mask = tk->tkr_mono.mask; 2280 vdata->clock.mult = tk->tkr_mono.mult; 2281 vdata->clock.shift = tk->tkr_mono.shift; 2282 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2283 vdata->clock.offset = tk->tkr_mono.base; 2284 2285 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2286 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2287 vdata->raw_clock.mask = tk->tkr_raw.mask; 2288 vdata->raw_clock.mult = tk->tkr_raw.mult; 2289 vdata->raw_clock.shift = tk->tkr_raw.shift; 2290 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2291 vdata->raw_clock.offset = tk->tkr_raw.base; 2292 2293 vdata->wall_time_sec = tk->xtime_sec; 2294 2295 vdata->offs_boot = tk->offs_boot; 2296 2297 write_seqcount_end(&vdata->seq); 2298 } 2299 2300 static s64 get_kvmclock_base_ns(void) 2301 { 2302 /* Count up from boot time, but with the frequency of the raw clock. */ 2303 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2304 } 2305 #else 2306 static s64 get_kvmclock_base_ns(void) 2307 { 2308 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2309 return ktime_get_boottime_ns(); 2310 } 2311 #endif 2312 2313 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2314 { 2315 int version; 2316 int r; 2317 struct pvclock_wall_clock wc; 2318 u32 wc_sec_hi; 2319 u64 wall_nsec; 2320 2321 if (!wall_clock) 2322 return; 2323 2324 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2325 if (r) 2326 return; 2327 2328 if (version & 1) 2329 ++version; /* first time write, random junk */ 2330 2331 ++version; 2332 2333 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2334 return; 2335 2336 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2337 2338 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2339 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2340 wc.version = version; 2341 2342 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2343 2344 if (sec_hi_ofs) { 2345 wc_sec_hi = wall_nsec >> 32; 2346 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2347 &wc_sec_hi, sizeof(wc_sec_hi)); 2348 } 2349 2350 version++; 2351 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2352 } 2353 2354 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2355 bool old_msr, bool host_initiated) 2356 { 2357 struct kvm_arch *ka = &vcpu->kvm->arch; 2358 2359 if (vcpu->vcpu_id == 0 && !host_initiated) { 2360 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2361 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2362 2363 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2364 } 2365 2366 vcpu->arch.time = system_time; 2367 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2368 2369 /* we verify if the enable bit is set... */ 2370 if (system_time & 1) 2371 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2372 sizeof(struct pvclock_vcpu_time_info)); 2373 else 2374 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2375 2376 return; 2377 } 2378 2379 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2380 { 2381 do_shl32_div32(dividend, divisor); 2382 return dividend; 2383 } 2384 2385 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2386 s8 *pshift, u32 *pmultiplier) 2387 { 2388 uint64_t scaled64; 2389 int32_t shift = 0; 2390 uint64_t tps64; 2391 uint32_t tps32; 2392 2393 tps64 = base_hz; 2394 scaled64 = scaled_hz; 2395 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2396 tps64 >>= 1; 2397 shift--; 2398 } 2399 2400 tps32 = (uint32_t)tps64; 2401 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2402 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2403 scaled64 >>= 1; 2404 else 2405 tps32 <<= 1; 2406 shift++; 2407 } 2408 2409 *pshift = shift; 2410 *pmultiplier = div_frac(scaled64, tps32); 2411 } 2412 2413 #ifdef CONFIG_X86_64 2414 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2415 #endif 2416 2417 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2418 static unsigned long max_tsc_khz; 2419 2420 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2421 { 2422 u64 v = (u64)khz * (1000000 + ppm); 2423 do_div(v, 1000000); 2424 return v; 2425 } 2426 2427 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2428 2429 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2430 { 2431 u64 ratio; 2432 2433 /* Guest TSC same frequency as host TSC? */ 2434 if (!scale) { 2435 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2436 return 0; 2437 } 2438 2439 /* TSC scaling supported? */ 2440 if (!kvm_caps.has_tsc_control) { 2441 if (user_tsc_khz > tsc_khz) { 2442 vcpu->arch.tsc_catchup = 1; 2443 vcpu->arch.tsc_always_catchup = 1; 2444 return 0; 2445 } else { 2446 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2447 return -1; 2448 } 2449 } 2450 2451 /* TSC scaling required - calculate ratio */ 2452 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2453 user_tsc_khz, tsc_khz); 2454 2455 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2456 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2457 user_tsc_khz); 2458 return -1; 2459 } 2460 2461 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2462 return 0; 2463 } 2464 2465 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2466 { 2467 u32 thresh_lo, thresh_hi; 2468 int use_scaling = 0; 2469 2470 /* tsc_khz can be zero if TSC calibration fails */ 2471 if (user_tsc_khz == 0) { 2472 /* set tsc_scaling_ratio to a safe value */ 2473 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2474 return -1; 2475 } 2476 2477 /* Compute a scale to convert nanoseconds in TSC cycles */ 2478 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2479 &vcpu->arch.virtual_tsc_shift, 2480 &vcpu->arch.virtual_tsc_mult); 2481 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2482 2483 /* 2484 * Compute the variation in TSC rate which is acceptable 2485 * within the range of tolerance and decide if the 2486 * rate being applied is within that bounds of the hardware 2487 * rate. If so, no scaling or compensation need be done. 2488 */ 2489 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2490 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2491 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2492 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2493 user_tsc_khz, thresh_lo, thresh_hi); 2494 use_scaling = 1; 2495 } 2496 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2497 } 2498 2499 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2500 { 2501 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2502 vcpu->arch.virtual_tsc_mult, 2503 vcpu->arch.virtual_tsc_shift); 2504 tsc += vcpu->arch.this_tsc_write; 2505 return tsc; 2506 } 2507 2508 #ifdef CONFIG_X86_64 2509 static inline bool gtod_is_based_on_tsc(int mode) 2510 { 2511 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2512 } 2513 #endif 2514 2515 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2516 { 2517 #ifdef CONFIG_X86_64 2518 struct kvm_arch *ka = &vcpu->kvm->arch; 2519 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2520 2521 /* 2522 * To use the masterclock, the host clocksource must be based on TSC 2523 * and all vCPUs must have matching TSCs. Note, the count for matching 2524 * vCPUs doesn't include the reference vCPU, hence "+1". 2525 */ 2526 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2527 atomic_read(&vcpu->kvm->online_vcpus)) && 2528 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2529 2530 /* 2531 * Request a masterclock update if the masterclock needs to be toggled 2532 * on/off, or when starting a new generation and the masterclock is 2533 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2534 * taken _after_ the new generation is created). 2535 */ 2536 if ((ka->use_master_clock && new_generation) || 2537 (ka->use_master_clock != use_master_clock)) 2538 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2539 2540 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2541 atomic_read(&vcpu->kvm->online_vcpus), 2542 ka->use_master_clock, gtod->clock.vclock_mode); 2543 #endif 2544 } 2545 2546 /* 2547 * Multiply tsc by a fixed point number represented by ratio. 2548 * 2549 * The most significant 64-N bits (mult) of ratio represent the 2550 * integral part of the fixed point number; the remaining N bits 2551 * (frac) represent the fractional part, ie. ratio represents a fixed 2552 * point number (mult + frac * 2^(-N)). 2553 * 2554 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2555 */ 2556 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2557 { 2558 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2559 } 2560 2561 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2562 { 2563 u64 _tsc = tsc; 2564 2565 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2566 _tsc = __scale_tsc(ratio, tsc); 2567 2568 return _tsc; 2569 } 2570 2571 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2572 { 2573 u64 tsc; 2574 2575 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2576 2577 return target_tsc - tsc; 2578 } 2579 2580 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2581 { 2582 return vcpu->arch.l1_tsc_offset + 2583 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2584 } 2585 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2586 2587 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2588 { 2589 u64 nested_offset; 2590 2591 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2592 nested_offset = l1_offset; 2593 else 2594 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2595 kvm_caps.tsc_scaling_ratio_frac_bits); 2596 2597 nested_offset += l2_offset; 2598 return nested_offset; 2599 } 2600 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2601 2602 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2603 { 2604 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2605 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2606 kvm_caps.tsc_scaling_ratio_frac_bits); 2607 2608 return l1_multiplier; 2609 } 2610 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2611 2612 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2613 { 2614 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2615 vcpu->arch.l1_tsc_offset, 2616 l1_offset); 2617 2618 vcpu->arch.l1_tsc_offset = l1_offset; 2619 2620 /* 2621 * If we are here because L1 chose not to trap WRMSR to TSC then 2622 * according to the spec this should set L1's TSC (as opposed to 2623 * setting L1's offset for L2). 2624 */ 2625 if (is_guest_mode(vcpu)) 2626 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2627 l1_offset, 2628 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2629 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2630 else 2631 vcpu->arch.tsc_offset = l1_offset; 2632 2633 static_call(kvm_x86_write_tsc_offset)(vcpu); 2634 } 2635 2636 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2637 { 2638 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2639 2640 /* Userspace is changing the multiplier while L2 is active */ 2641 if (is_guest_mode(vcpu)) 2642 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2643 l1_multiplier, 2644 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2645 else 2646 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2647 2648 if (kvm_caps.has_tsc_control) 2649 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2650 } 2651 2652 static inline bool kvm_check_tsc_unstable(void) 2653 { 2654 #ifdef CONFIG_X86_64 2655 /* 2656 * TSC is marked unstable when we're running on Hyper-V, 2657 * 'TSC page' clocksource is good. 2658 */ 2659 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2660 return false; 2661 #endif 2662 return check_tsc_unstable(); 2663 } 2664 2665 /* 2666 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2667 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2668 * participates in. 2669 */ 2670 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2671 u64 ns, bool matched) 2672 { 2673 struct kvm *kvm = vcpu->kvm; 2674 2675 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2676 2677 /* 2678 * We also track th most recent recorded KHZ, write and time to 2679 * allow the matching interval to be extended at each write. 2680 */ 2681 kvm->arch.last_tsc_nsec = ns; 2682 kvm->arch.last_tsc_write = tsc; 2683 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2684 kvm->arch.last_tsc_offset = offset; 2685 2686 vcpu->arch.last_guest_tsc = tsc; 2687 2688 kvm_vcpu_write_tsc_offset(vcpu, offset); 2689 2690 if (!matched) { 2691 /* 2692 * We split periods of matched TSC writes into generations. 2693 * For each generation, we track the original measured 2694 * nanosecond time, offset, and write, so if TSCs are in 2695 * sync, we can match exact offset, and if not, we can match 2696 * exact software computation in compute_guest_tsc() 2697 * 2698 * These values are tracked in kvm->arch.cur_xxx variables. 2699 */ 2700 kvm->arch.cur_tsc_generation++; 2701 kvm->arch.cur_tsc_nsec = ns; 2702 kvm->arch.cur_tsc_write = tsc; 2703 kvm->arch.cur_tsc_offset = offset; 2704 kvm->arch.nr_vcpus_matched_tsc = 0; 2705 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2706 kvm->arch.nr_vcpus_matched_tsc++; 2707 } 2708 2709 /* Keep track of which generation this VCPU has synchronized to */ 2710 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2711 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2712 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2713 2714 kvm_track_tsc_matching(vcpu, !matched); 2715 } 2716 2717 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2718 { 2719 u64 data = user_value ? *user_value : 0; 2720 struct kvm *kvm = vcpu->kvm; 2721 u64 offset, ns, elapsed; 2722 unsigned long flags; 2723 bool matched = false; 2724 bool synchronizing = false; 2725 2726 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2727 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2728 ns = get_kvmclock_base_ns(); 2729 elapsed = ns - kvm->arch.last_tsc_nsec; 2730 2731 if (vcpu->arch.virtual_tsc_khz) { 2732 if (data == 0) { 2733 /* 2734 * Force synchronization when creating a vCPU, or when 2735 * userspace explicitly writes a zero value. 2736 */ 2737 synchronizing = true; 2738 } else if (kvm->arch.user_set_tsc) { 2739 u64 tsc_exp = kvm->arch.last_tsc_write + 2740 nsec_to_cycles(vcpu, elapsed); 2741 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2742 /* 2743 * Here lies UAPI baggage: when a user-initiated TSC write has 2744 * a small delta (1 second) of virtual cycle time against the 2745 * previously set vCPU, we assume that they were intended to be 2746 * in sync and the delta was only due to the racy nature of the 2747 * legacy API. 2748 * 2749 * This trick falls down when restoring a guest which genuinely 2750 * has been running for less time than the 1 second of imprecision 2751 * which we allow for in the legacy API. In this case, the first 2752 * value written by userspace (on any vCPU) should not be subject 2753 * to this 'correction' to make it sync up with values that only 2754 * come from the kernel's default vCPU creation. Make the 1-second 2755 * slop hack only trigger if the user_set_tsc flag is already set. 2756 */ 2757 synchronizing = data < tsc_exp + tsc_hz && 2758 data + tsc_hz > tsc_exp; 2759 } 2760 } 2761 2762 if (user_value) 2763 kvm->arch.user_set_tsc = true; 2764 2765 /* 2766 * For a reliable TSC, we can match TSC offsets, and for an unstable 2767 * TSC, we add elapsed time in this computation. We could let the 2768 * compensation code attempt to catch up if we fall behind, but 2769 * it's better to try to match offsets from the beginning. 2770 */ 2771 if (synchronizing && 2772 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2773 if (!kvm_check_tsc_unstable()) { 2774 offset = kvm->arch.cur_tsc_offset; 2775 } else { 2776 u64 delta = nsec_to_cycles(vcpu, elapsed); 2777 data += delta; 2778 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2779 } 2780 matched = true; 2781 } 2782 2783 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2784 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2785 } 2786 2787 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2788 s64 adjustment) 2789 { 2790 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2791 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2792 } 2793 2794 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2795 { 2796 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2797 WARN_ON(adjustment < 0); 2798 adjustment = kvm_scale_tsc((u64) adjustment, 2799 vcpu->arch.l1_tsc_scaling_ratio); 2800 adjust_tsc_offset_guest(vcpu, adjustment); 2801 } 2802 2803 #ifdef CONFIG_X86_64 2804 2805 static u64 read_tsc(void) 2806 { 2807 u64 ret = (u64)rdtsc_ordered(); 2808 u64 last = pvclock_gtod_data.clock.cycle_last; 2809 2810 if (likely(ret >= last)) 2811 return ret; 2812 2813 /* 2814 * GCC likes to generate cmov here, but this branch is extremely 2815 * predictable (it's just a function of time and the likely is 2816 * very likely) and there's a data dependence, so force GCC 2817 * to generate a branch instead. I don't barrier() because 2818 * we don't actually need a barrier, and if this function 2819 * ever gets inlined it will generate worse code. 2820 */ 2821 asm volatile (""); 2822 return last; 2823 } 2824 2825 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2826 int *mode) 2827 { 2828 u64 tsc_pg_val; 2829 long v; 2830 2831 switch (clock->vclock_mode) { 2832 case VDSO_CLOCKMODE_HVCLOCK: 2833 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2834 tsc_timestamp, &tsc_pg_val)) { 2835 /* TSC page valid */ 2836 *mode = VDSO_CLOCKMODE_HVCLOCK; 2837 v = (tsc_pg_val - clock->cycle_last) & 2838 clock->mask; 2839 } else { 2840 /* TSC page invalid */ 2841 *mode = VDSO_CLOCKMODE_NONE; 2842 } 2843 break; 2844 case VDSO_CLOCKMODE_TSC: 2845 *mode = VDSO_CLOCKMODE_TSC; 2846 *tsc_timestamp = read_tsc(); 2847 v = (*tsc_timestamp - clock->cycle_last) & 2848 clock->mask; 2849 break; 2850 default: 2851 *mode = VDSO_CLOCKMODE_NONE; 2852 } 2853 2854 if (*mode == VDSO_CLOCKMODE_NONE) 2855 *tsc_timestamp = v = 0; 2856 2857 return v * clock->mult; 2858 } 2859 2860 /* 2861 * As with get_kvmclock_base_ns(), this counts from boot time, at the 2862 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). 2863 */ 2864 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) 2865 { 2866 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2867 unsigned long seq; 2868 int mode; 2869 u64 ns; 2870 2871 do { 2872 seq = read_seqcount_begin(>od->seq); 2873 ns = gtod->raw_clock.base_cycles; 2874 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2875 ns >>= gtod->raw_clock.shift; 2876 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2877 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2878 *t = ns; 2879 2880 return mode; 2881 } 2882 2883 /* 2884 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with 2885 * no boot time offset. 2886 */ 2887 static int do_monotonic(s64 *t, u64 *tsc_timestamp) 2888 { 2889 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2890 unsigned long seq; 2891 int mode; 2892 u64 ns; 2893 2894 do { 2895 seq = read_seqcount_begin(>od->seq); 2896 ns = gtod->clock.base_cycles; 2897 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2898 ns >>= gtod->clock.shift; 2899 ns += ktime_to_ns(gtod->clock.offset); 2900 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2901 *t = ns; 2902 2903 return mode; 2904 } 2905 2906 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2907 { 2908 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2909 unsigned long seq; 2910 int mode; 2911 u64 ns; 2912 2913 do { 2914 seq = read_seqcount_begin(>od->seq); 2915 ts->tv_sec = gtod->wall_time_sec; 2916 ns = gtod->clock.base_cycles; 2917 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2918 ns >>= gtod->clock.shift; 2919 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2920 2921 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2922 ts->tv_nsec = ns; 2923 2924 return mode; 2925 } 2926 2927 /* 2928 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and 2929 * reports the TSC value from which it do so. Returns true if host is 2930 * using TSC based clocksource. 2931 */ 2932 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2933 { 2934 /* checked again under seqlock below */ 2935 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2936 return false; 2937 2938 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, 2939 tsc_timestamp)); 2940 } 2941 2942 /* 2943 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did 2944 * so. Returns true if host is using TSC based clocksource. 2945 */ 2946 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2947 { 2948 /* checked again under seqlock below */ 2949 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2950 return false; 2951 2952 return gtod_is_based_on_tsc(do_monotonic(kernel_ns, 2953 tsc_timestamp)); 2954 } 2955 2956 /* 2957 * Calculates CLOCK_REALTIME and reports the TSC value from which it did 2958 * so. Returns true if host is using TSC based clocksource. 2959 * 2960 * DO NOT USE this for anything related to migration. You want CLOCK_TAI 2961 * for that. 2962 */ 2963 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2964 u64 *tsc_timestamp) 2965 { 2966 /* checked again under seqlock below */ 2967 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2968 return false; 2969 2970 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2971 } 2972 #endif 2973 2974 /* 2975 * 2976 * Assuming a stable TSC across physical CPUS, and a stable TSC 2977 * across virtual CPUs, the following condition is possible. 2978 * Each numbered line represents an event visible to both 2979 * CPUs at the next numbered event. 2980 * 2981 * "timespecX" represents host monotonic time. "tscX" represents 2982 * RDTSC value. 2983 * 2984 * VCPU0 on CPU0 | VCPU1 on CPU1 2985 * 2986 * 1. read timespec0,tsc0 2987 * 2. | timespec1 = timespec0 + N 2988 * | tsc1 = tsc0 + M 2989 * 3. transition to guest | transition to guest 2990 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2991 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2992 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2993 * 2994 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2995 * 2996 * - ret0 < ret1 2997 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2998 * ... 2999 * - 0 < N - M => M < N 3000 * 3001 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 3002 * always the case (the difference between two distinct xtime instances 3003 * might be smaller then the difference between corresponding TSC reads, 3004 * when updating guest vcpus pvclock areas). 3005 * 3006 * To avoid that problem, do not allow visibility of distinct 3007 * system_timestamp/tsc_timestamp values simultaneously: use a master 3008 * copy of host monotonic time values. Update that master copy 3009 * in lockstep. 3010 * 3011 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 3012 * 3013 */ 3014 3015 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 3016 { 3017 #ifdef CONFIG_X86_64 3018 struct kvm_arch *ka = &kvm->arch; 3019 int vclock_mode; 3020 bool host_tsc_clocksource, vcpus_matched; 3021 3022 lockdep_assert_held(&kvm->arch.tsc_write_lock); 3023 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 3024 atomic_read(&kvm->online_vcpus)); 3025 3026 /* 3027 * If the host uses TSC clock, then passthrough TSC as stable 3028 * to the guest. 3029 */ 3030 host_tsc_clocksource = kvm_get_time_and_clockread( 3031 &ka->master_kernel_ns, 3032 &ka->master_cycle_now); 3033 3034 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 3035 && !ka->backwards_tsc_observed 3036 && !ka->boot_vcpu_runs_old_kvmclock; 3037 3038 if (ka->use_master_clock) 3039 atomic_set(&kvm_guest_has_master_clock, 1); 3040 3041 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 3042 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 3043 vcpus_matched); 3044 #endif 3045 } 3046 3047 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3048 { 3049 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3050 } 3051 3052 static void __kvm_start_pvclock_update(struct kvm *kvm) 3053 { 3054 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3055 write_seqcount_begin(&kvm->arch.pvclock_sc); 3056 } 3057 3058 static void kvm_start_pvclock_update(struct kvm *kvm) 3059 { 3060 kvm_make_mclock_inprogress_request(kvm); 3061 3062 /* no guest entries from this point */ 3063 __kvm_start_pvclock_update(kvm); 3064 } 3065 3066 static void kvm_end_pvclock_update(struct kvm *kvm) 3067 { 3068 struct kvm_arch *ka = &kvm->arch; 3069 struct kvm_vcpu *vcpu; 3070 unsigned long i; 3071 3072 write_seqcount_end(&ka->pvclock_sc); 3073 raw_spin_unlock_irq(&ka->tsc_write_lock); 3074 kvm_for_each_vcpu(i, vcpu, kvm) 3075 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3076 3077 /* guest entries allowed */ 3078 kvm_for_each_vcpu(i, vcpu, kvm) 3079 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3080 } 3081 3082 static void kvm_update_masterclock(struct kvm *kvm) 3083 { 3084 kvm_hv_request_tsc_page_update(kvm); 3085 kvm_start_pvclock_update(kvm); 3086 pvclock_update_vm_gtod_copy(kvm); 3087 kvm_end_pvclock_update(kvm); 3088 } 3089 3090 /* 3091 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3092 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3093 * can change during boot even if the TSC is constant, as it's possible for KVM 3094 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3095 * notification when calibration completes, but practically speaking calibration 3096 * will complete before userspace is alive enough to create VMs. 3097 */ 3098 static unsigned long get_cpu_tsc_khz(void) 3099 { 3100 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3101 return tsc_khz; 3102 else 3103 return __this_cpu_read(cpu_tsc_khz); 3104 } 3105 3106 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3107 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3108 { 3109 struct kvm_arch *ka = &kvm->arch; 3110 struct pvclock_vcpu_time_info hv_clock; 3111 3112 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3113 get_cpu(); 3114 3115 data->flags = 0; 3116 if (ka->use_master_clock && 3117 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3118 #ifdef CONFIG_X86_64 3119 struct timespec64 ts; 3120 3121 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3122 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3123 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3124 } else 3125 #endif 3126 data->host_tsc = rdtsc(); 3127 3128 data->flags |= KVM_CLOCK_TSC_STABLE; 3129 hv_clock.tsc_timestamp = ka->master_cycle_now; 3130 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3131 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3132 &hv_clock.tsc_shift, 3133 &hv_clock.tsc_to_system_mul); 3134 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3135 } else { 3136 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3137 } 3138 3139 put_cpu(); 3140 } 3141 3142 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3143 { 3144 struct kvm_arch *ka = &kvm->arch; 3145 unsigned seq; 3146 3147 do { 3148 seq = read_seqcount_begin(&ka->pvclock_sc); 3149 __get_kvmclock(kvm, data); 3150 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3151 } 3152 3153 u64 get_kvmclock_ns(struct kvm *kvm) 3154 { 3155 struct kvm_clock_data data; 3156 3157 get_kvmclock(kvm, &data); 3158 return data.clock; 3159 } 3160 3161 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3162 struct gfn_to_pfn_cache *gpc, 3163 unsigned int offset, 3164 bool force_tsc_unstable) 3165 { 3166 struct kvm_vcpu_arch *vcpu = &v->arch; 3167 struct pvclock_vcpu_time_info *guest_hv_clock; 3168 unsigned long flags; 3169 3170 read_lock_irqsave(&gpc->lock, flags); 3171 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3172 read_unlock_irqrestore(&gpc->lock, flags); 3173 3174 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3175 return; 3176 3177 read_lock_irqsave(&gpc->lock, flags); 3178 } 3179 3180 guest_hv_clock = (void *)(gpc->khva + offset); 3181 3182 /* 3183 * This VCPU is paused, but it's legal for a guest to read another 3184 * VCPU's kvmclock, so we really have to follow the specification where 3185 * it says that version is odd if data is being modified, and even after 3186 * it is consistent. 3187 */ 3188 3189 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3190 smp_wmb(); 3191 3192 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3193 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3194 3195 if (vcpu->pvclock_set_guest_stopped_request) { 3196 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3197 vcpu->pvclock_set_guest_stopped_request = false; 3198 } 3199 3200 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3201 3202 if (force_tsc_unstable) 3203 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT; 3204 3205 smp_wmb(); 3206 3207 guest_hv_clock->version = ++vcpu->hv_clock.version; 3208 3209 kvm_gpc_mark_dirty_in_slot(gpc); 3210 read_unlock_irqrestore(&gpc->lock, flags); 3211 3212 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3213 } 3214 3215 static int kvm_guest_time_update(struct kvm_vcpu *v) 3216 { 3217 unsigned long flags, tgt_tsc_khz; 3218 unsigned seq; 3219 struct kvm_vcpu_arch *vcpu = &v->arch; 3220 struct kvm_arch *ka = &v->kvm->arch; 3221 s64 kernel_ns; 3222 u64 tsc_timestamp, host_tsc; 3223 u8 pvclock_flags; 3224 bool use_master_clock; 3225 #ifdef CONFIG_KVM_XEN 3226 /* 3227 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3228 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3229 * This default behaviour led to bugs in some guest kernels which cause 3230 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3231 */ 3232 bool xen_pvclock_tsc_unstable = 3233 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 3234 #endif 3235 3236 kernel_ns = 0; 3237 host_tsc = 0; 3238 3239 /* 3240 * If the host uses TSC clock, then passthrough TSC as stable 3241 * to the guest. 3242 */ 3243 do { 3244 seq = read_seqcount_begin(&ka->pvclock_sc); 3245 use_master_clock = ka->use_master_clock; 3246 if (use_master_clock) { 3247 host_tsc = ka->master_cycle_now; 3248 kernel_ns = ka->master_kernel_ns; 3249 } 3250 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3251 3252 /* Keep irq disabled to prevent changes to the clock */ 3253 local_irq_save(flags); 3254 tgt_tsc_khz = get_cpu_tsc_khz(); 3255 if (unlikely(tgt_tsc_khz == 0)) { 3256 local_irq_restore(flags); 3257 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3258 return 1; 3259 } 3260 if (!use_master_clock) { 3261 host_tsc = rdtsc(); 3262 kernel_ns = get_kvmclock_base_ns(); 3263 } 3264 3265 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3266 3267 /* 3268 * We may have to catch up the TSC to match elapsed wall clock 3269 * time for two reasons, even if kvmclock is used. 3270 * 1) CPU could have been running below the maximum TSC rate 3271 * 2) Broken TSC compensation resets the base at each VCPU 3272 * entry to avoid unknown leaps of TSC even when running 3273 * again on the same CPU. This may cause apparent elapsed 3274 * time to disappear, and the guest to stand still or run 3275 * very slowly. 3276 */ 3277 if (vcpu->tsc_catchup) { 3278 u64 tsc = compute_guest_tsc(v, kernel_ns); 3279 if (tsc > tsc_timestamp) { 3280 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3281 tsc_timestamp = tsc; 3282 } 3283 } 3284 3285 local_irq_restore(flags); 3286 3287 /* With all the info we got, fill in the values */ 3288 3289 if (kvm_caps.has_tsc_control) 3290 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3291 v->arch.l1_tsc_scaling_ratio); 3292 3293 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3294 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3295 &vcpu->hv_clock.tsc_shift, 3296 &vcpu->hv_clock.tsc_to_system_mul); 3297 vcpu->hw_tsc_khz = tgt_tsc_khz; 3298 kvm_xen_update_tsc_info(v); 3299 } 3300 3301 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3302 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3303 vcpu->last_guest_tsc = tsc_timestamp; 3304 3305 /* If the host uses TSC clocksource, then it is stable */ 3306 pvclock_flags = 0; 3307 if (use_master_clock) 3308 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3309 3310 vcpu->hv_clock.flags = pvclock_flags; 3311 3312 if (vcpu->pv_time.active) 3313 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false); 3314 #ifdef CONFIG_KVM_XEN 3315 if (vcpu->xen.vcpu_info_cache.active) 3316 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3317 offsetof(struct compat_vcpu_info, time), 3318 xen_pvclock_tsc_unstable); 3319 if (vcpu->xen.vcpu_time_info_cache.active) 3320 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0, 3321 xen_pvclock_tsc_unstable); 3322 #endif 3323 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3324 return 0; 3325 } 3326 3327 /* 3328 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3329 * which it started (i.e. its epoch, when its kvmclock was zero). 3330 * 3331 * In fact those clocks are subtly different; wall clock frequency is 3332 * adjusted by NTP and has leap seconds, while the kvmclock is a 3333 * simple function of the TSC without any such adjustment. 3334 * 3335 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3336 * that and kvmclock, but even that would be subject to change over 3337 * time. 3338 * 3339 * Attempt to calculate the epoch at a given moment using the *same* 3340 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3341 * wallclock and kvmclock times, and subtracting one from the other. 3342 * 3343 * Fall back to using their values at slightly different moments by 3344 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3345 */ 3346 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3347 { 3348 #ifdef CONFIG_X86_64 3349 struct pvclock_vcpu_time_info hv_clock; 3350 struct kvm_arch *ka = &kvm->arch; 3351 unsigned long seq, local_tsc_khz; 3352 struct timespec64 ts; 3353 uint64_t host_tsc; 3354 3355 do { 3356 seq = read_seqcount_begin(&ka->pvclock_sc); 3357 3358 local_tsc_khz = 0; 3359 if (!ka->use_master_clock) 3360 break; 3361 3362 /* 3363 * The TSC read and the call to get_cpu_tsc_khz() must happen 3364 * on the same CPU. 3365 */ 3366 get_cpu(); 3367 3368 local_tsc_khz = get_cpu_tsc_khz(); 3369 3370 if (local_tsc_khz && 3371 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3372 local_tsc_khz = 0; /* Fall back to old method */ 3373 3374 put_cpu(); 3375 3376 /* 3377 * These values must be snapshotted within the seqcount loop. 3378 * After that, it's just mathematics which can happen on any 3379 * CPU at any time. 3380 */ 3381 hv_clock.tsc_timestamp = ka->master_cycle_now; 3382 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3383 3384 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3385 3386 /* 3387 * If the conditions were right, and obtaining the wallclock+TSC was 3388 * successful, calculate the KVM clock at the corresponding time and 3389 * subtract one from the other to get the guest's epoch in nanoseconds 3390 * since 1970-01-01. 3391 */ 3392 if (local_tsc_khz) { 3393 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3394 &hv_clock.tsc_shift, 3395 &hv_clock.tsc_to_system_mul); 3396 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3397 __pvclock_read_cycles(&hv_clock, host_tsc); 3398 } 3399 #endif 3400 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3401 } 3402 3403 /* 3404 * kvmclock updates which are isolated to a given vcpu, such as 3405 * vcpu->cpu migration, should not allow system_timestamp from 3406 * the rest of the vcpus to remain static. Otherwise ntp frequency 3407 * correction applies to one vcpu's system_timestamp but not 3408 * the others. 3409 * 3410 * So in those cases, request a kvmclock update for all vcpus. 3411 * We need to rate-limit these requests though, as they can 3412 * considerably slow guests that have a large number of vcpus. 3413 * The time for a remote vcpu to update its kvmclock is bound 3414 * by the delay we use to rate-limit the updates. 3415 */ 3416 3417 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3418 3419 static void kvmclock_update_fn(struct work_struct *work) 3420 { 3421 unsigned long i; 3422 struct delayed_work *dwork = to_delayed_work(work); 3423 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3424 kvmclock_update_work); 3425 struct kvm *kvm = container_of(ka, struct kvm, arch); 3426 struct kvm_vcpu *vcpu; 3427 3428 kvm_for_each_vcpu(i, vcpu, kvm) { 3429 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3430 kvm_vcpu_kick(vcpu); 3431 } 3432 } 3433 3434 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3435 { 3436 struct kvm *kvm = v->kvm; 3437 3438 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3439 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3440 KVMCLOCK_UPDATE_DELAY); 3441 } 3442 3443 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3444 3445 static void kvmclock_sync_fn(struct work_struct *work) 3446 { 3447 struct delayed_work *dwork = to_delayed_work(work); 3448 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3449 kvmclock_sync_work); 3450 struct kvm *kvm = container_of(ka, struct kvm, arch); 3451 3452 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3453 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3454 KVMCLOCK_SYNC_PERIOD); 3455 } 3456 3457 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3458 static bool is_mci_control_msr(u32 msr) 3459 { 3460 return (msr & 3) == 0; 3461 } 3462 static bool is_mci_status_msr(u32 msr) 3463 { 3464 return (msr & 3) == 1; 3465 } 3466 3467 /* 3468 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3469 */ 3470 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3471 { 3472 /* McStatusWrEn enabled? */ 3473 if (guest_cpuid_is_amd_compatible(vcpu)) 3474 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3475 3476 return false; 3477 } 3478 3479 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3480 { 3481 u64 mcg_cap = vcpu->arch.mcg_cap; 3482 unsigned bank_num = mcg_cap & 0xff; 3483 u32 msr = msr_info->index; 3484 u64 data = msr_info->data; 3485 u32 offset, last_msr; 3486 3487 switch (msr) { 3488 case MSR_IA32_MCG_STATUS: 3489 vcpu->arch.mcg_status = data; 3490 break; 3491 case MSR_IA32_MCG_CTL: 3492 if (!(mcg_cap & MCG_CTL_P) && 3493 (data || !msr_info->host_initiated)) 3494 return 1; 3495 if (data != 0 && data != ~(u64)0) 3496 return 1; 3497 vcpu->arch.mcg_ctl = data; 3498 break; 3499 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3500 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3501 if (msr > last_msr) 3502 return 1; 3503 3504 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3505 return 1; 3506 /* An attempt to write a 1 to a reserved bit raises #GP */ 3507 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3508 return 1; 3509 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3510 last_msr + 1 - MSR_IA32_MC0_CTL2); 3511 vcpu->arch.mci_ctl2_banks[offset] = data; 3512 break; 3513 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3514 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3515 if (msr > last_msr) 3516 return 1; 3517 3518 /* 3519 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3520 * values are architecturally undefined. But, some Linux 3521 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3522 * issue on AMD K8s, allow bit 10 to be clear when setting all 3523 * other bits in order to avoid an uncaught #GP in the guest. 3524 * 3525 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3526 * single-bit ECC data errors. 3527 */ 3528 if (is_mci_control_msr(msr) && 3529 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3530 return 1; 3531 3532 /* 3533 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3534 * AMD-based CPUs allow non-zero values, but if and only if 3535 * HWCR[McStatusWrEn] is set. 3536 */ 3537 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3538 data != 0 && !can_set_mci_status(vcpu)) 3539 return 1; 3540 3541 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3542 last_msr + 1 - MSR_IA32_MC0_CTL); 3543 vcpu->arch.mce_banks[offset] = data; 3544 break; 3545 default: 3546 return 1; 3547 } 3548 return 0; 3549 } 3550 3551 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3552 { 3553 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3554 3555 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3556 } 3557 3558 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3559 { 3560 gpa_t gpa = data & ~0x3f; 3561 3562 /* Bits 4:5 are reserved, Should be zero */ 3563 if (data & 0x30) 3564 return 1; 3565 3566 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3567 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3568 return 1; 3569 3570 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3571 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3572 return 1; 3573 3574 if (!lapic_in_kernel(vcpu)) 3575 return data ? 1 : 0; 3576 3577 vcpu->arch.apf.msr_en_val = data; 3578 3579 if (!kvm_pv_async_pf_enabled(vcpu)) { 3580 kvm_clear_async_pf_completion_queue(vcpu); 3581 kvm_async_pf_hash_reset(vcpu); 3582 return 0; 3583 } 3584 3585 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3586 sizeof(u64))) 3587 return 1; 3588 3589 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3590 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3591 3592 kvm_async_pf_wakeup_all(vcpu); 3593 3594 return 0; 3595 } 3596 3597 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3598 { 3599 /* Bits 8-63 are reserved */ 3600 if (data >> 8) 3601 return 1; 3602 3603 if (!lapic_in_kernel(vcpu)) 3604 return 1; 3605 3606 vcpu->arch.apf.msr_int_val = data; 3607 3608 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3609 3610 return 0; 3611 } 3612 3613 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3614 { 3615 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3616 vcpu->arch.time = 0; 3617 } 3618 3619 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3620 { 3621 ++vcpu->stat.tlb_flush; 3622 static_call(kvm_x86_flush_tlb_all)(vcpu); 3623 3624 /* Flushing all ASIDs flushes the current ASID... */ 3625 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3626 } 3627 3628 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3629 { 3630 ++vcpu->stat.tlb_flush; 3631 3632 if (!tdp_enabled) { 3633 /* 3634 * A TLB flush on behalf of the guest is equivalent to 3635 * INVPCID(all), toggling CR4.PGE, etc., which requires 3636 * a forced sync of the shadow page tables. Ensure all the 3637 * roots are synced and the guest TLB in hardware is clean. 3638 */ 3639 kvm_mmu_sync_roots(vcpu); 3640 kvm_mmu_sync_prev_roots(vcpu); 3641 } 3642 3643 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3644 3645 /* 3646 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3647 * grained flushing. 