xref: /linux/arch/x86/kvm/x86.c (revision 9a4e47ef98a3041f6d2869ba2cd3401701776275)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94 
95 struct kvm_caps kvm_caps __read_mostly = {
96 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99 
100 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101 
102 #define emul_to_vcpu(ctxt) \
103 	((struct kvm_vcpu *)(ctxt)->vcpu)
104 
105 /* EFER defaults:
106  * - enable syscall per default because its emulated by KVM
107  * - enable LME and LMA per default on 64 bit KVM
108  */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115 
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117 
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119 
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121 
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124 
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131 
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134 
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137 
138 #define KVM_X86_OP(func)					     \
139 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
140 				*(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146 
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, 0644);
149 
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, 0644);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153 
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, 0644);
156 
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, 0444);
159 
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, 0644);
163 
164 /*
165  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167  * advancement entirely.  Any other value is used as-is and disables adaptive
168  * tuning, i.e. allows privileged userspace to set an exact advancement time.
169  */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, 0644);
172 
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, 0444);
175 
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, 0444);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179 
180 /*
181  * Flags to manipulate forced emulation behavior (any non-zero value will
182  * enable forced emulation).
183  */
184 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187 
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, 0644);
190 
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195 
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198 
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202 
203 /*
204  * Restoring the host value for MSRs that are only consumed when running in
205  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206  * returns to userspace, i.e. the kernel can run with the guest's value.
207  */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209 
210 struct kvm_user_return_msrs {
211 	struct user_return_notifier urn;
212 	bool registered;
213 	struct kvm_user_return_msr_values {
214 		u64 host;
215 		u64 curr;
216 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218 
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223 
224 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228 
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231 
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234 
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237 
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240 
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243 
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 	KVM_GENERIC_VM_STATS(),
246 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 	STATS_DESC_COUNTER(VM, mmu_pte_write),
248 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 	STATS_DESC_COUNTER(VM, mmu_flooded),
250 	STATS_DESC_COUNTER(VM, mmu_recycled),
251 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 	STATS_DESC_ICOUNTER(VM, pages_4k),
254 	STATS_DESC_ICOUNTER(VM, pages_2m),
255 	STATS_DESC_ICOUNTER(VM, pages_1g),
256 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260 
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 	.name_size = KVM_STATS_NAME_SIZE,
263 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 	.id_offset = sizeof(struct kvm_stats_header),
265 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 		       sizeof(kvm_vm_stats_desc),
268 };
269 
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 	KVM_GENERIC_VCPU_STATS(),
272 	STATS_DESC_COUNTER(VCPU, pf_taken),
273 	STATS_DESC_COUNTER(VCPU, pf_fixed),
274 	STATS_DESC_COUNTER(VCPU, pf_emulate),
275 	STATS_DESC_COUNTER(VCPU, pf_spurious),
276 	STATS_DESC_COUNTER(VCPU, pf_fast),
277 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 	STATS_DESC_COUNTER(VCPU, pf_guest),
279 	STATS_DESC_COUNTER(VCPU, tlb_flush),
280 	STATS_DESC_COUNTER(VCPU, invlpg),
281 	STATS_DESC_COUNTER(VCPU, exits),
282 	STATS_DESC_COUNTER(VCPU, io_exits),
283 	STATS_DESC_COUNTER(VCPU, mmio_exits),
284 	STATS_DESC_COUNTER(VCPU, signal_exits),
285 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 	STATS_DESC_COUNTER(VCPU, l1d_flush),
288 	STATS_DESC_COUNTER(VCPU, halt_exits),
289 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 	STATS_DESC_COUNTER(VCPU, irq_exits),
291 	STATS_DESC_COUNTER(VCPU, host_state_reload),
292 	STATS_DESC_COUNTER(VCPU, fpu_reload),
293 	STATS_DESC_COUNTER(VCPU, insn_emulation),
294 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 	STATS_DESC_COUNTER(VCPU, hypercalls),
296 	STATS_DESC_COUNTER(VCPU, irq_injections),
297 	STATS_DESC_COUNTER(VCPU, nmi_injections),
298 	STATS_DESC_COUNTER(VCPU, req_event),
299 	STATS_DESC_COUNTER(VCPU, nested_run),
300 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 	STATS_DESC_COUNTER(VCPU, preemption_reported),
303 	STATS_DESC_COUNTER(VCPU, preemption_other),
304 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307 
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 	.name_size = KVM_STATS_NAME_SIZE,
310 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 	.id_offset = sizeof(struct kvm_stats_header),
312 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 		       sizeof(kvm_vcpu_stats_desc),
315 };
316 
317 u64 __read_mostly host_xcr0;
318 
319 static struct kmem_cache *x86_emulator_cache;
320 
321 /*
322  * When called, it means the previous get/set msr reached an invalid msr.
323  * Return true if we want to ignore/silent this failed msr access.
324  */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 	const char *op = write ? "wrmsr" : "rdmsr";
328 
329 	if (ignore_msrs) {
330 		if (report_ignored_msrs)
331 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 				      op, msr, data);
333 		/* Mask the error */
334 		return true;
335 	} else {
336 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 				      op, msr, data);
338 		return false;
339 	}
340 }
341 
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 	unsigned int size = sizeof(struct x86_emulate_ctxt);
346 
347 	return kmem_cache_create_usercopy("x86_emulator", size,
348 					  __alignof__(struct x86_emulate_ctxt),
349 					  SLAB_ACCOUNT, useroffset,
350 					  size - useroffset, NULL);
351 }
352 
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354 
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 	int i;
358 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 		vcpu->arch.apf.gfns[i] = ~0;
360 }
361 
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 	unsigned slot;
365 	struct kvm_user_return_msrs *msrs
366 		= container_of(urn, struct kvm_user_return_msrs, urn);
367 	struct kvm_user_return_msr_values *values;
368 	unsigned long flags;
369 
370 	/*
371 	 * Disabling irqs at this point since the following code could be
372 	 * interrupted and executed through kvm_arch_hardware_disable()
373 	 */
374 	local_irq_save(flags);
375 	if (msrs->registered) {
376 		msrs->registered = false;
377 		user_return_notifier_unregister(urn);
378 	}
379 	local_irq_restore(flags);
380 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 		values = &msrs->values[slot];
382 		if (values->host != values->curr) {
383 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 			values->curr = values->host;
385 		}
386 	}
387 }
388 
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 	u64 val;
392 	int ret;
393 
394 	preempt_disable();
395 	ret = rdmsrl_safe(msr, &val);
396 	if (ret)
397 		goto out;
398 	ret = wrmsrl_safe(msr, val);
399 out:
400 	preempt_enable();
401 	return ret;
402 }
403 
404 int kvm_add_user_return_msr(u32 msr)
405 {
406 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407 
408 	if (kvm_probe_user_return_msr(msr))
409 		return -1;
410 
411 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 	return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415 
416 int kvm_find_user_return_msr(u32 msr)
417 {
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		if (kvm_uret_msrs_list[i] == msr)
422 			return i;
423 	}
424 	return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427 
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 	unsigned int cpu = smp_processor_id();
431 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 	u64 value;
433 	int i;
434 
435 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 		msrs->values[i].host = value;
438 		msrs->values[i].curr = value;
439 	}
440 }
441 
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 	unsigned int cpu = smp_processor_id();
445 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 	int err;
447 
448 	value = (value & mask) | (msrs->values[slot].host & ~mask);
449 	if (value == msrs->values[slot].curr)
450 		return 0;
451 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 	if (err)
453 		return 1;
454 
455 	msrs->values[slot].curr = value;
456 	if (!msrs->registered) {
457 		msrs->urn.on_user_return = kvm_on_user_return;
458 		user_return_notifier_register(&msrs->urn);
459 		msrs->registered = true;
460 	}
461 	return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464 
465 static void drop_user_return_notifiers(void)
466 {
467 	unsigned int cpu = smp_processor_id();
468 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469 
470 	if (msrs->registered)
471 		kvm_on_user_return(&msrs->urn);
472 }
473 
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 	return vcpu->arch.apic_base;
477 }
478 
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484 
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491 
492 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 		return 1;
494 	if (!msr_info->host_initiated) {
495 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 			return 1;
497 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 			return 1;
499 	}
500 
501 	kvm_lapic_set_base(vcpu, msr_info->data);
502 	kvm_recalculate_apic_map(vcpu->kvm);
503 	return 0;
504 }
505 
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515 	/* Fault while not rebooting.  We want the trace. */
516 	BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519 
520 #define EXCPT_BENIGN		0
521 #define EXCPT_CONTRIBUTORY	1
522 #define EXCPT_PF		2
523 
524 static int exception_class(int vector)
525 {
526 	switch (vector) {
527 	case PF_VECTOR:
528 		return EXCPT_PF;
529 	case DE_VECTOR:
530 	case TS_VECTOR:
531 	case NP_VECTOR:
532 	case SS_VECTOR:
533 	case GP_VECTOR:
534 		return EXCPT_CONTRIBUTORY;
535 	default:
536 		break;
537 	}
538 	return EXCPT_BENIGN;
539 }
540 
541 #define EXCPT_FAULT		0
542 #define EXCPT_TRAP		1
543 #define EXCPT_ABORT		2
544 #define EXCPT_INTERRUPT		3
545 #define EXCPT_DB		4
546 
547 static int exception_type(int vector)
548 {
549 	unsigned int mask;
550 
551 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 		return EXCPT_INTERRUPT;
553 
554 	mask = 1 << vector;
555 
556 	/*
557 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 	 */
560 	if (mask & (1 << DB_VECTOR))
561 		return EXCPT_DB;
562 
563 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 		return EXCPT_TRAP;
565 
566 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 		return EXCPT_ABORT;
568 
569 	/* Reserved exceptions will result in fault */
570 	return EXCPT_FAULT;
571 }
572 
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 				   struct kvm_queued_exception *ex)
575 {
576 	if (!ex->has_payload)
577 		return;
578 
579 	switch (ex->vector) {
580 	case DB_VECTOR:
581 		/*
582 		 * "Certain debug exceptions may clear bit 0-3.  The
583 		 * remaining contents of the DR6 register are never
584 		 * cleared by the processor".
585 		 */
586 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 		/*
588 		 * In order to reflect the #DB exception payload in guest
589 		 * dr6, three components need to be considered: active low
590 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 		 * DR6_BS and DR6_BT)
592 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 		 * In the target guest dr6:
594 		 * FIXED_1 bits should always be set.
595 		 * Active low bits should be cleared if 1-setting in payload.
596 		 * Active high bits should be set if 1-setting in payload.
597 		 *
598 		 * Note, the payload is compatible with the pending debug
599 		 * exceptions/exit qualification under VMX, that active_low bits
600 		 * are active high in payload.
601 		 * So they need to be flipped for DR6.
602 		 */
603 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 		vcpu->arch.dr6 |= ex->payload;
605 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606 
607 		/*
608 		 * The #DB payload is defined as compatible with the 'pending
609 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 		 * defined in the 'pending debug exceptions' field (enabled
611 		 * breakpoint), it is reserved and must be zero in DR6.
612 		 */
613 		vcpu->arch.dr6 &= ~BIT(12);
614 		break;
615 	case PF_VECTOR:
616 		vcpu->arch.cr2 = ex->payload;
617 		break;
618 	}
619 
620 	ex->has_payload = false;
621 	ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624 
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 				       bool has_error_code, u32 error_code,
627 				       bool has_payload, unsigned long payload)
628 {
629 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630 
631 	ex->vector = vector;
632 	ex->injected = false;
633 	ex->pending = true;
634 	ex->has_error_code = has_error_code;
635 	ex->error_code = error_code;
636 	ex->has_payload = has_payload;
637 	ex->payload = payload;
638 }
639 
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645 
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 		unsigned nr, bool has_error, u32 error_code,
648 	        bool has_payload, unsigned long payload, bool reinject)
649 {
650 	u32 prev_nr;
651 	int class1, class2;
652 
653 	kvm_make_request(KVM_REQ_EVENT, vcpu);
654 
655 	/*
656 	 * If the exception is destined for L2 and isn't being reinjected,
657 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658 	 * previously injected exception is not checked because it was checked
659 	 * when it was original queued, and re-checking is incorrect if _L1_
660 	 * injected the exception, in which case it's exempt from interception.
661 	 */
662 	if (!reinject && is_guest_mode(vcpu) &&
663 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 					   has_payload, payload);
666 		return;
667 	}
668 
669 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 	queue:
671 		if (reinject) {
672 			/*
673 			 * On VM-Entry, an exception can be pending if and only
674 			 * if event injection was blocked by nested_run_pending.
675 			 * In that case, however, vcpu_enter_guest() requests an
676 			 * immediate exit, and the guest shouldn't proceed far
677 			 * enough to need reinjection.
678 			 */
679 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 			vcpu->arch.exception.injected = true;
681 			if (WARN_ON_ONCE(has_payload)) {
682 				/*
683 				 * A reinjected event has already
684 				 * delivered its payload.
685 				 */
686 				has_payload = false;
687 				payload = 0;
688 			}
689 		} else {
690 			vcpu->arch.exception.pending = true;
691 			vcpu->arch.exception.injected = false;
692 		}
693 		vcpu->arch.exception.has_error_code = has_error;
694 		vcpu->arch.exception.vector = nr;
695 		vcpu->arch.exception.error_code = error_code;
696 		vcpu->arch.exception.has_payload = has_payload;
697 		vcpu->arch.exception.payload = payload;
698 		if (!is_guest_mode(vcpu))
699 			kvm_deliver_exception_payload(vcpu,
700 						      &vcpu->arch.exception);
701 		return;
702 	}
703 
704 	/* to check exception */
705 	prev_nr = vcpu->arch.exception.vector;
706 	if (prev_nr == DF_VECTOR) {
707 		/* triple fault -> shutdown */
708 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 		return;
710 	}
711 	class1 = exception_class(prev_nr);
712 	class2 = exception_class(nr);
713 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 		/*
716 		 * Synthesize #DF.  Clear the previously injected or pending
717 		 * exception so as not to incorrectly trigger shutdown.
718 		 */
719 		vcpu->arch.exception.injected = false;
720 		vcpu->arch.exception.pending = false;
721 
722 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 	} else {
724 		/* replace previous exception with a new one in a hope
725 		   that instruction re-execution will regenerate lost
726 		   exception */
727 		goto queue;
728 	}
729 }
730 
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736 
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742 
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 			   unsigned long payload)
745 {
746 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749 
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 				    u32 error_code, unsigned long payload)
752 {
753 	kvm_multiple_exception(vcpu, nr, true, error_code,
754 			       true, payload, false);
755 }
756 
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 	if (err)
760 		kvm_inject_gp(vcpu, 0);
761 	else
762 		return kvm_skip_emulated_instruction(vcpu);
763 
764 	return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767 
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 	if (err) {
771 		kvm_inject_gp(vcpu, 0);
772 		return 1;
773 	}
774 
775 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 				       EMULTYPE_COMPLETE_USER_EXIT);
777 }
778 
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 	++vcpu->stat.pf_guest;
782 
783 	/*
784 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 	 * whether or not L1 wants to intercept "regular" #PF.
786 	 */
787 	if (is_guest_mode(vcpu) && fault->async_page_fault)
788 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 					   true, fault->error_code,
790 					   true, fault->address);
791 	else
792 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 					fault->address);
794 }
795 
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 				    struct x86_exception *fault)
798 {
799 	struct kvm_mmu *fault_mmu;
800 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
801 
802 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 					       vcpu->arch.walk_mmu;
804 
805 	/*
806 	 * Invalidate the TLB entry for the faulting address, if it exists,
807 	 * else the access will fault indefinitely (and to emulate hardware).
808 	 */
809 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 	    !(fault->error_code & PFERR_RSVD_MASK))
811 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 					KVM_MMU_ROOT_CURRENT);
813 
814 	fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817 
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 	atomic_inc(&vcpu->arch.nmi_queued);
821 	kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823 
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829 
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835 
836 /*
837  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838  * a #GP and return false.
839  */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 		return true;
844 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 	return false;
846 }
847 
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 		return true;
852 
853 	kvm_queue_exception(vcpu, UD_VECTOR);
854 	return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857 
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862 
863 /*
864  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865  */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 	gpa_t real_gpa;
871 	int i;
872 	int ret;
873 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874 
875 	/*
876 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 	 * to an L1 GPA.
878 	 */
879 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 	if (real_gpa == INVALID_GPA)
882 		return 0;
883 
884 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
887 	if (ret < 0)
888 		return 0;
889 
890 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 		if ((pdpte[i] & PT_PRESENT_MASK) &&
892 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 			return 0;
894 		}
895 	}
896 
897 	/*
898 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 	 * Shadow page roots need to be reconstructed instead.
900 	 */
901 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903 
904 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 	vcpu->arch.pdptrs_from_userspace = false;
908 
909 	return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912 
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 	if (cr0 & 0xffffffff00000000UL)
917 		return false;
918 #endif
919 
920 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 		return false;
922 
923 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 		return false;
925 
926 	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928 
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 	/*
932 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
934 	 * as there are no permission bits to emulate.  If TDP is enabled, the
935 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 	 * translations does the right thing, but there's no need to unload the
937 	 * root as CR0.WP doesn't affect SPTEs.
938 	 */
939 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 		if (!(cr0 & X86_CR0_PG))
941 			return;
942 
943 		if (tdp_enabled) {
944 			kvm_init_mmu(vcpu);
945 			return;
946 		}
947 	}
948 
949 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 		kvm_clear_async_pf_completion_queue(vcpu);
951 		kvm_async_pf_hash_reset(vcpu);
952 
953 		/*
954 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 		 * perspective.
956 		 */
957 		if (!(cr0 & X86_CR0_PG))
958 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 	}
960 
961 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 		kvm_mmu_reset_context(vcpu);
963 
964 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 	    kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970 
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
974 
975 	if (!kvm_is_valid_cr0(vcpu, cr0))
976 		return 1;
977 
978 	cr0 |= X86_CR0_ET;
979 
980 	/* Write to CR0 reserved bits are ignored, even on Intel. */
981 	cr0 &= ~CR0_RESERVED_BITS;
982 
983 #ifdef CONFIG_X86_64
984 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 	    (cr0 & X86_CR0_PG)) {
986 		int cs_db, cs_l;
987 
988 		if (!is_pae(vcpu))
989 			return 1;
990 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 		if (cs_l)
992 			return 1;
993 	}
994 #endif
995 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 		return 1;
999 
1000 	if (!(cr0 & X86_CR0_PG) &&
1001 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 		return 1;
1003 
1004 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005 
1006 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007 
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011 
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017 
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 	if (vcpu->arch.guest_state_protected)
1021 		return;
1022 
1023 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024 
1025 		if (vcpu->arch.xcr0 != host_xcr0)
1026 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027 
1028 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 		    vcpu->arch.ia32_xss != host_xss)
1030 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 	}
1032 
1033 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 		write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040 
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 	if (vcpu->arch.guest_state_protected)
1044 		return;
1045 
1046 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 		vcpu->arch.pkru = rdpkru();
1050 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 			write_pkru(vcpu->arch.host_pkru);
1052 	}
1053 
1054 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055 
1056 		if (vcpu->arch.xcr0 != host_xcr0)
1057 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058 
1059 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 		    vcpu->arch.ia32_xss != host_xss)
1061 			wrmsrl(MSR_IA32_XSS, host_xss);
1062 	}
1063 
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066 
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073 
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 	u64 xcr0 = xcr;
1077 	u64 old_xcr0 = vcpu->arch.xcr0;
1078 	u64 valid_bits;
1079 
1080 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081 	if (index != XCR_XFEATURE_ENABLED_MASK)
1082 		return 1;
1083 	if (!(xcr0 & XFEATURE_MASK_FP))
1084 		return 1;
1085 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 		return 1;
1087 
1088 	/*
1089 	 * Do not allow the guest to set bits that we do not support
1090 	 * saving.  However, xcr0 bit 0 is always set, even if the
1091 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 	 */
1093 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 	if (xcr0 & ~valid_bits)
1095 		return 1;
1096 
1097 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 		return 1;
1100 
1101 	if (xcr0 & XFEATURE_MASK_AVX512) {
1102 		if (!(xcr0 & XFEATURE_MASK_YMM))
1103 			return 1;
1104 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 			return 1;
1106 	}
1107 
1108 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 		return 1;
1111 
1112 	vcpu->arch.xcr0 = xcr0;
1113 
1114 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 		kvm_update_cpuid_runtime(vcpu);
1116 	return 0;
1117 }
1118 
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 		kvm_inject_gp(vcpu, 0);
1125 		return 1;
1126 	}
1127 
1128 	return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131 
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 	if (cr4 & cr4_reserved_bits)
1135 		return false;
1136 
1137 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 		return false;
1139 
1140 	return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143 
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149 
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 		kvm_mmu_reset_context(vcpu);
1154 
1155 	/*
1156 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 	 * according to the SDM; however, stale prev_roots could be reused
1158 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 	 * so fall through.
1162 	 */
1163 	if (!tdp_enabled &&
1164 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 		kvm_mmu_unload(vcpu);
1166 
1167 	/*
1168 	 * The TLB has to be flushed for all PCIDs if any of the following
1169 	 * (architecturally required) changes happen:
1170 	 * - CR4.PCIDE is changed from 1 to 0
1171 	 * - CR4.PGE is toggled
1172 	 *
1173 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 	 */
1175 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178 
1179 	/*
1180 	 * The TLB has to be flushed for the current PCID if any of the
1181 	 * following (architecturally required) changes happen:
1182 	 * - CR4.SMEP is changed from 0 to 1
1183 	 * - CR4.PAE is toggled
1184 	 */
1185 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188 
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191 
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195 
1196 	if (!kvm_is_valid_cr4(vcpu, cr4))
1197 		return 1;
1198 
1199 	if (is_long_mode(vcpu)) {
1200 		if (!(cr4 & X86_CR4_PAE))
1201 			return 1;
1202 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 			return 1;
1204 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 		return 1;
1208 
1209 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 			return 1;
1213 	}
1214 
1215 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216 
1217 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222 
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 	unsigned long roots_to_free = 0;
1227 	int i;
1228 
1229 	/*
1230 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1233 	 * the invalidation, but the guest's TLB entries need to be flushed as
1234 	 * the CPU may have cached entries in its TLB for the target PCID.
1235 	 */
1236 	if (unlikely(tdp_enabled)) {
1237 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * If neither the current CR3 nor any of the prev_roots use the given
1243 	 * PCID, then nothing needs to be done here because a resync will
1244 	 * happen anyway before switching to any other CR3.
1245 	 */
1246 	if (kvm_get_active_pcid(vcpu) == pcid) {
1247 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 	}
1250 
1251 	/*
1252 	 * If PCID is disabled, there is no need to free prev_roots even if the
1253 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 	 * with PCIDE=0.
1255 	 */
1256 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 		return;
1258 
1259 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262 
1263 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265 
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 	bool skip_tlb_flush = false;
1269 	unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 		pcid = cr3 & X86_CR3_PCID_MASK;
1275 	}
1276 #endif
1277 
1278 	/* PDPTRs are always reloaded for PAE paging. */
1279 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 		goto handle_tlb_flush;
1281 
1282 	/*
1283 	 * Do not condition the GPA check on long mode, this helper is used to
1284 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 	 * the current vCPU mode is accurate.
1286 	 */
1287 	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1288 		return 1;
1289 
1290 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 		return 1;
1292 
1293 	if (cr3 != kvm_read_cr3(vcpu))
1294 		kvm_mmu_new_pgd(vcpu, cr3);
1295 
1296 	vcpu->arch.cr3 = cr3;
1297 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299 
1300 handle_tlb_flush:
1301 	/*
1302 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 	 * i.e. only PCID=0 can be relevant.
1307 	 */
1308 	if (!skip_tlb_flush)
1309 		kvm_invalidate_pcid(vcpu, pcid);
1310 
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314 
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 	if (cr8 & CR8_RESERVED_BITS)
1318 		return 1;
1319 	if (lapic_in_kernel(vcpu))
1320 		kvm_lapic_set_tpr(vcpu, cr8);
1321 	else
1322 		vcpu->arch.cr8 = cr8;
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326 
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 	if (lapic_in_kernel(vcpu))
1330 		return kvm_lapic_get_cr8(vcpu);
1331 	else
1332 		return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335 
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 	int i;
1339 
1340 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 	}
1344 }
1345 
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 	unsigned long dr7;
1349 
1350 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 		dr7 = vcpu->arch.guest_debug_dr7;
1352 	else
1353 		dr7 = vcpu->arch.dr7;
1354 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 	if (dr7 & DR7_BP_EN_MASK)
1357 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360 
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 	u64 fixed = DR6_FIXED_1;
1364 
1365 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 		fixed |= DR6_RTM;
1367 
1368 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 		fixed |= DR6_BUS_LOCK;
1370 	return fixed;
1371 }
1372 
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1376 
1377 	switch (dr) {
1378 	case 0 ... 3:
1379 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 			vcpu->arch.eff_db[dr] = val;
1382 		break;
1383 	case 4:
1384 	case 6:
1385 		if (!kvm_dr6_valid(val))
1386 			return 1; /* #GP */
1387 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 		break;
1389 	case 5:
1390 	default: /* 7 */
1391 		if (!kvm_dr7_valid(val))
1392 			return 1; /* #GP */
1393 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 		kvm_update_dr7(vcpu);
1395 		break;
1396 	}
1397 
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401 
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1405 
1406 	switch (dr) {
1407 	case 0 ... 3:
1408 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 		break;
1410 	case 4:
1411 	case 6:
1412 		*val = vcpu->arch.dr6;
1413 		break;
1414 	case 5:
1415 	default: /* 7 */
1416 		*val = vcpu->arch.dr7;
1417 		break;
1418 	}
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421 
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 	u32 ecx = kvm_rcx_read(vcpu);
1425 	u64 data;
1426 
1427 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 		kvm_inject_gp(vcpu, 0);
1429 		return 1;
1430 	}
1431 
1432 	kvm_rax_write(vcpu, (u32)data);
1433 	kvm_rdx_write(vcpu, data >> 32);
1434 	return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437 
1438 /*
1439  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443  * MSRs that KVM emulates without strictly requiring host support.
1444  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446  * msrs_to_save and emulated_msrs.
1447  */
1448 
1449 static const u32 msrs_to_save_base[] = {
1450 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 	MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 	MSR_IA32_UMWAIT_CONTROL,
1465 
1466 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468 
1469 static const u32 msrs_to_save_pmu[] = {
1470 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475 
1476 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485 
1486 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488 
1489 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494 
1495 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499 
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 			ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503 
1504 static const u32 emulated_msrs_all[] = {
1505 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 
1508 #ifdef CONFIG_KVM_HYPERV
1509 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1510 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1511 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1512 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1513 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1514 	HV_X64_MSR_RESET,
1515 	HV_X64_MSR_VP_INDEX,
1516 	HV_X64_MSR_VP_RUNTIME,
1517 	HV_X64_MSR_SCONTROL,
1518 	HV_X64_MSR_STIMER0_CONFIG,
1519 	HV_X64_MSR_VP_ASSIST_PAGE,
1520 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1521 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1522 	HV_X64_MSR_SYNDBG_OPTIONS,
1523 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1524 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1525 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1526 #endif
1527 
1528 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1529 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1530 
1531 	MSR_IA32_TSC_ADJUST,
1532 	MSR_IA32_TSC_DEADLINE,
1533 	MSR_IA32_ARCH_CAPABILITIES,
1534 	MSR_IA32_PERF_CAPABILITIES,
1535 	MSR_IA32_MISC_ENABLE,
1536 	MSR_IA32_MCG_STATUS,
1537 	MSR_IA32_MCG_CTL,
1538 	MSR_IA32_MCG_EXT_CTL,
1539 	MSR_IA32_SMBASE,
1540 	MSR_SMI_COUNT,
1541 	MSR_PLATFORM_INFO,
1542 	MSR_MISC_FEATURES_ENABLES,
1543 	MSR_AMD64_VIRT_SPEC_CTRL,
1544 	MSR_AMD64_TSC_RATIO,
1545 	MSR_IA32_POWER_CTL,
1546 	MSR_IA32_UCODE_REV,
1547 
1548 	/*
1549 	 * KVM always supports the "true" VMX control MSRs, even if the host
1550 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1551 	 * doesn't strictly require them to exist in the host (ignoring that
1552 	 * KVM would refuse to load in the first place if the core set of MSRs
1553 	 * aren't supported).
1554 	 */
1555 	MSR_IA32_VMX_BASIC,
1556 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1557 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1558 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1559 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1560 	MSR_IA32_VMX_MISC,
1561 	MSR_IA32_VMX_CR0_FIXED0,
1562 	MSR_IA32_VMX_CR4_FIXED0,
1563 	MSR_IA32_VMX_VMCS_ENUM,
1564 	MSR_IA32_VMX_PROCBASED_CTLS2,
1565 	MSR_IA32_VMX_EPT_VPID_CAP,
1566 	MSR_IA32_VMX_VMFUNC,
1567 
1568 	MSR_K7_HWCR,
1569 	MSR_KVM_POLL_CONTROL,
1570 };
1571 
1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1573 static unsigned num_emulated_msrs;
1574 
1575 /*
1576  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1577  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1578  * feature MSRs, but are handled separately to allow expedited lookups.
1579  */
1580 static const u32 msr_based_features_all_except_vmx[] = {
1581 	MSR_AMD64_DE_CFG,
1582 	MSR_IA32_UCODE_REV,
1583 	MSR_IA32_ARCH_CAPABILITIES,
1584 	MSR_IA32_PERF_CAPABILITIES,
1585 };
1586 
1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1588 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1589 static unsigned int num_msr_based_features;
1590 
1591 /*
1592  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1593  * patch, are immutable once the vCPU model is defined.
1594  */
1595 static bool kvm_is_immutable_feature_msr(u32 msr)
1596 {
1597 	int i;
1598 
1599 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1600 		return true;
1601 
1602 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1603 		if (msr == msr_based_features_all_except_vmx[i])
1604 			return msr != MSR_IA32_UCODE_REV;
1605 	}
1606 
1607 	return false;
1608 }
1609 
1610 /*
1611  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1612  * does not yet virtualize. These include:
1613  *   10 - MISC_PACKAGE_CTRLS
1614  *   11 - ENERGY_FILTERING_CTL
1615  *   12 - DOITM
1616  *   18 - FB_CLEAR_CTRL
1617  *   21 - XAPIC_DISABLE_STATUS
1618  *   23 - OVERCLOCKING_STATUS
1619  */
1620 
1621 #define KVM_SUPPORTED_ARCH_CAP \
1622 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1623 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1624 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1625 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1626 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1627 
1628 static u64 kvm_get_arch_capabilities(void)
1629 {
1630 	u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1631 
1632 	/*
1633 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1634 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1635 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1636 	 * L1 guests, so it need not worry about its own (L2) guests.
1637 	 */
1638 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1639 
1640 	/*
1641 	 * If we're doing cache flushes (either "always" or "cond")
1642 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1643 	 * If an outer hypervisor is doing the cache flush for us
1644 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1645 	 * capability to the guest too, and if EPT is disabled we're not
1646 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1647 	 * require a nested hypervisor to do a flush of its own.
1648 	 */
1649 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1650 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1651 
1652 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1653 		data |= ARCH_CAP_RDCL_NO;
1654 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1655 		data |= ARCH_CAP_SSB_NO;
1656 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1657 		data |= ARCH_CAP_MDS_NO;
1658 
1659 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1660 		/*
1661 		 * If RTM=0 because the kernel has disabled TSX, the host might
1662 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1663 		 * and therefore knows that there cannot be TAA) but keep
1664 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665 		 * and we want to allow migrating those guests to tsx=off hosts.
1666 		 */
1667 		data &= ~ARCH_CAP_TAA_NO;
1668 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669 		data |= ARCH_CAP_TAA_NO;
1670 	} else {
1671 		/*
1672 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1673 		 * host so the guest can choose between disabling TSX or
1674 		 * using VERW to clear CPU buffers.
1675 		 */
1676 	}
1677 
1678 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679 		data |= ARCH_CAP_GDS_NO;
1680 
1681 	return data;
1682 }
1683 
1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1685 {
1686 	switch (msr->index) {
1687 	case MSR_IA32_ARCH_CAPABILITIES:
1688 		msr->data = kvm_get_arch_capabilities();
1689 		break;
1690 	case MSR_IA32_PERF_CAPABILITIES:
1691 		msr->data = kvm_caps.supported_perf_cap;
1692 		break;
1693 	case MSR_IA32_UCODE_REV:
1694 		rdmsrl_safe(msr->index, &msr->data);
1695 		break;
1696 	default:
1697 		return static_call(kvm_x86_get_msr_feature)(msr);
1698 	}
1699 	return 0;
1700 }
1701 
1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703 {
1704 	struct kvm_msr_entry msr;
1705 	int r;
1706 
1707 	msr.index = index;
1708 	r = kvm_get_msr_feature(&msr);
1709 
1710 	if (r == KVM_MSR_RET_INVALID) {
1711 		/* Unconditionally clear the output for simplicity */
1712 		*data = 0;
1713 		if (kvm_msr_ignored_check(index, 0, false))
1714 			r = 0;
1715 	}
1716 
1717 	if (r)
1718 		return r;
1719 
1720 	*data = msr.data;
1721 
1722 	return 0;
1723 }
1724 
1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1726 {
1727 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1728 		return false;
1729 
1730 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1731 		return false;
1732 
1733 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1734 		return false;
1735 
1736 	if (efer & (EFER_LME | EFER_LMA) &&
1737 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1738 		return false;
1739 
1740 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1741 		return false;
1742 
1743 	return true;
1744 
1745 }
1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1747 {
1748 	if (efer & efer_reserved_bits)
1749 		return false;
1750 
1751 	return __kvm_valid_efer(vcpu, efer);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1754 
1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756 {
1757 	u64 old_efer = vcpu->arch.efer;
1758 	u64 efer = msr_info->data;
1759 	int r;
1760 
1761 	if (efer & efer_reserved_bits)
1762 		return 1;
1763 
1764 	if (!msr_info->host_initiated) {
1765 		if (!__kvm_valid_efer(vcpu, efer))
1766 			return 1;
1767 
1768 		if (is_paging(vcpu) &&
1769 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1770 			return 1;
1771 	}
1772 
1773 	efer &= ~EFER_LMA;
1774 	efer |= vcpu->arch.efer & EFER_LMA;
1775 
1776 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1777 	if (r) {
1778 		WARN_ON(r > 0);
1779 		return r;
1780 	}
1781 
1782 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1783 		kvm_mmu_reset_context(vcpu);
1784 
1785 	return 0;
1786 }
1787 
1788 void kvm_enable_efer_bits(u64 mask)
1789 {
1790        efer_reserved_bits &= ~mask;
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1793 
1794 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1795 {
1796 	struct kvm_x86_msr_filter *msr_filter;
1797 	struct msr_bitmap_range *ranges;
1798 	struct kvm *kvm = vcpu->kvm;
1799 	bool allowed;
1800 	int idx;
1801 	u32 i;
1802 
1803 	/* x2APIC MSRs do not support filtering. */
1804 	if (index >= 0x800 && index <= 0x8ff)
1805 		return true;
1806 
1807 	idx = srcu_read_lock(&kvm->srcu);
1808 
1809 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1810 	if (!msr_filter) {
1811 		allowed = true;
1812 		goto out;
1813 	}
1814 
1815 	allowed = msr_filter->default_allow;
1816 	ranges = msr_filter->ranges;
1817 
1818 	for (i = 0; i < msr_filter->count; i++) {
1819 		u32 start = ranges[i].base;
1820 		u32 end = start + ranges[i].nmsrs;
1821 		u32 flags = ranges[i].flags;
1822 		unsigned long *bitmap = ranges[i].bitmap;
1823 
1824 		if ((index >= start) && (index < end) && (flags & type)) {
1825 			allowed = test_bit(index - start, bitmap);
1826 			break;
1827 		}
1828 	}
1829 
1830 out:
1831 	srcu_read_unlock(&kvm->srcu, idx);
1832 
1833 	return allowed;
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1836 
1837 /*
1838  * Write @data into the MSR specified by @index.  Select MSR specific fault
1839  * checks are bypassed if @host_initiated is %true.
1840  * Returns 0 on success, non-0 otherwise.
1841  * Assumes vcpu_load() was already called.
1842  */
1843 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1844 			 bool host_initiated)
1845 {
1846 	struct msr_data msr;
1847 
1848 	switch (index) {
1849 	case MSR_FS_BASE:
1850 	case MSR_GS_BASE:
1851 	case MSR_KERNEL_GS_BASE:
1852 	case MSR_CSTAR:
1853 	case MSR_LSTAR:
1854 		if (is_noncanonical_address(data, vcpu))
1855 			return 1;
1856 		break;
1857 	case MSR_IA32_SYSENTER_EIP:
1858 	case MSR_IA32_SYSENTER_ESP:
1859 		/*
1860 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1861 		 * non-canonical address is written on Intel but not on
1862 		 * AMD (which ignores the top 32-bits, because it does
1863 		 * not implement 64-bit SYSENTER).
1864 		 *
1865 		 * 64-bit code should hence be able to write a non-canonical
1866 		 * value on AMD.  Making the address canonical ensures that
1867 		 * vmentry does not fail on Intel after writing a non-canonical
1868 		 * value, and that something deterministic happens if the guest
1869 		 * invokes 64-bit SYSENTER.
1870 		 */
1871 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1872 		break;
1873 	case MSR_TSC_AUX:
1874 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1875 			return 1;
1876 
1877 		if (!host_initiated &&
1878 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1879 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1880 			return 1;
1881 
1882 		/*
1883 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1884 		 * incomplete and conflicting architectural behavior.  Current
1885 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1886 		 * reserved and always read as zeros.  Enforce Intel's reserved
1887 		 * bits check if and only if the guest CPU is Intel, and clear
1888 		 * the bits in all other cases.  This ensures cross-vendor
1889 		 * migration will provide consistent behavior for the guest.
1890 		 */
1891 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1892 			return 1;
1893 
1894 		data = (u32)data;
1895 		break;
1896 	}
1897 
1898 	msr.data = data;
1899 	msr.index = index;
1900 	msr.host_initiated = host_initiated;
1901 
1902 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1903 }
1904 
1905 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1906 				     u32 index, u64 data, bool host_initiated)
1907 {
1908 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1909 
1910 	if (ret == KVM_MSR_RET_INVALID)
1911 		if (kvm_msr_ignored_check(index, data, true))
1912 			ret = 0;
1913 
1914 	return ret;
1915 }
1916 
1917 /*
1918  * Read the MSR specified by @index into @data.  Select MSR specific fault
1919  * checks are bypassed if @host_initiated is %true.
1920  * Returns 0 on success, non-0 otherwise.
1921  * Assumes vcpu_load() was already called.
1922  */
1923 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1924 		  bool host_initiated)
1925 {
1926 	struct msr_data msr;
1927 	int ret;
1928 
1929 	switch (index) {
1930 	case MSR_TSC_AUX:
1931 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1932 			return 1;
1933 
1934 		if (!host_initiated &&
1935 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1936 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1937 			return 1;
1938 		break;
1939 	}
1940 
1941 	msr.index = index;
1942 	msr.host_initiated = host_initiated;
1943 
1944 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1945 	if (!ret)
1946 		*data = msr.data;
1947 	return ret;
1948 }
1949 
1950 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1951 				     u32 index, u64 *data, bool host_initiated)
1952 {
1953 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1954 
1955 	if (ret == KVM_MSR_RET_INVALID) {
1956 		/* Unconditionally clear *data for simplicity */
1957 		*data = 0;
1958 		if (kvm_msr_ignored_check(index, 0, false))
1959 			ret = 0;
1960 	}
1961 
1962 	return ret;
1963 }
1964 
1965 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1966 {
1967 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1968 		return KVM_MSR_RET_FILTERED;
1969 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1970 }
1971 
1972 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1973 {
1974 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1975 		return KVM_MSR_RET_FILTERED;
1976 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1977 }
1978 
1979 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1980 {
1981 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_get_msr);
1984 
1985 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1986 {
1987 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_set_msr);
1990 
1991 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1992 {
1993 	if (!vcpu->run->msr.error) {
1994 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1995 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1996 	}
1997 }
1998 
1999 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2000 {
2001 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2002 }
2003 
2004 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2005 {
2006 	complete_userspace_rdmsr(vcpu);
2007 	return complete_emulated_msr_access(vcpu);
2008 }
2009 
2010 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2011 {
2012 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2013 }
2014 
2015 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2016 {
2017 	complete_userspace_rdmsr(vcpu);
2018 	return complete_fast_msr_access(vcpu);
2019 }
2020 
2021 static u64 kvm_msr_reason(int r)
2022 {
2023 	switch (r) {
2024 	case KVM_MSR_RET_INVALID:
2025 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2026 	case KVM_MSR_RET_FILTERED:
2027 		return KVM_MSR_EXIT_REASON_FILTER;
2028 	default:
2029 		return KVM_MSR_EXIT_REASON_INVAL;
2030 	}
2031 }
2032 
2033 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2034 			      u32 exit_reason, u64 data,
2035 			      int (*completion)(struct kvm_vcpu *vcpu),
2036 			      int r)
2037 {
2038 	u64 msr_reason = kvm_msr_reason(r);
2039 
2040 	/* Check if the user wanted to know about this MSR fault */
2041 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2042 		return 0;
2043 
2044 	vcpu->run->exit_reason = exit_reason;
2045 	vcpu->run->msr.error = 0;
2046 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2047 	vcpu->run->msr.reason = msr_reason;
2048 	vcpu->run->msr.index = index;
2049 	vcpu->run->msr.data = data;
2050 	vcpu->arch.complete_userspace_io = completion;
2051 
2052 	return 1;
2053 }
2054 
2055 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2056 {
2057 	u32 ecx = kvm_rcx_read(vcpu);
2058 	u64 data;
2059 	int r;
2060 
2061 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2062 
2063 	if (!r) {
2064 		trace_kvm_msr_read(ecx, data);
2065 
2066 		kvm_rax_write(vcpu, data & -1u);
2067 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2068 	} else {
2069 		/* MSR read failed? See if we should ask user space */
2070 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2071 				       complete_fast_rdmsr, r))
2072 			return 0;
2073 		trace_kvm_msr_read_ex(ecx);
2074 	}
2075 
2076 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2079 
2080 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2081 {
2082 	u32 ecx = kvm_rcx_read(vcpu);
2083 	u64 data = kvm_read_edx_eax(vcpu);
2084 	int r;
2085 
2086 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2087 
2088 	if (!r) {
2089 		trace_kvm_msr_write(ecx, data);
2090 	} else {
2091 		/* MSR write failed? See if we should ask user space */
2092 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2093 				       complete_fast_msr_access, r))
2094 			return 0;
2095 		/* Signal all other negative errors to userspace */
2096 		if (r < 0)
2097 			return r;
2098 		trace_kvm_msr_write_ex(ecx, data);
2099 	}
2100 
2101 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2102 }
2103 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2104 
2105 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2106 {
2107 	return kvm_skip_emulated_instruction(vcpu);
2108 }
2109 
2110 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2111 {
2112 	/* Treat an INVD instruction as a NOP and just skip it. */
2113 	return kvm_emulate_as_nop(vcpu);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2116 
2117 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2118 {
2119 	kvm_queue_exception(vcpu, UD_VECTOR);
2120 	return 1;
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2123 
2124 
2125 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2126 {
2127 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2128 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2129 		return kvm_handle_invalid_op(vcpu);
2130 
2131 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2132 	return kvm_emulate_as_nop(vcpu);
2133 }
2134 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2135 {
2136 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2137 }
2138 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2139 
2140 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2141 {
2142 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2143 }
2144 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2145 
2146 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2147 {
2148 	xfer_to_guest_mode_prepare();
2149 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2150 		xfer_to_guest_mode_work_pending();
2151 }
2152 
2153 /*
2154  * The fast path for frequent and performance sensitive wrmsr emulation,
2155  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2156  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2157  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2158  * other cases which must be called after interrupts are enabled on the host.
2159  */
2160 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2161 {
2162 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2163 		return 1;
2164 
2165 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2166 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2167 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2168 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2169 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2170 
2171 	return 1;
2172 }
2173 
2174 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2175 {
2176 	if (!kvm_can_use_hv_timer(vcpu))
2177 		return 1;
2178 
2179 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2180 	return 0;
2181 }
2182 
2183 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2184 {
2185 	u32 msr = kvm_rcx_read(vcpu);
2186 	u64 data;
2187 	fastpath_t ret = EXIT_FASTPATH_NONE;
2188 
2189 	kvm_vcpu_srcu_read_lock(vcpu);
2190 
2191 	switch (msr) {
2192 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2193 		data = kvm_read_edx_eax(vcpu);
2194 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2195 			kvm_skip_emulated_instruction(vcpu);
2196 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2197 		}
2198 		break;
2199 	case MSR_IA32_TSC_DEADLINE:
2200 		data = kvm_read_edx_eax(vcpu);
2201 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2202 			kvm_skip_emulated_instruction(vcpu);
2203 			ret = EXIT_FASTPATH_REENTER_GUEST;
2204 		}
2205 		break;
2206 	default:
2207 		break;
2208 	}
2209 
2210 	if (ret != EXIT_FASTPATH_NONE)
2211 		trace_kvm_msr_write(msr, data);
2212 
2213 	kvm_vcpu_srcu_read_unlock(vcpu);
2214 
2215 	return ret;
2216 }
2217 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2218 
2219 /*
2220  * Adapt set_msr() to msr_io()'s calling convention
2221  */
2222 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2223 {
2224 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2225 }
2226 
2227 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2228 {
2229 	u64 val;
2230 
2231 	/*
2232 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2233 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2234 	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2235 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2236 	 * all MSRs when emulating RESET.
2237 	 */
2238 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2239 		if (do_get_msr(vcpu, index, &val) || *data != val)
2240 			return -EINVAL;
2241 
2242 		return 0;
2243 	}
2244 
2245 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2246 }
2247 
2248 #ifdef CONFIG_X86_64
2249 struct pvclock_clock {
2250 	int vclock_mode;
2251 	u64 cycle_last;
2252 	u64 mask;
2253 	u32 mult;
2254 	u32 shift;
2255 	u64 base_cycles;
2256 	u64 offset;
2257 };
2258 
2259 struct pvclock_gtod_data {
2260 	seqcount_t	seq;
2261 
2262 	struct pvclock_clock clock; /* extract of a clocksource struct */
2263 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2264 
2265 	ktime_t		offs_boot;
2266 	u64		wall_time_sec;
2267 };
2268 
2269 static struct pvclock_gtod_data pvclock_gtod_data;
2270 
2271 static void update_pvclock_gtod(struct timekeeper *tk)
2272 {
2273 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2274 
2275 	write_seqcount_begin(&vdata->seq);
2276 
2277 	/* copy pvclock gtod data */
2278 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2279 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2280 	vdata->clock.mask		= tk->tkr_mono.mask;
2281 	vdata->clock.mult		= tk->tkr_mono.mult;
2282 	vdata->clock.shift		= tk->tkr_mono.shift;
2283 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2284 	vdata->clock.offset		= tk->tkr_mono.base;
2285 
2286 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2287 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2288 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2289 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2290 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2291 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2292 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2293 
2294 	vdata->wall_time_sec            = tk->xtime_sec;
2295 
2296 	vdata->offs_boot		= tk->offs_boot;
2297 
2298 	write_seqcount_end(&vdata->seq);
2299 }
2300 
2301 static s64 get_kvmclock_base_ns(void)
2302 {
2303 	/* Count up from boot time, but with the frequency of the raw clock.  */
2304 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2305 }
2306 #else
2307 static s64 get_kvmclock_base_ns(void)
2308 {
2309 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2310 	return ktime_get_boottime_ns();
2311 }
2312 #endif
2313 
2314 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2315 {
2316 	int version;
2317 	int r;
2318 	struct pvclock_wall_clock wc;
2319 	u32 wc_sec_hi;
2320 	u64 wall_nsec;
2321 
2322 	if (!wall_clock)
2323 		return;
2324 
2325 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2326 	if (r)
2327 		return;
2328 
2329 	if (version & 1)
2330 		++version;  /* first time write, random junk */
2331 
2332 	++version;
2333 
2334 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2335 		return;
2336 
2337 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2338 
2339 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2340 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2341 	wc.version = version;
2342 
2343 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2344 
2345 	if (sec_hi_ofs) {
2346 		wc_sec_hi = wall_nsec >> 32;
2347 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2348 				&wc_sec_hi, sizeof(wc_sec_hi));
2349 	}
2350 
2351 	version++;
2352 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2353 }
2354 
2355 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2356 				  bool old_msr, bool host_initiated)
2357 {
2358 	struct kvm_arch *ka = &vcpu->kvm->arch;
2359 
2360 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2361 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2362 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2363 
2364 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2365 	}
2366 
2367 	vcpu->arch.time = system_time;
2368 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2369 
2370 	/* we verify if the enable bit is set... */
2371 	if (system_time & 1)
2372 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2373 				 sizeof(struct pvclock_vcpu_time_info));
2374 	else
2375 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2376 
2377 	return;
2378 }
2379 
2380 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2381 {
2382 	do_shl32_div32(dividend, divisor);
2383 	return dividend;
2384 }
2385 
2386 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2387 			       s8 *pshift, u32 *pmultiplier)
2388 {
2389 	uint64_t scaled64;
2390 	int32_t  shift = 0;
2391 	uint64_t tps64;
2392 	uint32_t tps32;
2393 
2394 	tps64 = base_hz;
2395 	scaled64 = scaled_hz;
2396 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2397 		tps64 >>= 1;
2398 		shift--;
2399 	}
2400 
2401 	tps32 = (uint32_t)tps64;
2402 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2403 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2404 			scaled64 >>= 1;
2405 		else
2406 			tps32 <<= 1;
2407 		shift++;
2408 	}
2409 
2410 	*pshift = shift;
2411 	*pmultiplier = div_frac(scaled64, tps32);
2412 }
2413 
2414 #ifdef CONFIG_X86_64
2415 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2416 #endif
2417 
2418 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2419 static unsigned long max_tsc_khz;
2420 
2421 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2422 {
2423 	u64 v = (u64)khz * (1000000 + ppm);
2424 	do_div(v, 1000000);
2425 	return v;
2426 }
2427 
2428 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2429 
2430 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2431 {
2432 	u64 ratio;
2433 
2434 	/* Guest TSC same frequency as host TSC? */
2435 	if (!scale) {
2436 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2437 		return 0;
2438 	}
2439 
2440 	/* TSC scaling supported? */
2441 	if (!kvm_caps.has_tsc_control) {
2442 		if (user_tsc_khz > tsc_khz) {
2443 			vcpu->arch.tsc_catchup = 1;
2444 			vcpu->arch.tsc_always_catchup = 1;
2445 			return 0;
2446 		} else {
2447 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2448 			return -1;
2449 		}
2450 	}
2451 
2452 	/* TSC scaling required  - calculate ratio */
2453 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2454 				user_tsc_khz, tsc_khz);
2455 
2456 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2457 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2458 			            user_tsc_khz);
2459 		return -1;
2460 	}
2461 
2462 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2463 	return 0;
2464 }
2465 
2466 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2467 {
2468 	u32 thresh_lo, thresh_hi;
2469 	int use_scaling = 0;
2470 
2471 	/* tsc_khz can be zero if TSC calibration fails */
2472 	if (user_tsc_khz == 0) {
2473 		/* set tsc_scaling_ratio to a safe value */
2474 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2475 		return -1;
2476 	}
2477 
2478 	/* Compute a scale to convert nanoseconds in TSC cycles */
2479 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2480 			   &vcpu->arch.virtual_tsc_shift,
2481 			   &vcpu->arch.virtual_tsc_mult);
2482 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2483 
2484 	/*
2485 	 * Compute the variation in TSC rate which is acceptable
2486 	 * within the range of tolerance and decide if the
2487 	 * rate being applied is within that bounds of the hardware
2488 	 * rate.  If so, no scaling or compensation need be done.
2489 	 */
2490 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2491 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2492 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2493 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2494 			 user_tsc_khz, thresh_lo, thresh_hi);
2495 		use_scaling = 1;
2496 	}
2497 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2498 }
2499 
2500 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2501 {
2502 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2503 				      vcpu->arch.virtual_tsc_mult,
2504 				      vcpu->arch.virtual_tsc_shift);
2505 	tsc += vcpu->arch.this_tsc_write;
2506 	return tsc;
2507 }
2508 
2509 #ifdef CONFIG_X86_64
2510 static inline int gtod_is_based_on_tsc(int mode)
2511 {
2512 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2513 }
2514 #endif
2515 
2516 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2517 {
2518 #ifdef CONFIG_X86_64
2519 	struct kvm_arch *ka = &vcpu->kvm->arch;
2520 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2521 
2522 	/*
2523 	 * To use the masterclock, the host clocksource must be based on TSC
2524 	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2525 	 * vCPUs doesn't include the reference vCPU, hence "+1".
2526 	 */
2527 	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2528 				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2529 				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2530 
2531 	/*
2532 	 * Request a masterclock update if the masterclock needs to be toggled
2533 	 * on/off, or when starting a new generation and the masterclock is
2534 	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2535 	 * taken _after_ the new generation is created).
2536 	 */
2537 	if ((ka->use_master_clock && new_generation) ||
2538 	    (ka->use_master_clock != use_master_clock))
2539 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2540 
2541 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2542 			    atomic_read(&vcpu->kvm->online_vcpus),
2543 		            ka->use_master_clock, gtod->clock.vclock_mode);
2544 #endif
2545 }
2546 
2547 /*
2548  * Multiply tsc by a fixed point number represented by ratio.
2549  *
2550  * The most significant 64-N bits (mult) of ratio represent the
2551  * integral part of the fixed point number; the remaining N bits
2552  * (frac) represent the fractional part, ie. ratio represents a fixed
2553  * point number (mult + frac * 2^(-N)).
2554  *
2555  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2556  */
2557 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2558 {
2559 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2560 }
2561 
2562 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2563 {
2564 	u64 _tsc = tsc;
2565 
2566 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2567 		_tsc = __scale_tsc(ratio, tsc);
2568 
2569 	return _tsc;
2570 }
2571 
2572 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2573 {
2574 	u64 tsc;
2575 
2576 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2577 
2578 	return target_tsc - tsc;
2579 }
2580 
2581 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2582 {
2583 	return vcpu->arch.l1_tsc_offset +
2584 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2585 }
2586 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2587 
2588 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2589 {
2590 	u64 nested_offset;
2591 
2592 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2593 		nested_offset = l1_offset;
2594 	else
2595 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2596 						kvm_caps.tsc_scaling_ratio_frac_bits);
2597 
2598 	nested_offset += l2_offset;
2599 	return nested_offset;
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2602 
2603 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2604 {
2605 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2606 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2607 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2608 
2609 	return l1_multiplier;
2610 }
2611 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2612 
2613 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2614 {
2615 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2616 				   vcpu->arch.l1_tsc_offset,
2617 				   l1_offset);
2618 
2619 	vcpu->arch.l1_tsc_offset = l1_offset;
2620 
2621 	/*
2622 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2623 	 * according to the spec this should set L1's TSC (as opposed to
2624 	 * setting L1's offset for L2).
2625 	 */
2626 	if (is_guest_mode(vcpu))
2627 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2628 			l1_offset,
2629 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2630 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2631 	else
2632 		vcpu->arch.tsc_offset = l1_offset;
2633 
2634 	static_call(kvm_x86_write_tsc_offset)(vcpu);
2635 }
2636 
2637 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2638 {
2639 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2640 
2641 	/* Userspace is changing the multiplier while L2 is active */
2642 	if (is_guest_mode(vcpu))
2643 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2644 			l1_multiplier,
2645 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2646 	else
2647 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2648 
2649 	if (kvm_caps.has_tsc_control)
2650 		static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2651 }
2652 
2653 static inline bool kvm_check_tsc_unstable(void)
2654 {
2655 #ifdef CONFIG_X86_64
2656 	/*
2657 	 * TSC is marked unstable when we're running on Hyper-V,
2658 	 * 'TSC page' clocksource is good.
2659 	 */
2660 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2661 		return false;
2662 #endif
2663 	return check_tsc_unstable();
2664 }
2665 
2666 /*
2667  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2668  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2669  * participates in.
2670  */
2671 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2672 				  u64 ns, bool matched)
2673 {
2674 	struct kvm *kvm = vcpu->kvm;
2675 
2676 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2677 
2678 	/*
2679 	 * We also track th most recent recorded KHZ, write and time to
2680 	 * allow the matching interval to be extended at each write.
2681 	 */
2682 	kvm->arch.last_tsc_nsec = ns;
2683 	kvm->arch.last_tsc_write = tsc;
2684 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2685 	kvm->arch.last_tsc_offset = offset;
2686 
2687 	vcpu->arch.last_guest_tsc = tsc;
2688 
2689 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2690 
2691 	if (!matched) {
2692 		/*
2693 		 * We split periods of matched TSC writes into generations.
2694 		 * For each generation, we track the original measured
2695 		 * nanosecond time, offset, and write, so if TSCs are in
2696 		 * sync, we can match exact offset, and if not, we can match
2697 		 * exact software computation in compute_guest_tsc()
2698 		 *
2699 		 * These values are tracked in kvm->arch.cur_xxx variables.
2700 		 */
2701 		kvm->arch.cur_tsc_generation++;
2702 		kvm->arch.cur_tsc_nsec = ns;
2703 		kvm->arch.cur_tsc_write = tsc;
2704 		kvm->arch.cur_tsc_offset = offset;
2705 		kvm->arch.nr_vcpus_matched_tsc = 0;
2706 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2707 		kvm->arch.nr_vcpus_matched_tsc++;
2708 	}
2709 
2710 	/* Keep track of which generation this VCPU has synchronized to */
2711 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2712 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2713 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2714 
2715 	kvm_track_tsc_matching(vcpu, !matched);
2716 }
2717 
2718 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2719 {
2720 	u64 data = user_value ? *user_value : 0;
2721 	struct kvm *kvm = vcpu->kvm;
2722 	u64 offset, ns, elapsed;
2723 	unsigned long flags;
2724 	bool matched = false;
2725 	bool synchronizing = false;
2726 
2727 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2728 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2729 	ns = get_kvmclock_base_ns();
2730 	elapsed = ns - kvm->arch.last_tsc_nsec;
2731 
2732 	if (vcpu->arch.virtual_tsc_khz) {
2733 		if (data == 0) {
2734 			/*
2735 			 * Force synchronization when creating a vCPU, or when
2736 			 * userspace explicitly writes a zero value.
2737 			 */
2738 			synchronizing = true;
2739 		} else if (kvm->arch.user_set_tsc) {
2740 			u64 tsc_exp = kvm->arch.last_tsc_write +
2741 						nsec_to_cycles(vcpu, elapsed);
2742 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2743 			/*
2744 			 * Here lies UAPI baggage: when a user-initiated TSC write has
2745 			 * a small delta (1 second) of virtual cycle time against the
2746 			 * previously set vCPU, we assume that they were intended to be
2747 			 * in sync and the delta was only due to the racy nature of the
2748 			 * legacy API.
2749 			 *
2750 			 * This trick falls down when restoring a guest which genuinely
2751 			 * has been running for less time than the 1 second of imprecision
2752 			 * which we allow for in the legacy API. In this case, the first
2753 			 * value written by userspace (on any vCPU) should not be subject
2754 			 * to this 'correction' to make it sync up with values that only
2755 			 * come from the kernel's default vCPU creation. Make the 1-second
2756 			 * slop hack only trigger if the user_set_tsc flag is already set.
2757 			 */
2758 			synchronizing = data < tsc_exp + tsc_hz &&
2759 					data + tsc_hz > tsc_exp;
2760 		}
2761 	}
2762 
2763 	if (user_value)
2764 		kvm->arch.user_set_tsc = true;
2765 
2766 	/*
2767 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2768 	 * TSC, we add elapsed time in this computation.  We could let the
2769 	 * compensation code attempt to catch up if we fall behind, but
2770 	 * it's better to try to match offsets from the beginning.
2771          */
2772 	if (synchronizing &&
2773 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2774 		if (!kvm_check_tsc_unstable()) {
2775 			offset = kvm->arch.cur_tsc_offset;
2776 		} else {
2777 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2778 			data += delta;
2779 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2780 		}
2781 		matched = true;
2782 	}
2783 
2784 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2785 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2786 }
2787 
2788 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2789 					   s64 adjustment)
2790 {
2791 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2792 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2793 }
2794 
2795 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2796 {
2797 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2798 		WARN_ON(adjustment < 0);
2799 	adjustment = kvm_scale_tsc((u64) adjustment,
2800 				   vcpu->arch.l1_tsc_scaling_ratio);
2801 	adjust_tsc_offset_guest(vcpu, adjustment);
2802 }
2803 
2804 #ifdef CONFIG_X86_64
2805 
2806 static u64 read_tsc(void)
2807 {
2808 	u64 ret = (u64)rdtsc_ordered();
2809 	u64 last = pvclock_gtod_data.clock.cycle_last;
2810 
2811 	if (likely(ret >= last))
2812 		return ret;
2813 
2814 	/*
2815 	 * GCC likes to generate cmov here, but this branch is extremely
2816 	 * predictable (it's just a function of time and the likely is
2817 	 * very likely) and there's a data dependence, so force GCC
2818 	 * to generate a branch instead.  I don't barrier() because
2819 	 * we don't actually need a barrier, and if this function
2820 	 * ever gets inlined it will generate worse code.
2821 	 */
2822 	asm volatile ("");
2823 	return last;
2824 }
2825 
2826 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2827 			  int *mode)
2828 {
2829 	u64 tsc_pg_val;
2830 	long v;
2831 
2832 	switch (clock->vclock_mode) {
2833 	case VDSO_CLOCKMODE_HVCLOCK:
2834 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2835 					 tsc_timestamp, &tsc_pg_val)) {
2836 			/* TSC page valid */
2837 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2838 			v = (tsc_pg_val - clock->cycle_last) &
2839 				clock->mask;
2840 		} else {
2841 			/* TSC page invalid */
2842 			*mode = VDSO_CLOCKMODE_NONE;
2843 		}
2844 		break;
2845 	case VDSO_CLOCKMODE_TSC:
2846 		*mode = VDSO_CLOCKMODE_TSC;
2847 		*tsc_timestamp = read_tsc();
2848 		v = (*tsc_timestamp - clock->cycle_last) &
2849 			clock->mask;
2850 		break;
2851 	default:
2852 		*mode = VDSO_CLOCKMODE_NONE;
2853 	}
2854 
2855 	if (*mode == VDSO_CLOCKMODE_NONE)
2856 		*tsc_timestamp = v = 0;
2857 
2858 	return v * clock->mult;
2859 }
2860 
2861 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2862 {
2863 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2864 	unsigned long seq;
2865 	int mode;
2866 	u64 ns;
2867 
2868 	do {
2869 		seq = read_seqcount_begin(&gtod->seq);
2870 		ns = gtod->raw_clock.base_cycles;
2871 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2872 		ns >>= gtod->raw_clock.shift;
2873 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2874 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2875 	*t = ns;
2876 
2877 	return mode;
2878 }
2879 
2880 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2881 {
2882 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2883 	unsigned long seq;
2884 	int mode;
2885 	u64 ns;
2886 
2887 	do {
2888 		seq = read_seqcount_begin(&gtod->seq);
2889 		ts->tv_sec = gtod->wall_time_sec;
2890 		ns = gtod->clock.base_cycles;
2891 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2892 		ns >>= gtod->clock.shift;
2893 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2894 
2895 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2896 	ts->tv_nsec = ns;
2897 
2898 	return mode;
2899 }
2900 
2901 /* returns true if host is using TSC based clocksource */
2902 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2903 {
2904 	/* checked again under seqlock below */
2905 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2906 		return false;
2907 
2908 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2909 						      tsc_timestamp));
2910 }
2911 
2912 /* returns true if host is using TSC based clocksource */
2913 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2914 					   u64 *tsc_timestamp)
2915 {
2916 	/* checked again under seqlock below */
2917 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2918 		return false;
2919 
2920 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2921 }
2922 #endif
2923 
2924 /*
2925  *
2926  * Assuming a stable TSC across physical CPUS, and a stable TSC
2927  * across virtual CPUs, the following condition is possible.
2928  * Each numbered line represents an event visible to both
2929  * CPUs at the next numbered event.
2930  *
2931  * "timespecX" represents host monotonic time. "tscX" represents
2932  * RDTSC value.
2933  *
2934  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2935  *
2936  * 1.  read timespec0,tsc0
2937  * 2.					| timespec1 = timespec0 + N
2938  * 					| tsc1 = tsc0 + M
2939  * 3. transition to guest		| transition to guest
2940  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2941  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2942  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2943  *
2944  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2945  *
2946  * 	- ret0 < ret1
2947  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2948  *		...
2949  *	- 0 < N - M => M < N
2950  *
2951  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2952  * always the case (the difference between two distinct xtime instances
2953  * might be smaller then the difference between corresponding TSC reads,
2954  * when updating guest vcpus pvclock areas).
2955  *
2956  * To avoid that problem, do not allow visibility of distinct
2957  * system_timestamp/tsc_timestamp values simultaneously: use a master
2958  * copy of host monotonic time values. Update that master copy
2959  * in lockstep.
2960  *
2961  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2962  *
2963  */
2964 
2965 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2966 {
2967 #ifdef CONFIG_X86_64
2968 	struct kvm_arch *ka = &kvm->arch;
2969 	int vclock_mode;
2970 	bool host_tsc_clocksource, vcpus_matched;
2971 
2972 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2973 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2974 			atomic_read(&kvm->online_vcpus));
2975 
2976 	/*
2977 	 * If the host uses TSC clock, then passthrough TSC as stable
2978 	 * to the guest.
2979 	 */
2980 	host_tsc_clocksource = kvm_get_time_and_clockread(
2981 					&ka->master_kernel_ns,
2982 					&ka->master_cycle_now);
2983 
2984 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2985 				&& !ka->backwards_tsc_observed
2986 				&& !ka->boot_vcpu_runs_old_kvmclock;
2987 
2988 	if (ka->use_master_clock)
2989 		atomic_set(&kvm_guest_has_master_clock, 1);
2990 
2991 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2992 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2993 					vcpus_matched);
2994 #endif
2995 }
2996 
2997 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2998 {
2999 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3000 }
3001 
3002 static void __kvm_start_pvclock_update(struct kvm *kvm)
3003 {
3004 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3005 	write_seqcount_begin(&kvm->arch.pvclock_sc);
3006 }
3007 
3008 static void kvm_start_pvclock_update(struct kvm *kvm)
3009 {
3010 	kvm_make_mclock_inprogress_request(kvm);
3011 
3012 	/* no guest entries from this point */
3013 	__kvm_start_pvclock_update(kvm);
3014 }
3015 
3016 static void kvm_end_pvclock_update(struct kvm *kvm)
3017 {
3018 	struct kvm_arch *ka = &kvm->arch;
3019 	struct kvm_vcpu *vcpu;
3020 	unsigned long i;
3021 
3022 	write_seqcount_end(&ka->pvclock_sc);
3023 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3024 	kvm_for_each_vcpu(i, vcpu, kvm)
3025 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3026 
3027 	/* guest entries allowed */
3028 	kvm_for_each_vcpu(i, vcpu, kvm)
3029 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3030 }
3031 
3032 static void kvm_update_masterclock(struct kvm *kvm)
3033 {
3034 	kvm_hv_request_tsc_page_update(kvm);
3035 	kvm_start_pvclock_update(kvm);
3036 	pvclock_update_vm_gtod_copy(kvm);
3037 	kvm_end_pvclock_update(kvm);
3038 }
3039 
3040 /*
3041  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3042  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3043  * can change during boot even if the TSC is constant, as it's possible for KVM
3044  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3045  * notification when calibration completes, but practically speaking calibration
3046  * will complete before userspace is alive enough to create VMs.
3047  */
3048 static unsigned long get_cpu_tsc_khz(void)
3049 {
3050 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3051 		return tsc_khz;
3052 	else
3053 		return __this_cpu_read(cpu_tsc_khz);
3054 }
3055 
3056 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3057 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3058 {
3059 	struct kvm_arch *ka = &kvm->arch;
3060 	struct pvclock_vcpu_time_info hv_clock;
3061 
3062 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3063 	get_cpu();
3064 
3065 	data->flags = 0;
3066 	if (ka->use_master_clock &&
3067 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3068 #ifdef CONFIG_X86_64
3069 		struct timespec64 ts;
3070 
3071 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3072 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3073 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3074 		} else
3075 #endif
3076 		data->host_tsc = rdtsc();
3077 
3078 		data->flags |= KVM_CLOCK_TSC_STABLE;
3079 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3080 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3081 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3082 				   &hv_clock.tsc_shift,
3083 				   &hv_clock.tsc_to_system_mul);
3084 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3085 	} else {
3086 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3087 	}
3088 
3089 	put_cpu();
3090 }
3091 
3092 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3093 {
3094 	struct kvm_arch *ka = &kvm->arch;
3095 	unsigned seq;
3096 
3097 	do {
3098 		seq = read_seqcount_begin(&ka->pvclock_sc);
3099 		__get_kvmclock(kvm, data);
3100 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3101 }
3102 
3103 u64 get_kvmclock_ns(struct kvm *kvm)
3104 {
3105 	struct kvm_clock_data data;
3106 
3107 	get_kvmclock(kvm, &data);
3108 	return data.clock;
3109 }
3110 
3111 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3112 				    struct gfn_to_pfn_cache *gpc,
3113 				    unsigned int offset,
3114 				    bool force_tsc_unstable)
3115 {
3116 	struct kvm_vcpu_arch *vcpu = &v->arch;
3117 	struct pvclock_vcpu_time_info *guest_hv_clock;
3118 	unsigned long flags;
3119 
3120 	read_lock_irqsave(&gpc->lock, flags);
3121 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3122 		read_unlock_irqrestore(&gpc->lock, flags);
3123 
3124 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3125 			return;
3126 
3127 		read_lock_irqsave(&gpc->lock, flags);
3128 	}
3129 
3130 	guest_hv_clock = (void *)(gpc->khva + offset);
3131 
3132 	/*
3133 	 * This VCPU is paused, but it's legal for a guest to read another
3134 	 * VCPU's kvmclock, so we really have to follow the specification where
3135 	 * it says that version is odd if data is being modified, and even after
3136 	 * it is consistent.
3137 	 */
3138 
3139 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3140 	smp_wmb();
3141 
3142 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3143 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3144 
3145 	if (vcpu->pvclock_set_guest_stopped_request) {
3146 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3147 		vcpu->pvclock_set_guest_stopped_request = false;
3148 	}
3149 
3150 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3151 
3152 	if (force_tsc_unstable)
3153 		guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3154 
3155 	smp_wmb();
3156 
3157 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3158 
3159 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3160 	read_unlock_irqrestore(&gpc->lock, flags);
3161 
3162 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3163 }
3164 
3165 static int kvm_guest_time_update(struct kvm_vcpu *v)
3166 {
3167 	unsigned long flags, tgt_tsc_khz;
3168 	unsigned seq;
3169 	struct kvm_vcpu_arch *vcpu = &v->arch;
3170 	struct kvm_arch *ka = &v->kvm->arch;
3171 	s64 kernel_ns;
3172 	u64 tsc_timestamp, host_tsc;
3173 	u8 pvclock_flags;
3174 	bool use_master_clock;
3175 #ifdef CONFIG_KVM_XEN
3176 	/*
3177 	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3178 	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3179 	 * This default behaviour led to bugs in some guest kernels which cause
3180 	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3181 	 */
3182 	bool xen_pvclock_tsc_unstable =
3183 		ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3184 #endif
3185 
3186 	kernel_ns = 0;
3187 	host_tsc = 0;
3188 
3189 	/*
3190 	 * If the host uses TSC clock, then passthrough TSC as stable
3191 	 * to the guest.
3192 	 */
3193 	do {
3194 		seq = read_seqcount_begin(&ka->pvclock_sc);
3195 		use_master_clock = ka->use_master_clock;
3196 		if (use_master_clock) {
3197 			host_tsc = ka->master_cycle_now;
3198 			kernel_ns = ka->master_kernel_ns;
3199 		}
3200 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3201 
3202 	/* Keep irq disabled to prevent changes to the clock */
3203 	local_irq_save(flags);
3204 	tgt_tsc_khz = get_cpu_tsc_khz();
3205 	if (unlikely(tgt_tsc_khz == 0)) {
3206 		local_irq_restore(flags);
3207 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3208 		return 1;
3209 	}
3210 	if (!use_master_clock) {
3211 		host_tsc = rdtsc();
3212 		kernel_ns = get_kvmclock_base_ns();
3213 	}
3214 
3215 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3216 
3217 	/*
3218 	 * We may have to catch up the TSC to match elapsed wall clock
3219 	 * time for two reasons, even if kvmclock is used.
3220 	 *   1) CPU could have been running below the maximum TSC rate
3221 	 *   2) Broken TSC compensation resets the base at each VCPU
3222 	 *      entry to avoid unknown leaps of TSC even when running
3223 	 *      again on the same CPU.  This may cause apparent elapsed
3224 	 *      time to disappear, and the guest to stand still or run
3225 	 *	very slowly.
3226 	 */
3227 	if (vcpu->tsc_catchup) {
3228 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3229 		if (tsc > tsc_timestamp) {
3230 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3231 			tsc_timestamp = tsc;
3232 		}
3233 	}
3234 
3235 	local_irq_restore(flags);
3236 
3237 	/* With all the info we got, fill in the values */
3238 
3239 	if (kvm_caps.has_tsc_control)
3240 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3241 					    v->arch.l1_tsc_scaling_ratio);
3242 
3243 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3244 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3245 				   &vcpu->hv_clock.tsc_shift,
3246 				   &vcpu->hv_clock.tsc_to_system_mul);
3247 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3248 		kvm_xen_update_tsc_info(v);
3249 	}
3250 
3251 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3252 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3253 	vcpu->last_guest_tsc = tsc_timestamp;
3254 
3255 	/* If the host uses TSC clocksource, then it is stable */
3256 	pvclock_flags = 0;
3257 	if (use_master_clock)
3258 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3259 
3260 	vcpu->hv_clock.flags = pvclock_flags;
3261 
3262 	if (vcpu->pv_time.active)
3263 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3264 #ifdef CONFIG_KVM_XEN
3265 	if (vcpu->xen.vcpu_info_cache.active)
3266 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3267 					offsetof(struct compat_vcpu_info, time),
3268 					xen_pvclock_tsc_unstable);
3269 	if (vcpu->xen.vcpu_time_info_cache.active)
3270 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3271 					xen_pvclock_tsc_unstable);
3272 #endif
3273 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3274 	return 0;
3275 }
3276 
3277 /*
3278  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3279  * which it started (i.e. its epoch, when its kvmclock was zero).
3280  *
3281  * In fact those clocks are subtly different; wall clock frequency is
3282  * adjusted by NTP and has leap seconds, while the kvmclock is a
3283  * simple function of the TSC without any such adjustment.
3284  *
3285  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3286  * that and kvmclock, but even that would be subject to change over
3287  * time.
3288  *
3289  * Attempt to calculate the epoch at a given moment using the *same*
3290  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3291  * wallclock and kvmclock times, and subtracting one from the other.
3292  *
3293  * Fall back to using their values at slightly different moments by
3294  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3295  */
3296 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3297 {
3298 #ifdef CONFIG_X86_64
3299 	struct pvclock_vcpu_time_info hv_clock;
3300 	struct kvm_arch *ka = &kvm->arch;
3301 	unsigned long seq, local_tsc_khz;
3302 	struct timespec64 ts;
3303 	uint64_t host_tsc;
3304 
3305 	do {
3306 		seq = read_seqcount_begin(&ka->pvclock_sc);
3307 
3308 		local_tsc_khz = 0;
3309 		if (!ka->use_master_clock)
3310 			break;
3311 
3312 		/*
3313 		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3314 		 * on the same CPU.
3315 		 */
3316 		get_cpu();
3317 
3318 		local_tsc_khz = get_cpu_tsc_khz();
3319 
3320 		if (local_tsc_khz &&
3321 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3322 			local_tsc_khz = 0; /* Fall back to old method */
3323 
3324 		put_cpu();
3325 
3326 		/*
3327 		 * These values must be snapshotted within the seqcount loop.
3328 		 * After that, it's just mathematics which can happen on any
3329 		 * CPU at any time.
3330 		 */
3331 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3332 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3333 
3334 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3335 
3336 	/*
3337 	 * If the conditions were right, and obtaining the wallclock+TSC was
3338 	 * successful, calculate the KVM clock at the corresponding time and
3339 	 * subtract one from the other to get the guest's epoch in nanoseconds
3340 	 * since 1970-01-01.
3341 	 */
3342 	if (local_tsc_khz) {
3343 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3344 				   &hv_clock.tsc_shift,
3345 				   &hv_clock.tsc_to_system_mul);
3346 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3347 			__pvclock_read_cycles(&hv_clock, host_tsc);
3348 	}
3349 #endif
3350 	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3351 }
3352 
3353 /*
3354  * kvmclock updates which are isolated to a given vcpu, such as
3355  * vcpu->cpu migration, should not allow system_timestamp from
3356  * the rest of the vcpus to remain static. Otherwise ntp frequency
3357  * correction applies to one vcpu's system_timestamp but not
3358  * the others.
3359  *
3360  * So in those cases, request a kvmclock update for all vcpus.
3361  * We need to rate-limit these requests though, as they can
3362  * considerably slow guests that have a large number of vcpus.
3363  * The time for a remote vcpu to update its kvmclock is bound
3364  * by the delay we use to rate-limit the updates.
3365  */
3366 
3367 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3368 
3369 static void kvmclock_update_fn(struct work_struct *work)
3370 {
3371 	unsigned long i;
3372 	struct delayed_work *dwork = to_delayed_work(work);
3373 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3374 					   kvmclock_update_work);
3375 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3376 	struct kvm_vcpu *vcpu;
3377 
3378 	kvm_for_each_vcpu(i, vcpu, kvm) {
3379 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3380 		kvm_vcpu_kick(vcpu);
3381 	}
3382 }
3383 
3384 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3385 {
3386 	struct kvm *kvm = v->kvm;
3387 
3388 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3389 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3390 					KVMCLOCK_UPDATE_DELAY);
3391 }
3392 
3393 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3394 
3395 static void kvmclock_sync_fn(struct work_struct *work)
3396 {
3397 	struct delayed_work *dwork = to_delayed_work(work);
3398 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3399 					   kvmclock_sync_work);
3400 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3401 
3402 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3403 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3404 					KVMCLOCK_SYNC_PERIOD);
3405 }
3406 
3407 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3408 static bool is_mci_control_msr(u32 msr)
3409 {
3410 	return (msr & 3) == 0;
3411 }
3412 static bool is_mci_status_msr(u32 msr)
3413 {
3414 	return (msr & 3) == 1;
3415 }
3416 
3417 /*
3418  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3419  */
3420 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3421 {
3422 	/* McStatusWrEn enabled? */
3423 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3424 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3425 
3426 	return false;
3427 }
3428 
3429 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3430 {
3431 	u64 mcg_cap = vcpu->arch.mcg_cap;
3432 	unsigned bank_num = mcg_cap & 0xff;
3433 	u32 msr = msr_info->index;
3434 	u64 data = msr_info->data;
3435 	u32 offset, last_msr;
3436 
3437 	switch (msr) {
3438 	case MSR_IA32_MCG_STATUS:
3439 		vcpu->arch.mcg_status = data;
3440 		break;
3441 	case MSR_IA32_MCG_CTL:
3442 		if (!(mcg_cap & MCG_CTL_P) &&
3443 		    (data || !msr_info->host_initiated))
3444 			return 1;
3445 		if (data != 0 && data != ~(u64)0)
3446 			return 1;
3447 		vcpu->arch.mcg_ctl = data;
3448 		break;
3449 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3450 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3451 		if (msr > last_msr)
3452 			return 1;
3453 
3454 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3455 			return 1;
3456 		/* An attempt to write a 1 to a reserved bit raises #GP */
3457 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3458 			return 1;
3459 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3460 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3461 		vcpu->arch.mci_ctl2_banks[offset] = data;
3462 		break;
3463 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3464 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3465 		if (msr > last_msr)
3466 			return 1;
3467 
3468 		/*
3469 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3470 		 * values are architecturally undefined.  But, some Linux
3471 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3472 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3473 		 * other bits in order to avoid an uncaught #GP in the guest.
3474 		 *
3475 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3476 		 * single-bit ECC data errors.
3477 		 */
3478 		if (is_mci_control_msr(msr) &&
3479 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3480 			return 1;
3481 
3482 		/*
3483 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3484 		 * AMD-based CPUs allow non-zero values, but if and only if
3485 		 * HWCR[McStatusWrEn] is set.
3486 		 */
3487 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3488 		    data != 0 && !can_set_mci_status(vcpu))
3489 			return 1;
3490 
3491 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3492 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3493 		vcpu->arch.mce_banks[offset] = data;
3494 		break;
3495 	default:
3496 		return 1;
3497 	}
3498 	return 0;
3499 }
3500 
3501 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3502 {
3503 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3504 
3505 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3506 }
3507 
3508 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3509 {
3510 	gpa_t gpa = data & ~0x3f;
3511 
3512 	/* Bits 4:5 are reserved, Should be zero */
3513 	if (data & 0x30)
3514 		return 1;
3515 
3516 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3517 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3518 		return 1;
3519 
3520 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3521 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3522 		return 1;
3523 
3524 	if (!lapic_in_kernel(vcpu))
3525 		return data ? 1 : 0;
3526 
3527 	vcpu->arch.apf.msr_en_val = data;
3528 
3529 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3530 		kvm_clear_async_pf_completion_queue(vcpu);
3531 		kvm_async_pf_hash_reset(vcpu);
3532 		return 0;
3533 	}
3534 
3535 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3536 					sizeof(u64)))
3537 		return 1;
3538 
3539 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3540 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3541 
3542 	kvm_async_pf_wakeup_all(vcpu);
3543 
3544 	return 0;
3545 }
3546 
3547 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3548 {
3549 	/* Bits 8-63 are reserved */
3550 	if (data >> 8)
3551 		return 1;
3552 
3553 	if (!lapic_in_kernel(vcpu))
3554 		return 1;
3555 
3556 	vcpu->arch.apf.msr_int_val = data;
3557 
3558 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3559 
3560 	return 0;
3561 }
3562 
3563 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3564 {
3565 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3566 	vcpu->arch.time = 0;
3567 }
3568 
3569 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3570 {
3571 	++vcpu->stat.tlb_flush;
3572 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3573 
3574 	/* Flushing all ASIDs flushes the current ASID... */
3575 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3576 }
3577 
3578 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3579 {
3580 	++vcpu->stat.tlb_flush;
3581 
3582 	if (!tdp_enabled) {
3583 		/*
3584 		 * A TLB flush on behalf of the guest is equivalent to
3585 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3586 		 * a forced sync of the shadow page tables.  Ensure all the
3587 		 * roots are synced and the guest TLB in hardware is clean.
3588 		 */
3589 		kvm_mmu_sync_roots(vcpu);
3590 		kvm_mmu_sync_prev_roots(vcpu);
3591 	}
3592 
3593 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3594 
3595 	/*
3596 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3597 	 * grained flushing.
3598 	 */
3599 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3600 }
3601 
3602 
3603 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3604 {
3605 	++vcpu->stat.tlb_flush;
3606 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3607 }
3608 
3609 /*
3610  * Service "local" TLB flush requests, which are specific to the current MMU
3611  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3612  * TLB flushes that are targeted at an MMU context also need to be serviced
3613  * prior before nested VM-Enter/VM-Exit.
3614  */
3615 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3616 {
3617 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3618 		kvm_vcpu_flush_tlb_current(vcpu);
3619 
3620 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3621 		kvm_vcpu_flush_tlb_guest(vcpu);
3622 }
3623 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3624 
3625 static void record_steal_time(struct kvm_vcpu *vcpu)
3626 {
3627 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3628 	struct kvm_steal_time __user *st;
3629 	struct kvm_memslots *slots;
3630 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3631 	u64 steal;
3632 	u32 version;
3633 
3634 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3635 		kvm_xen_runstate_set_running(vcpu);
3636 		return;
3637 	}
3638 
3639 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3640 		return;
3641 
3642 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3643 		return;
3644 
3645 	slots = kvm_memslots(vcpu->kvm);
3646 
3647 	if (unlikely(slots->generation != ghc->generation ||
3648 		     gpa != ghc->gpa ||
3649 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3650 		/* We rely on the fact that it fits in a single page. */
3651 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3652 
3653 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3654 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3655 			return;
3656 	}
3657 
3658 	st = (struct kvm_steal_time __user *)ghc->hva;
3659 	/*
3660 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3661 	 * expensive IPIs.
3662 	 */
3663 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3664 		u8 st_preempted = 0;
3665 		int err = -EFAULT;
3666 
3667 		if (!user_access_begin(st, sizeof(*st)))
3668 			return;
3669 
3670 		asm volatile("1: xchgb %0, %2\n"
3671 			     "xor %1, %1\n"
3672 			     "2:\n"
3673 			     _ASM_EXTABLE_UA(1b, 2b)
3674 			     : "+q" (st_preempted),
3675 			       "+&r" (err),
3676 			       "+m" (st->preempted));
3677 		if (err)
3678 			goto out;
3679 
3680 		user_access_end();
3681 
3682 		vcpu->arch.st.preempted = 0;
3683 
3684 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3685 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3686 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3687 			kvm_vcpu_flush_tlb_guest(vcpu);
3688 
3689 		if (!user_access_begin(st, sizeof(*st)))
3690 			goto dirty;
3691 	} else {
3692 		if (!user_access_begin(st, sizeof(*st)))
3693 			return;
3694 
3695 		unsafe_put_user(0, &st->preempted, out);
3696 		vcpu->arch.st.preempted = 0;
3697 	}
3698 
3699 	unsafe_get_user(version, &st->version, out);
3700 	if (version & 1)
3701 		version += 1;  /* first time write, random junk */
3702 
3703 	version += 1;
3704 	unsafe_put_user(version, &st->version, out);
3705 
3706 	smp_wmb();
3707 
3708 	unsafe_get_user(steal, &st->steal, out);
3709 	steal += current->sched_info.run_delay -
3710 		vcpu->arch.st.last_steal;
3711 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3712 	unsafe_put_user(steal, &st->steal, out);
3713 
3714 	version += 1;
3715 	unsafe_put_user(version, &st->version, out);
3716 
3717  out:
3718 	user_access_end();
3719  dirty:
3720 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3721 }
3722 
3723 static bool kvm_is_msr_to_save(u32 msr_index)
3724 {
3725 	unsigned int i;
3726 
3727 	for (i = 0; i < num_msrs_to_save; i++) {
3728 		if (msrs_to_save[i] == msr_index)
3729 			return true;
3730 	}
3731 
3732 	return false;
3733 }
3734 
3735 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3736 {
3737 	u32 msr = msr_info->index;
3738 	u64 data = msr_info->data;
3739 
3740 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3741 		return kvm_xen_write_hypercall_page(vcpu, data);
3742 
3743 	switch (msr) {
3744 	case MSR_AMD64_NB_CFG:
3745 	case MSR_IA32_UCODE_WRITE:
3746 	case MSR_VM_HSAVE_PA:
3747 	case MSR_AMD64_PATCH_LOADER:
3748 	case MSR_AMD64_BU_CFG2:
3749 	case MSR_AMD64_DC_CFG:
3750 	case MSR_AMD64_TW_CFG:
3751 	case MSR_F15H_EX_CFG:
3752 		break;
3753 
3754 	case MSR_IA32_UCODE_REV:
3755 		if (msr_info->host_initiated)
3756 			vcpu->arch.microcode_version = data;
3757 		break;
3758 	case MSR_IA32_ARCH_CAPABILITIES:
3759 		if (!msr_info->host_initiated)
3760 			return 1;
3761 		vcpu->arch.arch_capabilities = data;
3762 		break;
3763 	case MSR_IA32_PERF_CAPABILITIES:
3764 		if (!msr_info->host_initiated)
3765 			return 1;
3766 		if (data & ~kvm_caps.supported_perf_cap)
3767 			return 1;
3768 
3769 		/*
3770 		 * Note, this is not just a performance optimization!  KVM
3771 		 * disallows changing feature MSRs after the vCPU has run; PMU
3772 		 * refresh will bug the VM if called after the vCPU has run.
3773 		 */
3774 		if (vcpu->arch.perf_capabilities == data)
3775 			break;
3776 
3777 		vcpu->arch.perf_capabilities = data;
3778 		kvm_pmu_refresh(vcpu);
3779 		break;
3780 	case MSR_IA32_PRED_CMD: {
3781 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3782 
3783 		if (!msr_info->host_initiated) {
3784 			if ((!guest_has_pred_cmd_msr(vcpu)))
3785 				return 1;
3786 
3787 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3788 			    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3789 				reserved_bits |= PRED_CMD_IBPB;
3790 
3791 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3792 				reserved_bits |= PRED_CMD_SBPB;
3793 		}
3794 
3795 		if (!boot_cpu_has(X86_FEATURE_IBPB))
3796 			reserved_bits |= PRED_CMD_IBPB;
3797 
3798 		if (!boot_cpu_has(X86_FEATURE_SBPB))
3799 			reserved_bits |= PRED_CMD_SBPB;
3800 
3801 		if (data & reserved_bits)
3802 			return 1;
3803 
3804 		if (!data)
3805 			break;
3806 
3807 		wrmsrl(MSR_IA32_PRED_CMD, data);
3808 		break;
3809 	}
3810 	case MSR_IA32_FLUSH_CMD:
3811 		if (!msr_info->host_initiated &&
3812 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3813 			return 1;
3814 
3815 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3816 			return 1;
3817 		if (!data)
3818 			break;
3819 
3820 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3821 		break;
3822 	case MSR_EFER:
3823 		return set_efer(vcpu, msr_info);
3824 	case MSR_K7_HWCR:
3825 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3826 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3827 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3828 
3829 		/*
3830 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3831 		 * through at least v6.6 whine if TscFreqSel is clear,
3832 		 * depending on F/M/S.
3833 		 */
3834 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3835 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3836 			return 1;
3837 		}
3838 		vcpu->arch.msr_hwcr = data;
3839 		break;
3840 	case MSR_FAM10H_MMIO_CONF_BASE:
3841 		if (data != 0) {
3842 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3843 			return 1;
3844 		}
3845 		break;
3846 	case MSR_IA32_CR_PAT:
3847 		if (!kvm_pat_valid(data))
3848 			return 1;
3849 
3850 		vcpu->arch.pat = data;
3851 		break;
3852 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3853 	case MSR_MTRRdefType:
3854 		return kvm_mtrr_set_msr(vcpu, msr, data);
3855 	case MSR_IA32_APICBASE:
3856 		return kvm_set_apic_base(vcpu, msr_info);
3857 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3858 		return kvm_x2apic_msr_write(vcpu, msr, data);
3859 	case MSR_IA32_TSC_DEADLINE:
3860 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3861 		break;
3862 	case MSR_IA32_TSC_ADJUST:
3863 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3864 			if (!msr_info->host_initiated) {
3865 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3866 				adjust_tsc_offset_guest(vcpu, adj);
3867 				/* Before back to guest, tsc_timestamp must be adjusted
3868 				 * as well, otherwise guest's percpu pvclock time could jump.