3648 */ 3649 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3650 } 3651 3652 3653 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3654 { 3655 ++vcpu->stat.tlb_flush; 3656 static_call(kvm_x86_flush_tlb_current)(vcpu); 3657 } 3658 3659 /* 3660 * Service "local" TLB flush requests, which are specific to the current MMU 3661 * context. In addition to the generic event handling in vcpu_enter_guest(), 3662 * TLB flushes that are targeted at an MMU context also need to be serviced 3663 * prior before nested VM-Enter/VM-Exit. 3664 */ 3665 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3666 { 3667 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3668 kvm_vcpu_flush_tlb_current(vcpu); 3669 3670 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3671 kvm_vcpu_flush_tlb_guest(vcpu); 3672 } 3673 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3674 3675 static void record_steal_time(struct kvm_vcpu *vcpu) 3676 { 3677 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3678 struct kvm_steal_time __user *st; 3679 struct kvm_memslots *slots; 3680 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3681 u64 steal; 3682 u32 version; 3683 3684 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3685 kvm_xen_runstate_set_running(vcpu); 3686 return; 3687 } 3688 3689 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3690 return; 3691 3692 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3693 return; 3694 3695 slots = kvm_memslots(vcpu->kvm); 3696 3697 if (unlikely(slots->generation != ghc->generation || 3698 gpa != ghc->gpa || 3699 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3700 /* We rely on the fact that it fits in a single page. */ 3701 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3702 3703 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3704 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3705 return; 3706 } 3707 3708 st = (struct kvm_steal_time __user *)ghc->hva; 3709 /* 3710 * Doing a TLB flush here, on the guest's behalf, can avoid 3711 * expensive IPIs. 3712 */ 3713 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3714 u8 st_preempted = 0; 3715 int err = -EFAULT; 3716 3717 if (!user_access_begin(st, sizeof(*st))) 3718 return; 3719 3720 asm volatile("1: xchgb %0, %2\n" 3721 "xor %1, %1\n" 3722 "2:\n" 3723 _ASM_EXTABLE_UA(1b, 2b) 3724 : "+q" (st_preempted), 3725 "+&r" (err), 3726 "+m" (st->preempted)); 3727 if (err) 3728 goto out; 3729 3730 user_access_end(); 3731 3732 vcpu->arch.st.preempted = 0; 3733 3734 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3735 st_preempted & KVM_VCPU_FLUSH_TLB); 3736 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3737 kvm_vcpu_flush_tlb_guest(vcpu); 3738 3739 if (!user_access_begin(st, sizeof(*st))) 3740 goto dirty; 3741 } else { 3742 if (!user_access_begin(st, sizeof(*st))) 3743 return; 3744 3745 unsafe_put_user(0, &st->preempted, out); 3746 vcpu->arch.st.preempted = 0; 3747 } 3748 3749 unsafe_get_user(version, &st->version, out); 3750 if (version & 1) 3751 version += 1; /* first time write, random junk */ 3752 3753 version += 1; 3754 unsafe_put_user(version, &st->version, out); 3755 3756 smp_wmb(); 3757 3758 unsafe_get_user(steal, &st->steal, out); 3759 steal += current->sched_info.run_delay - 3760 vcpu->arch.st.last_steal; 3761 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3762 unsafe_put_user(steal, &st->steal, out); 3763 3764 version += 1; 3765 unsafe_put_user(version, &st->version, out); 3766 3767 out: 3768 user_access_end(); 3769 dirty: 3770 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3771 } 3772 3773 static bool kvm_is_msr_to_save(u32 msr_index) 3774 { 3775 unsigned int i; 3776 3777 for (i = 0; i < num_msrs_to_save; i++) { 3778 if (msrs_to_save[i] == msr_index) 3779 return true; 3780 } 3781 3782 return false; 3783 } 3784 3785 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3786 { 3787 u32 msr = msr_info->index; 3788 u64 data = msr_info->data; 3789 3790 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3791 return kvm_xen_write_hypercall_page(vcpu, data); 3792 3793 switch (msr) { 3794 case MSR_AMD64_NB_CFG: 3795 case MSR_IA32_UCODE_WRITE: 3796 case MSR_VM_HSAVE_PA: 3797 case MSR_AMD64_PATCH_LOADER: 3798 case MSR_AMD64_BU_CFG2: 3799 case MSR_AMD64_DC_CFG: 3800 case MSR_AMD64_TW_CFG: 3801 case MSR_F15H_EX_CFG: 3802 break; 3803 3804 case MSR_IA32_UCODE_REV: 3805 if (msr_info->host_initiated) 3806 vcpu->arch.microcode_version = data; 3807 break; 3808 case MSR_IA32_ARCH_CAPABILITIES: 3809 if (!msr_info->host_initiated) 3810 return 1; 3811 vcpu->arch.arch_capabilities = data; 3812 break; 3813 case MSR_IA32_PERF_CAPABILITIES: 3814 if (!msr_info->host_initiated) 3815 return 1; 3816 if (data & ~kvm_caps.supported_perf_cap) 3817 return 1; 3818 3819 /* 3820 * Note, this is not just a performance optimization! KVM 3821 * disallows changing feature MSRs after the vCPU has run; PMU 3822 * refresh will bug the VM if called after the vCPU has run. 3823 */ 3824 if (vcpu->arch.perf_capabilities == data) 3825 break; 3826 3827 vcpu->arch.perf_capabilities = data; 3828 kvm_pmu_refresh(vcpu); 3829 break; 3830 case MSR_IA32_PRED_CMD: { 3831 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3832 3833 if (!msr_info->host_initiated) { 3834 if ((!guest_has_pred_cmd_msr(vcpu))) 3835 return 1; 3836 3837 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3838 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3839 reserved_bits |= PRED_CMD_IBPB; 3840 3841 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3842 reserved_bits |= PRED_CMD_SBPB; 3843 } 3844 3845 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3846 reserved_bits |= PRED_CMD_IBPB; 3847 3848 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3849 reserved_bits |= PRED_CMD_SBPB; 3850 3851 if (data & reserved_bits) 3852 return 1; 3853 3854 if (!data) 3855 break; 3856 3857 wrmsrl(MSR_IA32_PRED_CMD, data); 3858 break; 3859 } 3860 case MSR_IA32_FLUSH_CMD: 3861 if (!msr_info->host_initiated && 3862 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3863 return 1; 3864 3865 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3866 return 1; 3867 if (!data) 3868 break; 3869 3870 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3871 break; 3872 case MSR_EFER: 3873 return set_efer(vcpu, msr_info); 3874 case MSR_K7_HWCR: 3875 data &= ~(u64)0x40; /* ignore flush filter disable */ 3876 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3877 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3878 3879 /* 3880 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3881 * through at least v6.6 whine if TscFreqSel is clear, 3882 * depending on F/M/S. 3883 */ 3884 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3885 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3886 return 1; 3887 } 3888 vcpu->arch.msr_hwcr = data; 3889 break; 3890 case MSR_FAM10H_MMIO_CONF_BASE: 3891 if (data != 0) { 3892 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3893 return 1; 3894 } 3895 break; 3896 case MSR_IA32_CR_PAT: 3897 if (!kvm_pat_valid(data)) 3898 return 1; 3899 3900 vcpu->arch.pat = data; 3901 break; 3902 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3903 case MSR_MTRRdefType: 3904 return kvm_mtrr_set_msr(vcpu, msr, data); 3905 case MSR_IA32_APICBASE: 3906 return kvm_set_apic_base(vcpu, msr_info); 3907 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3908 return kvm_x2apic_msr_write(vcpu, msr, data); 3909 case MSR_IA32_TSC_DEADLINE: 3910 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3911 break; 3912 case MSR_IA32_TSC_ADJUST: 3913 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3914 if (!msr_info->host_initiated) { 3915 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3916 adjust_tsc_offset_guest(vcpu, adj); 3917 /* Before back to guest, tsc_timestamp must be adjusted 3918 * as well, otherwise guest's percpu pvclock time could jump. 3919 */ 3920 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3921 } 3922 vcpu->arch.ia32_tsc_adjust_msr = data; 3923 } 3924 break; 3925 case MSR_IA32_MISC_ENABLE: { 3926 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3927 3928 if (!msr_info->host_initiated) { 3929 /* RO bits */ 3930 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3931 return 1; 3932 3933 /* R bits, i.e. writes are ignored, but don't fault. */ 3934 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3935 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3936 } 3937 3938 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3939 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3940 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3941 return 1; 3942 vcpu->arch.ia32_misc_enable_msr = data; 3943 kvm_update_cpuid_runtime(vcpu); 3944 } else { 3945 vcpu->arch.ia32_misc_enable_msr = data; 3946 } 3947 break; 3948 } 3949 case MSR_IA32_SMBASE: 3950 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3951 return 1; 3952 vcpu->arch.smbase = data; 3953 break; 3954 case MSR_IA32_POWER_CTL: 3955 vcpu->arch.msr_ia32_power_ctl = data; 3956 break; 3957 case MSR_IA32_TSC: 3958 if (msr_info->host_initiated) { 3959 kvm_synchronize_tsc(vcpu, &data); 3960 } else { 3961 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3962 adjust_tsc_offset_guest(vcpu, adj); 3963 vcpu->arch.ia32_tsc_adjust_msr += adj; 3964 } 3965 break; 3966 case MSR_IA32_XSS: 3967 if (!msr_info->host_initiated && 3968 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3969 return 1; 3970 /* 3971 * KVM supports exposing PT to the guest, but does not support 3972 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3973 * XSAVES/XRSTORS to save/restore PT MSRs. 3974 */ 3975 if (data & ~kvm_caps.supported_xss) 3976 return 1; 3977 vcpu->arch.ia32_xss = data; 3978 kvm_update_cpuid_runtime(vcpu); 3979 break; 3980 case MSR_SMI_COUNT: 3981 if (!msr_info->host_initiated) 3982 return 1; 3983 vcpu->arch.smi_count = data; 3984 break; 3985 case MSR_KVM_WALL_CLOCK_NEW: 3986 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3987 return 1; 3988 3989 vcpu->kvm->arch.wall_clock = data; 3990 kvm_write_wall_clock(vcpu->kvm, data, 0); 3991 break; 3992 case MSR_KVM_WALL_CLOCK: 3993 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3994 return 1; 3995 3996 vcpu->kvm->arch.wall_clock = data; 3997 kvm_write_wall_clock(vcpu->kvm, data, 0); 3998 break; 3999 case MSR_KVM_SYSTEM_TIME_NEW: 4000 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4001 return 1; 4002 4003 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 4004 break; 4005 case MSR_KVM_SYSTEM_TIME: 4006 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4007 return 1; 4008 4009 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 4010 break; 4011 case MSR_KVM_ASYNC_PF_EN: 4012 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4013 return 1; 4014 4015 if (kvm_pv_enable_async_pf(vcpu, data)) 4016 return 1; 4017 break; 4018 case MSR_KVM_ASYNC_PF_INT: 4019 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4020 return 1; 4021 4022 if (kvm_pv_enable_async_pf_int(vcpu, data)) 4023 return 1; 4024 break; 4025 case MSR_KVM_ASYNC_PF_ACK: 4026 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4027 return 1; 4028 if (data & 0x1) { 4029 vcpu->arch.apf.pageready_pending = false; 4030 kvm_check_async_pf_completion(vcpu); 4031 } 4032 break; 4033 case MSR_KVM_STEAL_TIME: 4034 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4035 return 1; 4036 4037 if (unlikely(!sched_info_on())) 4038 return 1; 4039 4040 if (data & KVM_STEAL_RESERVED_MASK) 4041 return 1; 4042 4043 vcpu->arch.st.msr_val = data; 4044 4045 if (!(data & KVM_MSR_ENABLED)) 4046 break; 4047 4048 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4049 4050 break; 4051 case MSR_KVM_PV_EOI_EN: 4052 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4053 return 1; 4054 4055 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4056 return 1; 4057 break; 4058 4059 case MSR_KVM_POLL_CONTROL: 4060 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4061 return 1; 4062 4063 /* only enable bit supported */ 4064 if (data & (-1ULL << 1)) 4065 return 1; 4066 4067 vcpu->arch.msr_kvm_poll_control = data; 4068 break; 4069 4070 case MSR_IA32_MCG_CTL: 4071 case MSR_IA32_MCG_STATUS: 4072 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4073 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4074 return set_msr_mce(vcpu, msr_info); 4075 4076 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4077 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4078 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4079 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4080 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4081 return kvm_pmu_set_msr(vcpu, msr_info); 4082 4083 if (data) 4084 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4085 break; 4086 case MSR_K7_CLK_CTL: 4087 /* 4088 * Ignore all writes to this no longer documented MSR. 4089 * Writes are only relevant for old K7 processors, 4090 * all pre-dating SVM, but a recommended workaround from 4091 * AMD for these chips. It is possible to specify the 4092 * affected processor models on the command line, hence 4093 * the need to ignore the workaround. 4094 */ 4095 break; 4096 #ifdef CONFIG_KVM_HYPERV 4097 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4098 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4099 case HV_X64_MSR_SYNDBG_OPTIONS: 4100 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4101 case HV_X64_MSR_CRASH_CTL: 4102 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4103 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4104 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4105 case HV_X64_MSR_TSC_EMULATION_STATUS: 4106 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4107 return kvm_hv_set_msr_common(vcpu, msr, data, 4108 msr_info->host_initiated); 4109 #endif 4110 case MSR_IA32_BBL_CR_CTL3: 4111 /* Drop writes to this legacy MSR -- see rdmsr 4112 * counterpart for further detail. 4113 */ 4114 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4115 break; 4116 case MSR_AMD64_OSVW_ID_LENGTH: 4117 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4118 return 1; 4119 vcpu->arch.osvw.length = data; 4120 break; 4121 case MSR_AMD64_OSVW_STATUS: 4122 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4123 return 1; 4124 vcpu->arch.osvw.status = data; 4125 break; 4126 case MSR_PLATFORM_INFO: 4127 if (!msr_info->host_initiated || 4128 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 4129 cpuid_fault_enabled(vcpu))) 4130 return 1; 4131 vcpu->arch.msr_platform_info = data; 4132 break; 4133 case MSR_MISC_FEATURES_ENABLES: 4134 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4135 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4136 !supports_cpuid_fault(vcpu))) 4137 return 1; 4138 vcpu->arch.msr_misc_features_enables = data; 4139 break; 4140 #ifdef CONFIG_X86_64 4141 case MSR_IA32_XFD: 4142 if (!msr_info->host_initiated && 4143 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4144 return 1; 4145 4146 if (data & ~kvm_guest_supported_xfd(vcpu)) 4147 return 1; 4148 4149 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4150 break; 4151 case MSR_IA32_XFD_ERR: 4152 if (!msr_info->host_initiated && 4153 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4154 return 1; 4155 4156 if (data & ~kvm_guest_supported_xfd(vcpu)) 4157 return 1; 4158 4159 vcpu->arch.guest_fpu.xfd_err = data; 4160 break; 4161 #endif 4162 default: 4163 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4164 return kvm_pmu_set_msr(vcpu, msr_info); 4165 4166 /* 4167 * Userspace is allowed to write '0' to MSRs that KVM reports 4168 * as to-be-saved, even if an MSRs isn't fully supported. 4169 */ 4170 if (msr_info->host_initiated && !data && 4171 kvm_is_msr_to_save(msr)) 4172 break; 4173 4174 return KVM_MSR_RET_INVALID; 4175 } 4176 return 0; 4177 } 4178 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4179 4180 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4181 { 4182 u64 data; 4183 u64 mcg_cap = vcpu->arch.mcg_cap; 4184 unsigned bank_num = mcg_cap & 0xff; 4185 u32 offset, last_msr; 4186 4187 switch (msr) { 4188 case MSR_IA32_P5_MC_ADDR: 4189 case MSR_IA32_P5_MC_TYPE: 4190 data = 0; 4191 break; 4192 case MSR_IA32_MCG_CAP: 4193 data = vcpu->arch.mcg_cap; 4194 break; 4195 case MSR_IA32_MCG_CTL: 4196 if (!(mcg_cap & MCG_CTL_P) && !host) 4197 return 1; 4198 data = vcpu->arch.mcg_ctl; 4199 break; 4200 case MSR_IA32_MCG_STATUS: 4201 data = vcpu->arch.mcg_status; 4202 break; 4203 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4204 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4205 if (msr > last_msr) 4206 return 1; 4207 4208 if (!(mcg_cap & MCG_CMCI_P) && !host) 4209 return 1; 4210 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4211 last_msr + 1 - MSR_IA32_MC0_CTL2); 4212 data = vcpu->arch.mci_ctl2_banks[offset]; 4213 break; 4214 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4215 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4216 if (msr > last_msr) 4217 return 1; 4218 4219 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4220 last_msr + 1 - MSR_IA32_MC0_CTL); 4221 data = vcpu->arch.mce_banks[offset]; 4222 break; 4223 default: 4224 return 1; 4225 } 4226 *pdata = data; 4227 return 0; 4228 } 4229 4230 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4231 { 4232 switch (msr_info->index) { 4233 case MSR_IA32_PLATFORM_ID: 4234 case MSR_IA32_EBL_CR_POWERON: 4235 case MSR_IA32_LASTBRANCHFROMIP: 4236 case MSR_IA32_LASTBRANCHTOIP: 4237 case MSR_IA32_LASTINTFROMIP: 4238 case MSR_IA32_LASTINTTOIP: 4239 case MSR_AMD64_SYSCFG: 4240 case MSR_K8_TSEG_ADDR: 4241 case MSR_K8_TSEG_MASK: 4242 case MSR_VM_HSAVE_PA: 4243 case MSR_K8_INT_PENDING_MSG: 4244 case MSR_AMD64_NB_CFG: 4245 case MSR_FAM10H_MMIO_CONF_BASE: 4246 case MSR_AMD64_BU_CFG2: 4247 case MSR_IA32_PERF_CTL: 4248 case MSR_AMD64_DC_CFG: 4249 case MSR_AMD64_TW_CFG: 4250 case MSR_F15H_EX_CFG: 4251 /* 4252 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4253 * limit) MSRs. Just return 0, as we do not want to expose the host 4254 * data here. Do not conditionalize this on CPUID, as KVM does not do 4255 * so for existing CPU-specific MSRs. 4256 */ 4257 case MSR_RAPL_POWER_UNIT: 4258 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4259 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4260 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4261 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4262 msr_info->data = 0; 4263 break; 4264 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4265 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4266 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4267 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4268 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4269 return kvm_pmu_get_msr(vcpu, msr_info); 4270 msr_info->data = 0; 4271 break; 4272 case MSR_IA32_UCODE_REV: 4273 msr_info->data = vcpu->arch.microcode_version; 4274 break; 4275 case MSR_IA32_ARCH_CAPABILITIES: 4276 if (!msr_info->host_initiated && 4277 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4278 return 1; 4279 msr_info->data = vcpu->arch.arch_capabilities; 4280 break; 4281 case MSR_IA32_PERF_CAPABILITIES: 4282 if (!msr_info->host_initiated && 4283 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4284 return 1; 4285 msr_info->data = vcpu->arch.perf_capabilities; 4286 break; 4287 case MSR_IA32_POWER_CTL: 4288 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4289 break; 4290 case MSR_IA32_TSC: { 4291 /* 4292 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4293 * even when not intercepted. AMD manual doesn't explicitly 4294 * state this but appears to behave the same. 4295 * 4296 * On userspace reads and writes, however, we unconditionally 4297 * return L1's TSC value to ensure backwards-compatible 4298 * behavior for migration. 4299 */ 4300 u64 offset, ratio; 4301 4302 if (msr_info->host_initiated) { 4303 offset = vcpu->arch.l1_tsc_offset; 4304 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4305 } else { 4306 offset = vcpu->arch.tsc_offset; 4307 ratio = vcpu->arch.tsc_scaling_ratio; 4308 } 4309 4310 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4311 break; 4312 } 4313 case MSR_IA32_CR_PAT: 4314 msr_info->data = vcpu->arch.pat; 4315 break; 4316 case MSR_MTRRcap: 4317 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4318 case MSR_MTRRdefType: 4319 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4320 case 0xcd: /* fsb frequency */ 4321 msr_info->data = 3; 4322 break; 4323 /* 4324 * MSR_EBC_FREQUENCY_ID 4325 * Conservative value valid for even the basic CPU models. 4326 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4327 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4328 * and 266MHz for model 3, or 4. Set Core Clock 4329 * Frequency to System Bus Frequency Ratio to 1 (bits 4330 * 31:24) even though these are only valid for CPU 4331 * models > 2, however guests may end up dividing or 4332 * multiplying by zero otherwise. 4333 */ 4334 case MSR_EBC_FREQUENCY_ID: 4335 msr_info->data = 1 << 24; 4336 break; 4337 case MSR_IA32_APICBASE: 4338 msr_info->data = kvm_get_apic_base(vcpu); 4339 break; 4340 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4341 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4342 case MSR_IA32_TSC_DEADLINE: 4343 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4344 break; 4345 case MSR_IA32_TSC_ADJUST: 4346 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4347 break; 4348 case MSR_IA32_MISC_ENABLE: 4349 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4350 break; 4351 case MSR_IA32_SMBASE: 4352 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4353 return 1; 4354 msr_info->data = vcpu->arch.smbase; 4355 break; 4356 case MSR_SMI_COUNT: 4357 msr_info->data = vcpu->arch.smi_count; 4358 break; 4359 case MSR_IA32_PERF_STATUS: 4360 /* TSC increment by tick */ 4361 msr_info->data = 1000ULL; 4362 /* CPU multiplier */ 4363 msr_info->data |= (((uint64_t)4ULL) << 40); 4364 break; 4365 case MSR_EFER: 4366 msr_info->data = vcpu->arch.efer; 4367 break; 4368 case MSR_KVM_WALL_CLOCK: 4369 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4370 return 1; 4371 4372 msr_info->data = vcpu->kvm->arch.wall_clock; 4373 break; 4374 case MSR_KVM_WALL_CLOCK_NEW: 4375 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4376 return 1; 4377 4378 msr_info->data = vcpu->kvm->arch.wall_clock; 4379 break; 4380 case MSR_KVM_SYSTEM_TIME: 4381 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4382 return 1; 4383 4384 msr_info->data = vcpu->arch.time; 4385 break; 4386 case MSR_KVM_SYSTEM_TIME_NEW: 4387 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4388 return 1; 4389 4390 msr_info->data = vcpu->arch.time; 4391 break; 4392 case MSR_KVM_ASYNC_PF_EN: 4393 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4394 return 1; 4395 4396 msr_info->data = vcpu->arch.apf.msr_en_val; 4397 break; 4398 case MSR_KVM_ASYNC_PF_INT: 4399 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4400 return 1; 4401 4402 msr_info->data = vcpu->arch.apf.msr_int_val; 4403 break; 4404 case MSR_KVM_ASYNC_PF_ACK: 4405 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4406 return 1; 4407 4408 msr_info->data = 0; 4409 break; 4410 case MSR_KVM_STEAL_TIME: 4411 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4412 return 1; 4413 4414 msr_info->data = vcpu->arch.st.msr_val; 4415 break; 4416 case MSR_KVM_PV_EOI_EN: 4417 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4418 return 1; 4419 4420 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4421 break; 4422 case MSR_KVM_POLL_CONTROL: 4423 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4424 return 1; 4425 4426 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4427 break; 4428 case MSR_IA32_P5_MC_ADDR: 4429 case MSR_IA32_P5_MC_TYPE: 4430 case MSR_IA32_MCG_CAP: 4431 case MSR_IA32_MCG_CTL: 4432 case MSR_IA32_MCG_STATUS: 4433 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4434 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4435 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4436 msr_info->host_initiated); 4437 case MSR_IA32_XSS: 4438 if (!msr_info->host_initiated && 4439 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4440 return 1; 4441 msr_info->data = vcpu->arch.ia32_xss; 4442 break; 4443 case MSR_K7_CLK_CTL: 4444 /* 4445 * Provide expected ramp-up count for K7. All other 4446 * are set to zero, indicating minimum divisors for 4447 * every field. 4448 * 4449 * This prevents guest kernels on AMD host with CPU 4450 * type 6, model 8 and higher from exploding due to 4451 * the rdmsr failing. 4452 */ 4453 msr_info->data = 0x20000000; 4454 break; 4455 #ifdef CONFIG_KVM_HYPERV 4456 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4457 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4458 case HV_X64_MSR_SYNDBG_OPTIONS: 4459 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4460 case HV_X64_MSR_CRASH_CTL: 4461 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4462 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4463 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4464 case HV_X64_MSR_TSC_EMULATION_STATUS: 4465 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4466 return kvm_hv_get_msr_common(vcpu, 4467 msr_info->index, &msr_info->data, 4468 msr_info->host_initiated); 4469 #endif 4470 case MSR_IA32_BBL_CR_CTL3: 4471 /* This legacy MSR exists but isn't fully documented in current 4472 * silicon. It is however accessed by winxp in very narrow 4473 * scenarios where it sets bit #19, itself documented as 4474 * a "reserved" bit. Best effort attempt to source coherent 4475 * read data here should the balance of the register be 4476 * interpreted by the guest: 4477 * 4478 * L2 cache control register 3: 64GB range, 256KB size, 4479 * enabled, latency 0x1, configured 4480 */ 4481 msr_info->data = 0xbe702111; 4482 break; 4483 case MSR_AMD64_OSVW_ID_LENGTH: 4484 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4485 return 1; 4486 msr_info->data = vcpu->arch.osvw.length; 4487 break; 4488 case MSR_AMD64_OSVW_STATUS: 4489 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4490 return 1; 4491 msr_info->data = vcpu->arch.osvw.status; 4492 break; 4493 case MSR_PLATFORM_INFO: 4494 if (!msr_info->host_initiated && 4495 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4496 return 1; 4497 msr_info->data = vcpu->arch.msr_platform_info; 4498 break; 4499 case MSR_MISC_FEATURES_ENABLES: 4500 msr_info->data = vcpu->arch.msr_misc_features_enables; 4501 break; 4502 case MSR_K7_HWCR: 4503 msr_info->data = vcpu->arch.msr_hwcr; 4504 break; 4505 #ifdef CONFIG_X86_64 4506 case MSR_IA32_XFD: 4507 if (!msr_info->host_initiated && 4508 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4509 return 1; 4510 4511 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4512 break; 4513 case MSR_IA32_XFD_ERR: 4514 if (!msr_info->host_initiated && 4515 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4516 return 1; 4517 4518 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4519 break; 4520 #endif 4521 default: 4522 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4523 return kvm_pmu_get_msr(vcpu, msr_info); 4524 4525 /* 4526 * Userspace is allowed to read MSRs that KVM reports as 4527 * to-be-saved, even if an MSR isn't fully supported. 4528 */ 4529 if (msr_info->host_initiated && 4530 kvm_is_msr_to_save(msr_info->index)) { 4531 msr_info->data = 0; 4532 break; 4533 } 4534 4535 return KVM_MSR_RET_INVALID; 4536 } 4537 return 0; 4538 } 4539 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4540 4541 /* 4542 * Read or write a bunch of msrs. All parameters are kernel addresses. 4543 * 4544 * @return number of msrs set successfully. 4545 */ 4546 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4547 struct kvm_msr_entry *entries, 4548 int (*do_msr)(struct kvm_vcpu *vcpu, 4549 unsigned index, u64 *data)) 4550 { 4551 int i; 4552 4553 for (i = 0; i < msrs->nmsrs; ++i) 4554 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4555 break; 4556 4557 return i; 4558 } 4559 4560 /* 4561 * Read or write a bunch of msrs. Parameters are user addresses. 4562 * 4563 * @return number of msrs set successfully. 4564 */ 4565 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4566 int (*do_msr)(struct kvm_vcpu *vcpu, 4567 unsigned index, u64 *data), 4568 int writeback) 4569 { 4570 struct kvm_msrs msrs; 4571 struct kvm_msr_entry *entries; 4572 unsigned size; 4573 int r; 4574 4575 r = -EFAULT; 4576 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4577 goto out; 4578 4579 r = -E2BIG; 4580 if (msrs.nmsrs >= MAX_IO_MSRS) 4581 goto out; 4582 4583 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4584 entries = memdup_user(user_msrs->entries, size); 4585 if (IS_ERR(entries)) { 4586 r = PTR_ERR(entries); 4587 goto out; 4588 } 4589 4590 r = __msr_io(vcpu, &msrs, entries, do_msr); 4591 4592 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4593 r = -EFAULT; 4594 4595 kfree(entries); 4596 out: 4597 return r; 4598 } 4599 4600 static inline bool kvm_can_mwait_in_guest(void) 4601 { 4602 return boot_cpu_has(X86_FEATURE_MWAIT) && 4603 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4604 boot_cpu_has(X86_FEATURE_ARAT); 4605 } 4606 4607 #ifdef CONFIG_KVM_HYPERV 4608 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4609 struct kvm_cpuid2 __user *cpuid_arg) 4610 { 4611 struct kvm_cpuid2 cpuid; 4612 int r; 4613 4614 r = -EFAULT; 4615 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4616 return r; 4617 4618 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4619 if (r) 4620 return r; 4621 4622 r = -EFAULT; 4623 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4624 return r; 4625 4626 return 0; 4627 } 4628 #endif 4629 4630 static bool kvm_is_vm_type_supported(unsigned long type) 4631 { 4632 return type == KVM_X86_DEFAULT_VM || 4633 (type == KVM_X86_SW_PROTECTED_VM && 4634 IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled); 4635 } 4636 4637 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4638 { 4639 int r = 0; 4640 4641 switch (ext) { 4642 case KVM_CAP_IRQCHIP: 4643 case KVM_CAP_HLT: 4644 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4645 case KVM_CAP_SET_TSS_ADDR: 4646 case KVM_CAP_EXT_CPUID: 4647 case KVM_CAP_EXT_EMUL_CPUID: 4648 case KVM_CAP_CLOCKSOURCE: 4649 case KVM_CAP_PIT: 4650 case KVM_CAP_NOP_IO_DELAY: 4651 case KVM_CAP_MP_STATE: 4652 case KVM_CAP_SYNC_MMU: 4653 case KVM_CAP_USER_NMI: 4654 case KVM_CAP_REINJECT_CONTROL: 4655 case KVM_CAP_IRQ_INJECT_STATUS: 4656 case KVM_CAP_IOEVENTFD: 4657 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4658 case KVM_CAP_PIT2: 4659 case KVM_CAP_PIT_STATE2: 4660 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4661 case KVM_CAP_VCPU_EVENTS: 4662 #ifdef CONFIG_KVM_HYPERV 4663 case KVM_CAP_HYPERV: 4664 case KVM_CAP_HYPERV_VAPIC: 4665 case KVM_CAP_HYPERV_SPIN: 4666 case KVM_CAP_HYPERV_TIME: 4667 case KVM_CAP_HYPERV_SYNIC: 4668 case KVM_CAP_HYPERV_SYNIC2: 4669 case KVM_CAP_HYPERV_VP_INDEX: 4670 case KVM_CAP_HYPERV_EVENTFD: 4671 case KVM_CAP_HYPERV_TLBFLUSH: 4672 case KVM_CAP_HYPERV_SEND_IPI: 4673 case KVM_CAP_HYPERV_CPUID: 4674 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4675 case KVM_CAP_SYS_HYPERV_CPUID: 4676 #endif 4677 case KVM_CAP_PCI_SEGMENT: 4678 case KVM_CAP_DEBUGREGS: 4679 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4680 case KVM_CAP_XSAVE: 4681 case KVM_CAP_ASYNC_PF: 4682 case KVM_CAP_ASYNC_PF_INT: 4683 case KVM_CAP_GET_TSC_KHZ: 4684 case KVM_CAP_KVMCLOCK_CTRL: 4685 case KVM_CAP_READONLY_MEM: 4686 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4687 case KVM_CAP_TSC_DEADLINE_TIMER: 4688 case KVM_CAP_DISABLE_QUIRKS: 4689 case KVM_CAP_SET_BOOT_CPU_ID: 4690 case KVM_CAP_SPLIT_IRQCHIP: 4691 case KVM_CAP_IMMEDIATE_EXIT: 4692 case KVM_CAP_PMU_EVENT_FILTER: 4693 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4694 case KVM_CAP_GET_MSR_FEATURES: 4695 case KVM_CAP_MSR_PLATFORM_INFO: 4696 case KVM_CAP_EXCEPTION_PAYLOAD: 4697 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4698 case KVM_CAP_SET_GUEST_DEBUG: 4699 case KVM_CAP_LAST_CPU: 4700 case KVM_CAP_X86_USER_SPACE_MSR: 4701 case KVM_CAP_X86_MSR_FILTER: 4702 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4703 #ifdef CONFIG_X86_SGX_KVM 4704 case KVM_CAP_SGX_ATTRIBUTE: 4705 #endif 4706 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4707 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4708 case KVM_CAP_SREGS2: 4709 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4710 case KVM_CAP_VCPU_ATTRIBUTES: 4711 case KVM_CAP_SYS_ATTRIBUTES: 4712 case KVM_CAP_VAPIC: 4713 case KVM_CAP_ENABLE_CAP: 4714 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4715 case KVM_CAP_IRQFD_RESAMPLE: 4716 case KVM_CAP_MEMORY_FAULT_INFO: 4717 r = 1; 4718 break; 4719 case KVM_CAP_EXIT_HYPERCALL: 4720 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4721 break; 4722 case KVM_CAP_SET_GUEST_DEBUG2: 4723 return KVM_GUESTDBG_VALID_MASK; 4724 #ifdef CONFIG_KVM_XEN 4725 case KVM_CAP_XEN_HVM: 4726 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4727 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4728 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4729 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4730 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4731 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | 4732 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; 4733 if (sched_info_on()) 4734 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4735 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4736 break; 4737 #endif 4738 case KVM_CAP_SYNC_REGS: 4739 r = KVM_SYNC_X86_VALID_FIELDS; 4740 break; 4741 case KVM_CAP_ADJUST_CLOCK: 4742 r = KVM_CLOCK_VALID_FLAGS; 4743 break; 4744 case KVM_CAP_X86_DISABLE_EXITS: 4745 r = KVM_X86_DISABLE_EXITS_PAUSE; 4746 4747 if (!mitigate_smt_rsb) { 4748 r |= KVM_X86_DISABLE_EXITS_HLT | 4749 KVM_X86_DISABLE_EXITS_CSTATE; 4750 4751 if (kvm_can_mwait_in_guest()) 4752 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4753 } 4754 break; 4755 case KVM_CAP_X86_SMM: 4756 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4757 break; 4758 4759 /* SMBASE is usually relocated above 1M on modern chipsets, 4760 * and SMM handlers might indeed rely on 4G segment limits, 4761 * so do not report SMM to be available if real mode is 4762 * emulated via vm86 mode. Still, do not go to great lengths 4763 * to avoid userspace's usage of the feature, because it is a 4764 * fringe case that is not enabled except via specific settings 4765 * of the module parameters. 4766 */ 4767 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4768 break; 4769 case KVM_CAP_NR_VCPUS: 4770 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4771 break; 4772 case KVM_CAP_MAX_VCPUS: 4773 r = KVM_MAX_VCPUS; 4774 break; 4775 case KVM_CAP_MAX_VCPU_ID: 4776 r = KVM_MAX_VCPU_IDS; 4777 break; 4778 case KVM_CAP_PV_MMU: /* obsolete */ 4779 r = 0; 4780 break; 4781 case KVM_CAP_MCE: 4782 r = KVM_MAX_MCE_BANKS; 4783 break; 4784 case KVM_CAP_XCRS: 4785 r = boot_cpu_has(X86_FEATURE_XSAVE); 4786 break; 4787 case KVM_CAP_TSC_CONTROL: 4788 case KVM_CAP_VM_TSC_CONTROL: 4789 r = kvm_caps.has_tsc_control; 4790 break; 4791 case KVM_CAP_X2APIC_API: 4792 r = KVM_X2APIC_API_VALID_FLAGS; 4793 break; 4794 case KVM_CAP_NESTED_STATE: 4795 r = kvm_x86_ops.nested_ops->get_state ? 4796 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4797 break; 4798 #ifdef CONFIG_KVM_HYPERV 4799 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4800 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4801 break; 4802 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4803 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4804 break; 4805 #endif 4806 case KVM_CAP_SMALLER_MAXPHYADDR: 4807 r = (int) allow_smaller_maxphyaddr; 4808 break; 4809 case KVM_CAP_STEAL_TIME: 4810 r = sched_info_on(); 4811 break; 4812 case KVM_CAP_X86_BUS_LOCK_EXIT: 4813 if (kvm_caps.has_bus_lock_exit) 4814 r = KVM_BUS_LOCK_DETECTION_OFF | 4815 KVM_BUS_LOCK_DETECTION_EXIT; 4816 else 4817 r = 0; 4818 break; 4819 case KVM_CAP_XSAVE2: { 4820 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4821 if (r < sizeof(struct kvm_xsave)) 4822 r = sizeof(struct kvm_xsave); 4823 break; 4824 } 4825 case KVM_CAP_PMU_CAPABILITY: 4826 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4827 break; 4828 case KVM_CAP_DISABLE_QUIRKS2: 4829 r = KVM_X86_VALID_QUIRKS; 4830 break; 4831 case KVM_CAP_X86_NOTIFY_VMEXIT: 4832 r = kvm_caps.has_notify_vmexit; 4833 break; 4834 case KVM_CAP_VM_TYPES: 4835 r = BIT(KVM_X86_DEFAULT_VM); 4836 if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM)) 4837 r |= BIT(KVM_X86_SW_PROTECTED_VM); 4838 break; 4839 default: 4840 break; 4841 } 4842 return r; 4843 } 4844 4845 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4846 { 4847 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4848 4849 if ((u64)(unsigned long)uaddr != attr->addr) 4850 return ERR_PTR_USR(-EFAULT); 4851 return uaddr; 4852 } 4853 4854 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4855 { 4856 u64 __user *uaddr = kvm_get_attr_addr(attr); 4857 4858 if (attr->group) 4859 return -ENXIO; 4860 4861 if (IS_ERR(uaddr)) 4862 return PTR_ERR(uaddr); 4863 4864 switch (attr->attr) { 4865 case KVM_X86_XCOMP_GUEST_SUPP: 4866 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4867 return -EFAULT; 4868 return 0; 4869 default: 4870 return -ENXIO; 4871 } 4872 } 4873 4874 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4875 { 4876 if (attr->group) 4877 return -ENXIO; 4878 4879 switch (attr->attr) { 4880 case KVM_X86_XCOMP_GUEST_SUPP: 4881 return 0; 4882 default: 4883 return -ENXIO; 4884 } 4885 } 4886 4887 long kvm_arch_dev_ioctl(struct file *filp, 4888 unsigned int ioctl, unsigned long arg) 4889 { 4890 void __user *argp = (void __user *)arg; 4891 long r; 4892 4893 switch (ioctl) { 4894 case KVM_GET_MSR_INDEX_LIST: { 4895 struct kvm_msr_list __user *user_msr_list = argp; 4896 struct kvm_msr_list msr_list; 4897 unsigned n; 4898 4899 r = -EFAULT; 4900 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4901 goto out; 4902 n = msr_list.nmsrs; 4903 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4904 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4905 goto out; 4906 r = -E2BIG; 4907 if (n < msr_list.nmsrs) 4908 goto out; 4909 r = -EFAULT; 4910 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4911 num_msrs_to_save * sizeof(u32))) 4912 goto out; 4913 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4914 &emulated_msrs, 4915 num_emulated_msrs * sizeof(u32))) 4916 goto out; 4917 r = 0; 4918 break; 4919 } 4920 case KVM_GET_SUPPORTED_CPUID: 4921 case KVM_GET_EMULATED_CPUID: { 4922 struct kvm_cpuid2 __user *cpuid_arg = argp; 4923 struct kvm_cpuid2 cpuid; 4924 4925 r = -EFAULT; 4926 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4927 goto out; 4928 4929 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4930 ioctl); 4931 if (r) 4932 goto out; 4933 4934 r = -EFAULT; 4935 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4936 goto out; 4937 r = 0; 4938 break; 4939 } 4940 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4941 r = -EFAULT; 4942 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4943 sizeof(kvm_caps.supported_mce_cap))) 4944 goto out; 4945 r = 0; 4946 break; 4947 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4948 struct kvm_msr_list __user *user_msr_list = argp; 4949 struct kvm_msr_list msr_list; 4950 unsigned int n; 4951 4952 r = -EFAULT; 4953 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4954 goto out; 4955 n = msr_list.nmsrs; 4956 msr_list.nmsrs = num_msr_based_features; 4957 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4958 goto out; 4959 r = -E2BIG; 4960 if (n < msr_list.nmsrs) 4961 goto out; 4962 r = -EFAULT; 4963 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4964 num_msr_based_features * sizeof(u32))) 4965 goto out; 4966 r = 0; 4967 break; 4968 } 4969 case KVM_GET_MSRS: 4970 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4971 break; 4972 #ifdef CONFIG_KVM_HYPERV 4973 case KVM_GET_SUPPORTED_HV_CPUID: 4974 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4975 break; 4976 #endif 4977 case KVM_GET_DEVICE_ATTR: { 4978 struct kvm_device_attr attr; 4979 r = -EFAULT; 4980 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4981 break; 4982 r = kvm_x86_dev_get_attr(&attr); 4983 break; 4984 } 4985 case KVM_HAS_DEVICE_ATTR: { 4986 struct kvm_device_attr attr; 4987 r = -EFAULT; 4988 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4989 break; 4990 r = kvm_x86_dev_has_attr(&attr); 4991 break; 4992 } 4993 default: 4994 r = -EINVAL; 4995 break; 4996 } 4997 out: 4998 return r; 4999 } 5000 5001 static void wbinvd_ipi(void *garbage) 5002 { 5003 wbinvd(); 5004 } 5005 5006 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 5007 { 5008 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 5009 } 5010 5011 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 5012 { 5013 /* Address WBINVD may be executed by guest */ 5014 if (need_emulate_wbinvd(vcpu)) { 5015 if (static_call(kvm_x86_has_wbinvd_exit)()) 5016 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5017 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 5018 smp_call_function_single(vcpu->cpu, 5019 wbinvd_ipi, NULL, 1); 5020 } 5021 5022 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 5023 5024 /* Save host pkru register if supported */ 5025 vcpu->arch.host_pkru = read_pkru(); 5026 5027 /* Apply any externally detected TSC adjustments (due to suspend) */ 5028 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 5029 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 5030 vcpu->arch.tsc_offset_adjustment = 0; 5031 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5032 } 5033 5034 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 5035 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 5036 rdtsc() - vcpu->arch.last_host_tsc; 5037 if (tsc_delta < 0) 5038 mark_tsc_unstable("KVM discovered backwards TSC"); 5039 5040 if (kvm_check_tsc_unstable()) { 5041 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 5042 vcpu->arch.last_guest_tsc); 5043 kvm_vcpu_write_tsc_offset(vcpu, offset); 5044 vcpu->arch.tsc_catchup = 1; 5045 } 5046 5047 if (kvm_lapic_hv_timer_in_use(vcpu)) 5048 kvm_lapic_restart_hv_timer(vcpu); 5049 5050 /* 5051 * On a host with synchronized TSC, there is no need to update 5052 * kvmclock on vcpu->cpu migration 5053 */ 5054 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5055 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5056 if (vcpu->cpu != cpu) 5057 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5058 vcpu->cpu = cpu; 5059 } 5060 5061 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5062 } 5063 5064 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5065 { 5066 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5067 struct kvm_steal_time __user *st; 5068 struct kvm_memslots *slots; 5069 static const u8 preempted = KVM_VCPU_PREEMPTED; 5070 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5071 5072 /* 5073 * The vCPU can be marked preempted if and only if the VM-Exit was on 5074 * an instruction boundary and will not trigger guest emulation of any 5075 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5076 * when this is true, for example allowing the vCPU to be marked 5077 * preempted if and only if the VM-Exit was due to a host interrupt. 5078 */ 5079 if (!vcpu->arch.at_instruction_boundary) { 5080 vcpu->stat.preemption_other++; 5081 return; 5082 } 5083 5084 vcpu->stat.preemption_reported++; 5085 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5086 return; 5087 5088 if (vcpu->arch.st.preempted) 5089 return; 5090 5091 /* This happens on process exit */ 5092 if (unlikely(current->mm != vcpu->kvm->mm)) 5093 return; 5094 5095 slots = kvm_memslots(vcpu->kvm); 5096 5097 if (unlikely(slots->generation != ghc->generation || 5098 gpa != ghc->gpa || 5099 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5100 return; 5101 5102 st = (struct kvm_steal_time __user *)ghc->hva; 5103 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5104 5105 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5106 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5107 5108 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5109 } 5110 5111 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5112 { 5113 int idx; 5114 5115 if (vcpu->preempted) { 5116 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu); 5117 5118 /* 5119 * Take the srcu lock as memslots will be accessed to check the gfn 5120 * cache generation against the memslots generation. 5121 */ 5122 idx = srcu_read_lock(&vcpu->kvm->srcu); 5123 if (kvm_xen_msr_enabled(vcpu->kvm)) 5124 kvm_xen_runstate_set_preempted(vcpu); 5125 else 5126 kvm_steal_time_set_preempted(vcpu); 5127 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5128 } 5129 5130 static_call(kvm_x86_vcpu_put)(vcpu); 5131 vcpu->arch.last_host_tsc = rdtsc(); 5132 } 5133 5134 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5135 struct kvm_lapic_state *s) 5136 { 5137 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 5138 5139 return kvm_apic_get_state(vcpu, s); 5140 } 5141 5142 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5143 struct kvm_lapic_state *s) 5144 { 5145 int r; 5146 5147 r = kvm_apic_set_state(vcpu, s); 5148 if (r) 5149 return r; 5150 update_cr8_intercept(vcpu); 5151 5152 return 0; 5153 } 5154 5155 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5156 { 5157 /* 5158 * We can accept userspace's request for interrupt injection 5159 * as long as we have a place to store the interrupt number. 5160 * The actual injection will happen when the CPU is able to 5161 * deliver the interrupt. 