3869 				 */
3870 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3871 			}
3872 			vcpu->arch.ia32_tsc_adjust_msr = data;
3873 		}
3874 		break;
3875 	case MSR_IA32_MISC_ENABLE: {
3876 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3877 
3878 		if (!msr_info->host_initiated) {
3879 			/* RO bits */
3880 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3881 				return 1;
3882 
3883 			/* R bits, i.e. writes are ignored, but don't fault. */
3884 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3885 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3886 		}
3887 
3888 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3889 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3890 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3891 				return 1;
3892 			vcpu->arch.ia32_misc_enable_msr = data;
3893 			kvm_update_cpuid_runtime(vcpu);
3894 		} else {
3895 			vcpu->arch.ia32_misc_enable_msr = data;
3896 		}
3897 		break;
3898 	}
3899 	case MSR_IA32_SMBASE:
3900 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3901 			return 1;
3902 		vcpu->arch.smbase = data;
3903 		break;
3904 	case MSR_IA32_POWER_CTL:
3905 		vcpu->arch.msr_ia32_power_ctl = data;
3906 		break;
3907 	case MSR_IA32_TSC:
3908 		if (msr_info->host_initiated) {
3909 			kvm_synchronize_tsc(vcpu, &data);
3910 		} else {
3911 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3912 			adjust_tsc_offset_guest(vcpu, adj);
3913 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3914 		}
3915 		break;
3916 	case MSR_IA32_XSS:
3917 		if (!msr_info->host_initiated &&
3918 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3919 			return 1;
3920 		/*
3921 		 * KVM supports exposing PT to the guest, but does not support
3922 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3923 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3924 		 */
3925 		if (data & ~kvm_caps.supported_xss)
3926 			return 1;
3927 		vcpu->arch.ia32_xss = data;
3928 		kvm_update_cpuid_runtime(vcpu);
3929 		break;
3930 	case MSR_SMI_COUNT:
3931 		if (!msr_info->host_initiated)
3932 			return 1;
3933 		vcpu->arch.smi_count = data;
3934 		break;
3935 	case MSR_KVM_WALL_CLOCK_NEW:
3936 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3937 			return 1;
3938 
3939 		vcpu->kvm->arch.wall_clock = data;
3940 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3941 		break;
3942 	case MSR_KVM_WALL_CLOCK:
3943 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3944 			return 1;
3945 
3946 		vcpu->kvm->arch.wall_clock = data;
3947 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3948 		break;
3949 	case MSR_KVM_SYSTEM_TIME_NEW:
3950 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3951 			return 1;
3952 
3953 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3954 		break;
3955 	case MSR_KVM_SYSTEM_TIME:
3956 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3957 			return 1;
3958 
3959 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3960 		break;
3961 	case MSR_KVM_ASYNC_PF_EN:
3962 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3963 			return 1;
3964 
3965 		if (kvm_pv_enable_async_pf(vcpu, data))
3966 			return 1;
3967 		break;
3968 	case MSR_KVM_ASYNC_PF_INT:
3969 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3970 			return 1;
3971 
3972 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3973 			return 1;
3974 		break;
3975 	case MSR_KVM_ASYNC_PF_ACK:
3976 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3977 			return 1;
3978 		if (data & 0x1) {
3979 			vcpu->arch.apf.pageready_pending = false;
3980 			kvm_check_async_pf_completion(vcpu);
3981 		}
3982 		break;
3983 	case MSR_KVM_STEAL_TIME:
3984 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3985 			return 1;
3986 
3987 		if (unlikely(!sched_info_on()))
3988 			return 1;
3989 
3990 		if (data & KVM_STEAL_RESERVED_MASK)
3991 			return 1;
3992 
3993 		vcpu->arch.st.msr_val = data;
3994 
3995 		if (!(data & KVM_MSR_ENABLED))
3996 			break;
3997 
3998 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3999 
4000 		break;
4001 	case MSR_KVM_PV_EOI_EN:
4002 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4003 			return 1;
4004 
4005 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4006 			return 1;
4007 		break;
4008 
4009 	case MSR_KVM_POLL_CONTROL:
4010 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4011 			return 1;
4012 
4013 		/* only enable bit supported */
4014 		if (data & (-1ULL << 1))
4015 			return 1;
4016 
4017 		vcpu->arch.msr_kvm_poll_control = data;
4018 		break;
4019 
4020 	case MSR_IA32_MCG_CTL:
4021 	case MSR_IA32_MCG_STATUS:
4022 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4023 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4024 		return set_msr_mce(vcpu, msr_info);
4025 
4026 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4027 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4028 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4029 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4030 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4031 			return kvm_pmu_set_msr(vcpu, msr_info);
4032 
4033 		if (data)
4034 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4035 		break;
4036 	case MSR_K7_CLK_CTL:
4037 		/*
4038 		 * Ignore all writes to this no longer documented MSR.
4039 		 * Writes are only relevant for old K7 processors,
4040 		 * all pre-dating SVM, but a recommended workaround from
4041 		 * AMD for these chips. It is possible to specify the
4042 		 * affected processor models on the command line, hence
4043 		 * the need to ignore the workaround.
4044 		 */
4045 		break;
4046 #ifdef CONFIG_KVM_HYPERV
4047 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4048 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4049 	case HV_X64_MSR_SYNDBG_OPTIONS:
4050 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4051 	case HV_X64_MSR_CRASH_CTL:
4052 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4053 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4054 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4055 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4056 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4057 		return kvm_hv_set_msr_common(vcpu, msr, data,
4058 					     msr_info->host_initiated);
4059 #endif
4060 	case MSR_IA32_BBL_CR_CTL3:
4061 		/* Drop writes to this legacy MSR -- see rdmsr
4062 		 * counterpart for further detail.
4063 		 */
4064 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4065 		break;
4066 	case MSR_AMD64_OSVW_ID_LENGTH:
4067 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4068 			return 1;
4069 		vcpu->arch.osvw.length = data;
4070 		break;
4071 	case MSR_AMD64_OSVW_STATUS:
4072 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4073 			return 1;
4074 		vcpu->arch.osvw.status = data;
4075 		break;
4076 	case MSR_PLATFORM_INFO:
4077 		if (!msr_info->host_initiated ||
4078 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4079 		     cpuid_fault_enabled(vcpu)))
4080 			return 1;
4081 		vcpu->arch.msr_platform_info = data;
4082 		break;
4083 	case MSR_MISC_FEATURES_ENABLES:
4084 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4085 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4086 		     !supports_cpuid_fault(vcpu)))
4087 			return 1;
4088 		vcpu->arch.msr_misc_features_enables = data;
4089 		break;
4090 #ifdef CONFIG_X86_64
4091 	case MSR_IA32_XFD:
4092 		if (!msr_info->host_initiated &&
4093 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4094 			return 1;
4095 
4096 		if (data & ~kvm_guest_supported_xfd(vcpu))
4097 			return 1;
4098 
4099 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4100 		break;
4101 	case MSR_IA32_XFD_ERR:
4102 		if (!msr_info->host_initiated &&
4103 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4104 			return 1;
4105 
4106 		if (data & ~kvm_guest_supported_xfd(vcpu))
4107 			return 1;
4108 
4109 		vcpu->arch.guest_fpu.xfd_err = data;
4110 		break;
4111 #endif
4112 	default:
4113 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4114 			return kvm_pmu_set_msr(vcpu, msr_info);
4115 
4116 		/*
4117 		 * Userspace is allowed to write '0' to MSRs that KVM reports
4118 		 * as to-be-saved, even if an MSRs isn't fully supported.
4119 		 */
4120 		if (msr_info->host_initiated && !data &&
4121 		    kvm_is_msr_to_save(msr))
4122 			break;
4123 
4124 		return KVM_MSR_RET_INVALID;
4125 	}
4126 	return 0;
4127 }
4128 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4129 
4130 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4131 {
4132 	u64 data;
4133 	u64 mcg_cap = vcpu->arch.mcg_cap;
4134 	unsigned bank_num = mcg_cap & 0xff;
4135 	u32 offset, last_msr;
4136 
4137 	switch (msr) {
4138 	case MSR_IA32_P5_MC_ADDR:
4139 	case MSR_IA32_P5_MC_TYPE:
4140 		data = 0;
4141 		break;
4142 	case MSR_IA32_MCG_CAP:
4143 		data = vcpu->arch.mcg_cap;
4144 		break;
4145 	case MSR_IA32_MCG_CTL:
4146 		if (!(mcg_cap & MCG_CTL_P) && !host)
4147 			return 1;
4148 		data = vcpu->arch.mcg_ctl;
4149 		break;
4150 	case MSR_IA32_MCG_STATUS:
4151 		data = vcpu->arch.mcg_status;
4152 		break;
4153 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4154 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4155 		if (msr > last_msr)
4156 			return 1;
4157 
4158 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4159 			return 1;
4160 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4161 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4162 		data = vcpu->arch.mci_ctl2_banks[offset];
4163 		break;
4164 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4165 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4166 		if (msr > last_msr)
4167 			return 1;
4168 
4169 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4170 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4171 		data = vcpu->arch.mce_banks[offset];
4172 		break;
4173 	default:
4174 		return 1;
4175 	}
4176 	*pdata = data;
4177 	return 0;
4178 }
4179 
4180 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4181 {
4182 	switch (msr_info->index) {
4183 	case MSR_IA32_PLATFORM_ID:
4184 	case MSR_IA32_EBL_CR_POWERON:
4185 	case MSR_IA32_LASTBRANCHFROMIP:
4186 	case MSR_IA32_LASTBRANCHTOIP:
4187 	case MSR_IA32_LASTINTFROMIP:
4188 	case MSR_IA32_LASTINTTOIP:
4189 	case MSR_AMD64_SYSCFG:
4190 	case MSR_K8_TSEG_ADDR:
4191 	case MSR_K8_TSEG_MASK:
4192 	case MSR_VM_HSAVE_PA:
4193 	case MSR_K8_INT_PENDING_MSG:
4194 	case MSR_AMD64_NB_CFG:
4195 	case MSR_FAM10H_MMIO_CONF_BASE:
4196 	case MSR_AMD64_BU_CFG2:
4197 	case MSR_IA32_PERF_CTL:
4198 	case MSR_AMD64_DC_CFG:
4199 	case MSR_AMD64_TW_CFG:
4200 	case MSR_F15H_EX_CFG:
4201 	/*
4202 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4203 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4204 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4205 	 * so for existing CPU-specific MSRs.
4206 	 */
4207 	case MSR_RAPL_POWER_UNIT:
4208 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4209 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4210 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4211 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4212 		msr_info->data = 0;
4213 		break;
4214 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4215 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4216 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4217 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4218 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4219 			return kvm_pmu_get_msr(vcpu, msr_info);
4220 		msr_info->data = 0;
4221 		break;
4222 	case MSR_IA32_UCODE_REV:
4223 		msr_info->data = vcpu->arch.microcode_version;
4224 		break;
4225 	case MSR_IA32_ARCH_CAPABILITIES:
4226 		if (!msr_info->host_initiated &&
4227 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4228 			return 1;
4229 		msr_info->data = vcpu->arch.arch_capabilities;
4230 		break;
4231 	case MSR_IA32_PERF_CAPABILITIES:
4232 		if (!msr_info->host_initiated &&
4233 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4234 			return 1;
4235 		msr_info->data = vcpu->arch.perf_capabilities;
4236 		break;
4237 	case MSR_IA32_POWER_CTL:
4238 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4239 		break;
4240 	case MSR_IA32_TSC: {
4241 		/*
4242 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4243 		 * even when not intercepted. AMD manual doesn't explicitly
4244 		 * state this but appears to behave the same.
4245 		 *
4246 		 * On userspace reads and writes, however, we unconditionally
4247 		 * return L1's TSC value to ensure backwards-compatible
4248 		 * behavior for migration.
4249 		 */
4250 		u64 offset, ratio;
4251 
4252 		if (msr_info->host_initiated) {
4253 			offset = vcpu->arch.l1_tsc_offset;
4254 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4255 		} else {
4256 			offset = vcpu->arch.tsc_offset;
4257 			ratio = vcpu->arch.tsc_scaling_ratio;
4258 		}
4259 
4260 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4261 		break;
4262 	}
4263 	case MSR_IA32_CR_PAT:
4264 		msr_info->data = vcpu->arch.pat;
4265 		break;
4266 	case MSR_MTRRcap:
4267 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4268 	case MSR_MTRRdefType:
4269 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4270 	case 0xcd: /* fsb frequency */
4271 		msr_info->data = 3;
4272 		break;
4273 		/*
4274 		 * MSR_EBC_FREQUENCY_ID
4275 		 * Conservative value valid for even the basic CPU models.
4276 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4277 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4278 		 * and 266MHz for model 3, or 4. Set Core Clock
4279 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4280 		 * 31:24) even though these are only valid for CPU
4281 		 * models > 2, however guests may end up dividing or
4282 		 * multiplying by zero otherwise.
4283 		 */
4284 	case MSR_EBC_FREQUENCY_ID:
4285 		msr_info->data = 1 << 24;
4286 		break;
4287 	case MSR_IA32_APICBASE:
4288 		msr_info->data = kvm_get_apic_base(vcpu);
4289 		break;
4290 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4291 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4292 	case MSR_IA32_TSC_DEADLINE:
4293 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4294 		break;
4295 	case MSR_IA32_TSC_ADJUST:
4296 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4297 		break;
4298 	case MSR_IA32_MISC_ENABLE:
4299 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4300 		break;
4301 	case MSR_IA32_SMBASE:
4302 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4303 			return 1;
4304 		msr_info->data = vcpu->arch.smbase;
4305 		break;
4306 	case MSR_SMI_COUNT:
4307 		msr_info->data = vcpu->arch.smi_count;
4308 		break;
4309 	case MSR_IA32_PERF_STATUS:
4310 		/* TSC increment by tick */
4311 		msr_info->data = 1000ULL;
4312 		/* CPU multiplier */
4313 		msr_info->data |= (((uint64_t)4ULL) << 40);
4314 		break;
4315 	case MSR_EFER:
4316 		msr_info->data = vcpu->arch.efer;
4317 		break;
4318 	case MSR_KVM_WALL_CLOCK:
4319 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4320 			return 1;
4321 
4322 		msr_info->data = vcpu->kvm->arch.wall_clock;
4323 		break;
4324 	case MSR_KVM_WALL_CLOCK_NEW:
4325 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4326 			return 1;
4327 
4328 		msr_info->data = vcpu->kvm->arch.wall_clock;
4329 		break;
4330 	case MSR_KVM_SYSTEM_TIME:
4331 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4332 			return 1;
4333 
4334 		msr_info->data = vcpu->arch.time;
4335 		break;
4336 	case MSR_KVM_SYSTEM_TIME_NEW:
4337 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4338 			return 1;
4339 
4340 		msr_info->data = vcpu->arch.time;
4341 		break;
4342 	case MSR_KVM_ASYNC_PF_EN:
4343 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4344 			return 1;
4345 
4346 		msr_info->data = vcpu->arch.apf.msr_en_val;
4347 		break;
4348 	case MSR_KVM_ASYNC_PF_INT:
4349 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4350 			return 1;
4351 
4352 		msr_info->data = vcpu->arch.apf.msr_int_val;
4353 		break;
4354 	case MSR_KVM_ASYNC_PF_ACK:
4355 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4356 			return 1;
4357 
4358 		msr_info->data = 0;
4359 		break;
4360 	case MSR_KVM_STEAL_TIME:
4361 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4362 			return 1;
4363 
4364 		msr_info->data = vcpu->arch.st.msr_val;
4365 		break;
4366 	case MSR_KVM_PV_EOI_EN:
4367 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4368 			return 1;
4369 
4370 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4371 		break;
4372 	case MSR_KVM_POLL_CONTROL:
4373 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4374 			return 1;
4375 
4376 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4377 		break;
4378 	case MSR_IA32_P5_MC_ADDR:
4379 	case MSR_IA32_P5_MC_TYPE:
4380 	case MSR_IA32_MCG_CAP:
4381 	case MSR_IA32_MCG_CTL:
4382 	case MSR_IA32_MCG_STATUS:
4383 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4384 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4385 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4386 				   msr_info->host_initiated);
4387 	case MSR_IA32_XSS:
4388 		if (!msr_info->host_initiated &&
4389 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4390 			return 1;
4391 		msr_info->data = vcpu->arch.ia32_xss;
4392 		break;
4393 	case MSR_K7_CLK_CTL:
4394 		/*
4395 		 * Provide expected ramp-up count for K7. All other
4396 		 * are set to zero, indicating minimum divisors for
4397 		 * every field.
4398 		 *
4399 		 * This prevents guest kernels on AMD host with CPU
4400 		 * type 6, model 8 and higher from exploding due to
4401 		 * the rdmsr failing.
4402 		 */
4403 		msr_info->data = 0x20000000;
4404 		break;
4405 #ifdef CONFIG_KVM_HYPERV
4406 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4407 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4408 	case HV_X64_MSR_SYNDBG_OPTIONS:
4409 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4410 	case HV_X64_MSR_CRASH_CTL:
4411 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4412 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4413 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4414 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4415 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4416 		return kvm_hv_get_msr_common(vcpu,
4417 					     msr_info->index, &msr_info->data,
4418 					     msr_info->host_initiated);
4419 #endif
4420 	case MSR_IA32_BBL_CR_CTL3:
4421 		/* This legacy MSR exists but isn't fully documented in current
4422 		 * silicon.  It is however accessed by winxp in very narrow
4423 		 * scenarios where it sets bit #19, itself documented as
4424 		 * a "reserved" bit.  Best effort attempt to source coherent
4425 		 * read data here should the balance of the register be
4426 		 * interpreted by the guest:
4427 		 *
4428 		 * L2 cache control register 3: 64GB range, 256KB size,
4429 		 * enabled, latency 0x1, configured
4430 		 */
4431 		msr_info->data = 0xbe702111;
4432 		break;
4433 	case MSR_AMD64_OSVW_ID_LENGTH:
4434 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4435 			return 1;
4436 		msr_info->data = vcpu->arch.osvw.length;
4437 		break;
4438 	case MSR_AMD64_OSVW_STATUS:
4439 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4440 			return 1;
4441 		msr_info->data = vcpu->arch.osvw.status;
4442 		break;
4443 	case MSR_PLATFORM_INFO:
4444 		if (!msr_info->host_initiated &&
4445 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4446 			return 1;
4447 		msr_info->data = vcpu->arch.msr_platform_info;
4448 		break;
4449 	case MSR_MISC_FEATURES_ENABLES:
4450 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4451 		break;
4452 	case MSR_K7_HWCR:
4453 		msr_info->data = vcpu->arch.msr_hwcr;
4454 		break;
4455 #ifdef CONFIG_X86_64
4456 	case MSR_IA32_XFD:
4457 		if (!msr_info->host_initiated &&
4458 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4459 			return 1;
4460 
4461 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4462 		break;
4463 	case MSR_IA32_XFD_ERR:
4464 		if (!msr_info->host_initiated &&
4465 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4466 			return 1;
4467 
4468 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4469 		break;
4470 #endif
4471 	default:
4472 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4473 			return kvm_pmu_get_msr(vcpu, msr_info);
4474 
4475 		/*
4476 		 * Userspace is allowed to read MSRs that KVM reports as
4477 		 * to-be-saved, even if an MSR isn't fully supported.
4478 		 */
4479 		if (msr_info->host_initiated &&
4480 		    kvm_is_msr_to_save(msr_info->index)) {
4481 			msr_info->data = 0;
4482 			break;
4483 		}
4484 
4485 		return KVM_MSR_RET_INVALID;
4486 	}
4487 	return 0;
4488 }
4489 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4490 
4491 /*
4492  * Read or write a bunch of msrs. All parameters are kernel addresses.
4493  *
4494  * @return number of msrs set successfully.
4495  */
4496 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4497 		    struct kvm_msr_entry *entries,
4498 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4499 				  unsigned index, u64 *data))
4500 {
4501 	int i;
4502 
4503 	for (i = 0; i < msrs->nmsrs; ++i)
4504 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4505 			break;
4506 
4507 	return i;
4508 }
4509 
4510 /*
4511  * Read or write a bunch of msrs. Parameters are user addresses.
4512  *
4513  * @return number of msrs set successfully.
4514  */
4515 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4516 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4517 				unsigned index, u64 *data),
4518 		  int writeback)
4519 {
4520 	struct kvm_msrs msrs;
4521 	struct kvm_msr_entry *entries;
4522 	unsigned size;
4523 	int r;
4524 
4525 	r = -EFAULT;
4526 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4527 		goto out;
4528 
4529 	r = -E2BIG;
4530 	if (msrs.nmsrs >= MAX_IO_MSRS)
4531 		goto out;
4532 
4533 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4534 	entries = memdup_user(user_msrs->entries, size);
4535 	if (IS_ERR(entries)) {
4536 		r = PTR_ERR(entries);
4537 		goto out;
4538 	}
4539 
4540 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4541 
4542 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4543 		r = -EFAULT;
4544 
4545 	kfree(entries);
4546 out:
4547 	return r;
4548 }
4549 
4550 static inline bool kvm_can_mwait_in_guest(void)
4551 {
4552 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4553 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4554 		boot_cpu_has(X86_FEATURE_ARAT);
4555 }
4556 
4557 #ifdef CONFIG_KVM_HYPERV
4558 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4559 					    struct kvm_cpuid2 __user *cpuid_arg)
4560 {
4561 	struct kvm_cpuid2 cpuid;
4562 	int r;
4563 
4564 	r = -EFAULT;
4565 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4566 		return r;
4567 
4568 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4569 	if (r)
4570 		return r;
4571 
4572 	r = -EFAULT;
4573 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4574 		return r;
4575 
4576 	return 0;
4577 }
4578 #endif
4579 
4580 static bool kvm_is_vm_type_supported(unsigned long type)
4581 {
4582 	return type == KVM_X86_DEFAULT_VM ||
4583 	       (type == KVM_X86_SW_PROTECTED_VM &&
4584 		IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_enabled);
4585 }
4586 
4587 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4588 {
4589 	int r = 0;
4590 
4591 	switch (ext) {
4592 	case KVM_CAP_IRQCHIP:
4593 	case KVM_CAP_HLT:
4594 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4595 	case KVM_CAP_SET_TSS_ADDR:
4596 	case KVM_CAP_EXT_CPUID:
4597 	case KVM_CAP_EXT_EMUL_CPUID:
4598 	case KVM_CAP_CLOCKSOURCE:
4599 	case KVM_CAP_PIT:
4600 	case KVM_CAP_NOP_IO_DELAY:
4601 	case KVM_CAP_MP_STATE:
4602 	case KVM_CAP_SYNC_MMU:
4603 	case KVM_CAP_USER_NMI:
4604 	case KVM_CAP_REINJECT_CONTROL:
4605 	case KVM_CAP_IRQ_INJECT_STATUS:
4606 	case KVM_CAP_IOEVENTFD:
4607 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4608 	case KVM_CAP_PIT2:
4609 	case KVM_CAP_PIT_STATE2:
4610 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4611 	case KVM_CAP_VCPU_EVENTS:
4612 #ifdef CONFIG_KVM_HYPERV
4613 	case KVM_CAP_HYPERV:
4614 	case KVM_CAP_HYPERV_VAPIC:
4615 	case KVM_CAP_HYPERV_SPIN:
4616 	case KVM_CAP_HYPERV_TIME:
4617 	case KVM_CAP_HYPERV_SYNIC:
4618 	case KVM_CAP_HYPERV_SYNIC2:
4619 	case KVM_CAP_HYPERV_VP_INDEX:
4620 	case KVM_CAP_HYPERV_EVENTFD:
4621 	case KVM_CAP_HYPERV_TLBFLUSH:
4622 	case KVM_CAP_HYPERV_SEND_IPI:
4623 	case KVM_CAP_HYPERV_CPUID:
4624 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4625 	case KVM_CAP_SYS_HYPERV_CPUID:
4626 #endif
4627 	case KVM_CAP_PCI_SEGMENT:
4628 	case KVM_CAP_DEBUGREGS:
4629 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4630 	case KVM_CAP_XSAVE:
4631 	case KVM_CAP_ASYNC_PF:
4632 	case KVM_CAP_ASYNC_PF_INT:
4633 	case KVM_CAP_GET_TSC_KHZ:
4634 	case KVM_CAP_KVMCLOCK_CTRL:
4635 	case KVM_CAP_READONLY_MEM:
4636 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4637 	case KVM_CAP_TSC_DEADLINE_TIMER:
4638 	case KVM_CAP_DISABLE_QUIRKS:
4639 	case KVM_CAP_SET_BOOT_CPU_ID:
4640  	case KVM_CAP_SPLIT_IRQCHIP:
4641 	case KVM_CAP_IMMEDIATE_EXIT:
4642 	case KVM_CAP_PMU_EVENT_FILTER:
4643 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4644 	case KVM_CAP_GET_MSR_FEATURES:
4645 	case KVM_CAP_MSR_PLATFORM_INFO:
4646 	case KVM_CAP_EXCEPTION_PAYLOAD:
4647 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4648 	case KVM_CAP_SET_GUEST_DEBUG:
4649 	case KVM_CAP_LAST_CPU:
4650 	case KVM_CAP_X86_USER_SPACE_MSR:
4651 	case KVM_CAP_X86_MSR_FILTER:
4652 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4653 #ifdef CONFIG_X86_SGX_KVM
4654 	case KVM_CAP_SGX_ATTRIBUTE:
4655 #endif
4656 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4657 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4658 	case KVM_CAP_SREGS2:
4659 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4660 	case KVM_CAP_VCPU_ATTRIBUTES:
4661 	case KVM_CAP_SYS_ATTRIBUTES:
4662 	case KVM_CAP_VAPIC:
4663 	case KVM_CAP_ENABLE_CAP:
4664 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4665 	case KVM_CAP_IRQFD_RESAMPLE:
4666 	case KVM_CAP_MEMORY_FAULT_INFO:
4667 		r = 1;
4668 		break;
4669 	case KVM_CAP_EXIT_HYPERCALL:
4670 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4671 		break;
4672 	case KVM_CAP_SET_GUEST_DEBUG2:
4673 		return KVM_GUESTDBG_VALID_MASK;
4674 #ifdef CONFIG_KVM_XEN
4675 	case KVM_CAP_XEN_HVM:
4676 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4677 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4678 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4679 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4680 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4681 		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
4682 		if (sched_info_on())
4683 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4684 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4685 		break;
4686 #endif
4687 	case KVM_CAP_SYNC_REGS:
4688 		r = KVM_SYNC_X86_VALID_FIELDS;
4689 		break;
4690 	case KVM_CAP_ADJUST_CLOCK:
4691 		r = KVM_CLOCK_VALID_FLAGS;
4692 		break;
4693 	case KVM_CAP_X86_DISABLE_EXITS:
4694 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4695 
4696 		if (!mitigate_smt_rsb) {
4697 			r |= KVM_X86_DISABLE_EXITS_HLT |
4698 			     KVM_X86_DISABLE_EXITS_CSTATE;
4699 
4700 			if (kvm_can_mwait_in_guest())
4701 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4702 		}
4703 		break;
4704 	case KVM_CAP_X86_SMM:
4705 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4706 			break;
4707 
4708 		/* SMBASE is usually relocated above 1M on modern chipsets,
4709 		 * and SMM handlers might indeed rely on 4G segment limits,
4710 		 * so do not report SMM to be available if real mode is
4711 		 * emulated via vm86 mode.  Still, do not go to great lengths
4712 		 * to avoid userspace's usage of the feature, because it is a
4713 		 * fringe case that is not enabled except via specific settings
4714 		 * of the module parameters.
4715 		 */
4716 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4717 		break;
4718 	case KVM_CAP_NR_VCPUS:
4719 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4720 		break;
4721 	case KVM_CAP_MAX_VCPUS:
4722 		r = KVM_MAX_VCPUS;
4723 		break;
4724 	case KVM_CAP_MAX_VCPU_ID:
4725 		r = KVM_MAX_VCPU_IDS;
4726 		break;
4727 	case KVM_CAP_PV_MMU:	/* obsolete */
4728 		r = 0;
4729 		break;
4730 	case KVM_CAP_MCE:
4731 		r = KVM_MAX_MCE_BANKS;
4732 		break;
4733 	case KVM_CAP_XCRS:
4734 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4735 		break;
4736 	case KVM_CAP_TSC_CONTROL:
4737 	case KVM_CAP_VM_TSC_CONTROL:
4738 		r = kvm_caps.has_tsc_control;
4739 		break;
4740 	case KVM_CAP_X2APIC_API:
4741 		r = KVM_X2APIC_API_VALID_FLAGS;
4742 		break;
4743 	case KVM_CAP_NESTED_STATE:
4744 		r = kvm_x86_ops.nested_ops->get_state ?
4745 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4746 		break;
4747 #ifdef CONFIG_KVM_HYPERV
4748 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4749 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4750 		break;
4751 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4752 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4753 		break;
4754 #endif
4755 	case KVM_CAP_SMALLER_MAXPHYADDR:
4756 		r = (int) allow_smaller_maxphyaddr;
4757 		break;
4758 	case KVM_CAP_STEAL_TIME:
4759 		r = sched_info_on();
4760 		break;
4761 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4762 		if (kvm_caps.has_bus_lock_exit)
4763 			r = KVM_BUS_LOCK_DETECTION_OFF |
4764 			    KVM_BUS_LOCK_DETECTION_EXIT;
4765 		else
4766 			r = 0;
4767 		break;
4768 	case KVM_CAP_XSAVE2: {
4769 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4770 		if (r < sizeof(struct kvm_xsave))
4771 			r = sizeof(struct kvm_xsave);
4772 		break;
4773 	}
4774 	case KVM_CAP_PMU_CAPABILITY:
4775 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4776 		break;
4777 	case KVM_CAP_DISABLE_QUIRKS2:
4778 		r = KVM_X86_VALID_QUIRKS;
4779 		break;
4780 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4781 		r = kvm_caps.has_notify_vmexit;
4782 		break;
4783 	case KVM_CAP_VM_TYPES:
4784 		r = BIT(KVM_X86_DEFAULT_VM);
4785 		if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM))
4786 			r |= BIT(KVM_X86_SW_PROTECTED_VM);
4787 		break;
4788 	default:
4789 		break;
4790 	}
4791 	return r;
4792 }
4793 
4794 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4795 {
4796 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4797 
4798 	if ((u64)(unsigned long)uaddr != attr->addr)
4799 		return ERR_PTR_USR(-EFAULT);
4800 	return uaddr;
4801 }
4802 
4803 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4804 {
4805 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4806 
4807 	if (attr->group)
4808 		return -ENXIO;
4809 
4810 	if (IS_ERR(uaddr))
4811 		return PTR_ERR(uaddr);
4812 
4813 	switch (attr->attr) {
4814 	case KVM_X86_XCOMP_GUEST_SUPP:
4815 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4816 			return -EFAULT;
4817 		return 0;
4818 	default:
4819 		return -ENXIO;
4820 	}
4821 }
4822 
4823 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4824 {
4825 	if (attr->group)
4826 		return -ENXIO;
4827 
4828 	switch (attr->attr) {
4829 	case KVM_X86_XCOMP_GUEST_SUPP:
4830 		return 0;
4831 	default:
4832 		return -ENXIO;
4833 	}
4834 }
4835 
4836 long kvm_arch_dev_ioctl(struct file *filp,
4837 			unsigned int ioctl, unsigned long arg)
4838 {
4839 	void __user *argp = (void __user *)arg;
4840 	long r;
4841 
4842 	switch (ioctl) {
4843 	case KVM_GET_MSR_INDEX_LIST: {
4844 		struct kvm_msr_list __user *user_msr_list = argp;
4845 		struct kvm_msr_list msr_list;
4846 		unsigned n;
4847 
4848 		r = -EFAULT;
4849 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4850 			goto out;
4851 		n = msr_list.nmsrs;
4852 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4853 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4854 			goto out;
4855 		r = -E2BIG;
4856 		if (n < msr_list.nmsrs)
4857 			goto out;
4858 		r = -EFAULT;
4859 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4860 				 num_msrs_to_save * sizeof(u32)))
4861 			goto out;
4862 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4863 				 &emulated_msrs,
4864 				 num_emulated_msrs * sizeof(u32)))
4865 			goto out;
4866 		r = 0;
4867 		break;
4868 	}
4869 	case KVM_GET_SUPPORTED_CPUID:
4870 	case KVM_GET_EMULATED_CPUID: {
4871 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4872 		struct kvm_cpuid2 cpuid;
4873 
4874 		r = -EFAULT;
4875 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4876 			goto out;
4877 
4878 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4879 					    ioctl);
4880 		if (r)
4881 			goto out;
4882 
4883 		r = -EFAULT;
4884 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4885 			goto out;
4886 		r = 0;
4887 		break;
4888 	}
4889 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4890 		r = -EFAULT;
4891 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4892 				 sizeof(kvm_caps.supported_mce_cap)))
4893 			goto out;
4894 		r = 0;
4895 		break;
4896 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4897 		struct kvm_msr_list __user *user_msr_list = argp;
4898 		struct kvm_msr_list msr_list;
4899 		unsigned int n;
4900 
4901 		r = -EFAULT;
4902 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4903 			goto out;
4904 		n = msr_list.nmsrs;
4905 		msr_list.nmsrs = num_msr_based_features;
4906 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4907 			goto out;
4908 		r = -E2BIG;
4909 		if (n < msr_list.nmsrs)
4910 			goto out;
4911 		r = -EFAULT;
4912 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4913 				 num_msr_based_features * sizeof(u32)))
4914 			goto out;
4915 		r = 0;
4916 		break;
4917 	}
4918 	case KVM_GET_MSRS:
4919 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4920 		break;
4921 #ifdef CONFIG_KVM_HYPERV
4922 	case KVM_GET_SUPPORTED_HV_CPUID:
4923 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4924 		break;
4925 #endif
4926 	case KVM_GET_DEVICE_ATTR: {
4927 		struct kvm_device_attr attr;
4928 		r = -EFAULT;
4929 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4930 			break;
4931 		r = kvm_x86_dev_get_attr(&attr);
4932 		break;
4933 	}
4934 	case KVM_HAS_DEVICE_ATTR: {
4935 		struct kvm_device_attr attr;
4936 		r = -EFAULT;
4937 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4938 			break;
4939 		r = kvm_x86_dev_has_attr(&attr);
4940 		break;
4941 	}
4942 	default:
4943 		r = -EINVAL;
4944 		break;
4945 	}
4946 out:
4947 	return r;
4948 }
4949 
4950 static void wbinvd_ipi(void *garbage)
4951 {
4952 	wbinvd();
4953 }
4954 
4955 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4956 {
4957 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4958 }
4959 
4960 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4961 {
4962 	/* Address WBINVD may be executed by guest */
4963 	if (need_emulate_wbinvd(vcpu)) {
4964 		if (static_call(kvm_x86_has_wbinvd_exit)())
4965 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4966 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4967 			smp_call_function_single(vcpu->cpu,
4968 					wbinvd_ipi, NULL, 1);
4969 	}
4970 
4971 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4972 
4973 	/* Save host pkru register if supported */
4974 	vcpu->arch.host_pkru = read_pkru();
4975 
4976 	/* Apply any externally detected TSC adjustments (due to suspend) */
4977 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4978 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4979 		vcpu->arch.tsc_offset_adjustment = 0;
4980 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4981 	}
4982 
4983 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4984 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4985 				rdtsc() - vcpu->arch.last_host_tsc;
4986 		if (tsc_delta < 0)
4987 			mark_tsc_unstable("KVM discovered backwards TSC");
4988 
4989 		if (kvm_check_tsc_unstable()) {
4990 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4991 						vcpu->arch.last_guest_tsc);
4992 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4993 			vcpu->arch.tsc_catchup = 1;
4994 		}
4995 
4996 		if (kvm_lapic_hv_timer_in_use(vcpu))
4997 			kvm_lapic_restart_hv_timer(vcpu);
4998 
4999 		/*
5000 		 * On a host with synchronized TSC, there is no need to update
5001 		 * kvmclock on vcpu->cpu migration
5002 		 */
5003 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5004 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5005 		if (vcpu->cpu != cpu)
5006 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5007 		vcpu->cpu = cpu;
5008 	}
5009 
5010 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5011 }
5012 
5013 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5014 {
5015 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5016 	struct kvm_steal_time __user *st;
5017 	struct kvm_memslots *slots;
5018 	static const u8 preempted = KVM_VCPU_PREEMPTED;
5019 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5020 
5021 	/*
5022 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5023 	 * an instruction boundary and will not trigger guest emulation of any
5024 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5025 	 * when this is true, for example allowing the vCPU to be marked
5026 	 * preempted if and only if the VM-Exit was due to a host interrupt.
5027 	 */
5028 	if (!vcpu->arch.at_instruction_boundary) {
5029 		vcpu->stat.preemption_other++;
5030 		return;
5031 	}
5032 
5033 	vcpu->stat.preemption_reported++;
5034 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5035 		return;
5036 
5037 	if (vcpu->arch.st.preempted)
5038 		return;
5039 
5040 	/* This happens on process exit */
5041 	if (unlikely(current->mm != vcpu->kvm->mm))
5042 		return;
5043 
5044 	slots = kvm_memslots(vcpu->kvm);
5045 
5046 	if (unlikely(slots->generation != ghc->generation ||
5047 		     gpa != ghc->gpa ||
5048 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5049 		return;
5050 
5051 	st = (struct kvm_steal_time __user *)ghc->hva;
5052 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5053 
5054 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5055 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5056 
5057 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5058 }
5059 
5060 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5061 {
5062 	int idx;
5063 
5064 	if (vcpu->preempted) {
5065 		if (!vcpu->arch.guest_state_protected)
5066 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
5067 
5068 		/*
5069 		 * Take the srcu lock as memslots will be accessed to check the gfn
5070 		 * cache generation against the memslots generation.
5071 		 */
5072 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5073 		if (kvm_xen_msr_enabled(vcpu->kvm))
5074 			kvm_xen_runstate_set_preempted(vcpu);
5075 		else
5076 			kvm_steal_time_set_preempted(vcpu);
5077 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5078 	}
5079 
5080 	static_call(kvm_x86_vcpu_put)(vcpu);
5081 	vcpu->arch.last_host_tsc = rdtsc();
5082 }
5083 
5084 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5085 				    struct kvm_lapic_state *s)
5086 {
5087 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5088 
5089 	return kvm_apic_get_state(vcpu, s);
5090 }
5091 
5092 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5093 				    struct kvm_lapic_state *s)
5094 {
5095 	int r;
5096 
5097 	r = kvm_apic_set_state(vcpu, s);
5098 	if (r)
5099 		return r;
5100 	update_cr8_intercept(vcpu);
5101 
5102 	return 0;
5103 }
5104 
5105 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5106 {
5107 	/*
5108 	 * We can accept userspace's request for interrupt injection
5109 	 * as long as we have a place to store the interrupt number.
5110 	 * The actual injection will happen when the CPU is able to
5111 	 * deliver the interrupt.
5112 	 */
5113 	if (kvm_cpu_has_extint(vcpu))
5114 		return false;
5115 
5116 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5117 	return (!lapic_in_kernel(vcpu) ||
5118 		kvm_apic_accept_pic_intr(vcpu));
5119 }
5120 
5121 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5122 {
5123 	/*
5124 	 * Do not cause an interrupt window exit if an exception
5125 	 * is pending or an event needs reinjection; userspace
5126 	 * might want to inject the interrupt manually using KVM_SET_REGS
5127 	 * or KVM_SET_SREGS.  For that to work, we must be at an
5128 	 * instruction boundary and with no events half-injected.
5129 	 */
5130 	return (kvm_arch_interrupt_allowed(vcpu) &&
5131 		kvm_cpu_accept_dm_intr(vcpu) &&
5132 		!kvm_event_needs_reinjection(vcpu) &&
5133 		!kvm_is_exception_pending(vcpu));
5134 }
5135 
5136 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5137 				    struct kvm_interrupt *irq)
5138 {
5139 	if (irq->irq >= KVM_NR_INTERRUPTS)
5140 		return -EINVAL;
5141 
5142 	if (!irqchip_in_kernel(vcpu->kvm)) {
5143 		kvm_queue_interrupt(vcpu, irq->irq, false);
5144 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5145 		return 0;
5146 	}
5147 
5148 	/*
5149 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5150 	 * fail for in-kernel 8259.
5151 	 */
5152 	if (pic_in_kernel(vcpu->kvm))
5153 		return -ENXIO;
5154 
5155 	if (vcpu->arch.pending_external_vector != -1)
5156 		return -EEXIST;
5157 
5158 	vcpu->arch.pending_external_vector = irq->irq;
5159 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5160 	return 0;
5161 }
5162 
5163 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5164 {
5165 	kvm_inject_nmi(vcpu);
5166 
5167 	return 0;
5168 }
5169 
5170 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5171 					   struct kvm_tpr_access_ctl *tac)
5172 {
5173 	if (tac->flags)
5174 		return -EINVAL;
5175 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5176 	return 0;
5177 }
5178 
5179 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5180 					u64 mcg_cap)
5181 {
5182 	int r;
5183 	unsigned bank_num = mcg_cap & 0xff, bank;
5184 
5185 	r = -EINVAL;
5186 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5187 		goto out;
5188 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5189 		goto out;
5190 	r = 0;
5191 	vcpu->arch.mcg_cap = mcg_cap;
5192 	/* Init IA32_MCG_CTL to all 1s */
5193 	if (mcg_cap & MCG_CTL_P)
5194 		vcpu->arch.mcg_ctl = ~(u64)0;
5195 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5196 	for (bank = 0; bank < bank_num; bank++) {
5197 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5198 		if (mcg_cap & MCG_CMCI_P)
5199 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5200 	}
5201 
5202 	kvm_apic_after_set_mcg_cap(vcpu);
5203 
5204 	static_call(kvm_x86_setup_mce)(vcpu);
5205 out:
5206 	return r;
5207 }
5208 
5209 /*
5210  * Validate this is an UCNA (uncorrectable no action) error by checking the
5211  * MCG_STATUS and MCi_STATUS registers:
5212  * - none of the bits for Machine Check Exceptions are set
5213  * - both the VAL (valid) and UC (uncorrectable) bits are set
5214  * MCI_STATUS_PCC - Processor Context Corrupted
5215  * MCI_STATUS_S - Signaled as a Machine Check Exception
5216  * MCI_STATUS_AR - Software recoverable Action Required
5217  */
5218 static bool is_ucna(struct kvm_x86_mce *mce)
5219 {
5220 	return	!mce->mcg_status &&
5221 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5222 		(mce->status & MCI_STATUS_VAL) &&
5223 		(mce->status & MCI_STATUS_UC);
5224 }
5225 
5226 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5227 {
5228 	u64 mcg_cap = vcpu->arch.mcg_cap;
5229 
5230 	banks[1] = mce->status;
5231 	banks[2] = mce->addr;
5232 	banks[3] = mce->misc;
5233 	vcpu->arch.mcg_status = mce->mcg_status;
5234 
5235 	if (!(mcg_cap & MCG_CMCI_P) ||
5236 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5237 		return 0;
5238 
5239 	if (lapic_in_kernel(vcpu))
5240 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5241 
5242 	return 0;
5243 }
5244 
5245 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5246 				      struct kvm_x86_mce *mce)
5247 {
5248 	u64 mcg_cap = vcpu->arch.mcg_cap;
5249 	unsigned bank_num = mcg_cap & 0xff;
5250 	u64 *banks = vcpu->arch.mce_banks;
5251 
5252 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5253 		return -EINVAL;
5254 
5255 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5256 
5257 	if (is_ucna(mce))
5258 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5259 
5260 	/*
5261 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5262 	 * reporting is disabled
5263 	 */
5264 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5265 	    vcpu->arch.mcg_ctl != ~(u64)0)
5266 		return 0;
5267 	/*
5268 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5269 	 * reporting is disabled for the bank
5270 	 */
5271 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5272 		return 0;
5273 	if (mce->status & MCI_STATUS_UC) {
5274 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5275 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5276 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5277 			return 0;
5278 		}
5279 		if (banks[1] & MCI_STATUS_VAL)
5280 			mce->status |= MCI_STATUS_OVER;
5281 		banks[2] = mce->addr;
5282 		banks[3] = mce->misc;
5283 		vcpu->arch.mcg_status = mce->mcg_status;
5284 		banks[1] = mce->status;
5285 		kvm_queue_exception(vcpu, MC_VECTOR);
5286 	} else if (!(banks[1] & MCI_STATUS_VAL)
5287 		   || !(banks[1] & MCI_STATUS_UC)) {
5288 		if (banks[1] & MCI_STATUS_VAL)
5289 			mce->status |= MCI_STATUS_OVER;
5290 		banks[2] = mce->addr;
5291 		banks[3] = mce->misc;
5292 		banks[1] = mce->status;
5293 	} else
5294 		banks[1] |= MCI_STATUS_OVER;
5295 	return 0;
5296 }
5297 
5298 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5299 					       struct kvm_vcpu_events *events)
5300 {
5301 	struct kvm_queued_exception *ex;
5302 
5303 	process_nmi(vcpu);
5304 
5305 #ifdef CONFIG_KVM_SMM
5306 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5307 		process_smi(vcpu);
5308 #endif
5309 
5310 	/*
5311 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5312 	 * the only time there can be two queued exceptions is if there's a
5313 	 * non-exiting _injected_ exception, and a pending exiting exception.
5314 	 * In that case, ignore the VM-Exiting exception as it's an extension
5315 	 * of the injected exception.
5316 	 */
5317 	if (vcpu->arch.exception_vmexit.pending &&
5318 	    !vcpu->arch.exception.pending &&
5319 	    !vcpu->arch.exception.injected)
5320 		ex = &vcpu->arch.exception_vmexit;
5321 	else
5322 		ex = &vcpu->arch.exception;
5323 
5324 	/*
5325 	 * In guest mode, payload delivery should be deferred if the exception
5326 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5327 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5328 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5329 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5330 	 * the payload if the capability hasn't been requested.
5331 	 */
5332 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5333 	    ex->pending && ex->has_payload)
5334 		kvm_deliver_exception_payload(vcpu, ex);
5335 
5336 	memset(events, 0, sizeof(*events));
5337 
5338 	/*
5339 	 * The API doesn't provide the instruction length for software
5340 	 * exceptions, so don't report them. As long as the guest RIP
5341 	 * isn't advanced, we should expect to encounter the exception
5342 	 * again.
5343 	 */
5344 	if (!kvm_exception_is_soft(ex->vector)) {
5345 		events->exception.injected = ex->injected;
5346 		events->exception.pending = ex->pending;
5347 		/*
5348 		 * For ABI compatibility, deliberately conflate
5349 		 * pending and injected exceptions when
5350 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5351 		 */
5352 		if (!vcpu->kvm->arch.exception_payload_enabled)
5353 			events->exception.injected |= ex->pending;
5354 	}
5355 	events->exception.nr = ex->vector;
5356 	events->exception.has_error_code = ex->has_error_code;
5357 	events->exception.error_code = ex->error_code;
5358 	events->exception_has_payload = ex->has_payload;
5359 	events->exception_payload = ex->payload;
5360 
5361 	events->interrupt.injected =
5362 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5363 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5364 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5365 
5366 	events->nmi.injected = vcpu->arch.nmi_injected;
5367 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5368 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5369 
5370 	/* events->sipi_vector is never valid when reporting to user space */
5371 
5372 #ifdef CONFIG_KVM_SMM
5373 	events->smi.smm = is_smm(vcpu);
5374 	events->smi.pending = vcpu->arch.smi_pending;
5375 	events->smi.smm_inside_nmi =
5376 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5377 #endif
5378 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5379 
5380 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5381 			 | KVM_VCPUEVENT_VALID_SHADOW
5382 			 | KVM_VCPUEVENT_VALID_SMM);
5383 	if (vcpu->kvm->arch.exception_payload_enabled)
5384 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5385 	if (vcpu->kvm->arch.triple_fault_event) {
5386 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5387 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5388 	}
5389 }
5390 
5391 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5392 					      struct kvm_vcpu_events *events)
5393 {
5394 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5395 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5396 			      | KVM_VCPUEVENT_VALID_SHADOW
5397 			      | KVM_VCPUEVENT_VALID_SMM
5398 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5399 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5400 		return -EINVAL;
5401 
5402 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5403 		if (!vcpu->kvm->arch.exception_payload_enabled)
5404 			return -EINVAL;
5405 		if (events->exception.pending)
5406 			events->exception.injected = 0;
5407 		else
5408 			events->exception_has_payload = 0;
5409 	} else {
5410 		events->exception.pending = 0;
5411 		events->exception_has_payload = 0;
5412 	}
5413 
5414 	if ((events->exception.injected || events->exception.pending) &&
5415 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5416 		return -EINVAL;
5417 
5418 	/* INITs are latched while in SMM */
5419 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5420 	    (events->smi.smm || events->smi.pending) &&
5421 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5422 		return -EINVAL;
5423 
5424 	process_nmi(vcpu);
5425 
5426 	/*
5427 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5428 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5429 	 * pending exceptions, already-injected exceptions are not subject to
5430 	 * intercpetion.  Note, userspace that conflates pending and injected
5431 	 * is hosed, and will incorrectly convert an injected exception into a
5432 	 * pending exception, which in turn may cause a spurious VM-Exit.