5162 */ 5163 if (kvm_cpu_has_extint(vcpu)) 5164 return false; 5165 5166 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5167 return (!lapic_in_kernel(vcpu) || 5168 kvm_apic_accept_pic_intr(vcpu)); 5169 } 5170 5171 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5172 { 5173 /* 5174 * Do not cause an interrupt window exit if an exception 5175 * is pending or an event needs reinjection; userspace 5176 * might want to inject the interrupt manually using KVM_SET_REGS 5177 * or KVM_SET_SREGS. For that to work, we must be at an 5178 * instruction boundary and with no events half-injected. 5179 */ 5180 return (kvm_arch_interrupt_allowed(vcpu) && 5181 kvm_cpu_accept_dm_intr(vcpu) && 5182 !kvm_event_needs_reinjection(vcpu) && 5183 !kvm_is_exception_pending(vcpu)); 5184 } 5185 5186 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5187 struct kvm_interrupt *irq) 5188 { 5189 if (irq->irq >= KVM_NR_INTERRUPTS) 5190 return -EINVAL; 5191 5192 if (!irqchip_in_kernel(vcpu->kvm)) { 5193 kvm_queue_interrupt(vcpu, irq->irq, false); 5194 kvm_make_request(KVM_REQ_EVENT, vcpu); 5195 return 0; 5196 } 5197 5198 /* 5199 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5200 * fail for in-kernel 8259. 5201 */ 5202 if (pic_in_kernel(vcpu->kvm)) 5203 return -ENXIO; 5204 5205 if (vcpu->arch.pending_external_vector != -1) 5206 return -EEXIST; 5207 5208 vcpu->arch.pending_external_vector = irq->irq; 5209 kvm_make_request(KVM_REQ_EVENT, vcpu); 5210 return 0; 5211 } 5212 5213 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5214 { 5215 kvm_inject_nmi(vcpu); 5216 5217 return 0; 5218 } 5219 5220 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5221 struct kvm_tpr_access_ctl *tac) 5222 { 5223 if (tac->flags) 5224 return -EINVAL; 5225 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5226 return 0; 5227 } 5228 5229 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5230 u64 mcg_cap) 5231 { 5232 int r; 5233 unsigned bank_num = mcg_cap & 0xff, bank; 5234 5235 r = -EINVAL; 5236 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5237 goto out; 5238 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5239 goto out; 5240 r = 0; 5241 vcpu->arch.mcg_cap = mcg_cap; 5242 /* Init IA32_MCG_CTL to all 1s */ 5243 if (mcg_cap & MCG_CTL_P) 5244 vcpu->arch.mcg_ctl = ~(u64)0; 5245 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5246 for (bank = 0; bank < bank_num; bank++) { 5247 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5248 if (mcg_cap & MCG_CMCI_P) 5249 vcpu->arch.mci_ctl2_banks[bank] = 0; 5250 } 5251 5252 kvm_apic_after_set_mcg_cap(vcpu); 5253 5254 static_call(kvm_x86_setup_mce)(vcpu); 5255 out: 5256 return r; 5257 } 5258 5259 /* 5260 * Validate this is an UCNA (uncorrectable no action) error by checking the 5261 * MCG_STATUS and MCi_STATUS registers: 5262 * - none of the bits for Machine Check Exceptions are set 5263 * - both the VAL (valid) and UC (uncorrectable) bits are set 5264 * MCI_STATUS_PCC - Processor Context Corrupted 5265 * MCI_STATUS_S - Signaled as a Machine Check Exception 5266 * MCI_STATUS_AR - Software recoverable Action Required 5267 */ 5268 static bool is_ucna(struct kvm_x86_mce *mce) 5269 { 5270 return !mce->mcg_status && 5271 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5272 (mce->status & MCI_STATUS_VAL) && 5273 (mce->status & MCI_STATUS_UC); 5274 } 5275 5276 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5277 { 5278 u64 mcg_cap = vcpu->arch.mcg_cap; 5279 5280 banks[1] = mce->status; 5281 banks[2] = mce->addr; 5282 banks[3] = mce->misc; 5283 vcpu->arch.mcg_status = mce->mcg_status; 5284 5285 if (!(mcg_cap & MCG_CMCI_P) || 5286 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5287 return 0; 5288 5289 if (lapic_in_kernel(vcpu)) 5290 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5291 5292 return 0; 5293 } 5294 5295 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5296 struct kvm_x86_mce *mce) 5297 { 5298 u64 mcg_cap = vcpu->arch.mcg_cap; 5299 unsigned bank_num = mcg_cap & 0xff; 5300 u64 *banks = vcpu->arch.mce_banks; 5301 5302 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5303 return -EINVAL; 5304 5305 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5306 5307 if (is_ucna(mce)) 5308 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5309 5310 /* 5311 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5312 * reporting is disabled 5313 */ 5314 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5315 vcpu->arch.mcg_ctl != ~(u64)0) 5316 return 0; 5317 /* 5318 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5319 * reporting is disabled for the bank 5320 */ 5321 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5322 return 0; 5323 if (mce->status & MCI_STATUS_UC) { 5324 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5325 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5326 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5327 return 0; 5328 } 5329 if (banks[1] & MCI_STATUS_VAL) 5330 mce->status |= MCI_STATUS_OVER; 5331 banks[2] = mce->addr; 5332 banks[3] = mce->misc; 5333 vcpu->arch.mcg_status = mce->mcg_status; 5334 banks[1] = mce->status; 5335 kvm_queue_exception(vcpu, MC_VECTOR); 5336 } else if (!(banks[1] & MCI_STATUS_VAL) 5337 || !(banks[1] & MCI_STATUS_UC)) { 5338 if (banks[1] & MCI_STATUS_VAL) 5339 mce->status |= MCI_STATUS_OVER; 5340 banks[2] = mce->addr; 5341 banks[3] = mce->misc; 5342 banks[1] = mce->status; 5343 } else 5344 banks[1] |= MCI_STATUS_OVER; 5345 return 0; 5346 } 5347 5348 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5349 struct kvm_vcpu_events *events) 5350 { 5351 struct kvm_queued_exception *ex; 5352 5353 process_nmi(vcpu); 5354 5355 #ifdef CONFIG_KVM_SMM 5356 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5357 process_smi(vcpu); 5358 #endif 5359 5360 /* 5361 * KVM's ABI only allows for one exception to be migrated. Luckily, 5362 * the only time there can be two queued exceptions is if there's a 5363 * non-exiting _injected_ exception, and a pending exiting exception. 5364 * In that case, ignore the VM-Exiting exception as it's an extension 5365 * of the injected exception. 5366 */ 5367 if (vcpu->arch.exception_vmexit.pending && 5368 !vcpu->arch.exception.pending && 5369 !vcpu->arch.exception.injected) 5370 ex = &vcpu->arch.exception_vmexit; 5371 else 5372 ex = &vcpu->arch.exception; 5373 5374 /* 5375 * In guest mode, payload delivery should be deferred if the exception 5376 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5377 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5378 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5379 * propagate the payload and so it cannot be safely deferred. Deliver 5380 * the payload if the capability hasn't been requested. 5381 */ 5382 if (!vcpu->kvm->arch.exception_payload_enabled && 5383 ex->pending && ex->has_payload) 5384 kvm_deliver_exception_payload(vcpu, ex); 5385 5386 memset(events, 0, sizeof(*events)); 5387 5388 /* 5389 * The API doesn't provide the instruction length for software 5390 * exceptions, so don't report them. As long as the guest RIP 5391 * isn't advanced, we should expect to encounter the exception 5392 * again. 5393 */ 5394 if (!kvm_exception_is_soft(ex->vector)) { 5395 events->exception.injected = ex->injected; 5396 events->exception.pending = ex->pending; 5397 /* 5398 * For ABI compatibility, deliberately conflate 5399 * pending and injected exceptions when 5400 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5401 */ 5402 if (!vcpu->kvm->arch.exception_payload_enabled) 5403 events->exception.injected |= ex->pending; 5404 } 5405 events->exception.nr = ex->vector; 5406 events->exception.has_error_code = ex->has_error_code; 5407 events->exception.error_code = ex->error_code; 5408 events->exception_has_payload = ex->has_payload; 5409 events->exception_payload = ex->payload; 5410 5411 events->interrupt.injected = 5412 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5413 events->interrupt.nr = vcpu->arch.interrupt.nr; 5414 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5415 5416 events->nmi.injected = vcpu->arch.nmi_injected; 5417 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5418 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5419 5420 /* events->sipi_vector is never valid when reporting to user space */ 5421 5422 #ifdef CONFIG_KVM_SMM 5423 events->smi.smm = is_smm(vcpu); 5424 events->smi.pending = vcpu->arch.smi_pending; 5425 events->smi.smm_inside_nmi = 5426 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5427 #endif 5428 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5429 5430 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5431 | KVM_VCPUEVENT_VALID_SHADOW 5432 | KVM_VCPUEVENT_VALID_SMM); 5433 if (vcpu->kvm->arch.exception_payload_enabled) 5434 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5435 if (vcpu->kvm->arch.triple_fault_event) { 5436 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5437 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5438 } 5439 } 5440 5441 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5442 struct kvm_vcpu_events *events) 5443 { 5444 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5445 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5446 | KVM_VCPUEVENT_VALID_SHADOW 5447 | KVM_VCPUEVENT_VALID_SMM 5448 | KVM_VCPUEVENT_VALID_PAYLOAD 5449 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5450 return -EINVAL; 5451 5452 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5453 if (!vcpu->kvm->arch.exception_payload_enabled) 5454 return -EINVAL; 5455 if (events->exception.pending) 5456 events->exception.injected = 0; 5457 else 5458 events->exception_has_payload = 0; 5459 } else { 5460 events->exception.pending = 0; 5461 events->exception_has_payload = 0; 5462 } 5463 5464 if ((events->exception.injected || events->exception.pending) && 5465 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5466 return -EINVAL; 5467 5468 /* INITs are latched while in SMM */ 5469 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5470 (events->smi.smm || events->smi.pending) && 5471 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5472 return -EINVAL; 5473 5474 process_nmi(vcpu); 5475 5476 /* 5477 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5478 * morph the exception to a VM-Exit if appropriate. Do this only for 5479 * pending exceptions, already-injected exceptions are not subject to 5480 * intercpetion. Note, userspace that conflates pending and injected 5481 * is hosed, and will incorrectly convert an injected exception into a 5482 * pending exception, which in turn may cause a spurious VM-Exit. 5483 */ 5484 vcpu->arch.exception_from_userspace = events->exception.pending; 5485 5486 vcpu->arch.exception_vmexit.pending = false; 5487 5488 vcpu->arch.exception.injected = events->exception.injected; 5489 vcpu->arch.exception.pending = events->exception.pending; 5490 vcpu->arch.exception.vector = events->exception.nr; 5491 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5492 vcpu->arch.exception.error_code = events->exception.error_code; 5493 vcpu->arch.exception.has_payload = events->exception_has_payload; 5494 vcpu->arch.exception.payload = events->exception_payload; 5495 5496 vcpu->arch.interrupt.injected = events->interrupt.injected; 5497 vcpu->arch.interrupt.nr = events->interrupt.nr; 5498 vcpu->arch.interrupt.soft = events->interrupt.soft; 5499 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5500 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5501 events->interrupt.shadow); 5502 5503 vcpu->arch.nmi_injected = events->nmi.injected; 5504 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5505 vcpu->arch.nmi_pending = 0; 5506 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5507 if (events->nmi.pending) 5508 kvm_make_request(KVM_REQ_NMI, vcpu); 5509 } 5510 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5511 5512 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5513 lapic_in_kernel(vcpu)) 5514 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5515 5516 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5517 #ifdef CONFIG_KVM_SMM 5518 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5519 kvm_leave_nested(vcpu); 5520 kvm_smm_changed(vcpu, events->smi.smm); 5521 } 5522 5523 vcpu->arch.smi_pending = events->smi.pending; 5524 5525 if (events->smi.smm) { 5526 if (events->smi.smm_inside_nmi) 5527 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5528 else 5529 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5530 } 5531 5532 #else 5533 if (events->smi.smm || events->smi.pending || 5534 events->smi.smm_inside_nmi) 5535 return -EINVAL; 5536 #endif 5537 5538 if (lapic_in_kernel(vcpu)) { 5539 if (events->smi.latched_init) 5540 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5541 else 5542 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5543 } 5544 } 5545 5546 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5547 if (!vcpu->kvm->arch.triple_fault_event) 5548 return -EINVAL; 5549 if (events->triple_fault.pending) 5550 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5551 else 5552 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5553 } 5554 5555 kvm_make_request(KVM_REQ_EVENT, vcpu); 5556 5557 return 0; 5558 } 5559 5560 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5561 struct kvm_debugregs *dbgregs) 5562 { 5563 unsigned int i; 5564 5565 memset(dbgregs, 0, sizeof(*dbgregs)); 5566 5567 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); 5568 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5569 dbgregs->db[i] = vcpu->arch.db[i]; 5570 5571 dbgregs->dr6 = vcpu->arch.dr6; 5572 dbgregs->dr7 = vcpu->arch.dr7; 5573 } 5574 5575 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5576 struct kvm_debugregs *dbgregs) 5577 { 5578 unsigned int i; 5579 5580 if (dbgregs->flags) 5581 return -EINVAL; 5582 5583 if (!kvm_dr6_valid(dbgregs->dr6)) 5584 return -EINVAL; 5585 if (!kvm_dr7_valid(dbgregs->dr7)) 5586 return -EINVAL; 5587 5588 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5589 vcpu->arch.db[i] = dbgregs->db[i]; 5590 5591 kvm_update_dr0123(vcpu); 5592 vcpu->arch.dr6 = dbgregs->dr6; 5593 vcpu->arch.dr7 = dbgregs->dr7; 5594 kvm_update_dr7(vcpu); 5595 5596 return 0; 5597 } 5598 5599 5600 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5601 u8 *state, unsigned int size) 5602 { 5603 /* 5604 * Only copy state for features that are enabled for the guest. The 5605 * state itself isn't problematic, but setting bits in the header for 5606 * features that are supported in *this* host but not exposed to the 5607 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5608 * compatible host without the features that are NOT exposed to the 5609 * guest. 5610 * 5611 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5612 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5613 * supported by the host. 5614 */ 5615 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5616 XFEATURE_MASK_FPSSE; 5617 5618 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5619 return; 5620 5621 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5622 supported_xcr0, vcpu->arch.pkru); 5623 } 5624 5625 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5626 struct kvm_xsave *guest_xsave) 5627 { 5628 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5629 sizeof(guest_xsave->region)); 5630 } 5631 5632 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5633 struct kvm_xsave *guest_xsave) 5634 { 5635 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5636 return 0; 5637 5638 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5639 guest_xsave->region, 5640 kvm_caps.supported_xcr0, 5641 &vcpu->arch.pkru); 5642 } 5643 5644 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5645 struct kvm_xcrs *guest_xcrs) 5646 { 5647 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5648 guest_xcrs->nr_xcrs = 0; 5649 return; 5650 } 5651 5652 guest_xcrs->nr_xcrs = 1; 5653 guest_xcrs->flags = 0; 5654 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5655 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5656 } 5657 5658 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5659 struct kvm_xcrs *guest_xcrs) 5660 { 5661 int i, r = 0; 5662 5663 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5664 return -EINVAL; 5665 5666 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5667 return -EINVAL; 5668 5669 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5670 /* Only support XCR0 currently */ 5671 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5672 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5673 guest_xcrs->xcrs[i].value); 5674 break; 5675 } 5676 if (r) 5677 r = -EINVAL; 5678 return r; 5679 } 5680 5681 /* 5682 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5683 * stopped by the hypervisor. This function will be called from the host only. 5684 * EINVAL is returned when the host attempts to set the flag for a guest that 5685 * does not support pv clocks. 5686 */ 5687 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5688 { 5689 if (!vcpu->arch.pv_time.active) 5690 return -EINVAL; 5691 vcpu->arch.pvclock_set_guest_stopped_request = true; 5692 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5693 return 0; 5694 } 5695 5696 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5697 struct kvm_device_attr *attr) 5698 { 5699 int r; 5700 5701 switch (attr->attr) { 5702 case KVM_VCPU_TSC_OFFSET: 5703 r = 0; 5704 break; 5705 default: 5706 r = -ENXIO; 5707 } 5708 5709 return r; 5710 } 5711 5712 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5713 struct kvm_device_attr *attr) 5714 { 5715 u64 __user *uaddr = kvm_get_attr_addr(attr); 5716 int r; 5717 5718 if (IS_ERR(uaddr)) 5719 return PTR_ERR(uaddr); 5720 5721 switch (attr->attr) { 5722 case KVM_VCPU_TSC_OFFSET: 5723 r = -EFAULT; 5724 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5725 break; 5726 r = 0; 5727 break; 5728 default: 5729 r = -ENXIO; 5730 } 5731 5732 return r; 5733 } 5734 5735 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5736 struct kvm_device_attr *attr) 5737 { 5738 u64 __user *uaddr = kvm_get_attr_addr(attr); 5739 struct kvm *kvm = vcpu->kvm; 5740 int r; 5741 5742 if (IS_ERR(uaddr)) 5743 return PTR_ERR(uaddr); 5744 5745 switch (attr->attr) { 5746 case KVM_VCPU_TSC_OFFSET: { 5747 u64 offset, tsc, ns; 5748 unsigned long flags; 5749 bool matched; 5750 5751 r = -EFAULT; 5752 if (get_user(offset, uaddr)) 5753 break; 5754 5755 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5756 5757 matched = (vcpu->arch.virtual_tsc_khz && 5758 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5759 kvm->arch.last_tsc_offset == offset); 5760 5761 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5762 ns = get_kvmclock_base_ns(); 5763 5764 kvm->arch.user_set_tsc = true; 5765 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5766 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5767 5768 r = 0; 5769 break; 5770 } 5771 default: 5772 r = -ENXIO; 5773 } 5774 5775 return r; 5776 } 5777 5778 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5779 unsigned int ioctl, 5780 void __user *argp) 5781 { 5782 struct kvm_device_attr attr; 5783 int r; 5784 5785 if (copy_from_user(&attr, argp, sizeof(attr))) 5786 return -EFAULT; 5787 5788 if (attr.group != KVM_VCPU_TSC_CTRL) 5789 return -ENXIO; 5790 5791 switch (ioctl) { 5792 case KVM_HAS_DEVICE_ATTR: 5793 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5794 break; 5795 case KVM_GET_DEVICE_ATTR: 5796 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5797 break; 5798 case KVM_SET_DEVICE_ATTR: 5799 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5800 break; 5801 } 5802 5803 return r; 5804 } 5805 5806 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5807 struct kvm_enable_cap *cap) 5808 { 5809 if (cap->flags) 5810 return -EINVAL; 5811 5812 switch (cap->cap) { 5813 #ifdef CONFIG_KVM_HYPERV 5814 case KVM_CAP_HYPERV_SYNIC2: 5815 if (cap->args[0]) 5816 return -EINVAL; 5817 fallthrough; 5818 5819 case KVM_CAP_HYPERV_SYNIC: 5820 if (!irqchip_in_kernel(vcpu->kvm)) 5821 return -EINVAL; 5822 return kvm_hv_activate_synic(vcpu, cap->cap == 5823 KVM_CAP_HYPERV_SYNIC2); 5824 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5825 { 5826 int r; 5827 uint16_t vmcs_version; 5828 void __user *user_ptr; 5829 5830 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5831 return -ENOTTY; 5832 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5833 if (!r) { 5834 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5835 if (copy_to_user(user_ptr, &vmcs_version, 5836 sizeof(vmcs_version))) 5837 r = -EFAULT; 5838 } 5839 return r; 5840 } 5841 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5842 if (!kvm_x86_ops.enable_l2_tlb_flush) 5843 return -ENOTTY; 5844 5845 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5846 5847 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5848 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5849 #endif 5850 5851 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5852 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5853 if (vcpu->arch.pv_cpuid.enforce) 5854 kvm_update_pv_runtime(vcpu); 5855 5856 return 0; 5857 default: 5858 return -EINVAL; 5859 } 5860 } 5861 5862 long kvm_arch_vcpu_ioctl(struct file *filp, 5863 unsigned int ioctl, unsigned long arg) 5864 { 5865 struct kvm_vcpu *vcpu = filp->private_data; 5866 void __user *argp = (void __user *)arg; 5867 int r; 5868 union { 5869 struct kvm_sregs2 *sregs2; 5870 struct kvm_lapic_state *lapic; 5871 struct kvm_xsave *xsave; 5872 struct kvm_xcrs *xcrs; 5873 void *buffer; 5874 } u; 5875 5876 vcpu_load(vcpu); 5877 5878 u.buffer = NULL; 5879 switch (ioctl) { 5880 case KVM_GET_LAPIC: { 5881 r = -EINVAL; 5882 if (!lapic_in_kernel(vcpu)) 5883 goto out; 5884 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5885 GFP_KERNEL_ACCOUNT); 5886 5887 r = -ENOMEM; 5888 if (!u.lapic) 5889 goto out; 5890 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5891 if (r) 5892 goto out; 5893 r = -EFAULT; 5894 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5895 goto out; 5896 r = 0; 5897 break; 5898 } 5899 case KVM_SET_LAPIC: { 5900 r = -EINVAL; 5901 if (!lapic_in_kernel(vcpu)) 5902 goto out; 5903 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5904 if (IS_ERR(u.lapic)) { 5905 r = PTR_ERR(u.lapic); 5906 goto out_nofree; 5907 } 5908 5909 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5910 break; 5911 } 5912 case KVM_INTERRUPT: { 5913 struct kvm_interrupt irq; 5914 5915 r = -EFAULT; 5916 if (copy_from_user(&irq, argp, sizeof(irq))) 5917 goto out; 5918 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5919 break; 5920 } 5921 case KVM_NMI: { 5922 r = kvm_vcpu_ioctl_nmi(vcpu); 5923 break; 5924 } 5925 case KVM_SMI: { 5926 r = kvm_inject_smi(vcpu); 5927 break; 5928 } 5929 case KVM_SET_CPUID: { 5930 struct kvm_cpuid __user *cpuid_arg = argp; 5931 struct kvm_cpuid cpuid; 5932 5933 r = -EFAULT; 5934 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5935 goto out; 5936 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5937 break; 5938 } 5939 case KVM_SET_CPUID2: { 5940 struct kvm_cpuid2 __user *cpuid_arg = argp; 5941 struct kvm_cpuid2 cpuid; 5942 5943 r = -EFAULT; 5944 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5945 goto out; 5946 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5947 cpuid_arg->entries); 5948 break; 5949 } 5950 case KVM_GET_CPUID2: { 5951 struct kvm_cpuid2 __user *cpuid_arg = argp; 5952 struct kvm_cpuid2 cpuid; 5953 5954 r = -EFAULT; 5955 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5956 goto out; 5957 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5958 cpuid_arg->entries); 5959 if (r) 5960 goto out; 5961 r = -EFAULT; 5962 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5963 goto out; 5964 r = 0; 5965 break; 5966 } 5967 case KVM_GET_MSRS: { 5968 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5969 r = msr_io(vcpu, argp, do_get_msr, 1); 5970 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5971 break; 5972 } 5973 case KVM_SET_MSRS: { 5974 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5975 r = msr_io(vcpu, argp, do_set_msr, 0); 5976 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5977 break; 5978 } 5979 case KVM_TPR_ACCESS_REPORTING: { 5980 struct kvm_tpr_access_ctl tac; 5981 5982 r = -EFAULT; 5983 if (copy_from_user(&tac, argp, sizeof(tac))) 5984 goto out; 5985 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5986 if (r) 5987 goto out; 5988 r = -EFAULT; 5989 if (copy_to_user(argp, &tac, sizeof(tac))) 5990 goto out; 5991 r = 0; 5992 break; 5993 }; 5994 case KVM_SET_VAPIC_ADDR: { 5995 struct kvm_vapic_addr va; 5996 int idx; 5997 5998 r = -EINVAL; 5999 if (!lapic_in_kernel(vcpu)) 6000 goto out; 6001 r = -EFAULT; 6002 if (copy_from_user(&va, argp, sizeof(va))) 6003 goto out; 6004 idx = srcu_read_lock(&vcpu->kvm->srcu); 6005 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 6006 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6007 break; 6008 } 6009 case KVM_X86_SETUP_MCE: { 6010 u64 mcg_cap; 6011 6012 r = -EFAULT; 6013 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 6014 goto out; 6015 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 6016 break; 6017 } 6018 case KVM_X86_SET_MCE: { 6019 struct kvm_x86_mce mce; 6020 6021 r = -EFAULT; 6022 if (copy_from_user(&mce, argp, sizeof(mce))) 6023 goto out; 6024 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 6025 break; 6026 } 6027 case KVM_GET_VCPU_EVENTS: { 6028 struct kvm_vcpu_events events; 6029 6030 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 6031 6032 r = -EFAULT; 6033 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 6034 break; 6035 r = 0; 6036 break; 6037 } 6038 case KVM_SET_VCPU_EVENTS: { 6039 struct kvm_vcpu_events events; 6040 6041 r = -EFAULT; 6042 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 6043 break; 6044 6045 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 6046 break; 6047 } 6048 case KVM_GET_DEBUGREGS: { 6049 struct kvm_debugregs dbgregs; 6050 6051 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 6052 6053 r = -EFAULT; 6054 if (copy_to_user(argp, &dbgregs, 6055 sizeof(struct kvm_debugregs))) 6056 break; 6057 r = 0; 6058 break; 6059 } 6060 case KVM_SET_DEBUGREGS: { 6061 struct kvm_debugregs dbgregs; 6062 6063 r = -EFAULT; 6064 if (copy_from_user(&dbgregs, argp, 6065 sizeof(struct kvm_debugregs))) 6066 break; 6067 6068 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6069 break; 6070 } 6071 case KVM_GET_XSAVE: { 6072 r = -EINVAL; 6073 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6074 break; 6075 6076 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 6077 r = -ENOMEM; 6078 if (!u.xsave) 6079 break; 6080 6081 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6082 6083 r = -EFAULT; 6084 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6085 break; 6086 r = 0; 6087 break; 6088 } 6089 case KVM_SET_XSAVE: { 6090 int size = vcpu->arch.guest_fpu.uabi_size; 6091 6092 u.xsave = memdup_user(argp, size); 6093 if (IS_ERR(u.xsave)) { 6094 r = PTR_ERR(u.xsave); 6095 goto out_nofree; 6096 } 6097 6098 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6099 break; 6100 } 6101 6102 case KVM_GET_XSAVE2: { 6103 int size = vcpu->arch.guest_fpu.uabi_size; 6104 6105 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 6106 r = -ENOMEM; 6107 if (!u.xsave) 6108 break; 6109 6110 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6111 6112 r = -EFAULT; 6113 if (copy_to_user(argp, u.xsave, size)) 6114 break; 6115 6116 r = 0; 6117 break; 6118 } 6119 6120 case KVM_GET_XCRS: { 6121 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 6122 r = -ENOMEM; 6123 if (!u.xcrs) 6124 break; 6125 6126 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6127 6128 r = -EFAULT; 6129 if (copy_to_user(argp, u.xcrs, 6130 sizeof(struct kvm_xcrs))) 6131 break; 6132 r = 0; 6133 break; 6134 } 6135 case KVM_SET_XCRS: { 6136 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6137 if (IS_ERR(u.xcrs)) { 6138 r = PTR_ERR(u.xcrs); 6139 goto out_nofree; 6140 } 6141 6142 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6143 break; 6144 } 6145 case KVM_SET_TSC_KHZ: { 6146 u32 user_tsc_khz; 6147 6148 r = -EINVAL; 6149 user_tsc_khz = (u32)arg; 6150 6151 if (kvm_caps.has_tsc_control && 6152 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6153 goto out; 6154 6155 if (user_tsc_khz == 0) 6156 user_tsc_khz = tsc_khz; 6157 6158 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6159 r = 0; 6160 6161 goto out; 6162 } 6163 case KVM_GET_TSC_KHZ: { 6164 r = vcpu->arch.virtual_tsc_khz; 6165 goto out; 6166 } 6167 case KVM_KVMCLOCK_CTRL: { 6168 r = kvm_set_guest_paused(vcpu); 6169 goto out; 6170 } 6171 case KVM_ENABLE_CAP: { 6172 struct kvm_enable_cap cap; 6173 6174 r = -EFAULT; 6175 if (copy_from_user(&cap, argp, sizeof(cap))) 6176 goto out; 6177 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6178 break; 6179 } 6180 case KVM_GET_NESTED_STATE: { 6181 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6182 u32 user_data_size; 6183 6184 r = -EINVAL; 6185 if (!kvm_x86_ops.nested_ops->get_state) 6186 break; 6187 6188 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6189 r = -EFAULT; 6190 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6191 break; 6192 6193 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6194 user_data_size); 6195 if (r < 0) 6196 break; 6197 6198 if (r > user_data_size) { 6199 if (put_user(r, &user_kvm_nested_state->size)) 6200 r = -EFAULT; 6201 else 6202 r = -E2BIG; 6203 break; 6204 } 6205 6206 r = 0; 6207 break; 6208 } 6209 case KVM_SET_NESTED_STATE: { 6210 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6211 struct kvm_nested_state kvm_state; 6212 int idx; 6213 6214 r = -EINVAL; 6215 if (!kvm_x86_ops.nested_ops->set_state) 6216 break; 6217 6218 r = -EFAULT; 6219 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6220 break; 6221 6222 r = -EINVAL; 6223 if (kvm_state.size < sizeof(kvm_state)) 6224 break; 6225 6226 if (kvm_state.flags & 6227 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6228 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6229 | KVM_STATE_NESTED_GIF_SET)) 6230 break; 6231 6232 /* nested_run_pending implies guest_mode. */ 6233 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6234 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6235 break; 6236 6237 idx = srcu_read_lock(&vcpu->kvm->srcu); 6238 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6239 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6240 break; 6241 } 6242 #ifdef CONFIG_KVM_HYPERV 6243 case KVM_GET_SUPPORTED_HV_CPUID: 6244 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6245 break; 6246 #endif 6247 #ifdef CONFIG_KVM_XEN 6248 case KVM_XEN_VCPU_GET_ATTR: { 6249 struct kvm_xen_vcpu_attr xva; 6250 6251 r = -EFAULT; 6252 if (copy_from_user(&xva, argp, sizeof(xva))) 6253 goto out; 6254 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6255 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6256 r = -EFAULT; 6257 break; 6258 } 6259 case KVM_XEN_VCPU_SET_ATTR: { 6260 struct kvm_xen_vcpu_attr xva; 6261 6262 r = -EFAULT; 6263 if (copy_from_user(&xva, argp, sizeof(xva))) 6264 goto out; 6265 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6266 break; 6267 } 6268 #endif 6269 case KVM_GET_SREGS2: { 6270 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6271 r = -ENOMEM; 6272 if (!u.sregs2) 6273 goto out; 6274 __get_sregs2(vcpu, u.sregs2); 6275 r = -EFAULT; 6276 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6277 goto out; 6278 r = 0; 6279 break; 6280 } 6281 case KVM_SET_SREGS2: { 6282 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6283 if (IS_ERR(u.sregs2)) { 6284 r = PTR_ERR(u.sregs2); 6285 u.sregs2 = NULL; 6286 goto out; 6287 } 6288 r = __set_sregs2(vcpu, u.sregs2); 6289 break; 6290 } 6291 case KVM_HAS_DEVICE_ATTR: 6292 case KVM_GET_DEVICE_ATTR: 6293 case KVM_SET_DEVICE_ATTR: 6294 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6295 break; 6296 default: 6297 r = -EINVAL; 6298 } 6299 out: 6300 kfree(u.buffer); 6301 out_nofree: 6302 vcpu_put(vcpu); 6303 return r; 6304 } 6305 6306 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6307 { 6308 return VM_FAULT_SIGBUS; 6309 } 6310 6311 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6312 { 6313 int ret; 6314 6315 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6316 return -EINVAL; 6317 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6318 return ret; 6319 } 6320 6321 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6322 u64 ident_addr) 6323 { 6324 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6325 } 6326 6327 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6328 unsigned long kvm_nr_mmu_pages) 6329 { 6330 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6331 return -EINVAL; 6332 6333 mutex_lock(&kvm->slots_lock); 6334 6335 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6336 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6337 6338 mutex_unlock(&kvm->slots_lock); 6339 return 0; 6340 } 6341 6342 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6343 { 6344 struct kvm_pic *pic = kvm->arch.vpic; 6345 int r; 6346 6347 r = 0; 6348 switch (chip->chip_id) { 6349 case KVM_IRQCHIP_PIC_MASTER: 6350 memcpy(&chip->chip.pic, &pic->pics[0], 6351 sizeof(struct kvm_pic_state)); 6352 break; 6353 case KVM_IRQCHIP_PIC_SLAVE: 6354 memcpy(&chip->chip.pic, &pic->pics[1], 6355 sizeof(struct kvm_pic_state)); 6356 break; 6357 case KVM_IRQCHIP_IOAPIC: 6358 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6359 break; 6360 default: 6361 r = -EINVAL; 6362 break; 6363 } 6364 return r; 6365 } 6366 6367 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6368 { 6369 struct kvm_pic *pic = kvm->arch.vpic; 6370 int r; 6371 6372 r = 0; 6373 switch (chip->chip_id) { 6374 case KVM_IRQCHIP_PIC_MASTER: 6375 spin_lock(&pic->lock); 6376 memcpy(&pic->pics[0], &chip->chip.pic, 6377 sizeof(struct kvm_pic_state)); 6378 spin_unlock(&pic->lock); 6379 break; 6380 case KVM_IRQCHIP_PIC_SLAVE: 6381 spin_lock(&pic->lock); 6382 memcpy(&pic->pics[1], &chip->chip.pic, 6383 sizeof(struct kvm_pic_state)); 6384 spin_unlock(&pic->lock); 6385 break; 6386 case KVM_IRQCHIP_IOAPIC: 6387 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6388 break; 6389 default: 6390 r = -EINVAL; 6391 break; 6392 } 6393 kvm_pic_update_irq(pic); 6394 return r; 6395 } 6396 6397 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6398 { 6399 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6400 6401 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6402 6403 mutex_lock(&kps->lock); 6404 memcpy(ps, &kps->channels, sizeof(*ps)); 6405 mutex_unlock(&kps->lock); 6406 return 0; 6407 } 6408 6409 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6410 { 6411 int i; 6412 struct kvm_pit *pit = kvm->arch.vpit; 6413 6414 mutex_lock(&pit->pit_state.lock); 6415 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6416 for (i = 0; i < 3; i++) 6417 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6418 mutex_unlock(&pit->pit_state.lock); 6419 return 0; 6420 } 6421 6422 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6423 { 6424 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6425 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6426 sizeof(ps->channels)); 6427 ps->flags = kvm->arch.vpit->pit_state.flags; 6428 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6429 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6430 return 0; 6431 } 6432 6433 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6434 { 6435 int start = 0; 6436 int i; 6437 u32 prev_legacy, cur_legacy; 6438 struct kvm_pit *pit = kvm->arch.vpit; 6439 6440 mutex_lock(&pit->pit_state.lock); 6441 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6442 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6443 if (!prev_legacy && cur_legacy) 6444 start = 1; 6445 memcpy(&pit->pit_state.channels, &ps->channels, 6446 sizeof(pit->pit_state.channels)); 6447 pit->pit_state.flags = ps->flags; 6448 for (i = 0; i < 3; i++) 6449 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6450 start && i == 0); 6451 mutex_unlock(&pit->pit_state.lock); 6452 return 0; 6453 } 6454 6455 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6456 struct kvm_reinject_control *control) 6457 { 6458 struct kvm_pit *pit = kvm->arch.vpit; 6459 6460 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6461 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6462 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6463 */ 6464 mutex_lock(&pit->pit_state.lock); 6465 kvm_pit_set_reinject(pit, control->pit_reinject); 6466 mutex_unlock(&pit->pit_state.lock); 6467 6468 return 0; 6469 } 6470 6471 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6472 { 6473 6474 /* 6475 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6476 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6477 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6478 * VM-Exit. 6479 */ 6480 struct kvm_vcpu *vcpu; 6481 unsigned long i; 6482 6483 if (!kvm_x86_ops.cpu_dirty_log_size) 6484 return; 6485 6486 kvm_for_each_vcpu(i, vcpu, kvm) 6487 kvm_vcpu_kick(vcpu); 6488 } 6489 6490 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6491 bool line_status) 6492 { 6493 if (!irqchip_in_kernel(kvm)) 6494 return -ENXIO; 6495 6496 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6497 irq_event->irq, irq_event->level, 6498 line_status); 6499 return 0; 6500 } 6501 6502 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6503 struct kvm_enable_cap *cap) 6504 { 6505 int r; 6506 6507 if (cap->flags) 6508 return -EINVAL; 6509 6510 switch (cap->cap) { 6511 case KVM_CAP_DISABLE_QUIRKS2: 6512 r = -EINVAL; 6513 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6514 break; 6515 fallthrough; 6516 case KVM_CAP_DISABLE_QUIRKS: 6517 kvm->arch.disabled_quirks = cap->args[0]; 6518 r = 0; 6519 break; 6520 case KVM_CAP_SPLIT_IRQCHIP: { 6521 mutex_lock(&kvm->lock); 6522 r = -EINVAL; 6523 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6524 goto split_irqchip_unlock; 6525 r = -EEXIST; 6526 if (irqchip_in_kernel(kvm)) 6527 goto split_irqchip_unlock; 6528 if (kvm->created_vcpus) 6529 goto split_irqchip_unlock; 6530 r = kvm_setup_empty_irq_routing(kvm); 6531 if (r) 6532 goto split_irqchip_unlock; 6533 /* Pairs with irqchip_in_kernel. */ 6534 smp_wmb(); 6535 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6536 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6537 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6538 r = 0; 6539 split_irqchip_unlock: 6540 mutex_unlock(&kvm->lock); 6541 break; 6542 } 6543 case KVM_CAP_X2APIC_API: 6544 r = -EINVAL; 6545 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6546 break; 6547 6548 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6549 kvm->arch.x2apic_format = true; 6550 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6551 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6552 6553 r = 0; 6554 break; 6555 case KVM_CAP_X86_DISABLE_EXITS: 6556 r = -EINVAL; 6557 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6558 break; 6559 6560 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6561 kvm->arch.pause_in_guest = true; 6562 6563 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6564 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6565 6566 if (!mitigate_smt_rsb) { 6567 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6568 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6569 pr_warn_once(SMT_RSB_MSG); 6570 6571 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6572 kvm_can_mwait_in_guest()) 6573 kvm->arch.mwait_in_guest = true; 6574 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6575 kvm->arch.hlt_in_guest = true; 6576 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6577 kvm->arch.cstate_in_guest = true; 6578 } 6579 6580 r = 0; 6581 break; 6582 case KVM_CAP_MSR_PLATFORM_INFO: 6583 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6584 r = 0; 6585 break; 6586 case KVM_CAP_EXCEPTION_PAYLOAD: 6587 kvm->arch.exception_payload_enabled = cap->args[0]; 6588 r = 0; 6589 break; 6590 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6591 kvm->arch.triple_fault_event = cap->args[0]; 6592 r = 0; 6593 break; 6594 case KVM_CAP_X86_USER_SPACE_MSR: 6595 r = -EINVAL; 6596 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6597 break; 6598 kvm->arch.user_space_msr_mask = cap->args[0]; 6599 r = 0; 6600 break; 6601 case KVM_CAP_X86_BUS_LOCK_EXIT: 6602 r = -EINVAL; 6603 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6604 break; 6605 6606 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6607 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6608 break; 6609 6610 if (kvm_caps.has_bus_lock_exit && 6611 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6612 kvm->arch.bus_lock_detection_enabled = true; 6613 r = 0; 6614 break; 6615 #ifdef CONFIG_X86_SGX_KVM 6616 case KVM_CAP_SGX_ATTRIBUTE: { 6617 unsigned long allowed_attributes = 0; 6618 6619 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6620 if (r) 6621 break; 6622 6623 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6624 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6625 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6626 kvm->arch.sgx_provisioning_allowed = true; 6627 else 6628 r = -EINVAL; 6629 break; 6630 } 6631 #endif 6632 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6633 r = -EINVAL; 6634 if (!kvm_x86_ops.vm_copy_enc_context_from) 6635 break; 6636 6637 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6638 break; 6639 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6640 r = -EINVAL; 6641 if (!kvm_x86_ops.vm_move_enc_context_from) 6642 break; 6643 6644 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6645 break; 6646 case KVM_CAP_EXIT_HYPERCALL: 6647 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6648 r = -EINVAL; 6649 break; 6650 } 6651 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6652 r = 0; 6653 break; 6654 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6655 r = -EINVAL; 6656 if (cap->args[0] & ~1) 6657 break; 6658 kvm->arch.exit_on_emulation_error = cap->args[0]; 6659 r = 0; 6660 break; 6661 case KVM_CAP_PMU_CAPABILITY: 6662 r = -EINVAL; 6663 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6664 break; 6665 6666 mutex_lock(&kvm->lock); 6667 if (!kvm->created_vcpus) { 6668 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6669 r = 0; 6670 } 6671 mutex_unlock(&kvm->lock); 6672 break; 6673 case KVM_CAP_MAX_VCPU_ID: 6674 r = -EINVAL; 6675 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6676 break; 6677 6678 mutex_lock(&kvm->lock); 6679 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6680 r = 0; 6681 } else if (!kvm->arch.max_vcpu_ids) { 6682 kvm->arch.max_vcpu_ids = cap->args[0]; 6683 r = 0; 6684 } 6685 mutex_unlock(&kvm->lock); 6686 break; 6687 case KVM_CAP_X86_NOTIFY_VMEXIT: 6688 r = -EINVAL; 6689 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6690 break; 6691 if (!kvm_caps.has_notify_vmexit) 6692 break; 6693 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6694 break; 6695 mutex_lock(&kvm->lock); 6696 if (!kvm->created_vcpus) { 6697 kvm->arch.notify_window = cap->args[0] >> 32; 6698 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6699 r = 0; 6700 } 6701 mutex_unlock(&kvm->lock); 6702 break; 6703 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6704 r = -EINVAL; 6705 6706 /* 6707 * Since the risk of disabling NX hugepages is a guest crashing 6708 * the system, ensure the userspace process has permission to 6709 * reboot the system. 6710 * 6711 * Note that unlike the reboot() syscall, the process must have 6712 * this capability in the root namespace because exposing 6713 * /dev/kvm into a container does not limit the scope of the 6714 * iTLB multihit bug to that container. In other words, 6715 * this must use capable(), not ns_capable(). 