5433 	 */
5434 	vcpu->arch.exception_from_userspace = events->exception.pending;
5435 
5436 	vcpu->arch.exception_vmexit.pending = false;
5437 
5438 	vcpu->arch.exception.injected = events->exception.injected;
5439 	vcpu->arch.exception.pending = events->exception.pending;
5440 	vcpu->arch.exception.vector = events->exception.nr;
5441 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5442 	vcpu->arch.exception.error_code = events->exception.error_code;
5443 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5444 	vcpu->arch.exception.payload = events->exception_payload;
5445 
5446 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5447 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5448 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5449 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5450 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5451 						events->interrupt.shadow);
5452 
5453 	vcpu->arch.nmi_injected = events->nmi.injected;
5454 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5455 		vcpu->arch.nmi_pending = 0;
5456 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5457 		kvm_make_request(KVM_REQ_NMI, vcpu);
5458 	}
5459 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5460 
5461 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5462 	    lapic_in_kernel(vcpu))
5463 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5464 
5465 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5466 #ifdef CONFIG_KVM_SMM
5467 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5468 			kvm_leave_nested(vcpu);
5469 			kvm_smm_changed(vcpu, events->smi.smm);
5470 		}
5471 
5472 		vcpu->arch.smi_pending = events->smi.pending;
5473 
5474 		if (events->smi.smm) {
5475 			if (events->smi.smm_inside_nmi)
5476 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5477 			else
5478 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5479 		}
5480 
5481 #else
5482 		if (events->smi.smm || events->smi.pending ||
5483 		    events->smi.smm_inside_nmi)
5484 			return -EINVAL;
5485 #endif
5486 
5487 		if (lapic_in_kernel(vcpu)) {
5488 			if (events->smi.latched_init)
5489 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5490 			else
5491 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5492 		}
5493 	}
5494 
5495 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5496 		if (!vcpu->kvm->arch.triple_fault_event)
5497 			return -EINVAL;
5498 		if (events->triple_fault.pending)
5499 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5500 		else
5501 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5502 	}
5503 
5504 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5505 
5506 	return 0;
5507 }
5508 
5509 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5510 					     struct kvm_debugregs *dbgregs)
5511 {
5512 	unsigned long val;
5513 
5514 	memset(dbgregs, 0, sizeof(*dbgregs));
5515 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5516 	kvm_get_dr(vcpu, 6, &val);
5517 	dbgregs->dr6 = val;
5518 	dbgregs->dr7 = vcpu->arch.dr7;
5519 }
5520 
5521 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5522 					    struct kvm_debugregs *dbgregs)
5523 {
5524 	if (dbgregs->flags)
5525 		return -EINVAL;
5526 
5527 	if (!kvm_dr6_valid(dbgregs->dr6))
5528 		return -EINVAL;
5529 	if (!kvm_dr7_valid(dbgregs->dr7))
5530 		return -EINVAL;
5531 
5532 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5533 	kvm_update_dr0123(vcpu);
5534 	vcpu->arch.dr6 = dbgregs->dr6;
5535 	vcpu->arch.dr7 = dbgregs->dr7;
5536 	kvm_update_dr7(vcpu);
5537 
5538 	return 0;
5539 }
5540 
5541 
5542 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5543 					  u8 *state, unsigned int size)
5544 {
5545 	/*
5546 	 * Only copy state for features that are enabled for the guest.  The
5547 	 * state itself isn't problematic, but setting bits in the header for
5548 	 * features that are supported in *this* host but not exposed to the
5549 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5550 	 * compatible host without the features that are NOT exposed to the
5551 	 * guest.
5552 	 *
5553 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5554 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5555 	 * supported by the host.
5556 	 */
5557 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5558 			     XFEATURE_MASK_FPSSE;
5559 
5560 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5561 		return;
5562 
5563 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5564 				       supported_xcr0, vcpu->arch.pkru);
5565 }
5566 
5567 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5568 					 struct kvm_xsave *guest_xsave)
5569 {
5570 	kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5571 				      sizeof(guest_xsave->region));
5572 }
5573 
5574 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5575 					struct kvm_xsave *guest_xsave)
5576 {
5577 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5578 		return 0;
5579 
5580 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5581 					      guest_xsave->region,
5582 					      kvm_caps.supported_xcr0,
5583 					      &vcpu->arch.pkru);
5584 }
5585 
5586 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5587 					struct kvm_xcrs *guest_xcrs)
5588 {
5589 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5590 		guest_xcrs->nr_xcrs = 0;
5591 		return;
5592 	}
5593 
5594 	guest_xcrs->nr_xcrs = 1;
5595 	guest_xcrs->flags = 0;
5596 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5597 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5598 }
5599 
5600 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5601 				       struct kvm_xcrs *guest_xcrs)
5602 {
5603 	int i, r = 0;
5604 
5605 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5606 		return -EINVAL;
5607 
5608 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5609 		return -EINVAL;
5610 
5611 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5612 		/* Only support XCR0 currently */
5613 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5614 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5615 				guest_xcrs->xcrs[i].value);
5616 			break;
5617 		}
5618 	if (r)
5619 		r = -EINVAL;
5620 	return r;
5621 }
5622 
5623 /*
5624  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5625  * stopped by the hypervisor.  This function will be called from the host only.
5626  * EINVAL is returned when the host attempts to set the flag for a guest that
5627  * does not support pv clocks.
5628  */
5629 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5630 {
5631 	if (!vcpu->arch.pv_time.active)
5632 		return -EINVAL;
5633 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5634 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5635 	return 0;
5636 }
5637 
5638 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5639 				 struct kvm_device_attr *attr)
5640 {
5641 	int r;
5642 
5643 	switch (attr->attr) {
5644 	case KVM_VCPU_TSC_OFFSET:
5645 		r = 0;
5646 		break;
5647 	default:
5648 		r = -ENXIO;
5649 	}
5650 
5651 	return r;
5652 }
5653 
5654 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5655 				 struct kvm_device_attr *attr)
5656 {
5657 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5658 	int r;
5659 
5660 	if (IS_ERR(uaddr))
5661 		return PTR_ERR(uaddr);
5662 
5663 	switch (attr->attr) {
5664 	case KVM_VCPU_TSC_OFFSET:
5665 		r = -EFAULT;
5666 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5667 			break;
5668 		r = 0;
5669 		break;
5670 	default:
5671 		r = -ENXIO;
5672 	}
5673 
5674 	return r;
5675 }
5676 
5677 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5678 				 struct kvm_device_attr *attr)
5679 {
5680 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5681 	struct kvm *kvm = vcpu->kvm;
5682 	int r;
5683 
5684 	if (IS_ERR(uaddr))
5685 		return PTR_ERR(uaddr);
5686 
5687 	switch (attr->attr) {
5688 	case KVM_VCPU_TSC_OFFSET: {
5689 		u64 offset, tsc, ns;
5690 		unsigned long flags;
5691 		bool matched;
5692 
5693 		r = -EFAULT;
5694 		if (get_user(offset, uaddr))
5695 			break;
5696 
5697 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5698 
5699 		matched = (vcpu->arch.virtual_tsc_khz &&
5700 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5701 			   kvm->arch.last_tsc_offset == offset);
5702 
5703 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5704 		ns = get_kvmclock_base_ns();
5705 
5706 		kvm->arch.user_set_tsc = true;
5707 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5708 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5709 
5710 		r = 0;
5711 		break;
5712 	}
5713 	default:
5714 		r = -ENXIO;
5715 	}
5716 
5717 	return r;
5718 }
5719 
5720 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5721 				      unsigned int ioctl,
5722 				      void __user *argp)
5723 {
5724 	struct kvm_device_attr attr;
5725 	int r;
5726 
5727 	if (copy_from_user(&attr, argp, sizeof(attr)))
5728 		return -EFAULT;
5729 
5730 	if (attr.group != KVM_VCPU_TSC_CTRL)
5731 		return -ENXIO;
5732 
5733 	switch (ioctl) {
5734 	case KVM_HAS_DEVICE_ATTR:
5735 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5736 		break;
5737 	case KVM_GET_DEVICE_ATTR:
5738 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5739 		break;
5740 	case KVM_SET_DEVICE_ATTR:
5741 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5742 		break;
5743 	}
5744 
5745 	return r;
5746 }
5747 
5748 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5749 				     struct kvm_enable_cap *cap)
5750 {
5751 	if (cap->flags)
5752 		return -EINVAL;
5753 
5754 	switch (cap->cap) {
5755 #ifdef CONFIG_KVM_HYPERV
5756 	case KVM_CAP_HYPERV_SYNIC2:
5757 		if (cap->args[0])
5758 			return -EINVAL;
5759 		fallthrough;
5760 
5761 	case KVM_CAP_HYPERV_SYNIC:
5762 		if (!irqchip_in_kernel(vcpu->kvm))
5763 			return -EINVAL;
5764 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5765 					     KVM_CAP_HYPERV_SYNIC2);
5766 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5767 		{
5768 			int r;
5769 			uint16_t vmcs_version;
5770 			void __user *user_ptr;
5771 
5772 			if (!kvm_x86_ops.nested_ops->enable_evmcs)
5773 				return -ENOTTY;
5774 			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5775 			if (!r) {
5776 				user_ptr = (void __user *)(uintptr_t)cap->args[0];
5777 				if (copy_to_user(user_ptr, &vmcs_version,
5778 						 sizeof(vmcs_version)))
5779 					r = -EFAULT;
5780 			}
5781 			return r;
5782 		}
5783 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5784 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5785 			return -ENOTTY;
5786 
5787 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5788 
5789 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5790 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5791 #endif
5792 
5793 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5794 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5795 		if (vcpu->arch.pv_cpuid.enforce)
5796 			kvm_update_pv_runtime(vcpu);
5797 
5798 		return 0;
5799 	default:
5800 		return -EINVAL;
5801 	}
5802 }
5803 
5804 long kvm_arch_vcpu_ioctl(struct file *filp,
5805 			 unsigned int ioctl, unsigned long arg)
5806 {
5807 	struct kvm_vcpu *vcpu = filp->private_data;
5808 	void __user *argp = (void __user *)arg;
5809 	int r;
5810 	union {
5811 		struct kvm_sregs2 *sregs2;
5812 		struct kvm_lapic_state *lapic;
5813 		struct kvm_xsave *xsave;
5814 		struct kvm_xcrs *xcrs;
5815 		void *buffer;
5816 	} u;
5817 
5818 	vcpu_load(vcpu);
5819 
5820 	u.buffer = NULL;
5821 	switch (ioctl) {
5822 	case KVM_GET_LAPIC: {
5823 		r = -EINVAL;
5824 		if (!lapic_in_kernel(vcpu))
5825 			goto out;
5826 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5827 				GFP_KERNEL_ACCOUNT);
5828 
5829 		r = -ENOMEM;
5830 		if (!u.lapic)
5831 			goto out;
5832 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5833 		if (r)
5834 			goto out;
5835 		r = -EFAULT;
5836 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5837 			goto out;
5838 		r = 0;
5839 		break;
5840 	}
5841 	case KVM_SET_LAPIC: {
5842 		r = -EINVAL;
5843 		if (!lapic_in_kernel(vcpu))
5844 			goto out;
5845 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5846 		if (IS_ERR(u.lapic)) {
5847 			r = PTR_ERR(u.lapic);
5848 			goto out_nofree;
5849 		}
5850 
5851 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5852 		break;
5853 	}
5854 	case KVM_INTERRUPT: {
5855 		struct kvm_interrupt irq;
5856 
5857 		r = -EFAULT;
5858 		if (copy_from_user(&irq, argp, sizeof(irq)))
5859 			goto out;
5860 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5861 		break;
5862 	}
5863 	case KVM_NMI: {
5864 		r = kvm_vcpu_ioctl_nmi(vcpu);
5865 		break;
5866 	}
5867 	case KVM_SMI: {
5868 		r = kvm_inject_smi(vcpu);
5869 		break;
5870 	}
5871 	case KVM_SET_CPUID: {
5872 		struct kvm_cpuid __user *cpuid_arg = argp;
5873 		struct kvm_cpuid cpuid;
5874 
5875 		r = -EFAULT;
5876 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5877 			goto out;
5878 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5879 		break;
5880 	}
5881 	case KVM_SET_CPUID2: {
5882 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5883 		struct kvm_cpuid2 cpuid;
5884 
5885 		r = -EFAULT;
5886 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5887 			goto out;
5888 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5889 					      cpuid_arg->entries);
5890 		break;
5891 	}
5892 	case KVM_GET_CPUID2: {
5893 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5894 		struct kvm_cpuid2 cpuid;
5895 
5896 		r = -EFAULT;
5897 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5898 			goto out;
5899 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5900 					      cpuid_arg->entries);
5901 		if (r)
5902 			goto out;
5903 		r = -EFAULT;
5904 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5905 			goto out;
5906 		r = 0;
5907 		break;
5908 	}
5909 	case KVM_GET_MSRS: {
5910 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5911 		r = msr_io(vcpu, argp, do_get_msr, 1);
5912 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5913 		break;
5914 	}
5915 	case KVM_SET_MSRS: {
5916 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5917 		r = msr_io(vcpu, argp, do_set_msr, 0);
5918 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5919 		break;
5920 	}
5921 	case KVM_TPR_ACCESS_REPORTING: {
5922 		struct kvm_tpr_access_ctl tac;
5923 
5924 		r = -EFAULT;
5925 		if (copy_from_user(&tac, argp, sizeof(tac)))
5926 			goto out;
5927 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5928 		if (r)
5929 			goto out;
5930 		r = -EFAULT;
5931 		if (copy_to_user(argp, &tac, sizeof(tac)))
5932 			goto out;
5933 		r = 0;
5934 		break;
5935 	};
5936 	case KVM_SET_VAPIC_ADDR: {
5937 		struct kvm_vapic_addr va;
5938 		int idx;
5939 
5940 		r = -EINVAL;
5941 		if (!lapic_in_kernel(vcpu))
5942 			goto out;
5943 		r = -EFAULT;
5944 		if (copy_from_user(&va, argp, sizeof(va)))
5945 			goto out;
5946 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5947 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5948 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5949 		break;
5950 	}
5951 	case KVM_X86_SETUP_MCE: {
5952 		u64 mcg_cap;
5953 
5954 		r = -EFAULT;
5955 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5956 			goto out;
5957 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5958 		break;
5959 	}
5960 	case KVM_X86_SET_MCE: {
5961 		struct kvm_x86_mce mce;
5962 
5963 		r = -EFAULT;
5964 		if (copy_from_user(&mce, argp, sizeof(mce)))
5965 			goto out;
5966 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5967 		break;
5968 	}
5969 	case KVM_GET_VCPU_EVENTS: {
5970 		struct kvm_vcpu_events events;
5971 
5972 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5973 
5974 		r = -EFAULT;
5975 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5976 			break;
5977 		r = 0;
5978 		break;
5979 	}
5980 	case KVM_SET_VCPU_EVENTS: {
5981 		struct kvm_vcpu_events events;
5982 
5983 		r = -EFAULT;
5984 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5985 			break;
5986 
5987 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5988 		break;
5989 	}
5990 	case KVM_GET_DEBUGREGS: {
5991 		struct kvm_debugregs dbgregs;
5992 
5993 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5994 
5995 		r = -EFAULT;
5996 		if (copy_to_user(argp, &dbgregs,
5997 				 sizeof(struct kvm_debugregs)))
5998 			break;
5999 		r = 0;
6000 		break;
6001 	}
6002 	case KVM_SET_DEBUGREGS: {
6003 		struct kvm_debugregs dbgregs;
6004 
6005 		r = -EFAULT;
6006 		if (copy_from_user(&dbgregs, argp,
6007 				   sizeof(struct kvm_debugregs)))
6008 			break;
6009 
6010 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6011 		break;
6012 	}
6013 	case KVM_GET_XSAVE: {
6014 		r = -EINVAL;
6015 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6016 			break;
6017 
6018 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6019 		r = -ENOMEM;
6020 		if (!u.xsave)
6021 			break;
6022 
6023 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6024 
6025 		r = -EFAULT;
6026 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6027 			break;
6028 		r = 0;
6029 		break;
6030 	}
6031 	case KVM_SET_XSAVE: {
6032 		int size = vcpu->arch.guest_fpu.uabi_size;
6033 
6034 		u.xsave = memdup_user(argp, size);
6035 		if (IS_ERR(u.xsave)) {
6036 			r = PTR_ERR(u.xsave);
6037 			goto out_nofree;
6038 		}
6039 
6040 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6041 		break;
6042 	}
6043 
6044 	case KVM_GET_XSAVE2: {
6045 		int size = vcpu->arch.guest_fpu.uabi_size;
6046 
6047 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6048 		r = -ENOMEM;
6049 		if (!u.xsave)
6050 			break;
6051 
6052 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6053 
6054 		r = -EFAULT;
6055 		if (copy_to_user(argp, u.xsave, size))
6056 			break;
6057 
6058 		r = 0;
6059 		break;
6060 	}
6061 
6062 	case KVM_GET_XCRS: {
6063 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6064 		r = -ENOMEM;
6065 		if (!u.xcrs)
6066 			break;
6067 
6068 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6069 
6070 		r = -EFAULT;
6071 		if (copy_to_user(argp, u.xcrs,
6072 				 sizeof(struct kvm_xcrs)))
6073 			break;
6074 		r = 0;
6075 		break;
6076 	}
6077 	case KVM_SET_XCRS: {
6078 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6079 		if (IS_ERR(u.xcrs)) {
6080 			r = PTR_ERR(u.xcrs);
6081 			goto out_nofree;
6082 		}
6083 
6084 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6085 		break;
6086 	}
6087 	case KVM_SET_TSC_KHZ: {
6088 		u32 user_tsc_khz;
6089 
6090 		r = -EINVAL;
6091 		user_tsc_khz = (u32)arg;
6092 
6093 		if (kvm_caps.has_tsc_control &&
6094 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6095 			goto out;
6096 
6097 		if (user_tsc_khz == 0)
6098 			user_tsc_khz = tsc_khz;
6099 
6100 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6101 			r = 0;
6102 
6103 		goto out;
6104 	}
6105 	case KVM_GET_TSC_KHZ: {
6106 		r = vcpu->arch.virtual_tsc_khz;
6107 		goto out;
6108 	}
6109 	case KVM_KVMCLOCK_CTRL: {
6110 		r = kvm_set_guest_paused(vcpu);
6111 		goto out;
6112 	}
6113 	case KVM_ENABLE_CAP: {
6114 		struct kvm_enable_cap cap;
6115 
6116 		r = -EFAULT;
6117 		if (copy_from_user(&cap, argp, sizeof(cap)))
6118 			goto out;
6119 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6120 		break;
6121 	}
6122 	case KVM_GET_NESTED_STATE: {
6123 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6124 		u32 user_data_size;
6125 
6126 		r = -EINVAL;
6127 		if (!kvm_x86_ops.nested_ops->get_state)
6128 			break;
6129 
6130 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6131 		r = -EFAULT;
6132 		if (get_user(user_data_size, &user_kvm_nested_state->size))
6133 			break;
6134 
6135 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6136 						     user_data_size);
6137 		if (r < 0)
6138 			break;
6139 
6140 		if (r > user_data_size) {
6141 			if (put_user(r, &user_kvm_nested_state->size))
6142 				r = -EFAULT;
6143 			else
6144 				r = -E2BIG;
6145 			break;
6146 		}
6147 
6148 		r = 0;
6149 		break;
6150 	}
6151 	case KVM_SET_NESTED_STATE: {
6152 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6153 		struct kvm_nested_state kvm_state;
6154 		int idx;
6155 
6156 		r = -EINVAL;
6157 		if (!kvm_x86_ops.nested_ops->set_state)
6158 			break;
6159 
6160 		r = -EFAULT;
6161 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6162 			break;
6163 
6164 		r = -EINVAL;
6165 		if (kvm_state.size < sizeof(kvm_state))
6166 			break;
6167 
6168 		if (kvm_state.flags &
6169 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6170 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6171 		      | KVM_STATE_NESTED_GIF_SET))
6172 			break;
6173 
6174 		/* nested_run_pending implies guest_mode.  */
6175 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6176 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6177 			break;
6178 
6179 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6180 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6181 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6182 		break;
6183 	}
6184 #ifdef CONFIG_KVM_HYPERV
6185 	case KVM_GET_SUPPORTED_HV_CPUID:
6186 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6187 		break;
6188 #endif
6189 #ifdef CONFIG_KVM_XEN
6190 	case KVM_XEN_VCPU_GET_ATTR: {
6191 		struct kvm_xen_vcpu_attr xva;
6192 
6193 		r = -EFAULT;
6194 		if (copy_from_user(&xva, argp, sizeof(xva)))
6195 			goto out;
6196 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6197 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6198 			r = -EFAULT;
6199 		break;
6200 	}
6201 	case KVM_XEN_VCPU_SET_ATTR: {
6202 		struct kvm_xen_vcpu_attr xva;
6203 
6204 		r = -EFAULT;
6205 		if (copy_from_user(&xva, argp, sizeof(xva)))
6206 			goto out;
6207 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6208 		break;
6209 	}
6210 #endif
6211 	case KVM_GET_SREGS2: {
6212 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6213 		r = -ENOMEM;
6214 		if (!u.sregs2)
6215 			goto out;
6216 		__get_sregs2(vcpu, u.sregs2);
6217 		r = -EFAULT;
6218 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6219 			goto out;
6220 		r = 0;
6221 		break;
6222 	}
6223 	case KVM_SET_SREGS2: {
6224 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6225 		if (IS_ERR(u.sregs2)) {
6226 			r = PTR_ERR(u.sregs2);
6227 			u.sregs2 = NULL;
6228 			goto out;
6229 		}
6230 		r = __set_sregs2(vcpu, u.sregs2);
6231 		break;
6232 	}
6233 	case KVM_HAS_DEVICE_ATTR:
6234 	case KVM_GET_DEVICE_ATTR:
6235 	case KVM_SET_DEVICE_ATTR:
6236 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6237 		break;
6238 	default:
6239 		r = -EINVAL;
6240 	}
6241 out:
6242 	kfree(u.buffer);
6243 out_nofree:
6244 	vcpu_put(vcpu);
6245 	return r;
6246 }
6247 
6248 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6249 {
6250 	return VM_FAULT_SIGBUS;
6251 }
6252 
6253 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6254 {
6255 	int ret;
6256 
6257 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6258 		return -EINVAL;
6259 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6260 	return ret;
6261 }
6262 
6263 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6264 					      u64 ident_addr)
6265 {
6266 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6267 }
6268 
6269 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6270 					 unsigned long kvm_nr_mmu_pages)
6271 {
6272 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6273 		return -EINVAL;
6274 
6275 	mutex_lock(&kvm->slots_lock);
6276 
6277 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6278 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6279 
6280 	mutex_unlock(&kvm->slots_lock);
6281 	return 0;
6282 }
6283 
6284 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6285 {
6286 	struct kvm_pic *pic = kvm->arch.vpic;
6287 	int r;
6288 
6289 	r = 0;
6290 	switch (chip->chip_id) {
6291 	case KVM_IRQCHIP_PIC_MASTER:
6292 		memcpy(&chip->chip.pic, &pic->pics[0],
6293 			sizeof(struct kvm_pic_state));
6294 		break;
6295 	case KVM_IRQCHIP_PIC_SLAVE:
6296 		memcpy(&chip->chip.pic, &pic->pics[1],
6297 			sizeof(struct kvm_pic_state));
6298 		break;
6299 	case KVM_IRQCHIP_IOAPIC:
6300 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6301 		break;
6302 	default:
6303 		r = -EINVAL;
6304 		break;
6305 	}
6306 	return r;
6307 }
6308 
6309 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6310 {
6311 	struct kvm_pic *pic = kvm->arch.vpic;
6312 	int r;
6313 
6314 	r = 0;
6315 	switch (chip->chip_id) {
6316 	case KVM_IRQCHIP_PIC_MASTER:
6317 		spin_lock(&pic->lock);
6318 		memcpy(&pic->pics[0], &chip->chip.pic,
6319 			sizeof(struct kvm_pic_state));
6320 		spin_unlock(&pic->lock);
6321 		break;
6322 	case KVM_IRQCHIP_PIC_SLAVE:
6323 		spin_lock(&pic->lock);
6324 		memcpy(&pic->pics[1], &chip->chip.pic,
6325 			sizeof(struct kvm_pic_state));
6326 		spin_unlock(&pic->lock);
6327 		break;
6328 	case KVM_IRQCHIP_IOAPIC:
6329 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6330 		break;
6331 	default:
6332 		r = -EINVAL;
6333 		break;
6334 	}
6335 	kvm_pic_update_irq(pic);
6336 	return r;
6337 }
6338 
6339 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6340 {
6341 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6342 
6343 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6344 
6345 	mutex_lock(&kps->lock);
6346 	memcpy(ps, &kps->channels, sizeof(*ps));
6347 	mutex_unlock(&kps->lock);
6348 	return 0;
6349 }
6350 
6351 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6352 {
6353 	int i;
6354 	struct kvm_pit *pit = kvm->arch.vpit;
6355 
6356 	mutex_lock(&pit->pit_state.lock);
6357 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6358 	for (i = 0; i < 3; i++)
6359 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6360 	mutex_unlock(&pit->pit_state.lock);
6361 	return 0;
6362 }
6363 
6364 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6365 {
6366 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6367 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6368 		sizeof(ps->channels));
6369 	ps->flags = kvm->arch.vpit->pit_state.flags;
6370 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6371 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6372 	return 0;
6373 }
6374 
6375 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6376 {
6377 	int start = 0;
6378 	int i;
6379 	u32 prev_legacy, cur_legacy;
6380 	struct kvm_pit *pit = kvm->arch.vpit;
6381 
6382 	mutex_lock(&pit->pit_state.lock);
6383 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6384 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6385 	if (!prev_legacy && cur_legacy)
6386 		start = 1;
6387 	memcpy(&pit->pit_state.channels, &ps->channels,
6388 	       sizeof(pit->pit_state.channels));
6389 	pit->pit_state.flags = ps->flags;
6390 	for (i = 0; i < 3; i++)
6391 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6392 				   start && i == 0);
6393 	mutex_unlock(&pit->pit_state.lock);
6394 	return 0;
6395 }
6396 
6397 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6398 				 struct kvm_reinject_control *control)
6399 {
6400 	struct kvm_pit *pit = kvm->arch.vpit;
6401 
6402 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6403 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6404 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6405 	 */
6406 	mutex_lock(&pit->pit_state.lock);
6407 	kvm_pit_set_reinject(pit, control->pit_reinject);
6408 	mutex_unlock(&pit->pit_state.lock);
6409 
6410 	return 0;
6411 }
6412 
6413 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6414 {
6415 
6416 	/*
6417 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6418 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6419 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6420 	 * VM-Exit.
6421 	 */
6422 	struct kvm_vcpu *vcpu;
6423 	unsigned long i;
6424 
6425 	if (!kvm_x86_ops.cpu_dirty_log_size)
6426 		return;
6427 
6428 	kvm_for_each_vcpu(i, vcpu, kvm)
6429 		kvm_vcpu_kick(vcpu);
6430 }
6431 
6432 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6433 			bool line_status)
6434 {
6435 	if (!irqchip_in_kernel(kvm))
6436 		return -ENXIO;
6437 
6438 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6439 					irq_event->irq, irq_event->level,
6440 					line_status);
6441 	return 0;
6442 }
6443 
6444 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6445 			    struct kvm_enable_cap *cap)
6446 {
6447 	int r;
6448 
6449 	if (cap->flags)
6450 		return -EINVAL;
6451 
6452 	switch (cap->cap) {
6453 	case KVM_CAP_DISABLE_QUIRKS2:
6454 		r = -EINVAL;
6455 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6456 			break;
6457 		fallthrough;
6458 	case KVM_CAP_DISABLE_QUIRKS:
6459 		kvm->arch.disabled_quirks = cap->args[0];
6460 		r = 0;
6461 		break;
6462 	case KVM_CAP_SPLIT_IRQCHIP: {
6463 		mutex_lock(&kvm->lock);
6464 		r = -EINVAL;
6465 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6466 			goto split_irqchip_unlock;
6467 		r = -EEXIST;
6468 		if (irqchip_in_kernel(kvm))
6469 			goto split_irqchip_unlock;
6470 		if (kvm->created_vcpus)
6471 			goto split_irqchip_unlock;
6472 		r = kvm_setup_empty_irq_routing(kvm);
6473 		if (r)
6474 			goto split_irqchip_unlock;
6475 		/* Pairs with irqchip_in_kernel. */
6476 		smp_wmb();
6477 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6478 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6479 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6480 		r = 0;
6481 split_irqchip_unlock:
6482 		mutex_unlock(&kvm->lock);
6483 		break;
6484 	}
6485 	case KVM_CAP_X2APIC_API:
6486 		r = -EINVAL;
6487 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6488 			break;
6489 
6490 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6491 			kvm->arch.x2apic_format = true;
6492 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6493 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6494 
6495 		r = 0;
6496 		break;
6497 	case KVM_CAP_X86_DISABLE_EXITS:
6498 		r = -EINVAL;
6499 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6500 			break;
6501 
6502 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6503 			kvm->arch.pause_in_guest = true;
6504 
6505 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6506 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6507 
6508 		if (!mitigate_smt_rsb) {
6509 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6510 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6511 				pr_warn_once(SMT_RSB_MSG);
6512 
6513 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6514 			    kvm_can_mwait_in_guest())
6515 				kvm->arch.mwait_in_guest = true;
6516 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6517 				kvm->arch.hlt_in_guest = true;
6518 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6519 				kvm->arch.cstate_in_guest = true;
6520 		}
6521 
6522 		r = 0;
6523 		break;
6524 	case KVM_CAP_MSR_PLATFORM_INFO:
6525 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6526 		r = 0;
6527 		break;
6528 	case KVM_CAP_EXCEPTION_PAYLOAD:
6529 		kvm->arch.exception_payload_enabled = cap->args[0];
6530 		r = 0;
6531 		break;
6532 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6533 		kvm->arch.triple_fault_event = cap->args[0];
6534 		r = 0;
6535 		break;
6536 	case KVM_CAP_X86_USER_SPACE_MSR:
6537 		r = -EINVAL;
6538 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6539 			break;
6540 		kvm->arch.user_space_msr_mask = cap->args[0];
6541 		r = 0;
6542 		break;
6543 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6544 		r = -EINVAL;
6545 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6546 			break;
6547 
6548 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6549 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6550 			break;
6551 
6552 		if (kvm_caps.has_bus_lock_exit &&
6553 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6554 			kvm->arch.bus_lock_detection_enabled = true;
6555 		r = 0;
6556 		break;
6557 #ifdef CONFIG_X86_SGX_KVM
6558 	case KVM_CAP_SGX_ATTRIBUTE: {
6559 		unsigned long allowed_attributes = 0;
6560 
6561 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6562 		if (r)
6563 			break;
6564 
6565 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6566 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6567 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6568 			kvm->arch.sgx_provisioning_allowed = true;
6569 		else
6570 			r = -EINVAL;
6571 		break;
6572 	}
6573 #endif
6574 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6575 		r = -EINVAL;
6576 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6577 			break;
6578 
6579 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6580 		break;
6581 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6582 		r = -EINVAL;
6583 		if (!kvm_x86_ops.vm_move_enc_context_from)
6584 			break;
6585 
6586 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6587 		break;
6588 	case KVM_CAP_EXIT_HYPERCALL:
6589 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6590 			r = -EINVAL;
6591 			break;
6592 		}
6593 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6594 		r = 0;
6595 		break;
6596 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6597 		r = -EINVAL;
6598 		if (cap->args[0] & ~1)
6599 			break;
6600 		kvm->arch.exit_on_emulation_error = cap->args[0];
6601 		r = 0;
6602 		break;
6603 	case KVM_CAP_PMU_CAPABILITY:
6604 		r = -EINVAL;
6605 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6606 			break;
6607 
6608 		mutex_lock(&kvm->lock);
6609 		if (!kvm->created_vcpus) {
6610 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6611 			r = 0;
6612 		}
6613 		mutex_unlock(&kvm->lock);
6614 		break;
6615 	case KVM_CAP_MAX_VCPU_ID:
6616 		r = -EINVAL;
6617 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6618 			break;
6619 
6620 		mutex_lock(&kvm->lock);
6621 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6622 			r = 0;
6623 		} else if (!kvm->arch.max_vcpu_ids) {
6624 			kvm->arch.max_vcpu_ids = cap->args[0];
6625 			r = 0;
6626 		}
6627 		mutex_unlock(&kvm->lock);
6628 		break;
6629 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6630 		r = -EINVAL;
6631 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6632 			break;
6633 		if (!kvm_caps.has_notify_vmexit)
6634 			break;
6635 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6636 			break;
6637 		mutex_lock(&kvm->lock);
6638 		if (!kvm->created_vcpus) {
6639 			kvm->arch.notify_window = cap->args[0] >> 32;
6640 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6641 			r = 0;
6642 		}
6643 		mutex_unlock(&kvm->lock);
6644 		break;
6645 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6646 		r = -EINVAL;
6647 
6648 		/*
6649 		 * Since the risk of disabling NX hugepages is a guest crashing
6650 		 * the system, ensure the userspace process has permission to
6651 		 * reboot the system.
6652 		 *
6653 		 * Note that unlike the reboot() syscall, the process must have
6654 		 * this capability in the root namespace because exposing
6655 		 * /dev/kvm into a container does not limit the scope of the
6656 		 * iTLB multihit bug to that container. In other words,
6657 		 * this must use capable(), not ns_capable().
6658 		 */
6659 		if (!capable(CAP_SYS_BOOT)) {
6660 			r = -EPERM;
6661 			break;
6662 		}
6663 
6664 		if (cap->args[0])
6665 			break;
6666 
6667 		mutex_lock(&kvm->lock);
6668 		if (!kvm->created_vcpus) {
6669 			kvm->arch.disable_nx_huge_pages = true;
6670 			r = 0;
6671 		}
6672 		mutex_unlock(&kvm->lock);
6673 		break;
6674 	default:
6675 		r = -EINVAL;
6676 		break;
6677 	}
6678 	return r;
6679 }
6680 
6681 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6682 {
6683 	struct kvm_x86_msr_filter *msr_filter;
6684 
6685 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6686 	if (!msr_filter)
6687 		return NULL;
6688 
6689 	msr_filter->default_allow = default_allow;
6690 	return msr_filter;
6691 }
6692 
6693 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6694 {
6695 	u32 i;
6696 
6697 	if (!msr_filter)
6698 		return;
6699 
6700 	for (i = 0; i < msr_filter->count; i++)
6701 		kfree(msr_filter->ranges[i].bitmap);
6702 
6703 	kfree(msr_filter);
6704 }
6705 
6706 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6707 			      struct kvm_msr_filter_range *user_range)
6708 {
6709 	unsigned long *bitmap;
6710 	size_t bitmap_size;
6711 
6712 	if (!user_range->nmsrs)
6713 		return 0;
6714 
6715 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6716 		return -EINVAL;
6717 
6718 	if (!user_range->flags)
6719 		return -EINVAL;
6720 
6721 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6722 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6723 		return -EINVAL;
6724 
6725 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6726 	if (IS_ERR(bitmap))
6727 		return PTR_ERR(bitmap);
6728 
6729 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6730 		.flags = user_range->flags,
6731 		.base = user_range->base,
6732 		.nmsrs = user_range->nmsrs,
6733 		.bitmap = bitmap,
6734 	};
6735 
6736 	msr_filter->count++;
6737 	return 0;
6738 }
6739 
6740 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6741 				       struct kvm_msr_filter *filter)
6742 {
6743 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6744 	bool default_allow;
6745 	bool empty = true;
6746 	int r;
6747 	u32 i;
6748 
6749 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6750 		return -EINVAL;
6751 
6752 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6753 		empty &= !filter->ranges[i].nmsrs;
6754 
6755 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6756 	if (empty && !default_allow)
6757 		return -EINVAL;
6758 
6759 	new_filter = kvm_alloc_msr_filter(default_allow);
6760 	if (!new_filter)
6761 		return -ENOMEM;
6762 
6763 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6764 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6765 		if (r) {
6766 			kvm_free_msr_filter(new_filter);
6767 			return r;
6768 		}
6769 	}
6770 
6771 	mutex_lock(&kvm->lock);
6772 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6773 					 mutex_is_locked(&kvm->lock));
6774 	mutex_unlock(&kvm->lock);
6775 	synchronize_srcu(&kvm->srcu);
6776 
6777 	kvm_free_msr_filter(old_filter);
6778 
6779 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6780 
6781 	return 0;
6782 }
6783 
6784 #ifdef CONFIG_KVM_COMPAT
6785 /* for KVM_X86_SET_MSR_FILTER */
6786 struct kvm_msr_filter_range_compat {
6787 	__u32 flags;
6788 	__u32 nmsrs;
6789 	__u32 base;
6790 	__u32 bitmap;
6791 };
6792 
6793 struct kvm_msr_filter_compat {
6794 	__u32 flags;
6795 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6796 };
6797 
6798 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6799 
6800 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6801 			      unsigned long arg)
6802 {
6803 	void __user *argp = (void __user *)arg;
6804 	struct kvm *kvm = filp->private_data;
6805 	long r = -ENOTTY;
6806 
6807 	switch (ioctl) {
6808 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6809 		struct kvm_msr_filter __user *user_msr_filter = argp;
6810 		struct kvm_msr_filter_compat filter_compat;
6811 		struct kvm_msr_filter filter;
6812 		int i;
6813 
6814 		if (copy_from_user(&filter_compat, user_msr_filter,
6815 				   sizeof(filter_compat)))
6816 			return -EFAULT;
6817 
6818 		filter.flags = filter_compat.flags;
6819 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6820 			struct kvm_msr_filter_range_compat *cr;
6821 
6822 			cr = &filter_compat.ranges[i];
6823 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6824 				.flags = cr->flags,
6825 				.nmsrs = cr->nmsrs,
6826 				.base = cr->base,
6827 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6828 			};
6829 		}
6830 
6831 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6832 		break;
6833 	}
6834 	}
6835 
6836 	return r;
6837 }
6838 #endif
6839 
6840 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6841 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6842 {
6843 	struct kvm_vcpu *vcpu;
6844 	unsigned long i;
6845 	int ret = 0;
6846 
6847 	mutex_lock(&kvm->lock);
6848 	kvm_for_each_vcpu(i, vcpu, kvm) {
6849 		if (!vcpu->arch.pv_time.active)
6850 			continue;
6851 
6852 		ret = kvm_set_guest_paused(vcpu);
6853 		if (ret) {
6854 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6855 				vcpu->vcpu_id, ret);
6856 			break;
6857 		}
6858 	}
6859 	mutex_unlock(&kvm->lock);
6860 
6861 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6862 }
6863 
6864 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6865 {
6866 	switch (state) {
6867 	case PM_HIBERNATION_PREPARE:
6868 	case PM_SUSPEND_PREPARE:
6869 		return kvm_arch_suspend_notifier(kvm);
6870 	}
6871 
6872 	return NOTIFY_DONE;
6873 }
6874 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6875 
6876 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6877 {
6878 	struct kvm_clock_data data = { 0 };
6879 
6880 	get_kvmclock(kvm, &data);
6881 	if (copy_to_user(argp, &data, sizeof(data)))
6882 		return -EFAULT;
6883 
6884 	return 0;
6885 }
6886 
6887 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6888 {
6889 	struct kvm_arch *ka = &kvm->arch;
6890 	struct kvm_clock_data data;
6891 	u64 now_raw_ns;
6892 
6893 	if (copy_from_user(&data, argp, sizeof(data)))
6894 		return -EFAULT;
6895 
6896 	/*
6897 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6898 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6899 	 */
6900 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6901 		return -EINVAL;
6902 
6903 	kvm_hv_request_tsc_page_update(kvm);
6904 	kvm_start_pvclock_update(kvm);
6905 	pvclock_update_vm_gtod_copy(kvm);
6906 
6907 	/*
6908 	 * This pairs with kvm_guest_time_update(): when masterclock is
6909 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6910 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6911 	 * is slightly ahead) here we risk going negative on unsigned
6912 	 * 'system_time' when 'data.clock' is very small.
6913 	 */
6914 	if (data.flags & KVM_CLOCK_REALTIME) {
6915 		u64 now_real_ns = ktime_get_real_ns();
6916 
6917 		/*
6918 		 * Avoid stepping the kvmclock backwards.
6919 		 */
6920 		if (now_real_ns > data.realtime)
6921 			data.clock += now_real_ns - data.realtime;
6922 	}
6923 
6924 	if (ka->use_master_clock)
6925 		now_raw_ns = ka->master_kernel_ns;
6926 	else
6927 		now_raw_ns = get_kvmclock_base_ns();
6928 	ka->kvmclock_offset = data.clock - now_raw_ns;
6929 	kvm_end_pvclock_update(kvm);
6930 	return 0;
6931 }
6932 
6933 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6934 {
6935 	struct kvm *kvm = filp->private_data;
6936 	void __user *argp = (void __user *)arg;
6937 	int r = -ENOTTY;
6938 	/*
6939 	 * This union makes it completely explicit to gcc-3.x
6940 	 * that these two variables' stack usage should be
6941 	 * combined, not added together.