6716 */ 6717 if (!capable(CAP_SYS_BOOT)) { 6718 r = -EPERM; 6719 break; 6720 } 6721 6722 if (cap->args[0]) 6723 break; 6724 6725 mutex_lock(&kvm->lock); 6726 if (!kvm->created_vcpus) { 6727 kvm->arch.disable_nx_huge_pages = true; 6728 r = 0; 6729 } 6730 mutex_unlock(&kvm->lock); 6731 break; 6732 default: 6733 r = -EINVAL; 6734 break; 6735 } 6736 return r; 6737 } 6738 6739 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6740 { 6741 struct kvm_x86_msr_filter *msr_filter; 6742 6743 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6744 if (!msr_filter) 6745 return NULL; 6746 6747 msr_filter->default_allow = default_allow; 6748 return msr_filter; 6749 } 6750 6751 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6752 { 6753 u32 i; 6754 6755 if (!msr_filter) 6756 return; 6757 6758 for (i = 0; i < msr_filter->count; i++) 6759 kfree(msr_filter->ranges[i].bitmap); 6760 6761 kfree(msr_filter); 6762 } 6763 6764 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6765 struct kvm_msr_filter_range *user_range) 6766 { 6767 unsigned long *bitmap; 6768 size_t bitmap_size; 6769 6770 if (!user_range->nmsrs) 6771 return 0; 6772 6773 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6774 return -EINVAL; 6775 6776 if (!user_range->flags) 6777 return -EINVAL; 6778 6779 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6780 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6781 return -EINVAL; 6782 6783 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6784 if (IS_ERR(bitmap)) 6785 return PTR_ERR(bitmap); 6786 6787 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6788 .flags = user_range->flags, 6789 .base = user_range->base, 6790 .nmsrs = user_range->nmsrs, 6791 .bitmap = bitmap, 6792 }; 6793 6794 msr_filter->count++; 6795 return 0; 6796 } 6797 6798 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6799 struct kvm_msr_filter *filter) 6800 { 6801 struct kvm_x86_msr_filter *new_filter, *old_filter; 6802 bool default_allow; 6803 bool empty = true; 6804 int r; 6805 u32 i; 6806 6807 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6808 return -EINVAL; 6809 6810 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6811 empty &= !filter->ranges[i].nmsrs; 6812 6813 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6814 if (empty && !default_allow) 6815 return -EINVAL; 6816 6817 new_filter = kvm_alloc_msr_filter(default_allow); 6818 if (!new_filter) 6819 return -ENOMEM; 6820 6821 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6822 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6823 if (r) { 6824 kvm_free_msr_filter(new_filter); 6825 return r; 6826 } 6827 } 6828 6829 mutex_lock(&kvm->lock); 6830 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6831 mutex_is_locked(&kvm->lock)); 6832 mutex_unlock(&kvm->lock); 6833 synchronize_srcu(&kvm->srcu); 6834 6835 kvm_free_msr_filter(old_filter); 6836 6837 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6838 6839 return 0; 6840 } 6841 6842 #ifdef CONFIG_KVM_COMPAT 6843 /* for KVM_X86_SET_MSR_FILTER */ 6844 struct kvm_msr_filter_range_compat { 6845 __u32 flags; 6846 __u32 nmsrs; 6847 __u32 base; 6848 __u32 bitmap; 6849 }; 6850 6851 struct kvm_msr_filter_compat { 6852 __u32 flags; 6853 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6854 }; 6855 6856 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6857 6858 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6859 unsigned long arg) 6860 { 6861 void __user *argp = (void __user *)arg; 6862 struct kvm *kvm = filp->private_data; 6863 long r = -ENOTTY; 6864 6865 switch (ioctl) { 6866 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6867 struct kvm_msr_filter __user *user_msr_filter = argp; 6868 struct kvm_msr_filter_compat filter_compat; 6869 struct kvm_msr_filter filter; 6870 int i; 6871 6872 if (copy_from_user(&filter_compat, user_msr_filter, 6873 sizeof(filter_compat))) 6874 return -EFAULT; 6875 6876 filter.flags = filter_compat.flags; 6877 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6878 struct kvm_msr_filter_range_compat *cr; 6879 6880 cr = &filter_compat.ranges[i]; 6881 filter.ranges[i] = (struct kvm_msr_filter_range) { 6882 .flags = cr->flags, 6883 .nmsrs = cr->nmsrs, 6884 .base = cr->base, 6885 .bitmap = (__u8 *)(ulong)cr->bitmap, 6886 }; 6887 } 6888 6889 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6890 break; 6891 } 6892 } 6893 6894 return r; 6895 } 6896 #endif 6897 6898 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6899 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6900 { 6901 struct kvm_vcpu *vcpu; 6902 unsigned long i; 6903 int ret = 0; 6904 6905 mutex_lock(&kvm->lock); 6906 kvm_for_each_vcpu(i, vcpu, kvm) { 6907 if (!vcpu->arch.pv_time.active) 6908 continue; 6909 6910 ret = kvm_set_guest_paused(vcpu); 6911 if (ret) { 6912 kvm_err("Failed to pause guest VCPU%d: %d\n", 6913 vcpu->vcpu_id, ret); 6914 break; 6915 } 6916 } 6917 mutex_unlock(&kvm->lock); 6918 6919 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6920 } 6921 6922 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6923 { 6924 switch (state) { 6925 case PM_HIBERNATION_PREPARE: 6926 case PM_SUSPEND_PREPARE: 6927 return kvm_arch_suspend_notifier(kvm); 6928 } 6929 6930 return NOTIFY_DONE; 6931 } 6932 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6933 6934 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6935 { 6936 struct kvm_clock_data data = { 0 }; 6937 6938 get_kvmclock(kvm, &data); 6939 if (copy_to_user(argp, &data, sizeof(data))) 6940 return -EFAULT; 6941 6942 return 0; 6943 } 6944 6945 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6946 { 6947 struct kvm_arch *ka = &kvm->arch; 6948 struct kvm_clock_data data; 6949 u64 now_raw_ns; 6950 6951 if (copy_from_user(&data, argp, sizeof(data))) 6952 return -EFAULT; 6953 6954 /* 6955 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6956 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6957 */ 6958 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6959 return -EINVAL; 6960 6961 kvm_hv_request_tsc_page_update(kvm); 6962 kvm_start_pvclock_update(kvm); 6963 pvclock_update_vm_gtod_copy(kvm); 6964 6965 /* 6966 * This pairs with kvm_guest_time_update(): when masterclock is 6967 * in use, we use master_kernel_ns + kvmclock_offset to set 6968 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6969 * is slightly ahead) here we risk going negative on unsigned 6970 * 'system_time' when 'data.clock' is very small. 6971 */ 6972 if (data.flags & KVM_CLOCK_REALTIME) { 6973 u64 now_real_ns = ktime_get_real_ns(); 6974 6975 /* 6976 * Avoid stepping the kvmclock backwards. 6977 */ 6978 if (now_real_ns > data.realtime) 6979 data.clock += now_real_ns - data.realtime; 6980 } 6981 6982 if (ka->use_master_clock) 6983 now_raw_ns = ka->master_kernel_ns; 6984 else 6985 now_raw_ns = get_kvmclock_base_ns(); 6986 ka->kvmclock_offset = data.clock - now_raw_ns; 6987 kvm_end_pvclock_update(kvm); 6988 return 0; 6989 } 6990 6991 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6992 { 6993 struct kvm *kvm = filp->private_data; 6994 void __user *argp = (void __user *)arg; 6995 int r = -ENOTTY; 6996 /* 6997 * This union makes it completely explicit to gcc-3.x 6998 * that these two variables' stack usage should be 6999 * combined, not added together. 7000 */ 7001 union { 7002 struct kvm_pit_state ps; 7003 struct kvm_pit_state2 ps2; 7004 struct kvm_pit_config pit_config; 7005 } u; 7006 7007 switch (ioctl) { 7008 case KVM_SET_TSS_ADDR: 7009 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 7010 break; 7011 case KVM_SET_IDENTITY_MAP_ADDR: { 7012 u64 ident_addr; 7013 7014 mutex_lock(&kvm->lock); 7015 r = -EINVAL; 7016 if (kvm->created_vcpus) 7017 goto set_identity_unlock; 7018 r = -EFAULT; 7019 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 7020 goto set_identity_unlock; 7021 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 7022 set_identity_unlock: 7023 mutex_unlock(&kvm->lock); 7024 break; 7025 } 7026 case KVM_SET_NR_MMU_PAGES: 7027 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 7028 break; 7029 case KVM_CREATE_IRQCHIP: { 7030 mutex_lock(&kvm->lock); 7031 7032 r = -EEXIST; 7033 if (irqchip_in_kernel(kvm)) 7034 goto create_irqchip_unlock; 7035 7036 r = -EINVAL; 7037 if (kvm->created_vcpus) 7038 goto create_irqchip_unlock; 7039 7040 r = kvm_pic_init(kvm); 7041 if (r) 7042 goto create_irqchip_unlock; 7043 7044 r = kvm_ioapic_init(kvm); 7045 if (r) { 7046 kvm_pic_destroy(kvm); 7047 goto create_irqchip_unlock; 7048 } 7049 7050 r = kvm_setup_default_irq_routing(kvm); 7051 if (r) { 7052 kvm_ioapic_destroy(kvm); 7053 kvm_pic_destroy(kvm); 7054 goto create_irqchip_unlock; 7055 } 7056 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 7057 smp_wmb(); 7058 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7059 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7060 create_irqchip_unlock: 7061 mutex_unlock(&kvm->lock); 7062 break; 7063 } 7064 case KVM_CREATE_PIT: 7065 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7066 goto create_pit; 7067 case KVM_CREATE_PIT2: 7068 r = -EFAULT; 7069 if (copy_from_user(&u.pit_config, argp, 7070 sizeof(struct kvm_pit_config))) 7071 goto out; 7072 create_pit: 7073 mutex_lock(&kvm->lock); 7074 r = -EEXIST; 7075 if (kvm->arch.vpit) 7076 goto create_pit_unlock; 7077 r = -ENOENT; 7078 if (!pic_in_kernel(kvm)) 7079 goto create_pit_unlock; 7080 r = -ENOMEM; 7081 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7082 if (kvm->arch.vpit) 7083 r = 0; 7084 create_pit_unlock: 7085 mutex_unlock(&kvm->lock); 7086 break; 7087 case KVM_GET_IRQCHIP: { 7088 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7089 struct kvm_irqchip *chip; 7090 7091 chip = memdup_user(argp, sizeof(*chip)); 7092 if (IS_ERR(chip)) { 7093 r = PTR_ERR(chip); 7094 goto out; 7095 } 7096 7097 r = -ENXIO; 7098 if (!irqchip_kernel(kvm)) 7099 goto get_irqchip_out; 7100 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7101 if (r) 7102 goto get_irqchip_out; 7103 r = -EFAULT; 7104 if (copy_to_user(argp, chip, sizeof(*chip))) 7105 goto get_irqchip_out; 7106 r = 0; 7107 get_irqchip_out: 7108 kfree(chip); 7109 break; 7110 } 7111 case KVM_SET_IRQCHIP: { 7112 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7113 struct kvm_irqchip *chip; 7114 7115 chip = memdup_user(argp, sizeof(*chip)); 7116 if (IS_ERR(chip)) { 7117 r = PTR_ERR(chip); 7118 goto out; 7119 } 7120 7121 r = -ENXIO; 7122 if (!irqchip_kernel(kvm)) 7123 goto set_irqchip_out; 7124 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7125 set_irqchip_out: 7126 kfree(chip); 7127 break; 7128 } 7129 case KVM_GET_PIT: { 7130 r = -EFAULT; 7131 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7132 goto out; 7133 r = -ENXIO; 7134 if (!kvm->arch.vpit) 7135 goto out; 7136 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7137 if (r) 7138 goto out; 7139 r = -EFAULT; 7140 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7141 goto out; 7142 r = 0; 7143 break; 7144 } 7145 case KVM_SET_PIT: { 7146 r = -EFAULT; 7147 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7148 goto out; 7149 mutex_lock(&kvm->lock); 7150 r = -ENXIO; 7151 if (!kvm->arch.vpit) 7152 goto set_pit_out; 7153 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7154 set_pit_out: 7155 mutex_unlock(&kvm->lock); 7156 break; 7157 } 7158 case KVM_GET_PIT2: { 7159 r = -ENXIO; 7160 if (!kvm->arch.vpit) 7161 goto out; 7162 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7163 if (r) 7164 goto out; 7165 r = -EFAULT; 7166 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7167 goto out; 7168 r = 0; 7169 break; 7170 } 7171 case KVM_SET_PIT2: { 7172 r = -EFAULT; 7173 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7174 goto out; 7175 mutex_lock(&kvm->lock); 7176 r = -ENXIO; 7177 if (!kvm->arch.vpit) 7178 goto set_pit2_out; 7179 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7180 set_pit2_out: 7181 mutex_unlock(&kvm->lock); 7182 break; 7183 } 7184 case KVM_REINJECT_CONTROL: { 7185 struct kvm_reinject_control control; 7186 r = -EFAULT; 7187 if (copy_from_user(&control, argp, sizeof(control))) 7188 goto out; 7189 r = -ENXIO; 7190 if (!kvm->arch.vpit) 7191 goto out; 7192 r = kvm_vm_ioctl_reinject(kvm, &control); 7193 break; 7194 } 7195 case KVM_SET_BOOT_CPU_ID: 7196 r = 0; 7197 mutex_lock(&kvm->lock); 7198 if (kvm->created_vcpus) 7199 r = -EBUSY; 7200 else 7201 kvm->arch.bsp_vcpu_id = arg; 7202 mutex_unlock(&kvm->lock); 7203 break; 7204 #ifdef CONFIG_KVM_XEN 7205 case KVM_XEN_HVM_CONFIG: { 7206 struct kvm_xen_hvm_config xhc; 7207 r = -EFAULT; 7208 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7209 goto out; 7210 r = kvm_xen_hvm_config(kvm, &xhc); 7211 break; 7212 } 7213 case KVM_XEN_HVM_GET_ATTR: { 7214 struct kvm_xen_hvm_attr xha; 7215 7216 r = -EFAULT; 7217 if (copy_from_user(&xha, argp, sizeof(xha))) 7218 goto out; 7219 r = kvm_xen_hvm_get_attr(kvm, &xha); 7220 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7221 r = -EFAULT; 7222 break; 7223 } 7224 case KVM_XEN_HVM_SET_ATTR: { 7225 struct kvm_xen_hvm_attr xha; 7226 7227 r = -EFAULT; 7228 if (copy_from_user(&xha, argp, sizeof(xha))) 7229 goto out; 7230 r = kvm_xen_hvm_set_attr(kvm, &xha); 7231 break; 7232 } 7233 case KVM_XEN_HVM_EVTCHN_SEND: { 7234 struct kvm_irq_routing_xen_evtchn uxe; 7235 7236 r = -EFAULT; 7237 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7238 goto out; 7239 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7240 break; 7241 } 7242 #endif 7243 case KVM_SET_CLOCK: 7244 r = kvm_vm_ioctl_set_clock(kvm, argp); 7245 break; 7246 case KVM_GET_CLOCK: 7247 r = kvm_vm_ioctl_get_clock(kvm, argp); 7248 break; 7249 case KVM_SET_TSC_KHZ: { 7250 u32 user_tsc_khz; 7251 7252 r = -EINVAL; 7253 user_tsc_khz = (u32)arg; 7254 7255 if (kvm_caps.has_tsc_control && 7256 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7257 goto out; 7258 7259 if (user_tsc_khz == 0) 7260 user_tsc_khz = tsc_khz; 7261 7262 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7263 r = 0; 7264 7265 goto out; 7266 } 7267 case KVM_GET_TSC_KHZ: { 7268 r = READ_ONCE(kvm->arch.default_tsc_khz); 7269 goto out; 7270 } 7271 case KVM_MEMORY_ENCRYPT_OP: { 7272 r = -ENOTTY; 7273 if (!kvm_x86_ops.mem_enc_ioctl) 7274 goto out; 7275 7276 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7277 break; 7278 } 7279 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7280 struct kvm_enc_region region; 7281 7282 r = -EFAULT; 7283 if (copy_from_user(®ion, argp, sizeof(region))) 7284 goto out; 7285 7286 r = -ENOTTY; 7287 if (!kvm_x86_ops.mem_enc_register_region) 7288 goto out; 7289 7290 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7291 break; 7292 } 7293 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7294 struct kvm_enc_region region; 7295 7296 r = -EFAULT; 7297 if (copy_from_user(®ion, argp, sizeof(region))) 7298 goto out; 7299 7300 r = -ENOTTY; 7301 if (!kvm_x86_ops.mem_enc_unregister_region) 7302 goto out; 7303 7304 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7305 break; 7306 } 7307 #ifdef CONFIG_KVM_HYPERV 7308 case KVM_HYPERV_EVENTFD: { 7309 struct kvm_hyperv_eventfd hvevfd; 7310 7311 r = -EFAULT; 7312 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7313 goto out; 7314 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7315 break; 7316 } 7317 #endif 7318 case KVM_SET_PMU_EVENT_FILTER: 7319 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7320 break; 7321 case KVM_X86_SET_MSR_FILTER: { 7322 struct kvm_msr_filter __user *user_msr_filter = argp; 7323 struct kvm_msr_filter filter; 7324 7325 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7326 return -EFAULT; 7327 7328 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7329 break; 7330 } 7331 default: 7332 r = -ENOTTY; 7333 } 7334 out: 7335 return r; 7336 } 7337 7338 static void kvm_probe_feature_msr(u32 msr_index) 7339 { 7340 struct kvm_msr_entry msr = { 7341 .index = msr_index, 7342 }; 7343 7344 if (kvm_get_msr_feature(&msr)) 7345 return; 7346 7347 msr_based_features[num_msr_based_features++] = msr_index; 7348 } 7349 7350 static void kvm_probe_msr_to_save(u32 msr_index) 7351 { 7352 u32 dummy[2]; 7353 7354 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7355 return; 7356 7357 /* 7358 * Even MSRs that are valid in the host may not be exposed to guests in 7359 * some cases. 7360 */ 7361 switch (msr_index) { 7362 case MSR_IA32_BNDCFGS: 7363 if (!kvm_mpx_supported()) 7364 return; 7365 break; 7366 case MSR_TSC_AUX: 7367 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7368 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7369 return; 7370 break; 7371 case MSR_IA32_UMWAIT_CONTROL: 7372 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7373 return; 7374 break; 7375 case MSR_IA32_RTIT_CTL: 7376 case MSR_IA32_RTIT_STATUS: 7377 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7378 return; 7379 break; 7380 case MSR_IA32_RTIT_CR3_MATCH: 7381 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7382 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7383 return; 7384 break; 7385 case MSR_IA32_RTIT_OUTPUT_BASE: 7386 case MSR_IA32_RTIT_OUTPUT_MASK: 7387 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7388 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7389 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7390 return; 7391 break; 7392 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7393 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7394 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7395 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7396 return; 7397 break; 7398 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7399 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7400 kvm_pmu_cap.num_counters_gp) 7401 return; 7402 break; 7403 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7404 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7405 kvm_pmu_cap.num_counters_gp) 7406 return; 7407 break; 7408 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7409 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7410 kvm_pmu_cap.num_counters_fixed) 7411 return; 7412 break; 7413 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7414 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7415 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7416 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7417 return; 7418 break; 7419 case MSR_IA32_XFD: 7420 case MSR_IA32_XFD_ERR: 7421 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7422 return; 7423 break; 7424 case MSR_IA32_TSX_CTRL: 7425 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7426 return; 7427 break; 7428 default: 7429 break; 7430 } 7431 7432 msrs_to_save[num_msrs_to_save++] = msr_index; 7433 } 7434 7435 static void kvm_init_msr_lists(void) 7436 { 7437 unsigned i; 7438 7439 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7440 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7441 7442 num_msrs_to_save = 0; 7443 num_emulated_msrs = 0; 7444 num_msr_based_features = 0; 7445 7446 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7447 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7448 7449 if (enable_pmu) { 7450 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7451 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7452 } 7453 7454 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7455 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7456 continue; 7457 7458 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7459 } 7460 7461 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7462 kvm_probe_feature_msr(i); 7463 7464 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7465 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7466 } 7467 7468 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7469 const void *v) 7470 { 7471 int handled = 0; 7472 int n; 7473 7474 do { 7475 n = min(len, 8); 7476 if (!(lapic_in_kernel(vcpu) && 7477 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7478 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7479 break; 7480 handled += n; 7481 addr += n; 7482 len -= n; 7483 v += n; 7484 } while (len); 7485 7486 return handled; 7487 } 7488 7489 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7490 { 7491 int handled = 0; 7492 int n; 7493 7494 do { 7495 n = min(len, 8); 7496 if (!(lapic_in_kernel(vcpu) && 7497 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7498 addr, n, v)) 7499 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7500 break; 7501 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7502 handled += n; 7503 addr += n; 7504 len -= n; 7505 v += n; 7506 } while (len); 7507 7508 return handled; 7509 } 7510 7511 void kvm_set_segment(struct kvm_vcpu *vcpu, 7512 struct kvm_segment *var, int seg) 7513 { 7514 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7515 } 7516 7517 void kvm_get_segment(struct kvm_vcpu *vcpu, 7518 struct kvm_segment *var, int seg) 7519 { 7520 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7521 } 7522 7523 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7524 struct x86_exception *exception) 7525 { 7526 struct kvm_mmu *mmu = vcpu->arch.mmu; 7527 gpa_t t_gpa; 7528 7529 BUG_ON(!mmu_is_nested(vcpu)); 7530 7531 /* NPT walks are always user-walks */ 7532 access |= PFERR_USER_MASK; 7533 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7534 7535 return t_gpa; 7536 } 7537 7538 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7539 struct x86_exception *exception) 7540 { 7541 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7542 7543 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7544 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7545 } 7546 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7547 7548 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7549 struct x86_exception *exception) 7550 { 7551 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7552 7553 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7554 access |= PFERR_WRITE_MASK; 7555 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7556 } 7557 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7558 7559 /* uses this to access any guest's mapped memory without checking CPL */ 7560 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7561 struct x86_exception *exception) 7562 { 7563 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7564 7565 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7566 } 7567 7568 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7569 struct kvm_vcpu *vcpu, u64 access, 7570 struct x86_exception *exception) 7571 { 7572 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7573 void *data = val; 7574 int r = X86EMUL_CONTINUE; 7575 7576 while (bytes) { 7577 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7578 unsigned offset = addr & (PAGE_SIZE-1); 7579 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7580 int ret; 7581 7582 if (gpa == INVALID_GPA) 7583 return X86EMUL_PROPAGATE_FAULT; 7584 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7585 offset, toread); 7586 if (ret < 0) { 7587 r = X86EMUL_IO_NEEDED; 7588 goto out; 7589 } 7590 7591 bytes -= toread; 7592 data += toread; 7593 addr += toread; 7594 } 7595 out: 7596 return r; 7597 } 7598 7599 /* used for instruction fetching */ 7600 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7601 gva_t addr, void *val, unsigned int bytes, 7602 struct x86_exception *exception) 7603 { 7604 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7605 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7606 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7607 unsigned offset; 7608 int ret; 7609 7610 /* Inline kvm_read_guest_virt_helper for speed. */ 7611 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7612 exception); 7613 if (unlikely(gpa == INVALID_GPA)) 7614 return X86EMUL_PROPAGATE_FAULT; 7615 7616 offset = addr & (PAGE_SIZE-1); 7617 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7618 bytes = (unsigned)PAGE_SIZE - offset; 7619 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7620 offset, bytes); 7621 if (unlikely(ret < 0)) 7622 return X86EMUL_IO_NEEDED; 7623 7624 return X86EMUL_CONTINUE; 7625 } 7626 7627 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7628 gva_t addr, void *val, unsigned int bytes, 7629 struct x86_exception *exception) 7630 { 7631 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7632 7633 /* 7634 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7635 * is returned, but our callers are not ready for that and they blindly 7636 * call kvm_inject_page_fault. Ensure that they at least do not leak 7637 * uninitialized kernel stack memory into cr2 and error code. 7638 */ 7639 memset(exception, 0, sizeof(*exception)); 7640 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7641 exception); 7642 } 7643 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7644 7645 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7646 gva_t addr, void *val, unsigned int bytes, 7647 struct x86_exception *exception, bool system) 7648 { 7649 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7650 u64 access = 0; 7651 7652 if (system) 7653 access |= PFERR_IMPLICIT_ACCESS; 7654 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7655 access |= PFERR_USER_MASK; 7656 7657 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7658 } 7659 7660 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7661 struct kvm_vcpu *vcpu, u64 access, 7662 struct x86_exception *exception) 7663 { 7664 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7665 void *data = val; 7666 int r = X86EMUL_CONTINUE; 7667 7668 while (bytes) { 7669 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7670 unsigned offset = addr & (PAGE_SIZE-1); 7671 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7672 int ret; 7673 7674 if (gpa == INVALID_GPA) 7675 return X86EMUL_PROPAGATE_FAULT; 7676 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7677 if (ret < 0) { 7678 r = X86EMUL_IO_NEEDED; 7679 goto out; 7680 } 7681 7682 bytes -= towrite; 7683 data += towrite; 7684 addr += towrite; 7685 } 7686 out: 7687 return r; 7688 } 7689 7690 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7691 unsigned int bytes, struct x86_exception *exception, 7692 bool system) 7693 { 7694 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7695 u64 access = PFERR_WRITE_MASK; 7696 7697 if (system) 7698 access |= PFERR_IMPLICIT_ACCESS; 7699 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7700 access |= PFERR_USER_MASK; 7701 7702 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7703 access, exception); 7704 } 7705 7706 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7707 unsigned int bytes, struct x86_exception *exception) 7708 { 7709 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7710 vcpu->arch.l1tf_flush_l1d = true; 7711 7712 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7713 PFERR_WRITE_MASK, exception); 7714 } 7715 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7716 7717 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7718 void *insn, int insn_len) 7719 { 7720 return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type, 7721 insn, insn_len); 7722 } 7723 7724 int handle_ud(struct kvm_vcpu *vcpu) 7725 { 7726 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7727 int fep_flags = READ_ONCE(force_emulation_prefix); 7728 int emul_type = EMULTYPE_TRAP_UD; 7729 char sig[5]; /* ud2; .ascii "kvm" */ 7730 struct x86_exception e; 7731 int r; 7732 7733 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7734 if (r != X86EMUL_CONTINUE) 7735 return 1; 7736 7737 if (fep_flags && 7738 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7739 sig, sizeof(sig), &e) == 0 && 7740 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7741 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7742 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7743 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7744 emul_type = EMULTYPE_TRAP_UD_FORCED; 7745 } 7746 7747 return kvm_emulate_instruction(vcpu, emul_type); 7748 } 7749 EXPORT_SYMBOL_GPL(handle_ud); 7750 7751 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7752 gpa_t gpa, bool write) 7753 { 7754 /* For APIC access vmexit */ 7755 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7756 return 1; 7757 7758 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7759 trace_vcpu_match_mmio(gva, gpa, write, true); 7760 return 1; 7761 } 7762 7763 return 0; 7764 } 7765 7766 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7767 gpa_t *gpa, struct x86_exception *exception, 7768 bool write) 7769 { 7770 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7771 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7772 | (write ? PFERR_WRITE_MASK : 0); 7773 7774 /* 7775 * currently PKRU is only applied to ept enabled guest so 7776 * there is no pkey in EPT page table for L1 guest or EPT 7777 * shadow page table for L2 guest. 7778 */ 7779 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7780 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7781 vcpu->arch.mmio_access, 0, access))) { 7782 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7783 (gva & (PAGE_SIZE - 1)); 7784 trace_vcpu_match_mmio(gva, *gpa, write, false); 7785 return 1; 7786 } 7787 7788 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7789 7790 if (*gpa == INVALID_GPA) 7791 return -1; 7792 7793 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7794 } 7795 7796 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7797 const void *val, int bytes) 7798 { 7799 int ret; 7800 7801 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7802 if (ret < 0) 7803 return 0; 7804 kvm_page_track_write(vcpu, gpa, val, bytes); 7805 return 1; 7806 } 7807 7808 struct read_write_emulator_ops { 7809 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7810 int bytes); 7811 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7812 void *val, int bytes); 7813 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7814 int bytes, void *val); 7815 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7816 void *val, int bytes); 7817 bool write; 7818 }; 7819 7820 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7821 { 7822 if (vcpu->mmio_read_completed) { 7823 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7824 vcpu->mmio_fragments[0].gpa, val); 7825 vcpu->mmio_read_completed = 0; 7826 return 1; 7827 } 7828 7829 return 0; 7830 } 7831 7832 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7833 void *val, int bytes) 7834 { 7835 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7836 } 7837 7838 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7839 void *val, int bytes) 7840 { 7841 return emulator_write_phys(vcpu, gpa, val, bytes); 7842 } 7843 7844 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7845 { 7846 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7847 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7848 } 7849 7850 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7851 void *val, int bytes) 7852 { 7853 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7854 return X86EMUL_IO_NEEDED; 7855 } 7856 7857 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7858 void *val, int bytes) 7859 { 7860 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7861 7862 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7863 return X86EMUL_CONTINUE; 7864 } 7865 7866 static const struct read_write_emulator_ops read_emultor = { 7867 .read_write_prepare = read_prepare, 7868 .read_write_emulate = read_emulate, 7869 .read_write_mmio = vcpu_mmio_read, 7870 .read_write_exit_mmio = read_exit_mmio, 7871 }; 7872 7873 static const struct read_write_emulator_ops write_emultor = { 7874 .read_write_emulate = write_emulate, 7875 .read_write_mmio = write_mmio, 7876 .read_write_exit_mmio = write_exit_mmio, 7877 .write = true, 7878 }; 7879 7880 static int emulator_read_write_onepage(unsigned long addr, void *val, 7881 unsigned int bytes, 7882 struct x86_exception *exception, 7883 struct kvm_vcpu *vcpu, 7884 const struct read_write_emulator_ops *ops) 7885 { 7886 gpa_t gpa; 7887 int handled, ret; 7888 bool write = ops->write; 7889 struct kvm_mmio_fragment *frag; 7890 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7891 7892 /* 7893 * If the exit was due to a NPF we may already have a GPA. 7894 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7895 * Note, this cannot be used on string operations since string 7896 * operation using rep will only have the initial GPA from the NPF 7897 * occurred. 7898 */ 7899 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7900 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7901 gpa = ctxt->gpa_val; 7902 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7903 } else { 7904 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7905 if (ret < 0) 7906 return X86EMUL_PROPAGATE_FAULT; 7907 } 7908 7909 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7910 return X86EMUL_CONTINUE; 7911 7912 /* 7913 * Is this MMIO handled locally? 7914 */ 7915 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7916 if (handled == bytes) 7917 return X86EMUL_CONTINUE; 7918 7919 gpa += handled; 7920 bytes -= handled; 7921 val += handled; 7922 7923 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7924 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7925 frag->gpa = gpa; 7926 frag->data = val; 7927 frag->len = bytes; 7928 return X86EMUL_CONTINUE; 7929 } 7930 7931 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7932 unsigned long addr, 7933 void *val, unsigned int bytes, 7934 struct x86_exception *exception, 7935 const struct read_write_emulator_ops *ops) 7936 { 7937 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7938 gpa_t gpa; 7939 int rc; 7940 7941 if (ops->read_write_prepare && 7942 ops->read_write_prepare(vcpu, val, bytes)) 7943 return X86EMUL_CONTINUE; 7944 7945 vcpu->mmio_nr_fragments = 0; 7946 7947 /* Crossing a page boundary? */ 7948 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7949 int now; 7950 7951 now = -addr & ~PAGE_MASK; 7952 rc = emulator_read_write_onepage(addr, val, now, exception, 7953 vcpu, ops); 7954 7955 if (rc != X86EMUL_CONTINUE) 7956 return rc; 7957 addr += now; 7958 if (ctxt->mode != X86EMUL_MODE_PROT64) 7959 addr = (u32)addr; 7960 val += now; 7961 bytes -= now; 7962 } 7963 7964 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7965 vcpu, ops); 7966 if (rc != X86EMUL_CONTINUE) 7967 return rc; 7968 7969 if (!vcpu->mmio_nr_fragments) 7970 return rc; 7971 7972 gpa = vcpu->mmio_fragments[0].gpa; 7973 7974 vcpu->mmio_needed = 1; 7975 vcpu->mmio_cur_fragment = 0; 7976 7977 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7978 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7979 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7980 vcpu->run->mmio.phys_addr = gpa; 7981 7982 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7983 } 7984 7985 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7986 unsigned long addr, 7987 void *val, 7988 unsigned int bytes, 7989 struct x86_exception *exception) 7990 { 7991 return emulator_read_write(ctxt, addr, val, bytes, 7992 exception, &read_emultor); 7993 } 7994 7995 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7996 unsigned long addr, 7997 const void *val, 7998 unsigned int bytes, 7999 struct x86_exception *exception) 8000 { 8001 return emulator_read_write(ctxt, addr, (void *)val, bytes, 8002 exception, &write_emultor); 8003 } 8004 8005 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 8006 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 8007 8008 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 8009 unsigned long addr, 8010 const void *old, 8011 const void *new, 8012 unsigned int bytes, 8013 struct x86_exception *exception) 8014 { 8015 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8016 u64 page_line_mask; 8017 unsigned long hva; 8018 gpa_t gpa; 8019 int r; 8020 8021 /* guests cmpxchg8b have to be emulated atomically */ 8022 if (bytes > 8 || (bytes & (bytes - 1))) 8023 goto emul_write; 8024 8025 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 8026 8027 if (gpa == INVALID_GPA || 8028 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 8029 goto emul_write; 8030 8031 /* 8032 * Emulate the atomic as a straight write to avoid #AC if SLD is 8033 * enabled in the host and the access splits a cache line. 8034 */ 8035 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 8036 page_line_mask = ~(cache_line_size() - 1); 8037 else 8038 page_line_mask = PAGE_MASK; 8039 8040 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 8041 goto emul_write; 8042 8043 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 8044 if (kvm_is_error_hva(hva)) 8045 goto emul_write; 8046 8047 hva += offset_in_page(gpa); 8048 8049 switch (bytes) { 8050 case 1: 8051 r = emulator_try_cmpxchg_user(u8, hva, old, new); 8052 break; 8053 case 2: 8054 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8055 break; 8056 case 4: 8057 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8058 break; 8059 case 8: 8060 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8061 break; 8062 default: 8063 BUG(); 8064 } 8065 8066 if (r < 0) 8067 return X86EMUL_UNHANDLEABLE; 8068 8069 /* 8070 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8071 * successful, as the old value is written back on failure. Note, for 8072 * live migration, this is unnecessarily conservative as CMPXCHG writes 8073 * back the original value and the access is atomic, but KVM's ABI is 8074 * that all writes are dirty logged, regardless of the value written. 8075 */ 8076 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8077 8078 if (r) 8079 return X86EMUL_CMPXCHG_FAILED; 8080 8081 kvm_page_track_write(vcpu, gpa, new, bytes); 8082 8083 return X86EMUL_CONTINUE; 8084 8085 emul_write: 8086 pr_warn_once("emulating exchange as write\n"); 8087 8088 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8089 } 8090 8091 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8092 unsigned short port, void *data, 8093 unsigned int count, bool in) 8094 { 8095 unsigned i; 8096 int r; 8097 8098 WARN_ON_ONCE(vcpu->arch.pio.count); 8099 for (i = 0; i < count; i++) { 8100 if (in) 8101 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8102 else 8103 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8104 8105 if (r) { 8106 if (i == 0) 8107 goto userspace_io; 8108 8109 /* 8110 * Userspace must have unregistered the device while PIO 8111 * was running. Drop writes / read as 0. 8112 */ 8113 if (in) 8114 memset(data, 0, size * (count - i)); 8115 break; 8116 } 8117 8118 data += size; 8119 } 8120 return 1; 8121 8122 userspace_io: 8123 vcpu->arch.pio.port = port; 8124 vcpu->arch.pio.in = in; 8125 vcpu->arch.pio.count = count; 8126 vcpu->arch.pio.size = size; 8127 8128 if (in) 8129 memset(vcpu->arch.pio_data, 0, size * count); 8130 else 8131 memcpy(vcpu->arch.pio_data, data, size * count); 8132 8133 vcpu->run->exit_reason = KVM_EXIT_IO; 8134 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8135 vcpu->run->io.size = size; 8136 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8137 vcpu->run->io.count = count; 8138 vcpu->run->io.port = port; 8139 return 0; 8140 } 8141 8142 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8143 unsigned short port, void *val, unsigned int count) 8144 { 8145 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8146 if (r) 8147 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8148 8149 return r; 8150 } 8151 8152 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8153 { 8154 int size = vcpu->arch.pio.size; 8155 unsigned int count = vcpu->arch.pio.count; 8156 memcpy(val, vcpu->arch.pio_data, size * count); 8157 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8158 vcpu->arch.pio.count = 0; 8159 } 8160 8161 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8162 int size, unsigned short port, void *val, 8163 unsigned int count) 8164 { 8165 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8166 if (vcpu->arch.pio.count) { 8167 /* 8168 * Complete a previous iteration that required userspace I/O. 8169 * Note, @count isn't guaranteed to match pio.count as userspace 8170 * can modify ECX before rerunning the vCPU. Ignore any such 8171 * shenanigans as KVM doesn't support modifying the rep count, 8172 * and the emulator ensures @count doesn't overflow the buffer. 