6942 	 */
6943 	union {
6944 		struct kvm_pit_state ps;
6945 		struct kvm_pit_state2 ps2;
6946 		struct kvm_pit_config pit_config;
6947 	} u;
6948 
6949 	switch (ioctl) {
6950 	case KVM_SET_TSS_ADDR:
6951 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6952 		break;
6953 	case KVM_SET_IDENTITY_MAP_ADDR: {
6954 		u64 ident_addr;
6955 
6956 		mutex_lock(&kvm->lock);
6957 		r = -EINVAL;
6958 		if (kvm->created_vcpus)
6959 			goto set_identity_unlock;
6960 		r = -EFAULT;
6961 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6962 			goto set_identity_unlock;
6963 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6964 set_identity_unlock:
6965 		mutex_unlock(&kvm->lock);
6966 		break;
6967 	}
6968 	case KVM_SET_NR_MMU_PAGES:
6969 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6970 		break;
6971 	case KVM_CREATE_IRQCHIP: {
6972 		mutex_lock(&kvm->lock);
6973 
6974 		r = -EEXIST;
6975 		if (irqchip_in_kernel(kvm))
6976 			goto create_irqchip_unlock;
6977 
6978 		r = -EINVAL;
6979 		if (kvm->created_vcpus)
6980 			goto create_irqchip_unlock;
6981 
6982 		r = kvm_pic_init(kvm);
6983 		if (r)
6984 			goto create_irqchip_unlock;
6985 
6986 		r = kvm_ioapic_init(kvm);
6987 		if (r) {
6988 			kvm_pic_destroy(kvm);
6989 			goto create_irqchip_unlock;
6990 		}
6991 
6992 		r = kvm_setup_default_irq_routing(kvm);
6993 		if (r) {
6994 			kvm_ioapic_destroy(kvm);
6995 			kvm_pic_destroy(kvm);
6996 			goto create_irqchip_unlock;
6997 		}
6998 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6999 		smp_wmb();
7000 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7001 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7002 	create_irqchip_unlock:
7003 		mutex_unlock(&kvm->lock);
7004 		break;
7005 	}
7006 	case KVM_CREATE_PIT:
7007 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7008 		goto create_pit;
7009 	case KVM_CREATE_PIT2:
7010 		r = -EFAULT;
7011 		if (copy_from_user(&u.pit_config, argp,
7012 				   sizeof(struct kvm_pit_config)))
7013 			goto out;
7014 	create_pit:
7015 		mutex_lock(&kvm->lock);
7016 		r = -EEXIST;
7017 		if (kvm->arch.vpit)
7018 			goto create_pit_unlock;
7019 		r = -ENOMEM;
7020 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7021 		if (kvm->arch.vpit)
7022 			r = 0;
7023 	create_pit_unlock:
7024 		mutex_unlock(&kvm->lock);
7025 		break;
7026 	case KVM_GET_IRQCHIP: {
7027 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7028 		struct kvm_irqchip *chip;
7029 
7030 		chip = memdup_user(argp, sizeof(*chip));
7031 		if (IS_ERR(chip)) {
7032 			r = PTR_ERR(chip);
7033 			goto out;
7034 		}
7035 
7036 		r = -ENXIO;
7037 		if (!irqchip_kernel(kvm))
7038 			goto get_irqchip_out;
7039 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7040 		if (r)
7041 			goto get_irqchip_out;
7042 		r = -EFAULT;
7043 		if (copy_to_user(argp, chip, sizeof(*chip)))
7044 			goto get_irqchip_out;
7045 		r = 0;
7046 	get_irqchip_out:
7047 		kfree(chip);
7048 		break;
7049 	}
7050 	case KVM_SET_IRQCHIP: {
7051 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7052 		struct kvm_irqchip *chip;
7053 
7054 		chip = memdup_user(argp, sizeof(*chip));
7055 		if (IS_ERR(chip)) {
7056 			r = PTR_ERR(chip);
7057 			goto out;
7058 		}
7059 
7060 		r = -ENXIO;
7061 		if (!irqchip_kernel(kvm))
7062 			goto set_irqchip_out;
7063 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7064 	set_irqchip_out:
7065 		kfree(chip);
7066 		break;
7067 	}
7068 	case KVM_GET_PIT: {
7069 		r = -EFAULT;
7070 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7071 			goto out;
7072 		r = -ENXIO;
7073 		if (!kvm->arch.vpit)
7074 			goto out;
7075 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7076 		if (r)
7077 			goto out;
7078 		r = -EFAULT;
7079 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7080 			goto out;
7081 		r = 0;
7082 		break;
7083 	}
7084 	case KVM_SET_PIT: {
7085 		r = -EFAULT;
7086 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7087 			goto out;
7088 		mutex_lock(&kvm->lock);
7089 		r = -ENXIO;
7090 		if (!kvm->arch.vpit)
7091 			goto set_pit_out;
7092 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7093 set_pit_out:
7094 		mutex_unlock(&kvm->lock);
7095 		break;
7096 	}
7097 	case KVM_GET_PIT2: {
7098 		r = -ENXIO;
7099 		if (!kvm->arch.vpit)
7100 			goto out;
7101 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7102 		if (r)
7103 			goto out;
7104 		r = -EFAULT;
7105 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7106 			goto out;
7107 		r = 0;
7108 		break;
7109 	}
7110 	case KVM_SET_PIT2: {
7111 		r = -EFAULT;
7112 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7113 			goto out;
7114 		mutex_lock(&kvm->lock);
7115 		r = -ENXIO;
7116 		if (!kvm->arch.vpit)
7117 			goto set_pit2_out;
7118 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7119 set_pit2_out:
7120 		mutex_unlock(&kvm->lock);
7121 		break;
7122 	}
7123 	case KVM_REINJECT_CONTROL: {
7124 		struct kvm_reinject_control control;
7125 		r =  -EFAULT;
7126 		if (copy_from_user(&control, argp, sizeof(control)))
7127 			goto out;
7128 		r = -ENXIO;
7129 		if (!kvm->arch.vpit)
7130 			goto out;
7131 		r = kvm_vm_ioctl_reinject(kvm, &control);
7132 		break;
7133 	}
7134 	case KVM_SET_BOOT_CPU_ID:
7135 		r = 0;
7136 		mutex_lock(&kvm->lock);
7137 		if (kvm->created_vcpus)
7138 			r = -EBUSY;
7139 		else
7140 			kvm->arch.bsp_vcpu_id = arg;
7141 		mutex_unlock(&kvm->lock);
7142 		break;
7143 #ifdef CONFIG_KVM_XEN
7144 	case KVM_XEN_HVM_CONFIG: {
7145 		struct kvm_xen_hvm_config xhc;
7146 		r = -EFAULT;
7147 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7148 			goto out;
7149 		r = kvm_xen_hvm_config(kvm, &xhc);
7150 		break;
7151 	}
7152 	case KVM_XEN_HVM_GET_ATTR: {
7153 		struct kvm_xen_hvm_attr xha;
7154 
7155 		r = -EFAULT;
7156 		if (copy_from_user(&xha, argp, sizeof(xha)))
7157 			goto out;
7158 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7159 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7160 			r = -EFAULT;
7161 		break;
7162 	}
7163 	case KVM_XEN_HVM_SET_ATTR: {
7164 		struct kvm_xen_hvm_attr xha;
7165 
7166 		r = -EFAULT;
7167 		if (copy_from_user(&xha, argp, sizeof(xha)))
7168 			goto out;
7169 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7170 		break;
7171 	}
7172 	case KVM_XEN_HVM_EVTCHN_SEND: {
7173 		struct kvm_irq_routing_xen_evtchn uxe;
7174 
7175 		r = -EFAULT;
7176 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7177 			goto out;
7178 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7179 		break;
7180 	}
7181 #endif
7182 	case KVM_SET_CLOCK:
7183 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7184 		break;
7185 	case KVM_GET_CLOCK:
7186 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7187 		break;
7188 	case KVM_SET_TSC_KHZ: {
7189 		u32 user_tsc_khz;
7190 
7191 		r = -EINVAL;
7192 		user_tsc_khz = (u32)arg;
7193 
7194 		if (kvm_caps.has_tsc_control &&
7195 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7196 			goto out;
7197 
7198 		if (user_tsc_khz == 0)
7199 			user_tsc_khz = tsc_khz;
7200 
7201 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7202 		r = 0;
7203 
7204 		goto out;
7205 	}
7206 	case KVM_GET_TSC_KHZ: {
7207 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7208 		goto out;
7209 	}
7210 	case KVM_MEMORY_ENCRYPT_OP: {
7211 		r = -ENOTTY;
7212 		if (!kvm_x86_ops.mem_enc_ioctl)
7213 			goto out;
7214 
7215 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7216 		break;
7217 	}
7218 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7219 		struct kvm_enc_region region;
7220 
7221 		r = -EFAULT;
7222 		if (copy_from_user(&region, argp, sizeof(region)))
7223 			goto out;
7224 
7225 		r = -ENOTTY;
7226 		if (!kvm_x86_ops.mem_enc_register_region)
7227 			goto out;
7228 
7229 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7230 		break;
7231 	}
7232 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7233 		struct kvm_enc_region region;
7234 
7235 		r = -EFAULT;
7236 		if (copy_from_user(&region, argp, sizeof(region)))
7237 			goto out;
7238 
7239 		r = -ENOTTY;
7240 		if (!kvm_x86_ops.mem_enc_unregister_region)
7241 			goto out;
7242 
7243 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7244 		break;
7245 	}
7246 #ifdef CONFIG_KVM_HYPERV
7247 	case KVM_HYPERV_EVENTFD: {
7248 		struct kvm_hyperv_eventfd hvevfd;
7249 
7250 		r = -EFAULT;
7251 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7252 			goto out;
7253 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7254 		break;
7255 	}
7256 #endif
7257 	case KVM_SET_PMU_EVENT_FILTER:
7258 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7259 		break;
7260 	case KVM_X86_SET_MSR_FILTER: {
7261 		struct kvm_msr_filter __user *user_msr_filter = argp;
7262 		struct kvm_msr_filter filter;
7263 
7264 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7265 			return -EFAULT;
7266 
7267 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7268 		break;
7269 	}
7270 	default:
7271 		r = -ENOTTY;
7272 	}
7273 out:
7274 	return r;
7275 }
7276 
7277 static void kvm_probe_feature_msr(u32 msr_index)
7278 {
7279 	struct kvm_msr_entry msr = {
7280 		.index = msr_index,
7281 	};
7282 
7283 	if (kvm_get_msr_feature(&msr))
7284 		return;
7285 
7286 	msr_based_features[num_msr_based_features++] = msr_index;
7287 }
7288 
7289 static void kvm_probe_msr_to_save(u32 msr_index)
7290 {
7291 	u32 dummy[2];
7292 
7293 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7294 		return;
7295 
7296 	/*
7297 	 * Even MSRs that are valid in the host may not be exposed to guests in
7298 	 * some cases.
7299 	 */
7300 	switch (msr_index) {
7301 	case MSR_IA32_BNDCFGS:
7302 		if (!kvm_mpx_supported())
7303 			return;
7304 		break;
7305 	case MSR_TSC_AUX:
7306 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7307 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7308 			return;
7309 		break;
7310 	case MSR_IA32_UMWAIT_CONTROL:
7311 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7312 			return;
7313 		break;
7314 	case MSR_IA32_RTIT_CTL:
7315 	case MSR_IA32_RTIT_STATUS:
7316 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7317 			return;
7318 		break;
7319 	case MSR_IA32_RTIT_CR3_MATCH:
7320 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7321 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7322 			return;
7323 		break;
7324 	case MSR_IA32_RTIT_OUTPUT_BASE:
7325 	case MSR_IA32_RTIT_OUTPUT_MASK:
7326 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7327 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7328 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7329 			return;
7330 		break;
7331 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7332 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7333 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7334 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7335 			return;
7336 		break;
7337 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7338 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7339 		    kvm_pmu_cap.num_counters_gp)
7340 			return;
7341 		break;
7342 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7343 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7344 		    kvm_pmu_cap.num_counters_gp)
7345 			return;
7346 		break;
7347 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7348 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7349 		    kvm_pmu_cap.num_counters_fixed)
7350 			return;
7351 		break;
7352 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7353 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7354 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7355 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7356 			return;
7357 		break;
7358 	case MSR_IA32_XFD:
7359 	case MSR_IA32_XFD_ERR:
7360 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7361 			return;
7362 		break;
7363 	case MSR_IA32_TSX_CTRL:
7364 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7365 			return;
7366 		break;
7367 	default:
7368 		break;
7369 	}
7370 
7371 	msrs_to_save[num_msrs_to_save++] = msr_index;
7372 }
7373 
7374 static void kvm_init_msr_lists(void)
7375 {
7376 	unsigned i;
7377 
7378 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7379 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7380 
7381 	num_msrs_to_save = 0;
7382 	num_emulated_msrs = 0;
7383 	num_msr_based_features = 0;
7384 
7385 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7386 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7387 
7388 	if (enable_pmu) {
7389 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7390 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7391 	}
7392 
7393 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7394 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7395 			continue;
7396 
7397 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7398 	}
7399 
7400 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7401 		kvm_probe_feature_msr(i);
7402 
7403 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7404 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7405 }
7406 
7407 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7408 			   const void *v)
7409 {
7410 	int handled = 0;
7411 	int n;
7412 
7413 	do {
7414 		n = min(len, 8);
7415 		if (!(lapic_in_kernel(vcpu) &&
7416 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7417 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7418 			break;
7419 		handled += n;
7420 		addr += n;
7421 		len -= n;
7422 		v += n;
7423 	} while (len);
7424 
7425 	return handled;
7426 }
7427 
7428 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7429 {
7430 	int handled = 0;
7431 	int n;
7432 
7433 	do {
7434 		n = min(len, 8);
7435 		if (!(lapic_in_kernel(vcpu) &&
7436 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7437 					 addr, n, v))
7438 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7439 			break;
7440 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7441 		handled += n;
7442 		addr += n;
7443 		len -= n;
7444 		v += n;
7445 	} while (len);
7446 
7447 	return handled;
7448 }
7449 
7450 void kvm_set_segment(struct kvm_vcpu *vcpu,
7451 		     struct kvm_segment *var, int seg)
7452 {
7453 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7454 }
7455 
7456 void kvm_get_segment(struct kvm_vcpu *vcpu,
7457 		     struct kvm_segment *var, int seg)
7458 {
7459 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7460 }
7461 
7462 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7463 			   struct x86_exception *exception)
7464 {
7465 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7466 	gpa_t t_gpa;
7467 
7468 	BUG_ON(!mmu_is_nested(vcpu));
7469 
7470 	/* NPT walks are always user-walks */
7471 	access |= PFERR_USER_MASK;
7472 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7473 
7474 	return t_gpa;
7475 }
7476 
7477 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7478 			      struct x86_exception *exception)
7479 {
7480 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7481 
7482 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7483 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7484 }
7485 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7486 
7487 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7488 			       struct x86_exception *exception)
7489 {
7490 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7491 
7492 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7493 	access |= PFERR_WRITE_MASK;
7494 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7495 }
7496 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7497 
7498 /* uses this to access any guest's mapped memory without checking CPL */
7499 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7500 				struct x86_exception *exception)
7501 {
7502 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7503 
7504 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7505 }
7506 
7507 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7508 				      struct kvm_vcpu *vcpu, u64 access,
7509 				      struct x86_exception *exception)
7510 {
7511 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7512 	void *data = val;
7513 	int r = X86EMUL_CONTINUE;
7514 
7515 	while (bytes) {
7516 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7517 		unsigned offset = addr & (PAGE_SIZE-1);
7518 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7519 		int ret;
7520 
7521 		if (gpa == INVALID_GPA)
7522 			return X86EMUL_PROPAGATE_FAULT;
7523 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7524 					       offset, toread);
7525 		if (ret < 0) {
7526 			r = X86EMUL_IO_NEEDED;
7527 			goto out;
7528 		}
7529 
7530 		bytes -= toread;
7531 		data += toread;
7532 		addr += toread;
7533 	}
7534 out:
7535 	return r;
7536 }
7537 
7538 /* used for instruction fetching */
7539 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7540 				gva_t addr, void *val, unsigned int bytes,
7541 				struct x86_exception *exception)
7542 {
7543 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7544 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7545 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7546 	unsigned offset;
7547 	int ret;
7548 
7549 	/* Inline kvm_read_guest_virt_helper for speed.  */
7550 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7551 				    exception);
7552 	if (unlikely(gpa == INVALID_GPA))
7553 		return X86EMUL_PROPAGATE_FAULT;
7554 
7555 	offset = addr & (PAGE_SIZE-1);
7556 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7557 		bytes = (unsigned)PAGE_SIZE - offset;
7558 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7559 				       offset, bytes);
7560 	if (unlikely(ret < 0))
7561 		return X86EMUL_IO_NEEDED;
7562 
7563 	return X86EMUL_CONTINUE;
7564 }
7565 
7566 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7567 			       gva_t addr, void *val, unsigned int bytes,
7568 			       struct x86_exception *exception)
7569 {
7570 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7571 
7572 	/*
7573 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7574 	 * is returned, but our callers are not ready for that and they blindly
7575 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7576 	 * uninitialized kernel stack memory into cr2 and error code.
7577 	 */
7578 	memset(exception, 0, sizeof(*exception));
7579 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7580 					  exception);
7581 }
7582 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7583 
7584 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7585 			     gva_t addr, void *val, unsigned int bytes,
7586 			     struct x86_exception *exception, bool system)
7587 {
7588 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7589 	u64 access = 0;
7590 
7591 	if (system)
7592 		access |= PFERR_IMPLICIT_ACCESS;
7593 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7594 		access |= PFERR_USER_MASK;
7595 
7596 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7597 }
7598 
7599 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7600 				      struct kvm_vcpu *vcpu, u64 access,
7601 				      struct x86_exception *exception)
7602 {
7603 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7604 	void *data = val;
7605 	int r = X86EMUL_CONTINUE;
7606 
7607 	while (bytes) {
7608 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7609 		unsigned offset = addr & (PAGE_SIZE-1);
7610 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7611 		int ret;
7612 
7613 		if (gpa == INVALID_GPA)
7614 			return X86EMUL_PROPAGATE_FAULT;
7615 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7616 		if (ret < 0) {
7617 			r = X86EMUL_IO_NEEDED;
7618 			goto out;
7619 		}
7620 
7621 		bytes -= towrite;
7622 		data += towrite;
7623 		addr += towrite;
7624 	}
7625 out:
7626 	return r;
7627 }
7628 
7629 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7630 			      unsigned int bytes, struct x86_exception *exception,
7631 			      bool system)
7632 {
7633 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7634 	u64 access = PFERR_WRITE_MASK;
7635 
7636 	if (system)
7637 		access |= PFERR_IMPLICIT_ACCESS;
7638 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7639 		access |= PFERR_USER_MASK;
7640 
7641 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7642 					   access, exception);
7643 }
7644 
7645 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7646 				unsigned int bytes, struct x86_exception *exception)
7647 {
7648 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7649 	vcpu->arch.l1tf_flush_l1d = true;
7650 
7651 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7652 					   PFERR_WRITE_MASK, exception);
7653 }
7654 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7655 
7656 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7657 				  void *insn, int insn_len)
7658 {
7659 	return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7660 							      insn, insn_len);
7661 }
7662 
7663 int handle_ud(struct kvm_vcpu *vcpu)
7664 {
7665 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7666 	int fep_flags = READ_ONCE(force_emulation_prefix);
7667 	int emul_type = EMULTYPE_TRAP_UD;
7668 	char sig[5]; /* ud2; .ascii "kvm" */
7669 	struct x86_exception e;
7670 	int r;
7671 
7672 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7673 	if (r != X86EMUL_CONTINUE)
7674 		return 1;
7675 
7676 	if (fep_flags &&
7677 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7678 				sig, sizeof(sig), &e) == 0 &&
7679 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7680 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7681 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7682 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7683 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7684 	}
7685 
7686 	return kvm_emulate_instruction(vcpu, emul_type);
7687 }
7688 EXPORT_SYMBOL_GPL(handle_ud);
7689 
7690 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7691 			    gpa_t gpa, bool write)
7692 {
7693 	/* For APIC access vmexit */
7694 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7695 		return 1;
7696 
7697 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7698 		trace_vcpu_match_mmio(gva, gpa, write, true);
7699 		return 1;
7700 	}
7701 
7702 	return 0;
7703 }
7704 
7705 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7706 				gpa_t *gpa, struct x86_exception *exception,
7707 				bool write)
7708 {
7709 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7710 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7711 		| (write ? PFERR_WRITE_MASK : 0);
7712 
7713 	/*
7714 	 * currently PKRU is only applied to ept enabled guest so
7715 	 * there is no pkey in EPT page table for L1 guest or EPT
7716 	 * shadow page table for L2 guest.
7717 	 */
7718 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7719 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7720 			      vcpu->arch.mmio_access, 0, access))) {
7721 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7722 					(gva & (PAGE_SIZE - 1));
7723 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7724 		return 1;
7725 	}
7726 
7727 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7728 
7729 	if (*gpa == INVALID_GPA)
7730 		return -1;
7731 
7732 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7733 }
7734 
7735 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7736 			const void *val, int bytes)
7737 {
7738 	int ret;
7739 
7740 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7741 	if (ret < 0)
7742 		return 0;
7743 	kvm_page_track_write(vcpu, gpa, val, bytes);
7744 	return 1;
7745 }
7746 
7747 struct read_write_emulator_ops {
7748 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7749 				  int bytes);
7750 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7751 				  void *val, int bytes);
7752 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7753 			       int bytes, void *val);
7754 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7755 				    void *val, int bytes);
7756 	bool write;
7757 };
7758 
7759 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7760 {
7761 	if (vcpu->mmio_read_completed) {
7762 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7763 			       vcpu->mmio_fragments[0].gpa, val);
7764 		vcpu->mmio_read_completed = 0;
7765 		return 1;
7766 	}
7767 
7768 	return 0;
7769 }
7770 
7771 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7772 			void *val, int bytes)
7773 {
7774 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7775 }
7776 
7777 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7778 			 void *val, int bytes)
7779 {
7780 	return emulator_write_phys(vcpu, gpa, val, bytes);
7781 }
7782 
7783 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7784 {
7785 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7786 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7787 }
7788 
7789 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7790 			  void *val, int bytes)
7791 {
7792 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7793 	return X86EMUL_IO_NEEDED;
7794 }
7795 
7796 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7797 			   void *val, int bytes)
7798 {
7799 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7800 
7801 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7802 	return X86EMUL_CONTINUE;
7803 }
7804 
7805 static const struct read_write_emulator_ops read_emultor = {
7806 	.read_write_prepare = read_prepare,
7807 	.read_write_emulate = read_emulate,
7808 	.read_write_mmio = vcpu_mmio_read,
7809 	.read_write_exit_mmio = read_exit_mmio,
7810 };
7811 
7812 static const struct read_write_emulator_ops write_emultor = {
7813 	.read_write_emulate = write_emulate,
7814 	.read_write_mmio = write_mmio,
7815 	.read_write_exit_mmio = write_exit_mmio,
7816 	.write = true,
7817 };
7818 
7819 static int emulator_read_write_onepage(unsigned long addr, void *val,
7820 				       unsigned int bytes,
7821 				       struct x86_exception *exception,
7822 				       struct kvm_vcpu *vcpu,
7823 				       const struct read_write_emulator_ops *ops)
7824 {
7825 	gpa_t gpa;
7826 	int handled, ret;
7827 	bool write = ops->write;
7828 	struct kvm_mmio_fragment *frag;
7829 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7830 
7831 	/*
7832 	 * If the exit was due to a NPF we may already have a GPA.
7833 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7834 	 * Note, this cannot be used on string operations since string
7835 	 * operation using rep will only have the initial GPA from the NPF
7836 	 * occurred.
7837 	 */
7838 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7839 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7840 		gpa = ctxt->gpa_val;
7841 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7842 	} else {
7843 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7844 		if (ret < 0)
7845 			return X86EMUL_PROPAGATE_FAULT;
7846 	}
7847 
7848 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7849 		return X86EMUL_CONTINUE;
7850 
7851 	/*
7852 	 * Is this MMIO handled locally?
7853 	 */
7854 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7855 	if (handled == bytes)
7856 		return X86EMUL_CONTINUE;
7857 
7858 	gpa += handled;
7859 	bytes -= handled;
7860 	val += handled;
7861 
7862 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7863 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7864 	frag->gpa = gpa;
7865 	frag->data = val;
7866 	frag->len = bytes;
7867 	return X86EMUL_CONTINUE;
7868 }
7869 
7870 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7871 			unsigned long addr,
7872 			void *val, unsigned int bytes,
7873 			struct x86_exception *exception,
7874 			const struct read_write_emulator_ops *ops)
7875 {
7876 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7877 	gpa_t gpa;
7878 	int rc;
7879 
7880 	if (ops->read_write_prepare &&
7881 		  ops->read_write_prepare(vcpu, val, bytes))
7882 		return X86EMUL_CONTINUE;
7883 
7884 	vcpu->mmio_nr_fragments = 0;
7885 
7886 	/* Crossing a page boundary? */
7887 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7888 		int now;
7889 
7890 		now = -addr & ~PAGE_MASK;
7891 		rc = emulator_read_write_onepage(addr, val, now, exception,
7892 						 vcpu, ops);
7893 
7894 		if (rc != X86EMUL_CONTINUE)
7895 			return rc;
7896 		addr += now;
7897 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7898 			addr = (u32)addr;
7899 		val += now;
7900 		bytes -= now;
7901 	}
7902 
7903 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7904 					 vcpu, ops);
7905 	if (rc != X86EMUL_CONTINUE)
7906 		return rc;
7907 
7908 	if (!vcpu->mmio_nr_fragments)
7909 		return rc;
7910 
7911 	gpa = vcpu->mmio_fragments[0].gpa;
7912 
7913 	vcpu->mmio_needed = 1;
7914 	vcpu->mmio_cur_fragment = 0;
7915 
7916 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7917 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7918 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7919 	vcpu->run->mmio.phys_addr = gpa;
7920 
7921 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7922 }
7923 
7924 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7925 				  unsigned long addr,
7926 				  void *val,
7927 				  unsigned int bytes,
7928 				  struct x86_exception *exception)
7929 {
7930 	return emulator_read_write(ctxt, addr, val, bytes,
7931 				   exception, &read_emultor);
7932 }
7933 
7934 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7935 			    unsigned long addr,
7936 			    const void *val,
7937 			    unsigned int bytes,
7938 			    struct x86_exception *exception)
7939 {
7940 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7941 				   exception, &write_emultor);
7942 }
7943 
7944 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7945 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7946 
7947 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7948 				     unsigned long addr,
7949 				     const void *old,
7950 				     const void *new,
7951 				     unsigned int bytes,
7952 				     struct x86_exception *exception)
7953 {
7954 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7955 	u64 page_line_mask;
7956 	unsigned long hva;
7957 	gpa_t gpa;
7958 	int r;
7959 
7960 	/* guests cmpxchg8b have to be emulated atomically */
7961 	if (bytes > 8 || (bytes & (bytes - 1)))
7962 		goto emul_write;
7963 
7964 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7965 
7966 	if (gpa == INVALID_GPA ||
7967 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7968 		goto emul_write;
7969 
7970 	/*
7971 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7972 	 * enabled in the host and the access splits a cache line.
7973 	 */
7974 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7975 		page_line_mask = ~(cache_line_size() - 1);
7976 	else
7977 		page_line_mask = PAGE_MASK;
7978 
7979 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7980 		goto emul_write;
7981 
7982 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7983 	if (kvm_is_error_hva(hva))
7984 		goto emul_write;
7985 
7986 	hva += offset_in_page(gpa);
7987 
7988 	switch (bytes) {
7989 	case 1:
7990 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7991 		break;
7992 	case 2:
7993 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7994 		break;
7995 	case 4:
7996 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7997 		break;
7998 	case 8:
7999 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8000 		break;
8001 	default:
8002 		BUG();
8003 	}
8004 
8005 	if (r < 0)
8006 		return X86EMUL_UNHANDLEABLE;
8007 	if (r)
8008 		return X86EMUL_CMPXCHG_FAILED;
8009 
8010 	kvm_page_track_write(vcpu, gpa, new, bytes);
8011 
8012 	return X86EMUL_CONTINUE;
8013 
8014 emul_write:
8015 	pr_warn_once("emulating exchange as write\n");
8016 
8017 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8018 }
8019 
8020 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8021 			       unsigned short port, void *data,
8022 			       unsigned int count, bool in)
8023 {
8024 	unsigned i;
8025 	int r;
8026 
8027 	WARN_ON_ONCE(vcpu->arch.pio.count);
8028 	for (i = 0; i < count; i++) {
8029 		if (in)
8030 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8031 		else
8032 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8033 
8034 		if (r) {
8035 			if (i == 0)
8036 				goto userspace_io;
8037 
8038 			/*
8039 			 * Userspace must have unregistered the device while PIO
8040 			 * was running.  Drop writes / read as 0.
8041 			 */
8042 			if (in)
8043 				memset(data, 0, size * (count - i));
8044 			break;
8045 		}
8046 
8047 		data += size;
8048 	}
8049 	return 1;
8050 
8051 userspace_io:
8052 	vcpu->arch.pio.port = port;
8053 	vcpu->arch.pio.in = in;
8054 	vcpu->arch.pio.count = count;
8055 	vcpu->arch.pio.size = size;
8056 
8057 	if (in)
8058 		memset(vcpu->arch.pio_data, 0, size * count);
8059 	else
8060 		memcpy(vcpu->arch.pio_data, data, size * count);
8061 
8062 	vcpu->run->exit_reason = KVM_EXIT_IO;
8063 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8064 	vcpu->run->io.size = size;
8065 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8066 	vcpu->run->io.count = count;
8067 	vcpu->run->io.port = port;
8068 	return 0;
8069 }
8070 
8071 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8072       			   unsigned short port, void *val, unsigned int count)
8073 {
8074 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8075 	if (r)
8076 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8077 
8078 	return r;
8079 }
8080 
8081 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8082 {
8083 	int size = vcpu->arch.pio.size;
8084 	unsigned int count = vcpu->arch.pio.count;
8085 	memcpy(val, vcpu->arch.pio_data, size * count);
8086 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8087 	vcpu->arch.pio.count = 0;
8088 }
8089 
8090 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8091 				    int size, unsigned short port, void *val,
8092 				    unsigned int count)
8093 {
8094 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8095 	if (vcpu->arch.pio.count) {
8096 		/*
8097 		 * Complete a previous iteration that required userspace I/O.
8098 		 * Note, @count isn't guaranteed to match pio.count as userspace
8099 		 * can modify ECX before rerunning the vCPU.  Ignore any such
8100 		 * shenanigans as KVM doesn't support modifying the rep count,
8101 		 * and the emulator ensures @count doesn't overflow the buffer.
8102 		 */
8103 		complete_emulator_pio_in(vcpu, val);
8104 		return 1;
8105 	}
8106 
8107 	return emulator_pio_in(vcpu, size, port, val, count);
8108 }
8109 
8110 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8111 			    unsigned short port, const void *val,
8112 			    unsigned int count)
8113 {
8114 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8115 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8116 }
8117 
8118 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8119 				     int size, unsigned short port,
8120 				     const void *val, unsigned int count)
8121 {
8122 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8123 }
8124 
8125 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8126 {
8127 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8128 }
8129 
8130 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8131 {
8132 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8133 }
8134 
8135 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8136 {
8137 	if (!need_emulate_wbinvd(vcpu))
8138 		return X86EMUL_CONTINUE;
8139 
8140 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
8141 		int cpu = get_cpu();
8142 
8143 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8144 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8145 				wbinvd_ipi, NULL, 1);
8146 		put_cpu();
8147 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8148 	} else
8149 		wbinvd();
8150 	return X86EMUL_CONTINUE;
8151 }
8152 
8153 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8154 {
8155 	kvm_emulate_wbinvd_noskip(vcpu);
8156 	return kvm_skip_emulated_instruction(vcpu);
8157 }
8158 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8159 
8160 
8161 
8162 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8163 {
8164 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8165 }
8166 
8167 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8168 			    unsigned long *dest)
8169 {
8170 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8171 }
8172 
8173 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8174 			   unsigned long value)
8175 {
8176 
8177 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8178 }
8179 
8180 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8181 {
8182 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8183 }
8184 
8185 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8186 {
8187 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8188 	unsigned long value;
8189 
8190 	switch (cr) {
8191 	case 0:
8192 		value = kvm_read_cr0(vcpu);
8193 		break;
8194 	case 2:
8195 		value = vcpu->arch.cr2;
8196 		break;
8197 	case 3:
8198 		value = kvm_read_cr3(vcpu);
8199 		break;
8200 	case 4:
8201 		value = kvm_read_cr4(vcpu);
8202 		break;
8203 	case 8:
8204 		value = kvm_get_cr8(vcpu);
8205 		break;
8206 	default:
8207 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8208 		return 0;
8209 	}
8210 
8211 	return value;
8212 }
8213 
8214 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8215 {
8216 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8217 	int res = 0;
8218 
8219 	switch (cr) {
8220 	case 0:
8221 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8222 		break;
8223 	case 2:
8224 		vcpu->arch.cr2 = val;
8225 		break;
8226 	case 3:
8227 		res = kvm_set_cr3(vcpu, val);
8228 		break;
8229 	case 4:
8230 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8231 		break;
8232 	case 8:
8233 		res = kvm_set_cr8(vcpu, val);
8234 		break;
8235 	default:
8236 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8237 		res = -1;
8238 	}
8239 
8240 	return res;
8241 }
8242 
8243 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8244 {
8245 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8246 }
8247 
8248 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8249 {
8250 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8251 }
8252 
8253 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8254 {
8255 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8256 }
8257 
8258 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8259 {
8260 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8261 }
8262 
8263 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8264 {
8265 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8266 }
8267 
8268 static unsigned long emulator_get_cached_segment_base(
8269 	struct x86_emulate_ctxt *ctxt, int seg)
8270 {
8271 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8272 }
8273 
8274 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8275 				 struct desc_struct *desc, u32 *base3,
8276 				 int seg)
8277 {
8278 	struct kvm_segment var;
8279 
8280 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8281 	*selector = var.selector;
8282 
8283 	if (var.unusable) {
8284 		memset(desc, 0, sizeof(*desc));
8285 		if (base3)
8286 			*base3 = 0;
8287 		return false;
8288 	}
8289 
8290 	if (var.g)
8291 		var.limit >>= 12;
8292 	set_desc_limit(desc, var.limit);
8293 	set_desc_base(desc, (unsigned long)var.base);
8294 #ifdef CONFIG_X86_64
8295 	if (base3)
8296 		*base3 = var.base >> 32;
8297 #endif
8298 	desc->type = var.type;
8299 	desc->s = var.s;
8300 	desc->dpl = var.dpl;
8301 	desc->p = var.present;
8302 	desc->avl = var.avl;
8303 	desc->l = var.l;
8304 	desc->d = var.db;
8305 	desc->g = var.g;
8306 
8307 	return true;
8308 }
8309 
8310 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8311 				 struct desc_struct *desc, u32 base3,
8312 				 int seg)
8313 {
8314 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8315 	struct kvm_segment var;
8316 
8317 	var.selector = selector;
8318 	var.base = get_desc_base(desc);
8319 #ifdef CONFIG_X86_64
8320 	var.base |= ((u64)base3) << 32;
8321 #endif
8322 	var.limit = get_desc_limit(desc);
8323 	if (desc->g)
8324 		var.limit = (var.limit << 12) | 0xfff;
8325 	var.type = desc->type;
8326 	var.dpl = desc->dpl;
8327 	var.db = desc->d;
8328 	var.s = desc->s;
8329 	var.l = desc->l;
8330 	var.g = desc->g;
8331 	var.avl = desc->avl;
8332 	var.present = desc->p;
8333 	var.unusable = !var.present;
8334 	var.padding = 0;
8335 
8336 	kvm_set_segment(vcpu, &var, seg);
8337 	return;
8338 }
8339 
8340 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8341 					u32 msr_index, u64 *pdata)
8342 {
8343 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8344 	int r;
8345 
8346 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8347 	if (r < 0)
8348 		return X86EMUL_UNHANDLEABLE;
8349 
8350 	if (r) {
8351 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8352 				       complete_emulated_rdmsr, r))
8353 			return X86EMUL_IO_NEEDED;
8354 
8355 		trace_kvm_msr_read_ex(msr_index);
8356 		return X86EMUL_PROPAGATE_FAULT;
8357 	}
8358 
8359 	trace_kvm_msr_read(msr_index, *pdata);
8360 	return X86EMUL_CONTINUE;
8361 }
8362 
8363 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8364 					u32 msr_index, u64 data)
8365 {
8366 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8367 	int r;
8368 
8369 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8370 	if (r < 0)
8371 		return X86EMUL_UNHANDLEABLE;
8372 
8373 	if (r) {
8374 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8375 				       complete_emulated_msr_access, r))
8376 			return X86EMUL_IO_NEEDED;
8377 
8378 		trace_kvm_msr_write_ex(msr_index, data);
8379 		return X86EMUL_PROPAGATE_FAULT;
8380 	}
8381 
8382 	trace_kvm_msr_write(msr_index, data);
8383 	return X86EMUL_CONTINUE;
8384 }
8385 
8386 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8387 			    u32 msr_index, u64 *pdata)
8388 {
8389 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8390 }
8391 
8392 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8393 			      u32 pmc)
8394 {
8395 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8396 		return 0;
8397 	return -EINVAL;
8398 }
8399 
8400 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8401 			     u32 pmc, u64 *pdata)
8402 {
8403 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8404 }
8405 
8406 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8407 {
8408 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8409 }
8410 
8411 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8412 			      struct x86_instruction_info *info,
8413 			      enum x86_intercept_stage stage)
8414 {
8415 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8416 					    &ctxt->exception);
8417 }
8418 
8419 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8420 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8421 			      bool exact_only)
8422 {
8423 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8424 }
8425 
8426 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8427 {
8428 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8429 }
8430 
8431 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8432 {
8433 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8434 }
8435 
8436 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8437 {
8438 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8439 }
8440 
8441 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8442 {
8443 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8444 }
8445 
8446 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8447 {
8448 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8449 }
8450 
8451 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8452 {
8453 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8454 }
8455 
8456 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8457 {
8458 	return is_smm(emul_to_vcpu(ctxt));
8459 }
8460 
8461 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8462 {
8463 	return is_guest_mode(emul_to_vcpu(ctxt));
8464 }
8465 
8466 #ifndef CONFIG_KVM_SMM
8467 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8468 {
8469 	WARN_ON_ONCE(1);
8470 	return X86EMUL_UNHANDLEABLE;
8471 }
8472 #endif
8473 
8474 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8475 {
8476 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8477 }
8478 
8479 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8480 {
8481 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8482 }
8483 
8484 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8485 {
8486 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8487 
8488 	if (!kvm->vm_bugged)
8489 		kvm_vm_bugged(kvm);
8490 }
8491 
8492 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8493 					gva_t addr, unsigned int flags)
8494 {
8495 	if (!kvm_x86_ops.get_untagged_addr)
8496 		return addr;
8497 
8498 	return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8499 }
8500 
8501 static const struct x86_emulate_ops emulate_ops = {
8502 	.vm_bugged           = emulator_vm_bugged,
8503 	.read_gpr            = emulator_read_gpr,
8504 	.write_gpr           = emulator_write_gpr,
8505 	.read_std            = emulator_read_std,
8506 	.write_std           = emulator_write_std,
8507 	.fetch               = kvm_fetch_guest_virt,
8508 	.read_emulated       = emulator_read_emulated,
8509 	.write_emulated      = emulator_write_emulated,
8510 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8511 	.invlpg              = emulator_invlpg,
8512 	.pio_in_emulated     = emulator_pio_in_emulated,
8513 	.pio_out_emulated    = emulator_pio_out_emulated,
8514 	.get_segment         = emulator_get_segment,
8515 	.set_segment         = emulator_set_segment,
8516 	.get_cached_segment_base = emulator_get_cached_segment_base,
8517 	.get_gdt             = emulator_get_gdt,
8518 	.get_idt	     = emulator_get_idt,
8519 	.set_gdt             = emulator_set_gdt,
8520 	.set_idt	     = emulator_set_idt,
8521 	.get_cr              = emulator_get_cr,
8522 	.set_cr              = emulator_set_cr,
8523 	.cpl                 = emulator_get_cpl,
8524 	.get_dr              = emulator_get_dr,
8525 	.set_dr              = emulator_set_dr,
8526 	.set_msr_with_filter = emulator_set_msr_with_filter,
8527 	.get_msr_with_filter = emulator_get_msr_with_filter,
8528 	.get_msr             = emulator_get_msr,
8529 	.check_pmc	     = emulator_check_pmc,
8530 	.read_pmc            = emulator_read_pmc,
8531 	.halt                = emulator_halt,
8532 	.wbinvd              = emulator_wbinvd,
8533 	.fix_hypercall       = emulator_fix_hypercall,
8534 	.intercept           = emulator_intercept,
8535 	.get_cpuid           = emulator_get_cpuid,
8536 	.guest_has_movbe     = emulator_guest_has_movbe,
8537 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8538 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8539 	.set_nmi_mask        = emulator_set_nmi_mask,
8540 	.is_smm              = emulator_is_smm,
8541 	.is_guest_mode       = emulator_is_guest_mode,
8542 	.leave_smm           = emulator_leave_smm,
8543 	.triple_fault        = emulator_triple_fault,
8544 	.set_xcr             = emulator_set_xcr,
8545 	.get_untagged_addr   = emulator_get_untagged_addr,
8546 };
8547 
8548 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8549 {
8550 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8551 	/*
8552 	 * an sti; sti; sequence only disable interrupts for the first
8553 	 * instruction. So, if the last instruction, be it emulated or
8554 	 * not, left the system with the INT_STI flag enabled, it
8555 	 * means that the last instruction is an sti. We should not
8556 	 * leave the flag on in this case. The same goes for mov ss
8557 	 */
8558 	if (int_shadow & mask)
8559 		mask = 0;
8560 	if (unlikely(int_shadow || mask)) {
8561 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8562 		if (!mask)
8563 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8564 	}
8565 }
8566 
8567 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8568 {
8569 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8570 
8571 	if (ctxt->exception.vector == PF_VECTOR)
8572 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8573 	else if (ctxt->exception.error_code_valid)
8574 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8575 				      ctxt->exception.error_code);
8576 	else
8577 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8578 }
8579 
8580 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8581 {
8582 	struct x86_emulate_ctxt *ctxt;
8583 
8584 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8585 	if (!ctxt) {
8586 		pr_err("failed to allocate vcpu's emulator\n");
8587 		return NULL;
8588 	}
8589 
8590 	ctxt->vcpu = vcpu;
8591 	ctxt->ops = &emulate_ops;
8592 	vcpu->arch.emulate_ctxt = ctxt;
8593 
8594 	return ctxt;
8595 }
8596 
8597 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8598 {
8599 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8600 	int cs_db, cs_l;
8601 
8602 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8603 
8604 	ctxt->gpa_available = false;
8605 	ctxt->eflags = kvm_get_rflags(vcpu);
8606 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8607 
8608 	ctxt->eip = kvm_rip_read(vcpu);
8609 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8610 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8611 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8612 		     cs_db				? X86EMUL_MODE_PROT32 :
8613 							  X86EMUL_MODE_PROT16;
8614 	ctxt->interruptibility = 0;
8615 	ctxt->have_exception = false;
8616 	ctxt->exception.vector = -1;
8617 	ctxt->perm_ok = false;
8618 
8619 	init_decode_cache(ctxt);
8620 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8621 }
8622 
8623 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8624 {
8625 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8626 	int ret;
8627 
8628 	init_emulate_ctxt(vcpu);
8629 
8630 	ctxt->op_bytes = 2;
8631 	ctxt->ad_bytes = 2;
8632 	ctxt->_eip = ctxt->eip + inc_eip;
8633 	ret = emulate_int_real(ctxt, irq);
8634 
8635 	if (ret != X86EMUL_CONTINUE) {
8636 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8637 	} else {
8638 		ctxt->eip = ctxt->_eip;
8639 		kvm_rip_write(vcpu, ctxt->eip);
8640 		kvm_set_rflags(vcpu, ctxt->eflags);
8641 	}
8642 }
8643 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8644 
8645 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8646 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8647 {
8648 	struct kvm_run *run = vcpu->run;
8649 	u64 info[5];
8650 	u8 info_start;
8651 
8652 	/*
8653 	 * Zero the whole array used to retrieve the exit info, as casting to
8654 	 * u32 for select entries will leave some chunks uninitialized.
8655 	 */
8656 	memset(&info, 0, sizeof(info));
8657 
8658 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8659 					   &info[2], (u32 *)&info[3],
8660 					   (u32 *)&info[4]);
8661 
8662 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8663 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8664 
8665 	/*
8666 	 * There's currently space for 13 entries, but 5 are used for the exit
8667 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8668 	 * when expanding kvm_run.emulation_failure in the future.
8669 	 */
8670 	if (WARN_ON_ONCE(ndata > 4))
8671 		ndata = 4;
8672 
8673 	/* Always include the flags as a 'data' entry. */
8674 	info_start = 1;
8675 	run->emulation_failure.flags = 0;
8676 
8677 	if (insn_size) {
8678 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8679 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8680 		info_start += 2;
8681 		run->emulation_failure.flags |=
8682 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8683 		run->emulation_failure.insn_size = insn_size;
8684 		memset(run->emulation_failure.insn_bytes, 0x90,
8685 		       sizeof(run->emulation_failure.insn_bytes));
8686 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8687 	}
8688 
8689 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8690 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8691 	       ndata * sizeof(data[0]));
8692 
8693 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8694 }
8695 
8696 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8697 {
8698 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8699 
8700 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8701 				       ctxt->fetch.end - ctxt->fetch.data);
8702 }
8703 
8704 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8705 					  u8 ndata)
8706 {
8707 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8708 }
8709 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8710 
8711 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8712 {
8713 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8714 }
8715 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8716 
8717 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8718 {
8719 	struct kvm *kvm = vcpu->kvm;
8720 
8721 	++vcpu->stat.insn_emulation_fail;
8722 	trace_kvm_emulate_insn_failed(vcpu);
8723 
8724 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8725 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8726 		return 1;
8727 	}
8728 
8729 	if (kvm->arch.exit_on_emulation_error ||
8730 	    (emulation_type & EMULTYPE_SKIP)) {
8731 		prepare_emulation_ctxt_failure_exit(vcpu);
8732 		return 0;
8733 	}
8734 
8735 	kvm_queue_exception(vcpu, UD_VECTOR);
8736 
8737 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8738 		prepare_emulation_ctxt_failure_exit(vcpu);
8739 		return 0;
8740 	}
8741 
8742 	return 1;
8743 }
8744 
8745 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8746 				  int emulation_type)
8747 {
8748 	gpa_t gpa = cr2_or_gpa;
8749 	kvm_pfn_t pfn;
8750 
8751 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8752 		return false;
8753 
8754 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8755 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8756 		return false;
8757 
8758 	if (!vcpu->arch.mmu->root_role.direct) {
8759 		/*
8760 		 * Write permission should be allowed since only
8761 		 * write access need to be emulated.
8762 		 */
8763 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8764 
8765 		/*
8766 		 * If the mapping is invalid in guest, let cpu retry
8767 		 * it to generate fault.
8768 		 */
8769 		if (gpa == INVALID_GPA)
8770 			return true;
8771 	}
8772 
8773 	/*
8774 	 * Do not retry the unhandleable instruction if it faults on the
8775 	 * readonly host memory, otherwise it will goto a infinite loop:
8776 	 * retry instruction -> write #PF -> emulation fail -> retry
8777 	 * instruction -> ...
8778 	 */
8779 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8780 
8781 	/*
8782 	 * If the instruction failed on the error pfn, it can not be fixed,
8783 	 * report the error to userspace.
8784 	 */
8785 	if (is_error_noslot_pfn(pfn))
8786 		return false;
8787 
8788 	kvm_release_pfn_clean(pfn);
8789 
8790 	/* The instructions are well-emulated on direct mmu. */
8791 	if (vcpu->arch.mmu->root_role.direct) {
8792 		unsigned int indirect_shadow_pages;
8793 
8794 		write_lock(&vcpu->kvm->mmu_lock);
8795 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8796 		write_unlock(&vcpu->kvm->mmu_lock);
8797 
8798 		if (indirect_shadow_pages)
8799 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8800 
8801 		return true;
8802 	}
8803 
8804 	/*
8805 	 * if emulation was due to access to shadowed page table
8806 	 * and it failed try to unshadow page and re-enter the
8807 	 * guest to let CPU execute the instruction.
8808 	 */
8809 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8810 
8811 	/*
8812 	 * If the access faults on its page table, it can not
8813 	 * be fixed by unprotecting shadow page and it should
8814 	 * be reported to userspace.
8815 	 */
8816 	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8817 }
8818 
8819 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8820 			      gpa_t cr2_or_gpa,  int emulation_type)
8821 {
8822 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8823 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8824 
8825 	last_retry_eip = vcpu->arch.last_retry_eip;
8826 	last_retry_addr = vcpu->arch.last_retry_addr;
8827 
8828 	/*
8829 	 * If the emulation is caused by #PF and it is non-page_table
8830 	 * writing instruction, it means the VM-EXIT is caused by shadow
8831 	 * page protected, we can zap the shadow page and retry this
8832 	 * instruction directly.
8833 	 *
8834 	 * Note: if the guest uses a non-page-table modifying instruction
8835 	 * on the PDE that points to the instruction, then we will unmap
8836 	 * the instruction and go to an infinite loop. So, we cache the
8837 	 * last retried eip and the last fault address, if we meet the eip
8838 	 * and the address again, we can break out of the potential infinite
8839 	 * loop.
8840 	 */
8841 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8842 
8843 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8844 		return false;
8845 
8846 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8847 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8848 		return false;
8849 
8850 	if (x86_page_table_writing_insn(ctxt))
8851 		return false;
8852 
8853 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8854 		return false;
8855 
8856 	vcpu->arch.last_retry_eip = ctxt->eip;
8857 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8858 
8859 	if (!vcpu->arch.mmu->root_role.direct)
8860 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8861 
8862 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8863 
8864 	return true;
8865 }
8866 
8867 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8868 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8869 
8870 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8871 				unsigned long *db)
8872 {
8873 	u32 dr6 = 0;
8874 	int i;
8875 	u32 enable, rwlen;
8876 
8877 	enable = dr7;
8878 	rwlen = dr7 >> 16;
8879 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8880 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8881 			dr6 |= (1 << i);
8882 	return dr6;
8883 }
8884 
8885 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8886 {
8887 	struct kvm_run *kvm_run = vcpu->run;
8888 
8889 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8890 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8891 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8892 		kvm_run->debug.arch.exception = DB_VECTOR;
8893 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8894 		return 0;
8895 	}
8896 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8897 	return 1;
8898 }
8899 
8900 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8901 {
8902 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8903 	int r;
8904 
8905 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8906 	if (unlikely(!r))
8907 		return 0;
8908 
8909 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8910 
8911 	/*
8912 	 * rflags is the old, "raw" value of the flags.  The new value has
8913 	 * not been saved yet.
8914 	 *
8915 	 * This is correct even for TF set by the guest, because "the
8916 	 * processor will not generate this exception after the instruction
8917 	 * that sets the TF flag".
8918 	 */
8919 	if (unlikely(rflags & X86_EFLAGS_TF))
8920 		r = kvm_vcpu_do_singlestep(vcpu);
8921 	return r;
8922 }
8923 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8924 
8925 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8926 {
8927 	u32 shadow;
8928 
8929 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8930 		return true;
8931 
8932 	/*
8933 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8934 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8935 	 * to avoid the relatively expensive CPUID lookup.
8936 	 */
8937 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8938 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8939 	       guest_cpuid_is_intel(vcpu);
8940 }
8941 
8942 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8943 					   int emulation_type, int *r)
8944 {
8945 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8946 
8947 	/*
8948 	 * Do not check for code breakpoints if hardware has already done the
8949 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8950 	 * the instruction has passed all exception checks, and all intercepted
8951 	 * exceptions that trigger emulation have lower priority than code
8952 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8953 	 * means any code breakpoints have already been serviced.