8173 */ 8174 complete_emulator_pio_in(vcpu, val); 8175 return 1; 8176 } 8177 8178 return emulator_pio_in(vcpu, size, port, val, count); 8179 } 8180 8181 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8182 unsigned short port, const void *val, 8183 unsigned int count) 8184 { 8185 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8186 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8187 } 8188 8189 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8190 int size, unsigned short port, 8191 const void *val, unsigned int count) 8192 { 8193 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8194 } 8195 8196 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8197 { 8198 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 8199 } 8200 8201 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8202 { 8203 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8204 } 8205 8206 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8207 { 8208 if (!need_emulate_wbinvd(vcpu)) 8209 return X86EMUL_CONTINUE; 8210 8211 if (static_call(kvm_x86_has_wbinvd_exit)()) { 8212 int cpu = get_cpu(); 8213 8214 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8215 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8216 wbinvd_ipi, NULL, 1); 8217 put_cpu(); 8218 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8219 } else 8220 wbinvd(); 8221 return X86EMUL_CONTINUE; 8222 } 8223 8224 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8225 { 8226 kvm_emulate_wbinvd_noskip(vcpu); 8227 return kvm_skip_emulated_instruction(vcpu); 8228 } 8229 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8230 8231 8232 8233 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8234 { 8235 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8236 } 8237 8238 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) 8239 { 8240 return kvm_get_dr(emul_to_vcpu(ctxt), dr); 8241 } 8242 8243 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8244 unsigned long value) 8245 { 8246 8247 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8248 } 8249 8250 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8251 { 8252 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8253 } 8254 8255 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8256 { 8257 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8258 unsigned long value; 8259 8260 switch (cr) { 8261 case 0: 8262 value = kvm_read_cr0(vcpu); 8263 break; 8264 case 2: 8265 value = vcpu->arch.cr2; 8266 break; 8267 case 3: 8268 value = kvm_read_cr3(vcpu); 8269 break; 8270 case 4: 8271 value = kvm_read_cr4(vcpu); 8272 break; 8273 case 8: 8274 value = kvm_get_cr8(vcpu); 8275 break; 8276 default: 8277 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8278 return 0; 8279 } 8280 8281 return value; 8282 } 8283 8284 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8285 { 8286 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8287 int res = 0; 8288 8289 switch (cr) { 8290 case 0: 8291 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8292 break; 8293 case 2: 8294 vcpu->arch.cr2 = val; 8295 break; 8296 case 3: 8297 res = kvm_set_cr3(vcpu, val); 8298 break; 8299 case 4: 8300 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8301 break; 8302 case 8: 8303 res = kvm_set_cr8(vcpu, val); 8304 break; 8305 default: 8306 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8307 res = -1; 8308 } 8309 8310 return res; 8311 } 8312 8313 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8314 { 8315 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8316 } 8317 8318 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8319 { 8320 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8321 } 8322 8323 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8324 { 8325 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8326 } 8327 8328 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8329 { 8330 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8331 } 8332 8333 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8334 { 8335 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8336 } 8337 8338 static unsigned long emulator_get_cached_segment_base( 8339 struct x86_emulate_ctxt *ctxt, int seg) 8340 { 8341 return get_segment_base(emul_to_vcpu(ctxt), seg); 8342 } 8343 8344 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8345 struct desc_struct *desc, u32 *base3, 8346 int seg) 8347 { 8348 struct kvm_segment var; 8349 8350 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8351 *selector = var.selector; 8352 8353 if (var.unusable) { 8354 memset(desc, 0, sizeof(*desc)); 8355 if (base3) 8356 *base3 = 0; 8357 return false; 8358 } 8359 8360 if (var.g) 8361 var.limit >>= 12; 8362 set_desc_limit(desc, var.limit); 8363 set_desc_base(desc, (unsigned long)var.base); 8364 #ifdef CONFIG_X86_64 8365 if (base3) 8366 *base3 = var.base >> 32; 8367 #endif 8368 desc->type = var.type; 8369 desc->s = var.s; 8370 desc->dpl = var.dpl; 8371 desc->p = var.present; 8372 desc->avl = var.avl; 8373 desc->l = var.l; 8374 desc->d = var.db; 8375 desc->g = var.g; 8376 8377 return true; 8378 } 8379 8380 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8381 struct desc_struct *desc, u32 base3, 8382 int seg) 8383 { 8384 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8385 struct kvm_segment var; 8386 8387 var.selector = selector; 8388 var.base = get_desc_base(desc); 8389 #ifdef CONFIG_X86_64 8390 var.base |= ((u64)base3) << 32; 8391 #endif 8392 var.limit = get_desc_limit(desc); 8393 if (desc->g) 8394 var.limit = (var.limit << 12) | 0xfff; 8395 var.type = desc->type; 8396 var.dpl = desc->dpl; 8397 var.db = desc->d; 8398 var.s = desc->s; 8399 var.l = desc->l; 8400 var.g = desc->g; 8401 var.avl = desc->avl; 8402 var.present = desc->p; 8403 var.unusable = !var.present; 8404 var.padding = 0; 8405 8406 kvm_set_segment(vcpu, &var, seg); 8407 return; 8408 } 8409 8410 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8411 u32 msr_index, u64 *pdata) 8412 { 8413 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8414 int r; 8415 8416 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8417 if (r < 0) 8418 return X86EMUL_UNHANDLEABLE; 8419 8420 if (r) { 8421 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8422 complete_emulated_rdmsr, r)) 8423 return X86EMUL_IO_NEEDED; 8424 8425 trace_kvm_msr_read_ex(msr_index); 8426 return X86EMUL_PROPAGATE_FAULT; 8427 } 8428 8429 trace_kvm_msr_read(msr_index, *pdata); 8430 return X86EMUL_CONTINUE; 8431 } 8432 8433 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8434 u32 msr_index, u64 data) 8435 { 8436 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8437 int r; 8438 8439 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8440 if (r < 0) 8441 return X86EMUL_UNHANDLEABLE; 8442 8443 if (r) { 8444 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8445 complete_emulated_msr_access, r)) 8446 return X86EMUL_IO_NEEDED; 8447 8448 trace_kvm_msr_write_ex(msr_index, data); 8449 return X86EMUL_PROPAGATE_FAULT; 8450 } 8451 8452 trace_kvm_msr_write(msr_index, data); 8453 return X86EMUL_CONTINUE; 8454 } 8455 8456 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8457 u32 msr_index, u64 *pdata) 8458 { 8459 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8460 } 8461 8462 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) 8463 { 8464 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); 8465 } 8466 8467 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8468 u32 pmc, u64 *pdata) 8469 { 8470 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8471 } 8472 8473 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8474 { 8475 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8476 } 8477 8478 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8479 struct x86_instruction_info *info, 8480 enum x86_intercept_stage stage) 8481 { 8482 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8483 &ctxt->exception); 8484 } 8485 8486 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8487 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8488 bool exact_only) 8489 { 8490 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8491 } 8492 8493 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8494 { 8495 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8496 } 8497 8498 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8499 { 8500 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8501 } 8502 8503 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8504 { 8505 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8506 } 8507 8508 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8509 { 8510 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8511 } 8512 8513 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8514 { 8515 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8516 } 8517 8518 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8519 { 8520 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8521 } 8522 8523 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8524 { 8525 return is_smm(emul_to_vcpu(ctxt)); 8526 } 8527 8528 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8529 { 8530 return is_guest_mode(emul_to_vcpu(ctxt)); 8531 } 8532 8533 #ifndef CONFIG_KVM_SMM 8534 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8535 { 8536 WARN_ON_ONCE(1); 8537 return X86EMUL_UNHANDLEABLE; 8538 } 8539 #endif 8540 8541 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8542 { 8543 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8544 } 8545 8546 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8547 { 8548 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8549 } 8550 8551 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8552 { 8553 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8554 8555 if (!kvm->vm_bugged) 8556 kvm_vm_bugged(kvm); 8557 } 8558 8559 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8560 gva_t addr, unsigned int flags) 8561 { 8562 if (!kvm_x86_ops.get_untagged_addr) 8563 return addr; 8564 8565 return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags); 8566 } 8567 8568 static const struct x86_emulate_ops emulate_ops = { 8569 .vm_bugged = emulator_vm_bugged, 8570 .read_gpr = emulator_read_gpr, 8571 .write_gpr = emulator_write_gpr, 8572 .read_std = emulator_read_std, 8573 .write_std = emulator_write_std, 8574 .fetch = kvm_fetch_guest_virt, 8575 .read_emulated = emulator_read_emulated, 8576 .write_emulated = emulator_write_emulated, 8577 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8578 .invlpg = emulator_invlpg, 8579 .pio_in_emulated = emulator_pio_in_emulated, 8580 .pio_out_emulated = emulator_pio_out_emulated, 8581 .get_segment = emulator_get_segment, 8582 .set_segment = emulator_set_segment, 8583 .get_cached_segment_base = emulator_get_cached_segment_base, 8584 .get_gdt = emulator_get_gdt, 8585 .get_idt = emulator_get_idt, 8586 .set_gdt = emulator_set_gdt, 8587 .set_idt = emulator_set_idt, 8588 .get_cr = emulator_get_cr, 8589 .set_cr = emulator_set_cr, 8590 .cpl = emulator_get_cpl, 8591 .get_dr = emulator_get_dr, 8592 .set_dr = emulator_set_dr, 8593 .set_msr_with_filter = emulator_set_msr_with_filter, 8594 .get_msr_with_filter = emulator_get_msr_with_filter, 8595 .get_msr = emulator_get_msr, 8596 .check_rdpmc_early = emulator_check_rdpmc_early, 8597 .read_pmc = emulator_read_pmc, 8598 .halt = emulator_halt, 8599 .wbinvd = emulator_wbinvd, 8600 .fix_hypercall = emulator_fix_hypercall, 8601 .intercept = emulator_intercept, 8602 .get_cpuid = emulator_get_cpuid, 8603 .guest_has_movbe = emulator_guest_has_movbe, 8604 .guest_has_fxsr = emulator_guest_has_fxsr, 8605 .guest_has_rdpid = emulator_guest_has_rdpid, 8606 .set_nmi_mask = emulator_set_nmi_mask, 8607 .is_smm = emulator_is_smm, 8608 .is_guest_mode = emulator_is_guest_mode, 8609 .leave_smm = emulator_leave_smm, 8610 .triple_fault = emulator_triple_fault, 8611 .set_xcr = emulator_set_xcr, 8612 .get_untagged_addr = emulator_get_untagged_addr, 8613 }; 8614 8615 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8616 { 8617 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8618 /* 8619 * an sti; sti; sequence only disable interrupts for the first 8620 * instruction. So, if the last instruction, be it emulated or 8621 * not, left the system with the INT_STI flag enabled, it 8622 * means that the last instruction is an sti. We should not 8623 * leave the flag on in this case. The same goes for mov ss 8624 */ 8625 if (int_shadow & mask) 8626 mask = 0; 8627 if (unlikely(int_shadow || mask)) { 8628 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8629 if (!mask) 8630 kvm_make_request(KVM_REQ_EVENT, vcpu); 8631 } 8632 } 8633 8634 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8635 { 8636 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8637 8638 if (ctxt->exception.vector == PF_VECTOR) 8639 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8640 else if (ctxt->exception.error_code_valid) 8641 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8642 ctxt->exception.error_code); 8643 else 8644 kvm_queue_exception(vcpu, ctxt->exception.vector); 8645 } 8646 8647 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8648 { 8649 struct x86_emulate_ctxt *ctxt; 8650 8651 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8652 if (!ctxt) { 8653 pr_err("failed to allocate vcpu's emulator\n"); 8654 return NULL; 8655 } 8656 8657 ctxt->vcpu = vcpu; 8658 ctxt->ops = &emulate_ops; 8659 vcpu->arch.emulate_ctxt = ctxt; 8660 8661 return ctxt; 8662 } 8663 8664 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8665 { 8666 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8667 int cs_db, cs_l; 8668 8669 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8670 8671 ctxt->gpa_available = false; 8672 ctxt->eflags = kvm_get_rflags(vcpu); 8673 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8674 8675 ctxt->eip = kvm_rip_read(vcpu); 8676 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8677 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8678 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8679 cs_db ? X86EMUL_MODE_PROT32 : 8680 X86EMUL_MODE_PROT16; 8681 ctxt->interruptibility = 0; 8682 ctxt->have_exception = false; 8683 ctxt->exception.vector = -1; 8684 ctxt->perm_ok = false; 8685 8686 init_decode_cache(ctxt); 8687 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8688 } 8689 8690 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8691 { 8692 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8693 int ret; 8694 8695 init_emulate_ctxt(vcpu); 8696 8697 ctxt->op_bytes = 2; 8698 ctxt->ad_bytes = 2; 8699 ctxt->_eip = ctxt->eip + inc_eip; 8700 ret = emulate_int_real(ctxt, irq); 8701 8702 if (ret != X86EMUL_CONTINUE) { 8703 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8704 } else { 8705 ctxt->eip = ctxt->_eip; 8706 kvm_rip_write(vcpu, ctxt->eip); 8707 kvm_set_rflags(vcpu, ctxt->eflags); 8708 } 8709 } 8710 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8711 8712 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8713 u8 ndata, u8 *insn_bytes, u8 insn_size) 8714 { 8715 struct kvm_run *run = vcpu->run; 8716 u64 info[5]; 8717 u8 info_start; 8718 8719 /* 8720 * Zero the whole array used to retrieve the exit info, as casting to 8721 * u32 for select entries will leave some chunks uninitialized. 8722 */ 8723 memset(&info, 0, sizeof(info)); 8724 8725 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8726 &info[2], (u32 *)&info[3], 8727 (u32 *)&info[4]); 8728 8729 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8730 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8731 8732 /* 8733 * There's currently space for 13 entries, but 5 are used for the exit 8734 * reason and info. Restrict to 4 to reduce the maintenance burden 8735 * when expanding kvm_run.emulation_failure in the future. 8736 */ 8737 if (WARN_ON_ONCE(ndata > 4)) 8738 ndata = 4; 8739 8740 /* Always include the flags as a 'data' entry. */ 8741 info_start = 1; 8742 run->emulation_failure.flags = 0; 8743 8744 if (insn_size) { 8745 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8746 sizeof(run->emulation_failure.insn_bytes) != 16)); 8747 info_start += 2; 8748 run->emulation_failure.flags |= 8749 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8750 run->emulation_failure.insn_size = insn_size; 8751 memset(run->emulation_failure.insn_bytes, 0x90, 8752 sizeof(run->emulation_failure.insn_bytes)); 8753 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8754 } 8755 8756 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8757 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8758 ndata * sizeof(data[0])); 8759 8760 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8761 } 8762 8763 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8764 { 8765 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8766 8767 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8768 ctxt->fetch.end - ctxt->fetch.data); 8769 } 8770 8771 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8772 u8 ndata) 8773 { 8774 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8775 } 8776 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8777 8778 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8779 { 8780 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8781 } 8782 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8783 8784 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8785 { 8786 struct kvm *kvm = vcpu->kvm; 8787 8788 ++vcpu->stat.insn_emulation_fail; 8789 trace_kvm_emulate_insn_failed(vcpu); 8790 8791 if (emulation_type & EMULTYPE_VMWARE_GP) { 8792 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8793 return 1; 8794 } 8795 8796 if (kvm->arch.exit_on_emulation_error || 8797 (emulation_type & EMULTYPE_SKIP)) { 8798 prepare_emulation_ctxt_failure_exit(vcpu); 8799 return 0; 8800 } 8801 8802 kvm_queue_exception(vcpu, UD_VECTOR); 8803 8804 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8805 prepare_emulation_ctxt_failure_exit(vcpu); 8806 return 0; 8807 } 8808 8809 return 1; 8810 } 8811 8812 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8813 int emulation_type) 8814 { 8815 gpa_t gpa = cr2_or_gpa; 8816 kvm_pfn_t pfn; 8817 8818 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8819 return false; 8820 8821 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8822 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8823 return false; 8824 8825 if (!vcpu->arch.mmu->root_role.direct) { 8826 /* 8827 * Write permission should be allowed since only 8828 * write access need to be emulated. 8829 */ 8830 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8831 8832 /* 8833 * If the mapping is invalid in guest, let cpu retry 8834 * it to generate fault. 8835 */ 8836 if (gpa == INVALID_GPA) 8837 return true; 8838 } 8839 8840 /* 8841 * Do not retry the unhandleable instruction if it faults on the 8842 * readonly host memory, otherwise it will goto a infinite loop: 8843 * retry instruction -> write #PF -> emulation fail -> retry 8844 * instruction -> ... 8845 */ 8846 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8847 8848 /* 8849 * If the instruction failed on the error pfn, it can not be fixed, 8850 * report the error to userspace. 8851 */ 8852 if (is_error_noslot_pfn(pfn)) 8853 return false; 8854 8855 kvm_release_pfn_clean(pfn); 8856 8857 /* 8858 * If emulation may have been triggered by a write to a shadowed page 8859 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the 8860 * guest to let the CPU re-execute the instruction in the hope that the 8861 * CPU can cleanly execute the instruction that KVM failed to emulate. 8862 */ 8863 if (vcpu->kvm->arch.indirect_shadow_pages) 8864 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8865 8866 /* 8867 * If the failed instruction faulted on an access to page tables that 8868 * are used to translate any part of the instruction, KVM can't resolve 8869 * the issue by unprotecting the gfn, as zapping the shadow page will 8870 * result in the instruction taking a !PRESENT page fault and thus put 8871 * the vCPU into an infinite loop of page faults. E.g. KVM will create 8872 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and 8873 * then zap the SPTE to unprotect the gfn, and then do it all over 8874 * again. Report the error to userspace. 8875 */ 8876 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8877 } 8878 8879 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8880 gpa_t cr2_or_gpa, int emulation_type) 8881 { 8882 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8883 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8884 8885 last_retry_eip = vcpu->arch.last_retry_eip; 8886 last_retry_addr = vcpu->arch.last_retry_addr; 8887 8888 /* 8889 * If the emulation is caused by #PF and it is non-page_table 8890 * writing instruction, it means the VM-EXIT is caused by shadow 8891 * page protected, we can zap the shadow page and retry this 8892 * instruction directly. 8893 * 8894 * Note: if the guest uses a non-page-table modifying instruction 8895 * on the PDE that points to the instruction, then we will unmap 8896 * the instruction and go to an infinite loop. So, we cache the 8897 * last retried eip and the last fault address, if we meet the eip 8898 * and the address again, we can break out of the potential infinite 8899 * loop. 8900 */ 8901 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8902 8903 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8904 return false; 8905 8906 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8907 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8908 return false; 8909 8910 if (x86_page_table_writing_insn(ctxt)) 8911 return false; 8912 8913 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8914 return false; 8915 8916 vcpu->arch.last_retry_eip = ctxt->eip; 8917 vcpu->arch.last_retry_addr = cr2_or_gpa; 8918 8919 if (!vcpu->arch.mmu->root_role.direct) 8920 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8921 8922 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8923 8924 return true; 8925 } 8926 8927 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8928 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8929 8930 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8931 unsigned long *db) 8932 { 8933 u32 dr6 = 0; 8934 int i; 8935 u32 enable, rwlen; 8936 8937 enable = dr7; 8938 rwlen = dr7 >> 16; 8939 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8940 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8941 dr6 |= (1 << i); 8942 return dr6; 8943 } 8944 8945 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8946 { 8947 struct kvm_run *kvm_run = vcpu->run; 8948 8949 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8950 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8951 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8952 kvm_run->debug.arch.exception = DB_VECTOR; 8953 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8954 return 0; 8955 } 8956 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8957 return 1; 8958 } 8959 8960 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8961 { 8962 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8963 int r; 8964 8965 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8966 if (unlikely(!r)) 8967 return 0; 8968 8969 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 8970 8971 /* 8972 * rflags is the old, "raw" value of the flags. The new value has 8973 * not been saved yet. 8974 * 8975 * This is correct even for TF set by the guest, because "the 8976 * processor will not generate this exception after the instruction 8977 * that sets the TF flag". 8978 */ 8979 if (unlikely(rflags & X86_EFLAGS_TF)) 8980 r = kvm_vcpu_do_singlestep(vcpu); 8981 return r; 8982 } 8983 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8984 8985 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8986 { 8987 u32 shadow; 8988 8989 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8990 return true; 8991 8992 /* 8993 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8994 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8995 * to avoid the relatively expensive CPUID lookup. 8996 */ 8997 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8998 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8999 guest_cpuid_is_intel(vcpu); 9000 } 9001 9002 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 9003 int emulation_type, int *r) 9004 { 9005 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 9006 9007 /* 9008 * Do not check for code breakpoints if hardware has already done the 9009 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 9010 * the instruction has passed all exception checks, and all intercepted 9011 * exceptions that trigger emulation have lower priority than code 9012 * breakpoints, i.e. the fact that the intercepted exception occurred 9013 * means any code breakpoints have already been serviced. 9014 * 9015 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 9016 * hardware has checked the RIP of the magic prefix, but not the RIP of 9017 * the instruction being emulated. The intent of forced emulation is 9018 * to behave as if KVM intercepted the instruction without an exception 9019 * and without a prefix. 9020 */ 9021 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 9022 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 9023 return false; 9024 9025 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 9026 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 9027 struct kvm_run *kvm_run = vcpu->run; 9028 unsigned long eip = kvm_get_linear_rip(vcpu); 9029 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9030 vcpu->arch.guest_debug_dr7, 9031 vcpu->arch.eff_db); 9032 9033 if (dr6 != 0) { 9034 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 9035 kvm_run->debug.arch.pc = eip; 9036 kvm_run->debug.arch.exception = DB_VECTOR; 9037 kvm_run->exit_reason = KVM_EXIT_DEBUG; 9038 *r = 0; 9039 return true; 9040 } 9041 } 9042 9043 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 9044 !kvm_is_code_breakpoint_inhibited(vcpu)) { 9045 unsigned long eip = kvm_get_linear_rip(vcpu); 9046 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9047 vcpu->arch.dr7, 9048 vcpu->arch.db); 9049 9050 if (dr6 != 0) { 9051 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 9052 *r = 1; 9053 return true; 9054 } 9055 } 9056 9057 return false; 9058 } 9059 9060 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9061 { 9062 switch (ctxt->opcode_len) { 9063 case 1: 9064 switch (ctxt->b) { 9065 case 0xe4: /* IN */ 9066 case 0xe5: 9067 case 0xec: 9068 case 0xed: 9069 case 0xe6: /* OUT */ 9070 case 0xe7: 9071 case 0xee: 9072 case 0xef: 9073 case 0x6c: /* INS */ 9074 case 0x6d: 9075 case 0x6e: /* OUTS */ 9076 case 0x6f: 9077 return true; 9078 } 9079 break; 9080 case 2: 9081 switch (ctxt->b) { 9082 case 0x33: /* RDPMC */ 9083 return true; 9084 } 9085 break; 9086 } 9087 9088 return false; 9089 } 9090 9091 /* 9092 * Decode an instruction for emulation. The caller is responsible for handling 9093 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9094 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9095 * code breakpoints have higher priority and thus have already been done by 9096 * hardware. 9097 * 9098 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9099 * response to a machine check. 9100 */ 9101 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9102 void *insn, int insn_len) 9103 { 9104 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9105 int r; 9106 9107 init_emulate_ctxt(vcpu); 9108 9109 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9110 9111 trace_kvm_emulate_insn_start(vcpu); 9112 ++vcpu->stat.insn_emulation; 9113 9114 return r; 9115 } 9116 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9117 9118 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9119 int emulation_type, void *insn, int insn_len) 9120 { 9121 int r; 9122 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9123 bool writeback = true; 9124 9125 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9126 if (r != X86EMUL_CONTINUE) { 9127 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9128 return 1; 9129 9130 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9131 return handle_emulation_failure(vcpu, emulation_type); 9132 } 9133 9134 vcpu->arch.l1tf_flush_l1d = true; 9135 9136 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9137 kvm_clear_exception_queue(vcpu); 9138 9139 /* 9140 * Return immediately if RIP hits a code breakpoint, such #DBs 9141 * are fault-like and are higher priority than any faults on 9142 * the code fetch itself. 9143 */ 9144 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9145 return r; 9146 9147 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9148 insn, insn_len); 9149 if (r != EMULATION_OK) { 9150 if ((emulation_type & EMULTYPE_TRAP_UD) || 9151 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9152 kvm_queue_exception(vcpu, UD_VECTOR); 9153 return 1; 9154 } 9155 if (reexecute_instruction(vcpu, cr2_or_gpa, 9156 emulation_type)) 9157 return 1; 9158 9159 if (ctxt->have_exception && 9160 !(emulation_type & EMULTYPE_SKIP)) { 9161 /* 9162 * #UD should result in just EMULATION_FAILED, and trap-like 9163 * exception should not be encountered during decode. 9164 */ 9165 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9166 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9167 inject_emulated_exception(vcpu); 9168 return 1; 9169 } 9170 return handle_emulation_failure(vcpu, emulation_type); 9171 } 9172 } 9173 9174 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9175 !is_vmware_backdoor_opcode(ctxt)) { 9176 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9177 return 1; 9178 } 9179 9180 /* 9181 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9182 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9183 * The caller is responsible for updating interruptibility state and 9184 * injecting single-step #DBs. 9185 */ 9186 if (emulation_type & EMULTYPE_SKIP) { 9187 if (ctxt->mode != X86EMUL_MODE_PROT64) 9188 ctxt->eip = (u32)ctxt->_eip; 9189 else 9190 ctxt->eip = ctxt->_eip; 9191 9192 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9193 r = 1; 9194 goto writeback; 9195 } 9196 9197 kvm_rip_write(vcpu, ctxt->eip); 9198 if (ctxt->eflags & X86_EFLAGS_RF) 9199 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9200 return 1; 9201 } 9202 9203 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 9204 return 1; 9205 9206 /* this is needed for vmware backdoor interface to work since it 9207 changes registers values during IO operation */ 9208 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9209 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9210 emulator_invalidate_register_cache(ctxt); 9211 } 9212 9213 restart: 9214 if (emulation_type & EMULTYPE_PF) { 9215 /* Save the faulting GPA (cr2) in the address field */ 9216 ctxt->exception.address = cr2_or_gpa; 9217 9218 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9219 if (vcpu->arch.mmu->root_role.direct) { 9220 ctxt->gpa_available = true; 9221 ctxt->gpa_val = cr2_or_gpa; 9222 } 9223 } else { 9224 /* Sanitize the address out of an abundance of paranoia. */ 9225 ctxt->exception.address = 0; 9226 } 9227 9228 r = x86_emulate_insn(ctxt); 9229 9230 if (r == EMULATION_INTERCEPTED) 9231 return 1; 9232 9233 if (r == EMULATION_FAILED) { 9234 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 9235 return 1; 9236 9237 return handle_emulation_failure(vcpu, emulation_type); 9238 } 9239 9240 if (ctxt->have_exception) { 9241 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9242 vcpu->mmio_needed = false; 9243 r = 1; 9244 inject_emulated_exception(vcpu); 9245 } else if (vcpu->arch.pio.count) { 9246 if (!vcpu->arch.pio.in) { 9247 /* FIXME: return into emulator if single-stepping. */ 9248 vcpu->arch.pio.count = 0; 9249 } else { 9250 writeback = false; 9251 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9252 } 9253 r = 0; 9254 } else if (vcpu->mmio_needed) { 9255 ++vcpu->stat.mmio_exits; 9256 9257 if (!vcpu->mmio_is_write) 9258 writeback = false; 9259 r = 0; 9260 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9261 } else if (vcpu->arch.complete_userspace_io) { 9262 writeback = false; 9263 r = 0; 9264 } else if (r == EMULATION_RESTART) 9265 goto restart; 9266 else 9267 r = 1; 9268 9269 writeback: 9270 if (writeback) { 9271 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9272 toggle_interruptibility(vcpu, ctxt->interruptibility); 9273 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9274 9275 /* 9276 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9277 * only supports code breakpoints and general detect #DB, both 9278 * of which are fault-like. 9279 */ 9280 if (!ctxt->have_exception || 9281 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9282 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9283 if (ctxt->is_branch) 9284 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); 9285 kvm_rip_write(vcpu, ctxt->eip); 9286 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9287 r = kvm_vcpu_do_singlestep(vcpu); 9288 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9289 __kvm_set_rflags(vcpu, ctxt->eflags); 9290 } 9291 9292 /* 9293 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9294 * do nothing, and it will be requested again as soon as 9295 * the shadow expires. But we still need to check here, 9296 * because POPF has no interrupt shadow. 9297 */ 9298 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9299 kvm_make_request(KVM_REQ_EVENT, vcpu); 9300 } else 9301 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9302 9303 return r; 9304 } 9305 9306 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9307 { 9308 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9309 } 9310 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9311 9312 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9313 void *insn, int insn_len) 9314 { 9315 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9316 } 9317 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9318 9319 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9320 { 9321 vcpu->arch.pio.count = 0; 9322 return 1; 9323 } 9324 9325 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9326 { 9327 vcpu->arch.pio.count = 0; 9328 9329 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9330 return 1; 9331 9332 return kvm_skip_emulated_instruction(vcpu); 9333 } 9334 9335 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9336 unsigned short port) 9337 { 9338 unsigned long val = kvm_rax_read(vcpu); 9339 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9340 9341 if (ret) 9342 return ret; 9343 9344 /* 9345 * Workaround userspace that relies on old KVM behavior of %rip being 9346 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9347 */ 9348 if (port == 0x7e && 9349 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9350 vcpu->arch.complete_userspace_io = 9351 complete_fast_pio_out_port_0x7e; 9352 kvm_skip_emulated_instruction(vcpu); 9353 } else { 9354 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9355 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9356 } 9357 return 0; 9358 } 9359 9360 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9361 { 9362 unsigned long val; 9363 9364 /* We should only ever be called with arch.pio.count equal to 1 */ 9365 BUG_ON(vcpu->arch.pio.count != 1); 9366 9367 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9368 vcpu->arch.pio.count = 0; 9369 return 1; 9370 } 9371 9372 /* For size less than 4 we merge, else we zero extend */ 9373 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9374 9375 complete_emulator_pio_in(vcpu, &val); 9376 kvm_rax_write(vcpu, val); 9377 9378 return kvm_skip_emulated_instruction(vcpu); 9379 } 9380 9381 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9382 unsigned short port) 9383 { 9384 unsigned long val; 9385 int ret; 9386 9387 /* For size less than 4 we merge, else we zero extend */ 9388 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9389 9390 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9391 if (ret) { 9392 kvm_rax_write(vcpu, val); 9393 return ret; 9394 } 9395 9396 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9397 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9398 9399 return 0; 9400 } 9401 9402 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9403 { 9404 int ret; 9405 9406 if (in) 9407 ret = kvm_fast_pio_in(vcpu, size, port); 9408 else 9409 ret = kvm_fast_pio_out(vcpu, size, port); 9410 return ret && kvm_skip_emulated_instruction(vcpu); 9411 } 9412 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9413 9414 static int kvmclock_cpu_down_prep(unsigned int cpu) 9415 { 9416 __this_cpu_write(cpu_tsc_khz, 0); 9417 return 0; 9418 } 9419 9420 static void tsc_khz_changed(void *data) 9421 { 9422 struct cpufreq_freqs *freq = data; 9423 unsigned long khz; 9424 9425 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9426 9427 if (data) 9428 khz = freq->new; 9429 else 9430 khz = cpufreq_quick_get(raw_smp_processor_id()); 9431 if (!khz) 9432 khz = tsc_khz; 9433 __this_cpu_write(cpu_tsc_khz, khz); 9434 } 9435 9436 #ifdef CONFIG_X86_64 9437 static void kvm_hyperv_tsc_notifier(void) 9438 { 9439 struct kvm *kvm; 9440 int cpu; 9441 9442 mutex_lock(&kvm_lock); 9443 list_for_each_entry(kvm, &vm_list, vm_list) 9444 kvm_make_mclock_inprogress_request(kvm); 9445 9446 /* no guest entries from this point */ 9447 hyperv_stop_tsc_emulation(); 9448 9449 /* TSC frequency always matches when on Hyper-V */ 9450 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9451 for_each_present_cpu(cpu) 9452 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9453 } 9454 kvm_caps.max_guest_tsc_khz = tsc_khz; 9455 9456 list_for_each_entry(kvm, &vm_list, vm_list) { 9457 __kvm_start_pvclock_update(kvm); 9458 pvclock_update_vm_gtod_copy(kvm); 9459 kvm_end_pvclock_update(kvm); 9460 } 9461 9462 mutex_unlock(&kvm_lock); 9463 } 9464 #endif 9465 9466 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9467 { 9468 struct kvm *kvm; 9469 struct kvm_vcpu *vcpu; 9470 int send_ipi = 0; 9471 unsigned long i; 9472 9473 /* 9474 * We allow guests to temporarily run on slowing clocks, 9475 * provided we notify them after, or to run on accelerating 9476 * clocks, provided we notify them before. Thus time never 9477 * goes backwards. 9478 * 9479 * However, we have a problem. We can't atomically update 9480 * the frequency of a given CPU from this function; it is 9481 * merely a notifier, which can be called from any CPU. 9482 * Changing the TSC frequency at arbitrary points in time 9483 * requires a recomputation of local variables related to 9484 * the TSC for each VCPU. We must flag these local variables 9485 * to be updated and be sure the update takes place with the 9486 * new frequency before any guests proceed. 9487 * 9488 * Unfortunately, the combination of hotplug CPU and frequency 9489 * change creates an intractable locking scenario; the order 9490 * of when these callouts happen is undefined with respect to 9491 * CPU hotplug, and they can race with each other. As such, 9492 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9493 * undefined; you can actually have a CPU frequency change take 9494 * place in between the computation of X and the setting of the 9495 * variable. To protect against this problem, all updates of 9496 * the per_cpu tsc_khz variable are done in an interrupt 9497 * protected IPI, and all callers wishing to update the value 9498 * must wait for a synchronous IPI to complete (which is trivial 9499 * if the caller is on the CPU already). This establishes the 9500 * necessary total order on variable updates. 9501 * 9502 * Note that because a guest time update may take place 9503 * anytime after the setting of the VCPU's request bit, the 9504 * correct TSC value must be set before the request. However, 9505 * to ensure the update actually makes it to any guest which 9506 * starts running in hardware virtualization between the set 9507 * and the acquisition of the spinlock, we must also ping the 9508 * CPU after setting the request bit. 9509 * 9510 */ 9511 9512 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9513 9514 mutex_lock(&kvm_lock); 9515 list_for_each_entry(kvm, &vm_list, vm_list) { 9516 kvm_for_each_vcpu(i, vcpu, kvm) { 9517 if (vcpu->cpu != cpu) 9518 continue; 9519 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9520 if (vcpu->cpu != raw_smp_processor_id()) 9521 send_ipi = 1; 9522 } 9523 } 9524 mutex_unlock(&kvm_lock); 9525 9526 if (freq->old < freq->new && send_ipi) { 9527 /* 9528 * We upscale the frequency. Must make the guest 9529 * doesn't see old kvmclock values while running with 9530 * the new frequency, otherwise we risk the guest sees 9531 * time go backwards. 9532 * 9533 * In case we update the frequency for another cpu 9534 * (which might be in guest context) send an interrupt 9535 * to kick the cpu out of guest context. Next time 9536 * guest context is entered kvmclock will be updated, 9537 * so the guest will not see stale values. 9538 */ 9539 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9540 } 9541 } 9542 9543 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9544 void *data) 9545 { 9546 struct cpufreq_freqs *freq = data; 9547 int cpu; 9548 9549 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9550 return 0; 9551 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9552 return 0; 9553 9554 for_each_cpu(cpu, freq->policy->cpus) 9555 __kvmclock_cpufreq_notifier(freq, cpu); 9556 9557 return 0; 9558 } 9559 9560 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9561 .notifier_call = kvmclock_cpufreq_notifier 9562 }; 9563 9564 static int kvmclock_cpu_online(unsigned int cpu) 9565 { 9566 tsc_khz_changed(NULL); 9567 return 0; 9568 } 9569 9570 static void kvm_timer_init(void) 9571 { 9572 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9573 max_tsc_khz = tsc_khz; 9574 9575 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9576 struct cpufreq_policy *policy; 9577 int cpu; 9578 9579 cpu = get_cpu(); 9580 policy = cpufreq_cpu_get(cpu); 9581 if (policy) { 9582 if (policy->cpuinfo.max_freq) 9583 max_tsc_khz = policy->cpuinfo.max_freq; 9584 cpufreq_cpu_put(policy); 9585 } 9586 put_cpu(); 9587 } 9588 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9589 CPUFREQ_TRANSITION_NOTIFIER); 9590 9591 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9592 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9593 } 9594 } 9595 9596 #ifdef CONFIG_X86_64 9597 static void pvclock_gtod_update_fn(struct work_struct *work) 9598 { 9599 struct kvm *kvm; 9600 struct kvm_vcpu *vcpu; 9601 unsigned long i; 9602 9603 mutex_lock(&kvm_lock); 9604 list_for_each_entry(kvm, &vm_list, vm_list) 9605 kvm_for_each_vcpu(i, vcpu, kvm) 9606 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9607 atomic_set(&kvm_guest_has_master_clock, 0); 9608 mutex_unlock(&kvm_lock); 9609 } 9610 9611 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9612 9613 /* 9614 * Indirection to move queue_work() out of the tk_core.seq write held 9615 * region to prevent possible deadlocks against time accessors which 9616 * are invoked with work related locks held. 9617 */ 9618 static void pvclock_irq_work_fn(struct irq_work *w) 9619 { 9620 queue_work(system_long_wq, &pvclock_gtod_work); 9621 } 9622 9623 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9624 9625 /* 9626 * Notification about pvclock gtod data update. 9627 */ 9628 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9629 void *priv) 9630 { 9631 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9632 struct timekeeper *tk = priv; 9633 9634 update_pvclock_gtod(tk); 9635 9636 /* 9637 * Disable master clock if host does not trust, or does not use, 9638 * TSC based clocksource. Delegate queue_work() to irq_work as 9639 * this is invoked with tk_core.seq write held. 9640 */ 9641 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9642 atomic_read(&kvm_guest_has_master_clock) != 0) 9643 irq_work_queue(&pvclock_irq_work); 9644 return 0; 9645 } 9646 9647 static struct notifier_block pvclock_gtod_notifier = { 9648 .notifier_call = pvclock_gtod_notify, 9649 }; 9650 #endif 9651 9652 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9653 { 9654 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9655 9656 #define __KVM_X86_OP(func) \ 9657 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9658 #define KVM_X86_OP(func) \ 9659 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9660 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9661 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9662 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9663 (void *)__static_call_return0); 9664 #include <asm/kvm-x86-ops.h> 9665 #undef __KVM_X86_OP 9666 9667 kvm_pmu_ops_update(ops->pmu_ops); 9668 } 9669 9670 static int kvm_x86_check_processor_compatibility(void) 9671 { 9672 int cpu = smp_processor_id(); 9673 struct cpuinfo_x86 *c = &cpu_data(cpu); 9674 9675 /* 9676 * Compatibility checks are done when loading KVM and when enabling 9677 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9678 * compatible, i.e. KVM should never perform a compatibility check on 9679 * an offline CPU. 9680 */ 9681 WARN_ON(!cpu_online(cpu)); 9682 9683 if (__cr4_reserved_bits(cpu_has, c) != 9684 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9685 return -EIO; 9686 9687 return static_call(kvm_x86_check_processor_compatibility)(); 9688 } 9689 9690 static void kvm_x86_check_cpu_compat(void *ret) 9691 { 9692 *(int *)ret = kvm_x86_check_processor_compatibility(); 9693 } 9694 9695 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9696 { 9697 u64 host_pat; 9698 int r, cpu; 9699 9700 guard(mutex)(&vendor_module_lock); 9701 9702 if (kvm_x86_ops.hardware_enable) { 9703 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9704 return -EEXIST; 9705 } 9706 9707 /* 9708 * KVM explicitly assumes that the guest has an FPU and 9709 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9710 * vCPU's FPU state as a fxregs_state struct. 9711 */ 9712 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9713 pr_err("inadequate fpu\n"); 9714 return -EOPNOTSUPP; 9715 } 9716 9717 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9718 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9719 return -EOPNOTSUPP; 9720 } 9721 9722 /* 9723 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9724 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9725 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9726 * with an exception. PAT[0] is set to WB on RESET and also by the 9727 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9728 */ 9729 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9730 (host_pat & GENMASK(2, 0)) != 6) { 9731 pr_err("host PAT[0] is not WB\n"); 9732 return -EIO; 9733 } 9734 9735 x86_emulator_cache = kvm_alloc_emulator_cache(); 9736 if (!x86_emulator_cache) { 9737 pr_err("failed to allocate cache for x86 emulator\n"); 9738 return -ENOMEM; 9739 } 9740 9741 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9742 if (!user_return_msrs) { 9743 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9744 r = -ENOMEM; 9745 goto out_free_x86_emulator_cache; 9746 } 9747 kvm_nr_uret_msrs = 0; 9748 9749 r = kvm_mmu_vendor_module_init(); 9750 if (r) 9751 goto out_free_percpu; 9752 9753 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9754 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9755 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9756 } 9757 9758 rdmsrl_safe(MSR_EFER, &host_efer); 9759 9760 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9761 rdmsrl(MSR_IA32_XSS, host_xss); 9762 9763 kvm_init_pmu_capability(ops->pmu_ops); 9764 9765 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9766 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9767 9768 r = ops->hardware_setup(); 9769 if (r != 0) 9770 goto out_mmu_exit; 9771 9772 kvm_ops_update(ops); 9773 9774 for_each_online_cpu(cpu) { 9775 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9776 if (r < 0) 9777 goto out_unwind_ops; 9778 } 9779 9780 /* 9781 * Point of no return! DO NOT add error paths below this point unless 9782 * absolutely necessary, as most operations from this point forward 9783 * require unwinding. 