8954 	 *
8955 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8956 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8957 	 * the instruction being emulated.  The intent of forced emulation is
8958 	 * to behave as if KVM intercepted the instruction without an exception
8959 	 * and without a prefix.
8960 	 */
8961 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8962 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8963 		return false;
8964 
8965 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8966 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8967 		struct kvm_run *kvm_run = vcpu->run;
8968 		unsigned long eip = kvm_get_linear_rip(vcpu);
8969 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8970 					   vcpu->arch.guest_debug_dr7,
8971 					   vcpu->arch.eff_db);
8972 
8973 		if (dr6 != 0) {
8974 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8975 			kvm_run->debug.arch.pc = eip;
8976 			kvm_run->debug.arch.exception = DB_VECTOR;
8977 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8978 			*r = 0;
8979 			return true;
8980 		}
8981 	}
8982 
8983 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8984 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8985 		unsigned long eip = kvm_get_linear_rip(vcpu);
8986 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8987 					   vcpu->arch.dr7,
8988 					   vcpu->arch.db);
8989 
8990 		if (dr6 != 0) {
8991 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8992 			*r = 1;
8993 			return true;
8994 		}
8995 	}
8996 
8997 	return false;
8998 }
8999 
9000 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9001 {
9002 	switch (ctxt->opcode_len) {
9003 	case 1:
9004 		switch (ctxt->b) {
9005 		case 0xe4:	/* IN */
9006 		case 0xe5:
9007 		case 0xec:
9008 		case 0xed:
9009 		case 0xe6:	/* OUT */
9010 		case 0xe7:
9011 		case 0xee:
9012 		case 0xef:
9013 		case 0x6c:	/* INS */
9014 		case 0x6d:
9015 		case 0x6e:	/* OUTS */
9016 		case 0x6f:
9017 			return true;
9018 		}
9019 		break;
9020 	case 2:
9021 		switch (ctxt->b) {
9022 		case 0x33:	/* RDPMC */
9023 			return true;
9024 		}
9025 		break;
9026 	}
9027 
9028 	return false;
9029 }
9030 
9031 /*
9032  * Decode an instruction for emulation.  The caller is responsible for handling
9033  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9034  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9035  * code breakpoints have higher priority and thus have already been done by
9036  * hardware.
9037  *
9038  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9039  *     response to a machine check.
9040  */
9041 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9042 				    void *insn, int insn_len)
9043 {
9044 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9045 	int r;
9046 
9047 	init_emulate_ctxt(vcpu);
9048 
9049 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9050 
9051 	trace_kvm_emulate_insn_start(vcpu);
9052 	++vcpu->stat.insn_emulation;
9053 
9054 	return r;
9055 }
9056 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9057 
9058 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9059 			    int emulation_type, void *insn, int insn_len)
9060 {
9061 	int r;
9062 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9063 	bool writeback = true;
9064 
9065 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9066 	if (r != X86EMUL_CONTINUE) {
9067 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9068 			return 1;
9069 
9070 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9071 		return handle_emulation_failure(vcpu, emulation_type);
9072 	}
9073 
9074 	vcpu->arch.l1tf_flush_l1d = true;
9075 
9076 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9077 		kvm_clear_exception_queue(vcpu);
9078 
9079 		/*
9080 		 * Return immediately if RIP hits a code breakpoint, such #DBs
9081 		 * are fault-like and are higher priority than any faults on
9082 		 * the code fetch itself.
9083 		 */
9084 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9085 			return r;
9086 
9087 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9088 						    insn, insn_len);
9089 		if (r != EMULATION_OK)  {
9090 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9091 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9092 				kvm_queue_exception(vcpu, UD_VECTOR);
9093 				return 1;
9094 			}
9095 			if (reexecute_instruction(vcpu, cr2_or_gpa,
9096 						  emulation_type))
9097 				return 1;
9098 
9099 			if (ctxt->have_exception &&
9100 			    !(emulation_type & EMULTYPE_SKIP)) {
9101 				/*
9102 				 * #UD should result in just EMULATION_FAILED, and trap-like
9103 				 * exception should not be encountered during decode.
9104 				 */
9105 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9106 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9107 				inject_emulated_exception(vcpu);
9108 				return 1;
9109 			}
9110 			return handle_emulation_failure(vcpu, emulation_type);
9111 		}
9112 	}
9113 
9114 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9115 	    !is_vmware_backdoor_opcode(ctxt)) {
9116 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9117 		return 1;
9118 	}
9119 
9120 	/*
9121 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9122 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9123 	 * The caller is responsible for updating interruptibility state and
9124 	 * injecting single-step #DBs.
9125 	 */
9126 	if (emulation_type & EMULTYPE_SKIP) {
9127 		if (ctxt->mode != X86EMUL_MODE_PROT64)
9128 			ctxt->eip = (u32)ctxt->_eip;
9129 		else
9130 			ctxt->eip = ctxt->_eip;
9131 
9132 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9133 			r = 1;
9134 			goto writeback;
9135 		}
9136 
9137 		kvm_rip_write(vcpu, ctxt->eip);
9138 		if (ctxt->eflags & X86_EFLAGS_RF)
9139 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9140 		return 1;
9141 	}
9142 
9143 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9144 		return 1;
9145 
9146 	/* this is needed for vmware backdoor interface to work since it
9147 	   changes registers values  during IO operation */
9148 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9149 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9150 		emulator_invalidate_register_cache(ctxt);
9151 	}
9152 
9153 restart:
9154 	if (emulation_type & EMULTYPE_PF) {
9155 		/* Save the faulting GPA (cr2) in the address field */
9156 		ctxt->exception.address = cr2_or_gpa;
9157 
9158 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9159 		if (vcpu->arch.mmu->root_role.direct) {
9160 			ctxt->gpa_available = true;
9161 			ctxt->gpa_val = cr2_or_gpa;
9162 		}
9163 	} else {
9164 		/* Sanitize the address out of an abundance of paranoia. */
9165 		ctxt->exception.address = 0;
9166 	}
9167 
9168 	r = x86_emulate_insn(ctxt);
9169 
9170 	if (r == EMULATION_INTERCEPTED)
9171 		return 1;
9172 
9173 	if (r == EMULATION_FAILED) {
9174 		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9175 			return 1;
9176 
9177 		return handle_emulation_failure(vcpu, emulation_type);
9178 	}
9179 
9180 	if (ctxt->have_exception) {
9181 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9182 		vcpu->mmio_needed = false;
9183 		r = 1;
9184 		inject_emulated_exception(vcpu);
9185 	} else if (vcpu->arch.pio.count) {
9186 		if (!vcpu->arch.pio.in) {
9187 			/* FIXME: return into emulator if single-stepping.  */
9188 			vcpu->arch.pio.count = 0;
9189 		} else {
9190 			writeback = false;
9191 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9192 		}
9193 		r = 0;
9194 	} else if (vcpu->mmio_needed) {
9195 		++vcpu->stat.mmio_exits;
9196 
9197 		if (!vcpu->mmio_is_write)
9198 			writeback = false;
9199 		r = 0;
9200 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9201 	} else if (vcpu->arch.complete_userspace_io) {
9202 		writeback = false;
9203 		r = 0;
9204 	} else if (r == EMULATION_RESTART)
9205 		goto restart;
9206 	else
9207 		r = 1;
9208 
9209 writeback:
9210 	if (writeback) {
9211 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9212 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9213 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9214 
9215 		/*
9216 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9217 		 * only supports code breakpoints and general detect #DB, both
9218 		 * of which are fault-like.
9219 		 */
9220 		if (!ctxt->have_exception ||
9221 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9222 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9223 			if (ctxt->is_branch)
9224 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9225 			kvm_rip_write(vcpu, ctxt->eip);
9226 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9227 				r = kvm_vcpu_do_singlestep(vcpu);
9228 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9229 			__kvm_set_rflags(vcpu, ctxt->eflags);
9230 		}
9231 
9232 		/*
9233 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9234 		 * do nothing, and it will be requested again as soon as
9235 		 * the shadow expires.  But we still need to check here,
9236 		 * because POPF has no interrupt shadow.
9237 		 */
9238 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9239 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9240 	} else
9241 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9242 
9243 	return r;
9244 }
9245 
9246 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9247 {
9248 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9249 }
9250 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9251 
9252 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9253 					void *insn, int insn_len)
9254 {
9255 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9256 }
9257 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9258 
9259 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9260 {
9261 	vcpu->arch.pio.count = 0;
9262 	return 1;
9263 }
9264 
9265 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9266 {
9267 	vcpu->arch.pio.count = 0;
9268 
9269 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9270 		return 1;
9271 
9272 	return kvm_skip_emulated_instruction(vcpu);
9273 }
9274 
9275 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9276 			    unsigned short port)
9277 {
9278 	unsigned long val = kvm_rax_read(vcpu);
9279 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9280 
9281 	if (ret)
9282 		return ret;
9283 
9284 	/*
9285 	 * Workaround userspace that relies on old KVM behavior of %rip being
9286 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9287 	 */
9288 	if (port == 0x7e &&
9289 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9290 		vcpu->arch.complete_userspace_io =
9291 			complete_fast_pio_out_port_0x7e;
9292 		kvm_skip_emulated_instruction(vcpu);
9293 	} else {
9294 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9295 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9296 	}
9297 	return 0;
9298 }
9299 
9300 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9301 {
9302 	unsigned long val;
9303 
9304 	/* We should only ever be called with arch.pio.count equal to 1 */
9305 	BUG_ON(vcpu->arch.pio.count != 1);
9306 
9307 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9308 		vcpu->arch.pio.count = 0;
9309 		return 1;
9310 	}
9311 
9312 	/* For size less than 4 we merge, else we zero extend */
9313 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9314 
9315 	complete_emulator_pio_in(vcpu, &val);
9316 	kvm_rax_write(vcpu, val);
9317 
9318 	return kvm_skip_emulated_instruction(vcpu);
9319 }
9320 
9321 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9322 			   unsigned short port)
9323 {
9324 	unsigned long val;
9325 	int ret;
9326 
9327 	/* For size less than 4 we merge, else we zero extend */
9328 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9329 
9330 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9331 	if (ret) {
9332 		kvm_rax_write(vcpu, val);
9333 		return ret;
9334 	}
9335 
9336 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9337 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9338 
9339 	return 0;
9340 }
9341 
9342 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9343 {
9344 	int ret;
9345 
9346 	if (in)
9347 		ret = kvm_fast_pio_in(vcpu, size, port);
9348 	else
9349 		ret = kvm_fast_pio_out(vcpu, size, port);
9350 	return ret && kvm_skip_emulated_instruction(vcpu);
9351 }
9352 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9353 
9354 static int kvmclock_cpu_down_prep(unsigned int cpu)
9355 {
9356 	__this_cpu_write(cpu_tsc_khz, 0);
9357 	return 0;
9358 }
9359 
9360 static void tsc_khz_changed(void *data)
9361 {
9362 	struct cpufreq_freqs *freq = data;
9363 	unsigned long khz;
9364 
9365 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9366 
9367 	if (data)
9368 		khz = freq->new;
9369 	else
9370 		khz = cpufreq_quick_get(raw_smp_processor_id());
9371 	if (!khz)
9372 		khz = tsc_khz;
9373 	__this_cpu_write(cpu_tsc_khz, khz);
9374 }
9375 
9376 #ifdef CONFIG_X86_64
9377 static void kvm_hyperv_tsc_notifier(void)
9378 {
9379 	struct kvm *kvm;
9380 	int cpu;
9381 
9382 	mutex_lock(&kvm_lock);
9383 	list_for_each_entry(kvm, &vm_list, vm_list)
9384 		kvm_make_mclock_inprogress_request(kvm);
9385 
9386 	/* no guest entries from this point */
9387 	hyperv_stop_tsc_emulation();
9388 
9389 	/* TSC frequency always matches when on Hyper-V */
9390 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9391 		for_each_present_cpu(cpu)
9392 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9393 	}
9394 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9395 
9396 	list_for_each_entry(kvm, &vm_list, vm_list) {
9397 		__kvm_start_pvclock_update(kvm);
9398 		pvclock_update_vm_gtod_copy(kvm);
9399 		kvm_end_pvclock_update(kvm);
9400 	}
9401 
9402 	mutex_unlock(&kvm_lock);
9403 }
9404 #endif
9405 
9406 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9407 {
9408 	struct kvm *kvm;
9409 	struct kvm_vcpu *vcpu;
9410 	int send_ipi = 0;
9411 	unsigned long i;
9412 
9413 	/*
9414 	 * We allow guests to temporarily run on slowing clocks,
9415 	 * provided we notify them after, or to run on accelerating
9416 	 * clocks, provided we notify them before.  Thus time never
9417 	 * goes backwards.
9418 	 *
9419 	 * However, we have a problem.  We can't atomically update
9420 	 * the frequency of a given CPU from this function; it is
9421 	 * merely a notifier, which can be called from any CPU.
9422 	 * Changing the TSC frequency at arbitrary points in time
9423 	 * requires a recomputation of local variables related to
9424 	 * the TSC for each VCPU.  We must flag these local variables
9425 	 * to be updated and be sure the update takes place with the
9426 	 * new frequency before any guests proceed.
9427 	 *
9428 	 * Unfortunately, the combination of hotplug CPU and frequency
9429 	 * change creates an intractable locking scenario; the order
9430 	 * of when these callouts happen is undefined with respect to
9431 	 * CPU hotplug, and they can race with each other.  As such,
9432 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9433 	 * undefined; you can actually have a CPU frequency change take
9434 	 * place in between the computation of X and the setting of the
9435 	 * variable.  To protect against this problem, all updates of
9436 	 * the per_cpu tsc_khz variable are done in an interrupt
9437 	 * protected IPI, and all callers wishing to update the value
9438 	 * must wait for a synchronous IPI to complete (which is trivial
9439 	 * if the caller is on the CPU already).  This establishes the
9440 	 * necessary total order on variable updates.
9441 	 *
9442 	 * Note that because a guest time update may take place
9443 	 * anytime after the setting of the VCPU's request bit, the
9444 	 * correct TSC value must be set before the request.  However,
9445 	 * to ensure the update actually makes it to any guest which
9446 	 * starts running in hardware virtualization between the set
9447 	 * and the acquisition of the spinlock, we must also ping the
9448 	 * CPU after setting the request bit.
9449 	 *
9450 	 */
9451 
9452 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9453 
9454 	mutex_lock(&kvm_lock);
9455 	list_for_each_entry(kvm, &vm_list, vm_list) {
9456 		kvm_for_each_vcpu(i, vcpu, kvm) {
9457 			if (vcpu->cpu != cpu)
9458 				continue;
9459 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9460 			if (vcpu->cpu != raw_smp_processor_id())
9461 				send_ipi = 1;
9462 		}
9463 	}
9464 	mutex_unlock(&kvm_lock);
9465 
9466 	if (freq->old < freq->new && send_ipi) {
9467 		/*
9468 		 * We upscale the frequency.  Must make the guest
9469 		 * doesn't see old kvmclock values while running with
9470 		 * the new frequency, otherwise we risk the guest sees
9471 		 * time go backwards.
9472 		 *
9473 		 * In case we update the frequency for another cpu
9474 		 * (which might be in guest context) send an interrupt
9475 		 * to kick the cpu out of guest context.  Next time
9476 		 * guest context is entered kvmclock will be updated,
9477 		 * so the guest will not see stale values.
9478 		 */
9479 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9480 	}
9481 }
9482 
9483 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9484 				     void *data)
9485 {
9486 	struct cpufreq_freqs *freq = data;
9487 	int cpu;
9488 
9489 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9490 		return 0;
9491 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9492 		return 0;
9493 
9494 	for_each_cpu(cpu, freq->policy->cpus)
9495 		__kvmclock_cpufreq_notifier(freq, cpu);
9496 
9497 	return 0;
9498 }
9499 
9500 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9501 	.notifier_call  = kvmclock_cpufreq_notifier
9502 };
9503 
9504 static int kvmclock_cpu_online(unsigned int cpu)
9505 {
9506 	tsc_khz_changed(NULL);
9507 	return 0;
9508 }
9509 
9510 static void kvm_timer_init(void)
9511 {
9512 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9513 		max_tsc_khz = tsc_khz;
9514 
9515 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9516 			struct cpufreq_policy *policy;
9517 			int cpu;
9518 
9519 			cpu = get_cpu();
9520 			policy = cpufreq_cpu_get(cpu);
9521 			if (policy) {
9522 				if (policy->cpuinfo.max_freq)
9523 					max_tsc_khz = policy->cpuinfo.max_freq;
9524 				cpufreq_cpu_put(policy);
9525 			}
9526 			put_cpu();
9527 		}
9528 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9529 					  CPUFREQ_TRANSITION_NOTIFIER);
9530 
9531 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9532 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9533 	}
9534 }
9535 
9536 #ifdef CONFIG_X86_64
9537 static void pvclock_gtod_update_fn(struct work_struct *work)
9538 {
9539 	struct kvm *kvm;
9540 	struct kvm_vcpu *vcpu;
9541 	unsigned long i;
9542 
9543 	mutex_lock(&kvm_lock);
9544 	list_for_each_entry(kvm, &vm_list, vm_list)
9545 		kvm_for_each_vcpu(i, vcpu, kvm)
9546 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9547 	atomic_set(&kvm_guest_has_master_clock, 0);
9548 	mutex_unlock(&kvm_lock);
9549 }
9550 
9551 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9552 
9553 /*
9554  * Indirection to move queue_work() out of the tk_core.seq write held
9555  * region to prevent possible deadlocks against time accessors which
9556  * are invoked with work related locks held.
9557  */
9558 static void pvclock_irq_work_fn(struct irq_work *w)
9559 {
9560 	queue_work(system_long_wq, &pvclock_gtod_work);
9561 }
9562 
9563 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9564 
9565 /*
9566  * Notification about pvclock gtod data update.
9567  */
9568 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9569 			       void *priv)
9570 {
9571 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9572 	struct timekeeper *tk = priv;
9573 
9574 	update_pvclock_gtod(tk);
9575 
9576 	/*
9577 	 * Disable master clock if host does not trust, or does not use,
9578 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9579 	 * this is invoked with tk_core.seq write held.
9580 	 */
9581 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9582 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9583 		irq_work_queue(&pvclock_irq_work);
9584 	return 0;
9585 }
9586 
9587 static struct notifier_block pvclock_gtod_notifier = {
9588 	.notifier_call = pvclock_gtod_notify,
9589 };
9590 #endif
9591 
9592 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9593 {
9594 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9595 
9596 #define __KVM_X86_OP(func) \
9597 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9598 #define KVM_X86_OP(func) \
9599 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9600 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9601 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9602 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9603 					   (void *)__static_call_return0);
9604 #include <asm/kvm-x86-ops.h>
9605 #undef __KVM_X86_OP
9606 
9607 	kvm_pmu_ops_update(ops->pmu_ops);
9608 }
9609 
9610 static int kvm_x86_check_processor_compatibility(void)
9611 {
9612 	int cpu = smp_processor_id();
9613 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9614 
9615 	/*
9616 	 * Compatibility checks are done when loading KVM and when enabling
9617 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9618 	 * compatible, i.e. KVM should never perform a compatibility check on
9619 	 * an offline CPU.
9620 	 */
9621 	WARN_ON(!cpu_online(cpu));
9622 
9623 	if (__cr4_reserved_bits(cpu_has, c) !=
9624 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9625 		return -EIO;
9626 
9627 	return static_call(kvm_x86_check_processor_compatibility)();
9628 }
9629 
9630 static void kvm_x86_check_cpu_compat(void *ret)
9631 {
9632 	*(int *)ret = kvm_x86_check_processor_compatibility();
9633 }
9634 
9635 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9636 {
9637 	u64 host_pat;
9638 	int r, cpu;
9639 
9640 	if (kvm_x86_ops.hardware_enable) {
9641 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9642 		return -EEXIST;
9643 	}
9644 
9645 	/*
9646 	 * KVM explicitly assumes that the guest has an FPU and
9647 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9648 	 * vCPU's FPU state as a fxregs_state struct.
9649 	 */
9650 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9651 		pr_err("inadequate fpu\n");
9652 		return -EOPNOTSUPP;
9653 	}
9654 
9655 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9656 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9657 		return -EOPNOTSUPP;
9658 	}
9659 
9660 	/*
9661 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9662 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9663 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9664 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9665 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9666 	 */
9667 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9668 	    (host_pat & GENMASK(2, 0)) != 6) {
9669 		pr_err("host PAT[0] is not WB\n");
9670 		return -EIO;
9671 	}
9672 
9673 	x86_emulator_cache = kvm_alloc_emulator_cache();
9674 	if (!x86_emulator_cache) {
9675 		pr_err("failed to allocate cache for x86 emulator\n");
9676 		return -ENOMEM;
9677 	}
9678 
9679 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9680 	if (!user_return_msrs) {
9681 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9682 		r = -ENOMEM;
9683 		goto out_free_x86_emulator_cache;
9684 	}
9685 	kvm_nr_uret_msrs = 0;
9686 
9687 	r = kvm_mmu_vendor_module_init();
9688 	if (r)
9689 		goto out_free_percpu;
9690 
9691 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9692 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9693 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9694 	}
9695 
9696 	rdmsrl_safe(MSR_EFER, &host_efer);
9697 
9698 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9699 		rdmsrl(MSR_IA32_XSS, host_xss);
9700 
9701 	kvm_init_pmu_capability(ops->pmu_ops);
9702 
9703 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9704 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9705 
9706 	r = ops->hardware_setup();
9707 	if (r != 0)
9708 		goto out_mmu_exit;
9709 
9710 	kvm_ops_update(ops);
9711 
9712 	for_each_online_cpu(cpu) {
9713 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9714 		if (r < 0)
9715 			goto out_unwind_ops;
9716 	}
9717 
9718 	/*
9719 	 * Point of no return!  DO NOT add error paths below this point unless
9720 	 * absolutely necessary, as most operations from this point forward
9721 	 * require unwinding.
9722 	 */
9723 	kvm_timer_init();
9724 
9725 	if (pi_inject_timer == -1)
9726 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9727 #ifdef CONFIG_X86_64
9728 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9729 
9730 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9731 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9732 #endif
9733 
9734 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9735 
9736 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9737 		kvm_caps.supported_xss = 0;
9738 
9739 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9740 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9741 #undef __kvm_cpu_cap_has
9742 
9743 	if (kvm_caps.has_tsc_control) {
9744 		/*
9745 		 * Make sure the user can only configure tsc_khz values that
9746 		 * fit into a signed integer.
9747 		 * A min value is not calculated because it will always
9748 		 * be 1 on all machines.
9749 		 */
9750 		u64 max = min(0x7fffffffULL,
9751 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9752 		kvm_caps.max_guest_tsc_khz = max;
9753 	}
9754 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9755 	kvm_init_msr_lists();
9756 	return 0;
9757 
9758 out_unwind_ops:
9759 	kvm_x86_ops.hardware_enable = NULL;
9760 	static_call(kvm_x86_hardware_unsetup)();
9761 out_mmu_exit:
9762 	kvm_mmu_vendor_module_exit();
9763 out_free_percpu:
9764 	free_percpu(user_return_msrs);
9765 out_free_x86_emulator_cache:
9766 	kmem_cache_destroy(x86_emulator_cache);
9767 	return r;
9768 }
9769 
9770 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9771 {
9772 	int r;
9773 
9774 	mutex_lock(&vendor_module_lock);
9775 	r = __kvm_x86_vendor_init(ops);
9776 	mutex_unlock(&vendor_module_lock);
9777 
9778 	return r;
9779 }
9780 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9781 
9782 void kvm_x86_vendor_exit(void)
9783 {
9784 	kvm_unregister_perf_callbacks();
9785 
9786 #ifdef CONFIG_X86_64
9787 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9788 		clear_hv_tscchange_cb();
9789 #endif
9790 	kvm_lapic_exit();
9791 
9792 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9793 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9794 					    CPUFREQ_TRANSITION_NOTIFIER);
9795 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9796 	}
9797 #ifdef CONFIG_X86_64
9798 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9799 	irq_work_sync(&pvclock_irq_work);
9800 	cancel_work_sync(&pvclock_gtod_work);
9801 #endif
9802 	static_call(kvm_x86_hardware_unsetup)();
9803 	kvm_mmu_vendor_module_exit();
9804 	free_percpu(user_return_msrs);
9805 	kmem_cache_destroy(x86_emulator_cache);
9806 #ifdef CONFIG_KVM_XEN
9807 	static_key_deferred_flush(&kvm_xen_enabled);
9808 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9809 #endif
9810 	mutex_lock(&vendor_module_lock);
9811 	kvm_x86_ops.hardware_enable = NULL;
9812 	mutex_unlock(&vendor_module_lock);
9813 }
9814 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9815 
9816 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9817 {
9818 	/*
9819 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9820 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9821 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9822 	 * managed by userspace, in which case userspace is responsible for
9823 	 * handling wake events.
9824 	 */
9825 	++vcpu->stat.halt_exits;
9826 	if (lapic_in_kernel(vcpu)) {
9827 		vcpu->arch.mp_state = state;
9828 		return 1;
9829 	} else {
9830 		vcpu->run->exit_reason = reason;
9831 		return 0;
9832 	}
9833 }
9834 
9835 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9836 {
9837 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9838 }
9839 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9840 
9841 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9842 {
9843 	int ret = kvm_skip_emulated_instruction(vcpu);
9844 	/*
9845 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9846 	 * KVM_EXIT_DEBUG here.
9847 	 */
9848 	return kvm_emulate_halt_noskip(vcpu) && ret;
9849 }
9850 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9851 
9852 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9853 {
9854 	int ret = kvm_skip_emulated_instruction(vcpu);
9855 
9856 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9857 					KVM_EXIT_AP_RESET_HOLD) && ret;
9858 }
9859 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9860 
9861 #ifdef CONFIG_X86_64
9862 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9863 			        unsigned long clock_type)
9864 {
9865 	struct kvm_clock_pairing clock_pairing;
9866 	struct timespec64 ts;
9867 	u64 cycle;
9868 	int ret;
9869 
9870 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9871 		return -KVM_EOPNOTSUPP;
9872 
9873 	/*
9874 	 * When tsc is in permanent catchup mode guests won't be able to use
9875 	 * pvclock_read_retry loop to get consistent view of pvclock
9876 	 */
9877 	if (vcpu->arch.tsc_always_catchup)
9878 		return -KVM_EOPNOTSUPP;
9879 
9880 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9881 		return -KVM_EOPNOTSUPP;
9882 
9883 	clock_pairing.sec = ts.tv_sec;
9884 	clock_pairing.nsec = ts.tv_nsec;
9885 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9886 	clock_pairing.flags = 0;
9887 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9888 
9889 	ret = 0;
9890 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9891 			    sizeof(struct kvm_clock_pairing)))
9892 		ret = -KVM_EFAULT;
9893 
9894 	return ret;
9895 }
9896 #endif
9897 
9898 /*
9899  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9900  *
9901  * @apicid - apicid of vcpu to be kicked.
9902  */
9903 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9904 {
9905 	/*
9906 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9907 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9908 	 */
9909 	struct kvm_lapic_irq lapic_irq = {
9910 		.delivery_mode = APIC_DM_REMRD,
9911 		.dest_mode = APIC_DEST_PHYSICAL,
9912 		.shorthand = APIC_DEST_NOSHORT,
9913 		.dest_id = apicid,
9914 	};
9915 
9916 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9917 }
9918 
9919 bool kvm_apicv_activated(struct kvm *kvm)
9920 {
9921 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9922 }
9923 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9924 
9925 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9926 {
9927 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9928 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9929 
9930 	return (vm_reasons | vcpu_reasons) == 0;
9931 }
9932 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9933 
9934 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9935 				       enum kvm_apicv_inhibit reason, bool set)
9936 {
9937 	if (set)
9938 		__set_bit(reason, inhibits);
9939 	else
9940 		__clear_bit(reason, inhibits);
9941 
9942 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9943 }
9944 
9945 static void kvm_apicv_init(struct kvm *kvm)
9946 {
9947 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9948 
9949 	init_rwsem(&kvm->arch.apicv_update_lock);
9950 
9951 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9952 
9953 	if (!enable_apicv)
9954 		set_or_clear_apicv_inhibit(inhibits,
9955 					   APICV_INHIBIT_REASON_DISABLE, true);
9956 }
9957 
9958 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9959 {
9960 	struct kvm_vcpu *target = NULL;
9961 	struct kvm_apic_map *map;
9962 
9963 	vcpu->stat.directed_yield_attempted++;
9964 
9965 	if (single_task_running())
9966 		goto no_yield;
9967 
9968 	rcu_read_lock();
9969 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9970 
9971 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9972 		target = map->phys_map[dest_id]->vcpu;
9973 
9974 	rcu_read_unlock();
9975 
9976 	if (!target || !READ_ONCE(target->ready))
9977 		goto no_yield;
9978 
9979 	/* Ignore requests to yield to self */
9980 	if (vcpu == target)
9981 		goto no_yield;
9982 
9983 	if (kvm_vcpu_yield_to(target) <= 0)
9984 		goto no_yield;
9985 
9986 	vcpu->stat.directed_yield_successful++;
9987 
9988 no_yield:
9989 	return;
9990 }
9991 
9992 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9993 {
9994 	u64 ret = vcpu->run->hypercall.ret;
9995 
9996 	if (!is_64_bit_mode(vcpu))
9997 		ret = (u32)ret;
9998 	kvm_rax_write(vcpu, ret);
9999 	++vcpu->stat.hypercalls;
10000 	return kvm_skip_emulated_instruction(vcpu);
10001 }
10002 
10003 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10004 {
10005 	unsigned long nr, a0, a1, a2, a3, ret;
10006 	int op_64_bit;
10007 
10008 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10009 		return kvm_xen_hypercall(vcpu);
10010 
10011 	if (kvm_hv_hypercall_enabled(vcpu))
10012 		return kvm_hv_hypercall(vcpu);
10013 
10014 	nr = kvm_rax_read(vcpu);
10015 	a0 = kvm_rbx_read(vcpu);
10016 	a1 = kvm_rcx_read(vcpu);
10017 	a2 = kvm_rdx_read(vcpu);
10018 	a3 = kvm_rsi_read(vcpu);
10019 
10020 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10021 
10022 	op_64_bit = is_64_bit_hypercall(vcpu);
10023 	if (!op_64_bit) {
10024 		nr &= 0xFFFFFFFF;
10025 		a0 &= 0xFFFFFFFF;
10026 		a1 &= 0xFFFFFFFF;
10027 		a2 &= 0xFFFFFFFF;
10028 		a3 &= 0xFFFFFFFF;
10029 	}
10030 
10031 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
10032 		ret = -KVM_EPERM;
10033 		goto out;
10034 	}
10035 
10036 	ret = -KVM_ENOSYS;
10037 
10038 	switch (nr) {
10039 	case KVM_HC_VAPIC_POLL_IRQ:
10040 		ret = 0;
10041 		break;
10042 	case KVM_HC_KICK_CPU:
10043 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10044 			break;
10045 
10046 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10047 		kvm_sched_yield(vcpu, a1);
10048 		ret = 0;
10049 		break;
10050 #ifdef CONFIG_X86_64
10051 	case KVM_HC_CLOCK_PAIRING:
10052 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10053 		break;
10054 #endif
10055 	case KVM_HC_SEND_IPI:
10056 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10057 			break;
10058 
10059 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10060 		break;
10061 	case KVM_HC_SCHED_YIELD:
10062 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10063 			break;
10064 
10065 		kvm_sched_yield(vcpu, a0);
10066 		ret = 0;
10067 		break;
10068 	case KVM_HC_MAP_GPA_RANGE: {
10069 		u64 gpa = a0, npages = a1, attrs = a2;
10070 
10071 		ret = -KVM_ENOSYS;
10072 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10073 			break;
10074 
10075 		if (!PAGE_ALIGNED(gpa) || !npages ||
10076 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10077 			ret = -KVM_EINVAL;
10078 			break;
10079 		}
10080 
10081 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10082 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10083 		vcpu->run->hypercall.args[0]  = gpa;
10084 		vcpu->run->hypercall.args[1]  = npages;
10085 		vcpu->run->hypercall.args[2]  = attrs;
10086 		vcpu->run->hypercall.flags    = 0;
10087 		if (op_64_bit)
10088 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10089 
10090 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10091 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10092 		return 0;
10093 	}
10094 	default:
10095 		ret = -KVM_ENOSYS;
10096 		break;
10097 	}
10098 out:
10099 	if (!op_64_bit)
10100 		ret = (u32)ret;
10101 	kvm_rax_write(vcpu, ret);
10102 
10103 	++vcpu->stat.hypercalls;
10104 	return kvm_skip_emulated_instruction(vcpu);
10105 }
10106 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10107 
10108 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10109 {
10110 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10111 	char instruction[3];
10112 	unsigned long rip = kvm_rip_read(vcpu);
10113 
10114 	/*
10115 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10116 	 * the pieces.
10117 	 */
10118 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10119 		ctxt->exception.error_code_valid = false;
10120 		ctxt->exception.vector = UD_VECTOR;
10121 		ctxt->have_exception = true;
10122 		return X86EMUL_PROPAGATE_FAULT;
10123 	}
10124 
10125 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10126 
10127 	return emulator_write_emulated(ctxt, rip, instruction, 3,
10128 		&ctxt->exception);
10129 }
10130 
10131 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10132 {
10133 	return vcpu->run->request_interrupt_window &&
10134 		likely(!pic_in_kernel(vcpu->kvm));
10135 }
10136 
10137 /* Called within kvm->srcu read side.  */
10138 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10139 {
10140 	struct kvm_run *kvm_run = vcpu->run;
10141 
10142 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10143 	kvm_run->cr8 = kvm_get_cr8(vcpu);
10144 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
10145 
10146 	kvm_run->ready_for_interrupt_injection =
10147 		pic_in_kernel(vcpu->kvm) ||
10148 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10149 
10150 	if (is_smm(vcpu))
10151 		kvm_run->flags |= KVM_RUN_X86_SMM;
10152 }
10153 
10154 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10155 {
10156 	int max_irr, tpr;
10157 
10158 	if (!kvm_x86_ops.update_cr8_intercept)
10159 		return;
10160 
10161 	if (!lapic_in_kernel(vcpu))
10162 		return;
10163 
10164 	if (vcpu->arch.apic->apicv_active)
10165 		return;
10166 
10167 	if (!vcpu->arch.apic->vapic_addr)
10168 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10169 	else
10170 		max_irr = -1;
10171 
10172 	if (max_irr != -1)
10173 		max_irr >>= 4;
10174 
10175 	tpr = kvm_lapic_get_cr8(vcpu);
10176 
10177 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10178 }
10179 
10180 
10181 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10182 {
10183 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10184 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10185 		return 1;
10186 	}
10187 
10188 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10189 }
10190 
10191 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10192 {
10193 	/*
10194 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10195 	 * exceptions don't report error codes.  The presence of an error code
10196 	 * is carried with the exception and only stripped when the exception
10197 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10198 	 * report an error code despite the CPU being in Real Mode.
10199 	 */
10200 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10201 
10202 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10203 				vcpu->arch.exception.has_error_code,
10204 				vcpu->arch.exception.error_code,
10205 				vcpu->arch.exception.injected);
10206 
10207 	static_call(kvm_x86_inject_exception)(vcpu);
10208 }
10209 
10210 /*
10211  * Check for any event (interrupt or exception) that is ready to be injected,
10212  * and if there is at least one event, inject the event with the highest
10213  * priority.  This handles both "pending" events, i.e. events that have never
10214  * been injected into the guest, and "injected" events, i.e. events that were
10215  * injected as part of a previous VM-Enter, but weren't successfully delivered
10216  * and need to be re-injected.
10217  *
10218  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10219  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10220  * be able to inject exceptions in the "middle" of an instruction, and so must
10221  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10222  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10223  * boundaries is necessary and correct.
10224  *
10225  * For simplicity, KVM uses a single path to inject all events (except events
10226  * that are injected directly from L1 to L2) and doesn't explicitly track
10227  * instruction boundaries for asynchronous events.  However, because VM-Exits
10228  * that can occur during instruction execution typically result in KVM skipping
10229  * the instruction or injecting an exception, e.g. instruction and exception
10230  * intercepts, and because pending exceptions have higher priority than pending
10231  * interrupts, KVM still honors instruction boundaries in most scenarios.
10232  *
10233  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10234  * the instruction or inject an exception, then KVM can incorrecty inject a new
10235  * asynchronous event if the event became pending after the CPU fetched the
10236  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10237  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10238  * injected on the restarted instruction instead of being deferred until the
10239  * instruction completes.
10240  *
10241  * In practice, this virtualization hole is unlikely to be observed by the
10242  * guest, and even less likely to cause functional problems.  To detect the
10243  * hole, the guest would have to trigger an event on a side effect of an early
10244  * phase of instruction execution, e.g. on the instruction fetch from memory.
10245  * And for it to be a functional problem, the guest would need to depend on the
10246  * ordering between that side effect, the instruction completing, _and_ the
10247  * delivery of the asynchronous event.
10248  */
10249 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10250 				       bool *req_immediate_exit)
10251 {
10252 	bool can_inject;
10253 	int r;
10254 
10255 	/*
10256 	 * Process nested events first, as nested VM-Exit supersedes event
10257 	 * re-injection.  If there's an event queued for re-injection, it will
10258 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10259 	 */
10260 	if (is_guest_mode(vcpu))
10261 		r = kvm_check_nested_events(vcpu);
10262 	else
10263 		r = 0;
10264 
10265 	/*
10266 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10267 	 * to/from L2 is needed, as any event that has already been injected
10268 	 * into L2 needs to complete its lifecycle before injecting a new event.
10269 	 *
10270 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10271 	 * This collision arises if an exception occurred while vectoring the
10272 	 * injected event, KVM intercepted said exception, and KVM ultimately
10273 	 * determined the fault belongs to the guest and queues the exception
10274 	 * for injection back into the guest.
10275 	 *
10276 	 * "Injected" interrupts can also collide with pending exceptions if
10277 	 * userspace ignores the "ready for injection" flag and blindly queues
10278 	 * an interrupt.  In that case, prioritizing the exception is correct,
10279 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10280 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10281 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10282 	 * priority, they're only generated (pended) during instruction
10283 	 * execution, and interrupts are recognized at instruction boundaries.
10284 	 * Thus a pending fault-like exception means the fault occurred on the
10285 	 * *previous* instruction and must be serviced prior to recognizing any
10286 	 * new events in order to fully complete the previous instruction.
10287 	 */
10288 	if (vcpu->arch.exception.injected)
10289 		kvm_inject_exception(vcpu);
10290 	else if (kvm_is_exception_pending(vcpu))
10291 		; /* see above */
10292 	else if (vcpu->arch.nmi_injected)
10293 		static_call(kvm_x86_inject_nmi)(vcpu);
10294 	else if (vcpu->arch.interrupt.injected)
10295 		static_call(kvm_x86_inject_irq)(vcpu, true);
10296 
10297 	/*
10298 	 * Exceptions that morph to VM-Exits are handled above, and pending
10299 	 * exceptions on top of injected exceptions that do not VM-Exit should
10300 	 * either morph to #DF or, sadly, override the injected exception.
10301 	 */
10302 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10303 		     vcpu->arch.exception.pending);
10304 
10305 	/*
10306 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10307 	 * nested VM-Enter or event re-injection so that a different pending
10308 	 * event can be serviced (or if KVM needs to exit to userspace).
10309 	 *
10310 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10311 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10312 	 * there may now be events that can be injected into L1.
10313 	 */
10314 	if (r < 0)
10315 		goto out;
10316 
10317 	/*
10318 	 * A pending exception VM-Exit should either result in nested VM-Exit
10319 	 * or force an immediate re-entry and exit to/from L2, and exception
10320 	 * VM-Exits cannot be injected (flag should _never_ be set).
10321 	 */
10322 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10323 		     vcpu->arch.exception_vmexit.pending);
10324 
10325 	/*
10326 	 * New events, other than exceptions, cannot be injected if KVM needs
10327 	 * to re-inject a previous event.  See above comments on re-injecting
10328 	 * for why pending exceptions get priority.
10329 	 */
10330 	can_inject = !kvm_event_needs_reinjection(vcpu);
10331 
10332 	if (vcpu->arch.exception.pending) {
10333 		/*
10334 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10335 		 * value pushed on the stack.  Trap-like exception and all #DBs
10336 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10337 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10338 		 *
10339 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10340 		 * describe the behavior of General Detect #DBs, which are
10341 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10342 		 */
10343 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10344 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10345 					     X86_EFLAGS_RF);
10346 
10347 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10348 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10349 			if (vcpu->arch.dr7 & DR7_GD) {
10350 				vcpu->arch.dr7 &= ~DR7_GD;
10351 				kvm_update_dr7(vcpu);
10352 			}
10353 		}
10354 
10355 		kvm_inject_exception(vcpu);
10356 
10357 		vcpu->arch.exception.pending = false;
10358 		vcpu->arch.exception.injected = true;
10359 
10360 		can_inject = false;
10361 	}
10362 
10363 	/* Don't inject interrupts if the user asked to avoid doing so */
10364 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10365 		return 0;
10366 
10367 	/*
10368 	 * Finally, inject interrupt events.  If an event cannot be injected
10369 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10370 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10371 	 * and can architecturally be injected, but we cannot do it right now:
10372 	 * an interrupt could have arrived just now and we have to inject it
10373 	 * as a vmexit, or there could already an event in the queue, which is
10374 	 * indicated by can_inject.  In that case we request an immediate exit
10375 	 * in order to make progress and get back here for another iteration.
10376 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10377 	 */
10378 #ifdef CONFIG_KVM_SMM
10379 	if (vcpu->arch.smi_pending) {
10380 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10381 		if (r < 0)
10382 			goto out;
10383 		if (r) {
10384 			vcpu->arch.smi_pending = false;
10385 			++vcpu->arch.smi_count;
10386 			enter_smm(vcpu);
10387 			can_inject = false;
10388 		} else
10389 			static_call(kvm_x86_enable_smi_window)(vcpu);
10390 	}
10391 #endif
10392 
10393 	if (vcpu->arch.nmi_pending) {
10394 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10395 		if (r < 0)
10396 			goto out;
10397 		if (r) {
10398 			--vcpu->arch.nmi_pending;
10399 			vcpu->arch.nmi_injected = true;
10400 			static_call(kvm_x86_inject_nmi)(vcpu);
10401 			can_inject = false;
10402 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10403 		}
10404 		if (vcpu->arch.nmi_pending)
10405 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10406 	}
10407 
10408 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10409 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10410 		if (r < 0)
10411 			goto out;
10412 		if (r) {
10413 			int irq = kvm_cpu_get_interrupt(vcpu);
10414 
10415 			if (!WARN_ON_ONCE(irq == -1)) {
10416 				kvm_queue_interrupt(vcpu, irq, false);
10417 				static_call(kvm_x86_inject_irq)(vcpu, false);
10418 				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10419 			}
10420 		}
10421 		if (kvm_cpu_has_injectable_intr(vcpu))
10422 			static_call(kvm_x86_enable_irq_window)(vcpu);
10423 	}
10424 
10425 	if (is_guest_mode(vcpu) &&
10426 	    kvm_x86_ops.nested_ops->has_events &&
10427 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10428 		*req_immediate_exit = true;
10429 
10430 	/*
10431 	 * KVM must never queue a new exception while injecting an event; KVM
10432 	 * is done emulating and should only propagate the to-be-injected event
10433 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10434 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10435 	 * exception and start the cycle all over.
10436 	 *
10437 	 * Exempt triple faults as they have special handling and won't put the
10438 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10439 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10440 	 * Mode events (see kvm_inject_realmode_interrupt()).
10441 	 */
10442 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10443 		     vcpu->arch.exception_vmexit.pending);
10444 	return 0;
10445 
10446 out:
10447 	if (r == -EBUSY) {
10448 		*req_immediate_exit = true;
10449 		r = 0;
10450 	}
10451 	return r;
10452 }
10453 
10454 static void process_nmi(struct kvm_vcpu *vcpu)
10455 {
10456 	unsigned int limit;
10457 
10458 	/*
10459 	 * x86 is limited to one NMI pending, but because KVM can't react to
10460 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10461 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10462 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10463 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10464 	 * waiting for a previous NMI injection to complete (which effectively
10465 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10466 	 * will request an NMI window to handle the second NMI.
10467 	 */
10468 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10469 		limit = 1;
10470 	else
10471 		limit = 2;
10472 
10473 	/*
10474 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10475 	 * tracked in vcpu->arch.nmi_pending.
10476 	 */
10477 	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10478 		limit--;
10479 
10480 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10481 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10482 
10483 	if (vcpu->arch.nmi_pending &&
10484 	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10485 		vcpu->arch.nmi_pending--;
10486 
10487 	if (vcpu->arch.nmi_pending)
10488 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10489 }
10490 
10491 /* Return total number of NMIs pending injection to the VM */
10492 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10493 {
10494 	return vcpu->arch.nmi_pending +
10495 	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10496 }
10497 
10498 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10499 				       unsigned long *vcpu_bitmap)
10500 {
10501 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10502 }
10503 
10504 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10505 {
10506 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10507 }
10508 
10509 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10510 {
10511 	struct kvm_lapic *apic = vcpu->arch.apic;
10512 	bool activate;
10513 
10514 	if (!lapic_in_kernel(vcpu))
10515 		return;
10516 
10517 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10518 	preempt_disable();
10519 
10520 	/* Do not activate APICV when APIC is disabled */
10521 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10522 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10523 
10524 	if (apic->apicv_active == activate)
10525 		goto out;
10526 
10527 	apic->apicv_active = activate;
10528 	kvm_apic_update_apicv(vcpu);
10529 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10530 
10531 	/*
10532 	 * When APICv gets disabled, we may still have injected interrupts
10533 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10534 	 * still active when the interrupt got accepted. Make sure
10535 	 * kvm_check_and_inject_events() is called to check for that.
10536 	 */
10537 	if (!apic->apicv_active)
10538 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10539 
10540 out:
10541 	preempt_enable();
10542 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10543 }
10544 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10545 
10546 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10547 {
10548 	if (!lapic_in_kernel(vcpu))
10549 		return;
10550 
10551 	/*
10552 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10553 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10554 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10555 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10556 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10557 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10558 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10559 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10560 	 * access page is sticky.
10561 	 */
10562 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10563 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10564 		kvm_inhibit_apic_access_page(vcpu);
10565 
10566 	__kvm_vcpu_update_apicv(vcpu);
10567 }
10568 
10569 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10570 				      enum kvm_apicv_inhibit reason, bool set)
10571 {
10572 	unsigned long old, new;
10573 
10574 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10575 
10576 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10577 		return;
10578 
10579 	old = new = kvm->arch.apicv_inhibit_reasons;
10580 
10581 	set_or_clear_apicv_inhibit(&new, reason, set);
10582 
10583 	if (!!old != !!new) {
10584 		/*
10585 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10586 		 * false positives in the sanity check WARN in svm_vcpu_run().