9784 */ 9785 kvm_timer_init(); 9786 9787 if (pi_inject_timer == -1) 9788 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9789 #ifdef CONFIG_X86_64 9790 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9791 9792 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9793 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9794 #endif 9795 9796 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9797 9798 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9799 kvm_caps.supported_xss = 0; 9800 9801 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9802 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9803 #undef __kvm_cpu_cap_has 9804 9805 if (kvm_caps.has_tsc_control) { 9806 /* 9807 * Make sure the user can only configure tsc_khz values that 9808 * fit into a signed integer. 9809 * A min value is not calculated because it will always 9810 * be 1 on all machines. 9811 */ 9812 u64 max = min(0x7fffffffULL, 9813 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9814 kvm_caps.max_guest_tsc_khz = max; 9815 } 9816 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9817 kvm_init_msr_lists(); 9818 return 0; 9819 9820 out_unwind_ops: 9821 kvm_x86_ops.hardware_enable = NULL; 9822 static_call(kvm_x86_hardware_unsetup)(); 9823 out_mmu_exit: 9824 kvm_mmu_vendor_module_exit(); 9825 out_free_percpu: 9826 free_percpu(user_return_msrs); 9827 out_free_x86_emulator_cache: 9828 kmem_cache_destroy(x86_emulator_cache); 9829 return r; 9830 } 9831 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9832 9833 void kvm_x86_vendor_exit(void) 9834 { 9835 kvm_unregister_perf_callbacks(); 9836 9837 #ifdef CONFIG_X86_64 9838 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9839 clear_hv_tscchange_cb(); 9840 #endif 9841 kvm_lapic_exit(); 9842 9843 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9844 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9845 CPUFREQ_TRANSITION_NOTIFIER); 9846 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9847 } 9848 #ifdef CONFIG_X86_64 9849 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9850 irq_work_sync(&pvclock_irq_work); 9851 cancel_work_sync(&pvclock_gtod_work); 9852 #endif 9853 static_call(kvm_x86_hardware_unsetup)(); 9854 kvm_mmu_vendor_module_exit(); 9855 free_percpu(user_return_msrs); 9856 kmem_cache_destroy(x86_emulator_cache); 9857 #ifdef CONFIG_KVM_XEN 9858 static_key_deferred_flush(&kvm_xen_enabled); 9859 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9860 #endif 9861 mutex_lock(&vendor_module_lock); 9862 kvm_x86_ops.hardware_enable = NULL; 9863 mutex_unlock(&vendor_module_lock); 9864 } 9865 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9866 9867 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9868 { 9869 /* 9870 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9871 * local APIC is in-kernel, the run loop will detect the non-runnable 9872 * state and halt the vCPU. Exit to userspace if the local APIC is 9873 * managed by userspace, in which case userspace is responsible for 9874 * handling wake events. 9875 */ 9876 ++vcpu->stat.halt_exits; 9877 if (lapic_in_kernel(vcpu)) { 9878 vcpu->arch.mp_state = state; 9879 return 1; 9880 } else { 9881 vcpu->run->exit_reason = reason; 9882 return 0; 9883 } 9884 } 9885 9886 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9887 { 9888 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9889 } 9890 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9891 9892 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9893 { 9894 int ret = kvm_skip_emulated_instruction(vcpu); 9895 /* 9896 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9897 * KVM_EXIT_DEBUG here. 9898 */ 9899 return kvm_emulate_halt_noskip(vcpu) && ret; 9900 } 9901 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9902 9903 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9904 { 9905 int ret = kvm_skip_emulated_instruction(vcpu); 9906 9907 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9908 KVM_EXIT_AP_RESET_HOLD) && ret; 9909 } 9910 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9911 9912 #ifdef CONFIG_X86_64 9913 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9914 unsigned long clock_type) 9915 { 9916 struct kvm_clock_pairing clock_pairing; 9917 struct timespec64 ts; 9918 u64 cycle; 9919 int ret; 9920 9921 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9922 return -KVM_EOPNOTSUPP; 9923 9924 /* 9925 * When tsc is in permanent catchup mode guests won't be able to use 9926 * pvclock_read_retry loop to get consistent view of pvclock 9927 */ 9928 if (vcpu->arch.tsc_always_catchup) 9929 return -KVM_EOPNOTSUPP; 9930 9931 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9932 return -KVM_EOPNOTSUPP; 9933 9934 clock_pairing.sec = ts.tv_sec; 9935 clock_pairing.nsec = ts.tv_nsec; 9936 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9937 clock_pairing.flags = 0; 9938 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9939 9940 ret = 0; 9941 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9942 sizeof(struct kvm_clock_pairing))) 9943 ret = -KVM_EFAULT; 9944 9945 return ret; 9946 } 9947 #endif 9948 9949 /* 9950 * kvm_pv_kick_cpu_op: Kick a vcpu. 9951 * 9952 * @apicid - apicid of vcpu to be kicked. 9953 */ 9954 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9955 { 9956 /* 9957 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9958 * common code, e.g. for tracing. Defer initialization to the compiler. 9959 */ 9960 struct kvm_lapic_irq lapic_irq = { 9961 .delivery_mode = APIC_DM_REMRD, 9962 .dest_mode = APIC_DEST_PHYSICAL, 9963 .shorthand = APIC_DEST_NOSHORT, 9964 .dest_id = apicid, 9965 }; 9966 9967 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9968 } 9969 9970 bool kvm_apicv_activated(struct kvm *kvm) 9971 { 9972 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9973 } 9974 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9975 9976 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9977 { 9978 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9979 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9980 9981 return (vm_reasons | vcpu_reasons) == 0; 9982 } 9983 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9984 9985 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9986 enum kvm_apicv_inhibit reason, bool set) 9987 { 9988 if (set) 9989 __set_bit(reason, inhibits); 9990 else 9991 __clear_bit(reason, inhibits); 9992 9993 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9994 } 9995 9996 static void kvm_apicv_init(struct kvm *kvm) 9997 { 9998 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9999 10000 init_rwsem(&kvm->arch.apicv_update_lock); 10001 10002 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 10003 10004 if (!enable_apicv) 10005 set_or_clear_apicv_inhibit(inhibits, 10006 APICV_INHIBIT_REASON_DISABLE, true); 10007 } 10008 10009 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 10010 { 10011 struct kvm_vcpu *target = NULL; 10012 struct kvm_apic_map *map; 10013 10014 vcpu->stat.directed_yield_attempted++; 10015 10016 if (single_task_running()) 10017 goto no_yield; 10018 10019 rcu_read_lock(); 10020 map = rcu_dereference(vcpu->kvm->arch.apic_map); 10021 10022 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 10023 target = map->phys_map[dest_id]->vcpu; 10024 10025 rcu_read_unlock(); 10026 10027 if (!target || !READ_ONCE(target->ready)) 10028 goto no_yield; 10029 10030 /* Ignore requests to yield to self */ 10031 if (vcpu == target) 10032 goto no_yield; 10033 10034 if (kvm_vcpu_yield_to(target) <= 0) 10035 goto no_yield; 10036 10037 vcpu->stat.directed_yield_successful++; 10038 10039 no_yield: 10040 return; 10041 } 10042 10043 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 10044 { 10045 u64 ret = vcpu->run->hypercall.ret; 10046 10047 if (!is_64_bit_mode(vcpu)) 10048 ret = (u32)ret; 10049 kvm_rax_write(vcpu, ret); 10050 ++vcpu->stat.hypercalls; 10051 return kvm_skip_emulated_instruction(vcpu); 10052 } 10053 10054 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10055 { 10056 unsigned long nr, a0, a1, a2, a3, ret; 10057 int op_64_bit; 10058 10059 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10060 return kvm_xen_hypercall(vcpu); 10061 10062 if (kvm_hv_hypercall_enabled(vcpu)) 10063 return kvm_hv_hypercall(vcpu); 10064 10065 nr = kvm_rax_read(vcpu); 10066 a0 = kvm_rbx_read(vcpu); 10067 a1 = kvm_rcx_read(vcpu); 10068 a2 = kvm_rdx_read(vcpu); 10069 a3 = kvm_rsi_read(vcpu); 10070 10071 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10072 10073 op_64_bit = is_64_bit_hypercall(vcpu); 10074 if (!op_64_bit) { 10075 nr &= 0xFFFFFFFF; 10076 a0 &= 0xFFFFFFFF; 10077 a1 &= 0xFFFFFFFF; 10078 a2 &= 0xFFFFFFFF; 10079 a3 &= 0xFFFFFFFF; 10080 } 10081 10082 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 10083 ret = -KVM_EPERM; 10084 goto out; 10085 } 10086 10087 ret = -KVM_ENOSYS; 10088 10089 switch (nr) { 10090 case KVM_HC_VAPIC_POLL_IRQ: 10091 ret = 0; 10092 break; 10093 case KVM_HC_KICK_CPU: 10094 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10095 break; 10096 10097 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10098 kvm_sched_yield(vcpu, a1); 10099 ret = 0; 10100 break; 10101 #ifdef CONFIG_X86_64 10102 case KVM_HC_CLOCK_PAIRING: 10103 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10104 break; 10105 #endif 10106 case KVM_HC_SEND_IPI: 10107 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10108 break; 10109 10110 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10111 break; 10112 case KVM_HC_SCHED_YIELD: 10113 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10114 break; 10115 10116 kvm_sched_yield(vcpu, a0); 10117 ret = 0; 10118 break; 10119 case KVM_HC_MAP_GPA_RANGE: { 10120 u64 gpa = a0, npages = a1, attrs = a2; 10121 10122 ret = -KVM_ENOSYS; 10123 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10124 break; 10125 10126 if (!PAGE_ALIGNED(gpa) || !npages || 10127 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10128 ret = -KVM_EINVAL; 10129 break; 10130 } 10131 10132 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10133 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10134 vcpu->run->hypercall.args[0] = gpa; 10135 vcpu->run->hypercall.args[1] = npages; 10136 vcpu->run->hypercall.args[2] = attrs; 10137 vcpu->run->hypercall.flags = 0; 10138 if (op_64_bit) 10139 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10140 10141 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10142 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10143 return 0; 10144 } 10145 default: 10146 ret = -KVM_ENOSYS; 10147 break; 10148 } 10149 out: 10150 if (!op_64_bit) 10151 ret = (u32)ret; 10152 kvm_rax_write(vcpu, ret); 10153 10154 ++vcpu->stat.hypercalls; 10155 return kvm_skip_emulated_instruction(vcpu); 10156 } 10157 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10158 10159 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10160 { 10161 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10162 char instruction[3]; 10163 unsigned long rip = kvm_rip_read(vcpu); 10164 10165 /* 10166 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10167 * the pieces. 10168 */ 10169 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10170 ctxt->exception.error_code_valid = false; 10171 ctxt->exception.vector = UD_VECTOR; 10172 ctxt->have_exception = true; 10173 return X86EMUL_PROPAGATE_FAULT; 10174 } 10175 10176 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 10177 10178 return emulator_write_emulated(ctxt, rip, instruction, 3, 10179 &ctxt->exception); 10180 } 10181 10182 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10183 { 10184 return vcpu->run->request_interrupt_window && 10185 likely(!pic_in_kernel(vcpu->kvm)); 10186 } 10187 10188 /* Called within kvm->srcu read side. */ 10189 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10190 { 10191 struct kvm_run *kvm_run = vcpu->run; 10192 10193 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 10194 kvm_run->cr8 = kvm_get_cr8(vcpu); 10195 kvm_run->apic_base = kvm_get_apic_base(vcpu); 10196 10197 kvm_run->ready_for_interrupt_injection = 10198 pic_in_kernel(vcpu->kvm) || 10199 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10200 10201 if (is_smm(vcpu)) 10202 kvm_run->flags |= KVM_RUN_X86_SMM; 10203 } 10204 10205 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10206 { 10207 int max_irr, tpr; 10208 10209 if (!kvm_x86_ops.update_cr8_intercept) 10210 return; 10211 10212 if (!lapic_in_kernel(vcpu)) 10213 return; 10214 10215 if (vcpu->arch.apic->apicv_active) 10216 return; 10217 10218 if (!vcpu->arch.apic->vapic_addr) 10219 max_irr = kvm_lapic_find_highest_irr(vcpu); 10220 else 10221 max_irr = -1; 10222 10223 if (max_irr != -1) 10224 max_irr >>= 4; 10225 10226 tpr = kvm_lapic_get_cr8(vcpu); 10227 10228 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 10229 } 10230 10231 10232 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10233 { 10234 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10235 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10236 return 1; 10237 } 10238 10239 return kvm_x86_ops.nested_ops->check_events(vcpu); 10240 } 10241 10242 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10243 { 10244 /* 10245 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10246 * exceptions don't report error codes. The presence of an error code 10247 * is carried with the exception and only stripped when the exception 10248 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10249 * report an error code despite the CPU being in Real Mode. 10250 */ 10251 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10252 10253 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10254 vcpu->arch.exception.has_error_code, 10255 vcpu->arch.exception.error_code, 10256 vcpu->arch.exception.injected); 10257 10258 static_call(kvm_x86_inject_exception)(vcpu); 10259 } 10260 10261 /* 10262 * Check for any event (interrupt or exception) that is ready to be injected, 10263 * and if there is at least one event, inject the event with the highest 10264 * priority. This handles both "pending" events, i.e. events that have never 10265 * been injected into the guest, and "injected" events, i.e. events that were 10266 * injected as part of a previous VM-Enter, but weren't successfully delivered 10267 * and need to be re-injected. 10268 * 10269 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10270 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10271 * be able to inject exceptions in the "middle" of an instruction, and so must 10272 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10273 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10274 * boundaries is necessary and correct. 10275 * 10276 * For simplicity, KVM uses a single path to inject all events (except events 10277 * that are injected directly from L1 to L2) and doesn't explicitly track 10278 * instruction boundaries for asynchronous events. However, because VM-Exits 10279 * that can occur during instruction execution typically result in KVM skipping 10280 * the instruction or injecting an exception, e.g. instruction and exception 10281 * intercepts, and because pending exceptions have higher priority than pending 10282 * interrupts, KVM still honors instruction boundaries in most scenarios. 10283 * 10284 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10285 * the instruction or inject an exception, then KVM can incorrecty inject a new 10286 * asynchronous event if the event became pending after the CPU fetched the 10287 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10288 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10289 * injected on the restarted instruction instead of being deferred until the 10290 * instruction completes. 10291 * 10292 * In practice, this virtualization hole is unlikely to be observed by the 10293 * guest, and even less likely to cause functional problems. To detect the 10294 * hole, the guest would have to trigger an event on a side effect of an early 10295 * phase of instruction execution, e.g. on the instruction fetch from memory. 10296 * And for it to be a functional problem, the guest would need to depend on the 10297 * ordering between that side effect, the instruction completing, _and_ the 10298 * delivery of the asynchronous event. 10299 */ 10300 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10301 bool *req_immediate_exit) 10302 { 10303 bool can_inject; 10304 int r; 10305 10306 /* 10307 * Process nested events first, as nested VM-Exit supersedes event 10308 * re-injection. If there's an event queued for re-injection, it will 10309 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10310 */ 10311 if (is_guest_mode(vcpu)) 10312 r = kvm_check_nested_events(vcpu); 10313 else 10314 r = 0; 10315 10316 /* 10317 * Re-inject exceptions and events *especially* if immediate entry+exit 10318 * to/from L2 is needed, as any event that has already been injected 10319 * into L2 needs to complete its lifecycle before injecting a new event. 10320 * 10321 * Don't re-inject an NMI or interrupt if there is a pending exception. 10322 * This collision arises if an exception occurred while vectoring the 10323 * injected event, KVM intercepted said exception, and KVM ultimately 10324 * determined the fault belongs to the guest and queues the exception 10325 * for injection back into the guest. 10326 * 10327 * "Injected" interrupts can also collide with pending exceptions if 10328 * userspace ignores the "ready for injection" flag and blindly queues 10329 * an interrupt. In that case, prioritizing the exception is correct, 10330 * as the exception "occurred" before the exit to userspace. Trap-like 10331 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10332 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10333 * priority, they're only generated (pended) during instruction 10334 * execution, and interrupts are recognized at instruction boundaries. 10335 * Thus a pending fault-like exception means the fault occurred on the 10336 * *previous* instruction and must be serviced prior to recognizing any 10337 * new events in order to fully complete the previous instruction. 10338 */ 10339 if (vcpu->arch.exception.injected) 10340 kvm_inject_exception(vcpu); 10341 else if (kvm_is_exception_pending(vcpu)) 10342 ; /* see above */ 10343 else if (vcpu->arch.nmi_injected) 10344 static_call(kvm_x86_inject_nmi)(vcpu); 10345 else if (vcpu->arch.interrupt.injected) 10346 static_call(kvm_x86_inject_irq)(vcpu, true); 10347 10348 /* 10349 * Exceptions that morph to VM-Exits are handled above, and pending 10350 * exceptions on top of injected exceptions that do not VM-Exit should 10351 * either morph to #DF or, sadly, override the injected exception. 10352 */ 10353 WARN_ON_ONCE(vcpu->arch.exception.injected && 10354 vcpu->arch.exception.pending); 10355 10356 /* 10357 * Bail if immediate entry+exit to/from the guest is needed to complete 10358 * nested VM-Enter or event re-injection so that a different pending 10359 * event can be serviced (or if KVM needs to exit to userspace). 10360 * 10361 * Otherwise, continue processing events even if VM-Exit occurred. The 10362 * VM-Exit will have cleared exceptions that were meant for L2, but 10363 * there may now be events that can be injected into L1. 10364 */ 10365 if (r < 0) 10366 goto out; 10367 10368 /* 10369 * A pending exception VM-Exit should either result in nested VM-Exit 10370 * or force an immediate re-entry and exit to/from L2, and exception 10371 * VM-Exits cannot be injected (flag should _never_ be set). 10372 */ 10373 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10374 vcpu->arch.exception_vmexit.pending); 10375 10376 /* 10377 * New events, other than exceptions, cannot be injected if KVM needs 10378 * to re-inject a previous event. See above comments on re-injecting 10379 * for why pending exceptions get priority. 10380 */ 10381 can_inject = !kvm_event_needs_reinjection(vcpu); 10382 10383 if (vcpu->arch.exception.pending) { 10384 /* 10385 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10386 * value pushed on the stack. Trap-like exception and all #DBs 10387 * leave RF as-is (KVM follows Intel's behavior in this regard; 10388 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10389 * 10390 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10391 * describe the behavior of General Detect #DBs, which are 10392 * fault-like. They do _not_ set RF, a la code breakpoints. 10393 */ 10394 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10395 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10396 X86_EFLAGS_RF); 10397 10398 if (vcpu->arch.exception.vector == DB_VECTOR) { 10399 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10400 if (vcpu->arch.dr7 & DR7_GD) { 10401 vcpu->arch.dr7 &= ~DR7_GD; 10402 kvm_update_dr7(vcpu); 10403 } 10404 } 10405 10406 kvm_inject_exception(vcpu); 10407 10408 vcpu->arch.exception.pending = false; 10409 vcpu->arch.exception.injected = true; 10410 10411 can_inject = false; 10412 } 10413 10414 /* Don't inject interrupts if the user asked to avoid doing so */ 10415 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10416 return 0; 10417 10418 /* 10419 * Finally, inject interrupt events. If an event cannot be injected 10420 * due to architectural conditions (e.g. IF=0) a window-open exit 10421 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10422 * and can architecturally be injected, but we cannot do it right now: 10423 * an interrupt could have arrived just now and we have to inject it 10424 * as a vmexit, or there could already an event in the queue, which is 10425 * indicated by can_inject. In that case we request an immediate exit 10426 * in order to make progress and get back here for another iteration. 10427 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10428 */ 10429 #ifdef CONFIG_KVM_SMM 10430 if (vcpu->arch.smi_pending) { 10431 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10432 if (r < 0) 10433 goto out; 10434 if (r) { 10435 vcpu->arch.smi_pending = false; 10436 ++vcpu->arch.smi_count; 10437 enter_smm(vcpu); 10438 can_inject = false; 10439 } else 10440 static_call(kvm_x86_enable_smi_window)(vcpu); 10441 } 10442 #endif 10443 10444 if (vcpu->arch.nmi_pending) { 10445 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10446 if (r < 0) 10447 goto out; 10448 if (r) { 10449 --vcpu->arch.nmi_pending; 10450 vcpu->arch.nmi_injected = true; 10451 static_call(kvm_x86_inject_nmi)(vcpu); 10452 can_inject = false; 10453 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10454 } 10455 if (vcpu->arch.nmi_pending) 10456 static_call(kvm_x86_enable_nmi_window)(vcpu); 10457 } 10458 10459 if (kvm_cpu_has_injectable_intr(vcpu)) { 10460 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10461 if (r < 0) 10462 goto out; 10463 if (r) { 10464 int irq = kvm_cpu_get_interrupt(vcpu); 10465 10466 if (!WARN_ON_ONCE(irq == -1)) { 10467 kvm_queue_interrupt(vcpu, irq, false); 10468 static_call(kvm_x86_inject_irq)(vcpu, false); 10469 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10470 } 10471 } 10472 if (kvm_cpu_has_injectable_intr(vcpu)) 10473 static_call(kvm_x86_enable_irq_window)(vcpu); 10474 } 10475 10476 if (is_guest_mode(vcpu) && 10477 kvm_x86_ops.nested_ops->has_events && 10478 kvm_x86_ops.nested_ops->has_events(vcpu)) 10479 *req_immediate_exit = true; 10480 10481 /* 10482 * KVM must never queue a new exception while injecting an event; KVM 10483 * is done emulating and should only propagate the to-be-injected event 10484 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10485 * infinite loop as KVM will bail from VM-Enter to inject the pending 10486 * exception and start the cycle all over. 10487 * 10488 * Exempt triple faults as they have special handling and won't put the 10489 * vCPU into an infinite loop. Triple fault can be queued when running 10490 * VMX without unrestricted guest, as that requires KVM to emulate Real 10491 * Mode events (see kvm_inject_realmode_interrupt()). 10492 */ 10493 WARN_ON_ONCE(vcpu->arch.exception.pending || 10494 vcpu->arch.exception_vmexit.pending); 10495 return 0; 10496 10497 out: 10498 if (r == -EBUSY) { 10499 *req_immediate_exit = true; 10500 r = 0; 10501 } 10502 return r; 10503 } 10504 10505 static void process_nmi(struct kvm_vcpu *vcpu) 10506 { 10507 unsigned int limit; 10508 10509 /* 10510 * x86 is limited to one NMI pending, but because KVM can't react to 10511 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10512 * scheduled out, KVM needs to play nice with two queued NMIs showing 10513 * up at the same time. To handle this scenario, allow two NMIs to be 10514 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10515 * waiting for a previous NMI injection to complete (which effectively 10516 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10517 * will request an NMI window to handle the second NMI. 10518 */ 10519 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10520 limit = 1; 10521 else 10522 limit = 2; 10523 10524 /* 10525 * Adjust the limit to account for pending virtual NMIs, which aren't 10526 * tracked in vcpu->arch.nmi_pending. 10527 */ 10528 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10529 limit--; 10530 10531 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10532 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10533 10534 if (vcpu->arch.nmi_pending && 10535 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10536 vcpu->arch.nmi_pending--; 10537 10538 if (vcpu->arch.nmi_pending) 10539 kvm_make_request(KVM_REQ_EVENT, vcpu); 10540 } 10541 10542 /* Return total number of NMIs pending injection to the VM */ 10543 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10544 { 10545 return vcpu->arch.nmi_pending + 10546 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10547 } 10548 10549 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10550 unsigned long *vcpu_bitmap) 10551 { 10552 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10553 } 10554 10555 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10556 { 10557 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10558 } 10559 10560 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10561 { 10562 struct kvm_lapic *apic = vcpu->arch.apic; 10563 bool activate; 10564 10565 if (!lapic_in_kernel(vcpu)) 10566 return; 10567 10568 down_read(&vcpu->kvm->arch.apicv_update_lock); 10569 preempt_disable(); 10570 10571 /* Do not activate APICV when APIC is disabled */ 10572 activate = kvm_vcpu_apicv_activated(vcpu) && 10573 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10574 10575 if (apic->apicv_active == activate) 10576 goto out; 10577 10578 apic->apicv_active = activate; 10579 kvm_apic_update_apicv(vcpu); 10580 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10581 10582 /* 10583 * When APICv gets disabled, we may still have injected interrupts 10584 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10585 * still active when the interrupt got accepted. Make sure 10586 * kvm_check_and_inject_events() is called to check for that. 10587 */ 10588 if (!apic->apicv_active) 10589 kvm_make_request(KVM_REQ_EVENT, vcpu); 10590 10591 out: 10592 preempt_enable(); 10593 up_read(&vcpu->kvm->arch.apicv_update_lock); 10594 } 10595 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10596 10597 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10598 { 10599 if (!lapic_in_kernel(vcpu)) 10600 return; 10601 10602 /* 10603 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10604 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10605 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10606 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10607 * this case so that KVM can the AVIC doorbell to inject interrupts to 10608 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10609 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10610 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10611 * access page is sticky. 10612 */ 10613 if (apic_x2apic_mode(vcpu->arch.apic) && 10614 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10615 kvm_inhibit_apic_access_page(vcpu); 10616 10617 __kvm_vcpu_update_apicv(vcpu); 10618 } 10619 10620 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10621 enum kvm_apicv_inhibit reason, bool set) 10622 { 10623 unsigned long old, new; 10624 10625 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10626 10627 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10628 return; 10629 10630 old = new = kvm->arch.apicv_inhibit_reasons; 10631 10632 set_or_clear_apicv_inhibit(&new, reason, set); 10633 10634 if (!!old != !!new) { 10635 /* 10636 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10637 * false positives in the sanity check WARN in svm_vcpu_run(). 10638 * This task will wait for all vCPUs to ack the kick IRQ before 10639 * updating apicv_inhibit_reasons, and all other vCPUs will 10640 * block on acquiring apicv_update_lock so that vCPUs can't 10641 * redo svm_vcpu_run() without seeing the new inhibit state. 10642 * 10643 * Note, holding apicv_update_lock and taking it in the read 10644 * side (handling the request) also prevents other vCPUs from 10645 * servicing the request with a stale apicv_inhibit_reasons. 10646 */ 10647 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10648 kvm->arch.apicv_inhibit_reasons = new; 10649 if (new) { 10650 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10651 int idx = srcu_read_lock(&kvm->srcu); 10652 10653 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10654 srcu_read_unlock(&kvm->srcu, idx); 10655 } 10656 } else { 10657 kvm->arch.apicv_inhibit_reasons = new; 10658 } 10659 } 10660 10661 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10662 enum kvm_apicv_inhibit reason, bool set) 10663 { 10664 if (!enable_apicv) 10665 return; 10666 10667 down_write(&kvm->arch.apicv_update_lock); 10668 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10669 up_write(&kvm->arch.apicv_update_lock); 10670 } 10671 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10672 10673 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10674 { 10675 if (!kvm_apic_present(vcpu)) 10676 return; 10677 10678 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10679 10680 if (irqchip_split(vcpu->kvm)) 10681 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10682 else { 10683 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10684 if (ioapic_in_kernel(vcpu->kvm)) 10685 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10686 } 10687 10688 if (is_guest_mode(vcpu)) 10689 vcpu->arch.load_eoi_exitmap_pending = true; 10690 else 10691 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10692 } 10693 10694 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10695 { 10696 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10697 return; 10698 10699 #ifdef CONFIG_KVM_HYPERV 10700 if (to_hv_vcpu(vcpu)) { 10701 u64 eoi_exit_bitmap[4]; 10702 10703 bitmap_or((ulong *)eoi_exit_bitmap, 10704 vcpu->arch.ioapic_handled_vectors, 10705 to_hv_synic(vcpu)->vec_bitmap, 256); 10706 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10707 return; 10708 } 10709 #endif 10710 static_call_cond(kvm_x86_load_eoi_exitmap)( 10711 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10712 } 10713 10714 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10715 { 10716 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10717 } 10718 10719 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10720 { 10721 if (!lapic_in_kernel(vcpu)) 10722 return; 10723 10724 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10725 } 10726 10727 /* 10728 * Called within kvm->srcu read side. 10729 * Returns 1 to let vcpu_run() continue the guest execution loop without 10730 * exiting to the userspace. Otherwise, the value will be returned to the 10731 * userspace. 10732 */ 10733 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10734 { 10735 int r; 10736 bool req_int_win = 10737 dm_request_for_irq_injection(vcpu) && 10738 kvm_cpu_accept_dm_intr(vcpu); 10739 fastpath_t exit_fastpath; 10740 10741 bool req_immediate_exit = false; 10742 10743 if (kvm_request_pending(vcpu)) { 10744 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10745 r = -EIO; 10746 goto out; 10747 } 10748 10749 if (kvm_dirty_ring_check_request(vcpu)) { 10750 r = 0; 10751 goto out; 10752 } 10753 10754 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10755 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10756 r = 0; 10757 goto out; 10758 } 10759 } 10760 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10761 kvm_mmu_free_obsolete_roots(vcpu); 10762 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10763 __kvm_migrate_timers(vcpu); 10764 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10765 kvm_update_masterclock(vcpu->kvm); 10766 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10767 kvm_gen_kvmclock_update(vcpu); 10768 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10769 r = kvm_guest_time_update(vcpu); 10770 if (unlikely(r)) 10771 goto out; 10772 } 10773 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10774 kvm_mmu_sync_roots(vcpu); 10775 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10776 kvm_mmu_load_pgd(vcpu); 10777 10778 /* 10779 * Note, the order matters here, as flushing "all" TLB entries 10780 * also flushes the "current" TLB entries, i.e. servicing the 10781 * flush "all" will clear any request to flush "current". 10782 */ 10783 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10784 kvm_vcpu_flush_tlb_all(vcpu); 10785 10786 kvm_service_local_tlb_flush_requests(vcpu); 10787 10788 /* 10789 * Fall back to a "full" guest flush if Hyper-V's precise 10790 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10791 * the flushes are considered "remote" and not "local" because 10792 * the requests can be initiated from other vCPUs. 10793 */ 10794 #ifdef CONFIG_KVM_HYPERV 10795 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10796 kvm_hv_vcpu_flush_tlb(vcpu)) 10797 kvm_vcpu_flush_tlb_guest(vcpu); 10798 #endif 10799 10800 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10801 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10802 r = 0; 10803 goto out; 10804 } 10805 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10806 if (is_guest_mode(vcpu)) 10807 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10808 10809 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10810 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10811 vcpu->mmio_needed = 0; 10812 r = 0; 10813 goto out; 10814 } 10815 } 10816 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10817 /* Page is swapped out. Do synthetic halt */ 10818 vcpu->arch.apf.halted = true; 10819 r = 1; 10820 goto out; 10821 } 10822 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10823 record_steal_time(vcpu); 10824 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10825 kvm_pmu_handle_event(vcpu); 10826 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10827 kvm_pmu_deliver_pmi(vcpu); 10828 #ifdef CONFIG_KVM_SMM 10829 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10830 process_smi(vcpu); 10831 #endif 10832 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10833 process_nmi(vcpu); 10834 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10835 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10836 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10837 vcpu->arch.ioapic_handled_vectors)) { 10838 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10839 vcpu->run->eoi.vector = 10840 vcpu->arch.pending_ioapic_eoi; 10841 r = 0; 10842 goto out; 10843 } 10844 } 10845 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10846 vcpu_scan_ioapic(vcpu); 10847 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10848 vcpu_load_eoi_exitmap(vcpu); 10849 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10850 kvm_vcpu_reload_apic_access_page(vcpu); 10851 #ifdef CONFIG_KVM_HYPERV 10852 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10853 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10854 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10855 vcpu->run->system_event.ndata = 0; 10856 r = 0; 10857 goto out; 10858 } 10859 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10860 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10861 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10862 vcpu->run->system_event.ndata = 0; 10863 r = 0; 10864 goto out; 10865 } 10866 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10867 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10868 10869 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10870 vcpu->run->hyperv = hv_vcpu->exit; 10871 r = 0; 10872 goto out; 10873 } 10874 10875 /* 10876 * KVM_REQ_HV_STIMER has to be processed after 10877 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10878 * depend on the guest clock being up-to-date 10879 */ 10880 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10881 kvm_hv_process_stimers(vcpu); 10882 #endif 10883 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10884 kvm_vcpu_update_apicv(vcpu); 10885 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10886 kvm_check_async_pf_completion(vcpu); 10887 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10888 static_call(kvm_x86_msr_filter_changed)(vcpu); 10889 10890 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10891 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10892 } 10893 10894 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10895 kvm_xen_has_interrupt(vcpu)) { 10896 ++vcpu->stat.req_event; 10897 r = kvm_apic_accept_events(vcpu); 10898 if (r < 0) { 10899 r = 0; 10900 goto out; 10901 } 10902 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10903 r = 1; 10904 goto out; 10905 } 10906 10907 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10908 if (r < 0) { 10909 r = 0; 10910 goto out; 10911 } 10912 if (req_int_win) 10913 static_call(kvm_x86_enable_irq_window)(vcpu); 10914 10915 if (kvm_lapic_enabled(vcpu)) { 10916 update_cr8_intercept(vcpu); 10917 kvm_lapic_sync_to_vapic(vcpu); 10918 } 10919 } 10920 10921 r = kvm_mmu_reload(vcpu); 10922 if (unlikely(r)) { 10923 goto cancel_injection; 10924 } 10925 10926 preempt_disable(); 10927 10928 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10929 10930 /* 10931 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10932 * IPI are then delayed after guest entry, which ensures that they 10933 * result in virtual interrupt delivery. 10934 */ 10935 local_irq_disable(); 10936 10937 /* Store vcpu->apicv_active before vcpu->mode. */ 10938 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10939 10940 kvm_vcpu_srcu_read_unlock(vcpu); 10941 10942 /* 10943 * 1) We should set ->mode before checking ->requests. Please see 10944 * the comment in kvm_vcpu_exiting_guest_mode(). 10945 * 10946 * 2) For APICv, we should set ->mode before checking PID.ON. This 10947 * pairs with the memory barrier implicit in pi_test_and_set_on 10948 * (see vmx_deliver_posted_interrupt). 10949 * 10950 * 3) This also orders the write to mode from any reads to the page 10951 * tables done while the VCPU is running. Please see the comment 10952 * in kvm_flush_remote_tlbs. 10953 */ 10954 smp_mb__after_srcu_read_unlock(); 10955 10956 /* 10957 * Process pending posted interrupts to handle the case where the 10958 * notification IRQ arrived in the host, or was never sent (because the 10959 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10960 * status, KVM doesn't update assigned devices when APICv is inhibited, 10961 * i.e. they can post interrupts even if APICv is temporarily disabled. 10962 */ 10963 if (kvm_lapic_enabled(vcpu)) 10964 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10965 10966 if (kvm_vcpu_exit_request(vcpu)) { 10967 vcpu->mode = OUTSIDE_GUEST_MODE; 10968 smp_wmb(); 10969 local_irq_enable(); 10970 preempt_enable(); 10971 kvm_vcpu_srcu_read_lock(vcpu); 10972 r = 1; 10973 goto cancel_injection; 10974 } 10975 10976 if (req_immediate_exit) 10977 kvm_make_request(KVM_REQ_EVENT, vcpu); 10978 10979 fpregs_assert_state_consistent(); 10980 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10981 switch_fpu_return(); 10982 10983 if (vcpu->arch.guest_fpu.xfd_err) 10984 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10985 10986 if (unlikely(vcpu->arch.switch_db_regs)) { 10987 set_debugreg(0, 7); 10988 set_debugreg(vcpu->arch.eff_db[0], 0); 10989 set_debugreg(vcpu->arch.eff_db[1], 1); 10990 set_debugreg(vcpu->arch.eff_db[2], 2); 10991 set_debugreg(vcpu->arch.eff_db[3], 3); 10992 } else if (unlikely(hw_breakpoint_active())) { 10993 set_debugreg(0, 7); 10994 } 10995 10996 guest_timing_enter_irqoff(); 10997 10998 for (;;) { 10999 /* 11000 * Assert that vCPU vs. VM APICv state is consistent. An APICv 11001 * update must kick and wait for all vCPUs before toggling the 11002 * per-VM state, and responding vCPUs must wait for the update 11003 * to complete before servicing KVM_REQ_APICV_UPDATE. 11004 */ 11005 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 11006 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 11007 11008 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu, req_immediate_exit); 11009 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 11010 break; 11011 11012 if (kvm_lapic_enabled(vcpu)) 11013 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 11014 11015 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 11016 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 11017 break; 11018 } 11019 11020 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 11021 ++vcpu->stat.exits; 11022 } 11023 11024 /* 11025 * Do this here before restoring debug registers on the host. And 11026 * since we do this before handling the vmexit, a DR access vmexit 11027 * can (a) read the correct value of the debug registers, (b) set 11028 * KVM_DEBUGREG_WONT_EXIT again. 11029 */ 11030 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 11031 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 11032 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 11033 kvm_update_dr0123(vcpu); 11034 kvm_update_dr7(vcpu); 11035 } 11036 11037 /* 11038 * If the guest has used debug registers, at least dr7 11039 * will be disabled while returning to the host. 11040 * If we don't have active breakpoints in the host, we don't 11041 * care about the messed up debug address registers. But if 11042 * we have some of them active, restore the old state. 11043 */ 11044 if (hw_breakpoint_active()) 11045 hw_breakpoint_restore(); 11046 11047 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11048 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11049 11050 vcpu->mode = OUTSIDE_GUEST_MODE; 11051 smp_wmb(); 11052 11053 /* 11054 * Sync xfd before calling handle_exit_irqoff() which may 11055 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11056 * in #NM irqoff handler). 11057 */ 11058 if (vcpu->arch.xfd_no_write_intercept) 11059 fpu_sync_guest_vmexit_xfd_state(); 11060 11061 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 11062 11063 if (vcpu->arch.guest_fpu.xfd_err) 11064 wrmsrl(MSR_IA32_XFD_ERR, 0); 11065 11066 /* 11067 * Consume any pending interrupts, including the possible source of 11068 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11069 * An instruction is required after local_irq_enable() to fully unblock 11070 * interrupts on processors that implement an interrupt shadow, the 11071 * stat.exits increment will do nicely. 11072 */ 11073 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11074 local_irq_enable(); 11075 ++vcpu->stat.exits; 11076 local_irq_disable(); 11077 kvm_after_interrupt(vcpu); 11078 11079 /* 11080 * Wait until after servicing IRQs to account guest time so that any 11081 * ticks that occurred while running the guest are properly accounted 11082 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11083 * of accounting via context tracking, but the loss of accuracy is 11084 * acceptable for all known use cases. 11085 */ 11086 guest_timing_exit_irqoff(); 11087 11088 local_irq_enable(); 11089 preempt_enable(); 11090 11091 kvm_vcpu_srcu_read_lock(vcpu); 11092 11093 /* 11094 * Profile KVM exit RIPs: 11095 */ 11096 if (unlikely(prof_on == KVM_PROFILING)) { 11097 unsigned long rip = kvm_rip_read(vcpu); 11098 profile_hit(KVM_PROFILING, (void *)rip); 11099 } 11100 11101 if (unlikely(vcpu->arch.tsc_always_catchup)) 11102 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11103 11104 if (vcpu->arch.apic_attention) 11105 kvm_lapic_sync_from_vapic(vcpu); 11106 11107 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 11108 return r; 11109 11110 cancel_injection: 11111 if (req_immediate_exit) 11112 kvm_make_request(KVM_REQ_EVENT, vcpu); 11113 static_call(kvm_x86_cancel_injection)(vcpu); 11114 if (unlikely(vcpu->arch.apic_attention)) 11115 kvm_lapic_sync_from_vapic(vcpu); 11116 out: 11117 return r; 11118 } 11119 11120 /* Called within kvm->srcu read side. */ 11121 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11122 { 11123 bool hv_timer; 11124 11125 if (!kvm_arch_vcpu_runnable(vcpu)) { 11126 /* 11127 * Switch to the software timer before halt-polling/blocking as 11128 * the guest's timer may be a break event for the vCPU, and the 11129 * hypervisor timer runs only when the CPU is in guest mode. 11130 * Switch before halt-polling so that KVM recognizes an expired 11131 * timer before blocking. 11132 */ 11133 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11134 if (hv_timer) 11135 kvm_lapic_switch_to_sw_timer(vcpu); 11136 11137 kvm_vcpu_srcu_read_unlock(vcpu); 11138 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11139 kvm_vcpu_halt(vcpu); 11140 else 11141 kvm_vcpu_block(vcpu); 11142 kvm_vcpu_srcu_read_lock(vcpu); 11143 11144 if (hv_timer) 11145 kvm_lapic_switch_to_hv_timer(vcpu); 11146 11147 /* 11148 * If the vCPU is not runnable, a signal or another host event 11149 * of some kind is pending; service it without changing the 11150 * vCPU's activity state. 11151 */ 11152 if (!kvm_arch_vcpu_runnable(vcpu)) 11153 return 1; 11154 } 11155 11156 /* 11157 * Evaluate nested events before exiting the halted state. This allows 11158 * the halt state to be recorded properly in the VMCS12's activity 11159 * state field (AMD does not have a similar field and a VM-Exit always 11160 * causes a spurious wakeup from HLT). 11161 */ 11162 if (is_guest_mode(vcpu)) { 11163 if (kvm_check_nested_events(vcpu) < 0) 11164 return 0; 11165 } 11166 11167 if (kvm_apic_accept_events(vcpu) < 0) 11168 return 0; 11169 switch(vcpu->arch.mp_state) { 11170 case KVM_MP_STATE_HALTED: 11171 case KVM_MP_STATE_AP_RESET_HOLD: 11172 vcpu->arch.pv.pv_unhalted = false; 11173 vcpu->arch.mp_state = 11174 KVM_MP_STATE_RUNNABLE; 11175 fallthrough; 11176 case KVM_MP_STATE_RUNNABLE: 11177 vcpu->arch.apf.halted = false; 11178 break; 11179 case KVM_MP_STATE_INIT_RECEIVED: 11180 break; 11181 default: 11182 WARN_ON_ONCE(1); 11183 break; 11184 } 11185 return 1; 11186 } 11187 11188 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11189 { 11190 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11191 !vcpu->arch.apf.halted); 11192 } 11193 11194 /* Called within kvm->srcu read side. */ 11195 static int vcpu_run(struct kvm_vcpu *vcpu) 11196 { 11197 int r; 11198 11199 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11200 vcpu->arch.l1tf_flush_l1d = true; 11201 11202 for (;;) { 11203 /* 11204 * If another guest vCPU requests a PV TLB flush in the middle 11205 * of instruction emulation, the rest of the emulation could 11206 * use a stale page translation. Assume that any code after 11207 * this point can start executing an instruction. 11208 */ 11209 vcpu->arch.at_instruction_boundary = false; 11210 if (kvm_vcpu_running(vcpu)) { 11211 r = vcpu_enter_guest(vcpu); 11212 } else { 11213 r = vcpu_block(vcpu); 11214 } 11215 11216 if (r <= 0) 11217 break; 11218 11219 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11220 if (kvm_xen_has_pending_events(vcpu)) 11221 kvm_xen_inject_pending_events(vcpu); 11222 11223 if (kvm_cpu_has_pending_timer(vcpu)) 11224 kvm_inject_pending_timer_irqs(vcpu); 11225 11226 if (dm_request_for_irq_injection(vcpu) && 11227 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11228 r = 0; 11229 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11230 ++vcpu->stat.request_irq_exits; 11231 break; 11232 } 11233 11234 if (__xfer_to_guest_mode_work_pending()) { 11235 kvm_vcpu_srcu_read_unlock(vcpu); 11236 r = xfer_to_guest_mode_handle_work(vcpu); 11237 kvm_vcpu_srcu_read_lock(vcpu); 11238 if (r) 11239 return r; 11240 } 11241 } 11242 11243 return r; 11244 } 11245 11246 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11247 { 11248 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11249 } 11250 11251 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11252 { 11253 BUG_ON(!vcpu->arch.pio.count); 11254 11255 return complete_emulated_io(vcpu); 11256 } 11257 11258 /* 11259 * Implements the following, as a state machine: 11260 * 11261 * read: 11262 * for each fragment 11263 * for each mmio piece in the fragment 11264 * write gpa, len 11265 * exit 11266 * copy data 11267 * execute insn 11268 * 11269 * write: 11270 * for each fragment 11271 * for each mmio piece in the fragment 11272 * write gpa, len 11273 * copy data 11274 * exit 11275 */ 11276 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11277 { 11278 struct kvm_run *run = vcpu->run; 11279 struct kvm_mmio_fragment *frag; 11280 unsigned len; 11281 11282 BUG_ON(!vcpu->mmio_needed); 11283 11284 /* Complete previous fragment */ 11285 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11286 len = min(8u, frag->len); 11287 if (!vcpu->mmio_is_write) 11288 memcpy(frag->data, run->mmio.data, len); 11289 11290 if (frag->len <= 8) { 11291 /* Switch to the next fragment. */ 11292 frag++; 11293 vcpu->mmio_cur_fragment++; 11294 } else { 11295 /* Go forward to the next mmio piece. */ 11296 frag->data += len; 11297 frag->gpa += len; 11298 frag->len -= len; 11299 } 11300 11301 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11302 vcpu->mmio_needed = 0; 11303 11304 /* FIXME: return into emulator if single-stepping. */ 11305 if (vcpu->mmio_is_write) 11306 return 1; 11307 vcpu->mmio_read_completed = 1; 11308 return complete_emulated_io(vcpu); 11309 } 11310 11311 run->exit_reason = KVM_EXIT_MMIO; 11312 run->mmio.phys_addr = frag->gpa; 11313 if (vcpu->mmio_is_write) 11314 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11315 run->mmio.len = min(8u, frag->len); 11316 run->mmio.is_write = vcpu->mmio_is_write; 11317 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11318 return 0; 11319 } 11320 11321 /* Swap (qemu) user FPU context for the guest FPU context. */ 11322 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11323 { 11324 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11325 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11326 trace_kvm_fpu(1); 11327 } 11328 11329 /* When vcpu_run ends, restore user space FPU context. */ 11330 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11331 { 11332 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11333 ++vcpu->stat.fpu_reload; 11334 trace_kvm_fpu(0); 11335 } 11336 11337 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11338 { 11339 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11340 struct kvm_run *kvm_run = vcpu->run; 11341 int r; 11342 11343 vcpu_load(vcpu); 11344 kvm_sigset_activate(vcpu); 11345 kvm_run->flags = 0; 11346 kvm_load_guest_fpu(vcpu); 11347 11348 kvm_vcpu_srcu_read_lock(vcpu); 11349 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11350 if (kvm_run->immediate_exit) { 11351 r = -EINTR; 11352 goto out; 11353 } 11354 11355 /* 11356 * Don't bother switching APIC timer emulation from the 11357 * hypervisor timer to the software timer, the only way for the 11358 * APIC timer to be active is if userspace stuffed vCPU state, 11359 * i.e. put the vCPU into a nonsensical state. Only an INIT 11360 * will transition the vCPU out of UNINITIALIZED (without more 11361 * state stuffing from userspace), which will reset the local 11362 * APIC and thus cancel the timer or drop the IRQ (if the timer 11363 * already expired). 11364 */ 11365 kvm_vcpu_srcu_read_unlock(vcpu); 11366 kvm_vcpu_block(vcpu); 11367 kvm_vcpu_srcu_read_lock(vcpu); 11368 11369 if (kvm_apic_accept_events(vcpu) < 0) { 11370 r = 0; 11371 goto out; 11372 } 11373 r = -EAGAIN; 11374 if (signal_pending(current)) { 11375 r = -EINTR; 11376 kvm_run->exit_reason = KVM_EXIT_INTR; 11377 ++vcpu->stat.signal_exits; 11378 } 11379 goto out; 11380 } 11381 11382 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11383 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11384 r = -EINVAL; 11385 goto out; 11386 } 11387 11388 if (kvm_run->kvm_dirty_regs) { 11389 r = sync_regs(vcpu); 11390 if (r != 0) 11391 goto out; 11392 } 11393 11394 /* re-sync apic's tpr */ 11395 if (!lapic_in_kernel(vcpu)) { 11396 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11397 r = -EINVAL; 11398 goto out; 11399 } 11400 } 11401 11402 /* 11403 * If userspace set a pending exception and L2 is active, convert it to 11404 * a pending VM-Exit if L1 wants to intercept the exception. 11405 */ 11406 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11407 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11408 ex->error_code)) { 11409 kvm_queue_exception_vmexit(vcpu, ex->vector, 11410 ex->has_error_code, ex->error_code, 11411 ex->has_payload, ex->payload); 11412 ex->injected = false; 11413 ex->pending = false; 11414 } 11415 vcpu->arch.exception_from_userspace = false; 11416 11417 if (unlikely(vcpu->arch.complete_userspace_io)) { 11418 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11419 vcpu->arch.complete_userspace_io = NULL; 11420 r = cui(vcpu); 11421 if (r <= 0) 11422 goto out; 11423 } else { 11424 WARN_ON_ONCE(vcpu->arch.pio.count); 11425 WARN_ON_ONCE(vcpu->mmio_needed); 11426 } 11427 11428 if (kvm_run->immediate_exit) { 11429 r = -EINTR; 11430 goto out; 11431 } 11432 11433 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11434 if (r <= 0) 11435 goto out; 11436 11437 r = vcpu_run(vcpu); 11438 11439 out: 11440 kvm_put_guest_fpu(vcpu); 11441 if (kvm_run->kvm_valid_regs) 11442 store_regs(vcpu); 11443 post_kvm_run_save(vcpu); 11444 kvm_vcpu_srcu_read_unlock(vcpu); 11445 11446 kvm_sigset_deactivate(vcpu); 11447 vcpu_put(vcpu); 11448 return r; 11449 } 11450 11451 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11452 { 11453 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11454 /* 11455 * We are here if userspace calls get_regs() in the middle of 11456 * instruction emulation. Registers state needs to be copied 11457 * back from emulation context to vcpu. Userspace shouldn't do 11458 * that usually, but some bad designed PV devices (vmware 11459 * backdoor interface) need this to work 11460 */ 11461 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11462 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11463 } 11464 regs->rax = kvm_rax_read(vcpu); 11465 regs->rbx = kvm_rbx_read(vcpu); 11466 regs->rcx = kvm_rcx_read(vcpu); 11467 regs->rdx = kvm_rdx_read(vcpu); 11468 regs->rsi = kvm_rsi_read(vcpu); 11469 regs->rdi = kvm_rdi_read(vcpu); 11470 regs->rsp = kvm_rsp_read(vcpu); 11471 regs->rbp = kvm_rbp_read(vcpu); 11472 #ifdef CONFIG_X86_64 11473 regs->r8 = kvm_r8_read(vcpu); 11474 regs->r9 = kvm_r9_read(vcpu); 11475 regs->r10 = kvm_r10_read(vcpu); 11476 regs->r11 = kvm_r11_read(vcpu); 11477 regs->r12 = kvm_r12_read(vcpu); 11478 regs->r13 = kvm_r13_read(vcpu); 11479 regs->r14 = kvm_r14_read(vcpu); 11480 regs->r15 = kvm_r15_read(vcpu); 11481 #endif 11482 11483 regs->rip = kvm_rip_read(vcpu); 11484 regs->rflags = kvm_get_rflags(vcpu); 11485 } 11486 11487 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11488 { 11489 vcpu_load(vcpu); 11490 __get_regs(vcpu, regs); 11491 vcpu_put(vcpu); 11492 return 0; 11493 } 11494 11495 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11496 { 11497 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11498 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11499 11500 kvm_rax_write(vcpu, regs->rax); 11501 kvm_rbx_write(vcpu, regs->rbx); 11502 kvm_rcx_write(vcpu, regs->rcx); 11503 kvm_rdx_write(vcpu, regs->rdx); 11504 kvm_rsi_write(vcpu, regs->rsi); 11505 kvm_rdi_write(vcpu, regs->rdi); 11506 kvm_rsp_write(vcpu, regs->rsp); 11507 kvm_rbp_write(vcpu, regs->rbp); 11508 #ifdef CONFIG_X86_64 11509 kvm_r8_write(vcpu, regs->r8); 11510 kvm_r9_write(vcpu, regs->r9); 11511 kvm_r10_write(vcpu, regs->r10); 11512 kvm_r11_write(vcpu, regs->r11); 11513 kvm_r12_write(vcpu, regs->r12); 11514 kvm_r13_write(vcpu, regs->r13); 11515 kvm_r14_write(vcpu, regs->r14); 11516 kvm_r15_write(vcpu, regs->r15); 11517 #endif 11518 11519 kvm_rip_write(vcpu, regs->rip); 11520 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11521 11522 vcpu->arch.exception.pending = false; 11523 vcpu->arch.exception_vmexit.pending = false; 11524 11525 kvm_make_request(KVM_REQ_EVENT, vcpu); 11526 } 11527 11528 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11529 { 11530 vcpu_load(vcpu); 11531 __set_regs(vcpu, regs); 11532 vcpu_put(vcpu); 11533 return 0; 11534 } 11535 11536 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11537 { 11538 struct desc_ptr dt; 11539 11540 if (vcpu->arch.guest_state_protected) 11541 goto skip_protected_regs; 11542 11543 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11544 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11545 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11546 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11547 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11548 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11549 11550 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11551 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11552 11553 static_call(kvm_x86_get_idt)(vcpu, &dt); 11554 sregs->idt.limit = dt.size; 11555 sregs->idt.base = dt.address; 11556 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11557 sregs->gdt.limit = dt.size; 11558 sregs->gdt.base = dt.address; 11559 11560 sregs->cr2 = vcpu->arch.cr2; 11561 sregs->cr3 = kvm_read_cr3(vcpu); 11562 11563 skip_protected_regs: 11564 sregs->cr0 = kvm_read_cr0(vcpu); 11565 sregs->cr4 = kvm_read_cr4(vcpu); 11566 sregs->cr8 = kvm_get_cr8(vcpu); 11567 sregs->efer = vcpu->arch.efer; 11568 sregs->apic_base = kvm_get_apic_base(vcpu); 11569 } 11570 11571 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11572 { 11573 __get_sregs_common(vcpu, sregs); 11574 11575 if (vcpu->arch.guest_state_protected) 11576 return; 11577 11578 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11579 set_bit(vcpu->arch.interrupt.nr, 11580 (unsigned long *)sregs->interrupt_bitmap); 11581 } 11582 11583 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11584 { 11585 int i; 11586 11587 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11588 11589 if (vcpu->arch.guest_state_protected) 11590 return; 11591 11592 if (is_pae_paging(vcpu)) { 11593 for (i = 0 ; i < 4 ; i++) 11594 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11595 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11596 } 11597 } 11598 11599 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11600 struct kvm_sregs *sregs) 11601 { 11602 vcpu_load(vcpu); 11603 __get_sregs(vcpu, sregs); 11604 vcpu_put(vcpu); 11605 return 0; 11606 } 11607 11608 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11609 struct kvm_mp_state *mp_state) 11610 { 11611 int r; 11612 11613 vcpu_load(vcpu); 11614 if (kvm_mpx_supported()) 11615 kvm_load_guest_fpu(vcpu); 11616 11617 r = kvm_apic_accept_events(vcpu); 11618 if (r < 0) 11619 goto out; 11620 r = 0; 11621 11622 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11623 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11624 vcpu->arch.pv.pv_unhalted) 11625 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11626 else 11627 mp_state->mp_state = vcpu->arch.mp_state; 11628 11629 out: 11630 if (kvm_mpx_supported()) 11631 kvm_put_guest_fpu(vcpu); 11632 vcpu_put(vcpu); 11633 return r; 11634 } 11635 11636 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11637 struct kvm_mp_state *mp_state) 11638 { 11639 int ret = -EINVAL; 11640 11641 vcpu_load(vcpu); 11642 11643 switch (mp_state->mp_state) { 11644 case KVM_MP_STATE_UNINITIALIZED: 11645 case KVM_MP_STATE_HALTED: 11646 case KVM_MP_STATE_AP_RESET_HOLD: 11647 case KVM_MP_STATE_INIT_RECEIVED: 11648 case KVM_MP_STATE_SIPI_RECEIVED: 11649 if (!lapic_in_kernel(vcpu)) 11650 goto out; 11651 break; 11652 11653 case KVM_MP_STATE_RUNNABLE: 11654 break; 11655 11656 default: 11657 goto out; 11658 } 11659 11660 /* 11661 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11662 * forcing the guest into INIT/SIPI if those events are supposed to be 11663 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11664 * if an SMI is pending as well. 11665 */ 11666 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11667 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11668 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11669 goto out; 11670 11671 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11672 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11673 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11674 } else 11675 vcpu->arch.mp_state = mp_state->mp_state; 11676 kvm_make_request(KVM_REQ_EVENT, vcpu); 11677 11678 ret = 0; 11679 out: 11680 vcpu_put(vcpu); 11681 return ret; 11682 } 11683 11684 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11685 int reason, bool has_error_code, u32 error_code) 11686 { 11687 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11688 int ret; 11689 11690 init_emulate_ctxt(vcpu); 11691 11692 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11693 has_error_code, error_code); 11694 if (ret) { 11695 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11696 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11697 vcpu->run->internal.ndata = 0; 11698 return 0; 11699 } 11700 11701 kvm_rip_write(vcpu, ctxt->eip); 11702 kvm_set_rflags(vcpu, ctxt->eflags); 11703 return 1; 11704 } 11705 EXPORT_SYMBOL_GPL(kvm_task_switch); 11706 11707 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11708 { 11709 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11710 /* 11711 * When EFER.LME and CR0.PG are set, the processor is in 11712 * 64-bit mode (though maybe in a 32-bit code segment). 11713 * CR4.PAE and EFER.LMA must be set. 11714 */ 11715 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11716 return false; 11717 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11718 return false; 11719 } else { 11720 /* 11721 * Not in 64-bit mode: EFER.LMA is clear and the code 11722 * segment cannot be 64-bit. 11723 */ 11724 if (sregs->efer & EFER_LMA || sregs->cs.l) 11725 return false; 11726 } 11727 11728 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11729 kvm_is_valid_cr0(vcpu, sregs->cr0); 11730 } 11731 11732 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11733 int *mmu_reset_needed, bool update_pdptrs) 11734 { 11735 struct msr_data apic_base_msr; 11736 int idx; 11737 struct desc_ptr dt; 11738 11739 if (!kvm_is_valid_sregs(vcpu, sregs)) 11740 return -EINVAL; 11741 11742 apic_base_msr.data = sregs->apic_base; 11743 apic_base_msr.host_initiated = true; 11744 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11745 return -EINVAL; 11746 11747 if (vcpu->arch.guest_state_protected) 11748 return 0; 11749 11750 dt.size = sregs->idt.limit; 11751 dt.address = sregs->idt.base; 11752 static_call(kvm_x86_set_idt)(vcpu, &dt); 11753 dt.size = sregs->gdt.limit; 11754 dt.address = sregs->gdt.base; 11755 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11756 11757 vcpu->arch.cr2 = sregs->cr2; 11758 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11759 vcpu->arch.cr3 = sregs->cr3; 11760 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11761 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11762 11763 kvm_set_cr8(vcpu, sregs->cr8); 11764 11765 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11766 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11767 11768 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11769 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11770 11771 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11772 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11773 11774 if (update_pdptrs) { 11775 idx = srcu_read_lock(&vcpu->kvm->srcu); 11776 if (is_pae_paging(vcpu)) { 11777 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11778 *mmu_reset_needed = 1; 11779 } 11780 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11781 } 11782 11783 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11784 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11785 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11786 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11787 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11788 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11789 11790 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11791 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11792 11793 update_cr8_intercept(vcpu); 11794 11795 /* Older userspace won't unhalt the vcpu on reset. */ 11796 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11797 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11798 !is_protmode(vcpu)) 11799 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11800 11801 return 0; 11802 } 11803 11804 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11805 { 11806 int pending_vec, max_bits; 11807 int mmu_reset_needed = 0; 11808 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11809 11810 if (ret) 11811 return ret; 11812 11813 if (mmu_reset_needed) { 11814 kvm_mmu_reset_context(vcpu); 11815 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11816 } 11817 11818 max_bits = KVM_NR_INTERRUPTS; 11819 pending_vec = find_first_bit( 11820 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11821 11822 if (pending_vec < max_bits) { 11823 kvm_queue_interrupt(vcpu, pending_vec, false); 11824 pr_debug("Set back pending irq %d\n", pending_vec); 11825 kvm_make_request(KVM_REQ_EVENT, vcpu); 11826 } 11827 return 0; 11828 } 11829 11830 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11831 { 11832 int mmu_reset_needed = 0; 11833 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11834 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11835 !(sregs2->efer & EFER_LMA); 11836 int i, ret; 11837 11838 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11839 return -EINVAL; 11840 11841 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11842 return -EINVAL; 11843 11844 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11845 &mmu_reset_needed, !valid_pdptrs); 11846 if (ret) 11847 return ret; 11848 11849 if (valid_pdptrs) { 11850 for (i = 0; i < 4 ; i++) 11851 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11852 11853 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11854 mmu_reset_needed = 1; 11855 vcpu->arch.pdptrs_from_userspace = true; 11856 } 11857 if (mmu_reset_needed) { 11858 kvm_mmu_reset_context(vcpu); 11859 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11860 } 11861 return 0; 11862 } 11863 11864 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11865 struct kvm_sregs *sregs) 11866 { 11867 int ret; 11868 11869 vcpu_load(vcpu); 11870 ret = __set_sregs(vcpu, sregs); 11871 vcpu_put(vcpu); 11872 return ret; 11873 } 11874 11875 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11876 { 11877 bool set = false; 11878 struct kvm_vcpu *vcpu; 11879 unsigned long i; 11880 11881 if (!enable_apicv) 11882 return; 11883 11884 down_write(&kvm->arch.apicv_update_lock); 11885 11886 kvm_for_each_vcpu(i, vcpu, kvm) { 11887 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11888 set = true; 11889 break; 11890 } 11891 } 11892 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11893 up_write(&kvm->arch.apicv_update_lock); 11894 } 11895 11896 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11897 struct kvm_guest_debug *dbg) 11898 { 11899 unsigned long rflags; 11900 int i, r; 11901 11902 if (vcpu->arch.guest_state_protected) 11903 return -EINVAL; 11904 11905 vcpu_load(vcpu); 11906 11907 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11908 r = -EBUSY; 11909 if (kvm_is_exception_pending(vcpu)) 11910 goto out; 11911 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11912 kvm_queue_exception(vcpu, DB_VECTOR); 11913 else 11914 kvm_queue_exception(vcpu, BP_VECTOR); 11915 } 11916 11917 /* 11918 * Read rflags as long as potentially injected trace flags are still 11919 * filtered out. 11920 */ 11921 rflags = kvm_get_rflags(vcpu); 11922 11923 vcpu->guest_debug = dbg->control; 11924 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11925 vcpu->guest_debug = 0; 11926 11927 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11928 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11929 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11930 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11931 } else { 11932 for (i = 0; i < KVM_NR_DB_REGS; i++) 11933 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11934 } 11935 kvm_update_dr7(vcpu); 11936 11937 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11938 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11939 11940 /* 11941 * Trigger an rflags update that will inject or remove the trace 11942 * flags. 11943 */ 11944 kvm_set_rflags(vcpu, rflags); 11945 11946 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11947 11948 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11949 11950 r = 0; 11951 11952 out: 11953 vcpu_put(vcpu); 11954 return r; 11955 } 11956 11957 /* 11958 * Translate a guest virtual address to a guest physical address. 11959 */ 11960 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11961 struct kvm_translation *tr) 11962 { 11963 unsigned long vaddr = tr->linear_address; 11964 gpa_t gpa; 11965 int idx; 11966 11967 vcpu_load(vcpu); 11968 11969 idx = srcu_read_lock(&vcpu->kvm->srcu); 11970 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11971 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11972 tr->physical_address = gpa; 11973 tr->valid = gpa != INVALID_GPA; 11974 tr->writeable = 1; 11975 tr->usermode = 0; 11976 11977 vcpu_put(vcpu); 11978 return 0; 11979 } 11980 11981 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11982 { 11983 struct fxregs_state *fxsave; 11984 11985 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11986 return 0; 11987 11988 vcpu_load(vcpu); 11989 11990 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11991 memcpy(fpu->fpr, fxsave->st_space, 128); 11992 fpu->fcw = fxsave->cwd; 11993 fpu->fsw = fxsave->swd; 11994 fpu->ftwx = fxsave->twd; 11995 fpu->last_opcode = fxsave->fop; 11996 fpu->last_ip = fxsave->rip; 11997 fpu->last_dp = fxsave->rdp; 11998 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11999 12000 vcpu_put(vcpu); 12001 return 0; 12002 } 12003 12004 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12005 { 12006 struct fxregs_state *fxsave; 12007 12008 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12009 return 0; 12010 12011 vcpu_load(vcpu); 12012 12013 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12014 12015 memcpy(fxsave->st_space, fpu->fpr, 128); 12016 fxsave->cwd = fpu->fcw; 12017 fxsave->swd = fpu->fsw; 12018 fxsave->twd = fpu->ftwx; 12019 fxsave->fop = fpu->last_opcode; 12020 fxsave->rip = fpu->last_ip; 12021 fxsave->rdp = fpu->last_dp; 12022 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 12023 12024 vcpu_put(vcpu); 12025 return 0; 12026 } 12027 12028 static void store_regs(struct kvm_vcpu *vcpu) 12029 { 12030 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12031 12032 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12033 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12034 12035 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12036 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12037 12038 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12039 kvm_vcpu_ioctl_x86_get_vcpu_events( 12040 vcpu, &vcpu->run->s.regs.events); 12041 } 12042 12043 static int sync_regs(struct kvm_vcpu *vcpu) 12044 { 12045 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12046 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12047 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12048 } 12049 12050 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12051 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12052 12053 if (__set_sregs(vcpu, &sregs)) 12054 return -EINVAL; 12055 12056 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12057 } 12058 12059 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12060 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12061 12062 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12063 return -EINVAL; 12064 12065 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12066 } 12067 12068 return 0; 12069 } 12070 12071 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12072 { 12073 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12074 pr_warn_once("SMP vm created on host with unstable TSC; " 12075 "guest TSC will not be reliable\n"); 12076 12077 if (!kvm->arch.max_vcpu_ids) 12078 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12079 12080 if (id >= kvm->arch.max_vcpu_ids) 12081 return -EINVAL; 12082 12083 return static_call(kvm_x86_vcpu_precreate)(kvm); 12084 } 12085 12086 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12087 { 12088 struct page *page; 12089 int r; 12090 12091 vcpu->arch.last_vmentry_cpu = -1; 12092 vcpu->arch.regs_avail = ~0; 12093 vcpu->arch.regs_dirty = ~0; 12094 12095 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); 12096 12097 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12098 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12099 else 12100 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 12101 12102 r = kvm_mmu_create(vcpu); 12103 if (r < 0) 12104 return r; 12105 12106 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 12107 if (r < 0) 12108 goto fail_mmu_destroy; 12109 12110 r = -ENOMEM; 12111 12112 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12113 if (!page) 12114 goto fail_free_lapic; 12115 vcpu->arch.pio_data = page_address(page); 12116 12117 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12118 GFP_KERNEL_ACCOUNT); 12119 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12120 GFP_KERNEL_ACCOUNT); 12121 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12122 goto fail_free_mce_banks; 12123 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12124 12125 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12126 GFP_KERNEL_ACCOUNT)) 12127 goto fail_free_mce_banks; 12128 12129 if (!alloc_emulate_ctxt(vcpu)) 12130 goto free_wbinvd_dirty_mask; 12131 12132 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12133 pr_err("failed to allocate vcpu's fpu\n"); 12134 goto free_emulate_ctxt; 12135 } 12136 12137 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12138 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12139 12140 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12141 12142 kvm_async_pf_hash_reset(vcpu); 12143 12144 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12145 kvm_pmu_init(vcpu); 12146 12147 vcpu->arch.pending_external_vector = -1; 12148 vcpu->arch.preempted_in_kernel = false; 12149 12150 #if IS_ENABLED(CONFIG_HYPERV) 12151 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12152 #endif 12153 12154 r = static_call(kvm_x86_vcpu_create)(vcpu); 12155 if (r) 12156 goto free_guest_fpu; 12157 12158 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12159 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12160 kvm_xen_init_vcpu(vcpu); 12161 kvm_vcpu_mtrr_init(vcpu); 12162 vcpu_load(vcpu); 12163 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12164 kvm_vcpu_reset(vcpu, false); 12165 kvm_init_mmu(vcpu); 12166 vcpu_put(vcpu); 12167 return 0; 12168 12169 free_guest_fpu: 12170 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12171 free_emulate_ctxt: 12172 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12173 free_wbinvd_dirty_mask: 12174 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12175 fail_free_mce_banks: 12176 kfree(vcpu->arch.mce_banks); 12177 kfree(vcpu->arch.mci_ctl2_banks); 12178 free_page((unsigned long)vcpu->arch.pio_data); 12179 fail_free_lapic: 12180 kvm_free_lapic(vcpu); 12181 fail_mmu_destroy: 12182 kvm_mmu_destroy(vcpu); 12183 return r; 12184 } 12185 12186 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12187 { 12188 struct kvm *kvm = vcpu->kvm; 12189 12190 if (mutex_lock_killable(&vcpu->mutex)) 12191 return; 12192 vcpu_load(vcpu); 12193 kvm_synchronize_tsc(vcpu, NULL); 12194 vcpu_put(vcpu); 12195 12196 /* poll control enabled by default */ 12197 vcpu->arch.msr_kvm_poll_control = 1; 12198 12199 mutex_unlock(&vcpu->mutex); 12200 12201 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12202 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12203 KVMCLOCK_SYNC_PERIOD); 12204 } 12205 12206 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12207 { 12208 int idx; 12209 12210 kvmclock_reset(vcpu); 12211 12212 static_call(kvm_x86_vcpu_free)(vcpu); 12213 12214 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12215 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12216 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12217 12218 kvm_xen_destroy_vcpu(vcpu); 12219 kvm_hv_vcpu_uninit(vcpu); 12220 kvm_pmu_destroy(vcpu); 12221 kfree(vcpu->arch.mce_banks); 12222 kfree(vcpu->arch.mci_ctl2_banks); 12223 kvm_free_lapic(vcpu); 12224 idx = srcu_read_lock(&vcpu->kvm->srcu); 12225 kvm_mmu_destroy(vcpu); 12226 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12227 free_page((unsigned long)vcpu->arch.pio_data); 12228 kvfree(vcpu->arch.cpuid_entries); 12229 } 12230 12231 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12232 { 12233 struct kvm_cpuid_entry2 *cpuid_0x1; 12234 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12235 unsigned long new_cr0; 12236 12237 /* 12238 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12239 * to handle side effects. RESET emulation hits those flows and relies 12240 * on emulated/virtualized registers, including those that are loaded 12241 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12242 * to detect improper or missing initialization. 12243 */ 12244 WARN_ON_ONCE(!init_event && 12245 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12246 12247 /* 12248 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12249 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12250 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12251 * bits), i.e. virtualization is disabled. 12252 */ 12253 if (is_guest_mode(vcpu)) 12254 kvm_leave_nested(vcpu); 12255 12256 kvm_lapic_reset(vcpu, init_event); 12257 12258 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12259 vcpu->arch.hflags = 0; 12260 12261 vcpu->arch.smi_pending = 0; 12262 vcpu->arch.smi_count = 0; 12263 atomic_set(&vcpu->arch.nmi_queued, 0); 12264 vcpu->arch.nmi_pending = 0; 12265 vcpu->arch.nmi_injected = false; 12266 kvm_clear_interrupt_queue(vcpu); 12267 kvm_clear_exception_queue(vcpu); 12268 12269 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12270 kvm_update_dr0123(vcpu); 12271 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12272 vcpu->arch.dr7 = DR7_FIXED_1; 12273 kvm_update_dr7(vcpu); 12274 12275 vcpu->arch.cr2 = 0; 12276 12277 kvm_make_request(KVM_REQ_EVENT, vcpu); 12278 vcpu->arch.apf.msr_en_val = 0; 12279 vcpu->arch.apf.msr_int_val = 0; 12280 vcpu->arch.st.msr_val = 0; 12281 12282 kvmclock_reset(vcpu); 12283 12284 kvm_clear_async_pf_completion_queue(vcpu); 12285 kvm_async_pf_hash_reset(vcpu); 12286 vcpu->arch.apf.halted = false; 12287 12288 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12289 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12290 12291 /* 12292 * All paths that lead to INIT are required to load the guest's 12293 * FPU state (because most paths are buried in KVM_RUN). 12294 */ 12295 if (init_event) 12296 kvm_put_guest_fpu(vcpu); 12297 12298 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12299 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12300 12301 if (init_event) 12302 kvm_load_guest_fpu(vcpu); 12303 } 12304 12305 if (!init_event) { 12306 vcpu->arch.smbase = 0x30000; 12307 12308 vcpu->arch.msr_misc_features_enables = 0; 12309 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12310 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12311 12312 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12313 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12314 } 12315 12316 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12317 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12318 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12319 12320 /* 12321 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12322 * if no CPUID match is found. Note, it's impossible to get a match at 12323 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12324 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12325 * on RESET. But, go through the motions in case that's ever remedied. 12326 */ 12327 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12328 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12329 12330 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12331 12332 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12333 kvm_rip_write(vcpu, 0xfff0); 12334 12335 vcpu->arch.cr3 = 0; 12336 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12337 12338 /* 12339 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12340 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12341 * (or qualify) that with a footnote stating that CD/NW are preserved. 12342 */ 12343 new_cr0 = X86_CR0_ET; 12344 if (init_event) 12345 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12346 else 12347 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12348 12349 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12350 static_call(kvm_x86_set_cr4)(vcpu, 0); 12351 static_call(kvm_x86_set_efer)(vcpu, 0); 12352 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12353 12354 /* 12355 * On the standard CR0/CR4/EFER modification paths, there are several 12356 * complex conditions determining whether the MMU has to be reset and/or 12357 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12358 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12359 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12360 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12361 */ 12362 if (old_cr0 & X86_CR0_PG) { 12363 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12364 kvm_mmu_reset_context(vcpu); 12365 } 12366 12367 /* 12368 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12369 * APM states the TLBs are untouched by INIT, but it also states that 12370 * the TLBs are flushed on "External initialization of the processor." 12371 * Flush the guest TLB regardless of vendor, there is no meaningful 12372 * benefit in relying on the guest to flush the TLB immediately after 12373 * INIT. A spurious TLB flush is benign and likely negligible from a 12374 * performance perspective. 12375 */ 12376 if (init_event) 12377 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12378 } 12379 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12380 12381 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12382 { 12383 struct kvm_segment cs; 12384 12385 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12386 cs.selector = vector << 8; 12387 cs.base = vector << 12; 12388 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12389 kvm_rip_write(vcpu, 0); 12390 } 12391 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12392 12393 int kvm_arch_hardware_enable(void) 12394 { 12395 struct kvm *kvm; 12396 struct kvm_vcpu *vcpu; 12397 unsigned long i; 12398 int ret; 12399 u64 local_tsc; 12400 u64 max_tsc = 0; 12401 bool stable, backwards_tsc = false; 12402 12403 kvm_user_return_msr_cpu_online(); 12404 12405 ret = kvm_x86_check_processor_compatibility(); 12406 if (ret) 12407 return ret; 12408 12409 ret = static_call(kvm_x86_hardware_enable)(); 12410 if (ret != 0) 12411 return ret; 12412 12413 local_tsc = rdtsc(); 12414 stable = !kvm_check_tsc_unstable(); 12415 list_for_each_entry(kvm, &vm_list, vm_list) { 12416 kvm_for_each_vcpu(i, vcpu, kvm) { 12417 if (!stable && vcpu->cpu == smp_processor_id()) 12418 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12419 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12420 backwards_tsc = true; 12421 if (vcpu->arch.last_host_tsc > max_tsc) 12422 max_tsc = vcpu->arch.last_host_tsc; 12423 } 12424 } 12425 } 12426 12427 /* 12428 * Sometimes, even reliable TSCs go backwards. This happens on 12429 * platforms that reset TSC during suspend or hibernate actions, but 12430 * maintain synchronization. We must compensate. Fortunately, we can 12431 * detect that condition here, which happens early in CPU bringup, 12432 * before any KVM threads can be running. Unfortunately, we can't 12433 * bring the TSCs fully up to date with real time, as we aren't yet far 12434 * enough into CPU bringup that we know how much real time has actually 12435 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12436 * variables that haven't been updated yet. 12437 * 12438 * So we simply find the maximum observed TSC above, then record the 12439 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12440 * the adjustment will be applied. Note that we accumulate 12441 * adjustments, in case multiple suspend cycles happen before some VCPU 12442 * gets a chance to run again. In the event that no KVM threads get a 12443 * chance to run, we will miss the entire elapsed period, as we'll have 12444 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12445 * loose cycle time. This isn't too big a deal, since the loss will be 12446 * uniform across all VCPUs (not to mention the scenario is extremely 12447 * unlikely). It is possible that a second hibernate recovery happens 12448 * much faster than a first, causing the observed TSC here to be 12449 * smaller; this would require additional padding adjustment, which is 12450 * why we set last_host_tsc to the local tsc observed here. 12451 * 12452 * N.B. - this code below runs only on platforms with reliable TSC, 12453 * as that is the only way backwards_tsc is set above. Also note 12454 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12455 * have the same delta_cyc adjustment applied if backwards_tsc 12456 * is detected. Note further, this adjustment is only done once, 12457 * as we reset last_host_tsc on all VCPUs to stop this from being 12458 * called multiple times (one for each physical CPU bringup). 12459 * 12460 * Platforms with unreliable TSCs don't have to deal with this, they 12461 * will be compensated by the logic in vcpu_load, which sets the TSC to 12462 * catchup mode. This will catchup all VCPUs to real time, but cannot 12463 * guarantee that they stay in perfect synchronization. 12464 */ 12465 if (backwards_tsc) { 12466 u64 delta_cyc = max_tsc - local_tsc; 12467 list_for_each_entry(kvm, &vm_list, vm_list) { 12468 kvm->arch.backwards_tsc_observed = true; 12469 kvm_for_each_vcpu(i, vcpu, kvm) { 12470 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12471 vcpu->arch.last_host_tsc = local_tsc; 12472 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12473 } 12474 12475 /* 12476 * We have to disable TSC offset matching.. if you were 12477 * booting a VM while issuing an S4 host suspend.... 12478 * you may have some problem. Solving this issue is 12479 * left as an exercise to the reader. 