10587 		 * This task will wait for all vCPUs to ack the kick IRQ before
10588 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10589 		 * block on acquiring apicv_update_lock so that vCPUs can't
10590 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10591 		 *
10592 		 * Note, holding apicv_update_lock and taking it in the read
10593 		 * side (handling the request) also prevents other vCPUs from
10594 		 * servicing the request with a stale apicv_inhibit_reasons.
10595 		 */
10596 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10597 		kvm->arch.apicv_inhibit_reasons = new;
10598 		if (new) {
10599 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10600 			int idx = srcu_read_lock(&kvm->srcu);
10601 
10602 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10603 			srcu_read_unlock(&kvm->srcu, idx);
10604 		}
10605 	} else {
10606 		kvm->arch.apicv_inhibit_reasons = new;
10607 	}
10608 }
10609 
10610 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10611 				    enum kvm_apicv_inhibit reason, bool set)
10612 {
10613 	if (!enable_apicv)
10614 		return;
10615 
10616 	down_write(&kvm->arch.apicv_update_lock);
10617 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10618 	up_write(&kvm->arch.apicv_update_lock);
10619 }
10620 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10621 
10622 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10623 {
10624 	if (!kvm_apic_present(vcpu))
10625 		return;
10626 
10627 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10628 
10629 	if (irqchip_split(vcpu->kvm))
10630 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10631 	else {
10632 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10633 		if (ioapic_in_kernel(vcpu->kvm))
10634 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10635 	}
10636 
10637 	if (is_guest_mode(vcpu))
10638 		vcpu->arch.load_eoi_exitmap_pending = true;
10639 	else
10640 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10641 }
10642 
10643 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10644 {
10645 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10646 		return;
10647 
10648 #ifdef CONFIG_KVM_HYPERV
10649 	if (to_hv_vcpu(vcpu)) {
10650 		u64 eoi_exit_bitmap[4];
10651 
10652 		bitmap_or((ulong *)eoi_exit_bitmap,
10653 			  vcpu->arch.ioapic_handled_vectors,
10654 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10655 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10656 		return;
10657 	}
10658 #endif
10659 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10660 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10661 }
10662 
10663 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10664 {
10665 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10666 }
10667 
10668 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10669 {
10670 	if (!lapic_in_kernel(vcpu))
10671 		return;
10672 
10673 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10674 }
10675 
10676 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10677 {
10678 	smp_send_reschedule(vcpu->cpu);
10679 }
10680 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10681 
10682 /*
10683  * Called within kvm->srcu read side.
10684  * Returns 1 to let vcpu_run() continue the guest execution loop without
10685  * exiting to the userspace.  Otherwise, the value will be returned to the
10686  * userspace.
10687  */
10688 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10689 {
10690 	int r;
10691 	bool req_int_win =
10692 		dm_request_for_irq_injection(vcpu) &&
10693 		kvm_cpu_accept_dm_intr(vcpu);
10694 	fastpath_t exit_fastpath;
10695 
10696 	bool req_immediate_exit = false;
10697 
10698 	if (kvm_request_pending(vcpu)) {
10699 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10700 			r = -EIO;
10701 			goto out;
10702 		}
10703 
10704 		if (kvm_dirty_ring_check_request(vcpu)) {
10705 			r = 0;
10706 			goto out;
10707 		}
10708 
10709 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10710 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10711 				r = 0;
10712 				goto out;
10713 			}
10714 		}
10715 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10716 			kvm_mmu_free_obsolete_roots(vcpu);
10717 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10718 			__kvm_migrate_timers(vcpu);
10719 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10720 			kvm_update_masterclock(vcpu->kvm);
10721 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10722 			kvm_gen_kvmclock_update(vcpu);
10723 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10724 			r = kvm_guest_time_update(vcpu);
10725 			if (unlikely(r))
10726 				goto out;
10727 		}
10728 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10729 			kvm_mmu_sync_roots(vcpu);
10730 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10731 			kvm_mmu_load_pgd(vcpu);
10732 
10733 		/*
10734 		 * Note, the order matters here, as flushing "all" TLB entries
10735 		 * also flushes the "current" TLB entries, i.e. servicing the
10736 		 * flush "all" will clear any request to flush "current".
10737 		 */
10738 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10739 			kvm_vcpu_flush_tlb_all(vcpu);
10740 
10741 		kvm_service_local_tlb_flush_requests(vcpu);
10742 
10743 		/*
10744 		 * Fall back to a "full" guest flush if Hyper-V's precise
10745 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10746 		 * the flushes are considered "remote" and not "local" because
10747 		 * the requests can be initiated from other vCPUs.
10748 		 */
10749 #ifdef CONFIG_KVM_HYPERV
10750 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10751 		    kvm_hv_vcpu_flush_tlb(vcpu))
10752 			kvm_vcpu_flush_tlb_guest(vcpu);
10753 #endif
10754 
10755 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10756 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10757 			r = 0;
10758 			goto out;
10759 		}
10760 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10761 			if (is_guest_mode(vcpu))
10762 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10763 
10764 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10765 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10766 				vcpu->mmio_needed = 0;
10767 				r = 0;
10768 				goto out;
10769 			}
10770 		}
10771 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10772 			/* Page is swapped out. Do synthetic halt */
10773 			vcpu->arch.apf.halted = true;
10774 			r = 1;
10775 			goto out;
10776 		}
10777 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10778 			record_steal_time(vcpu);
10779 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10780 			kvm_pmu_handle_event(vcpu);
10781 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10782 			kvm_pmu_deliver_pmi(vcpu);
10783 #ifdef CONFIG_KVM_SMM
10784 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10785 			process_smi(vcpu);
10786 #endif
10787 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10788 			process_nmi(vcpu);
10789 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10790 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10791 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10792 				     vcpu->arch.ioapic_handled_vectors)) {
10793 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10794 				vcpu->run->eoi.vector =
10795 						vcpu->arch.pending_ioapic_eoi;
10796 				r = 0;
10797 				goto out;
10798 			}
10799 		}
10800 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10801 			vcpu_scan_ioapic(vcpu);
10802 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10803 			vcpu_load_eoi_exitmap(vcpu);
10804 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10805 			kvm_vcpu_reload_apic_access_page(vcpu);
10806 #ifdef CONFIG_KVM_HYPERV
10807 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10808 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10809 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10810 			vcpu->run->system_event.ndata = 0;
10811 			r = 0;
10812 			goto out;
10813 		}
10814 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10815 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10816 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10817 			vcpu->run->system_event.ndata = 0;
10818 			r = 0;
10819 			goto out;
10820 		}
10821 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10822 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10823 
10824 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10825 			vcpu->run->hyperv = hv_vcpu->exit;
10826 			r = 0;
10827 			goto out;
10828 		}
10829 
10830 		/*
10831 		 * KVM_REQ_HV_STIMER has to be processed after
10832 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10833 		 * depend on the guest clock being up-to-date
10834 		 */
10835 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10836 			kvm_hv_process_stimers(vcpu);
10837 #endif
10838 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10839 			kvm_vcpu_update_apicv(vcpu);
10840 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10841 			kvm_check_async_pf_completion(vcpu);
10842 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10843 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10844 
10845 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10846 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10847 	}
10848 
10849 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10850 	    kvm_xen_has_interrupt(vcpu)) {
10851 		++vcpu->stat.req_event;
10852 		r = kvm_apic_accept_events(vcpu);
10853 		if (r < 0) {
10854 			r = 0;
10855 			goto out;
10856 		}
10857 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10858 			r = 1;
10859 			goto out;
10860 		}
10861 
10862 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10863 		if (r < 0) {
10864 			r = 0;
10865 			goto out;
10866 		}
10867 		if (req_int_win)
10868 			static_call(kvm_x86_enable_irq_window)(vcpu);
10869 
10870 		if (kvm_lapic_enabled(vcpu)) {
10871 			update_cr8_intercept(vcpu);
10872 			kvm_lapic_sync_to_vapic(vcpu);
10873 		}
10874 	}
10875 
10876 	r = kvm_mmu_reload(vcpu);
10877 	if (unlikely(r)) {
10878 		goto cancel_injection;
10879 	}
10880 
10881 	preempt_disable();
10882 
10883 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10884 
10885 	/*
10886 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10887 	 * IPI are then delayed after guest entry, which ensures that they
10888 	 * result in virtual interrupt delivery.
10889 	 */
10890 	local_irq_disable();
10891 
10892 	/* Store vcpu->apicv_active before vcpu->mode.  */
10893 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10894 
10895 	kvm_vcpu_srcu_read_unlock(vcpu);
10896 
10897 	/*
10898 	 * 1) We should set ->mode before checking ->requests.  Please see
10899 	 * the comment in kvm_vcpu_exiting_guest_mode().
10900 	 *
10901 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10902 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10903 	 * (see vmx_deliver_posted_interrupt).
10904 	 *
10905 	 * 3) This also orders the write to mode from any reads to the page
10906 	 * tables done while the VCPU is running.  Please see the comment
10907 	 * in kvm_flush_remote_tlbs.
10908 	 */
10909 	smp_mb__after_srcu_read_unlock();
10910 
10911 	/*
10912 	 * Process pending posted interrupts to handle the case where the
10913 	 * notification IRQ arrived in the host, or was never sent (because the
10914 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10915 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10916 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10917 	 */
10918 	if (kvm_lapic_enabled(vcpu))
10919 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10920 
10921 	if (kvm_vcpu_exit_request(vcpu)) {
10922 		vcpu->mode = OUTSIDE_GUEST_MODE;
10923 		smp_wmb();
10924 		local_irq_enable();
10925 		preempt_enable();
10926 		kvm_vcpu_srcu_read_lock(vcpu);
10927 		r = 1;
10928 		goto cancel_injection;
10929 	}
10930 
10931 	if (req_immediate_exit) {
10932 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10933 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10934 	}
10935 
10936 	fpregs_assert_state_consistent();
10937 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10938 		switch_fpu_return();
10939 
10940 	if (vcpu->arch.guest_fpu.xfd_err)
10941 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10942 
10943 	if (unlikely(vcpu->arch.switch_db_regs)) {
10944 		set_debugreg(0, 7);
10945 		set_debugreg(vcpu->arch.eff_db[0], 0);
10946 		set_debugreg(vcpu->arch.eff_db[1], 1);
10947 		set_debugreg(vcpu->arch.eff_db[2], 2);
10948 		set_debugreg(vcpu->arch.eff_db[3], 3);
10949 	} else if (unlikely(hw_breakpoint_active())) {
10950 		set_debugreg(0, 7);
10951 	}
10952 
10953 	guest_timing_enter_irqoff();
10954 
10955 	for (;;) {
10956 		/*
10957 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10958 		 * update must kick and wait for all vCPUs before toggling the
10959 		 * per-VM state, and responding vCPUs must wait for the update
10960 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10961 		 */
10962 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10963 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10964 
10965 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10966 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10967 			break;
10968 
10969 		if (kvm_lapic_enabled(vcpu))
10970 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10971 
10972 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10973 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10974 			break;
10975 		}
10976 
10977 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10978 		++vcpu->stat.exits;
10979 	}
10980 
10981 	/*
10982 	 * Do this here before restoring debug registers on the host.  And
10983 	 * since we do this before handling the vmexit, a DR access vmexit
10984 	 * can (a) read the correct value of the debug registers, (b) set
10985 	 * KVM_DEBUGREG_WONT_EXIT again.
10986 	 */
10987 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10988 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10989 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10990 		kvm_update_dr0123(vcpu);
10991 		kvm_update_dr7(vcpu);
10992 	}
10993 
10994 	/*
10995 	 * If the guest has used debug registers, at least dr7
10996 	 * will be disabled while returning to the host.
10997 	 * If we don't have active breakpoints in the host, we don't
10998 	 * care about the messed up debug address registers. But if
10999 	 * we have some of them active, restore the old state.
11000 	 */
11001 	if (hw_breakpoint_active())
11002 		hw_breakpoint_restore();
11003 
11004 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11005 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11006 
11007 	vcpu->mode = OUTSIDE_GUEST_MODE;
11008 	smp_wmb();
11009 
11010 	/*
11011 	 * Sync xfd before calling handle_exit_irqoff() which may
11012 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11013 	 * in #NM irqoff handler).
11014 	 */
11015 	if (vcpu->arch.xfd_no_write_intercept)
11016 		fpu_sync_guest_vmexit_xfd_state();
11017 
11018 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11019 
11020 	if (vcpu->arch.guest_fpu.xfd_err)
11021 		wrmsrl(MSR_IA32_XFD_ERR, 0);
11022 
11023 	/*
11024 	 * Consume any pending interrupts, including the possible source of
11025 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11026 	 * An instruction is required after local_irq_enable() to fully unblock
11027 	 * interrupts on processors that implement an interrupt shadow, the
11028 	 * stat.exits increment will do nicely.
11029 	 */
11030 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11031 	local_irq_enable();
11032 	++vcpu->stat.exits;
11033 	local_irq_disable();
11034 	kvm_after_interrupt(vcpu);
11035 
11036 	/*
11037 	 * Wait until after servicing IRQs to account guest time so that any
11038 	 * ticks that occurred while running the guest are properly accounted
11039 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11040 	 * of accounting via context tracking, but the loss of accuracy is
11041 	 * acceptable for all known use cases.
11042 	 */
11043 	guest_timing_exit_irqoff();
11044 
11045 	local_irq_enable();
11046 	preempt_enable();
11047 
11048 	kvm_vcpu_srcu_read_lock(vcpu);
11049 
11050 	/*
11051 	 * Profile KVM exit RIPs:
11052 	 */
11053 	if (unlikely(prof_on == KVM_PROFILING)) {
11054 		unsigned long rip = kvm_rip_read(vcpu);
11055 		profile_hit(KVM_PROFILING, (void *)rip);
11056 	}
11057 
11058 	if (unlikely(vcpu->arch.tsc_always_catchup))
11059 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11060 
11061 	if (vcpu->arch.apic_attention)
11062 		kvm_lapic_sync_from_vapic(vcpu);
11063 
11064 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11065 	return r;
11066 
11067 cancel_injection:
11068 	if (req_immediate_exit)
11069 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11070 	static_call(kvm_x86_cancel_injection)(vcpu);
11071 	if (unlikely(vcpu->arch.apic_attention))
11072 		kvm_lapic_sync_from_vapic(vcpu);
11073 out:
11074 	return r;
11075 }
11076 
11077 /* Called within kvm->srcu read side.  */
11078 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11079 {
11080 	bool hv_timer;
11081 
11082 	if (!kvm_arch_vcpu_runnable(vcpu)) {
11083 		/*
11084 		 * Switch to the software timer before halt-polling/blocking as
11085 		 * the guest's timer may be a break event for the vCPU, and the
11086 		 * hypervisor timer runs only when the CPU is in guest mode.
11087 		 * Switch before halt-polling so that KVM recognizes an expired
11088 		 * timer before blocking.
11089 		 */
11090 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11091 		if (hv_timer)
11092 			kvm_lapic_switch_to_sw_timer(vcpu);
11093 
11094 		kvm_vcpu_srcu_read_unlock(vcpu);
11095 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11096 			kvm_vcpu_halt(vcpu);
11097 		else
11098 			kvm_vcpu_block(vcpu);
11099 		kvm_vcpu_srcu_read_lock(vcpu);
11100 
11101 		if (hv_timer)
11102 			kvm_lapic_switch_to_hv_timer(vcpu);
11103 
11104 		/*
11105 		 * If the vCPU is not runnable, a signal or another host event
11106 		 * of some kind is pending; service it without changing the
11107 		 * vCPU's activity state.
11108 		 */
11109 		if (!kvm_arch_vcpu_runnable(vcpu))
11110 			return 1;
11111 	}
11112 
11113 	/*
11114 	 * Evaluate nested events before exiting the halted state.  This allows
11115 	 * the halt state to be recorded properly in the VMCS12's activity
11116 	 * state field (AMD does not have a similar field and a VM-Exit always
11117 	 * causes a spurious wakeup from HLT).
11118 	 */
11119 	if (is_guest_mode(vcpu)) {
11120 		if (kvm_check_nested_events(vcpu) < 0)
11121 			return 0;
11122 	}
11123 
11124 	if (kvm_apic_accept_events(vcpu) < 0)
11125 		return 0;
11126 	switch(vcpu->arch.mp_state) {
11127 	case KVM_MP_STATE_HALTED:
11128 	case KVM_MP_STATE_AP_RESET_HOLD:
11129 		vcpu->arch.pv.pv_unhalted = false;
11130 		vcpu->arch.mp_state =
11131 			KVM_MP_STATE_RUNNABLE;
11132 		fallthrough;
11133 	case KVM_MP_STATE_RUNNABLE:
11134 		vcpu->arch.apf.halted = false;
11135 		break;
11136 	case KVM_MP_STATE_INIT_RECEIVED:
11137 		break;
11138 	default:
11139 		WARN_ON_ONCE(1);
11140 		break;
11141 	}
11142 	return 1;
11143 }
11144 
11145 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11146 {
11147 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11148 		!vcpu->arch.apf.halted);
11149 }
11150 
11151 /* Called within kvm->srcu read side.  */
11152 static int vcpu_run(struct kvm_vcpu *vcpu)
11153 {
11154 	int r;
11155 
11156 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11157 	vcpu->arch.l1tf_flush_l1d = true;
11158 
11159 	for (;;) {
11160 		/*
11161 		 * If another guest vCPU requests a PV TLB flush in the middle
11162 		 * of instruction emulation, the rest of the emulation could
11163 		 * use a stale page translation. Assume that any code after
11164 		 * this point can start executing an instruction.
11165 		 */
11166 		vcpu->arch.at_instruction_boundary = false;
11167 		if (kvm_vcpu_running(vcpu)) {
11168 			r = vcpu_enter_guest(vcpu);
11169 		} else {
11170 			r = vcpu_block(vcpu);
11171 		}
11172 
11173 		if (r <= 0)
11174 			break;
11175 
11176 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11177 		if (kvm_xen_has_pending_events(vcpu))
11178 			kvm_xen_inject_pending_events(vcpu);
11179 
11180 		if (kvm_cpu_has_pending_timer(vcpu))
11181 			kvm_inject_pending_timer_irqs(vcpu);
11182 
11183 		if (dm_request_for_irq_injection(vcpu) &&
11184 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11185 			r = 0;
11186 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11187 			++vcpu->stat.request_irq_exits;
11188 			break;
11189 		}
11190 
11191 		if (__xfer_to_guest_mode_work_pending()) {
11192 			kvm_vcpu_srcu_read_unlock(vcpu);
11193 			r = xfer_to_guest_mode_handle_work(vcpu);
11194 			kvm_vcpu_srcu_read_lock(vcpu);
11195 			if (r)
11196 				return r;
11197 		}
11198 	}
11199 
11200 	return r;
11201 }
11202 
11203 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11204 {
11205 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11206 }
11207 
11208 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11209 {
11210 	BUG_ON(!vcpu->arch.pio.count);
11211 
11212 	return complete_emulated_io(vcpu);
11213 }
11214 
11215 /*
11216  * Implements the following, as a state machine:
11217  *
11218  * read:
11219  *   for each fragment
11220  *     for each mmio piece in the fragment
11221  *       write gpa, len
11222  *       exit
11223  *       copy data
11224  *   execute insn
11225  *
11226  * write:
11227  *   for each fragment
11228  *     for each mmio piece in the fragment
11229  *       write gpa, len
11230  *       copy data
11231  *       exit
11232  */
11233 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11234 {
11235 	struct kvm_run *run = vcpu->run;
11236 	struct kvm_mmio_fragment *frag;
11237 	unsigned len;
11238 
11239 	BUG_ON(!vcpu->mmio_needed);
11240 
11241 	/* Complete previous fragment */
11242 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11243 	len = min(8u, frag->len);
11244 	if (!vcpu->mmio_is_write)
11245 		memcpy(frag->data, run->mmio.data, len);
11246 
11247 	if (frag->len <= 8) {
11248 		/* Switch to the next fragment. */
11249 		frag++;
11250 		vcpu->mmio_cur_fragment++;
11251 	} else {
11252 		/* Go forward to the next mmio piece. */
11253 		frag->data += len;
11254 		frag->gpa += len;
11255 		frag->len -= len;
11256 	}
11257 
11258 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11259 		vcpu->mmio_needed = 0;
11260 
11261 		/* FIXME: return into emulator if single-stepping.  */
11262 		if (vcpu->mmio_is_write)
11263 			return 1;
11264 		vcpu->mmio_read_completed = 1;
11265 		return complete_emulated_io(vcpu);
11266 	}
11267 
11268 	run->exit_reason = KVM_EXIT_MMIO;
11269 	run->mmio.phys_addr = frag->gpa;
11270 	if (vcpu->mmio_is_write)
11271 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11272 	run->mmio.len = min(8u, frag->len);
11273 	run->mmio.is_write = vcpu->mmio_is_write;
11274 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11275 	return 0;
11276 }
11277 
11278 /* Swap (qemu) user FPU context for the guest FPU context. */
11279 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11280 {
11281 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11282 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11283 	trace_kvm_fpu(1);
11284 }
11285 
11286 /* When vcpu_run ends, restore user space FPU context. */
11287 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11288 {
11289 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11290 	++vcpu->stat.fpu_reload;
11291 	trace_kvm_fpu(0);
11292 }
11293 
11294 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11295 {
11296 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11297 	struct kvm_run *kvm_run = vcpu->run;
11298 	int r;
11299 
11300 	vcpu_load(vcpu);
11301 	kvm_sigset_activate(vcpu);
11302 	kvm_run->flags = 0;
11303 	kvm_load_guest_fpu(vcpu);
11304 
11305 	kvm_vcpu_srcu_read_lock(vcpu);
11306 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11307 		if (kvm_run->immediate_exit) {
11308 			r = -EINTR;
11309 			goto out;
11310 		}
11311 
11312 		/*
11313 		 * Don't bother switching APIC timer emulation from the
11314 		 * hypervisor timer to the software timer, the only way for the
11315 		 * APIC timer to be active is if userspace stuffed vCPU state,
11316 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11317 		 * will transition the vCPU out of UNINITIALIZED (without more
11318 		 * state stuffing from userspace), which will reset the local
11319 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11320 		 * already expired).
11321 		 */
11322 		kvm_vcpu_srcu_read_unlock(vcpu);
11323 		kvm_vcpu_block(vcpu);
11324 		kvm_vcpu_srcu_read_lock(vcpu);
11325 
11326 		if (kvm_apic_accept_events(vcpu) < 0) {
11327 			r = 0;
11328 			goto out;
11329 		}
11330 		r = -EAGAIN;
11331 		if (signal_pending(current)) {
11332 			r = -EINTR;
11333 			kvm_run->exit_reason = KVM_EXIT_INTR;
11334 			++vcpu->stat.signal_exits;
11335 		}
11336 		goto out;
11337 	}
11338 
11339 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11340 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11341 		r = -EINVAL;
11342 		goto out;
11343 	}
11344 
11345 	if (kvm_run->kvm_dirty_regs) {
11346 		r = sync_regs(vcpu);
11347 		if (r != 0)
11348 			goto out;
11349 	}
11350 
11351 	/* re-sync apic's tpr */
11352 	if (!lapic_in_kernel(vcpu)) {
11353 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11354 			r = -EINVAL;
11355 			goto out;
11356 		}
11357 	}
11358 
11359 	/*
11360 	 * If userspace set a pending exception and L2 is active, convert it to
11361 	 * a pending VM-Exit if L1 wants to intercept the exception.
11362 	 */
11363 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11364 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11365 							ex->error_code)) {
11366 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11367 					   ex->has_error_code, ex->error_code,
11368 					   ex->has_payload, ex->payload);
11369 		ex->injected = false;
11370 		ex->pending = false;
11371 	}
11372 	vcpu->arch.exception_from_userspace = false;
11373 
11374 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11375 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11376 		vcpu->arch.complete_userspace_io = NULL;
11377 		r = cui(vcpu);
11378 		if (r <= 0)
11379 			goto out;
11380 	} else {
11381 		WARN_ON_ONCE(vcpu->arch.pio.count);
11382 		WARN_ON_ONCE(vcpu->mmio_needed);
11383 	}
11384 
11385 	if (kvm_run->immediate_exit) {
11386 		r = -EINTR;
11387 		goto out;
11388 	}
11389 
11390 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11391 	if (r <= 0)
11392 		goto out;
11393 
11394 	r = vcpu_run(vcpu);
11395 
11396 out:
11397 	kvm_put_guest_fpu(vcpu);
11398 	if (kvm_run->kvm_valid_regs)
11399 		store_regs(vcpu);
11400 	post_kvm_run_save(vcpu);
11401 	kvm_vcpu_srcu_read_unlock(vcpu);
11402 
11403 	kvm_sigset_deactivate(vcpu);
11404 	vcpu_put(vcpu);
11405 	return r;
11406 }
11407 
11408 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11409 {
11410 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11411 		/*
11412 		 * We are here if userspace calls get_regs() in the middle of
11413 		 * instruction emulation. Registers state needs to be copied
11414 		 * back from emulation context to vcpu. Userspace shouldn't do
11415 		 * that usually, but some bad designed PV devices (vmware
11416 		 * backdoor interface) need this to work
11417 		 */
11418 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11419 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11420 	}
11421 	regs->rax = kvm_rax_read(vcpu);
11422 	regs->rbx = kvm_rbx_read(vcpu);
11423 	regs->rcx = kvm_rcx_read(vcpu);
11424 	regs->rdx = kvm_rdx_read(vcpu);
11425 	regs->rsi = kvm_rsi_read(vcpu);
11426 	regs->rdi = kvm_rdi_read(vcpu);
11427 	regs->rsp = kvm_rsp_read(vcpu);
11428 	regs->rbp = kvm_rbp_read(vcpu);
11429 #ifdef CONFIG_X86_64
11430 	regs->r8 = kvm_r8_read(vcpu);
11431 	regs->r9 = kvm_r9_read(vcpu);
11432 	regs->r10 = kvm_r10_read(vcpu);
11433 	regs->r11 = kvm_r11_read(vcpu);
11434 	regs->r12 = kvm_r12_read(vcpu);
11435 	regs->r13 = kvm_r13_read(vcpu);
11436 	regs->r14 = kvm_r14_read(vcpu);
11437 	regs->r15 = kvm_r15_read(vcpu);
11438 #endif
11439 
11440 	regs->rip = kvm_rip_read(vcpu);
11441 	regs->rflags = kvm_get_rflags(vcpu);
11442 }
11443 
11444 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11445 {
11446 	vcpu_load(vcpu);
11447 	__get_regs(vcpu, regs);
11448 	vcpu_put(vcpu);
11449 	return 0;
11450 }
11451 
11452 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11453 {
11454 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11455 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11456 
11457 	kvm_rax_write(vcpu, regs->rax);
11458 	kvm_rbx_write(vcpu, regs->rbx);
11459 	kvm_rcx_write(vcpu, regs->rcx);
11460 	kvm_rdx_write(vcpu, regs->rdx);
11461 	kvm_rsi_write(vcpu, regs->rsi);
11462 	kvm_rdi_write(vcpu, regs->rdi);
11463 	kvm_rsp_write(vcpu, regs->rsp);
11464 	kvm_rbp_write(vcpu, regs->rbp);
11465 #ifdef CONFIG_X86_64
11466 	kvm_r8_write(vcpu, regs->r8);
11467 	kvm_r9_write(vcpu, regs->r9);
11468 	kvm_r10_write(vcpu, regs->r10);
11469 	kvm_r11_write(vcpu, regs->r11);
11470 	kvm_r12_write(vcpu, regs->r12);
11471 	kvm_r13_write(vcpu, regs->r13);
11472 	kvm_r14_write(vcpu, regs->r14);
11473 	kvm_r15_write(vcpu, regs->r15);
11474 #endif
11475 
11476 	kvm_rip_write(vcpu, regs->rip);
11477 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11478 
11479 	vcpu->arch.exception.pending = false;
11480 	vcpu->arch.exception_vmexit.pending = false;
11481 
11482 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11483 }
11484 
11485 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11486 {
11487 	vcpu_load(vcpu);
11488 	__set_regs(vcpu, regs);
11489 	vcpu_put(vcpu);
11490 	return 0;
11491 }
11492 
11493 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11494 {
11495 	struct desc_ptr dt;
11496 
11497 	if (vcpu->arch.guest_state_protected)
11498 		goto skip_protected_regs;
11499 
11500 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11501 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11502 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11503 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11504 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11505 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11506 
11507 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11508 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11509 
11510 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11511 	sregs->idt.limit = dt.size;
11512 	sregs->idt.base = dt.address;
11513 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11514 	sregs->gdt.limit = dt.size;
11515 	sregs->gdt.base = dt.address;
11516 
11517 	sregs->cr2 = vcpu->arch.cr2;
11518 	sregs->cr3 = kvm_read_cr3(vcpu);
11519 
11520 skip_protected_regs:
11521 	sregs->cr0 = kvm_read_cr0(vcpu);
11522 	sregs->cr4 = kvm_read_cr4(vcpu);
11523 	sregs->cr8 = kvm_get_cr8(vcpu);
11524 	sregs->efer = vcpu->arch.efer;
11525 	sregs->apic_base = kvm_get_apic_base(vcpu);
11526 }
11527 
11528 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11529 {
11530 	__get_sregs_common(vcpu, sregs);
11531 
11532 	if (vcpu->arch.guest_state_protected)
11533 		return;
11534 
11535 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11536 		set_bit(vcpu->arch.interrupt.nr,
11537 			(unsigned long *)sregs->interrupt_bitmap);
11538 }
11539 
11540 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11541 {
11542 	int i;
11543 
11544 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11545 
11546 	if (vcpu->arch.guest_state_protected)
11547 		return;
11548 
11549 	if (is_pae_paging(vcpu)) {
11550 		for (i = 0 ; i < 4 ; i++)
11551 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11552 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11553 	}
11554 }
11555 
11556 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11557 				  struct kvm_sregs *sregs)
11558 {
11559 	vcpu_load(vcpu);
11560 	__get_sregs(vcpu, sregs);
11561 	vcpu_put(vcpu);
11562 	return 0;
11563 }
11564 
11565 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11566 				    struct kvm_mp_state *mp_state)
11567 {
11568 	int r;
11569 
11570 	vcpu_load(vcpu);
11571 	if (kvm_mpx_supported())
11572 		kvm_load_guest_fpu(vcpu);
11573 
11574 	r = kvm_apic_accept_events(vcpu);
11575 	if (r < 0)
11576 		goto out;
11577 	r = 0;
11578 
11579 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11580 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11581 	    vcpu->arch.pv.pv_unhalted)
11582 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11583 	else
11584 		mp_state->mp_state = vcpu->arch.mp_state;
11585 
11586 out:
11587 	if (kvm_mpx_supported())
11588 		kvm_put_guest_fpu(vcpu);
11589 	vcpu_put(vcpu);
11590 	return r;
11591 }
11592 
11593 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11594 				    struct kvm_mp_state *mp_state)
11595 {
11596 	int ret = -EINVAL;
11597 
11598 	vcpu_load(vcpu);
11599 
11600 	switch (mp_state->mp_state) {
11601 	case KVM_MP_STATE_UNINITIALIZED:
11602 	case KVM_MP_STATE_HALTED:
11603 	case KVM_MP_STATE_AP_RESET_HOLD:
11604 	case KVM_MP_STATE_INIT_RECEIVED:
11605 	case KVM_MP_STATE_SIPI_RECEIVED:
11606 		if (!lapic_in_kernel(vcpu))
11607 			goto out;
11608 		break;
11609 
11610 	case KVM_MP_STATE_RUNNABLE:
11611 		break;
11612 
11613 	default:
11614 		goto out;
11615 	}
11616 
11617 	/*
11618 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11619 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11620 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11621 	 * if an SMI is pending as well.
11622 	 */
11623 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11624 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11625 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11626 		goto out;
11627 
11628 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11629 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11630 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11631 	} else
11632 		vcpu->arch.mp_state = mp_state->mp_state;
11633 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11634 
11635 	ret = 0;
11636 out:
11637 	vcpu_put(vcpu);
11638 	return ret;
11639 }
11640 
11641 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11642 		    int reason, bool has_error_code, u32 error_code)
11643 {
11644 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11645 	int ret;
11646 
11647 	init_emulate_ctxt(vcpu);
11648 
11649 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11650 				   has_error_code, error_code);
11651 	if (ret) {
11652 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11653 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11654 		vcpu->run->internal.ndata = 0;
11655 		return 0;
11656 	}
11657 
11658 	kvm_rip_write(vcpu, ctxt->eip);
11659 	kvm_set_rflags(vcpu, ctxt->eflags);
11660 	return 1;
11661 }
11662 EXPORT_SYMBOL_GPL(kvm_task_switch);
11663 
11664 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11665 {
11666 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11667 		/*
11668 		 * When EFER.LME and CR0.PG are set, the processor is in
11669 		 * 64-bit mode (though maybe in a 32-bit code segment).
11670 		 * CR4.PAE and EFER.LMA must be set.
11671 		 */
11672 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11673 			return false;
11674 		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11675 			return false;
11676 	} else {
11677 		/*
11678 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11679 		 * segment cannot be 64-bit.
11680 		 */
11681 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11682 			return false;
11683 	}
11684 
11685 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11686 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11687 }
11688 
11689 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11690 		int *mmu_reset_needed, bool update_pdptrs)
11691 {
11692 	struct msr_data apic_base_msr;
11693 	int idx;
11694 	struct desc_ptr dt;
11695 
11696 	if (!kvm_is_valid_sregs(vcpu, sregs))
11697 		return -EINVAL;
11698 
11699 	apic_base_msr.data = sregs->apic_base;
11700 	apic_base_msr.host_initiated = true;
11701 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11702 		return -EINVAL;
11703 
11704 	if (vcpu->arch.guest_state_protected)
11705 		return 0;
11706 
11707 	dt.size = sregs->idt.limit;
11708 	dt.address = sregs->idt.base;
11709 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11710 	dt.size = sregs->gdt.limit;
11711 	dt.address = sregs->gdt.base;
11712 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11713 
11714 	vcpu->arch.cr2 = sregs->cr2;
11715 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11716 	vcpu->arch.cr3 = sregs->cr3;
11717 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11718 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11719 
11720 	kvm_set_cr8(vcpu, sregs->cr8);
11721 
11722 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11723 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11724 
11725 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11726 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11727 
11728 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11729 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11730 
11731 	if (update_pdptrs) {
11732 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11733 		if (is_pae_paging(vcpu)) {
11734 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11735 			*mmu_reset_needed = 1;
11736 		}
11737 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11738 	}
11739 
11740 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11741 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11742 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11743 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11744 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11745 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11746 
11747 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11748 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11749 
11750 	update_cr8_intercept(vcpu);
11751 
11752 	/* Older userspace won't unhalt the vcpu on reset. */
11753 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11754 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11755 	    !is_protmode(vcpu))
11756 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11757 
11758 	return 0;
11759 }
11760 
11761 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11762 {
11763 	int pending_vec, max_bits;
11764 	int mmu_reset_needed = 0;
11765 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11766 
11767 	if (ret)
11768 		return ret;
11769 
11770 	if (mmu_reset_needed) {
11771 		kvm_mmu_reset_context(vcpu);
11772 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11773 	}
11774 
11775 	max_bits = KVM_NR_INTERRUPTS;
11776 	pending_vec = find_first_bit(
11777 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11778 
11779 	if (pending_vec < max_bits) {
11780 		kvm_queue_interrupt(vcpu, pending_vec, false);
11781 		pr_debug("Set back pending irq %d\n", pending_vec);
11782 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11783 	}
11784 	return 0;
11785 }
11786 
11787 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11788 {
11789 	int mmu_reset_needed = 0;
11790 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11791 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11792 		!(sregs2->efer & EFER_LMA);
11793 	int i, ret;
11794 
11795 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11796 		return -EINVAL;
11797 
11798 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11799 		return -EINVAL;
11800 
11801 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11802 				 &mmu_reset_needed, !valid_pdptrs);
11803 	if (ret)
11804 		return ret;
11805 
11806 	if (valid_pdptrs) {
11807 		for (i = 0; i < 4 ; i++)
11808 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11809 
11810 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11811 		mmu_reset_needed = 1;
11812 		vcpu->arch.pdptrs_from_userspace = true;
11813 	}
11814 	if (mmu_reset_needed) {
11815 		kvm_mmu_reset_context(vcpu);
11816 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11817 	}
11818 	return 0;
11819 }
11820 
11821 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11822 				  struct kvm_sregs *sregs)
11823 {
11824 	int ret;
11825 
11826 	vcpu_load(vcpu);
11827 	ret = __set_sregs(vcpu, sregs);
11828 	vcpu_put(vcpu);
11829 	return ret;
11830 }
11831 
11832 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11833 {
11834 	bool set = false;
11835 	struct kvm_vcpu *vcpu;
11836 	unsigned long i;
11837 
11838 	if (!enable_apicv)
11839 		return;
11840 
11841 	down_write(&kvm->arch.apicv_update_lock);
11842 
11843 	kvm_for_each_vcpu(i, vcpu, kvm) {
11844 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11845 			set = true;
11846 			break;
11847 		}
11848 	}
11849 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11850 	up_write(&kvm->arch.apicv_update_lock);
11851 }
11852 
11853 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11854 					struct kvm_guest_debug *dbg)
11855 {
11856 	unsigned long rflags;
11857 	int i, r;
11858 
11859 	if (vcpu->arch.guest_state_protected)
11860 		return -EINVAL;
11861 
11862 	vcpu_load(vcpu);
11863 
11864 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11865 		r = -EBUSY;
11866 		if (kvm_is_exception_pending(vcpu))
11867 			goto out;
11868 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11869 			kvm_queue_exception(vcpu, DB_VECTOR);
11870 		else
11871 			kvm_queue_exception(vcpu, BP_VECTOR);
11872 	}
11873 
11874 	/*
11875 	 * Read rflags as long as potentially injected trace flags are still
11876 	 * filtered out.
11877 	 */
11878 	rflags = kvm_get_rflags(vcpu);
11879 
11880 	vcpu->guest_debug = dbg->control;
11881 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11882 		vcpu->guest_debug = 0;
11883 
11884 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11885 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11886 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11887 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11888 	} else {
11889 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11890 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11891 	}
11892 	kvm_update_dr7(vcpu);
11893 
11894 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11895 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11896 
11897 	/*
11898 	 * Trigger an rflags update that will inject or remove the trace
11899 	 * flags.
11900 	 */
11901 	kvm_set_rflags(vcpu, rflags);
11902 
11903 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11904 
11905 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11906 
11907 	r = 0;
11908 
11909 out:
11910 	vcpu_put(vcpu);
11911 	return r;
11912 }
11913 
11914 /*
11915  * Translate a guest virtual address to a guest physical address.
11916  */
11917 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11918 				    struct kvm_translation *tr)
11919 {
11920 	unsigned long vaddr = tr->linear_address;
11921 	gpa_t gpa;
11922 	int idx;
11923 
11924 	vcpu_load(vcpu);
11925 
11926 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11927 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11928 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11929 	tr->physical_address = gpa;
11930 	tr->valid = gpa != INVALID_GPA;
11931 	tr->writeable = 1;
11932 	tr->usermode = 0;
11933 
11934 	vcpu_put(vcpu);
11935 	return 0;
11936 }
11937 
11938 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11939 {
11940 	struct fxregs_state *fxsave;
11941 
11942 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11943 		return 0;
11944 
11945 	vcpu_load(vcpu);
11946 
11947 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11948 	memcpy(fpu->fpr, fxsave->st_space, 128);
11949 	fpu->fcw = fxsave->cwd;
11950 	fpu->fsw = fxsave->swd;
11951 	fpu->ftwx = fxsave->twd;
11952 	fpu->last_opcode = fxsave->fop;
11953 	fpu->last_ip = fxsave->rip;
11954 	fpu->last_dp = fxsave->rdp;
11955 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11956 
11957 	vcpu_put(vcpu);
11958 	return 0;
11959 }
11960 
11961 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11962 {
11963 	struct fxregs_state *fxsave;
11964 
11965 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11966 		return 0;
11967 
11968 	vcpu_load(vcpu);
11969 
11970 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11971 
11972 	memcpy(fxsave->st_space, fpu->fpr, 128);
11973 	fxsave->cwd = fpu->fcw;
11974 	fxsave->swd = fpu->fsw;
11975 	fxsave->twd = fpu->ftwx;
11976 	fxsave->fop = fpu->last_opcode;
11977 	fxsave->rip = fpu->last_ip;
11978 	fxsave->rdp = fpu->last_dp;
11979 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11980 
11981 	vcpu_put(vcpu);
11982 	return 0;
11983 }
11984 
11985 static void store_regs(struct kvm_vcpu *vcpu)
11986 {
11987 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11988 
11989 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11990 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11991 
11992 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11993 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11994 
11995 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11996 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11997 				vcpu, &vcpu->run->s.regs.events);
11998 }
11999 
12000 static int sync_regs(struct kvm_vcpu *vcpu)
12001 {
12002 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12003 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12004 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12005 	}
12006 
12007 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12008 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12009 
12010 		if (__set_sregs(vcpu, &sregs))
12011 			return -EINVAL;
12012 
12013 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12014 	}
12015 
12016 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12017 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12018 
12019 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12020 			return -EINVAL;
12021 
12022 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12023 	}
12024 
12025 	return 0;
12026 }
12027 
12028 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12029 {
12030 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12031 		pr_warn_once("SMP vm created on host with unstable TSC; "
12032 			     "guest TSC will not be reliable\n");
12033 
12034 	if (!kvm->arch.max_vcpu_ids)
12035 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12036 
12037 	if (id >= kvm->arch.max_vcpu_ids)
12038 		return -EINVAL;
12039 
12040 	return static_call(kvm_x86_vcpu_precreate)(kvm);
12041 }
12042 
12043 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12044 {
12045 	struct page *page;
12046 	int r;
12047 
12048 	vcpu->arch.last_vmentry_cpu = -1;
12049 	vcpu->arch.regs_avail = ~0;
12050 	vcpu->arch.regs_dirty = ~0;
12051 
12052 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
12053 
12054 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12055 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12056 	else
12057 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12058 
12059 	r = kvm_mmu_create(vcpu);
12060 	if (r < 0)
12061 		return r;
12062 
12063 	if (irqchip_in_kernel(vcpu->kvm)) {
12064 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
12065 		if (r < 0)
12066 			goto fail_mmu_destroy;
12067 
12068 		/*
12069 		 * Defer evaluating inhibits until the vCPU is first run, as
12070 		 * this vCPU will not get notified of any changes until this
12071 		 * vCPU is visible to other vCPUs (marked online and added to
12072 		 * the set of vCPUs).  Opportunistically mark APICv active as
12073 		 * VMX in particularly is highly unlikely to have inhibits.
12074 		 * Ignore the current per-VM APICv state so that vCPU creation
12075 		 * is guaranteed to run with a deterministic value, the request
12076 		 * will ensure the vCPU gets the correct state before VM-Entry.
12077 		 */
12078 		if (enable_apicv) {
12079 			vcpu->arch.apic->apicv_active = true;
12080 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
12081 		}
12082 	} else
12083 		static_branch_inc(&kvm_has_noapic_vcpu);
12084 
12085 	r = -ENOMEM;
12086 
12087 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12088 	if (!page)
12089 		goto fail_free_lapic;
12090 	vcpu->arch.pio_data = page_address(page);
12091 
12092 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12093 				       GFP_KERNEL_ACCOUNT);
12094 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12095 					    GFP_KERNEL_ACCOUNT);
12096 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12097 		goto fail_free_mce_banks;
12098 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12099 
12100 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12101 				GFP_KERNEL_ACCOUNT))
12102 		goto fail_free_mce_banks;
12103 
12104 	if (!alloc_emulate_ctxt(vcpu))
12105 		goto free_wbinvd_dirty_mask;
12106 
12107 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12108 		pr_err("failed to allocate vcpu's fpu\n");
12109 		goto free_emulate_ctxt;
12110 	}
12111 
12112 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12113 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12114 
12115 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12116 
12117 	kvm_async_pf_hash_reset(vcpu);
12118 
12119 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12120 	kvm_pmu_init(vcpu);
12121 
12122 	vcpu->arch.pending_external_vector = -1;
12123 	vcpu->arch.preempted_in_kernel = false;
12124 
12125 #if IS_ENABLED(CONFIG_HYPERV)
12126 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12127 #endif
12128 
12129 	r = static_call(kvm_x86_vcpu_create)(vcpu);
12130 	if (r)
12131 		goto free_guest_fpu;
12132 
12133 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12134 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12135 	kvm_xen_init_vcpu(vcpu);
12136 	kvm_vcpu_mtrr_init(vcpu);
12137 	vcpu_load(vcpu);
12138 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12139 	kvm_vcpu_reset(vcpu, false);
12140 	kvm_init_mmu(vcpu);
12141 	vcpu_put(vcpu);
12142 	return 0;
12143 
12144 free_guest_fpu:
12145 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12146 free_emulate_ctxt:
12147 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12148 free_wbinvd_dirty_mask:
12149 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12150 fail_free_mce_banks:
12151 	kfree(vcpu->arch.mce_banks);
12152 	kfree(vcpu->arch.mci_ctl2_banks);
12153 	free_page((unsigned long)vcpu->arch.pio_data);
12154 fail_free_lapic:
12155 	kvm_free_lapic(vcpu);
12156 fail_mmu_destroy:
12157 	kvm_mmu_destroy(vcpu);
12158 	return r;
12159 }
12160 
12161 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12162 {
12163 	struct kvm *kvm = vcpu->kvm;
12164 
12165 	if (mutex_lock_killable(&vcpu->mutex))
12166 		return;
12167 	vcpu_load(vcpu);
12168 	kvm_synchronize_tsc(vcpu, NULL);
12169 	vcpu_put(vcpu);
12170 
12171 	/* poll control enabled by default */
12172 	vcpu->arch.msr_kvm_poll_control = 1;
12173 
12174 	mutex_unlock(&vcpu->mutex);
12175 
12176 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12177 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12178 						KVMCLOCK_SYNC_PERIOD);
12179 }
12180 
12181 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12182 {
12183 	int idx;
12184 
12185 	kvmclock_reset(vcpu);
12186 
12187 	static_call(kvm_x86_vcpu_free)(vcpu);
12188 
12189 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12190 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12191 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12192 
12193 	kvm_xen_destroy_vcpu(vcpu);
12194 	kvm_hv_vcpu_uninit(vcpu);
12195 	kvm_pmu_destroy(vcpu);
12196 	kfree(vcpu->arch.mce_banks);
12197 	kfree(vcpu->arch.mci_ctl2_banks);
12198 	kvm_free_lapic(vcpu);
12199 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12200 	kvm_mmu_destroy(vcpu);
12201 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12202 	free_page((unsigned long)vcpu->arch.pio_data);
12203 	kvfree(vcpu->arch.cpuid_entries);
12204 	if (!lapic_in_kernel(vcpu))
12205 		static_branch_dec(&kvm_has_noapic_vcpu);
12206 }
12207 
12208 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12209 {
12210 	struct kvm_cpuid_entry2 *cpuid_0x1;
12211 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12212 	unsigned long new_cr0;
12213 
12214 	/*
12215 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12216 	 * to handle side effects.  RESET emulation hits those flows and relies
12217 	 * on emulated/virtualized registers, including those that are loaded
12218 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12219 	 * to detect improper or missing initialization.