12480 */ 12481 kvm->arch.last_tsc_nsec = 0; 12482 kvm->arch.last_tsc_write = 0; 12483 } 12484 12485 } 12486 return 0; 12487 } 12488 12489 void kvm_arch_hardware_disable(void) 12490 { 12491 static_call(kvm_x86_hardware_disable)(); 12492 drop_user_return_notifiers(); 12493 } 12494 12495 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12496 { 12497 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12498 } 12499 12500 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12501 { 12502 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12503 } 12504 12505 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12506 { 12507 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12508 12509 vcpu->arch.l1tf_flush_l1d = true; 12510 if (pmu->version && unlikely(pmu->event_count)) { 12511 pmu->need_cleanup = true; 12512 kvm_make_request(KVM_REQ_PMU, vcpu); 12513 } 12514 static_call(kvm_x86_sched_in)(vcpu, cpu); 12515 } 12516 12517 void kvm_arch_free_vm(struct kvm *kvm) 12518 { 12519 #if IS_ENABLED(CONFIG_HYPERV) 12520 kfree(kvm->arch.hv_pa_pg); 12521 #endif 12522 __kvm_arch_free_vm(kvm); 12523 } 12524 12525 12526 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12527 { 12528 int ret; 12529 unsigned long flags; 12530 12531 if (!kvm_is_vm_type_supported(type)) 12532 return -EINVAL; 12533 12534 kvm->arch.vm_type = type; 12535 12536 ret = kvm_page_track_init(kvm); 12537 if (ret) 12538 goto out; 12539 12540 kvm_mmu_init_vm(kvm); 12541 12542 ret = static_call(kvm_x86_vm_init)(kvm); 12543 if (ret) 12544 goto out_uninit_mmu; 12545 12546 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12547 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12548 12549 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12550 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12551 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12552 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12553 &kvm->arch.irq_sources_bitmap); 12554 12555 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12556 mutex_init(&kvm->arch.apic_map_lock); 12557 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12558 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12559 12560 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12561 pvclock_update_vm_gtod_copy(kvm); 12562 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12563 12564 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12565 kvm->arch.guest_can_read_msr_platform_info = true; 12566 kvm->arch.enable_pmu = enable_pmu; 12567 12568 #if IS_ENABLED(CONFIG_HYPERV) 12569 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12570 kvm->arch.hv_root_tdp = INVALID_PAGE; 12571 #endif 12572 12573 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12574 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12575 12576 kvm_apicv_init(kvm); 12577 kvm_hv_init_vm(kvm); 12578 kvm_xen_init_vm(kvm); 12579 12580 return 0; 12581 12582 out_uninit_mmu: 12583 kvm_mmu_uninit_vm(kvm); 12584 kvm_page_track_cleanup(kvm); 12585 out: 12586 return ret; 12587 } 12588 12589 int kvm_arch_post_init_vm(struct kvm *kvm) 12590 { 12591 return kvm_mmu_post_init_vm(kvm); 12592 } 12593 12594 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12595 { 12596 vcpu_load(vcpu); 12597 kvm_mmu_unload(vcpu); 12598 vcpu_put(vcpu); 12599 } 12600 12601 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12602 { 12603 unsigned long i; 12604 struct kvm_vcpu *vcpu; 12605 12606 kvm_for_each_vcpu(i, vcpu, kvm) { 12607 kvm_clear_async_pf_completion_queue(vcpu); 12608 kvm_unload_vcpu_mmu(vcpu); 12609 } 12610 } 12611 12612 void kvm_arch_sync_events(struct kvm *kvm) 12613 { 12614 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12615 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12616 kvm_free_pit(kvm); 12617 } 12618 12619 /** 12620 * __x86_set_memory_region: Setup KVM internal memory slot 12621 * 12622 * @kvm: the kvm pointer to the VM. 12623 * @id: the slot ID to setup. 12624 * @gpa: the GPA to install the slot (unused when @size == 0). 12625 * @size: the size of the slot. Set to zero to uninstall a slot. 12626 * 12627 * This function helps to setup a KVM internal memory slot. Specify 12628 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12629 * slot. The return code can be one of the following: 12630 * 12631 * HVA: on success (uninstall will return a bogus HVA) 12632 * -errno: on error 12633 * 12634 * The caller should always use IS_ERR() to check the return value 12635 * before use. Note, the KVM internal memory slots are guaranteed to 12636 * remain valid and unchanged until the VM is destroyed, i.e., the 12637 * GPA->HVA translation will not change. However, the HVA is a user 12638 * address, i.e. its accessibility is not guaranteed, and must be 12639 * accessed via __copy_{to,from}_user(). 12640 */ 12641 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12642 u32 size) 12643 { 12644 int i, r; 12645 unsigned long hva, old_npages; 12646 struct kvm_memslots *slots = kvm_memslots(kvm); 12647 struct kvm_memory_slot *slot; 12648 12649 /* Called with kvm->slots_lock held. */ 12650 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12651 return ERR_PTR_USR(-EINVAL); 12652 12653 slot = id_to_memslot(slots, id); 12654 if (size) { 12655 if (slot && slot->npages) 12656 return ERR_PTR_USR(-EEXIST); 12657 12658 /* 12659 * MAP_SHARED to prevent internal slot pages from being moved 12660 * by fork()/COW. 12661 */ 12662 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12663 MAP_SHARED | MAP_ANONYMOUS, 0); 12664 if (IS_ERR_VALUE(hva)) 12665 return (void __user *)hva; 12666 } else { 12667 if (!slot || !slot->npages) 12668 return NULL; 12669 12670 old_npages = slot->npages; 12671 hva = slot->userspace_addr; 12672 } 12673 12674 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12675 struct kvm_userspace_memory_region2 m; 12676 12677 m.slot = id | (i << 16); 12678 m.flags = 0; 12679 m.guest_phys_addr = gpa; 12680 m.userspace_addr = hva; 12681 m.memory_size = size; 12682 r = __kvm_set_memory_region(kvm, &m); 12683 if (r < 0) 12684 return ERR_PTR_USR(r); 12685 } 12686 12687 if (!size) 12688 vm_munmap(hva, old_npages * PAGE_SIZE); 12689 12690 return (void __user *)hva; 12691 } 12692 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12693 12694 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12695 { 12696 kvm_mmu_pre_destroy_vm(kvm); 12697 } 12698 12699 void kvm_arch_destroy_vm(struct kvm *kvm) 12700 { 12701 if (current->mm == kvm->mm) { 12702 /* 12703 * Free memory regions allocated on behalf of userspace, 12704 * unless the memory map has changed due to process exit 12705 * or fd copying. 12706 */ 12707 mutex_lock(&kvm->slots_lock); 12708 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12709 0, 0); 12710 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12711 0, 0); 12712 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12713 mutex_unlock(&kvm->slots_lock); 12714 } 12715 kvm_unload_vcpu_mmus(kvm); 12716 static_call_cond(kvm_x86_vm_destroy)(kvm); 12717 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12718 kvm_pic_destroy(kvm); 12719 kvm_ioapic_destroy(kvm); 12720 kvm_destroy_vcpus(kvm); 12721 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12722 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12723 kvm_mmu_uninit_vm(kvm); 12724 kvm_page_track_cleanup(kvm); 12725 kvm_xen_destroy_vm(kvm); 12726 kvm_hv_destroy_vm(kvm); 12727 } 12728 12729 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12730 { 12731 int i; 12732 12733 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12734 kvfree(slot->arch.rmap[i]); 12735 slot->arch.rmap[i] = NULL; 12736 } 12737 } 12738 12739 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12740 { 12741 int i; 12742 12743 memslot_rmap_free(slot); 12744 12745 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12746 kvfree(slot->arch.lpage_info[i - 1]); 12747 slot->arch.lpage_info[i - 1] = NULL; 12748 } 12749 12750 kvm_page_track_free_memslot(slot); 12751 } 12752 12753 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12754 { 12755 const int sz = sizeof(*slot->arch.rmap[0]); 12756 int i; 12757 12758 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12759 int level = i + 1; 12760 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12761 12762 if (slot->arch.rmap[i]) 12763 continue; 12764 12765 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12766 if (!slot->arch.rmap[i]) { 12767 memslot_rmap_free(slot); 12768 return -ENOMEM; 12769 } 12770 } 12771 12772 return 0; 12773 } 12774 12775 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12776 struct kvm_memory_slot *slot) 12777 { 12778 unsigned long npages = slot->npages; 12779 int i, r; 12780 12781 /* 12782 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12783 * old arrays will be freed by __kvm_set_memory_region() if installing 12784 * the new memslot is successful. 12785 */ 12786 memset(&slot->arch, 0, sizeof(slot->arch)); 12787 12788 if (kvm_memslots_have_rmaps(kvm)) { 12789 r = memslot_rmap_alloc(slot, npages); 12790 if (r) 12791 return r; 12792 } 12793 12794 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12795 struct kvm_lpage_info *linfo; 12796 unsigned long ugfn; 12797 int lpages; 12798 int level = i + 1; 12799 12800 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12801 12802 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12803 if (!linfo) 12804 goto out_free; 12805 12806 slot->arch.lpage_info[i - 1] = linfo; 12807 12808 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12809 linfo[0].disallow_lpage = 1; 12810 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12811 linfo[lpages - 1].disallow_lpage = 1; 12812 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12813 /* 12814 * If the gfn and userspace address are not aligned wrt each 12815 * other, disable large page support for this slot. 12816 */ 12817 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12818 unsigned long j; 12819 12820 for (j = 0; j < lpages; ++j) 12821 linfo[j].disallow_lpage = 1; 12822 } 12823 } 12824 12825 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12826 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12827 #endif 12828 12829 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12830 goto out_free; 12831 12832 return 0; 12833 12834 out_free: 12835 memslot_rmap_free(slot); 12836 12837 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12838 kvfree(slot->arch.lpage_info[i - 1]); 12839 slot->arch.lpage_info[i - 1] = NULL; 12840 } 12841 return -ENOMEM; 12842 } 12843 12844 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12845 { 12846 struct kvm_vcpu *vcpu; 12847 unsigned long i; 12848 12849 /* 12850 * memslots->generation has been incremented. 12851 * mmio generation may have reached its maximum value. 12852 */ 12853 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12854 12855 /* Force re-initialization of steal_time cache */ 12856 kvm_for_each_vcpu(i, vcpu, kvm) 12857 kvm_vcpu_kick(vcpu); 12858 } 12859 12860 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12861 const struct kvm_memory_slot *old, 12862 struct kvm_memory_slot *new, 12863 enum kvm_mr_change change) 12864 { 12865 /* 12866 * KVM doesn't support moving memslots when there are external page 12867 * trackers attached to the VM, i.e. if KVMGT is in use. 12868 */ 12869 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12870 return -EINVAL; 12871 12872 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12873 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12874 return -EINVAL; 12875 12876 return kvm_alloc_memslot_metadata(kvm, new); 12877 } 12878 12879 if (change == KVM_MR_FLAGS_ONLY) 12880 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12881 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12882 return -EIO; 12883 12884 return 0; 12885 } 12886 12887 12888 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12889 { 12890 int nr_slots; 12891 12892 if (!kvm_x86_ops.cpu_dirty_log_size) 12893 return; 12894 12895 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12896 if ((enable && nr_slots == 1) || !nr_slots) 12897 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12898 } 12899 12900 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12901 struct kvm_memory_slot *old, 12902 const struct kvm_memory_slot *new, 12903 enum kvm_mr_change change) 12904 { 12905 u32 old_flags = old ? old->flags : 0; 12906 u32 new_flags = new ? new->flags : 0; 12907 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12908 12909 /* 12910 * Update CPU dirty logging if dirty logging is being toggled. This 12911 * applies to all operations. 12912 */ 12913 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12914 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12915 12916 /* 12917 * Nothing more to do for RO slots (which can't be dirtied and can't be 12918 * made writable) or CREATE/MOVE/DELETE of a slot. 12919 * 12920 * For a memslot with dirty logging disabled: 12921 * CREATE: No dirty mappings will already exist. 12922 * MOVE/DELETE: The old mappings will already have been cleaned up by 12923 * kvm_arch_flush_shadow_memslot() 12924 * 12925 * For a memslot with dirty logging enabled: 12926 * CREATE: No shadow pages exist, thus nothing to write-protect 12927 * and no dirty bits to clear. 12928 * MOVE/DELETE: The old mappings will already have been cleaned up by 12929 * kvm_arch_flush_shadow_memslot(). 12930 */ 12931 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12932 return; 12933 12934 /* 12935 * READONLY and non-flags changes were filtered out above, and the only 12936 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12937 * logging isn't being toggled on or off. 12938 */ 12939 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12940 return; 12941 12942 if (!log_dirty_pages) { 12943 /* 12944 * Dirty logging tracks sptes in 4k granularity, meaning that 12945 * large sptes have to be split. If live migration succeeds, 12946 * the guest in the source machine will be destroyed and large 12947 * sptes will be created in the destination. However, if the 12948 * guest continues to run in the source machine (for example if 12949 * live migration fails), small sptes will remain around and 12950 * cause bad performance. 12951 * 12952 * Scan sptes if dirty logging has been stopped, dropping those 12953 * which can be collapsed into a single large-page spte. Later 12954 * page faults will create the large-page sptes. 12955 */ 12956 kvm_mmu_zap_collapsible_sptes(kvm, new); 12957 } else { 12958 /* 12959 * Initially-all-set does not require write protecting any page, 12960 * because they're all assumed to be dirty. 12961 */ 12962 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12963 return; 12964 12965 if (READ_ONCE(eager_page_split)) 12966 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12967 12968 if (kvm_x86_ops.cpu_dirty_log_size) { 12969 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12970 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12971 } else { 12972 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12973 } 12974 12975 /* 12976 * Unconditionally flush the TLBs after enabling dirty logging. 12977 * A flush is almost always going to be necessary (see below), 12978 * and unconditionally flushing allows the helpers to omit 12979 * the subtly complex checks when removing write access. 12980 * 12981 * Do the flush outside of mmu_lock to reduce the amount of 12982 * time mmu_lock is held. Flushing after dropping mmu_lock is 12983 * safe as KVM only needs to guarantee the slot is fully 12984 * write-protected before returning to userspace, i.e. before 12985 * userspace can consume the dirty status. 12986 * 12987 * Flushing outside of mmu_lock requires KVM to be careful when 12988 * making decisions based on writable status of an SPTE, e.g. a 12989 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12990 * 12991 * Specifically, KVM also write-protects guest page tables to 12992 * monitor changes when using shadow paging, and must guarantee 12993 * no CPUs can write to those page before mmu_lock is dropped. 12994 * Because CPUs may have stale TLB entries at this point, a 12995 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12996 * 12997 * KVM also allows making SPTES writable outside of mmu_lock, 12998 * e.g. to allow dirty logging without taking mmu_lock. 12999 * 13000 * To handle these scenarios, KVM uses a separate software-only 13001 * bit (MMU-writable) to track if a SPTE is !writable due to 13002 * a guest page table being write-protected (KVM clears the 13003 * MMU-writable flag when write-protecting for shadow paging). 13004 * 13005 * The use of MMU-writable is also the primary motivation for 13006 * the unconditional flush. Because KVM must guarantee that a 13007 * CPU doesn't contain stale, writable TLB entries for a 13008 * !MMU-writable SPTE, KVM must flush if it encounters any 13009 * MMU-writable SPTE regardless of whether the actual hardware 13010 * writable bit was set. I.e. KVM is almost guaranteed to need 13011 * to flush, while unconditionally flushing allows the "remove 13012 * write access" helpers to ignore MMU-writable entirely. 13013 * 13014 * See is_writable_pte() for more details (the case involving 13015 * access-tracked SPTEs is particularly relevant). 13016 */ 13017 kvm_flush_remote_tlbs_memslot(kvm, new); 13018 } 13019 } 13020 13021 void kvm_arch_commit_memory_region(struct kvm *kvm, 13022 struct kvm_memory_slot *old, 13023 const struct kvm_memory_slot *new, 13024 enum kvm_mr_change change) 13025 { 13026 if (change == KVM_MR_DELETE) 13027 kvm_page_track_delete_slot(kvm, old); 13028 13029 if (!kvm->arch.n_requested_mmu_pages && 13030 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13031 unsigned long nr_mmu_pages; 13032 13033 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13034 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13035 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13036 } 13037 13038 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13039 13040 /* Free the arrays associated with the old memslot. */ 13041 if (change == KVM_MR_MOVE) 13042 kvm_arch_free_memslot(kvm, old); 13043 } 13044 13045 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 13046 { 13047 return (is_guest_mode(vcpu) && 13048 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 13049 } 13050 13051 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 13052 { 13053 if (!list_empty_careful(&vcpu->async_pf.done)) 13054 return true; 13055 13056 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 13057 kvm_apic_init_sipi_allowed(vcpu)) 13058 return true; 13059 13060 if (vcpu->arch.pv.pv_unhalted) 13061 return true; 13062 13063 if (kvm_is_exception_pending(vcpu)) 13064 return true; 13065 13066 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13067 (vcpu->arch.nmi_pending && 13068 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 13069 return true; 13070 13071 #ifdef CONFIG_KVM_SMM 13072 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 13073 (vcpu->arch.smi_pending && 13074 static_call(kvm_x86_smi_allowed)(vcpu, false))) 13075 return true; 13076 #endif 13077 13078 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 13079 return true; 13080 13081 if (kvm_arch_interrupt_allowed(vcpu) && 13082 (kvm_cpu_has_interrupt(vcpu) || 13083 kvm_guest_apic_has_interrupt(vcpu))) 13084 return true; 13085 13086 if (kvm_hv_has_stimer_pending(vcpu)) 13087 return true; 13088 13089 if (is_guest_mode(vcpu) && 13090 kvm_x86_ops.nested_ops->has_events && 13091 kvm_x86_ops.nested_ops->has_events(vcpu)) 13092 return true; 13093 13094 if (kvm_xen_has_pending_events(vcpu)) 13095 return true; 13096 13097 return false; 13098 } 13099 13100 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 13101 { 13102 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 13103 } 13104 13105 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 13106 { 13107 return kvm_vcpu_apicv_active(vcpu) && 13108 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu); 13109 } 13110 13111 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 13112 { 13113 return vcpu->arch.preempted_in_kernel; 13114 } 13115 13116 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 13117 { 13118 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 13119 return true; 13120 13121 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13122 #ifdef CONFIG_KVM_SMM 13123 kvm_test_request(KVM_REQ_SMI, vcpu) || 13124 #endif 13125 kvm_test_request(KVM_REQ_EVENT, vcpu)) 13126 return true; 13127 13128 return kvm_arch_dy_has_pending_interrupt(vcpu); 13129 } 13130 13131 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13132 { 13133 if (vcpu->arch.guest_state_protected) 13134 return true; 13135 13136 return static_call(kvm_x86_get_cpl)(vcpu) == 0; 13137 } 13138 13139 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13140 { 13141 return kvm_rip_read(vcpu); 13142 } 13143 13144 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13145 { 13146 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13147 } 13148 13149 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13150 { 13151 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 13152 } 13153 13154 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13155 { 13156 /* Can't read the RIP when guest state is protected, just return 0 */ 13157 if (vcpu->arch.guest_state_protected) 13158 return 0; 13159 13160 if (is_64_bit_mode(vcpu)) 13161 return kvm_rip_read(vcpu); 13162 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13163 kvm_rip_read(vcpu)); 13164 } 13165 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13166 13167 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13168 { 13169 return kvm_get_linear_rip(vcpu) == linear_rip; 13170 } 13171 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13172 13173 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13174 { 13175 unsigned long rflags; 13176 13177 rflags = static_call(kvm_x86_get_rflags)(vcpu); 13178 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13179 rflags &= ~X86_EFLAGS_TF; 13180 return rflags; 13181 } 13182 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13183 13184 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13185 { 13186 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13187 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13188 rflags |= X86_EFLAGS_TF; 13189 static_call(kvm_x86_set_rflags)(vcpu, rflags); 13190 } 13191 13192 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13193 { 13194 __kvm_set_rflags(vcpu, rflags); 13195 kvm_make_request(KVM_REQ_EVENT, vcpu); 13196 } 13197 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13198 13199 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13200 { 13201 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13202 13203 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13204 } 13205 13206 static inline u32 kvm_async_pf_next_probe(u32 key) 13207 { 13208 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13209 } 13210 13211 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13212 { 13213 u32 key = kvm_async_pf_hash_fn(gfn); 13214 13215 while (vcpu->arch.apf.gfns[key] != ~0) 13216 key = kvm_async_pf_next_probe(key); 13217 13218 vcpu->arch.apf.gfns[key] = gfn; 13219 } 13220 13221 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13222 { 13223 int i; 13224 u32 key = kvm_async_pf_hash_fn(gfn); 13225 13226 for (i = 0; i < ASYNC_PF_PER_VCPU && 13227 (vcpu->arch.apf.gfns[key] != gfn && 13228 vcpu->arch.apf.gfns[key] != ~0); i++) 13229 key = kvm_async_pf_next_probe(key); 13230 13231 return key; 13232 } 13233 13234 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13235 { 13236 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13237 } 13238 13239 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13240 { 13241 u32 i, j, k; 13242 13243 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13244 13245 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13246 return; 13247 13248 while (true) { 13249 vcpu->arch.apf.gfns[i] = ~0; 13250 do { 13251 j = kvm_async_pf_next_probe(j); 13252 if (vcpu->arch.apf.gfns[j] == ~0) 13253 return; 13254 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13255 /* 13256 * k lies cyclically in ]i,j] 13257 * | i.k.j | 13258 * |....j i.k.| or |.k..j i...| 13259 */ 13260 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13261 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13262 i = j; 13263 } 13264 } 13265 13266 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13267 { 13268 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13269 13270 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13271 sizeof(reason)); 13272 } 13273 13274 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13275 { 13276 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13277 13278 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13279 &token, offset, sizeof(token)); 13280 } 13281 13282 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13283 { 13284 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13285 u32 val; 13286 13287 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13288 &val, offset, sizeof(val))) 13289 return false; 13290 13291 return !val; 13292 } 13293 13294 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13295 { 13296 13297 if (!kvm_pv_async_pf_enabled(vcpu)) 13298 return false; 13299 13300 if (vcpu->arch.apf.send_user_only && 13301 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13302 return false; 13303 13304 if (is_guest_mode(vcpu)) { 13305 /* 13306 * L1 needs to opt into the special #PF vmexits that are 13307 * used to deliver async page faults. 13308 */ 13309 return vcpu->arch.apf.delivery_as_pf_vmexit; 13310 } else { 13311 /* 13312 * Play it safe in case the guest temporarily disables paging. 13313 * The real mode IDT in particular is unlikely to have a #PF 13314 * exception setup. 13315 */ 13316 return is_paging(vcpu); 13317 } 13318 } 13319 13320 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13321 { 13322 if (unlikely(!lapic_in_kernel(vcpu) || 13323 kvm_event_needs_reinjection(vcpu) || 13324 kvm_is_exception_pending(vcpu))) 13325 return false; 13326 13327 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13328 return false; 13329 13330 /* 13331 * If interrupts are off we cannot even use an artificial 13332 * halt state. 13333 */ 13334 return kvm_arch_interrupt_allowed(vcpu); 13335 } 13336 13337 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13338 struct kvm_async_pf *work) 13339 { 13340 struct x86_exception fault; 13341 13342 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13343 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13344 13345 if (kvm_can_deliver_async_pf(vcpu) && 13346 !apf_put_user_notpresent(vcpu)) { 13347 fault.vector = PF_VECTOR; 13348 fault.error_code_valid = true; 13349 fault.error_code = 0; 13350 fault.nested_page_fault = false; 13351 fault.address = work->arch.token; 13352 fault.async_page_fault = true; 13353 kvm_inject_page_fault(vcpu, &fault); 13354 return true; 13355 } else { 13356 /* 13357 * It is not possible to deliver a paravirtualized asynchronous 13358 * page fault, but putting the guest in an artificial halt state 13359 * can be beneficial nevertheless: if an interrupt arrives, we 13360 * can deliver it timely and perhaps the guest will schedule 13361 * another process. When the instruction that triggered a page 13362 * fault is retried, hopefully the page will be ready in the host. 13363 */ 13364 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13365 return false; 13366 } 13367 } 13368 13369 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13370 struct kvm_async_pf *work) 13371 { 13372 struct kvm_lapic_irq irq = { 13373 .delivery_mode = APIC_DM_FIXED, 13374 .vector = vcpu->arch.apf.vec 13375 }; 13376 13377 if (work->wakeup_all) 13378 work->arch.token = ~0; /* broadcast wakeup */ 13379 else 13380 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13381 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13382 13383 if ((work->wakeup_all || work->notpresent_injected) && 13384 kvm_pv_async_pf_enabled(vcpu) && 13385 !apf_put_user_ready(vcpu, work->arch.token)) { 13386 vcpu->arch.apf.pageready_pending = true; 13387 kvm_apic_set_irq(vcpu, &irq, NULL); 13388 } 13389 13390 vcpu->arch.apf.halted = false; 13391 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13392 } 13393 13394 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13395 { 13396 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13397 if (!vcpu->arch.apf.pageready_pending) 13398 kvm_vcpu_kick(vcpu); 13399 } 13400 13401 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13402 { 13403 if (!kvm_pv_async_pf_enabled(vcpu)) 13404 return true; 13405 else 13406 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13407 } 13408 13409 void kvm_arch_start_assignment(struct kvm *kvm) 13410 { 13411 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13412 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13413 } 13414 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13415 13416 void kvm_arch_end_assignment(struct kvm *kvm) 13417 { 13418 atomic_dec(&kvm->arch.assigned_device_count); 13419 } 13420 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13421 13422 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13423 { 13424 return raw_atomic_read(&kvm->arch.assigned_device_count); 13425 } 13426 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13427 13428 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13429 { 13430 /* 13431 * Non-coherent DMA assignment and de-assignment will affect 13432 * whether KVM honors guest MTRRs and cause changes in memtypes 13433 * in TDP. 13434 * So, pass %true unconditionally to indicate non-coherent DMA was, 13435 * or will be involved, and that zapping SPTEs might be necessary. 13436 */ 13437 if (__kvm_mmu_honors_guest_mtrrs(true)) 13438 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13439 } 13440 13441 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13442 { 13443 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13444 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13445 } 13446 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13447 13448 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13449 { 13450 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13451 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13452 } 13453 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13454 13455 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13456 { 13457 return atomic_read(&kvm->arch.noncoherent_dma_count); 13458 } 13459 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13460 13461 bool kvm_arch_has_irq_bypass(void) 13462 { 13463 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13464 } 13465 13466 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13467 struct irq_bypass_producer *prod) 13468 { 13469 struct kvm_kernel_irqfd *irqfd = 13470 container_of(cons, struct kvm_kernel_irqfd, consumer); 13471 int ret; 13472 13473 irqfd->producer = prod; 13474 kvm_arch_start_assignment(irqfd->kvm); 13475 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13476 prod->irq, irqfd->gsi, 1); 13477 13478 if (ret) 13479 kvm_arch_end_assignment(irqfd->kvm); 13480 13481 return ret; 13482 } 13483 13484 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13485 struct irq_bypass_producer *prod) 13486 { 13487 int ret; 13488 struct kvm_kernel_irqfd *irqfd = 13489 container_of(cons, struct kvm_kernel_irqfd, consumer); 13490 13491 WARN_ON(irqfd->producer != prod); 13492 irqfd->producer = NULL; 13493 13494 /* 13495 * When producer of consumer is unregistered, we change back to 13496 * remapped mode, so we can re-use the current implementation 13497 * when the irq is masked/disabled or the consumer side (KVM 13498 * int this case doesn't want to receive the interrupts. 13499 */ 13500 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13501 if (ret) 13502 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13503 " fails: %d\n", irqfd->consumer.token, ret); 13504 13505 kvm_arch_end_assignment(irqfd->kvm); 13506 } 13507 13508 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13509 uint32_t guest_irq, bool set) 13510 { 13511 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13512 } 13513 13514 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13515 struct kvm_kernel_irq_routing_entry *new) 13516 { 13517 if (new->type != KVM_IRQ_ROUTING_MSI) 13518 return true; 13519 13520 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13521 } 13522 13523 bool kvm_vector_hashing_enabled(void) 13524 { 13525 return vector_hashing; 13526 } 13527 13528 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13529 { 13530 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13531 } 13532 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13533 13534 13535 int kvm_spec_ctrl_test_value(u64 value) 13536 { 13537 /* 13538 * test that setting IA32_SPEC_CTRL to given value 13539 * is allowed by the host processor 13540 */ 13541 13542 u64 saved_value; 13543 unsigned long flags; 13544 int ret = 0; 13545 13546 local_irq_save(flags); 13547 13548 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13549 ret = 1; 13550 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13551 ret = 1; 13552 else 13553 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13554 13555 local_irq_restore(flags); 13556 13557 return ret; 13558 } 13559 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13560 13561 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13562 { 13563 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13564 struct x86_exception fault; 13565 u64 access = error_code & 13566 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13567 13568 if (!(error_code & PFERR_PRESENT_MASK) || 13569 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13570 /* 13571 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13572 * tables probably do not match the TLB. Just proceed 13573 * with the error code that the processor gave. 13574 */ 13575 fault.vector = PF_VECTOR; 13576 fault.error_code_valid = true; 13577 fault.error_code = error_code; 13578 fault.nested_page_fault = false; 13579 fault.address = gva; 13580 fault.async_page_fault = false; 13581 } 13582 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13583 } 13584 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13585 13586 /* 13587 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13588 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13589 * indicates whether exit to userspace is needed. 13590 */ 13591 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13592 struct x86_exception *e) 13593 { 13594 if (r == X86EMUL_PROPAGATE_FAULT) { 13595 if (KVM_BUG_ON(!e, vcpu->kvm)) 13596 return -EIO; 13597 13598 kvm_inject_emulated_page_fault(vcpu, e); 13599 return 1; 13600 } 13601 13602 /* 13603 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13604 * while handling a VMX instruction KVM could've handled the request 13605 * correctly by exiting to userspace and performing I/O but there 13606 * doesn't seem to be a real use-case behind such requests, just return 13607 * KVM_EXIT_INTERNAL_ERROR for now. 13608 */ 13609 kvm_prepare_emulation_failure_exit(vcpu); 13610 13611 return 0; 13612 } 13613 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13614 13615 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13616 { 13617 bool pcid_enabled; 13618 struct x86_exception e; 13619 struct { 13620 u64 pcid; 13621 u64 gla; 13622 } operand; 13623 int r; 13624 13625 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13626 if (r != X86EMUL_CONTINUE) 13627 return kvm_handle_memory_failure(vcpu, r, &e); 13628 13629 if (operand.pcid >> 12 != 0) { 13630 kvm_inject_gp(vcpu, 0); 13631 return 1; 13632 } 13633 13634 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13635 13636 switch (type) { 13637 case INVPCID_TYPE_INDIV_ADDR: 13638 /* 13639 * LAM doesn't apply to addresses that are inputs to TLB 13640 * invalidation. 13641 */ 13642 if ((!pcid_enabled && (operand.pcid != 0)) || 13643 is_noncanonical_address(operand.gla, vcpu)) { 13644 kvm_inject_gp(vcpu, 0); 13645 return 1; 13646 } 13647 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13648 return kvm_skip_emulated_instruction(vcpu); 13649 13650 case INVPCID_TYPE_SINGLE_CTXT: 13651 if (!pcid_enabled && (operand.pcid != 0)) { 13652 kvm_inject_gp(vcpu, 0); 13653 return 1; 13654 } 13655 13656 kvm_invalidate_pcid(vcpu, operand.pcid); 13657 return kvm_skip_emulated_instruction(vcpu); 13658 13659 case INVPCID_TYPE_ALL_NON_GLOBAL: 13660 /* 13661 * Currently, KVM doesn't mark global entries in the shadow 13662 * page tables, so a non-global flush just degenerates to a 13663 * global flush. If needed, we could optimize this later by 13664 * keeping track of global entries in shadow page tables. 13665 */ 13666 13667 fallthrough; 13668 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13669 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13670 return kvm_skip_emulated_instruction(vcpu); 13671 13672 default: 13673 kvm_inject_gp(vcpu, 0); 13674 return 1; 13675 } 13676 } 13677 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13678 13679 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13680 { 13681 struct kvm_run *run = vcpu->run; 13682 struct kvm_mmio_fragment *frag; 13683 unsigned int len; 13684 13685 BUG_ON(!vcpu->mmio_needed); 13686 13687 /* Complete previous fragment */ 13688 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13689 len = min(8u, frag->len); 13690 if (!vcpu->mmio_is_write) 13691 memcpy(frag->data, run->mmio.data, len); 13692 13693 if (frag->len <= 8) { 13694 /* Switch to the next fragment. */ 13695 frag++; 13696 vcpu->mmio_cur_fragment++; 13697 } else { 13698 /* Go forward to the next mmio piece. */ 13699 frag->data += len; 13700 frag->gpa += len; 13701 frag->len -= len; 13702 } 13703 13704 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13705 vcpu->mmio_needed = 0; 13706 13707 // VMG change, at this point, we're always done 13708 // RIP has already been advanced 13709 return 1; 13710 } 13711 13712 // More MMIO is needed 13713 run->mmio.phys_addr = frag->gpa; 13714 run->mmio.len = min(8u, frag->len); 13715 run->mmio.is_write = vcpu->mmio_is_write; 13716 if (run->mmio.is_write) 13717 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13718 run->exit_reason = KVM_EXIT_MMIO; 13719 13720 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13721 13722 return 0; 13723 } 13724 13725 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13726 void *data) 13727 { 13728 int handled; 13729 struct kvm_mmio_fragment *frag; 13730 13731 if (!data) 13732 return -EINVAL; 13733 13734 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13735 if (handled == bytes) 13736 return 1; 13737 13738 bytes -= handled; 13739 gpa += handled; 13740 data += handled; 13741 13742 /*TODO: Check if need to increment number of frags */ 13743 frag = vcpu->mmio_fragments; 13744 vcpu->mmio_nr_fragments = 1; 13745 frag->len = bytes; 13746 frag->gpa = gpa; 13747 frag->data = data; 13748 13749 vcpu->mmio_needed = 1; 13750 vcpu->mmio_cur_fragment = 0; 13751 13752 vcpu->run->mmio.phys_addr = gpa; 13753 vcpu->run->mmio.len = min(8u, frag->len); 13754 vcpu->run->mmio.is_write = 1; 13755 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13756 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13757 13758 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13759 13760 return 0; 13761 } 13762 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13763 13764 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13765 void *data) 13766 { 13767 int handled; 13768 struct kvm_mmio_fragment *frag; 13769 13770 if (!data) 13771 return -EINVAL; 13772 13773 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13774 if (handled == bytes) 13775 return 1; 13776 13777 bytes -= handled; 13778 gpa += handled; 13779 data += handled; 13780 13781 /*TODO: Check if need to increment number of frags */ 13782 frag = vcpu->mmio_fragments; 13783 vcpu->mmio_nr_fragments = 1; 13784 frag->len = bytes; 13785 frag->gpa = gpa; 13786 frag->data = data; 13787 13788 vcpu->mmio_needed = 1; 13789 vcpu->mmio_cur_fragment = 0; 13790 13791 vcpu->run->mmio.phys_addr = gpa; 13792 vcpu->run->mmio.len = min(8u, frag->len); 13793 vcpu->run->mmio.is_write = 0; 13794 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13795 13796 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13797 13798 return 0; 13799 } 13800 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13801 13802 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13803 { 13804 vcpu->arch.sev_pio_count -= count; 13805 vcpu->arch.sev_pio_data += count * size; 13806 } 13807 13808 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13809 unsigned int port); 13810 13811 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13812 { 13813 int size = vcpu->arch.pio.size; 13814 int port = vcpu->arch.pio.port; 13815 13816 vcpu->arch.pio.count = 0; 13817 if (vcpu->arch.sev_pio_count) 13818 return kvm_sev_es_outs(vcpu, size, port); 13819 return 1; 13820 } 13821 13822 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13823 unsigned int port) 13824 { 13825 for (;;) { 13826 unsigned int count = 13827 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13828 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13829 13830 /* memcpy done already by emulator_pio_out. */ 13831 advance_sev_es_emulated_pio(vcpu, count, size); 13832 if (!ret) 13833 break; 13834 13835 /* Emulation done by the kernel. */ 13836 if (!vcpu->arch.sev_pio_count) 13837 return 1; 13838 } 13839 13840 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13841 return 0; 13842 } 13843 13844 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13845 unsigned int port); 13846 13847 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13848 { 13849 unsigned count = vcpu->arch.pio.count; 13850 int size = vcpu->arch.pio.size; 13851 int port = vcpu->arch.pio.port; 13852 13853 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13854 advance_sev_es_emulated_pio(vcpu, count, size); 13855 if (vcpu->arch.sev_pio_count) 13856 return kvm_sev_es_ins(vcpu, size, port); 13857 return 1; 13858 } 13859 13860 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13861 unsigned int port) 13862 { 13863 for (;;) { 13864 unsigned int count = 13865 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13866 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13867 break; 13868 13869 /* Emulation done by the kernel. */ 13870 advance_sev_es_emulated_pio(vcpu, count, size); 13871 if (!vcpu->arch.sev_pio_count) 13872 return 1; 13873 } 13874 13875 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13876 return 0; 13877 } 13878 13879 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13880 unsigned int port, void *data, unsigned int count, 13881 int in) 13882 { 13883 vcpu->arch.sev_pio_data = data; 13884 vcpu->arch.sev_pio_count = count; 13885 return in ? kvm_sev_es_ins(vcpu, size, port) 13886 : kvm_sev_es_outs(vcpu, size, port); 13887 } 13888 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13889 13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13906 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13907 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13908 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13909 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13910 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13911 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13913 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13914 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13915 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13916 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13917 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13918 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13919 13920 static int __init kvm_x86_init(void) 13921 { 13922 kvm_mmu_x86_module_init(); 13923 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13924 return 0; 13925 } 13926 module_init(kvm_x86_init); 13927 13928 static void __exit kvm_x86_exit(void) 13929 { 13930 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); 13931 } 13932 module_exit(kvm_x86_exit); 13933