12220 	 */
12221 	WARN_ON_ONCE(!init_event &&
12222 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12223 
12224 	/*
12225 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12226 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12227 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12228 	 * bits), i.e. virtualization is disabled.
12229 	 */
12230 	if (is_guest_mode(vcpu))
12231 		kvm_leave_nested(vcpu);
12232 
12233 	kvm_lapic_reset(vcpu, init_event);
12234 
12235 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12236 	vcpu->arch.hflags = 0;
12237 
12238 	vcpu->arch.smi_pending = 0;
12239 	vcpu->arch.smi_count = 0;
12240 	atomic_set(&vcpu->arch.nmi_queued, 0);
12241 	vcpu->arch.nmi_pending = 0;
12242 	vcpu->arch.nmi_injected = false;
12243 	kvm_clear_interrupt_queue(vcpu);
12244 	kvm_clear_exception_queue(vcpu);
12245 
12246 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12247 	kvm_update_dr0123(vcpu);
12248 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12249 	vcpu->arch.dr7 = DR7_FIXED_1;
12250 	kvm_update_dr7(vcpu);
12251 
12252 	vcpu->arch.cr2 = 0;
12253 
12254 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12255 	vcpu->arch.apf.msr_en_val = 0;
12256 	vcpu->arch.apf.msr_int_val = 0;
12257 	vcpu->arch.st.msr_val = 0;
12258 
12259 	kvmclock_reset(vcpu);
12260 
12261 	kvm_clear_async_pf_completion_queue(vcpu);
12262 	kvm_async_pf_hash_reset(vcpu);
12263 	vcpu->arch.apf.halted = false;
12264 
12265 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12266 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12267 
12268 		/*
12269 		 * All paths that lead to INIT are required to load the guest's
12270 		 * FPU state (because most paths are buried in KVM_RUN).
12271 		 */
12272 		if (init_event)
12273 			kvm_put_guest_fpu(vcpu);
12274 
12275 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12276 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12277 
12278 		if (init_event)
12279 			kvm_load_guest_fpu(vcpu);
12280 	}
12281 
12282 	if (!init_event) {
12283 		vcpu->arch.smbase = 0x30000;
12284 
12285 		vcpu->arch.msr_misc_features_enables = 0;
12286 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12287 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12288 
12289 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12290 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12291 	}
12292 
12293 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12294 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12295 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12296 
12297 	/*
12298 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12299 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12300 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12301 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12302 	 * on RESET.  But, go through the motions in case that's ever remedied.
12303 	 */
12304 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12305 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12306 
12307 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12308 
12309 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12310 	kvm_rip_write(vcpu, 0xfff0);
12311 
12312 	vcpu->arch.cr3 = 0;
12313 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12314 
12315 	/*
12316 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12317 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12318 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12319 	 */
12320 	new_cr0 = X86_CR0_ET;
12321 	if (init_event)
12322 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12323 	else
12324 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12325 
12326 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12327 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12328 	static_call(kvm_x86_set_efer)(vcpu, 0);
12329 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12330 
12331 	/*
12332 	 * On the standard CR0/CR4/EFER modification paths, there are several
12333 	 * complex conditions determining whether the MMU has to be reset and/or
12334 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12335 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12336 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12337 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12338 	 */
12339 	if (old_cr0 & X86_CR0_PG) {
12340 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12341 		kvm_mmu_reset_context(vcpu);
12342 	}
12343 
12344 	/*
12345 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12346 	 * APM states the TLBs are untouched by INIT, but it also states that
12347 	 * the TLBs are flushed on "External initialization of the processor."
12348 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12349 	 * benefit in relying on the guest to flush the TLB immediately after
12350 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12351 	 * performance perspective.
12352 	 */
12353 	if (init_event)
12354 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12355 }
12356 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12357 
12358 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12359 {
12360 	struct kvm_segment cs;
12361 
12362 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12363 	cs.selector = vector << 8;
12364 	cs.base = vector << 12;
12365 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12366 	kvm_rip_write(vcpu, 0);
12367 }
12368 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12369 
12370 int kvm_arch_hardware_enable(void)
12371 {
12372 	struct kvm *kvm;
12373 	struct kvm_vcpu *vcpu;
12374 	unsigned long i;
12375 	int ret;
12376 	u64 local_tsc;
12377 	u64 max_tsc = 0;
12378 	bool stable, backwards_tsc = false;
12379 
12380 	kvm_user_return_msr_cpu_online();
12381 
12382 	ret = kvm_x86_check_processor_compatibility();
12383 	if (ret)
12384 		return ret;
12385 
12386 	ret = static_call(kvm_x86_hardware_enable)();
12387 	if (ret != 0)
12388 		return ret;
12389 
12390 	local_tsc = rdtsc();
12391 	stable = !kvm_check_tsc_unstable();
12392 	list_for_each_entry(kvm, &vm_list, vm_list) {
12393 		kvm_for_each_vcpu(i, vcpu, kvm) {
12394 			if (!stable && vcpu->cpu == smp_processor_id())
12395 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12396 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12397 				backwards_tsc = true;
12398 				if (vcpu->arch.last_host_tsc > max_tsc)
12399 					max_tsc = vcpu->arch.last_host_tsc;
12400 			}
12401 		}
12402 	}
12403 
12404 	/*
12405 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12406 	 * platforms that reset TSC during suspend or hibernate actions, but
12407 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12408 	 * detect that condition here, which happens early in CPU bringup,
12409 	 * before any KVM threads can be running.  Unfortunately, we can't
12410 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12411 	 * enough into CPU bringup that we know how much real time has actually
12412 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12413 	 * variables that haven't been updated yet.
12414 	 *
12415 	 * So we simply find the maximum observed TSC above, then record the
12416 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12417 	 * the adjustment will be applied.  Note that we accumulate
12418 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12419 	 * gets a chance to run again.  In the event that no KVM threads get a
12420 	 * chance to run, we will miss the entire elapsed period, as we'll have
12421 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12422 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12423 	 * uniform across all VCPUs (not to mention the scenario is extremely
12424 	 * unlikely). It is possible that a second hibernate recovery happens
12425 	 * much faster than a first, causing the observed TSC here to be
12426 	 * smaller; this would require additional padding adjustment, which is
12427 	 * why we set last_host_tsc to the local tsc observed here.
12428 	 *
12429 	 * N.B. - this code below runs only on platforms with reliable TSC,
12430 	 * as that is the only way backwards_tsc is set above.  Also note
12431 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12432 	 * have the same delta_cyc adjustment applied if backwards_tsc
12433 	 * is detected.  Note further, this adjustment is only done once,
12434 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12435 	 * called multiple times (one for each physical CPU bringup).
12436 	 *
12437 	 * Platforms with unreliable TSCs don't have to deal with this, they
12438 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12439 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12440 	 * guarantee that they stay in perfect synchronization.
12441 	 */
12442 	if (backwards_tsc) {
12443 		u64 delta_cyc = max_tsc - local_tsc;
12444 		list_for_each_entry(kvm, &vm_list, vm_list) {
12445 			kvm->arch.backwards_tsc_observed = true;
12446 			kvm_for_each_vcpu(i, vcpu, kvm) {
12447 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12448 				vcpu->arch.last_host_tsc = local_tsc;
12449 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12450 			}
12451 
12452 			/*
12453 			 * We have to disable TSC offset matching.. if you were
12454 			 * booting a VM while issuing an S4 host suspend....
12455 			 * you may have some problem.  Solving this issue is
12456 			 * left as an exercise to the reader.
12457 			 */
12458 			kvm->arch.last_tsc_nsec = 0;
12459 			kvm->arch.last_tsc_write = 0;
12460 		}
12461 
12462 	}
12463 	return 0;
12464 }
12465 
12466 void kvm_arch_hardware_disable(void)
12467 {
12468 	static_call(kvm_x86_hardware_disable)();
12469 	drop_user_return_notifiers();
12470 }
12471 
12472 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12473 {
12474 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12475 }
12476 
12477 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12478 {
12479 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12480 }
12481 
12482 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12483 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12484 
12485 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12486 {
12487 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12488 
12489 	vcpu->arch.l1tf_flush_l1d = true;
12490 	if (pmu->version && unlikely(pmu->event_count)) {
12491 		pmu->need_cleanup = true;
12492 		kvm_make_request(KVM_REQ_PMU, vcpu);
12493 	}
12494 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12495 }
12496 
12497 void kvm_arch_free_vm(struct kvm *kvm)
12498 {
12499 #if IS_ENABLED(CONFIG_HYPERV)
12500 	kfree(kvm->arch.hv_pa_pg);
12501 #endif
12502 	__kvm_arch_free_vm(kvm);
12503 }
12504 
12505 
12506 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12507 {
12508 	int ret;
12509 	unsigned long flags;
12510 
12511 	if (!kvm_is_vm_type_supported(type))
12512 		return -EINVAL;
12513 
12514 	kvm->arch.vm_type = type;
12515 
12516 	ret = kvm_page_track_init(kvm);
12517 	if (ret)
12518 		goto out;
12519 
12520 	kvm_mmu_init_vm(kvm);
12521 
12522 	ret = static_call(kvm_x86_vm_init)(kvm);
12523 	if (ret)
12524 		goto out_uninit_mmu;
12525 
12526 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12527 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12528 
12529 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12530 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12531 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12532 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12533 		&kvm->arch.irq_sources_bitmap);
12534 
12535 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12536 	mutex_init(&kvm->arch.apic_map_lock);
12537 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12538 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12539 
12540 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12541 	pvclock_update_vm_gtod_copy(kvm);
12542 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12543 
12544 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12545 	kvm->arch.guest_can_read_msr_platform_info = true;
12546 	kvm->arch.enable_pmu = enable_pmu;
12547 
12548 #if IS_ENABLED(CONFIG_HYPERV)
12549 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12550 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12551 #endif
12552 
12553 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12554 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12555 
12556 	kvm_apicv_init(kvm);
12557 	kvm_hv_init_vm(kvm);
12558 	kvm_xen_init_vm(kvm);
12559 
12560 	return 0;
12561 
12562 out_uninit_mmu:
12563 	kvm_mmu_uninit_vm(kvm);
12564 	kvm_page_track_cleanup(kvm);
12565 out:
12566 	return ret;
12567 }
12568 
12569 int kvm_arch_post_init_vm(struct kvm *kvm)
12570 {
12571 	return kvm_mmu_post_init_vm(kvm);
12572 }
12573 
12574 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12575 {
12576 	vcpu_load(vcpu);
12577 	kvm_mmu_unload(vcpu);
12578 	vcpu_put(vcpu);
12579 }
12580 
12581 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12582 {
12583 	unsigned long i;
12584 	struct kvm_vcpu *vcpu;
12585 
12586 	kvm_for_each_vcpu(i, vcpu, kvm) {
12587 		kvm_clear_async_pf_completion_queue(vcpu);
12588 		kvm_unload_vcpu_mmu(vcpu);
12589 	}
12590 }
12591 
12592 void kvm_arch_sync_events(struct kvm *kvm)
12593 {
12594 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12595 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12596 	kvm_free_pit(kvm);
12597 }
12598 
12599 /**
12600  * __x86_set_memory_region: Setup KVM internal memory slot
12601  *
12602  * @kvm: the kvm pointer to the VM.
12603  * @id: the slot ID to setup.
12604  * @gpa: the GPA to install the slot (unused when @size == 0).
12605  * @size: the size of the slot. Set to zero to uninstall a slot.
12606  *
12607  * This function helps to setup a KVM internal memory slot.  Specify
12608  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12609  * slot.  The return code can be one of the following:
12610  *
12611  *   HVA:           on success (uninstall will return a bogus HVA)
12612  *   -errno:        on error
12613  *
12614  * The caller should always use IS_ERR() to check the return value
12615  * before use.  Note, the KVM internal memory slots are guaranteed to
12616  * remain valid and unchanged until the VM is destroyed, i.e., the
12617  * GPA->HVA translation will not change.  However, the HVA is a user
12618  * address, i.e. its accessibility is not guaranteed, and must be
12619  * accessed via __copy_{to,from}_user().
12620  */
12621 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12622 				      u32 size)
12623 {
12624 	int i, r;
12625 	unsigned long hva, old_npages;
12626 	struct kvm_memslots *slots = kvm_memslots(kvm);
12627 	struct kvm_memory_slot *slot;
12628 
12629 	/* Called with kvm->slots_lock held.  */
12630 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12631 		return ERR_PTR_USR(-EINVAL);
12632 
12633 	slot = id_to_memslot(slots, id);
12634 	if (size) {
12635 		if (slot && slot->npages)
12636 			return ERR_PTR_USR(-EEXIST);
12637 
12638 		/*
12639 		 * MAP_SHARED to prevent internal slot pages from being moved
12640 		 * by fork()/COW.
12641 		 */
12642 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12643 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12644 		if (IS_ERR_VALUE(hva))
12645 			return (void __user *)hva;
12646 	} else {
12647 		if (!slot || !slot->npages)
12648 			return NULL;
12649 
12650 		old_npages = slot->npages;
12651 		hva = slot->userspace_addr;
12652 	}
12653 
12654 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12655 		struct kvm_userspace_memory_region2 m;
12656 
12657 		m.slot = id | (i << 16);
12658 		m.flags = 0;
12659 		m.guest_phys_addr = gpa;
12660 		m.userspace_addr = hva;
12661 		m.memory_size = size;
12662 		r = __kvm_set_memory_region(kvm, &m);
12663 		if (r < 0)
12664 			return ERR_PTR_USR(r);
12665 	}
12666 
12667 	if (!size)
12668 		vm_munmap(hva, old_npages * PAGE_SIZE);
12669 
12670 	return (void __user *)hva;
12671 }
12672 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12673 
12674 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12675 {
12676 	kvm_mmu_pre_destroy_vm(kvm);
12677 }
12678 
12679 void kvm_arch_destroy_vm(struct kvm *kvm)
12680 {
12681 	if (current->mm == kvm->mm) {
12682 		/*
12683 		 * Free memory regions allocated on behalf of userspace,
12684 		 * unless the memory map has changed due to process exit
12685 		 * or fd copying.
12686 		 */
12687 		mutex_lock(&kvm->slots_lock);
12688 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12689 					0, 0);
12690 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12691 					0, 0);
12692 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12693 		mutex_unlock(&kvm->slots_lock);
12694 	}
12695 	kvm_unload_vcpu_mmus(kvm);
12696 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12697 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12698 	kvm_pic_destroy(kvm);
12699 	kvm_ioapic_destroy(kvm);
12700 	kvm_destroy_vcpus(kvm);
12701 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12702 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12703 	kvm_mmu_uninit_vm(kvm);
12704 	kvm_page_track_cleanup(kvm);
12705 	kvm_xen_destroy_vm(kvm);
12706 	kvm_hv_destroy_vm(kvm);
12707 }
12708 
12709 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12710 {
12711 	int i;
12712 
12713 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12714 		kvfree(slot->arch.rmap[i]);
12715 		slot->arch.rmap[i] = NULL;
12716 	}
12717 }
12718 
12719 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12720 {
12721 	int i;
12722 
12723 	memslot_rmap_free(slot);
12724 
12725 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12726 		kvfree(slot->arch.lpage_info[i - 1]);
12727 		slot->arch.lpage_info[i - 1] = NULL;
12728 	}
12729 
12730 	kvm_page_track_free_memslot(slot);
12731 }
12732 
12733 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12734 {
12735 	const int sz = sizeof(*slot->arch.rmap[0]);
12736 	int i;
12737 
12738 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12739 		int level = i + 1;
12740 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12741 
12742 		if (slot->arch.rmap[i])
12743 			continue;
12744 
12745 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12746 		if (!slot->arch.rmap[i]) {
12747 			memslot_rmap_free(slot);
12748 			return -ENOMEM;
12749 		}
12750 	}
12751 
12752 	return 0;
12753 }
12754 
12755 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12756 				      struct kvm_memory_slot *slot)
12757 {
12758 	unsigned long npages = slot->npages;
12759 	int i, r;
12760 
12761 	/*
12762 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12763 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12764 	 * the new memslot is successful.
12765 	 */
12766 	memset(&slot->arch, 0, sizeof(slot->arch));
12767 
12768 	if (kvm_memslots_have_rmaps(kvm)) {
12769 		r = memslot_rmap_alloc(slot, npages);
12770 		if (r)
12771 			return r;
12772 	}
12773 
12774 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12775 		struct kvm_lpage_info *linfo;
12776 		unsigned long ugfn;
12777 		int lpages;
12778 		int level = i + 1;
12779 
12780 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12781 
12782 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12783 		if (!linfo)
12784 			goto out_free;
12785 
12786 		slot->arch.lpage_info[i - 1] = linfo;
12787 
12788 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12789 			linfo[0].disallow_lpage = 1;
12790 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12791 			linfo[lpages - 1].disallow_lpage = 1;
12792 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12793 		/*
12794 		 * If the gfn and userspace address are not aligned wrt each
12795 		 * other, disable large page support for this slot.
12796 		 */
12797 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12798 			unsigned long j;
12799 
12800 			for (j = 0; j < lpages; ++j)
12801 				linfo[j].disallow_lpage = 1;
12802 		}
12803 	}
12804 
12805 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12806 	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12807 #endif
12808 
12809 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12810 		goto out_free;
12811 
12812 	return 0;
12813 
12814 out_free:
12815 	memslot_rmap_free(slot);
12816 
12817 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12818 		kvfree(slot->arch.lpage_info[i - 1]);
12819 		slot->arch.lpage_info[i - 1] = NULL;
12820 	}
12821 	return -ENOMEM;
12822 }
12823 
12824 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12825 {
12826 	struct kvm_vcpu *vcpu;
12827 	unsigned long i;
12828 
12829 	/*
12830 	 * memslots->generation has been incremented.
12831 	 * mmio generation may have reached its maximum value.
12832 	 */
12833 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12834 
12835 	/* Force re-initialization of steal_time cache */
12836 	kvm_for_each_vcpu(i, vcpu, kvm)
12837 		kvm_vcpu_kick(vcpu);
12838 }
12839 
12840 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12841 				   const struct kvm_memory_slot *old,
12842 				   struct kvm_memory_slot *new,
12843 				   enum kvm_mr_change change)
12844 {
12845 	/*
12846 	 * KVM doesn't support moving memslots when there are external page
12847 	 * trackers attached to the VM, i.e. if KVMGT is in use.
12848 	 */
12849 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12850 		return -EINVAL;
12851 
12852 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12853 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12854 			return -EINVAL;
12855 
12856 		return kvm_alloc_memslot_metadata(kvm, new);
12857 	}
12858 
12859 	if (change == KVM_MR_FLAGS_ONLY)
12860 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12861 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12862 		return -EIO;
12863 
12864 	return 0;
12865 }
12866 
12867 
12868 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12869 {
12870 	int nr_slots;
12871 
12872 	if (!kvm_x86_ops.cpu_dirty_log_size)
12873 		return;
12874 
12875 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12876 	if ((enable && nr_slots == 1) || !nr_slots)
12877 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12878 }
12879 
12880 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12881 				     struct kvm_memory_slot *old,
12882 				     const struct kvm_memory_slot *new,
12883 				     enum kvm_mr_change change)
12884 {
12885 	u32 old_flags = old ? old->flags : 0;
12886 	u32 new_flags = new ? new->flags : 0;
12887 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12888 
12889 	/*
12890 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12891 	 * applies to all operations.
12892 	 */
12893 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12894 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12895 
12896 	/*
12897 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12898 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12899 	 *
12900 	 * For a memslot with dirty logging disabled:
12901 	 * CREATE:      No dirty mappings will already exist.
12902 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12903 	 *		kvm_arch_flush_shadow_memslot()
12904 	 *
12905 	 * For a memslot with dirty logging enabled:
12906 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12907 	 *		and no dirty bits to clear.
12908 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12909 	 *		kvm_arch_flush_shadow_memslot().
12910 	 */
12911 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12912 		return;
12913 
12914 	/*
12915 	 * READONLY and non-flags changes were filtered out above, and the only
12916 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12917 	 * logging isn't being toggled on or off.
12918 	 */
12919 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12920 		return;
12921 
12922 	if (!log_dirty_pages) {
12923 		/*
12924 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12925 		 * large sptes have to be split.  If live migration succeeds,
12926 		 * the guest in the source machine will be destroyed and large
12927 		 * sptes will be created in the destination.  However, if the
12928 		 * guest continues to run in the source machine (for example if
12929 		 * live migration fails), small sptes will remain around and
12930 		 * cause bad performance.
12931 		 *
12932 		 * Scan sptes if dirty logging has been stopped, dropping those
12933 		 * which can be collapsed into a single large-page spte.  Later
12934 		 * page faults will create the large-page sptes.
12935 		 */
12936 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12937 	} else {
12938 		/*
12939 		 * Initially-all-set does not require write protecting any page,
12940 		 * because they're all assumed to be dirty.
12941 		 */
12942 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12943 			return;
12944 
12945 		if (READ_ONCE(eager_page_split))
12946 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12947 
12948 		if (kvm_x86_ops.cpu_dirty_log_size) {
12949 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12950 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12951 		} else {
12952 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12953 		}
12954 
12955 		/*
12956 		 * Unconditionally flush the TLBs after enabling dirty logging.
12957 		 * A flush is almost always going to be necessary (see below),
12958 		 * and unconditionally flushing allows the helpers to omit
12959 		 * the subtly complex checks when removing write access.
12960 		 *
12961 		 * Do the flush outside of mmu_lock to reduce the amount of
12962 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12963 		 * safe as KVM only needs to guarantee the slot is fully
12964 		 * write-protected before returning to userspace, i.e. before
12965 		 * userspace can consume the dirty status.
12966 		 *
12967 		 * Flushing outside of mmu_lock requires KVM to be careful when
12968 		 * making decisions based on writable status of an SPTE, e.g. a
12969 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12970 		 *
12971 		 * Specifically, KVM also write-protects guest page tables to
12972 		 * monitor changes when using shadow paging, and must guarantee
12973 		 * no CPUs can write to those page before mmu_lock is dropped.
12974 		 * Because CPUs may have stale TLB entries at this point, a
12975 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12976 		 *
12977 		 * KVM also allows making SPTES writable outside of mmu_lock,
12978 		 * e.g. to allow dirty logging without taking mmu_lock.
12979 		 *
12980 		 * To handle these scenarios, KVM uses a separate software-only
12981 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12982 		 * a guest page table being write-protected (KVM clears the
12983 		 * MMU-writable flag when write-protecting for shadow paging).
12984 		 *
12985 		 * The use of MMU-writable is also the primary motivation for
12986 		 * the unconditional flush.  Because KVM must guarantee that a
12987 		 * CPU doesn't contain stale, writable TLB entries for a
12988 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12989 		 * MMU-writable SPTE regardless of whether the actual hardware
12990 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12991 		 * to flush, while unconditionally flushing allows the "remove
12992 		 * write access" helpers to ignore MMU-writable entirely.
12993 		 *
12994 		 * See is_writable_pte() for more details (the case involving
12995 		 * access-tracked SPTEs is particularly relevant).
12996 		 */
12997 		kvm_flush_remote_tlbs_memslot(kvm, new);
12998 	}
12999 }
13000 
13001 void kvm_arch_commit_memory_region(struct kvm *kvm,
13002 				struct kvm_memory_slot *old,
13003 				const struct kvm_memory_slot *new,
13004 				enum kvm_mr_change change)
13005 {
13006 	if (change == KVM_MR_DELETE)
13007 		kvm_page_track_delete_slot(kvm, old);
13008 
13009 	if (!kvm->arch.n_requested_mmu_pages &&
13010 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13011 		unsigned long nr_mmu_pages;
13012 
13013 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13014 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13015 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13016 	}
13017 
13018 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13019 
13020 	/* Free the arrays associated with the old memslot. */
13021 	if (change == KVM_MR_MOVE)
13022 		kvm_arch_free_memslot(kvm, old);
13023 }
13024 
13025 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13026 {
13027 	return (is_guest_mode(vcpu) &&
13028 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13029 }
13030 
13031 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13032 {
13033 	if (!list_empty_careful(&vcpu->async_pf.done))
13034 		return true;
13035 
13036 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13037 	    kvm_apic_init_sipi_allowed(vcpu))
13038 		return true;
13039 
13040 	if (vcpu->arch.pv.pv_unhalted)
13041 		return true;
13042 
13043 	if (kvm_is_exception_pending(vcpu))
13044 		return true;
13045 
13046 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13047 	    (vcpu->arch.nmi_pending &&
13048 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13049 		return true;
13050 
13051 #ifdef CONFIG_KVM_SMM
13052 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13053 	    (vcpu->arch.smi_pending &&
13054 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
13055 		return true;
13056 #endif
13057 
13058 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
13059 		return true;
13060 
13061 	if (kvm_arch_interrupt_allowed(vcpu) &&
13062 	    (kvm_cpu_has_interrupt(vcpu) ||
13063 	    kvm_guest_apic_has_interrupt(vcpu)))
13064 		return true;
13065 
13066 	if (kvm_hv_has_stimer_pending(vcpu))
13067 		return true;
13068 
13069 	if (is_guest_mode(vcpu) &&
13070 	    kvm_x86_ops.nested_ops->has_events &&
13071 	    kvm_x86_ops.nested_ops->has_events(vcpu))
13072 		return true;
13073 
13074 	if (kvm_xen_has_pending_events(vcpu))
13075 		return true;
13076 
13077 	return false;
13078 }
13079 
13080 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13081 {
13082 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13083 }
13084 
13085 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13086 {
13087 	if (kvm_vcpu_apicv_active(vcpu) &&
13088 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
13089 		return true;
13090 
13091 	return false;
13092 }
13093 
13094 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13095 {
13096 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13097 		return true;
13098 
13099 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13100 #ifdef CONFIG_KVM_SMM
13101 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
13102 #endif
13103 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
13104 		return true;
13105 
13106 	return kvm_arch_dy_has_pending_interrupt(vcpu);
13107 }
13108 
13109 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13110 {
13111 	if (vcpu->arch.guest_state_protected)
13112 		return true;
13113 
13114 	if (vcpu != kvm_get_running_vcpu())
13115 		return vcpu->arch.preempted_in_kernel;
13116 
13117 	return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13118 }
13119 
13120 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13121 {
13122 	return kvm_rip_read(vcpu);
13123 }
13124 
13125 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13126 {
13127 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13128 }
13129 
13130 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13131 {
13132 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13133 }
13134 
13135 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13136 {
13137 	/* Can't read the RIP when guest state is protected, just return 0 */
13138 	if (vcpu->arch.guest_state_protected)
13139 		return 0;
13140 
13141 	if (is_64_bit_mode(vcpu))
13142 		return kvm_rip_read(vcpu);
13143 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13144 		     kvm_rip_read(vcpu));
13145 }
13146 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13147 
13148 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13149 {
13150 	return kvm_get_linear_rip(vcpu) == linear_rip;
13151 }
13152 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13153 
13154 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13155 {
13156 	unsigned long rflags;
13157 
13158 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
13159 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13160 		rflags &= ~X86_EFLAGS_TF;
13161 	return rflags;
13162 }
13163 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13164 
13165 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13166 {
13167 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13168 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13169 		rflags |= X86_EFLAGS_TF;
13170 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
13171 }
13172 
13173 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13174 {
13175 	__kvm_set_rflags(vcpu, rflags);
13176 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13177 }
13178 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13179 
13180 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13181 {
13182 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13183 
13184 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13185 }
13186 
13187 static inline u32 kvm_async_pf_next_probe(u32 key)
13188 {
13189 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13190 }
13191 
13192 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13193 {
13194 	u32 key = kvm_async_pf_hash_fn(gfn);
13195 
13196 	while (vcpu->arch.apf.gfns[key] != ~0)
13197 		key = kvm_async_pf_next_probe(key);
13198 
13199 	vcpu->arch.apf.gfns[key] = gfn;
13200 }
13201 
13202 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13203 {
13204 	int i;
13205 	u32 key = kvm_async_pf_hash_fn(gfn);
13206 
13207 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13208 		     (vcpu->arch.apf.gfns[key] != gfn &&
13209 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13210 		key = kvm_async_pf_next_probe(key);
13211 
13212 	return key;
13213 }
13214 
13215 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13216 {
13217 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13218 }
13219 
13220 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13221 {
13222 	u32 i, j, k;
13223 
13224 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13225 
13226 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13227 		return;
13228 
13229 	while (true) {
13230 		vcpu->arch.apf.gfns[i] = ~0;
13231 		do {
13232 			j = kvm_async_pf_next_probe(j);
13233 			if (vcpu->arch.apf.gfns[j] == ~0)
13234 				return;
13235 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13236 			/*
13237 			 * k lies cyclically in ]i,j]
13238 			 * |    i.k.j |
13239 			 * |....j i.k.| or  |.k..j i...|
13240 			 */
13241 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13242 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13243 		i = j;
13244 	}
13245 }
13246 
13247 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13248 {
13249 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13250 
13251 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13252 				      sizeof(reason));
13253 }
13254 
13255 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13256 {
13257 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13258 
13259 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13260 					     &token, offset, sizeof(token));
13261 }
13262 
13263 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13264 {
13265 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13266 	u32 val;
13267 
13268 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13269 					 &val, offset, sizeof(val)))
13270 		return false;
13271 
13272 	return !val;
13273 }
13274 
13275 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13276 {
13277 
13278 	if (!kvm_pv_async_pf_enabled(vcpu))
13279 		return false;
13280 
13281 	if (vcpu->arch.apf.send_user_only &&
13282 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13283 		return false;
13284 
13285 	if (is_guest_mode(vcpu)) {
13286 		/*
13287 		 * L1 needs to opt into the special #PF vmexits that are
13288 		 * used to deliver async page faults.
13289 		 */
13290 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13291 	} else {
13292 		/*
13293 		 * Play it safe in case the guest temporarily disables paging.
13294 		 * The real mode IDT in particular is unlikely to have a #PF
13295 		 * exception setup.
13296 		 */
13297 		return is_paging(vcpu);
13298 	}
13299 }
13300 
13301 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13302 {
13303 	if (unlikely(!lapic_in_kernel(vcpu) ||
13304 		     kvm_event_needs_reinjection(vcpu) ||
13305 		     kvm_is_exception_pending(vcpu)))
13306 		return false;
13307 
13308 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13309 		return false;
13310 
13311 	/*
13312 	 * If interrupts are off we cannot even use an artificial
13313 	 * halt state.
13314 	 */
13315 	return kvm_arch_interrupt_allowed(vcpu);
13316 }
13317 
13318 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13319 				     struct kvm_async_pf *work)
13320 {
13321 	struct x86_exception fault;
13322 
13323 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13324 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13325 
13326 	if (kvm_can_deliver_async_pf(vcpu) &&
13327 	    !apf_put_user_notpresent(vcpu)) {
13328 		fault.vector = PF_VECTOR;
13329 		fault.error_code_valid = true;
13330 		fault.error_code = 0;
13331 		fault.nested_page_fault = false;
13332 		fault.address = work->arch.token;
13333 		fault.async_page_fault = true;
13334 		kvm_inject_page_fault(vcpu, &fault);
13335 		return true;
13336 	} else {
13337 		/*
13338 		 * It is not possible to deliver a paravirtualized asynchronous
13339 		 * page fault, but putting the guest in an artificial halt state
13340 		 * can be beneficial nevertheless: if an interrupt arrives, we
13341 		 * can deliver it timely and perhaps the guest will schedule
13342 		 * another process.  When the instruction that triggered a page
13343 		 * fault is retried, hopefully the page will be ready in the host.
13344 		 */
13345 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13346 		return false;
13347 	}
13348 }
13349 
13350 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13351 				 struct kvm_async_pf *work)
13352 {
13353 	struct kvm_lapic_irq irq = {
13354 		.delivery_mode = APIC_DM_FIXED,
13355 		.vector = vcpu->arch.apf.vec
13356 	};
13357 
13358 	if (work->wakeup_all)
13359 		work->arch.token = ~0; /* broadcast wakeup */
13360 	else
13361 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13362 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13363 
13364 	if ((work->wakeup_all || work->notpresent_injected) &&
13365 	    kvm_pv_async_pf_enabled(vcpu) &&
13366 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13367 		vcpu->arch.apf.pageready_pending = true;
13368 		kvm_apic_set_irq(vcpu, &irq, NULL);
13369 	}
13370 
13371 	vcpu->arch.apf.halted = false;
13372 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13373 }
13374 
13375 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13376 {
13377 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13378 	if (!vcpu->arch.apf.pageready_pending)
13379 		kvm_vcpu_kick(vcpu);
13380 }
13381 
13382 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13383 {
13384 	if (!kvm_pv_async_pf_enabled(vcpu))
13385 		return true;
13386 	else
13387 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13388 }
13389 
13390 void kvm_arch_start_assignment(struct kvm *kvm)
13391 {
13392 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13393 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13394 }
13395 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13396 
13397 void kvm_arch_end_assignment(struct kvm *kvm)
13398 {
13399 	atomic_dec(&kvm->arch.assigned_device_count);
13400 }
13401 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13402 
13403 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13404 {
13405 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13406 }
13407 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13408 
13409 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13410 {
13411 	/*
13412 	 * Non-coherent DMA assignment and de-assignment will affect
13413 	 * whether KVM honors guest MTRRs and cause changes in memtypes
13414 	 * in TDP.
13415 	 * So, pass %true unconditionally to indicate non-coherent DMA was,
13416 	 * or will be involved, and that zapping SPTEs might be necessary.
13417 	 */
13418 	if (__kvm_mmu_honors_guest_mtrrs(true))
13419 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13420 }
13421 
13422 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13423 {
13424 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13425 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13426 }
13427 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13428 
13429 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13430 {
13431 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13432 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13433 }
13434 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13435 
13436 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13437 {
13438 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13439 }
13440 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13441 
13442 bool kvm_arch_has_irq_bypass(void)
13443 {
13444 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13445 }
13446 
13447 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13448 				      struct irq_bypass_producer *prod)
13449 {
13450 	struct kvm_kernel_irqfd *irqfd =
13451 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13452 	int ret;
13453 
13454 	irqfd->producer = prod;
13455 	kvm_arch_start_assignment(irqfd->kvm);
13456 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13457 					 prod->irq, irqfd->gsi, 1);
13458 
13459 	if (ret)
13460 		kvm_arch_end_assignment(irqfd->kvm);
13461 
13462 	return ret;
13463 }
13464 
13465 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13466 				      struct irq_bypass_producer *prod)
13467 {
13468 	int ret;
13469 	struct kvm_kernel_irqfd *irqfd =
13470 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13471 
13472 	WARN_ON(irqfd->producer != prod);
13473 	irqfd->producer = NULL;
13474 
13475 	/*
13476 	 * When producer of consumer is unregistered, we change back to
13477 	 * remapped mode, so we can re-use the current implementation
13478 	 * when the irq is masked/disabled or the consumer side (KVM
13479 	 * int this case doesn't want to receive the interrupts.
13480 	*/
13481 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13482 	if (ret)
13483 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13484 		       " fails: %d\n", irqfd->consumer.token, ret);
13485 
13486 	kvm_arch_end_assignment(irqfd->kvm);
13487 }
13488 
13489 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13490 				   uint32_t guest_irq, bool set)
13491 {
13492 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13493 }
13494 
13495 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13496 				  struct kvm_kernel_irq_routing_entry *new)
13497 {
13498 	if (new->type != KVM_IRQ_ROUTING_MSI)
13499 		return true;
13500 
13501 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13502 }
13503 
13504 bool kvm_vector_hashing_enabled(void)
13505 {
13506 	return vector_hashing;
13507 }
13508 
13509 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13510 {
13511 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13512 }
13513 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13514 
13515 
13516 int kvm_spec_ctrl_test_value(u64 value)
13517 {
13518 	/*
13519 	 * test that setting IA32_SPEC_CTRL to given value
13520 	 * is allowed by the host processor
13521 	 */
13522 
13523 	u64 saved_value;
13524 	unsigned long flags;
13525 	int ret = 0;
13526 
13527 	local_irq_save(flags);
13528 
13529 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13530 		ret = 1;
13531 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13532 		ret = 1;
13533 	else
13534 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13535 
13536 	local_irq_restore(flags);
13537 
13538 	return ret;
13539 }
13540 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13541 
13542 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13543 {
13544 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13545 	struct x86_exception fault;
13546 	u64 access = error_code &
13547 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13548 
13549 	if (!(error_code & PFERR_PRESENT_MASK) ||
13550 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13551 		/*
13552 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13553 		 * tables probably do not match the TLB.  Just proceed
13554 		 * with the error code that the processor gave.
13555 		 */
13556 		fault.vector = PF_VECTOR;
13557 		fault.error_code_valid = true;
13558 		fault.error_code = error_code;
13559 		fault.nested_page_fault = false;
13560 		fault.address = gva;
13561 		fault.async_page_fault = false;
13562 	}
13563 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13564 }
13565 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13566 
13567 /*
13568  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13569  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13570  * indicates whether exit to userspace is needed.
13571  */
13572 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13573 			      struct x86_exception *e)
13574 {
13575 	if (r == X86EMUL_PROPAGATE_FAULT) {
13576 		if (KVM_BUG_ON(!e, vcpu->kvm))
13577 			return -EIO;
13578 
13579 		kvm_inject_emulated_page_fault(vcpu, e);
13580 		return 1;
13581 	}
13582 
13583 	/*
13584 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13585 	 * while handling a VMX instruction KVM could've handled the request
13586 	 * correctly by exiting to userspace and performing I/O but there
13587 	 * doesn't seem to be a real use-case behind such requests, just return
13588 	 * KVM_EXIT_INTERNAL_ERROR for now.
13589 	 */
13590 	kvm_prepare_emulation_failure_exit(vcpu);
13591 
13592 	return 0;
13593 }
13594 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13595 
13596 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13597 {
13598 	bool pcid_enabled;
13599 	struct x86_exception e;
13600 	struct {
13601 		u64 pcid;
13602 		u64 gla;
13603 	} operand;
13604 	int r;
13605 
13606 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13607 	if (r != X86EMUL_CONTINUE)
13608 		return kvm_handle_memory_failure(vcpu, r, &e);
13609 
13610 	if (operand.pcid >> 12 != 0) {
13611 		kvm_inject_gp(vcpu, 0);
13612 		return 1;
13613 	}
13614 
13615 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13616 
13617 	switch (type) {
13618 	case INVPCID_TYPE_INDIV_ADDR:
13619 		/*
13620 		 * LAM doesn't apply to addresses that are inputs to TLB
13621 		 * invalidation.
13622 		 */
13623 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13624 		    is_noncanonical_address(operand.gla, vcpu)) {
13625 			kvm_inject_gp(vcpu, 0);
13626 			return 1;
13627 		}
13628 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13629 		return kvm_skip_emulated_instruction(vcpu);
13630 
13631 	case INVPCID_TYPE_SINGLE_CTXT:
13632 		if (!pcid_enabled && (operand.pcid != 0)) {
13633 			kvm_inject_gp(vcpu, 0);
13634 			return 1;
13635 		}
13636 
13637 		kvm_invalidate_pcid(vcpu, operand.pcid);
13638 		return kvm_skip_emulated_instruction(vcpu);
13639 
13640 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13641 		/*
13642 		 * Currently, KVM doesn't mark global entries in the shadow
13643 		 * page tables, so a non-global flush just degenerates to a
13644 		 * global flush. If needed, we could optimize this later by
13645 		 * keeping track of global entries in shadow page tables.
13646 		 */
13647 
13648 		fallthrough;
13649 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13650 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13651 		return kvm_skip_emulated_instruction(vcpu);
13652 
13653 	default:
13654 		kvm_inject_gp(vcpu, 0);
13655 		return 1;
13656 	}
13657 }
13658 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13659 
13660 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13661 {
13662 	struct kvm_run *run = vcpu->run;
13663 	struct kvm_mmio_fragment *frag;
13664 	unsigned int len;
13665 
13666 	BUG_ON(!vcpu->mmio_needed);
13667 
13668 	/* Complete previous fragment */
13669 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13670 	len = min(8u, frag->len);
13671 	if (!vcpu->mmio_is_write)
13672 		memcpy(frag->data, run->mmio.data, len);
13673 
13674 	if (frag->len <= 8) {
13675 		/* Switch to the next fragment. */
13676 		frag++;
13677 		vcpu->mmio_cur_fragment++;
13678 	} else {
13679 		/* Go forward to the next mmio piece. */
13680 		frag->data += len;
13681 		frag->gpa += len;
13682 		frag->len -= len;
13683 	}
13684 
13685 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13686 		vcpu->mmio_needed = 0;
13687 
13688 		// VMG change, at this point, we're always done
13689 		// RIP has already been advanced
13690 		return 1;
13691 	}
13692 
13693 	// More MMIO is needed
13694 	run->mmio.phys_addr = frag->gpa;
13695 	run->mmio.len = min(8u, frag->len);
13696 	run->mmio.is_write = vcpu->mmio_is_write;
13697 	if (run->mmio.is_write)
13698 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13699 	run->exit_reason = KVM_EXIT_MMIO;
13700 
13701 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13702 
13703 	return 0;
13704 }
13705 
13706 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13707 			  void *data)
13708 {
13709 	int handled;
13710 	struct kvm_mmio_fragment *frag;
13711 
13712 	if (!data)
13713 		return -EINVAL;
13714 
13715 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13716 	if (handled == bytes)
13717 		return 1;
13718 
13719 	bytes -= handled;
13720 	gpa += handled;
13721 	data += handled;
13722 
13723 	/*TODO: Check if need to increment number of frags */
13724 	frag = vcpu->mmio_fragments;
13725 	vcpu->mmio_nr_fragments = 1;
13726 	frag->len = bytes;
13727 	frag->gpa = gpa;
13728 	frag->data = data;
13729 
13730 	vcpu->mmio_needed = 1;
13731 	vcpu->mmio_cur_fragment = 0;
13732 
13733 	vcpu->run->mmio.phys_addr = gpa;
13734 	vcpu->run->mmio.len = min(8u, frag->len);
13735 	vcpu->run->mmio.is_write = 1;
13736 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13737 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13738 
13739 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13740 
13741 	return 0;
13742 }
13743 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13744 
13745 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13746 			 void *data)
13747 {
13748 	int handled;
13749 	struct kvm_mmio_fragment *frag;
13750 
13751 	if (!data)
13752 		return -EINVAL;
13753 
13754 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13755 	if (handled == bytes)
13756 		return 1;
13757 
13758 	bytes -= handled;
13759 	gpa += handled;
13760 	data += handled;
13761 
13762 	/*TODO: Check if need to increment number of frags */
13763 	frag = vcpu->mmio_fragments;
13764 	vcpu->mmio_nr_fragments = 1;
13765 	frag->len = bytes;
13766 	frag->gpa = gpa;
13767 	frag->data = data;
13768 
13769 	vcpu->mmio_needed = 1;
13770 	vcpu->mmio_cur_fragment = 0;
13771 
13772 	vcpu->run->mmio.phys_addr = gpa;
13773 	vcpu->run->mmio.len = min(8u, frag->len);
13774 	vcpu->run->mmio.is_write = 0;
13775 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13776 
13777 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13778 
13779 	return 0;
13780 }
13781 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13782 
13783 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13784 {
13785 	vcpu->arch.sev_pio_count -= count;
13786 	vcpu->arch.sev_pio_data += count * size;
13787 }
13788 
13789 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13790 			   unsigned int port);
13791 
13792 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13793 {
13794 	int size = vcpu->arch.pio.size;
13795 	int port = vcpu->arch.pio.port;
13796 
13797 	vcpu->arch.pio.count = 0;
13798 	if (vcpu->arch.sev_pio_count)
13799 		return kvm_sev_es_outs(vcpu, size, port);
13800 	return 1;
13801 }
13802 
13803 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13804 			   unsigned int port)
13805 {
13806 	for (;;) {
13807 		unsigned int count =
13808 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13809 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13810 
13811 		/* memcpy done already by emulator_pio_out.  */
13812 		advance_sev_es_emulated_pio(vcpu, count, size);
13813 		if (!ret)
13814 			break;
13815 
13816 		/* Emulation done by the kernel.  */
13817 		if (!vcpu->arch.sev_pio_count)
13818 			return 1;
13819 	}
13820 
13821 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13822 	return 0;
13823 }
13824 
13825 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13826 			  unsigned int port);
13827 
13828 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13829 {
13830 	unsigned count = vcpu->arch.pio.count;
13831 	int size = vcpu->arch.pio.size;
13832 	int port = vcpu->arch.pio.port;
13833 
13834 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13835 	advance_sev_es_emulated_pio(vcpu, count, size);
13836 	if (vcpu->arch.sev_pio_count)
13837 		return kvm_sev_es_ins(vcpu, size, port);
13838 	return 1;
13839 }
13840 
13841 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13842 			  unsigned int port)
13843 {
13844 	for (;;) {
13845 		unsigned int count =
13846 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13847 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13848 			break;
13849 
13850 		/* Emulation done by the kernel.  */
13851 		advance_sev_es_emulated_pio(vcpu, count, size);
13852 		if (!vcpu->arch.sev_pio_count)
13853 			return 1;
13854 	}
13855 
13856 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13857 	return 0;
13858 }
13859 
13860 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13861 			 unsigned int port, void *data,  unsigned int count,
13862 			 int in)
13863 {
13864 	vcpu->arch.sev_pio_data = data;
13865 	vcpu->arch.sev_pio_count = count;
13866 	return in ? kvm_sev_es_ins(vcpu, size, port)
13867 		  : kvm_sev_es_outs(vcpu, size, port);
13868 }
13869 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13870 
13871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13900 
13901 static int __init kvm_x86_init(void)
13902 {
13903 	kvm_mmu_x86_module_init();
13904 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13905 	return 0;
13906 }
13907 module_init(kvm_x86_init);
13908 
13909 static void __exit kvm_x86_exit(void)
13910 {
13911 	/*
13912 	 * If module_init() is implemented, module_exit() must also be
13913 	 * implemented to allow module unload.
13914 	 */
13915 }
13916 module_exit(kvm_x86_exit);
13917